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Abstract

Mathematical morphology (MM) is a non-linear approach to signal and im-
age processing, based on set theory, integral geometry, topology, lattice algebra,
random function, etc. Ever since Matheron and Serra laid the foundation of
MM in 1964, the research has flourished in the following decades, especially
after the 1980s. MM has been a very active area of research all over the world.
However, MM research undergoes a bottleneck recently. A major issue that
limits the fast development of MM is that most work undertaken in this area
is mainly concerned with image processing and its potential has not been fully
explored for applications in signal processing and for ‘shape’ processing in a
high dimensional space.

This thesis is concerned with the development of advanced morphologi-
cal operators and their application to signal processing. Effective may it be,
classic MM does not meet the requirement of feature extraction of complex
signals. In this thesis, traditional morphological operators are extended to-
wards four directions, including morphological decomposition schemes, multi-
scale morphological filters, biologically inspired optimal morphological filters.
and embedding-based techniques. The advanced morphological operators de-
veloped in the these are applied to the broad areas of electrocardiogram (ECG)
signal analysis, power system protection and image processing.

Inspired by the success of the wavelet transforn (WT) in signal/image
processing, the framework of multi-resolution decomposition scheme has been
introduced to MM. Based on the general framework that encompasses most ex-
isting linear and nonlinear multi-resolution decompositions, a multi-resolution

morphological filter is proposed. With the help of the lifting scheme, mor-



phological lifting filter is presented as an improvement of the multi-resolution
morphological filter, due to its feature recovery ability. Applying the proposed
filters to ECG signal analysis, which requires the removal of impulsive noise
and the detection of characteristic waveforms, the results are very satisfac-
tory. The WT is a linear tool in its original form, however, MM has made the
nonlinear extensions possible. The morphological gradient wavelet (MGW) is
such a nonlinear WT. Thanks to its advantage in feature extraction, the MGW
has been successfully applied to detect power quality disturbances, which is a
crucial issue in power systein protection.

The Fourier transform (FT) obtains a frequency spectrum of the signal and
the frequency is a measure of the spectral content. In the same manner, the
shape and size content of a signal can be measured by geometrical structure and
a pattern spectrum of the signal can be obtained through a set of size-related
structuring elements (SEs). Such a study is called multiscale shape descrip-
tion. Two advanced multiscale morphological operators have been proposed in
this thesis. both equipped with targeted filtering ability for noise removal of
ECG signals. The adaptive multiscale morphological filter aims to reject high
frequency noise without affecting the feature waveforms, and an approach hy-
bridising empirical mode decomposition (EMD) and MM is designed to remove
the baseline wander.

In order to reinforce the filtering ability of basic morphological filters, a new
morphological filter is designed based on soft MM. Moreover, linear filtering
techniques are also combined with the morphological ones to fully explore their
potential. To guarantee best performance, the parameters of such filters are
optimised by evolutionary algorithms (EAs). For the former filter, an improved
particle swarm optimiser with passive congregation (PSOPC) subject to the
least mean square error criterion is used to optimise the parameters. For the
latter, a bacterial swarining algorithin (BSA) is presented to optimally combine
linear and morphological filtering techniques. The optimally assignment of
morphological operators, the SEs and other parameters makes the filters useful

in areas of artificial intelligence.
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It has been proved that MM can be extended to n dimension. The thesis
devotes a chapter on processing a signal in the corresponding phasc space,
which has a higher dimension than the time or shape domain. Such a schemne
is proposed on the believe that the features of a signal can be more clearly
revealed if it is embedded to the phase space through a proper embedding
strategy. The embedding-based signal processing technique is applied to three
applications: feature waveform detection of ECG signals, phasor measurenient
of power system signals and disturbance detection for power quality monitoring

and analysis.
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Chapter 1

Introduction

1.1 Motivation and Objective

Mathematical morphology (MM) has been recognised as a powerful tool
for image /signal processing. Having cexperienced flourishing development for
decades, MM research now faces new challenges. A majority of work in this
field concentrates on image processing, whereas the potential of MM in com-
Plex signal processing has been underestimated. As the development of modern
technology, target signals met in practice become more and more complex, and
the Processing requirement in terms of accuracy, adaptability, speed, etc, are
more and more demanding. Traditional approaches or technologies, especially
the lincar ones and including the classic MM, not only suffer from incapac-
ity towards these issues but also limit the development of signal processing.
Therefore, there is an urgent need to develop generic advanced morphological
Operators that are able to meet the requirement of complex signal processing.

Research on investigating MM'’s potential in frequency analysis has always
been insufficient. For many signals, frequency is a crucial feature. Hence, it
is attractive to investigate the characteristics of morphological operators in
the frequency domain and the relationship between the MM-based transfor-
Ination and the frequency-based transformation. Unfortunately, this area has

not been explored. The mathematical background of MM implies the difficulty



1.1 Motivation and Objective 2

of bridging MM to frequency analysis, however, it is still worthwhile to start
the research by developing morphological operators that can process frequency
information and comparing its performance with traditional signal processing
techniques that work well under given conditions in the frequency domain.

Extending MM to a higher dimensional space is another topic that has long
been ignored, although its mathematical background bolsters its function in a
space of any dimension. It is believed that embedding a signal to the phase
space through a proper embedding strategy. the features of the signal can
be more clearly revealed. Since the accurate extraction of transient features is
desirable for a wide range of applications in military defense, vehicle navigation,
safety monitoring, traffic and road plan, etc, it is necessary to conduct research
on feature extraction in the phase space.

The advanced morphological operators are applied to the following three
applications in this thesis: electrocardiogram (ECG) signal analysis, power sys-
tem protection and image denoising. ECG signals record the electrical activity
of the heart of a patient and the waveforms provide important information
for clinic diagnosis. They show evidence of disease or reveal rhythm problems
when heart beat is abnormal. Therefore, it requires accurate identification and
measurement of feature waveforms.

Power system protection is closely related to the electric power sector.
There are hundred and thousand millions of protection relays operating in
power systems and plants in the world. The methodologies of existing pro-
tective relaying has not been changed for over 50 years. It is based on the
Fourier transform that is time conswning, computationally complicated and
insufficient to extract the features of transient fault signals. In addition, ex-
isting relays operate based on a long sampling window, with a low response,
and are large in size and prone to suffer from electromagnetic disturbances, be-
cause they are constructed from a large number of electronics components and
boards. Hence, it is an urgent issue to develop a new generation of protective
relaying algorithms that can avoid these problems and have the potential to be

mapped to a system on a chip (SOC) to enhance the reliability of morphological

T. Y Ji



1.2 Mathermatical Morphology 3

operations and reduce the size and cost of the protection relays.

Noise removal is an underlying issue for image processing, especially in in-
dustrial applications as noise widely appears in raw images. Various filters have
been proposed to reject noise, however, most of them are designed specifically
for a certain type of noise. Therefore, a generic strategy on designing an ap-
propriate filter aiming at removing compound noise meanwhile preserving the
details of the image is greatly in need. These areas are closely related to our

daily life and the public will benefit greatly from the outcome of the research.

1.2 Mathematical Morphology

1.2.1 History

MM was introduced in 1964 by Matheron [1] and Serra [2, 3], both re-
searchers at the Paris School of Mines in Fontainebleau. Their objective was
to characterise physical or mechanical properties of certain materials, such
as the permeability of porous media, by examining the geometrical structure
(4]. They introduced a set formalism to analyse binary images, which allows
the image objects to be processed by simple operations such as unions, inter-
sections, complementation and translations, and published their first reports
concerning some of the methods that are part of MM now. Matheron redis-
covered Minkowski algebra, which defined set addition (dilation) in 1903. In
that period, Matheron had undertaken the study of permeability for porous
media in relation with their geometry on a more theoretical level [5] and pub-
lished a seminal book entitled Random Sets and Integral Geometry [1], which
is considered to have laid down the foundations of MM.

Since its launching in 1964, MM grew rapidly in the 1970s on the theo-
retical level. The major contribution of Matheron’s work during this period
includes topological foundations, random sets, increasing mappings, convex-
ity and several models of random sets. Based on iterative processing, binary
thinning, skeletons, ultimate erosion, conditional bisectors and their geodesic

framework were introduced. With the significant development of automated

T.Y Ji



1.2 Mathematical Morphology 4

visual inspection, substantial developments in morphology were stimulated in
the 1980s. The most important development of MM in that period was the
setting of the method in the mathematical framework of complete lattices. The
theory of the complete lattice provides a compact theoretical foundation for
grey-scale morphological operations. The theory of morphological filtering was
also presented in the 1980s. Some real-time applications of morphological fil-
tering were developed, such as the Delft iinage processor (DIP). In the 1990s,
the growth of MM focused on its applications, which included robot vision,
medical imaging, visual inspection, texture and scene analysis, etc. The theo-
retical works on the concept of connection, in combination with the connected
filters, have made MM a remarkable powerful tool for segmentation [6, 7].
The slope transformn was developed by endowing morphological operators with
eigenfunctions and their related transfer functions. Furthermore, a relatively
new approach of MM, soft morphology, was introduced by Koskinen [8]. The
recent trends in soft morphology including the algorithms and implementa-
tions can be found in [9], {10] and [11]. Other extensions of MM include fuzzy
morphologies, which attempt to apply fuzzy set theory to MM [12, 13, 14).
MM has also been hybridised with other techniques to explore its potential,
such as artificial neural networks (ANNs) [15], evolutionary algorithms (EAs)
16, 17, 18, 19], etc. With over three decades of development, MM has become
a powerful tool for geometrical shape analysis.

A major research topic of MM is digital image analysis. The development,
in both methods and applications has been equally boosted and there has
always been a close interconnection between them. Mature and integrated
mcthods have been formed, such as image filtering, image segmentation and
classification, image measurements, pattern recognition, and texture analysis
and synthesis, etc. As for the application of MM, it includes visual inspection
and quality control, optical character recognition and document processing,
materials science, geosciences, and life science. An overview of the development
of MM can be found in two milestone monographs by Serra [2] and Soille [20],

respectively.

T .Y Ji



1.2 Mathematical Morphology 5

MM has been widely used in the areas of image processing, but only a few
investigations have been attempted for signal processing. In this field, MM
prefers to depict the profile of signal waveforms in the time domain directly, in
contrast to many traditional methodologies that place emphasis on the response
in the frequency domain, such as the Fourier transform (FT) and the wavelet
transform (WT).

The underlying basis of morphological filtering technique is to process sig-
nals by a function, known as the structuring element (SE) or the structur-
ing function generally. An SE slides through the signal as a moving window,
inspects its interaction with the signal, and detects specific features in the
neighbourhood of every point in the signal. A morphological filter is composed
of various combinations of fundamental morphological operators, which can
preserve or suppress the feature represented by SE and obtain a signal with
only components of interest. When operating upon a signal of complicated
shapes, morphological filters arc capable of decomposing a signal into certain
parts. These parts are separated from the background for identification or
other purposes, and the main shape characteristics of the signal are preserved.
Therefore, for a distorted signal, its underlying shapes can be identified, recon-
structed and enhanced. Furthermore, the mathematical calculation involved
in MM includes only addition, subtraction, maximum and minimum opera-
tions, without any multiplication or division. Hence, morphological operators
calculate faster than traditional integral transforms when processing the same
signal.

In contrast to linear frequency domain techniques, MM is concerned with
the shape of a signal waveform in the time domain. When used for the ex-
traction of waveform components, MM has the following merits in comparison

with the integral transform-based methods:

1. The morphological operators have fast and simple calculations without

using multiplication and division operations.

2. It is applicable to non-periodic transient signals and not restricted to

periodic signals.
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3. MM uses a much smaller size of sampling window in real-time signal

processing, as it does not require the information of the full signal com-

ponents.

4. It is able to accurately and reliably extract the signal components without
causing any distortion, as it is a time-domain signal processing method

without performing any signal integral transforms.

1.2.2 Mathematical Background

Having been developed for several decades, MM has become a powerful
tool for signal and iinage processing, especially for geometrical shape analysis.
Considering its mathematical background, MM is defined on a complete lattice.
Before giving the definition of a complete lattice, we need to understand the
concept of a partially ordered set, which is also called a poset. A partially
ordered set is a set in which a binary relation ‘<’ is defined for certain pairs of
elements. The binary relation ‘<’ over a set P satisfies the following conditions

for all elements z,y, > € P:
1. Reflexive: V z, x < z.
2. Antisymmetry: If x <y and y < z, then z = y.
3. Transitivity: If x <y and y < z, then = < 2.

Given two partially ordered sets A and B and arbitrary elements a and z,

the following definitions can be developed:

1. Translation: The translation of A by z, denoted by (A),, is defined as
(A); = {a +z|a € A}.

2. Reflection: The reflection of A, denoted by A, is defined as A = {—ala €

A}. Reflection is also called transposition.

3. Complement: The complement of A, denoted by A°, is defined as A° =
{z]x ¢ A}.
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4. Difference: The difference between two sets A and B, denoted by A— B, is
defined as A-B = {z|jr € A,z ¢ B} = A( B°. Based on this operation,
the complement of set A can also be defined as A° = {z|z € ] — A}, where

I is the universal set.

The partially ordered set formalises the intuitive concept of an ordering
relation, which plays a key role in MM [20]. Aside from partial ordering. there
also exists a total ordering relation. A totally ordered set has a strengthened
relation of ‘<’: for any two elements & and y, exactly one of © < y, r =y,
x > y is true. The property of transitivity on a totally ordered set becomes
z <yand y < zimplies x < z.

A poset, (P, <), is a lattice if any two elements of it, 2 and y, have a greatest
lower bound (i.e. infimum), z A y, and a least upper bound (Z.e. supremum),
x V y. Alattice, J, is a complete lattice if each of its subsets has an infimum
and a supremum in J. A complete lattice satisfies the following properties:

for subsets X, Y and Z,
1. Commutativity: XVY =Y VX, XAY =Y AX.

2. Associatwvity: (XVY)VZ=XV(YVZ),(XAY)AZ=XAN(YAZ).

1.3 Three Major Application Areas

The advanced morphological operators are mainly applied to three areas:
ECG signal analysis, power system protection and image processing. All the
advanced morphological operators developed in this thesis have been applied
to tackle an issue from these areas and the narration style of algorithm followed
by application is found throughout the thesis. This section introduces in detail
the characteristics of the signals met in the three areas, addresses the objectives

of processing them, and summarises relevant work reported in recent literature.

T.Y Ji



1.3 Three Major Application Areas 8

1.3.1 ECG Signals

ECG records heart electrical signals activated first by the atria then by the
ventricles. The analysis of the ECG signals is a well-known non-invasive tech-
nique to detect the electrical heart activity. A normal heart cycle is reflected
in the ECG by three feature waveforms: the contraction of the atria results in
a P wave, followed by a QRS complex, which is produced by the contraction
of the ventricles, and a T wave, which results from the subsequent return of
the ventricular mass to a rest state [21]. To be more intuitive, a fragment of

an ECG signal is shown in Fig. 1.1.
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Figure 1.1: Feature waveforms of an ECG signal.

The ECG signal has a time periodicity allowing to define an elementary beat
composed by specific waveforms, appearing periodically in time {22]. Figure
1.1 shows a heartbeat and its respective waveform labels. The QRS complexes

represent the ventricular activity of the heart [23]. The R waves have the

T.Y Ji



1.3 Three Major Application Areas 9

highest amplitude and in practice, an RR interval can be used to define a cycle
of the ECG signal.

An ECG signal may be disturbed by impulsive noise, due to electrical activ-
ity of muscles [24], high frequency noise (usually modelled by Gaussian white
noise), due to electromagnetism interference and grounding of biomedical in-
struments and measuring circuits [25], and low frequency baseline wander, due
to the respiratory cycle. Therefore, noise removal is usually the first step of
ECG analysis. In some cases, the noise has the same magnitude and frequency
as the feature waveforms. Therefore, it is important to minimise the distor-
tion in the feature waveforms so as to keep the features of most interest in
terms of clinical diagnosis, while removing the noise [26]. Paper [27] proposed
a progressive umbra-filling (PUF) procedure to adaptively assign the SEs of
openings or closings, so as to provide different filtering scales with respect to
different spacial positions. The PUF procedure first extracts the feature parts
(e.g. jumping cdges) from a signal; then, assigns different filtering scales to
the feature parts and the other parts, respectively. In this manner, the feature
waveforms of the signal can be preserved while the noise is removed.

Accurate extraction the feature waveforms is a much concerned topic. Some
algorithms detect QRS complexes only. Paper [23] studied and compared three
non-linear QRS detection algorithms. Two inherent characteristics of the QRS
complex are that first, it has high frequency content compared to the rest
of the ECG signal; second, it has large amplitude. Hence, the difference or
derivative of the QRS complexes yields a larger value than the remainder of
the signal. This feature can be exploited by squaring the differences or by
multiplying successive differences together. Other algorithms tried to obtain
all the characteristic points of the ECG, i.e. the onset, peak and end of the P
waves, QRS complexes and T waves [28].

Classification of the feature waveforms has also aroused considerate amount
of interest. A number of papers are devoted to this field. In [29], several ANN
architectures were designed to classify the ECG signals integrating the most

common features: arrhythmia, myocardial ischemia, chronic alterations. In
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[22], a hidden Markov model-based approach was proposed for automatic beat
segmentation and classification. The hidden Markov models were trained on
a large set of waveform examples and gave a good representation of the mor-
phologies that can be found in an ECG signal. Some literature focuses on the
extraction of I waves and their morphology classification and several clinical
studies connected certain P-wave properties, such as its width and morphol-
ogy, with anomalies in the electrical atrial conduction and atrial pathology [28].
Paper [30] presented comparative study of the classification of QRS complexes
in five heartbeat types.

In the simulation studies of this thesis, test ECG signals come from MIT-
BIH Arrhythmia Database [31]. They were digitised at 360 samples per second
with 11-bit resolution over £5 mV range. Sample values thus range from 0 to
2047 inclusive, with a value of 1024 corresponding to 0 mV.

This thesis proposes a multi-resolution morphological filter and a morpho-
logical lifting filter for the removal of impulsive noise, an adaptive morphologi-
cal filter for the removal of Gaussian white noise. and a filter engaging empirical
mode decomposition (EMD) and MM for the removal of baseline wander.

The proposed multi-resolution morphological filter can also be applied to
extract the feature waveforms. It uses the fact that R waves have a highest
magnitude and the magnitude and width of the P waves are smaller than those
of the T waves to separate the waveforms level by level. As an alternative, an
embedding-based scheme is designed to identify the feature waveforms and
moreover, the waveforms can be classified by their geometric properties in the

phase space.

1.3.2 Power System Signals
Transient disturbances of power systems

Power quality has been one of the main concerns over the operation of util-
ities and manufacturing industries. In general sense, anything that causes the

power system voltage or current to deviate from its ideal sinusoidal waveform
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could be considered as a power quality disturbance [32]. According to the IEEE
1159 standard [33], which is a well-established power quality standard, a given
disturbance is generally considered to belong to one of the two broader cat-
egories: steady-state disturbances and temporary disturbances. Steady-state
disturbances are of long duration and change little with time, including wave-
form distortion caused by harmonics, noise and power frequency variations.
Temporary disturbances, on the other hand, usually appear in a steady-state
and as such a disturbance disappears, the power system will return to normal
or to a new steady-state. Temporary disturbances are further divided into
several different types including long duration voltage variation, lasting longer
than one minute, short duration voltage variation, lasting longer than 0.5 cy-
cles of the power frequency but less than or equal to 1 minute, and transient,
lasting shorter than 50 ms, etc. The following disturbances are considered and

dealt with in this thesis.

e Transient A transient is an undesirable momentary deviation of the
supply voltage or load current. Transients can be broadly classified mto

two categories - impulsive and oscillatory.

— Impulsive transient: An impulsive transient is a sudden, non-power
frequency change in the steady-state condition, and it is unidirec-
tional in polarity (primarily either positive or negative). The most

common cause of impulsive transients is lightning.

— Oscillatory transient: An oscillatory transient consists of a voltage
or current whose instantaneous value changes polarity rapidly, i.e.

it includes both positive or negative polarity value.

o Short duration variation Short duration voltage variations are almost
always caused by fault conditions, the energisation of large loads that
require high starting currents, or intermittent loose connections in power
wiring. Depending on the fault location and the system conditions, the
fault can cause either temporary voltage rises (swells) or voltage drops

(sags), or a complete loss of voltage (interruptions).
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— Voltage swell: A voltage swell is a short term increase of system
voltage. Such an event is often caused by an abrupt reduction in
load or appears on the un-faulted phases of a three-phase circuit,
where a single-phase short circuit has occurred. Swell may stress

any delicate equipment components causing premature failure.

— Voltage sag: A voltage sag is a significant voltage reduction for a
relatively short duration. It may be caused by faults, increased
load demand and transitional events such as starting large electrical

motors.

— Interruption: A momentary loss of voltage on a power system can
be called a momentary interruption. Such a disturbance describes
a drop of 90-100 percent of the rated system voltage. They are
often detected down-line from switch-gear such as circuit breakers,

re-closers or fuses.

¢ Waveform distortion Waveform distortion is a steady-state deviation
from an ideal sine wave of power frequency principally characterised by
the spectral content of the deviation. There are five primary types of
waveform distortion: DC offset, harmonics, inter-harmonics notching and

noise.

— Harmonics: Harmonics are sinusoidal voltages or currents having
frequencies that are integer multiples of the fundamental frequency
(the frequency at which the supply system is designed to operate).
Harmonic distortion exists due to the nonlinear characteristics of

devices and loads on the power systemn.

— Notching: Notching is a periodic disturbance of opposite polarity
from the waveform lasting shorter than a half of a cycle. It may be
caused by lightning, static discharges, utility switching operations,

starting or stopping major equipment or machinery, etc.

e Power frequency variation Small changes in the fundamental fre-

quency occur when the balance between the load and the capacity of
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Figure 1.2: A simulated power system disturbance signal.

the available generation changes. The size of the frequency shift and
its duration depend on the load characteristics and the response of the

generation system to load changes.

Figure 1.2 demonstrates a disturbance signal containing three types of dis-
turbances — an impulsive transient, four notches and a voltage sag. In order to
examine the power quality, voltage or current waveforms may be recorded con-
tinuously using power monitoring instruments which generate digitised time
series of sampled data [34]. The detection is based on the time series. A com-
mon way to assess and monitor the recorded data is through frequency-based
approaches, such as discrete Fourier transform (DFT) and WT [35, 36, 37].
DFT has a successful application to periodic signals, but fails to track a tran-
sient signal due to the limitation that it must perform in a window of a fixed
length [38]. Unlike DFT, WT constructs a string of time-frequency represen-
tations of a signal and the representations are of differcnt resolutions. Hence,
it is more capable of identifying the details of localised transients. However,
it requires a sampling window of a certain length to perform integral calcu-
lations, which increases the computational burden and impairs its attraction.
Besides, WT does not reflect the shape information in the time domain, which
is essential for the analysis of some particular distorted portion of power sys-
tem signals. Other approaches involve the analysis of the root-mean-square
(RMS) value of voltage. In [39], the RMS-based measurement is used for de-

tection and classification of short and long duration variations, and digital
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filtering and mathematical morphology are used for transients and waveform
distortions.

Having ascertained that a disturbance has occurred in the power system,
the next task is to determine the type of the disturbance. Many artificial
intelligence-based algorithms have been proposed for disturbauces classifica-
tion of power system signals. Some of the algorithms make use of neural
networks [40] and/or expert systems [35, 41]. Merged with different detection
approaches, they can provide satisfactory classification results. However, all of
these techniques rely on massive data for training, which greatly limits their
practical applications.

In this thesis, test disturbance signals are simulated to contain up to 40
harmonics and Gaussian noise with a signal-to-noise ratio (SNR) of 30 ~ 60
dB, and they may also have a £5% fundamental frequency shift. As for each
disturbance, its location, duration and magnitude are randomly selected within
a range [33] so that they arc at different levels. Impulsive transients are sim-
ulated at millisecond scale, which means they last over 1 ms but shorter than
0.5 cycles. Such a short undervoltage cannot be characterised effectively as a
change in the RMS value of the fundamental frequency value [33]. Oscillatory
transients are simulated to contain low frequency (300 ~ 900 Hz) component
only, with a duration of 0.3 ~ 50 ms and a magnitude of 0 ~ 4 p.u. The
voltage of swells and sags in the range of 1.1 ~ 1.8 p.u. and 0.1 ~ 0.9 p.u,,
respectively, and both disturbances last within the instantaneous range, which
is a half of a cycle at least and 30 cycles at most. For interruptions, the reduced
voltage is in the range of 0 ~ 0.1 p.u. and last between 0.5 cycles to 3 s. The
magnitude of notches is limited within 0.2 ~ 0.6 p.u. and their frequency is
10 ~ 20 times of the signal’s fundamental frequency. A test signal may contain
up to 6 notches and their interval is 1/4 ~ 1 cycle. Main parameter settings
are listed in Table 1.1, which cover major situations that may occur in power

systems.
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Table 1.1: Main parameter settings of each type of disturbance

Power disturbance Duration Magnitude (p.u.)
Millisecond impulsive transients >1ms 0~1
Low frequency oscillatory transients 0.3 ~ 50 ms 0~4
Instantaneous voltage sag 0.5 ~ 30 cycles 0.1~09
Instantaneous voltage swell 0.5 ~ 30 cycles 1.1~18
Momentary interruption 0.5 ~ 150 cycles 0~0.1
Notching 1~4ms 02~06

Fault currents in power systems

When a fault occurs in a power system, the current or voltage signal in the
transmission line will contain harmonics and exponentially decaying DC offset
components. The source current or voltage signal has the standard sinusoidal
waveform:

Iy(t) = Ag cos(wt + ¢) (1.3.1)

where w = 27/T with T the period. On the other hand, a fault current or
voltage signal is considered to comprise a fundamental sinusoidal component,

a scrics of harmonics and an exponential decaying DC offset. which can be

expressed as:

Ie(t) = L(t)+ In(t) + lac(t) (1.32)

Ii(t) = Ajcos(wt+ ) (1.3.3)

hit) = Y L) =Y Ajcos(jwt + ) (1.3.4)
j=2 j=2

ie(t) = Be™ (1.3.5)

where I is the fundamental component and it has the same frequency as the
source signal but has a phase shift of an angle of ¢ — ¢, I}, is the combination of
the harmonics, and Iq. denotes the DC offset. Therefore, the signal including

a source part and a fault part can be expressed by:

Io(t), 0<t<t,

I(t) = { (1.3.6)

]t(t - ts)’ L >t
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Figure 1.3: A typical fault current in power systeins.

where t, denotes the time instant that the fault occurs. A typical example of
a fault signal is given in Fig. 1.3, which contains an exponential decaying DC
offset and 35 dB Gaussian noise. A traditional way of analysing fault currents

is the full-cycle and half-cycle FTs, as described in Appendix A.

1.3.3 Compound Noise in Images

Raw images often contain Gaussian white noise, periodic noise and salt &
pepper noise. Gaussian white noise widely appears in all practical situations.
It contains cqual power within a fixed bandwidth at any centre frequency and is
uncorrelated in time. Periodic noise is mainly caused by electrical interference
from data collecting devices, such as image scanners, capturing sensors, and
video cameras. Apparcntly, it has a well-defined frequency. Salt & pepper noise
is a type of non-Gaussian noise and typically seen on images. It represents itself
as randomly occurring white and black pixels.

This thesis sets up a generic framework of designing an optimal filter to
remove the compound noise. The filter contains morphological operation and

may also engage linear filtering technique if desired, and has a set of adjustable
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parameters. EAs are used to search for the most suitable parameters, which is

a contribution in introducing new blood to MM.

1.4 Major Contributions of Thesis

The major contributions of this research include the fundamental study
of morphological operators, development of advanced morphological operators
based on the basic ones and their application to signal processing, in partic-
ular for ECG signals and power system signals, and image processing. The

contributions are summarised as follows.

e The thesis digs up in the mathematical background of MM and gives

proof for certain properties of basic morphological operators.

o After a through study of a set of morphological operators that are suitable
for signal processing in one dimension, advanced morphological operators
have been developed, some of which are hybridised with other signal
processing techniques, to fulfill specific tasks. Nonetheless, the operators

can be adopted in other applications.

o A research of employing EAs in the design of optimal morphological
filters is conducted. Two EAs are employed in the optimisation of mor-
phological filters for the removal of periodic noise and Gaussiah and non-
Gaussian noise, respectively. In such a manner, it is ensured that the
filters designed can filter out the noise and have the best performance

according to pre-set criteria.

e The embedding theorem, which was originally proposed for dynamical
systems. is for the first time applied to signal processing to view a signal
from more than one angle and thus, hidden features can be extracted.
This pioneer work presents a generic scheme that can be adopted by a

wide range of applications.
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e Initial investigation of MM in power quality analysis is carried out and
three schemes for disturbance detection and location are proposed. Fur-
thermore, the classification of power quality events is conducted based

on the detection results.

¢ An embedding-based method is proposed for phasor measurement to re-
place the FT, which is commonly used but requires complex integral cal-
culation and thus increases the computation burden. The new method
measures the amplitude, the phase angle and the phase difference of cur-
rent and voltage signals sample by sample and the calculation involves
two or four samples only. Moreover, the method can also be used to

estimate the shift of the fundamental frequency.

e Several MM-based algorithms are developed for ECG signal processing,
including the removal of impulsive noise, high frequency noise and low
frequency bascline wander, and the identification of the feature wave-
forms. As the frequency spectruin of the noise and feature waveforn
overlaps with one another, the MM-based algorithins that focus on the

shape of the signals are more applicable.

1.5 Contents of Thesis

The thesis is structured as follows.

Chapter 2 This chapter introduces the mathematical background of MM. It
starts with the basic morphological operators, dilation and erosion, in
binary case and extends them to grey scale version. Afterwards, the
basic operators evolve to a set of sequential operators, such as opening
and closing. Other types of MM-based schemes are also introduced in
this chapter, including soft MM, multi-resolution MM and multiscale
MM, from which the advanced morphological operators proposed in the

following chapters are developed.
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Chapter 3 In this chapter, three morphological decomposition algorithins are
introduced. For the purpose of noise removal, a multi-resolution morpho-
logical filter and a morphological lifting filter are designed. The latter is
an improvement over the former in that it can partly recover the detailed
information lost during the filtering procedure. The multi-resolution mor-
phological filter is applied to ECG signal analysis. Using it at different
levels, the multi-resolution morphological filter can remove the impul-
sive noise or separate the feature waveforms. For the purpose of feature
extraction, a morphological gradient wavelet (MGW) is developed. It in-
volves morphological operation in the decomposition process and presents
the gradient information in the output. The MGW is applied to power
system disturbance detection to detect and locate the disturbances oc-
curring in a power system signal. Its performance is compared with a
classic WT - the Daubechies DB4 WT (DB4), and the result shows the
advantage of the MGW in terms of accuracy and computational com-

plexity.

Chapter 4 Morphological operators can be designed into a multiscale version
to extract target information scale by scale. This chapter presents two
advanced multiscale morphological filters. The first one is an adaptive
multiscale morphological filter that can reject high frequency noise with-
out affecting the feature waveforms. It is used to process an ECG signal
from a larger scale to a smaller scale in a recursive manner to distinguish
high frequency noise from feature waveforins according to a set of pre-
set criteria. The output is a much smoother curve that still follows the
trends of the feature waveforms. The second filter is a fusion of EMD and
MM. It removes low frequency noise whose spectrumn has a wide span and
partly overlaps with that of the feature waveforms. The hybrid filter is
applied to remove the baseline wander of ECG signals, which traditional
filter techniques are unable to deal with, and provides a stable signal for

subsequent automatic processing and reliable visual interpretation.
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Chapter 5 Morphological filters may contain a range of parameters and the
performance of the filters can be enhanced by adjusting the parameters
according to the requirement of the task. The scheme of designing op-
timal morphological filters is described in this chapter. Two types of
morphological filters are designed in this chapter and their adjustable
parameters are optimised by two EAs, namely particle swarm optimiser
with passive congregation (PSOPC) and bacterial swarming algorithm
(BSA), respectively. Simulation studies demonstrate that the optimal
filters are more powerful than traditional ones in removing compound

noise, which is often the case met in practice.

Chapter 6 This chapter is concerned with a novel signal processing technique
developed based on the embedding theorem and on the belief that the
features of a signal can be more clearly revealed in a high-dimensional
space. After the introduction of the embedding theorem, the embedding-
based technique is applied to deal with three types of problems. The first
one is the detection and classification of ECG feature waveforms. The
feature waveforms and the baseline form different shapes in the phase
space, and the embedded signal is therefore used to separate them from
one another. Consequently, clinically important parameters, such as the
onset, length, peak and end of a P or T wave, can be measured for
further analysis and diagnosis. Moreover, the geometric information pre-
sented by the embedded signal is used to classify the feature waveforms,
which is also often required in clinic. The second application area is pha-
sor measurement of power system signals, which used to be dominated
by the FT-based algorithm. This chapter proposes a fast yet reliable
embedding-based method for the measurement of amplitude, phase, fun-
damental frequency, frequency shift, etc. In the area of power quality
protection, the disturbances are extracted using the embedding-based
technique with the help of morphological operation, data clustering tech-
nique and algebra-based algorithms. In the phase space, the embedded

disturbances and the embedded normal signal form distinguish shapes,
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which ensures a more accurate detection and location of the disturbances.
An on-line classification strategy is also presented based on the distur-

bances extracted.

Chapter 7 Finally. the thesis is concluded in this chapter and suggestions for

future work are given.
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Chapter 2

Mathematical Morphology

2.1 Basic Morphological Operators

2.1.1 Definitions for Binary Operations
Minkowski Addition and Subtraction

The main function of morphological operators is to extract relevant struc-
tures of a set. The extraction is usually done by the interaction between the
set and another set, which is called structuring element (SE). The shape of
the SE is pre-defined according to some a priori knowledge about the shape of
the signal. There are two basic morphological operators, dilation and erosion,
which form a pair of dual transforms. They are derived from Minkowski set
theory. Therefore, we start this section from the introduction to Minkowski
addition and subtraction.

Minkowski addition is a binary operation of two sets 4 and B in Euclidean
space, named after Hermann Minkowski. It is denoted by ég and is defined as

the result of adding every element of A to every element of B:

AGB={a+bacAbe B} =|J(A), (2.1.1)
beB

A M
It is assumed that A @ {0} = Aand A £ @ = 0. The dual operation is called

25
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M
Minkowski subtraction, denoted by &, and defined as:

ABB = (A (2.1.2)

beB

The following relation will be true for Minkowski subtraction:

M N M
Ao B={z|(B), C A} = (A°® B)". (2.1.3)
Proof:
se ()
beB
= ZE (A)b
= ze{a+blae A be B}

= ze{ulr-be Abe B}
and - {z|(B): C A} = {z|z —b€ A b B}
A B ={z|(B). C A}.

ABB = UU-Ay=1- (A

beB c beB c
M
= (ﬂ(/\)b> = <A O B)
beB
M M
ASB = (A°® B)-.

Next, we will prove that Minkowski addition satisfies the properties of
commutativity and associativity. Similar methods can be used to prove that

Minkowski subtraction also satisfics these properties.

M
1. Commutativity: A& B=B %”a A.
Proof:

M
Ae B ={zlt=a+bac A be B}
—{alv=bt+abeBacA) —B®A

M M M M
2. Associativity: (A® B)®C=A& (B C).
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Proof:

M M M
A (BaC) = {a+(h+c)la€ Ab+ce Bg C}

= {a+b+c|aeA,b€B,c€C}
M
= {(a+b)+cla+be Ad B,ceC}
M M
= (A B)® C.

Binary Dilation and Erosion

The definition of dilation is similar to Minkowski addition. Replacing the

M 5
operator @ by < in (2.1.1) and use a reflected SE, B, we have

Ao B =)A= JA)-=J{zle =a~bac A}. (2.1.4)

beB beB beB

Erosion derives from Minkowski subtraction, but this time b comes from the

reflection set of B. The definition of erosion is

A@Bzﬂ(A)b=ﬂ(A)_b=ﬂ{xl;r=a—b,aeA}. (2.1.5)

beB beB beB

Since a binary image is a digital image that has only two possible values
for each pixel, it is very convenient to describe a binary image using the notion
of a set. A binary image is often considered as a set [, while an object in it
is considered as a subset X C I. Letting sets A and B represent two binary
images in the above definitions, we have the operations of dilation and erosion
for binary image processing.

The two images A and B function differently in image processing. Generally
speaking, A is the image being processed, while B serves as an SE that slides
as a probe across image A and interacts with each pixel of A. Obviously, the
size of B should be much smaller than that of A. To have a clear view of
this process, we give an example in Fig. 2.1 to show how dilation and erosion
function between a binary image and an SE. Here, the origin of I3 is set at
(0,0).

Figure 2.1 illustrates an important property of dilation and erosion — dual-

ity, which means that applying dilation to A is equivalent to applying erosion

T.Y Ji
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Figure 2.1: Binary dilation and erosion of a binary image
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to its complement A°. This property can be expressed as:

Ao B = (A°o B)° (2.1.6)
ASB = (A°®B)°. (2.1.7)
Proof:
AeB = Ul -Ap=U-4),
beB beB
= - N (A
beB

= [ -ACB=(A0B)F
= A6B = (A°®B)".

The property of duality illustrates that the processing of dilation and ero-
sion is not reversible and there is no inverse transform for the operators. As we
can see from the following sections, applying dilation and erosion alternately
actually produces a pair of new operations.

Another property of dilation and erosion is the distributivity:

A6BoC = Ac(BaC). (2.1.8)

Proof:
deBaC =A@ BracC
=[(A®B)eCl
AOBOC) =[A0MBOCO)
(A°@B)®C =A®(BaC) (Associativity)
AcBeC =Ac(Bag()

2.1.2 Set Representations of Functions

In order to extend morphological operators to functions, the functions are

represented by their umbra [42], which is defined as:

U(f) ={(z,a)la < f(a)}. (2.1.9)

Hence, a d-dimensional function f(z) is represented by a (d + 1)-dimensional

set. Obviously, the umbra is the set of points below the surface represented by
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Amplitude

100
Sample

Figure 2.2: Umbrae U(f) of a sinusoidal function f

f(z). After getting the umbra, binary morphological operators can be applied
to the signal. In general, the umbra set extends to a = —oo, and the function

f can be reconstructed from its umbra since:
f(x) = max{a|(z.a) € U(f)}, Vz. (2.1.10)

Figure 2.2 shows, as an example, the umbra of a sinusoidal function, where the

umbra of f(x) is the shaded region. We can easily show that f < g & U(f) C
U(g).

Some definitions for grey-scale operations based on sets are defined as fol-
lows [43]:

1. Grey-scale union: The union of two functions f and g, denoted by f Vg,

is defined as:
(JVg)x) = [(x)Vg(a). (2.1.11)

There is a one-to-one correspondence between the union of functions and

the set union:
U(fvg)=U(f)uU(g). (2.1.12)

2. Grey-scale intersection: The intersection of two functions f and g, de-

noted by f A g, is defined as:
(S Ag)(z) = f(z) A g(z). (2.1.13)

A similar one-to-one correspondence exists for the function and the set

intersection:

U(fAg)=U(f)nU(g). (2.1.14)
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3. Grey-scale transpose: The transpose f of a function f is defined as:
J(z) = f(-x). (2.1.15)
4. Grey-scale complement: The complement f€ of a function f is defined as:

Jo(x) = = f(x). (2.1.16)

For an eight-bit grey-scale digital image, each pixel of which can have 28 =
256 possible values to carry the full and only information about its intensity,
the image can be represented as a set whose components are in Z3 In this
case, two components of each element of the set refer to the coordinates of a
pixel, and the third corresponds to its discrete intensity value. For a signal,
the set is defined in Z? with each element corresponding to a sample of the
digitised signal. Similarly, the first component of each element represents the
coordinate and the second represents its value. Sets in a higher dimeunsional

space can contain other attributes, such as the colour information of an image.

2.1.3 Grey-Scale Dilation and Erosion

In order to use MM in signal processing where most signals are not binary,
morphological operators should be extended to a grey-scale level. Instead of
performing dilation and erosion by union and intersection as in the binary case,
they are performed by algebraic addition and subtraction in the grey-scale case.
Let f denote a signal and g denote an SE, and the length of g be considerably

shorter than that of f [44]. Dilation and erosion are defined as follows:
f @ g(z) = max{f(z+s) + g(s)l(z + 5) € Dy, s € Dy} (2.1.17)

f©g(x) =min{f(z +s) - g(s)|(z + 5) € Dy.s € D,} (2.1.18)

where Dy, Dy are the definition domains of f and g, respectively. For example,
suppose the SE, g, has a length of five samples with its origin in the middle.
In this case, the domain of g is given by D, = {-2,~1,0,1,2}. The dilation
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Figure 2.3: Grey-scale dilation and erosion of a one-dimensional signal. (a)
Dilation. (b) Erosion.

and erosion of f by ¢ are therefore calculated from

feg(z) = max{f(z -2)+g(-2), f(z - 1) +g(-1), f() + 9(0),
fle+1)+9(1), (= +2) +9(2)}

and
Jeg(x) = min{f(z -2) - g(-2), f(x - 1) — g(-1), [(z) - g(0),
fz+1)—g(1), f(z+2) - 9(2)}

respectively. Intuitively, dilation can be imagined as swelling or expanding,
while erosion can be thought of as a shrinking procedure.
As explained previously, the SE is a small set used to probe the signal under

study. A simple case is that the SE has the form of g(s) = 0, s € Dy, which is

referred to as a ‘flat SE'. Hence, definitions of dilation and erosion degrade to:
feglz) = mfmx{f(r + s)|(x + s) € Dy, s € Dy} (2.1.19)
foglxr) = msin{f(l' +5)|(z + s) € Dy, s € D,}. (2.1.20)

The function of g is to indicate which samples are involved when processing
the current sample. For a binary signal, the SE, ¢, must be flat. The dilation
and erosion of a one-dimensional signal are illustrated in Figs. 2.3a and b,
respectively. Both operations use a flat SE of length 3: g(—1) = g(0) = g(1) =
0.
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Figure 2.3 demonstrates another property of dilation and erosion, i.e. that
they are increasing transforms. The property can be expressed as follows. For

two signals. f) and f,. and an arbitrary SE, g, we have:

f1§f2=>{fl®ggf2®g . (2.1.21)

S1©g< 20y
The ordering relation between dilation and erosion can be expressed as the
erosion of a signal by an SE being less than or equal to its dilation by the same
SE: f© g < f&g. Ifthe SE contains its origin, which means processing a
sample of the signal within a window that contains the sample, the following
ordering exists:

feg<f<f®yg (2.1.22)

2.2 Morphological Filters

2.2.1 Definitions of Morphological Filters

Morphological filters are non-linear signal transforms that locally modify
the geometrical features of signals or iinage objects. The idempotence and
increasing properties are necessary and sufficient conditions for a transform, v,
to be a morphological filter:

v is a morphological filter < ¢ is increasing and idempotent.

The property of idempotence implies that applying a morphological filter
twice to a signal is equivalent to applying it only once:

1 is idempotent & Yy = .

The increasing property ensures that the ordering relation on signals is pre-

served after being filtered if the same SE is employed.

2.2.2 Opening and Closing

Opening is an operator that performs dilation on a signal eroded by the

same SE. The definition is given as follows:

Jog=({/og)®y (2.2.1)
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Figure 2.4: Grey-scale opening and closing of a one-dimensional signal. (a)
Opening. (b) Closing

where [ is the signal, g is the SE, and o denotes the opening operator. Opening
can recover most structures lost by erosion, except for those completely erased

by erosion. Closing, on the other hand, can be defined by its duality as:

feg=(feg)Oy (2.2.2)

Usually, opening and closing are also denoted by operators v and ¢, respec-
tively. The results of performing opening and closing on the signal used in the
previous section by the same SE are illustrated in Fig. 2.4.

Morphological opening and closing are both increasing transforms:

v(f1) < (fa)
o(f1) < o(f2)

Moreover, successive applications of openings or closings do not further modify

h<sh= { (2.2.8)

the signal, which means that they are both idempotent transforms:

[Pl (2.2.4)
o9 = ¢.

Apparently. opening and closing fulfill the conditions of morphological filters.
Opening and closing are also a pair of dual transforms:

AoB = (A°eB) (2.2.5)

AeB = (A0 B). (2:2.6)
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Proof:
(AoB) = (AoB®B)Y=(AeB)rcB

= A°pBeB=AR8
= AoB = (A°eB)".

2.2.3 Alternating Sequential Filters

Opening and closing are the basic morphological filters and new filters can
be designed from their sequential combinations, such as an opening followed
by a closing or vice versa. In fact, all the following combinations are filters:
YO, ¢, voy and ¢yd. Moreover, for these new filters, the ordering relations of

Y
7 <y¢y < <opvp <o (2.2.7)

-~

!

are always satisfied [20]. The pair of dual filters y¢ and ¢ are called opening-
closing and closing-opening filters, and they have almost the same filtering
cffects. Therefore, in practice. usually only one of them is employed.

In some applications, such as when the objects under processing are over a
wide range of sizes, there is a need to alternatively use openings and closings
with an SE of an increasing size. This sequential application of the basic
operators is called an alternating sequential filter. Since the four types of
sequential combinations of opening and closing are all morphological filters,
four alternating sequential filters can e developed hereafter. Let 4; and ¢; be
a pair of dual operators with an SE of size 7. Suppose the size of SE increases
from i to j. Therefore, the four types of alternating sequential filters are given

as:

Jooe = (78;) - (v:0) (2.2.8)
Jaco = (&;%) ... (dim) (2.2.9)
Jaoco = (185%;) . (vidiwi) (2.2.10)
facoe = (87,0;) - . (ividhs). (2.2.11)
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2.3 Soft Mathematical Morphology

Soft MM (SMM) is an extension of standard MM. Instead of applying local
maximum and minimum operations, SMM uses a more general weighted order
statistics [45]. Besides, the SE used in SMM is divided into two subsets: the
hard centre and the soft boundary. In comparison with standard MM, SMM
is more robust in noisy conditions and less sensitive to small variations in the
shapes of the objects [46].

Given sets A, B C Z* and A C B, B is divided into two subsets: the hard
centre .4 and the soft boundary B — 4, where B — A means the difference of
the two sets. Soft dilation and soft erosion of an image f by an SE [B, A, k]

are defined as:

fOB,AK = max®{ko(f(x —a)+ A(a))|n € D4}

U/ - 8) + B(3)1B € Dp_a} (23.1)
fe B Ak = min®{ko(f(z+a)- A(a))|a € Da}

U= +8) - B(B)IB € Dp-a} (23.2)

respectively, where max® and min® denote the k' largest and smallest value
in the set respectively: ¢ is the repetition operator and ko f(a) = {[ (), f(a)-
~, f(a)} (k times); D4, Dp_4 represent the field of definition of A and B — A
respectively.

Consequently. soft opening and soft. closing are defined as:

Je[B, Akl =(f&[B Ak]) 2B, AK (2.3.4)

respectively. Accordingly, soft open-closing and soft close-opening are realised
through cascade connection of the soft opening and closing in different orders.

The two operators are defined as:
OC(f.[B,Ak]) = (fo[B,Ak]) e[B, A,k (2.3.5)

CO(f.[B,Ak]) = (fe[B,Ak])o[B, A k| (2.3.6)
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2.4 Multi-resolution Decomposition Schemes

The multi-resolution decomposition scheme provides convenient and effec-
tive approaches for signal processing [47]. The core idea is to remove high
frequencies in a signal, thus to obtain a reduced-scale version of the original
signal. Therefore, by repeating this procedure, a collection of coarse signals
at different levels are produced. Meanwhile, a collection of detail signals can
be constructed by subtracting the coarse signal at level i + 1 from the coarse
signal at level i.

Let J C N be an index set ! indicating the levels in a multi-resolution
decomposition scheme; J can be finite or infinite. Therefore, for a domain
V; (j € J). signals of level j belong to V;. The analysis operator ¢'" decomposes
a signal in the direction of increasing, i.e. d)} : Vi — Vji1. On the other
hand, the synthesis operator 1! proceeds in the direction of decreasing, i.e.
4/;} : Vi+1 — Vj. In other words, the analysis operator ¢! maps a signal to a
higher level and reduces information, while ¢! maps it to a lower level.

Composing analysis operators successively, a signal at any level ¢ can be

transferred to a higher level j. The composed analysis operator is denoted as
1/;3’ ; and is defined to be:

1 C
1/)2."]. = ‘l/,‘}_ld)}A2 . Q/)J‘ ] > (241)

It maps an element in V; to an element in V. It should be noted that here
the operations are carried from right to left. Likewise, the composed synthesis
operator:

l/"}',i - (/,,}1/,1}+1 .. "l/’}~1~ j>i (2.4.2)
takes the signal back from level j to level i. Finally, the composition operator

that takes a signal from level 7 to level j and then back to level 7 is defined as:

bij =il j>i (2.4.3)

A set I serves as an index set for the family F = {A,} of sets if, for every o € I, there
exists a set of Aq in the family F. The index set I can be any set, finite or mfinite. Very
often. we use the set of nonnegative integers {1,2.3,...} as an index set [48].

T.Y. Ji



2.4 Multi-resolution Decomposition Schemes 38

where zﬁw- is viewed as an approximation operator because analysis operator
z/’JT- reduces signal information and, in general, the synthesis operator (/)} cannot
compensate the information lost in the analysing procedure.

Analysis and synthesis operators play an important role in the construction
of a decomposition scheme. If there is no information lost during the analysis
and synthesis procedure, then this decomposition scheme would be perfect.
The Pyramid transform {49] and morphological wavelets [50] discussed in the
following subsections are designed to not modify the decomposition when the

analysis and synthesis steps repeat.

2.4.1 Pyramid Transform

Pyramid transform is a multi-resolution decomposition scheme that does
not influence the decomposition when analysis and synthesis steps are repeated.
A premise of pyramid transform is the so-called pyramid condition [49]. The
analysis and synthesis operators 1/)}- and 'l/)} are said to satisfy the pyramid
condition if 1/1}1,/)} = id on Vj4y, where id represents the identity operator.

Although analysis operator '(/))T. is the left inverse of synthesis operator ,(/)];7
it is in general not the right inverse of the latter, which means that %1_ z/);- (z) is
only an approximation of x € V;. Denoting the approximation of z by #, i.e.
= l;)j,j+1(m) = 1/)}1/);(27) € Vj, it is assumed that there exists a subtraction
operator (z,#) v z—3% mapping Vi x VJ into a set Y}, as well as an addition
operator (&,y) — Z-+y mapping VJ X Y into V;, where y = z—2 is the detail
signal that contains information about x that is not present in z.

If a signal = can be reconstructed from its approximation # and the detail

signal y, i.e. i+(z—1I) = z, the signal can be decomposed recursively as:

r—={yo.x1} — {yo.v1, 20} — -

- {yo,yly--,yj‘xjﬂ} — (2.4.4)
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where
T =2 € V()

Tjy1 = 'l/f’}(fj) € Viv1, 720 (2.4.5)
yj = 2,~v;(tj41) €Y
This scheme is called the pyramid transforin and the original signal .y can be
exactly reconstructed from z;.; and y;,y;_, ..., yo by means of the backward
recursion x; = d!}(J;Hl)-i-yj.
Morphological pyramid is a special pyramid transform satisfying the fol-
lowing conditions [49]: (a) all domains V; are complete lattices; and (b) the
pair (w;, wjl) is an adjunction between V; and V,,;. To satisfy the pyramid

condition, 1,/)} is an erosion and 1[)]1 is a dilation.

2.4.2 Morphological Wavelet

The morphological wavelet is an improvement over Pyramid transform in
that it engages two analysis operators and one synthesis operator. A formal
definition of the morphological wavelet is presented as follows. Assume that
there exist sets V; and W;. V; is referred to as the signal space at level j and
W; the detail space at level j. The two analysis operators together decompose
a signal in the direction of increasing j. The signal analysis operator, w;,
maps a signal from V; to Vj4, i.e. ,(/)]T : V; — Vjiq, while the detail analysis
operator, w;, maps it from V; to W, , i.e. w; Vi — Wi On the other
hand, a synthesis operator proceeds in the direction of decreasing j, denoted
as U Vigy x Wi — V.

In order to yield a complete signal representation, the mappings (d)}, wJT) :
V; - Vi1 x Wjyy and ‘I’j : Vie1 X Wii1 — V; should be inverses of each other,

which means that the following condition:
V() (2),wl(z)) =z, z €V (2.4.6)

should be fulfilled. This is called the perfect reconstruction condition, and

Tl . = 7
{ eH(TH(x.y) =2, 2 € Vi y€ Wi (2.4.7)

“)_]T(\Ilj(m‘y)) =Yy, Z € ‘/‘.]'-Fl:y € M/j+1
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where 2z is called the approximation signal and v is the detail signal. Therefore,

decomposing an input signal zo € V, with the following recursive analysis

scheme:
To — {Il,yl} — {$2,y2,y1} A {xj,yj,yj_l, Ly — e (24.8)
where
Ty = Pl(z;) € Vin (24.9)
Y1 = wiz;) €W (2.4.10)
Io can be exactly reconstructed from x; and y;, y;_1, ..., y1 by means of the

following recursive synthesis schene:
Tj—1= \Ilj_l(llj'yj)' (2411)

This signal representation scheme is referred to as the morphological wavelet

decomposition scheme and is illustrated in Fig. 2.5.

2.4.3 The Lifting Scheme

The lifting scheme or simple lifting was originally developed as an alterna-
tive way to construct the wavelets used in (the first gencration) WT, which
leads to the so-called second generation WT [51, 52]. The second genera-
tion WT not only preserves the good features of the the first generation WT,
namely time-frequency localisation and fast algorithms, but can also extend be-
yond simple geometries. As an alternate implementation of classical WTs, the
lifting scheme provides an entirely spatial-domain interpretation of the trans-
forin, as opposed to the traditional frequency domain-based constructions. The
feature of local spatial interpretation enables us to adapt the transform to the
data, thereby introducing non-linearities in the process of multi-scale trans-
forms. Compared with FTs using the same filter all the time and wavelets
being translation and dilation of one given function, lifting adapts local data

irregularities in the transform process.
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Figure 2.5: Sample stages of the morphological wavelet decomposition scheme

The basic idea of the lifting scheme is very simple: the redundancy is
removed by using the correlation in the data. To reach this goal, a signal
) is first split into two sets - the even set {xx|k is even} and the odd set
{wx|k is odd}. Then. the odd set is predicted from the even set. Finally, the
prediction error, which is the difference between the odd-indexed sample and
its prediction, is used to update the even-indexed data. The three steps are

noted as split, predict and update, respectively, as shown in Fig. 2.6.

1. Split stage: Let x(n) represent a discrete signal. Firstly, z(n) can be split

into even and odd components, x¢(n) and x,(n), respectively, where

Te(n) = z(2n)

To(n) = x(2n + 1). (2.4.12)

If the signal r(n) corresponds to the sample of a smooth and slowly

varving function, then the components of we(n) and wq(n) are highly
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correlated. Therefore, it should be possible to accurately predict each

odd polyphase cocfficient from the ncarby even polyphase coefficients.

c(n)

x(n)
—® Split

Figure 2.6: The typical lifting steps (analysis): split, predict (P) and update

(U).

c(n) and d(n) are the approximation and detail signals, respectively

2. Predict stage: In the interpolating formulation of lifting, we can predict

the odd polyphase coefficients x,(n) from the neighbouring even coeffi-
cients 1(n). Normally, the predictor for each z,(n) is a linear combina-

tion of neighbouring even coefficients:
P(ze(n)) = > pize(n +1) (2.4.13)
!

where the value of [ lies on how many even coefficients are used for the

prediction. If N (N = 2D) coefficients are used in symmetry, then:
-D+1<1<D. (2.4.14)

The prediction calculation is conducted within a data window of a fixed
length. For each x,(n), its neighbouring even coefficients at both the
left and right sides are involved in the calculation. As the window slides
through the signal, the prediction for all odd cocflicients is performed.
If n + [ exceeds the range of the signal, the signal will be extended with

zero samples, and this process is called zero padding.

A new representation of x(n) may be obtained by replacing z,(n) with

the prediction residual, d(n):

d(n) = z4(n) ~ P(z.(n)). (2.4.15)
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The prediction residual will be small if the underlying signal is locally
smooth. Furthermore, the same information of the original signal x(n) is
preserved in the residuals d(n) since the odd polyphase coefficients x,(n)

can be recovered by noting that
ro(n) = d{n) + P(ae(n)). (2.4.16)

Actually, the prediction procedure is equivalent to applying a high pass

filter to the original signal x(n).

3. Update stage: The last lifting step transforms the even polyphase coef-
ficients, xe(n), into a low pass filtered and sub-sampled version of z(n)
by updating xe(n) with a linear combination of the prediction residuals,

d(n), where z¢(n) is replaced with
c(n) = ze(n) + U(d(n)) (2.4.17)
and normally U(d) is a linear combination of the values of d:

Uld(n)) =Y wd(n+1). (2.4.18)

l

No information is lost in the update step. Assuming the same U is chosen

for synthesis, given d(n) and ¢(n), we have
ze(n) = c(n) — U(d(n)). (2.4.19)

The inverse lifting stage is shown in Fig. 2.7. It corresponds to a critically

sampled perfeet reconstruction filter bank with ¢ and d at half a rate.

2.5 Multiscale Morphological Operators

Scale space is an important concept used in image processing and pattern
recognition [53]. It aims at viewing and analysing an image, or more generally
a signal, at different scales by a smoothing operation. The advantages of

describing a signal in such a way has been expatiated in depth in [54, 55, 56].
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c(n) ch(_>n)

x(n)

Merge —»

d(n)

Figure 2.7: The typical inverse lifting steps (synthesis): update (U/), predict
(P) and merge

It makes the choice at what scale visual observations are to be made explicit;
otherwise, the choice for an observation scale was often hidden somewhere in
the definition of the operators. By embedding the stack of descriptions in a
mathematical space called the scale space, the information obtained at one
scale can be related to that at another scale. Therefore, the features of the
signal can be tracked from scale to scale.

\ultiscale morphological operators involve a finite set of SEs of different

sizes. Let g be an SE as defined above. The function

ng=go0g9e...oyg (2.5.1)
N —————
(n—1) times
defines a function pattern of size n = 0,1.... [57]. Hence, taking the distribu-
tivity into consideration, multiscale erosion and multiscale dilation are defined

as:

feng = foge...69 (2.5.2)
_\',._/
n times

BgD ... 2.5.3
f®yg Dy (2.5.3)

n times

1l

f®ng

respectively. When n.=0, fOng = [ and ftbng = f. Consequently, multiscale

opening and multiscale closing are defined as:

fong = (feng)ong (2.5.4)
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(

a)
()

c

(b)

(d)
Figure 2.8: An example of a set of binary multiscale SEs. (a) B. (b) B® B.
() 3B. (d) 4B

(JOgO...0Og)Dg® ...y

n times n times
feng = (f&ng)ong (2.5.5)
= (/&g®...©9)090...0g
n t‘i:nes n?mes

respectively. An example of a set of binary multiscale SEs is given in Fig. 2.8.

2.6 Conclusion

This chapter studies the mathematical background of MM and reviews the
development of the basic morphological operators. It also gives brief proofs

for some important properties of the operators. Basic morphological operators
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include dilation and erosion, which can be defined in both binary and grey scale
cases. This thesis deals with the grey scale version only. A set of alternating
sequential filters can be developed from the cascade connection of dilation
and erosion. The simplest ones are opening and closing, which have desirable
properties for filtering.

A set of more complex morphological operators evolving from the basic
ones are summarised afterwards, including soft MM, morphological wavelet
and multiscale morphological operators. Soft MM replaces maximisation and
minimisation by an arbitrary order, which makes MM more flexible. Morpho-
logical wavelet is a special case of multi-resolution decomposition scheme. It
can be viewed as the non-linear version of the WT by engaging morphological
operation in the analysis and synthesis procedure. As its name implies, multi-
scale morphological operators process a signal with a range of SEs of different
sizes and the information extracted at each scale are different from one an-
other. In such a manner, the signal can be represented according to its shape
and size content and geometrical structure. The advanced morphological oper-
ators proposed in the following chapters are developed based on the operators

introduced in this chapter.
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Chapter 3

Morphological Decomposition

Algorithms

Multi-resolution decomposition scheme is considered as a powerful tool for
signal processing. This chapter proposes a multi-resolution morphological filter
based on morphological wavelet. In addition, as an improvement of the multi-
resolution morphological filter, a morphological lifting filter has been presented
using the lifting scheme. Applying the proposed filters to ECG signal analysis,
which requires the removal of impulsive noise and the detection of characteristic
waveforms, the results are very satisfactory.

This chapter also presents another morphological decomposition algorithm
- morphological gradient wavelet (MGW). It is a nonlinear WT that involves
morphological operation in the decomposition process and presents the gradi-
ent information in the output. MGW is applied to power systems to detect

disturbances.

3.1 Multi-resolution Morphological Filter

A multi-resolution morphological filter can be constructed through the com-
bination of a morphological filter and a multi-resolution decomposition scheme,

where the filter also serves as the decomposition operator.

47



3.1 Multi-resolution Morphological Filter 48

3.1.1 Algorithm Description

Open-closing and close-opening are two commonly used filters derived from

opening and closing, defined as:

OC(f) = fogeyg (3.1.1)
CO(f) = fegoyg (3.1.2)

respectively. Through the cascade connection of opening and closing, both the
positive and negative noise can be eliminated using the same SE. Moreover, to
weaken the statistical deviation caused by the in open-closing and close-opening

filters, the two filters are combined together to form a new one:

v(f) = [0C(f) + CO(f)]/2. (3.1.3)

In this filter, the SE functions as a moving window through the signal to
extract the high-frequency components. If the length of the SE is longer than
the width of the noise in a segment of the signal, the noise can be eliminated.
An appropriate SE is determined by trial and error so that the noise can be
elimninated.

According to [58], the filter should satisfy the following two conditions:
(a) They must be smoothing functions, that is, they should generate a lower
resolution approximation of the input. (b) They must not add a DC level to the
input. However, most morphological operators do not fulfill these conditions
simultaneously. For example, opening and closing have property (a), but do
not have property (b), because fog < [ and [ e g > [ [2]. The same applies
to their compositions OC(f) and CO(f). Fortunately, the average of those
operations tends to generate an output for which the DC level is very close to
that of the input. Thus, the ¥ with a flat SE is employed here for it suffices
condition (a) and approximately suffices (b).

Hybridising the above ¥ filter and the morphological wavelet scheme, a
multi-resolution morphological filter is constructed with the analysis operators
1/)} and 'm]T.:

w_}'(l‘j) = .’Ej+1='(9(.’1,‘j) (314)
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wl(z;) = yju1 = id - 9(z;) (3.1.5)
3(z;) = (OC(z;)+CO(z;))/2 (3.1.6)

where z; € V}, xj+1 € Vj41, yj+1 € W41, and id denotes the identity transform
[20]):

Viid(f) = f.
The size of the SE increases as the level goes up. It should be noted that in

the application of filtering, the synthesis operator \I/Jl is unnecessary.

3.1.2 Simulation Studies on ECG Signal Analysis

A sinusoidal signal polluted by white noise is selected here to test the per-
formance of the proposed filter. The signal is filtered 4 times and each time by
a flat SE with the length of j+1 (j = 1,2,3,4). The results are shown in Fig.
3.1, which includes the approximmation signals z; and the detail signals y; at
each level j. In order to compare the improvements, the signal-to-noise ratio
(SNR) is used to evaluate the amount of noise remaining in each level of the

signal. The value of SNR is defined as:
T SU
SNR = 10 x logg N (3.1.7)

where S is a noise-free signal and N is the noise. For a given signal X, X, is

defined as:

t~
—

X, = Y (X (1) - px)? (3.1.8)

<o

1=

where ;ix and I, are the mean and length of X, respectively.
In order to evaluate the performance of the multi-resolution morphological
filter, the values of SNR of the original signal and the decomposed signals are
calculated and shown in Table 3.1. And so is the computation time required in
each decomposition phase. As it can be seen from the table, SNR increases as
the level ascends, but the increment is descending. At level 4, the improvement
is not evident. which implies that it is enough to perform the decomposition

three times. Most computation time consumed by the decomposition is due
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Figure 3.1: Performance of multi-resolution morphological filter on a sinusoidal
signal

to the ranking operation involved in (3.1.6). As the number of ranking each
decomposition takes depends highly on the signal it processes, it is impossible
to estimate the computation expense due to the complex operation applied
to the specific signal. Hence, we record the average computation time of 30
runs taken by (3.1.6) at each level, respectively. All the simulation studies are
carried out on a DELL PC with a 2.80 GHz Intel Pentium D CPU and 1.99
CB of RAM using MATLAB 7.2.0.232. As the table indicates, as the level
increases. it takes more time to get the signal filtered. This reflects the fact
that a longer SE is involved as the level increases. The computation time is also
used as an index to compare the performance of multi-resolution morphological
filter with that of the morphological lifting filter, which is introduced in the
next section.

As a practical application, the multi-resolution morphological filter is nsed
to remove the impulsive noise of ECG signals. Noise suppression is typically
the first step in ECG signal processing. It mainly deals with the elimination

of the impulsive noise caused by muscle activities and power line interference
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Table 3.1: Performance of multi-resolution morphological filter: SNR of the
original signal and the decomposed signals and computation time at each level

Signal | SNR (dB) | Time (s)
ro | 33.6074 /
T 41.0862 0.0952
29 42.9527 0.0981
x3 43.0812 0.1008
rs | 43.1734 | 0.1040

[59], meanwhile preserves the shape of the original signal. Previous studies in
[60] used the filter of (3.1.3), however, in that case the length of the SE must
be determined in advance.

An ECG signal contaminated by impulsive noise is shown in Fig. 3.2(a).
Since this time, the noise is not added artificially, it is impossible to calculate
the SNR of the filtered signal at each level. However, intuitively, the output
signal is smoother and the shape of the waveform is well preserved, although
part of the R wave has also been treated as noise and been eliminated because
it is too narrow.

Increasing the length of the SE used at each level, the multi-resolution
morphological filter can be used to extract the feature waveforms according
to their width. Noticing that the QRS complexes are short in width and the
R waves have a high amplitude, the first step is to determine the location of
the peak of the R waves, which is also the location of the QRS complexes.
Then, the multi-resolution morphological filter is used to decompose the signal
in a window that covers the QRS complexes. The length of the SE increases
from 3 at a step of 2. The decomposition procedure ends automatically until
there is no evident decrease in the energy carried by the approximation signal.
Therefore, the QRS complexes are extracted by subtracting the filtered signal
from the original signal. In this manner, the only a priori knowledge required
is the length of the window that covers the QRS complexes, which can be
obtained from observation or experience.

Similar processes are applied to detect the P waves and T waves. The ap-
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Figure 3.2: ECG noise removal using multi-resolution morphological filter

proach takes the advantage that the P wave comes before the QRS complex
and the T wave comes after it. Since the duration of the former is usually
shorter than that of the latter, P wave is the second to be extracted. The
decomposition procedure is carried out based on the signal with QRS com-
plexes eliminated. Likewise, when extracting the T wave, the decomposition
procedure is carried out on the signal with both QRS complexes and P waves
eliminated. As for the baseline wander. a lowpass filter is applied to the residual
signal and the output is the estimated baseline.

Figure 3.3 shows an example of feature waveform extraction. The original
ECG signal is shown in Fig. 3.3(a). Figures 3.3(b)~(d) show the results of
the extracted QRS complexes, P waves and T waves. Applying a lowpass filter
to the residual signal, the estimated baseline is shown in Fig. 3.3(e). Finally,
subtracting the estimated baseline from the original signal, the normalised
signal is given in Fig. 3.3(f). As it can be seen from these figures, there is no

miss-extraction and the detected waveforms are identical to the original.
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Figure 3.3: Feature waveforms extraction using multi-resolution morphological
operators. (a) The original signal. (b) The extracted QRS complexes. (c) The
extracted P waves. (d) The extracted T waves. (e) The extracted baseline. (f)
Normalised output signal (the baseline wander is eliminated)
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3.2 Morphological Lifting Filter

As discussed in the previous section, by using a flat SE, a multi-resolution
morphological filter simply replaces the curves with a series of flat lines, thus
causes the loss of some features in the approximation waveforms. Besides,
as the length of the SE increases, the filtered signal becomes more distorted.

Therefore, a compensation process is needed for the recovery of the waveform.

3.2.1 Algorithm Introduction

Based on the lifting scheme introduced in section 2.4.3, the signal analysis
operator " and the detail analysis operator w' can be modified respectively to
improve the quality of the filter mentioned in the previous section. At level j,
the information in the detail signal y; is used to modify the decomposed signal
I to .'1';-. After that, y; is updated according to the modified decomposed signal

xj The procedure is described as:

o= ;= My;) (3.2.1)
W = g (@) (322)

where A and 7 are operators mapping from W; to V; and from V; to W;, re-
spectively. In the update step, the samples of the detail signal y; are divided
into two groups, zero and non-zero, according to their values. The non-zero
samples correspond to the points needing update. These samples can be re-
placed by a linear, cubic or polynomial interpolation. For example, at level 7,
if a sample y;, of the detail signal has a non-zero value, it can be updated by

a certain interpolation using
Yid-2:Yjuv2 = Yji (3.2.3)

or

Yjd-as Yjl-2- Yjie2: Yjl+d = Yju1- (3.2.4)

In general, if n sanples in a segment of a signal are updated, a polynomial p

of degree n — 1 is constructed. The value at point ! can be calculated from
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Figure 3.4: Performance of morphological lifting filter on a sinusoidal signal

yjs = p(rji+x), where [ is a non-zero point in the detail signal y; and / + & are

points at which y; has zero values.

3.2.2 Tests on ECG Signals

To evaluate the effectiveness of the morphological lifting filter, the same
voltage waveform is used as a reference. The signal is also filtered 4 times
and each time the SE is the same as that used in the previous study. The
interpolation method is linear interpolation. The results are shown in Fig. 3.4,
illustrating that concomitant with noise removal, the sinusoidal features of the
voltage waveforin are well kept and the output signals are smoother than those
in Fig. 3.1. The performance is also demonstrated quantitatively by SNR and
computation time, as shown in Table 3.2. In comparison with the results shown
in Table 3.1, the values of SNR are increased, indicating that the performance
of the filter has been improved as the updating process applied. Due to the
same reason, the decomposition procedures are more time-consuming.

Applying the morphological lifting filter to impulsive noise filtering of ECG
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Table 3.2: Performance of morphological lifting filter: SNR of the original
signal and the decomposed signals and computation time at each level

Signal | SNR (dB) | Time (s)
xg 33.6074 /
T 41.1492 0.2015
I 43.8999 0.1118
zy | 44.8389 | 0.1111
T4 48.0149 0.1232

signals, one of the simulation results is given in Fig. 3.5. The input signal
is the same as the one in Fig. 3.2(a). Comparing the two figures, it can be
seen that detail signals obtained by the morphological lifting filter are cleaner,
including impulsive noise and only a little amount of details. It shows that the
morphological lifting filter preserves the details of the signal while rejecting the

impulsive noise.

3.3 Morphological Gradient Wavelet

As stated in section 2.4.2, morphological wavelets engage morphological op-
eration in decomposition and reconstruction process. To make the framework
of morphological wavelet more comprehensible, the morphological Haar wavelet
(MHW), proposed in [50}, is introduced here. MHW is different from the clas-
sical linear Haar wavelet in that the linear signal analysis filter of classical Haar
wavelet is replaced by a morphological operator, e.g. taking the minimum or

maximuim over two samples. The analysis and synthesis operators are defined
as:
PI()(n) = 2(2n)Az(2n+1). 2 €V, (3.3.1)
WH2)(n) = 2(2n) —2(2n+1), z€V, (3.3.2)
wi(2)(2n) = z2(n), xeVn
PHa)(@n+1) = z(n), z€Vy, (3.3.3)
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Figure 3.5: ECG noise removal using morphological lifting filter

LHy)2n) = yn)vo, ye Wi
Hy@En+1) = =(y(n)A0), y € Win (3.3.4)

Ve, y)(n) = ¥H(z)(n) +w(y)(n), z € Vis,ye Wi (33.5)

where n is the sample index, ‘A’ denotes the minimisation operation and ‘v’

denotes the maximisation operation.

3.3.1 Algorithm Design

In order to take into consideration the gradient of each sample of the signal,
this thesis proposes MGW. Derived from [45], a morphological median operator

termed by 85 is defined as:
(f 8 9)(z) = median{(z + 5) + g(s)|(w +5) € Dy.s€ Dy} (336)

where [ is the signal and g is the structuring element (SE), D; and D, rep-
resent the field of definition of f and g respectively. Apparently, instead of
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applying local maximum and minimum operations as dilation and erosion do,
morphological median operator returns the median value.
If the morphological median operator employs a flat SE whose length is 3,

(3.3.6) becomes:

m

(f & g)(z) = median{ f(z — 1), f(x), f(x + 1)}. (3.3.7)

In MGW, the above equation is selected as the signal analysis operator, which
is rewritten in (3.3.8). Consequently, the detail analysis operator of MGW is
defined as depicted in (3.3.9).

¢ () (n) = median{z;(2n - 1),2;(2n),;(2n + 1)}

= z;11(n) (3.3.8)
WHx))(n) = z;(2n+1) = 2z;51(n) + z;(2n - 1)
= yjn(n). (3.3.9)

In order to construct the synthesis operator, two intermediate variables are

needed as follows:

trj+1(n) = z;(2n+1) — z;(2n) (3.3.10)
tL,j.H(TL) = :(:J(Qn) - CL‘j(QTl - 1) (3311)

where tg j+1(n) and tj+1(n) denote the right and left gradient of z;(2n) re-
spectively. The synthesis operator is shown in Table 3.3.

Figure 3.6 shows the performance of MHW and MGW on the same signal
as used in [50]. To avoid misunderstanding, approximation analysis operator
and detail analysis operator of MHW are denoted by ¢,L and wl, respectively,
while those of MGW are denoted by 9} and w( respectively. As it can be
seen, the detail signal obtained by w}y is zero at points where the input signal
is constant, while that obtained by wé is zero at points where the input signal
is linear. Moreover, MGW not only detects every point where a change of
gradient occurs, but also indicates the change quantitatively. These features
make MGW really suitable for the detection of sudden changes in gradient, as
explicitly revealed in Fig. 3.6(e). On the contrary, MHW is not as applicable
as MGW.
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Table 3.3: The synthesis operator \I/J1

if tgj+1-tLj+1 20
\II}(Qn) = zj+1(n)
\IJ}(2n +1) = z01(n) + 3 (W01 (n) + trjea(n) + tojpa(n))
else
if [frg=1(n)] 2 [tLg+1(n)]
\1111(211,) = zj41(n) + tj+1(n)
\Ilj(2n +1) = zj41(n) + yj+1(n)
else
\I/j(Qn) = zj+1(n) + yj1(n) + tLj+1(n)
\IJJI-(2n, + 1) =zj11{n)
end if
end if

3.3.2 Application to Power System Disturbance Detec-
tion

In this section, MGW is applied to disturbance detection of power system
signals. The aim is to extract the features of the disturbances and to detect
their location and duration. Five types of power disturbances are investigated,
including impulsive transients, oscillatory transients, momentary interruption,
voltage swell and periodical notching. For the purpose of comparison, a widely
used wavelet scheme, Daubechies DB4 WT (DB4), is employed to verify the
superiority of MGW. The Daubechies wavelets are the most used for the de-
tection, localisation and classification of disturbances, and among them, DB4
is the shortest and therefore, is more localised in time than others Daubechies
wavelets except DB1, which is the same as the Haar wavelet. It is reported
in [61] that DB4 allows accurate time location of transient components, has
much simpler implementation than other Daubechies wavelets, and has excel-

lent performance in disturbance detection.
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Figure 3.6: Performance of MHW and MGW with analysis operators wli,w{,
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Criterion

Before carrying out the simulation studies, the criterion used to evaluate the
performance should be introduced. Instead of observing the changes in detail
signals visually, a criterion that can quantify the output is needed. Meanwhile,
since gradient operators are sensitive to noise, the effect of noise ought to be
weakened. Based on these two matters, the criterion of entropy [62] is utilised

here. The entropy E of a signal is introduced as:
E(s)=)_ E(s:) (3.3.12)

where s is the signal and s; is the coefficients of s in the i orthonormal basis.
There are different entropy criteria. A most basic one is Shannon entropy,
which is defined as:

E(s)= = s?log(s?). (3.3.13)

In the following simulation studies, the entropy is calculated within the window

of the SE. Therefore, the disturbances in a signal, which correspond to sudden
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changes in energy, are magnified in the entropy signal. At the same time, since
the small oscillations of the detail signal caused by noise share similar energy,
their influence is greatly suppressed in the entropy signal.

In order to evaluate the accuracy of detection results, an index of degree of
match is calculated to describe the similarity between the detected disturbance
and the actual disturbance. The degree of match focuses on two properties of
a sample interval, location and duration. Location refers to the centre of the
sample interval and duration refers to the length. The definition of degree of
match is presented hereafter. Let a and b be the beginning and the end of the
actual disturbance respectively, and the beginning and the end of the detected
disturbance are termed a’ and b’ respectively. Degree of match, o, is hereby

given as follows.

(L
op = minqg,y (3.3.14)
(402 =]c-C]
oy = T (3.3.15)
o = 0709 % 100% (3.3.16)

where ¢ = (a +b)/2 and ¢ = (a’ + ¢')/2 are the centre of actual disturbance
and detected disturbance respectively; | =b—a+1and ' =¥ —a’ + 1 are the

length of them respectively: and if o9 < 0, o3 is reset to 0.

Impulsive transients

Figures 3.7(a) and 3.8(a) illustrate a typical impulsive transient. Note also
that a Gaussian white noise is added to the signal in the simulation studies.
The detail signals obtained by MGW and DB4 are shown in Figs. 3.7(b) and
3.8(b), respectively. The detail signal obtained by MGW is at level 1 of the
decomposition process, and the length of the approximation signal and detail
signal is half of the length of the original signal, which are 400 and 800 samples
respectively in this case. As for DB4, an interpolation process is provided
by MATLAB so that the approximation and detail signals are of the same

length as the original signal whatever level they are at. As it can be seen
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from Figs. 3.7(b) and 3.8(b), the transient results in two high impulses in the
detail signal, which are visually obvious. On the other hand, it is difficult to
quantitatively determine the location and duration of the disturbance based on
the detail signals, because the noise also causes fairly high impulses. However,
when referring to the entropy in Figs. 3.7(c) and 3.8(c), it can be seen that
impulses caused by the transient are magnified and those caused by the noise
are compressed.

Comparing these two schemes, the former is more capable of detecting
the disturbance. which can be concluded from both the detail signals and
the entropy signals. The waveform of entropy in Fig. 3.8(c) contains too
many high-frequency components, thus it is not suitable for indicating the
location and duration of the transient. In contrast, the beginning and end of
the transient can be easily obtained from the position of the local minimum of
Fig. 3.7(c). The detection results are shown in Table 3.4, from which it can be
seen that MGW precisely detects the location of the transient, with the degree
of match of 100%; whereas DB4 gives an incorrect result, with the degree of
match of only 41.85%.

As stated previously, the detail signal obtained by MGW is at level 1, while
that obtained by DB4 is at level 2. Hence, in this case, MGW is more efficient
in extracting the features of the disturbance. A comparison of computation
time is given in Table 3.5, which demonstrates the superiority of MGW in
computation expense. The computation time refers to the time taken by the

MGW or the DB4 to process the signal at level 1.

Oscillatory transients

A simulation signal with an oscillatory transient occurring during the period
of a sinusoidal wave is demonstrated in Figs. 3.9(a) and 3.10(a). The detail
signals are shown in Figs. 3.9(b) and 3.10(b), respectively, from which it
can be found that the location of the peaks corresponds to the time scale
when the oscillatory transient occurs. The entropy signals are shown in Figs.

3.9(c) and 3.10(c). respectively. In this case, the location and duration of the
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Figure 3.7: Detection of an impulsive transient using MGW.
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Figure 3.8: Detection of an impulsive transient using DB4.
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Figure 3.9: Detection of oscillatory transients using MGW.

disturbance can be estimated by recording the locations of a series of points
with distinct large magnitude values, which is the same technique as used in
periodic notch detection. For the Fourier transform-based methods, such a
disturbance may not be easy to detect. Nonetheless, the problem is solved by
MGW and DB4 thanks to their outstanding extraction capability. As far as the
detection results are concerned, MGW gains a more veracious result, although
neither scheme reaches the 100% accuracy. In Table 3.5, the comparison of
the computation cost indicates that MGW is more efficient than DB4. More
oscillatory transients have been simulated, by varying the oscillatory frequency,

amplitude and damnping exponent respectively, and similar results are obtained.

Interruption

Figures 3.11(a) and 3.12(a) describe a momentary interruption beginning
from the third cycle of the signal and lasting 4 cycles. The detail signals are
depicted in Figs. 3.11(b) and 3.12(b), respectively, and the entropy signals
in 3.11(c) and 3.12(c), respectively. The two peaks contained in Fig. 3.11(c)

clearly indicate the start and end of the occurrence of the disturbance. On the
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Figure 3.10: Detection of oscillatory transients using DB4.

contrary, the entropy in Fig. 3.12(c) suffers from the drawback that it contains
too many high-frequency components, which makes it unable to determine the
exact point where the interruption begins or ends. Comparisons of veracity
and computation expense between the two methods are shown in Table 3.4
and Table 3.5 respectively, from which it can be concluded that MGW is more

accurate and faster than DB4.

Voltage swell

In Figs. 3.13(a) and 3.14(a), a voltage swell lasting from the third to
the sixth cycle in a fundamental sinusoidal waveform is presented. Similarly,
the detail signals and the entropy signals are shown in Figs. 3.13(b)(c) and
3.14(b)(c), respectively. As it can be seen, several impulses with a similar
amplitude are presented in Fig. 3.14(c), and it is impossible to determine
which one is resulted from the swell, which means that DB4 is not suitable
for detecting the beginning and the end of the voltage swell. In contrast, two
entropy impulses are clearly seen in Fig. 3.13(c), and they occur exactly at the

position where the voltage swell starts and ends. The detection results of the
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Figure 3.11: Detection of momentary interruption using MGW.
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Figure 3.13: Detection of voltage swell using MGW.
two algorithms are demonstrated in Table 3.4.

Notching

A fundamental waveform affected by a periodical sinnsoidal notching from
the third to the sixth cycle is shown in Figs. 3.15(a) and 3.16(a), and the
detail signals are given in Figs. 3.15(b) and 3.16(b), respectively. As it can be
seen, the position and duration of the notches are clearly revealed in the detail
signals. This time for MGW, the detail signal is gained at level 2, however, the
computation efficiency is not greatly affected. The computation time of MGW
is still an order of magnitude shorter than that of DB4, as shown in Table
3.5. Figure 3.15(c) illustrates that the disturbance duration can be estimated
based on a series of points that have distinct large magnitude values. But the
signal shown in Fig. 3.16(c) is not smooth enough to find a proper threshold to
distinguish the energy upsurge. Thus, large errors may occur in the detection
result. For MGW, because the detail signal is obtained at level 2, the detection
result at level 2 should be multiplied by 4 to compare with the actual position.

Hence, the detection error, if any, will be magnified. The quantitative results
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Figure 3.14: Detection of voltage swell using DB4.

are shown in Table 3.4. As it can be seen, a 1-sample error in the detail signal
results in a 4-sample error in the final result of MGW. Different tests have been
undertaken by changing notching frequency, amplitude and shape, respectively,

and similar results have been achieved.

3.4 Conclusion

Morphological pyramid transforin and morphological wavelet are two typ-
ical morphological decomposition algorithms. Based on this knowledge, this
chapter proposes a multi-resolution morphological filter, which uses a morpho-
logical filter as the signal analysis operator in the decomposition procedure of
morphological wavelet. Experimental results have shown that in each repe-
tition, the output signal is less noise-corrupted and the computation is very
cffective.

Noticing that the multi-resolution morphological filter results in the loss of
detailed information, a morphological lifting filter is proposed to recover the

lost features. based on the lifting scheme. Simulation studies have shown that
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Figure 3.15; Detection of notching using MGW.
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Figure 3.16: Detection of notching using DB4.
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Table 3.4: Detection results of MGW and DB4

Power disturbances Location and duration of the disturbances
Actual MGW DB4

position | detected | degree | detected | degree

position | of match | position | of match
Impulsive transient | 422-428 | 422-428 | 100% | 417-432 | 41.85%
Oscillatory transient | 425-500 | 424-500 | 98.06% | 421-500 | 92.56%

Interruption 190-610 | 190-610 | 100% | 188-612 | 99.06%
Voltage swell 210-590 | 210-590 100% 4-800 47.64%
Notching 228-240 | 224-240 | 66.27% error 0
328-340 | 324-340 | 66.27% error 0
428-440 | 424-440 | 66.27% error 0
528-540 | 524-540 | 66.27% error 0

morphological lifting filter achicves better performance in noise removal than
multi-resolution morphological filter, and the increase in computation time is
tolerable.

The proposed filters have also been applied to ECG signal analysis, includ-
ing noise removal and waveform detection. In noise removal, both the filters
achieve a good performance in reducing impulsive noise meanwhile preserving
the shape of the signal. In waveform detection, multi-resolution morphologi-
cal filter is applied to detect characteristic waveforms, the P wave, the QRS
complex and the T wave of an ECG signal, and the simulation results are
satisfactory.

The MGW is also proposed based on the framework of morphological
wavelet. In comparison with MHW, which is derived from Haar wavelet, MGW
is more capable of presenting gradient information in the detail signal. MGW
is applied to detect the location and duration of power disturbances. The sim-
ulation studies have demonstrated that the proposed method is able to detect
different types of power disturbaices even in a noisy environment. The adop-

tion of entropy magnifies the effect of power disturbances while alleviates that
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Table 3.5: Computation time of MGW and DB4

Power disturbances

Computation time (s)

MGW DB4

Impulsive transient | 0.0235 0.3473
Oscillatory transient | 0.0286 0.3454
Interruption 0.0236 0.3434
Voltage swell 0.0296 0.3694
Notching 0.0285 0.3456

of the noise, so that the features of the disturbances can be more easily ex-

tracted from the entropy signal than from the detail signal. In comparison with

DB4, the magnitude of entropy is much larger and the waveform of entropy

contains much less high-frequency components, which may cause misjudge-

ment when determining the start and end of a disturbance. Furthermore, all

the simulation studies show that the computation time of MGW is remarkably

reduced, compared with DB4.
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Chapter 4
Multiscale Morphological Filters

This chapter focuses on advanced morphological filters developed based
on multiscale morphological operators. Target signals are ECG signals, the
spectrum of which covers a wide range of the frequency domain and thus, it
is difficult to separate noise using frequency-based filters. As mentioned in
section 1.3.1, ECG signals may be contaminated by white Gaussian noise and
baseline wander.

An adaptive multiscale morphological filter is developed to reject high fre-
quency noise without affecting the feature waveforms. The filter processes an
ECG signal from a larger scale to a smaller scale in a recursive manner and
distinguishes noise from feature waveforms according to a set of pre-set criteria.

To remove the baseline wander, section 4.2 describes an approach hybridis-
ing empirical mode decomposition (EMD) and MM. The removal of baseline
wander is an important step in ECG signal processing, not only to produce a
stable signal for subsequent automatic processing, but also for reliable visual
interpretation [7]. The normalised signal should contain as little distortion of

characteristic waveforms as possible.

4.1 Adaptive Multiscale Morphological Filter

Noise removal is the first step of almost all the signal processing tasks. As

the spectrum of pure ECG signals overlaps with that of the noise, it is difficult
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to separate them in the frequency domain. It is also difficult to select a proper
SE of a basic morphological filter, such as opening and closing, to remove the
noise nieanwhile preserve the features. If the SE is too short, the noise cannot
be effectively removed: if the SE is too large, the feature waveforms may be
filtered as well. Morcover, such a filter will smooth the boundary of the feature
waveforms. An example is given in Fig. 4.1 to illustrate the phenomena. In
order to make it clearer, a fragment of PR segment and a fragment of the QRS
complex are enlarged and shown in the figure, respectively. The ECG signal is
filtered by two openings with a flat SE of size 3 and size 11, respectively. When
the SE is short. the resulting signal still vibrates at a high frequency, which
gives the evidence that there exists a large amount of noise. On the other hand,
when the SE is too long, although the UP segment is smoothed, the R wave
is impaired at the same time. Therefore, it is necessary to design an adaptive
filter that can distinguish feature waves and use a set of multiscale SEs, i.e.
SEs of different sizes, accordingly. The adaptive multiscale morphological filter
used in this thesis is a simplification and improvement of the progressive umbra-
filling (PUF) procedure proposed in [27]. In the following subsections, adaptive
multiscale opening and closing are introduced, respectively, and the output of
the adaptive multiscale morphological filter is the average of the opening and

closing.

4.1.1 Adaptive Multiscale Opening

In order to fit the waveforms of ECG signals, the SE takes a circular function

rather than a flat one. The SE is defined as:
g(s)=vVr2—-s? —r<s<r (4.1.1)

where 7 is the radius of the circular function and the length of g is 2r + 1.
The advantage of using a circular SE over a flat SE is demonstrated in Fig.
4.2. Here. the length of the SEs are 21 and the origins of the SE are their
geometry centres. As it can be seen, the circular SE generates a curve that fits

the waveform of the input signal better than the flat SE does. According to
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Figure 4.1: Filtering results by openings with SEs of different sizes. Dotted
line: input signal. Dashed line: the size of SE is 3. Solid line: the size of SE is
11.

[57], the multiscale SE at scale n can be defined by
ng(s) = (nr)2 = s2, —nr <s < nr. (4.1.2)

Adaptive multiscale opening performs in a recursive way. In the first iter-
ation, the SE of ngg, which is long enough to cover the width of P waves, is
used: and in the next iteration, the SE of (ng — An)g is used, where An is a
pre-set step. During the process, the length of the SE decreases at a fixed rate
iteration by iteration. The protocol of adaptive multiscale opening is given as

follows.

o Step 1: Denote the input signal by f;. Denote the SE used to process fj
by go. Denote the scale of go by ng, i.e. gy = ngg. Denote the radius of

go by ro. Set i := 1.
o Step 2: Calculate the opening of f;_; by (2.2.1): f; = fi_; 0 gi_1.

e Step 3: Calculate the opening residue: R; = f,_; — f;. If |Ri(t)| < Tr,

where T is a pre-set threshold with a small value, the residue of R;(t) is
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Figure 4.2: Filtering results by openings with SEs of different shapes. Dotted
line: input signal. Dashed line: using a flat SE. Solid line: using a circular SE.

considered as noise. Otherwise, a decision-making process is performed

to determine if it is noise or feature.

— Step 3.1: For each segment of Ri(t) > T, t; <t < to, calculate its

width, w =t — t1, and its maximum magnitude, v = max,{ R;(¢)}.

— Step 3.2: If either of the two indicators exceeds a pre-defined thresh-
old, that is w > T, or v > Ty, the segment is considered to be a
feature that should not be removed. Denote these R;(t) by a set
R. In order to make the width indicator adaptive, the threshold T,

changes with r.
— Step 3.3: Otherwise, the segment is considered to be noise.

e Step 4: The segments that are considered to be features are added back

to f; according to their position:

Fi) = { filt) + R(t), if Ri(1) € R, w13

fi(t), otherwise.
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e Step 5 Set fi.1 := fi. Generate g;4;, which is at scale n;1 = n; — An.

Set i :=i+ 1. Go to Step 2.

e Step 6: The process ends when 7; = 1 or when |R;(t)| < T for all ¢. The
final output is denoted by fo.

4.1.2 High Frequency Noise Removal of ECG Signals

The adaptive multiscale closing can be performed in the same manner.
However, in Step 3, R; = fi — fi-1 should be used to calculate the closing
residue, due to the fact that f; = fi_y e gi_y > fi-1. The final output of
adaptive multiscale closing is denoted by J.. Therefore, the filtering result
of the adaptive multiscale morphological filter is the average of f, and f..
An example is given in Fig. 4.3 to show the performance of the filter. The
parameters are set to be ng = 25, An =4, Tg =1, Ty = r;/5 and T, = 20.
In order to make it clearer, the figure is enlarged at the first UP segment and
the second T wave. As it can be seen, the noise is sinoothed out, the feature
waveforms are retained, and the detail information, such as the tops of P waves,

R waves and T waves and the valleys of Q waves and S waves, is well kept.

4.2 Baseline Normalisation Using Empirical Mode

Decomposition and Mathematical Morphol-
ogy

4.2.1 Empirical Mode Decomposition

The aim of EMD is to decompose the signal into a series of intrinsic mode
functions (IMFs). An IMF is a function that satisfies two conditions: (a) in the
whole data set, the number of extreina and the number of zero crossings must
either equal or differ at most by one; and (b) at any point, the mean value of

the envelopes defined by local maxima and minima respectively is zero [63].

T.Y Ji



4.2 Baseline Normalisation Using Empirical Mode Decomposition and

Mathematical Morphology o
1600
s 1400}
E 1200
o
2
1000}
800
0
(a) Sample
990 1160
1140
g 1120
=
& 1100
[}
= 1080
1060
950
120 140 160 180 440 450 460 470

(b) Sample (c) Sample

Figure 4.3: (a) Filtering result by the adaptive multiscale morphological filter.
(b) The enlargement of the first UP segment. (c) The enlargement of the top
of the second T wave. Dotted line: input signal. Dashed line: result of the
adaptive multiscale opening. Dash-dot line: result of the adaptive multiscale
closing. Solid line: average of adaptive multiscale opening and closing.

The process of finding the IMF, which is called the sifting process, is described

as follows.

1. Identify the maxima and minima of the data X(t), and generate the
envelope by connecting maximna and minima points with cubic splines

respectively;
2. Determine the local mean, mio(t), by averaging the envelope;

3. Since IMF should have zero local mean, subtract the mean from the data
hio(t) = X (t) — mao(t);

4. hyo(t) is probably not an IMF. Thus, treat hyo(t) as the input and repeat
the above procedure to get hii(t) = hyo(t) — myi(t); repeat hy(t) =
hik-1)(t) = muk(t) as necessary until hyi(t) is an IMF. Here, my,(t) is

the local mean of hyg_1)(t).
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To guarantee that the IMF components retain enough physical sense of
both amplitude and frequency modulations, a criterion is needed for the sift-
ing process to stop. This is accomplished by limiting the size of the standard
deviation, SD. computed from the two consecutive sifting results. The defini-

tion of SD is shown as follows.

T h’l k-1 - N1k 2
p = Z Ihige-1)(¢) = hae ()] . (4.2.1)
t=0

h%(k_l)(l,)
Usually, the threshold of SD is set between 0.2 and 0.3.
Once the first sifting process returns an IMF, define ¢; = hy,. This is the
first component that contains the finest temporal scale in the signal. To obtain

a series of IMFs, the procedure of the EMD method is described as follows.

1. Generate the residue, ry, of the data by subtracting ¢; from X (t): X(t)—

er(t) = r(t);

2. Since r)(t) still contains the information of longer period components, it
is treated as the new data and subjected to the same sifting process as

described above. This procedure is repeated on all the residues r;(¢):
ri(t) = ca(t) = 7ro(t), . ra1(t) — calt) = ra(t); (4.2.2)

3. The repetition terminates when the residue, r,(t), is either a constant, a

monotoic slope, or a function with only one extremum.

Consequently, the original signal can be reconstructed from the superposi-
tion of the components:

n

X(t) =" ct) + ralt). (4.2.3)

i=1
The last residue r,(t) is usually considered as the last IMF c,,;(t) and (4.2.3)
is rewritten as:

n+1
X(t) = Zci(t). (4.2.4)
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4.2.2 Baseline Normalisation Approach Using Empirical

Mode Decomposition and Mathematical Morphol-
ogy

Baseline wander corresponds to low frequency information of the ECG sig-
nal, however, it cannot be simply cousidered as the summation of certain high-
est order IMFs. As a matter of fact, a higher order IMF contains more base-
line wander components and less signal components, while a lower order IMF
contains more signal components and less baseline wander components [64].
Therefore, a series of low pass filters should be developed to extract the base-
line wander component from cach IMF. The filter applicd here is the average

of opening and closing:
w; = (ciogi+ci®g)/2 (4.2.5)

where ¢; is the it IMF, g; is a flat SE (g;(s) = 0) with the length of 2, and w;
is the extracted baseline from c;.

The extraction procedure is carried out from the highest order IMF, ¢, (t),
and stops when the variance of w;(t) is small enough [64], which means that
the extracted baseline is so flat that the corresponding IMF can be considered

to contain no baseline wander component at all. Variance is defined as:

L
var(w;(t)) = %Z[wi(t) — e, )? (4.2.6)

where g, is the mean value of w;(t). The threshold, which determines if
var(m;(t)) is sufficiently small, is selected by trial since it is difficult to be set
automatically.

Assume that the baseline extraction procedure terminates at the mt" IMF,

therefore, the baseline wander can be calculated from the summation:
n+1

BW(t) = > mi(t), (4.2.7)

i=m+1
where BW(t) is the extracted baseline. Consequently, the signal containing a
normalised baseline. which is the so-called normalised signal, can be obtained

by subtracting BW(t) from the original signal X ().

T.Y Ji



4.2 Baseline Normalisation Using Empirical Mode Decomposition and

Mathematical Morphology 80

1800

-
2]
[ =
o

¥

140071

1200

Digitized amplitude

-
o
(=4
(=]

8000 500 1000 1500 2000

Sample

Figure 4.4: Baseline normalisation. Dotted line: the simulated ECG signal;
Solid line: the normalised ECG signal.

In order to testify the applicability of the proposed method, an artificial
baseline wander is added to the test signal. The resulted signal is hereby
referred to as the simulated signal. Denote the test signal and the simulated
signal by S and S;. respectively. The artificial baseline wander is generated
from a random signal filtered by a low pass filter. The samples of the random
signal are uniformly distributed in an interval of [0, ¢}, where c is called the
amplitude of artificial baseline wander. In Fig. 4.4, the dotted line shows the
simulated signal of ¢ = 500, while the normalised signal is illustrated in solid
line. It can be seen that the proposed method works well under the condition
of severe baseline distortion. As the test signals are not absolutely baseline
wander free, the normalisation process removes both artificial baseline wander
and the baseline wander existing in the test signal. Thus, the normalised signal
is not identical to the test signal.

To analvse the performance of the proposed method qualitatively, a cor-
relation criterion i1s used, which is defined as COR = W, where X
and Y are the two signals under investigation. The value of COR reflects the
similitude between the two signals. If they are identical, COR = 1; if they are
inverse. COR = —1. Another criterion is the signal-to-noise ratio (SNR) [7],
which is defined as SNR = 10 x log,, %, where N = S, — BW - S, and the
subscript o is the same as defined in (3.1.8).

In the simulation studies, for each signal, five artificial baseline wanders

with the amplitude of 100, 300, 500, 700 and 900 are added respectively. Ta-
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Table 4.1: Performance of the proposed method and Sun’s method subject to
the correlation criterion

ECG Amplitude of COR
signal artificial Simulated | Proposed | Sun’s
No. | baseline wander signal method | method
100 0.539 0.615 0.502
300 -0.386 0.572 0.505
100 500 -0.562 0.518 0.505
700 -0.623 0.301 0.498
900 -0.643 0.588 0.507
100 0.894 0.920 0.688
300 0.397 0.886 0.685
113 500 0.128 0.838 0.685
700 0.001 0.802 0.684
900 -0.08 0.861 0.681
100 0.657 0.962 0.947
300 0.382 0.938 0.903
222 500 0.306 0.926 0.868
700 0.271 0.909 0.706
900 0.250 0.884 0.809

bles 4.1 and 4.2 list the normalisation results of three ECG signals subject to
the correlation and SNR criteria, respectively. In all the cases, the proposed
method enhances COR and SNR greatly, except that for ECG113, when the
amplitude of the artificial baseline wander is 100, the SNR of the output signal
decreases. This is mainly because the baseline wander contained in the test
signal is larger than the artificial baseline wander. Therefore, the normalisation
approach removes both baseline wanders and results in an output signal that
is quite different from the input one. Using other ECG signals as the input,
similar results are gained.

The performance of the proposed approach is also compared with the MM-
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Table 4.2: Performance of the proposed method and Sun’s method subject to
the SNR criterion

ECG Amplitude of SNR
signal artificial Simulated | Proposed | Sun’s
No. | baseline wander signal method | method
100 6.429 7.731 6.111
300 -3.150 12.350 5.635
100 500 -7.555 10.216 4.958
700 -10.726 7.193 4.471
900 -12.904 5.113 3.817
100 14.276 8.341 3.290
300 5.148 6.081 3.266
113 500 0.521 9.674 3.274
700 -2.249 5.302 3.257
900 -4.776 4.786 3.200
100 4.533 17.652 10.853
300 -4.898 10.154 9.256
222 500 -9.611 9.679 8.685
700 -12.818 8.115 7.898
900 -14.870 7.107 6.788
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based method proposed in [7]. The COR and SNR values of the normalised
signals obtained by Sun’s method are also listed in Tables 4.1 and 4.2, respec-
tively. In most cases, the proposed method gains better results than Sun’s
method, under both correlation and SNR criteria. Another advantage of the
proposed approach is that it requires no a priori knowledge of the ECG signal,
while Sun’s method demands the length of the P wave. However, when it comes
to the computation time, the proposed method is much more time-consuming

than the other, due to the complex EMD decomposition procedure.

4.3 Conclusion

Two multiscale morphological filters are proposed in this chapter to remove
the noise whose spectrum overlaps with that of the signal. The adaptive mul-
tiscale morphological filter, developed from the PUF procedure, removes the
high frequency noise scale by scale while keeps the waveforms of interest un-
affected. The approach hybridising EMD and MM aims at the removal of low
frequency noise. The noisy signal is firstly decomposed into a series of IMFs,
and each IMF is filtered by a morphological filter, whose SE is at the scale
determined by the order of the IMF. In this manner, the signal information is
preserved while the noise is removed.

In application. the two filters are tested on ECG signals to remove high
frequency noise and low frequency baseline wander, respectively. The simula-
tion studies show that both filters can preserve the feature waveforms of the
ECG signals while removing the noise. The output of the adaptive multiscale
morphological filter is much smoother than the noisy signal meanwhile follows
the trend of the feature waveforms. The EMD-MM-based filter normalises the
baseline wander so that the ECG signal has an even base, without affecting

the shape of the feature waveforms.

T.Y Ji



Chapter 5
Optimal Morphological Filters

Noise removal is an underlying issue of image processing. Morphological
filtering is a nonlinear filtering technique that becomes very popular, due to
its ability to preserve the crucial features of image objects, such as the size
and the shape. However, in some cases, basic morphological filters such as
opening and closing may seem inadequate. In order to serve special purposes,
morphological filters may collaborate with other filtering techniques and the
parameters can be optimised to be most suitable.

One of the special case is periodic noise removal. Periodic noise widely
appears in raw images and is often accompanied with Gaussian white noise.
The removal of such compound noise is a challenging problem in image pro-
cessing. To avoid using the time-consuming methods such as Fourier transform
(FT), a simple and efficient spatial filter called optimal soft morphological filter
(OSMF) is proposed in this chapter. The filter is a combination of basic soft
morphological operators and the combination parameters are optimised by an
improved particle swarm optimiser with passive congregation (PSOPC) [65]
subject to the least mean square error criterion. The mean square error is a
common wmeasure of the difference between the filtered image and the original
image when the noise is Gaussian noise. As the assessment of the periodic noise
applied here is long enough that it fulfills the Gaussian distribution, the least
mean square error criterion is used here as the cost function of the optimisation.

This chapter also proposes a generic approach to designing an optimal filter
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which combines linear and morphological filtering techniques, so that both
Gaussian and non-Gaussian noise can be rejected. The optimisation process
is performed by a bacterial swarming algorithm (BSA), which is derived from
the bacterial foraging algorithm (BFA) and involves underlying mechanisms
of bacterial chemotaxis and quorum sensing.  As lincar filters are ideal for
eliminating additive Gaussian white noise and morphological filters can be
exclusively designed to remove non-Gaussian noise, the combination filter may
take advantage from both.

The optimisation algorithms employed in this chapter are evolutionary al-
gorithms (EAs). They are biologically inspired computational methodologies
that have been intensively studied and widely applied to solve various scientific
and engineering problems. The algorithms of PSOPC and BSA are introduced

in detail in sections 5.2.1 and 5.3.1, respectively.

5.1 Introduction

Noise removal is a fundamental problem in image processing. In the past
years, a variety of filters have been proposed aiming at the reduction of different
noises. Periodic noise is a kind of noise that almost all raw images suffer
from, due to electrical interference from data collecting devices, such as image
scanners, capturing sensors, and video cameras.

Since periodic noise has a well-defined frequency, a usual approach is to
eliminate the noise in the frequency domain. In recent research, the following
three frequency methods have been proposed: (a) Wiener filter [66][67], which
needs a proper aund precise noise model to be built and is very complicated
in computation; (b) spectrum amplitude thresholding, which is suitable only
for truly periodic noise with high energy in peaks [67][68]; (c) spectral median
filter [67], an effective filter with a semi-automatic detector of the peaks in
the spectrumn amplitude. Nonetheless, despite all their advantages, frequency
filters are always computationally time-consuming and are not acceptable for

time constraint applications. The inefliciency is mainly caused by the conver-
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sion between the space and frequency domains and the noise peak detecting
procedure.

Section 5.2 aims at the removal of the periodic noise using OSMF, a nounlin-
ear space domain filter based on soft mathematical morphology (SMM), which
requires less computational tie than other traditional filters. The design of
OSMF and its application to the removal of a typical type of periodic noise
- sinusoidal noise is intensively studied and discussed. An optimisation tech-
nique using PSOPC is described in section 5.2.1 to evolve the OSMF, because
PSOPC has shown a faster convergence rate than many other evolutionary
algorithms such as the genetic algorithm (GA) and has fewer parameters to
adjust. Moreover, by introducing passive congregation, the information shar-
ing mechanisim is improved and the optimisation result is more accurate. The
filtering results of OSMF are compared with those obtained by spectral median
filter.

Although morphological filtering technique has great ability to preserve
the crucial features of image objects. linear filters should not be excluded from
image processing because they are ideal for eliminating additive Gaussian white
noise, which widely exists in raw images. Therefore, it is useful to hybridise
both linear and morphological filtering strategies so that the combined filter
can deal with both Gaussian and non-Gaussian noise.

To devise a proper combined filter also requires the optimisation of the
parameters, which has always been a popular issue. However, most of the
published works focus on a single type of filter and use GA to perform the
optimisation. It seems that GA has dominated the optimisation problems in
image processing, such as the optimisation of partition-based weighted sum
filters in [69], image rejection waveguide filters in [70], morphological filters in
[71]. to name a few. The MRL filter, which hybridises linear and nonlinear
filtering techniques, has been proposed in [72]. However, it was also optimised
hy GA. As for the design of the optimal combined filter (OCF) in section 5.3.3,
it is performed by BSA, an improvement of the algorithm recently proposed in
[73] and [74].
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5.2 Optimal Soft Morphological Filter Design
Using Particle Swarm Optimiser with Pas-

sive Congregation

5.2.1 Particle Swarm Optimiser with Passive Congrega-
tion

Particle swarm optimiser (PSO) is a population based algorithm developed
in 1995 [75](76], inspired by social behaviour of animals such as birds flock-
ing and fish schooling. It shares many similarities with other iteration based
evolutionary computation techniques: initialise the system with a group of ran-
domly generated population, evaluate fitness values to update the population,
and search for the optimal solutions by updating generations, the strategy of
which is based on the previous generations.

In PSO, the population is called swarmm and each individual in the popula-
tion is called a particle. As stated before, after being initialised with a group
of random particles, the swarm need to be updated according to certain rules.
The updating algorithm of PSO is: in every iteration, each particle is updated
by two best values: (a) the best solution it has achieved so far, called personal
best (pbest); (b) the best solution achieved by any particle in the population in
this iteration. If the best solution is among all the particles, it is called global
best (gbest); if it is taken from some smaller number of adjacent particles, it is
called local best (lbest). After finding the two best values, the particle updates

its velocity and position using the following equations [75)[76]:
vl = wVF + ey (PF - XF) + C2""2(Péc - X7) (5.2.1)

XEH = Xk 4 pka (5.2.2)

where V¥ is the velocity of the i*"

particle in the & iteration; X is the position
of the it" particle: P is the pbest position of the i*P particle; P, is the gbest
position; 11,7 are two random numbers between (0,1); w, ¢;, ¢y are learning

factors, usually being set to w = 0.75, ¢; = ¢ = 2.05 [77]. It should also
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be noted that particles’ velocities on each dimension are restricted within a
predefined range [0.Viax]. If the velocity tends to exceed this range, it is
limited to Viax-

Passive congregation is a special biological mechanism used in PSO, based
on the fact that group members can get necessary information from not only
the environment but also their neighbours [78]. Therefore, individuals in the
swarin have more options to obtain information, which helps to minimise the
chance of missed detection and incorrect interpretations. To keep the model

simple and uniform with standard PSO, the PSOPC is defined as [65]:
VI = oVE + ari(PF = XF) + cora(PF = XE) +cars(RE - X)) (5.2.3)

X=Xt v (5.2.4)

where R; is a particle randomly selected from the swarm; c; is the passive
congregation coefficient and is set to c3 = 0.6; r3 is a uniform random sequence
in the range (0,1) : r3 ~ U(0.1). The pseudo code for PSOPC is listed in
Table 5.1.

5.2.2 Criteria
Peak signal-to-noise ratio

To evaluate the quality of the filtered image quantitatively, the criterion of

peak signal-to-noise ratio (PSNR) is employed, which is defined as:

PSNR = 20log,,(255/vMSE) (5.2.5)

1 M N
MSE = 3 D [(i.7) = 16, 5))° (5.2.6)

1=1 j=1
where MSE stands for mean square error, /5(i,j) and /¢(4,j) are the origi-
nal image and the filtered (output) image respectively, M and N denote the

dimensions of the image.
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Table 5.1: Pseudocode for the PSOPC algorithm
Set k := 0;

Randomly initialise positions and velocities of all particles;

WHILE (the termination conditions are not met)
FOR (each particle 7 in the swarm)

Calculate fitness:  Calculate the fitness value of current particle:
J(X3);

Update pbest: Compare the fitness value of pbest with
f(Xi). If f(X;) is better than the fitness
value of pbest, then set pbest to the current
position Xj;

Update gbest: Find the global best position of the swarm.
If f(X;) is better than the fitness value of
gbest, then gbest is set to the position of the
current particle X;;

Update R;: Randomly select a particle from the swarm
as ;;

Update velocities: Calculate velocities V; using (5.2.3). If V; >
Vinax then Vi = Vi, f Vi < Vigin then V; =

Vinin
Update positions: Calculate positions X; using (5.2.4);
END FOR
Set k:=k+1;
END WHILE
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Shape error

In image processing, information is also carried on shapes. Therefore, to
indicate the filters’ ability of shape preservation, the criterion of shape error
is introduced [79]. The difference between the original and filtered image is

defined as:

1 I.N)
= 7w .E | o(i,3) = To(@',5') = (Ie(4, 3) = (@, 7)) | (5.2.7)

1) (¢,j")€w
where M. N. I,(i.j). It(i,j) have the same meaning as in (5.2.6), v is set to
2, (i'. j') specifies the floating windows around (i, j) with the masking element
w. which is a 2 x 2 window.
The criterion of PSNR is used to direct the optimisation process and to
evaluate the performance of the filter. The criterion of shape error, on the

other hand, is only applied to assess the filtering results.

5.2.3 Optimal Soft Morphological Filter for Periodic Noise

Removal
Optimisation process

Noting that the soft dilation suppresses the negative parts of the noise while
the soft erosion suppresses the positive parts, a filter can be designed as the

combination of the two basic operators as shown below:
fsmf=a' (f@[BwA,k])"f‘B(f@[B,A,k]) (528)

where [B. A k] is the structuring element (SE) as defined in section 2.3; 0 <
v < 1and 0 < 3 < 1suffice @ + 3 = 1. Obviously, in this general formula,
the values of a, 4, K and B, A influence the filter's performance directly.
Therefore, the optimisation of these parameters is needed to achieve the best
filtering results. and the filter with the optimised paramcters is the OSMF we
aim to find.

In order to design the OSMF, the following parameters should be consid-

ered:
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o The size of the SE;

The shape of the hard centre, also the shape of the soft boundary;

The repetition operator k;

e The weight cocfficients « and [3;
e The soft operators employed by the filter.

The size of the SE relies on the period length of the noise. In order to
determine the range from which the size of the SE is chosen, the period length
of the noise is estimated before carrying out the optimisation. The size of the
SE is chosen from 3 x 3 to (2-.L/2.2+ 1) x (2-.L/25+ 1), where L is the
estimated length of the noise period, L ./2 denotes the largest integer that is
less than or equals L/2, and (2 - LL/25+ 1) is ensured to be odd.

Considering symunetry, the shape of the hard centre has only three dif-
ferent types, i.e. crossing, square and diamond. An example is shown in

(5.2.9)~(5.2.11) when the size of the SE is 5 x 5.

crossing: (5.2.9)

[ o T o S
o O - o O
o O = O O

[ac R e N L= =]
o O = O O

square: (5.2.10)

< O o O O
= O
[ T e T =]
O = - O
o o O o O
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diamond: | 1 1 1 1 1 (5.2.11)
01110
(00100

Accordingly, the repetition parameter is an integer between 1 and the length
of the SE. The weight coefficients may vary from 0 to 1, as long as their
summation equals 1. The fitness function is (5.2.6), which is more suitable for
PSOPC than (5.2.5) as the target value can be set to 0.

The optimisation procedure is carried out under the following conditions.
Iimage Pepper as shown in Fig. 5.1(a) is selected as the original image. When
optimising an integer parameter, the corresponding value of the particle is
equiprobably mapped to a valid integer. When evaluating the fitness function,
the MSE is only calculated within a small part of the image in order to reduce
the computational complexity. When initialising the system, the size of the
swarin is chosen to be 30 and the maximum iteration is set to 300. It is tes-
tificd by experiments that the fitness value remains at 419.8367 after iterating
300 times or after the size of population reaches 30. Each time the period
length is assigned with a new value, the optimisation process is carried out
over again. Altering the period length of the sinusoidal noise 1/w from 2 to

12, the optimisation results are listed below:

e The size of the SE is subject to the length of the noise period, as shown
in Table 5.2;

o The hard centre of the SE is of the shape of crossing;

e The repetition operator k also has different values in different noise con-

ditions, as shown in Table 5.3;

o The weight cocfficients « and 3 are not the same when different exper-
iments are carried out in the same conditions, but vary slightly around
0.5. Therefore, considering the adaptivity of the optimisation algorithm,

the weighted coefficients are set to be « = 8 = 0.5.
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Table 5.2: Relationship between the size of the SE and the period length of
the sinusoidal noise

Period Length | Size of SE
2~3 3 %3
4~ 7 5x5
8~ 12 Tx7

(a) Original image (b) Original image contaminated by sinu-

soidal noise R(1/4, 30, 30)
Figure 5.1: Add periodic noise to the original image.

An OSMF can be achieved based on the original image and the noisy im-
age, by the above optimisation process, without requiring the knowledge of the
frequency of periodic noise. However, if the frequency of the noise changes, the
optimisation process could be carried out again to update the OSMF parame-
ters. In many practical applications, the frequency of the noise is determined
by electrical attribute of the data acquisition devices, which is helpful for se-

lecting the range of OSMF parameters.

Simulation results and analysis

Sinusoidal noise. Sinusoidal noise is a typical periodic noise, denoted as
R(w, #, a), where w, 0 and «a represent the frequency, angle and amplitude of
the sinusoidal noise respectively; w means that the noise is with a period length

of 1/w pixels; @ varies from 0 to 180; « reflects the changes in gray value caused
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Table 5.3: Relationship between the value of k and the period length of the
sinusoidal noise

Period length | Repetition operator k
2~4 2
5~17 3
8§ ~ 10 5
11 ~ 12 1

by the noise and a = 0 means no noise is added to the image. Figure 5.1(b)
shows the result of contaminating the original Image Pepper as shown in Fig.
5.1(a) with the sinusoidal noise ®(1/4, 30, 30).

Removal of sinusoidal noise. For the purpose of comparison, spectral me-
dian filter is also applied to the removal of the noise. As stated in [67], spectral
median filter applics the technique used in the spatial domain median filter to
spectrumm amplitude image, and checks whether the amplitude of pixel (4, j)
(denoted as X;j) is a peak. If X; suffices m%i(—xg—) > O, then it is a peak
and should be replaced by MED,,«,(X,;), which represents the median value
in the m x n neighbourhood of pixel (7, j). The advantage of spectral median
filter is that it does not require an estimation of the frequency of the noise,
but parameters nt, n, © should be selected properly. Since it is not discussed
in [67] how to determine the parameters, they are chosen by trial and are set
tobem=9,n=9and © =2.2.

Figure 5.2 shows the results of removing sinusoidal noise X(1/4, 30. 30) using
(a) OSMF and (b) spectral median filter. Intuitively, OSMF suppresses the
noise but blurs the edge details, while spectral median filter blurs the whole
image.

To quantitatively analyse their performance, the PSNR of the output im-
ages is calculated. Meanwhile, to illustrate their ability in reducing the low-
frequency noise, the periodic length 1/w of the sinusoidal noise R(w, 30, 30) is
varied from 2 to 12. The comparison of the results of the two filters is shown
in Fig. 5.3(a). As can be seen from the figure, before filtering, the PSNRs are
close to 21.9 dB. As the width of noise increases, the PSNR of OSMF decreases
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(a) OSMF (b) spectral median filter

Figure 5.2: Comparison between OSMF and spectral median filter in the re-
moval of sinusoidal noise R(1/4, 30, 30).

severely. Even though the size of the SE is enlarged according to the period
length of the noise, the sinusoidal noise can not be removed in the space do-
main. On the other hand, the PSNR of spectral median filter maintains at a
high level thanks to a noise peak detecting procedure, which is time-consuming
yet effective.
Shape preservation. The criterion of shape error is calculated according
to (5.2.7) to indicate the difference of the shapes between the original image
and the image after filtering. The simulation studies are carried out on Image
Pepper with the sinusoidal noise of R(w, 30,30) with 1/w = 2,3, ..., 12, respec-
tively. The performance is compared in Fig. 5.3(b), from which it can be seen
that spectral median filter introduces a larger shape error than does OSMF.
To be intuitive, corrupting the original image with the noise R(1/4, 30, 30),
the difference images of the two filtered images and the original one are shown
in Fig. 5.4, respectively, where the black pixels represent the lost details (the
pixels are darkened for the purpose of observation). As demonstrated in the fig-
ure, for OSMF, the lost details concentrate on the edges while spectral median
filter causes information reduction over the whole image. Like other spatial fil-
ters, morphological filters use the ‘substitution’ strategy that replaces the gray
value of the central pixel by a value calculated from the pixels within a local

window according to a certain rule. Hence, it is difficult to distinguish between
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Figure 5.3: Comparison of the performance between OSMF and spectral me-
dian filter in sinusoidal noise removal.
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(a) OSMF (b) spectral median filter

Figure 5.4: Comparison of the performance between OSMF and spectral me-
dian filter in shape preservation.

the edges where gray values change suddenly and the noise where gray values
also change remarkably. This is the main reason why the loss of information
caused by OSMF concentrates on the edges.

Computation efficiency. Although the overall performance of OSMF is not
as good as spectral median filter in noise reduction, the computation time of
the former is much less. For spectral median filter, the forward and inverse
FTs require a total of 2N 2log, N complex multiplications, i.e. 8N?log, N real
multiplications for an N x N image [67]. On the other hand, the computation
complexity of OSMF is only O(N*M?). Figure 5.3(c) shows the computation
time required by the two filters in the same conditions as stated above. All
simulation studies are undertaken in MATLAB 7.0 running on a DELL PC with
a 2.80 GHz Intel Pentium D CPU and 1.99 GB of RAM. As can be seen, the
computation time required by OSMF increases as the size of the SE enlarges,

while spectral median filter is always time-consuming.
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5.2.4 Optimal Soft Morphological Filter in Low Frequency

Condition
Optimisation process

As can be seen from the previous section, the OSMF gained so far does not
behave well enough in low frequency conditions, which is mainly because the
dilation and erosion displace the boundaries. Therefore, other soft operators
should be emploved to the filter and the general formula of (5.2.8) is extended

to:
famf = (f®[B.AK)+8-(fo[B, A k] (5.2.12)

where % represents soft dilation, soft opening or soft open-closing. Accordingly,
@ represents soft erosion, soft closing or soft close-opening. According to the
previous knowledge, the size of the SE is determined by Table 5.2 and the
shape of the SE is ‘crossing’. Nevertheless, there are still three parameters to
be optimised. i.e. the repetition operator k, the weight coefficients o and 3,
and the choice of the soft operators. The optimisation condition is the same as
depicted in section 5.2.3, and the optimisation results are shown in Table 5.4.

Table 5.4: Relationship between the period length of the sinusoidal noise and
the design of OSMF

Period length | Size of SE Design of OSMF
2~3 3 S(fe[B A.2)+05(fe[B, 4,2])
4 5 S(fe (B, A.2)+05(f 2B, A,2)
5~6 5 S(fe[B,A3])+05(fe[B,A,3])
7 ~ 12 7 0.5(f o [B, A.2]) +0.5(f » (B, A, 2))
9 ~ 10 7 0.5(/ o [B, A.4]) + 0.5(f ¢ [ 3, A,4])
11 ~ 12 7 0.5(fo[B, A.4]) +0.5(f e [B, A, 4])

Simulation results and analysis

Removal of sinusoidal noise. The comparison of filtering results are also

carried out between OSMF and spectral median filter in the simulation stud-
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Figure 5.5 Comparison of the performance between OSMF and SMF in low
frequency conditiol.

ies, as shown in Fig. 5.5(a). Compared with Fig. 5.3(a), it can be seen that
the performance of OSMF has been greatly improved by applying more com-
plicated soft operators. Furthermore, when the period length increases to 12
pixels, the PSNR of OSMF is even higher than that of spectral median filter,
for the frequency of the noise is too low to be distinguished from that of the
original image by the frequency filter.

Shape preservation. The shape errors of the filtered images are shown in
Fig. 5.5(b). which is quite similar to Fig. 5.3(b). In low frequency conditions,
the shape error only declines slightly, which illustrates that the adoption of
soft opening and soft closing has no significant influence in shape preservation.

Computation efficiency. Unlike the former two indicators, the computation
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time of OSMF increases greatly when soft opening and soft closing are applied,
as shown in Fig. 5.5(c). However, even in this condition, OSMF is still less

time-consuming than SMF.

5.2.5 Optimal Soft Morphological Filter for Compound

Noise Removal

In practice. periodic noise is usually accompanied with random noise, such
as Caussian white noise, which is a good approximation of many real-world
situations. Therefore, it is necessary to evaluate OSMF’s ability in reducing
such compound noise.

Corrupting Image Pepper by both sinusoidal noise RX(1/w. 30, 30) and Gaus-
sian white noise A(0,0.01), then filtering it by OSMF and spectral median
filter, respectively, the simulation results are shown in Fig. 5.6. It should be
noted that both filters are the same as used in section 5.2.4. As can be seen
from the figures, when Gaussian white noise is added, OSMF outperforms spec-
tral median filter greatly as far as PSNR is concerned. The PSNR of spectral
median filter descends significantly. On the contrary, the PSNR of OSMF only
descends remarkably when the frequency is high. Spectral median filter cannot
remove Gaussian white noise because the spectrumn of the noise is buried in that
of the image and is hard to be eliminated by the low-pass filter. On the other
hand. in the space domain, the pixel denoting Gaussian white noise is easy to
be replaced by other pixels representing the image signal in its neighbourhood
using the sorting strategy of SMM.

The shape error of spectral median filter also increases dramatically, while
that of OSMF remains at a low level. The computation time is not depicted
because it is irrelative to the noise added to the image. Applying both OSMF
and spectral median filter to two other images, the results are shown in Figs.
5.7~5.8. which demonstrate that the proposed filter achicves a better perfor-
mance. Therefore, it can be concluded that OSMF is capable of reducing the

periodic noise and is robust.
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Figure 5.6: Comparison of the performance between OSMF and spectral me-
dian filter in the presence of compound noise.
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Figure 5.7: Comparison of the performance between OSMF and spectral me-
dian filter in the presence of compound noise on Image Lena.
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5.3 Optimal Combined Filter Design Using Bac-

terial Swarming Algorithm

5.3.1 Bacterial Swarming Algorithm

BSA is developed from BFA [80], which is one of the EAs that has received
great attention recently. It is based on the study of the E. coli chemotaxis
behaviour and is claimed to have a satisfactory performance in optimisation
problems. However. BFA suffers from a major drawback which most EAs
can not avoid: the optimisation process may be time consuming in searching
along the randomly selected directions. In addition, BFA only describes E. coli
chemotaxis phenomenon, which seems inadequate in modelling biological be-
haviours.

To overcome these problemns, BSA is proposed to improve the performance
of BFA. In the chemotaxis behaviour of BSA, which fulfills the searching pro-
cess, the bacterial rotation angle is calculated by Polar-to-Cartesian coordinate
transform and is restricted within a certain range. Moreover, the behaviour of
quoruin sensing is introduced to accelerate the convergence rate and enhance
the diversity of the algorithin. Based on the work of [73] and [74], further
improvements of BSA are made.

In BSA, the two unportant features used to describe bacterial behaviours
are chemotaxis and quorum sensing. Chemotaxis offers the basic search prin-
ciple of BSA, and quorumn sensing enables BSA to escape from local optima.
In order to describe these features, two mathematical models are constructed
correspondingly. During the optimisation process, they are performed orderly

in each iteration.

Chemotaxis

E.coli bacteria sense simple chemicals in the environment, and are able
to decide whether the nutrients at a certain location are getting better or

worse [81]. Bacteria swim by rotating thin, helical filaments known as flagella
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driven by a reversible motor embedded in the cell wall. E.coli have 8 ~ 10
flagella placed randomly on the cell body [82]. In the chemotaxis behaviour,
the motor runs either clockwise or counterclockwise with the different direction
of protons flowing through the cytoderm. When the motors turn clockwise, the
flagellar filaments work independently, which leads to an crratic displacement.
This behaviour is called tummble. When the motors turn counterclockwise,
the filaments rotate in the same direction, thus push the bacterium steadily
forward. This behaviour is called run. The alternation of tumble and run is
presented as a biased random walk.

The chemotaxis behaviour is modelled by a tumble-run process that con-
sists of a tumble step and several run steps. The tumble-run process follows
gradient searching principles, which means the bacteria’s position is updated
in the run steps by the gradient information provided by the tumble step. De-
termining the rotation angle taken by a tumble action in an n-dimensional
scarch space can be described as follows. Suppose the p'" bacterium, at
the A" tumnble-run process (i.e. the k'® iteration), has a current position
Xk € R". a rotation angle oh = (b1 @ Phneyy) € R*™ and a tumble
length DX(2%) = (d},, db,, .., df,) € R*, which can be calculated from ¢ via a

Polar-to-Cartesian coordinate transform:

n-1
dy, = Hcos ()
i=1
n—1
dy, = sin(pgoy) [Jeos (vp) J=2.3,n—1
i=p
dﬁn = sin (Sog(n—-l)) (531)

The maximal rotation angle 6., is related to the number of the dimensions

of the objective function, which can be formulated as:

T
Bma.x = .
round(v/n + 1) (5.3.2)

where n is the number of dimensions of the objective function.

At the A" tumble-run process, the p'' bacterium generates a random rota-

tion angle. which falls in the range of [0, 6,,]. Then during the run steps, the
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bacteriun keeps moving along this rotation angle direction. A step of tumble

and run can be expressed as:

Zh = iyt r20max/2 (5.3.3)
X5 = X} + rilnax D5 () (5.3.4)
k A
phtl = gk (5.3.5)

where 5 and X} indicate the rotation angle and the position of the p' bac-
terium at the beginning of the Ay, iteration, respectively; p,’j is its rotation angle
after the tuible step: Y,’;(l) is its position inuncdiately after the first run step;
r; € R is a normally distributed random number generated from A(0,1) with
N standing for normal distribution; ro € R"-! is a random sequence with
a range of [0,1]; lmax is the maximal step length of a run; finally, ™! is the
rotation angle at the beginning of the next iteration, i.e. the (k+1)' iteration.

Once the angle is decided by the tumble step, the bacterium will run for
a maximum of n. steps, or until reaching a position with a worse evaluation
value. The position of the py, bacterium is updated at the Ay, (h > 1) run step

as follows:

X5(h) = XE(h = 1) + r1lmax Dy (). (5.3.6)

After n. steps of run process, the bacteriuin stops at position X,’; (ne).

Quorum sensing

A bacterium uses a batch of receptors to sense the signals coming from
external substances. The bacteriuimn also has an inducer, which is a molecule
inside the bacterium, to start the gene expression [80]. When the inducer binds
the receptor, it activates the transcription of certain genes, including those for
inducer synthesis. This process, called quorum sensing, was discovered by
Miller explaining the cell-to-cell communication in [83].

Quorum sensing can occur within a single bacterial species as well as be-
tween disparate species. In BSA, most nutrients locate around optima, which
correspond to better fitness values. Based on this assumption, the density of

the inducer is increased if the fitness value is better. Thercfore, in the single
: rcfore,
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bacterial species case, each bacterium is attracted by the signal randomly, and

a bacterium’s position is updated by:
k+1 _ 5. >
Xp - 673(Xbest - X:) (5.3.7)

where 0 is a coefficient describing the strength of the bacterium’s attraction,
ry € R” is a normally distributed random sequence drawn from N(0,1), Xpes
indicates the position of current best global solution updated after each func-
tion evaluation, and X & is the position of the p'? bacterium at the k" iteration
after the tumble-run process.

If quorum sensing occurs between disparate species, it may cause virulence
between each species. which also avoids pre-mature results. In BSA, a small
number of the bacteria are randomly selected to be repelled. The repelling
rate is denoted by R,. If the p*! bacterium turns into the repelling process,
a random angle in the range of [0, 7] is generated. The bacterium is thereby
‘moved’ to a random position following this angle in the search space, which

can be described as:
X:+1 = X;,JC + r3[rang‘eD£(9§z + 7y 7T/2) (538)

where Lange 15 the range of the search space. The pseudo code of BSA is listed

in Table 5.5.

5.3.2 Criteria

The objective of optimisation is to obtain a filter that rejects noise to the
greatest extent. and PSNR is the index to show the quality of an image. As
stated in section 5.2.2, a larger value of PSNR indicates a higher quality. There-
fore, the optimisation is subject to the largest PSNR and the fitness function
is selected as 1/PSNR.

To evaluate the quality of the filtered images quantitatively, three criteria
are employed in the experimental studies. The first two criteria are PSNR

and shape error. as stated in section 5.2.2. The third one is the speckle index
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Table 5.5: Pseudo Code of BSA

Set k := 0;

Randomly initialise bacteria’s positions;

WHILE (termination conditions are not met)

FOR (each bacterium p)
Tumble: Generate a random rotation angle by (5.3.3). Set h := 1;
Run:
FOR (cach run step h)
Calculate the bacterium’s position after the hyy, run step,
XE(h);if b= 1, use (5.3.4); if h > 1, use (5.3.6). If the
fitness value at current position is less than the the value
at previous position, the bacterium will move towards
the angle until it reaches the the maximum step, n;
otherwise, the bacterium will stop at current position.
Increase h by 1;
END FOR
END FOR
Quorum Sensing: Most of the bacteria are attracted to the global optimum
by (5.3.7); a small number of bacteria are repelled by
(5.3.8);
Set k:=k+1;
END WHILE

termed by S. The definition of S is:

L e alind)
S = WZZ =5 (5.3.9)

=1 j=1 pi,

where (i, j) is the standard deviation of pixel (i, j) within the neighbourhood

of a 3 x 3 window, and u(i. j) is the mean value. The smaller S is, the better
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quality the image has.

5.3.3 Optimal Combined Filter for Compound Noise Re-

moval
Optimisation process

In image processing, filtering is a technique for modifying or enhancing an
image. It applies a certain algorithm to the values of the pixels of the input
image within a neighbourhood to calculate the value of the corresponding pixel
in the output image. Literally. the algorithm of linear filtering combines the
input values lincarly. The most common lincar filter is the FIR filter, which
corresponds to convolution in the space domain. Denote the image and the
convolution kernel by I and f, respectively, the definition of FIR filter is given

as follows.

I f(iy)) = Zf(.s,t) A —s,j—1t). (5.3.10)

On the other hand, MM is a nonlinear approach for image processing. The
pixels within the neighbourhood interact with an SE, a set of the same size
as the neighbourhood. The dilation and erosion operators of 2-dimensional
grey-scale version can be derived from (2.1.17) and (2.1.18), respectively. The

definitions are:
IDg(ij) = nia}x{l(i—s,j —t)+ g(s.t)} (5.3.11)
ITegli,g) = nslitn{l(i +s.74+t)—g(s,t)} (5.3.12)
where T and g denote the input image and the SE, respectively.
Instead of searching for the maximal or minimal element, a more general
strategy is used, which returns the P largest element in the neighbourhood.
This filter is referred to as the ranking filter [72], and is defined as:

15 glij) = RAI(i—s,j— )+ g(s.1)} (5.3.13)

where R, (x) sorts the elements of 2 and returns the " largest one. For binary

ranking filters, in which the SE ¢ comprises 0 and 1 only, the definition is
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altered to be:
IF'ég(i,jg)=RAI(i —s,j—1)}, if g(s,t) = 1. (5.3.14)

The combined filter calculates the weighted average of the outputs of the
FIR filter and the ranking filter, which can be expressed by

Ju=ATO[+(1-A) 1&g 0<A<1. (5.3.15)

In order to design an optimal combined filter, the following parameters

should be considered.
e The size of the convolution kernel, f;

o The values of the elements of f, and they should suffice the condition of

S f(st) =1
s,t
e The size of g;

e The shape of g. For gray scale version, the values of the elements of g

can be random integers; for binary version, they can be either 0 or 1;

e The ranking coefficient, r, which should be no more than the number of
the elements of g involved in (5.3.13) or (5.3.14);

e The weight coefficient, A, and 0 < A < 1.

Simulation results and analysis

Parameter setting. BSA is applied to optimise the parameters of the com-
bined filter depicted by (3.3.15). The problem is slightly simplified by assuming
that the sizes of convolution kernel f and SE g are restrained between 2 x 2
and 5 x 5. Also, the elements of [ are symmetric around the centre. In ad-
dition, since the test images are 8-bit bitmaps, the SE follows the gray scale
pattern. but the values of its elements are chosen from {-1,0,1,2,3} only.
When g(s.t) = —1, the corresponding pixel of the image, f(i — 5,5 — t), is

excluded from the ranking filter, R,.. In all experiments, the initial population
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(a) Original image (b) Noisy image

Figure 5.9: Add Gaussian white noise and salt & pepper noise to Image Pepper.

size is selected to be 100 and the maximal iteration is 1000. In the tumble-run
process, the maximal number of the run steps along an angle is 4 steps. The
repelling rate R, is set by trial. The same tests as described in [65] have been
carried out to find a suitable value for R,, and the result is it is set to be 0.2,
i.e. a portion of 20 percents of the bacteria will be repelled in each iteration.
The coefficient ¢ is set in the same way and ¢ = 2.

Design OCF. An original noise-free image shown in Fig. 5.9(a) is given as
a reference. Both Gaussian white noise N'(0,0.01) and salt & pepper noise
N(0.05) are added to this image, as shown in Fig. 5.9(b). Here, N(d) denotes
salt & pepper noise of density d. BSA is then employed to optimise the param-
eters of the combined filter, fe;, subject to the highest PSNR. To diminish the
computation burden, only a small part of the image (36 x 36) is used for op-
timisation. The combined filter optimised by BSA, which is referred to as the
BSA filter in this section, is therefore applied to other noise-corrupted images
to test its performance.

As stated in section 5.3.3, 6 types of parameters need to be optimised. The
curve of convergence process is illustrated in solid line in Fig. 5.10, which is
an average of 30 runs. The figure shows that BSA has a fast convergence rate.
One of the optimisation results is listed as follows. It should be noted that

although the optimisation results vary slightly each time, the corresponding

T.Y Ji



5.3 Optimal Combined Filter Design Using Bacterial Swarming Algorithml11

BSA filters have a highly similar performance, which means BSA has a stable

performance. This can be proved in Table 5.7.

[ 0.0411 0.0318 0.0634 0.0318 |
0.0318 0.0682 0.0554 0.0682
J = | 00634 00554 0.0424 0.0554 (5.3.16)
0.0318 0.0682 0.0554 0.0682
0.0411 0.0318 0.0634 0.0318
[2 2 0
g =120 (5.3.17)
121
r =5 (5.3.18)
A = 0.2659. (5.3.19)
0.0423 '—__GA
0.0422 ———BSA|]
0.0421 N
0.042
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0.04151 —_—_j
0'04140 260 460 680 860 1000
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Figure 5.10: Comparison of the convergence process between BSA and GA.

OCF on Image Pepper. The BSA filter whose parameters are set by
(5.3.16)~(5.3.19) is therefore used to filter the noisy image of Fig. 5.9(b),
and the result is shown in Fig. 5.11(a). For the purpose of comparison, the

combined filter is also optimised by GA. The publicly accepted GA toolbox is
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employed and its parameters are set as follows. The population size and max-
imum iteration are set to be 100 and 1000, respectively, which are the same
as BSA. The selection function, crossover function and mutation function are
set to be roulette, single point and uniform with a mutation rate of 0.01. The
convergence process of GA, which is also the average of 30 runs, is plotted
in Fig. 5.10 in dashed line. Apparently, BSA converges faster than GA and
achieves a better result. One of the optimisation results obtained by GA is
listed below. For the convenience of description, the combined filter optimised
by GA is called GA filter in this section. The parameters of one of GA filters

are set as below.

[ 0.0200 0.0004 0.0290
0.0605 0.1087 0.0605
J = | 01087 02064 0.1087 (5.3.20)
0.0605 0.1087 0.0605
0.0200 0.0004 0.0290

-1 3
-1 1
g = | -1 2 (5.3.21)
0 0
0 0
ro= 4 ] (5.3.22)
A = 0.5006. (5.3.23)

Using the GA filter to remove the noise from Fig. 5.9(b), the result is shown
in Fig. 5.11(b), which reveals that a certain amount of noise still remains in the
output image. The FIR filter and median filter are involved in the simulation
studies as well. Their performance is demonstrated in Figs. 5.11(c) and 5.11(d),

respectively. The convolution kernel of the FIR filter is:

1

Jrir = 9 (5.3.24)

—_ = =

1
1
1

[ G —
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(b) GA filter

(c) FIR filter (d) Median filter

Figure 5.11: Performance of the four filters on Image Pepper.

The median filter is 4-connected and its size is 3 x 3.

Intuitively, the FIR filter blurs the edge details and is useless in suppressing
the salt & pepper noise. On the contrary, the median filter is effective in dealing
with salt & pepper noise as well as keeping the shape information, as it should
be. However, it makes the whole image brighter, which is an evidence that
the median filter can not remove Gaussian noise effectively. As for BSA filter,
it removes both types of noise to a great extent meanwhile keeps more detail
information than the other filters.

To quantitatively analyse their performance, the three criteria mentioned
in section 5.3.2 are employed and the evaluation results are listed in Table 5.6.

To make the results more comprehensible, the percentage of improvement is
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also demonstrated. From the table it can be seen that BSA filter achieves the
best performance under all the criteria. The results for BSA filter and GA filter
are the average results of 30 runs. To show the robustness of the algorithms,

the variance of the results is also calculated, which is listed in Table 5.7.

Table 5.6: Quantitative performance of the four filters on Image Pepper subject
to the criteria of PSNR, shape error (es) and speckle index (5)

Filter PSNR €s S
Before filtered 17.049 10.708 0.109
BSA filter 27.846(63.33%) | 1.283(88.01%) | 0.060(44.95%)
GA filter 27.153(59.26%) | 1.292(87.93%) | 0.065(40.37%)
FIR filter 24.607(44.33%) | 1.651(84.58%) | 0.071(34.86%)
Median filter | 27.677(62.314%) | 1.566(85.37%) | 0.070(35.78%)

Table 5.7: Variance of the results
Filter PSNR es S
BSA filter | 0.0449 | 2.0221 x 107% | 3.7767 x 1075
GA filter | 0.0490 | 1.4302 x 107° | 5.2397 x 1075

OCF on Image Lena. The 30 BSA filters and GA filters are also used to filter
other immages corrupted by both Gaussian and non-Gaussian noise. An example
is given in Fig. 5.12, where the original image of Lena, the contaminated
image by Gaussian white noise N(0,0.01) and salt & pepper noise N(0.05),
the filtering results of BSA filter, GA filter, FIR filter and median filter are
illustrated respectively. The quantitative results are listed in Table 5.8, where
the results of BSA filter and GA filter are the average value. From the figures
and the table, similar conclusion can be drawn that the BSA filter outperforms

the other three filters.

5.4 Conclusion

This chapter discusses OSMF for periodic noise removal and OCF for both

Ganssian and non-Gaussian noise removal. Both filters are obtained from the
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(e) FIR filter (f) Median filter

Figure 5.12: Add Gaussian white noise and salt & pepper noise to Image Lena
and the performance of the four filters.
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Table 5.8: Quantitative performance of the three filters on Image Lena subject
to the criteria of PSNR, shape error (es) and speckle index (S)

Filter PSNR €s S
Before filtered 16.524 8.501 0.096
BSA filter | 26.479(60.24%) | 1.617(80.98%) | 0.053(44.79%)
GA filter 25.901(56.75%) | 1.899(77.66%) | 0.094(2.08%)
FIR filter 24.655(49.21%) | 1.899(77.66%) | 0.063(34.38%)
Median filter | 25.432(53.91%) | 1.895(77.71%) | 0.064(33.33%)

optimisation of a generic framework. The optimisation approaches proposed
in this chapter arc also able to design filters for other signal/image processing
applications.

OSMF is optimised from the framework of soft morphological filter using
PSOPC. The optimisation process has been carried out in two stages. In the
first stage, OSMF only involves soft dilation and soft erosion, while in the sec-
ond stage. the general formula is extended to include other soft operators. In
each stage. once the original image and the noisy image are given, the optimi-
sation process is carried out without requiring the knowledge of the frequency
of periodic noise. However, if the noise frequency changes, the optimisation
process should be carried out again to update the OSMF parameters.

Simulation studies are carried out to remove periodic noise of various fre-
quencies. The performmance of OSMF has been presented in comparison with
spectral median filter, a frequency filter that is very powerful in the reduction of
periodic noise. When pure periodic noise is added to the original image, OSMF
achieves better performance than spectral median filter in the elimination of
the noise in high frequency conditions, although is not as good as the latter
in low frequency conditions. But taken the shape error and the computation
time into consideration, OSMF outperforms spectral median filter greatly in
both high and low frequency conditions.

When pure sinusoidal noise is added together with Gaussian white noise,
which is more practical, the ability of spectral median filter to reduce noise

decreases dramatically. On the contrary, the ability of OSMF to remove the
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compound noise is not affected in this case and is much better than that of
spectral median filter. Besides, the interference of Gaussian white noise makes
spectral median filter introduce a significantly larger shape error to the filtered
image, while the shape error caused by OSMF remains at a low level. In
conclusion, the simulation results demonstrate OSMF is more cffective and less
time-consuming in reducing both pure periodic and compound noise meanwhile
preserving the details of the original image.

OCF is another cffective optimal filter for image processing presented in
this chapter. The filter combines both linear and morphological filtering tech-
niques 5o as to remove Gaussian and non-Gaussian noise. Afterwards, the the
parameters of the combined filter are optimised using BSA to obtain optimal
filtering results.

BSA is inspired by the underlying mechanisms of bacterial foraging be-
haviours — chemotaxis and quorum sensing. Chemotaxis is based on the gra-
dient searching behaviour, which ensures that the bacterium always moves to
a better position than the previous step. Two versions of the quorum sens-
ing behaviour are introduced in BSA. When quorum sensing happens inside a
single bacterial species, bacteria are attracted to global optimum, which accel-
erates the convergence speed. When quorum sensing happens among disparate
species, bacteria are randomly replaced in the search space, which prevents
bacteria fromn being trapped into local optima.

Simulation studies of using BSA and GA to optimise the combined filter,
respectively, have shown that the convergence speed of BSA is faster than GA
and the combined filter optimised by BSA achieves a better performance than
the GA filter, FIR filter and median filter. Implementing these filters to other

noise corrupted images, the same conclusion can be drawn.
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Chapter 6

Embedding-based Technique

6.1 Introduction

This chapter introduces a novel signal processing technique that is based
on the embedding theorem. It is believed that the features of a signal can be
more clearly revealed if it is embedded to the phase space through a proper
embedding strategy. The embedding theorem [84](85] shows that a time series
can be mapped to a higher dimensional space, which is the so-called phase
space, through embedding [86]. Therefore, a sampled signal can be transforied
to the phase space so that its features can be more clearly viewed. As the
theoretical basis of the proposed scheme, the embedding theorem is introduced
in section 6.2.

The embedding-based technique is applied to three applications: feature
waveform detection of ECG signals, phasor measurement of power system sig-
nals and disturbance detection. For the last application, two schemes based on

Gustafson-Kessel (GK) clustering and projection, respectively, are proposed.

6.2 The Embedding Theorem

The embedding theorem was originally proposed for dynamical systems

[84](87]. In mathematics and physics, a dynamical system is usually described
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by a state space, each orthogonal coordinate of which represents one of the vari-
ables needed to specify the instantaneous state of the system [88][89]. Hence,
all the possible states of the dynamical system are represented in the state
space and each possible state corresponds to a unique point [90]. However, in
practice. it is usually impossible to measure all the variables of a dynamical sys-
temn. Fortunately. Takens has proved in {84] that it can be reconstructed from
a time series of a collection of the states using the embedding theorem. The
following paragraphs briefly explain how to map a d-dimensional dynamical
system to a dg-dimensional phase space, where dg > 2d + 1.

A d-dimensional dynamical system can be expressed by d first-order dif-
ferential equations. The solution of these equations, s € R? is a state in
the corresponding state space, with R denoting the Euclidean space. Func-
tion h : R4 — R converts a collection of states s to a scalar time series, i.e.
2 = h(s), where h is called the measure function. The ‘delay’ of the time series
is denoted by a positive number 7. The evolution of the state s at time i is
defined by the function Fr(s;) = s;¢,.

Therefore, the embedding ® : ®¢ — R4, which is called the delay-coordinate

embedding here, is defined as:
B(h, F.7)(s) = {h(). h(Fr(8)- - h(Fgenr (). (621)
For a certain s;. the above equation has the form of:
d(h Fo7m)(si) = {h(si), h(Sitr), -+, M(Sis(ap-1)r)}
= {z, Titr,. .-, $i+(dE—1)r} = X;. (6.2.2)

Therefore. a phase space matrix X of dimension dg and delay 7 can be con-

structed in the following way:

i 1 - 7
X £ Litr = Ll4(dp-1)7
Y = X2 _ | T2 T Tode-)r
(6.2.3)
L Xar j L Trr TM+r ‘Tl\l—f-(dg—l)-r
=& k2o Iag ]
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where the column vectors r; (i = 1,...,dg) form the coordinate of each dimen-
sion and the row vectors x; (+ = 1,..., M) represent individual points in the
phase space. For a time series o = {z1,...,@i,...,zn}, it can be embedded
directly from R to R by (6.2.3). In this case, X is a M x dg matrix, x is a
1 x dg vector and M = N — (dg — 1)7. The M points form the dg-dimensional
embedded signal in the phase space. Matrix X is also called the trajectory

matrix.

6.2.1 Determination of the Embedding Dimension

Two parameters are required by the delay coordinate embedding: the em-
bedding dimension and the time delay. These parameters should be prop-
erlv chosen so that the feature hidden in the time series can be presented
in the phase space. According to [91], a suggested embedding dimension is
dg = 72 - boxdim(A) + 17, where A is the attractor of the dynamical system,
boxdim(.A4) is the system dimension, and "z denotes the minimum integer
larger than or equal to x. Note that boxdim(A) may be fractional and dg must
be integral. The correlation dimension [92][93] is used as boxdim(A) in this
thesis to calculate dg.

The correlation dimension is determined from the correlation integral de-

fined as:

1 N N
C(r) = lim -—QZZQ(T—pq—ij (i # j) (6.2.4)

N—ooo
i=1 j=1

where x; and x; are two arbitrary points, and 6(z) is the Heaviside step func-

0, ifr<0
f(x) = -
{ 1, ifxz>0 (6.2.5)

tion:

Equation (6.2.4) calculates the number of pairs (x;, x;) satisfying |x; — x;| < 7.
x, and x; are two arbitrary points in the 2-dimensional phase space: x; =
{ai. 1i-1}. Here, dg = 2 and 7 =1 are selected as the initial condition for the

calculation of the real correlation dinension, d.. Assume that for small », C(r)
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behaves as C(r) o r%. d. is then estimated by:

— iy EC ()]
do = lim = o (6.2.6)

In other words, d. is the slope of the curve of 1g[C(r)] against lg[r].

The correlation dimension depends on the value of ». When r is small,
the behaviour of the correlation dimension is dominated by the characteristics
of noise, which has infinite dimension [94]. In practice, a string of d. are
calculated with various ». If in a range of rp < r < 1y, dc(r) is a constant
within some tolerance, the correlation dimension is chosen as the average of

de(r) over [r.rc] (93] Finally, the embedding dimension is dg = "2d. + 17

6.2.2 Determination of the Delay Constant

The delay constant should neither be too short to include unnecessary cal-
culation, nor too long to miss any useful information. If 7 is too small, each co-
ordinate is almost the same and the trajectories of the phase space are squeezed
along the identity line. On the other hand, if 7 is too large, in the presence of
chaos and noise, the dynamics at a time instant become effectively and causally
disconnected from the dynamics at a later time instant. Hence, even simple
geometric objects look extremely complicated. A natural choice of 7 is the first
minimum of the autocorrelation function such that each coordinate is linearly
independent.

According to {95], T equals to the first minimum of Ig CfE, where

cE = liny Cée (6.2.7)
o T
G = |5 L (Rl (6.2.8)
i=1
1 [}
P(xi(1)) = 720@« ~ 1x:(7) = x;(7)]) (6.2.9)
J=1
i = l—(({E-——l)T
xi(1) = {zi,zigr, ... ,-Ti+(d,,_1)7}.
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6.3 Feature Waveform Detection and Classifi-

cation of ECG Signals

6.3.1 Parameter Setting

ECG signals used in this section are free from impulsive noise and baseline
wander, and are pre-processed to get rid of high frequency noise. The filtering
techniques are explained in chapters 3 and 4, respectively. For such a de-noised
test ECG signal of length 1000, the relationship between lgr and lg C(r) is
plotted in Fig. 6.1. In this case, d. = 0.4390. Hence, dg = 2. For the same
test ECG signals of length 3000, the embedding dimension is dg = 3. Thus,

the choice of dg depends on the length of the signal under processing.

Ig C(r)
(=]
w

L s L N s ' L
08 1 1.2 14 16 18 2 2.2
Igr

Figure 6.1: lg C(r) against Igr for a de-noised test ECG signal when initial
conditions are dg = 2 and 7 = 1.

For the de-noised test ECG signal of length 1000, the relationship between
lg C'8(7) and 7 is given in Fig. 6.2 and the minimum of lg CE oceurs at

T =15.

0651

Figure 6.2: g CfE(T) against 7 of a de-noised test ECG signal.
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Figure 6.3 shows the embedding of the de-noised test ECG signal when
dg = 2 and 7 = 15. The white pixels in the figure are enlarged to give a clearer
view. As the magnitude of the test signal is digitised, the magnitude of the
de-noised test signal is also regulated to integers. Thus, the phase space can be
presented by an image and the embedded signal can be presented by the white
pixels of the image. The dense cluster corresponds to samples belonging to the
segments, and the three orbits correspond to the P waves, T waves and QRS
complexes, respectively, according to the size. For the original test signal, the
embedding parameters are dg = 2 and 7 = 8. The smaller value of 7 shows
that the signal contains a greater amount of redundant information, which is
introduced by the noise, and more unnecessary calculation is included. Thanks

to the noise removal procedure, the redundant calculation is avoided.

Figure 6.3: Embedding of a de-noised test ECG signal when dg = 2 and 7 = 15.
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6.3.2 Detection of QRS Complexes

As explained in section 3.1.2, the QRS complexes are distinctive in an ECG
signal due to the high magnitude of the R waves. In order to locate the QRS
complexes with the tolerance of the baseline wander, the magnitude difference

between every T samnples are calculated:

d(t) = f(t) = f(t +7). (6.3.1)

The difference signal of dy is referred to as the right-hand difference. Local
minima of d; with an absolute magnitude value over a pre-set threshold are
recorded as the QQ points, and local maxima with a magnitude value over the
pre-set threshold are recorded as the R points. Similarly, the S points can be

located from the left-hand difference of f:

d(t) = f(t) - f(t = 7). (6.3.2)

Figure 6.4 demonstrates the detection of the QRS complexes of a test signal.
Figure 6.5 shows the detection result during a 3-beat ventricular tachycardia.
The algorithm has been tested on a group of ECG signals and the detection
results are listed in Table 6.1. The ECG signals contains only records in the first
five minutes. The number of the QRS complexes detected by the algorithm,
i.e. the detected beats, is compared with the actual number provided by the
database. The errors mainly occur during fusion, which changes the QRS.
Take record 208 for example. In the first five minutes, the ECG signal contains
72 fusions, which reduces the accuracy of the detection by 2.7%. On the
identification of the R points, an RR interval is considered as a ‘cycle’ of the

signal.

6.3.3 Detection of P Waves and T Waves

The detection of P waves and T waves is based on the embedded signal
in the phase space. Samples belonging to the seginents form a dense cluster,

which can be extracted from the image using morphological reconstruction by
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Figure 6.4: (a) Location of the Q points (in ), R points (in o) and S points
(in o). (b) Right-hand difference. (c) Left-hand difference.

dilation. Morphological reconstruction requires two images: a mask image and
a marker image. The algorithin of morphological reconstruction by dilation of

a mask image [; from a marker image f, (f2 < f1) is described as follows [20].
o Step 1: Set k:=1. Set f*) = f,.
e Step 2: Dilate fo fz(k) = fg(k—l) ® g, where g is the pre-defined SE.

e Step 3: Calculate the point-by-point minimum of f2(k) and fi: dW(¢) =
min{ £V (1). f1(1)}-

o Step 4: If 0 = §%*-1| terminate. Otherwise, set k := k + 1 then go to
Step 2.

For a binary image. the intersection of fz(k) and f) is used in step 3. Here, the

mask image is the embedded signal, X, and the marker image is the erosion of
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Figure 6.5: Location of the Q points (in ), R points (in o) and S points (in o)
during a 3-beat ventricular tachycardia.

Table 6.1: Results of QRS detection

ECG | Total | Detected | Accuracy
record | beats | beats rate
1056 417 417 100%
109 433 432 99.77%
200 433 433 100%
208 518 504 97.30%
212 463 463 100%
217 363 354 97.52%
221 407 407 100%
228 350 350 100%
X by an SE of
1 10
g=1{111
011

as shown in Fig. 6.6(a). The SE can also be set as [0,1,0;1,1,1;0,1,0],
[0,1;1.1], [1.1;1,0] or [1,0;0, 1] to match the shape of the object. The result
of morphological reconstruction by dilation is given in Fig. 6.6(b). Denote it
by Xp. Apparently, Xy C X.

To separate a P or T wave from the segment, the distance from each objec-

tive pixel to the set of Xy is calculated. The distance from a pixel x to a set

T. Y Ji



6.3 Feature Waveform Detection and Classification of ECG Signals 127

Table 6.2: Measurement of the detected P waves

ECG | Width of P waves (ms) | Peak value of P waves (mV)
record | Average Variance Average Variance

105 172.83 12.40 0.21 0.0025

109 338.95 11.62 0.29 0.0178

200 100.75 3.09 0.42 0.0146

208 132.62 10.21 0.14 0.0112

212 119.50 2.18 0.24 0.0014

217 43.94 0.43 0.15 0.0115

221 180.38 2.10 0.94 0.0056

228 298.67 7.74 0.22 0.0854

A is defined as the shortest distance from x to a pixel in A:
d(x, A) = mgn{ll x —a, ||}, a, € A (6.3.3)

From a detected Q point leftwards, a string of pixels whose distance to X, is
Jarger than zero are recorded as the embedding of the P wave, as shown in Fig,
6.6(c). From the detected S point rightwards, a string of pixels whose distance
to X, is larger than zero are recorded as the embedding of the T wave, as
shown in Fig. 6.6(d). To view it more clearly, the white pixels in Figs. 6.6(c)
and (d) are enlarged. Therefore, samples in the time domain that comprise
the embedded P wave and T wave are detected to form the feature waveforms
of P wave and T wave. The result is given in Fig. 6.7. In clinic, doctors are
interested in the width and peak value of feature waveforms. Table 6.2 shows
the measurement of the width and peak value of P waves of eight ECG signals,
which are the same as the ones used in the previous table. Data of P and
T waves can be classified using the geometric information in the phase space,

such as centroid, barycentre, area, etc.
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Figure 6.6: (a) The marker image. (b) Morphological reconstruction by dilation
and the extracted baseline in the time domain. (c) Extracted P wave in the
phase domain and time domain, respectively. (d) Extracted T wave in the
phase domain and time domain, respectively.
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Figure 6.7: Identification of P waves (in dark grey) and T waves (in light grey).

6.3.4 Classification of Feature Waveforms

In this section, the geometric information of the feature waveforms repre-
sented by the embedding in the phase space is used as the criteria to classify
them. Take the classification of the P waves for example. The geometric infor-
mation includes the length of the P wave in the time domain and the perimeter
and area of the embedded P wave in the phase space. Hence, each P wave is
coded as a 3-element vector v; € V with V the set of the vectors and 7 the
index of the P waves. The elements of the vector are normalised to [0, 1] for
meaningful clustering. The clustering method is based on the distance between
v; and a cluster centre, denoted by ¢; € C with C' the set of the cluster centres,
1 < j < J the index of the cluster centre, and J the number of clusters. For

an arbitrary v;, if
lvi — el = lxsr;ig]{llv,- —¢ll}, 1<k<J (6.3.4)

where || - || denotes the Euclidean norm, v; belongs to cluster ¢,. The cluster
centres are adaptively generated and their number is not constrained to a pre-
set number, as the case in 28] where the P waves are always classified into two

clusters. The classification procedure is described as follows.
e Step 1: Set J := 1. Initialise the first cluster centre ¢; := v;. Set i := 1.

o Step 2: Calculate the distance d; = ||v;—c;|| forall 1 < j < J. If min;{d;}

exceeds a pre-defined threshold, 6, a new cluster centre is assigned at
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Figure 6.8: Classification of P waves of an ECG signal (6 = 1). Normalised
P waves in black are classified to cluster 1 and those in red are classified to
cluster 2.

cre1 = vi. Set J := J 4+ 1. Otherwise, v; is classified to cluster ¢ if
dr = minj{dj}.

e Step 3: Update the cluster centres by averaging the vectors belonging to

each c;.

e Step 4: Set 7 :=14+ 1. Go to Step 2. Terminate when all the vectors are
classified.

Figure 6.8 shows the classification result of the P waves of the first five
minutes of record 106. To make it more comprehensible, the P waves are
normalised taking on zero value at the onset and end samples, as the strategy
used in (28], and having the same length. The threshold is set at 8§ = 1
and under this condition, the P waves are classified into two clusters. As a
comparison, when § = 0.8, the P waves are classified into four clusters, as

shown in Fig. 6.9. The same clustering method can also be applied to classify
the QRS complexes and T waves.
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Figure 6.9: Classification of P waves of an ECG signal (6 = 0.8). Normalised
P waves are classified into four clusters, plotted in black, red, green and blue,
respectively.

6.4 Phasor Measurement of Power System Sig-

nals

Phasor measurement measures the amplitude and phase angle of the signal
to determine the health of the power system. If a fault occurs on transmission
lines, the input current of a relay may contain harmonics and exponentially
decaying DC offset. This section proposes an embedding-based scheme to
measure the amplitude and phase angle of the fundamental component of the
fault signal.

A traditional method for phasor measurement is the Fourier transform
(FT). However, the presence of the offset will bring fairly large errors to the
measurement result and cause malfunction of relays. Hence, it is necessary to
preprocess the current signal to remove the DC offset and keep the fundamen-
tal frequency component only. As there is no efficient way to remove the DC

offset using an FT-based filter, [96] presented a morphological filter to serve
this purpose.

LY
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Paper [97] presented an algorithm using a full-cycle FT to identify the
exponentially decaving DC offset. The algorithm requires a data window with
a length of one fundamental cycle plus two samples. To reduce the computation
time of the algorithm by half, the half-cycle FT was proposed, which uses
samples obtained from half a fundamental cycle [98]. The algorithins of the

full-cvele FT and the half-cycle FT are given in Appendix.

6.4.1 Parameter Setting

As stated in section 1.3.2, in power systems, a source current or voltage
signal is denoted by Iy and expressed by (1.3.1). As a fault occurs, the fault
signal is denoted by Iy and expressed by (1.3.2). The signal including a source
part and a fault part is denoted by / and expressed by (1.3.6). An example
of such a signal is given in Fig. 6.10 in dotted line. In this case, up to 15
harmonics are included in the signal, and a Gaussian noise of a signal-to-noise
ratio of 15 dB is added.

Embedded to a 2-dimensional phase space, fault signal I forms the following

matrix:

r =

I(tg) I(to+ 1)
I(ty) I(ty+7)
I = : : (6.4.1)
) I, +7)

L ’ ’ .
where £, = tg+ 1 with £ the beginning and At the sampling interval. Matrix
I can be considered as a 2-dimensional signal in the phase space with the left

column being its r-values and the right column its corresponding y-values.
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6.4.2 Fault Occurrence Detection

Due to the features of circular function, the source signal, I, has the fol-

lowing embedding when = T/4:

L = [ I{(t) I(t+7) ]

o S (6.4.2)
where
v = Ajcos(wt + @) (6.4.3)
y = Agcos(w(t+7)+¢)
= Aycos(wt +7/2+ @) (6.4.4)

= —Agsin(wt + ¢).

R

As 2 + y? = A3, it shows that the source signal forms a circle whose radius is
Ag and whose centre is at (0,0) in the phase space. In other words, a pair of
samples. To(1,,) and ly(/,,+7), form a point in the phase space and the Euclidean
norm of the point is 4y. However, when the fault occurs, the fault part forms
some other shape and the Euclidean norm of the point (I(t,—7), I(¢,)) suddenly
increases. Therefore, a threshold can be set to check if the fault occurs. The
embedding of the signal shown in Fig. 6.10 in dotted line is given in Fig. 6.11.
The Euclidean norins of the points are plotted in Fig. 6.10 in solid line, and
the estimated fault occurrence point is highlighted by a dot. In this case, it
is simulated that the fault occurs at /; = (g7 and the detection result is also
[y = tar.

The morphological filter proposed in {96} is employed to remove the DC
offset. As the filtering technique is introduced in detail in [96], it is omitted in
this thesis. In the following subsections, the estimation of amplitude and phase
angle is based on signals whose DC offset is removed by the morphological filter.

An example is given in Fig. 6.12.
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Figure 6.10: Fault occurrence detection. Dotted line: the fault signal. Solid
line: the Euclidean norm. Dot: estimmated fault occurrence point.

6.4.3 Fundamental Amplitude Estimation

For the fundamental component, [;(t), its embedding in the phase space

can be expressed by:

r = Ii(t) = Ay cos(wl + ¢) (6.4.5)
y = L(t+7)= A cos(w(t+7)+ )
= Ajcos(wt + o+ 6) (6.4.6)

= AjcosBcos(wt+ ) — Ay sinfsin(wt + )

where ¢ = wr = 277/T. From (6.4.5) and (6.4.6), the amplitude of the

fundamental component can be calculated from:

A = \/(x2 — 2cosfxy + y?)/sin? 6 (6.4.7)

where A, denotes the estimation of A;. Equations (6.4.5)~(6.4.7) show that
any two samples from the fault current are enough to estimate its amplitude.
Usually 7 is sclected to make 6 a common angle. For example, when 7 = T/8,
0 = = /1. In this case, as the signal is digitised at N = T/ Al samples per cycle,
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Figure 6.11: Embedding of a fault signal. Dots: embedding of the source part.
Crosses: embedding of the fault part.

it uses /8 samples to calculate A;. When 7 = T/4, we have 6 = 277/T = /2
and the embedding of 1 becomes
x = L(t)= A cos(wt+ )

y = NL(t+7)=—Asin(wt+ ).

The estimation therefore becomes:

A =22+ ¢ (6.4.8)

Since
(A cos(wt + @) + (= A; sin{wt + ¢))? = A? (6.4.9)
the embedded signal of Iy forms a circle in the phase space, and the centre and
the radius of the circle are the origin of the phase space and Aj;, respectively.
In practice, due to the presence of noise and harmonics, the estimated

amplitude calenlated from different pairs of samples varies slightly:

Atn = VT2 + 12 = VI2(t,) + I2(tn + 1) (6.4.10)

where -y, denotes the estimation of A, calculated from &, = I(t,) and y, =

I(t, + 7). Assume that the onset of the fault is detected at time {;. From the
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Figure 6.12: Dotted line: the fault current. Dashed line: extracted DC offset.
Solid line: the result of removing the DC offset from the fault current.

time instant of t,, = £+ At, the estimated amplitude is calculated using (6.4.7),
where 0 = w(t, — f:,.), until ¢, = {5 + 7 — Al. In this manner, the estimation
of the fault current amplitude is not affected by the source current amplitude,
except the amplitude at time instant {s. In order to reduce the estimation
error caused by noise, the average of Aln over a user-defined window can be
used. An example is given in Fig. 6.13. A fault signal that has its DC offset
removed is considered as the input signal, as plotted in dotted line. The signal-
to-noise ratio of the fault signal is 10.67 dB. Using the method described above
to estimate the amplitude of its fundamental component, the result is given
in solid line. As it can be seen, the sudden increase in amplitude has been
successfully estimated as the fault occurs. The vibration caused by the noise
is avoided by taking the average of the estimated amplitude. As a comparison,
the estimation result by the half-cycle FT is also included, which is shown
in dashed line. The half-cycle FT uses the samples over a half of a cycle
to calculate the amplitude. Hence, it causes a half-cycle delay to accurately
estimate the amplitude of the fault signal. On the other hand, the embedding-

based method does not introduce such an error in the estimation.
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Figure 6.13: Estimation of the fundamental amplitude of the fault current.
Dotted line: the fault current with its DC offset removed. Solid line: estimation
result by embedding. Dashed line: estimation result by half-cycle FT.

6.4.4 Phase Estimation

As stated previously, when 7 = T'/4, the embedded fundamental component
can be defined by:

[ Ajcos(wtp + ) —Apsin(wlty + ) ]

I,

Il

(6.4.11)
Ay cos(wtn + ) —A;sin(wi, + @)

L - : -
When t, = 0, the phase of the fundamental component can be calculated from

the first point of I;:

" I,(1,2)
= arctan { ————= | . 4.
& ( L(11) (64.12)
The phase can also be calculated from an arbitrary point of I; using:
bn = arctan (_Il(n,Q) H(wt,,, 2 6.4
Pn = arcte LD, "~ mod(wt,. 27) (6.4.13)

where mod(wt,, 27) is the residue of wt,, divided by 27. This is to make sure

that ¢, falls in the range of [0,2x). Ideally, for different n, ¢, should be the
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same. In practice, it is more accurate to use the average of ¢, over a certain
window to eliminate the influence of any possible noise:

na

A 1 .
e O (6.4.14)

n=n,

The test is also carried out using the above method and the half-cycle FT,
respectively, and the results are given in Fig. 6.14. In this case, the signal-to-
noise ratio of the fault signal is also 10.67 dB. The actual phase is 78.7500°,
and the estimated results by embedding and the half-cycle FT are 79.4820°
and 79.7806°, respectively. The method proposed in this thesis is slightly
better with an estimation error of 0.93%, while the error of the half-cycle FT
is 1.31%. However, as it does not need to involve samples from a whole cycle

in calculation, the proposed method is more computationally efficient.
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Figure 6.14: Estimation of the phase of the fault current. Dotted line: the fault
current with its DC offset removed. Solid line: estimation result by embedding.
Dashed line: estimation result by half-cycle FT.

6.4.5 Phase Difference Detection

In some cases, there is a phase difference between the current signal and the

voltage signal. The difference can be detected through the embedding of the
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two signals to the phase space with 7 = T'/4. Define the current and voltage

signals as follows:

fe = Accos(wt+ ) (6.4.15)
fv = Aycos(wt + ) (6.4.16)

where A. and A, are their amplitudes and . and ¢, are their phases, respec-
tively.

When 7 = T/-4. an arbitrary point from the embedded current signal has the
coordinates of (ren. Yeu) = (Ac cos(wit, +gc), — Ac sin(wt, +¢c)) and has a phase
angle of J¢, = arctan(—yc,/:ren). At the same sampling time, the point from
the embedded voltage signal has the coordinates of (zvn, Yvn) = (Ay cos(wt, +
o). —Agsin{wt, + @) and has a phase angle of ¢y, = arctan(—yy,/zvn).
Therefore, the phase difference between the two signals, denoted by Ay, can
be calculated from Ayp = e — Pvn- Cousidering the interference of noise,

it is more accurate to use the average of the phase differences over a certain

window: .
R 1 n
Ap= — 5 A
’ ng —mny +1 n;l(%" Bun)- (6.4.17)

Figure 6.15 shows the estimation result of a test, where the input voltage
and current signals both have a signal-to-noise ratio of 10.67 dB. The simu-
lated phase difference is 307.7440° and the cestimated phase difference at cach
sampling instant varies between 306.9407° and 310.1625°, as the figure shows.

The average estimation error is 0.12%.
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Figure 6.15: Estimation of the phase difference.
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6.4.6 Fundamental Frequency Shift Estimation

In some cases, power system signals are influenced by fundamental fre-
quency shift. which can be up to +5%. A considerable error would be intro-
duced to the result of phasor measurement if the signal is embedded according
to its nominal period. To estimate the actual fundamental frequency, a method
is proposed as follows. The signal is first embedded with 7 = T/2, where T is

the nominal period. Hence, the embedding in the phase space is expressed by:

r = L(t) = A cos(W't + @) (6.4.18)
y = Lht+71)= A cos(W(t+T/2)+ )

!

= Ajcos(Wt+o+ %) (6.4.19)

where " denotes the actual fundamental frequency. As the function of
/ !

Fit)=x+y=2A cos(lw—)cos(w't +eo+ ) (6.4.20)
2w 2w

forms a sinusoidal signal, w’ can be calculated from
W' = 2warccos(xp/2A;)/m (6.4.21)

where p is the amplitude of F and is calculated from
p=(Fdg-1F. g)/2 (6.4.22)

where = and © denote the operators of dilation and erosion, respectively, and
g is a flat structuring element of a cycle long. An example is given in Fig. 6.26
to show the calculation of p. In (6.4.21), if ' > w, —p is used; otherwise, p is
used.

To determine if o' is larger or smaller than w, the following strategy is
used. As stated in section 6.4.4, if there is no fundamental frequency shift, the
estimated phase, . is a flat function. However. if the fundamental frequency
has a positive variation, i.e. «' > w, ¢, increases gradually. On the other

hand. if W < w. 2. decreases. For the fault current shown in Fig. 6.26, the

actual fundamental frequency is f' = 51.2542 Hz. Estimating the phase when
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the delay coordinate is still set at 7 = T'/4, where T is the nominal period, the
value of /5, is given in Fig. 6.17. As $, is basically an increasing function, it
is considered that & > w and —p is used in (6.4.21).

According to (6..1.21), the estimation of w' also requires the value of A;.
The estimation process is the same as described in section 6.4.3, and the final
result of A, is calculated as the average of Aln over a cycle. In this exam-
ple. 4, = 3.0102 and /il = 3.0124. The estimated fundamental frequency is
j" = 51.2794 Hz and the estimation error is 4.92 x 1074. On the estimation
of the fundamental frequency, the fault current is re-embedded according to
the estimated actual fundamental frequency and phasor measurement can be
carried out afterwards. As samples from at least a cycle of the fault current
are used to estimate the fundamental frequency, the method causes a delay of

at least a cycle at the very beginning.
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Figure 6.16: Calculation of p. Dotted line: the fault current with its DC offset
removed. Solid line: the signal of F. Dashed line: dilation of F. Dash-dot
line: erosion of .

6.5 Power System Disturbance Detection

6.5.1 Parameter Setting

Disturbance signals simulated in this section contain up to 40 harmonics
and the total harmonic distortion (THD) is around 2 ~ 5%. For one of such

signals. the relationship between lg r and 1g C'(r) is plotted in Fig. 6.18. Hence,
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Figure 6.17: Estimation of the phase of the fault current (f' = 51.2542) when
r="T/1
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Figure 6.18: 1g ('(r) against Igr for a power system signal when initial condi-
tions are dp = 2 and 7 = 1.

the correlation dimension is calculated to be d. = 0.7770 and the embedding
dimension is dg = 3.

For a sinusoidal signal F(t) = Asin(wt + ¢), the corresponding sampled
signal is given by F(k) = Asin(wkAt + ¢), if it is sampled at a sampling rate
of N, = 2r/(wAt) samples per cycle. According to the selection criterion de-
seribed in section 6.2.2, the delay constant, 7, of a disturbance signal should
be 1. However, to make full use of the mathematical properties of a sinusoidal
signal, the delay coustant can be set to 7 = N;/4. In the following subsec-
tions. two schemes are proposed for the detection under the two embedding

conditions. respectively.
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6.5.2 Disturbance Detection and Location through

Gustafson-Kessel Clustering

In this subsection, a disturbance signal is transformed to the phase space
with 7 = 1. Hence. the normal part forms an ellipse and the disturbance forms
a shape that deviates from the ellipse. Thus, the two parts are decoupled and
distinguished from each other in the phase space. Afterwards, GK cluster-
ing [99] is used to distinguish the two clusters and to detect and locate the

disturbances accordingly.

GK clustering

The GK clustering algorithm searches in particular for ellipsoidal structures.
Assumne that a set of data @ = {zx|k = 1.2,..., N} can be partitioned into
¢ clusters. The centres of these clusters are denoted by {wv;}i = 1,2....,¢},
respectively. For cach cluster, there exists a covariance matrix F;. Therefore,

the following equation
(.l: - nl.)'l‘[ﬂ l(_, — "‘i) =1 (6.5.1)

defines a hyperellipsoid. The length of the J' axis of this hyperellipsoid is given
by the j eigenvalue of Fi, and its direction is given by the g eigenvector.

The partition of data set . into ¢ clusters is performed by minimising the
following objective function:

c

N -
JXGUV) =30 (ui) "l = uillhy, (6.5.2)

=1 k=1

where {7 = [u; is the partition matrix that satisfics

D uk=1L1<k<N (6.5.3)
i=1
and e € {0. 1]: equation
Dicy, = llow = aillfy, = (o = ) TM (g = 07) (6.5.4)

T.Y Ji



6.5 Power System Disturbance Detection 144

describes the distance from a point x; to a cluster centre v;; m € [1,00] is
the weight exponent that determines the fuzziness of the resulting clusters;
M, = det(FN™)F™" is a positive definite symmetric matrix with n denoting
the dimension of the data set .

To perform the GK clustering algorithm, three parameters should be given
in advance. which are the number of cluster, 1 < ¢ < N; the weight exponent,
m. mostly m = 2: and the termination tolerance, £ > 0. Randomly initialise
the partition matrix. {7®, meanwhile it should satisfy (6.5.3). The algorithm

can be summarised as follows, where { = 1,2, ... indicates the counter of each

iteration [99].

1. Compute the cluster centres

2. Compute the cluster covariance matrices

S o)~ T

F, = , 1 <i<g;

Z (1 1) m

3. Compute the distances

YA det(F/") R

!
D, = (=) Mo — o) 1<i<e, 1<k <N

1. Update the partition matrix
" _ 1 :
Up = 7% 1<i<e 1<k<N
> (Dikar,/ Dk, )2/ m=1)

J=1

-~

until |UO = UED) <.
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Figure 6.19: A power system signal with periodic notches.

Take a disturbance signal with notching for example. Asshown in Fig. 6.19,
the fundamental voltage waveform is affected by periodic notches from the third
to sixth cycle. The embedded signal is given in Fig. 6.20(a), from which it
can be seen that the normal part forms an ellips in the phase space, while
the notches form a quasi-ellips, which deviates from the former. Obviously,
the GK clustering algorithm is very suitable to distinguish the two waveforms.
Applying GK clustering to the embedded signal, the result is shown in Fig.
6.20(a), where the diamond represents the clustering centre of the normal part
(v;) and the square represents that of the disturbance (vz). According to
(6.5.1), samples sufficing (i — v1)TF (2, —v,) = 1 corresponds to the normal
part, while those sufficing (zx — v2)TF; '(zx — v2) = 1 corresponds to the
disturbance. Figure 6.20(b) shows the samples classified to the cluster of the

normal part.

The time-aligned weighted average method

After imposing analysis technique in the phase space, the next step is to
transfer the signal back to the time domain. However, once linearly trans-
formed, the resulting trajectory matrix X no longer corresponds to a time
delay embedding [100]. In other words, there is no unique map mapping the
trajectory matrix back to a one-dimensional signal.

To solve this problem, a time-aligned weighted average method is proposed
in {100]. This method gives higher weight to the values in the centre columns
of the trajectory matrix and lower weight to the values in the left-most and
right-most columns. To describe in detail, the rows of the trajectory matrix

are shifted to the right according to the value of 7, which derives the so-
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150

Figure 6.20: (a) GK clustering of the disturbance signal of notching in the
phase space. Diamond: the clustering centre of the normal part. Square: the
clustering centre of the disturbance. (b) The samples classified to the cluster

of the normal part.

called aligned matrix. Then, the elements near the beginning or end of the

aligned matrix are assigned with weights different from those in the middle. To

illustrate this process, an example of a trajectory matrix X, an aligned matrix

Xaiignea and a weighting matrix P are shown in (6.5.5)~(6.5.7), respectively,

for the case of dg = 3 and 7 = 1.

T
X aligned

PT

~

T
X' =1z,

n T2

T2

1 05
0.5

L2 I3
T3 T4

Iy ITs

T3
T3

Z3
0.25

0.5
0.25

The output time series is given by:

dg
~Toutput(j) = ZXT("’]) ' PT(i,j), 7= 1,2 Cey N.
=1

IM
IM+1

TrM42

Trm
ITM TM+1

TM TM+1 TM42
0.25

05 0.5
025 05 1

(6.5.5)

(6.5.6)

(6.5.7)

(6.5.8)

T.Y Ji



6.5 Power System Disturbance Detection 147

As for the case considered here, since the normal part and the disturbance
have been partitioned in the phase space, it is natural to assign zeros to the
samples corresponding to the disturbance in matrix X of (6.2.3). It should be
noted that a disturbance of length [ in the time domain will result in (I + dg)
disturbance points in the phase space. Assume that a disturbance occurs at
zs. Hence, in the phase space, points X3 = (r3, 4, 7s], X4 = [24, 25, z¢] and
X5 = [zs. T6, T7] are the corresponding disturbance points. Assigning 0 to these

three points in X, the new matrix, denoted by X.,, becomes:

y w2 0 0 0 26 -+ M
'\A,l"lr = zo z3 0 0 0 7 -+ zTpyir . (659)
x3 4 0 0 0 g -+ Tmy2

Sequentially, the aligned trajectory matrix can be given as follows.

ry o 0 0 0 g 7 38 -+ IMm
v T — . . . o )
’\/aligned = Lo X3 0 0 0 Ly &g -+ M Tpars
z3 24 0 0 0 T - TM Tpmiyl TMi2

(6.5.10)

In order to transform the aligned trajectory matrix of X, back to the time
domain, (6.5.8) is adopted, where the weighting matrix P is the same as in
(6.5.7). Denote the result by & = {2;,23....,%m42}. Obviously, the distur-
bance occurs at the positions where 2, = 0. Refer these positions to the input
signal z, the disturbance can hereby be extracted.

For the disturbance signal with notching, the detection result is given in
Fig. 6.21, where the disturbance-free signal, the input disturbance signal,
and the disturbance extracted from the input signal are shown in the sub-
figures, respectively. As it can be seen from the figure, the disturbance is
identically recorded in the output signal; on the contrary, the disturbance-free
part maps to O-value in the output signal. To sum up, the disturbance is
precisely extracted from the input signal.

Aside from notching, simulation studies are also carried out on other types
of disturbance signals. Figure 6.22(b) illustrates a typical disturbance signal of

an impulsive transient, and the extracted disturbance is plotted in Fig. 6.22(c).
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Figure 6.21: Disturbance detection of notching.

As can be seen from the figure, the transient is correctly extracted, while at
the places where there is no disturbance, the output is 0.

A voltage swell lasting from the third to the sixth cycle in a fundamental
sinusoidal waveform is presented in Fig. 6.23(b), while the disturbance-free
signal is given in Fig. 6.23(a) as a reference. The detection result is shown in
Fig. 6.23(c), from which it can be seen that the swell is exactly detected at
the points where the voltage ascends and recovers.

Figures 6.24(a) and (b) describe a disturbance-free signal and a disturbance
signal of momentary interruption, respectively. The interruption begins from
the third cycle of the signal and lasts 4 cycles. As in the previous studies,
the extracted disturbance is plotted in Fig. 6.24(c), which illustrates that the
proposed approach is applicable for this type of disturbance as well.

The detection scheme based on the GK clustering algorithm is more ap-
plicable to off-line power quality analysis, as it requires the presence of the
disturbance and the clustering procedure is relatively time-consuming. In the
following subsection, a scheme involving only three samples to detect and lo-

cate the disturbances is presented, and the classification of the disturbances
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Figure 6.22: Disturbance detection of an impulsive transient.
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Figure 6.23: Disturbance detection of voltage swell.
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Figure 6.24: Disturbance detection of momentary interruption.

based on the detection result is also available.

6.5.3 Disturbance Detection, Location and Classifica-

tion through Projection
The embedding strategy

In this subsection, the delay is set to be a quarter of its period, i.e. 7 =

N,/4. Thus, we have:

= [ Asin(wkAt+¢) Asin(w(k+7)AL+¢) Asin(w(k+27)At+¢) |
= [ Asin(wkAt +¢) A cos(wkAt + ¢) —Asin(wkAt + @) ]
= | L1k Yok 3k ].

| (6.5.11)

Apparently, ¥3, + 13 = 4% 13 + 1% = A% and ry + rx = O, which shows
that the embedded signal in the phase space is an ellipse. Using r, y and z
to represent the coordinates of the phase space, 11, r; and 3, respectively, the

enibedded signal in the phase space can be defined by cither of the following
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equations:

z+2=0 T+2z2=0 (6.5.12)
4 y? = A? Y2 +22=A o

The projection of the embedded signal to the wy-plane and the yz-plane is a
circle whose radius is the amplitude of the sinusoidal signal and whose centre
is the origin of the plane, while the projection to the zz-plane is a straight line.

On the other hand, the disturbances will be mapped to some other shapes
than the ellipse. This feature can be used to detect the disturbances from the
embedded signal. An example is given in Fig. 6.25, which shows a sinusoidal
signal F(k) = sin(2m-50kAt+¢) (Ns = 200) corrupted by harmonic distortion
with the THD of 4.94% and white noise with the signal-to-noise ratio (SNR) of
30 dB and its embedding in the phase space. The projections in the zy-plane
and the yz-plane have the same characteristic. Therefore, the detection is based
on ry-plane and «xz-plane projections. The projections on these planes are
denoted by X = [Ri %o ... ku]T =[] =[zyland X =% %, ... xy|T =

[£1 k3] = [z =], respectively.

Frequency shift

In the proposed scheme, the delay selected as 7 = 1/(4fAt), where f is the
nominal fundamental frequency. However, in practice, the fundamental fre-
quency may deviate slightly from its nominal value when the balance between
the load and the capacity of the available generation changes. Such a frequency
shift distorts the projections in the zz-plane from a straight line segment to
an ellipse, as shown in Fig. 6.26. Hence, it is necessary to estimate the actual
fundamental frequency, [/, and re-embed the signal with 7 = 1/(4f'At). The

strategy of estimating f’ is described in section 6.4.6.

Impulsive transients

Figure 6.27(a) shows a test signal with an impulsive transient, which occurs
at Teos and zege. In this case, the actual fundamental frequency is f’ = 50.5099

Hz and the estimated one is f* = 50.5215 Hz. Hence, 7 = 49. Embedding the
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(b) The embedded signal in the phase space (dg = 3) and its projection on zy-, yz-

and rz-plane. respectively

Figure 6.25: A noisy sinusoidal signal and its embedding in the phase space.
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Figure 6.26: Influence of fundamental frequency shift on embedding. (a) and

(b): f' =50 Hz. (c) and (d): f'= 525 Hz.

disturbance signal to the phase space, the result is shown in Fig. 6.27(b). From
its projection on .ry-plane, it can be seen that points belonging to the normal
part of the signal forin a circle whose radius is around 1, while points belonging
to the disturbance is much nearer to the origin. Since the projection involves
two samples from the input signal, points from (Zess. Ze9s) t0 (Zea7, Teos) and
from (Zegs, T744) tO (Tegs, T745) are affected. Hence, two disturbances appear in
the phase space.

To view it more clearly, the Euclidean norm of each point on the zy-plane,
denoted by F and FE(k) = y/xf +«%_,, is plotted in Fig. 6.27(c). F also
determines the distance between each point and the origin of the zy-plane. For
the points belonging to the normal part of the signal, their Euclidean norm
should be within the range of [A(1 — v), A(1 + v)], where « is the threshold
introduced to tolerate the corruption of noise. For points whose E falls out of
this range, they are detected as disturbance. The beginning and ending samples
of the disturbance are recorded by the detection scheme. In this case, two pairs
of disturbances are located at p; =< 695,696 > and p, =< 744, 745 >. Noting

that one sample in the time domain affects two points in the zy-plane of the
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phase space and pa1 — P11 = 7, p22 — p12 = 7, the disturbance is located
at from Tees to Tegs. This procedure can be performed in real time, for the
embedding requires the current sample and a previous sample.

The disturbance can also be detected from the projection of the embedded
signal to the .rz-plane, where points belonging to the normal part of the signal
satisfy function f(z,z) =« + z = 0. For each point on the zz-plane, its value
of f(xr.z), denoted by ¢, is calculated and plotted in 6.27(d). Considering
the existence of the noise, points whose ¢ value falls out of range [—+, ] are
detected as disturbance. In this case, points (zse7, Tegs), (508, Teos), (T695, T793)
and (zg96. 2794), Which correspond to samples {zgos, Tegs} Of the test signal, are
detected as disturbance. The detection result is the same as the result obtained
in the Ty-planc. In the following studies, the final detection result is the ‘union’

of that in the ry-plane and the zz-plane.

Oscillatory transients

Test oscillatory transients are simulated to contain low frequency (300 ~
900 Hz) component only, with a duration of 0.3 ~ 50 ms and a magnitude
of 0 ~ 4 p.u. One of the test signals is demonstrated in Fig. 6.28(a) and its
embedding in Fig. 6.28(b). In this case, f’ = 49.8248 Hz, J7 = 49.8709 Hz and
+ = 50. The simulated oscillatory transient occurs from zge6 to Togs.

The detection result in Fig. 6.28(c) shows that the disturbance causes a
larger fluctuation in the Euclidean norm, which means much more pairs of
beginning and ending samples whose Euclidean norm falls out of the range of
[A(1 = 7), A(1 + 7)] will be recorded. Denote these pairs by pi,...,pm. The
detection scheme reckons that if the number of the pairs exceeds one twentieth
of the samples involved, i.e. m > (pm2—p1,1) X 5%, the disturbance is classified
as oscillatory transients. The shortcoming of this scheme lies in that it can only
determine the location of the transients, but cannot analyse the frequency and
amplitudes of the transients separately. In this test, the disturbance is located
from Tgyr to Tess. Lhe detection result is alost consistent with the simulated

disturbance. On the other hand, Fig. 6.28(d) shows that points with a larger
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(a) A noisy power system signal with the disturbance of an impulsive transient
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Figure 6.27: Disturbance detection of an impulsive transient.
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value of f(z,z) than the threshold locate between Xs06 and Xjp6s. Hence, it is

determined that the disturbance lasts from zg26 to zges in the test signal.

Voltage sag

A test signal with a voltage sag is plotted in Fig. 6.29(a). Here, f’ = 48.0213
and the amplitude of the sag is 0.8 p.u. The sag occurs and ends at the zero-
crossing point to simulate a gradual drop of voltage (at zgs2 and z,465), which
is more difficult to detect than a sudden drop. The estimated fundamental
frequency is J = 47.9974, thus 7 = 52. The Euclidean norm of the points in
the zy-plane gradually decreases from 1 p.u., as shown in Figs. 6.29(b) and
(c), and it indicates a disturbance other than transients. The £ value exceeds
the threshold at F(845) and remains exceeding until £(1703). Hence, the sag
is located at from mTg45 to Tye5:.

The location of the sag obtained from function f(z,z) is shown in Fig.
6.29(b). Figure 6.29(d) shows that two segments from ig55 to 191 and from
11692 tO L1752 exceed the threshold, which means points X755 ~ Xg12 and X590 ~
%652 deviate from the line segment defined by f(z,z) = 0. The dragging
phenomenon is due to the delay of embedding. Hence, the location of the sag

is determined at from wgss to ryg50.

Momentary interruption

A momentary loss of voltage on a power system can be called a momentary
interruption. An interruption with a reduced voltage of 0.1 p.u. from zgy4 to
Tye0s 15 plotted in Fig. 6.30(a). The change of voltage is also simulated in a
gradual way. In this case, f' = 49.7417 Hz, f' = 49.6698 and 7 = 50. The
embedding of this signal is shown in Fig. 6.30(b). The Euclidean norm of each
point on the xy-plane is given in Fig. 6.30(c), and the value of [(z, z) of each
point on the rz-plane is given in Fig. 6.30(d).

The detection result obtained by measuring the FEuclidean norm of the
points in the xy-plane is from zgy; to z1503. Due to the shape feature of the

input signal. when the interruption occurs, there is a drop of the Euclidean
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Figure 6.28: Disturbance detection of an oscillatory transient.
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Figure 6.29: Disturbance detection of a voltage sag.
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norin of the corresponding point on the zy-plane. However, as the embedding
requires two samples and in this case, one sample comes from the normal
part and the other one from the interruption, the points form a horizonal line
on the ry-plane and their Euclidean norm gets closer to the radius. This
phenomenon lasts a duration of 7 samples. Similar situation happens when
the signal returns to normal, when a group of 7 samples form a vertical line.
Obviously, in this case, it is not accurate enough to use the Euclidean norm
to locate the interruption. An alternative means is to calculate the distance
between every two neighbour points, which is defined as ©; =|| X; — %X;—1 ||
For points corresponding to the normal part and the interruption, their D is
relatively small, while for the beginning and ending points of the interruption,
the value of D is much larger. The threshold is set to Tp = 2Asin(27/N;) X 2,
which comes from the law of sines. For this test, four points whose distance
to its previous neighbour exceeds the threshold are recorded, namely X757 =
(-”:7577-"807)~ %gor = (807, Tgs7), X1s61 = (11561, Tien) and Xygp = (1611, T1661)-
Hence, the interruption is located at from zgy7 to 21611, which is more accurate
than the result obtained earlier.

Examining Fig. 6.30(d), it can be seen that there are two groups of succes-
sive of samples whose f(z, z) value exceeds the threshold, from ¢g0g t0 tgg2 and
from tig06 tO t1695- Considering the dragging phenomenon, the interruption is

located at from sample zggg to sample z16p6.

Voltage swell

A voltage swell is a short term increase of system voltage. The detection of
voltage swell is very similar to that of voltage sag, except that when the swell

occurs, the voltage increases rather than decreases.

Notching

A signal with such a disturbance of notching is shown in Fig. 6.31(a).
Four notches are simulated at g3, ~ zg3g, 293y ~ Tosg, 1131 ~ L1139 and
Tos1 ~ Tise. Its embedding (f' = 49.6620 Hz, f’ = 49.6666 Hz and 7 = 50)
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Figure 6.30: Disturbance detection of a momentary interruption.
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is given in Fig. 6.31(b), which shows that the notches form a quasi-sinusoidal
shape in the phase space.

The disturbance location procedure is the same as described previously.
Take the first notch for example. As can be seen from Fig. 6.31{c), four
groups of F values exceeding the threshold are detected at £(831) ~ F£(833),
E(838) ~ E(839), E(881) ~ E(883) and E(888) ~ E(889), respectively. The
last two pairs are caused by embedding and should not be included in the
final detection result. Hence, the disturbance is located at xg3; ~ zg33 and
Txss ~ Tazg. Lhe values of samples zg34 ~ 337 are not affected by the notches,
so no disturbance is detected at these positions. The location result obtained
from the signal projected to the xz-plane is the same. If the notching occurs
simultaneously with short duration variations, the threshold the Euclidean
norm compared with is set to [A(1 — ), A(1 +v)], where A is the amplitude

of the short duration variation.

Transients at the beginning and ending of a sag

In this scenario, three types of disturbances are simulated in one signal.
An impulsive transient (z772 ~ x774) occurs at the beginning of a sag (z775 ~
Z1551), followed by an oscillatory transient (1552 ~ #1645). The signal and
its embedding (f' = 51.5736 Hz, f’ = 51.5930 Hz, 7 = 48) are shown in
Figs. 6.32(a) and (b), respectively. From the zy-plane projection and the
E values, as shown in Fig. 6.32(c), it can be seen that E(773) ~ E(774)
exceed the threshold, and after a gradual decrease from F(790) to E(820), a
local maximum of F(821) ~ F(822) is detected before the E value reaches a
stable value of around 0.3 p.u. As p; =< 773,774 >, py =< 821,822 > and
pa1 — P11 = T, P22 — P12 = T, an impulsive disturbance can be located at
T773 ~ T74. The E value remains at around 0.3 p.u. from E(823) to E(1553)
before it starts to vibrate and a group of successive Euclidean norms exceeding
the threshold (from p3 =< 1590, 1595 > to p;4 =< 1682, 1684 >) are recorded.
Hence, a sag is located at z775 ~ z1553 and an oscillatory at Tisen ~ 1636,

respectively.
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Figure 6.31: Disturbance detection of periodic notching.
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The projection on the xz-plane and the ¢« value are shown in Figs. 6.32(b)
and (d), respectively. A group of segments 1730 ~ t724, 1781 ~ t870, L1553 ~ (1661,
-+, 11139 ~ L1741 whose ¢ value exceeds the threshold are recorded. With
consideration of classification criteria described in section 6.5.3, an impulsive
transient. a sag and an oscillatory transient are detected at wzgo ~ @704, 2781 ~
T1ss3 and Tyss3 ~ Zieas. Lhe final location is the ‘union’ of the two results,
which is X700 ~ Z724, T775 ~ ZT1553 and z1553 ~ Ti1ea5. The detection result

almost coincides with the simulation.

Disturbance signals obtained from PSCAD simulations

In this section, test signals are obtained from PSCAD simulations based
on realistic power system circuit parameters. Figure 6.33 shows an oscillatory
transient at the beginning of a sag and the detection of the disturbance. The
detection procedure is the same as described in the previous section. Both F

values and ¢ values exceed the pre-set threshold as the disturbance occurs.

Disturbances classification

The classification is based on the detection results from zy-plane as well
as the features of the disturbances. The detection scheme records pairs of the
beginming and ending samples of the disturbance. A disturbance is first clas-
sified according to its length. Disturbances of sags, interruptions and swells
usually last longer than a half of a cycle, while other types of disturbances
last much shorter. Therefore, if a pair of samples p =< 1.7 > has been de-
tected and j — 7 exceeds a pre-set threshold, the disturbance is classificd as a
sag/interruption/swell. The E value is used to further distinguish these three
types of disturbances, as their amplitude is in the range of 0.1 ~ 0.9 p.u.,
0~ 0.1 p.u. and 1.1 ~ 1.8 p.u., respectively.

On the other hand, if a pair p, takes only several samples, €.9. pn2—pa1 <
7, the disturbance is classified as a transient or a notching. According to [33], a
low frequency oscillatory transient usually lasts 0.3 ~ 50 ms, while the duration

of impulsive transients and notches has not been clearly defined. However, the
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Figure 6.32: Disturbance detection of two transients and a sag.
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Figure 6.33: Disturbance detection of a test signal simulated by PSCAD.
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impulsive transients and notches considered in this thesis could be as short as
2 ms. Therefore, the duration is a secondary criterion to distinguish oscillatory
transients from impulsive transients and notches. The primary criterion is if
there is another pair p,, that satisfies p, 0 — pn2 = 7 and pp1 — pn1 = 7, it
is either an impulsive transient or a notch. Otherwise, if the number of the
recorded pairs exceeds a pre-defined threshold, the disturbance is classified as
transients, as described in section 6.5.3. Since notches occur continuously, if
a group of beginning and ending pairs of short intervals over one quarter of
a cycle are detected, they are classified as notches. If the pair detected is
isolated, it is considered as noise. The classification process is illustrated in

the flowchart shown in Fig. 6.34.

Simulation results

The test disturbance signals are simulated to contain up to 40 harmonics
with a THD of 2 ~ 5% and Gaussian noise with an SNR of 30 ~ 60 dB,
and they may also have a +5% fundamental frequency shift. The values of
these parameters are randomly selected with a uniform distribution. As for
each disturbance, its location, duration and magnitude are randomly selected
within a range with accordance to the parameters given in section 1.3.2 so that
they are at different levels.

In order to simulate real PQ events, each test signal may contain up to
three disturbances. Forty signals are simulated to contain a disturbance of
each type, respectively. Hence, 40 x 6 = 240 signals in total contain only one
disturbance. For signals containing two or three disturbances, the arrangement
is listed in Table 6.3. Altogether, 300 test signals are generated and 240 of them
contain one disturbance, 45 contain two disturbances and 15 contain three
disturbances. The location, duration and magnitude are randomly generated
within the range given in Table 1.1.

The detection results of the 300 tests are listed in Table 6.4, including the
rate of correct determination of the existence of a disturbance, the average

accuracy & of the location of the disturbance and the rate of correct classifi-
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Figure 6.34: The process of disturbances classification.
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Table 6.3: Arrangement of the multi-disturbances contained in a signal

Number of | Impulsive | Oscillatory | Voltage | Momentary | Voltage | Periodic
signals transients | transients sags | interruptions | swells | notches
3 v v v
3 v v v
3 A v v
3 v v v
3 v v v
5 v v
5 v A
5 v v
5 v v
5 A v
5 v v
5 A v
5 v v
5 A A
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cation. As can be seen from the table, the proposed scheme is able to detect
the occurrence of disturbances, except thap in two tests when the impulsive
transient occurs together with an oscillatory transient and a periodic notch-
ing. respectively, the impulsive transient has not been detected. The location
results of sags, interruptions, swells and oscillatory transients are satisfactory,
with an error of only a couple of samples in the location and an accurate result
in classification. If more than one notch occurs in the test signal, the average
degree of match of all the notches is recorded for statistic analysis. A relative
low & of impulsive transients and periodic notching is due to its short duration.
An error of one sample may cause a significant decrease in the index of degree
of match. In general, a mis-location of one sample may cause a 10 ~ 20% fall of
. The classification result indicates that the classification strategy proposed

in section 6.5.3 is effective.

Table 6.4: The detection results of 300 test signals

Power Total number Accuracy Average | Accuracy
disturbances of the rate of value of rate of
disturbances | determination g0 classification
Impulsive
HpUisty 67 97.01% 90.50% 100%
transients
Oscillator
scrfiatory 67 100% 88.62% 100%
transients
Voltag
OHAge 61 100% 90.03% 100%
sags
Momentar
omentaty 61 100% 94.13% 100%
interruptions
Voltage
& 58 100% 96.39% 100%
swells
Periodic
61 100% 87.93% 100%
notches

In section 3.3, a morphological gradient wavelet (MGW) is proposed to de-
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tect and locate the transient disturbances of power system signals. It has been
proved that MGW outperforms Daubechies DB4 wavelet. However, compared
with the results presented in this section, it can be seen that the scheme pro-
posed here is more accurate and reliable than MGW and requires less computa-
tion. The scheme explores an alternative to detect and locate the disturbances.
Moreover, it involves classification, which is also important for power quality

analysis.

6.6 Conclusion

The embedding-based technique is applied to various signal processing
tasks. For ECG signal analysis, the ECG signals are transformed to the phase
space to form a binary image, and the feature waveforms correspond to the
objectives of the image. Hence, the identification of the feature waveforms is
carried out through the processing of the image. Moreover, the classification
of the P waves and T waves can be implemented using the geometry charac-
teristics of the objectives.

For phasor measurement, the method takes advantage of the mathemati-
cal properties of a power system signal to transfer it to a 2-dimensional phase
space through delay coordinate embedding. In this manner, the amplitude and
phase angle of a current or voltage signal and the phase difference of current
and voltage signals can be calculated sample by sample. The calculation in-
volves two or four samples only, unlike traditional FT-based methods that uses
samples of half a cycle or an entire cycle. Moreover, the method can also be
used to estimate the actual fundamental frequency when it deviates from its
nominal value.

For disturbance detection, two schemes based on embedding are proposed.
The delay constant of the first scheme is selected according to the the general
strategy proposed in [95], and the normal part of a disturbance signal forms
an ellipse in the phase space while the disturbance forms a shape that deviates

from the ellipse. The GK clustering algorithm is therefore used to distinguish
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the two shapes due to its ability to search in particular for ellipsoidal structures.
The scheme has been applied to detect several types of power disturbances
and the simulation results have shown its ability to localise the disturbances
precisely. As the scheme requires the presence of the disturbance and the
clustering procedure is relatively time-consuming, it is more applicable to off-
line power quality analysis rather than on-line monitoring.

The scheme based on projection uses the mathematical properties of sinu-
soidal signals to determine the delay constant so that the projection of the
normal part on the zy-plane forms a circle and the projection on the xy-plane
forms a line segment. The scheme extracts the features from the projections
and uses the gauges of Euclidean norm and function f(z.z) to determine the
location of the disturbance and its classification. Since the embedded signal is
constructed using the data that are sequentially sampled within a small sam-
pling window in the time domain, the location of the disturbances is almost
real-time and the computation time is greatly reduced compared with methods
that process the signal within a much longer sampling window. The proposed
scheme has been evaluated on a number of test signals, which are of six dif-
ferent types of disturbances under various conditions. The simulation results
have shown that the proposed scheme is able to locate the occurrence of dis-
turbances and can accurately classify them, as long as the disturbances are not

buried in the noise.
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Chapter 7
Conclusion and Future Work

This chapter concludes the thesis, summarises the major outcome of the re-
search work presented in the thesis and indicates possible directions for further

investigation of advanced morphological operators.

7.1 Conclusion

The objective of the research is to develop advanced morphological oper-
ators and to apply them to signal processing. MM is a non-linear technique
that focuses on the shape information of a signal. This property enables MM to
concentrate on characteristic waveforms and to replace traditional techniques
based on integral calculation, such as the FT and the WT.

Apart from basic morphological operators, such as dilation, erosion, opening
and closing, the thesis also engages the schemes of soft MM, multi-resolution
decomposition, multiscale MM and the embedding theorem in the develop-
ment of novel advanced morphological operators. Several advanced morpho-
logical operators have been developed in the research to fulfill the tasks of noise
removal of ECG signals, feature waveform identification of ECG signals, dis-
turbance detection, location and classification of power system signals, phasor
measurement of power system signals, noise removal of images.

For the three types of noise existing in most ECG signals, three methods

have been designed to remove them respectively. The multi-resolution mor-
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phological filter is used to remove the impulsive noise, the adaptive multiscale
morphological filter is developed to reject high frequency (Gaussian) noise, and
a fusion method hybridising EMD and MM for the normalisation of the base-
line wander. It should be noted that all the filters are able to preserve the shape
of the feature waveforms to the greatest extent while removing the noise.

In order to identify the feature waveforms, namely the QRS complexes, the
P waves and the T waves, two methods have been developed respectively. The
first one is the multi-resolution morphological filter. In this case, the feature
waveforms are considered as ‘noise’ and they are extracted by rejecting them
separately. The method utilises the geometric features of ECG signals, such as
the R waves having a remarkably higher amplitude and the width of the QRS
complexes being shorter, etc, to identify the three types of feature waveforms
one by one. The second method is based on the embedded signal and treats
it as a binary image. As the feature waveforms form separate objectives in
the image, the identification is carried out based on the geometric information
extracted from the image.

The core idea of disturbance detection is feature extraction. As the occur-
rence of disturbances arouses change in the gradient, the MGW is developed
to extract the gradient information of the signal. As the disturbances and
the normal part of the signal have distinguished geometric characteristics, the
disturbance signals are embedded to the phase space to have the characteris-
tics more clearly viewed. Two methods for the separation of the disturbances
and the normal part in the phase space have been proposed, based on the GK
clustering algorithm and the mathematical information of the projection of the
embedded signal, respectively.

The embedding-based method has also been used for phasor measurement.
It is able to measure the amplitude and the phase angle of a voltage or current
signal, as well as the phase difference between two signals. The method can
also be used to estimate the actual fundamental frequency, which is especially
useful at the presence of fundamental frequency shift. Being more accurate and

much less computational complex, the method can replace traditional methods
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such as the half-cycle FT.

The thesis has also proposed a novel way to design an optimal morphological
filter for noise removal. The scheme involves two steps. First, a morphological
filter or a combination filter is selected according to the characteristics of the
noisc. Sccond, the parameters of the morphological filter are optimised by an
EA towards the pre-set targets, such as lowest PSNR value. Therefore, what-
ever the feature of the noise is, an optimal filter can always be constructed to
reject it, targeting the criteria defined by the user. The simulation results have
demonstrated that the optimally designed filters outperformm the traditional
filters.

A large amount of simulation studies have been carried out to test the
performance of the proposed operators and the results have shown that they
are competent to fulfill the tasks. Moreover, as the operators are developed
based on a generic framework, they can be used to other applications with

minor or even no modification.

7.2 Future Work

The thesis aims at the development of advanced MM and to fully explore
its potential for applications in signal processing. It has also been recognised
that the lack of MM analysis in the frequency domain is another obstacle
that baulks the development of MM. Although the mathematical background
of MM implies that MM and frequency analysis are disrelated and hybridising
the two techniques faces enormous difficulty, it is worthwhile to fill the gap and
the outcome will greatly benefit the realm of signal processing. Future work
will concentrate on investigating an effective method that combines MM and
frequency-based techniques. It may include studying the frequency response of
commonly used morphological operators, such as opening and closing. Based
on the study, a generic framework will be constructed to design morphological
filters that have specific frequency response. The morphological filters can also

be designed to have better performance than traditional frequency filters and
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to consider both shape and frequency information while processing a signal.
As morphological wavelet fits in the framework of the WT and involves mor-
phological operation, it might perform frequency analysis if the morphological
operation uses a series of sine-based structuring elements. The future work will

take the following steps.

¢ Oun the investigation of the frequency properties of basic morphological
operators, a generic mathematical framework will be constructed to de-
sign morphological filters that have specific frequency responses. The
morphological filters will be designed to have better performance than
traditional frequency filters and to consider both shape and frequency

information while processing a signal.

o Preliminary study on the morphological wavelet has shown the merits
of infusing proper morphological operation in the decomposition and ap-
proximation procedure. The future work will investigate the influence of
the morphological operators engaged in the morphological wavelet and
generalise a strategy to select or design the most suitable morphological

operators to solve a specific signal processing problem.

o Some powerful MM-based schemes have been developed in recent litera-
ture, such as the slope transform, morphological gradient, morphological
pvramid and morphological undecimated decomposition. Yet, they are
limited to deal with certain types of signals. The behaviour of these
schemes in the frequency domain will be studied, which will lead to the
investigation of any underlying linkage among them. These schemes will
afterwards be advanced to involve frequency analysis to enhance their

accuracy and ability in feature extraction.

e The theoretical achievement will be applied to design a new generation
of protection relays for power systems. Tasks may include: to exactly
distinguish and extract the faint surge of transient faults for ultra-high-

speed relays, to identify the waveforms of a fault voltage/current signal,
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and to detect and compensate the distorted waveform caused by CT

saturation.
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Appendix A

Full-cycle and Half-cycle Fourier

Transforms

A.1 Full-cycle Fourier Transform

The full-cycle FT is the most widely used algorithm for extraction of the
amplitude and phase angle of a fault signal. It is immune to constant DC
offsets and can filter integral harmonics [101]{102]. Any measured periodic

voltage signal can be expanded into its Fourier series expansion [98] as:

v(t) =ap+ Z an cos(nwpt) + Z by, sin(nwpt) (A1.1)

n=1 n=1

where wy = 27 fo and fp is the fundamental frequency. The coefficients ag, a,

and b, can be obtained from:

l to+T
ag = — v(t)dt
T/to (t) (A.1.2)
2 to+T
ap = 7;/: v(t) cos(nwot)dt, n=1,2,...,00 (A.1.3)
2 to+7T
b, = 7,/t v(t) sin(nwet)dt, n=1,2,..., 00 (A.14)
0

where T is the period of the fundamental frequency component of the signal.

If the sampled signal is represented in a discrete form with N samples per
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fundamental cycle, the real and imaginary parts of the phasor representing the

sampled signal are obtained as:

2 = 2mn
VRe =7 ; v Ii — 'n Cos (T) (A].S)
s 2mn

The amplitude and phase a.ngle can be obtained using the real and imaginary

components, respectively, as follows:

= JVA.(R) + VR(K) (A.17)
o(k) = tan~" (%‘ﬂ%) . (A.1.8)

A.2 Half-cycle Fourier Transform

To reduce the computation time of the algorithm by half, the half-cycle FT
was proposed, which uses samples obtained from half a fundamental cycle. The
half-cvcle FT is described as follows. Any measured periodic voltage signal can

be expanded into its Fourier series expansion [98] as:

v(t) = Z n COS(nuwot) +Zb sin(nwot) (A.2.1)

n=1
where wy = 27 fp and fo is the fundamental frequency. The coefficients of the

Fourier series expausion are expressed by:

1 to+T/2
Qg = T/a/t ’U(t)dt (A22)
0
2 tu+T/2
an = 7‘ﬁ/l o(t) cos(nwpt)dl, n=1,2,...,00 (A.2.3)
0
2 to+T/2
b, = T_/i/t v(t) sin(nwot)dt, n=12,...,00 (A.24)
0

T.Y Ji



A.2 Half-cycle Fourier Transform 179

where T is the period of the fundamental frequency component of the signal.
The real and imaginary parts of the phasor representing the sampled signal are

calculated as:

N/2-1
Vre(k) = % Z v(k — n) cos (2—]7{/2) (A.2.5)
4 " 2rn
Vim(k) = = v(k ~ n)si —) . A2.6
)=y 3 ol =msin (%5 (A26)

The amplitude and phase angle can be obtained using the real and imaginary

components, respectively, as follows:

V(k) = \/v,gg(é) + V2 (k) (A.2.7)
#(k) = tan™! <“;:‘—E:;) . (A.2.8)

The half-cycle FT is used as a reference in the simulation studies: The perfor-
mance of the method proposed in section 6.4 is compared with the half-cycle

FT.
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