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Abstract 

Image segmentation is an important branch of computer vision. It aims at extracting 
meaningful objects lying in images either by dividing images into contiguous semantic 
regions, or by extracting one or more specific objects in images such as left kidney in 
CT image. The image segmentation task is, in general, very difficult to achieve since 
natural images are diverse and complex, and the way we perceive them varies according 
to individuals. 

This thesis proposes four new algorithms for solving variational image segmentation 
models based on looking for piecewise smooth homogeneous regions and the active con­
tours. The active contours model is more and more used in image segmentation because 
it relies on solid mathematical properties and its numerical implementation uses the 
effective level set method to track evolving contours. 

The first algorithm in this thesis uses the multigrid method for solving partial differ­
ential equations (PDE) which arise from the minimization of the active contour without 
edges (2-phase image segmentation) of Chan and Vese [35J. Despite of great theoretical 
properties, the active contours model suffers from the existence of local minima which 
requires the critical initial guess to get satisfactory results [25, 15J. With our proposed 
algorithm we can reach the global minimizer. The multigrid method is faster in con­
vergence than uni-Ievel methods like semi implicit (81) and additive operator splitting 
(AOS) methods. 

The second algorithm in this thesis uses the multigrid method for PDEs which arise 
from minimization of the multi phase image segmentation model by Vese and Chan [120], 
which is the extension of the 2-phase image segmentation multigrid method of Noor and 
Chen [8]. We also develop a new smoother which improves the multigrid method, where 
standard smoothers can not lead to an efficient multigrid. The multiphase segmentation 
model depends on an initial guess. To overcome the dependence, we propose a hierarchical 
2-phase multigrid for multiphase segmentation. 

The third algorithm is an optimization based multilevel method for the 2-phase image 
segmentation model. This method is used to solve the minimization functional other than 
solving the PDE arising from minimization. This method allows us to use a very small 
regularization parameter f3 used in Chapter 4, yielding improvement in convergence speed 
in terms of CPU time. 

Finally, we propose a new model for selective image segmentation under geometrical 
conditions such as a set of points and develop an AOS algorithm. This model is used 
to detect special features in an image, which is a necessary task in almost all medical 
applications. It allows us to detect objects in a noisy image and speed up the convergence 
as well. 

Overall we are concerned with effective segmentation models, numerical realizations 
and fast algorithms for image segmentation. 
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Chapter 1 

Introduction 

Computer vision is a branch of artificial intelligence that aims at giving vision to ma­
chines, which means to develop mathematical models, algorithms and technologies to 
build a machine with vision capabilities as advanced as human eyesight at least. More 
mathematically speaking, the purpose of computer vision is to process images acquired 
with cameras to produce a mathematical representation of the semantic objects in the 
world. 

1.1 Computer Vision and Image Segmentation 

Computer vision is divided into image processing, pattern recognition, statistical learning 
etc., whose objectives are as varied as detection and recognition of objects in images, 
registration of different views of the same object with different sources, tracking of objects 
in videos and so on. In this thesis we mainly look into a specific branch of image processing 
called Image Segmentation. 

Image segmentation is one part of the general task of computer vision. A 'common 
sense' definition would describe segmentation as the translation of an image, from an 
array of grey levels, to a symbolic description, for example as a number of well defined 
regions. For a given image z, the segmentation is the seemingly simple task of separating 
the foreground from the background. An alternative way to define segmentation is feature 
based, where the regions of interest in the image are the projections of the 'objects' in the 
scene and then the task of segmentation is to identify and locate these objects, regardless 
of the indeterminacy due to image acquisition, lighting and so on. 

In the last two decades, several mathematical models have been developed to achieve 
image segmentation. The recent promising models to solve the image segmentation prob­
lem are based on variational approaches and Partial Differential Equations (PDE). These 
models benefit from well-founded mathematical theories that allow us to analyze, under­
stand, improve the existing methods and to work in a continuous setting which makes 
the proposed models independent of the grid of digital images. This thesis focus on vari­
ational image segmentation and active-contour models and algorithms, which share the 
common feature that they define optimal segmeutation as a minimizer of an objective 
function that generally depends on the given image and the characteristics that are used 
to identify the different segmented regions. The Euler-Lagrange equation of these models 
is often be described using a parabolic partial differential equation, which is iterated in 
time until it reaches steady state. 

A contour is introduced into the image to locate boundaries of features and is evolved 
until steady state thereby dividing the image into regions. A very powerful and popular 
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method for representing the contour is the level-sct method originally developed by Oshcr 
and Sethian [92], which represents the contour implicitly as a particular (usually the zero) 
level of a level-set function. The main advantage of this representation is that topological 
changes, such as merging and pinching off of contours can be captured naturally through 
smooth changes to the level-set function, because level set is defined in a higher dimension. 

In this thesis, we focus mainly on region-based (rather than edge-based) segmentation 
models. A prototypical example, and the primary one we discuss in this thesis, is the 
Chan-Vese (CV) "Active Contour Without Edges" model [35], which seeks the desired 
segmentation as the best piecewise constant approximation to a given image. The CV 
model can be interpreted as a level-set implementation of the piecewise-constant special 
case of the more general Mumford and Shah segmentation model [88]. 

Due to its simplicity and robustness, the CV model has become quite popular and 
has been adopted in many applications. As a result, a number of generalizations have 
been developed to improve both its applicability and efficiency. A natural generalization 
is to multi-channel images. Initially, a vector valued method [32] was used with an appli­
cation in texture segmentation [102]. Further extensions include object tracking in video 
sequences in the presence of clutter, registration of images to identify key objects, and 
color segmentation that can identify an object in an image with an arbitrary combination 
of colors [115]. 

Another direction of generalization to the basic Chan-Vese model is to multiphase 
models, which allow the segmentation of the image into more than two regiolls. The 
multiphase method of Vese and Chan [120] only needs log2n level-set functions to repre­
sent n regions, without any need to avoid overlaping and uncovered regions, drastically 
improving the efficiency. More recently, J. Lie et al [79] and G. Chung et al [44] have 
developed novel level-set methods that use only one level-set function to represent an 
arbitrary number of regions. Another variational model for image segmentation is given 
by F. Liu et al in [80]. Liu et al proposed an adaptive 2-phase level set image seg­
mentation algorithm to improve the CV model by introduction of a multiplicative gain 
field. The resulting model is adaptive to intensity inhomogeneity, tends to obtain the 
actual boundaries of the objects. In [130] Y. Zhang proposed an improved algorithm, 
where the key functions in the piecewise smooth Mumford and Shah model are replaced 
by updating the level set function based on an artificial image that is composed of the 
diffused image and the original image. In [50], X. Du et al proposed a new model where 
the energy functional contains only two terms: the combined length of the segmentation 
curves and the high frequency components in regions excluding the object boundaries. 
Their functional depends on only one variable so we need to solve one PDE to minimize 
the energy functional. This model can detect both staircase and roof edges in the image. 
Similar work can be found in [18, 77, 82, 93, 125]. 

In this thesis the main issue discussed is to improve the computational efficiency 
of the variational models. The typical approach of gradient flow (Le., marching the 
Euler-Lagrange PDE to steady state) usually takes a long time to converge using explicit 
method, implicit method or additive operator splitting method [127]. In this thesis we 
develop the multigrid method to solve this PDE using special type of smoother (for both 
two-phase and multiphase segmentation). Other related work can be found in [95, 94]. 
Another approach to achieve fast convergence is to treat the models as a discrete opti­
mization problem whose solution is the association of each pixel to a particular region. 
B. Song et al [110] proposed a direct optimization algorithm, which has the surprising 
property that for noiseless two-phase images the optimal solution can be provably ob­
tained with only one sweep over the pixels. 1Iore segmentation algorithms can be found 
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in [52, 57]. 
The multigrid method [14, 39, 68, 118, 128] is one of the most powerful numeri­

cal methods for solving linear and non-linear elliptic problems. The multigrid method 
based on the recursive application of error smoothing and coarse grid correction has been 
demonstrated to be efficient solvers for a wide range of PDEs, although the method is 
known to be less robust for either case with highly discontinuous coefficients [124]. More 
references to multigrid methods for different problems in image processing problems are 
[1,8,9,17,29,40,43,94,95,105]. 

1.2 Thesis Outline 

Chapter 2: 

This chapter covers some basic background material such as: 

• Definition and explanation of Bounded Variation (BV), Total Variation (TV) and 
Level set method. 

• Some traditional iterative methods for solving system of equations. 

• Time marching schemes for solving parabolic partial differential equations and also 
their stability. 

• The Multigrid method implementing on Poisson equation. Smoothing analysis is 
given for Poisson equation. 

Chapter 3: 

In this chapter we give literature review of image segmentation. 

• We give brief discussion of active contour model without edges by Chan-Vese in 
this chapter. 

• We also discuss some existing methods used for solving partial differential equation 
arisen from minimization of the Chan-Vese model. 

Chapter 4: 

In this chapter we describe Chan-Vese model and give details of the existing methods. 

• We give details of some smoothers ( local and global smoothers). 

• We develop multigrid method for solving partial differential equations arisen from 
minimization of Chan-Vese model. 

• We describe smoothing analysis of the smoothers. 

• We compare the results obtained from multigrid method with the results obtained 
from existed methods like Semi Implicit method (81), Additive Operator Splitting 
method (AOS) etc. 

Chapter 5: 

In this chapter we propose an algorithm which uses muitigrid for muitipha'le image 
segmentation. 
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• Two phase segmentation model extend to mllitiphase segmentation model particu­
larly 4-phases (CV4). 

• Smoothers discussed in chapter 4 will be used for CV 4. 

• We propose another smoother in this chapter for multiphase image segmentation 
model CV4. 

• We give the local Fourier analysis of the smoothers. 

• We implement our multigrid idea in hierarchical way to extend it from 2 phase to 
multiphase image segmentation in this chapter. 

• We compare the results from different methods discussed in this chapter. 

Chapter 6: 

In this chapter we present a new optimization based multilevel method for Chan-Vese 
model. 

• We also use this method to the Chan et al model for computing global minima. 

• We compare the results from both models and present experimental results form 
both models. 

Chapter 7: 

In this chapter we describe an existed model and propose more reliable model for 
feature selection (image segmentation under geometrical conditions). 

• \Ve propose a new model for feature selection. 

• \Ve compare the results from both models. 

Chapter 8: 

In this chapter we give conclusion and discuss some future work. 
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Chapter 2 

Mathematical Preliminaries 

In this chapter we describe some useful material to be used in later chapters. Some of 
the references for this chapter are [7, 14, 39, 56, 68, 92,98, 106, 122, 128]. 

This chapter is organized in the following way. Sections 2.1 and 2.2 give some ba­
sic definitions, examples and some important theorems. In Section 2.3 we define total 
variation (TV) and bounded variation (BV) and explain with some examples. Section 
2.4 gives details of the level set method and give the numerical implementation of the 
level set method. Section 2.5 gives some idea of ill posed problems and discuss some 
regularization techniques. Section 2.6 gives details of some basic iterative methods for 
solving system of linear equations, and discuss their convergence. Section 2.7 describes 
some numerical methods for solving parabolic and elliptic PDEs and their stability. We 
end this chapter with explaining the multigrid method. 

2.1 Normed Spaces 

Definition 2.1.1 (Seminorm) A vector seminorm on a vector space S, is a real 
valued functional II . II such that 

1. Ilxll ~ 0 for all x E S, 

2. Ilaxll = lalllxli for all a E JR and x E S, 

3. Ilx + yll ~ Ilxll + Ilyll for all x, yES. 

A norm is a seminorm if the following additional condition holds: 

Ilxll = 0 if and only if x = 0 

Examples: 

• All norms are seminorms. 

• The trivial seminorm, is Ilxll = 0 '<Ix E S. 

• The absolute value is a norm on the set of real numbers JR. 

• Euclidean norm: 
Let x = (Xl, X2, ••. ,Xn ) E JRn then 

Ilxll = Jx~ +x~ + ... + x~. 
This gives the ordinary distance from the origin to the point x. 
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• p-norm: 
For real number p ~ I and x E JR.n , 

Clearly, for p = I this norm is called I-norm and for p = 2 this is Euclidean norm. 

• Infinity norm/ Maximum norm: 
For x E JR.n, Ilxll oo = max(lxII, IX21, ... , Ixnl). 

• LP-norm 
For functions 1 defined in a domain n and I ~ p < 00 then 

1 

1I/llp,s = (J., I/(x)IPdx r 
• Total Variation (TV) norm will be discussed later in this chapter. 

Definition 2.1.2 (Normed Space) A vector space S possessing a norm 11.lIs. 

Definition 2.1.3 A sequence of elements Xn in a normed vector space S is a Cauchy 
sequence if and only if "iIf. > 0 there exist N E N such that 

"iIm,n>N. 

Definition 2.1.4 A real or complex Banach space S is a complete normed vector space 
S over the real or complex numbers i.e. with a norm 11·11 such that every Cauchy sequence 
Xn in S has a limit in S. 

Examples: 

• Q c JR. is not complete for IIxll = Ixi since there are Cauchy sequences of rational 
numbers having no limit in Q. Take for instance the sequence {xn : n E N} in Q 
such that Xl = 1 and Xn+l = ;n + L which converges to the irrational J2 when 
n --+ 00. 

• The set of real numbers JR. is complete for IIxll = Ixl· 

• JR.n is a complete normed space which can be constructed using Cauchy sequences 
of rational numbers. It is supplied with the norm 

• C([a, b], JR.), the space of all continuous functions 1 : [a, bj --+ JR. is a Banach space if 
we define the norm of such functions as 

11111 = sup{ll(x)1 : x E [a, b]}, 

which is known as supremum norm. It is a norm since all continuous functions on 
a compact interval are bounded. 
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Definition 2.1.5 (Inner Product) An inner product on the vector space S is a func­
tional (', '}s on S x S which satisfies 

1. (u, u) ~ 0 for all U E S. 

2. (u,v}s = (v,u}s for all u,v E S. 

3. (Au, v}s = A(u, v}s. 

Theorem 2.1.1 (Bessel's inequality) If { en} is an orthonormal set in an inner prod­
uct space S, then for any x in the space 

n 

where Cn = (x, en}s. 

Theorem 2.1.2 (Parseval's Relation) Let {en} be an orthonormal set in an inner 
product space S. It is a basis if and only if for each x in the space 

00 

L lenl 2 = IlxlJ2, 
1 

where {cn } are the expansion coefficients ofx with respect to {en}, en = (x,en}s. 

Lemma 2.1.1 (Continuity of the Inner Product) Ifxn --+ x, then (xn,y) --+ (x,y}s 
for any y. If L:r' Un = U, then L:r'(un, y}s = (U, y}s for any y. 

2.2 Calculus of Variation 

2.2.1 Topologies on Banach Spaces 

Let (S, 1·1) denote a real Banach space. Let S' be the topological dual space of S defined 
as 

{ 
'" II(x)1 } S' = I: S --+ 1R IS a hnear functIon such that Ills' = sup -1-1- < 00 . 

x;io x S 

Definition 2.2.1 (topologies on S) (i) The strong topology, denoted by Xn --+ x, is 
S 

defined by 
IXn - xis --+ O(n --+ +00). 

(ii) The weak topology, denoted by Xn ---' x, is defined as 
S 

I(xn ) --+ l(x)(n --+ +00) for every I E S'. 

(iii) The weak* topology denoted by In ~ I, is defined by In(x) --+ l(x) (n --+ +00) for 
s' 

all xES. 

Remark 2.2.1 Strong convergence implies weak convergence, but the converse is not 
true in general. 
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Example 2.2.1 Let {en} be an infinite orthonormal set in an inner product space S. 
Then I: I(y, enW converges, and hence (y, en) ~ 0 for any yES. But Ilenll = 1, so 
en ~ 0 is not true means no strong convergence. 

Theorem 2.2.1 [7J 

1. Let S be a reflexive1 Banach space, K > 0 and Xn E S a sequence such that Ixnls ~ 
K. Then there exist xES and a subsequence xnj ofxn such that xnj ----" x(n ~ 00). 

S 

2. Let S be a separable2 Banach space, K > 0 and 1n E S' such that Iln Is' ~ K. Then 

there exist l E S' and a subsequence In· of in such that in,· ~ i(n ~ 00). , S 

Let S be a Banach space, F : S ~ IR and consider the minimization problem 

minF(x). 
xES 

For existence of solution the following steps are to be achieved. 

1. To construct a sequence Xn E S such that 

lim F(xn) = min F(x). 
n ...... oo xES 

2. If F is coercive3 then we can obtain a uniform bound Ixnls ~ C. If F is reflexive, 
then by theorem 2.2.1 we can deduce the existence of Xo E S and of a subsequence 
x n ,· such that xn · ----" Xo. , s 

3. To prove that Xo is a minimum point of F it suffices to have the inequality 

which implies that 
F(xo) = minF(x). 

xES 

Definition 2.2.2 (Lower Semi Continuity) F is called lower semi continuous (l.s.c) 
for the weak topology if for all sequence Xn ----" Xo we have 

Definition 2.2.3 (Convexity) F is said to be convex on S if 

F()"x + (1 - )..)y) ~ AF(x) + (1 - )..)F(y) 

for all x, yES and A E [0,1]. In other words we can say, a convex function is a continuous 
function whose value at the midpoint of every interval in its domain does not exceed the 
arithmetic mean of its values at the ends of the interval. 

Example 2.2.2 (Examples on IR) • eax , for any a E IR on domain IR is convex . 

• xQ on IR+, for a)! 1 ora ~ 0 is convex. 

[The space 8 is said to be reflexive if (8')' is isomorphic to S. 
2 A space S is separable if it contains a cuuntable dense subset. 
3 F is said to be coercive if lillllxl_+oo F = +00. 
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• Powers of absolute value IxlP on JR, for p ;;::: 1 are convex. 

Examples on lRn; 

• f(x) = aTx+ b where a E JRn,x,b E lRnxl is convex. 

• Norms: 
n 1 

Ilxllp = (L IXiIP) P, forp;;::: 1; 
i=1 

are convex. 

Examples on lRmxn : 

• m n 

f(X) =tr(ATX) +b= LLAjXij +b 
i=1 j=1 

is convex. 

• Spectral (maximum singular value) norm 

( 
T )1/2 

f(X) = IIXII = O'max(X) = Amax(X X) 

where Amax is a maximum eigenvalue, is convex [13]. 

Theorem 2.2.2 Let F : S ---+ lR be convex. Then F is weakly lower semi continuous if 
and only if F is strongly lower semi continuous. 

2.2.2 Gateaux derivative of a functional 

Assume that Sand T are Banach spaces and F : S ---+ T be an Operator. 

Definition 2.2.4 (Gateaux derivative) Let u, v E S then the quantity 

DF( ) 
- l' F(u + hv) - F(u) 

u,v - 1m h 
h-.O 

is called the G-differential of F at u in the direction of v. Moreover, if the above limit 
exists for any v E S, the F is G-differentiable at point u E Sand D F( u, .) is the G­
derivative of F at u. If F is Gateaux differentiable and if the problem minuEs F(u) has 
a solution u, then we have 

DF(u,v) = O. 

Conversely, if F is convex, then a solution u of D F( u, v) = 0 Vv E S is a solution of the 
minimization problem. The equation D F( 1L, v) = 0 is called an Euler-Lagrange equation 
of the minimization problem minuEs F( u). 
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2.3 Total Variation (TV)and Bounded Variation (BV): 

In this section we fist define TV, explain it with an example and then will give definition 
of I3V. We use one-dimensional definition of I3V for further explanation. 

Definition 2.3.1 (Compact set) A topological space S is compact if, for every col­
lection {SdiEI of open sets in S whose union is S, there exists a finite sub-collection 
{Sij } J=l whose union is also S. 

Definition 2.3.2 (Compact support) Functions with compact support4 in S are those 
with support that is a compact subset of S. 

Definition 2.3.3 Let n be a bounded open subset ofRn and let u be a function in Ll en), 
then defining the TV norm as 

Ivll_ .; 1 }, 

(2.1) 

where 'V . v = t av and v is a vector valued function with compact support that 
aXi 

i=1 
is differentiable to arbitrary order. Here eD(n) is the space of real-valued functions, 
infinitely continuous differentiable with compact support. 

Definition 2.3.4 (Bounded Variation (BV» If for a function 11" IIDull(n) < 00, 

then the function u is known as of bounded variation. The notation BV(n} denotes all 
functions in LI (n) that are of bounded variation. 

To explain it more we give the one-dimensional definition of I3V and give some examples 

Definition 2.3.5 A function u : [a, b] ~ R is said to be of bounded variation on [a, b] if 
and only if there exist a constant M > 0 such that 

n 

L IU(Xi) - u(xi-dl ~ M 
i=1 

for all partitions P = {xo, Xl, ... ,xn } of [a, b]. 

More details can be found in [133, 59]. 

Theorem 2.3.1 (Co-Area Formula) Suppose that n is an open set in ]Rn, let u E 

EV(n) and define 
F'T/ = {x En: u(x) < 1]}, 

be the level domain (cumulative level set). Then 

II Dull = r IDuldx = 100 

dry r IDXF"ldx, in -00 in (2.2) 

where XFf/ is a characteristic {or indicator} function of set F'T/' The perimeter can be 
defined as 

so (2.2) becomes 

IIDul1 = IIDuldx = 100 

Per (F'T/)d1]. 
n -00 

(2.3) 

4The support of a function f is the closure of {x: f(:r) ¥= O} and is denuted by supp(J). 
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The proof could be found in [59]. 

Example 2.3.1 If u E C 1 (D), then integration by parts gives 

r u'V.vdx= - r t;;VidX 
~ ~i=l ' 

for every v E CO'(D,lRn ), so that 

In IDuldx = In l'Vuldx, 

where 'Vu = (a au , aau , ... , aau ). Thus, if u is regular enough, the total variation 
Xl x2 Xn 

(TV) has the form: 

IIDull(D) = In IDul(D)dx = In IVuldx for u E W1,1(D), 

where W1,P(D), for 1 ~ p < 00 is the Sobolev space of functions u E LP(D) such that 
all derivatives up to order 1 belong to LP(D). W1,OO(D) is the space of locally Lipschitz 
functions. 

Example 2.3.2 Figure 2.1 illustrates a simple example (107/, consider the characteristic 
function u = XL of a set L. Then 

IIDull(D) = IIDxLil(D) = Per(L,D), 

where Per(L, D) is the perimeter of L in D. For some TJ let us define the level sets for u: 

LI] = D n {x: u(x) > TJ}. 

Then we have the following relation 

IIDull(D) = r Per(L1/l O)dTJ. iIRi 
This equation say that the total variation of a function u is computed by summing up the 
length of level lines over the contrast. For further illustration, let us consider a special 
case (Figure 2.2) 

(2.4) 

Thus 
IIDull(D) = (U2 - ut}a(D1 ,D2 ), 

where a(D!, D2 )is the length of the boundary between DI and D2 and also assume that 
UI < U2· Thus the total variation measures contrast in images, and thus is a reasonable 
measure for signal transitions in real image data. 

Example 2.3.3 If u : [a, b] -+ lR is a monotonically increasing or decreasing, then for 
any partition P = {Xo, Xl, ... ,Xn } oJ[a, b] 

n n 

L IU(Xi) - u(xi-dl = L[U(Xi) - u(xi-d] = u(b) - u(a) 
i=l i=l 

Thus u is of bounded variation on [a, b]. 
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L 

Figure 2.1: The total variation o f the charac teristic function XL measures the perimeter 
of the set L ill n. 

Figure 2. 2: The total vari ation of a step fun ction measures the length of the li ne of 
discontinuity times the contrast . 
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Example 2.3.4 Define 

{ 
0 if x = 0 

y= x2 sin(i) ifx-:fO. 

This function is of bounded variation on the interval [0,2] (see Fig:2.3). To see this 

mathematically let us take a partition Pm = {O,..!., 2 1"'" -3
2

,1, 2}, where mEN. 
2m 2m-

Then 
n 

L IY(Xi) - Y(Xi-l)1 
i=l 

The series l:~l b is convergent so for some AI, we can write 

n 

L IY(Xi) - y(xi-dl < M. 
i=1 

Let us consider another partition 

Po _ {o ~ 4 4 4 4 4 4 4 4} 
m- '4m'4m-l'4m-2'4m-3'4m-4""'5'4'3'2' 

where mEN. Then 

n 

L: IY(Xi) - y(xi-dl 
i=l 

= I( ~)2 sin(4m~) - 01 + I( 4 )2 sin (4m - 1)~) - (~)2 sin(4m~)1 
4m 4 4m - 144m 4 

+ 1(4m 4_ 2)2 sin ((4m - 2)~) - (4m 4_ 1)2 sin((4m - 1)~)/ 
+ 1(4m4_3)2siI1((4m-3)~) -(4m4_2)2sin«4m-2)~)1 

/ 
2 211' 4 2. 311' / + ... + 2 sin(4) - (3) sm(4) 

~ 16J2[(4m ~ 1)2 + (4m ~ 3)2 + ... + 3~] 
[ 

1 1 1 ] 
+ 16 (4m _ 2)2 + (4m - 6)2 + ... 22 

< 16J2[(4~)2 + (4m ~ 1)2 + ... + ;2 + 1] 

[ 
1 1 1] 

+ 16 (4m)2 + (4m _ 1)2 + ... + 22 + 1 . 
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Again the series L:r'=1 tr is convergent so for some M, we can write 

n 

L IY(Xi) - y(xi- tl l < M . 
i= 1 

2.5 r-----,------,----r-----,---~-____r--,_-___, 

2 

1.5 

0.5 

-0 .5'----'---'----'-.....::::..-=::l----'------'---'----.-J 
o 0.2 0.4 0.6 0.8 1.2 1.4 1.6 

Figure 2.3: Function of Bounded Variation Y = x2 sin( i) 

Example 2.3.5 Defin e the function 

Y = { ° x cos( i) 
if x = ° 
if x =I 0. 

This funct ion is continuous, but is not of bounded variation (see Fig: 2. 4) on the in terval 
[0, 1], because it oscillates more frequently near x = 0. To see this let us take a partition 

{
II II} Pm = 0, - , , . . . , - , - , 1 ,where mEN. Then 

2m 2m - 1 3 2 

TI 1 1 1 
" IY( Xi ) - y(xi-dl = 1- cos (2m7f) - 01 + 12 1 cos ((2m - 1)7r) - - cos(2m7r)I L.- 2m m- 2m i=1 

+1 1 cos ((2m - 2)7r) - 1 cos ((2m - 1)7f) 1 + . . . + 1- 1 - ~ I 
2m - 2 2m - 1 2 

1 1 1 1 1 1 
= 12m I + I - 2m _ 1 - 2m I + 12m - 2 + 2m _ 11 + . .. + I - 1 - 2 1 

1 1 1 
?: 2[2m + 2m _ 1 + . . . + 2 ] + l. 

The series L:r'=2 t is divergent so for any M, there is a partition Pm for' which 

n 

L Iy(xi ) - y(xi- tl l > M . 
i=1 

More detai ls and propert ies of I3V space can b e found in [7, 59, 133]. 
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0.6,-----.,-------,-------r----r--------, 

-0.4 

-0 .6 

-0 .8 

-1L----~------~------~------~----~. 
o 0.2 0.4 0 .6 0.8 

Figure 2.4: Functioll of U n-I3ounded Variation y = x cos( ~) 

2.4 The Level Set Method 

The level set method for tracking moving fronts was introduced by Osher and Sethian in 
[92] . This method has had a great success because it has been used in many applicat ions 
in physics , from capturing multi phase fluid dynamics flows, to graphics , e.g. special 
effects in Movies, visualization, image processing, computer vision, control , visibility, 
ray tracing, segmentation, restoration and many others [83], [108] . III this section , we 
introduce the level set method app lied to the theory of curve/surface evolu tion. We show 
that the level set formulation of a curve/surface evolution equation allows us to efficiently 
solve the problem of moving fronts, in particulax the problem of changes of topology. 

Let us consider the general geometric evolution of a curve r: 

{ 
ar 
-- = Vl.N at 
f(t = 0) = ro 

where VJ.. is the normal velocity and N is the unit normal to the curve r . 

(2.5) 

At this stage, we leave the parametric/explicit representation of a contour to interest 
in the geometry/ implicit representation of the contour. This leads to the level set rep­
resentation which is independent of the parametrization of the contour. The core idea 
in the level set method is to implicitly represent an interface r in ]R2 as a level set of a 
fUllction ¢, called level set function of higher dimension (in this case ]R3) and compute 
the geometric char acteristics and the motion of the front with this level set function . The 
level set function ¢ of t he closed front r is defined as follows [90]: 

{ 

¢(x , y , t) > 0 inside r 
¢(x, y , t) < 0 outside r 
¢(x, y, t) = 0 on r. 
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~< O 

Figure 2.5: Plot of the higher dimension (3-D) function ¢(x) and the in terface f 
{( x, y) E n: ¢(x, y) = O} . Left : The level set fUllction ¢ . Right: The interface f . 

The geometric characteristics of the interface can be computed with t he level set 
function . The unit normal N and the mean curvature /'i, to f are given by: 

(2.7) 

The area of the region inside f and the length of the interface f are 

(2.8) 

where 8 and H al'e the Dirac delta alld the Heaviside functions. 
The motion of the front f evolving according to equation (2.5) is given by the evolu t ion 

of the zero level set of ¢ which is solu tion of the following PDE: 

{ 
aa¢t =VJ.I 'V¢I 

¢(t = 0) = d(fo) = CPo, 
(2.9) 

where d is a function (usually a signed distance function) whose zero level set i t he 
ini tial contour fo. 

Equat ion (2.9) ra ises a number of comments: 

• T he zero level set of f and all its level sets follows the front evolution equation 
(2.5). 

• The level set evolu tion is computed on a fixed coordinate system since t he level set 
is a parametrizat ion free forlllu lation. 

• T he evolution of the contour is independent of the ini tial embedding CPo [42 , 53, 
54 , 55], and the classical solution , if it exists , of (2.5) coincides wi th the classical 
solu t ion (2.9) . 
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• Sillgu larities ca ll a rise with PDE (:2.9). 

The level set method n llows for curve topological cha llges , such as brea kiIlg or lI1 l'rgi Ilg. 
Fig. 2.6 illust ra tes several il1lportnllt id eas a bout the level set l1let hod. III t he lipper- left 
corner we sec a shape, that is, a boullded regioll with a wcll-behavec! boullc!nry. Below it , 
the red surface is the graph of a level set function ¢ determinillg th is shape, a nc! t he flat 
blue region represents t he x- y pl ane. The boundary of the shape is t hen t he zero level 
set of ¢, while the shape itself is the set of poillts in the plane for which cp is positive or 
zero. 

In the top row we see a shape changing topology by splitting in two. I t wou ld 1)(' 
quite hard to describe this t ralls format ion numerical ly by para meteri zillg the bOllllda ry 
of the shape and following its evolution . On e would need an nlgorithm able to detect the 
moment of the shape splitting in two, and t hen construct parameteri zations for the two 
newly obtained curves . On the other hand , if we look at the bottom row, we see that 
the level set function merely got translated downward . Therefore we see that it is lI1uch 
eas ier to work with a shape through its level set funct ioll t han with the shape direc tly, 
whell we need to watch out fo r a ll t he possible deformat ions the shap e might und ergo. 

, 

Figure 2.6: Illust rat ion of how the level set funct ion deal with to pological cha llges . T hl' 
top row presents the eyolu t ion of the curye and the bottom row shows the evolutioll of 
the assoc iatC'd level set fUllcti on. \Ve sec th<lt t he cUr\'e cha nged its topology but not the 
level set fUl\ ctioll. 
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2.4.1 Numerical Implementation of The Level Set Method: 

In this section we discuss the numerical implementation of PDE (2.9). In a wide range 
of important applications, Vol has the form [90]: 

(2.10) 

where 3(x,y) is a vector field and ~(x,y) is a scalar field. Given the velocity V,L, (2.9) 
is a Hamilton-Jacobi equation whose solution can develop kinks (in absence of curvature 
term) which are discontinuities defined by jumps in derivatives. Special numerical meth­
ods are necessary to handle these discontinuities. These schemes presented in [92] based 
on upwind differencing, were then extended to higher order accuracy with the essen­
tially non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO) schemes 
in [91, 73]. Using equation (2.10), equation (2.9) becomes 

a¢ ..::: ( 'Y¢) at = (.::.(x, y), 'Y¢} - ~(x, y)I'Y¢I'Y· I'Y¢I . (2.11) 

The first term of the right hand side of the above equation is a convection term. In the 
active contour framework, for example in geodesic active contour [21], the function 3(x, y) 
represents either an attraction force toward the boundaries of objects, i.e 3{x, y) = 'Y 9 

where 9 is an edge detector function usually given by g('Y{z * Gu )) = 1 12 ' 
1 + "Y1'Y(z * Gu ) 

(further details are given in next chapter) or a balloon force such as 3 = -31~:1' The 

second term of the right hand side of equation (2.11) is a contour smoothing term based 
on the curvature of level sets of ¢. 

Let us consider the balloon term 

Discretization gives the following numerical scheme 

where 

v+ = V({6-;¢)+)2 + ((6i¢)-)2 + {(6;¢)+)2 + ((6t¢)-)2 

v- = V((6i¢)+)2 + ((6-;¢)-)2 + ((6t¢)+)2 + ((6;¢)-)2, 

(.)+ = max(·, 0), (-)- = min(·, 0) and 

6±A. = ± ¢(x ± hl,y) - ¢(x, y) 6±A. = ± ¢(x, y ± h2 ) - ¢(x, y) 
x If' hl ' Y If' h2 ' 

(2.12) 

hl and h2 are horizontal and vertical spatial step sizes respectively. To illustrate this 
numerical scheme, let us consider 3(x, y) = ±1, in Figure 2.7 a circular curve is propa­
gating inward and outward. The blue curve is the original curve and the red curve is the 
propagated curve after applying the numerical scheme (2.12) on balloon term. 

The second term of the right hand side of equation (2.11) is a regularization term 
based on the mean curvature. This term is parabolic and therefore it does not need an 
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Figure 2.7: Evolution of a circular contour inward (left) and outward (right). Left: 
:=:(x, y) = - 1 propagating inward, blue contour is the initial and the red contour is final 
propagated contour. Right: :=:(x, y) = 1, propagating outward, blue contour is t he ini t ial 
and red is the final propagated contour. These resul ts are obtained by implementation 
of equation (2.12) . 

upwind scheme which has been designed for hyperbolic advection term to guide the prop­
agation directions. For a parabolic term , the propagation is in all direction , hence the cen-

tral difference approximation scheme fits well to approximate the term El V' ¢ I V'. ( V' ¢ ) 

at a first order of accuracy. In 2-D images, the curvature of the level sets is 

and the associated numerical scheme is 

where 

6~¢ 

6~x¢ 
6~¢ 

6~y¢ 
and 

(¢ (x + hl ,y) - ¢(x - hl ,y)) / 2h1 , 

(¢ (x + hi , y) - 2¢(x, y) + ¢(x - hi , y)) / hi , 

(¢(x, y + h2) - ¢(x , y - h2)) / 2h2, 

(rf> (x, Y + h2) - rf> (x , y) + rf> (x, y - h2))/h~ 

IV'¢1 

(2. 13) 

(2.14) 

6~y¢ = (¢( x + hI , y + h2 ) + ¢(x - hi , Y - h2 ) - ¢(x + hI , Y - h2) - ¢(x - hi , Y + h2))/4h 1h2. 

This smoothing term is tested on a lion smooth curve in figure 2.8 where the left part is 
the initial contour of the level set function ¢o and the right part is the smooth contour , 
when regularization term is applied. 
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Figure 2.8: Smoothing of contours represented by the zero level set of a level set function. 
Left: Ini t ial contour ¢o. Right: Smooth contour after applying the curvature dependent 
regularizer. 

2.4.2 Re-initialization 

If the level set function ¢ becomes too steep or too fl at, the error increases when calcu­
lating the derivatives numerically. Further a small change in ¢ will lead to a large change 
uf the zero level set if t he level set function is too fla t around zero. Therefore, it can b e 
useful for the numerical calculations to re- ini tia lize the level set function . The idea is to 
change ¢ iuto the distance function such tha t IV'¢I = 1 for all x , y. The re- ini tia lizat ion 
changes t he level set function everywhere, except from the zero level set which must be 
t he same before and after re-initialization . This explains why t he re- ini t ializat ion does 
not change the mathematical problem , since the regions of in terest are where ¢ > 0 and 
where ¢ < 0, and t hese areas do not change through the re-ini t ializatiol1. Solve the 
following PDE for ¢ (x , y , t) 

¢t - sgn(¢ )( l - IV'¢I ) = 0 
¢ (x , y, 0) = ¢o in IR 

in IR x (0 ,00) 
(2. 15 ) 

where ¢o is the function which is supposed to be re-initialized and sgn(.) is a signum 
function. T hese equations will convert the level set function to the unit distallce function. 

2.5 Inverse and Ill-Posed Problems and Regularization 

Inverse problems arise in many areas of scientific computing. Very often inverse problems 
are formulated in such way t hat inner properties of a system can be deduced from exterior 
measurements by solving the inverse problem. T he word inverse is used to indicate that 
the problem has a corresponding forward or direct problem . If the d irec t problem is 

formul ated as 

for some appropri ate spaces 51 and 52, then the inverse problem is formulated as 
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To illustrate this concept, consider the Fredholm integral equation. This integral equa­
tion arise in numerous applications, including image processing. The one-dimensional 
Fredholm integral equation (of the first kind) is 

lb k(s, t)u(t)dt = g(s), 0:::;; s:::;; 1. (2.16) 

k(s, t) is called the kernel of the integral equation. The forward problem is formulated 
as follows: 
Given k(s, t) and u(t), find g(s). The solution of this problem is done in the obvious way, 
by evaluation of the integral. There are three different inverse problems corresponding 
to the forward problem, depending on the information already known. 

1. Given g(s), find k(s, t) and u(t), 

2. Given g(s) and k(s, t), find u(t), or 

3. Given g(s) and u(t), find k(s, t). 

If the kernel is in the special form k(s, t) = k(s - t), the three problems above are called 
de-convolution problems. The most challenging problem is to recover both k(s, t) and 
u(t) from measurements of g(s) which is known as blind de-convolution. 

2.5.1 Ill-Posed Problems 

Definition 2.5.1 (Well-Posed problem) Let IC 81 -+ 82, where 81 and 82 are 
Hilbert spaces5 then the problem 

IC(u) = b (2.17) 

is said to be well-posed, in the sense of Hadamard, if 

1. For each bE 82 there exist a solution u E 81 such that IC(u) = b holds. 

2. The solution is unique. 

3. The solution is stable with respect to perturbations in the data, that is given u* E 81 
and b* E 82 such that IC(u*) = b* then for every f > 0 there exists a 81 > 0 such 
that IIIC(u) - b*11 < 81 implies that Ilu - u*1I < f. 

A problem which is not well-posed is called ill-posed. 

The first condition tells that IC is onto, i.e. the range of IC, R(IC) is equal to 8 2 • In the 
case of linear operator, the second condition is equivalent to requiring that N(IC) = {O} 
where N(IC) is the null space of IC. If the first two conditions hold then the inverse of 
IC exists and the third condition says that the inverse should be continuous. For the 
case when IC is linear, well posedness is equivalent to the requirement that the inverse 
operator IC- 1 : 82 -4 81, exists and is bounded. 

Definition 2.5.2 (Orthogonal Complement) If E C 8 i then u E 8 i is an element of 
the orthogonal complement of E if and only if (u, V)i = 0 for all vEE. The orthogonal 
complement will be denoted by E.L . 

5 A complete space with a positive definite inner product is known as a Hilbert space 
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Definition 2.5.3 (Adjoint Operator) Let K be a linear operator with a dense domain 
in 81 mapping into 82 . The adjoint operator K* : 82 ----t 81 is a linear operator where for 
every y E V(K*), V(K*) is the domain of K*, there exists a unique y* E 8 1 such that 

(Ku,yh = (u,y*h, 

for every u E V(K). The adjoint is defined by the mapping K*y = y* for all y E V(K*). 

When K is not 1-1 the pseudo-inverse can be used to resolve the non-uniqueness [51]. 

Definition 2.5.4 (Pseudo-inverse) Let K be a continuous linear operator. Define K 
by K, = K IN(,q.L, thus K, is 1-1 and maps onto the range of K. The pseudo-inverse, Kt, 

is the linear extension of K,-1 to the domain 

with minimal operator norm. 

It is worth mentioning that for any bo E V(Kt) the pseudo-inverse gives the best least 
squares approximation to bo [51], i.e. Uo = Ktbo satisfies 

lI uolll = inf ("U1h IIKu - boll2 = inf IIKv - boll). 
uEV(IC) vEV(IC) 

The problem in (2.17) is an ill-posed problem when Kt is unbounded. One type of 
operator that can have an unbounded pseudo-inverse is a compact operator. 

Definition 2.5.5 (Compact Operator) An operator K is compact if and only if the 
image of any bounded set is a relatively compact set. 

Definition 2.5.6 A relatively compact set is a set whose closure is compact. 

An example of a compact operator is the Fredholm integral defined in equation (2.16). 

Theorem 2.5.1 For a compact operator whose range is infinite dimensional the pseudo­
inverse operator is densely defined and unbounded. 

Proof of this theorem can be found in [51]. With an unbounded pseudo-inverse the 
problem in (2.17) is ill-posed since it violates first and third properties of the well­
posdness. A special tool that allows for further analysis of a compact linear operator is 
the singular value expansion [51]. 

Theorem 2.5.2 Let K : 81 ----t 82 be a compact linear operator. Then there exists positive 
values an, with associated functions 'I/'n E 81 and C{)n E S2 such that K'ljJn = rJnC{)n and 
K*C{)n = rJn'ljJn. If K has infinite dimensional range then n = 1,2, ... , otherwise there will 
be finitely many terms. The functions {'ljJn} are an orthonormal basis of N(K).l, and the 
functions {C{)n} are an orthonormal basis of the closure of R(K). Furthermore, 

Ku = LrJn(U, 'ljJn}tC{)n (2.18) 
n 

and 
(2.19) 

n 

for all u E 81, and b E 82 . The expression in (2.18) is known as the singular value 
expansion of K. 
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The (In's are referred to as the singular values of !C. For a compact operator the singular 
values can be arranged in descending order, (J1 ;? (J ;? ... > O. The collection {(In; lPn, ~)n} 
is known to be the singular system for !C. 

Theorem 2.5.3 Let!C have a singular system given by {(In;IPn,vJn}. Then the pseudo­
inverse has the following expansion 

(2.20) 

for all b E V(!Ct ). 

This theorem gives the singular value expansion for the pseudo-inverse. 

Theorem 2.5.4 Let!C satisfy the hypothesis of Theorem 2.5.2 with the additional prop­
erty that the range is infinite dimensional. Then 

lim (In = O. 
n-oo 

The expansion in (2.19) reveals the lack of continuous dependence of the pseudo-inverse 
solution when the range of!C is infinite dimensional. If there is any error present in lPn, 
vJn or b, then that error may be greatly amplified by the division of the small singular 
values of /C. 

2.5.2 Regularization 

In several fields of mathematics, in particular statistics, machine learning and inverse 
problems, regularization involves introdUcing additional information in order to solve an 
ill-posed problem or prevent over-fitting. This information is usually of the form of a 
penalty for complexity, such as restrictions for smoothness or bounds on the vector space 
norm. 

A theoretical justification for regularization is that it attempts to impose Occam's 
razor6 on the solution. From a Bayesian point of view, many regularization techniques 
correspond to imposing certain prior distributions on model parameters. 

The same idea arose in many fields of science. For example, the least-squares method 
can be viewed as a very simple form of regularization. A simple form of regularization 
applied to integral equations, generally termed Tikhonov regularization 

Definition 2.5.7 (Regularization Operator) A regularization operator for !C is a 
one parameter family of continuous operators Rcr : S2 --+ S1 such that for !Cuo = bo 
the following conditions hold: 

1. There exist numbers ao and 80 such that Rcr ( b) is defined for all 0 < a < ao and 

lib - boll < 80 • 

2. There exists a function a (8) such that given any € > 0 there is a number 8 (€) < 80 

such that if Ilb- boll < 8(€) then Ilu,), - uolll < € where u')' = R')'(b) and 1= a(8(€)). 

Notice that if /C is linear then the first condition is equivalent to the requirement that Rcr 
is bounded and the second condition is equivalent to the requirement that Rcr (b) --. !Ct b 
as a --. 0 for all b E V(/Ct) [51]. There are many different regularization methods that 
can be applied to an ill-posed problem. For more details about regularization methods 
see [51, 64, 117]. 

60ccam's razor principle states that the explanation of any phenomenon should make a::; few a::;­

surnptions as possible, eliminating those that make no difference in the observable predictions of the 
explanatory hypothesis or theory. 
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2.5.3 Tikhonov Regularization 

In an abstract Hilbert space setting (i.e. IC : 81 ---> 82 ), Tikhonov regularization is given 
by 

(2.21 ) 

where argminuEv(K) denotes an element out of V(IC) that obtains the minimum value for 
the given functional. This method can be thought of as penalized least squares with the 
second term in (2.21) being the penalty term. The regularization parameter, 0: > 0, is 
used to assign a weight to the penalty term. Finding the U a that minimizes the functional 
in (2.21) involves the use of calculus of variation. Consequently, we will need the first 

variation of the functional F(u) = ~IIICu - bll~ + ~llull~ in the direction of v E 8 1. The 
2 2 

first variation is given by 

F'(u; v) == lim (F(U + hv) - F(U)) 
h ..... O h 

= lim 1h ((JC(u + hv) - b, IC(u + hv) - b)2 + o:(u + hv, U + hv)d 
h ..... o2 
(ICu - b, ICv)2 + o:(u, v}t. (2.22) 

Using the adjoint in (2.22) and the fact that at the minimum the first variation must be 
zero for all v E 8 1 gives a representation for the solution to (2.21), 

(2.23) 

If IC has the singular system {an; ct/n, 'I/'n}~l then the solution in (2.23) has a singular 
value expansion 

00 

~ an 
U a = ~ -2--(b, ct/n)27/Jn. 

n=l an + 0: 
(2.24) 

Using the condition 0: > 0, the expansion in (2.24), and the fact that both the 'Pn's and 
7/Jn's are an orthonormal basis results in 

00 2 
IIRalh L an 

= 2+(b,'Pnh 
n=l an 0: 

00 

~ 
a1 L I(b, 'Pnhl2 
0: 

n=l 

~ alllbl12. 
0: 

Hence R.'! is a bounded operator for each a > O. For any fixed n it is also true that 

lim --{!!!:-- = ~, which matches the expansion in (2.20). Therefore, (2.21) defines a 
u ..... oan+a an 
regularization operator. 

In this thesis we discuss inverse problems in image processing. If the regularization 
functional penalizes non-smooth images, the effect of this regularization will be noise 
removal but also a smoothing of the edges in the image. To overcome this disadvantage 
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with classical noise removal techniques 1. I. Rudin, et al (ROF) in their seminal E)92 
paper [99] introduced the Total Variation (TV) regularization functional 

lulTV = in IVuldxdy (2.25) 

where n is the image domain as discussed in Section 2.3. The TV regularization functional 
does not distinguish between smooth and piecewise smooth solutions with the same total 
variation, and thus Tikhonov regularization with the TV regularization functional can 
remove noise while still preserving the edges in an image. Note that the Euclidean norm 
I . I is not differentiable at the origin. To overcome the resulting numerical difficulties, 
(2.25) is replaced by the following 

lulTVt) = 10 v'IVuI 2 + /32dxdy, (2.26) 

where f3 > 0 is a small perturbing parameter. Thus Tikhonov regularization with the 
perturbed TV regularization functional involves the solution of the minimization problem 

min ! [(ICu - b}2dxdy + a [ v'IVuI 2 + /32dxdy. 
uEBV(n) 2 Jo. Jo. (2.27) 

First variation leads to the following Euler-Lagrange equation 

-aVo (vi Vu ) + IC*ICu = ICb. 
IVul 2 + f3 

(2.28) 

This equation is highly nonlinear and the efficient solution of the discrete version of this 
equation using iterative methods in both the deblurring and the pure denoising cases has 
been an active area of research over the last decade. In this thesis we mainly discussed 
methods used for solving this type of and other related problems. More details about 
TV regularization can be found in [112, 113] and solution of TV and BV based image 
processing problems can be found in [69, 71, 70, 99]. 

2.6 Iterative Methods for Solving System of Equations 

In this section we present some basic iterative methods for solving a linear system of 
equations Ax = b where A is a given ml x ml matrix, b is a given vector of size mI. An 
iterative technique to solve the linear system Ax = b starts with an initial approximation 
x(O) to the solution x and generates a sequence of vectors {x(k)}r=o that converges to 
x. All iterative techniques convert the system Ax = b into an equivalent system of the 
form x = Tx + c for some fixed matrix T and a vector c. After the initial vector x(O) is 
selected, the sequence of approximate solution vectors is generated by computing 

X{k) = Tx{k-l) + c (2.29) 

for each k = 1,2,3, .... 

2.6.1 The Jacobi Iterative Method 

Consider a system of equations 
Ax=b (2.30) 
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where A = [aij lml xml and b = [bi lm1 x 1. Solving ith equation for Xi we have the equivalent 
equations 

"'1 b 
Xi = '"" (-aijXj) + ...i. 

L.J a·· a .. 
;=1 u n 
j-fi 

generating each x~k) from components of x(k-l) for k ~ 1 by 

1 ml 
(k) _ ('"" (k-l) ) 

Xi - ~ L.J{ -aijXj ) + bj , 
u ;=1 

for i = 1,2, ... , mI. (2.31 ) 

j-fi 

To write (2.30) in the form (2.29), express the matrix A in the form 

A=D-L-U 

where D, - L, - U are diagonal, strictly lower triangular and strictly upper triangular 
matrices respectively of matrix A. We have that 

(D - L - U)x = b 

{::::=> Dx = (L + U)x + b 

{::::=> x = D-1{L + U)x + D-1b 

thus in (2.29) form, the Jacobi method is 

where 

and 
cJ = D-1b. 

Algorithm for Jacobi Method: To solve (2.30) with initial approximation x(O): IN­
PUT the number of equations and unknowns ml; the entries aij of the matrix Aj the 
entries bj of b; the entries of x(O) and the tolerance TOL; maximum number of iterations 
N and also let XO=x(O). 

Algorithm 1 (Jacobi Method) Step 1 Set k = 1. 
Step 2 While (k ::::; N) do steps 3-6. 
Step 3 For i = 1,2, ... ,m! set 

Step 4 Ifllx-XOII < TOL then OUTPUT{XI, ... ,Xm1 ); 

end. 

Step 5 Set k = k + 1. 
Step 6 Fori=I, ... ,ml setXOi=xi. 
Step 7 OUTPUT ('Maximum number of iterations exceeded'); 
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end. 

Step 3 of the algorithm requires that aii -:I 0 for each i = 1,2, ... , mi. If one of the aii 

entries is zero and the matrix is nonsingular, a reordering of the equations can be per­
formed so that aii -:I O. To speed up the convergence, the equations should be arranged 
so that aii is as large as possible. 
Weighted Jacobi Method: In the Weighted Jacobi Method, given the current approx­
imation x(k-l) the new Jacobi iterates are computed using 

Tnl 

• 1 (L( (k-l») ) x· = - -a"x +b· 
I a" ZJ j J , 

II j=1 

for i = 1,2, ... , mI. (2.32) 

jf.i 

for i = 1,2, ... , ml as before, however x· is now just an intermediate value. The new 
approximation x(k) is given by: 

X(k) = (1 - w)x~k-l) + wx· (2.33) 

where w is a weighting factor to be chosen. Of course when w = 1 we have the original 
Jacobi Method. In matrix form the weighted Jacobi Method is: 

which is equivalent to 
X(k) = Twx(k-l) + C

w 

where Tw = (1 - w}I + wD-l(L + U) and Cw = wD-lb. 

2.6.2 Gauss Seidel Method 

(2.34) 

In Jacobi method, when we compute x~k) we have already computed x~k), ••• ,Xl~)1 which 

h ld b b . t' t h (k-l) (k-l) 
S ou e etter approxlma Ions 0 Xl, ... , Xi-l t an Xl , ... , X i - l • Thus we have 

(2.35) 

which is known as the Gauss-Seidel Method. 
To write the Gauss-Seidel method in matrix form, multiply equation (2.35) byaii we 

have 
i-I ml 

aiix~k) + L aijxjk) = bi - L aijxjk-l) 

j=l j=i+l 

or 
i-I Tn1 

aiix~k) + L aijxjk) = bi + 2: ( - aijxjk-l») 

j=l j=i+l 

thus in matrix notation we have 

(D - L)x(k) = Ux(k-l) + b 

or equivalently 
X(k) = Tosx(k-l) + cos (2.36) 
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where 
Tas = (D - L)-lU 

and 
Cas = (D - L)-lb. 

Algorithm for Gauss-Seidel Method: To solve (2.30) with initial approximation 
x(O): INPUT the number of equations and unknowns ml; the entries aij of the matrix 
A; the entries bj of b the entries of x(O) and the tolerance TOL; maximum number of 
iterations N and also let XO=x(O). 

Algorithm 2 (Gauss-Seidel Method) Step 1 Set k = 1. 
Step 2 While (k ~ N) do steps 3-6. 
Step 3 Fori = 1,2, ... ,ml set 

Step 4 If Ilx - XOII < TOL then OUTPUT (Xl"", Xml ); 

end. 

Step 5 Set k = k + 1. 
Step6 Fori=I, ... ,ml setXOi=Xi. 
Step 7 OUTPUT ('Maximum number of iterations exceeded'); 

end. 

As with Jacobi method step 3 of the algorithm requires that aii # 0 for each i = 
1,2, ... , mI. If one of the aii entries is zero and the matrix is nonsingular, a reorder­
ing of the equations can be performed so that aii # O. To speed up the convergence, the 
equations should be arranged so that aii is as large as possible. 

Definition 2.6.1 (Residual Vector) Suppose that x E IR is an approximation to the 
solution of the linear system (2.30). The residual vector for x with respect this system is 

r=b-Ax. 

In iterative methods, a residual vector is associated with each calculation of an approx­
imation component to the solution vector. The objective of an iterative method is to 
generate a sequence of approximations that will cause the associated residual vectors to 
be reduced rapidly to zero. Let 

r~k) = (d~), T~7), ... , T~~i)t 

be the residual vector for the Gauss-Seidel method corresponding to the approximate 
solution vector x~k) given by 

x~k) = (x~k), x~k), ... ,x;~\, x~k) , ... ,x~~; t 

The mth component of r;k) is 

i-I ml 

T~:1 = bm - L amjXJk) - L arnjXJ
k
-

1
) , (2.37) 

j=l j=i 
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for each m = 1,2, ... ,mI. In particular, for the ith component of r~k) we have 

(2.38) 

Combining (2.35) and (2.38) we have 

(k-l) (k) _ (k) 
aiiXj + T jj - ajixi • 

Consequently, the Gauss-Seidel method can be characterized as choosing xlk) to satisfy 

(2.39) 

Modifying the Gauss-Seidel procedure given above in (2.39) to 

(2.40) 

for certain choices of positive w reduces the norm of the residual vector and leads to 
significantly faster convergence. This type of methods defined in (2.40) are known as re­
laxation methods. If 0 < w < 1, the methods are called under-relaxation methods 
and if w > 1, the techniques are known as over-relaxation methods, and are used 
to accelerate the convergence where Gauss-Seidel method is slow in convergence. These 
methods are abbreviated SOR, for Successive Over-Relaxation. Equation (2.40) can be 
written as 

(2.41 ) 

so in matrix form 

(D - wL)x(k) = [(1 - w)D + wUlx(k-l) + wb (2.42) 

or 
X(k) = (D - wL)-I[(1- w)D + wUlx(k-l) + w(D - wL)-lb. (2.43) 

The SOR technique can be express in the form 

x(k) = Twx(k-l) + cw , (2.44) 

where Tw = (D - wL)-1 [(1 - w)D + wUl and w(D - WL)-lb. 

2.6.3 Block Iterative Methods 

Assume that the vector x is partitioned into several disjoint sub-vectors (not necessarily 
of same size) 

Then Ax = b can be written in the block form 

[

All Al2 

A21 A22 

Asl As2 

A

ls 

1 [Xl 1 [ b
l 
1 A 2s X2 b2 

· . . · . . · . . 
Ass Xs b s 

(2.45) 
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where the block Apq is of size np X nq (np being the size of xp) and the vector b is of 
size np. Assuming that the diagonal blocks are nonsingular the Jacobi and Gauss-Seidel 
methods can easily be extended to the block form. In the mock Jacobi method for 
i = 1,2, ... , s 

X~k) = Aii1 (i) _Aijxjk-l)) + hi). 
3=1 

(2.46) 

Hi 

Similarly, the Gauss-Seidel method is given by 

(2.47) 

Obviously we now have to invert the matrix Aii in order to update Xi and the larger the 
vectors Xi are, the more expensive each step of the method is likely to be, on the other 
hand the payoff may be faster convergence of the iterative method. 

2.6.4 Convergence 

All the iterative methods in this chapter define a sequence of iterates of the form 

X(k) = Tx(k-l) + c. 

We now address the convergence properties and in particular sufficient conditions. 

Lemma 2.6.1 If the spectral radius p(T) < 1 then (I - T)-1 exist, and 

(I - T)-1 = 1+ T + T2 + ... 

[56J. 
Proof. Let>. be an eigenvalue of T then 1 - >. will be an eigenvalue of 1- T, since if 

Tx = AX 

=> (I - T)x = (1 - A)X 

for some eigenvector x. But 1>'1 ~ p(T) < 1, so A = 1 is not an eigenvalue of T, so 0 
cannot be an eigenvalue of 1- T. Hence 1- T is nonsingular. Hence (I - T)-1 exists. 
For the second part 

Let 8m = I + T + T2 + ... + Tm. Then 

If p(T) < 1 then limm-+oo T m = 0, so we have 

lim (I - T)8m = lim (I - Tm+l) = I 
rn-+oo rn-+oo 

thus, 
(I - T) -1 = lim 8m = I + T + T2 + .... 

m-+oo 

• 
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Theorem 2.6.1 (56) For any x(O) E IRn , the sequence {x(k)}k=O defined by 

X(k) = Tx(k-l) + c, for each k ~ 1, 

converges to the unique solution of x = Tx + c if and only if p(T) < 1. 

Proof. First assume that p(T) < 1. From equation (2.48) we have 

x(k) = Tx(k-l) + c 

T(Tx(k-2) + c) + c 

T 2x(k-2) + (T + I)c 

Since p(T) < 1, the matrix T is convergent? and 

lim Tkx(O) = 0 
k-.oo 

Using Lemma 2.6.1 we have 

k-l 
lim x(k) = lim Tkx(O) + lim (L:Tj)c = 0 + (J - T)-lc = (J - T)-lc. 

k-.oo k-+oo k-.oo 
j=O 

(2.48) 

Hence the sequence {x(k)}k'=o converges to the unique solution x = (I - T)-lc as 
x = Tx + c ===> (I - T)x = c. 

Now consider the converse, let us assume that x is the unique solution of the equation 
{2·48}. Let c = 0 then x is the solution of the equation x = Tx. Let z E IRn be an 
arbitrary vector and write x(O) = x - z, we have 

lim Tkz = lim Tk(x - x(O» 
k-+oo k-+oo 

lim Tk-1(Tx - Tx(O» 
k-.oo 

lim Tk-l(x - x(1») 
k-.oo 

= lim T k - 2(x - x(2») 
k-+oo 

= lim (x - x(k») = 0 
k ..... oo 

Since z E IRml is arbitrary, so T is convergent hence p(T) < 1. • 
Definition 2.6.2 (Diagonally Dominant) A square matrix A is said to be diagonally 
dominant if 

m1 

laiil ~ L: laijl, i = 1,2, ... , mI. 
j=1 
#i 

7 A square matrix A is said to he convergent if Iimk_oo Ak = o. 
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and is called strictly diagonally dominant if 

m! 

!aii! > L!aij!, 
j=! 
jf-i 

i=1,2, ... ,ml· 

Theorem 2.6.2 If, for a system of equations (2.30), A is strictly diagonally dominant, 
the Gauss-Seidel iterations converge for any x(O). [56} 

Proof. If A is a diagonally dominant matrix then 

m! 

laiil > L laijl, i = 1,2, ... , mI. 
j=1 
jf-i 

Since in Gauss-Seidel iterations we have 

Tcs = (D - L)-lU. 

Let A be the dominant eigenvalue of the iteration matrix Tcs and let x be the correspond­
ing eigenvector such that IXml = 1 and IXjl ~ 1 for j =I- m, then 

j<m 
=> I L amjxjl = 

j<m 

=> !A! = 

= 

(D - L)-lUx = AX 

=> Ux = A(D - L)x 

A(ammXm - L amjxj) 
j>m 

IAII(ammXm - L amjxj)1 
j>m 

I Lj<m amjxjl 

I(ammxm - Lj>m amjxj)1 

Lj<m lamjxjl 
lammxml- Lj>m lamjxjl 

Lj<m lamjllxjl 
lamm!lxml- Lj>m !amjllxjl 

L:j<m !amj! 

!A!~~d· 
al+ 

(2.49) 

(2.50) 

Now d, al and a2 are non-negative integers and also A is strictly diagonally dominant so 

d> al + a2 

Hence by (2.50) we can say that IA! < 1 

=> p(Tcs) < 1 
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and so by Theorem 2.6.1 we have that Gauss-Seidel iterations will be convergent. • 

Note: In similar way we can prove for Jacobi iterations. 
If we have a system of equations Au = f arising from the discretization of a PDE 

using the finite difference method on a rectangular domain then the matrix A is likely 
to be well structured and sparse, which means storage of A will not usually be required. 
The updating of each entry of U will typically involve just a few other entries. Next 
we illustrate the implementation of Jacobi and Gauss-Seidel methods for the case of 
Poisson's equation: 

{ 
-~u(x, y) = f(x, y) (x, y) E n = (0,1) x (0,1) 
u(x, y) = fr (x, y) (x, y) E r = an. (2.51 ) 

A discretized form of Poisson equation is 

{ 
-~hUh(X,y)=/h(x,y) (X,y)Enh, 

Uh(X, y) = ff(x, y) (x, y) E rh = anh. 
(2.52) 

Definition 2.6.3 (Stencil Notation) A general 2-D stencil denoted by [sllhlh and is 
given by 

[ .. S-l,l SO,l Sl,l 
[8l 1 ,l21h = ... 8-1,0 80,0 81,0 

8-1,-1 80,-1 81,-1 

h 

where 8l1 ,l2 E JR, thi8 defines an operator on the 8et of grid functions by 

[Sll,l21hU(x, y) = L Sid.2Uh(X + ilhl' y + i2h2)' 
11,/2 

Five-points and compact nine-point stencils are 

[

So 1 1 
8-1,0 80:0 81,0 

SO,-1 h 

80,1 

80,0 

SO,-1 

81,1 

81,0 

SI,-1 

Near boundary points the stencils may have to be modified [118]. 
Jacobi Method: 

L 

(2.53) 

(2.54) 

(2.55) 

Using five-point stencil, in the weighted Jacobi Method if grid point (i,j) is not adjacent 
to the boundary, Ui,j is updated according to the equation 

h2f + k-l + k-1 k-1 k-l 
k. = (1 _ ) k-:-l + [ i,j ui+l,j Ui _ 1,j + Ui,j+l + Ui ,j-l] 

U Z,} w UZ,) W 4 . 

For points adjacent to the boundary, some modification will be required to (2.56). 
Gauss-Seidel Method: 

(2.56) 

Two different ordering schemes (corresponding to two different ways of stacking u into a 
vector) for Gauss Seidel method will be discussed here. 
Lexicographic Ordering: 
A lexicographic ordering of the grid points involves ordering the points in increasing 
order from left to right and up the rows so that the approximation at the bottom left 
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point (1,1) is updated first followed by the approximation at the point (2,1) and so on 
with the approximation at the top right point (ml - 1, ml - 1) updated last. A Gauss­
Seidel scheme used with lexicographic ordering is denoted by GS-LEX and the entry Uh 

corresponding to grid point (i, j) (not adj acent to the boundary) is given by 

h2f k k k-l + k-l 
uk. = i,j + Ui-l,j + Ui,j-l + UHl,j Ui,j+l 

t,) 4 (2.57) 

Red-Black Ordering: 
When a red-black ordering of the grid points is used the grid is colored in a checker­
board fashion as shown in Figure 2.9, entries of Uh corresponding to the red points are 
updated first followed by entries of Uh corresponding to the black points. A Gauss Seidel 
scheme with red-black ordering of the grid points is denoted by GS-Ril. Entries of Uh 

corresponding to red grid points are given by 

h2f k-l + k-l + k-l + k-l 
uk. = i,j + Ui_l,j Ui,j-l Ui+l,j Ui,j+l 

t,) 4 (2.58) 

and then entries corresponding to black points are updated by 

Uk. = h
2 
Ai + utl,i + UL-I + Uf+l,j + UL+I 

t~ 4 (2.59) 

Because a five point approximation to the PDE is being used, the updating of each entry 
associated with a red point involves only entries associated to black points and vice versa. 
This means that after each sweep of GS-RB the residual rh = !h - LhUh is zero at the 
black points. When each red point is updated using only black points and vice-versa, GS­
RB has an advantage over as-LEX in terms of parallel computing since all the entries of 
Uh corresponding to red points can be computed in parallel followed by all entries of Uh 

corresponding to black points. Note that because points are updated in different orders, 
one step of GS-LEX will not produce an identical result to one step of as-RB with the 
same initial guess. 

Line Relaxation: If Uh is stacked into a vector u lexicographically and split u 
into (ml - 1) sub-vectors each of siz;e (ml - 1) then the sub-vector u( will contains all 
the values of Uh corresponding to row f of the grid, hence performing a block Jacobi 
or Gauss-Seidel iteration on this block system is equivalent to relaxing a whole row of 
the grid collectively, this is known as x-line relaxation. Using block Gauss-Seidel, u( is 
updated using the following equation 

k A-1( k k-l h2f) ue = U u(_l + u H1 + e, (2.60) 

where Au is a tridiagonal matrix with 4 on the diagonal and -Ion the off diagonals. If 
Uh is stacked along columns of the grid and the resulting vector partitioned as above, the 
block relaxation methods relax whole columns of the grid collectively, this is known as 
y-line relaxation. A sweep of an alternating line relaxation consists of an x-line relaxation 
sweep followed by a y-line relaxation sweep. A line analogue of the red-black point-wise 
relaxation for line Gauss-Seidel is the zebra line relaxation here either rows or columns of 
the grid are colored alternately white and black, then the white lines are relaxed followed 
by the black lines, in most cases the approximation at a point on a white line will depend 
only on other points on that line and points on the adjacent black lines, hcnce a parallel 
implementation of zebra line Gauss-Seidel will be possible. 
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Figure 2.9: Red (D)-Black (0) ordering of grid poin ts 

In summary we have that J acobi and Gauss-Seidel iterative techniques will be conver­
gent if the spectral radius of their iterative ma trices is less then 1 or equivalently we say 
that for a part icular system Ax = b if we wa nt to use J acobi and Gauss-Seidel iterative 
techniques, it is desira ble tha t A must be diagonally dominant. 
Even these iterative or relax:ation methods may be very slow to converge, t hey are very 
fast for the smoothing error which is useful in mul t igrid methods see [39]. This fact can 
be revealed by a Fourier analys is, see Sec tion 2.9.2. 

2.7 Time Marching Schemes for Parabolic PDEs 

In this section we explain the time marching methods used for parabolic equ ations, such 
as Explicit and Implicit difference methods a nd Addit ive Operator Spli tt ing Scheme 
(AOS ) and discuss t heir stability. The main references are [89], [98], [127] and [81]. 

2.7.1 Explicit Scheme (I-D) 

Consider th e 1-D Heat equatioll with constant coefficient 

o ~ x ~ 7r, t ~ O. (2.61 ) 

where a > 0 is constan t and u = u(x , t) and the boundary conditions are 

{ 
u(x, O) = ¢(x) (¢(x) given) 
u(O, t) = 0, u(7r, t) = 0 for t > o. 

T he exact solu t ion of this ini t ia l value problem (IVP) can be obtaincd by us ing Fourier 
series lllethod with defining ¢(x) as -¢( -x) for - 7r ~ X ~ 0, otherwise wc use Fourier 
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sine series, but here we llse complex Fourier series i.e 

00 

u(x, t) = 2: Am exp (imx - m 2at) (2.62) 
m=-oo 

where 

Am = - ¢(x)exp(-imx)dx, 1 17f 
271" -7f 

i = vCT. (2.63) 

Now we consider the discretized form of equation (2.61). Starting from to = 0, Xo = ° 
and let 6x and 6t be the increments of the variables x and t respectively, with 6x = j 
and Xj = j6x and tk = k6t where J E Z and j = 1,2, ... , J, k = 0,1, .... Also let 
uj = u(Xj, tk), (Xj, tk) is called the grid point. Then the explicit difference equation will 
be: 

uj+l - uj uj+l - 2uj + uj_l 
6t = a (6x)2 ' 

where j = 1,2, ... , J - 1, k = 0,1, .... The boundary conditions will be 

k-O Uo - , 

and the initial conditions will be 

k-O uJ - , k = 0, 1, ... 

uJ = ¢(j6x), j = 0, 1. .. , J. 

(2.64) 

(2.65 ) 

(2.66) 

These equations can be used recursively to determine all the uj for ° :;:;; j :;:;; J and k ~ 0. 

2.1.2 Stability 

Let u(x, t) be the exact solution of the initial value problem and uj is the solution of the 
finite difference equation, then the error approximation will be 

uj - u(j.6x, k6t). 

Then the following two questions arise: 

• What is the behavior of luj - u(j6x, k6t)1 as k -+ 00 for fixed 6t and .6x ? 

• What is the behavior of luj - u(j6x, k.6t)1 as 6x,6t -+ ° for fixed value of 
tk = k6t ? 

We note that an explicit solution of difference equation (2.64) can also be written as 
Fourier series, i.e we can find the solution of (2.64) of the form 

00 

uj = 2: Amelmj6X(~(m))k 
m=-oo 

where ~ and Am are unknown. To find ~ and Am we proceed as follows. Let us put 
uk = Am~keimj6x, m E Z in equation (2.64), to find the value of ~ we have 

J 

U
k+l k a6t ( k 2 k k) 
J = Uj + (6x)2 Uj+l - Uj + Uj-l 

=> A mt'k+l eimj6x A t'kelmj6x + a6t (A t'keim(j+l)6x _ 2A t'k eimj6x 
'> m'> (6x)2 m'> m'> 

+ A,n~keim(j-l)6x) 
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dividing through out by Arn~keimj.6x we get 

~ = 1 + (~~2 (e irn .6X - 2 + e- im.6x) 
2a.6.t ( eirn.6x + e-irn.6x ) 

= 1- (.6.x)2 1- 2 

2a.6.t ( ) = 1- (.6.x)2 1-cosm.6.x 

Thus uj = Am~keimj.6x will satisfy the difference equation (2.64) if 

2a.6.t ( ) ~ = 1- -- 1- cosm.6.x = ~(m) 
(.6.x )2 

(2.67) 

where the value of Am is same as that for the exact solution (2.63) i.e 

Am = - ¢(x) exp( -imx)dx 1 J7T 
211" -7T 

therefore, the function 
00 

uj = L Ame1rnj .6X(e(m))k (2.68) 
m=-oo 

gives the exact solution of the difference equation (2.64). Now we check whether this 
function satisfies the boundary condition and initial conditions given in (2.65) and (2.66) 
with Am as mentioned above. Each term in the above Fourier series solution of the 
difference equation satisfies the difference equation and so is their sum. If we put k = ° 
then we have 

00 

u~ = L Ameimj.6x, 
m=-oo 

which is the Fourier series for ¢(j6x) implies that initial condition is satisfied. In similar 
way we can check the boundary conditions. 

Since (2.68) is the exact solution of the difference equation and that gives the values 
of function at mesh points i.e at x = j.6.x, let us use a finite number of coefficients from 
above coefficients, the above function may be written in the following way as 

J 

uj = L Brnelmj.6x[~(m)lk, 
m=-J 

where the Bm are to be obtained from the initial conditions regarded as 2J + 1 linear 
equations in the 2J + 1 unknowns B-J to BJ (Here j runs from -J to J as the initial 
functions has been extended into the interval (-71",0)). 

Let us compare the growth factor in both solutions. In the exact solution the growth 
factor is e-m2a.6t and for the difference equation is ~(m). As 

and 

2 1 4 2 e(m) = 1- m a6t + 12m a6t(6.x) - .... 

e-m2a .6t = 1 - m 2a.6.t + ~m4a2(6t)2 - .... 
2 

It is found that the two growth factors agree through first order terms. The two growth 
factors can be made to agree, to any desired accuracy, by taking 6t and 6x sufficiently 
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small, thus there is a hope that the solution of the equation {2.64} may be good ap­
proximation to the solution of the differential equation. Thus the stability condition 
is 

max 1~(rn}1 ~ l. {2.69} 
Tn 

The error uj - u{j6x, n6t} remains bounded as k --+ 00 for fixed 6x,6t, for a 
general initial function with absolutely convergent Fourier series if and only if {2.69} is 
satisfied. Since the true solution u(x, t} is bounded as t --+ 00, the error will be bounded 
if uj is bounded as k --+ 00. 

00 00 

lujl = I L Amelrnj~x{~(m}}kl ~ L IAmll~(m}lk, lelrnj~xl ~ 1 
m=-oo m=-oo 

and also from (2.69) we have that 1~(m}1 ~ 1, "1m, so 

m=-oo 

As ¢(x) has absolutely convergent Fourier series, so 

m=-oo 

converges and so lujl is bounded. For the present example, applying the stability condi­
tion (2.69), we have from (2.67) that the growth factor ~(m) is real "1m and never exceeds 
1. The condition is that the greatest negative value of ~(m) be not less than -1, the 
greatest negative value is attained when cosm6x = -1, since 6x = j and this happens 
when m is is an odd multiple of J, so the condition of ~(m) ~ -1 for such value of m is 
that 

2a6t 
(6x)2 ~ 1 

{6X}2 
:::} 6t &-­

'" 2a ' 

which is the stability condition for the explicit schemes. 
The Fourier series based stability, introduced by J. von Neumann is applied to a 

simple problem with constant coefficient here, but this can be applied to the differential 
equation with variable coefficients. This method can be applied to a wide variety of types 
of difference equations, where the more elementary methods fail. In summary, two points 
of view on stability have been presented. In the first view we can take t --+ 00 with fixed 

6t or 6t --+ 0 with fixed t, it is necessary to observe the restriction 6t ~ (~~)2 to prevent 
errors, from becoming so amplified as to make the whole calculations disapproving. If the 
above condition is not satisfied, then the symptom of instability shows up in a relatively 
small number of iterations. Whenever we use finite difference methods for IVP, we must 
know the stability condition. 

2.7.3 Implicit schemes (I-D) 

Let f(x) be any function of x, we denote by 8fJ or {8f)j the central difference 

8h = f((j + ~)6x} - f{(j - ~}6x} 

where j may be an integer or an integer plus !, and 

82fJ = f((j + 1)6x) - 2f(j6x} + f((j - 1}6x}. 
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Wi t h this notatioll , we wish to consider the following implicit difFerellce system for 1-D 
heat equation (2.61) : 

UJ+l - uj = a 0(62u)J+ l + (1 - 0)(62u) j 
6 t (6x ) 

(2.70) 

where 0 ~ 0 ~ 1 is a real constant (when 0 = 0, the system reduces to (2.64)) . 

2.7.4 Stability 

Again by putting uJ = Ameimj6x~k into (2.70) and simplifying we have 

() 
1 - (1 - O)L(l - cos m 6x ) 

~m=-~-::-:::-'--'-------,----,--'-
1 + (}L (1 - cos m 6x) 

(2.71) 

2a6t . 
where L = (6 x )2' For s ta bility we need to check the condition 1 ~(m) 1 ~ 1. The quantity 

~(m) should be real for all m , and never exceeds 1. In Figure 2.10 the values of ~(m) 
are plotted as a function of the argument y = L(1 - cos m 6x ) for various values of O. 
As y increases through positive values, the value of ~(m) fa lls monotonically from 1 to 

0.5 

0 

...... -----+----I~---J 8>1/2 

.s -0 .5 
' oJ' 

.~--S----i~ __ j 8=1/2 

-1 

-1.5 

-2 
0 2 4 6 8 10 12 14 16 

y=L( 1- cosmx) 

Figure 2.10: Growth factor for the equation (2.70) , through (2.71) 

- (1 ~ 8) . If 1/ 2 ~ () ~ 1, the asymptote is not less tha n - 1, as in Fig 2.10. The graph 

with c>' sand 0 ' s shows this , hence the difference equations (2 .70) are a lways sta ble. 
nut if 0 ~ e < 1/ 2, y must be res tricted , for stability, by the value at which the curve 
intersects the line ~ = - 1, in Fig 2.10. The graph with 0 ' s shows this, hence the stability 
condi tion mus t be 

{ 

2a 6 t I f II / 
(6 x)2 ~ 1-20 i 0 ~ u < 1 2 
always s table if 1/ 2 ~ e ~ 1 
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or 

{ 
6t ~ 2(~~~;£I) if 0 ~ B < 1/2 
always ~table if 1/2 :::; () ~ l. 

In the next section we discuss the 2-D case of the heat equation. 

2.7.5 Stability in 2-D 

Let us consider the 2-dimensional heat equation 

Let 
UJI = u(j6x, 16y, k6t) 

and 

Then the finite difference approximation for (2.72), is the following 

Uk+l _ uk 
Jl Jl = B",k+l + (1 _ ())",k 

6t '1';1 '1';1' 

(2.72) 

(2.74) 

If 0 < () < 1 then (2.74) is an semi-implicit, if e = 0, then it reduces to explicit and if 
0=1 it reduces to implicit. Putting ujl = exp(ikd6x + ik216y)~k in (2.73) we have 

¢Jl = (6~)2 (exp(ik1(j + 1)6x + ik216y) 

= 

-2exp(ikd6x + ik216y) + exp(ikl(j - 1)6x + ik216y) )~k 

+ (6
1
y)2 (exP(ikd6x + ik2(1 + 1)6y) 

-2exp(ikd6x + ik216y) + exp(ikd6x + ik2(l- 1)6y))~k 

-2~kexp(ikd6x + ik216y) [(6~)2 (1 - cos k16x) + (6~)2 (1 - cos k26y)] 

6t¢fj = -2~kexp(ikd6x + ik26y) [(::)2 (1- cos k16x) + (::)2 (1 - co~ k26y)] 

=> 6t¢Jl = exp(ikd6x + ik2j6Y)IV~k 

where IV = [ 
6t 6t ] 

-2 (6X)2(l-cosk16x) + (6y)2(1-cosk26 y ) 

Now equation (2.74) can be written as 

Uk+1 _ uk = B6t",k+l + (1 - ())6t",k Jl ;1 'l'JI 'l'JI 

and putting the expression for ¢jl and ¢;/+l we have 

exp(ikd6x + ik2j6y)~k+l - exp(ik1j6x + ik2j6y)~k 
= Oexp(ik}j6x + ik2j6Y)IV~k+l + (1 - ())exp(ik}j6x + ik2j6y)\II~k 
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:::} ~ - 1 = Ow~ + (1- O)W 

:::}~= I+(I-O)W. 
1 - Ow 

(2.75) 

This is the amplification term. Now requiring condition I~I ~ 1 we need to find the bounds 
for W, i.e the maximum and minimum value of W as a function of two real variables kl 6.x 
and k2!::"Y' This function is periodic and analytic so the extreme values occms when 

and this is only possible when 

so 

From equation (2.75) we have 

• ~ is real. 

• e ~ 1 (always) 

[ 
6.t !::"t] 

-4 (!::"x)2 + (!::,.y)2 ~ W ~ O. 

• If 0 ~ ! we have ~ ~ -1, so stability is achieved. 

• If 0 ~ 0 < ~, a stability requirement is e ~ -1, which imposes a restriction on !::"t, 
thus we have to find this stability condition. 

As 

I+(1-0)w 
~~-1 i.e I-OW ~-1 

:::} I+(1-0)W ~ -1+0W 
-2 

:::} W - 20w ~ - 2 :::} W ~ --
1- 20 

[ 
6.t 6.t ] >- -2 !::"t !::"t 1 

:::} -4 (!::"x)2 + (!::,.y)2 -y 1- 20 :::} (!::"x)2 + (!::"y)2 ~ 2 - 40' 

Thus we have the following stability condition 

{ 

l':,t l':,t 1 f II / 
(6x)2 + (l':,y)2 ~ 2-40 i 0 ~ u < 1 2 
always stable if 1/2 ~ 0 ~ 1. 

2.7.6 Additive Operator Splitting (ADS) Scheme 

This scheme was introduced by Tai [81J in 1992 and Weickert [127J in 1998. This scheme 
applies to PDEs of the form 

Ut div(9'7u) + rl(x,u) 

= ('guX1)Xl + ... + (guXd)Xd + rdx,u) 

in [0, T] X neRd with initial and boundary conditions 

au 
u(O,.) = Uo and an = 0 on an. 
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Here 9 is the diffusivity function and r denotes a reaction tenn. Let liS assllme that the 
diffusivity function depends npon only on the location, i.e 9 = g(x). Without loss of 
generality we drop the reaction term ri. 

A backward Euler implicit step for the time discretization and a spatial finite differ­
ence discretization yields the semi-implicit evolution scheme 

k+1 ( 6.t )-1 k 
U = INd - 12A u, k = 1,2, ... , (2.77) 

where uk is represented by a column vector of length Nd. The matrix A is of size Nd x Nd, 
it can be represented in tensor product notation as 

where Ai is the tridiagonal matrix corresponding to finite difference discretization of the 
partial differential operators (guxi )X;. Let us define the notation 0: let 

then 

( 

allB aI2B aI3B) 
A 0 B = a2I B a22B a23B 

a31B a32 B a33 B 

Since A contains 2d+ 1 nonzero diagonals and has band width dN, the linear systems 
in each iteration steps are more difficult to solve than in one-dimensional case where the 
iteration matrices are tridiagonal and the Thomas algorithm docs the job [127]. 

The AOS scheme provides an additive decomposition of the evolution matrix. The 
scheme proposes 

d 
k+1 1 '" ( 6t) -1 k u = d L.J INi - d12A i U, 

i=l 

k = 1,2, .... (2.78) 

In words, each iteration step requires the old iterate to be propagated in all coordinate 
direction separately. Then the new iteration is given by the average of these intermediate 
solutions. It is stated without proof in [127] that the AOS scheme is an 0'(6t) + 0'(h2 ) 

accurate finite difference approximation to the original equation, hence equally accurate 
as the usual explicit and implicit schemes. And a proof is given in [89]. 

Theorem 2.7.1 The ADS scheme (2.78) with d=2 corresponding to the finite difference 

equation 

k 1 k+1 1 ( 6t) -1 k 1 ( 6t) -1 k 
(FA.) '= -¢ - - 1- 2-Al ¢ - - 1- 2-A2 A. = 0 

'I' . 6t 26t h2 26t h2 'I' , 

k = 0,1, ... , is consistent in loo-norm of first order in time and second order in space 
with the PDE (2.76). 

Proof Let ¢ be an arbitrary smooth function, for which we will examine the local 
truncation error 
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where L is the spatial partial differential operator given by 

Besides the function ¢, we will need in each time step the function v solving 

with initial condition V(tk, .) = ¢(tk, .) (2.79) 

and the function w solving 

Wt - 2(gwy }y = 0 with initial condition W(tk,.) = ¢(tk,.) (2.80) 

Both PDEs are supplied with usual Neumann boundary conditions. These equations are 
one-dimensional diffusion equations, which are accelerated by the factor 2 compared to 
the PDE (2.76). For ease of notation, we do not index v and w by time step k, even 
though it should be noted that these functions are different in each time step k (since 
the initial condition of their PDEs differ in each step). Let r be the function such that 

1 1 
¢ = -v + -w + r 

2 2 

at each time step n. For the finite difference operator at time step k, we obtain 

(FA.)k = _1_ yk+l __ 1_ (1 _ 26t A ) -1 A,k 
'f' 26t 26t h2 1 'f' 

~--------__ v~----------~ 
Fl 

+ _1_wk+1 __ 1_(1 _ 26t A2)-I¢k +~rk+l 
26t 26t h2 6t 

where ¢k, ¢k+l, yk+l, wk+l, rk+ldenote the vectors (reordered already by rows) contain­
ing the values u, v and w on the spatial grid point at time steps k and k + 1 respectively. 
Consider PI 

which apart from the factor! corresponds to the very first step of an implicit scheme 
for the PDE (2.79). Since v is initialized to ¢( tk, .) at time step k, this term is nothing 
else but the finite difference operator of the implicit scheme evaluated at the function v. 
But v is also the solution of this PDE with initial data ¢k, so that the local truncation 
error for the implicit scheme is of first order in time and second order in space i.e 

Of course, the same argument also applies to PI, using the fact that w solves the PD E 
(2.80). So we obtain 

(2.81 ) 

where the constants in the order terms do not depend on i, j or k. 
It remains to take a look at r:/l: 
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We use the Taylor expam;ion of u, v and w at time k to give 

r~/l = ¢t + 6t¢t(tk,Xij) + O((6t)2) 

1 k 2 2(¢ij + 6tVt(tk,Xij) + O«6t) ) 

1 k 2 
2(¢ij + 6tWt(tk, Xij) + U((6t) ) 

= r(¢t(tk,Xij ) - ~Vt(tk'Xij) - ~Wt(tk'Xij)) + U((6t)2), 

We shall put this into the expression (2.81) for the FD operator. Furthermore, we exploit 
the facts that v and W satisfy diffusion equations and that at time tk, we have ¢ = v = w. 
Hence, Ci}¢x)x = (gvx)x and Cg¢y)y = (gwy)y and we obtain from (2.81) and the above 

(F¢)~j = ¢t(tk,Xij) - ~.2(9¢x)X(tk,Xij) 

~.2(g¢y)y(tk.Xij) + U(t:.t) + U(h2) 

= ¢t(tk, Xij) - (div(g¢))(tk' Xij) + tJ(t:.t) + U(h2) 

Putting this into the local truncation error yields the required consistency 

The corresponding assertion for the loo-norm follows from the fact that the constants 
in the order terms do not depend on time or location. Finally, we mention that the 
ghost value technique inherent in the one-dimensional implicit FD schemes ensures the 
second-order accuracy of the scheme with respect to the Neumann boundary conditions . 

• More details can be found in [89]. 
In summary, the explicit method is computationally very cheap. The computational 

and storage effort is linear in the number of pixels N. Since for explicit scheme we have 

t:.t < (6x )2 , this is often a very severe step size restriction. It means that the use of 
2a 

an explicit scheme is limited rather by its stability than its accuracy. In one dimension, 
the semi-implicit scheme requires to solve a diagonally dominant tridiagonal system of 
equations, and this is an unconditionally stable and we can get a desired accuracy without 
the need to choose small time steps for stability. In higher dimension the semi-implicit 
scheme remains absolutely stable but it is so laborious to solve the system of equations 
obtained from the discretization. Additive operator splitting schemes (AOS) split the m­
dimensional spatial operator into a sum of m one dimensional space discretizations. The 
update of each grid point involves only two neighbors in each dimension, thus reducing 
the system to a set of tridiagonal system, which is similar to semi-implicit scheme in one 
dimension. 

2.8 Basic Multigrid Methods 

Practical multigrid methods were first introduced in the 19708 by Brandt [14]. These 
methods can solve elliptic PDEs discretized on N = TTII x m2 grid points in O(N) 
operations. The multigrid methods can solve general elliptic equations with nonconstant 
coefficients with hardly any loss in efficiency, even nonlinear equations can be solved with 
comparable speed. There is no single multigrid algorithm that solves all elliptic problems. 
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Rather there is a multigrid technique that provides the framework for solving these 
problems. To solve your own problem, one needs to adj1!st the vario1!s components of the 
algorithm within this framework. In this section we give some introduction of basic ideas 
behind the linear and nonlinear multigrid methods. To explain the various components 
of multigrid methods, we will consider the classic example of Poisson's equation on the 
unit square domain. See: [14, 39, 68, 118, 97, 128] and many references therein for more 
details. 

2.9 Multigrid Method 

Simple iterative methods (such as the Jacobi method and Gauss Seidel method) tend to 
damp out high frequency components of the error fastest. This has led people to develop 
methods based on the following heuristic: 

1. Perform some steps of a basic method in order to smooth out the error. 

2. Restrict the current state of the problem to a subset of the grid points, the sn-called 
"coarse grid" , and solve the resulting projected problem. 

3. Interpolate the coarse grid solution back to the original grid, and perform a number 
of steps of the basic method again. 

Steps 1 and 3 are called "pre-smoothing" and "post-smoothing" respectively; by applying 
this method recursively to step 2 it becomes a true "multigrid" method. Usually the 
generation of subsequently coarser grids is halted at a point where the number of variables 
becomes small enough that direct solution of the linear system is feasible. The method 
outlined above is said to be a "V-cycle" method, since it descends through a sequence of 
subsequently coarser grids, and then ascends this sequence in reverse order. A "W-cycle" 
method results from visiting the coarse grid twice, with possibly some smoothing steps 

in between. 
An analysis of multigrid methods is relatively straightforward in the case of simple 

differential operators such as the Poisson operator on tensor product grids. In that 
case, each next coarse grid is taken to have the double grid spacing of the previous 
grid. In two dimensions, a coarse grid will have one quarter of the number of points 
of the corresponding fine grid. Since the coarse grid is again a tensor product grid, a 
Fourier analysis can be used. For the more general case of self-adjoint elliptic operators 
on arbitrary domains a more sophisticated analysis is needed. Many multigrid methods 
can be shown to have an (almost) optimal number of operations O(N), that is, the work 
involved is proportional to the number of variables N. 

2.9.1 Elements of the Multigrid Method 

The two main ingredients of multigrid method are error smoothing and coarse grid cor­

rection. 
Error Smoothing:-
Many basic relaxation schemes like Jacobi and Gauss Seidel methods when used to solve 
elliptic PDEs, discretized on Cartesian grids are slow to converge because of low fre­
quency error components, however they do posses a smoothing property. These schemes 
are effective at removing the oscillatory Fourier modes of the error in an approximation 
but may not effective at removing the smooth8 modes of the error i.e they smooth the 

R A function is called smooth if its Fourier coefficients are decaying, i.e it is es::;entially in a span of 
some low frequency Fourier basis functions. 
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error while not necessarily reducing its size greatly. A smooth quantity can however be 
well approximated on a coarser grid. 
Coarse grid correction:-
Let us consider a linear system 

Cu = f. (2.82) 

Let v be an approximation to the solution u then the error e is given by 

e = u- v, 

which give rise to a residual equation 

Ce = f - Cv = r, (2.83) 

where r is the residual. This residual equation is used to approximate the error e. Of 
course this equation is as expensive as the original one (2.82), but if we replace C by some 
simple approximation C (for Jacobi method diagonal D of C is used for approximation) an 
approximation of the error can be found relatively cheaply, then used to correct v. Then 
repeat the process until convergence. The following example will be used in subsequent 
discussion 

Example 2.9.1 Let us consider the Poisson equat'ion 

{ 
-~u(x, y) = f(x, y) (x, y) E n = (O, 1) X (0,1), 
u(x,y) = fr(x,y) (x,y) E f = an. 

A discretized form of Poisson equation is 

{ 
-tlhUh(X, y) = fh(x, y) 

Uh(X, y) = fnx, y) 
(x,y) E nh 

(x, Y) E fh = anh , 

(2.84) 

(2.85) 

with h = 11m}, m} E N. The iteration formula of the classical lexicographical Gauss­
Seidel method for Poisson equation is 

u~+l(Xi,Yj) = ~[h2!h(Xi,yj) + U~+}(Xi - h,Yj) + U~(Xi + h,Yj) 

+ u~+1(xi,Yj-h)+u~(xi,Yj+h)], (2.86) 

where(xi,Yj) E S1h andu~ andu~+1 are the approximations ofuh(xi,Yj) before and after 
iteration, respectively. Consider the error 

Then (2.86) becomes 

e~(xi,Yj) = Uh(Xi,Yj) - U~(Xi,Yj). 

= ~[e~+1(xi-h,yj)+e~(xi+h,yj) 
+ e~+1(xi' Yj - h) + e~{xi' Yj + h)]. (2.87) 

Error smoothing is one of the two basic principles of the multigrid approach. Many clas­
sical iterative methods like Gauss-Seidel etc. if appropriately applied to discrete elliptic 
problems have a strong smoothing effect on the error of any approximation. A quantity 
that is smooth on a certain grid can also be approximated on a coarse grid (a grid with 
double size) without any essential loss of information. In other words the error become 
smooth after few iterations, then we can approximate this error on a coarse grid with 
fewer grid points. Thus we can say that coarse grid proceduTe is less expensive then a 
fine grid procedure. 
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2.9.2 Smoothing Analysis 

Definition 2.9.1 (Visible) A component eiOx/h is visible on 011 if there is no frequency 
00 with 1001 < 101 such that 

for all x EO". 

A visible component does not coincide with any lower frequency on fine grid 011. 

1D case: 
On fine grid Oh only Fourier components ej()x/h with 0 E (-7r, 7r] are "visible" 
In local mode analysis the notion of low- and high-frequency components on the grid 0" 
is related to a coarse grid 02h. In this way el(Jx/h 011 Oh is said to be an high-frequency 
component, with respect to the grid 02h, if its restriction to 02h is not visible there. 
Usually the high frequencies are those with ~ ~ 101 ~ 7r. 
2D case: 
Let us consider the vertex centered discretization of the domain 0", let hI, h2 in x- and 
y- direction spatial step sizes respectively, then 

o = (01,02) is the "frequency". On fine grid Oh, only Fourier components 

with 101 := max(1011, 102 1) ~ 7r are "visible". The same idea can be extended to higher 
dimension. 

We will consider 2D problem onwards, stencil notation of D.hUh(X) is given by 

IlhUh(X) = ~2 [ 1 ~4 1 1 UJ.(x), 

''---v''---' 
Lh 

where x = (x, y) E 0h, i = A and hI = h2 = h. Applying a difference operator Lh to 
Fourier components 

(2.88) 

Lh(O) is called the eigenvalue of Lh, and ei(Jx/h are eigenfunctions. For example, let 
0= (01 ,02) and 

- 2 
Lh(O) = h2 (cos 01 + cos O2 - 2). (2.89) 

Example 2.9.2 Let us consider the linear problem 
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where Lh is a difference opemtor, this problem is based on an operator splitting 

where Ah and Bh are again difference operators. Let Uh be the 'initial approximation 
which produces a new approximation Uh by solving 

at each grid point x E Oh' Let eh = Uh - Uh and eh = Uh - Uh be the error before and 
after relaxation sweep9 respectively, then we have the following error eq1£ation 

at each grid point x E Oh' Also let eh = Aellix/h and eh = Aellix/h, A, A E lR are the 
error amplitudes before and after relaxation respectively, then error equation becomes 

where Ah(O), jjh(O) are the Fourier symbols of the difference operators A h, rh. Now 

(0) := I ~h(O) I 
J1. Bh(O) 

is the amplification factor (or reduction factor) of the component O. 
High and Low frequencies: 

Let Oh be the fine grid and 02h (standard coarsening) be the coarse grid. Then a Fourier 
component on fine grid is called a high frequency if it restriction to the coarse grid is not 
visible there. Otherwise it is called a low frequency. First we consider one-dimensional 
standard coarsening: 

Let 181 ~ 7r, then by injection from fine to coarse grid: 

I~h(eillx/h) = ei2I1x/2h, 

this component el2l1x/2h is visible on coarse grid 02h only if 1201 ~ 7r, i.e. 101 ~ ~ 
the high frequencies on Oh are those with ~ ~ 181 ~ 7r. In 2-D, Fourier components 
eillx / h = eilllX/heIl2y/h, with 0 = (fh,02) and 181 := max(IOll, 1(2 1) ~ 7r. Then 

High frequencies: 
7r 
2 ~ 101 ~ 7r, 

Low frequencies: 
7r 

101 < 2' 

Definition 2.9.2 (Smoothing) Smoothing stands for the convergence of high frequency 
error components which cannot be approximated from the coarse grids in a m1lltigrid cycle. 

YRelaxatioll sweep means one step of error smoothing 
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Definition 2.9.3 (Smoother) An iterative method which is used to smooth the errOT. 

Definition 2.9.4 (Smoothing rate) For a relaxation scheme with amplification fac­
tors J.L(O) of Fourier components eiOx / h the smoothing rate fl is defined by 

fl := max{IJ.L(B)1 : B E high frequencies}. 

Smoothing rates are also known as smoothing factors. 

Now to find the smoothing rate for Gauss-Seidel relaxation for Poisson's equation, con­
sider 

IlhUh ~ :' [1 ~4 1 ] U,. ~ fh 

Relaxation in error terms is given by 

:' [1 ~4 0 ] 'heX) + :' [ 0 ~ 1 ] ".(x) ~ o. 
'~--~y~----~I '~--~v----~I 

Bh Ah 

Now 

BheiOX/h = ~2 (e- iOl + e- i02 --- 4) .eIOx / h 

, ! 
V 

Bh(O) 

AhelOx/h = ~2 (elOl + ei(2 ) .eiOx/ h 

'---' 
Ah(O) 

Amplification factors: 

Ah(B) (elBl + ei(2 ) 
J.L( B) --- ----- --- --- ----,:'::---.,..".......:.­

--- Bh(B) --- (e- iOl + e- 1B2 --- 4) 

Smoothing rate: 
rr 

J.L = max{IJ.L(O)I : "2 ~ 101 ~ rr} = 0.5. 

(2.90) 

The high frequency error components are reduced by a factor of (at least) 0.5 per relax­
ation sweep. 

Note 1 For low frequencies, the reduction per relaxation sweep is much worse: 

IJ-L(B)I---d if B--+O. 

2.10 Restriction and Interpolation for Vertox Centered Grids 

The choice of restriction and interpolation operators I~h and I~lh' for the intergrid transfer 
of grid function, are closely related to the choice of the coarse grid. In this section we 
will introduce the restriction and interpolation operators for standard coarsening. 
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2.10.1 Restriction Operator 

A restriction operator I~h maps h-grid functions to 2h-grid functions. A frequently used 
restriction operator is the full weighting (FW) operator, which is in stencil notation given 
by 

[ 

1 2 1 ]2h 
~ 2 4 2 
16 1 2 1 

h 

Applying this operator to a grid function u(x, y) at a coarse grid poiut (x, y) E n:.!h means 

U2h(X, y) = I~hUh(X, y) 
1 

16 [4Uh(X, y) + 2Uh(X + h, y) + Uh(X - h, y) + 2Ilh(X, y + h) + 2Uh(X, y - h) 

+ Uh(X + h, y + h) + Uh(X + h, y - h) + Uh(X - h, y + h) + udx - h, y - h)]. 

Another restriction operator is known as half weighting (HW): 

2.10.2 Interpolation 

1 [0 1 
- 1 4 
8 01 

~ ]2h 

o h 

The interpolation operators (prolongation operators) map 2h-grid functions into h-grid 
functions. A very frequently used interpolation operator is the bilinear interpolation fr0111 
n 2h to nh, which is given by (with Figure 2.11): 

e2h(X, y) 
t[e2h (X, y + h) + e2h(X, Y - h)] 
~[e2h(x + h, y) + e2h(x - h, y)] 
;de2h(X + h, y + h) + e2h(x + h, y - h) 
+e2h(x - h, y + h) + e2h(x - h, y - h)] 

for <c 
for D 
for <> 

for o. 

2.10.3 Restriction and Interpolation for Cell Centered Grids 

(2.91 ) 

The cell-centered discretization uses unknowns located at the centers of the grid cells fig­
ure 2.12. In the case of Poisson equation, there is no difference in the order of accuracy 
of the solution of a vertex or a cell centered discretization. The treatment of bound­
ary conditions is different in vertex and cell centered discretization. Efficient multigrid 
methods can also be developed for cell-centered discretization. The main difference in 
the multigrid algorithm is that the COarse grid points do not form a subset of fine grid 
points. 
Restriction: 
If we use a cell-centered discretization, each cell of the coarse grid n2h contains within it 
4 fine grid cells and each mesh point of n2h is surrounded by the 4 mesh points of nh. 
The four cell average restriction operator evaluates the value of a coarse grid function 
U2h at a coarse grid point by taking the average value of the fine grid function Uh at the 
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~ 

A"':I. I%l i~ 

IV '''' I"". 

Figure 2.11: Left : A fine grid with symbols indicating the bilinear interpol ation lIsed for 
the transfer from the coarse grid (<l). Right: The dis tribution process for the bilinear 
interpola tion opera tor, 

four fiue grid points surrounding it . The res triction operator is given by 

",,(x , y) ~ lru,,(x , y) ~ q : : r "i,{x, y) 

1 h h h h 
= 4 [Uh( X - 2 ' Y - 2) + u,,(x - 2 ' Y+ 2) 

h h h h 
+ Uh ( x + "2 ' y - "2) + Uh ( x + "2 ' y + "2)] ' 

Interpolation: 
The bilinear interpolation operator for cell centered discreti zation is given by: 

eh = I~'h e2h 

where 

2i ,2j ~ [gei ,j + 3( ei+1,j + ei,j+l) + i+ l ,J+ l ] 
eh 16 2h 2h 2h e2h , 

2i+ l ,2j ~ [gei+ l ,j + 3(ei ,j + ei+ 1,j+l) + i,j+ l ] 
eh 16 2h 2h 2h e2h , 

2i ,2j + l = ~ [gei ,j+ l + 3( e'i,j + i ,j + l) + i+ l ,j+ l ] 
ell 16 2h 2h e2h e2h , 

2i+ l ,2j+ l ~ [gei+ l ,j+ l + 3(ei+ 1,j + i,j + l) + i, j] 
eh 16 211 2h e2h e2h . 

In stencil nota tion we have 

[
1331]" 399 3 
399 3 
1 3 3 1 2h 

More details Call be found in [39, 68, 118]. 
Order of Interpolation and Restriction 
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Figure 2.12: Cell-Centered discretization, (0) denotes fine grid poin ts and (<I ) are coarse 
grid points. 

An interpolat ion operator is said to have an order P + 1 if it can transfer exactly polyno­
mials of order p i. e. if t he exact values of a polynomial are given at the coarse grid points, 
the exact value of the polynomial can be found at a ll fin e grid poin ts by interpolat ing 
wit h the given operator. The order of a restrict ion operato r is equal to the order of its 
transpose. Bilinear interpolation in both t he ver tex and cell-centered cases has oreler 2, 
which means the fu ll weighting restriction operator a lso has order 2. 

R emark 2.10.1 Let p be the order' of the opemtor L in the differential eq'lLat'ion Lu = f . 
Let P,. and Pi are the orders of restriction and in terpolation opemtors respect-ively, then 
the order of the tmnsfer opemtors should fulfill {ll B} 

P,. + Pi> p. 

In this thesis we mainly solve PDE::; of order 2, so we use bilinear interpolation and ftt LL 
weighting restriction opemtors (both are of order 2) as they fu lfi ll the above condition. 

2.11 Coarse Grid correction 

One idea to approximately solve t he res idual equ a tion is to use an appropriate approxi­
mat ion L2h of Lh on a coarse grid D2h . The residllal equat ion becomes 

assume that Liltl exist. 
Coarse Grid Correct ion: u;;' ---> tt;;'+ 1 
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• Compute residual 

• Restrict the residual to coarse grid r Tn - I2h eTn 
2h - h h' 

• Solve on coarse grid 02h L21,CTh = r~~" 

• Interpolate c~ to fine grid 'Tn [h 'm 
eh = 2he2h' 

• Compute the new approximation UTn+1 - uTn + e'Tn 
h - h h' 

The operator L2h is usually the direct analogue of Lh on the grid 02h i.e. the discrete 
operator which results from discretizing the continuous problem 02h. An alternative is 
the Galerkin approach which defines L2h as [~h Lh1fh' The Galerkin approach is often 
combined with more sophisticated, matrix dependent interpolation operators [28, 49, 48] 
used for more difficult problems in which the coarse grid operator is not well approximated 
by re-discretization, and within the purely black box algebraic multigrid methods to 
automatically define an accurate coarse grid problem. 

2.12 Two Grid Algorithm 

Each iteration (cycle) of multigrid method consists of pre-smoothing, a coarse grid cor­
rection and post smoothing steps. The algorithm is given below 

Algorithm 3 (Two Grid Algorithm) 
No. of pre-smoothing steps. 
V2: No. of post-smoothing steps. 

• Smooth the solution on the fine grid using appropriate smoother i. e 

• Compute the residual ihn = fh - LhUI:. 

• Restrict ih to coarse grid ;;Tn _ I2h-m r2h - h rh . 

• Solve exactly on coarse grid n2h , L2hCv. = rr,.. 
I h t · 'Tn Ih 'Tn • Interpo ate t e correc zan eh = 2he2h' 

• Compute the new approximation uhn = 'iIi:' + fi:' . 
• Apply V2 steps of smoother (post-smoothing) i.e 

uh+1 = SMOOTHERV2{Lh,uh,fh) 

2.13 Multigrid Algorithm 

Recursive use of "Two Grid" method leads to a multigrid method. Consider the following 
grid sequence 

Oh(finest) :J n2h :J 04h :J ... :J OLh{coarsest). 

Solve the equations on the finest grid nh iteratively, assuming that smoothing can be 
adequately done on all fine grids and we can afford to solve the coarsest grid equation 
on nLh directly. 
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" ;' II Relax on-l I / = f 
11 ')/ h II Compute 1 =J -.-I I 

]}/ "I I "I I 
Solve .i (!..I/ = ,..J/ 

Correct 
,," t- lI" + e" 

Figure 2.13 : One cycle of Two G rid method [16]. 

Algori t hm 4 (Mult ig r id A lgorithm (MGM)) ut+1 = J\1C /I.{ h,I/I , 1/2 , 1/,;;', LJ"f,,): 
To solve a discr'etized P DE using 1nultigrid method we need to sri. the following pnr-rl1ne· 
teTS: 
1/1 : No. of pr'e smoothing steps befoTe TestTiction on fin e grid. 
1/2 : No . of post smoothing steps after' interjJolation. 
'Y : No. of multigrid cycles ( for V-cycle 'Y = 1 and for W-cyclc 'Y = 2). 

• If nil is coars est grid, solve L"Uh = ih and STOP. 
Els e apply 1/1 steps of smoother to rdax the solution, i. cu,;' = Sill OOT H E HI/I (ui;' , L J" fJ,). 

• Compute r-csidual rj;' = f' - LhU;;', 

• Restrict fhTll to coar-se gr-id 7""'11 = J 2hfm 2" II. iI' 

• Compute an appTOximate solution e21, of the r-esicl'ual equation on coarse grid n2h , 

{

On the coar-sest gTid , 
solve (2.92) using any diTec t, m ethod. 

Els e 
ii2i, = MCIII('"'( , I/] , 1/2 ,O, L2h ,i'"2;,). 

• In ter-polat e the cOTTection e"' = [4' P~' . II. _" _,, 

• Compute the new coTTected appr01:imation on n", 
• Apply 1/-2 steps of smoother (post-smoothing) 'i. e 

uh'+ I = Sill OOT [{ E R"2 (L" , ui;' , j,,). 

See Fi gure L.l ·1 which shows the V-cycl e of n mu ltigr id method 

(2. (2) 



, Jit;.- c/Llt) 

rj j H~!/ -.Ah 
• l?hf- d'u?h/l) 

f' t;.-~1/' - j ] II?h) 

I/Yl H;1' teY', 

JI, 1»1 4i1 
e-' f-- -v, II 

Figure 2.14: One cycle of Mult i Grid method [16] 
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2.14 Non-Linear Multigrid 

In many CDSes local nonlinear relaxation methods such as Gauss-Seidel Newton have a 
similar smoothing effect on the error to their linear analogues and the same principles of 
recursive application of smoothing and coarse grid correction that are used to construct 
linear multigrid methods can also be applied to discrete nonlinear problems [14, 3D]. 

2.14.1 Non-Linear Residual Equation 

Assume that we have a discrete nonlinear equation 

on some fine grid Oh, then the residual equation for non-linear discretized PDE 011 the 

fine grid Oh is 
Nh(Uh) - Nh(Vh) = Nh(Vh + eh) - Nh(Vh) = Th, 

where Vh is the approximation to Uh, eh is the error in Vh and Th = 1h - Nh(Vh) is the 
residual. This residual equation on the coarse grid 02h becomes 

The algorithm for nonlinear multigrid can be described in similar lines as done for the 

linear multigrid 2.13. 

2.15 Full Multigrid Method 

When convergent, multigrid iterations typically converge at a rate independent of the 
problem size. They will thus provide a solution with prescribed accuracy in a fixed 
number of iterations, independent of how fine the mesh is. However, the finer the mesh, 
the better accuracy can be expected, and thus the more and more iterations are needed 
to apply to exploit the accuracy of the discretization. In total, this effect contributes a 
logarithmic factor to the complexity estimate. This changes, when better initial values 
are used to start the multigrid iteration. The natural technique is nested iteration, where 
a multigrid method on the coarser level is used to supply an initial guess by interpolating 
its result. If this is used recursively, the so-called full multigrid method results. It starts 
on the coarsest discretization with an exact solver. These results are interpolated to the 
next finer grid, where a few cycles (V or W) of the multigrid method are applied. The 
result is again interpolated to the next finer grid, where again a few cycles of multigrid 
suffice to produce a solution whose algebraic accuracy and differential accuracy match. 
This algorithmic scheme typically requires just one or two V-cycles on each level to 
maintain truncation error accuracy on each level. The resulting method has optimal 
complexity in the sense that it produces solutions at a cost proportional to the number 
of unknowns. In Figure 2.15, full multigrid scheme is given. 
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Figure 2.15: Full l\ Iult ig r id schcllle' [16]. Diue a r row : Ill te rpo latio n; n ed n rrow: nigh 
ord er interpolation: I3lack arro\\': Rcstri ct ion . O n coarsest level, we solve llic p ro l> l('1ll 

cxact ly and on finer le\'c! only we do on ly smoothillg. 



Chapter 3 

Review of Variational Models in 
Image Processing 

In the broadest sense, image processing is a form of information processing for which both 
the input and output are images, such as photographs or frames of video. Most image 
processing techniques involve treating the image as a two-dimensional (2-D) signal and 
applying standard signal processing techniques to it, where signal processing refers 
to the processing and interpretation of signals. In this chapter we mainly focus on 
the variational models for Image De-noising and Image Segmentation. Various existing 
numerical methods for the realization of these models will be discussed. 

3.1 How do we define an Image? 

In Digital (discrete) sense a grey image is a 2-D array of numbers (matrix), while a 
color image is a 2-D array of vectors (Red Green Blue, shortly RGI3). In continuous 
sense a grey image is a 2-D function z(x, y) and color image is a 2-D vector function 
(r(x, y), g(x, y), b(x, y)). In this thesis we mainly work on grey value images, which 
normally take values in the range [0,255]. An image is usually divided into ml x m2 

parts, each part is called pixel. Each pixel value in the array represents the average light 
intensity over a small part (pixel) of the image. In Figure 3.1, examples of image are 
given which will be used for our experimental work in coming chapters. Images in first 
row are specially used for 2-phase image segmentation, images in second row are used for 
multiphase segmentation and the third row images are used for segmentation of special 
features in an image. 

3.2 Variational Models and Partial Differential Equations 

Digital images are representations of the visual world surrounding us. The common point 
between all digital images is the fact that they are defined in a discrete setting although 
they come from a continuous world. The transfer process is done by sampling and 
quantizing the "continuous images". Even if all image processing methods are developed 
for digital/discrete images, it is often more convenient to use continuous formulations. 
At the beginning of image processing history, the techniques used to process images 
such as filter theory or spectral analysis were based on a discrete setting. Nowadays, 
new techniques such as wavelets theory or variational models are based on a continuous 
setting. 
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Figure 3.1: Sample images used in our experiments. Images in top row are used for 
2-phase image segmentation, the images in second row are used for multi phase image 
segmentation and images in third row are used for segmentation und er geometrical con­
ditions. 

60 



In this thesis we develop fast numerical methods for solution of partial differential 
equations based models and variational models for solving image segmentation problems. 
Let us assume that an image processing problem can be formulated as 

u* = argminuEsF(u), (3.1) 

where u·, defined in an appropriate space S for the given problem, is an optimizer of an 
energy functional F(·) which gives solution to the given image processing problem. If F 
is continuous and differentiable, it is possible to compute the first variation to determine 
the Euler-Lagrange's equation 

aF =0, 
au (3.2) 

which gives a necessary condition for u· to be an optimizer of F such that §l-I = o. 
ou u. 

Then a way to compute an optimizer is to use the gradient descent (time marching) 
method by introducing an artificial time t such that: 

(3.3) 

and look for the steady state solution. G. Sapiro in his book [104] proposes a nice (a 
simple) example to illustrate the previous ideas. If we want to de-noise an image, an 
example of variational model is 

where F(u) = { IVul2dx, JR2 (3.4) 

where F is in this case the Dirichlet functional. The Euler-Lagrange's equation of this 
functional is 

au· = 6.u •. 
at (3.5) 

In this thesis we mainly consider the fundamental functionals like Rudin-Osher-Fatemi 
(ROF) total variation functional [99] and the Mumford-Shah functional [88]. 

3.3 Variational Image Segmentation Models 

Image segmentation is a fundamental component towards automated vision systems and 
is useful in medical applications. Segmentation means dividing an image into a patchwork 
of regions, (domains) each of which is homogeneous, that is, they are same in some 
sense like intensity, texture, color etc, in other words distinguishing objects from the 
background or systematically select specific features out of an image that has many 
features [33, 6, 87]. For intensity based images, the non-equation based methods are 
the popular approaches: threshold techniques, region merging algorithms, the watershed 
segmentation techniques and so on. Most of them are based on a discrete setting, which 
makes them dependent on the parametrization. Moreover, they are not defined in rigorous 
mathematical framework, for more details see [111]. One may also view the task of 
distinguishing objects of interest from "the rest", is to identify the feature boundaries. 
In recent years, a class of image segmentation models based on variational approaches 
have been introduced. These are defined in continuous setting and are mathematically 
well studied. Two well known variational image segmentation models are the Mumford­
Shah model [88] and the active contour model [75]. In the Mumford-Shah approach, the 
goal is to fiud a partition of the given image z into differeut homogeneous regions, in 
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terms of intensity, color, texture etc. The n-dimcn~ion Mumford-Shah functional can be 
defined as 

F AfS {U,1<) = f3 {{u - z)2dxdy + ( lV'ul 2dxdy + art.n-1(J(), (3.6) 1n 10\K 

where n is a bounded domain in lRn , z : n -+ [0,1] is a given function (input grey 
level image), a and f3 are positive (tuning) parameters, rt.n- 1 is the (n - I)-dimensional 
Hausdorff meosure (that is, the u~ual (n-I)-dimensional area in case of sub~ets ofregular 
hyper surfaces, the length in the most relevant case n = 2). The unknown function 
u : n -+ lR is regular (say, of class Cl) out of a closed singular set 1<, whose ~hape and 
location are not prescribed. In equation (3.6), the first term is the fitting (fidelity) term 
with respect to the given image z, it asks that u approximates z. The second term is 
the regularization term which asks u to be smooth inside the n \ 1< and the last term 
is the constraint on the set of discontinuities (edges) 1< which asks the boundaries to be 
as short as possible. Theoretical results on the existence and regularity of minimizers of 
(3.6) can be found in [88, 87, 86] and [58]. A reduced case of the above model is obtained 
by assuming u as a piecewise constant function inside each connected region say nj , i.e 
u = Ci inside each connected region ni . Thus Mumford and Shah model is reduced to 
minimizing the following functional: 

F~lf (u, J() = f3 Lin; (z - Ci)2dxdy + al1<l· 
, 

(3.7) 

As we mainly consider problems in 2-dimension, the last term of (3.6) is the total length 
of the set of discontinuities 1<. For fixed 1<, minimizing (3.7) with respect to Ci gives 

In zdxdy 
Ci = I~ dxdy == mean(z) 

, 

Hence (3.7) reduces to the following minimization problem 

Fffc! (1<) = f3 ~ In; (z - mean(z))2dxdy + al1<l· (3.8) 

Theoretical results for the existence and regularity of minimizers of (3.7) can be found for 
example in [88], [116] and references there in. In practice the functionals (3.6) and (3.7) 
are difficult to minimize because of the unknown set 1<, is of lower dimension and also 
the functionals are not convex. A possible solution to these problems will be addressed 
in Section 3.5 and in chapter 5. 

Although the first segmentation model (3.6) proposed is to extract all significant parts 
in images, some specific parts of image can be more important than others depending on 
applications such as in medical imaging (look for tumor in a brain MRI). This makes the 
link with the second segmentation model, in the context of variational models, which aims 
at detecting edges in images. The active contour model proposes to detect the closest 
contour(s) from an initial position. The active contour/snake was initially introduced by 
Kass et. al in [75]. The active contour model locates sharp image intensity variations by 
deforming a curve C towards the edges of objects in a given image z. The snake model 
has external constraint forces and the internal constraint forces in its energy functional. 
The image forces push the contour/snake toward image features like lines, edges etc, the 
internal forces impose the smoothness constraint and the external constraint forces Pllt 
the contour/snake near the desired local minimum. The evolution equation (introducing 
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artificial time step) of the parametric planar curve C(q) = (x(q), y(q)) E n, q E [0, I] is 
given by the minimization of the following energy functional: 

where 0, f3 and A are positive constants. Also 9 : [0, +00[-+ 1R+ is called the edge detecting 
function, and is a strictly decreasing function which vanishes at +00 and is given by 

(3.10) 

where G. (x, y) ~ ,';., exp (x - P.)' + (y - p,) '/2U') is the Gau"ian fundion with 

standard deviation a and mean /-Lx, /-Ly, Z * Gu is a smooth version of the original image z 
and "I is a positive constant. F KWT is not convex [75], so the solution will not be unique 
and it has local minima. So the local minima of FKWT can be reached by solving the 
following Euler-Lagrange's equation 

(3.11) 

In [75], this fourth order equation (3.11) was numerically solved using finite differences. 
It provides a fast numerical algorithm but, in the case of closed curves, it does not 
allow changes of topology since the final curve has the same topology as the initial one. 
In other words, it is not possible to detect more than one object. Another drawback 
of the snake segmentation model is the dependence of the functional with respect to 
the parametrization of the curve C, i.e different parametrization of the curve may give 
different solutions for the same initial condition. 

To overcome the limitation of the changes of topology, the powerful level set method 
[90, 108, 92] may be used. The curve C is then implicitly represented by a function of 
higher dimension ¢, called the level set function, and the curve evolution equation can 
be re-written in a level set formulation. 

3.4 The Geodesic Active Contours Model 

V. Casselles et al [21] proposed a new and improved energy, based on Kass et al [75J 
that is invariant with respect to a new curve parametrization [21, 103, 60, 100, 96J. The 
new energy is given by 

FCAc(C(q)) = 11 g(lV'z(C(q))I)IC'(q)ldq. (3.12) 

Since L(C) = Io1IC'(q)ldq = IoL(O) ds, where ds is the Euclidean element of length and 
L( C) is the Euclidean length of the curve C, hence equation (3.12) becomes 

[L(O) 
FCAc(C(q)} = 10 g(lV'z(C(q))I)ds (3.13) 

Here the functional (3.13) is actually a new length obtained by weighting the Euclidean 
element of length ds by the function 9 which contains information concerning the bound­
aries of objects [7]. The function 9 is the edge detecting function defined in (3.10). The 
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equivalence between minimizing FCAC and minimizing FIOVT at f3 = 0 was studied in 
[21]. Hence the direction for which FCAC decreas(~s most rapidly provides us the following 
minimization flow: more details of its derivation can be found in [21]: 

DC - - jJ at = g",N - ('\1g ·N) , (3.14) 

where", is the Euclidean curvature, and N is the unit normal vector. This equation 
shows how each point in the active contour C should move in order to decrease the 
length FCAC. The detected object is then given by the steady state solution of (3.14). 
In level set formulation, the evolution equation is: 

(3.15) 

¢ is a Lipschitz function representing C as a zero level set. The term 1/1g, 1/1 > 0 is 
added to increase the evolution speed and to attract the curve towards the boundary and 
constitute in fact an extra area-based speed. 

These snakes/active contour models rely on the edge function 9 which depends on 
the gradient of the image. These models can detect only objects with edges defined by 
gradient. Also, in practice the discrete gradients are bounded and then the stopping 
function 9 is never zero at the edges, and the contour may pass through the image edges 
[35]. On the other hand if the given image is too noisy, then the smoothing Gaussian has 
to be strong (potentially distorted by noise), and which will smooth the edges too. 

In the next section we describe another active model which does not depend on the 
edge function to stop the contour at edges. This is the Chan-Vese model [35], "Active 
Contour without Edges" . 

3.5 Active Contour without Edges 

T. F Chan and L. A. Vese in [35] proposed a new energy based model for image segmen­
tation, which does not use the gradient of image z as a stopping process, but the stopping 
term is depending on Mumford-Shah segmentation technique [88]. This means that this 
model can detect contours with or without gradients. The basic idea of contour models 
or snakes is to evolve a curve, subject to constraints from a given image in order to detect 
objects in that image. Let Z be the given image, as a bounded function. Assume that z 
is formed by two regions of approximately constant intensities of distinct values Zi and 
ZOo Assume that the object to be detected is represented by the region with intensity Zi 

and its boundary is fo. Consider the 'fitting' term 

El(r)= { IZ- C I12dxdy+ ( IZ- C21 2dxdy, 
Jinside(r) J outside(f) 

(3.16) 

where f is the unknown evolving curve and Cl and C2 are the averages of the image Z 

inside and outside of f respectively. In this case, it is obvious that f Q , the boundary of 
the object, is the minimizer of the energy. To minimize (3.16), some regularization is 
required. The regularization terms used in [35] are the length of f and the area of the 
region inside r. Thus similar to (3.7) they consider the following energy: 

F(r, q, C2) = J-L.(length(r))p + I/.area(inside(r)) + 

).1 ( Iz - cd 2dxdy + ).21 Iz - c21 2dxdy, 
Jinside(r) outside(r) 

(3.17) 
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where CI and C2 are unknown constants, JL ~ 0, v ~ 0, AI, A2 > 0 are fixed parameters. In 
[35] Al = A2 = 1 and p > 0, in particular we take p = 1. I' generally mean a hypersurface 
in IRn and "length(r)" means the Hausdorff (n-1)-dimensional measure 1in - I (I'). If the 
curve is forced to move only inside or outside then we take positive v otherwise v = o. 
We ignore the area term in later chapters i.e. v = O. 

Thus Chan and Vese in [35] proposed the following minimization problem 

(3.18) 

This functional is a special case of the piecewise constant Mumford and Shah segmenta­
tion model [88] (restricted to only two regions with constant average intensities). 

Level Set formulation of the Model: 

Let ¢ : 1R2 _ IR be a Lipschitz function [92], then representing f as a zero level set of 4>, 
such that 

{ 

f = {(x, y) E 1R2 : 4>(x, y) = O}, 
inside(f) = ((x,y) E 1R2 : 4>(x,y) > a}, 
outside(f) = {(x, y) E 1R2 : ¢(x, y) < O}. 

Thus the unknown lower dimensional variable curve f is replaced by another unknown 
higher dimensional variable 4>. Let us define the Heaviside function II and the 1-
dimensional Dirac measure 8 concentrated at 0, defined respectively by 

and 

H (x) = {01 if x ~ 0 
if x < 0 

d 
8(x) = dx H(x). 

Expressing each term of the energy F in terms 4>: 

length{4> = O} = In I\7H(¢)ldxdy = In 8(¢)I\74>ldxdy, 

area{¢ ~ O} = In H(4))dxdy, 

f Iz-cd2dxdy = !nIZ- ClI 2H(4))dXdy, 
J¢~o " 

h<o Iz - c21 2dxdy = In Iz - c212(1 - H(4)))dxdy. 

In level set formulation equation (3.17) becomes: 

F(¢,Q,C2) =11- LI\7H(¢)ldXdY +V In H(4))dxdy+ 

Al In Iz - cd2 H(4))dxdy + A21n Iz - c212(1 - H(¢))dxdy. 

Once 4> is obtained then the segmented image is given by 
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Existence of minimizers is discussed in detail ill Chall-Vese paper [35]. To minimize 
(3.19), we decouple the variables. Firstly keeping ¢ fixed and minimizing (3.19) with 
respect to Cl and C2 we have 

() In zlI(rjJ)dxdy 
Cl ¢ =~---­In H(¢)dxdy 

(3.20) 

if In H(rjJ)dxdy > 0 (i.e the curve has a nonempty interior in 0) otherwise need to 
re-initialize ¢, and 

( ) _ In z(1 - H(¢»)dxdy 
C2 ¢ - In(1- H(¢)dxdy (3.21 ) 

if In(l-H(¢) )dxdy > 0 (i.e the curve has a nonempty exterior in 0) otherwise re-initialize 
¢. 

Since H is not differentiable at 0, to find the Euler-Lagrange equation for the unknown 
function ¢ we need a regularized Hand 8. Let us denote the regularized version of 
Heaviside H and delta 8 functions denoted by H£ and 8f respectively and defined as in 
[35] (see also [39, 11]): 

Hf(x) 
1 2 x 
-(1 + - arctan( -), 
2 7r € 

= H;(x) = .!.. ( 2 € 2)' 
7r € + X 

Thus the regularized functional denoted by Ff will be: 

Ff (¢, C1, C2) = J.L In I'V Hf(¢)ldxdy + v In Hf(¢)dxdy + 

).1 In Iz - clI2Hf(¢)dxdy +).2 In Iz - c212(1- Hf(¢))dxdy. 

And the minimization problem is 

(3.22) 

(3.23) 

To compute the Euler-Lagrange equation, let us keep C1 and C2 fixed, and minimize Ff 

with respect to the unknown ¢. We proceed in the following way. Let us choose 1/1 as a 
test function of the same type as ¢ and find the Gateaux derivative of Ff : 

where 

lim.!. (Ff (¢ + tl1/1, Cl, C2) - F£( ¢, Cl, C2)) = 0 
tl-+O tl 

:::} In J.L(8~(¢)1'V¢11/1 + 8f (rjJ) 'Vi~;1/1)dXdY + 

In 8£(¢)(v + ).l(Z - cd2 - ).2(Z - C2)2)'ljJdxdy = 0 (3.24) 

11'V Hf(¢)ldxdy = [ D£(¢)IV'¢I·dxdy 
11 In 

From Green's theorem we have 

{ vV'· wdx = - [ 'Vv· wdx + [ vw· r"ids. In In Jan 
Let .1. = v and 8f (¢)"A. = -

'/-' IV'¢I v,/-, w. 
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So 

r (O«¢))d d r "./, Of(¢)n d r 8(¢) -10. 1jJV7. IV'¢I V¢ x y = - 10. V'I-" IV¢I v ¢ xlly + lao 1jJ IV¢I v¢· nds 

which implies that 

(3.25) 

where V' ¢ . ii = ~~. Thus (3.24) becomes 

Jl In o~(¢ )1V'¢I1jJ - Jl In 1jJV . (f~:~ V¢) dxdy + Jl lao 1jJ f~:~ ~~ ds + 

In o,(¢)(v + Al(Z - ct}2 - A2(Z - C2)2)1jJdxdy = 0 

which implies that 

Jl In o~(¢)IV'¢I1jJdxdy - Jl In 0«¢)V'· (I~:I },pdxdy - Jl in O~(¢)V'¢'I~:I1/'dXdY + 

r Of ( ¢) a¢ r ( ( )2 ( 2 
Jl lao 1jJ IV¢I an ds + 1

0
0«¢) v + Al Z - Cl - A2 Z - C2) )1/,dxdy = O. 

Finally we obtain 

r (V'¢) r Of(¢)a¢ - ln JlOf(¢)V" IV'¢I 1jJdxdy + lan Jl1V¢1 an 1jJds + 

In o,(¢)(v + AI(Z - Ct}2 - A2(Z - C2)2)1jJdxdy = O. 

for all test function 1jJ. Choosing 1jJ E C~ (n) which is arbitrary, we deduce the following 
Euler-Lagrange's equation for ¢: 

{ 

Of(¢) [JlV" (~) - v - AI{Z - CI)2 + A2(Z - C2)2] = 0 

o,(¢)a¢=O or a¢=O on an. 
IV'¢I an an 

in n, 
(3.26) 

In [35], the authors considered the following evolution problem, i.e the descent direction 
is parameterized by an artificial time t, and solve it to find the steady state solution of 
the following parabolic equation: 

{ 

~ = o,(¢) [JlV, C~:I) - v - Al {z - Ct}2 + A2(Z - C2)2] 

¢(t, x, y) = ¢o{x, y) in n 
a¢ - = 0 on an. 
an 

in n, 
(3.27) 

To extend the evolution to all level sets of ¢, Of(¢) can be replaced by IV¢I in equation 
(3.27) as done in [131]. This re-scaling does not affect the steady state solution, but it 
does remove the stiffness of the zero level sets of ¢. But we will use Of (¢) as in [35]. In 
next section we derive the numerical approximation of the model and will discuss the 
existing methods used for solving the above evolution problem (3.27). 
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Numerical Methods: 

The following evolution problem will be solved numerically, 

() 
In zH,(¢)dxdy () In z(1 - H,(¢))dxdy 

CI ¢ = C2 ¢ = f In H,(¢)dxdy In(1- H,(¢))dxdy 

~~ = 8, (¢) [JlY'. (I~:I) - V-AI (z - CI)2 + A2(Z - C2)2] in n, (3.28) 
¢(O, x, y) = ¢o(x, y) in n, 
8,(¢) 8¢ = ° on 8n. 
1Y'¢18n 

Equation (3.28) has 3 unknowns CI(¢), C2(¢) and ¢, so we first compute CI(¢) and C2(¢) 
and then keep them fixed and then we solve the PDE for ¢. Once ¢ is found then update 
CI(¢) and C2(¢) and so on. To solve the above PDE in equation (3.28), we proceed in 
the following way: 

Let us suppose that the size of z is ml x m2. Finite differences scheme is used for 
discretization. Let x, yEn be the spatial variables, hI, h2 be the horizontal and vertical 
space step size and 6t be the time step. Let (Xi, Yj) = (ih l ,jh2 ), for i = 1, ... , ml and 
j = 1, ... , m2 be the grid points. Also let ¢L = ¢(k6t, Xi, Yj) be an approximation of 
¢(t, x, Y), where k ~ 0 and ¢o = ¢o will be given (initial guess). The finite differences 
are denoted by 

6:¢ij = ¢ij - ¢i-I,j, 6~¢ij = ¢i+I,j - ¢ij, 

6~¢ij = ¢ij - ¢i,j-I, 6~¢ij = ¢i,j+l - ¢ij. (3.29) 

For a given ¢k, first compute CI(¢k) and C2(¢k) and then discretize the above parabolic 
PDE (3.28) and using semi implicit (81) method to update ¢k. Thus discretization leads 
to the following equation in ¢ 

Aok:+-l _ Aok, 6 x ¢k+1 
'1") '1") = 8 (¢k,)[~6X ( + ij ) 

6t ' ') hi - /(6+¢~jlhd2 + ((¢f,j+1 - ¢L_I)/2h2)2 

6 Y Aok+l 
+ ~6Y ( +'I'ij ) 

h~ - /((¢~+I,j - ¢f-l,j)/2ht}2 + (6~¢~j/h2)2 

V - Al (Zij - CI(¢k))2 + A2(Zij - C2(¢k))2]. 

In this thesis we use hI = h2 = h = 1 in all of our experiments. 

Aok+1 _ Aok, 6 x ¢k+1 
'1") '1") = 8,( ¢f') [Jl ( + ij 

6t ) /(6+¢fj)2 + ((¢f,j+l - ¢~,j_I)/2)2 
1\ x Aok+l 
u+'I'i-l,j ) 

(.6+¢f-l,j)2 + ((¢f-l,j+l - ¢f-l,j_I)/2)2 

6~¢:/1 

+ Jl( /((¢f+l,j - ¢f-I,j)/2)2 + (.6~¢fj)2 
1\ Y Aok+l 
u+'I'i,j_1 ) 

/((¢~+l,j-l - ¢f-I,j_I)/2)2 + (6~¢~,j_I)2 
V - Al (Zij - ci (¢k»)2 + A2 (Zij - C2( ¢k))2] . 

(is 



:::} -I,k+1 
'l'lJ 

k+1 ¢k+1 
= ¢k. + ~tDf(¢k)[J.l( ¢i+l,j - i,j 

lJ lJ. /(6 X -I,k)2 + ((-I,k . _ -I,k. )/2)2 V +'l'lJ '1't,J+l 'I",J-l 

-I,k+1 -I,k+l 
'l'i,j - 'l'i-I,j ) 

«¢~+I,j-l - ¢~_I,j_l)/2)2 + (~~¢L_I)2 

V - Al(Zij - Ct{¢k))2 + A2(Zij - C2(¢k))2]. 

ffi . f -I,k+1 -I,k+1 -I,k+1 -I,k+1 b A A A A Let us denote the coe Clents 0 'l'i+1,j' 'l'i-l,j' 'I';,j+l' 'I';,j-l y I, 2, 3, 4 respec-
tively, we get the following system of linear equations 

¢~/l [1 + J.lDf(¢~)(AI + A2 + A3 + A4)] 

= ¢7j + ~tDf(¢7j) [J.l(Al¢~':},j + A2¢~~L + A3¢~J~1 + A4¢7,t~l) 
V - AI(Zij - CI(¢k))2 + A2(Zij - C2(¢k))2]. 

(3.30) 

This linear system of equation can be solved by using any iterative method. To prevent 
the level set function to become too flat and to make it a distance function, after some 
steps as discussed in Section 2.4.2, it is suggested to re-initialize the function ¢ by solving 
the following equation [114]: 

{ 
a~ at = sgn(¢(t))(l-I'VW 

~(O, t) = ¢(t), 
(3.31 ) 

where ¢(t,.) is the solution ¢ at time t, see [35] for more details. 

Algorithm 5 (Chan-Vese (CV) algorithm for 2-phase image segmentation) 

¢k+l -+ CV( ¢k, J.l, tol) 

1. For given ¢o, com.pute Cl and C2 using equation {3.28}. 

2. Keep Cl and C2 fixed and solve the PDE in equation {3.28}, to update ¢k. 

3. Com.pute Cl and C2 using ¢k+l. 

4. If I¢k+l - ¢kl < tol stop else. 

5. Re-initialize ¢, by solving equation {3.31} and do step 2. 

This algorithm was tested on different images, as found in [35]. As mentioned before, the 
non linear PDE (3.28) was solved using semi implicit (81) method, which is uncondition­
ally stable [126]. But for higher dimensions (n ~ 2) there appears a problem: it is not 
possible to order the pixels in such a way that in the i-th row all non-vanishing clements 
of the system matrix can be found within the positions [i, i - md to [i, i + m2]. Usually, 
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the matrix reveals a much larger bandwidth. Applying direct algorithms would destroy 
the zeros within the band and would lead to an immense storage ano computation ef­
fort. On the other hand, typical iterative algorithms such us the Jacobi, Gauss-Seidel, 
etc methods have another limitation. For large time step, the system matrix has large 
condition number, which causes slow convergence. J. Weickert [81, 127] proposed an 
Additive Operator Splitting (AOS) method for non-linear diffusion filters discussed in 
Section 2.7.6 and then M. Jeon [72] extended this idea toward Chan-Vese model for 
image segmentation. Let us consider the PDE (3.28), 

':: = 0,( ¢) [~V . ( I~ :1) - v - .I, (z - cd' + .I,(z - "')' l (3.32) 

The AOS method splits the n-dimensional spatial operator into a sum of none-dimensional 
space operators. As a result we get a tridiagonal system matrix. The Thomas algorithm 
[47] can be used to solve this tridiagonal system, resulting in a very fast and parallelizable 
algorithm. Let k and i represent time and spatial indices, respectively. Let 4>: = 4>{i, k), 
then at a grid the I-dimensional semi implicit discretization of (3.32) with spatial step 

h = 1 is: 
A-.k+1 _ A-.k (A-.k+1 _ 4>k+1 4>k+1 _ A-.k+1 ) 'l'l 'l'l () (A-.k) 'l'l+1 l l 'l'l-1 + F, (333) 

6t = £ 'l'i 1.6+4>~ I - 16+4>~_11 i, . 

where Fi = [-v - A1{Zi - ct}2 + A(Zi - C2)2]. Let 

1 1 
Al = and A2 = ---;---

16+4>:1 1.6+4>:-11 ' 
so equation (3.33) becomes 

4>~+l = 4>: + .6t{)f(4)~)(AI4>~:l- (AI + A2)4>:+l + A24>:~} + Fi). (3.34) 

Thus with AOS method, solve problems in x-and y- directions with double time step to 
get two separate solutions say 4>1 and 4>2 and then find the average as 

1 
4> = "2(4)1 + 4>2)' 

Although no stability constraint on the time-step is present when the AOS scheme is 
utilized, the size of the time-step cannot be very large because, splitting related artifacts 
associated with loss of rotational invariance will emerge. The practical implication of 
this is that the number of iterations needed for the contour to converge remains quite 
large. For images of large sizes, the methods discussed in this chapter are very slow in 
convergence. To avoid this problem, Multigrid method is the best option. In the next 
chapter we present a multigrid method for CV model [8]. 

3.6 Piecewise Linear and Smooth Segmentation 

In this section we give the extension of two phase piecewise constant CV model to piece­
wise linear and smooth segmentation [119]. The piecewise linear segmentation is given 

by 

a+.b+.cJI:,}!\-.C-.'" In Iz(x, y) - (a+x + b+y + c+)12 H{4>(x, y))dxdy (3.35) 

+ In Iz{x,y) - (a-x + b-y + c-)I\1 - H(4)(x,y)))dxdy + JL 111Y' H(4){x, y))ldxdy 

+ 17 in ({a+)2 + {b+)2)H(4)(x, y))dxdy + 71 in (a-)2 + (b-)2) (1- H(4)(x, y)))dxdy 
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where a+, b+, c+, a-, b-, c- are unknown (as coefficients of polynomials of degree 1) and 
J.l, TJ are positive parameters. Once ¢ is obtained then the segmented image is given by 

Minimization w.r.t a+, b+, c+, a-, b-, c-, ¢ leads to the following linear algebraic system 
of equations and a PDE for ¢. The algebraic system of equations for a+, b+, c+ is: 

a+ In (x2 + TJ)H(¢(x, y))dxdy + b+ In xyH(¢(x, y))dxdy + c+ In xH(¢(x, y))dxdy 

= in xz(x, y)JI(¢(x, y))dxdy, 

a+ In xyH(¢(x, y))dxdy + b+ in (y2 + TJ)H(¢>(x, y))dxdy + c+ in yH(¢>(x, y))dxdy 

= In yz(x, y)H(¢(x, y))dxdy, 

a+ in xH(¢(x, y))dxdy + b+ in y(¢(x, y))dxdy + c+ in H(¢>(x, y))dxdy 

= In z(x, y)JI(¢(x, y))dxdy. 

A similar system of equations can be found for a-, b-, c- by replacing H(¢(x, y)) by 
(1 - H(¢>(x, y))), and the evolution problem for updating ¢ is given by 

o¢> 
ot 

= t5E (¢» [J.lV" C~:I) -Iz(x, y) - (a+x + b+y + c+)12 

+ Iz(x, y) - (a-x + b-y + c-W - TJ( (a+)2 + (b+)2) + TJ( (a-)2 + (b-)2)]. 

Now we extend the idea of CV [35] to the two phase piecewise smooth approximation of 
the Mumford-Shah model [119]. We give some details of the piecewise smooth segmen­
tation functional which is given below. 

min F(f,sI,S2) = J.lLength(f)+j ((z(X,Y)-Sl(X,y))2+ TJ IV' Sl(X,y)12)dxdy 
r,S1,S2 Inside(r) 

+ f ((z(X,Y)-S2(X,y))2+ TJ IV'S2(X,y)12)dxdy, (3.37) 
JOutside(r) 

where z(x, y) is a given image, S1 and S2 are two C 1 functions defined inside and outside 
the unknown contour f respectively, J.l > 0 controls the regularization of the length of the 
boundary of the smooth regions and TJ > 0 controls the regularization of the intensities of 
smooth regions. Now we consider the level set formulation of the functional as discussed 
in Section 3.5 and replacing the Heaviside function H by its regularized version HE' thus 
(3.37) becomes: 

min FE(¢,Sl,S2) = J.l ~IV'HE(¢)I+ ~((z(X.Y)-Sl(X,y))2+TJIV'Sl(X,Y)12HE(¢)dxdy 
<I>,S1,S2 J r, J r, 

+ In ((z(x, y) - S2(X, y))2 + TJIV'S2(X,y)12(1- HE(¢))dxdy. (:t:~8) 
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Minimization leads to the following equations 

aS I 81 = Z+1]681 on {4»0}, a~ =Oon {4>=O}Uan, 
n 

aS2 82 = z+",6s2 on {4><0}, a~ =Oon {4>=O}Uan, 
n 

~~ ~ O.(¢) [V. C~:I) -rl(X, Y)]' (3.39) 

where r1 (x, y) = ((z(x, y) - 81 (x, y))2 - (z(x, y) - 82(X, y))2 + ",IV 8112 - r,IV 8212). 

3.7 Global Minimization of the Active Contour Model (CV2) 

In this section we discuss the global minimization of the active contour without edges 
[35], proposed by T. F. Chan et al. [25]. Let us consider the 2-phase image segmentation 
model (CV2) (3.19) 

min F(4), C1, C2) = J1. f IV H(4))ldx + v f H(4))dx + 
_~1~2 in in 
Al 10 Iz - cd2 H(4))dx + A210 Iz - c212(1- H(4)))dx. (3.40) 

This minimization problem is non-convex because of the length term In IV H(4))ldxdy 
[25]. Hence the optimization problem can have local minima, i.e the final segmented 
image might have wrong information. Despite of non-convex nature of (3.40), a natural 
way to a solution (4), Cl> C2) is a two step algorithm where Cl and C2 are firstly computed, 
and then look for best 4> which minimize the energy F(4), C1, C2). The gradient descent 
equation is 

~; ~ O,(+V C~:I) -,(V+A1(Z- Cd>A,(Z-C,)'\] 
r(x,y) 

a4> 
::;. -at O.(¢) [V. C~:I) -Ar(x, v>] 

(3.41 ) 

In [35], the CV algorithm chooses a non-compactly supported, smooth approximation H. 
for H. Thus the above gradient descent equation and the one given below have the same 
stationary solutions: 

(3.42) 

where the 8, (4)) is dropped. The above equation (3.42) is the gradient descent equation 
of the following convex energy 

10 IV4>1 + A 10 r(x, y)4>dxdy. (3.43) 

This energy is homogeneous of degree 1 in 4>, so in general it does not have a minimizer, 
if we do not restrict the minimization to 4> such as 0 ~ 4> ~ 1 V(x, y) E n; see [25] for 

72 



more details. Thus consider the following minimization problem 

min ([ 1\7¢ldxdY+A [1'(X,Y)¢dXdY), 
O~<I>(x,y)~l in in 

and the claim is that this minimization leads to the global minimizer from the following 
theorem: 

Theorem 3.7.1 For any given fixed Cl, C2 E JR, a global minimizer for CV model can be 
found by carrying out the following convex minimization 

min ([ 1\7¢ldxdy + >. [ r(x, Y)¢dXdY). 
O~<I>(x,y)~l in in (3.44) 

The proof and further details can be found in [25]. To minimize (3.44), they have the 
following claim 
Claim: Let r(x, y) E Loo(O), then the convex, constrained minimization problem (3.44) 
has the same set of minimizers as the following convex, unconstrained minimization 
problem 

(3.45) 

where v(() := max{O, 21( - !I- I}, provided that w > Hr(x, y)IILoo(n). The proof can 
be found in [25]. The Euler Lagrange's equation is given by 

8¢ [ ( \7¢ ) l ' at = \7. IV'¢I ->.r(x,y) -WVE2 (¢), 

where V~2 is the regularized version of v' with V E2 (() is given by [15]: 

if « -t2/ V2, 
if -t2/V2 ~ ( < t2, 
if t2 ~ ( < 1 - t2, 
if I-t2~«I+t2/V2, 
if (~1 + t2/v'2. 

(3.46) 
An explicit scheme was used to solve this equation. 

In [15], based on the energy (3.44), they proposed the following energy functional for 
minimization by introducing weighted TV 

min ([ gl\7¢ldxdY+A [ r(X,Y)¢dXdY) , 
O~<I>(x,y)~l in in (3.47) 

where g is an edge detector function and is defined as in (3.10) and r(x, y) = (v + Al (z­
cd2 - >'2(Z - C2)2). The minimization was carried out in similar way to [25]. Later 
on, they extended their discussion towards the global minimization of the active contour 
models based on the Mumford-Shah Model for the piecewise smooth case. To find the 
global minimizer of equation (3.39), same steps will be taken as discussed above, for more 
details see [15]. 
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3.8 Geodesic Aided CV method 

Geodesic active contours [21] are based OIl gradient to ddect the boundary, which uses 
the local information. Firstly for images with fuzzy and discrete edges, it is difficult to 
get desirable results. Secondly, geodesic active contours are heavily affected by noisy 
inputs since the isotropic smoothing Gaussian must be strong, which will smooth the 
edges too. On the other hand, the CV method depends on the image information from 
homogenous regions which helps in detecting with fuzzy and discrete edges and also we 
do not need to de-noise the image, if the input image is noisy. The original CV method 
is unable to detect images with holes, i.e. the CV method has global minima deficiency. 
Also CV is based on the information of homogenous regions so the precise boundary may 
not be obtained. In [41J, Li Chen et al introduced a new method to address the above 
mentioned problems by combining geodesic and CV methods. The CV PDE is 

where z(x, y) is the given image, </J is the level set function and CI and C2 are same as 
defined in Section 3.5. They made the following changes to the above partial differential 
equation. Firstly, they replace the delta term 8f (</J) by I'V¢I, which then involves the 

w hole image infmmation. Secondly, the teem V . C ~ :1) i, ceplaced by V . (g I ~: I). 
where 9 is the edge detector function defined in (3.10). Thus the new equation becomes 

Since 

after some manipulations and approximations they solve the following partial differential 
equation: 

~~ = glV ¢+V . C~ :1) -v - .I, (z(x, Y) - cd' + .I,(z(x, y) - '" )'] + Til 9 . V z(x, y), 

(3.48) 
where they used T = 1, Al = A2 = 1 and v = 0 [41]. Also they extended their method 
towards color images. 

3.9 Conclusion 

In this chapter we mainly discussed some variational models used for image segmentation 
also numerical methods used for solving the parabolic PDE arisen from the minimiza­
tion of CV model. Geodesic active contours based on gradient and curvature to detect 
boundary, in which local information of boundary is used, cannot get ideal results when 
dealing with fuzzy edges and discrete edges. Furthermore because of the local attributes 
and the dependence on gradient, geodesic active contours are heavily affected by heavy 
noise. On the other hand, the CV method depends on the image information derived 
from homogenous regions, therefore it can obtain favorable results in fuzzy and discrete 
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cases. De-noising process is also not necessary. The CV can detect objects in an image 
whose boundaries are not defined by gradient. Explicit scheme is popular in solving the 
parabolic PDEs, but due the Courant-Friedrichs-Lewy (CFL) condition which asserts 
that the numerical waves should propagate at least as fast as the physical waves [DO], it 
requires very small time steps and therefore a large number of iterations required. Im­
plicit scheme is stable for any time step, but for large time step the system matrix has a 
large condition number which causes slow convergence for iterative methods. The AOS 
scheme is also unconditionally stable like implicit scheme, for images of small sizes AOS 
is very efficient but very slow in convergence for images of large sizes. This motivates us 
to develop the multigrid method for solving the PDEs discussed in the next chapter. 
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Chapter 4 

The Multigrid method for Active 
Contour without Edges 

In this chapter we develop the multigrid method for the CV 2-phase image segmentation 
model, as introduced in chapter 3. We first work out multigrid method the piecewise 
constant model. Main references for this chapter are [8, 19, 22, 35, 50, 94, 95, 127, 130J 

4.1 Introduction 

Image segmentation is a central problem among image processing applications. The aim is 
to distinguish objects from background and to systematically select specific features out of 
an image that has many features [87, 6, 33J. For intensity-based images, the non-equation­
based approaches are the most popular e.g threshold techniques, edge-based methods, 
region-based techniques, and connectivity-preserving relaxation method among others. 
One may also view the task of distinguishing objects of interest from "the rest" as one to 
identify the feature's boundaries. In recent years, a class of variational formulations offer 
us the ability to work out features with sharp boundaries - these are the new nonlinear 
approaches which require more sophisticated solution techniqnes [87, 33J. 

Let n be a bounded open subset of]R2 with an its boundary and let z be the given 
image, which may be a clean image or contains Gaussian noise. Our aim is to extract 
a desirable image u which represents features within z - more specifically u is piecewise 
constant inside each extracted feature. 

In this chapter we present a working multigrid algorithm for implementing the Chan­
Vese (CV) variational model [35J and to highlight the algorithm's practical advantages. 

Section 4.2 first reviews related variational models and then describes the active 
contour without edges model by Chan and Vese [35], including a discussion of unilevel 
solution methods of semi-implicit and additive operator splitting. Section 4.3 first review 
the nonlinear multigrid framework and then describes onr choice of smoothers as well as 
the multigrid algorithm for solving the underlying differential equation of [35J. Section 
4.4 gives some local Fourier analysis of the smoot hers used, which forms a basis for 
multigrid convergence. We end this chapter in Section 4.5 with some numerical results 
and conclusions. 
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4.2 The model of active contour without edges and solution 
methods 

Variational segmentation methods aim to find edges of (piecewise smooth) featureH in an 
image by directly minimizing some objective functional. Several methodH choose such 
functionals differently [33, 87). In the sequel, we illustrate two early and related methods. 

Firstly, the Mumford and Shah segmentation model [88) 

minF1(u,K) = [ (u-z)2dxdy+al lV'uI 2dxdy+(3 [da, (4.1) 
u,K In-K n-K JK 

where a and (3 are nonnegative constants, z is the given image, u is the desired piecewise 
smooth image and Ken is the set of discontinuities, and JK da iH the length of K. 
This functional is clear but difficult to implement. Various attempts of approximating 
this formulation exist. 

Secondly, the AmbroHio and Tortorelli model [4) 

1 ( 2 (1- V)2) 1 2 2 1 2 minF2 (u, v) = a flV'vl + 4 dxdy + (3 v lV'ul dxdy + >.. (u - z) dxdy 
U,v n f n n 

(4.2) 
builds on the Modica and Mortola's f-convergence theory [85] of representing a two 
dimensional curve f by solving for the phase field function v (0:::;; v :::;; I) 

Clearly model (4.2) appears more amenable to numerical implementation. It turnH out 
that the above representation is a good approximation of JK cIa shown in the Mumford 
and Shah model when f is small [33, 109]. 

It is of interest to mention two other variational models. The snake model of [75] aims 
to find the segmentation curve C (a parameterized version of f with C(s) : [0,1] -. R2} 
by solving the problem 

where a, (3 and>" are positive parameters. The geodesic contour model of [21] proposes 
to find C by solving 

minF4(C) = (IC'(s)12g(IV'z(C(s»l)ds, c Jo (4.4) 

where 9 is an edge detection function e.g. for some p ~ 1 and a Gaussian Gu(x, y) 

1 
g(lV'z(x, y)l) = . 

1 + IV'Gu(x, y} * z(x, y)IP 

These models are discussed in chapter 3. 
In this chapter our main focus is on developing multigrid method for solving PDE 

arisen from minimizing of CV model [35], which is already discuHsed in Section 3.5. 
Consider equation (3.23) 
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Ff (4), Cl, C2) J-L k 8,(4)(x, y))IY'4>ldxdy + Al k1z(X, y) - cd21I,(4)(x, y))d:rdy 

+ A2k1z(X, y) - c212(1 - H,(4)(x, y)))dxdy. (4.5) 

Minimization with respect to ct, C2 and 4> we have the following equat.ions 

In zHf (4))dxdy () In z(1 -ll,(4)))dxdy 
Cl(4)) = ~ H,(4))dxdy , C2 4> = In(1- H,(4)))dxciy , 

8,(4)) [J-LY"(I~~I) - Al(Z(X, y) - cr)2 + A2(Z(X, y) - c2)2] = 0, 

4>(0, x, y) = 4>o(x, y) ( will be given), in 0, 

in 0, (4.6) 

8,(4)) 84> = 0 on 80. 
1Y'4>18n ' 

For given 4> we compute Cl and C2 and keep them fixed and solve the nOll linear PDE in 
equation (4.6) for 4> using multigrid method, Once 4> is updated we usc new 4> to compute 
Cl and C2 and so on. Details are given in next section. 

4.3 A nonlinear multi-grid method 

Our main focus in this chapter is to present a multigrid algorithm for solving the nonlinear 
PDE in equation (4.6) directly without involving artificial time steps (as done when 
using time marching methods). We are not aware of similar work done for segmentation 
models in the level set formulation. For image restoration models, there exist multigrid 
algorithms [24, 105]. 

Although without using the artificial variable t, we also denote the approximation at 
(i,j) by 4>i,j = 4>(Xi, Yj}. Let us consider the elliptic PDE: 

8,(4)) [J-LdiV( I~:I) - Al(Z(X, y) - Cr)2 + A2(Z(X, y} - C2}2] = 0, 

J-LdiVC~:I) - Al (z(x, y) - Cr)2 + A2(Z(X, y} - C2)2 = O. (4.7) 

Here equation (4. 7), is Euler-Lagrange's equation of the functional 

J-L In 1Y'4>ldxdy + In (Al(Z(X, y) - cr)2 - A2(Z(X, y) - C2)2)4>(x, y}dxdy. (4.8) 

Equation (4.8) and (4.5) have the same stationary points [25, 15]. nut eqnation (4.8) 
is homogenous in 4> of degree 1, [25]. This means that this evolution equation does not 
have stationary solution, so need to restrict the minimization to 4> such that 0 ~ 14>1 ~ 1. 

Using finite difference scheme to discretize the equation (4.7) for 4>. The equation at 
a grid point (i, j) is given by 

[ { 
D.x ( D.t4>" -jhl ) 

J.l h; V(D.t4>i,j/hr)2 +l'~D.~4>i,j/h2)2 + {3 

D.Y ( D.~4>i,j/h2 )} 2 2] + -=- - Al(Zi,j - cd + A2(Zi,j - C2) = 0, 
h2 V(D.t4>i,j/h l )2 + (D.~<pi,j/h2)2 + {3 

where {3 > 0 is a small parameter to avoid zero denominator. 
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Remark 4.3.1 We have used different values of {3 E (0,1], it has no effect on the final 

results. 

The above equation (4.9) implies that 

[ {
/:).x ( /:).+(Pi,j ) + ).2/:).Y ( /:).~¢i,j )} 

l!:. - V(/:).+¢i,j)2 + (>'/:).~¢i,j)2 + {3 - V(/:).'+¢i,j)2 + (>'/:).~¢i,j)2 + /J 
).1(Zi,j - ct}2 + ).2 (Zi,j - C2)2 = 0, 

{
/:).x ( /:).+¢i,j ) + ).2/:).Y ( /:).~¢i,j )} 

!!:. - V(/:).'+¢i,j)2 + (>'/:).~¢i,j)2 + {3 - V(/:).+¢i,j)2 + (>'/:).~¢i,j)2 + /J 
= ).1(Zi,j - q)2 - ).2(Zi,j - C2)2, (4.(» 

where!!:. = J.L/hl' /3 = hi{3 and>' = hdh2, with Neumann's boundary conditions 

¢i,O = ¢i,l, ¢i,m2+1 = <Pi,m2' <Po,j = <PI,j, <Pml+l,j = <Pml,j, (4.10) 

for i = 1, ... , ml, j = 1, ... , m2 and 0 ~ l<Pi,j1 ~ 1. 

Where in Eq. (4.9) left hand side resembles the denoising model by [DD] using the total 
variation (TV) regularization. The parameter (3 should be a small quantity to avoid the 
gradient becoming 0 as in [99, 122, 123] 

4.3.1 The full approximation scheme 

We first give a brief discussion of the 3 main ingredients of a nonlinear multigrid (MG) 
called the full approximation scheme (FAS) [68, 39, 24, 118], due to A. Brandt [14], and 
then concentrate on our choice of smoothers. Denote the system of non linear equations 
described by equation (4.9) and (4.10) by 

(4.11 ) 

where hI = h2 = h, <ph and fh are grid functions on a rnl x rn2 cell centered rectangular 
grid nh with spacing (hI, h2)' Let n 2h denote the rnd2 x m2/2 cell centered grid which 
results from standard coarsening of nh. Let eh = ¢h - cI>h be the solution error, where 
cI>h is a good approximation to solution of (4.11) in the sense that eh is smooth. Such 
smoothness can only be achieved by a careful choice of suitable smoothers - a major task 
in developing a working multigrid method. 

Let rh = fh - Nh(cI>h) be the residual. Then the non-linear residual equation will be: 

(4.12) 

If eh is smooth, it can be well approximated on n2h. Therefore any iterative method 
which smooths the error on the fine grid can be improved by the use of the coarse grid 
correction, in which a coarse grid analogue of the residual equation is solved (the solution 
on a coarse grid is less expensive than on a fine grid) to obtain a coarse grid approximation 
of the error, which is then transferred back to the fine grid to correct the approximation 
cI>h. This is known as a two-grid cycle, and with recursive application can be extended 
to a multigrid method. Let us define the restriction and interpolation operators for 
transferring grid functions between nh and n2h for cell-centered discretization: 
Restriction 
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where 

iJ?;,~ = ~(iJ?~i-l'2j-l + iJ?~j-l,2j + iJ?~i,2j-1 + iJ?~i,2j)' 
is a full weighting operator [39, 118]. 
Interpolation 

where 

h 1 (iJ?2h 3iJ?2h 3iJ?2h iJ?2h ) iJ?2i,2j = 16 9 i,j + i+l,j + i,Hl + Hl,j+l, 

h 1 ( 2h iJ? 2h 3iJ? 2h iJ?2h ) iJ?2i-l,2j = 16 9iJ?i,j + 3 i-l,j + i,j+l + i-l,j+l' 

iJ?~i,2j-1 = 116 (9iJ?;,~ + 3iJ?;!I,j + 3iJ?;,;_1 + iJ?;!I,j-I)' 

iJ?h 1 (iJ?2h iJ?2h iJ?2h iJ?2h ) 2i-l,2j-l = 16 9 i,j + 3 i-l,j + 3 i,j-l + i-l,j-l' 

for 1 ~ i ~ md2, 1 ~ j ~ m2/2. 

is known as a bilinear interpolation operator [39, 118]. 
It remains to discuss the most important ingredient of a MG: smoothing. We will first 

discuss a local nonlinear smoother and then review the smoother introduced by Savage 
and Chen [105]. 

4.3.2 Smoother I: Local Smoother 

In this method the system of nonlinear equations is linearized locally, by computing D( ¢) 
on each grid (i,j) locally. Then we get a system of linear equations. As the Gauss Seidel 
has a best smoothing property, we apply the Gauss-Seidel method to this system of linear 
equations to smooth the error. We are using a few steps of this smoother to smooth the 
error which ensure a convergent nonlinear multigrid. Equation (4.9) can be written as 

Il{ [ A't¢i,j _ A't¢i-l,j ] 

- V(A't¢i,j)2 + (AA~¢i,j)2 + {3 V(A+¢i-l,j)2 + (>'~~¢i_l,j)2 + f3 

+A2 [ ~~¢i,j _ ~~¢i,j-l ]) 

V(A't¢i,j)2 + (AA~¢i,j)2 + {3 V(A't¢i,j_t}2 + (AA~¢i,j_t}2 + j3 

= Adzi,j - ct}2 - A2(Zi,j - C2)2. 

Let the coefficients (intended below to be frozen in local linearization) be denoted by 

1 

so we have 

Il{(D(¢)i,jA~¢i,j - D(¢)i-l,jA~¢i-l,j) + >.2(D(¢)i,jA~¢i,j - D(¢kj-lA~¢i,j-d} 
- = Al(Zi,j - ct}2 - A2(Zj,j - C2)2, 
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which implies 

~{ [D( 4> )i,j (4)i+l,j - 4>i,j) - D( 4> )i-l,j (4)i,j - 4>i-l,j)] + 

),,2 [D(4))i,j(4>i,j+1 - 4>i,j) - D(4))i,j-l(4>i,j - 4>i,j-d]} 
= 'xl(Zi,j - Cl)2 - 'x2(Zi,j - C2)2 = fi,j. 

(4.13) 

Clearly D(4))i,j, D(4))i-l,j and D(4))i,j-l all contains 4>i,j .!erms, which will be evaluated 
at past iterations in a_ coefficient-freezing process. Let 4> be approximation to 4>. By 
putting the values of 4> at each grid point in equation (4.13) other than the grid point 
(i, j) and also finding the value of D at each grid point (i, j), we get a linear equation in 
one variable 4>i,j, 

~{[D(¢);,j(¢i+l,j - 4>i,j) - D(¢)i-l,j(4>i,j - ¢i-l,j)] + 

,X2 [D(¢);,j(¢i,j+1 - 4>i,j) - D(¢)i,j-l (4)i,j - ¢i,i-1)]} == Ai 

implies 

{[D(¢)i,j(¢i+l,j - 4>i,j) - D(¢)i-l,j(4>i,j - ¢i-l,j)] + 

,X2 [D(¢);,j(¢i,j+l - 4>i,j) - D(¢kj-l (4)i,j - ¢i,j-t)] } = Aj!!.!:. == Aj· 

Our proposed algorithm solves this equation for 4>i,j to update the approximation at each 
pixel (i,j): 

Algorithm 6 (Algorithm for first smoother) 

<I>h +-- Smoother 1 (<I>h , Jh, maxit, tal) 

where maxit is the maximum no of inner iterations. 

for i = 1: ml 

for j = 1: m2 

for iter=l:maxit 
~h f-- <I>h 

[{ D(~h)i,j~7+1,j + D(~h)i-l,j~7_1,j + ,X2 D(~h);,j~?,j+l + ,X2 D(~h )i,j-l $:~j-l } - Aj 1 
<I>i,j = D(<I>h)i,j + D($h)i_l,j + ,X2(D(~h)i,j + D(<I>h)i,j_t} 

if I <I>i,i - $?'i I < tal then stop 
end 

end 
end 

4.3.3 Smoother II: Global Smoother 

We now review the smoother proposed in [105J for a different image model. In this 
method the system of non linear equations is linearized globally at each step by computing 
D(4)) on each grid point (i,j). To the resulting system of linear equations Gauss-Seidel 
relaxation is applied. This global smoother is different from the local smoother defined 
above. The algorithm proceeds as follows: 
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Algorithm 7 (Algorithm for second smoother) 

<ph +-- Smoother2( <ph, Jh, maxit, tol) 

for i = 1: ml 

for j = 1: m2 

end 
end 
<ph = <ph 
for iter = 1 : maxit 

for i = 1 : n 
for j = 1: m 
<ph +- <ph 

[{ D( <phkip?+l,j + D( <ph )i-l,jCP?-l,j + >.2 D( <ph kj CP?'i+ 1 + >.2 D( <ph );,j-l CP?'j-l} - h,j] 

<Pi,j = D(<ph);'j + D(<ph)i_l,j + >.2 (D(<ph)i.i + D(<ph)i,i_d 

end 
end 

end 
<ph +- <p 

Here updating to the coefficients needs to be done at the start of each smoothing step 
globally and to be stored for relaxation use. This was found to be necessary for the 
total-variation denoising model of [99]. 

Remark 4.3.2 The above smoothers are both fixed point based. Then one may consider 
two related ideas: (i) Newton methods - which are found not to perform satisfactorily for 
this problem and also previously for the TV denoising problem [105]. (ii) Line relaxation 
method - which are found to work well but the improvements over smoothers I and II are 
marginal (of course line relaxations are slightly more expensive to implement). 

Yet there exist other smoothing ideas in the literature, e.g., the energy minimizing 
smoother of [124], the primal-dual smoother [31] and algebraic multigrid ideas [37, 38, 
101J which remain to be tested for segmentation problems. 

4.3.4 The multi-grid algorithm 

To solve equation (4.11) by the multigrid method, the algorithm is as follows, see [39, 118] 
and references therein : 

Algorithm 8 (Multigrid Algorithm) Assume we have set up these multigdd param-

eters: 
VI pre-smoothing steps on each level 
V2 post-smoothing steps on each level 
'Y the number of multigrid cycles on each level h = 1 for V-cyd-ing and "t = 2 for 

W-cycling). 
rr: Relative residual: 
For given <ph compute Jh and keep it fixed. Here we present one step V-cycle of nonlinear 
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multigrid method for CV model. 
FAS Multigrid Cycle 
Start 

h h -h 
q> +-- FASCYC(q> ,f ,iter,VI,/J2,'Y,tol) 

q>o = q>h 

1. If we are on the coarsest grid i.e nh is coarsest grid, then solve equation (4.1 1) 
using time marching technique of [127} and then stop. 
Else use the smoother i. e 

2. Restriction: 
q>2h = I~hq>h, ~2h = q>2h. 

ph = I~h(Jh _ Hhq>h) + N2h(q>2h) 

<1>2h +-- F ASCY C~h (q>h, r, iter, Vl, V2, 'Y) 

3. Interpolation 

4· 
q>h +-- SmootherV2 (<1>h, r, iter, VI, V2, 'Y)' 

Update r 
Ifrr = II<1>h - ~0112 < tol Stop. 

11<1>0 12 

Else go to Start. 

(Post-Smoothing) 

4.4 Local Fourier analysis of smoot hers 

The standard FAS multilevel algorithm (such as Algorithm 8) does not automatically 
converge for many problems, if simple smoothers are used (i.e. Gauss-Seidel for linear 
problems and Gauss-Seidel-Newton for nonlinear problems). The key for convergence lies 
in effective smoothers or reduction of residuals to a smoothed form (where high frequency 
components are small regardless of the overall error [39, 118]). Here we show some local 
Fourier analysis (LFA) results to suggest that our smoothers are effective. 

It should be remarked that LFA is in general not applicable to nonlinear sllloothers. 
Here for our linearized smoothers, the analysis can only be done for each individual 
smoothing iteration and the obtained smoothing rates change from iteration to iteration. 
However, we look for general trends e.g. if the three consecutive smoothing rates are 
0.59,0.61,0.44 (instead of a constant rate say 0.5), we say the underlying smoother is 
effective. Likewise, consecutive rates such as 1.2,0.89,0.!J!J may indicate a poor smoother. 

For simplicity, we consider the case of a square image m = mi = m2. Denote 
h = hI = h2' The typical grid equation on nh is 

D(tPi,j)(¢i+l,j - tPi,j) - D(¢i-l,j)((/Ji,j - ¢i-l,j) + 
t\2[D(¢i,j)(¢i,j+l - tPi,j) - D(¢i,j-d(¢i,j - ¢i,j-dl = f~,j. 
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.For the local smoother let gl = D((h-1,j = D(4)(k))i_1,j, g2 = D(¢)i,j = D(c/)(k));,}, I1IHI 
- (k) -93 = D(4)kj-!.. = D(¢ )i,j-1,' and for the global smoother 91 = D(cJ»i_l,j, 92 = D(iD)i,j 

and 93 = D(<pkj-l where <P is the iterate at the previolls sweep (global fixe(l-point.). 
Also as hI = h2, we have A2 = 1. Thus we obtain 

-(91 + 292 + g3)¢i,j + 914>i-l,j + 934>i,j-l + g2(¢i,j+ 1 + 4>i,j+d = f~j, 

or 
-(91 + 2g2 + 93)¢~j1 + 914>~~l,j + 93¢~j~1 + g2(4)~,j+1 + 4>~+l,j) = f:,j. 

Now the exact solution 4>i,j will satisfy the discrctized equation 

-(91 + 292 + g3)4>;,j + 914>i-1,j + 934>i,j-1 + 92 (4)i,j+ I + ¢HI,j) = /i,j, 
as ];,j is fixed thus we have 

( ) 
k+ 1 k+1 k+1 ( k k 

- 91 + 292 + 93 ei,j + 91ei-1,j + 93ei,j-1 + g2 ei,j+l + ei+l,j) = 0, (4.14 ) 

where ekt1 = </Ji}' - 4>,k}tl and e~}, = 4>i,j - 4>~}' are the local error fl\nctious after HIHI 
t,] " I 1 

before the pre (post ) smoothing step respectively. 
Recall that the local Fourier analysis (LFA) measures the largest amplification factor 

in a relaxation scheme [14, 39, 118]. Let the general Fourier component be 

i=H. 

2(h7r 2(h7r [ ] T A . Here a1 = --, a2 = -- E -7r,7r. he LF mvolves expanding 
m m 

m/2 m/2 

ek+1 = E 'l/Jt~2B(h,e2(Xi' Yj), 
el,e2=-m/2 

e
k 

= E ~'~I,e2n(}I,/J2(Xi' Yj) 
el,e2=-m/2 

in Fourier components. 'vVe shall estimate the maximum ratio 

p = me axe Jl(fh,lh) = 11jI;~~2N'~1,/121 
I, 2 

-7r 7r 
in the high frequency range (aI, (2) E [-7r,7r] \ [2'"2] which defines the smoothillg rate 

[118]. Now we replace all grid functions by their Fourier series and essentially consilit'r 
the so called amplification factor i.e. the ratio between 1jI:+l and V)~ for each 0 where 
0= ((h,02)' Then for the Fourier com?onent of the error functions e~,j aud f'~,jl before 
and after relaxation sweep, let us conSider 

ek , = "'ekei(27r01i + 27r02j)/m and ekt1 = V,k+l ei(27rOli + 2rr02j)/m 
',} If ',) IJ , (4.15) 

so from equation (4.14) we have 

-(91 + 292 + 93)~,:+lei(2irrOI + 2jrr02)/m + gl~,;+lei(27r(i - 1)01 + 2rrj0"2)/m 

(4.16) 
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implies that 

l
'lj;k+11 I 92(eI91+eI92) I 

JL(O) = _9_ = 
'lj;~ (91 + 292 + 93 - 91 e-191 - 93e- iIl2 ) 

I.Q2(ei91 + ei92 )1 A 
191 + 292 + 93 - 91 e- i91 - 93e- i82 I = B' 

( 4.17) = 

where 

. 2 01 • 2 fh 2 01 - (h . 01 . 02 = 2 91 (91 + 292) Sill 2 + 93(93 + 292) sm 2 + 92 + 29193 cos( 2 ) sm 2 sm 2' 

Define IBI = max(IOll, 102 1). Here we are looking for smoothing factor fl, which is given 

by 
p = max JL(O), 

p1r~181~1r 

where p is the mesh size ratio and the range P7T' ~ 181 ~ 7T' is the suitable range of high 
frequency components, Le. the range of components that cannot be approximated on the 
coarser grid. We are using standard coarsening so p = ~, [14]. We will present smoothing 
factor p for both smoothers. To proceed with an analysis, we have to compute 91, 92 and 
93 or the function 

numerically and work out the smoothing factor p for each set of coefficients 91, 92 and 
93 within a smoother. In our earlier work, we select a special set of such coefficients. We 
use the complete set of coefficients 91,92 and 93 to compute the smoothing factors p. We 
display the maximum of such factors 

{L = max p = max maxJL(O). 
91 ,92,93 91 ,92,93 8 

As such a linear analysis is based on freezing the nonlinear coefficients, our results should 
be viewed only as a guide to smoother's effectiveness and a way to distinguish smoot hers. 

Taking the test example of first image of third row from Fig. 3.1 page 60 with m = 32, 
i.e. reducing the size to 32 x 32, we can display [t in the first 4 cycles of our MG algorithm 
as in Table 4.1 where Pre-1 refers to the case of "pre-smoothing" and Post-1 to "post­
smoothing" etc. If we instead consider the average rate from all pixels, the averages are 
respectively 0.49 and 0.71 for Smoothers I and II. Clearly in this example Smoother I 
appears to be more effective than Smoother II in terms of rates. Snch a claim will be 
tested in the numerical rel-mlts section. 
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Table 4.1: i1 in the first 4 cycles of out I\lG al~orit,hm. 

Me cycle Smoothing Steps Rate I:ili Rate II:{lll 
1 Pre-1 0.4912 0.6776 

Pre-2 0.4941 0.9317 
Post-l 0.49,12 0.9135 
Post-2 0.4942 0.9,127 

2 Pre-1 0.6003 0.9561 
Pre-2 0.6003 0.!H74 
Post-1 0.6003 0.9581 
Post-2 0.6003 0.9577 

3 Pre-1 0.7760 0.953:3 
Pre-2 0.7760 0.9193 
Post-1 0.7757 0.!)()92 
Post-2 0.7749 0.9040 

4 Pre-1 0.6025 0.9594 
Pre-2 0.6026 0.9456 
Post-1 0.6026 0.9286 
Post-2 0.fi026 O.DG7R 

4.5 Numerical results 

In this section, we shall discuss several aspects of multigrid method. First we demonstrate 
that using multigrid method we can get the improved solution for the global minimizer. 
Secondly, we illustrate the fast convergence of the method by presenting the relative 
residuals and CPU time with both smoothers. Lastly, we give a comparison of multigrid 
method with Additive Operator Splitting (AOS) and Semi Implicit (81) methods by 
giving there CPU times. 

4.5.1 Results using smoother I 

This section gives some experimental results of our Me algorithm 8 with smoother I (local 
smoother). In Fig. 4.1 our Me algorithm is tested on an synthetic noisy image having 
different objects. The parameters used in this test are J.L = 0.1 X (256)2 and Al = A2 = 1 
are same for all images. Also f3 = 10-6

, € = 1 X 10-2°, ¢o = -J(x - 150)2 + (y - 140)2 + 
100. The top left figure is the original image with initial contonr and top right is the 
initial segmented image. The 2nd row gives the results after one cycle 1 and the 3rd 
row presents the final results with 3 cycles with relative residual2 rr = 1.246 x 10-15 • 

For these experiments we used Matlab programming. The parameter € can be set zero 
on fine levels as on fine levels He is used to compute CI and C2. nut on coarsest level € 

can not be zero. The chosen value of € was found experimentally to be optimal for om 
images. In Fig. 4.2, our Me algorithm is tested on an artificial noisy image to see if the 
inner boundary of object could be detected. Clearly, the inner boundary of the object is 
detected. The top left figure is the original image with initial contour and the top right 
figure is the initial segmented image. The 2nd row gives the results after one cycle and 

lHcre cycle means out.er loop. 

2Tf q} and ¢k+l are valul's of ¢ in two conSl'cutive cycles th(~n the rdative residual is rr = 1I<I>k 11 - <t>k1l2 
1i,/iii2 
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31'<1 row sho\\·s t he fi n a l resul ts afte r 3 cycl es wi t h re lat ive rcs id ll nllT = :L. O I (j x 10 I:,. III 

F ig. 4.3 0 111" me thod is tested 0 11 a real c:anWl"allla ll i llInge nlH I is s ll cn'ss fl d Iy S I' f!, II Il'1I t cd . 
T he to p left figure is the o rig ill al image wit h ill it ia l COli tour nlld Lop le!"L li g lll" l' is 1.11( ' 
ini t ia l segmented image. 2nd row gives resul ts "fI·e l' o ll e cycll' alld :.In I row g ivl's lilla l 

resul ts a fter 5 cycles to ge t rela ti ve resid ua l r1' = 4.457 x 10- 1
" . fll F ig. ,1. /1 a ll d F ig. ·1. 5 

our T\[G a lgori t hm is tested 0 11 T\IIU images. In Fig . 4.6 a lld F ig. <1. 7 I\. IC a lgo r it.illl i 8 is 

tested on hlmred images a nd a re segmented s li ccessf1llly. 

•• 
.. -
•• 
.. -
•• 
.. -

•• 
.. -

Figure .1.1: i\lC m ethod with local s ll100ther I fo r CV model , It's ll'd 011 ;11 1 sY lllhl'l it: 

noisy im age, {t = 0.1 x (25 6f, 1'1' = 1. 246 x lO - L~ . ! J = 1 x 10- (; ,( = I x W- :'!O ,fj)o = 
/(.1: - 150)2 + (y - 1-10)2 - 100. Top left: Originil l illln ge wil h ill iti a l ("oll tom. To p 
ri ght: Illi t ia l seglllcilted illl age. 2nd row: H.C's lti ls nfter 1 cyell' . 3rd row : F illn l rl's 1l lt s ill 

3 cycles . 
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Figure 4. 2: ~IC method with local smoother I fo r C V IllO( IPI , U's l t'd O il ;) II nrt i fi (' in I lI oisy 

image, to sec if the inlier boulldary is detected. Pnr;llllc tl'rS II sed m(' /' = O.l X ('256):1, 1'1' = 
2.016 X 10- 15, ,8 = 1 X 10- 6

,( = 1 x 10- 20
, </>0 = J(.r. - L50):! I (y I.IOF 100. Top 

left : Origin al ima ge witl! ini tia l COIII o\ll'. Top ri ght: Illitinl Sl'glll(,lIlt'd illlngl'. 211d row: 
Resllits <lftel' 1 cycle. :.Ird row: F ill al r(, ::Iul ts ill 3 c,Yeles. 



Figurc -1 .3: ilIG llIethod wi th loca l smooth(' )" J for CV Il IOci pl , k sk d O il il I"l'il l i lll il gC of 
cameraman, paTH mcters w;cd cHC /1 = 0 . 03~n x (256)'2, IT = ·I.tI57 x 10- I;) , /j - I x I [) (; , ( -

1 X 10- 2°, CPo = J(x - 150)2 + (y - 140)2 - 100 . To p Il'rl : Origillill ill l:lg<' wi llI i lliti ;ti 
contoll r. Top right: I ni t ial scgmcnted ill1Hg(' . 2nci row: f{ cs ltil s "rter I ("'ye l('. : ~ \"( I row: 

Fina l rcslilts in 5 cycles. 
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Fi gure -1.4: i\IG method with local smoother I for CV Illo(kl, Les tI'd O il n I'l'nl f\1H I 
itltage, parameters used arc ~l = 0.0011 X (25G) 2, IT = 3.GL19 x Ul I I , Ii = I x LO (i , ( = 
1 X 10- 2°, CPo = )(:1: - 150)2 + (y - 140)2 - LOO. Top left: Origillnl illl ,lgl' wit lI illitial 
contolll'. Top right: Initi a l segmented iltlngc. 211d row: Resllit s nft.l'r I ('yel(' . :\\'(1 row: 
Final results in 5 cycles. 

90 



Figure <4.5: ~ IG met hod with local smoother 1 I"or V IllOcld , tcskcl 0 11 n r('; 11 f\ IH I 
ill1age, parameters usee! a.rc 1£ = 0.001 x (25G)2, rr = c1. 32~ x LO 1\ /1 = I x 10 (; , ( -
1 x 10- 20 , cPo = J(x - 150)2 + (y - ]<40)2 - 100. To p left: Origill ;l l illln g(' witll illit iill 
COlltoU r. Top right: Illi tia l segmcnted illl ilge. 211d row: HeslIlLs ill"te l" I cyel(' . :Ird row: 
Finnl re ·ults in 5 cycles. 
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Figure 4.6: J\IC method with local smoot her r for CV 11 10dt'l, t.ested Oil .11 1 1>1111T( 'd 
il1l age, pa ra meters used are It = 0 .0001 X (256)2, IT = 1.78 x 10- 12,(:1 = I x 10 (i, ( = 
1 X 10- 2°, ¢ o = J(x - 150)2 + (y - 140)2 - 100. To p left: Origil1a l illlil ge with il1iLi ;11 
contollr. Top right: Illitial scglllcllted image. 2llcl row: nt's ldl s after I cyell'. :Ircl row: 

Final res ldts in 6 cycl es. 



Fi gure 4 .7: l\ IG method wit h local s moot he r 1 fo r C V IlI od (' l, t('s led O i l il il 1>1111T('d 

im age, pa rameters used a re J.t = 0.0001 X (256)2, IT = l.1O I x to - I :2, !i = 1 x 10 () , ( = 
1 X 10- 20 , ¢o = !(x - 150)2 + (V - 140)2 - 100. To p left: Ori gill a l iIl IH i!;l' wiLh illit i,lI 

con tour . Top r ight : Ini t ia l segmented ill lHge. 2nd row: n l':1IIIls "fk r I cycle. :31'<1 row: 

Final results in 6 cycles . 



Figure 4.8: i\lC method with local smoot her 1 [o r C V 11IOdel , tested 0 11 <III gnlnxy ill l­
age, pa rameters used m·e J.L = 0.0001 X (256)2, r1' = 3.05 x 10 II , Ii = I x 10 G, ( =-
1 X 1O- 2o, c/Jo = /(;1:- 150)2 (Y - 140)2 - lOll. Top Il'ft: Origill ;ll ill in gl' with ill itin l 
C'O lltOlll". Top right : Illitia l segml'nted illlngl' . 211d row: nl'slti ts "ftl' r 2 cyell's. :lrd row: 
Filial resul ts in 10 cycles. 
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4.5.2 R esults using s moothe r II 

In this sectio ll we test ]\IC algo rithm 8 with Slli oot lt('r 1l (g loba l SIlIOoLil('r). III Ii i ' . ' I.D, 
l\lC a lgorit hm 8 with smoother n is tested 0 11 all sYllth l'l ic Iloisy illlagl'. l'"r.I III('( 'rS 
llsed are the same ru; used Fig. 4.1. T he filln.1 reslills nrc givell Witll rel"l iY(' n 's idll .d 
1'1' = 1.246 X 10- 15 in <1 cycles. 

•• 
. - •• 

. -
Figure 4.9: 1\IC algori t hm with smoother IT for 'V 11 10 (le i , I('s l( 'ci Oil a sYllfll l' li (' Il oisy 
im age with It = 0.1 x (256):.!, 1'r = 1.246 x 10- 1

;, oiJ laill l'd wi lh ·' ('.\'( ·I( ,s. 

4 .5.3 Improve d solution for global minimizers 

Here we give some evid ence of obtnj lling improved soitltiOIl of I.it(' g loiJ .1i 1l1111111Ii z(' r. As 
ill [15], X. I3resso ll et " I discussed t he drawbacks o f the vnrial iOIl ,ll s('g ll 1('1 I 1. ;11 iOll Illo(lc-I , 
with the main one being the existe ll ce of loca l Illillilli a ill Ih(' ('lll' rg.\' . III 11 0Il-l'OIl V('X 
opt imizat ion , the loca l minima oft en lead to lI11sali s factory rl's lllts . III Fig. ·1.10, ,1.11 O\ll' 
l\ IC algorithm on the problems addressed ill [25 , 15, ti l ], which a n' Sl'gllH'III( 'd l'OIT('('1 I.\' 
with this particular initia l guess ¢o· 011 t he oth er h;l IHI , ill Fig. ·1.12 we haY(' cii s pinYl'd I he 
results obtained by using AOS method , where the llle thod gl' ts Stll cl\ ill il loc; " 1I 1illilila 
with t his par t icular ini tin.l guess given ill F ig. ,1.10, ,1.11 . 'I'll( ' sail\( ' so rt. or )'( 's lill s :Ire 
fOlllld II s ing semi implicit (SI) method. We have t l's l'ed t his for lllHlly I> roIJ Il' lll S Hild S(' ( ' 

the same type of difference with t he other Ill c lhods lik( , AOS '1Il( 1 SI. 

4 .5.4 Convergence tests and full Hlultigrid 

Our prcl illlinary resul ts s liggest tha t O\ll' 1\IC (with s lllool her I) ('a ll COll Vl' rgl' for vmy ill g 
choices of t he initi a l ¢ e.g specifying ¢ havillg a slllall c ircl l' at a fi xed posil iOll . \Vl' have' 
tried different illi t ial guesses for insta nce a rec ta llglc- , a parallelogra ll l ('Ic ., a ll ()f I h( '11 1 
work. For simple a rti ficia,1 i1l1 ages on ly 3-4 1\ 1 C eycl es to get I he rl'lil I i v(' n 's id Il ,iI h(' low 
10- 12 and for rea l images like l\lRl illl agl's we llet'd 7-8 ~1C cycl('s t.o ge t rl' lHI ivl' J'( 'sidll<lI s 

less than 10- 12 . 
However to elill1inate the need of a ll illitia.l g lil'SS, we cOllsidc r the \lSl' of it flJllllllJlI igrid 

(F1\ [C) idea [118] which start · the solu t io ll of Gq . (,1.0) Oil t 11(' ('()nrs('st grid . Til( '11 ('a(' h 

solu t ion is interpolated outo the next lille grid to ~iv (' , III illit iill g lless un t il w(' n ';I(' 11 I ill' 
fi ll t'st grid wlwre Wi' sLllt tile l\.lC a lgori thlll . 

To test Oil t il(' scr1 la hilit.y of l\[C , W(' di splny ill Tilblt, "1. 2 Ih l' 1II1I1I1 I('r or s l( 'ps 1J( '('(lt-d 
to reach a cl esirnblc accuracy for t he ilil nges I a lld 7 fro II I Fi g. :\, 1. Thl' C PU I illl('s (in 
seconds) a re obtained from rulllling ~ Inllab 0 11 a P(,111 illill PC for illlls tral iOI1 P1ll'POSI' . 

Here F;' [C lllcnllS t hnt the illitial guess or Ii> is ob tilil1 ed fro lll .1 Fi\IC: Illl'lhod roll ()IV i II , 



Figure 4. 10: Improved solu tion towards g lobnllllinillli zer, tl' 'i t ed 0 11 box inlnge IIs illg t\ l 
a lgorithm 8 in 3 cycles. Top n ow: Illiti a l d ata. Botlolll n ow: Fill nl \"(''i ltlt. 'i. 

Figure ,,[.11: Anolher exa mple for illlprovl'd 'iO lll t io ll tow,m!,; g lo\)n llllillil lli zer, I('sled 0 11 

box illlage lls ing ~IG nigorit lll ll in J cycle'i. Top now: Ini l i,tl d a l il. \1 0 11 0 111 How: Filt;t\ 

rl''il ii ts. 
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Figure LLl2: These are the results ohtaillcd by \l s illg AOS Illd llOd wli ic\1 is s t ll ek nt n 
local minimum i. e could not segmellt the images . 

by the norm all\IG cycles. Clearly MG (with smoot her J) is d li c ie ll l. Om l\ IC wor ks t.l1l' 
be::;t with VI = V2 = 2, but it wi ll lIot work wel l if IIluch less sllloolhill g sleps nre Il sl'd 

e.g. VI = 1, V2 = o. 



Table 4.2: Test of scalability of MG and FMG. CAM: Cameraman image and VOL: UOL 
image given in Fig 3.1 

Image :Method Image size: MG cycles CPU (Hcconds) 
MG 1282 4 9 

2562 5 15 
5122 5 27 

CAM 
10242 5 90 

FMC 128"2 3 15 
2562 3 17 
5122 3 27 
10242 3 83 

MC 128"2 2 5 
2562 2 6 
5122 2 12 

UOL 
10242 2 50 

FMG 128"2 2 11 
2562 2 13 
5122 2 21 
10242 2 61 

4.5.5 Comparison of complexity and CPU saving 

Finally in this chapter we compare the speed of MC (with both smoothen;) with semi 
implicit (SI) method and additive operator splitting (AOS) methods. We first estimat.e 
the computational complexity of the algorithms involved. To be concrete, we assume that 
the inner solver of a 81 method is by a conjugate gradient method for 25 steps, and in the 
MG method Vl = 2 and V2 = 1. Then, consider segmenting some image of size m x m. 
Then setup cost for the 4 main coefficients is about 4 x 8m2 = 32m2 operations for all 
methods per step. The cost of each step of SI method is thus W l = 25 x 5m2 + 32m2 = 
157m2 • For the AOS, solving each tridiagonal matrix costs 4m2 operations so the cost 
of each step is W2 = 2 x 4m2 + 32m2 = 40m2

. Finally the finest level smoothing cost for 
MG is 11m2 x (Vl + V2) = 33m2 so the finest level cost is 33m2 + 32m2 = 65m2

. The cost 
per MG over all levels is W3 = 4/3 x 65m2

:::::: 87m2
• Therefore the practical efficiency of 

these methods, although all of O(N) = O(m x m) complexity per step, will depend 011 

the number of actual iterations steps used for achieving the same accuracy. 
In Table 4.3 we have presented the comparison of our method with SI and AOS 

methods. The terms used in the heading of Table 4.3 have the following meanings: 
Size:The size of given image m x n. 
Itr: Number of iterations used to get the required result. 
CPU(s): Time in seconds required for CPU to perform these iterations. 
SI: Semi Implicit method. 
AOS: Additive Operator Splitting 
MG: Multigrid Method. 
ART: Artificial image, problem 7 in Fig. 3.1 and REAL: Real image like Mill, problem 

5 in Fig. 3.1. 
_ : Results with high CPU or out of memory. 

S-I: Smoother 1. 
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S-I1: Smoother II. 
AOS multi-resolution: AOS method is implemented in coan;e to fine h~vel manlier, i.e 
AOS method is used to solve the problem on coarsest level and interpolate the solution 
to the fine level and use it as initial guess, to solve the problem on fine level using AOS 
method and so on until the finest level is reached. 

From Table 4.3 we see that the MG method is as fast as the SI method and AOS 
method for images of small sizes, but it is more efficient for the large images, where the 
above mentioned methods are very slow or not working. 

Table 4.3: Comparison of Me with SI and AOS methods 

Prob. Size AOS method AOS SI Method MG Methud MG Mdhod 
multi-resolution (8-1) (S-II) 

Itr CPU(s) Itr CPU(s) Itr CPU(s) Itr CPU(s) Itr 

1287 60 4.8 60 4.8 80 16.5 2 8.5 2 
2562 140 50 80 34 100 DO.3 2 9A 3 

ART 5122 280 421 170 277 439 1.3 X 10" 2 13 3 
10242 1200 7661 240 1630 ~- - 2 27 3 
20482 - - - - - - 2 DO 3 

1282 100 10.5 100 10.5 130 32.2 3 12.8 4 

25iP 280 110.5 156 68 um 150 3 14 4 
REAL 5122 800 1230 312 503 - - - X 104 3 19.2 4 

10242 - - - - - - 3 40.7 4 
20482 - - - - - - 3 13:1 4 

4.6 Conclusions 

We have proposed an effective smoother for a nonlinear multigrid method to solve the 
Chan-Vese active contour without edges model. A linear Fourier analysis shows that our 
local smoother I is better than the global smoother II. For large images, as expected, 
our MG leads to much faster solutions than the uni-Ievel methods of SI and AOS. A 
somewhat surprising observation is that our MG can reach clm;cr to the global minimiwr 
than the SI and AOS methods in all of our test cases. 
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Chapter 5 

The Multigrid Algorithms for 
Variational Multiphase Image 
Segmentation 

The main theme of this chapter is to develop fast iterative methods for solving multiphase 
image segmentation models. Firstly we extend the 2 phase image segmentation CV 
model [35] discussed in chapter 4 to a multiphase image segmentation model [120] and 
then extend the multigrid algorithm proposed in chapter 4 towards multiphase image 

segmentation. 
The main references for this chapter are [8, 14, 23, 27, 35, 72, 74, 120, 127]. 

5.1 Introduction 

Segmentation, referring to separating image features from backgrounds, is one of the most 
important tasks arising from computer vision (e.g. detecting objects) and many image 
processing fields (e.g. picking out special cells in cell imaging). Segmentation methods 
fall into several categories, including histogram analysis, region growing, edge detection 
and PDE-based variational methods. Our main focus will be on nonlinear PDE ba.'.;ed 
segmentation methods. 

The PDE and variational based methods [87] are among the more recently developed 
tools for image segmentation. The snake model [75], the active contours model [21], 
the gradient vector flow method [129] and the curvature driven diffusion method [33] all 
belong to this class of PDE-based methods. In most situations, the level set method 
described in [90] proves to be an indispensable tool for analysis and implementation. 

Our primary aim in this chapter is an extension of the iladshah-Chen multigrid 
method [8] (already discussed in chapter 4) to the Vese-Chan mllitiphase imago segmen­
tation [120]. Two problems are encountered in this work. Firstly a local Fourier analysis 
(LFA) of the generalized local smoother suggests that it is not effective if a small number 
(e.g. 2 - 3) of smoothing steps is used. A closer study shows that this incffectivencss is 
due to a few image pixels only, where the linearized coefficients differ greatly. We thcn 
propose a different smoothing (under-relaxation) strategy at these 'odd' pixels. The LFA 
shows that the modified smoother is effective. Secondly we found that the Vose-Chan 
multiphase model [120] may not segment images (i.e. may not converge to the de.'-iired 
level set functions) if good initial guesses are not provided; this problem is inherent in 
the model rather than the numerical solution methods. To overcome this latter problem 
we adopt the idea described in [72] to decouple the multiphase model into repeated two 
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phase models in a hierarchical way. This prompts us to consider a multigrid method for 
each decoupled two phase problem. It turns out that this hierarchical approach lead:; 
to a fast algorithm that can segment an image for any (tested) initial gupsses (includ­
ing previously failed cases of initial guesses). Moreover, even when good initial guesses 
are available, the hierarchical approach is also faster (in number of iterations and CPU) 
than the multiphase multigrid method without the modified smoother; with the modified 
smoother, the two algorithms are comparable in speed. In Section 5.2, we descrihe the 
Vese-Chan multiphase model. In Section 5.3, we develop the multigrid method for solving 
partial differential equation arisen from the minimization of the multiphase model. We 
also give the Fourier analysis of the smoother. In Section 5.4, we implement the 2-phasc 
image segmentation model in hierarchical way to get multiphase segmentation results. 
We end of the chapter with some numerical experiments and conclusion. 

5.2 Multigrid algorithm I for multiphase segmentation (MGl) 

The Vese-Chan multiphase segmentation model [120] is the extension of the 2-phllse 
Chan-Vese segmentation model [35] which has already been discussed in chapter 4. As 
described in [120], with one level set function, we can segment an image into two phases 
as one level set cannot represent more than two phases. In general, to divide an image 
into n phases, we need 10g2 n level set functions. We remark that related work by Tai 
et al [78] and Ambrosio-Tortorelli [4] provides alternatives to these multiple level set 

functions. 
Consider p = log2 n level set functions </>e : 0 ~ lR for f = 1,2, ... , p. The union 

of the zero level sets of all ¢£ will represent the edges in the segmented image. For 
1 ::;; s ::;; n = 2P , denote by Cs = mean(z) the average value of image grey-scales in phase 
s and by Xs the characteristic function for phase s. Then the proposed minimization 
energy for multiphase segmentation by Vese-Chan [120] is the following: 

Fn(c, <p) = L In (z(x, y) - cs )2Xsdxdy + J-L L In 1\7 ll(</>e)ldxdy (5.1) 
l~s~n l~e~p 

where C = (Cl,C2,""Cn ) and <P = (</>1,¢2, ... ,¢p); note n = 2P• In this chapter we 
mainly focus on the 4-phase segmentation i.e. n = 4 or p = 2, which we denote by SEG4. 
But all the ideas will carryover to more phases. 

We shall consider the following minimization problem: 

(5.2) 

where 

F4(C, <p) = In (z(x, y) - CU)2 H(¢dH(</>2)dxdy + In (z(x, y) - ClO)2 ll(</>d(1 - H(¢2))dxciy 

+ 1 (z(x, y) - cod2(1 - H(</>d)H(</>2)dxdy + J-L 11\7 H(</>dldxdy 
n n 

+ In (z(x, y) - COO)2(1- H(</>d)(l- H(¢2))dxdy + J-L In 1\7 H((/J2)ldxdy (5.3) 

where C = (Cll, ClO, COl, coo) and <I> = (</>1, </>2)' Here the phase domains will be interlaced 
by the zero level sets of ¢1,¢2 i.e. 01 = {(x,y) : </>1 > 0, </>2 > a}, O2 = {(x,y) : ¢l> 
0, ¢2 < O}. Once <P is found, the segmented image u is 
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Minimizing (5.2) with respect to c and cJ>, we have: 

In zH(¢dH(¢2)dxdy 
CU(¢) = In H(¢dH(¢2)dxdy , 

ClO(¢) = In zH(¢t}(1 -1I(<p2))dxciy 
In H(<pI)(1 - H(¢"2))dxdy , 

In z(l- H(¢t})H(¢2)dxdy 
COl(¢) = In(l - H(<PI))H(¢2)dxdy , 

Coo(<p) = In z(1 - H(<pt))(1 -1I(¢2))d:rciy 
In(l - H(¢d)(1 -1I(<p2))dxdy 

and the following Euler-Lagrange's equations 

with Neumann boundary conditions, where Tl = (z - Cll)2 - (z - cod2 and T2 = (z -
ClO)2 - (z - coO)2. We shall shortly discuss how to solve (5.4) efficiently. 

An easy but less efficient alternative is to solve the following evolution problem 

with initial conditions <Pl(O,x,y) = <PI,O(X,Y),¢2(0,x,y) = <P2,O(X,y). In [120] these 
parabolic equations were solved using the additive operator-splitting (AOS, semi-implicit) 
method (details are given in chapter 4) which will be used later for comparison. 

5.3 Multigrid algorithm I 

Instead of solving (5.5), we consider solving (5.4). Let (</>eki = <pe(Xi, Vi), for e = 1,2. 
Using finite differences schemes to discretize (5.4) for ¢e, the equations at a pixel point 
(i,j) are given by 

(5.6) 

where (Tlkj = (Zi,j ~ Cll)2 - (Zi,j - cod2 and (T2kj = (Zi,j - ClO)2 - (Zi,j - coo)2, 

Let!!:. = I-l/hl' f3 = h?f3 and A = hI/h2. Also denote UI)i,j = (Td'i,jHt (<P2ki + 
T2)i,j(1- Hf(<P2kj) and (12ki = (Tt}i,jlIf(<pdi,j +T2kj(1-lIt (<pdi,j). }<or given <PI and 
<P2 we compute It and 12, keeping It and 12 fixed and we solve coupled PDEs in equation 
(5.6) for ¢I and <P2 using multigrid method. Once <PI and <P2 are found we IIpdate II and 
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12 and so on. For e = 1,2, denote the coefficients (to be frozen) by 

1 
Dt.(<ptkj = , 

V(b.,+(<pekj)2 + ("\b.~(<ptkj)2 + i3 
1 

Dt( <Pe )i-l,j = , 
V(b.,+(<Pt)i-l,j)2 + ("\b.~(<Pe)i_l,j)2 + i3 

1 
Dt(<ptkj-l = . 

V(b.,+(<Ptkj-l)2 + ("\b.~(<pt.kj_t}2 + i3 

We can simplify equation (5.6) to 

[De(<pe);,j((<pe)i+l,j - (<Pe);,j) - De(<Pe)i-l,j((<Pe);,j - (<Pt)i-l,j)] 

+,,\2 [Dt(<pekj((<pt);,HI - (<Pe);,j) - De(<Pe);,j-I((<Pt.);,j - (<pe);,j-d] = cle)i,), (5.7) 

where Ie = lei!!:., with the boundary conditions 

(<Pt);,a = (<Pe);,}, (<Pt);,m2+l = (<Pe);,m2' (<Pe)o,j = (<Peh,j, (<Pe)ml+l,j = (<Pe)ml,j· (5.8) 

Let ¢t be the approximation to <PI. at the current iteration. Then from equation (5.7), 
pursuing only local unknowns <Pe at (i,j), we have the following linear equations 

[Dt(¢t);,j((¢t)i+l,j - (<Pe);,j) - De(¢t)i-l,j((<Pe);,j - (¢e)i-l,j)] 

+,,\2 [De (¢e);,j ((¢tkHl - (<Pe);,j) - De( ¢i);,j-l ((<Pe)i,j - (ch)i,j-d] = (ie)i,j' (5.9) 

Our propm:;ed algorithm solves these equations for (<Pe);,i to update (¢ekj which leads 
to updating the coefficients locally and further iterations (before moving to the next pixel 
in a Gauss-Seidel fashion). Denote the system of non-linear eqnations from (5.7) by 

{ 

h h -h 
Nl (<pd = fl' 

h h -, N2 (<P2) = H, (5.10) 

where <p7 and I; are grid functions on an ml x m2 cell centered rectangular grid nil with 
spacing h = (hI, h2) and 1 = 1,2. 

We shall first summarize this local smoother and then present our algorithm I. 

Algorithm 9 (Smoother for multiphase model) Let a smoothing step for (5.7) via 

(5.9) be 
h h - h <Pe -- Smoother(<pt, it ,maxit, tol) 

where e = 1,2 and h is the step size on level nil. 
for i = 1 : ml 

for j = 1: m2 

for iter=l:maxit 
-h h - h - h - h -

<PI. .- <Pe' AI. = De(<Pe)i,j(<Pe)i+l,j + Dt(<pe)i-l,i(<pe)tl,j' 

Bi = Dt(¢e)?'j(¢fJ?'j+l + De(¢e)?'j_l (¢t)~~i-l' 
2 -

(<p )h. = Ai +,,\ Bi - lei,j 
it,) De(<Pe)?'i + De(<pd?-l,j + ).2(De(¢e)?,j + De(it)~~j_l) 
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end 
end 

if I (4)d7,j - (¢i)7, j l < tal Stop 
end 

Multigrid Algorithm: Equation (5.10) will be solved by the following multigrid algo­
rithm [8, 14, 39, 118]. This is the full approximation scheme of Brandt [14]. 

Algorithm 10 (Multigrid Algorithm) Assume we have set up these multigrid pa­

rameters: 
Vl pre-smoothing steps on each level 
V2 post-smoothing steps on each level 
"y the number of multigrid cycles on each level h = 1 for V-cycling and "y = 2 for 
W-cycling). Set tal = 0.1. Here we present one step V-cycle of the nonlinear multigdd 
method for SEG4. First for f = 1,2 compute ff using given 4>1. A mult'igrid cycle refers 

to one call to the procedure 

Start 

1. IfO It is the coarsest grid, then solve equation (5.10) using a time marching technique 

(the A as method) and then stop. 
Else do the Pre-Smoothing step: 

2. Restriction: 

3. Interpolation 

It h - h 
4>i t-- Smoother( 4>i ,Ie ,Vl, tal) 

A.21t _ I2hA.h A 21t _ A.2h 
'1'£ - h 'l'i' 'l'i - '1'£ , 

lilt = I~hUl- Nt4>1) + Nr4>~h, 

4>;h t-- F ASCYC2h (4);h, Ii 2h, Vl, V2) 

A.h A.h [h (A.2h A 2h) 
'1'£ t-- 'I'l + 2h 'I'l - '1'£ 

4. Implement the Post-Smoothing step: 

4>1 t-- Smoother(¢i.Jl, V2, tal). 

Once tP1 for f = 1, 2 is found update Ie· 
If rr < tal Stop 
Else go to Start. 

Here the restriction operator I~h is by full weighting and the interpolation I~lh by the 

bilinear operator [118]. 
As we know, an effective multigrid algorithm relies on two necessary ingredients: 

Smooth residual errors on fine levels and effective error corrections from coarse levels. In 
practice, the effectiveness of a smoother in smoothing errors is the key to success. In the 
next section we give the local Fourier analysis of our smoother in Algorithm 9. 
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5.3.1 Local Fourier analysis and a modified smoother 

Local Fourier analysis (LFA) is a suitable tool to analyze the convergence rate of any 
iterative method for linear equations. However our underlying eqllatiolls are Ilonlinear 
so a LFA will consider a linearized equation, and as linearization occurs locally at each 
pixel, we shall look for the maximum rate from all pixel locations. 

Consider Algorithm 9 in the case of a square image with m = ml = m2 and also 
hI = h2 = h for simplicity; then>. = 1. Given the previous iterate at step k, ¢l = 
¢~k), denote al = D1(¢I)i-I,j, a2 = D1(¢t}i,j' a3 = D1(¢lkj-l, bl = D2(¢2)i-I,j, b2 = 
D2(¢2kj, b3 = D2(¢2)i,j-1 which are to be considered as local constants .. From (5.7), 
the grid equation at (i, j) is the following 

{ 

-(al + 2a2 + a3)(¢lki + al(¢t}i-l,i + a3(¢di,j-1 + a2[(¢t}i+I,i + (¢lkHd 
= (/t}i,j, 

-(bi + 2b2 + b3)(¢2)i,j + bl (4)2)i-I,j + b3(4)2ki-1 + b2[(4)2)i+l,i + (!2)i.J+d 
- (hkj· 

(5.11) 
And our local smoother can be written as 

{ 

-(al + 2a2 + a3)(¢d~~+l) + al(4)d~~iY + a3(4)t}~~~;) + a2[(4)d~~I,j + _(¢d~~)+tl 
= (/I)i,j, 

-(bl + 2b2 + b3)(4)2)~~+l) + bt{4>2);~i.~) + b3(4)2);~~i) + b2[(4)2);~L + (4)2);J+d 
= (/2)i,j. 

(5.12) 
Define the error functions by eik) = ¢l - 4>ik) and e~k) = ¢2 - 4>~k). Then using (5.11) 
and (5.12) with freezed (/t}i,i and (/2li,j, the error equations are 

al (el)i-l,j + a3 el i,j-l + a2 el i+l,j + el i,j+l - al + a2 + a3 el i,j = 0 
{ 

(k+l) ()(k+l) [( )(k) ()(k)] ( 2 )( )(k+I) 

(k+I) ()(k+l) b [( )(k) ()(k)] (b b b)( )(k+l) bl(e2)i-I,j + b3 e2 i,j-l + 2 e2 i+l,j + e2 i,HI - 1 + 2 2 + 3 e2 i,i = O. 
(5.13) 

Recall that the LFA measures the largest amplification factor in a relaxation scheme 
[14, 39, 118]. Let a general Fourier component be 

Note that ()0:,()/3 E [-11",11"]. The LFA expands 

m/2 m/2 

e~k)= L (¢ik»)o:,f38 o,f3(Xi,Yj), e~k) = L (7jJ~k»)o:,f38o,f3(Xi' Yj) 
o:,f3=-m/2 o:,/3=-m/2 

in Fourier components. We look for the largest spectral radius (maximum eigenvaille) of 
the amplification matrix Ao:,.B [31, 118]: 
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After substituti ng t hese comp onents in to (5.13) for c ~k Il, e~l.l il ild ('.~k I Il, ('~k), W (' Il ave; 

() 

o 

At t he kth iterat ion , each rate p, (k) (i , j) = ll1a';{n ,!3 (J(A,, '/3 ) ill t ill' hi gh fn 'qlll' lIcy r:l ll gt' 
n n . . 

(8n , 8e) E [-n, IT] \ [- 2 ' 2], measu nng t he e ffect lvene:;:; of a s liloother [ lL\ ], is de pelld t' lit 

01 1 ai, bt, e = 1,2, 3, which in turn depend on the pixel locat io ll (i , j). Therefo re wc shollid 

look for t he largest smooth ing rate for a ll i, j (i.e. l1111 0 1lg all s\lch pi xels): 

A - (1.) ( ' .) jJ. = m a.x /£ /., J . 
a l ,CL2 ,a3 ,0 1 ,0 2 ,U3 

However , due t o the high nonlinearity, we found it Il seful to defill c t he SllI oothili g ratc 

as the maximu m of the a bove accumulated rates Oll t of all .s relilxal io ll steps hy 

C learly for linear equat ions, where ae, be are cons tants, n = iiJIc) is it C'oll s tn ll l so /1., = l/'l. 
Here, as at, be ar e not cons tants, with t his partic ld ar d efillitioll , we wO ldd a llow lhl' 
possibility of i l,(k) (i,j) :::::: 1 for some i, j , k. As lo ng as lls « l , we wOltid S:lY a Slll ()ot iIer 

is effect i ye. 

2 0 • • • • 
4 0 • • • • 60 

• • • • 
1 00 • • • • 

0 40 o~ 60 

cc=l 80 

1 00 

l:;'!O 

:..!:O 40 6U A n ·' UO 1 20 

Figure 5. 1: Segm ell t ation of t he to p left il11 ;)ge illto t he hott Olll ri ght illla g<' . 

Tn Table 5.1. \\"e take t lw pa rti cul <'l r exalllple of Figure 5.1 or Sl'gll ll' lltili g nil a rtifi ci ;d 

im ngl'. \Yl' 11 5(' the illlage s ize m = 32; 1I 0tl' t hat, s ilnilcll ' n 's lti ts (l IT oiJLailH'd wit Ii 
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Tahle 5.1: The smoothing rate for a local smoother with 3 inner iteratiolls 

Outer The smoothing rate The smoothing rate 
iterations s fi,s taking out "odd pixels" 

-* II,s 

1 0.6862 0.5720 
2 0.6861 0.3170 
3 0.6861 0.2717 

m = 64. Here, in Table 5.1, the "odd pixels" refer to positions where the relative ratios 
between a2 and max{al, a3), or the ratios between b2 and max{b1, b3), are quite la.rge. 
Clearly our smoother is ineffective overall due to these odd pixels. This prompted us to 
consider how to improve the overall smoothing rate (Column 2 in Table 5.1). 

A modified smoother. To motivate the idea, consider the particular case of an odd 
pixel assigned with 

al = 0.3536, a2 = 10000, a3 = 0.3536, bl = 0.3536, b2 = 10000, b3 = 0,3536 (5.14) 

for which LFA as described above gives a local (large) rate of J-L = 0.!)!)!)D6. Now we 
propose, as an alternative to (5.12), the following under-relaxation smoothing scheme at 

these odd pixels: 

(5.15 ) 

for some 0 ~ w ~ 1 (note w = 0 reduces to the previous local smoother). The new error 
equation is 

Then the corresponding new Fourier amplification matrix is 

o 

o 

Equation (5.15) with w = 0.7, this new scheme yields a much better rate of It = 0.75026. 
The choice of w = 0 is based on numerical experience. 
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Therefore, our new smoother will be (5.15) usillg a variable W writteu ill a form similar 

to (5.9) as 

Dt{¢tkj [{¢di+l,j - {I + w)(¢tkj + W(¢t)i,j] 

- Dt{¢l)i-l,j [(1 + w)(¢lkj - w{¢lkj - (¢l)i-l,j] 

+ )..2 Dt(¢£)i,j [(¢lkj+! - {I + W)(¢lkj + W( ¢lkj] 

- )..2 Dt{¢£)i,j-l [(1 + w)(¢lkj - w(¢lkj - (¢tkj-d] = (Jt)i,j' (5.17) 

It may be stated as follows. 

Algorithm 11 (Modified smoother for multiphase model) Dcnotp. a smoothin.q step 
for (5.10), using (5.17), by 

¢i +-- Smoother(¢i, 1/, maxit,w, K, tol) 

where £ = 1,2 and h is the step size on level nh. Set K = 100. 

for i = 1 : ml 

for j = 1: m2 

for iter = 1 : maxit 
- - h - h if IDt(¢t)7,jl ~ Kmax(IDd¢l)i_l,jl, IDt(¢t)i,j_ll) for any f, set W = 0.7; 
otherwise set W = o. 
-h h 
¢l - ¢t' 

-h -h -h - - -
At = Dt{¢t)i,j«¢t)i+1.i + w{¢t\,j) + Dt{¢t)f-l,j({¢t)f_l,j + W{¢l)~j)' 

-h -h -h -h -, -
Bl = Dl( ¢e)i,j( (¢t)i,j+l + w( ¢t}i) + De{ ¢tkj-l «¢t )i~j-l + w{ ¢t )~J')' 

2 -
h _ At + ).. Bt - /e;,j 

(¢t}ij - - h - , - -
, _(1 + W)(Dl(¢e)i,j + Dt(¢t)/_l,j + )..2(De(¢e)7,j + De(¢t)7,j-l)) 

if I(¢t)~j - (¢d7,j l < tol Stop 
end 

end 
end 

We now repeat the smoothing analysis as was done in Table 5.1 and show the new wsults 
in Table 5.2. Clearly the new rates are much more acceptable (note the accumulated 
number of smoothing steps is 38 since we use 3 inner iterations for each outer step). In 
Section 5.5, we shall compare the performance of the two smoot hers in MG 1. 

Table 5.2: The smoothing rate for a modified local smoother 

Outer The smoothing rate 
iterations s 1-" .• 

1 0.5720 
2 0.3170 
3 0.2747 
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5.4 Multigrid algorithm II for multiphase segmentation (MG2) 

As previously remarked, a time marching solution scheme is employed in the original work 
of Vese-Chan [120]. Realizing that this scheme is extremely slow to converge, Jeon ct 
al [72] proposed a hierarchical image segmentation method which eSlientially abandoned 
this multiphase model in favour of the earlier Chan-Vese [35] model. The idea of Jeon 
et al [72] is the following. We first use the two-phase model [35] to S(~gnwllt the given 
image Z into two phases (a domain and its complement) using a single level set function 
cP. We then segment one of the phases using the two-phase model [35] again and this 
process is repeated until the desired number of phases is archived. Here there arc two 
key decisions made: (i) The domain having the larger intensity variation will be the 
next segmentation target; (ii) The domain having the smaller intensity variation will 
be replaced by a uniform intensity equal to the average intensity of the larger intensity 
domain. This gives rise to a new image Znew, a modified image of z. This new image 
Znew will be segmented. Here the purpose of (ii) is to avoid re-segmenting the domain 
with the smaller intensity variation. 

The aim of this section is to combine the multigrid algorithm [8] for two-pha.'lc seg­
mentation with this unsupervised hierarchical image segmentation algorithm [72] and 
then to assess if any advantage can be gained over Algorithm 10. Om motivation stems 
from an observation in [8] that the multigrid algorithm can help reach a globallllinimiller 
of a two-phase model (i.e. less dependent on initial guesses) while it is not true with the 
multiphase model (using Algorithm 10). 

We first review the important definition used in steps (i-ii) above and then present 
the combined hierarchical multigrid algorithm. We shall denote by 

the process of utilizing the multigrid algorithm [8] to segment a given image Z by working 
out the desired level set function cP, and the two associated constants C1, C2· 

Definition 5.4.1 (Intensity Variation [72]) Let Z be the given image and SI, S2 de­
note a partition of z, obtained by segmentation using one level set function. Then the 
intensity variation across Si is given by 

1 Mi 

Var(Si) = M Z)z(xt,Ye) - Ct )2, 
, £=1 

where Ct represents the average intensity of Si and Mi is the number of pixels in Si. 

Algorithm 12 (Hierarchical segmentation by multigrid method) 
Let n be the required number of segmentation phases and Z the given image. 

Assume cPo is an initial contour (which can be a simple pattern or may be wor-ked out by 
a full multigrid idea as in [8}). 
for i = 1, ... , n - 1 

cPi .- cPo 
[cPi, Ci1, Ci2] .- M G M (cPi, Z), using the 2-phase multi grid method. 

Define Sl = {(k,f) I (cPikt < O} and S2 = {(k,1!) I (cPih,t ~ O}. 
Compute Var(Sd, Var(S2). 

Find j = argmine Var(Se) and denote q = {l, 2}\{j}. 
Save C j = Cij and Wi = j (Note j, q = 1 or 2.) 

Set z(Sj) = Ciq since Sq is the domain with the larger variation. 

109 



end 
Set <Pn = <Pn-b Cn = Ciq, Wn = q. 

We remark that the main algorithm presented in [72, p.1465] has a major typo, where 
'smallest' should mean 'largest', and also the loop should end at n - 1 rather than n. 

Finally once the algorithm is completed, the segmented image will be 

u = t Cj [(Wj -1) - (1- H(<Pi))] (_l)Wi, 
J=1 

(5.18) 

which is similar to the two-phase case with n = 2, and Wj = 1,2 from Algorithlll 12. For 
instance, if Wl = 1, W2 = 2, W3 = 1, W4 = 2 for SEG4 (i.e. n = 4), then 

Clearly for n phases, we now require altogether n - 1 level set fUllctions, while the 
previous multiphase method [120] only requires log2 n level set functions. For small n, 
the difference is small; however for large n MG2 will have to store lllany level set functions 
(matrices) than MGl. 

5.5 Numerical Results 

In this section we present experimental results to illustrate the two multigrid algorithms 
(MG1 and MG2) versus the time marching method i.e. 

MG1 Algorithm 10 with the local smoother (Algorithm 9); 
MG1m - Algorithm 10 with the modified local smoother (Algorithm 11); 
MG2 Algorithm 12 with the hierarchical segmentation 
AOS - The additive operator splitting method (time-marching). 

We shall first compare the qualitative results of segmentation and then compare these 
solvers in speed of segmentation (iteration steps and CPU time). Although we have done 
many test examples, we show one artificial image and one real life image here, 88 shown 

in Figure 5.2. 
Segmentation results. The main parameter J.L in the segmentation model balances 

the regularization term and the fitting term (fitting a pha. .. e domain with its average 
gray-scale levels). Here for Problems 1 and 2 we take J.L = (size of image? /12 and 
J.L = (size of image)2/500 respectively. To detect small objects in an image, smaller the 
value of J.L required and only for larger objects large value of J.L is required. 

In Figure 5.3, Problem 1 (an image size of 128 x 128) is solved with MG1, MG1m, 
MG2 and AOS. Even for this small image, we give these computational details to get an 
impression of these methods: MG1 takes 15 iterations (MG cycles) with CPU time of 12 
seconds. MG 1m takes 10 iterations with CPU time of 9 seconds. MG2 takes 10 iterations 
with CPU time of 10 seconds. In the last row final results with AOS are obtained in 230 
iterations with CPU time of 64 seconds. Clearly all segmented images are similar to each 
other while all MG algorithm performances are similar to each other and are faster than 

AOS. 
In Figure 5.4, Problem 2 is solved with MG1, MGlm, MG2 and AOS. The same 

summary can be made. 
In Figure 5.6, we show that MG1 and MGlm does not work very well, and can get 

wrong solution with :;ome initial guesses. In other words we say that the model (5.2 can 
stuck at local minima because of its non-convexity. Left figure is the result with ~IG 1 
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Problem 1 

MG2 

Problem 2 

MG2 ~1 
~~" ..... 
~" "·'I . .f-.o= ' ,,'\., "c.. . 

00000000 

00000000 

00000000 

00000000 

Figurc 5.2: Tcst Problems 1 and 2 \\"ith t he ini t ial gucss cOl1toms for t\ LG1 , ~ I C: 1111 , !\OS 
methods. For :'IG2. the initia l guesses a rc for a two-pha.'ic Illod(' 1. 
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MG1 o~ 

MG1m o 

MG2 

AOS o 

Figure 5.3: Problem 1 solved by MGl , 1IGllll , f-.[G2 , i\OS IIl t' thods. Top ro\\' : l'('s lI lts 
\\' it h \IG1 ; row 2: results with f-.IGlm; row 3: t he resul Ls wil h f-. [c: 2; 11 l1d row ·1: l'( 's lIll s 
with AOS. III row 3 the left image is the three phase seglll<'lllnl.i oll il lld lit(' ri !!,itt illlil !.!,(' 

is the fl llal segment ed im age. 
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MG1 

tvG1m 

MG2 

AOS 

Figure 5.-1: Problem 2 solved by r. IC1, ~ lC 111l , ~ [C2, AOS 11lt't itods. As witit Fi gllrl ' ;).;1, 

Top HJ\\O: res11lts with ~ICl , row 2: resul ts wit h ~ rc Ln1 , row :3: th l' rt 'S 1ti tS with t'l IC:2 
a nel row -1: fesult s \\Oith AOS. In row :.\ t \t t' left imag(' i s t h(' t hr('(' ph ils(' Sq.~ 1111· 1i1 il t i0 11 

fwd the right imngc is the filial segmented i11lage. 
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-------

Figure 5.5: Initi al guess, where MGl alld l\IGllll fail s to gl' t til(' dl'sin 'd rl's lilt s. 

F igllH' 5.6: Fillal resu lts from ?\IGl :1Jld \IGl1l1 witli COlidit ioli giVI'11 III Fi g G.:): Id t: 
Re 'ul ts with r-[Gl. Right: Results with ?\[Gllli. 

a nd the ri ght figure is the result with MGllll. C lcml y WI' ("(mid Sl'l' I.h:1I Llit' n 's lilt s 1'1" 11 11 
i\IGl ll l is better than the resul ts from MGl. Tn Figlll"{ ' 5.7, givl's tli l' !"l 'S lIlt s oi>t: lilll'd 
using \IG2. Left figure gives the original data alld thl' ri ght ligllrl' givl's t h(' lillnl I"l 's lilt s, 
which is sat isfactory. vVe have tried difTerell t initi a l gl\l'SSl'S alld go t t hl' rl's ilit s . 

P erformance comparison. In Table 5. 3 we COilipillT til(' 1I1('tho<l s di s(, ll ss('d ill this 
cli apter. by CPU timcs tested on the im agl' ill Fig 5. L ill dif\"( ' I"l 'nt (lnrgl' r) siz('s. \\ ' it Ii 
\[G2. in the th column of the tablc we li S!' thl' notatioll /) ((1) ililpl .v ill ).!; tli :1I /) itl 'mtil)IIS 
used for the first segmentation and q i tern t iOlls fo r t h l' S('('olld SI').!; II I<' 11 t :I t iOIl . I'; \'(' 11 I'm 
ima.ges of small sizes, there is some benefit in using ;-"IC algorit luus. I I ()\\'l'VI'r, for 1;lrgl' 
s izt's, Olle could see a huge difFerence in CPU ti nles, with l\IC iligorithlii s Iliit lH'rforlllil lg 
thp i\OS by many order of magni tud e. Me a lgoritlllns yields il ('o lnpliI ;lI i011 t illl( ' of 
O(N log N) whert' N = ml x 1T12 [84]. T his call 1)(' see ll in li ).!; II\'( ' S.K. 

5.6 Conclusions 

In this chapter we have ill trod uced two nlltltigrid algorillllil s for 1111 lit ip\t ;1.'>I ' \'min t iOII;d 
image segmentat ion . As expected of a 1llltltigrid lll l' t hod , hot h il lgor it IIII IS ;11'(' 1IIII<'h 
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o 

Figure 5.7: Final resul ts using T\ fC 2. Left: I ni t i;d g ll ('SS ror ~ 1 C: 2 . Higllt : Fill il l l"( 'slIl l:-, 

w i t h T\ IC2. 

Table 5.3: COlllparison of T\ IC l , T\ l C 1m and ~ I C2 wil 11 !\OS 11 1('1 hods ill 1llllliI )('r ()r il ,'r 
ations ('Itr') and CPU t ime ('CPU ') . H ere ' , illlpl il's 11 0 ('Ol l \"!' r '·('1\(",' ( I tl I l it, l ol,'r lll l( "') 

wa:; achieved ,,·ith 2-[ hou rs. 

I mage !\OS 

Size Itr CPU 

128 x 128 80 22 

256 x 256 150 193 

512 x 512 1500 42600 

1024 x 1024 - -
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Figure 5. : :- IC algorithms y ields compu tatioll I illl l' or O(N log N). J.d 'l : ~ I C: I (' I ' l ' \·s 

/VlogS. flight: ,,[G lmer vsNlogN 
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faster than the Additive Operator Splitting (AOS) method. To ddiver all acc·pptahle 
segmentation, rvIG1 requiring less level set functions can be dppcll<kllt of initial gllPssPs 
while MG2 requiring more level set functions is practically illdcpClld(~llt 011 the init.ial 
guess. Future work will consider models that require only olle level set functioll [1, 78] 
as well as other models [21, 109]. 
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Chapter 6 

An Optimization-based Multilevel 
Method for Variational Image 
Segmentation Models 

In this chapter we develop an optimization based lllultilevel metho<l for the CV 11I()(kl 
discussed in chapter 4 for image segmentation. In this chapter we \Imillly COil rei'll ahol\t. 
developing multilevel method for optimization CV models [35], and tllPn will ext.cll(1 it 
to the models of T. F. Chan et el [25] and X. ilresson et al [15]. We get /1II illlprov('(1 
minimizer with multilevel method and found this is as fa.'it ali AOS met-ho(l cOll\pan'(1 hy 

CPU time. 

6.1 Introduction 

The variational formulation has become a well established techniq1\c for IIlo(kling /\ dn.'is 
of image processing problems [3, 12,26,99]. In chapter 4, we have develope(l a fn.'it solwr 
(in particular multigrid method) to solve the associated nonlinear partinl diffen'ntinl 
equation (PDE), from the Euler-Lagrange solution of the CV modd [35]. Ot.\wr mdhods 
used for solving the PDE are also discussed in chapter 4. 

In this chapter we propose an alternative to the PDE approach to solve the illlal!;(~ 
minimization problem directly. The problems to overcome in this sttHiy illd\l(\e t.he 
treatment of the non-differentiable functional in the minimization prohlPllIs, hy IIsing 
local minimization (and hence dimension reduction), and the stagnation prohlPlIl wit.h 
the primal relaxation, by using coarse levels in a multilevel scheme. 
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6.2 Model I: The Chan-Vese Two-phase (CV2) Inlage Seg­
mentation Model: 

In level set formulation Chan and Vese [35] proposed the following mo(lel (details can be 
found in Section 3.5) 

F(¢,C1,C2) = J.L.length(¢=O)+A1 r Iz(X,Y)-ClI 2dxdy 
JcI»o 

+ A2 r Iz(x,y) - c21 2dxdy. 
JcI><o 

= J.L k IV' H(¢)I dxdy + Al in Iz(x, y) - cllll(¢)d:cdy 

+ A210 Iz(x, y) - c212(1 - H(¢»dxdy. (G.l) 

Keeping ¢ fixed and minimizing equation (6.1) with respect to Cl awl C2 we have 

{

In z(x, y)H(¢)dxdy 
C1 = In H(¢)dxdy , 

In z(x, y)(l- H(¢»dxdy 
C2 = In(l- H(¢»dxdy , 

with In H(¢)dxdy > 0 

with isl(l -lI(¢»dxdy > O. 
(6.2) 

In order to formally differentiate (6.1), introduce the regulari7.ed Henviside 1\.1)(1 Dirac 
delta functions: 

1 2 x 
H (x) = -(1 + - arctan( -» 

f 2 11" E 
and 

The regularized functional FE of F becomes 

FE (¢, C1, C2) J.L 10 IV' H,(¢)ldxdy + A110 Iz(x, y) - cI! 211t (¢)d:r:dy 

+ A2 k Iz(x,y) - c21 2(1-11,(¢»d:r;dy. (G.:J) 

For given ¢ we compute C1(¢) and C2(¢) using equation (6.2) and thpu keep U\('ln fix{~c1 
to update ¢ and then using this new ¢ to update C1 (¢) and C2 (¢) and so on. 

Variations of (6.3) with respect to ¢ (details can be found in chapter 3) giws the 
following gradient descent scheme 

~~ = H~(¢){J.LV'·C~:I) - (A1(Z(X,y) - cr)2 - A2(Z(X,y) - c2)2)}. (GA) 

In this chapter we develop a new type of multilevel method applied directly to tlw 
minimization problem (6.3) to update ¢. In the next section we first develop optimizat.ion 
based multilevel method for CV (two phase) model (Model I). 

6.3 An Optimization Multilevel method (MLl) for CV2 

In (6.3), suppose we work out Ci, C2 first using equation (6.2). Then to update ¢, cOlisidl'r 
the following problem 

minF,(¢) = J.L r 1V'¢18,(¢)dxdY+Al r Iz(x,Y)-CJI 211,(¢)rl:r:dy 
cI> ~ hl 

+ A2 10 Iz(x, y) - c212(1- ll,(rp»dxdy. (fUi) 
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Let Z be the given image on some finest level with ml x m2 pixels so the discrete probh'm 
of equation (6.5) is the following 

min F(<pl,l, <P2,l,"" <Pml-l,m2' <Pml,m2) 
{4>i,j }' S 

ml-l m2-l 

= J.L L L (<Pi+l,i
h
- <Pi,if + (<Pi'i+i

h
- <Pi,if·8t(<Pi,j)h2 

i=l j=1 

ml-lm2- l 

+ L L [Al(Zi,j - ct}2 Hf(<Pi,i) + A2(Zi,i - c2)2(1 - Hf (<pi,i))]·h2. 
i=1 i=1 

i=l j=l 

ml-lm2-1 

+ L L [~2(Zi,j - Cl)2 - A2(Zi,j - C2)2)Hf (<Pi,j) + terms in(i<'ppw\ent of 1~G.G) 
i=l j=l r(:,y) 

where J.L = J.L/h and the minimization is with respect to <P so the last term will he dropp('d 
in further calculations. 

In this section, we consider standard coarsening of of the conti1l\\O\ls Opt.illlh:llt.ioll 
problem into L + 1 levels, i.e k = l(finest), 2, ... , L, L + l(cuarsest). Differcllt from 
a geometric multigrid method, each coarse level optimization probkm will he din'ctly 
reformulated from finest level as done in [10, 30, 29] for another imaging problem. 

First we consider the fine level local minimization which is essentially a coordinate 
descent method [30, 24). 

6.3.1 The finest level local minimization (k = 1) 

Let if; be the current iterate. Then our idea is to solve a series of subproblems of the form 

where C is a local and piecewise constant function. Consider a particular pixel (i,j). 
Clearly if only <Pi,j is allowed to vary, we simply consider the local suhprobkm 

+ V(<Pij - ¢i_l,j)2 + (¢i-l,j - ¢i-l,i+l)28,(¢i-l,j) 

+ V(¢ij - ¢i,i-d2 + (¢i,j-l - ¢i+l,j-l)2<Q¢i,j-d] + TijIl(¢ij), 

where ri,j = >'1 (Zi,j - Ct}2 - A2(Zi,j - C2)2. Starting from <pi,lf = ¢i,j, we can it('ratc the 
following (Richardson type) scheme to obtain an approximation for <Pi,j: 

<pne.w = RHS/LHS 
1,J ' (6.7) 
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where 

RHS 

LHS 

and 
~-------------------------- Id -

Ll = (¢i'Jd -¢i+l,i)2+(¢i'i -¢i,i+d2 +{3 

L2 = V(¢i'Jd 
- ¢i-l,i)2 + (¢i-l,i - ¢i-l,i+d2 + {3 

L3 = V(¢i'Jd 
- ¢i,i-t}2 + (¢i,i-l - ¢i+l,i-t}2 + {3, 

and'Y > 0 ls a regularizing parameter. Equation (6.7}is usually done for few steps only 

to update <Pi,i' 

6.3.2 The General level k local minimization (1 < k ~ L) 

On a general level k, we consider the following minimization subproblem 

minF(¢ + C), 
c (G.8) 

where C is a local and piecewise constant function of support Tk x Tk = 2k- 1 X 2k-l nt 
each block (i, j) of pixels. Formally we may denote the subproblem 011 level k hy 

(G.9) 

where Bk: IR --+ IRTkXTk duplicates a constant to a block of constants, all<l h: IR.TkXTk -+ 

IRnxn is the interpolation operator so Ck E IRnxn. Here we may illustrate Ck = hnlJ~ as 

follows [30] 

0 0 0 0 ell 

0 C C 0 ('-il C" u Cij 

Ck = to approximate 

0 C C 0 Cjl eji Cjj 

0 0 0 0 Cnl 

Next we give some details of solving the local minimization subproblem (G.9). St't on hovt'! 
k, b = Tk = 2k - 1, kl = (i -1)b+ 1, k2 = ib, fl = (j -1)b+ 1, f2 = jb. Firstly we shallllot.e 
that on level k, there are only mdTk x m2/Tk subproblems each of which is esslmtially 
one dimensional (mimicking a coarsegrid of a geometric multigrid method). Secondly we 
shall show the Richardson type iterative method adopted for each subproblelll. 

At each block (i,j) of pixels, we solve (6.9) for Ci,j' Observe that each TV tprm IY'¢I 
does not change within the interior pixels of each block on level k because 

[(Ci,j + ¢k,t) - (Ci,j + ¢k+1,t)]2 + [(ci,i + ¢k,t) - (Ci,j + ¢k,l+dJ2 

= V[¢k,e - ¢k+l,e]2 + [¢k,i - ¢k,ltl]2 == 1k,t. 
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So it remains to consider the contribution to the TV term stemmillg from the boundary 
pixels (of the block) and the contribution of all interior pixels to the Of tprm. Thlls 
solving (6.9) is equivalent to solving the following (i, j) block local minimil:atioll pl'Ohll~1ll 

min F(¢· . + hBkC .) 
C;,j t,) t,) 

t2 
= !!:. L [Ci,j - (¢kl-l,l- ¢kl ,l)]2 + [¢kl-l,l- ¢kl -l,l+1]2.8,(Ci,j + ¢kl-l,/) 

k2- l 

+ !!:. L [Ci,j - (¢k,12+l - ¢k,(2)J2 + [¢k,l2 - ¢k+lh12 .o,(ci,j + ¢kh) 
k=kl 

+ !!:. [Ci,j - (¢k2.12+l - ¢k2,l2)]2 + [Ci,j - (¢k2+ l ,12 - ¢k2h)]2·8,(ci,j + ¢k2h) 

12-1 

+ !!:. L [Ci,j - (¢k2+l,I- ¢k2,1)]2 + [¢k2,t- ¢k2.l+lj2.8,(Ci,j + ¢k2,1) (6.10) 
t=ll 

k2 
+ !!:. L [Ci,j - (¢k,ll-l - ¢k,tJJ2 + [¢kh-l - ¢k+l,ll-d2

.8, (Ci,j + ¢k,lt) 

k2-1 12-1 12 k2 

+ L L Tk,l·8 f(Ci,j + ¢k,t) + L L r(k,f)lIf(Ci,j + ¢k,t). 
k=kl+l (=11+1 l=ll k=kl 

To simplify the formulae, let 
- -

ipk,l = ¢k,Hl - ¢k,l, 

and 

Using the identity 

In/ a+b a-b 
v'(c - a)2 + (c - b)2 = v 2y (c - -2-)2 + (-2-)2, 

we may rewrite (6.10) as the following problem 

12 

:F(Ci,j) = !!:. L V(Ci,j - ekl _ l ,t)2 + ipt-l,l·8,(Ci,j + ¢kl-I,t) 
l=tl 
k2- l 

+ !!:. L V(Ci,j - ipk,t2)2 + e~,l28f(Ci,j + ¢kh) 
k=kl 
12- 1 

+ !!:. L V(Ci,j - ek2 ,l)2 + ip~2,l8f(Ci,j + ¢k2,e) 
l=ll 

k2 

+ !!:. L V(Ci,j - ipk,lI)2 + etI18f(Ci,j + ¢k,tl) 
k=kl 

+ !!:..j2 Vr
( C-i,-j ---P,-k-2 ,-l2-) 2-+-(-Q-k2-,e-2 )-28, (Ci,j + ¢k

2
,12) 

k2-1 12-1 k2 t2 

+ l!:. L L Tk,t.8f(Ci,j + ¢k,l) + L L rk,tH.(ci,j + ¢k,t). 
k=kl+lt=ll+l k=kl/=l\ 
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The first order condition for P(Ci,j) = 0 will take the form 

12 

=> !!:. L V(Cj,j - 8 k1 - 1,l)2 + <Pt_l,t·8~(Cj,j + ¢k1-1,P) 
1=11 

~ (Cj,j - 8 k1 -l,t) -
+ Il~ .8.(Cj,j+c/Jkl-1,l)+ ... 

-1=£1 V(Cj,j - 8kl-l,l)2 + <P~1-1,1 
k2-1 l2-1 k2 12 

+ !!:. L L Tk,t.8~(Ci,j + ¢k,£) + L L Tk,(8,(Ci,j + ¢k,t} = O. 
k=kl +1/=/1 +1 k=kll=ll 

Since 
- f 

Df(Cj,j + c/Jk,l) = (2 ( - )2) 
7l' f + Cj,j + c/Jk,l 

and 
- -2€(Cj . + A:k () 8' ( . . + ¢ ) - ,J 'I' , 

f Cj,} k,t - (2 ( ;: )2)2 ' 
7l' € + Ci,j + 'l'k,l 

Now linearizing the last term in the last equation and solving the following equation for 

cnew = Ci J', we get 
I,] I 

After some manipulations we get the following iterative scheme for clII
;W 

I,J ' 

Cnew = RHsold/LHsold ',J , (G.ll) 
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where we start from <Ii = 0, 

RHsold 

and 

to the full (i, j) block. 

6.3.3 The coarsest level minimization (k = L + 1) 

On the coarsest level the whole image is considered to be a single block, so contribution 
for updating the constant will only come form the delta function term Ii, (4)), i.e no 
contribution from the TV term. Thus we consider the following local minimizatiou 

problem on the coarsest level 

ml fn2 UtI fn2 

min F(~ + hBke) = mJn ~L L 1i.jlil(~i.j + c) + L L ri.jHf(~i.j + c). 
c i=l j=l i=l j=l 

Taking variation with respect to c and equating to 0 we have 

(6.12) 
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Linearizing and solving this equation for cnew anci then updatillg J> willlw silllilarly d()IH~ 
as above. 

In summary, we reach at the following algorithm 

Algorithm 13 (2D multilevel algorithm lML1» [¢, CI, C2] +- Opt Multiit'llt'll(,/), z) 
Given the image z and an initial guess ¢ = ¢ with L+ 1 levels, our 11tulliit"llt'l aiytJ7'ith71l 

proceeds as follows: 
Start 
set ¢o = ¢ and compute Cl, C2· 

for level k = 1,2, ... , L + 1. 

end 

If k = 1, for finest level 
Elseif k = L + 1 i.e on coarsest level. 
Else on all other levels 
Update ¢ = ¢ + hBkC• 

Go to Start with ¢ = ¢ unless II¢ - ¢oll < tol. 

solve (6. 7}. 
.901ve (6.12) to find c 
solve (6.11). 

In fig. 6.1 the initial data are given: original tested illlagl~s aIHI the iuitial gll(,SS(,S Ill'!' 

shown. We tested with different initial guesses and we get the Sllllle l'PSlIlts with dilft'I'!'IIt. 
initial guess. In fig. 6.2, the results obtained by applying MLI Iud hod to dilft'I'I'lIt I,('st 
images. Left images are the final segmented images and the right illllll!,I'S lire tlw origillal 
image with final contours. In the top image MLI is tested 011 IlIl uoisy illll\!!.t' which 1111.'1 
segmented it very efficiently, where the semi implicit and AOS lIIetllOt1s fails to SI'!!.IIIt'II1. 
it, i.e stuck at local minima [25, 15]. 

6.4 Model II: Global formulation of CV Model 

In this section we discuss the modified model for CV2 and then devl'iop tlw 1Ill1ltill'wl 
method for this new formulation. The CV2 minimization model has n 1l0lH'OllVI'X 1'011-

straint H(¢), so the functional (6.1) may get stuck at local millima if OIW IISI'S the 
standard algorithms [25] (e.g. a gradient decent method) 1. This UOIl-COIIVI'X l'OIlHtl'llillt. 
can be dropped in the following way: The equation (6.4) Ilud the hl'\ow 1''1l1at.ioll hllVl' 

the same stationary solutions: 

(G.13 ) 

Note that Cl and C2 are computed for given ¢ using equlltioll (6.2) awl tht'll kl'I'P Ihl'lII 
fixed to update ¢ and then update them using updated ¢. Eqllation (6.13) is tlw gmdil'lI1. 
descent equation for the following energy [25] 

(!i.ll) 

This functional is homogeneous in ¢ of degree 1, as a ret-illlt it dOl'S not hitVI' Il 11Iillilllizl'l' 
in general. If the evolution is carried out for a long time, the level sd flllldillll II> wOllld 
tends to 00 in positive direction and -00 in negative direction. Thlls WI~ l'I'-sl'ah~ II> IHll'h 

I We remark that the multigrid method !I.'! [8J can find the gJo\ml lIIinillliwr for CV2 Hlld diM('lI~s(·d ill 

chapter <1 alltl so can the MLI algorithm frolll the :section Iwfol'L'. 
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[PROBLEM 1 

• 
[PROBLEM 2 

Figure 6.1: Illi tial data: Lcft: - Origillal ill1age for 1111"('1' prohll ' ll l:-' wil li dill·I'I"t 'lll illil inl 

contour. Rigl!L:- Seglll cIlted ill111ge witll difrerelll illilinlcolllolII" . l'rubl"111 I i:-. :lIlili("inl 

lIoisy image, problelll 2 is a. real Call1 CrnIlI :1II ill " I!!,I' ;lIld probl l' llI :1 i:-. i lll It '; d lift ' .'III! I 

image 



F igllre G.2: Experimcll ta l reslilts of (r.- l Ll ). Tlt l' ll'ft illl :lg('S nn' till ' :-' I'gl ll("III('d ill ln,;!' I II HI 

the righ t images arc t he ori gill al illlage with fi ll ;l l ("Ol ltOI\l". 
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that -1:::;; ¢(x):::;; 1 for all x E Osee [25]. Let r(x,y) = Al(Z(X,y)_q)2_ A2 (Z(X,Y)-C2)2, 
then we have the following constraint minimization problem 

min F(cp) = J-L [ IVcpl + [ r(x, y)¢. 
-l~¢~l io io (6.15 ) 

Euler Lagrange equation for (6.15) is given below 

diVC~:I) - r(x,y) = 0, (6.16 ) 

where r(x, y) is as above. To solve (6.16),an additive operator splitting (ADS) method 
[127] has been used previously to solve the following until steady state 

a¢ . (V¢) at = dw IV¢I - r(x, y). (6.17) 

In next section we will solve the minimization problem (6.15) without u:-;ing variatiolls 
for ¢ using multilevel method see [30] to get the improved globalminimll, but Cl aIHI C:.l 

will be computed from original CV problem (6.1). 

6.4.1 An Optimization Multilevel Method (ML2) for Model II 

The discretized form of (6.15), is 

min F(cp(i,j)) 
-1~<I>i,j~1 

ml-l m 2-1 

+ 2: 2: rij¢i,jh
2

. 

i=1 j=1 

(6.1H) 

Assume that ¢ E IRml xm2 is the initial approximation to equation (6.16). We look for 
the best piecewise constant function C E IRnxn which minimize the following fUllctional 

minF(¢ + C). 
c (6.19) 

First consider C to be local constant at (i,j) and 0 elsewhere (finest level). With the 
same type of calculations as in previous section, we have the following iterative scheme 

on fine level 
¢f.jW = RHsold/LHsold (6.20) 

where 

and 

LHsold = !!:..(2/L 1 +1/L2 +1/L3) 

and 

RHsold = !!:..[(¢Hl,j + ¢i,j+1)/L1 + ¢i-l,;/L2 + ¢i,j-dL3] - Tij 

(A.old _ ;. .)2 + (A.old _ ;.. )2 f3 
'l'lJ 'l'l+I,J 'l'ij 'l'l,J+l + 
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where 'Y > 0 is a small regularizing parameter. As an iterative method, the sdH~mc 
(6.20) for (6.19) may still converge to some non-stationary Illinimiller, so we lleed to 
use multilevel method to improve on the obtained minimizer towards gettillg the glohal 
minimum of the functional (6.18). 

Second consider C to be a local constant at block (i, jl on gel1erall(~el k. Similar to 
MLl, we solve the following equation for Ci,j to update ¢ iteratively (¢ -+ <I> -+ ('-i,j -+ 

¢ ... ) 

(LHS)Cj,j - RHS = 0, (6.21 ) 

where 

l2 k2-1 

LHS = ~(L II V(e-:.,j - 8kl_1,l)2 + <I>t-l,l + L II V(Ci,j - <I>k,t~)2 + H~h 
1=11 k=k1 

~-I ~ 

+ L II V(Ci,j - 8k2 ,1)2 + <1>%2,l + L II 
1=11 k=kl 

(C' . - <1>k' )2 + (_)2 
t,) ,q k,ll 

+ v'2/V(ci,j - Pk2,(2)2 + (Qk2.12)2) 

and 

12 k2-1 

RHS = H( L 8kl-I,e! V(e-:.,j - 8 kl _1,I)2 + <1>t-l,t + L iJJkhl (('-i,j - iJJkh )2 + 0)Zh 
l=11 k=k l 

l2-1 k2 
+ L 8k2,dV(e-:.,j - 8k2,e)2 + <1>%2,e + L <1>k,lJV(Ci,j - (Pk,lI)2 + (-)~"I 

1=11 k=k1 

k2 12 

+ Y2Pk2 .t2/V(e:.,j - Pk2 ,(2)2 + (Qk2.l2)2) - L L rk,I' 
k=k1 l=ll 

Solving for e:.,j,we arrive at the following Richardson type iteration scheme 

CI,j = RHSILHS. (6.22) 

RHS and LHS are computed using values Ci,j from previolls iteration. 
As with M11, on the coarsest Level, the TV term is independent of Ci,j. We solve 

the following minimization problem on the coarsest level 

min.F(c) = J.t I: ~ V(¢k+l,l - ¢k,I)2 + (¢k,l+l - ¢k,l)2 + ~ I: rk,,.(¢k,t + c),(6.23) 
C - k=ll=1 k=-11=1 

with constraint -1 ::;; ¢k,l + C ::;; 1 or -(1 + ¢k,l) ::;; C ::;; 1- ¢k,l. This is It linear functional 
so has minimum value at one of the end points of the interval, i.e at C = - (1 + ¢k,r) or 

C = 1- ¢k,l' 

Algorithm 14 (2D multilevel algorit~m ML2) [¢l ~ Opt Multilevd(¢, z, c) 
Given an image z and an initial guess ¢ with L+ 1 levels. Our 2D m'ltlt'ilevd al!J(withm 

ML2 proceeds as follows: 

Start 
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set ¢o = ¢ and compute C1, C2 . 

for level k = 1,2, ... , L + l. 

end 

If k = 1, on finest level 
Elseif k = L + 1 i.e on the coarsest level, 
Else for ythe.:: levels, 
Update ¢ = ¢ + IkBkc. 

Go to Start with ¢ = ¢ unless 114> - ¢oll < tal. 

solve {6.20}. 
solve {6. 2.1}. 

solve {6.22}. 

We remark that there exist other similarly modified models to the above diHcllssed lllo(ld 
which may be solved by adapting ML2. Bresson et al [15] considered the following 
minimization problem for image segmentation by using weighted TV given below 

min F1(¢) = /L r glV'¢1 + r r(x, y)dxdy, 
-1:::;;",:::;;1 in in 

where r(x, y) is same as defined above and g is edge detector fUllction defined ill Eq. 
(3.10). Minimization of (6.24), Euler Lagrange's equation is given by 

a¢ (V'¢ ) at = /LV'. glV'¢1 - r(x,y), (6.25 ) 

where -1 ~ 4> ~ 1 and r(x,y) = A1(Z - C2)2 - A2(Z - C2)2. 

6.5 An Optimization Multilevel Method (ML3) for Multi­
phase image segmentation 

As already discussed in chapter 5 and [9], an effective framework for multiphasc segnwn­
tation is based on the idea of Jeon et al [72]. We first use the two phase 1lI(}(ld [35] 
to segment the given image z into two phases (a domain and its complement) \Ising !\ 

single level set function ¢. We then segment of the phases using the two pha.'ic lllo(ld [35] 
again and this process is repeated until the desirable number of phases is archivc(l. Here 
the domain having the larger intensity variation will be the next Hcgllwntation tm-gt~t. 
Details can be found in chapter 5. 

In this section we combine our method ML1 with this framework. 

Algorithm 15 (Hierarchical segmentation by optimization multilevel (MLl) mot.hod) 

Let s be the required number of segmentation phases and z the given image. 
Assume ¢o is an initial contour. 
for i = 1, ... , s - 1 

¢i -¢o 
[4>i,ci1,Ci2]- Opt Multilevel(¢i,z, c) using ML1, using the 2-phase Optimiza-

tion based multilevel method. 
Define 81 = {(k,f) 1 (4)ike < O} and 82 = {(k,f) 1 (¢i)k,l ~ O}. 

Compute Var(8I), Var(82). 
Find j = argmine Var(8t ) and denote q = {I, 2}\{j}. 

Save the index set Wi = 8j • (Note j, q = 1 or 2.) 
Ifi> 1, find the true index set by modifying Wi = (Wz\Wi-d U tvi ds(~ ('ort-

tinue. 
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Set z(Sj} = Ciq since Sq is the domain with the larger variation. 

end 
Set the final (phase) index set Ws = (Wz \Ws- 2 ) u Sq. 

Here assume that Wz denotes the index set of all pixels so the quantity (Wz \ Wi-I) Sillgb, 
out the index set being segmented. Also we can only use the sets SI, B-2 to identify the 
domain with the larger variation (to proceed) but its complement {phasc i} lIIust he 

found through (Wz \ Wi-d· 
Finally once the algorithm is completed, the segmented image will be sqmrated hy 

the index sets vV}, W2,"" vVs from which we compute the mean gray values C/s, I>y 

Ci = L Zi/Mi 
(i,k)EWj 

where Mi is the cardinality of Wi' Further the (piecewise) segmented image call he 

written as u = (Ui,k) with 

Ui,k = Ci if {i, k} E Wi for all {i, k} E W z = WI U ... U W'lI {G.2(i} 

which is similar to the two-phase case with s = 2. 

6.6 Results and comparison 

In this section we give experimental results of the multilevel and additive operator split­
ting methods on two models discussed in above scctions. 

• MLl: Optimization based multilevel method for CV model (Model I). 

• ML2: Optimization based multilevel method for modified CV model (Modd II). 

• ML3 Optimization based multilevel level method for the lllultiphase seglll('ntation. 

• AOSl: AOS method for the CV model (Model I). 

• AOS2: AOS method for the modified CV model (Model II). 

(1) Qualitative Results. Results for AOSI are given ill chapter 4 figure 4.12, 
which stuck at local minima i.e this method can fail to isolate the small box with sOllie 
initial guesses. In Fig. 6.3 we give the results by using AOS2 with time st(~P t = O.G. 
This method is tested on 3 different problems, left figure is the original image with filial 
contour and the right image is the final segmented image. In figure 6.4 results are giV<'n 
from implementation of ML2. Figure 6.5, are the results obtailwd from using AOS 
solving parabolic PDE (6.25) and Figure 6.6 gives experimental results of Illllitilevt'\ 
method implemented on minimization model (modified CV model with wdghted TV) 

(6.24). 
In Figure (6.7) the implementation of ML3 for multiphase image spglll('utation Oil 

three different problems is presented. First problem is artificial image IIPcci to be St'g­

mented into three phases and second problem is the noby image and is test.cd for tim'!) 
phase segmentation while the third problem is the real MRI image, spglllPIlt.ed in 4-
phases. Left figures are the original image with final contour and the rip;ht fig\ll'l's are 
the final segmented images. 

(2) Quantitative results. Generally speaking, comparing solutiolls of dilfl'I'('IIt. 
optimizations is not trivial (even though the models are for modeling the sallie prohkm), 
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because different functionals are involved. Here we check an obtained solution against nIl 
candidate energy functionals (for fairness) and have shown in Table 6.1 the finnl vahH's 
of the functionals (6.3) and (6.15). The results in Table 6.1 are for prohlem 1-2 in Fig. 
6.1. Clearly, from Table 6.1, we could see that with our multilevel methods MLI and 
ML2 give better results than AOSI and AOS2 methods. 

Note 2 We use binary images z which normally take values in the range [0,255]. The 
functional (6.3) contains the term)..1 10 Iz- clI 2H(c/»dxdY+)..2Io Iz- c212(1-11(c/»}([;rdy 
and functional (6.15) contains the term )..1 In Iz - cll 2dxdy -)..2 In Iz - c21 2d:rdy, which 
can lead to large values as in table 6.1. 

Table 6.1: :Minimum values of the functionals (6.3) and (6.15) using the final c/>. 

:Met hods/ Ff (Model I) F (Model II) Ff (Model I) F (Model II) 
F\mctionals Box Box Cameraman ClU11('raman 

AOSI (11odel I) 1.6204 x 108 -1.1194 X lOR 4.0508 X 107 -4.:1li51 x 10(; 

1ILl (Model I) 0.0339 -7.8715 x lOt! 3.!H46 X 107 -1.1011 x 11fT 
AOS2 (Model II) 0.0366 -7.5593 x 108 4.8192 X 107 -6.0192 X lOR 

~IL2 (~Iodel II) 0.0333 -7.8638 x 10K 3.9146 X 107 -1.1 () 11 x 11 jn-

(3) Speed comparisons. Finally we show in Table 6.2 speed information from :-i(~g­

mentation of a synthetic and a real image in several resolutiolls. There the "Un llot.ation 
indicates that an entry takes too long to obtain a result or the memory f()(l'lirelllellt is 
too high to get a result. Clearly our multilevel methods MLI and ML2 are milch fast.er 
that AOS type methods. 

Table 6.2: Speed comparison of multilevel methods MLl and ML2 with AOSI nnd AOS2 

methods. 

Image MLI ML2 AOSI AOS:.! 
Problem size Cycles CPU Cycles CPU Iterations CPU Itpratiolls CPU 

1282 4 1.6 3 1.2 60 4.8 22 1.3 
2562 4 6.6 3 4.8 140 50 27 7.·1 

Synthetic 5122 5 25.9 3 19.7 280 421 30 36.6 
10242 6 107.3 3 80.9 1200 7661 31 15.'i 
20482 6 421.6 4 323.95 ** ** ** ** 
128:l 7 1.7 7 1.3 100 10.6 3~ 1.6 
2562 8 6.9 8 5.6 280 110.4 50 1:1.,1 

Real 5122 9 27.9 9 23 800 12:30 55 (iO.l 

10242 12 119.1 12 103.5 ** ** [i6 288.8 
20482 14 497 14 487.12 ** ** ** 

6.7 Conclusion 

In this chapter we have presented an optimization based multilevel nIPtho!l for two vari­
ational image segmentation models. An mentioned in [25, 15], CV model can easily j.';t't 
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AOS METHOD 
WITH TV 

•• 

Figure 6.3: Final Rcsults: Left:- Origillal image with fillnl cOll to m . n ighl :- Io' ill ;li S('g­

Illcntcd image. Rcsul ts frolll implemelltatioll of AOS 11lethod fo r sol vi IIg pil I"n i>oli c PI) 1-; 
(G.l7). 
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MULTILEVEL 
METHOD WITH TV 

Figurc 6.4: Final Rcsults: L eft :- Original image wi th fill nl ("0 111 0 111" . Hi).;hl :- Fil ii " sl'/2, 
mClltecl image. Resul ts from 1l1u l tilevelml'thocl for Illillillli zil l iOIl of" IIIO<i l 'l ((;. 1 :)) 



AOS METHOD WITH 
WEIGHTED TV 

Figure 6.5: F illnl Resul ts: Left:- Origill al i l ll ng(' wit li fill nl ('Ollt OI!r . Higllt :- Fi ll ll l SI ').', 

Il1Cll ted ill1age. Results obtailled fro lll i lll pl ('IlI l' llt ntioll of /\ ()S Ill ct li oci to Pil r:Jil ol i(' 1'1)[0; 

6.25. 



MULTILEVEL 
METHOD WITH 

WEIGHTED TV 

Figure 6.6: Final Resul ts: Lcft: - Origillal imngc wi th fi ll ,, 1 CO llt O\lr . Bigllt :- F i ll ," ~ ( 'g 
Il ICllt ('d image. Exper imcll tal resul ts from i lllplelll (' lItillg IIl1dtil('\'(' III I!'I \i od to t i l( ' II li l li 
1I1izH lioll problelll 6.2c1. 
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Figure 6.7: Final Resul ts: L eft:- Orig inal image wilh fi ll ;l l ('o Il IOIlr . H iglil :- I.' i ll ;" 1I IIII ti 

phase segmented image. Experimentn l rcsllits fw m illlpl l' ll l(' ll t ill g 11 11 11 1 i \(> \,(' ! 11 1('1 hod {"Ill" 

lllul ti phase i mage segmentat ion ill hiermch iCi ti Wily. 

LJu 



stuck at local minima discussed in chapter 4, but using this multilevel method !\iLl 
appears to be able to reach the global minimum in all test cases tried, illcil\(lillg the 
problem mentioned in their papers. We applied our developed method to the lllocliJiP(l 
CV model with TV and weighted TV, developed in [25, 15] and found that the lIew 
algorithm ML2 can also achieve the global minimum as well as multilevel efficiency. Fi­
nally we gave a multiphase segmentation algorithm through repeated use of MLl. Om 
multilevel algorithms are efficient in speed over other methods like AOS. 
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Chapter 7 

Features Selection in an Image 
Using an Active Contours 
Approach 

In this chapter we propose a new model for segmentation of an image ulHler sOllie !!;«,o­
metrical constraints to automatically detect special features (rcgion of illten'st ROI) iu 
an image. The model developed by C. Gout et. al in [61, 65] hasl!d 011 the gcodl'sic 
active contours model can perform such a task in several cases but it is very sl'lIsit.ive t.o 
a model parameters. We combine this idea with CV model. The maiu rden'uces for this 
chapter are [5, 8, 21, 20, 32, 34, 35, 61, 62, 63, 65, 66, 67, 127]. 

7.1 Introduction 

An important problem in image processing is the segmentation of a picture f('pn'sl'utillg 
a real scene, into classes or categories, corresponding to different objects nnd tho hack­
ground in the image. In the end, each pixel should belong to one cla.'is and ollly 0110. In 
other words, we look for a partition of the image into distinct segments. A vuriety of dif­
ferent techniques have been developed to solve the problem of image i:wgllll'lItnt.ioll, HIlCh 
as region growing and emerging [2], watershed algorithms [121], millimum dl'Hcl'iptioll 
length criteria [76], and Mumford-Shah energy minimization [88]. Rl'ccutly, PDE-hn.'i1'11 
active contour models [75] (or curve evolution techniques) have been poplIlar for image 
segmentation. Some of these methods are discussed in detail in chapter 3. Curve t'volll­
tion means to evolve deformable contours subject to constraints towa.nb the hOlllHlary 
of the object to be detected. This deformation is made trying to millimi;"e a fllllct.iolllli 
depending on the curve and defined so that a local minimum is ohtaincll at the hOlllHlnry 
of the object. Casselles et al [21] have shown, for example, that settillg one of the rl'gll­
larization parameters to zero in the classical active contour model is eqllivaknt to fill<iiul!; 
a geodesic curve in a Riemann space whose metric depends on the image coutCllt [G5], 
because an edge in an image is the locus of points for which the image gradil'ut rapidly 
varies. However, when data acquisition cannot be performed in an optimal llUUlIll'r (('.g 
the liver in medical imaging), this criterion can no longer be applied. Sometillll's t.1w im­
age data is missing or of poor quality, or some occultation occurs or two objects nrc wry 
close to each other, so have homogeneous intensity, texture etc, and tlll'rdore it is hard to 
clearly identify the interface between them without supplying a<lditiolllli illfol'lnnt.ion to 
a model. Thus the additional information is some geometrical constraint.s to a lIIo<id in 
order to help the segmentation process. Here we consider conKtmintK COllsiKting of It Hl't 
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of points belonging to the contour of interest (the a priori knowledge of the physician 011 

the nature and shape of the organ under consideration is therefore crucial, for example 
liver in medical imaging). 

Gout et al [65J proposed a model based on geodesic active contonrs with in this Sl't 
of constraints. The Geodesic active contour model uses image gradicnt informatioll IV z I, 
to stop the contour evolution. This model can only detect objects with edges ddined 
by gradient- otherwise it needs some geometrical constraints. On the otlwr IIllIHI, if the 
given image z is very noisy, then the isotropic smoothing Gaussian has to be stron~, 
which will smooth the edges too. We modify their model by introducing the fitting tl'l'In 
of the Chan-Vese model [35], which helps in segmenting noisy images without 1111 isot.ropic 
smoothing Gaussian. It also helps in segmenting images with fu7.zy bOllndaries. 

This chapter is organized in the following way. Section 7.2 contains a review of the 
existed model of Gout et al [65J. In Section 7.3 we present our proposed new modI'! a\l(l 
give details of the minimization to get the Euler-Lagrange equation. In Section 7.4 we 
describe semi implicit method and the AOS method for solving the PDE. III S('ctiol1 7.5 
we give some experimental results. 

7.2 Image Segmentation Under Geometrical Conditions (M-
1) 

\Ve shall first introduce the geometrical conditions before introducing the llIodd by C. 
Gout et al [65J. Let z(x, y) be the given image defined on a rectangular domain n. TII('Y 
have combined the geodesic active contour model [21J with some geometrical collstraint.s 
such as a set of points near the boundary of object to be detected. Let A = {(:r:, yn E 

n, 1 ~ i ~ nd c n be the set of nl distinct points ncar the object hOllllllnry to he 
detected in the given image z(x, V)· The aim is to find an optimal contonr r c n that 
best approaches the points from the set A while detecting the desire object in un illlag(~. 
To proceed with this, let 9 be the edge detector function, as defined in equat.ion (3.10), 
(other forms can be found in [21, 36]). In equation (3.10), the edge detector function is 

given by 
1 

g(w) = -1--2 ' +w 
Clearly g( I V z( x, y) I) is zero on edges in an image and is 1 in flat regions. The p\ll'(losp 
of the edge detector function 9 is to stop the evolving curve on edges of the ohj('cts ill lUi 

image. Another function d will be required to stop the evolving curve when approaching 
the points from set A. Let us define the function d in the following way [G5]: 

nl (x - xi)2 (y - y;)2 

\f(x, yl E n, d(x, yl = n (1 -e 2ff' e - 2ff'). (7.1) 

Other option for d is 

d(x,y) = distance((x,y),A) = min I(x,y) - (xi,ynl 
(xi,y;)EA 

for all (x, y) E nand i = 1,2, ... nl used in [61]. We use the first one. Clearly dads 
locally and will be approximately 0 in the neighborhood of points of A. The aim of this 
model is to find a contour r such that d ~ 0 or 9 ~ 0 along it. They propos('d tlw 
following energy for this purpose 

F(r) = 1r d(x, y)g(IVz(x, y)l)cls. (7.2) 
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The contour r will stop at local minima where d ~ 0 (in the neighhorhood of poiuts for 
A) or 9 ~ 0 (near object boundaries). 

7.2.1 Level Set Formulation of the Model 

To extend the domain of the integral in (7.2) to the whole image other than I', they IHwd 
the level set [92, 90, 1081. Let ¢> : n -+ lR be a Lipschitz continuous function. r will be 
considered as the zero level set of ¢> i.e 

r = {( x, y) En: ¢>( x, y) = o}, 

with ¢> < 0 inside rand ¢> > 0 outside r. In terms of the level set formulatioll, l'qlllltioll 
(7.2) becomes 

F(¢» = in d(x, y)g(I'Vz(x, y)I)I'V H(¢>(x, y))ld:rdy, 

where H is the one-dimensional Heaviside function and JolV ll(¢(x, y))ldn/y is t.he 
length of r. Thus we have the following minimization problem 

min F(¢>(x, V)). 
¢(x,y) 

Since the Heaviside function is not differentiable at the origin, we consider the rt'glllarbwd 
version of H denoted by HE and is defined in equation (3.22). Thlls the minimizat.ion 
problem becomes 

where 

min FE (¢>(x, V)), 
¢(x,y) 

FE (¢>(x, y)) = in d(x, y)g(I'Vz(x, y)I)Of(¢)I'V ¢(x, y)ldxdy. 

(7.:3) 

(7..1) 

Minimization with respect to ¢>(x, y) leads to the following Euler-Lagrange pqllatioll (de­
tails can be found in the next section) 

( 
'V¢>(x, y) ) 

-OE(¢(X, y))'V. d(x, y)g(I'Vz(x, y)l) 1'V¢>(x, y)1 = o. 

Gout et al [65] considered the following evolution equation wit.h artificial time st.!'!> t: 

8¢(x,y) ( 'V¢(x,y) ) 
8t = o{(¢>(x,y))'V· d(x, y)g(I'Vz(x, y)1) 1'V¢>(x, y)1 (7.5) 

with the boundary condition 
8¢(x, y) = 0 

ai""i ' 

d . b a c DrM·c, lJ) where ii is the outwar umt normal to the oundary n. learly the quantit.y Ut' 

tends to 0 when a local minimum is achieved- In other words if the model COllV!'I'PPS, 
the curve will not evolve any more since a steady state has been reached. A re-scalillg 
can be made so that the motion is applied to all level sets by replacing o. (¢>(:r, y)) hy 
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1V'¢(x, Y)I. Furthermore, it makes the flow independent of the scaling of ¢ [:3, 1321. Thus 
they considered the following evolution problem 

¢(x,y,O) = ¢o(x, y), 

a¢(x, y) 
at 

a¢(x, y) 
aii 

~ I'N(x, 11) IV· (d( x, Y)9(1 v z(x, y)1) I~ :~:: ~ ~I ). 

= ° on an, 

(7.0) 

where ¢o(x, y) is the initial value of ¢(x, y). To speed the convergence of t.he mOlle! tllt'y 
added an extra term o:d(x, y)g(lV' z(x, y) I) known as a "balloon term" [461 to the l'volut.ion 
equation of a level set, where 0: is any constant. This term prevents tllO curve from 
stopping on a non significant local minimum and is also of importance when initillli~in)!; 
the process with a curve inside the object to be detected. Thus the evolution prohlt'lII 

becomes 

¢(x, y,O) = ¢o(x, y) 

a¢(x, y) ( V4>(X,l1) ) = 1V'¢(x, y)IV" d(x, y)g(lV'z(x, y)1) 1V'¢(x, y)1 at 

+ o:d(x, y )g(lV' z(x, y)1) 1V'¢(x, y)1 
a¢(x,y) 

° on an. = an 

The main equation in (7.7) can be written as 

a¢(x, y) 
at ( 

V'¢(x, y) ) = 1V'¢{x, y)ld(x, y)g(lV'z(x, y)I)V'. 1V'¢(x, y)1 

+ V'(d(x,y)g(lV'z(x, y)I)). V'¢ + o:d{x, y)g(lV'z(x, y)I)IV'4>(x, y)l. 

(7.7) 

(7.8) 

The Additive Operator Splitting method [127] was used to solve this evolution proh­

lem. 
This model is based on geodesic active contours, which use gradient information of 

the image as discussed above, and curvature to detect the boundary, ill which only local 
information of the boundary is used. Thus it is difficult to get ideal results wiwn dt'llliu)!; 
with fuzzy edges and discrete edges. Furthermore, because of the local attrihutl's awl the 
dependence on gradient, geodesic active contours are heavily affected by noisy inputs: it 
is hard to detect objects from a noisy image which is a generic problt~m with all I'dge 
detectors. One can use isotropic Gaussian smoothing /(u * z, but thi::; will smooth the 
edges too, see Figure 7.1, we have used the following filter 

[ 
1 III 

/(u = 1/9 1 1 1 , 
111 

(7.U) 

other options are Gaussian filter or Laplacian. We propose a new Illodd whose stopping 
term is based on Mumford and Shah segmentation techniques [88]. With this new llHHld 
we can detect objects in a noisy images without using isotropic Gaussian smoot.hing. 
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Figure 7.1: Left: Original syn thetic noisy image. !light : Smoothing of t he o ri ill a l image 

J(a * Z . 

7.3 Proposed Model (M-2) 

The Chan-Vese (CV) model is a specia l case of the piecewise cons t a.ll t Mun d'orcl nlld 
Shah model (res tricted to only 2 regions) . The C V model is not I ased Oil th ' gradiell t of 
the image z(x , y) for the stopping process. It can detec t cO ll tom s b oth with and withollt 
gradients. Also there is no necd to smooth the image in t he CN;' of a lIoi::;y illl age. 
To use t he advantages of the V model [35], we add AI J inside( I') Iz (:r;, y) - cI 12d:r;rly f­

A2 Joutside(l') Iz(x, y) - c21 2dxdy to t he mod I (7.2) where AI , A2 are tWill ' CO llst a ll t. ~ a ll d 
Cl , C2 al'e average values of the given image z(x, y) insid e and outs id e r. T IlliS we p ropos' 

the following minim ization problem 

(7.10) 

where 

AI h nside(l') Iz(x, y) - cI1
2dxdy + >'2 JOtLi side(r) Iz(x, y) - ('21

2
dnly , 

(7. L I ) 
where p, is a posit ive p arameter . Clearly if AI = >'2 = 0 a nd It = 1 t il 'II minimizat iOIl 
problem (7.11 ) reduces to minimization problem (7.2) . 

T he level set form ulation of the functional (7. 11 ) is: 

F(¢(x , V), Cl , C2) = It in d(x, y)g( lV' z(x, y) I)I V H(¢(x, y))ldxdy 

+ >' 1 in Iz(x, y) - cI 12 H (¢( :'C y))dxcly 

>'2 in Iz(x, y) - c21 2(1 - H(¢(x, y)) )rlxdy , 

where H is the Heaviside fun ction. 

(7. J2) 

Again using the regu la ri zed Heaviside function H(, we onsidcr t hc fo llow illg lllilli-

mizat ion problem 
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where 

Ft(¢(x, V), el, C2) = j.L 10 d(x, y)g(l\7z(x, y)I)Ot(¢(x, Y))I\7¢(x, y)ldxdy + 

Al 10 Iz(x, y) - cd2 Ht(¢(x, y))dxdy + A2 10 Jz(x, y) - c212(l- Ht(¢(x, y)))dxdy. (7.14) 

Keeping ¢(x,y) fixed and minimizing with respect to Cl and C2 we have the following 
equations for computing Cl and C2: 

( ( )) In z(x, y)Ht( ¢(x, y) )dxdy 
Cl¢X,y = r 

In Ht(¢(x, y))dxdy 
(7.15) 

if In Ht(¢(x, y))dxdy > 0 (i.e if the curve has a nonempty interior in n), and 

( ( )) In z(x, y)(l- Ht(¢(x, y)))dxdy 
C2 ¢ x, y = =.:....--;;--:---'-::-::--:-:-:----:-:--:-:--'-:--

In{1- Ht(¢(x, y)))dxdy 
(7.lG) 

if In{1- Ht(¢(x,y)))dxdy > 0 (i.e if the curve has a nonempty exterior in n). 
Now keeping Cl and C2 fixed, we minimize (7.13) with respect to ¢(x, V). To minimize 

F t , we use the Gateaux derivatives to find the first first variation of the functional }~ 
with respect to ¢ 

!~ ~ (F'(~ + h,,;, Cl, C2) - F,(~, c" ct») ~ 0, 

i.e 1'1, d(x, y)g(I"'vz(x, y)1) (.;(~)IV~I"; +8,(~) Vt~;,,;) dxdy 

+ In Ot(¢)(Al(Z(X,y) - cd2 
- A2(Z(X,y) - C2)2)'ljJdxdy = 0, (7.17) 

where'IjJ is a test function of the same type as ¢. To complete we use ¢ in place of ¢(x, y) 
in these calculations and similarly for 'IjJ. From Green's Theorem we have 

r v\7.wdx = - r \7v.wdx + r vw.fids. In In Jan 
k .1. d G( ) Of (¢) n A, -Hence ta ing 'f/ = V an X,y 1\7¢1 V'f/ = w, 

where G(x,y) = d(x,y)g(l\7z(x,y)l). We have 

In 'IjJ\7. (G(X,Y)~~:~\7¢)dx=-1n \7'IjJ.G(X,Y)~~:~\7¢dX+ ln7{JG(x,Y)~~:~\7¢'11dS, 
implies that 

r \7¢. \7'IjJ r ( Of(¢)) r o.(¢) D¢ In G(x, y)Ot(¢) 1\7¢1 dx = - In 'IjJ\7. G(x, y) 1\7¢1 \7¢ dx + Jan 7{JG(:r, y) 1\7¢1 u11 ds , 

where \7 ¢ . fi = ~. Thus equation (7.17) becomes 

In j.LG(x, y)o~(¢)I\7¢I'ljJdxdy + ian jlG(x, y) ~~:~ ~~1/'ds 

- 1, p.V· (.,(~)G(X' y) I~:I) .pdxdy 

+ In Ot(¢)(Al(Z(X,y) - cd2 
- A2(Z(X,y) - C2)2)'ljJdxdy = O. 
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=* 10 ItG(X, y)o;( ¢ )1'\7 ¢11/;dxdy + fun I1G(X, y) ~~:i ~~ 1/;ds 

- in 110,(4))'\7. (G(X' y) I~:I) ~'dxdy -1I10:(¢)G(X, y)'\74>' I~:I V,dxdy 

+ in O,(¢)(Al(Z(X, y) - cd2 
- A2(Z(X, y) - C2)2)1/;dxdy = O. 

This gives 

Thi~ holds for all test functions 1/;. Thus we have the following Euler-Lagrange equation 

for 4>: 

5,( 4»~V· (G(X' Y) I~ :1 ) 
- 8. (4))(Al (z(x, y) - ct}2 - A2(Z(X, y) - C2)2) = 0, on n 

0, (4)) 04> 
G(x, y) 1'\74>1 on = 0, on on. (7.18) 

To solve this PDE we consider the following evolution equation 

~~ = 5,(f)pV· ( G(x,y) I~:I) 
- 8,(4))(Al(Z(X,y) - ct}2 - A2(Z(X,y) - C2)2) 

with the boundary condition 

8,(¢) o¢ 
G(x, y) 1'\74>1 on = 0, 

an 

(7.19) 

where n is the unit normal vector to the boundary of n. At steady state {)¢ = 0, which at 
means the local minimum has been reached. To extend the motion to all level sets one can 
replace the delta function 8f (¢) by the gradient 1'\7¢I- this will make the flow independent 
of the scaling of ¢ [132]. l3ut we would keep o,(¢(x, y)) in the equation. Thus we consider 
the following evolution problem 

(7.20) 
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A term aG(x, Y)I'V¢I (known as a balloon term) could be added to ~peed up the r.onver­
gence of the evolution equation as done in model M-l, where a is a constant [45]. This 
term prevents the curve from stopping on a non significant local minimulll and is also of 
importance when initializing the process with a curve inside the object to be detpctecl 
[65J. Thus equation (7.20) with balloon term can be written as 

or 

Existence and uniqueness of the solution can be proved along similar lines to [65]. 

7.4 Numerical Methods 

In this section we present some numerical methods for solving PDE (7.22). 

7.4.1 Semi-Implicit method 

For given ¢ compute Cl(¢) and C2(¢) using equations (7.15) and (7.16) respectively awl 
then keep them fixed to update ¢ using equation (7.22). And then use the new ¢ to 
update Cl and C2 and so on. Let us consider the PDE in (7.22), and let f(x, y) = 
8,(¢)(-Al(Z - cd2 + A2(Z - C2)2) + aG(x, y)I'V¢I, we have 

~~ ~ 1". (4)(x, y)) [G(X, y)V· (I~:I) +VC(x, y). C~:I) 1 + f(x, y). 

U~ing the differences 6,+,6:', ... defined in equation (3.29), the discretized form of equa­
tion (7.23) is: 

¢~,f - ¢fj 
6t 
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\Ve usually use hI = h2 = 1, so we have 

¢7,jl - ¢L 
6.t 

This implies that 

¢UI - ¢f,j 

6.t 

Let 

Di-l,j = 1/ V(6.'+¢LI,j)2 + (6.~¢LI,j)2, 
Di,j = 1/ (6.+¢~j)2 + (6.~¢~)2, 

Di,j-l = 1/ V(6.'+¢:'j_I)2 + (6.~¢L_I)2. 
With the above notation the discretized equation becomes: 

¢:'jl - ¢7,j 

6.t 
~ ~Ii, (¢~j) G',j [( ¢;;' lJ - ¢:;' ) D"j - (¢tt' - ¢;':,') D,_, J 

(7.23) 

+ (¢;;;, - ¢tj')D"j - (¢tj' - ¢tj~')D',j-'l (7,24) 

tS,(¢L) {6.X G( ) (,I,k+l ,l,k+l) 6. y G( )( HI HI)} + J.l1"V¢k.1 + X, Y 'i'HI,j - 'i'i,j + + X, Y ¢i,HI - ¢i,j + Aj· 
i,] 
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As the coefficients Di-l,j, Dj,j and Di,j-l has been freezed at k, eqnation (7.24) gives 
a linear system of equations which can be solved by any iterative method. The implicit 
method is stable for large time steps but the main drawback is the computatioual COHt 
[126]. Hence we use Additive Operator Splitting (AOS) [127] to solve the PDt; (7.21). 
The details are given in the next section. 

7.4.2 The Additive Operator Splitting (ADS) Method 

Let us consider equation (7.21) and let f = -8£(4))(>'1(Z-ct}2_>'2(Z-c2}2}+aG(x, y}I'V4>1 
G 

and F = 1 V' 4>1 we have 

a4> at = JL8£(4))V'' (FV'4» + f. (7.25 ) 

The additive operator splitting scheme (AOS) [127] splits the rn-dimenHionnl spatial 
operator into a sum of rn one-dimensional space discretizations. Therefore we consider 
the following one dimensional problem to be solved first 

(7.26) 

and the discretization gives with spatial step size (hI, h2 = 1) 

,/,k+ l,/,k ( pk + pk F~ + pk ) 
'l'i D.~'I'i =Jl8£(4)) ( I 2 t+l)(4)::l-4>:+1)-( I 2 I-I)(4)~+1-4>~!n +/i, 

(7.27) 
=} 4>~+1 = 4>f + JLD.t( cl4>~:11 - c24>~+1 + c34>~!l) + Ii, (7.28) 

where 

( )
Ft-l + 2Fl + Fl+l pk + Fk 1 

c2 = 8£ 4> 2 ' and C3 = 8£ (4)) I 2 1- • 

\Ve solve the system of equations (7.28) with double time step D.t in the x, y- direction 
and then average the two solutions. In matrix notation equation (7.28) can be written 
as: for I = 1,2 we have 

(I - 2D.tAI(4)k))4>7+1 = fk 

2 

4>k+1 = ~ L 4>7+1, 
1=1 

where I is the identity matrix and Al for 1 = 1,2 are tridiagonal matrices derived from 

(7.28). 

7.5 Experimental Results 

In this section firstly we present SODle examples where M-1 does not work very well. 
Secondly we show that our model M-2 works on these examples. We further test Olll' 
model on real images. Lastly we give evidence that our model M-2 is faster than M-l in 
convergence in terms of number of iterations and CPU time. In figure 7.2, M-l is tested 
on synthetic noisy image to detect the rectangle in the image with 4 markers shown in 
the figure with red dots. This model clearly fails to detect the rectangle. 
Top left figure is the original image with initial data (red dots are the markers) and top 
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right is t he resul t a fter 1000 iterations (ha rd ly a ny il11pruvc III (' nt). 

B ottom left is t he res ul t aft er GOOD itl'rat ions a nd bo ttom right is t he fili a l l'l 's ldl <l rl<' r 

20000 ite rations where t he level set fun ction rP d oes 1l0t lll ove a llY lIl Ol'() . 

/ . L :1;-COlll]l of Ill<ll'ke rs 
P a ra meters : 9 0 = V (x - xO)2 + (y - yo)2 - 25 where X'o = a lld 

no. of lll ark('l's L y-comp of m a rkers 
Yo = and a = 4, ex = - 0.00151 6. t = 1. 

no. of markers 

F igure 7.2 : R esul ts M-l t ested o n sy nthet ic noisy ima ge wit h 4 Illnrk(')'s ;]Ild illi t i;lI gll (,SS 

cPo = J(J.' - .1'0)2 + (y - YO)2 - 25 , where :ro , Yo a re t he a.ve rages of :1:, y-co ln pOnl' lll s or 
t he m a rke rs, ex = - 0.00 151 (di fferent ex have been used ) and a = 4. To p Left : Original 

image with in iti a l d a ta. T op Ri ght: R es lll t afte r 1000 ite ra.ti o ns . 13ot to nl L(,!'t: n l'S ld! 

a fter 6000 itera t ions . Bottom Right : R esul t after 20000 ite rat ions . 

In figure 7.3 , M -l is tes ted 0 11 synt het ic noisy ima ge, where t he illl <1 ge is fi lte red firs t. 

T he in itia l cond it ion is 90 = Jet: - x O) 2 + (y - VO) 2 - 25 , where ~I:O , VO are the ave rages of 

x, V-components of t he marke rs . Top left fi gure is the or igin a l inlage wi t h illiLi ;d CO ll t.O l1r 
and t he top ri ght fi gu re is th e resul t a fter 800 iteratio llS. Bottom left fi g lll'e is Lhe r('s lll t 

a ft er 6000 ite rations and bottom righ t fi gure i ' t he fi ll al res lll t afte r lGOOO iLemti oll s. Th(, 

fi n a l resu lt is not vc ry sat isfac to ry. 
In fi gure 7.4 , M-l is t ested o n an ar t ifi cia l image. H ere it is o lll y able to ddl'e l. t.h e 

ou t el' bound ary of t he letter O. 
In figure 7 .5 our m odel M-2 is tes ted on an ar t ificia l image to d etec t t he objec t. X 

wi t h 3 markers a lld ini tia l cond it ion is rPo = J( x - .1:0)2 + (V - uo) '2 - 1'0 , wll e re .I'{), Yo <l\'e 

de fin ed as above a nd T O = m iny Ilx - yll where x = (xo, Yo) a lld y E A. To p lel't. illl il gC 

is t he o rig ina l image wit h ini t ia l data and to p righ t fi g llre is t he resul t nrte r 1 ite r,ll iOIl . 

Bo t tom left fi gure is t he res u lt a ft er 4 iterations a nd bottom ri g ht fi gure is the fill nl ITs ld t 

in 14 iterat ions. T he objec t X is segmented sllccess flllly. 

In fig ure 7. 6, lVI-2 is tes t ed 0 11 syn t het ic noisy image wi! It 4 lll nrkeni <lnd ini t inl g ll l'SS 

is CPo = J(.r - :1'0)2 + (V - YO)2 - 25 wit h pa ra m ete rs It = 10, (\' = - 0.01 , /\1 = O.Ol , 
A2 = 0.01 and a = -I. T op left fig ure is t he urig ina l im age wit h illiti a l data Hnd lo p ri ght 

is t he resul t after 15 iterat ion. Bottom l(, fl. is t he rl's ul t after :30 iteratio lls nlld ho i I 0 111 

ri ght fi gure is t he fi ll a l resu lt aft er 130 itera tio ll s, the reqllired obj ec t is SII('C( 'ss i'lI ll y 

dpt('c ted wit hou t fi ltC' r ing t he noise ( i . (~ we usp the o r ig illa l illl ag(' wit h Il o ise ). 



... , • 
~ - " .-

Figure 7.3 : Results of M-l t es ted on fi ltered (z * /(a, where I\a may be L;lp lm'C' 
or Gaussian filte r) synthetic noisy image with 4 markers wit h ini t ia l guess ¢o = 
J(~' - .7:0)2 + (y - Yo)'2 - 25 , where xo, Yo are the averages of x, y-component s of Lh(' 
marke rs. Q = - 0.0011 a nd a = 4. Top Left: Orig in al image wit h illi t i111 el ata. Top Hig ht : 

R e::;u lt after 00 iterat ions. Bottom Left: Res lIl t afte r 6000 itemLiOlls . 130LtOIlI Hig ht: 

R eslIlt after 16000 iterat ions. 

F igure 7.4: Experilllcntal res ults o f M-l on a n art ificia l iluagc. O nly a hle to d( ' tecL LlIe 
out er b Ollndary <Ulel una ble to filld tlle inlier boundary of the leUp l' O. Ll'ft: O ri gill;]l 
imagf:' \\'ith ini t ia l data . Right: F in a l resul t after 1000 it erat ions. 
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~x 
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Figure 7.5: We first test M-2 on an artificia l illl age. Our !lew Illod l' l is ll sl'd to 
detec t the object X in an art ificial image with 3 lllarkers with illitinl gll l'SS </)0 = 
)(.1' - xoF + (y - YoF - 1'0, xo, Yo are t he averages of the x, y-compo lI l' lI ts of Ihl' Ill ill' kl'rs 

a!ld 1'0 = milly Ilx - yll where x = (.ro, Yo) a lld Y E A , It = 10, Q = - O.OL illld (J = ,I. 
Top Left: Origillal image with illi tia l data. Top Right: Ilesult after l itCl' ilt ioll. 13 0 tl.OIl 1 

Left: Result Rfter 4 iterations. Bottom Ilight : Resul t after 14 ite rat iOIlS. 

•• . -

F igure 7.6: To detect t he rectangle ill lI o isy image with 4 Illarkers with illiLinl guess 

00 = )(.1' - .1'0)2 + (y - yo)2 - 25 where .1'0, Yo a rc sa me ,IS de fin ed ahove, /' = 10. 
n = - 0.01, /\1 = 0.01,1\2 = 0.01 and a = 4. 
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In fig ure 1.7 lVI-2 is tested on nil art ifi cial image a lld seglli ellted t'he illi nge Sll[,­
cl'ssfully lVI-I did not do \Try \ycll <1'-; shown in fi gure 7.4. Ini t ia l ['o ll<i it ic)Il is (PO = 
/(.r - J'oF + (y - Yil)2 - 1'0, wherc ·1.:0 and Yo mc t he avernge of :1' , ,I}-C'01lIP01H' Ilt.s of 
the markers respec tively and 1'0 is the samc as defincd above. Other paranlete rs HI'(' 

f.1 = (size of =? / 1400)1] = 0.00951 , "\2 = 0.0095, Q = - 5.1 x 1O- ~ a nd (J = ' I. Top 
left figurc is the original im age with ini t ia l data and t he top righ t is the res ld t after 30 
iterations. Bottom left is thc rcsult after DO i terations a nd bottom right is t he fi lla l resul t 
after 250 iterations. In figure 7. , it is shown t hat if the markers nrc 1I 0t exact.!y 0 11 

Fi gure 7.7: To detect the Ictter 0 in t he im age UOL with 4 markers wit h illi t ial guess «()o = 
/(~. - .ro)2 + (y - YO)2 - 1'0, where :fa aJ1d Yo me t he average of :r , y-colllpollell ts of t he 
markers respecti\·cly. J.l = (size of =)2/ 1400) , = 0.0090l."\2 = 0.0095, n = - 5.1 x LO - " 

a nd ()' = 4. 

boundary. the objcct can be detected . T he same data is used as ill t he above CX, lI II pit'. 
In figure 7.9, we show r('su lts where lVI-I, M - 2 fa il to segment the illi age if the 

initial gucss cPo is far from the markers (away from the obj ect to be det('ct.l'c1 ). Til fi glll'(, 
7.10 our model is tested on a real brain l\1RI image to detect a t lllllor with 4 nlarkers. 

The initi a l cond ition is cPo = /(:1' - XO)2 + (y - YO)2 - TO , whe re .1'0 a lld Yo are t he 
avcrage of x, V-components of t he markers resp ectively. T he other pal'<lll1eters Il sed a rc 
Il = (size of =)2/ 10."\1 = 0.0001 , A2 = 0.0001, Q = - 1.51 X 10- '2 and (J = cl. Top left 
fi O'ure is th e origina l image with initi a l data and top right fig ure i::; t he ['es lii t after 10 

o 

iterat ions . Bottom left figure is the res ult after 40 ite rations a nd bottolll ri ght fi g lll' c~ is 

tIl(' final result after 200 iterations. 
In fig ure 7.11. we test the Illodel on real knec ;\IRI im age with 3 IJ1mkers (nlso work 

with 2 markers). the initial condition is cPo = )(1; - xO)2 + (y - Yo)'2 - 7'0 , where .1'0 

and Yo arc the averagc of x, v-components of t he Illarkers respect ively with t he fo ll owing 

parnmcters II = (s ize of =? / 10. ,\, = 0.000051 , A2 = 0.000001 , a = - l.ol x 10- :\ a nel 
()' = 4. Top left figure is the origina l illlage with ini t ial clata alld top ri ght fig l1\'c i ~ t he 
result afte r 20 itcrations. Dottom left figure is th e resil it after LIO iternt ions ,1I1d bottoll l 
ri ght figurc is the fi nal result after 120 iterat iolls. 

Lastly, we co mpare result s by number of itera tiol1S. In fi gm e 7.12 , l'l's liI ts oiJtninC'd 
fro m applying :\1-1 me thod on an artific ial iIllage to detec t t il l' di sc in the ill1ng(" where 
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Figure 7. 8: To detect t he lett er 0 ill th e image VOL with 4 markers p laced away fro lll 
th e boundaries with ill it ia l gu ess <Po = V(x - :ro)2 + (y - yo? - 20 , wil en ' .ro nlld ,1)0 <1\"(' 

t he a \'e rage of :1', v-components of t he markers respec ti vely. Ii = (s ille of .:: )2 / l ·IOO ,A I = 
0.00951. /\ 2 = 0.0095,0' = - 5.1 X 10- <' nnd rr = 4. 

figure' 7.0: 0 0 s hou ld be ins ide t he markers. n csul ts if t he ini t ia l guess is ol lts ici e t i l<' 

l11fU"kc rs. 
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Figure 7.10: To detect a tumor ill a real brain ~ [lU image wit h '!1l 1;l rke l"s wil h illit i;lI g ll (,SS 

CPo = )(.1" - .ro)2 + (y - Yo)2 - TO, where X o nile! Yo a re t he ave rnge of :r , /J- ("O Il IP ()Il('lli s o \" 
the markers respec tively. II, = (s ize of z)2/ 1O ,A\ = 0.0001 , A2 = 0.000 1, {\' = 1. 51 x 10 'l 

and a = -1. This task can be done using geodesic act ive contO \ll"s. 

Figure 7.11: 1\ rea l kllee i\ [Rl il lla ge with 3 IlImkl' l"s witl l illi t inl glll 'SS (/) 11 -

)(.r - .1'0)2 + (y - yo)'2 - 1'0, where .ro nlld !Jo are t he ilVe l" nge of .1' , Y-(,O IIIPO ll l' ll tS of t iI(' 
\IIarkers rcspectin' ly. ~L = (s i ze of z f / lO .A\ = 0.00005 l , /\ 2 = O.O()005 l , n = 1. 51 \( 10 :1 

alld a = -I. 



t h e boundary is not defi ned by t he g rad ien t, t he di sc is s ll ccess fldly d l'U'l' ke! ill GOO 
iterat ions. In figure 7.13 , our model 1\1-2 is tes ted 0 11 t lt l' sa lli e ill in ge n.Il< 1 Llt l' fi li a l n 's ld t. 

is obtai ned in 100 itera tions. 

Figure 7.12: To detec t t he d isc ill t he d isc- rec tangle ill l<l.gl' us ing M-l , ti ll' disc ;l1ld 

rec tangle have t he same intens ity a nd t he bound ary can not be defill ed iJy grndi l' llt . 
Us ing 3 markers with in iti al guess CPo = V( x - 150):2 + (y - 145)2 - 25, ()' = () .O'2 .'i ;\lld 
(J" = ..J. . Top Left: Origillal inLage with ini t ia l el aLa. Top Righ t: !les ld t, ,lfL(' l' 2() it. e rn t.i o ll s. 
Bo tto m Left: Resul t a ft er 100 itera.t iolls . Bottom !lig ht: l1esld t a fte r GOO ile r;)t iOll s . 

7 .6 Conclusion 

In t his chap ter we presented a new m od el ba.sed 0 11 geodesic ac tive CO lllOIll"S a nd t. hl' 
C han-Vese model. Our proposed m odel is good for noisy im ages wi UI OIIl G a llss ia ll fi I t C l'. 

\Ve also tes ted t he new m odel on real illlages . 0 111' m odel is a lso fns le r t lt e ll t lt l' ('x ist in g 
lllodel of Gou t e t a l in te rm o f nUlll ber of it erations. T he mod el works if the Il tnrkl 'rs m l' 
not o n the d es ired boundary i.e we Cal l detec t a ll obj ec t if t he m a rkers a re a pnrt ['1'0111 

its boundary. This m odel is depend ell t on the illi t ia l guess- the illi t i" l g ll ess s lt Ol dd 1)(' 

ins ide the ma rkers which is shown in t he nUlll er ica l experim ents. 
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----- ----

Figure 7.13: To detect t he d isc in t he d isc- rect<1 llg le ill wgl' II s illg om 11I o( k l M -2 , t. il l' 
disc and rectangle have t he salli e' in tensity ,me! t il e bO\lne! ,u y <;;111 11 0 1. 1)(' defill l'd by 
grad ient. Us ing 3 m a rkprs with ini t ia l guess CPo = J(.r - 150 )2 + (y Il lf»2 ~!) , /' ~ 
size of image2 /5000, (1 = - 0. 1 a lld a = 4. Top Left: Originil l illl ilge witll ill il iil l d"til . 
Top R igh t: R esu lt afte r 5 iterat ions. Bottolll Left: R es lll !; nlh' r 15 il (' rilt iOll S. 130 11 011 1 

Rig ht: Res ul t after 100 iterat ions. 
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Chapter 8 

Conclusion and Further 
Directions 

This thesis presented four new algorithms for solving image segmentation problems. All 
are mainly based on the Chan-Vese segmentation model (active contour without edges). 

8.1 Achievements 

The first model discussed in this thesis is the Chan-Vese model [35] "Active Contour 
without Edges", a special case of piecewise constant Mumford and Shah model [88] 
with level set formulation (2 phase segmentation). A non linear multigrid method was 
developed for solving the partial differential equation arising from the minimization of 
the above mentioned Chan-Vese model [35]. Then the main advantage of this method is 
the speed of convergence in terms of CPU time. Moreover it was found that multigrid 
method with the smoother discussed in this thesis can get improved solution for global 
minimum of the functional. And this is shown by giving some experimental results. The 
effectiveness of smoother is checked by using local Fourier analysis. Smoothing analysis 
of the two different smoothers (local and global smoother) is also presented in this thesis. 

Secondly, we have discussed multiphase image segmentation model [120j. A non linear 
multigrid method, developed for 2 phase image segmentation, was generalized to multi­
phase image segmentation model, but the results were not very good, which was observed 
from the smoothing analysis of the smoother. A new modified smoother is introduced 
which improved the results improvement in sense of quality of the segmented image and 
CPU time. Nevertheless multiphase image segmentation model [120] is dependent on 
initial condition. To avoid this problem we proposed an algorithm which implement 
2 phase multigrid algorithm in hierarchical way to get multi phase image segmentation 
results. \Ve presented the comparison of different methods. 

Thirdly, we developed a new optimization based multilevel technique [30] for the 2 
phase image segmentation model [35]. We have described a model proposed by Chan et 
al [25] and Bresson et al [15] for finding global minimum of the CV model. This new 
multilevel algorithm allowed us to reach global minimum of the original CV functional by 
comparing the minimum values with the values obtained from the functional mentioned 
above. We have also applied this technique to the global minimization model for CV 
model to improve the results. Minimum values and experimental results are presented 
for comparison. 

Finally, we proposed a new model for image segmentation under geometrical condi­
tions like set of points. In this model we combined geodesic contour model with CV 
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model, which allowed the new model to be useful on noisy input images. As expected, 
the new model can detect objects of interest in very noisy images. This model is also very 
fast in implementation by the number of iterations. For solving the PDE arising from 
the minimization of the new model additive operator splitting (AOS) method is applied. 

8.2 Future Work 

• We will develop a multigrid algorithm and an optimization based multilevel method 
for 2 phase piecewise smooth approximation of Mumford and Shah model. Such a 
model is more general than CV [35]. 

• \Ve will develop a multigrid algorithm and an optimization base multilevel method 
for the model developed for image segmentation under geometrical conditions. Se­
lective segmentation work is new to the literature. There are few published results. 

• We will work on joint image segmentation and image registration. This will save 
processing time for video images. 

• Of course, it is of interest to consider 3D segmentation models and fast algorithms .. 
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