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Abstract

Image segmentation is an important branch of computer vision. It aims at extracting
meaningful objects lying in images either by dividing images into contiguous semantic
regions, or by extracting one or more specific objects in images such as left kidney in
CT image. The image segmentation task is, in general, very difficult to achieve since
natural images are diverse and complex, and the way we perceive them varies according
to individuals.

This thesis proposes four new algorithms for solving variational image segmentation
models based on looking for piecewise smooth homogeneous regions and the active con-
tours. The active contours model is more and more used in image segmentation because
it relies on solid mathematical propertics and its numerical implementation uses the
effective level set method to track evolving contours.

The first algorithm in this thesis uses the multigrid method for solving partial differ-
ential equations (PDE) which arise from the minimization of the active contour without
edges (2-phase image segmentation) of Chan and Vese [35]. Despite of great theoretical
properties, the active contours model suffers from the existence of local minima which
requires the critical initial guess to get satisfactory results [25, 15]. With our proposed
algorithm we can reach the global minimizer. The multigrid method is faster in con-
vergence than uni-level methods like semi implicit (SI) and additive operator splitting
(AOS) methods.

The second algorithm in this thesis uses the multigrid method for PDEs which arise
from minimization of the multiphase image segmentation model by Vese and Chan [120],
which is the extension of the 2-phase image segmentation multigrid method of Noor and
Chen [8]. We also develop a new smoother which improves the multigrid method, where
standard smoothers can not lead to an efficient multigrid. The multiphase segmentation
model depends on an initial guess. To overcome the dependence, we propose a hierarchical
2-phase multigrid for multiphase segmentation.

The third algorithm is an optimization based multilevel method for the 2-phase image
segmentation model. This method is used to solve the minimization functional other than
solving the PDE arising from minimization. This method allows us to use a very small
regularization parameter 3 used in Chapter 4, yielding improvement in convergence speed
in terms of CPU time.

Finally, we propose a new model for selective image segmentation under geometrical
conditions such as a set of points and develop an AOS algorithm. This model is used
to detect special features in an image, which is a necessary task in almost all medical
applications. It allows us to detect objects in a noisy image and speed up the convergence
as well.

Overall we are concerned with effective segmentation models, numerical realizations
and fast algorithms for image segmentation.
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Chapter 1

Introduction

Computer vision is a branch of artificial intelligence that aims at giving vision to ma-
chines, which means to develop mathematical models, algorithms and technologies to
build a machine with vision capabilities as advanced as human eyesight at least. More
mathematically speaking, the purpose of computer vision is to process images acquired
with cameras to produce a mathematical representation of the semantic objects in the
world.

1.1 Computer Vision and Image Segmentation

Computer vision is divided into image processing, pattern recognition, statistical learning
etc., whose objectives are as varied as detection and recognition of objects in images,
registration of different views of the same object with different sources, tracking of objects
in videos and so on. In this thesis we mainly look into a specific branch of image processing
called Image Segmentation.

Image segmentation is one part of the general task of computer vision. A ‘common
sense’ definition would describe segmentation as the translation of an image, from an
array of grey levels, to a symbolic description, for example as a number of well defined
regions. For a given image z, the segmentation is the seemingly simple task of separating
the foreground from the background. An alternative way to define segmentation is feature
based, where the regions of interest in the image are the projections of the ‘objects’ in the
scene and then the task of segmentation is to identify and locate these objects, regardless
of the indeterminacy due to image acquisition, lighting and so on.

In the last two decades, several mathematical models have been developed to achieve
image segmentation. The recent promising models to solve the image segmentation prob-
lem are based on variational approaches and Partial Differential Equations (PDE). These
models benefit from well-founded mathematical theories that allow us to analyze, under-
stand, improve the existing methods and to work in a continuous setting which makes
the proposed models independent of the grid of digital images. This thesis focus on vari-
ational image segmentation and active-contour models and algorithms, which share the
common feature that they define optimal segmentation as a minimizer of an objective
function that generally depends on the given image and the characteristics that are used
to identify the different segmented regions. The Euler-Lagrange equation of these models
is often be described using a parabolic partial differential equation, which is iterated in
time until it reaches steady state.

A contour is introduced into the image to locate boundaries of features and is evolved
until steady state thereby dividing the image into regions. A very powerful and popular



method for representing the contour is the level-set method originally developed by Osher
and Sethian [92], which represents the contour implicitly as a particular (usually the zero)
level of a level-set function. The main advantage of this representation is that topological
changes, such as merging and pinching off of contours can be captured naturally through
smooth changes to the level-set function, because level set is defined in a higher dimension.

In this thesis, we focus mainly on region-based (rather than edge-based) segmentation
models. A prototypical example, and the primary one we discuss in this thesis, is the
Chan-Vese (CV) “Active Contour Without Edges” model [35], which seeks the desired
segmentation as the best piecewise constant approximation to a given image. The CV
model can be interpreted as a level-set implementation of the piecewise-constant special
case of the more general Mumford and Shah segmentation model [88].

Due to its simplicity and robustness, the CV model has become quite popular and
has been adopted in many applications. As a result, a number of generalizations have
been developed to improve both its applicability and efficiency. A natural generalization
is to multi-channel images. Initially, a vector valued method [32] was used with an appli-
cation in texture segmentation [102]. Further extensions include object tracking in video
sequences in the presence of clutter, registration of images to identify key objects, and
color segmentation that can identify an object in an image with an arbitrary combination
of colors [115].

Another direction of generalization to the basic Chan-Vese model is to multiphase
models, which allow the segmentation of the image into more than two regions. The
multiphase method of Vese and Chan [120] only needs logan level-set functions to repre-
sent n regions, without any need to avoid overlaping and uncovered regions, drastically
improving the efficiency. More recently, J. Lie et al [79] and G. Chung et al [44] have
developed novel level-set methods that use only one level-set function to represent an
arbitrary number of regions. Another variational model for image segmentation is given
by F. Liu et al in {80]. Liu et al proposed an adaptive 2-phase level set image seg-
mentation algorithm to improve the CV model by introduction of a multiplicative gain
field. The resulting model is adaptive to intensity inhomogeneity, tends to obtain the
actual boundaries of the objects. In [130] Y. Zhang proposed an improved algorithm,
where the key functions in the piecewise smooth Mumford and Shah model are replaced
by updating the level set function based on an artificial image that is composed of the
diffused image and the original image. In [50], X. Du et al proposed a new model where
the energy functional contains only two terms: the combined length of the segmentation
curves and the high frequency components in regions excluding the object boundaries.
Their functional depends on only one variable so we need to solve one PDE to minimize
the energy functional. This model can detect both staircase and roof edges in the image.
Similar work can be found in {18, 77, 82, 93, 125].

In this thesis the main issue discussed is to improve the computational efficiency
of the variational models. The typical approach of gradient flow (i.e., marching the
Euler-Lagrange PDE to steady state) usually takes a long time to converge using explicit
method, implicit method or additive operator splitting method [127]. In this thesis we
develop the multigrid method to solve this PDE using special type of smoother (for both
two-phase and multiphase segmentation). Other related work can be found in [95, 94].
Another approach to achieve fast convergence is to treat the models as a discrete opti-
mization problem whose solution is the association of each pixel to a particular region.
B. Song et al {110] proposed a direct optimization algorithm, which has the surprising
property that for noiseless two-phase images the optimal solution can be provably ob-
tained with only one sweep over the pixels. More segmentation algorithms can be found



in [52, 57].

The multigrid method [14, 39, 68, 118, 128] is one of the most powerful numeri-
cal methods for solving linear and non-linear elliptic problems. The multigrid method
based on the recursive application of error smoothing and coarse grid correction has been
demonstrated to be efficient solvers for a wide range of PDEs, although the method is
known to be less robust for either case with highly discontinuous coefficients {124]. More

references to multigrid methods for different problems in image processing problems are
1, 8,9, 17, 29, 40, 43, 94, 95, 105].

1.2 Thesis Outline

Chapter 2:

This chapter covers some basic background material such as:

e Definition and explanation of Bounded Variation (BV), Total Variation (TV) and
Level set method.

e Some traditional iterative methods for solving system of equations.

o Time marching schemes for solving parabolic partial differential equations and also
their stability.

e The Multigrid method implementing on Poisson equation. Smoothing analysis is
given for Poisson equation.

Chapter 3:

In this chapter we give literature review of image segmentation.

e We give brief discussion of active contour model without edges by Chan-Vese in
this chapter.

e We also discuss some existing methods used for solving partial differential equation
arisen from minimization of the Chan-Vese model.

Chapter 4:

In this chapter we describe Chan-Vese model and give details of the existing methods.

o We give details of some smoothers ( local and global smoothers).

e We develop multigrid method for solving partial differential equations arisen from
minimization of Chan-Vese model.

e We describe smoothing analysis of the smoothers.

e We compare the results obtained from multigrid method with the results obtained
from existed methods like Semi Implicit method (SI), Additive Operator Splitting
method (AOS) etc.

Chapter 5:

In this chapter we propose an algorithm which uses multigrid for multiphase image
seginentation.



Two phase segmentation model extend to multiphase segmentation model particu-
larly 4-phases (CV4).

Smoothers discussed in chapter 4 will be used for CV4.

We propose another smoother in this chapter for multiphase image segmentation
model CV4.

We give the local Fourier analysis of the smoothers.

We implement our multigrid idea in hierarchical way to extend it from 2 phase to
multiphase image segmentation in this chapter.

We compare the results from different methods discussed in this chapter.

Chapter 6:

In this chapter we present a new optimization based multilevel method for Chan-Vese
model.

e We also use this method to the Chan et al model for computing global minima.

e We compare the results from both models and present experimental results form

both models.

Chapter 7:

In this chapter we describe an existed model and propose more reliable model for
feature selection (image segmentation under geometrical conditions).

e We propose a new model for feature selection.

e We compare the results from both models.

Chapter 8:

In this chapter we give conclusion and discuss some future work.



Chapter 2

Mathematical Preliminaries

In this chapter we describe some useful material to be used in later chapters. Some of
the refcrences for this chapter are 7, 14, 39, 56, 68, 92, 98, 106, 122, 128].

This chapter is organized in the following way. Sections 2.1 and 2.2 give some ba-
sic definitions, examples and some important theorems. In Section 2.3 we define total
variation (TV) and bounded variation (BV) and explain with some examples. Section
2.4 gives details of the level set method and give the numerical implementation of the
level set method. Section 2.5 gives some idea of ill posed problems and discuss some
regularization techniques. Section 2.6 gives details of some basic iterative methods for
solving system of linear equations, and discuss their convergence. Section 2.7 describes
some numerical methods for solving parabolic and elliptic PDEs and their stability. We
end this chapter with explaining the multigrid method.

2.1 Normed Spaces

Definition 2.1.1 (Seminorm) A vector seminorm on a vector space S, is a real
valued functional || - || such that

1. |Ix]| =2 0 for allx € S,

2. llax| = |af||x|| for alla €R and x € S,

3. |lx+yll < x|l + [yl for all x,y € 5.

A norm is a seminorm if the following additional condition holds:
||| =0 if and only if x =0

Examples:
e All norms are seminorms.
e The trivial seminorm, is ||x|| =0 Vx € S.
e The absolute value is a norm on the set of real numbers R.

¢ Euclidean norm:
Let x = (z1,22,...,Zn) € R™ then

Il = /23 + a3+ ... + a2,

This gives the ordinary distance from the origin to the point x.

5



e p-norm:
For real number p > 1 and x € R”,

1
n P
Ixllp = (ZIHEil”) :
i=1
Clearly, for p = 1 this norm is called 1-norm and for p = 2 this is Euclidean norm.

e Infinity norm/ Maximum norm:
For x € Rn’ HXHOO = ma‘x(lle |:L'2|a LRRE ] Ixnl)

e [P-norm
For functions f defined in a domain  and 1 € p < oo then

1fllp.s = ( /ﬂ | f(a:)l”dm) g

e Total Variation (TV) norm will be discussed later in this chapter.
Definition 2.1.2 (Normed Space) A vector space S possessing a norm ||.||s.

Definition 2.1.3 A sequence of elements x, in a normed vector space S is a Cauchy
sequence if and only if Ve > 0 there exist N € N such that

lzm — zall <, Ym,n > N.

Definition 2.1.4 A real or complez Banach space S is a complete normed vector space
S over the real or complex numbers i.e. with a norm ||-|| such that every Cauchy sequence
Zp S has a limitin S.

Examples:

e Q C R is not complete for ||z|| = |z| since there are Cauchy sequences of rational
numbers having no limit in Q. Take for instance the sequence {z, : n € N} in Q
such that z; = 1 and zp41 = 3 + i which converges to the irrational v2 when
n — oo.

o The set of real numbers R is complete for ||z|| = |z|.

e R™ is a complete normed space which can be constructed using Cauchy sequences
of rational numbers. It is supplied with the norm

n 1/2
x|l = (Z lxilz) -
i=1

o C([a,b],R), the space of all continuous functions f : [a,b] — R is a Banach space if
we define the norm of such functions as

£l = sup{|f ()| : = € [a, b]},

which is known as supremum norm. It is a norm since all continuous functions on
a compact interval are bounded.



Definition 2.1.5 (Inner Product) An inner product on the vector space S is a func-
tional (-,-)g on S x S which satisfies

1. (u,u) 20 for allu € S.

2. {u,v)g = (v,u)s for allu,v € S.

3. (Mu,v)s = AMu,v)s.

Theorem 2.1.1 (Bessel’s inequality) If {e,} is an orthonormal set in an inner prod-
uct space S, then for any ¢ in the space

> leal? < Jl2?
n

where cp, = (T, €p)s.
Theorem 2.1.2 (Parseval’s Relation) Let {e,} be an orthonormal set in an inner
product space S. It is a basis if and only if for each x in the space

[o o]

> leal = llali?,

1

where {cp} are the expansion coefficients of x with respect to {en}, cn = (T,€n)s-

Lemma 2.1.1 (Continuity of the Inner Product) Ifz, — x, then (zn,y) — (2,¥)s
for any y. If 327 un = U, then 3 3°(un, y)s = (U,y)s for any y.

2.2 Calculus of Variation

2.2.1 Topologies on Banach Spaces

Let (S,||) denote a real Banach space. Let S’ be the topological dual space of S defined
as

1L(z)| }

S = {l : S — R is a linear function such that |l|g/ = sup —= < o0
«#0 |T|s

Definition 2.2.1 (topologies on S) (i) The strong topology, denoted by z, 7 is

defined by
|zn — z|s — O(n — +00).

(ii) The weak topology, denoted by z, T z, is defined as

l(zn) = Uz)(n — +oo0) for everyle §'.

(iii) The weak* topology denoted by I, ?\ l, is defined by l,(z) — U(z) (n — +00) for
allz € S.

Remark 2.2.1 Strong convergence implies weak convergence, but the converse is not
true in general.



Example 2.2.1 Let {e,} be an infinite orthonormal set in an inner product space S.
Then Y |{y,en)|® converges, and hence (y,en) — 0 for any y € S. But |le.| = 1, so
e, — 0 is not true means no strong convergence.

Theorem 2.2.1 [7]

1. Let S be a reflezive! Banach space, K > 0 and z, € S a sequence such that |zpls <
K. Then there ezist x € S and a subsequence T,; of T such that z,; < z(n — 00).

2. Let S be a separable? Banach space, K > 0 and l,, € S’ such that |l,|s» < K. Then
there exist € S’ and a subsequence l,,; of l, such that I, —;* I(n — oo0).

Let S be a Banach space, F': S — R and consider the minimization problem

min F(x).

For existence of solution the following steps are to be achieved.

1. To construct a sequence z, € S such that

lim F(z,) = min F(z).

n-+00 z€S

2. If F is coercived then we can obtain a uniform bound |znls < C. If F is reflexive,
then by theorem 2.2.1 we can deduce the existence of zo € S and of a subsequence

Tn; such that T, —S—\ Tg.
3. To prove that xp is a minimum point of F it suffices to have the inequality

lim,, .o F(zn,) > F(z0),

which implies that
F(zg) = nggl F(x).

Definition 2.2.2 (Lower Semi Continuity) F is called lower semi continuous (l.s.c)
for the weak topology if for all sequence x, — xo we have

lim,,, g F(zn) > F(zo).
Definition 2.2.3 (Convexity) F is said to be conver on S if
FQAz + (1-Ay) S AF(2) + (1= N)F(y)

forallz,y € S and X € [0,1]. In other words we can say, a convez function is a continuous
function whose value at the midpoint of every interval in its domain does not exceed the
arithmetic mean of its values at the ends of the interval.

Example 2.2.2 (Examples on R) o ¢* for any a € R on domain R is conver.

e % on RY, for o > lora <0 is convez.
?

IThe space S is said to be reflexive if (S’) is isomorphic to S.
2A space S is separable if it contains a countable dense subset.
3F i3 said to be coercive if lim|z| 400 F = +00.



e Powers of absolute value |x|P on R, for p > 1 are conver.

Examples on R™:
e f(z) =aTz + b where a € R*,z,b € R"*! is convex.

o Norms:

n L
lallp = (3 12:P)?, forp> 15 o = max((il,laah ., l2al)
i=1

are convex.
Examples on R™*™:

[ ]
m

JX) =tr(ATX) +b=3" zn: Ay Xij +b

i=1 j=1

is convex.

e Spectral (maximum singular value) norm

7o \1/2
£ = 1X1) = 0maz(X) = (Ao (XT X))
where Apmqz is @ maximum eigenvalue, is convex [13].

Theorem 2.2.2 Let F': S — R be conver. Then F is weakly lower semi continuous if
and only if F' is strongly lower semi continuous.

2.2.2 Gateaux derivative of a functional
Assume that S and T are Banach spaces and F : § — T be an Operator.
Definition 2.2.4 (Gateaux derivative) Let u,v € S then the quantity

F(u+ hv) — F(u)
h

DF(u,v) = ’llin})

is called the G-differential of F' at u in the direction of v. Moreover, if the above limit
exists for any v € S, the F is G-differentiable at point u € S and DF(u,-) is the G-
derivative of F at u. If F is Gdteaur differentiable and if the problem minyes F(u) has

a solution u, then we have
DF(u,v) =0.

Conversely, if F' is convez, then a solution u of DF(u,v) = 0Vv € S is a solution of the
minimization problem. The equation DF(u,v) = 0 is called an Euler-Lagrange equation
of the minimization problem minycg F(u).



2.3 Total Variation (TV)and Bounded Variation (BV):

In this section we fist define TV, explain it with an example and then will give definition
of BV. We use one-dimensional definition of BV for further explanation.

Definition 2.3.1 (Compact set) A topological space S is compact if, for every col-
lection {S;}ic1 of open sets in S whose union is S, there exists a finite sub-collection
{Si;}}=1 whose union is also S.

Definition 2.3.2 (Compact support) Functions with compact support! in S are those
with support that is a compact subset of S.

Definition 2.3.3 Let Q be a bounded open subset of R™ and let u be a function in L} (),
then defining the TV norm as
|| Dul(Q) = / | Du|(x)dx = sup { / w(Vw)dx :v=(v1,...,Us) €CP(N), [Vt € 1},
Q QO
(2.1)

n
0 .
where V - v = E 8U‘ and v is a vector valued function with compact support that
=1 "

is differentiable to arbitrary order. Here C3°() is the space of real-valued functions,
infinitely continuous differentiable with compact support.

Definition 2.3.4 (Bounded Variation (BV)) If for a function u, ||Du(Q) < oo,
then the function u is known as of bounded variation. The notation BV(QY) denotes all
functions in L'(Q) that are of bounded variation.

To explain it more we give the one-dimensional definition of BV and give some examples

Definition 2.3.5 A function u : [a,b] — R is said to be of bounded variation on [a,b] if
and only if there exist a constant M > 0 such that

S lu(zs) — u(aior)| < M
i=1

for all partitions P = {zo,Z1,...,Zn} of [a,b].
More details can be found in {133, 59].

Theorem 2.3.1 (Co-Area Formula) Suppose that Q is an open set in R, let u €
BV (Q) and define
Fp,={xe:u(x) <n},

be the level domain (cumulative level set). Then

o0
| Dul| = / |Duldx = / dn / DX, |dx, (2.2)
Q —00 Q

where XF, s a characteristic (or indicator) function of set Fy,. The perimeter can be
defined as

Per(Fy) = [ Dxelix,
so (2.2) becomes
| Dul = / | Duldx = / Per(F,)dn. (2.3)
Q -0

“The support of a function f is the closure of {x: f(x) # 0} and is denoted by supp(f).
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The proof could be found in [59].

Example 2.3.1 Ifu € C(Q), then integration by parts gives

/uV vdr = — /Zaz v;dx

for every v € C§°(Q,R™), so that

/|Du|dx=/ |Vuldx,
Q Q

ou 0 .
where Vu = 3—;1’ T;”%) Thus, if u is reqular enough, the total variation

(TV) has the form:
| Du||(Q) = / |Du|(Q)dx = / [Vuldx  foru e WH(Q),

where WIP(Q), for 1 € p < oo is the Sobolev space of functions u € LP(Q) such that
all derivatives up to order 1 belong to LP(Q2). WH°(Q) is the space of locally Lipschitz
functions.

Example 2.3.2 Figure 2.1 illustrates a simple example [107], conszde’r the characteristic
function u= xr of a set L. Then

[ Dul|(Q) = | DxL]|(?) = Per(L,Q),
where Per(L,) is the perimeter of L in Q. For some 7 let us define the level sets for u:
Ly, =Qn{z:u(z)>n}

Then we have the following relation

IDull(Q) = / Per(Ly, Q)dn.
Rl

This equation say that the total variation of a function u is computed by summing up the
length of level lines over the contrast. For further illustration, let us consider a special
case (Figure 2.2)

u = { up, e

Ug, z € . (24)

Thus
| Dull(Q2) = (u2 — w1)0(h, Q2),

where 0(€1, Qa)is the length of the boundary between ) and €3 and also assume that
uy < uz. Thus the total variation measures contrast in images, and thus is a reasonable
measure for signal transitions in real image data.

Example 2.3.3 If u : [a,b] — R is a monotonically increasing or decreasing, then for
any partition P = {zg,21,...,Zn} of [a,b]

> lu(z) - ulzin)] = 3 lulz:) — ulzia)] = u(b) - u(a)
i=1 i=1
Thus u is of bounded variation on [a,b].

11



Figure 2.1: The total variation of the characteristic function vz measures the perimeter
of the set L in Q.

Figure 2.2: The total variation of a step function measures the length of the line of
discontinuity times the contrast.

12



Example 2.3.4 Define
_Jo ifx =
Y= #2sin(Z)  ifz #£0.
This function is of bounded variation on the interval [0,2] (see Fig:2.8). To see this

. " 2 2
;z:thematzcally let us take a partition P, = {0, ol wem CRRLI-Y 1, 2}, where m € N,
en

> ly(z) = (i)
i=1

(=) sin(2m) — 0] + |

) sin ((2m -1)= ) - (i)2 sin(2mg)|
) sin ((2m—-1)2)| .+l0—(§)2sin(372—r)|+4

—]

‘(2m2-— 2)2 sin ((2m 2)— ) - (

L+ ]-)me 1)2|+...+|(§)2|+4

4

4@m~ng+@migy+”u+?]+4
1 1 1

1
8 =+ —
[(2m)2+(2m—1)2+(2m—2)2'F Tty

+

0+|( ™

<

+4+4

The series Y 52, El-z is convergent so for some M, we can write

Z (z:) — y(zi1)] < M.

Let us consider another partition

4
sz{o’_ 4 4 4 4 g

4m’4am-1'"4m—-2"4m-3"4m —-4"""""

where m € N, Then

> (@) = y(zica)l
i=1

() sin(4m) = 0] +| (o

2 sin ((4m -1)- ) - (—) s1n(4m%)

4
+ |y sin (am — 25 )—( )sin((4m—1)-)|
+ |(4m4 3)2sin((4m—3)-—) ( )sm((4m 2)— )'
+ l22 sm(—) - ( n(-——)l
< 16\/5[(4m1_1)2+(4m1_3)2+...+3l2_
1 1 1
+ 16[(4m 2)2+ 4m — 6)2 ?]
< 16‘/—[(4 )2 (4m1—1) + +%+lﬂ
1 1
+ 16[(4m)2+(4m——1) 1 ]

13



Again the series Y 0", rlz is convergent so for some M, we can write

3 ly(@i) — ylaioa)| < M.
i=1

25 T T

Figure 2.3: Function of Bounded Variation y = 22 sin(X)

Example 2.3.5 Define the function
o 0 ifx=0
s zcos(Z) ifz#0.

This function is continuous, but is not of bounded variation (see Fig: 2.4) on the interval
[0,1], because it oscillates more frequently near x = 0. To see this let us take a partition

1 1 1 1
Pm:{os'é;iam,--- 3 2 },wheremEN. Then

Z|y y(z;— 1|—|—cos(2m7r) 0|+|2m1_lcos ((27”—1)71’)—%C08(2m7\')‘
+|2m_2c05 ((2771—2)%) — g oS ((2m—1)7r)|+...+|—1—%|
1 1 1 1 1 1
=l +|_2m—1_% tlm 2 Tl T ¥I-1-3l
1 |
2[ + 5 1+...+§]+1.

The series 22022 % 18 divergent so for any M, there is a partition P,, for which
n
Z ly(x:) — y(zi-1)| > M.
i=1
More details and properties of BV space can be found in [7, 59, 133].
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Figure 2.4: Function of Un-Bounded Variation y = x cos(Z)

2.4 The Level Set Method

The level set method for tracking moving fronts was introduced by Osher and Sethian in
[92]. This method has had a great success because it has been used in many applications
in physics, from capturing multiphase fluid dynamics flows, to graphics, e.g. special
effects in Movies, visualization, image processing, computer vision, control, visibility,
ray tracing, segmentation, restoration and many others [83], [108]. In this section, we
introduce the level set method applied to the theory of curve/surface evolution. We show
that the level set formulation of a curve/surface evolution equation allows us to efficiently
solve the problem of moving fronts, in particular the problem of changes of topology.

Let us consider the general geometric evolution of a curve I':

or
o= N (2.5)
Lt=0)="1y

where V| is the normal velocity and A is the unit normal to the curve L.

At this stage, we leave the parametric/explicit representation of a contour to interest
in the geometry/implicit representation of the contour. This leads to the level set rep-
resentation which is independent of the parametrization of the contour. The core idea
in the level set method is to implicitly represent an interface I' in R? as a level set of a
function ¢, called level set function of higher dimension (in this case R?) and compute
the geometric characteristics and the motion of the front with this level set function. The
level set function ¢ of the closed front I' is defined as follows [90]:

o(x,y,t) > 0 inside I’

¢(x,y,t) <0 outside I (2.6)
p(x,y,t) =0on L.
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0<0

Figure 2.5: Plot of the higher dimension (3-D) function ¢(z) and the interface I' =
{(z,y) € Q: ¢(x,y) = 0}. Left: The level set function ¢. Right: The interface I'.

The geometric characteristics of the interface can be computed with the level set
function. The unit normal A and the mean curvature & to I' are given by:

__V¢
N="1vg
K=V N=V. |22 =0
- B Vol )

The area of the region inside I' and the length of the interface I' are

{ Jaz H(¢)dzdy ’e
Jgz IVH()|dzdy = [z, 6(¢)|V|dady, (2.8)

where § and H are the Dirac delta and the Heaviside functions.
The motion of the front I evolving according to equation (2.5) is given by the evolution
of the zero level set of ¢ which is solution of the following PDE:

96
{ Tl V1|V

(2.9)
¢(t =0) = d(To) = ¢o,

where d is a function (usually a signed distance function ) whose zero level set is the
initial contour 'y.
Equation (2.9) raises a number of comments:

e The zero level set of I' and all its level sets follows the front evolution equation
(2:5)-

e The level set evolution is computed on a fixed coordinate system since the level set
is a parametrization free formulation.

e The evolution of the contour is independent of the initial embedding ¢ [42, 53,
54, 55], and the classical solution, if it exists, of (2.5) coincides with the classical
solution (2.9).

16



o Singularities can arise with PDE (2.9).

The level set method allows for curve topological changes, such as breaking or merging.
Fig. 2.6 illustrates several important ideas about the level set method. In the upper-left
corner we see a shape, that is, a bounded region with a well-behaved boundary. Below it,
the red surface is the graph of a level set function ¢ determining this shape, and the flat
blue region represents the x-y plane. The boundary of the shape is then the zero level
set of ¢, while the shape itself is the set of points in the plane for which ¢ is positive or
Z€ero.

In the top row we see a shape changing topology by splitting in two. It would be
quite hard to describe this transformation numerically by parameterizing the boundary
of the shape and following its evolution. One would need an algorithm able to detect the
moment of the shape splitting in two, and then construct parameterizations for the two
newly obtained curves. On the other hand, if we look at the bottom row, we see that
the level set function merely got translated downward. Therefore we see that it is much
casier to work with a shape through its level set function than with the shape directly,
when we need to watch out for all the possible deformations the shape might undergo.

Figure 2.6: Illustration of how the level set function deal with topological changes. The
top row presents the evolution of the curve and the bottom row shows the evolution of
the associated level set function. We see that the curve changed its topology but not the
level set function.



2.4.1 Numerical Implementation of The Level Set Method:

In this section we discuss the numerical implementation of PDE (2.9). In a wide range
of important applications, V, has the form [90}:

v ve
e~V (|V¢|) (210

Vi = (é(m,y),
where E(z,y) is a vector field and £(z,y) is a scalar field. Given the velocity Vi, (2.9)
is a Hamilton-Jacobi equation whose solution can develop kinks (in absence of curvature
term) which are discontinuities defined by jumps in derivatives. Special numerical meth-
ods are necessary to handle these discontinuities. These schemes presented in [92] based
on upwind differencing, were then extended to higher order accuracy with the essen-
tially non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO) schemes
in [91, 73]. Using equation (2.10), equation (2.9) becomes

96 - vé
E = (_(a:,y),Vq‘)) - ,y)|V¢|V (‘Vd)l) (2'11)

The first term of the right hand side of the above equation is a convection term. In the
active contour framework, for example in geodesic active contour [21], the function Z (z Y)
represents either an attraction force toward the boundaries of objects, i.e ._.(a: y) = Vg

where g is an edge detector function usually given by g(V(z*G,)) = T |V(z TGl
v

(further details are given in next chapter) or a balloon force such as = = |V¢| The

second term of the right hand side of equation (2.11) is a contour smoothing term based
on the curvature of level sets of ¢.
Let us consider the balloon term

(2,V9) = (-232 ¢

Discretization gives the following numerical scheme
—E|Vé| = (-E(z,))* D* + (-E(2,y))" D", (2.12)

where

D* = \J(B28)" ) + (BE8) )2 + (85 8)*)? + (B 9))?
== JUBF9)) + (B2 8) 2 + (B 81 + (87 9)7)2,
(')+ = max(-,O), ()— = mm(,O) and

A:;ct(b — :|:¢(w:i: hl,y) _¢(z’y)’Aﬂ:¢= i¢(1,yih2) —¢(x,y),
hl y h2

hy and hy are horizontal and vertical spatial step sizes respectively. To illustrate this
numerical scheme, let us consider Z(z,y) = +1, in Figure 2.7 a circular curve is propa-
gating inward and outward. The blue curve is the original curve and the red curve is the
propagated curve after applying the numerical scheme (2.12) on balloon term.

The second term of the right hand side of equation (2.11) is a regularization term
based on the mean curvature. This term is parabolic and therefore it does not need an
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Figure 2.7: Evolution of a circular contour inward (left) and outward (right). Left:
=(z,y) = —1 propagating inward, blue contour is the initial and the red contour is final
propagated contour. Right: Z(z,y) = 1, propagating outward, blue contour is the initial
and red is the final propagated contour. These results are obtained by implementation
of equation (2.12).

upwind scheme which has been designed for hyperbolic advection term to guide the prop-
agation directions. For a parabolic term, the propagation is in all direction, hence the cen-
Vo
Vel

tral difference approximation scheme fits well to approximate the term £|V¢|V - <

at a first order of accuracy. In 2-D images, the curvature of the level sets is

v¢ ¢1‘1¢2 - 2¢r¢ ¢z " g d) ¢2
. = y yPey T PyyPz
<|V¢|> (Qg o ¢§)3/2 (2.13)
and the associated numerical scheme is
Vo \ _  DLd(D)0)? — 200000603, + A (A39)>
£|V¢)|V' <|v¢|) ”5 ((A2)2+(A2)2)1/2 ’ (2-14)
where
A = (p(z+h1,y) — d(z — h1,y))/2h1,
Ao = ($(z+h1,y) —26(2,y) + (= — hi,y)) /A,
AYp = (¢(z,y+ ha) — o(x,y — ha))/2ha,
Ao = (b(z,y+ha) - d(x.v) + Sz, y — h2))/h3
and
Agy(b = (¢(xz+ h1,y+ha) + (@ — h1,y — ha) — ¢(x + h1,y — ha) — ¢(x — h1,y + ha))/4h1ho.

This smoothing term is tested on a non smooth curve in figure 2.8 where the left part is
the initial contour of the level set function ¢y and the right part is the smooth contour,
when regularization term is applied.
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Figure 2.8: Smoothing of contours represented by the zero level set of a level set function.
Left: Initial contour ¢g. Right: Smooth contour after applying the curvature dependent
regularizer.

2.4.2 Re-initialization

If the level set function ¢ becomes too steep or too flat, the error increases when calcu-
lating the derivatives numerically. Further a small change in ¢ will lead to a large change
of the zero level set if the level set function is too flat around zero. Therefore, it can be
useful for the numerical calculations to re-initialize the level set function. The idea is to
change ¢ into the distance function such that |V¢| = 1 for all = , y. The re-initialization
changes the level set function everywhere, except from the zero level set which must be
the same before and after re-initialization. This explains why the re-initialization does
not change the mathematical problem, since the regions of interest are where ¢ > 0 and
where ¢ < 0, and these areas do not change through the re-initialization. Solve the
following PDE for ¢(z,y,t)

o —sgn(o)(1— |Vo|) =0 in R x (0, 00)

o(z,y,0) = ¢ in R (2.15)

where ¢ is the function which is supposed to be re-initialized and sgn(-) is a signum
function. These equations will convert the level set function to the unit distance function.

2.5 Inverse and Ill-Posed Problems and Regularization

Inverse problems arise in many areas of scientific computing. Very often inverse problems
are formulated in such way that inner properties of a system can be deduced from exterior
measurements by solving the inverse problem. The word inverse is used to indicate that
the problem has a corresponding forward or direct problem. If the direct problem is
formulated as

K:5 — 5

for some appropriate spaces S1 and So, then the inverse problem is formulated as

K1:8 — 5.
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To illustrate this concept, consider the Fredholm integral equation. This integral equa-
tion arise in numerous applications, including image processing. The one-dinensional
Fredholm integral equation (of the first kind) is

/b k(s,t)u(t)dt = g(s), 0<s< L (2.16)

k(s,t) is called the kernel of the integral equation. The forward problem is formulated
as follows:

Given k(s,t) and u(t), find g(s). The solution of this problem is done in the obvious way,
by evaluation of the integral. There are three different inverse problems corresponding
to the forward problem, depending on the information already known.

1. Given g(s), find k(s,t) and u(t),
2. Given g(s) and k(s,t), find u(t), or
3. Given g(s) and u(t), find k(s,t).

If the kernel is in the special form k(s,t) = k(s — t), the three problems above are called
de-convolution problems. The most challenging problem is to recover both k(s,t) and
u(t) from measurements of g(s) which is known as blind de-convolution.

2.5.1 Ill-Posed Problems

Definition 2.5.1 (Well-Posed problem) Let K : S, — S, where Sy and Sz are
Hilbert spaces® then the problem

K(u) =b (2.17)

is said to be well-posed, in the sense of Hadamard, if
1. For each b € Sy there exist a solution u € Sy such that K(u) = b holds.
2. The solution is unique.

3. The solution is stable with respect to perturbations in the data, that is given u* € S
and b* € Sy such that K(u*) = b* then for every e > 0 there exists a 6, > 0 such
that || KC(u) — b*|| < 8; implies that |[u — u*|| <.

A problem which is not well-posed is called ill-posed.

The first condition tells that K is onto, i.e. the range of K, R(K) is equal to S;. In the
case of linear operator, the second condition is equivalent to requiring that N(K) = {0}
where N(K) is the null space of K. If the first two conditions hold then the inverse of
K exists and the third condition says that the inverse should be continuous. For the
case when X is linear, well posedness is equivalent to the requirement that the inverse
operator K~! : Sy — S, exists and is bounded.

Definition 2.5.2 (Orthogonal Complement) If E C S; then u € S; is an element of
the orthogonal complement of E if and only if (u,v); = 0 for all v € E. The orthogonal
complement will be denoted by E*.

5A complete space with a positive definite inner product is known as a Hilbert space
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Definition 2.5.3 (Adjoint Operator) Let K be a linear operator with a dense domain
in S1 mapping into S3. The adjoint operator K* : Sy — Si is a linear operator where for
every y € D(K*), D(K*) is the domain of K*, there erists a unique y* € S such that

(’Cui y>2 = <u1 y*)l,
for every u € D(K). The adjoint is defined by the mapping K*y = y* for all y € D(K*).
When K is not 1-1 the pseudo-inverse can be used to resolve the non-uniqueness [51].

- Definition 2.5.4 (Pseudo-inverse) Let K be a continuous linear operator. Define K
by K=K IvicyLs thus K is 1-1 and maps onto the range of K. The pseudo-inverse, K¥,

is the linear extension ofIC 1 to the domain
D(KY) = R(K) + R(K)*,
with minimal operator norm.

It is worth mentioning that for any by € D(K') the pseudo-inverse gives the best least
squares approximation to by [51], i.e. ug = Kby satisfies

luollx = mf (IIUH
ue

Ku — b = inf Kv-»b .
1w oll2 velg(lC)“ v 0|l>

The problem in (2.17) is an ill-posed problem when K! is unbounded. One type of
operator that can have an unbounded pseudo-inverse is a compact operator.

Definition 2.5.5 (Compact Operator) An operator K is compact if and only if the
image of any bounded set is a relatively compact set.

Definition 2.5.6 A relatively compact set is a set whose closure is compact.

An example of a compact operator is the Fredholm integral defined in equation (2.16).

Theorem 2.5.1 For a compact operator whose range is infinite dimensional the pseudo-
inverse operator is densely defined and unbounded.

Proof of this theorem can be found in [51]. With an unbounded pseudo-inverse the
problem in (2.17) is ill-posed since it violates first and third properties of the well-
posdness. A special tool that allows for further analysis of a compact linear operator is
the singular value expansion [51].

Theorem 2.5.2 Let K : Sy — S2 be a compact linear operator. Then there ezists positive
values o, with associated functions ¢, € S1 and ¢n, € Sy such that Ky, = onpn and
K*pn = 0n¥n. If K has infinite dimensional range thenn = 1,2,. .., otherwise there will
be finitely many terms. The functions {1} are an orthonormal basis of N'(K)*, and the
functions {@,} are an orthonormal basis of the closure of R(K). Furthermore,

Ku = ZUn(U,'pn)l‘Pn (2.18)

and

Kb =" on(b, pn)2¥n, (2.19)

for allu € Sy, and b € Sy. The expression in (2.18) is known as the singular value
expansion of K.
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The o,,’s are referred to as the singular values of K. For a compact operator the singular
values can be arranged in descending order, oy 2 0 > ... > 0. The collection {op; ¥n, ¥n}
is known to be the singular system for K.

Theorem 2.5.3 Let K have a singular system given by {on;¥n,¥n}. Then the pseudo-
inverse has the following ezpansion

Ko = 3 eenlzy, (2:20)

a,
" n

for all b e D(KY).
This theorem gives the singular value expansion for the pseudo-inverse.

Theorem 2.5.4 Let K satisfy the hypothesis of Theorem 2.5.2 with the additional prop-
erty that the range is infinite dimensional. Then

lim o, =0.
n—oe

The expansion in (2.19) reveals the lack of continuous dependence of the pseudo-inverse
solution when the range of K is infinite dimensional. If there is any error present in ¢n,
¥ or b, then that error may be greatly amplified by the division of the small singular
values of K.

2.5.2 Regularization

In several fields of mathematics, in particular statistics, machine learning and inverse
problems, regularization involves introducing additional information in order to solve an
ill-posed problem or prevent over-fitting. This information is usually of the form of a
penalty for complexity, such as restrictions for smoothness or bounds on the vector space
norm.

A theoretical justification for regularization is that it attempts to impose Occam'’s
razor® on the solution. From a Bayesian point of view, many regularization techniques
correspond to imposing certain prior distributions on model parameters.

The same idea arose in many fields of science. For example, the least-squares method
can be viewed as a very simple form of regularization. A simple form of regularization
applied to integral equations, generally termed Tikhonov regularization

Definition 2.5.7 (Regularization Operator) A regularization operator for K is a
one parameter family of continuous operators Ry : Sy — Sy such that for Kug = by
the following conditions hold:

1. There exist numbers ag and 8y such that R,(b) is defined for all 0 < a < ag and
16— boll < o.

2. There exists a function () such that given any € > 0 there is a number §(€) < &
such that if ||b—bo|| < 8(e) then ||uy —ug|ly < € where uy = Ry(b) and v = a(é(¢)).

Notice that if X is linear then the first condition is equivalent to the requirement that R,
is bounded and the second condition is equivalent to the requirement that R,(b) — Kb
as a — 0 for all b € D(K') [51]. There are many different regularization methods that
can be applied to an ill-posed problem. For more details about regularization methods
see [51, 64, 117].

60ccam’s razor principle states that the explanation of any phenomenon should make as few as-
sumptions as possible, eliminating those that make no difference in the observable predictions of the
explanatory hypothesis or theory.
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2.5.3 Tikhonov Regularization

In an abstract Hilbert space setting (i.e. K: S1 — S2), Tikhonov regularization is given
by

. 1 o
Uq = Ro(b) = argmin,ep(x) <§|I’Cu - bfl3 + §||U||f), (2.21)

where argmin,ep(x) denotes an element out of D(K) that obtains the minimum value for
the given functional. This method can be thought of as penalized least squares with the
second term in (2.21) being the penalty term. The regularization parameter, o > 0, is
used to assign a weight to the penalty term. Finding the u, that minimizes the functional
in (2.21) involves the use of calculus of variation. Consequently, we will need the first

variation of the functional F(u) = -;—HICU - bl + %Hunf in the direction of v € S;. The

first variation is given by

i (F(u + hv) — F(u))

F'(u;
(U, 'U) h

= Jim o (K + ho) = b, K{u + ho) — bla + afu + hv,u + ko))

= (Ku—b,Kv)2 + afu,v)1. (2.22)

Using the adjoint in (2.22) and the fact that at the minimum the first variation must be
zero for all v € §) gives a representation for the solution to (2.21),

uo = (K*K + oI)71K*D. (2.23)

If K has the singular system {on; ¢n,¥n}5%, then the solution in (2.23) has a singular
value expansion

Ua =3 = (b, Pn)2¥n. (2.24)

Using the condition a > 0, the expansion in (2.24), and the fact that both the ¢,,’s and
¥n’s are an orthonormal basis results in

2

a

n
2,
02 + a< n)2

IRalln = 4|D

N

o
< =Bl
a

Hence R, is a bounded operator for each o > 0. For any fixed n it is also true that
lim 20" = i, which matches the expansion in (2.20). Therefore, (2.21) defines a
=00+ Oy
regularization operator.

In this thesis we discuss inverse problems in image processing. If the regularization
functional penalizes non-smooth images, the effect of this regularization will be noise

removal but also a smoothing of the edges in the image. To overcome this disadvantage
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with classical noise removal techniques L. I. Rudin, et al (ROF) in their seminal 1992
paper [99] introduced the Total Variation (TV) regularization functional

|U|Tv=/ {Vu|dxdy (2.25)
Q

where Q is the image domain as discussed in Section 2.3. The TV regularization functional
does not distinguish between smooth and piecewise smooth solutions with the same total
variation, and thus Tikhonov regularization with the TV regularization functional can
remove noise while still preserving the edges in an image. Note that the Euclidean norm
| -| is not differentiable at the origin. To overcome the resulting numerical difficulties,
(2.25) is replaced by the following

fulry, = / VIVaP ¥ Bdedy, (2.26)
Q

where 3 > 0 is a small perturbing parameter. Thus Tikhonov regularization with the
perturbed TV regularization functional involves the solution of the minimization problem

min ! /(}Cu — b)dxdy + a/ V|Vul? + B2dzdy. (2.27)
Q Q

u€BV(Q) 2

First variation leads to the following Euler-Lagrange equation

—aV. (L) + K*Ku = Kb. (2.28)
VIVul? + 8

This equation is highly nonlinear and the efficient solution of the discrete version of this
equation using iterative methods in both the deblurring and the pure denoising cases has
been an active area of research over the last decade. In this thesis we mainly discussed
methods used for solving this type of and other related problems. More details about
TV regularization can be found in [112, 113] and solution of TV and BV based image
processing problems can be found in [69, 71, 70, 99].

2.6 Iterative Methods for Solving System of Equations

In this section we present some basic iterative methods for solving a linear system of
equations Ax = b where A is a given m; x m; matrix, b is a given vector of size ;. An
iterative technique to solve the linear system Ax = b starts with an initial approximation
x( to the solution x and generates a sequence of vectors {x(¥)}2 - that converges to
x. All iterative techniques convert the system Ax = b into an equivalent system of the
form x = Tx + ¢ for some fixed matrix T and a vector ¢. After the initial vector x(© is
selected, the sequence of approximate solution vectors is generated by computing

x® = Tx(k-1) 4 ¢ (2.29)
for each k =1,2,3,....

2.6.1 The Jacobi Iterative Method

Consider a system of equations
Ax=b (2.30)



where A = [a;j]im,xm, and b = [b;];n, x1. Solving ith equation for z; we have the equivalent

equations
mi
—Qi5X; b;
z=Y (_#) 2
) Qi Qi
j=1

J#i

generating each mgk) from components of x*~1) for k > 1 by

my
Ky 1 k-1 .
zg = a—ﬁ(;(—aijx; )) + b]-), for i =1,2,...,m. (2.31)
J#i

To write (2.30) in the form (2.29), express the matrix A in the form
A=D-L-U
where D, —L, ~U are diagonal, strictly lower triangular and strictly upper triangular
matrices respectively of matrix A. We have that
(D-L-Ux=b
< Dx=(L+U)x+b
<— x=D(L+U)x+D '
thus in (2.29) form, the Jacobi method is

x=Tix+cy

where
Ty = D"l(L +U)
and
cy = D !b.

Algorithm for Jacobi Method: To solve (2.30) with initial approximation x(®: IN-
PUT the number of equations and unknowns m;; the entries a;; of the matrix A; the
entries b; of b; the entries of x(® and the tolerance TOL; maximum number of iterations
N and also let X0=x,

Algorithm 1 (Jacobi Method) Step I Set k =1.
Step 2  While (k < N) do steps 3-6.
Step 8 Fori=1,2,...,my set
my
o -—a,'jXOJ- bi
= J_Zl ( [¢57] ) + 1211

J#
Step 4 If|x — XO0|| < TOL then OUTPUT (x1,...,%m,);

end.

Step 5 Setk=k+1.
Step 6 Fori=1,...,m; set X0; = z;.
Step 7 OUTPUT (’Mazimum number of iterations exceeded’);
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end.

Step 3 of the algorithm requires that a; # 0 for each i = 1,2,...,7m,. If one of the a;
entries is zero and the matrix is nonsingular, a reordering of the equations can be per-
formed so that a;; # 0. To speed up the convergence, the equations should be arranged
so that a;; is as large as possible.

Weighted Jacobi Method: In the Weighted Jacobi Method, given the current approx-
imation z(*~1) the new Jacobi iterates are computed using

1 my _ )
@:E{EJﬂmék%+@) fori=1,2,...,m. (2.32)
21 i=1
i
for i = 1,2,...,m; as before, however z* is now just an intermediate value. The new
approximation z(¥) is given by:

z® = (1- w)x,(-k_l) + wz* (2.33)

where w is a weighting factor to be chosen. Of course when w = 1 we have the original
Jacobi Method. In matrix form the weighted Jacobi Method is:

z®) = (1 - W)+ wTy)z® Y +wD'b (2.34)

which is equivalent to
x = T xk-V 4 ¢,

where T, = (1 - w)I + wD~}(L + U) and ¢, = wD"!b.

2.6.2 Gauss Seidel Method

In Jacobi method, when we compute a;z(.k) we have already computed z(lk), ceesy xff)l which

should be better approximations to xy,...,z;-1 than m(lk'l), ce, :vz(.':l). Thus we have
1 i—1 . m) .
xgk) = —(bz - Zaij:b§ ) Z a,,']'IL‘; _1)) for i = 1, ceeyMmy, (235)
Bii j=1 =i+l

which is known as the Gauss-Seidel Method.
To write the Gauss-Seidel method in matrix form, multiply equation (2.35) by a;; we

have ,
SRC (k1)
k -1
a,-ia:z( ) + Zaij:rj =b; — Z ai;T;
j=1 j=i+l
or

i—1 my
aii-’lf,(-k) + Z aijﬂf;k) =b; + Z ( - aijf'?ﬁk—l)>
j=1 j=i+l

thus in matrix notation we have
(D —L)x® = Ux*-1 4 b

or equivalently

(k-1)

xF) = Tgosx + ccos (2.36)
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where

Tgs=(D-L)"'U

and
cgs =(D-L)"'b.

Algorithm for Gauss-Seidel Method: To solve (2.30) with initial approximation
x(®: INPUT the number of equations and unknowns my; the entries a;; of the matrix
A; the entries b; of b the entries of x(®) and the tolerance TOL; maximum number of
iterations N and also let X0=x(0.

Algorithm 2 (Gauss-Seidel Method) Step I Setk =1.
Step 2 While (k < N) do steps 3-6.
Step 8 Fori=1,2,...,my set

1 i—1 my
Ty = a— (b1 - Zaijxj - Z a,-jXOj)
w J=1 =i+l

Step 4 If|x — XO0|| < TOL then OUTPUT (z1,...,Tm,);

end.

Step 5 Setk=k+ 1.
Step 6 Fori=1,...,m; set X0; = z;.
Step 7 OUTPUT (’Mazimum number of iterations exceeded’);

end.

As with Jacobi method step 3 of the algorithm requires that a; # 0 for each i =
1,2,...,m;. If one of the a;; entries is zero and the matrix is nonsingular, a reorder-
ing of the equations can be performed so that a;; # 0. To speed up the convergence, the
equations should be arranged so that a;; is as large as possible.

Definition 2.6.1 (Residual Vector) Suppose that X € R is an approzimation to the
solution of the linear system (2.30). The residual vector for X with respect this system is
r=b - AX.

In iterative methods, a residual vector is associated with each calculation of an approx-
imation component to the solution vector. The objective of an iterative method is to
generate a sequence of approximations that will cause the associated residual vectors to
be reduced rapidly to zero. Let

(k) (k) (k) (k)
Tl s Ty mu)t

be the residual vector for the Gauss-Seidel method corresponding to the approximate
solution vector x( ) given by

k k B b

xz(' ) = (1'(1 ),:1:( amf )1’ ( grﬂ)t

The mth component of rgk) is

o i-1 .

1
T =bn =Y el Z sy, (2.37)
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for each m = 1,2,...,my. In particular, for the ith component of r,fk) we have

my
k—
anx(k D4 Za” - Z a,-jm§ b, (2.38)

j=itl
Combining (2.35) and (2.38) we have

(k=) 4 0) _ g 8,

ayT; = ;T

Consequently, the Gauss-Seidel method can be characterized as choosing :cgk) to satisfy

)
o® =gk 4 T (2.39)
' Qg

Modifying the Gauss-Seidel procedure given above in (2.39) to

(k) — z‘(k D ol 1(1). (2.40)

Qi
for certain choices of positive w reduces the norm of the residual vector and leads to
significantly faster convergence. This type of methods defined in (2.40) are known as re-
laxation methods. If 0 < w < 1, the methods are called under-relaxation methods
and if w > 1, the techniques are known as over-relaxation methods, and are used
to accelerate the convergence where Gauss-Seidel method is slow in convergence. These

methods are abbreviated SOR, for Successive Over-Relaxation. Equation (2.40) can be
written as

i—1
k
aiﬂg )+wZai]~ =(1- )aux('c D_w Z ai;T; 257D 4 wh; (2.41)

80 in matrix form
(D - wL)x® = [(1 — w)D + wUx*D 4 ub (2.42)

or
x®) = (D — wL)7'[(1 = w)D + wU}x*~1 + w(D —wL)~'b. (2.43)

The SOR technique can be express in the form
x®) = T x*V + ¢, (2.44)
where T, = (D — wL)™![(1 —w)D + wU] and w(D — wL)"'b.

2.6.3 Block Iterative Methods

Assume that the vector x is partitioned into several disjoint sub-vectors (not necessarily
of same size)
X = (xlax2’ cee axs)t'

Then Ax = b can be written in the block form

A A . Ay X1 b;
Ay A ... Ay X2 by
: : S : I (2.45)
Asl As2 s Ass Xs bs
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where the block A, is of size n, X ng (np being the size of x,) and the vector b is of
size np. Assuming that the diagonal blocks are nonsingular the Jacobi and Gauss-Seidel
methods can easily be extended to the block form. In the Block Jacobi method for
1=12,...,s

x = AZ! (Z(—Ain§'°“’) + bz’)- (2.46)
i
Similarly, the Gauss-Seidel method is given by
k = k - (k1)
= (- 5 gl - 32 o). (247
j=1 J=i+l

Obviously we now have to invert the matrix A;; in order to update x; and the larger the
vectors x; are, the more expensive each step of the method is likely to be, on the other
hand the payoff may be faster convergence of the iterative method.

2.6.4 Convergence
All the iterative methods in this chapter define a sequence of iterates of the form
x®) = Tx(-D 4 ¢,
We now address the convergence properties and in particular sufficient conditions.
Lemma 2.6.1 If the spectral radius p(T) < 1 then (I — T)~! exist, and
-y '=I1+T+T*+...

[56].
Proof. Let A be an eigenvalue of T then 1 — X will be an eigenvalue of I — T, since if
Tx = Ax
= T-T)x=(1-A)x
for some eigenvector x. But |A] < p(T) <1, so X =1 is not an eigenvalue of T, so 0
cannot be an eigenvalue of I — T. Hence I — T is nonsingular. Hence (I —T)™! exists.

For the second part
Let Sy =I+T+T?*+...+T™. Then

(I=T)8m=T+T+T2+...+T™)— (TH+ T2+ T3+ ...+ T™) = ] — T+,

If p(T) < 1 then limpy—oo T™ = 0, so we have

lim ([ =T)Sp = lim (I-T™) =1

m—0o0

thus,
(I—T)-l=7,}iirstm=1+T+T2+....
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Theorem 2.6.1 [56] For any x(©) € R", the sequence {x(’c)}fc":0 defined by
x® =Tx*-Y 4 ¢ foreachk > 1, (2.48)
converges to the unique solution of x = T'x + ¢ if and only if p(T) < 1.
Proof. First assume that p(T) < 1. From equation (2.48) we have

x® = Txk-1)4e
= T(Tx* P +e)+c
= T*>% 4 (T+I)c

= TFxO 4 (TF-1 4 4T+ I)e.
Since p(T) < 1, the matriz T is convergent' and

lim 7%x©® =0

k—00
Using Lemma 2.6.1 we have

lim x® = 11m T*x©) 4 hm (ZT")C—O-{-(I T le=(I-T)"!

k—o0

Hence the sequence {x(®)}22  converges to the unique solution x = (I —T) 'c as
x=Tx+c = (I-T)x=c.

Now consider the converse, let us assume that x is the unique solution of the equation
(2.48). Let ¢ = O then x is the solution of the equation x = Tx. Letz € R™ be an
arbitrary vector and write x(%) = x — z, we have

lim Tz = lim T*(x — x®)
k—o0 k—o0
= lim TFY(Tx — Tx®)
k—o0
= khm T 1(x — x(V)
= lim T %(x — x¥)
k—o0

= lim(x-x®)=0

k—o0

Since z € R™! is arbitrary, so T is convergent hence p(T) < 1. =

Definition 2.6.2 (Diagonally Dominant) A square matriz A is said to be diagonally
dominant if

my
|ﬂii|2§:lai]’|, i=12,...,m.

i=1
J#i

A square matrix A is said to be convergent if limg_ 5 A% = 0.

31



and is called strictly diagonally dominant if

my
laii|>2laij‘, i=1,2,...,m;.
7

Theorem 2.6.2 If, for a system of equations (2.30), A is strictly diagonally dominant,
the Gauss-Seidel iterations converge for any x©. [56]

Proof. If A is a diagonally dominant matric then

mi
laiil > Y lagl,  i=1,2...,m.
i=1
J#i
Since in Gauss-Seidel iterations we have
Tes = (D — L)™MU.

Let A be the dominant eigenvalue of the iteration matriz Tgs and let x be the correspond-
ing eigenvector such that |z,| =1 and |z;| < 1 for j # m, then

(D- L)Y 'WUx = Xx
= Ux = A(D - L)x (2.49)

= Z AmjiT; = MCmmTm — Z QmiTj)

j<m i>m
| S wss] = W & i)
j<m ji>m

| 22 )<m amjjl
l(ammzm — Zj>m am; ;)|
Zj<m |am;;)
lammTm| = 325 m |Gm;T;]
> j<m |amjllz;)
lamm||Zm| — Ej)m |amj||;]
Zj(m lamjl

|amml - Zj>m |amj|

= Al =

as|rm| =land|z;} < 1.

Let 01 = 3 s amjl, 02 = 3 icn lam;| and d = amm|. So

02
Al .
||\0'1+d

(2.50)

Now d, o1 and 09 are non-negative integers and also A is strictly diagonally dominant so
d> o1+ 09

=d—o01> 09
Hence by (2.50) we can say that |A| < 1

= p(Tgs) < 1

32



and so by Theorem 2.6.1 we have that Gauss-Seidel iterations will be convergent. [ ]

Note: In similar way we can prove for Jacobi iterations.

If we have a system of equations Au = f arising from the discretization of a PDE
using the finite difference method on a rectangular domain then the matrix A is likely
to be well structured and sparse, which means storage of A will not usually be required.
The updating of each entry of u will typically involve just a few other entries. Next
we illustrate the implementation of Jacobi and Gauss-Seidel methods for the case of
Poisson’s equation:

{ ~-Du(z,y) = f(z,9) (z,y) € 2=(0,1) x(0,1) (251)
u(z,y) = fH(z,9) (z,y) €T = O .

A discretized form of Poisson equation is

{ —AhUh(l‘,y) = fh(‘zv y) (:L'vy) € Qha (252)
un(z,y) = fi(2,9)  (2,y) € Th = 9.

Definition 2.6.3 (Stencil Notation) A general 2-D stencil denoted by [s¢, ¢,]n and is
given by

S-1,1 S0,1 S11
[Selyez]h = oo 8-10 50,0 51,0 e , (2.53)
8-1,-1 S0,-1 S1,-1

h

where s, ¢, € R, this defines an operator on the set of grid functions by

[se,.4a)0u(Z,9) = Y 80, 43un (@ + L1ha, y + Laha). (2.54)
4,62

Five-points and compact nine-point stencils are

80,1 S—-11 30,1 S1,1
5-1,0 S00 51,0 5-10 S00 510 (2.55)
50,1 h S-1,-1 S0-1 S1,-1 |,

Near boundary points the stencils may have to be modified [118].

Jacobi Method:
Using five-point stencil, in the weighted Jacobi Method if grid point (i, j) is not adjacent
to the boundary, u; ; is updated according to the equation

uf-‘,j =(1- w)ufgl +w

k-1 k-1 k-1 k-1
[hzfi,j F Uyt Ut U “M-l] (2.56)

4

For points adjacent to the boundary, some modification will be required to (2.56).
Gauss-Seidel Method:

Two different ordering schemes (corresponding to two different ways of stacking u into a
vector) for Gauss Seidel method will be discussed here.

Lexicographic Ordering:

A lexicographic ordering of the grid points involves ordering the points in increasing
order from left to right and up the rows so that the approximation at the bottom left
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point (1,1) is updated first followed by the approximation at the point (2,1) and so on
with the approximation at the top right point (m; — 1,m; — 1) updated last. A Gauss-
Seidel scheme used with lexicographic ordering is denoted by GS-LEX and the entry uy
corresponding to grid point (i, j) (not adjacent to the boundary) is given by

2p . k k k-1 k-1
o fi Uy o i F Y
i = 1 ]

(2.57)

Red-Black Ordering:

When a red-black ordering of the grid points is used the grid is colored in a checker-
board fashion as shown in Figure 2.9, entries of u; corresponding to the red points are
updated first followed by entries of u;, corresponding to the black points. A Gauss Seidel
scheme with red-black ordering of the grid points is denoted by GS-RB. Entries of u,
corresponding to red grid points are given by

hif. . + uk-1. + uk71 + uk-l. + uk7l
ui‘c,j = flsJ i-1,5 z,i—l i+1,7 1,7+1 (2.58)
and then entries corresponding to black points are updated by
RAfii+ub hub  uk bk
uﬁj - fl,] i—1,7 1,;11 1 i+1,5 1,j+1 (259)

Because a five point approximation to the PDE is being used, the updating of each entry
associated with a red point involves only entries associated to black points and vice versa.
This means that after each sweep of GS-RB the residual r, = f, — Lyuy is zero at the
black points. When each red point is updated using only black points and vice-versa, GS-
RB has an advantage over GS-LEX in terms of parallel computing since all the entries of
uy, corresponding to red points can be computed in parallel followed by all entries of up,
corresponding to black points. Note that because points are updated in different orders,
one step of GS-LEX will not produce an identical result to one step of GS-RB with the
same initial guess.

Line Relaxation: If u, is stacked into a vector u lexicographically and split u
into (m; — 1) sub-vectors each of size (m; — 1) then the sub-vector u, will contains all
the values of uy corresponding to row £ of the grid, hence performing a block Jacobi
or Gauss-Seidel iteration on this block system is equivalent to relaxing a whole row of
the grid collectively, this is known as z-line relaxation. Using block Gauss-Seidel, u, is
updated using the following equation

uf = A (uf_; +ub! + %), (2.60)
where Ay, is a tridiagonal matrix with 4 on the diagonal and —1 on the off diagonals. If
uy, is stacked along columns of the grid and the resulting vector partitioned as above, the
block relaxation methods relax whole columns of the grid collectively, this is known as
y-line relaxation. A sweep of an alternating line relaxation consists of an z-line relaxation
sweep followed by a y-line relaxation sweep. A line analogue of the red-black point-wise
relaxation for line Gauss-Seidel is the zebra line relaxation here either rows or columns of
the grid are colored alternately white and black, then the white lines are relaxed followed
by the black lines, in most cases the approximation at a point on a white line will depend
only on other points on that line and points on the adjacent black lines, hence a parallel
implementation of zebra line Gauss-Seidel will be possible.
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Figure 2.9: Red ([)-Black (o) ordering of grid points

In summary we have that Jacobi and Gauss-Seidel iterative techniques will be conver-
gent if the spectral radius of their iterative matrices is less then 1 or equivalently we say
that for a particular system Ax = b if we want to use Jacobi and Gauss-Seidel iterative
techniques, it is desirable that A must be diagonally dominant.

Even these iterative or relaxation methods may be very slow to converge, they are very
fast for the smoothing error which is useful in multigrid methods see [39]. This fact can
be revealed by a Fourier analysis, see Section 2.9.2.

2.7 Time Marching Schemes for Parabolic PDEs

In this section we explain the time marching methods used for parabolic equations, such
as Explicit and Implicit difference methods and Additive Operator Splitting Scheme
(AOS) and discuss their stability. The main references are [89], [98], [127] and [81].
2.7.1 Explicit Scheme (1-D)

Consider the 1-D Heat equation with constant coefficient

ou 0%u

i J <z<m t>0. :
Ty 0T, t >0 (2.61)

where a > 0 is constant and u = u(x,t) and the boundary conditions are

u(x,0) = ¢(x) (¢(z) given)
u(0,t) =0, u(m,t) =0 fort>0.

The exact solution of this initial value problem (IVP) can be obtained by using Fourier
series method with defining ¢(z) as —¢(—x) for —7 < o < 0, otherwise we use Fourier
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sine series, but here we use complex Fourier series i.e

u(x,t) = Z Ap exp (imz — m?at) (2.62)
m=—o00
where
ks
A= :2-17? () exp(—imz)de,  i=v—IL. (2.63)

Now we consider the discretized form of equation (2.61). Starting from tq =0, zg = 0
and let Az and At be the increments of the variables z and t respectively, with Az = §
and z; = jAz and ¢ = kAt where J € Z and j = 1,2,...,J,k = 0,1,.... Also let

u;‘? = u(zj, t), (zj,tk) is called the grid point. Then the explicit difference equation will
be:

k+t _ K k kg o,k

u;T — _ GUj+1 = 2ui +uj_, (2.64)
At (Ax)? ’

where 7 =1,2,...,J -1,k =0,1,.... The boundary conditions will be

uk=0, v5=0, k=0,1,... (2.65)
and the initial conditions will be

uj = ¢(joz), j=0,1...,J. (2.66)

These equations can be used recursively to determine all the uf for0<j< Jandk 20.

2.7.2 Stability

Let u(z,t) be the exact solution of the initial value problem and u;‘ is the solution of the
finite difference equation, then the error approximation will be

u;? —u(jAz, kAt).
Then the following two questions arise:

e What is the behavior of |u¥ — u(jAz, kAt)| as k — oo for fixed At and Az ?
¢ What is the behavior of |u;c — u(jAz,kAt)| as Az, At — 0 for fixed value of
tr = kAL ?

We note that an explicit solution of difference equation (2.64) can also be written as
Fourier series, i.e we can find the solution of (2.64) of the form

ub = Y Ape™itT(g(m))*

m=-—00

where £ and A,, are unknown. To find £ and A,, we proceed as follows. Let us put
uf = AnEkeimiBT m € Z in equation (2.64), to find the value of ¢ we have

k+1 k al\t k k k
'U,j = uj +(A—{E)—2-(uj+l —2'U,J +Uj_1)
.y : At ; -
= Am£k+lelm]Az — Amgkeim]Az + (Zw)2 (Amfkel"l(]+l)Az _ 2Am£kelm]Az

+ Amgkeim(j—l)Az)
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dividing through out by A4,,6%e"74% we get

E = 1+ alt (eimAz_z_'_e—imAz)

(Az)?
= 1— 2a/\t 3 PULTAC I e~i1nAx)
- (Az)? ( 2
1- (—QAG%(I — cos mAz)

Thus uf = ApntFel™iBT will satisfy the difference equation (2.64) if

2a\t
=1_==(1_ = 2.67
£E=1 By (1 cos mA:c) £(m) (2.67)
where the value of A, is same as that for the exact solution (2.63) i.e
1 L4
An=— ¢(z) exp(—imz)dz
21 J_,
therefore, the function
b= 3 Ane™it7(g(m)t (2:68)
m=—00

gives the exact solution of the difference equation (2.64). Now we check whether this
function satisfies the boundary condition and initial conditions given in (2.65) and (2.66)
with A,, as mentioned above. Each term in the above Fourier series solution of the

difference equation satisfies the difference equation and so is their sum. If we put k =0
then we have

[e o)
u_? — Z AmeimjA::,
m=—o0
which is the Fourier series for ¢(jAz) implies that initial condition is satisfied. In similar
way we can check the boundary conditions.
Since (2.68) is the exact solution of the difference equation and that gives the values

of function at mesh points i.e at £ = jAxz, let us use a finite number of coefficients from
above coeflicients, the above function may be written in the following way as

J
u;_:: Z B1neirnjA$[£(m)]k’

m=-J

where the B,, are to be obtained from the initial conditions regarded as 2J + 1 linear
equations in the 2J + 1 unknowns B_; to B; (Here j runs from —J to J as the initial
functions has been extended into the interval (—,0)).

Let us compare the growth factor in both solutions. In the exact solution the growth
factor is e~™ 4t and for the difference equation is £(m). As

£(m) =1—-mlaAt + 1—127714aA1t(Az)2 — .

and
1
e~ bt = 1 _ 2Nt + —2-m4a2(At)2 T

It is found that the two growth factors agree through first order terms. The two growth
factors can be made to agree, to any desired accuracy, by taking At and Az sufficiently
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small, thus there is a hope that the solution of the equation (2.64) may be good ap-
proximation to the solution of the differential equation. Thus the stability condition
is
max [£(n)] < 1. (2.69)
m

The error uf — u{jAx,nAt) remains bounded as k — oo for fixed Az, At, for a
general initial function with absolutely convergent Fourier series if and only if (2.69) is
satisfled. Since the true solution u(z,t) is bounded as t — oo, the error will be bounded
if u} is bounded as k — oo.

o0 oo
Wil =| 3 Amemitxgm)H < YD Anligm)F, lem| <1
m=—00 m=—00
and also from (2.69) we have that [£(m)| <1, Vm, so
[o o]
WG < Y [Anl.
m=—o0

As ¢(z) has absolutely convergent Fourier series, so

o0

Y |Am|

m=—00

converges and so |u;°| is bounded. For the present example, applying the stability condi-
tion (2.69), we have from (2.67) that the growth factor £(m) is real Vm and never exceeds
1. The condition is that the greatest negative value of £&(m) be not less than —1, the
greatest negative value is attained when cosmAz = —1, since Az = % and this happens
when m is is an odd multiple of J, so the condition of £(m) > —1 for such value of m is

that )
——fzf)tz <1 = Atg (A;) ,
which is the stability condition for the explicit schemes.

The Fourier series based stability, introduced by J. von Neumann is applied to a
simple problem with constant coefficient here, but this can be applied to the differential
equation with variable coefficients. This method can be applied to a wide variety of types
of difference equations, where the more elementary methods fail. In summary, two points
of view on stability have been presented. In the first view we can take t — 0o with fixed
At or At — 0 with fixed ¢, it is necessary to observe the restriction At < ﬁ%ﬁ to prevent
errors, from becoming so amplified as to make the whole calculations disapproving. If the
above condition is not satisfied, then the symptom of instability shows up in a relatively
small number of iterations. Whenever we use finite difference methods for IVP, we must
know the stability condition.

2.7.3 Implicit schemes (1-D)
Let f(z) be any function of z, we denote by § f; or (4 f); the central difference
N | 1
55 = (G + 5)A7) ~ F(G - 5)Aa)
where j may be an integer or an integer plus %, and
8*f; = f((7 + 1)Az) - 2f (jA2) + f(( — V)Ax).
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With this notation, we wish to consider the following implicit difference system for 1-D
heat equation (2.61):

k+1 ok 2. \k+1 2. \k

w, T —uf A(6°u) " + (1 — 0)(0°u)"

j l'_] = ( )J ( )( )J (270)
At (Ax)

where 0 < § < 1 is a real constant (when 6 = 0, the system reduces to (2.64)).

2.7.4 Stability

Again by putting uf = A, ™57k into (2.70) and simplifying we have

1—-(1-6)L(1—cosmAx)
1+ 60L(1 — cos mAx)

&(m) = (2:71)

2alnt .
where L = W For stability we need to check the condition [{(m)| < 1. The quantity
&(m) should be real for all m, and never exceeds 1. In Figure 2.10 the values of {(m)
are plotted as a function of the argument y = L(1 — cosmAz) for various values of 6.

As y increases through positive values, the value of £(m) falls monotonically from 1 to

1 T T T T T T T
05F J
or 4
. +0>1/2
E -05} -
nr
0=1/2
_1 b -
-15}F .
0<1/2
_2 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

y=L(1-cosmx)
Figure 2.10: Growth factor for the equation (2.70), through (2.71)

1-40 . .

—(—9—2. If 1/2 < 6 < 1, the asymptote is not less than —1, as in Fig 2.10. The graph
with o’s and [0's shows this, hence the difference equations (2.70) are always stable.
But if 0 < 6 < 1/2, y must be restricted, for stability, by the value at which the curve
intersects the line € = —1, in Fig 2.10. The graph with o’s shows this, hence the stability
condition must be %

2at 1 .

m<m 1f0<9<1/2

always stable if1/2<0<1
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or

2a(1-26)

At < L 10 <0< 1/2
always stable if1/2<0<1.

In the next section we discuss the 2-D case of the heat equation.

2.7.5 Stability in 2-D

Let us consider the 2-dimensional heat equation

ou &*u  0%u
=53t 53 2.72
5t~ 9a2 T o (2.72)
Let
=u(jAz, Ay, kAt)
and
1 k
_,;l = (—A‘Tr—)—i (u";_’_l,[ - 2'U,_l;l + u‘l;‘:_l'l) (A )2 ( J 41~ 211/";[ + uj,l—l) (273)
Then the finite difference approximation for (2.72), is the following
kl+1 uk,
—’T = 05T + (1 - 0)¢h. (2.74)

If 0 < @ <1 then (2.74) is an semi-implicit, if & = 0, then it reduces to explicit and if
# =1 it reduces to implicit. Putting u;?l = exp(ik1j Az + ik2lAy)EF in (2.73) we have

1 . .
o = Bap (erp(lkl (G + 1) Az + ikl Ay)
—2ea:p(ik1 JAT + ikl Ay) + expl(iki(j — 1) Az + ikzsz))gk
(A )2 (e:cp(lklea: +ika(l + 1)Ay)
—2exp(ik1jAT + ikol Ay) + exp(ikijAz + ika(l — 1)Ay))g’°
— —otkean(ikii ; 1 - L 4
= —2t%exp(ikijlz + 1k21Ay)[(Am)2 (1 -coski1Az) + (Ay)2(1 cos kgAy)]
At At
k _ _ k . . . = _ _ 8
Otgy; = —28exp(ikijlz + 1k2Ay)[(A$)2(1 cos kj Az) + (Ay)2(1 cos szy)]

=>At¢§, = exp(ikijAzx + ikyjAy)Uek
At

Bz )2(1 cos k1 Az) +

(AA*th(l — cos szy)]

where ¥ = 2[
Now equation (2.74) can be written as

ultl —ufy = 0865 + (1 - 0)Atgh

31

and putting the expression for and ¢k+1 we have

exp(ik1jAT + ko Ay)EFH! — exp(ikijAz + ikaj Ay)e*
= fexp(ik1jAx + ikoj AY)VEFH! 4 (1 — )exp(ikyj AT + ikoj Ay) Wk
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>E—1=0P6+(1-60)T

1+(1-6)0
>l= ———

¢ 1-6v
This is the amplification term. Now requiring condition |£} < 1 we need to find the bounds
for ¥, i.e the maximum and minimum value of ¥ as a function of two real variables ky Az
and koAy. This function is periodic and analytic so the extreme values occurs when
ov ov

Blebz) ~ dlaby)

(2.75)

and this is only possible when
sinki Az =sinksAy =0= coskiAx ==x1 and coskyAy = +1

SO
At At
ey tmpl <2<

From equation (2.75) we have
o  isreal.
o £ <1 (always)
e If § > ] we have § > —1, so stability is achieved.

e If0LOHKL %, a stability requirement is £ 2 —1, which imposes a restriction on At,
thus we have to find this stability condition.

As
1+ (1-9)¥
> -1 L SRS AN
¢ T—gv =}
=1+(1-0)¥ 2> -1+6V
=>\11-29\1:>-2=>\1/>‘_2
1-20

At At ] -2 At At 1

- =
= 4[(Az)2 + (Ay)2] 7 1-20 = (Ax)? + (Ay)? S 2-46°

Thus we have the following stability condition

ot S g2 H0<0<1/2
always stable if1/2<6<1.

2.7.6 Additive Operator Splitting (AOS) Scheme

This scheme was introduced by Tai [81] in 1992 and Weickert [127] in 1998. This scheme
applies to PDEs of the form

w = div(GVu) + i (xu)
= (?juxl)zl +...+ (gulﬂd)fd + rl(xv u) (2~76)

in [0, T} x @ C R with initial and boundary conditions

ou

u(0,.)=up and — =0 ondN.
on
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Here g is the diffusivity function and r denotes a reaction term. Let us assume that the
diffusivity function depends upon only on the location, i.e § = g(x). Without loss of
generality we drop the reaction term ry.

A backward Euler implicit step for the time discretization and a spatial finite differ-
ence discretization yields the semi-implicit evolution scheme

k+1 _ AL AL
uht! = (INd - 717A) Wk, k=1,2,... (2.77)

where uF is represented by a column vector of length N¢. The matrix A is of size N4x N¢
it can be represented in tensor product notation as ’

A=A AR...Q A,

where A; is the tridiagonal matrix corresponding to finite difference discretization of the
partial differential operators (Juz,)s,. Let us define the notation ®: let

any a2 M3 b1y bia biz
A = age1 Q22 Qa23 and B = b21 b22 b23
as1 az2 as3 b31 biy by

then
auB a12B 0,13B

A®B=| anB anB anB
a31B azB a33B

Since A contains 2d+ 1 nonzero diagonals and has band width dN, the linear systems
in each iteration steps are more difficult to solve than in one-dimensional case where the
iteration matrices are tridiagonal and the Thomas algorithm does the job [127].

The AOS scheme provides an additive decomposition of the evolution matrix. The
scheme proposes

d
1 At -1
k+1 _ __§ : _ ) k
“ T d i=1 (INi dh2 Al) uh k=12,.... (2-78)

In words, each iteration step requires the old iterate to be propagated in all coordinate
direction separately. Then the new iteration is given by the average of these intermediate
solutions. It is stated without proof in [127] that the AOS scheme is an O(At) + 0 (h2)
accurate finite difference approximation to the original equation, hence equally accurate
as the usual explicit and implicit schemes. And a proof is given in [89].

Theorem 2.7.1 The AOS spheme (2.78) with d=2 corresponding to the finite difference

equation

ko 1 g 1 At 7y 1 At \-)
(Fo = ¢ 2At(1_2ﬁ’41) ¢ _m(I_QﬁAz) ¢ =0,

k=0,1,..., is consistent in loo-norm of first order in time and second order in space

with the PDE (2.76).

Proof. Let ¢ be an arbitrary smooth function, for which we will examine the local
truncation error

Ti(6) = (Fu)k; — L) (tr, 245),
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where L is the spatial partial differential operator given by
L(¢) = div(gV¢) = (§ba)c + (gBy)y-
Besides the function ¢, we will need in each time step the function v solving
—2(gvz)z =0 with initial condition v(tg,.) = ¢(tk,.) (2.79)
and the function w solving
wy — 2(gwy)y =0  with initial condition w(t,.) = ¢(tk,.) (2.80)

Both PDEs are supplied with usual Neumann boundary conditions. These equations are
one-dimensional diffusion equations, which are accelerated by the factor 2 compared to
the PDE (2.76). For ease of notation, we do not index v and w by time step k, even
though it should be noted that these functions are different in each time step k (since
the initial condition of their PDEs differ in each step). Let © be the function such that

1 1 .
¢>=§u+§w+r in [tk tke1] X

at each time step n. For the finite difference operator at time step k, we obtain

1 At -1
koo L ok 1 k
(74) 28t 2t (I 2724 ) ¢
Fl
IR TYR At N 1 ey
T 7 (1~ 27 4) PN
Py

where ¢F, ¢F+1, vF+1 wktl rf+ldencte the vectors (reordered already by rows) contain-
ing the values u,vand w on the spatial grid point at time steps k and k + 1 respectively.

Consider Fj )
1 At -1
okl g0 k
sV am (-2 a) e

which apart from the factor % corresponds to the very first step of an implicit scheme
for the PDE (2.79). Since v is initialized to ¢(t,.) at time step k, this term is nothing
else but the finite difference operator of the implicit scheme evaluated at the function v.
But v is also the solution of this PDE with initial data ¢*, so that the local truncation
error for the implicit scheme is of first order in time and second order in space i.e
k11 ( A

R e (e A lukum = O(00) + O(h?),

Of course, the same argument also applies to Fj, using the fact that w solves the PDE
(2.80). So we obtain

_ k
(Fo)k; —A—tr;l + 6(At) + 6(h?), (2.81)
where the constants in the order terms do not depend on i, j or k.

It remains to take a look at rk“.

k+l = gt 1 Ve Lok
1_1 9 ij
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We use the Taylor expansion of u, v and w at time k to give

k+1

= o+ Dtdi(te,zy) + O((A)P)

_ %(qs;cj + Atuy(te, i) + O((AL)?)
S8+ Bt 3is) + OO
= T(d)t(tk,xij) - ’;‘Vt(tkal'ij) - %Wt(tk,xij)) +0((At)?),

We shall put this into the expression (2.81) for the FD operator. Furthermore, we exploit
the facts that v and w satisfy diffusion equations and that at time ¢, we have ¢ = v = w.
Hence, (§éz)z = (GVz)z and (§dy)y = (gwy)y and we obtain from (2.81) and the above

| R
(Fo)f = @ultr,zi5) — '2"2(g¢z)z(tka Tij)
| .
— 5:2G8y)y(tk,Tis) + O(AL) + O(h?)
= ulte, ziy) — (div(GD))(tr, ) + O(A) + O(h?)
Putting this into the local truncation error yields the required consistency
k — 2
T;(¢) = O(At) + O(1°).

The corresponding assertion for the l-norm follows from the fact that the constants
in the order terms do not depend on time or location. Finally, we mention that the
ghost value technique inherent in the one-dimensional implicit FD schemes ensures the
second-order accuracy of the scheme with respect to the Neumann boundary conditions.
-]
More details can be found in [89].

In summary, the explicit method is computationally very cheap. The computational
and storage effort is linear in the number of pixels N. Since for explicit scheme we have

(Az)?

At <

an explicit scheme is limited rather by its stability than its accuracy. In one dimension,
the semi-implicit scheme requires to solve a diagonally dominant tridiagonal system of
equations, and this is an unconditionally stable and we can get a desired accuracy without
the need to choose small time steps for stability. In higher dimension the semi-implicit
scheme remains absolutely stable but it is so laborious to solve the system of equations
obtained from the discretization. Additive operator splitting schemes (AOS) split the m-
dimensional spatial operator into a sum of m one dimensional space discretizations. The
update of each grid point involves only two neighbors in each dimension, thus reducing
the system to a set of tridiagonal system, which is similar to semi-implicit scheme in one
dimension.

, this is often a very severe step size restriction. It means that the use of

2.8 Basic Multigrid Methods

Practical multigrid methods were first introduced in the 1970s by Brandt [14]. These
methods can solve elliptic PDEs discretized on N = my x ma grid points in O(N)
operations. The multigrid methods can solve general elliptic equations with nonconstant
coefficients with hardly any loss in efficiency, even nonlinear equations can be solved with
comparable speed. There is no single multigrid algorithin that solves all elliptic problems.
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Rather there is a multigrid technique that provides the framework for solving these
problems. To solve your own problem, one needs to adjust the various components of the
algorithm within this framework. In this section we give some introduction of basic ideas
behind the linear and nonlinear multigrid methods. To explain the various components
of multigrid methods, we will consider the classic example of Poisson’s equation on the
unit square domain. See : {14, 39, 68, 118, 97, 128] and many references therein for more
details.

2.9 Multigrid Method

Simple iterative methods (such as the Jacobi method and Gauss Scidel method) tend to
damp out high frequency components of the error fastest. This has led people to develop
methods based on the following heuristic:

1. Perform some steps of a basic method in order to smooth out the error.

9. Restrict the current state of the problem to a subset of the grid points, the so-called
“coarse grid”, and solve the resulting projected problem.

3. Interpolate the coarse grid solution back to the original grid, and perform a number
of steps of the basic method again.

Steps 1 and 3 are called “pre-smoothing” and “post-smoothing” respectively; by applying
this method recursively to step 2 it becomes a true “multigrid” method. Usually the
generation of subsequently coarser grids is halted at a point where the number of variables
becomes small enough that direct solution of the linear system is feasible. The method
outlined above is said to be a “V-cycle” method, since it descends through a sequence of
subsequently coarser grids, and then ascends this sequence in reverse order. A “W-cycle”
method results from visiting the coarse grid twice, with possibly some smoothing steps
in between.

An analysis of multigrid methods is relatively straightforward in the case of simple
differential operators such as the Poisson operator on tensor product grids. In that
case, each next coarse grid is taken to have the double grid spacing of the previous
grid. In two dimensions, a coarse grid will have one quarter of the number of points
of the corresponding fine grid. Since the coarse grid is again a tensor product grid, a
Fourier analysis can be used. For the more general case of self-adjoint elliptic operators
on arbitrary domains a more sophisticated analysis is necded. Many multigrid methods
can be shown to have an (almost) optimal number of operations Q(N), that is, the work
involved is proportional to the number of variables N.

2.9.1 Elements of the Multigrid Method

The two main ingredients of multigrid method are error smoothing and coarse grid cor-
rection.

Error Smoothing:-

Many basic relaxation schemes like Jacobi and Gauss Seidel methods when used to solve
elliptic PDEs, discretized on Cartesian grids are slow to converge because of low fre-
quency error components, however they do posses a smoothing property. These schemes
are effective at removing the oscillatory Fourier modes of the error in an approximation
but may not effective at removing the smooth® modes of the error i.e they smooth the

8 A function is called smooth if its Fourier coefficients are decaying, i.e it is essentially in a span of
some low frequency Fourier basis functions.



error while not necessarily reducing its size greatly. A smooth quantity can however be
well approximated on a coarser grid.

Coarse grid correction:-

Let us consider a linear system

Lu=f. (2.82)
Let v be an approximation to the solution u then the error e is given by
e=u—uv,
which give rise to a residual equation
Le=f—Lv=r, (2.83)

where r is the residual. This residual equation is used to approximate the error e. Of
course this equation is as expensive as the original one (2.82), but if we replace £ by some
simple approximation £ (for Jacobi method diagonal D of L is used for approximation) an
approximation of the error can be found relatively cheaply, then used to correct v. Then
repeat the process until convergence. The following example will be used in subsequent
discussion

Example 2.9.1 Let us consider the Poisson equation

-Au(z,y) = f(z,y) (z,y) € Q=(0,1) x (0, 1),
{ u(z,) = f7(@,9) (z,9) €T = 0. (284)
A discretized form of Poisson equation is
{ "Ahuh(zay) =fh($ay) (-Tay) € Qy 2.85
un(@y) = fi(&,y)  (2,9) € Th = O, (285)

with h = 1/mi,my € N. The iteration formula of the classical lezicographical Gauss-
Seidel method for Poisson equation is

1
btz y;) = Z[hth(fi,yj) +uft (2 — h,y;) + ub (@i + h,y;)

+ uptH @i,y — b) + uf (@i, 95 + b)), (2.86)

where(zi,y;) € & and uk and uﬁ“ are the approzimations of up(x;,y;) before and after

iteration, respectively. Consider the error

eﬁ(l‘i,yj) = un(Ti, ¥;) — uﬁ(zi, Yj)-
Then (2.86) becomes

1
k
et (ziy;) = Z[eﬁ“(mi—h,yj)+eﬁ(xi+h,yj)

+ eﬁ“(wi, yj —h)+ eﬁ('xi,yj + h)]. (2.87)

Error smoothing is one of the two basic principles of the multigrid approach. Many clas-
sical iterative methods like Gauss-Seidel etc. if appropriately applied to discrete elliptic
problems have a strong smoothing effect on the error of any approzimation. A quantity
that is smooth on a certain grid can also be approzimated on a coarse grid (a grid with
double size) without any essential loss of information. In other words the error become
smooth after few iterations, then we can approzimate this error on a coarse grid with
fewer grid points. Thus we can say that coarse grid procedure is less ezpensive then a
fine grid procedure.
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2.9.2 Smoothing Analysis

Definition 2.9.1 (Visible) A component %*/" is visible on 2, if there is no frequency
6o with |Bo| < |8] such that

eifoz/h = eibz/h o Gllz € Q.

A wvisible component does not coincide with any lower frequency on fine grid €.

1D case:

On fine grid §, only Fourier components €!*/* with § € (—x, 7] are “visible”

In local mode analysis the notion of low- and high-frequency components on the grid £,
is related to a coarse grid Q. In this way €!%®/% on Q, is said to be an high-frequency
component, with respect to the grid g, if its restriction to g, is not visible there.
Usually the high frequencies are those with 7 < 10| < .

2D case:

Let us consider the vertex centered discretization of the domain Qy,, let hq, hg in x- and
y- direction spatial step sizes respectively, then

Qp = {{(&1h1,82h2) : £1,¢5 € N}

6 = (0,,02) is the “frequency”. On fine grid Q, only Fourier components
elfX/h . i012/h g6y /ha h = (hy, ho)
with |8] := max(]|61],|02]) < 7 are “visible”. The same idea can be extended to higher

dimension.
We will consider 2D problem onwards, stencil notation of Apup(x) is given by

1
Ahuh(x) =ﬁ 1 -4 1 uh(x),

~ o

where x = (z,y) € Q, i = v/—1 and h; = hy = h. Applying a difference operator L to
Fourier components

ifx/h __ i6 i
Lyupel®™/h = ( Z Z R 1#16102#2) elox/h (2.88)
m€l poel

)

Lu(8)
Zh(ﬂ) is called the eigenvalue of Ly, and e®*/h
6 = (61,62) and

are eigenfunctions. For example, let

1 1
Li=Ar==1]1 -4 1
2
1
Ta(0) = 2
n(8) = p—(cos 61 + cos 8, — 2). (2.89)

Example 2.9.2 Let us consider the linear problem
LaUn(x)=fr,  on
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where Ly, is a difference operator, this problem is based on an operator splitting
Ly =Ap+ By,

where Ay and By are again difference operators. Let u, be the initial approzimation
which produces a new approzimation 4y by solving

Apup(x) + Briip(x) = fr(x)

at each grid point x € Q. Let e, = U, — up and €, = Uy — 4y, be the error before and
after relazation sweep® respectively, then we have the following error equation

Apep(x) + Bpép(x) =0

at each grid point x € Q. Also let e, = Aeigx/h and &, = Aelfx/h A A € R are the
error amplitudes before and after relazation respectively, then error equation becomes

AL(0)A+ Br(9)A=0

_ A
= A= —(#EZ;)A,

where Zh(ﬁ),ﬁh(ﬁ) are the Fourier symbols of the difference operators Ay, B,. Now

Zh(g)l

wo) = |i§h(0)

is the amplification factor (or reduction factor) of the component .

High and Low frequencies:
Let Q, be the fine grid and Qyp, (standard coarsening) be the coarse grid. Then a Fourier
component on fine grid is called a high frequency if it restriction to the coarse grid is not
visible there. Otherwise it is called a low frequency. First we consider one-dimensional
standard coarsening:

Qp={0Oh: 0 € Z},Qop, = {20,h : k € Z}.
Let || < m, then by injection from fine to coarse grid:
I’Zlh(eiﬂz/h) — ei201‘/2h

this component ei?2/2h js yisible on coarse grid Qo only if [20) < «, ie || < 3

the high frequencies on (y are those with 5 < |6] < 7. In 2-D, Fourier components
elfx/h — i013/hb2ulh yyith O = (81,0,) and |6] := max(|6;,|0:|) < 7. Then

High frequencies: g <10 €,

Low frequencies: 0] < g

Definition 2.9.2 (Smoothing) Smoothing stands for the convergence of high frequency
error components which cannot be approximated from the coarse grids in a multigrid cycle.

YRelaxation sweep means one step of error smoothing
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Definition 2.9.3 (Smoother) An iterative method which is used to smooth the error.

Definition 2.9.4 (Smoothing rate) For a relazation scheme with amplification fac-
tors p(0) of Fourier components ei®*/" the smoothing rate i is defined by

i = max{|u(8)| : 8 € high frequencies}.
Smoothing rates are also known as smoothing factors.

Now to find the smoothing rate for Gauss-Seidel relaxation for Poisson’s equation, con-
sider

1
1
ApUp = 51 1 -4 1 |Un=fp (2.90)
1
Relaxation in error terms is given by
1 0 1 1
2 1 -4 0 jeéep(x)+ w2 0 0 1 ]exx)=0.
1 0
By An
Now
. 1 . .
Bhewx/h = _2(6—101 + e-le _ 4) 'eiﬂx/h
Bn(6)
1 : .
Aheiax/h — ﬁ(eiel + 6102) .exox/h
Nr—  —
An(9)
Amplification factors:
Zh(é?) B (i1 + ¢102)

f)=—= = - -
ll«( ) Bh(g) (6—101 + e—ib2 _ 4)
Smoothing rate:

m
p=max{|p(9)| : 5 < |f] <7} =0.5.

The high frequency error components are reduced by a factor of (at least) 0.5 per relax-
ation sweep.

Note 1 For low frequencies, the reduction per relazation sweep is much worse:

lw(@)| -1 if 6—0.

2.10 Restriction and Interpolation for Vertex Centered Grids

The choice of restriction and interpolation operators 1,2," and I.ﬁ‘h, for the intergrid transfer
of grid function, are closely related to the choice of the coarse grid. In this section we
will introduce the restriction and interpolation operators for standard coarsening.



2.10.1 Restriction Operator

A restriction operator I2* maps h-grid functions to 2h-grid functions. A frequently used
restriction operator is the full weighting (FW) operator, which is in stencil notation given
by

2™
— 12 4 2
16
1 21 h
Applying this operator to a grid function u(z, y) at a coarse grid point (z, y) € Qy, means
’U.Qh(ft,y) = I}%huh(x)y)

1
= 1_6[4uh(1"y) + 2uh(z + h’ y) + uh(x - h"y) + 2“h(zay + h) + 2u;,(z,y - h)

+ up(z+h,y+h)+un(z+h,y—h)+u(c—h,y+h)+up(z—hy-h).

Another restriction operator is known as half weighting (HW):

2h

o = O

1
4
1

(el =]

1
8

2.10.2 Interpolation

The interpolation operators (prolongation operators) map 2h-grid functions into h-grid
functions. A very frequently used interpolation operator is the bilinear interpolation from
Qs to Qp, which is given by (with Figure 2.11):

e2n(z,y) for q
%[EQh(fE,y+h) +e2h(z,y—h)] for O
I eon(z,y) =< 3lean(z + h,y) + ean(z — h,y)] for o (2.91)

Z[EZh(I + h7y+ h) + e?h(x + h7y - h)
+ean(z — h,y + h) +ean(z — h,y — h)] for o.

2.10.3 Restriction and Interpolation for Cell Centered Grids

The cell-centered discretization uses unknowns located at the centers of the grid cells fig-
ure 2.12. In the case of Poisson equation, there is no difference in the order of accuracy
of the solution of a vertex or a cell centered discretization. The treatment of bound-
ary conditions is different in vertex and cell centered discretization. Efficient multigrid
methods can also be developed for cell-centered discretization. The main difference in
the multigrid algorithm is that the coarse grid points do not form a subset of fine grid
points.

Restriction:

If we use a cell-centered discretization, each cell of the coarse grid ), contains within it
4 fine grid cells and each mesh point of {1y is surrounded by the 4 mesh points of §,.
The four cell average restriction operator evaluates the value of a coarse grid function
uop, at a coarse grid point by taking the average value of the fine grid function uy at the
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Figure 2.11: Left: A fine grid with symbols indicating the bilinear interpolation used for
the transfer from the coarse grid (¢). Right: The distribution process for the bilinear
interpolation operator .

four fine grid points surrounding it. The restriction operator is given by

1 172k
1
usn(z,y) = I'w(z,y) = 1 : w, (z,y)
1 1 A
1 h h h h
= Z[uh(l' ¥ 5) + upfz — 7Y + 5)
h h h h
+ up(z+ Y- 5) +uy (7 + ¥t 5)].
Interpolation:

The bilinear interpolation operator for cell centered discretization is given by:

I
en = Iopean

where
2,2 : i+1, +1 i+1,j+1
g = 1—6-[963,]1+ 3(eqp "+e'] )+ eft1at),
2i+1.2j +1, i+1,5+1 i1
e, = E[ge;h +3(e7 + ez It 4 ebitl),
eii’zj“ = _[ge;}{“ +3(€2h+e'“l)+ ;—;l)+l],
' ' 1 .
2i+1,25+1 i+1,j+1 1.j ij+1 y
€h = 1g9%an +3(ehp ' + ebith) + eb].
In stencil notation we have
133 11"
399 3
39 9 3
1 3 3 1 -

More details can be found in [39, 68, 118].
Order of Interpolation and Restriction
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Figure 2.12: Cell-Centered discretization, (o) denotes fine grid points and (<) are coarse
grid points. : arse

An interpolation operator is said to have an order p + 1 if it can transfer exactly polyno-
mials of order p i.e. if the exact values of a polynomial are given at the coafse rr?dI )o{nts
the exact value of the polynomial can be found at all fine grid points bv‘ iﬁor )(I)l'xtil/;:
with the given operator. The order of a restriction operator is equal to ;he 01:(1101' z)f itt
transpose. Bilinear interpolation in both the vertex and cell-centered cases has (‘)r(lvr 2
which means the full weighting restriction operator also has order 2. o ’

Remark 2.10.1 Let p be the order of the operator L in the differential equation Lu = f.
Let p, and p; are the orders of restriction and interpolation operators respectively, then
the order of the transfer operators should fulfill [118] C

Pr +pi > p-
In this thesis we mainly solve PDEs of order 2, so we use bilinear interpolation and full

weighting restriction operators (both are of order 2) as they fulfill the above condition.

2.11 Coarse Grid correction

One idea to approximately solve the residual equation is to use an appropriate approxi
. i S . C =
mation Lop of Ly on a coarse grid €2s;. The residual equation becomes

AT
Loy, = rip,

assume that L.;hl exist.
Coarse Grid Correction: u}" — 1,;”“
RS
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¢ Compute residual it = fn — Lpuy.

o Restrict the residual to coarse grid oy =1 ,%"e;l".

e Solve on coarse grid Qg Lynély =iy,

o Interpolate €7} to fine grid e = Ih em.

e Compute the new approximation “;;HH = up' + €.

The operator Loy is usually the direct analogue of Lj, on the grid g, i.e. the discrete
operator which results from discretizing the continuous problem Q5. An alternative is
the Galerkin approach which defines Lgp as I;‘:"thé‘h. The Galerkin approach is often
combined with more sophisticated, matrix dependent interpolation operators [28, 49, 48]
used for more difficult problems in which the coarse grid operator is not well approximated
by re-discretization, and within the purely black box algebraic multigrid methods to
automatically define an accurate coarse grid problem.

2.12 Two Grid Algorithm

Each iteration (cycle) of multigrid method consists of pre-smoothing, a coarse grid cor-
rection and post smoothing steps. The algorithm is given below

Algorithm 3 (Two Grid Algorithm) uZ’H = TWOGRID(u}}, Ly, fh,v1,nup) vy:
No. of pre-smoothing steps.
vo: No. of post-smoothing steps.

e Smooth the solution on the fine grid using appropriate smoother i.e

@ = SMOOTHER" (Ln, u", f3)

e Compute the residual Fn = fh— Lyalr.
e Restrict " to coarse grid o = I2hymm,
e Solve exactly on coarse grid oy, Lonéy; =73,
e Interpolate the correction er =1Ipem.

o Compute the new approzimation up® = iy’ + €},

Apply vo steps of smoother (post-smoothing) i.e
upt! = SMOOTHER"(Ly,u, fr)

2.13 Multigrid Algorithm

Recursive use of “T'wo Grid“ method leads to a multigrid method. Consider the following
grid sequence
Qu(finest) D Qo D D ... D Qpp(coarsest).

Solve the equations on the finest grid €, iteratively, assuming that smoothing can be
adequately done on all fine grids and we can afford to solve the coarsest grid equation
on Q, directly.
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Figure 2.13: One cycle of Two Grid method [16].

Algorithm 4 (Multigrid Algorithm (MGM)) u;\f'“ = MGM (v, v1,ve, u}*, Ly, fn):
To solve a discretized PDE using multigrid method we need to set the following parame-
ters;

v1 2 No. of pre smoothing steps before restriction on fine grid.

vy : No. of post smoothing steps after interpolation.

v : No. of multigrid cycles ( for V-cycle v = 1 and for W-cycle v = 2).

o IfQy is coarsest grid, solve Lyuy = fi and STOP.
Else apply vy steps of smoother to relax the solution, i.c ) = SMOOTHER" (u}", Ly, f1,)-

o Compute residual PR = fb— Epur,
3 = > = — 2’ '
o Restrict T} to coarse grid o, = 1T

e Compute an approximate solution 4} of the residual equation on coarse grid Qay,,

Lonel =78, (2.92)

On the coarsest grid,
solve (2.92) using any direct method.
FElse
Eg;l - ‘/\I(;A](‘f' Vi, V2, 0, L'.?/l' ,;‘:?’;1)'
e Interpolate the correction 5;)" = Ié'h e -
o Compute the new corrected approzimation on Q,, upt =y + eyt
o Apply vy steps of smoother (post-smoothing) i.e

u't! = SMOOTHERY*(Ly,, ull, fn).

Sce Figure 2.14 which shows the V-cycle of a multigrid method
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Figure 2.14: One cycle of Multi Grid method [16]



2.14 Non-Linear Multigrid

In many cases local nonlinear relaxation methods such as Gauss-Seidel Newton have a
similar smoothing effect on the error to their linear analogues and the same principles of
recursive application of smoothing and coarse grid correction that are used to construct
linear multigrid methods can also be applied to discrete nonlinear problems [14, 39].

2.14.1 Non-Linear Residual Equation

Assume that we have a discrete nonlinear equation

Nu(un) = fn

on some fine grid €, then the residual equation for non-linear discretized PDE on the
fine grid 2, is
Ni(un) — Ni(v) = Ni(vn + ep) — Ni(vp) = 1,y

where vy, is the approximation to up, ey is the error in vy and v, = fi — Ny(vp) is the
residual. This residual equation on the coarse grid Qa5 becomes

Non(vap + e2n) — Nop(van) = T

The algorithm for nonlinear multigrid can be described in similar lines as done for the
linear multigrid 2.13.

2.15 Full Multigrid Method

When convergent, multigrid iterations typically converge at a rate independent of the
problem size. They will thus provide a solution with prescribed accuracy in a fixed
number of iterations, independent of how fine the mesh is. However, the finer the mesh,
the better accuracy can be expected, and thus the more and more iterations are needed
to apply to exploit the accuracy of the discretization. In total, this effect contributes a
logarithmic factor to the complexity estimate. This changes, when better initial values
are used to start the multigrid iteration. The natural technique is nested iteration, where
a multigrid method on the coarser level is used to supply an initial guess by interpolating
its result. If this is used recursively, the so-called full multigrid method results. It starts
on the coarsest discretization with an exact solver. These results are interpolated to the
next finer grid, where a few cycles (V or W) of the multigrid method are applied. The
result is again interpolated to the next finer grid, where again a few cycles of multigrid
suffice to produce a solution whose algebraic accuracy and differential accuracy match.
This algorithmic scheme typically requires just one or two V-cycles on each level to
maintain truncation error accuracy on each level. The resulting method has optimal
complexity in the sense that it produces solutions at a cost proportional to the number
of unknowns. In Figure 2.15, full multigrid scheme is given.



Figure 2.15: Full Multigrid scheme [16]. Blue arrow: Interpolation; Red arrow: High
order interpolation; Black arrow: Restriction. On coarsest level, we solve the problem
exactly and on finer level only we do only smoothing.
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Chapter 3

Review of Variational Models in
Image Processing

In the broadest sense, image processing is a form of information processing for which both
the input and output are images, such as photographs or frames of video. Most image
processing techniques involve treating the image as a two-dimensional (2-D) signal and
applying standard signal processing techniques to it, where signal processing refers
to the processing and interpretation of signals. In this chapter we mainly focus on
the variational models for Image De-noising and Image Segmentation. Various existing
numerical methods for the realization of these models will be discussed.

3.1 How do we define an Image?

In Digital (discrete) sense a grey image is a 2-D array of numbers (matrix), while a
color image is a 2-D array of vectors (Red Green Blue, shortly RGB). In continuous
sense a grey image is a 2-D function z(z,y) and color image is a 2-D vector function
(r(z,y),9(,y),b(z,y)). In this thesis we mainly work on grey value images, which
normally take values in the range [0,255]. An image is usually divided into m; x my
parts, each part is called pixel. Each pixel value in the array represents the average light
intensity over a small part (pixel) of the image. In Figure 3.1, examples of image are
given which will be used for our experimental work in coming chapters. Images in first
row are specially used for 2-phase image segmentation, images in second row are used for
multiphase segmentation and the third row images are used for segmentation of special
features in an image.

3.2 Variational Models and Partial Differential Equations

Digital images are representations of the visual world surrounding us. The common point
between all digital images is the fact that they are defined in a discrete setting although
they come from a continuous world. The transfer process is done by sampling and
quantizing the “continuous images”. Even if all image processing methods are developed
for digital/discrete images, it is often more convenient to use continuous formulations.
At the beginning of image processing history, the techniques used to process images
such as filter theory or spectral analysis were based on a discrete setting. Nowadays,
new techniques such as wavelets theory or variational models are based on a continuous
setting.
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Figure 3.1: Sample images used in our experiments. Images in top row are used for
9-phase image segmentation, the images in second row are used for multiphase image
segmentation and images in third row are used for segmentation under geometrical con-

ditions.
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In this thesis we develop fast numerical methods for solution of partial diffcrential
equations based models and variational models for solving image segmentation problems.
Let us assume that an image processing problem can be formulated as

u* = argmin, ¢ gF'(u), (3.1)

where u*, defined in an appropriate space S for the given problem, is an optimizer of an
energy functional F'(-) which gives solution to the given image processing problem. If F
is continuous and differentiable, it is possible to compute the first variation to determine

the Euler-Lagrange’s equation

OF
52 =0 (3.2)

which gives a necessary condition for u* to be an optimizer of F' such that %E = 0.

Then a way to compute an optimizer is to use the gradient descent (time marchmg)
method by introducing an artificial time ¢ such that:

ou oF

5t = e (3.3)

and look for the steady state solution. G. Sapiro in his book [104] proposes a nice (a
simple) example to illustrate the previous ideas. If we want to de-noise an image, an
example of variational model is

u* = argminge2r2)F(u) where F'(u) = / |Vu|?dz, (3.4)
R2
where F is in this case the Dirichlet functional. The Euler-Lagrange’s equation of this

functional is
ou*

ot

In this thesis we mainly consider the fundamental functionals like Rudin-Osher-Fatemi
(ROF) total variation functional [99] and the Mumford-Shah functional [88].

= Au’. (3.5)

3.3 Variational Image Segmentation Models

Image segmentation is a fundamental component towards automated vision systems and
is useful in medical applications. Segmentation means dividing an image into a patchwork
of regions, (domains) each of which is homogeneous, that is, they are same in some
sense like intensity, texture, color etc, in other words distinguishing objects from the
background or systematically select specific features out of an image that has many
features [33, 6, 87]. For intensity based images, the non-equation based methods are
the popular approaches: threshold techniques, region merging algorithms, the watershed
segmentation techniques and so on. Most of them are based on a discrete setting, which
makes them dependent on the parametrization. Moreover, they are not defined in rigorous
mathematical framework, for more details see [111]. One may also view the task of
distinguishing objects of interest from “the rest”, is to identify the feature boundaries.
In recent years, a class of image segmentation models based on variational approaches
have been introduced. These are defined in continuous setting and are mathematically
well studied. Two well known variational image segmentation models are the Mumford-
Shah model [88] and the active contour model [75]. In the Mumford-Shah approach, the
goal is to find a partition of the given image z into different homogeneous regions, in
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terms of intensity, color, texture etc. The n-dimension Mumford-Shah functional can be
defined as

FMS(y,K) = / (u — 2)%dzdy + / |Vul*dzdy + oH" "1 (K), (3.6)
Q ON\K

where Q is a bounded domain in R*,z : @ — [0,1] is a given function (input grey
level image), a and J are positive (tuning) parameters, H™! is the (n — 1)-dimensional
Hausdorff measure (that is, the usual (n—1)-dimensional area in case of subsets of regular
hyper surfaces, the length in the most relevant case n = 2). The unknown function
u: 2 — R is regular (say, of class C!) out of a closed singular set K, whose shape and
location are not prescribed. In equation (3.6), the first term is the fitting (fidelity) term
with respect to the given image z, it asks that u approximates z. The second term is
the regularization term which asks u to be smooth inside the Q \ K and the last term
is the constraint on the set of discontinuities (edges) K which asks the boundaries to be
as short as possible. Theoretical results on the existence and regularity of minimizers of
(3.6) can be found in [88, 87, 86] and [58]. A reduced case of the above model is obtained
by assuming u as a piecewise constant function inside each connected region say %, i.e
u = ¢; inside each connected region ;. Thus Mumford and Shah model is reduced to
minimizing the following functional:

FAMS (u,K) = ﬂz /Q.(z —¢;)3dzdy + o|K|. (3.7

As we mainly consider problems in 2-dimension, the last term of (3.6) is the total length
of the set of discontinuities K. For fixed K, minimizing (3.7) with respect to ¢; gives

Jo, zdzdy
B Jo, drdy

Hence (3.7) reduces to the following minimization problem

i = mean(z) in .

FMS(K)=p Z /Q.(z — mean(z))*dzdy + oK. (3.8)

Theoretical results for the existence and regularity of minimizers of (3.7) can be found for
example in [88], [116] and references there in. In practice the functionals (3.6) and (3.7)
are difficult to minimize because of the unknown set K, is of lower dimension and also
the functionals are not convex. A possible solution to these problems will be addressed
in Section 3.5 and in chapter 5.

Although the first segmentation model (3.6) proposed is to extract all significant parts
in images, some specific parts of image can be more important than others depending on
applications such as in medical imaging (look for tumor in a brain MRI). This makes the
link with the second segmentation model, in the context of variational models, which aims
at detecting edges in images. The active contour model proposes to detect the closest
contour(s) from an initial position. The active contour/snake was initially introduced by
Kass et. al in [75]. The active contour model locates sharp image intensity variations by
deforming a curve C towards the edges of objects in a given image z. The snake model
has external constraint forces and the internal constraint forces in its energy functional.
The image forces push the contour/snake toward image features like lines, edges etc, the
internal forces impose the smoothness constraint and the external constraint forces put
the contour/snake near the desired local minimum. The evolution equation (introducing
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artificial time step) of the parametric planar curve C(q) = (z(q),y(q)) € ,q € [0,1] is
given by the minimization of the following energy functional:

2 1
FavrC@) =a [ 125@pagrp [ 0D pagin [ (9(aG el 39)

where @, 8 and X are positive constants. Also g : [0, +00[— R* is called the edge detecting
function, and is a strictly decreasing function which vanishes at +o0o and is given by

1
1+9|V(z+Go)|*’

9(V(z2xGo)) = (3.10)

where G,(z,y) = ﬁ,exp ((x — )+ (y - uy)2/202) is the Gaussian function with

standard deviation o and mean p, py, 2 *G, is a smooth version of the original image z
and 7 is a positive constant. Fxwr is not convex [75], so the solution will not be unique
and it has local minima. So the local minima of Fxwr can be reached by solving the
following Euler-Lagrange’s equation

620 oc
+ﬂ 4+ AVg® = (3.11)

In [75], this fourth order equation (3.11) was numerically solved using finite differences.
It provides a fast numerical algorithm but, in the case of closed curves, it does not
allow changes of topology since the final curve has the same topology as the initial one.
In other words, it is not possible to detect more than one object. Another drawback
of the snake segmentation model is the dependence of the functional with respect to
the parametrization of the curve C, i.e different parametrization of the curve may give
different solutions for the same initial condition.

To overcome the limitation of the changes of topology, the powerful level set method
(90, 108, 92] may be used. The curve C is then implicitly represented by a function of
higher dimension @, called the level set function, and the curve evolution equation can
be re-written in a level set formulation.

3.4 The Geodesic Active Contours Model

V. Casselles et al [21] proposed a new and improved energy, based on Kass et al [75]
that is invariant with respect to a new curve parametrization [21, 103, 60, 100, 96]. The
new energy is given by

1
Foac(Clg)) = /0 9(IV2(C(@))IC" (a)ldg. (3.12)

Since L(C) = fol |C'(q)|dg = fOL(C) ds, where ds is the Euclidean element of length and
L(C) is the Euclidean length of the curve C, hence equation (3.12) becomes

L(C)
Forc(Ca) = [ g(a(Cl@)l)is (3.13)
0
Here the functional (3.13) is actually a new length obtained by weighting the Euclidean
element of length ds by the function g which contains information concerning the bound-

aries of objects [7]. The function g is the edge detecting function defined in (3.10). The
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equivalence between minimizing Fgac and minimizing Fiwr at 8 = 0 was studied in
[21]. Hence the direction for which Fgac decreases most rapidly provides us the following
minimization flow: more details of its derivation can be found in [21]:

S geN — (Vg - NN, (3.14)

where k is the Euclidean curvature, and A is the unit normal vector. This equation
shows how each point in the active contour C' should move in order to decrease the
length Fgac. The detected object is then given by the steady state solution of (3.14).
In level set formulation, the evolution equation is:

o v

B = VIV - s +m9) (3.15)
¢ is a Lipschitz function representing C as a zero level set. The term 119, v; > 0 is
added to increase the evolution speed and to attract the curve towards the boundary and
constitute in fact an extra area-based speed.

These snakes/active contour models rely on the edge function g which depends on
the gradient of the image. These models can detect only objects with edges defined by
gradient. Also, in practice the discrete gradients are bounded and then the stopping
function g is never zero at the edges, and the contour may pass through the image edges
[35]. On the other hand if the given image is too noisy, then the smoothing Gaussian has
to be strong (potentially distorted by noise), and which will smooth the edges too.

In the next section we describe another active model which does not depend on the
edge function to stop the contour at edges. This is the Chan-Vese model [35], “Active
Contour without Edges”.

3.5 Active Contour without Edges

T. F Chan and L. A. Vese in [35] proposed a new energy based model for image segmen-
tation, which does not use the gradient of image z as a stopping process, but the stopping
term is depending on Mumford-Shah segmentation technique [88]. This means that this
model can detect contours with or without gradients. The basic idea of contour models
or snakes is to evolve a curve, subject to constraints from a given image in order to detect
objects in that image. Let z be the given image, as a bounded function. Assume that z
is formed by two regions of approximately constant intensities of distinct values z; and
z,. Assume that the object to be detected is represented by the region with intensity 2;
and its boundary is I'g. Consider the ’fitting’ term

E(T) = / |z — c1|?dedy + / |z — co|?dady, (3.16)
inside(l) outside(I")

where I' is the unknown evolving curve and c; and ¢z are the averages of the image 2
inside and outside of I respectively. In this case, it is obvious that [y, the boundary of
the object, is the minimizer of the energy. To minimize (3.16), some regularization is
required. The regularization terms used in [35] are the length of I' and the area of the
region inside I'. Thus similar to (3.7) they consider the following energy:

F(T,c1,c2) = p.(length(T))P + v.area(inside(T)) +

A / |z — e1]2dxdy + Xg / |z — co|dzdy, (3.17)
inside(l) outside(T)
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where c¢; and ¢ are unknown constants, ¢ 2 0, v 22 0, A1, A2 > 0 are fixed parameters. In
[35] A1 = A2 =1 and p > 0, in particular we take p = 1. I" generally mean a hypersurface
in R™ and “length(T")” means the Hausdorff (n —1)-dimensional measure H*~}(I). If the
curve is forced to move only inside or outside then we take positive v otherwise v = 0.
We ignore the area term in later chapters i.e. v =0.

Thus Chan and Vese in [35] proposed the following minimization problem

inf F(F, Ci, Cz). (318)

F,CI,C2
This functional is a special case of the piecewise constant Mumford and Shah segmenta-
tion model [88] (restricted to only two regions with constant average intensities).
Level Set formulation of the Model:
Let ¢ : R? — R be a Lipschitz function [92], then representing I' as a zero level set of ¢,

such that
{ I = {(z,y) € R*: ¢(z,y) = 0},
inside(T) = {(z,y) € R? : ¢(z,y) > 0},
outside(l') = {(z,y) € R?: ¢(z,y) < 0}.
Thus the unknown lower dimensional variable curve T is replaced by another unknown
higher dimensional variable ¢. Let us define the Heaviside function I and the 1-
dimensional Dirac measure d concentrated at 0, defined respectively by

1 ifx>20
H(x)"{ 0 ifz<0

and
b(a) = - H(z).

Expressing each term of the energy F' in terms ¢:

length{é = 0} /Q VH($)|dzdy = /ﬂ 5(6)|Véldzdy,
/Q H()dzdy,

/ |z — o1 Pdedy = / |2 — c1PH(@)dedy,
¢20 0

area{¢ 2 0}

/ |z — co|dxdy = / |z = col?(1 — H(¢))dzdy.
¢<0 Q
In level set formulation equation (3.17) becomes:
F(grenca) = [ [VH@)dady+v [ H@)isdy+
9]
A\ /Q 12 — cu2H(9)dady + Mg / Iz — ¢3[2(1 — H())dzdy. (3.19)
Q

Once ¢ is obtained then the segmented image is given by

u=ciH(¢) + co(1 — H(¢)).



Existence of minimizers is discussed in detail in Chan-Vese paper [35]. To minimize
(3.19), we decouple the variables. Firstly keeping ¢ fixed and minimizing (3.19) with
respect to ¢; and ¢z we have

_ Jo zH(#)dzdy
fn H(¢)dxdy

if [qH(¢)dzdy > 0 (i.e the curve has a nonempty interior in ) otherwise need to

re-initialize ¢, and

Jo2(1 = H($))dady
Ja(1 — H(4))dzdy
if [(1—H(¢))dzdy > 0 (i.e the curve has a nonempty exterior in {2) otherwise re-initialize
¢ Since H is not differentiable at 0, to find the Euler-Lagrange equation for the unknown
function ¢ we need a regularized H and 4. Let us denote the regularized version of

Heaviside H and delta § functions denoted by H, and J, respectively and defined as in
[35] (see also [39, 11]):

c1(4) (3.20)

c(e) =

(3.21)

H(z) = %(1+-72?arctan(§)), (3.22)
b(z) = Hé(z):%.(ﬁ).

Thus the regularized functional denoted by Fe will be:

F(¢,c1,02) = “/n |VH(¢)|dedy + u/ H(¢)dxdy +
Q
A /Q |z — c1|2He(¢)dxdy + )\2/9 |z — eo?(1 — H(¢))dxdy. (3.23)
And the minimization problem is
inf F(¢,c,c2).
é.c1,c2
To compute the Euler-Lagrange equation, let us keep ¢; and ¢; fixed, and minimize F,

with respect to the unknown ¢. We proceed in the following way. Let us choose 7 as a
test function of the same type as ¢ and find the Gateaux derivative of F.:

1
limo —(Fe(¢ + tld)’ C1,C2) - F€(¢v C],CQ)) =0

t1— tl
! V¢ i Vlb
= [ u(sorvels + a0 T Yazay +
/Q 8e(@) (v + M(z — c1)? — Doz — e2)Y)ypdady = 0 (3.24)

where

/QWHG(@WMF /Q 5.(¢)|Ve|.dzdy

From Green’s theorem we have

/vV-ﬂ;’da:=—/Vv-u7d:c+/ v - fids.
Q 0 o0

Lety=v and MV(}S = 0.

Vel
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5 (¢) 5e(9) Se(#)
2y d . , £ =
/Qd)V |V¢| ¢)dz y = /Q \V) Vol Vodrdy + VTV Vo - iids

which implies that

V¢ Vi _ () be() 09
/5 D) —=7 Nz —o—dzdy = LwV-(IV¢|V¢)dxdy+ "’lwfan

(3.25)
___0¢
where V¢ - i = B Thus (3.24) becomes

, 5(9) 0(¢) 09
5 _ :
“/Q (B)IVely #/Q'W (|v¢| vl an "’

/Q 5.(8) (v + (2 — e1)? = Nalz — 2)pdady = 0

V¢) dzdy w +

which implies that

p [ soNewdsdy [ 5007 (g Yooy = [ BOVo Ty +

Se(¢) 09

Vgl on " +/‘5(¢ (v + M(z — a1)’ = da(z = c2)*)ypdzdy = 0.

@b

Finally we obtain

- [ (g Yotaty + [ gt sevs+

/s;(sg(d))(l/ +M(z—ca)? = Kz — c2)?)ydzdy = 0.

for all test function 1. Choosing ¥ € C}(Q) which is arbitrary, we deduce the following
Euler-Lagrange’s equation for ¢:

55(¢)[uv- (%) ——V—/\l(z—cl)2+)\2(z—c2)2] =0 in Q,

d.(¢) 99 96 _
Vel on =0 o on

(3.26)
on ON.

In [35], the authors considered the following evolution problem, i.e the descent direction
is parameterized by an artificial time ¢, and solve it to find the steady state solution of
the following parabolic equation:

5 =00 [“’V (IWI) v=X(z=c)? + Xz - &2)? in 0,
¢(t, z,y) = bo(z,Y) in (3.27)
%g =0 on Of.

To extend the evolution to all level sets of ¢, d.(¢) can be replaced by |V¢| in equation
(3.27) as done in [131]. This re-scaling does not affect the steady state solution, but it
does remove the stiffness of the zero level sets of ¢. But we will use J.(¢) as in [35]. In
next section we derive the numerical approximation of the modcl and will discuss the
existing methods used for solving the above evolution problem (3.27).
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Numerical Methods:

The following evolution problem will be solved numerically,

' _ Lz_zfii@‘fi‘@i Joz $))ded
al9)= Jo He(¢)dzdy 9 = Sf)n 1- dzdyy
6¢ (¢)[ (—Yi) —v-A 2 .
| @ 2 A ’\Z(Z - 62) ] o (3.28)
(O,a:,y) ¢O(x y) in Q,
6000
| TVl an on 0.

Equation (3.28) has 3 unknowns c; (), c2(¢) and @, so we first compute ¢(¢) and ca(¢)
and then keep them fixed and then we solve the PDE for ¢. Once ¢ is found then update
c1(¢) and c2(¢) and so on. To solve the above PDE in equation (3.28), we proceed in
the following way:

Let us suppose that the size of z is m; x my. Finite differences scheme is used for
discretization. Let z,y € Q be the spatial variables, hy, hy be the horizontal and vertical
space step size and At be the time step. Let (z,,y]) = (th1,jh2), fori=1,...,m; and
j =1,...,my be the grid points. Also let ¢l = d(kAt, ri,y;) be an approx1mat10n of

o(t, T, y) where k > 0 and ¢° = ¢ will be given (initial guess). The finite differences
are denoted by

D i = ¢ij — Pi-1,5, Didi; = div15 — dijs
DY ¢ij = dij — dij-1, D4dij = dijr1 — Gije (3.29)
For a given ¢, first compute c1(¢*) and cz(¢*) and then discretize the above parabolic

PDE (3.28) and using semi implicit (SI) method to update ¢*. Thus discretization leads
to the following equation in ¢

¢k+l ¢ quﬁ’.“?"l
g = 8 [ “( 7T )
V(R85 /h)? + (85 11, = 8E;1)/2h)?

( Ay¢k+1
V(B = 051 /2002 + (DY 6%, /hz>2)
— v = almg — (@) + ez - cal¢h).

In this thesis we use hy = hg = h =1 in all of our experiments.

+

k+1 z
.(é”_At—(t)— _ 56@{3)[“( A ¢’F_+1
V(BTG5 + (05141 - 9,-1)/2)2
) DL,
\/(Aifﬁz 1)+ ((¢f—1,j+1 - ¢f—1,j—1)/2)2)
+ A10y"
V(@ =850 )/2)2 + (ALgk)
A g,

\/((d’f.}.l,j-l - ¢f_1,j_1)/2)2 (Ag-('bz; 1)2)
— v = Ai(zij = c1(9"))? + Aalzij — c2(¢F))? ]
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iy~ P
V(BT )2 + (85541 — #5,_1)/2)
PrTL — phtl.
(2 =10
\/(Afn¢f—1,j)2 + (($5 141 — ¢£’C—1,j—l)/2)2)

k+1 k+1
¢i+l,j - ¢ij

©
(\/<<¢f+1,,- = 951 )/ D+ (B%65)?
AR
— o) Lt
)

\/((¢f+1,j—1 — ¢k 1520/ + (B4 eF;51)
- v =25 — a(6)? + (2 — C2((75'°))2]-

= g5t = ol + aus(el) [a(

Let us denote the coefficients of ¢57 ., ¢5¥ ., o1l #ftL

tively, we get the following system of linear equations

by Ai, A,, A3, A4 respec-

¢ [1 + pbe(¢5) (AL + Az + Az + A4)]
— v—= Mz — (@) + Xalzij - c2(¢k))2],

This linear system of equation can be solved by using any iterative method. To prevent
the level set function to become too flat and to make it a distance function, after some
steps as discussed in Section 2.4.2, it is suggested to re-initialize the function ¢ by solving
the following equation {114]:

0

{ o = sen(p(0)(1 - [V¢) 31
£(0,2) = ¢(1),

where ¢(t,.) is the solution ¢ at time t, see [35] for more details.

Algorithm 5 (Chan-Vese (CV) algorithm for 2-phase image segmentation)
¢** = CV (4", p, tol)
1. For given ¢o, compute c¢; and cz using equation (3.28).
Keep ¢y and c2 fized and solve the PDE in equation (3.28), to update oF.
Pr+1,

Compute ¢, and ¢z using

If |p*+! — ¢*| < tol stop else.

AT

Re-initialize ¢, by solving equation (3.31) and do step 2.

This algorithm was tested on different images, as found in {35]. As mentioned before, the
non linear PDE (3.28) was solved using semi implicit (SI) method, which is uncondition-
ally stable [126]. But for higher dimensions (n > 2) there appears a problem: it is not
possible to order the pixels in such a way that in the i-th row all non-vanishing elements
of the system matrix can be found within the positions [, —m1] to [i,i 4 7n]. Usually,
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the matrix reveals a much larger bandwidth. Applying direct algorithms would destroy
the zeros within the band and would lead to an immense storage and computation ef-
fort. On the other hand, typical iterative algorithms such as the Jacobi, Gauss-Seidel,
etc methods have another limitation. For large time step, the system matrix has large
condition number, which causes slow convergence. J. Weickert [81, 127] proposed an
Additive Operator Splitting (AOS) method for non-linear diffusion filters discussed in
Section 2.7.6 and then M. Jeon [72] extended this idea toward Chan-Vese model for
image segmentation. Let us consider the PDE (3.28),
%f=¢wﬂ}vw§%p—u—Adz—qf+xxz—mv
The AOS method splits the n-dimensional spatial operator into a sum of n one-dimensional
space operators. As a result we get a tridiagonal system matrix. The Thomas algorithm
[47] can be used to solve this tridiagonal system, resulting in a very fast and parallelizable
algorithm. Let k and 7 represent time and spatial indices, respectively. Let ¢F = ¢(3, k),
then at a grid the 1-dimensional semi implicit discretization of (3.32) with spatial step

. (3.32)

h=1is:
SEHL _ gh oG gL gl gk
et = 0(d5) | - =L 4+ F, |, 3.33
A ST ST (3.39)
where F;, = [-v — Ai(z —¢1)? + A(z; — c2)?]. Let
A 1 1

=—— and Ay = ———,
A% ¢ ST
so equation (3.33) becomes
GEtY = oF + A6 (0F)(A10fH — (AL + Ao + Mgkt + F). (3.34)

Thus with AOS method, solve problems in z-and y- directions with double time step to
get two separate solutions say ¢; and ¢2 and then find the average as

= (61 +b).

Although no stability constraint on the time-step is present when the AOS scheme is
utilized, the size of the time-step cannot be very large because, splitting related artifacts
associated with loss of rotational invariance will emerge. The practical implication of
this is that the number of iterations needed for the contour to converge remains quite
large. For images of large sizes, the methods discussed in this chapter are very slow in
convergence. To avoid this problem, Multigrid method is the best option. In the next
chapter we present a multigrid method for CV model [8].

3.6 Piecewise Linear and Smooth Segmentation

In this section we give the extension of two phase piecewise constant CV model to picce-
wise linear and smooth segmentation [119]. The piecewise linear segmentation is given

by
min Kjdaw—uﬁx+wy+&ﬂﬁﬂaamwmw (3.35)

at vb+ ,C+,a- WbTem e

+ /le(x,y)—(a‘z+b‘y+c‘)l2(1—H(¢(:v,y)))dwdy +M/Q|VH(¢(m,y))|dzdy

+ 7 /Q ((a+)2+(b+)2)H(¢(w,y))dIdy +1 / ((a‘)2+(b‘)2)(1-—H(q&(z,y)))dzdy

Q
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where at,b*,ct,a™,b7, ¢ are unknown (as coefficients of polynomials of degree 1) and
u, 1 are positive parameters. Once ¢ is obtained then the segmmented image is given by

u(z,y) = (a*e+b*y + ) H((z,y)) + (@ T + b7y + 7 )(1 - H(d(z,y))).  (3.36)

Minimization w.r.t a*,b*,c*,a=,b7,c”, ¢ leads to the following linear algebraic system
of equations and a PDE for ¢. The algebraic system of equations for a*t,b*,c* is:

at / (z2 + ) H(¢(z,y))dzdy + b+ / zyH(¢(z,y))drdy + c* / zH(¢(z,y))drdy

Q 2 Q
= / r2(z, y) H((z, 3))dzdy,

Q

ot /Q 2yH($(z,y))dedy + b /Q (02 + M H (8, y))dedy + c* /Q yH($(z,y))dzdy
= /Q yz(z,y)H($(z, y))dxdy,
ot [ ati@(e,)dsdy+ " [ vio(udedy+c* [ Ao, p)dody
=/Qz(m,y)H(¢(x,y))dxdy.

A similar system of equations can be found for a=,b7,c™ by replacing H(¢(z,y)) by
(1 - H(¢(z,y))), and the evolution problem for updating ¢ is given by

8 v
-6—‘? = () [uV- (lv%:;l) — |2(z,y) = (a*z + b y + c*)?

£ lz(@y) - (@ o+ 0Ty + )= (@) + 69)2) + (@) + 7))

Now we extend the idea of CV [35] to the two phase piecewise smooth approximation of
the Mumford-Shah model [119]. We give some details of the piecewise smooth segmen-
tation functional which is given below.

min F(T,s1,82) = pLength(T) +/I y (F)((z(z,y) ~ s1(z,y))* +1|Vsi(z,y)*)dzdy

[,s1.52

i /outside(r)((z(x’ y) = s2(x,y))* + 1| Vsa(z, ) |*)dady, (3.37)

where z(z,y) is a given image, s; and s2 are two C! functions defined inside and outside
the unknown contour I respectively, 1 > 0 controls the regularization of the length of the
boundary of the smooth regions and n > 0 controls the regularization of the intensities of
smooth regions. Now we consider the level set formulation of the functional as discussed
in Section 3.5 and replacing the Heaviside function H by its regularized version He, thus
(3.37) becomes:

min E,s,5) = & /Q V()| + /Q (22, ) — 1 (2,1))? + 7l Vs1 (2, 3)|2 He (8) dedy

+ /Q((Z(x,y) — 52(7, )2 + 4| Vsa(z,y)|2(1 — Ho(¢))dxdy.  (3.38)
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Minimization leads to the following equations

s1 = z+nAslon{¢>O},%%l=00n {¢ =0}uoQ,

Sy = z+nAszon{¢<0},-a£_%=Oon{¢=O}UBQ,

0¢ Vo

rri b¢(¢) [V‘ (W) —Tl(m,y)], (3.39)

where 1(z,y) = ((2(z,y) — sl(x,y))2 — (2(z,y) — sz(a:,y))2 + 77|V51|2 - "I|V32|2)-

3.7 Global Minimization of the Active Contour Model (CV2)

In this section we discuss the global minimization of the active contour without edges
[35], proposed by T. F. Chan et al. [25]. Let us consider the 2-phase image segmentation
model (CV2) (3.19)

min F(¢,c1,c2) = u/QIVH(qb)IdJ: + V/QH(d))dw +

C14C2

A /Q |z — c1PH(@)dz + Az /Q |z — c2|?(1 — H(¢))dx. (3.40)

This minimization problem is non-convex because of the length term [, |VH(¢)|dzdy
[25]. Hence the optimization problem can have local minima, i.e the final segmented
image might have wrong information. Despite of non-convex nature of (3.40), a natural
way to a solution (¢, c;,cz) is a two step algorithm where ¢; and ¢; are firstly computed,
and then look for best ¢ which minimize the energy F(¢,c;,c2). The gradient descent
equation is

) [ v

a—f = () |uV - (ﬁ) -+ M(z- Cﬁ— Ma(2 = e2)%)
i r(z,y)

¢ _ (Ve

(3.41)

In [35], the CV algorithm chooses a non-compactly supported, smooth approximation H
for H. Thus the above gradient descent equation and the one given below have the same

stationary solutions:
9% _ vé
T [V. (lv¢|> —Ar(:r,y)], (3.42)

where the 8.(¢) is dropped. The above equation (3.42) is the gradient descent equation
of the following convex energy

A|V¢]+A/§2r(x, y)odzdy. (3.43)

This energy is homogeneous of degree 1 in ¢, so in general it does not have a minimizer,
if we do not restrict the minimization to ¢ such as 0 < ¢ < 1VY(z,y) € Q; see [25] for
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more details. Thus consider the following minimization problem

%£$Q(AWWM@+AAMLMMMQ,

and the claim is that this minimization leads to the global minimizer from the following
theorem:

Theorem 3.7.1 For any given fized ¢1,c2 € R, a global minimizer for CV model can be
found by carrying out the following convex minimization

0<o(z,y)<l

min (/Q|V¢[da:dy+)\/Qr(z,y)cj)dxdy). (3.44)

The proof and further details can be found in [25]. To minimize (3.44), they have the
following claim

Claim: Let r(z,y) € L®(f), then the convex, constrained minimization problem (3.44)
has the same set of minimizers as the following convex, unconstrained minimization
problem

min (L |V¢ldrdy + /\/Q(T(w,y)fb + wv((ﬁ))dfvdy)- (3.45)

where v(¢) := max{0,2|¢ — %| — 1}, provided that w > 3||7(x,y)|| (). The proof can
. 2 L>®(Q) p
be found in [25]. The Euler Lagrange’s equation is given by

O \
2 [V- (ﬁ) - /\r(x,y)] — wu, (),

where v/, is the regularized version of v’ with ve,(C) is given by {15]:

._C if C< —€g \/5,

(1 +V2)¢ = /tan?(37/8)(2 — (( — €2)® if —62/\/§/< ¢ < e,

0 if €< C < 1-—ey,
(1+v2)¢— Vtar?@Br/8)(2— (( —1+€)? if 1-e<(<1l+e/V2,
¢—1 if ¢>14+e/V2

Vey €)=

3.46
An explicit scheme was used to solve this equation. (3.46)
In [15], based on the energy (3.44), they proposed the following energy functional for
minimization by introducing weighted TV

min (/Qg|V¢|dxdy+/\/Qr(:c,y)d)d:tdy), (3.47)

0<p(zy)<1

where g is an edge detector function and is defined as in (3.10) and r(z,y) = (v + M (z —
)2 — Ag(z — ¢3)?). The minimizati ie in similar way to [

1 2 2 The mization was carried out in similar way to [25]. Later

on, they extended their discussion towards the global minimization of the active contour

models based on the Mumford-Shah Model for the piecewise smooth case. To find the

global minimizer of equation (3.39), same steps will be taken as discussed above, for more

details see [15].
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3.8 Geodesic Aided CV method

Geodesic active contours [21] are based on gradient to detect the boundary, which uses
the local information. Firstly for images with fuzzy and discrete edges, it is difficult to
get desirable results. Secondly, geodesic active contours are heavily affected by noisy
inputs since the isotropic smoothing Gaussian must be strong, which will smooth the
edges too. On the other hand, the CV method depends on the image information from
homogenous regions which helps in detecting with fuzzy and discrete edges and also we
do not need to de-noise the image, if the input image is noisy. The original CV method
is unable to detect images with holes, i.e. the CV method has global minima deficiency.
Also CV is based on the information of homogenous regions so the precise boundary may
not be obtained. In [41], Li Chen et al introduced a new method to address the above
mentioned problems by combining geodesic and CV methods. The CV PDE is

2= (¢)[ (%)—V—/\x(Z(w,y)—01)2+/\2(Z($.y)—02)2],

where z(z,y) is the given image, ¢ is the level set function and ¢; and c; are same as
defined in Section 3.5. They made the following changes to the above partial differential
equation. Firstly, they replace the delta term 6.(¢) by |Vé|, which then involves the

whole image information. Secondly, the term V -

Vo | . V¢
= laced by V- | g=—
] is replaced by g|v¢|>,

where g is the edge detector function defined in (3.10). Thus the new equation becomes

o v ]
¢ =|V¢| [ (gl—v‘%) —v = M(2(z,y) — a1)? + Ao (2(z,y) — c2)?].

V¢ V¢ Vo
V. + Vg
( |V¢|) (w) Bz
after some manipulations and approximations they solve the following partial diffcrential
equation:

Since

99 V¢

a - glv¢| [ (W) —V-= )\I(Z(JI,y) - C1)2 + )\2(2((1,',3/) - 62)2] +Tv9 ' VZ(JT,y),
(3.48)

where they used 7 = 1, Ay = Ay = 1 and v = 0 [41]. Also they extended their method

towards color images.

3.9 Conclusion

In this chapter we mainly discussed some variational models used for image segmentation
also numerical methods used for solving the parabolic PDE arisen from the minimiza-
tion of CV model. Geodesic active contours based on gradient and curvature to detect
boundary, in which local information of boundary is used, cannot get ideal results when
dealing with fuzzy edges and discrete edges. Furthermore because of the local attributes
and the dependence on gradient, geodesic active contours are heavily affected by heavy
noise. On the other hand, the CV method depends on the image information derived
from homogenous regions, therefore it can obtain favorable results in fuzzy and discrete
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cases. De-noising process is also not necessary. The CV can detect objects in an image
whose boundaries are not defined by gradient. Explicit schetne is popular in solving the
parabolic PDEs, but due the Courant-Friedrichs-Lewy (CFL) condition which asserts
that the numerical waves should propagate at least as fast as the physical waves [90], it
requires very small time steps and therefore a large number of iterations required. Im-
plicit scheme is stable for any time step, but for large time step the system matrix has a
large condition number which causes slow convergence for iterative methods. The AOS
scheme is also unconditionally stable like implicit scheme, for images of small sizes AOS
is very efficient but very slow in convergence for images of large sizes. This motivates us
to develop the multigrid method for solving the PDEs discussed in the next chapter.



Chapter 4

The Multigrid method for Active
Contour without Edges

In this chapter we develop the multigrid method for the CV 2-phase image segmentation
model, as introduced in chapter 3. We first work out multigrid method the piecewise
constant model. Main references for this chapter are [8, 19, 22, 35, 50, 94, 95, 127, 130]

4.1 Introduction

Image segmentation is a central problem among image processing applications. The aim is
to distinguish objects from background and to systematically select specific features out of
an image that has many features (87, 6, 33]. For intensity-based images, the non-equation-
based approaches are the most popular e.g threshold techniques, edge-based methods
region-based techniques, and connectivity-preserving relaxation method among otherst
One may also view the task of distinguishing objects of interest from “the rest” as one to
identify the feature’s boundaries. In recent years, a class of variational formulations offer
us the ability to work out features with sharp boundaries — these are the new nonlinear
approaches which require more sophisticated solution techniques [87, 33].

Let  be a bounded open subset of R? with 9§ its boundary and let z be the given
image, which may be a clean image or contains Gaussian noise. Our aim is to extract
a desirable image u which represents features within 2z — more specifically u is piecewise
constant inside each extracted feature.

In this chapter we present a working multigrid algorithm for implementing the Chan-
Vese (CV) variational model [35] and to highlight the algorithin’s practical advantages.

Section 4.2 first reviews related variational models and then describes the active
contour without edges model by Chan and Vese [35], including a discussion of unilevel
solution methods of semi-implicit and additive operator splitting. Section 4.3 first review
the nonlinear multigrid framework and then describes our choice of smoothers as well as
the multigrid algorithm for solving the underlying differential equation of [35]. Section
4.4 gives some local Fourier analysis of the smoothers used, which forms a basis for
multigrid convergence. We end this chapter in Section 4.5 with some numerical results
and conclusions.
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4.2 The model of active contour without edges and solution
methods

Variational segmentation methods aim to find edges of (piccewise smooth) features in an

image by directly minimizing some objective functional. Several methods choose such

functionals differently [33, 87]. In the sequel, we illustrate two early and related methods.
Firstly, the Mumford and Shah segmentation model [88]

Y‘?,}?FI(U,K):/

(u — z)?dxdy + a/
Q-K

Vul2dedy + B / do,  (41)
K K

where a and 3 are nonnegative constants, z is the given image, u is the desired piccewise
smooth image and K C § is the set of discontinuities, and [, do is the length of K.
This functional is clear but difficult to implement. Various attempts of approximating
this formulation exist.

Secondly, the Ambrosio and Tortorelli model [4]

1-— 2
min Fy(u,v) = 0/ <6|V1)|2 + g—ﬁ—)—) dzdy + [3/ V2| Vul|?dedy + /\/(u — 2)2dxdy
Q Q Q

u,v
(4.2)
builds on the Modica and Mortola’s I-convergence theory [85] of representing a two
dimensional curve T by solving for the phase field function v (0 < v < 1)

rnvin/Q {6|Vvl2 + %}dm

Clearly model (4.2) appears more amenable to numerical implementation. It turns out
that the above representation is a good approximation of [, do shown in the Mumford
and Shah model when € is small {33, 109].

It is of interest to mention two other variational models. The snake model of [75] aims
to find the segmentation curve C' (a parameterized version of I' with C(s) : [0,1] — R?)
by solving the problem

1
min F3(C) = /0 (alC’(s)|2+ﬂlC”(s)|—/\lvz(C(s))P)ds, (4.3)

where a, 3 and X are positive parameters. The geodesic contour model of [21] proposes
to find C by solving

1
min F(C) = [ 1) a(Va(Cls))ds, (4.4)

where g is an edge detection function e.g. for some p > 1 and a Gaussian G,(z,y)

1
14 |VG,(x,y) * 2(z, y) P

9(IVz(z,y)]) =

These models are discussed in chapter 3.

In this chapter our main focus is on developing multigrid method for solving PDE
arisen from minimizing of CV model [35], which is already discussed in Section 3.5.
Consider equation (3.23)
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F(d,c1,c2) = N/Q&(fﬁ(%y))wlf’ldﬂﬂdy*r/\L/QIz(w,y)—c1|2H€(¢>(:c,y))d:rdy

+ a [ @) — (1~ H(@lz,1))dody (45)
Minimization with respect to ¢, co and ¢ we have the following equations
[ ci(9) = ff—f—((% er($) = f}’ﬂ i ¢))2i‘ifl‘f”
\% 2 .
ol S e
|V(Z|) gi 0, on 0f2.

For given ¢ we compute ¢; and cp and keep them fixed and solve the non linear PDE in
equation (4.6) for ¢ using multigrid method, Once ¢ is updated we use new ¢ to compute
¢ and c; and so on. Details are given in next section.

4.3 A nonlinear multi-grid method

Our main focus in this chapter is to present a multigrid algorithm for solving the nonlinear
PDE in equation (4.6) directly without involving artificial time steps (as done when
using time marching methods). We are not aware of similar work done for segmentation
models in the level set formulation. For image restoration models, there exist multigrid
algorithms [24, 105].

Although without using the artificial variable t, we also denote the approximation at
(3,7) by ¢ij = ¢(x:,y;)- Let us consider the elliptic PDE:

- — )2 2] _
50) v (25) = Mlel@) - e + dalete,) - '] =0,

- - 2 2 _

ydlv(lv ¢|) M2z, y) = 1) + Xalz(z, y) — e2)? = 0. (4.7)
Here equation (4.7), is Euler-Lagrange’s equation of the functional

u /ﬂ |V¢ldzdy + /Q (M(2(z,) = 1) = da(2(z,9) = c2))(, y)dedy.  (48)
Equation (4.8) and (4.5) have the same stationary points [25, 15]. But equation (4.8)
is homogenous in ¢ of degree 1, [25]. This means that this evolution equation does not
have stationary solution, so need to restrict the minimization to ¢ such that 0 < |¢] < 1.

Using finite difference scheme to discretize the equation (4.7) for ¢. The equation at
a grid point (i,7) is given by

AT ALdij/h
[ {hl (\/E@J/hl)z*'(A $8i5/h2)? +[3)
= ( AY ¢ij/ha )} — M(zij — 1) + halzij — 02)2] =0,

V(B3805/h)? + (A% 615/ ha)? +

where 8 > 0 is a small parameter to avoid zero denominator.
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Remark 4.3.1 We have used different values of 8 € (0,1], it has no effect on the final
results.

The above equation (4.9) implies that
AZ 6, ; Y4
[u{az( e )+ 22 B b )
\/(Aidn,j) +(AAY i) + 8 \/(A1¢i,j)2 + (ANAY ¢ ;)2 + 6
— Mz — 01)2 + Aa(zij — 02)2 =0,

= pfar( =i )+ x2al ( =¥ )}
(856:,3)2 + (AALGi;)* + B V(B26,)7 + (AL ¢i;)? + B
= Mi(zij — c1)® — Ma(2ij — c2)?, (4.9)

where p = p/h1, B = h23 and X = hy/h2, with Neumann’s boundary conditions

$i0 = bi1y  Pimatl = Pimyy D0, = Bljy  Pmy+1,j = by (4.10)
fori=1,...,m, j=1,...,m2and0<|¢i,]~|<1,

Where in Eq. (4.9) left hand side resembles the denoising model by [99] using the total
variation (TV) regularization. The parameter 3 should be a small quantity to avoid the
gradient becoming 0 as in [99, 122, 123]

4.3.1 The full approximation scheme

We first give a brief discussion of the 3 main ingredients of a nonlinear multigrid (MG)
called the full approximation scheme (FAS) [68, 39, 24, 118], due to A. Brandt [14], and
then concentrate on our choice of smoothers. Denote the system of non linear equations
described by equation (4.9) and (4.10) by

Nh(g*) = s (4.11)

where hy = ha = h, ¢" and f* are grid functions on a m; x ma cell centered rectangular
grid Q" with spacing (h1, ha). Let Q2h denote the m;/2 x maz/2 cell centered grid which
results from standard coarsening of Q. Let ef = ¢ — ®" be the solution error, where
d" is a good approximation to solution of (4.11) in the sense that e is smooth. Such
smoothness can only be achieved by a careful choice of suitable smoothers — a major task
in developing a working multigrid method.

Let r* = fh — N*(®h) be the residual. Then the non-linear residual equation will be:

N"(@" + ety — Nh(®h) = rh. (4.12)

If * is smooth, it can be well approximated on Q%*. Therefore any iterative method
which smooths the error on the fine grid can be improved by the use of the coarse grid
correction, in which a coarse grid analogue of the residual equation is solved (the solution
on a coarse grid is less expensive than on a fine grid) to obtain a coarse grid approximation
of the error, which is then transferred back to the fine grid to correct the approximation
&h. This is known as a two-grid cycle, and with recursive application can be extended
to a multigrid method. Let us define the restriction and interpolation operators for
transferring grid functions between 9" and Q2" for cell-centered discretization:

Restriction
I}Qh@h _ q)2h
l =
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where

S .
o = Z((D;i——lzj—l + O yg+ i +0higy),  1<i<m/2, 1< <my/2.
is a full weighting operator [39, 118].
Interpolation
13, 0% = o
where
(1)21 2j = 6(9(I)2h + 3q)1+1] + 3q>2h+1 + (I>1+l .H-l)
@105 = (9‘1’2’1 +302, 5+ 3‘1’21+1 +@% 501),s
Oi0i1= (9‘1’2h +302, 5+ 302 + 070 ;1)
1 2h
q>2z 1,25— I‘E((I) +3(I)1. 1]+3‘I>2J 1—}-(1)1 1,j- l)
for 1<i<m/2, 1< 7 <me/2.

is known as a bilinear interpolation operator {39, 118].

It remains to discuss the most important ingredient of a MG: smoothing. We will first
discuss a local nonlinear smoother and then review the smoother introduced by Savage
and Chen [105].

4.3.2 Smoother I: Local Smoother

In this method the system of nonlinear equations is linearized locally, by computing D(¢)
on each grid (i,7) locally. Then we get a system of linear equations. As the Gauss Seidel
has a best smoothing property, we apply the Gauss-Seidel method to this systemn of linear
equations to smooth the error. We are using a few steps of this smoother to smooth the
error which ensure a convergent nonlinear multigrid. Equation (4.9) can be written as

{[ AL ¢ A% di-1 ]
J@T05 7 + 086, 18 J(aze 1,>2 (AAYgi-1,)? + B
T )

\/(A+¢1,J )2+ (AAY 6:5)2 + B \/(A Pi - 1)2 (’\Ai¢i,1—l)2 +B
= /\1(2,',1‘ - 61)2 - )\2(21',]' - 62)2.

Let the coefficients (intended below to be frozen in local linearization) be denoted by

D(¢)ij = =
V(@500 + (AL g5)2 + B
D@t = . ,
V(B30im15)? + (ALGi1,)? + B
D(¢)ij-1 = .

\/(Aid)i,j—l)? + (AAY s 5-1)% + B
so we have

p{(D(#)i A% ij — D(#)i-1;83i15) + N(D()i ;A% ¢i,; — D(#)i j-1A% ¢4 5-1)}

= Ai(2zij — €1)? = Aa(zij — ),
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which implies

g{ [D(¢)i,j(¢i+l,j = ¢ij) — D(@)i-1,(di; — ¢i—l,j)] +
bY [D(¢)i,j(¢i,j+l — ¢i,j) — D(#)i,j-1(¢ij — ¢i,j—1)]} (4.13)
= M(zij —c1)® = Xo(zij — 2)? = fij.

Clearly D(¢)ij, D(¢)i-1; and D(#)i j—1 all contains ¢; ; terms, which will be evaluated
at past iterations in a coefficicnt-freezing process. Let 5 be approximation to ¢. By
putting the values of ¢ at each grid point in equation (4.13) other than the grid point
(i,7) and also finding the value of D at each grid point (¢, 7), we get a linear equation in
one variable ¢; ;,

;_L{ [D((;)i,j((;i-i—l,j ~ ¢ij) — D(@)i-15(dij — 51--1,1)] +
X’ [D(%)i,,-(%-,m — ¢13) = D(@)ij-1(ij - ai,j—l)]} = fij
implies
{[D(a)i,j((;wl,j — ¢i;) ~ D()i-1,4(¢ij — 51-1,;‘)] +
22 [D(a)i,j((;i,j+l — i) — D(@)ij-1(dij — az‘,j—l)]} = fiiln = fij

Our proposed algorithm solves this equation for ¢; ; to update the approximation at each
pixel (i,7):
Algorithm 6 (Algorithm for first smoother)

oM — Smootherl(@h,f_h,maxit,tol)

where maxit is the mazimum no of inner iterations.
fori=1:m
forj=1:my
for iter=1:maxit
('f)h — ®h

[{D(Qh)i’j@?+l»j + D(@")i-1 80y + N D(8)i5 B4, + /\2D(‘5h)i,1—1$£‘j—1} - f::]

b, ; = - — — - !
I D(®)i; + D(@")i—1; + A2(D(®h); ; + D(®h); j-1)
if |®;; — B;| < tol then stop
end
end
end

4.3.3 Smoother II: Global Smoother

We now review the smoother proposed in [105] for a different image model. In this
method the system of non linear equations is linearized globally at each step by computin
D(g) on each grid point (i,J ). To the resulting system of linear equations Gauss-Seidﬁ
relaxation is applied. This global smoother is different from the local smoother defined
above. The algorithm proceeds as follows: A
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Algorithm 7 (Algorithm for second smoother)
®" —— Smoother2(d", f*, mazit, tol)

fori=1:m

fori=1:ma
D(@")i; = [(A32:5)" + (AAYL @,;)* + B
end
end
(ph = oh
for iter = 1 : maxit
fori=1:n
forj=1:m
ah — lph
B [{ D@15 + DE)ict By + ND(E)is5h5 01 + N2D(@)ij1 Py} = Fis)
$i.j D(®");j + D(®")i-1,; + A2(D(®"); ; + D(®); -1)
end
end
end
oh — o

Here updating to the coefficients needs to be done at the start of each smoothing step
globally and to be stored for relaxation use. This was found to be necessary for the
total-variation denoising model of [99].

Remark 4.3.2 The above smoothers are both fized point based. Then one may consider
two related ideas: (i) Newton methods - which are found not to perform satisfactorily for
this problem and also previously for the TV denoising problem [105]. (ii) Line relazation
method — which are found to work well but the improvements over smoothers I and II are
marginal (of course line relazations are slightly more expensive to implement).

Yet there exist other smoothing ideas in the literature, e.g., the energy minimizing
smoother of [124], the primal-dual smoother [31] and algebraic multigrid ideas [37, 38,
101] which remain to be tested for segmentation problems.

4.3.4 The multi-grid algorithm

To solve equation (4.11) by the multigrid method, the algorithm is as follows, sce [39, 118
and references therein :

Algorithm 8 (Multigrid Algorithm) Assume we have set up these multigrid param-
eters:

Vi pre-smoothing steps on each level

Vo post-smoothing steps on each level

v the number of multigrid cycles on each level (y = 1 for V-cycling and v = 2 for
W-cycling).

rr: Relative residual.
For given &" compute f and keep it fized. Here we present one step V-cycle of nonlinear
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multigrid method for CV model.
FAS Multigrid Cycle
Start
oh —— FASCYC(D", f*,iter, 11, 19,7, tol)
‘Po = (I)h
1. If we are on the coarsest grid i.e Qb is coarsest grid, then solve equation (4.11)

using time marching technique of [127] and then stop.
Else use the smoother i.e

L gp— Smoother"‘(q)h,f_h, iter, vi, 2,7). (Pre-Smoothing)
2. Restriction:
o2t = [2hph,  § = 3,
F2h = I2h(Fh — HhOh) 4 N2(D2h)
o2 — FASCYC(®", f*,iter,v1,13,7)

3. Interpolation
oh — " + Iy (D7 - 2*)

4.
cbh — SmOOtherw(th’ fha iter, vy, V2a7)' (Post-Smoothing )
Update f"
| @" — Poll2
If rr = ~——————— < tol Stop.
l|oll2

Else go to Start.

4.4 Local Fourier analysis of smoothers

The standard FAS multilevel algorithm (such as Algorithm 8) does not automatically
converge for many problems, if simple smoothers are used (i.e. Gauss-Scidel for lincar
problems and Gauss-Seidel-Newton for nonlinear problems). The key for convergence lies
in effective smoothers or reduction of residuals to a smoothed form (where high frequency
components are small regardless of the overall error [39, 118]). Here we show some local
Fourier analysis (LFA) results to suggest that our smoothers are effective.

It should be remarked that LFA is in general not applicable to nonlinear smoothers.
Here for our linearized smoothers, the analysis can only be done for each individual
smoothing iteration and the obtained smoothing rates change from iteration to iteration.
However, we look for general trends e.g. if the three consecutive smoothing rates are
0.59,0.61,0.44 (instead of a constant rate say 0.5), we say the underlying smoother is
effective. Likewise, consecutive rates such as 1.2,0.89,0.99 may indicate a poor smoother.

For simplicity, we consider the case of a square image m = m; = my. Denote
h = h; = ha. The typical grid equation on Oh is

D(¢ij)(@i+1,5 — ¢ij) — D(bi-1,;)(dij — bi-15) +
A [D(¢ii)(ig+1 — bi5) — D(dij-1)(dij — ij-1)] = fi;.
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For the local smoother let g, = D(dj),-*l‘j = D(¢"));_1 4, g2 = D((‘;)ij = D(¢™): ; and
, i,J

g3 = D(¢)i,j—L= D(¢(k))i,j—l, and for the global smoother g, = D(®),_, jr Ga = D(«T:) ,
and g3 = D(®);j-1 where ® is the iterate at the previous sweep (gl()l;le ﬁxod-pointh)J
Also as hy = hg, we have A? = 1. Thus we obtain 7

—(g1 + 292 + 93) i + Jdi-1,j + 9305 j-1 + g2(bij41 + Dijir1) = fij,

or
_ k+1 k+1 k+1 -~
(g1 + 292 + g3)O5T ! + 1ot + gadf il + g2(0F 1 + BF11y) = fij.

Now the exact solution ¢; ; will satisfy the discretized equation
—(g1 + 292 + 93)0ij + N1Pi-1,5 + g3bij-1 + Galbija1 + div1) = fijy

as f;; is fixed thus we have

_ k+1 k+1 k+1

(g1 +292 + ga)efiy + qrei’ny + gseijoy + ga(efjnn + € ) =0, (4.14)
k4l _ 4o gkl ko—

where €] = ¢ij — ¢;; and €;; = ¢ij — d>f']- are the local error functions after and

before the pre(post) smoothing step respectively.
Recall tbat the local Fourier analysis (LFA) measures the largest amplification factor
in a relaxation scheme [14, 39, 118]. Let the general Fourier component be

) = s T e Vi) o 2i0yim  2i0y5m
By, 6,(Ti, yj) = exp (la1h+l(12h)——exp <T+T . i= I

20,7 20,7
Here ay = _m_’a2 = € [—7r,7r]. The LFA involves expanding
rl m/2 kel m/2
+1 _ + _ k_
€ = Z 1/’91 02 B01,02 (zh y])) €" = Z 1/,51,02 B(;l'g,l (.’1,"-, yj)
61,02=-m/2 01,02=-m/2

in Fourier components. We shall estimate the maximum ratio

= — k+1 k
A = max (01, 62) = Vg, 9,/ V5, 4|

. . -
in the high frequency range (a1, az) € [-m, 7]\ ["5", -é-] which defines the smoothing rate
[118]. Now we replace all grid functions by their Fourier series and essentially consider
the so called amplification factor i.e. the ratio between 1/)5“ and 1,/)5 for each 6 where
9 = (61,6;). Then for the Fourier component of the error functions ¢k and eF1 Dof

. . 1,j 1] erore
and after relaxation sweep, let us consider

. 054 i 1 y
(2011 + 2m020)/ M qpg k11 = gf1cd(2m0hi + 2nb25)/m (4 g

ef; = voe'
so from equation (4.14) we have
(g1 + 202 + go)p T TO H ZTO) /My gk A2m(E = 101+ 2mi0,) /m

+ gswgﬂei(?ﬂiﬁl +2m(j —1)83)/m

b goupciCGribn+ 2O DMy yp dRr(L D6+ 2mib)m] o,
(4.16)
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implies that

[91 +2g2 + g3 — gre” % — 936_‘9’]1/15“ = got§ [e“" + ei"?] .

— w0 =< ga(e + ¢2)
Vg (91 1 292 + 93 — g1e-101 — ge—102)
_ |g2 (€' + €1%2)] A .

|91 + 202 + g3 — g1 — gse=1] B’ (4.17)
where
A = |g2(e" + €°)| = lgall(cos 61 + cos 82) +i(sin by + sin0y)]

0,—8

= 2V/]g2cos(— 5 %) and

B = lgi+294+93—qie” " — e

= |[(g1 + 292 + g3) — (g1 cos By + cos B2)] + i[g1 sin 1 + g3 sin 6y

. o0 Y 6, — 0
= 2\/;(91 + 2g5) sin? ?1 + g3(g3 + 2g2) sin? 32 + 92 + 2g1 g3 cos( 17

) sin o s b2
sin — sin —.
2 2

Define |8] = maz(|0y},|62]). Here we are looking for smoothing factor fi, which is given

by

p= max uo),
where p is the mesh size ratio and the range pm < |6] < 7 is the suitable range of high
frequency components, i.e. the range of components that cannot be approximated on the
coarser grid. We are using standard coarsening so p = %, [14]. We will present smoothing
factor fi for both smoothers. To proceed with an analysis, we have to compute g1, g2 and
g3 or the function

D(g) = \/(AT9)2 + (AY4)2 + B,
numerically and work out the smoothing factor fi for each set of coefficients g, g2 and
g3 within a smoother. In our earlier work, we select a special set of such coeflicients. We
use the complete set of coefficients g1, go and g3 to compute the smoothing factors . We
display the maximum of such factors
B gronsst ™~ algas maaxp(e).

As such a linear analysis is based on freezing the nonlinear coefficients, our results should
be viewed only as a guide to smoother’s effectiveness and a way to distinguish smoothers.

Taking the test example of first image of third row from Fig. 3.1 page 60 with 7n = 32,
i.e. reducing the size to 32 x 32, we can display /i in the first 4 cycles of our MG algorithin
as in Table 4.1 where Pre-1 refers to the case of “pre-smoothing” and Post-1 to “post-
smoothing” etc. If we instead consider the average rate from all pixels, the averages are
respectively 0.49 and 0.71 for Smoothers I and II. Clearly in this example Smoother I
appears to be more effective than Smoother II in terms of rates. Such a claim will be
tested in the numerical results section.



Table 4.1: fi in the first 4 cycles of out MG algorithm.

MG cycle | Smoothing Steps | Rate I:if | Rate I1:41T
1 Pre-1 0.4942 0.6776
Pre-2 0.4941 0.9317
Post-1 0.4942 0.9135
Post-2 0.4942 0.9427
2 Pre-1 0.6003 0.9561
Pre-2 0.6003 0.9174
Post-1 0.6003 0.9581
Post-2 0.6003 0.9577
3 Pre-1 0.7760 0.9533
Pre-2 0.7760 0.9193
Post-1 0.7757 0.9092
Post-2 0.7749 0.9040
4 Pre-1 0.6025 0.9594
Pre-2 0.6026 0.9456
TPost-1 0.6026 0.9286
Post-2 0.6026 0.9678

4.5 Numerical results

In this section, we shall discuss several aspects of multigrid method. First we demonstrate
that using multigrid method we can get the improved solution for the global minimizer.
Secondly, we illustrate the fast convergence of the method by presenting the relative
residuals and CPU time with both smoothers. Lastly, we give a comparison of multigrid
method with Additive Operator Splitting (AOS) and Semi Implicit (SI) methods by
giving there CPU times.

4.5.1 Results using smoother I

This section gives some experimental results of our MG algorithm 8 with smoother I (local
smoother). In Fig. 4.1 our MG algorithm is tested on an synthetic noisy image having
different objects. The parameters used in this test are p = 0.1 x (256)2 and Ay = A =1
are same for all images. Also 8 =107%e=1x10"%, ¢y = —/(z - 150)2 + (y — 140)2 +
100. The top left figure is the original image with initial contour and top right is the
initial segmented image. The 2nd row gives the results after one cycle ! and the 3rd
row presents the final results with 3 cycles with relative residual® rr = 1.246 x 10715,
For these experiments we used Matlab programming. The parameter € can be set zero
on fine levels as on fine levels H, is used to compute c¢; and c;. But on coarsest level ¢
can not be zero. The chosen value of € was found experimentally to be optimal for our
images. In Fig. 4.2, our MG algorithm is tested on an artificial noisy image to see if the
inner boundary of object could be detected. Clearly, the inner boundary of the object is
detected. The top left figure is the original image with initial contour and the top right
figure is the initial segmented image. The 2nd row gives the results after one cycle and

!Here cycle means outer loop.
[l P
ll#* 2

21§ ¢k and 4;’““ are valnes of ¢ in two consecutive cycles then the relative residual is re =
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3rd row shows the final results after 3 cycles with relative residual re = 2,016 x 10 ', In
Fig. 4.3 our method is tested on a real cameraman image and is successfully segmented.
The top left figure is the original image with initial contour and top left figure is the
initial segmented image. 2nd row gives results after one cycle and 3rd row gives final
results after 5 cyeles to get relative residual rr = 4.457 x 1071, In Fig. 4.4 and Fig. 4.5
our MG algorithm is tested on MRI images. In Fig. 4.6 and Fig. 4.7 MG algorithm 8 is

tested on blurred images and are segmented successfully.

Fioure 4.1: MG method with local smoother I for CV model, tested on an synthetic
m;i.\‘\' image, p = 0.1 x (256)%,rr = 1.246 x 1071, 3 = 1 x 1070, e = 1 x 10720 ¢,
NIE: 150)2 + (y — 140)2 — 100. Top left: Original image with initial contour. Top
right: Initial segmented image. 2nd row: Results after 1 cycle. 3vd row: Final results in
3 cycles.
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Figure 4.2: MG method with local smoother I for CV model, tested on an artificial noisy
image, to see if the inner boundary is detected. Parameters used are g = 0.1 % (256)2, rr
2016 x 107, 3 =1x10"%€e=1x10"*,¢9 = \/(x — 150)2 + (y — 140)Z - 100. Top
left: Original image with initial contour. Top right: Initial segmented image. 2nd row:
Results after 1 cycle. 3rd row: Final results in 3 cycles.
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Figure 4.3: MG method with local smoother I for CV model, tested on a real im: .
cameraman, parameters used are j = 0.0331 < (256)2, rr = 4.457x 10~ 15 3 l‘ “':l‘:.‘l‘( of
20 + — /(7 — 150)2 - 5 TR , ‘ &
1 x 10 ’..U() - V (a .l.~)U) + (Y - 140)= 100. l()l) left: Original image with initial
contour. Top right: Initial segmented image. 2nd row: Results after | «'.\"('l« 3rd ‘
3 A 2 >» oI'dd TOW:

IFinal results in 5 cycles.
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Figure 4.4: MG method with local smoother I for CV model, tested on a real N
image, parameters used are g = 0.0011 x (256)% rr = 3.649 x l.(J L1 ) Hl " 111‘-.)1 by bl
\, -20 4 - Ve =) 2 = . 3 . \ st % ' ¢
1 x 10 190 =V (2 - 1.0“) t (y — 140)° — 100. Top left: Original image with initial
contour. Top right: Initial segmented image. 2nd row: Results after 1 (:\j lo. 3 l” i

' S '.'(' ¢, JIrd row:

Final results in 5 cyeles.
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Figure 4.5: MG method with local smoother I for CV model, tested on a real MRI
image, parameters used are g = 0.001 x (256)2. rr = 4.329 x 10-'4_3 I ‘ l(;l o
. om g il ) - - kg Ny ¢ L7
1 x 10 Q0 = V (1 - l..)l)) F(y — 140)< — 100. Top left: Original image with initial
contour. Top right: Initial segmented image. 2nd row: Results after 1 ('.\j('lu Jrd ;
' . yele. ord row:

Final results in 5 cycles.

91



e
2
2

Figure 4.6: MG method with local smoother T for CV model, tested on an bl l

3 o - = " » 9 ' . (8} all ) 1

image, parameters used are g = 0.0001 x (256)%, rr 1.78 x 10~!2. 3 | 10 ,l‘“m
" 20 4 _ — = = N : il : 2

L x 10 2 vo = Vv (a '1."“) t (y — 140)* — 100. Top left: Original image with initial

contour. Top right: Initial segmented image. 2nd row: Results after | (‘.\‘1| drd .

] $ = yvele. 3rd row:

Final results in 6 cycles.

92



L
©
Q

}*‘igurv 4.7: MG method with local smoother I for CV model, tested an |

iimage, parameters used are g = 0.0001 x (256)%, rr = 1.101 x ll‘) 12 3 mll "““ "('.”"““]

v 10-20 4 = ./(z — 150)2 7 " Ton 1 ' Wil

1 x 10 ,’f')“ = V (a 'l..)()) b (y — 140)= — 100. Top left: Original image with initial

contour. Top right: Initial segmented image. 2nd row: Results after 1 (\ le. 3 ]I“l "
: Results yvele. 3red row:

Final results in 6 cycles.



Figure 4.8: MG method with local smoother T for CV model, tested on an galaxy i
age, parameters used are g = 0.0001 x (256)%, rr 3.05 x 10-4 3 ‘I “'“; ,\ e
210 [ SN = 2 - e : s ) ¢
1 x 10 '..t,)ll = VAL ' 150)% + (y — 140)2 100. Top left: Original image with initial
contour. Top right: Initial segmented image. 2nd row: Results after 2 (_\"‘.l‘\ e '
: Mot B 'S.oard Tow:

Final results in 10 cycles.



4.5.2 Results using smoother Il

In this section we test MG algorithin 8 with smoother LI (global smoother). In Fig. 1.9,
MG algorithm 8 with smoother IT is tested on an synthetic noisy image. Parameters
used are the same as used Fig. 4.1. The final results are given with relative residual
rr = 1.246 x 1071 in 4 cycles.

*x

Figure 4.9: MG algorithm with smoother II for CV model, tested on a synthetic noisy
image with g = 0.1 x (256)%, rr = 1.246 x 10 15 pbtained with 4 eyeles.

4.5.3 Improved solution for global minimizers

Here we give some evidence of obtaining improved solution of the global minimizer. As
in [17)1. X. Bresson et al discussed the drawbacks of the variational segmentation model,
with the main one being the existence of local minima in the energy. In non-convex
optimization, the local minima often lead to unsatisfactory results. In Fig. 4,10, .11 our
MG algorithm on the problems addressed in [25, 15, 41}, which are segmented correctly
with this particular initial guess ¢o. On the other hand, in Fig. 4.12 we have displayed the
results obtained by using AOS method, where the method gets stuck in a local minima
with this particular initial guess given in Fig. 4.10, 4.11. The same sort of results are
found using semi implicit (SI) method. We have tested this for many problems and sce
the same type of difference with the other methods like AOS and SI.

4.5.4 Convergence tests and full multigrid

Our preliminary results suggest that our MG (with smoother I) can converge for varying
choices of the initial ¢ e.g specifying ¢ having a small circle at a fixed position. We have
tried different initial guesses for instance a rectangle, a parallelogram cte., all of them
work. For simple artificial images only 3-4 MG cycles to get the relative residual helow
10~ '2 and for real images like MRI images we need 7-8 MG cycles to get relative residuals
less than 10712,

However to eliminate the need of an initial guess, we consider the use of a full multigrid
(FMG) idea [1 18] which starts the solution of kq. (4.9) on the coarsest grid. Then cach
solution is interpolated onto the next fine grid to give an initial guess until we reach the
finest grid where we start the MG algorithm.

To test on the scalability of MG, we display in Table 4.2 the number of steps needed
to reach a desirable accuracy for the images 1 and 7 from Fig. 3.1. The CPU times (in
seconds) are obtained from running Matlab on a Pentinm PC for illustration purpose.
Here FMG means that the initial guess of ¢ is obtained from a FMG method following
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Figure 4.10: Improved solution towards global minimizer, tested on box image using MG
algorithm 8 in 3 cycles. Top Row: [nitial data. Bottom Row: Final results.

Figure 4.11: Another example for improved solution towards global minimizer, tested on
box image using MG algorithm 8 in 3 eyeles. Top Row: Initial data. Bottom Row: Final

results.
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Figure 4.12: These are the results obtained by using AOS method which is stuck at a

local minimum i.e could not segment the images.

by the normal MG cycles. Clearly MG (with smoother I) is efficient. Our MG works the

best with v1 = v» = 2, but it will not work well if much less smoothing steps are used
(

e.g Vv = 1,1 =

07



Table 4.2: Test of scalability of MG and FMG. CAM: Cameraman image and UOL: UOL
image given in Fig 3.1

Image | Method | Image size: MG cycles CPU (seconds)
MG 1282 4 9
2562 5 15
5122 5 27
10242 5 90
CAM 16 1282 3 15
2562 3 17
5122 3 27
10242 3 83
MG 1282 2 5
2562 2 6
5122 2 12
10242 2 50
UOL FMG 1284 2 11
2562 2 13
5122 2 21
10242 2 61

4.5.5 Comparison of complexity and CPU saving

Finally in this chapter we compare the speed of MG (with both smoothers) with semi
implicit (SI) method and additive operator splitting (AOS) methods. We first estimate
the computational complexity of the algorithms involved. To be concrete, we assume that
the inner solver of a SI method is by a conjugate gradient method for 25 steps, and in the
MG method vy = 2 and v, = 1. Then, consider segmenting some image of size 1 x m.
Then setup cost for the 4 main coefficients is about 4 x 8m? = 32m? operations for all
methods per step. The cost of each step of SI method is thus W) = 25 x 5m2 + 32m?2 =
157m2. For the AOS, solving each tridiagonal matrix costs 4m? operations so the cost
of each step is Wa = 2 x 4m? + 32m? = 40m?. Finally the finest level smoothing cost for
MG is 11m2 x (v1 + 2) = 33m? so the finest level cost is 33m? + 32m? = 65m2. The cost
per MG over all levels is W3 = 4/3 x 65m? ~ 87m?2. Therefore the practical efficiency of
these methods, although all of O(N) = O(m x m) complexity per step, will depend on
the number of actual iterations steps used for achieving the same accuracy.

In Table 4.3 we have presented the comparison of our method with SI and AOS
methods. The terms used in the heading of Table 4.3 have the following meanings:
Size:The size of given image m X n.

Itr: Number of iterations used to get the required result.

CPU(s): Time in seconds required for CPU to perform these itcrations.

SI: Semi Implicit method.

AOS: Additive Operator Splitting

MG: Multigrid Method.

ART: Artificial image, problem 7 in Fig. 3.1 and REAL: Real image like MRI, problem
5 in Fig. 3.1.

_ : Results with high CPU or out of memory.

S-I: Smoother 1.
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S-11: Smoother I1.
AOS multi-resolution: AOS method is implemented in coarse to fine level manner, i.e
AOS method is used to solve the problem on coarsest level and interpolate the solution
to the fine level and use it as initial guess, to solve the problem on fine level using AOS
method and so on until the finest level is reached.

From Table 4.3 we see that the MG method is as fast as the SI method and AOS
method for images of small sizes, but it is more eflicient for the large images, where the
above mentioned methods are very slow or not working.

Table 4.3: Comparison of MG with SI and AOS methods

Prob. | Size AOS method AOS SI Mecthod MG Mcthod | MG Method
multi-resolution (8-1) (S-1I)
Ter | CPU(s) | Itr | CPU(s) | Itr [ CPU(s) [ Itr [ CPU(s) | Itr [ CPU(s)
1282 | 60 4.8 60 4.8 80 16.5 2 8.5 2 8
2562 | 140 50 80 34 100 90.3 2 9.4 3 13.4
ART —=ort35g0 [ @1 [ 170 277 |40 | 13xi0° [ 2| 138 |3 17
10242 | 1200 | 7661 | 240 | 1630 - - 2 27 3 32
2048% | - - - - - - 2 90 3 100
128% | 100 105 [100] 105 {130 32.2 3 12.8 4 15
2562 | 280 | 110.5 | 156 68 180 450 3 14 4 22.2
REAL =or 13500 [ 1230 [ 312 503 T ==x10"| 3 19.2 4 22.2
10247 - - - - - - 3 40.7 4 42
2048° { - - - - - - 3 133 4 136.9

4.6 Conclusions

We have proposed an effective smoother for a nonlinear multigrid method to solve the
Chan-Vese active contour without edges model. A lincar Fourier analysis shows that our
local smoother I is better than the global smoother II. For large images, as expected,
our MG leads to much faster solutions than the uni-level methods of SI and AOS. A
somewhat surprising observation is that our MG can reach closer to the global minimizer
than the SI and AOS methods in all of our test cases.




Chapter 5

The Multigrid Algorithms for
Variational Multiphase Image
Segmentation

The main theme of this chapter is to develop fast iterative methods for solving multiphase
image segmentation models. Firstly we extend the 2 phase image segmentation CV
model [35] discussed in chapter 4 to a multiphase image segmentation model [120] and
then extend the multigrid algorithm proposed in chapter 4 towards multiphase image

segmentation.
The main references for this chapter are 8, 14, 23, 27, 35, 72, 74, 120, 127].

5.1 Introduction

Segmentation, referring to separating image features from backgrounds, is one of the most
important tasks arising from computer vision (e.g. detecting objects) and many image
processing fields (e.g. picking out special cells in cell imaging). Segmentation methods
fall into several categories, including histogram analysis, region growing, edge detection
and PDE-based variational methods. Our main focus will be on nonlincar PDE based
segmentation methods.

The PDE and variational based methods [87] are among the more recently developed
tools for image segmentation. The snake model [75], the active contours model [21]
the gradient vector flow method [129] and the curvature driven diffusion method [33] ali
belong to this class of PDE-based methods. In most situations, the level set method
described in [90] proves to be an indispensable tool for analysis and implementation.

Our primary aim in this chapter is an extension of the Badshah-Chen multigrid
method [8] (already discussed in chapter 4) to the Vese-Chan multiphase image segmen-
tation [120]. Two problems are encountered in this work. Firstly a local Fourier analysis
(LFA) of the generalized local smoother suggests that it is not effective if a siall number
(e.g. 2 — 3) of smoothing steps is used. A closer study shows that this ineffectiveness is
due to a few image pixels only, where the linearized coefficients differ greatly. We then
propose a different smoothing (under-relaxation) strategy at these ‘odd’ pixels. The LFA
shows that the modified smoother is effective. Secondly we found that the Vese-Chan
multiphase model [120] may not segment images (i.e. may not converge to the desired
level set functions) if good initial guesses are not provided; this problem is il]h(}l‘(!;lt in
the model rather than the numerical solution methods. To overcome this latter problen
we adopt the idea described in [72] to decouple the multiphase model into repeated th
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phase models in a hierarchical way. This prompts us to consider a multigrid method for
each decoupled two phase problem. It turns out that this hierarchical approach leads
to a fast algorithm that can segment an image for any (tested) initial guesses (includ-
ing previously failed cases of initial guesses). Moreover, even when good initial guesses
are available, the hierarchical approach is also faster (in number of iterations and CPU)
than the multiphase multigrid method without the modified smoother; with the modified
smoother, the two algorithms are comparable in speed. In Section 5.2, we describe the
Vese-Chan multiphase model. In Section 5.3, we develop the multigrid method for solving
partial differential equation arisen from the minimization of the multiphase model. We
also give the Fourier analysis of the smoother. In Section 5.4, we implement the 2-phase
image segmentation model in hierarchical way to get multiphase scgmentation results.
We end of the chapter with some numerical experiments and conclusion.

5.2 Multigrid algorithm I for multiphase segmentation (MG1)

The Vese-Chan multiphase segmentation model [120] is the extension of the 2-phase
Chan-Vese segmentation model [35] which has already been discussed in chapter 4. As
described in [120], with one level set function, we can segment an image into two phases
as one level set cannot represent more than two phases. In general, to divide an image
into n phases, we need log, n level set functions. We remark that related work by Tai
et al [78] and Ambrosio-Tortorelli [4] provides alternatives to these multiple level set
functions.

Consider p = logyn level set functions ¢, : @ — R for £ = 1,2,...,p. The union
of the zero level sets of all ¢, will represent the edges in the segmented image. For
1 < s < n = 2P, denote by ¢, = mean(z) the average value of image grey-scales in phase
s and by xs the characteristic function for phase s. Then the proposed minimization
energy for multiphase segmentation by Vese-Chan [120] is the following:

o)=Y [Can-cludy « » Y [ OHGlwa 61

1<s€n 1<e<p

where ¢ = (c1,02,...,Cn) and @ = (¢1,¢2,...,6;); note n = 27, In this chapter we
mainly focus on the 4-phase segmentation i.e. n =4 or p = 2, which we denote by SEG4.
But all the ideas will carry over to more phases.

We shall consider the following minimization problem:

min Fy(c, ®), (5.2)

where
Fi(c,®) = /Q(z(:c,y) — c11)*H(¢1)H (¢2)dzdy + /Q(z(x,y) — ¢10)2H(¢1)(1 — H(¢p))dxdy

+ /Q (2(z,y) — co1)*(1 — H($1))H(¢o)dzdy + p / |V H (¢1)|dedy

Q
+ / (2(z,y) — c00)*(1 — H($1))(1 — H(¢2))dxdy + u/ |VH($2)|dzdy  (5.3)
Q Q

where ¢ = {c11, €10, Co1; coo) and @ = (1, ¢2). Here the phase domains will be interlaced

by the zero level sets of ¢1,¢2 i.e. Q) = {(z,y) : ¢1>0,42 >0}, Q2= {(z,9) : ¢1 >
0, 2 < 0}. Once @ is found, the segmented image u is

u = e H(¢1) H(¢2)+croH (1) (1-H(¢2))+co1 (1—H (1)) 1 ($2) +coo(1-H (1)) (1- H(2)).
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Minimizing (5.2) with respect to ¢ and ®, we have:

(6) = Jo 2H($1)H($2)dzdy (4) = Jo 2H($1)(1 — H($2))dxdy

‘i fQ Hé)H(d2)dedy® Jo H($)(1 = H($a))dxdy ’
Jo z2(1— H(¢1))H(¢2)dzdy (6) = Jo 2(1 = H(¢1))(1 — H(¢2))dxdy
fg(l e Hddy ™ o= H(@0) (1 = H(¢s))dzdy

and the following Euler-Lagrange’s equations

cor(¢) =

bu(n) [V - Ig‘;fll (TiH(62) + To(1 = H(2))]] = -
5.4
5:(0a) [ - T2 = (TH() + To(1 = ()] =0,

with Neumann boundary conditions, where 71 = (2 — c11)? — (2 — ¢01)? and Ty = (z —
c10)? - (z — coo)?. We shall shortly discuss how to solve (5.4) efficiently.
An easy but less efficient alternative is to solve the following evolution problem

01— ) [nV - o~ [TH(62) + Ta(1 ~ H(6)]),
a‘zf |V$ 3 (5.5)
00 — (00|19 - T ~ [MH(9) + To(1 = H()],

with initial conditions ¢1(0,z,y) = ¢10(z,¥),92(0,,¥) = ¢20(z,y). In [120] these
parabolic equations were solved using the additive operator-splitting (AOS, semi-implicit)
method (details are given in chapter 4) which will be used later for comparison.

5.3 Multigrid algorithm I

Instead of solving (5.5), we consider solving (5.4). Let (¢¢)i; = del(zi,y;), for £ = 1,2.
Using finite differences schemes to discretize (5.4) for ¢, the equations at a pixel point
(i,j) are given by

( AT pd% (é1)i,5/h
6e(b1)iiy = = (T1)iH(¢2)i j+
(o {hl (AZ(1)i,j/h1)? + (DAY (61)ij/h2)2 + B Ve Hle(@2)ss
Ay /JA (¢1)1,]/h2
—(T2)i;(1 = H($2)ij) ¢ = 0,
N e )
‘ 5.(69) {N uA+(¢2)@,J/h1 . (5.6)
2)4,] - 1)i,j81e\P1 4,5
VR (83 (62)ig/M)? + (DY (9)is/ha)? + e
AY pdSY (#2)1,5/ha
= (T2)i,j(1 = He(1)i5) p = 0,
hy \[A ($2)i,j/h1)? + (D% (d2)i i/ M2)? + B o l )}

where (T])i,j (Z;] - Cll) - (Z‘l,] - COI) and (T2),] = (Zz]’ — CIO) — (Zz,] _ (‘()0)

Let p = p/h, B = = h?B and A = hj/hs. Also denote (f1)ij = (M)igH(d2)ij +
Ty)i (1 — He(¢2)i,;) and (f2)ig = (T1)ijHe(d1)ij+T2)ij(1— He(¢1)i,5). For given ¢) and
¢ we compute fi1 and fa, keeping f and f, fixed and we solve coupled PDEs in equation
(5.6) for ¢ and ¢2 using multigrid method. Once ¢, and ¢ are found we update f, and
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f2 and so on. For £ = 1,2, denote the coefficients (to be frozen) by

Dy($e)ij = L
7 V(05000 + 0L (80 + B
De($e)i-1 = -
7 BLG0i1 + ABL (B0 )2 + B
De(¢0)ujo1 = 1
(\Pe)ij—-1= .
T 36051 + 8 (Be)i1)2 + B

We can simplify equation (5.6) to

[DZ(¢£)i,j((¢£)i+l,j —(#¢)i,j) — De(de)i-1,5((be)ij — (d’t)z’—-l,j)]
+2 [Dg(¢e)i,j((¢l)i,j+1 — (#2)i,j) — De(@e)i,j-1((de)ij — (¢e)i,j-1)] =(f.; (57)
where fp = fe/u, with the boundary conditions

(60)io = (B0)its  (B0)ima+1 = (B0)ismas (Be)os = ($D)1jy  (De)my+1,5 = (P)my j- (5.8)

Let ¢, be the approximation to ¢, at the current iteration. Then from equation (5.7),
pursuing only local unknowns ¢ at (i, j), we have the following linear equations

[ D@0 (Be)irrs = (Be)i) = DelGOim1(@0)is = (Fe)ivs)]
X[ De(@0)i (01 = (90)is) = De(Bedi=1((90)ig = (F)ejon)| = (Fije  (5:9)

Our proposed algorithm solves these equations for (¢¢)i,; to update (d;g), ; which leads
to updating the coefficients locally and further iterations (before moving to the next pixel
in a Gauss-Seidel fashion). Denote the system of non-linear equations from (5.7) by

Nh. ¢h — '_h’
{ M 2 (510

where ¢£ and f;‘ are grid functions on an my X my cell centered rectangular grid Q* with
spacing h = (h1,h2) and I = 1,2.
We shall first summarize this local smoother and then present our algorithm I.

Algorithm 9 (Smoother for multiphase model) Let a smoothing step for (5.7) via
(5.9) be
¢ «— Smoother(¢}, fgh,ma:m't,tol)
where € = 1,2 and h is the step size on level Q"
fori=1:m
forj=1:my
for iter=1:maxzit

G ol A= De(fge) (¢e),+1 it De(¢e)1_1 ,(¢e~)f'_1,]-,
By = De(¢l) (¢£)1 g1t Df(m)la—l(d)f)?.j—l’
A+ /\zBl fh J
De($e)%; + De($e)l_, ; + N(De(@e)?; + De(ge)t;_))

1,j—1

(Bo)t; =
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if (60, — ()] < tol Stop
end

end
end

Multigrid Algorithm: Equation (5.10) will be solved by the following multigrid algo-
rithm [8, 14, 39, 118]. This is the full approximation scheme of Brandt [14].

Algorithm 10 (Multigrid Algorithm) Assume we have set up these multigrid pa-
rameters:

" pre-smoothing steps on each level

Vg post-smoothing steps on each level

5 the number of multigrid cycles on each level (y = 1 for V-cycling and v = 2 for
W-cycling). Set tol = 0.1. Here we present one step V-cycle of the nonlincar multigrid
method for SEG/. First for £ = 1,2 compute f}' using given ¢;‘. A multigrid cycle refers
to one call to the procedure

Start

¢t — FASCYC*(¢}, 7 v, v, tol)

1. If QM is the coarsest grid, then solve equation (5.10) using a time marching technique
(the AOS method) and then stop.
Else do the Pre-Smoothing step:

¢Z‘ — SmOOthCT(¢';,feh,V1,tOl)
2. Restriction:
¢ = I2hgh, 3t = gt
7t = AP - NEOG) + NERgRh
g2t «— FASCY C2 (g2, F™ vy, 1)

3. Interpolation
of — of + (83" - &™)

4. Implement the Post-Smoothing step:

¢? — Smoother(qb;‘, feh, vy, tol).

Once ¢>2‘ for £ =1,2 is found update f,.
If rr < tol Stop
Else go to Start.

Here the restriction operator Iz* is by full weighting and the interpolation If}, by the
bilinear operator [118]. 1

As we know, an effective multigrid algorithm relies on two necessary ingredients:
Smooth residual errors on fine levels and effective error corrections from coarse levels. In.
practice, the effectiveness of a smoother in smoothing errors is the key to success. In the
next section we give the local Fourier analysis of our smoother in Algorithm 9.
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5.3.1 Local Fourier analysis and a modified smoother

Local Fourier analysis (LFA) is a suitable tool to analyze the convergence rate of any
iterative method for linear equations. However our underlying equations are nonlinear
so a LFA will consider a linearized equation, and as linearization occurs locally at each
pixel, we shall look for the maximum rate from all pixel locations.

Consider Algorithm 9 in the case of a square image with m = m; = mg and also
hi = hy = h for simglicity; then A\ = 1 Given the previous iterate at step k, 55 =
¢(k) denote a1 = Di(¢1)i-15) 02 = Di(¢1)ij» a3 = D1(¢1)ij-1, b1 = Da($2)i-1,5, be =
Da(d2)ij» bs = Dy(¢2)i j-1 which are to be considered as local constants. From (5.7),
the grid equation at (i, j) is the following

—(ay + 2a2 + a3)($1)i,j + a1($1)i—1,j + a3(B1)ij-1 + a2(@1)ix15 + (b1)ij41]

= (f1)ij
—(by + 2b2 + b3)(b2)ij + b1(B2)i-1,5 + b3(2)ij—1 + ba[(B2)it1,5 + (B2)iy41]
= (f2)ij-
(5.11)
And our local smoother can be written as
—(a1 +2az + a3)(¢1)( M+ ai(d )g—Tg) +a3(¢1 )gjtll) + az( ¢1)1+11 (,kJ)H]
fl)l.J,
k (k k
— (b1 + 2by + bs)(¢z),(-,,-“) + bi(¢2 ),_J{lj) (¢2)§,ij) + baf(2) ) St (¢2)5’°J)+1]
(f2 INE
X . (5.12)
Define the error functions by e(1 V= ¢y - qS(l ) and e = ¢y — . Then using (5.11)

and (5.12) with freezed (f1)i,; and (f2)ij, the error equations are

al(el)(_“ +a3(el),] I +a2[(e1)1+11 + (61)( - (a1 + 2a +a3)(el)(k+1) -0
k
bie )SﬁlJ) + b(e )f'Jtl) + b2(e2) H'l»] 62)u+1] (b1 + 2b2 +b3)(62)(k+1) 0.
(5.13)

Recall that the LFA measures the largest amplification factor in a relaxation scheme
[14, 39, 118]. Let a general Fourier component be

(e i YY) daim  2Afjm
@a»ﬁ(xhyJ) = €Xp (190 h +10/3 h) "_exp( m + -_—.

m

Note that 85,8 € [-,7]. The LFA expands

m/2 ) m/2
k
€= 3 @asOas@y) &)= Y () pOus(zi )
a,=-m/2 a,f=-m/2

in Fourier components. We look for the largest spectral radius (maximum eigenvalue) of
the amplification matrix Aq,g [31, 118]:

[wﬁ"“’m]_ AL [(M, }
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. o . e (k+1) (k) (k1) (k)
After substituting these components into (5.13) for e ,((l and ¢, , €y ', we have:

Qi 2ig3~ ]
as| e m 4e"m
2iaw 2i3r
al *2(!‘1 +Ta3—aje m ajze m

Anp =

PATRR.s 213w
b1+2b24+by—bre ™ m bye ™ m

At the kth iteration, each rate /Z(k)(i._j) = max, 3 p(A,3) in the high frequency range

T T

o " "y » - . .~ .
(64,03) € |-, 7\ (=5, 5, measuring the effectiveness of a smoother [14], is dependent
on ag. by, € = 1,2, 3, which in turn depend on the pixel location (i, j). Therefore we should
look for the largest smoothing rate for all 7, j (i.e. among all such pixels):
= 1max a® (@, 5).
[ll.(l‘_:.ll_{.f}],[l‘_} ,’ij
However. due to the high nonlinearity, we found it useful to define the smoothing rate
as the maximum of the above accumulated rates out of all s relaxation steps by
; W) NF@ (g () (;
irs = max itV 4, 5)? (4, §) - - - B9)(4, ).
1)
(Clearly for linear equations, where ay, by are constants, ji = %) is a constant so fig i),
Here. as ag. by are not constants, with this particular definition, we would allow the
possibility of a% (i, j) = 1 for some i, j, k. As long as iy < 1, we would say a smoother
is effective.
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Figure 5.1: Segmentation of the top left image into the bottom right image.

In Table 5.1, we take the particular example of Figure 5.1 of segmienting an artificial
imace. We use the image size m = 32; note that, similar results are obtained with
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Table 5.1: The smoothing rate for a local sinoother with 3 inner iterations

Outer The smoothing rate The smoothing rate
iterations s Ls taking out “odd pixels”
it
1 0.6862 0.5720
2 0.6861 0.3170
3 0.6861 0.2747

m = 64. Here, in Table 5.1, the “odd pixels” refer to positions where the relative ratios
between az and max(a1,as), or the ratios between by and max(b;, b3), are quite large.
Clearly our smoother is ineffective overall due to these odd pixels. This prompted us to
consider how to improve the overall smoothing rate (Column 2 in Table 5.1).
A modified smoother. To motivate the idea, consider the particular case of an odd
pixel assigned with
a; = 0.3536, a2 = 10000, a3 = 0.3536, by = 0.3536, by = 10000, b3 = 0.3536 (5.14)
for which LFA as described above gives a local (large) rate of p = 0.99996. Now we
propose, as an alternative to (5.12), the following under-relaxation smoothing scheme at

these odd pixels:

(k+1)

+as(én)&F) +a2[<¢1>1+1, +(61), 1]

+1
a1(¢l);( 1_7) i,j+1

—(a1 + 2a2 + a3)(1 + w)(¢1 )” + w(ay + 202 + as)(¢1)( ) = (fi)i) (5.15)
bi(32) 1Y + bs(82)57Y + bal(92)) 5 + (82)15) 1] '

—(by + 2bz + b) (1 + @) (825 + wi(br + 26 + b3) ($2)) = (Fa)isy

for some 0 € w < 1 (note w = 0 reduces to the previous local smoother). The new error

equation is

(k) ]

(en){E13) + aa(en)iE0 + aallen) B + ()l
— (a1 +2a2 +a3)(1 + w)( )( by w(a1 + 2a; + aJ)(el)(k) =0, (5.16)
k k .
bu(e2) 532 + Ba(ea)(5y) + Bal(ea)i3h 5 + (e2){h]

— (14 w) (b1 + 2bz + ba)(e2){5™ + w(by + 262 + b3)(e2) ) = 0.

Then the corresponding new Fourier amplification matrix is

a2 (ez%l +e m

) +w(a1+2a2+a3)

~2i8r

—a3ze m

)

—2ian
((71+w)(a1+202+a3)—a1e m

Aup =

210
bs (e“—" +eSa- ) +w(bi+2b2+b3)

L

Equation (5.15) with w = 0.7, this new scheme yields a much better rate of u = 0.75026.

The choice of w = 0 is based on numerical experience.
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Therefore, our new smoother will be (5.15) using a variable w written in a form similar
to (5.9) as

Dy(¢e)s.; [(fz;e)m,j - (1+w)(de)i; + w(a?e)z‘,j]
— Dy($e)i-1, [(1 +w)(be)ij — w(Be)ig — (Be)ioa j]
+ X2Dy(B0)i[(Bediar = (1 +w)(Be)is +w(de)is)
— A2Dy(de)i i1 [(1 +w)(de)ij — w(Be)ij — (¢e)z‘.j—x)] =(fo); ;- (5.17)

It may be stated as follows.

Algorithm 11 (Modified smoother for multiphase model) Denote a smoothing step
for (5.10), using (5.17), by

d)? — Smoother(q&i‘, fgh, mazit,w, K, tol)

where £ = 1,2 and h is the step size on level Qh. Set K = 100.
fori=1:m
forj=1:my
for iter =1 : mazit
Zf |D3(¢[)11| > Kma-X(ID[((b()l_l]l |Dl(¢l)z] 1|) f()’r any e set w = 0.7,'

otherwzse setw = 0.
¢l "‘¢'ey _ 5
A= Dt(¢£);,j(( i);+1,] + w(‘i)l) ) + De((ﬁg)l_l J((d’;)z -1,j + W(d‘;l)t ])
= De(¢t)?, (¢ [)z]+l +w(¢e),,) + Dg(qS[) A l((d,e)h] . +W(¢e)”),
(60)%; = . Aot XDy - fu
3 (1 + w)(Dl(¢l) + De(¢e), ha ’\2(Dt’(¢() i Dl(‘l;t)?‘j_l))
'if|(¢t)1' (¢£ | < tol Stop

end

end
end

We now repeat the smoothing analysis as was done in Table 5.1 and show the new results
in Table 5.2. Clearly the new rates are much more acceptable (note the accumulated
number of smoothing steps is 3s since we use 3 inner iterations for each outer step). In
Section 5.5, we shall compare the performance of the two smoothers in MG1.

Table 5.2: The smoothing rate for a modified local smoother

Outer The smoothing rate
iterations s iis
1 0.3720
2 0.3170
3 0.2747
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5.4 Multigrid algorithm II for multiphase segmentation (MG2)

As previously remarked, a time marching solution scheme is employed in the original work
of Vese-Chan [120]. Realizing that this scheme is extremely slow to converge, Jeon et
al [72] proposed a hierarchical image segmentation method which essentially abandoned
this multiphase model in favour of the earlier Chan-Vese [35] model. The idea of Jeon
et al [72] is the following. We first use the two-phase model [35] to segment the given
image z into two phases (a domain and its complement) using a single level set function
¢. We then segment one of the phases using the two-phase modecl [35] again and this
process is repeated until the desired number of phases is archived. Here there are two
key decisions made: (i) The domain having the larger intensity variation will be the
next segmentation target; (ii) The domain having the smaller intensity variation will
be replaced by a uniform intensity equal to the average intensity of the larger intensity
domain. This gives rise to a new image Znew, a modified image of z. This new image
Znew Will be segmented. Here the purpose of (ii) is to avoid re-scgmenting the domain
with the smaller intensity variation.

The aim of this section is to combine the multigrid algorithin 8] for two-phase scg-
mentation with this unsupervised hierarchical image segmentation algorithm {72] and
then to assess if any advantage can be gained over Algorithm 10. Our motivation stems
from an observation in [8] that the multigrid algorithm can help reach a global minimizer
of a two-phase model (i.e. less dependent on initial guesses) while it is not true with the
multiphase model (using Algorithm 10).

We first review the important definition used in steps (i-ii) above and then present
the combined hierarchical multigrid algorithm. We shall denote by

[8,c1,c2] = MGM (¢, 2)

the process of utilizing the multigrid algorithmn [8] to segment a given image z by working
out the desired level set function ¢, and the two associated constants cy, ca.

Definition 5.4.1 (Intensity Variation [72]) Let z be the given image and S\, S, de-
note a partition of z, obtained by segmentation using one level set function. Then the
intensity variation across S; is given by

M,
1 T

Var(Si) = 17 > (a(ze,u0) - Co)?,
te=1

where Cy represents the average intensity of S; and M; is the number of pizels in S;.

Algorithm 12 (Hierarchical segmentation by multigrid method)
Let n be the required number of segmentation phases and z the given image.
Assume ¢y is an initial contour (which can be a simple pattern or may be worked out by
a full multigrid idea as in [8]).
fori=1,...,n—1
@i — do
[pi, €i1, Cio) — MGM(¢;, 2), using the 2-phase multigrid method.
Define Sy = {(k,€) | (¢:)k,e <O} and Sy = {(k,€) | (#i)k,e > 0}.
Compute Var(S1), Var(S2).
Find j = argming Var(S,) and denote ¢ = {1, 2}\{j}.
Save C; = ¢;j and w; = j (Note j,q=1 or2.)
Set z(S;) = ciq since Sy is the domain with the larger variation.
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end
Set ¢n = ¢n-1, Cn = Cigy, Wn =(¢.

We remark that the main algorithm presented in [72, p.1465] has a major typo, where
‘smallest’ should mean ‘largest’, and also the loop should end at n — 1 rather than n.
Finally once the algorithm is completed, the segmented image will be

v=3YG; [(wj _)-(- H(dh-))] (~1)vs, (5.18)
=1

which is similar to the two-phase case with n = 2, and w; = 1,2 from Algorithmm 12. For
instance, if w; = 1wy = 2, w3 = 1,wy = 2 for SEG4 (i.e. n =4), then

u=(1—H($1))C1 + H(42)C2 + (1 — H(¢3))Cs + H(¢4)Cy.

Clearly for n phases, we now require altogether n — 1 level set functions, while the
previous multiphase method [120] only requires logyn level set functions. For small n
the difference is small; however for large n MG2 will have to store many level set function;
(matrices) than MG1.

5.5 Numerical Results

In this section we present experimental results to illustrate the two multigrid algorithms
(MG1 and MG2) versus the time marching method i.e.

MG1 —~ Algorithm 10 with the local smoother (Algorithm 9);

MGlm - Algorithm 10 with the modified local smoother (Algorithm 11);
MG2 — Algorithm 12 with the hierarchical segmentation ’
AOS — The additive operator splitting method (time-marching).

We shall first compare the qualitative results of segmentation and then compare these
solvers in speed of segmentation (iteration steps and CPU time). Although we have done
many test examples, we show one artificial image and one real life image here, as shown
in Figure 5.2.

Segmentation results. The main parameter x in the segmentation model balances
the regularization term and the fitting term (fitting a phase domain with its average
gray-scale levels). Here for Problems 1 and 2 we take g = (size of image)?/12 and
p = (size of image)?/500 respectively. To detect small objects in an image, smaller the
value of p required and only for larger objects large value of p is required.

In Figure 5.3, Problem 1 (an image size of 128 x 128) is solved with MG1, MG1mn
MG2 and AOS. Even for this small image, we give these computational details to get an
impression of these methods: MG1 takes 15 iterations (MG cycles) with CPU time of 12
seconds. MG1m takes 10 iterations with CPU time of 9 seconds. MG2 takes 10 iterations
with CPU time of 10 seconds. In the last row final results with AOS are obtained in 230
iterations with CPU time of 64 seconds. Clearly all segmented images are similar to each
other while all MG algorithm performances are similar to each other and are faster than
AOS.

In Figure 5.4, Problem 2 is solved with MG1, MGlm, MG2 and AOS. The same
summary can be made.

In Figure 5.6, we show that MG1 and MG1m does not work very well, and can get
wrong solution with some initial guesses. In other words we say that the m,odcl (5.2 ca;l
stuck at local minima because of its non-convexity. Left figure is the result with MCI
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Figure 5.2: Test Problems 1 and 2 with the initial guess contours for MG1, MG 1, AOS
methods. For MG2, the initial guesses are for a two-phase model.
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Figure 5.3: Problem 1 solved by MG1, MG 1m, MG2, AOS methods. Top row: result
D . COSHIES

with MC1; row 2: results with MG 1m; row 3: the results with NG2; and row 4 |
MG2; ¢ Wl results

with AOS. In row 3 the left image is the three phase segmentation and the right i
. ‘ ‘ s right image

is the final segmented image.



MG1

MGTm

MG2

AOS

i: Problem 2 solved by MG1, MG1lm, MG2, AOS methods. As with Figure 5.3

Figure 5.
results with MG1, row 2: results with MG lm, row 3: the results with MG2

Top row:
and row 4: results with AOS. In row 3 the left image is the three phase segmentation

and the right image is the final segmented image.
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Figure 5.5: Initial guess, where MG1 and MG 1 fails to get the desired results.

Figure 5.6: Final results from MG1 and MGlm with condition given in Fig 5.5: Left:
Results with MG1. Right: Results with MGlm.

and the right figure is the result with MG 1lm. Clearly we could see that the results from
MG1m is better than the results from MGI1. In Figure 5.7, gives the results obtained
using MG2. Left figure gives the original data and the right figure gives the final results
which is satisfactory. We have tried different initial guesses and got the results ‘

Performance comparison. In Table 5.3 we compare the methods discussed in this
chapter, by CPU times tested on the image in Fig 5.1 in different (larger) sizes. With
VG2, in the 8th column of the table we use the notation p(q) implying that p iterations
used for the first seementation and ¢ iterations for the second segmentation. Even for
images of small sizes, there is some benefit in using MG algorithms. However, for larpe
sizes. one could see a huge difference in CPU times, with MG algorithms outperfor Illl;l"‘
the AOS by many order of magnitude. MG algorithms yields a computation time 1.»!"
O(N log N) where N = my X my [84]. This can be seen in figure 5.8,

5.6 Conclusions

[n this chapter we have introduced two multigrid algorithms for multiphase variational

image segmentation. As expected of a multigrid method, both algorithims are much
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Figure 5.7: Final results using MG2. Left: Initial guess for MG2. Right: Final result
g 16 ' = ) . H 0S8 S
with MG2. !

Table 5.3: Comparison of MG1, MG Im and MG2 with AOS methods in number of iter
. N v . g 5 . b o ) o
ations (‘Itr’) and CPU time (‘*CPU’). Here * implics no convergence (to the tolerance)

was achieved with 24 hours.

[mage AOS MG MG 1 NGO
Size Itr | CPU [ Itr | CPU | Itr [CPU | Itr | CPU
128 x 128 | 80 2 |3 5 5 o T
T 256 x256 | 150 | 193 | 4 | 13 | 2 T T 15
512 x 512 | 1500 [ 42600 | 4 [ 74 | 2 | 33 [3@3)| 13
s e [ 525 | 2 | 148 | 3(3) | 151
§00————————————— — ? ’ &5
= £
10 15 X :
NigN 16 ) o 10

Figure 5.8: MG algorithms yields computation time of O(N log N). Left: MG1 CPU
N log N. Right: MGIm CPU vs Nlog N PR SR SYIIN VS



faster than the Additive Operator Splitting (AOS) method. To deliver an acceptable
segmentation, MG1 requiring less level set functions can be dependent of initinl guesses
while MG2 requiring more level set functions is practically independent on the initial
guess. Future work will consider models that require only one level set function [4, 78]
as well as other models [21, 109].
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Chapter 6

An Optimization-based Multilevel
Method for Variational Image
Segmentation Models

In this chapter we develop an optimization based multilevel method for the CV maodel
discussed in chapter 4 for image segmentation. In this chapter we mainly concern ﬂ])()\l’t
developing multilevel method for optimization CV models [35], and then will extend it
to the models of T. F. Chan et el [25] and X. Bresson et al [15]. We get an improved
minimizer with multilevel method and found this is as fast as AOS method compared by

CPU time.

6.1 Introduction

The variational formulation has become a well established technique for modeling a class
of image processing problems (3, 12, 26, 99]. In chapter 4, we have developed a fast sdlv&"
(in particular multigrid method) to solve the associated nonlinear partial (liﬂvrvnti;ﬂ
equation (PDE), from the Euler-Lagrange solution of the CV model [35]. Other m’vth(,)(lq
used for solving the PDE are also discussed in chapter 4. : l
In this chapter we propose an alternative to the PDE approach to solve the image
minimization problem directly. The problems to overcome in this study ill(',ll;(l(‘ tlu;
treatment of the non-differentiable functional in the minimization problems, by \'h‘ivng;
local minimization (and hence dimension reduction), and the stagnation pm’bl('m \lvith
the primal relaxation, by using coarse levels in a multilevel scheme. |
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6.2 Model I: The Chan-Vese Two-phase (CV2) Image Scg-
mentation Model:

In level set formulation Chan and Vese [35] proposed the following model (details can be
found in Section 3.5) y :

F(¢,c1,00) = plength(¢d =0)+ )\ / [2(z,y) — c1|2dxdy
¢>0

+ d [ Jala) - afddy,
¢<0

il

p/ﬂ [VH($)| dedy + M /n |z(z,y) — c1|H(¢)d:xdy

+ 3 [ [e(e,) - P (1 - H(8)drdy, (©.1)
Keeping ¢ fixed and minimizing equation (6.1) with respect to ¢; and ¢, we have

Jo z(z, y) H(¢)dzdy :
¢ =22 @& with [, H(¢)dxdy > 0

Jo {2, 9)(1 - H(@))dody | (6:2)
cp = =2 (L~ H(9))dudy J, with [,(1 — H(¢))dxdy > 0.

In order to formally differentiate (6.1), introduce the regularized Heaviside and Dirac
delta functions: c

H.(z) = -;-(1 + %Mctan(g)) and 0c(r) = Hl(z) =

€
m(x? + €2)’
The regularized functional Fe of F' becomes

Fipenc) = u [ [VH@dsdy+ M [ 1oe,0) - o1 @)ody
q 1
+ 2 [ [al@) = 'L - Hi))drdy, (6.3)
For given ¢ we compute c1(#) and c2(¢) using equation (6.2) and then keep them fixed
to update ¢ and then using this new ¢ to update ¢;(¢) and c2(¢) and so on. ,

Variations of (6.3} with respect to ¢ (details can be found in chapter 3) gives the
following gradient descent scheme

0 _ . Vo 2
3 = HOLv () - WGew -l - uGEn - e} o
In this chapter we develop a new type of multilevel method applied directly to the

minimization problem (6.3) to update ¢. In the next section we first develop optimization
based multilevel method for CV (two phase) model (Model I).

6.3 An Optimization Multilevel method (ML1) for CV2

In (6.3), suppose we work out 1, ¢; first using equation (6.2). Then to update ¢, consider
the following problem ) .

wpF®) = /Q IV615(¢) dady + A, /Q l2(2,3) = 12 HL (@)dedy
+ )\2/Q|z(:z:,y)-—c2]2(1—H((¢))(l;vdy. (6.5)
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Let z be the given image on some finest level with m; x my pixels so the discrete problem
of equation (6.5) is the following

PR T T ————

mi—-1ma—1 ) . —
- 2; z:l \/(¢z+1gh ¢z,1)2 + (¢z.]+lh“ ¢i,j)2'5((¢i’j)h2
-1 =

mp—-1ma—1

+ 30 Y PalEg — @) He($ig) + dalzig — €2)*(1 = He(ghig) W2

i=1 j=l1

my-1mg—1 ;
= p Z:l i; \/(¢i+1,j - ¢i,j)2 + (¢i.j+1 - ¢i,j)2-66(¢i,j)
— J:

my—1ma-1

Z Z [:\2(21'.1' —c1)? = Aa(zij — 02)2:}He(¢i,j) + terms independent of ¢4(6.6)
i=1 j=1 ~

+

r(z,y)

where pu = p/h and the minimization is with respect to ¢ so the last term will be dropped
in further calculations.

In this section, we consider standard coarsening of of the continuous optimization
problem into L + 1 levels, i.e k = 1(finest),2,..., L, L + 1(coarsest). Different from
a geometric multigrid method, each coarse level optimization problem will be dirvcﬂy
reformulated from finest level as done in [10, 30, 29] for another imaging problem.

First we consider the fine level local minimization which is essentially a coordinate

descent method {30, 24].

6.3.1 The finest level local minimization (k=1)

Let & be the current iterate. Then our idea is to solve a series of subproblems of the form
min Fe(¢ + C)

where C is a local and piecewise constant function. Consider a particular pixcl (3, 7)
Clearly if only ¢; ; is allowed to vary, we simply consider the local subproblem o

Il

E[\/(:?Sij — ir14)? + (D55 — Bija1)28e(di3)

min Flocal(¢i,j)
®i,j

+ \Mz’j — i1 + (Pim1j — Bi-1,+1)26 (Fi1;)
+ \/(Tﬁij — @i j—1)% + (Pij-1 — $i+l,j—l)25(($i,j—l)] +rii H (i),

where i = Mi(z,5 — @)’ = da(zij — ¢2)*. Starting from ¢¢f = §;, we can iterate the
following (Richardson type) scheme to obtain an approximation for ¢; ;:

(2%}
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where

(Birrj + Gijst) s, oudy | Pim1:0c(Bim1g) | ij1-6($ij-1) -
RHS = E-[—_E——éc(¢l’] ) + L2 + L3 . ] + 7'1',]'(5( ((/)i,j)’
26 (2 2L, 8e(Biz1y) | Oe(Big=1)
LHS = E[ L + 2 4 pold2y? Ly I ]
1 7T(€ +¢i,j ) 3
and

L, = \/(74’;’]'-" ~ Gir13)? + (80— Gijn)? + 8
L, = \/(¢?Jl~d — Gi-10)? + (Bic1j — Gic1i41)2 + B
Ly = \/(¢§’,'-d — $ij1)? + (Bijo1 — Bir15-1)2 + B,

and v > 0 is a regularizing parameter. Equation (6.7)is usually done for few steps only
to update ¢ ;.

6.3.2 The General level k local minimization (1 < k < L)

On a general level k, we consider the following minimization subproblem

mcmma +0C), (6.8)

where C is a local and piecewise constant function of support 7 x 7, = 28=1 x 2k=1 ¢
each block (i,5) of pixels. Formally we may denote the subproblem on level k by

¢ =arg min F($+ Iy Byc), Ck = I By é, (6.9)

ceRTk x‘rk
where By : R — R™*7 duplicates a constant to a block of constants, and Ij : R™*7 —
R™*" is the interpolation operator so Cy € R™*". Here we may illustrate Cy, = I Bi.¢ as

follows [30]

ro oO0l... ... ...10 O W [ c11 Cin

o ...|l¢ ... ¢|... O Gl | G Gy Cin

o/ T P P A to approximate ..
0o ...1le¢ ... ¢f|... 0O Cil .| Cji .o Cjj Cin

| 0 0f... ... ...10 0 | L Cnl Con

Next we give some details of solving the local minimization subproblem (6.9). Set on level
k b=T= ok-1 k= (i—1)b+1,kg = ib, €1 = (j —1)b+1,¢3 = jb. Firstly we shall note
that on level k, there are only my /T X ma /T, subproblems each of which is essentially
one dimensional (mimicking a coarsegrid of a geometric multigrid method). Secondly we
shall show the Richardson type iterative method adopted for each subproblem.

At each block (3, j) of pixels, we solve (6.9) for c; j. Observe that each TV term |V
does not change within the interior pixels of each block on level k because

\/@J + Gre) = (g Berr )] + (i + Pre) = (cij + Pres)]?
= \/[gk,e — Grrr ) + [Pt — Brer1]? = Tir.
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So it remains to consider the contribution to the TV term stemming from the boundary

pixels (of the block) and the contribution of all interior pixels to the d¢ term. Thus

solving (6.9) is equivalent to solving the following (3, j) block local minimization problem
min F(¢;j + It Bici ;)

Ci,j

£y — — — — _
= py, \EJ — (Bky-1,6 — Bry )12 + [Bry—1,6 — Dhy—1,041)2.8.(Cij + Pry—1.0)

=6
k2—1 — — — — B
+ p Z \[[Ci.j - (¢k,l2+l - ¢k,l2)]2 + [d’k,lg - ¢k+1_12]2.(5t((3,',j + d’k"i)
k=k1
+ _Iﬁ\ﬂci.j - ($k2,12+1 - ‘Zkz,fz)P + [Ci,j - ((gkz-{-l,lz - $k,_e.,)]2.6( (Ci,j + (‘/;k'),('))
-1 _ — _ _ _
+ p Z \/[;J — (Pra+1,e — Py 0)]? + [Pkt — Proe1)2.0c(Cij + brye) (6.10)
=6
k2 — — — — _
+ Y Ve — (Oka-1— Ge)l? + [Beei-1 = Skrre-1]2.8cij + Pre,)
k=k1
ko—-1 £9-1 _ & ko 5
+ DY Teedeleii+ ore) + o> vk, O Helcij + i)
k=ki1+1{=£,+1 =€ k=k,

To simplify the formulae, let

q)k,l = ¢k,l+l - ¢k,l7 ek,l = ¢k+1,[ - ¢k,[,

and Qo+ ek,t Oro — O
P, = — Qe = —

Using the identity

\/(?—a)2+(c——b)2=ﬁ\/(c—a;b)2+(a;b)2’

we may rewrite (6.10) as the following problem

£2
f(Ci,j) = p Z \/Zci,j - @k1—1,€)2 + q)il_l‘[-(se(ci,j + ¢k1_1,[)

=4
ka—1 -
+ oy \/ (Cij = Prn)? + 03 4,06 (Cirj + Brty)
k=k
-1 ~
+ p Z /(65— Oy )2 + 2, y8e(cij + bryye)
£=¢,
ko -
+ oy, \/ZQJ — @) + Oy, bc(cij + dre)
k=ki1
+ E\/-é\/(:] - sz,lz)z + (ka,fz)zéc(ci.j + ‘;kz;fz)
ka-1 £2-1 _ ka 02
oy Y Teedeloij+ o) + > D ke (cij + dr).
k=k1+18=4(+1 k=k, 6=¢,
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The first order condition for F'(c; ;) = 0 will take the form

&
= P'Z \/ (Ci.j_ekl—l,l) +(I)k1 1[‘5 ( J +¢k, 1!)
€=¢;
& (€ij — Ok,—1,0) ~
+ By, — Be(Cij + Pry—10) + ...
=6 J(cl,] - ekl-l,[) + ékl—l,t
ka—1  £32-1 N kx &
© Z z Tie-0c(cij + Pre) + Z Z Tke0e(Cij + Pre) =
k=ki+10=t1+1 k=k; £=6,
Since ¢

S J ~,
(Cij + k) = @t s

and -
—2¢(cij + bre)

(€2 + (cij + Pre)2)?

8l (cij + Brp) =

?

thus we have

2 ( Y
Cij +¢Ic1—1 l)
- 2 c,~,~—6k _1,1)2+<I>2 1 —
HE :\/(7] 1 k1—-1¢ (52+(ci,j+¢k1—l,l)2)2

lll

+ Z ekl ll) 1

=t (C‘J ek, 1[) +‘I)2 ~1 (€2+(01.J +¢k1 ll) )

ky £

k=1 £2-1 o
- 2 i i Tie. (€ +¢Ii’l) + Z Z "'k,l-(cz 1 - = (.

k=ki4+10=£1+1 (e +(cij+ 0P ok t=t, + (cij + dxe)?)

Now linearizing the last term in the last equation and solving the following equation for

cheY = ¢; 5, we get

1,j 2

(new+¢kl)
- 2 \/} - Ok -1,0)* + &}
iu'z 1 1= ki—-1,¢" (52+(COld+¢kl 1[) )

l"ll
(cF5” — Oy -1,0) 1
v . — +
tztl (¢4 — Ory-1,02 + 83,y o (€ + (] + By10)?)
k-1 £l (P + i)

- Y 2 M T p

k=k1+1=0+1
k2 & 2cnew¢kl old¢ke 1 ]

DI I [( +¢;2¢,e)2 e + 6k e) * (€2 + (e + Bue)?)

k=k1 =01

= ().

After some manipulations we get the following iterative scheme for cis,

ne — old 0

122



where we start from cﬁ’}’ =0,

t2 ¢k,—1,z\/(6?f,‘-’ - Ok-102+ 9% _,

RHS = 2p ——
=t (2 + (cf + br1-1,0)%)?
&2
+ ”Z 2 1d DL
=, (€2 + (e + bry-1,0)2)? \/(Cﬁl,‘i—(‘)kl—l.t)2+<bil_”
ko—1 l2—-1 ¢
+ ot 2p Z Z » k.t
k=ky+10=01 +1 +( 0ld+¢kl)2)
:V:‘ f: 26"“¢u 1
— "'kl[ 4+ - ]
k=k1 t=ty €@+ 0% (@ + (84 + 610)?)
and
) old _ 2 2
LHSY = —2u 2 \/(C' Oki-1.4)" + Py 1,0

—(=(1 (2+(01d+¢k1 12) )

12} 1
+ EZ

t=t, (€2 + (e + ¢k1—1,e)2)2\ﬂcﬁlf ~Ok-10) + 92,

ka—=1 £5-1
+ - =2p i: ZZ: Tt ii rp Dt Pt

2 Id
k=k1+1=01+1 (€2 + (¢ + Prp)? rdlferd (z+¢zl)2

Once we have obtained c; ; after a few iterations, ak,[ is updated by
Or1 = Pre tCij

to the full (i, 7) block.

6.3.3 The coarsest level minimization (k=L+1)

On the coarsest level the whole image is considered to be a single block, so contribution
for updating the constant will only come form the delta function term §,(¢), i.e no
contribution from the TV term. Thus we consider the following local minimization

problem on the coarsest level

-~ . my w2 - my my N
min F(¢+ IxBxc) = mcmy_z Zﬂ'j‘s‘(‘bivj +c) + Z Z i i He(éij + c).
i=1 j=1 i=1j=1

Taking variation with respect to ¢ and equating to 0 we have

my m2
¢z,] +Cnew
- B i,
;1221 ¢ + ¢)?)?
mp M2 OIdd)' . 1 -
s QCrlew¢_ i
C S o ).
== [ e+ 62,7 (24 (M +i5)%) (2 +6E) (6.12)
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new

Linearizing and solving this equation for ¢*** and then updating (Z will be siniilarly done

as above.
In summary, we reach at the following algorithm

Algorithm 13 (2D multilevel algorithm (ML1)) [, ¢;, c] « Opt Multilevell(p, z)
Given the image z and an initial guess ¢ = ¢ with L+1 levels, our multilevel ul«lorifh'm

proceeds as follows: A

Start

set ¢9 = ¢ and compute 1, Cy.

for level k=1,2,...,L +1.

If k = 1, for finest level solve(6.7).

Elseif k = L+ 1 i.e on coarsest level. solve (6.12) to find ¢
Else on all other levels solve (6.11).

Update ¢ = ¢ + Iy Bic.

end _
Go to Start with ¢ = ¢ unless ||¢ — ¢o]| < tol.

In fig. 6.1 the initial data are given: original tested images and the initial guesses are
shown. We tested with different initial guesses and we get the same results with (lilf;-rvnt‘
initial guess. In fig. 6.2, the results obtained by applying ML1 methaod to different t,thl
images. Left images are the final segmented images and the right images are the ()l‘i;’,‘ill;li
image with final contours. In the top image ML1 is tested on an noisy image which has
segmented it very efficiently, where the semi implicit and AOS methods fails to segment
it, i.e stuck at local minima [25, 15]. '

6.4 Model II: Global formulation of CV Model

In this section we discuss the modified model for CV2 and then develop the multilevel
method for this new formulation. The CV2 minimization model has a non-convex con-
straint H(¢), so the functional (6.1) may get stuck at local minima if one uses the
standard algorithms [25] (e.g. a gradient decent method)!. This non-convex (‘()ll‘\‘!.l'uillf'
can be dropped in the following way: The equation (6.4) and the below vquut.in.n‘hnw;

the same stationary solutions:

9 v
?9% = “V'(W%I) = (u(a(e,9) = ) = hal2(zy) = e2)"), (6.13)

Note that c; and c3 are computed for given ¢ using equation (6.2) and then keep them
fixed to update ¢ and then update them using updated ¢. Equation (6.13) is the gradient
descent equation for the following energy [25] '

u /Q e A(Al(z(x,w — 1) = dalz(2,3) = c2))pdidy. (6.11)
This functional is homogeneous in ¢ of degree 1, as a result it does not have o minimizer

in general. If the evolution is carried out for a long time, the level set function ¢ would
tends to oo in positive direction and —oo in negative direction. Thus we re-scale ¢ such

1We remark that the multigrid method as [8] can find the global minimize 1
. rer for (V2 s
chapter 4 and so can the ML1 algorithm from the section before. anel dincussed u
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Figure 6.2: I'xperimental results of (ML1). The left images are the segmented imapge and
. . . . . i ; 2 i s
the right images are the original image with final contour.
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that —1 < @(x) < L forallx € Qsee [25]. Let 7(z, 1) = Mi(z(z, y)—c1)?=Ae(2(z, y)—c3)?,
then we have the following constraint minimization problem

min_F(9) = /Q Vgl + /Q (@, )6 (6.15)

-1<o<1

Euler Lagrange equation for (6.15) is given below

dw(lV¢|) —r(z,y) =0, (6.16)

where r(z,y) is as above. To solve (6.16),an additive operator splitting (AOS) method
[127] has been used previously to solve the following until steady state

('(99(]5 div (lgqbl)—r(x,y). (6.17)

In next section we will solve the minimization problem (6.15) without using variations
for ¢ using multilevel method see [30] to get the improved global minima, but ¢; and e,
will be computed from original CV problem (6.1).

6.4.1 An Optimization Multilevel Method (ML2) for Model II
The discretized form of (6.15), is

mi—

—1ma-1 ¢ ¢
min<lF(¢(iaj)) = “X; g\/ z+1] ’t_’l (¢1J+1’ ¢z,J)

—-1€¢i; < .

ml—l mz—l

+ Z Z Tij¢i,jh2' (()18)
i=1 j=1

Assume that ¢ € R™1*™2 is the initial approximation to equation (6.16). We look for
the best piecewise constant function C € R"*" which minimize the following functional

min F(¢+0). (6.19)

First consider C to be local constant at (¢,7) and 0 elsewhere (finest level). With the
same type of calculations as in previous section, we have the following iterative scheme

on fine level

rew = RHS*M/LH S (6.20)
where
LHS = p(2/L1+1/L2+1/Ls)
and
RHS4 = E[(¢’i+l,j + dijr1)/Li+ dic1;/La2 + 5i,j—1/L3 - Tij
and

L,

\/(¢?Jl-d — Gir1) + (24 — Gij1)2 + 8
Ly, = \/(¢§}l~d ~ $ic1)2 + (Pic1j — Bi1441)2 + 0
Ly = \/(‘ﬁ?]l'd — $4,i-1)2 + ($ij-1 = is1-1)2 + 6,
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where v > 0 is a small regularizing parameter. As an iterative method, the scheme
(6.20) for (6.19) may still converge to some non-stationary minimizer, so we need to
use multilevel method to improve on the obtained minimizer towards getting the global
minimum of the functional (6.18).

Second consider C to be a local constant at block (i, j) on general level k. Similar to
ML1, we solve the following equation for c;; to update ¢ iteratively (;5 = ® -y —

é...)

(LHS)c;j — RHS =0, (6.21)
where
[ ka—1
LHS = (3 1/4/(6s = Ouorl? + 81+ 30 1/4/ (e = Bue)? + 6,
=t k=ky
-1 ko
+ 1/\/ Cij— Ok )2+ 92 ,+ ) 1/\/(Ci,j — Pk, )? + 67,
[“‘!1 k=ky ‘
+ V2/ \ﬁ% = Piptp)? + (ka,e2)2)
and
ka—1
RHS = (zekl 1o/ \f(Ci5 = Omrl? + B,y o+ 3 Cna/ (g — D) + 02,
£=£, k=k;
-1
+ Z@kze/\f&,]‘@kge 2+ @;, 0+ Z(I)kh/\/(cz,] Dre, )2 + 07,
=t k=k, '
ko [
+ V2Pyn/\/(6s — Patal + (Quatr) ) DD ke
k=ky €=,

Solving for c; j,we arrive at the following Richardson type iteration scheme
cij=RHS/LHS. (6.22)

RHS and LHS are computed using values ¢; ; from previous iteration.
As with ML1, on the coarsest Level, the TV term is independent of ¢; ;. We solve
the following minimization problem on the coarsest level

mi m2 ~ Pt — — my mo
mcinf(c) =4 \/(Tbk+l,l — Gkl + (Brer1 — Gk)?+ D D (e +0),(6.23)
k=1¢=1 iy
with constraint —1 < gre+e < Tor ~(1+ Fre) Sc <1 ¢r.e. This is a lincar functional
so has minimum value at one of the end points of the interval, i.e at ¢ = —(1 + ¢ ¢) or

c=1 "(Zk,l-

Algorithm 14 (2D multilevel algorithm ML2) [4] «— Opt M'u,ltilevel(;j‘)',z,c)
Given an image z and an initial guess ¢ with L+1 levels. Our 2D multilevel algorithm

ML2 proceeds as follows:

Start
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set ¢o = <z~$ and compute ¢1,¢z.
for level k=1,2,...,L + 1.

Ifk =1, on finest level solve (6.20)
Elseif k = L+ 1 i.e on the coarsest level, solve (6'.2.?)'
Else for other levels, solve (6.22) '
Update ¢ = ¢ + IxBic. '

end _
Go to Start with ¢ = ¢ unless || — ¢o| < tol.

We' remark that there exist other similarly modified models to the above discussed model
wl‘n?h may be solved by 'adaptmg ML2. Bresson et al [15] considered the following
minimization problem for image segmentation by using weighted TV given below

_lnslglgll 1(8) = It/(;9| Vol + /Qr(z, y)dxdy, (6.24)

where r(z,y) is same as defined above and g is edge detector functi .
AR ! mction defined .

(3.10). Minimization of (6.24), Euler Lagrange’s equation is given by d i kg

9% _ V¢
5 =1V (v

) - T((B,y), (625)
where —1 < ¢ < 1 and 7(x,y) = Mz — ¢2)® = Moz — ).

6.5 An Optimization Multilevel Method (ML3) for Multi-
phase image segmentation

As already discussed in chapter 5 and [9], an effective framework for multiphase segme

tation is based on the idea of Jeon et al [72]. We first use the two phase ;1;<;(i§l [';:i
to segment the given image 2 into two phases (a domain and its complement) us;in‘r‘)
single level set function ¢. We then segment of the phases using the two phasc modLl [!3:‘
again and this process is repeated until the desirable number of phases is archived ‘I[ \0]\
the domain having the larger intensity variation will be the next segment ’t' 't ‘(IL
Details can be found in chapter 5. gmentation target.

In this section we combine our method ML1 with this framework.

Algorithm 15 (Hierarchical segmentation by optimization multilevel (ML1) method)

Let s be the required number of segmentation phases and z the given image
Assume ¢g is an initial contour. "
fori=1,...,s-1
$i — do
(61, €1, cio] — Opt Multilevel(¢s, z, ¢) using ML1, using the 2-phase i
tion based multilevel method. Z ¢ oing the Zplhase Optimiza-
Define S1 = {(k,£) | (¢i)xe < 0} and Sz = {(k,¢
] 1/k, - y ke 2 0 .
Compute Var(S1),Var(S;). 1 (3)ke >0}
Find j = argming Var(S;) and denote ¢ = {1, 2}\{j}.
Save the index set Wy = §. (Note j,qg=1 or 2.)
. If i > 1, find the true index set by modifying W; = (W, \W,_1) UW; else con-
inue.
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Set 2(S;) = ciq since Sy is the domain with the larger variation.

end
Set the final (phase) index set Wy = (W,\W,_2) U S,.

Here assume that W, denotes the index set of all pixels so the quantity (W,;\Wi-)) singles
out the index set being segmented. Also we can only use the sets Sy, .5 to identify the
domain with the larger variation (to proceed) but its complement (phase i) must be
found through (W,\Wi_1).

Finally once the algorithm is completed, the segmented image will be separated by
the index sets Wi, W, ..., W, from which we compute the mean gray values Cj’s, by

Ci= Y, z/M;

(i,k)EWJ‘

where M; is the cardinality of W;. Further the (piecewise) segmented image can be
written as u = (u;x) with

wig=C; if (i,k)eW; forall (i,k)eW,=WiU---UW,  (6.20)

which is similar to the two-phase case with s = 2.

6.6 Results and comparison

In this section we give experimental results of the multilevel and additive operator split-
ting methods on two models discussed in above sections.

e ML1: Optimization based multilevel method for CV model (Model I).

e ML2: Optimization based multilevel method for modified CV model (Model 11).
e ML3 Optimization based multilevel level method for the multiphase segmentation.
e AOS1: AOS method for the CV model (Model I).

e AOS2: AOS method for the modified CV model (Model II).

(1) Qualitative Results. Results for AOS1 are given in chapter 4 figure 4.12,
which stuck at local minima i.e this method can fail to isolate the small box with some
initial guesses. In Fig. 6.3 we give the results by using AOS2 with time step t = 0.6.
This method is tested on 3 different problems, left figure is the original image with final
contour and the right image is the final segmented image. In figure 6.4 results are given
from implementation of ML2. Figure 6.5, are the results obtained from using AQS
solving parabolic PDE (6.25) and Figure 6.6 gives experimental results of multilevel
method implemented on minimization model (modified CV model with weighted TV)
(6.24).

In Figure (6.7) the implementation of ML3 for multiphase image segmentation on
three diffcrent problems is presented. First problem is artificial image need to be seg-
mented into three phases and second problem is the noisy image and is tested for three
phase segmentation while the third problem is the real MRI image, segmented in 4-
phases. Left figures are the original image with final contour and the right figures are
the final segmented images.

(2) Quantitative results. Generally speaking, comparing solutions of different
optimizations is not trivial (even though the models are for modeling the same problem),
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because different functionals are involved. Here we check an obtained solution against all
candidate energy functionals (for fairness) and have shown in Table 6.1 the final values
of the functionals (6.3) and (6.15). The results in Table 6.1 are for problem 1-2 in Fig
6.1. Clearly, from Table 6.1, we could see that with our multilevel methods ML1 mn(i
ML2 give better results than AOS1 and AOS2 methods.

Note 2 We use binary images z which normally take values in the range [0,255]. The
functional (6.3) contains the term Ay Ja |z—c1|2H(¢)dzdy+ Ay Jolz=calP(1— H(¢))dcdy
and functional (6.15) contains the term Ay [y |z — o 2dzdy — Ay Iy |z = co|2ddy, which
can lead to large values as in table 6.1.

Table 6.1: Minimum values of the functionals (6.3) and (6.15) using the final ¢.

Methods/ F. (Model I) | F (Model IT) | F, (Model I) | F (Model II)
Functionals Box Box Cameraman Cameraman
AOSL (Model I) | 1.6204 x 10% | —1.1194 x 107 | 4.0508 x 107 | —4.3651 x 10°
ML1 (Model I) 0.0339 —7.8715 x 10% | 3.9146 x 107 | —1.1011 x 107
AOS2 (Model IT) 0.0366 —7.5593 x 10° | 4.8192 x 107 | —=6.0192 x 10F
ML2 (Model 1) 0.0333 —7.8638 x 10% | 3.9146 x 107 | =1.1011 x 10

(3) Speed comparisons. Finally we show in Table 6.2 speed information from seg-
mentation of a synthetic and a real image in several resolutions. There the “**” notation
indica‘ltes that an entry takes too long to pbtain a result or the memory requirement is
too high to get a result. Clearly our multilevel methods ML1 and ML2 are much faster
that AOS type methods.

Table 6.2: Speed comparison of multilevel methods ML1 and ML2 with AOS1 and AQS2
methods.

Tmage ML1 ML2 AOS1 :
Problem | .o Cycles CPU | Cycles CPU | Iterations CPU It('mti(An(l:bz cPru
128° 4 1.6 3 1.2 60 4.8 22 1.3
2562 4 6.6 3 4.8 140 50 27 7.1
Synthetic| 5122 5 25.9 3 19.7 280 421 30 36.6
10242 6 107.3| 3 80.9 1200 7661 31 155
20482 6 4216| 4  323.95 * ** ** *
1982 7 1.7 7 1.3 100 10.6 38 1.6
2562 8 6.9 8 5.6 280 110.4 50 13.4
Real 5122 9 27.9 9 23 800 1230 55 60.1
10242 | 12 1191 ] 12 103.5 x o 56 288.8
20482 | 14 497 14 487.12 ** ** ** o

6.7 Conclusion

In this chapter we have presented an optimization based multilevel method for two vari-
ational immage segmentation models. An mentioned in {25, 15], CV model can easily get
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AOS METHOD
WITH TV

Figure 6.3: Final Results: Left:- Original image with final contour. Right: Final sep
mented image. Results from implementation of AOS method for solving parabolic PDI:
(6:1.7).
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MULTILEVEL 1
METHOD WITH TV

Figure 6.4: Final Results: Left:- Original image with final contour. Right:- Final see
mented image. Results from multilevel method for minimization of model (6.15)



AOS METHOD WITH]

'\WEIGHTED TV ‘

Figure 6.5: Final Results: Left:- Original image with final contour. Right:- Final sep
mented image. Results obtained from implementation of AOS method to parabolic PDF

6.25.



MULTILEVEL |
METHOD WITH |

Figure 6.6: Final Results: Left:- Original image with final contour. Right:- Final sep
mented image. Experimental results from implementing multilevel method to the mini
mization problem 6.24.



Figure 6.7: Final Results: Left:- Original image with final contour. Right:- Final multi
. Y YO y S 1 < x v a1 g . ' S ' ! 1

phase segme nted image. Experimental results from implementing multilevel method f
o) ' (O Ol

multiphase image segmentation in hierarchical way
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stuck at local minima discussed in chapter 4, but using this multilevel method ML1
appears to be able to reach the global minimum in all test cases tried, including the
problem mentioned in their papers. We applied our developed method to the modified
CV model with TV and weighted TV, developed in [25, 15] and found that the new
algorithm ML2 can also achieve the global minimumn as well as multilevel efficiency. Fi-
nally we gave a multiphase segmentation algorithm through repeated use of ML1. Our
multilevel algorithms are efficient in speed over other methods like AOS.
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Chapter 7

Features Selection in an Image
Using an Active Contours

Approach

In this chapter we propose a new model for segmentation of an image under some geo-
metrical constraints to automatically detect special features (region of interest ROT) in
an image. The model developed by C. Gout et. al in [61, 65] based on the geodesic
active contours model can perform such a task in several cases but it is very sensitive to
a model parameters. We combine this idea with CV model. The main references {or this
chapter are [5, 8, 21, 20, 32, 34, 35, 61, 62, 63, 65, 66, 67, 127].

7.1 Introduction

An important problem in image processing is the segmentation of a picture representing
a real scene, into classes or categories, corresponding to different objects and the back-
ground in the image. In the end, each pixel should belong to one class and only one. In
other words, we look for a partition of the image into distinct segments. A varicty of dif-
ferent techniques have been developed to solve the problem of image segmentation, such
as region growing and emerging [2], watershed algorithms {121], minimum deseription
length criteria [76], and Mumford-Shah energy minimization (88]. Recently, PDE-based
active contour models [75] (or curve evolution techniques) have been popular for image
segmentation. Some of these methods are discussed in detail in chapter 3. Curve evolu-
tion means to evolve deformable contours subject to constraints towards the boundary
of the object to be detected. This deformation is made trying to minimize a functional
depending on the curve and defined so that a local minimum is obtained at the boundary
of the object. Casselles et al [21] have shown, for example, that setting one of the regn-
larization parameters to zero in the classical active contour model is equivalent to finding
a geodesic curve in a Riemann space whose metric depends on the image content [65],
because an edge in an image is the locus of points for which the image gradient rapidly
varies. However, when data acquisition cannot be performed in an optimal manner (e.g
the liver in medical imaging), this criterion can no longer be applied. Sometimes the im-
age data is missing or of poor quality, or some occultation occurs or two objects are very
close to each other, so have homogeneous intensity, texture ete, and therefore it is hard to
clearly identify the interface between them without supplying additional information to
a model. Thus the additional information is some geometrical constraints to a model in
order to help the segmentation process. Here we consider constraints consisting of a set
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of points belonging to the contour of interest (the a priori knowledge of the physician on
the nature and shape of the organ under consideration is thiercfore crucial, for example
liver in medical imaging).

Gout et al [65] proposed a model based on geodesic active contours with in this set
of constraints. The Geodesic active contour model uses image gradient information |Vz|,
to stop the contour evolution. This model can only detect objects with edges defined
by gradient- otherwise it needs some geometrical constraints. On the other hand, if the
given image z is very noisy, then the isotropic smoothing Gaussian has to be strong,
which will smooth the edges too. We modify their model by introducing the fitting term
of the Chan-Vese model [35], which helps in segmenting noisy images without an isotropic
smoothing Gaussian. It also helps in segmenting images with fuzzy boundaries.

This chapter is organized in the following way. Section 7.2 contains a review of the
existed model of Gout et al [65]. In Section 7.3 we present our proposed new model aud
give details of the minimization to get the Euler-Lagrange equation. In Section 7.4 we
describe semi implicit method and the AOS method for solving the PDE. In Scction 7.5
we give some experimental results.

7.2 Image Segmentation Under Geometrical Conditions (M-
1)

We shall first introduce the geometrical conditions before introducing the model by C.
Gout et al [65]. Let 2(x,y) be the given image dcfined on a rectangular domain . They
have combined the geodesic active contour model [21] with some geometrical constraints
such as a set of points near the boundary of object to be detected. Let A = {(a,y!) €
Q, 1<i< m}CQ be the set of ny distinct points near the object boundary to be
detected in the given image z(z,y). The aim is to find an optimal contour I" C §2 that
best approaches the points from the set A while detecting the desire object in an image.
To proceed with this, let g be the edge detector function, as defined in equation (3.10),
(other forms can be found in [21, 36]). In equation (3.10), the edge detector function is
given by .

9(w) =

Clearly g(|Vz(z,y)|) is zero on edges in an image and is 1 in flat regions. The purpose
of the edge detector function g is to stop the evolving curve on edges of the objects in an
image. Another function d will be required to stop the evolving curve when approaching
the points from set A. Let us define the function d in the following way [65]:

n (-} (y-u)?
Y(z,y) € 2, d(x,y)=H<1—e 2% ¢ 20¢ ) (7.1)

=1

Other option for d is

d(z,y) = distance((@,y), A) = _min_|(z,9) - (ai,0)
(=347 )€A

for all (z,y) € Qand i = 1,2,...n; used in [61]. We use the first one. Clewrly d acts
locally and will be approximately 0 in the neighborhood of points of A. The aim of this
model is to find a contour I' such that d ~ 0 or g ~ 0 along it. They proposed the
following energy for this purpose

F(T) = /F d(z, 1)g(| V2 (2, 5)])ds. (7.2)
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The contour I" will stop at local minima where d =~ 0 (in the neighb i

sighborl s for
A) or g =~ 0 (near object boundaries). ( tghborhiood of points for
7.2.1 Level Set Formulation of the Model

To extend the domain of the integral in (7.2) to the whole i

. » image other than I, they used
the I.evel set [92, 90, 108]. Let ¢ : 2 — R be a Lipschitz continuous function. I’ \{/ill be
considered as the zero level set of ¢ i.e ‘

I'= {((E,y) €N qb(.?:,y) =0}’

with ¢ < 0 inside I and ¢ > 0 outside I'. In terms of the level set formulation, equation
(7.2) becomes ’ |

F(¢) = /Q d(z, v)a(IV=(z, )|V H (6(z, y))|dudy,

where H is the one-dimensional Heaviside function and [, |VH(¢(x,y))ldedy is the
length of I'. Thus we have the following minimization problem l ‘
min F{¢(z,y)).
min F(6(,1)
Since the Heaviside function is not differentiable at the origin, we cousider the regularized

version of H denoted by He and is defined in equation (3.22). Thus the minimization
problem becomes i

min F(6(z,1)) (7.3)
where
Fug(z,y)) = /ﬂ d(@,9)9(|V=(z, 1))6 () V(. y)ldirdy. (7.1)

Minimization with respect to ¢(z,y) leads to the following Euler-Lagrange equation (de-
tails can be found in the next section) '

e (e N

Gout et al [65] considered the following evolution equation with artificial time step ¢:

9¢(z,y) \v
RLY _ 500,V - ( dle,1)g(1V2(, 1)) ol ;
with the boundary condition
9¢(z,9) _,,
om
where 7 is the outward unit normal to the boundary 0. Clearly the quautity o, y)
ot

tends to 0 when a local minimum is achieved- In other words if the model converges

. . ' '
the curve will not evolve any more since a steady state has been reached. A re-scaling
can be made so that the motion is applicd to all level sets by replacing 6. (¢(x,y)) by
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|V¢(z,y)|. Furthermore, it makes the flow independent of the scaling of ¢ (3, 132]. Thus
they considered the following evolution problem

¢(xaya O) = ¢0($,y),

o¢(z, :

"“at Y - Ve,V (d(z,wguw(z,y)n%{%) (7.6)
6__¢(z,y) =0 on 00

an ’

where ¢o(z,y) is the initial value of ¢(x,y). To speed the convergence of the model they
added an extra term ad(z, ¥)g(|Vz(z, y)|) known as a “balloon term” [46] to the evolution
equation of a level set, where o is any constant. This term prevents the curve from
stopping on a non significant local minimum and is also of importance when initializing
the process with a curve inside the object to be detected. Thus the evolution problem
becomes

é(x,9,0) = ¢o(z,y)
WD) - 94(a, IV (d(x,mguw(x,ym%)
+ ad(z,y)g(|V(z,y)I)|Vé(z, )| (7.7)
M = 0 on 9N
on )

The main equation in (7.7) can be written as

(7.8)

6¢§’y‘)' = |Vé(z,y)ld(z,y)9(|V2(z,y) )V - < Vé(z,y) )

Vo (z,y)l
+ V(d(z,y)9(|Vz(z,)])) - Vo + ad(z, y)g(|Vz(x, y)) [ V(z, y)|.

The Additive Operator Splitting method [127] was used to solve this evolution prob-
lem.

This model is based on geodesic active contours, which use gradient information of
the image as discussed above, and curvature to detect the boundary, in which only local
information of the boundary is used. Thus it is difficult to get ideal results when dealing
with fuzzy edges and discrete edges. Furthermore, because of the local attributes and the
dependence on gradient, geodesic active contours are heavily affected by noisy inputs: it
is hard to detect objects from a noisy image which is a generic problem with all edge
detectors. One can use isotropic Gaussian smoothing K, * z, but this will smooth the
edges too, see Figure 7.1, we have used the following filter

111
K,=1/9|11 1], (7.9)
111

other options are Gaussian filter or Laplacian. We propose a new model whose stopping
term is based on Mumford and Shah segmentation techniques [88]. With this new model
we can detect objects in a noisy images without using isotropic Gaussian smoothing,
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Sl WS

Figure 7.1: Left: Original synthetic noisy image. Right: Smoothing of the original image

Kokl

7.3 Proposed Model (M-2)

The Chan-Vese (CV) model is a special case of the piecewise constant Mumford and
Shah model (restricted to only 2 regions). The CV model is not based on the gradient of
the image z(z,y) for the stopping process. It can detect contours both with and without
gradients. Also there is no need to smooth the image in the case of a noisy image.

To use the advantages of the CV model [35], we add A\, ]”N,h“ )| y) — c1|*dxdy
Ao }”“““M[ |2(z,y) — c2|?dzdy to the model (7.2) where A, Ay are some constants and
¢y, co are average values of the given image z(x,y) inside and outside I'. Thus we propose

the following minimization problem

min  F(¢(x,y),c1,c2), ”
o(zy),c1,c2 ( ) ) (7.10)
where
F(T,cp,c2) = [ d(z,y)g(|Vz(z,y)|)ds
/\I flusuh (r) |Z(.I'. 'l/) Gl ‘2(1'“[-’/ ’\ luulsuh ) i ‘U) (I‘-’iz(lf‘/!ﬁ
(7.11)
where g is a positive parameter. Clearly if Ay = Ay = 0 and g = 1 then minimization

)
problem (7.11) reduces to minimization problem ( .2)
The level set formulation of the functional (7.11) is

F(¢(x,y),c1,02) = p / d(x,y)g(|Vz(x,y))|VH(p(x,y))|dedy
JQ
A1 / |z(x,y) ('M“’II(t,’)(J'.y))tl.ul_I/| (7.12)
Jo
/\-_:/ |z(x,y) — c2)*(1 — H(p(x,y)))dxdy,
Jo

where H is the Heaviside function.
Again using the regularized Heaviside function H,, we consider the following mini-
mization problem
min - Fe(¢(z,y), c1, c2), (7.13)

¢(x,y),c1,c2
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where

F€(¢($,y),61,02) =u/ﬂd(ac,y)g(|Vz(x,y)l)&(qﬁ(m,y))|Vq§(x,y)|dzdy+

A1 / l2(z,y) — a1|*He(¢(z,y))dzdy + 1\2/ |2(z, y) — c2?(1 = He($(z,y)))dzdy. (7.14)
Q Q

Keeping ¢(z,y) fixed and minimizing with respect to ¢; and ¢2 we have the following
equations for computing ¢; and c3:

Jo2(z,y) H( ¢(z,y))dzdy

ci(d(z,y)) = T H.(6(, y)dedy (7.15)
if [ He(¢(z,y))dzdy > 0 (i.e if the curve has a nonempty interior in ), and
z(z,y)(1 — H(¢(z, dxd
Jo 2(z, y)( (¢(z,y)))dzdy (7.16)

e ) = T 6w, v) dedy

if [o(1 — He(é(x,y)))dzdy > 0 (i.e if the curve has a nonempty exterior in Q).

Now keeping ¢; and ¢ fixed, we minimize (7.13) with respect to ¢(z,y). To minimize
F,, we use the Gateaux derivatives to find the first first variation of the functional F,
with respect to ¢

llm (F(¢+h1/),01762)* e(¢,01,01)) =0,

ie [ (Ve (6;<¢)|V¢|¢ 0 va‘;w) dady

+ /Qée(cb)(/\l(z(x,y) —e1)” = Xa(2(z,y) = e2)?)ydzdy = 0, (7.17)

where 9 is a test function of the same type as ¢. To complete we use ¢ in place of ¢(z, y)
in these calculations and similarly for ¢. From Green’s Theorem we have

/vV.u‘;’dz:—/ Vv.u'idw+/ vi.nds.
0 0 a0

Hence taking ¥ =v and G(z,y )|V(¢|) = 1,
where G(a: y) = d(z, y)g(le(:c y)|). We have
8e(9) e(¢) , 5.(¢)
[ 97 (0wuiggve)is = = [ vo-Cnigh Vet + [ vo(nghve. s

implies that

vs- vy RAC) 8900
[ e i) e = - [vv- ( 07 ¢|v¢>d + || 4G v oo stds

where V¢ - i = 22. Thus equation (7.17) becomes
S¢(¢) 94

| ptnnvosdziy+ [ 65 sevds
- / uV-( BCE 1T ¢|>¢dxdy
/ 8(8) (M (2(2, 1) — €1)? — Mala(x,y) — ca))dedy = 0.
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5:(6) 0
Vel 9V

v
_ /Q uS.($)V - (G(m,y)ﬁ‘:}l) pdody — /n 1 ($)G(z,y) Ve -

N [Q 4G (z,v)5.(9) |V Blipddy + /d uGle ) g

|V ol 1/»dxd Yy

/ﬂ 5(8) M (2(z, ) — @)% = Nal(z(z, y) — 2)*)pdzdy = 0.

This gives

- [ use)v- (G(z Vs ¢|)¢dxdy

5.(6) 0%
+ /a Gz, ) gl gevds

+ /Q5e(¢)()\1(z($, y) — ¢1)? — ha(z(z,y) — e2)?)pdzdy = 0.

This holds for all test functions 9. Thus we have the following Euler-Lagrange equation
for ¢:

Oc .
(®)uV (G(z y)Iv ¢|)
- 4 (¢)(/\1(Z(x y) —c1)? = da(2(z,y) —2)?) =0, onQ

be(¢) 8¢
G(x, )|V¢13* =0, ondN. (7.18)

To solve this PDE we consider the following evolution equation

d¢ V¢
5t Se($)uV - (W%!ﬁw)
= Se()M(z(z,y) — 1) = Aa(2(z, 9) — c2)?) (7.19)

with the boundary condition

0(¢9) 09| _
G((E,y) ‘V(]Sl -3_5 a0 -

where 7 is the unit normal vector to the boundary of Q. At steady state 0—(/) = 0, which
means the local minimum has been reached. To extend the motion to all level sets one can
replace the delta function & (¢) by the gradient |V ¢|- this will make the flow independent
of the scaling of ¢ [132]. But we would keep 4. (¢(z, y)) in the equation. Thus we consider
the following evolution problem

( ¢(Ilt Y, ) (bo((l? y)

o
= 100V - (Gl %)
\ —ée(aﬁ)(;l( (;)(;,y) — 1) = Aa(2(z,y) — c2)2), (7.20)
2.4) 28108 _
G( ’y)lV¢| on, =0.
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A term aG(z,y)|V¢| (known as a balloon term) could be added to speed up the conver-
gence of the evolution equation as done in model M-1, where « is a constant [45]. This
term prevents the curve from stopping on a non significant local miniinum and is also of
importance when initializing the process with a curve inside the object to be detected
[65]. Thus equation (7.20) with balloon termn can be written as

[ ¢(z,y,0) = ¢o(z,y)

g‘f—ué (¢(z,y))V (G ,y) )

4 =8($) M (2(z, y) — e1)? &(z(r y)—c2) ) + aG(z,4)| V9, (7.21)
RACIL:] B
Y vel on|,

or
( ¢(‘T y,O) = ¢0(-’L‘,y)
2 = Wa9le, )G )Y - (557) + W0, 1) VG 1) (ﬁ)

o Vol |

| =80z = e1)? = ha(z — e2)?) + aC(z, 1)V, (7.22)
5.(6) 00
Tl

\

Existence and uniqueness of the solution can be proved along similar lines to [65].

7.4 Numerical Methods

In this section we present some numerical methods for solving PDE (7.22).

7.4.1 Semi-Implicit method

For given ¢ compute c;(¢) and ca(¢) using equations (7.15) and (7.16) respectively and
then keep them fixed to update ¢ using equation (7.22). And then use the new ¢ to
upda.te c; and c; and so on. Let us consider the PDE in (7.22), and let f(z,y) =

8.(0)(—A1(z = c1)? + Aoz — 2)?) + aG(z,y)| V4|, we have

V¢ ¢
Gz, y (|V¢')+VG( ,J)-(lwl)}wﬁ( y)-

Using the differences A%, AZ,. .. defined in equation (3.29), the discretized form of equa-
tion (7.23) is:

k41 _ z gkt
AR o6 [%Ag( N )
1 \/Afub /h1)? + (DY 6F 5/ h2)?

2 = pb(9(z,)

* 2 (T s
2 \y/(azgk,/m)? +(Ai¢ﬁj/hz)2
A
gz

{ 505G (z,y) AL e + AyG(m1)A”¢k+l}+fi,j.
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We usually use h; = hg =1, so we have

k+1 x 4k+1
?_Zti— = Née(fﬁi,jcf,j)[( =l )
V(D382 + (DY gk )2

( pret )
V(B8 2+ (D65, )

( Ay¢k+l
+
V(O3 + (0% ¢k, )2)

( Ayd)f-;ll
NST NN 1>2>]

' IV‘; >{Aic(x,y>ai¢ii;1+Aﬂc<x,y>A%¢ﬁf}+fw‘-
This implies that
ook _ )[( mll] o )
At b7 V(B36E)? + (ALgE,)

¢k+l _ ¢k

(\/ z 1 _7 Ag-¢z 1]) )
. ( b — oty )
V(D582 + (DY gh )2

_ ( ¢k+1 ¢f]+ll )jl
f ¢f] 1)2 Ai(ﬁf] 1)2

Se(dF) | 2
+ |V¢ {A G(z,y) A3 ¢5F + A4 Gz, y) AY ¢k+l}+fi,j'
Let
Di—le = 1/\/7A z 1] Ag_(ﬁl 1_7) ’
Dij = 1/\/(D565,)2 + (A4 ek, )2,
Dij-t = 1/\/(836k, )2 +(A%ek, ). (7.23)
With the above notation the discretized equation becomes:
¢f;l —F; = 46651y | (k! K1y EL_ gkl
—————-At = HOe\ @y ) ri5 ¢z‘+1,j_¢i,j ) i»j—(¢i,j ¢i” 1J)Dt-11
+ (¢f;41,1 - d’ﬁ;l)D',] (¢k+l fjll)Di,j-—l (7-24)
(d)fj) AI k+1 k+1 y k+1 k+1
+ |V¢ Gz, y) (& — diy )+ DLG (@ y) (o T — &5 ¢ + fije
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As the coefficients D;_y ;, D;; and D; j—1 has been freezed at k, equation (7.24) gives
a linear system of equations which can be solved by any iterative method. The implicit
method is stable for large time steps but the main drawback is the computational cost
[126]. Hence we use Additive Operator Splitting (AOS) [127] to solve the PDE (7.21).
The details are given in the next section.

7.4.2 The Additive Operator Splitting (AOS) Method

Let us consider equation (7.21) and let f = —&¢(¢)(A1(z—c1)2=Xa2(z—c2)®)+aG(z, y)| V|
= ——weh

and F Z we have

¢

S = HO(D)V - (FV9) + f. (7.25)
The additive operator splitting scheme (AOS) [127] splits the rn-dimensional spatial
operator into a sum of m one-dimensional space discretizations. Therefore we consider
the following one dimensional problem to be solved first

00 — WA(9)(0u(F3u9) + 0,(FO,9) + /, (7.26)

and the discretization gives with spatial step size (hy, hs = 1)

K+l _ gk FF + EF FF + Ff
) ((—;ﬂ)wm = ft) = (T - el ) + 4,
k+1 _ ik k+1 k+1 k+1 (7:27)
= ¢i =¢; + NAt(Cl¢i+1 - 02¢’i + C3¢ij1 ) + fi, (7-28)
where
FF+ FF, Ff+2FF+ FE, Ff+ FF
c1 = 5¢(¢)—_2—, C2 = 5£(¢) 2 ’ and c3 = 5c(¢)'L—2—'__l

We solve the system of equations (7.28) with double time step At in the x,y- direction
and then average the two solutions. In matrix notation equation (7.28) can be written
as: for l = 1,2 we have

(I —28tA,(8%F )t = f*
P li git1
2 ¥

1=1

where I is the identity matrix and A; for I = 1,2 are tridiagonal matrices derived from

(7.28).

7.5 Experimental Results

In this section firstly we present some examples where M-1 does not work very well.
Secondly we show that our model M-2 works on these examples. We further test our
model on real images. Lastly we give evidence that our model M-2 is faster than M-1 in
convergence in terms of number of iterations and CPU time. In figure 7.2, M-1 is tested
on synthetic noisy image to detect the rectangle in the image with 4 markers shown in
the figure with red dots. This model clearly fails to detect the rectangle.

Top left figure is the original image with initial data (red dots are the markers) and top
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right is the result after 1000 iterations (hardly any improvement).
Bottom left is the result after 6000 iterations and bottom right is the final result after

20000 iterations where the level set function ¢ does not move any more.

) , 5 5 o > x-comp of markers

Parameters: ¢o = v/ (T — x0)* + (¥ — yo)* — 25 where z¢ = - and
no. of markers

S y-c f markers
> y-comp of markers afid o = 4. v = —0.00151. At = 1.

yo —
Y no. of markers

Figure 7.2: Results M-1 tested on synthetic noisy image with 4 markers and initial guess

Qo = V(J' '-l'tv)") = (7 = ,UU)
the markers, o = —0.00151 (different o have been used) and o = 4. Top Left: Original

2

25, where xg,yy are the averages of x, y-components of

image with initial data. Top Right: Result after 1000 iterations. Bottom Left: Result
after 6000 iterations. Bottom Right: Result after 20000 iterations.

In figure 7.3, M-1 is tested on synthetic noisy image, where the image is filtered first.

The initial condition is ¢y = x—x9)% + (y — yo)? —25, where g, yp are the averages of
(=)

r. y-components of the markers. Top left figure is the original image with initial contour

and the top right figure is the result after 800 iterations. Bottom left figure is the result
after 6000 iterations and bottom right figure is the final result after 16000 iterations. The
final result is not very satisfactory.

In figure 7.4, M-1 is tested on an artificial image. Here it is only able to deteet the
outer boundary of the letter O.

In figure 7.5 our model M-2 is tested on an artificial image to detect the object X
with 3 markers and initial condition is ¢y = \/(T x0)? + (y — yo)? —ro, where xy, yy are
defined as above and ry = miny ||x — y|| where x = (29, yy) and y € A. Top left image

is the original image with initial data and top right figure is the result after 1 iteration.
Bottom left figure is the result after 4 iterations and bottom right figure is the final result
in 14 iterations. The object X is segmented successfully.

In figure 7.6, M-2 is tested on syuthetic noisy image with 4 markers and initial guess
is @9 = V(= x0)* + (¥ — ¥0)* — 25 with parameters p = 10, a = —0.01, X\, = 0.01,
Ay = 0.01 and o = 4. Top left figure is the original image with initial data and top right
is the result after 15 iteration. Bottom left is the result after 30 iterations and bottom

richt figure is the final result after 130 iterations, the required object is successtully

detected without filtering the noise (i.e we use the original image with noise)
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Ficure 7.3: Results of M-1 tested on filtered (2 * K,, where K, may be Laplace
or Gaussian filter) synthetic noisy image with 4 markers with initial guess o

V@ =102+ (- yo)? — 25, where wg,yo are the averages of x, y-components of the
markers, a = —0.0011 and o = 4. Top Left: Original image with initial data. Top Right:
Result after 800 iterations. Bottom Left: Result after 6000 iterations. Bottom Right:

Result after 16000 iterations.

oL VoL

Figure 7.4: Experimental results of M-1 on an artificial image. Only able to detect the
outer boundary and unable to find the inner boundary of the letter O. Left: Original
image with initial data. Right: Final result after 1000 iterations.
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Fieure 7.5: We first test M-2 on an artificial image.  Our new model is used to
detect the object X in an artificial image with 3 markers with initial guess ¢

V(- x0)? + (y — yo)? —ro, xo, yo are the averages of the x, y-components of the markers
and rp = miny || x — y|| where x = (xo,y) and y € A, p = 10, a« = —-0.01 and o I
Top Left: Original image with initial data. Top Right: Result after 1 iteration. Bottom

Left: Result after 4 iterations. Bottom Right: Result after 14 iterations.

Figure 7.6: To detect the rectangle in noisy image with 4 markers with initial guess

oo = V(x r0)? + (¥ —yo)? — 25 where zg,1yp are same as defined above, J 10.
o = “-“l~/\l = ““l/\l = .01 :lllll g = l
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In figure 7.7 M-2 is tested on an artificial image and segmented the image suc-
cessfully M-1 did not do very well as shown in figure 7.4. Initial condition is ¢

Vi — o)+ (y—yo)? — rp, where ¢ and 1y are the average of x, y-components of
the markers respectively and rq is the same as defined above. Other parameters are
= (size of :)2,/’1»11)1)./\1 = 0.00951, A2 = 0.0095, o = —5.1 x 107 and o = 4. Top
left figure is the original image with initial data and the top right is the result after 35
iterations. Bottom left is the result after 90 iterations and bottom right is the final result
after 250 iterations. In figure 7.8, it is shown that if the markers arc not exactly on

Vel UoL
VoL VoL

Figure 7.7: To detect the letter O in the image UOL with 4 markers with initial guess ¢

9

(= r0)? + (y — yo)? — ro, where g and yp are the average of x, y-components of the
markers respectively. u = (size of 2)?/1400,A; = 0.00951, Ay = 0.0095, o = —5.1 x 104

and o = 4.

boundary, the object can be detected. The same data is used as in the above example.
In figure 7.9, we show results where M-1, M-2 fail to segment the image if the
initial guess ¢p is far from the markers (away from the object to be detected). In figure
7.10 our model is tested on a real brain MRI image to detect a tumor with 4 markers.
The initial condition is ¢p = \m —20)? + (y — yo)* — ro, where xy and Yo are the
average of x,y-components of the markers respectively. The other parameters used are
1 = (size of 2)2/10,A1 = 0.0001, Ay = 0.0001, a = ~1.51 x 10°% and o = 4. Top left
figure is the original image with initial data and top right figure is the result after 10

iterations. Bottom left figure is the result after 40 iterations and bottom right figure is
the final result after 200 iterations.

In figure 7.11, we test the model on real knee MRI image with 3 markers (also work
with 2 markers), the initial condition is ¢y = /(x — z9)? + (y — yo)? — 7o, where xg
and 1o are the average of x, y-components of the markers respectively with the following
parameters g = (size of 2)?/10,A; = 0.000051, A2 = 0.000051, @ = —1.51 x 1073 and
o = 4. Top left figure is the original image with initial data and top right figure is the

result after 20 iterations. Bottom left figure is the result after 40 iterations and bottom
right figure is the final result after 120 iterations.

Lastly, we compare results by number of iterations. In figure 7.12, results obtained
from applying M-1 method on an artificial image to detect the disc in the image, where
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Vel Vol
Vol UoL

Figure 7.8: To detect the letter O in the image UOL with 4 markers placed away from
the boundaries with initial guess ¢p = \/(.r 20)% + (y — yo)? — 20, where x ;nul. Yo are
the average of x,y-components of the markers respectively. p = (size of 2)?/1400,\,
0.00951. \» = 0.0095, a = —5.1 x 107! and o = 4.

oL Vol

Figure 7.9: ¢p should be inside the markers. Results if the initial guess is outside the

markers.



Figure 7.10: To detect a tumor in a real brain MRIimage with 4 markers with initial guess
b = v/'(.r -19)* + (¥ — Yo)? — ro, where xg and yy are the average of @,y components of

3 . . 9 - 9
the markers respectively. p = (size of 2)°/10,A1 = 0.0001, Ao = 0.0001, o 5l x 10~
and o = 4. This task can be done using geodesic active contours.

Figure 7.11: A real knee MRI image with 3 markers with initial guess o
\"(Ar -10)? + (¥ — yo)? — ro, where xy and yy are the average of r,y components of the
markers respectively. g = (size of .;)3/ 10,A1 = 0.000051, As = 0.000051, o Slx1073
and o = 4.

5%



the boundary is not defined by the gradient, the disc is successfully detected in 500
iterations. In figure 7.13, our model M-2 is tested on the same image and the final result

is obtained in 100 iterations.

Figure 7.12: To detect the disc in the disc-rectangle image using M-1, the disc and
rectangle have the same intensity and the boundary can not be defined by gradient.
Using 3 markers with initial guess ¢y = \/(1 —150)2 + (y — 145)2 — 25, a = . 0.025 and
o = 4. Top Left: Original image with initial data. Top Right: Result after 20 iterations.
Bottom Left: Result after 100 iterations. Bottom Right: Result after 500 iterations.

7.6 Conclusion

[n this chapter we presented a new model based on geodesic active contours and the
(Chan-Vese model. Our proposed model is good for noisy images without Gaussian filter
We also tested the new model on real images. Our model is also faster then the vxisling;
model of Gout et al in term of number of iterations. The model works if the markers .-mt
not on the desired boundary i.e we can detect an object if the markers are apart from
its boundary. This model is dependent on the initial guess- the initial guess should be
inside the markers which is shown in the numerical experiments.
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Figure 7.13: To detect the disc in the disc-rectangle image using our model M-2, the
disc and rectangle have the same intensity and the boundary can not be ‘lvlin:I l::
eradient. U.\Ii,ug 3 markers with initial guess ¢y = \/(.r l.";())"J F (y — 145)2 — 25, :
size of image® /5000, @ = —0.1 and 0 = 4. Top Left: Original imn‘;»v with inili'ull .(l/‘)"l
Top Right: Result after 5 iterations. Bottom Left: Result after l:')l iterations. '“(i“'();I;

Right: Result after 100 iterations.



Chapter 8

Conclusion and Further
Directions

This thesis presented four new algorithms for solving image segmentation problems. All
are mainly based on the Chan-Vese segmentation model (active contour without edges).

8.1 Achievements

The first model discussed in this thesis is the Chan-Vese model [35] “Active Contour
without Edges”, a special case of piecewise constant Mumford and Shah model [8§]
with level set formulation (2 phase segmentation). A non linear multigrid method was
developed for solving the partial differential equation arising from the minimization of
the above mentioned Chan-Vese model [35]. Then the main advantage of this method is
the speed of convergence in terms of CPU time. Moreover it was found that multigrid
method with the smoother discussed in this thesis can get improved solution for global
minimum of the functional. And this is shown by giving some experimental results. The
effectiveness of smoother is checked by using local Fourier analysis. Smoothing analysis
of the two different smoothers (local and global smoother) is also presented in this thesis.

Secondly, we have discussed multiphase image segmentation model {120]. A non linecar
multigrid method, developed for 2 phase image segmentation, was generalized to multi-
phase image segmentation model, but the results were not very good, which was observed
from the smoothing analysis of the smoother. A new modified smoother is introduced
which improved the results improvement in sense of quality of the segmented image and
CPU time. Nevertheless multiphase image segmentation model {120] is dependent on
initial condition. To avoid this problem we proposed an algorithm which implement
2 phase multigrid algorithm in hierarchical way to get multiphase image segmentation
results. We presented the comparison of different methods.

Thirdly, we developed a new optimization based multilevel technique {30] for the 2
phase image segmentation model [35]. We have described a model proposed by Chan et
al [25] and Bresson et al [15] for finding global minimum of the CV model. This new
multilevel algorithm allowed us to reach global minimum of the original CV functional by
comparing the minimum values with the values obtained from the functional mentioned
above. We have also applied this technique to the global minimization model for CV
model to improve the results. Minimum values and experimental results are presented
for comparison. '

Finally, we proposed a new model for image segmentation under geometrical condi-
tions like set of points. In this model we combined geodesic contour model with CV



model, which allowed the new model to be useful on noisy input images. As expected,
the new model can detect objects of interest in very noisy images. This model is also very
fast in implementation by the number of iterations. For solving the PDE arising from
the minimization of the new model additive operator splitting (AOS) method is applied.

8.2 Future Work

o We will develop a multigrid algorithm and an optimization based multilevel method
for 2 phase piecewise smooth approximation of Mumford and Shah model. Such a
model is more general than CV [35].

e We will develop a multigrid algorithm and an optimization base multilevel method
for the model developed for image segmentation under geometrical conditions. Se-
lective segmentation work is new to the literature. There are few published results.

o We will work on joint image segmentation and image registration. This will save
processing time for video images.

e Of course, it is of interest to consider 3D segmentation models and fast algorithms..
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