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Abstract 

Data Clustering and Partial Supervision with Some Parallel Developments 

by Saineh A. Salem 

Clustering is an important and irreplaceable step towards the search for structures in the 

data. Many different clustering algorithms have been proposed. Yet, the sources of vari- 

ability in most clustering algorithms affect the reliability of their results. Moreover, the 

majority tend to be based on the knowledge of the number of clusters as one of the in- 

put parameters. Unfortunately, there are many scenarios, where this knowledge may not be 

available. In addition, clustering algorithms are very computationally intensive which leads 

to a major challenging problem in scaling up to large datasets. This thesis gives possible 

solutions for such problems. 

First, new measures - called clustering performance measures (CPMs) - for assessing 

the reliability of a clustering algorithm are introduced. These CPAfs can be used to eval- 

uate: 1) clustering algorithms that have a structure bias to certain type of data distribution 

as well as those that have no such biases, 2) clustering algorithms that have initialisation 

dependency as well as the clustering algorithms that have a unique solution for a given set 

of parameter values with no initialisation dependency. 

Then, a novel clustering algorithm, which is a RAdius based Clustering ALgorithm 

(RACAL), is proposed. RACAL uses a distance based principle to map the distributions of 

the data assuming that clusters are determined by a distance parameter, without having to 
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specify the number of clusters. Furthermore, RACAL is enhanced by a validity index to 

choose the best clustering result, i. e. result has compact clusters with wide cluster separa- 

tions, for a given input parameter. Comparisons with other clustering algorithms indicate 

the applicability and reliability of the proposed clustering algorithm. Additionally, an adap- 

tive partial supervision strategy is proposed for using in conjunction with RACAL to make 

it act as a classifier. Results from RACAL with partial supervision, RACAL-PS, indicate 

its robustness in classification. Additionally, a parallel version of RACAL (P-RACAL) is 

proposed. The parallel evaluations of P-RACAL indicate that P-RACAL is scalable in terms 

of speedup and scaleup, which gives the ability to handle large datasets of high dimensions 

in a reasonable time. 

Next, a novel clustering algorithm, which achieves clustering without any control of' 

cluster sizes, is introduced. This algorithm, which is called Nearest Neighbour Clustering. 

Algorithm (NNCA), uses the same concept as the K-Nearest Neighbour (KNN) classifier 

with the advantage that the algorithm needs no training set and it is completely unsuper- 

vised. Additionally, NNCA is augmented with a partial supervision strategy, NNCA-PS, to 

act as a classifier. Comparisons with other methods indicate the robustness of the proposed 

method in classification. Additionally, experiments on parallel environment indicate the 

suitability and scalability of the parallel NNCA, P-NNCA, in handling large datasets. 

Further investigations on more challenging data are carried out. In this context, mi- 

croarray data is considered. In such data, the number of clusters is not clearly defined. 

This points directly towards the clustering algorithms that does not require the knowledge 

of the number of clusters. Therefore, the efficacy of one of these algorithms is examined. 

Finally, a novel integrated clustering performance measure (ICPM) is proposed to be used 

as a guideline for choosing the proper clustering algorithm that has the ability to extract 

useful biological information in a particular dataset. 
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Chapter I 

Introduction 

1.1 Motivations 

T ODAY, the world is full of data, and the continuous advancement in computer 

chnology makes creation of large amount of data faster and easier way. Clustering 

is one such way to summarise this huge amount of data into a small number of groups or 

categories. Clustering is a common technique for data analysis, which is used in many 

fields, including machine learning, data mining, pattern recognition, image analysis and 

bioinformatics. 

Clustering algorithms offer several advantages over manual grouping processes. Yet, 

the sources of variability in most clustering algorithms affect the reliability of their results. 

The variability in clustering results is either produced by some stochastic components or 

setting of the input parameter(s). Therefore, there is a need for performance measures 

that are able to examine not only the quality of the clustering results but also the stability 

of results in a quantitive manner. This offers guidelines for choosing the proper clustering 

algorithm for a particular dataset, and the parameter settings which give the most promising 

results. 

Many different clustering algorithms exist, and these can be used to find different num- 

bers of clusters depending on the requirements of the particular problem. A standard re- 

quirement in existing clustering algorithms is to specify the number of clusters. In well 
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bounded and understood datasets, it is relatively easy to deten-nine how many different 

clusters are required. Once this number is known, then it is relatively easy to perform the 

clustering and interpret the results. However, when the data is either noisy or not easily 

separable (which is often the case with many different real-world datasets), it can be much 

more difficult to determine with confidence the true number of clusters for the clustering al- 

gorithm. All these point towards new techniques for clustering to alleviate the requirement 

of the number of clusters. 

Clustering is unsupervised classification where there are no predefined classes (labels) 

and no a priori knowledge of the data, while supervised classification requires a complete 

knowledge of the data where the class label and the number of classes (labels) are pre- 

defined. The process of acquiring a complete knowledge of the data is often limited and 

always an expensive and error-prone task that requires time and human intervention. There- 

fore, the enhancement of the clustering process with a small proportion of labelled data can 

guide the clustering process of the unlabelled data. 

Clustering algorithms are computationally intensive, particularly when these algorithms 

are used to analyse large amounts of data. When a fast serial machine can not deliver re- 

sults in a reasonable time, a possible approach to reduce the processing time is based on the 

implementation of clustering algorithms on scalable parallel computers. This can provide 

the appropriate setting to execute efficiently clustering algorithms for extracting knowledge 

from large-scale datasets. 

1.2 Contributions 

The following is a summary of the original contributions of my research in the field of data 

clustering: 

Novel measures - called clustering performance measures (CM) - for assessing 

the reliability of a clustering algorithm are introduced. These CM can be used 

to evaluate: 1) clustering algorithms that have a structure bias to a certain type of 

data distribution as well as those that have no such bias, 2) clustering algorithms that 
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have initialisation dependency as well as the clustering algorithms that have a unique 

solution for a given set of parameter values with no initialisation dependency. 

A novel clustering algorithm, called RAdius based Clustering ALgorithm (RACAL), 

is proposed. RACAL uses a distance based principle to map the distributions of the 

data assuming that clusters are determined by a distance parameter, without having to 

specify the number of clusters. Furthermore, RACAL is enhanced by a validity index 

to choose the best clustering results for a given input parameter. Additionally, an 

adaptive partial supervision strategy is proposed for use in conjunction with RACAL 

to make it act as a classifier. 

A novel clustering algorithm, which achieves clustering without any control of clus- 

ter sizes, is introduced. This algorithm, which is called Nearest Neighbour Clustering 

Algorithm (NNCA), uses the same concept as the K-Nearest Neighbour (KNN) clas- 

sifier with the advantage that the algorithm needs no training set and it is completely 

unsupervised. Additionally, NNCA is augmented with a partial supervision strategy 

to act as a classifier. 

Parallel design and implementations of RACAL and NNCA clustering algorithms to 

handle large datasets of high dimensions and reduce the clustering time, which helps 

in improving the clustering quality as well as improving the flexibility in data explo- 

ration. 

* investigation of the use of a recently developed clustering algorithm, Self-Organising 

oscillator Network (SOON) that has biological roots and does not require the knowl- 

edge of the number of clusters, in analysing microarray data. 

Development of a novel integrated clustering performance measure (ICPM) to be 

used as a guideline for choosing the proper clustering algorithm that has the ability 

to extract useful biological information in a particular microarray dataset. 

Figure 1.1 shows a graph that describes the novel contributions of this thesis in the field of 

data clustering. 
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1.3 Outline of the Thesis 

This thesis is organised as follows: 

Chapter 2 presents the background about the data clustering and a brief overview of 

the different clustering algorithms that are used within different areas. In addition, this 

chapter discusses two recent trends in clustering, clustering with partial supervision and 

the parallelisation of clustering algorithms. 

Chapter 3 presents new measures - called clustering performance measures (CPMs) - 

for testing the reliability of clustering algorithms. These CPMs are defined using a valida- 

tion measure, which determines how well the algorithm works with a given set of parameter 

values, and a repeatability measure, which is used for studying the stability of the cluster- 

ing results and has the ability to estimate the correct number of clusters in a dataset. In 

addition, a novel cluster validity index, VI index, which is able to handle non-spherical 

clusters, is proposed. 

Chapter 4 proposes a novel clustering algorithm, which is a RAdius based Clustering 

ALgorithm (RACAL) and does not require the knowledge of the number of clusters. The 

proposed algorithm is enhanced by a reliable validity index to choose the best clustering 

results for a given input parameter. Additionally, an adaptive partial supervision strategy is 

proposed for using in conjunction with RACAL to make it act as a classifier. Furthermore, 

a parallel algorithm for RACAL is proposed to reduce the clustering time of large datasets. 

Chapter 5 proposes a novel clustering algorithm, which is called Nearest Neighbour 

Clustering Algorithm (NNCA) and uses the same concept as the K-nearest neighbour (KNN) 

classifier with the advantage that the algorithm needs no training set and it is completely 

unsupervised. Furthermore, it achieves clustering without any control of cluster sizes. Ad- 

ditionally, a partial supervision strategy is proposed for use in conjunction with NNCA to 

make it act as a classifier. Furthermore, a parallel algorithm for NNCA is proposed to reduce 

the clustering time of large datasets. 

Chapter 6 investigates the use of a recently developed clustering algorithm, Self- 

Organising Oscillator Network (SOON) that has biological roots and does not require the 

knowledge of the number of clusters, in analysing microarray data. In addition, a novel 
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integrated clustering performance measure (ICPM) for assessing the reliability of results 

from a clustering algorithm used for analysing microarray data is proposed. 

Chapter 7 presents an overview of the work done in this research, conclusions and 

further work. 
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Chapter 2 

Background 

2.1 Introduction 

T HE main focus of this chapter is to give the necessary background about data clus- 

tering and some of the recent trends in clustering. This chapter begins with a back- 

ground about cluster analysis and a brief overview of the different clustering algorithms. 

Then, the enhancement of the clustering process with partial supervision along with a re- 

view of Partially (or semi-) supervised clustering algorithms are discussed. Finally, the 

recent trend in parallel implementations of clustering algorithms, which give a flexible and 

interactive data exploration when analysing large datasets, is also discussed. 

2.2 Cluster Analysis 

Cluster analysis is the grouping of individuals in a population in an attempt to discover 

structures or groups in the data. In some sense, it is desirable for the individuals within 

a group to be similar to one another, but dissimilar from individuals in other groups [1]. 

Jain and Dubes [2] defines the cluster analysis as an organisation of the data by abstracting 

underlying structure either as a grouping of individuals or as a hierarchy of groups. The 

representation can then be investigated to see if the data group according to preconceived 

ideas or to suggest new experiments. Many definitions for clustering have been proposed 

over the years (e. g., [3,4,5]). However, a highly descriptive and appealing characterisation 

9 
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of the clustering or grouping can be found in the literature [61: 

"Cluster analysis is the art offinding groups in data" 

Clustering has been applied in a wide variety of fields [7,8], ranging from engineer- 

ing (machine learning, artificial intelligence, pattern recognition, mechanical engineering, 

electrical engineering), computer sciences (web mining, spatial database analysis, textual 

document collection, image segmentation), life and medical sciences (genetics, biology, 

microbiology, paleontology, psychiatry, clinic, pathology), to earth sciences (geography, 

geology, remote sensing), social sciences (sociology, psychology, archeology, education), 

and economics (marketing, business). Accordingly, clustering is also known as numerical 

taxonomy, learning without a teacher (or unsupervised learning), typological analysis and 

partition. The diversity reflects the important position of clustering in scientific research. 

On the other hand, it causes confusion, due to the differing terminologies and goals. Clus- 

tering algorithms developed to solve a particular problem, in a specialised field, usually 

make assumptions in favour of the application of interest. These biases inevitably affect 

the performance in other problems that do not satisfy these premises. In Section 2.2.3, 

categorisation of clustering algorithms will be discussed. 

2.2.1 Definitions 

* An object Oi, a pattern (or a feature vector), is a single data point used by a clustering 

algorithm [9]. 

9 Afeature (or attribute) is an individual component of an object [9]. 

*A dataset 0 is a set of objects. In many cases, a dataset is viewed as an nxd matrix 

(n objects each of d features). 

*A cluster is a set of similar objects, and objects from different clusters are not similar. 

9 Hard (or Crisp) clustering algorithms assign each object to one and only one cluster. 

* Fuzzy clustering algorithms assign to each object a membership degree to each clus- 

ter. The membership degrees are recorded a partition matrix, U(O) = [Uij]Kxn, 
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where K is the number of clusters, and n is the number of objects. 

9A distance measure is a metric used to evaluate the similarity of objects [9]. 

9A Prototype is a cluster centre. 

2.2.2 Basic clustering step 

2.2.2.1 Preprocessing 

11 

Most clustering methods assume that d-dimensional feature vectors represent all data ob- 

jects. This step therefore involves choosing an appropriate feature, and doing appropriate 

preprocessing and feature extraction on data objects to measure the values of the chosen 

feature set. It will often be desirable to choose a subset from all the features available, to 

reduce the dimensionality of the problem space. More information on feature selection can 

be found in [1,10]. 

2.2.2.2 Similarity measure 

Similarity measure plays an important role in clustering process. The notion of similarity 

or resemblance, distance between two objects is a dominant factor of any grouping [I fl. 

It is so common that we tend to reach some simplification of the problem. The role of the 

distance function is to quantify a notion of similarity; the lower the distance between two 

objects, the higher the level of their similarity. This property implies that any two objects 

with the distance function equal to 0 are the same and therefore similar to the degree of 1. 

Euclidean distance is the most widely used distance function, and can be defined as 

d 
D2 Ai Oj) == (1: (0i, k- 0j, k) 

2)1/2 

k=l 

which is a special case (q = 2) of the Minkowski distance [9] which is defined as 

d 
Dq(Oii Oj) ý (E(Oi, k - Oi, k)q)llq (2.2) 

k=l 
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The drawback of Minkowski distance is the tendency of the largest-scaled feature to dom- 

inate other features. This can be solved by normalising the features to a common range 

[9]. One way to do this is by using cosine distance (or vector product). When q=1, the 

Minkowski distance is referred as Manhattan distance [1,7]. The Manhattan distance is 

usually not suitable for clustering data of high dimension, because the Manhattan distance 

between objects increases with the increase in dimensionality. Linear correlation among 

features can also distort distance measures; this distortion can be alleviated by applying 

Mahalanobis distance [ 12] which is defined as: 

Dm(0i, 0j)= (0, _0j )Z-1(0, _0j )T (2.3) 

where E is the covariance matrix of the objects. The Mahalanobis distance gives different 

features different weights based on their variances and pairwise linear correlations. Fur- 

thermore, it implicitly assumes that the densities of the classes are multivariate Gaussian 

[9]. There are other distance measures and can be found in [5,13,14]. 

2.2.2.3 Clustering algorithms 

Clustering algorithms are general methods, which use particular similarity measures. The 

particular choice of clustering algorithms depends on the desired properties of the final 

clustering, e. g. compactness, and connectedness. Once a similarity measure is chosen, the 

construction of a clustering algorithm function makes the partition of clusters an optimisa- 

tion problem, which is well defined mathematically, and has rich solutions in the literature 

[8]. 

2.2.2.4 Cluster validation 

Given a dataset, each clustering algorithm can always produce some clusters regardless of 

whether or not clusters exist. Moreover, different approaches usually lead to different clus- 

ters; and even for the same algorithm, parameter identification or the presentation order of 

the input data objects may affect the final results. Therefore, effective evaluation standards 

and criteria are important to provide the users with a degree of confidence for the clustering 
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results derived from the used algorithms. These assessments should be objective and have 

no preferences to any algorithm. Also, these should be useful for answering questions like 

how many clusters are hidden in the data, whether the clusters obtained are meaningful or 

just an artifact of the algorithms, or why one would choose an algorithm instead of another. 

2.2.2.5 Result interpretation 

The ultimate goal of clustering is to provide users with meaningful insights from the orig- 

inal data, so they can effectively solve the problems encountered. In data compression 

applications, one can represent similar objects with fewer objects, cluster representatives. 

In model construction application, one can build a model of the problem based on the 

clusters formed from the data. 

2.2.3 Overview of clustering algorithnis 

The idea of data grouping, or clustering, is simple in its nature and is one of the most 

primitive mental activities of humans [7]; whenever we are presented with a large amount 

of data, we usually tend to summarise this huge number of data into a small number of 

groups (clusters) in order to facilitate its analysis. Moreover, most of the data collected 

in many problems seem to have some inherent properties that lend themselves to natural 

groupings. Nevertheless, finding these clusters is not a simple task for humans unless the 

data is of low dimensionality (two or three dimensions). This is why some algorithms have 

been proposed to solve this kind of problem. Those algorithms are called "Data Clustering 

Algorithms". 

There are literally many clustering algorithms that are well-reported in the literature 

and illustrated with carefully selected benchmarks. Obviously, it is impossible to discuss 

all of them. It is, however, worth establishing a general taxonomy of clustering algorithms. 

In general, there are two basic types of clustering algorithms: Hierarchical and Partitional 

algorithms. These algorithms are classified based on the properties of the generated clusters 

[1,5,7,9,11]. 
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Hierarchical algorithms create a hierarchical decomposition of the data. The hier- 

archical decomposition is represented by a tree structure, binary tree or dendrograrn, 

that splits the data into small subsets until each subset consists of only one object. In 

such a hierarchy, each node of the tree represents a cluster of data. The tree can be 

built either from the leaves up to the root by merging clusters (agglomerative clus- 

tering) or from the root down to the leaves by dividing clusters at each step (divisive 

clustering). It is necessary that a ten-nination condition is defined to indicate when 

the merge or division process should stop. 

- Divisive: Start with one cluster of all objects and successively split a cluster 

until only singleton clusters of individual points remain. For a cluster with n 

objects, there are 2'-1 -1 possible two-subset divisions, which is very expen- 

sive in computation [5]. Examples of divisive clustering algorithms, MONA 

and DIANA, are described in [6]. 

- Agglomerative: Start with each object being as individual cluster, and succes- 

sively merge the most similar or closest pair of clusters according to a distance 

measure. 
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Figure 2.1 depicts the dendrogram produced by either a divisive or agglomerative 

clustering algorithms. 

Based on the definition of the distance measure between clusters, there are many ag- 

glomerative clustering algorithms. The most popular methods include single linkage, 

complete linkage and average linkage methods [I I]. 

- Single linkage: The similarity between two clusters, S and T, is calculated 

based on the minimal distance between the objects belonging to the correspond- 

ing clusters. 

JIT-Sil = min lix-yll (2.4) 
XCT, 

ýYES 

- Complete linkage: The similarity between two clusters, S and T, is calculated 

based on the maximal distance between the objects belonging to the corre- 

sponding clusters. 

JIT-SIl = max lix-y 11 (2.5) 
XET, y(=-S 

- Average linkage: The similarity between two clusters, S and T, is calculated 

based on the average distance between all possible pairs of objects in the clus- 

ters. 

IT -SIj = ITI 
1 
Isl 

1: IIx-YIj (2.6) 
xET, YES - 

where ITI and ISI denote the number of objects in clusters T and S respectively. 

These three standard methods of constructing clusters are visualised in Fig. 2.2. 

The common criticism for hierarchical clustering algorithms comes from the fact 

that once a merge or a split is committed, it cannot be undone or refined, which 

means that hierarchical clustering algorithms are not capable of correcting possible 

previous misclustering. Furthermore, the computational complexity of hierarchical 

clustering algorithms is at least O(n 2) and this high cost limits their application in 

large datasets [8,11]. Recently, many hierarchical clustering algorithms have been 
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Figure 2.2: Constructing clusters with the use of hierarchical methods. 
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proposed to improve the clustering performance and to handle large datasets, e. g., 

BIRCH [151, CURE [16], and CHAMELEON [17]. 

Partitional algorithms construct a partition of the data of n objects into a set of K 

clusters where K is an input parameter. Typically, partitioning algorithms start with 

an initial partition of the data and then use an iterative control strategy to optimise 

the clustering quality, e. g. the average distance of an object to its representative. 

Figure 2.3 shows an example of partitional clustering at different number of clus- 

ters. The most commonly used partitional clustering algorithms are K-means [2,61, 

K-medoids [6], CLARA (Clustering Large Applications based on a Randomised 

Search) [6], and CLARANS (Clustering LARge ApplicatioNs) [181. 

- K-means clustering algorithm is one of the best-known and most commonly 

16 

IT -S11 ililix 11-T -. 1.1 
rc-T 
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used clustering algorithms [1]. Its goal is to produce K clusters from a set 
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Figure 2.3: Examples of partitional clustering at different number of clusters (K): Cluster- 
ing with (a) K=2, (b) K=3, and (c) K=4. 
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of n objects (each object is characterised by d features) so as to minimise the 

within-cluster discrepancies, where a discrepancy is defined as the difference 

between an object and the cluster centre. The standard measure of discrepancy 

used is the L2 norm. This leads to the following objective function: 

K 
IIX, C 112 E=J: 1: 

j (2.7) 
j=l XiECj 

where the index j refers to the cluster label, Cj is the centre of cluster j and xi 

refers to the objects to be clustered. The algorithm is as follows: 

I- Select K objects as initial centres. 

2- Assign each data object to the closest centre. 

3- Recalculate the centres of each cluster. 

4- Repeat step 2 and 3 until centres do not change. 

A great advantage of the K-means algorithm is that its time complexity is 

O(JKn) with J being the number of iterations, making it slightly more scal- 

able. However it is highly sensitive to noise and outliers, and it requires the 

user to specify the number of clusters in advance. Furthermore, the definition 

of "means" limits the application to numerical variables. 

K-medoids clustering algorithm [6] is an extension of K-means, intended to 

handle outliers efficiently. Instead of cluster centres, it chooses to represent 

each cluster by its medoids. A medoid is the most centrally located object 

inside a cluster. As a consequence, medoids are less influenced by extreme 

values; the mean of a number of objects would have to take account of these 

values while a medoid would not. The algorithm chooses K medoids initially 

and tries to place other objects in clusters whose medoid is closer to them, 

while it swaps medoids with non-medoids as long as the quality of the result 

is improved. Quality is also measured using squared-error between the objects 

in a cluster and its medoid. The computational complexity of K-medoids is 

O(JK(n - K)2) with J being the number of iterations, making it very costly 
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for large K and (n - K) values. This high cost limits its application to cluster 

large datasets. CLARA and CLARANS algorithms [6,18] have been proposed 

to extend the K-medoids algorithm for tackling large applications. 

For hard partitional clustering, each object only belongs to one cluster. Fuzzy clus- 

tering extends this notion to associate each object to all clusters with a degree of 

membership, uij E [0,11, which represents the membership degree of j-th object to 

i-th cluster. Larger membership values indicate higher confidence in the assignment 

of the object to the cluster. One widely used algorithm is the Fuzzy C-Means (FCM) 

algorithm [19,201, which is based on K-means clustering algorithm. 

Recently, there are several advances on K-means and other partitional clustering a]- 

gorithms with their applications which can be found in [21,22,23]. 

Apart from the two main categories of partitional and hierarchical clustering algorithms, 

many other methods have emerged in cluster analysis, and are mainly focused on specific 

problems or specific datasets available. These methods include [ 13]: 

Density-Based Clustering: These algorithms cluster objects according to specific 

density objective functions. Density is usually defined as the number of objects in a 

particular neighbourhood of a data objects. In these approaches a given cluster con- 

tinues growing as long as the number of objects in the neighbourhood exceeds some 

parameter. This is considered to be different from the idea in partitional algorithms 

that use iterative relocation of points given a certain number of clusters. Examples of 

density-based clustering algorithms are: DBSCAN (Density-Based Spatial Cluster- 

ing of Applications with Noise) algorithm [24], which is the most well known, and 

DENCLUE (DENsity-based CLUstEring) algorithm [25]. 

Grid-Based Clustering: The main focus of these algorithms is spatial data, i. e., data 

that model the geometric structure of objects in space, their relationships, properties 

and operations. The objective of these algorithms is to quantise the dataset into a 

number of cells and then work with objects belonging to these cells. These algo- 

rithms do not relocate objects but rather build several hierarchical levels of groups 
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of objects. In this sense, these algorithms are closer to hierarchical algorithms but 

the merging of grids, and consequently clusters, does not depend on a distance mea- 

sure but it is decided by a predefined parameter. Examples of grid-based clustering 

algorithms are: STING (STatistical INformation Grid) [261, and WaveCluster [27] 

algorithms. 

4P Model-Based Clustering: These algorithms find good approximations of model pa- 

rameters that best fit the data. These algorithms can be either partitional or hier- 

archical, depending on the structure or model hypothesised about the dataset and 

the used method to refine this model to identify partitionings. These algorithms are 

closer to density-based algorithms, in that particular clusters are grown so that the 

preconceived model is improved. However, these algorithms sometimes start with a 

fixed number of clusters and do not use the same concept of density. Examples of 

model-based clustering algorithms are: EM (Expectation-Maximization) algorithm 

[28] and the Kohonen Self Organising Map (SOM) that has been perhaps one of 

the most popular unsupervised clustering algorithms and is used in many different 

applications [29]. 

Graph-Based Clustering: These algorithms uses the concepts and properties of 

graph theory, where the nodes N of a weighted graph G are corresponding to the 

data objects and the edges E reflect the distances between each pair of data objects. 

Examples of graph-based clustering algorithms are: spectral and path based cluster- 

ing algorithms [30,31 ]. These algorithms consider arbitrarily shaped clusters which 

are non-linearly separable in feature space. 

Categorical Data Clustering: These algorithms are specificially developed for data 

where Euclidean, or other distance measures cannot be applied. Examples of such 

algorithms can be found in [32,33] 

Finally, one can conclude that there is no best clustering algorithm. Different clustering 

methods can yield different results and some methods will fail to discover obvious clusters. 

The reason for this is that each method implicitly forces a structure on the given data. For 
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example, the sum-of-squares methods, e. g., K-means, will tend to produce hyperspherical 

clusters. Therefore, there is no clustering algorithm that can be universally used to solve 

all problems. 

2.3 Clustering with Partial Supervision 

There are two fundamental modes of learning [11,13,341: 

* Supervised learning 

o Unsupervised learning 

In supervised learning, the process of assigning data objects to groups is known as 

classification. This process relies on the availability of knowledge about the data being 

analysed. Knowledge here represents the set of labels associated with the data. In super- 

vised mode, the class label and the number of classes are predefined. 

In unsupervised learning, the process of assigning unlabelled data objects to clusters 0 

using some similarity measure (i. e. distance-based, density-based, etc. ) is known as clus- 

tering. This process is self-supervised. Ideally, two criteria have to be satisfied, namely 

intra-cluster similarity and inter-cluster dissimilarity. 

These modes appear to be extreme in the sense that the supervised mode requires com- 

Partiaffy. supenised Ulisupenised 
clustedlio, chistedno, 

plete knowledge of the data while the unsupervised uses no knowledge. Figure 2.4 shows 
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the clustering with respect to knowledge. The complete knowledge of the data is often 

limited and expensive to generate, since labeling data typically requires human expertise. 

Therefore, the main idea of clustering with partial supervision, semi-supervised clustering, 

is to take the advantage of the smaller proportion of labelled objects to guide the clustering 

process of the unlabelled objects. Pedryez and Waletzky [35] define clustering with partial 

supervision as phenomenon occurred when in addition to a vast number of unlabelled ob- 

jects one is also furnished with some (usually, few) labelled objects. Definitely, these few 

already classified objects, when carefully exploited, could provide some general guidance 

to the clustering mechanism. As indicated in [36], the labelled objects serve as "anchor" 

(reference) elements that shape the clusters. 

One of the typical applications of clustering with partial supervision is Computer-Aided 

Diagnosis (CAD) which has become one of the major research subjects in medical imag- 

ing and diagnostic radiology [37]. The basic concept of CAD is to provide a computer 

output as a second opinion to assist radiologists' image interpretation by improving the ac- 

curacy and consistency of radiological diagnosis [371. The design of clustering with partial 

supervision in CAD can play important role in improving CAD performance with small 

amount of knowledge, where only some labelled objects or regions of an image can assist 

in identification of any suspicious objects or regions. 

Several partially (or semi-) supervised clustering algorithms have been proposed. For 

example, Pedryez and Waletzky [351 proposed a modified version of the standard FUZZY 

ISODATA algorithm to deal with the problem of partial supervision. In this work, the clas- 

sification information is incorporated additively as a part of an objective function utilised 

in the standard FUZZY ISODATA algorithm. 

Basu et A [38] proposed two semi-supervised algorithms based on a seeding mech- 

anism. These algorithms rely on the K-means algorithm. In the first algorithm, the seeds 

are used to initialise the partition centres and then updated during the clustering process. in 

the second algorithm, once initialised with the seeds, the centres are not updated. The idea 

here is that when seeds are noise-free, centres may be kept unchanged. 
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Blum et A [39], and Zhu et A [40] consider the data (labelled and unlabelled) as 

a graph. The data objects are represented as nodes which are interconnected by weighted 

edges. The weights indicate the similarity between objects. Basically, these approaches 

use a loss function and a regularisation factor to propagate labels of the labelled objects to 

the unlabelled objects lying in the vicinity. 

Demiriz et al. [411 applied genetic algorithms to combine supervised classification and 

unsupervised clustering. The basic idea in this work is to minimise an objective function 

that is a linear combination of the cluster dispersion and the cluster impurity of the form: 

ax Cluster Dispersion +bx Cluster Impurity (2.8) 

The first component of this formula is concerned with unsupervised clustering while the 

second component controls the purity of the generated clusters and is therefore concerned 

with supervised classification. If a=0, then the result is purely unsupervised clustering 

algorithm. If b=0, the result is a purely supervised algorithm. 

Jeon and Landgrebe [421 suggested a partially-supervised classification algorithm to 

discriminate a particular class of interest. The goal was to design a classification algorithm 

given only the labelled data objects. The proposed algorithm relies on three steps. In the 

first step, each data object is assigned a weight which represents the likelihood of not being 

in the class of interest. In the second step, the clusters are initialised using a probabilistic 

unsupervised algorithm. In the last step, clusters are refined and adjusted. 

Basu et A [43] proposed a probabilistic model for semi-supervised clustering based on 

hidden markov random fields that incorporates supervision into prototype-based clustering. 

Nigam et al. [44] investigated a probabilistic approach for text classification. The 

approach combines the Expectation-Maximization (EM) algorithm and a naive Bayes clas- 

sifier. The algorithm trains the classifier using the labelled data only. Then, the labels of the 

unlabelled objects are iteratively estimated and the classifier is re-trained using all labelled 

data until convergence. 
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Many algorithms for data clustering developed in recent decades all face a major chal- 

lenging problem in scaling up to very large datasets, where the computational cost of such 

algorithms increases with the increase in data sizes and dimensions. Although, many at- 

tempts have been proposed to improve the performance of some conventional clustering 

algorithms, these attempts are facing more severe challenges in handling the rapid growth 

of the data than the conventional algorithms. For example, K-medoids clustering algorithm 

is designed for tackling not only the effect of noise and outliers in the data, which are worst 

affecting the performance of K-means clustering algorithm, but also the memory required 

to store a vast amount of information for computing the means. However, K-medoids is 

not as efficient computationally as K-means, as its computational time is higher than K- 

means algorithm. One possible solution such as sampling the data can be used, however 

the data sampling approaches are not always accurate enough for discovering representa- 

tive patterns (objects), e. g. CLARA algorithm uses random sampling approach to tackle 

the computational required by K-medoids algorithm. 

In general, clustering algorithms are very computionally demanding and, thus, require 

high-performance machines to get results in a reasonable amount of time. Experiences of 

clustering algorithms taking one week or about 20 days of computation time on sequen- 

tial machines are not rare [45]. One way of overcoming this limitation is to improve the 

operating speed of processors and other components so that they can offer the computa- 

tional power required by a clustering algorithm. Even though this is currently possible to a 

certain extent, future improvements are constraints by the speed of light, thermodynamics 

laws, and the high financial costs for processor fabrications. A viable and cost-effective 

alternative solution is to use scalable parallel computers that can provide the appropriate 

setting to efficiently execute clustering algorithms for analysing large datasets. 

Recently, there is an increasing interest in parallel implementations of data clustering 

algorithms. This reduces the execution time of the clustering process which results in a 

flexible and interactive data exploration. Examples of parallel approaches to clustering can 

be found in [46,47,48,49,50,51,52,531. 
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In this chapter, the necessary background about the data clustering and a brief overview 

of different clustering algorithms have been introduced. The second part of this chapter 

discussed the advantage of enhancing the clustering algorithms with partial supervision to 

improve the clustering performance. Finally, the recent trend in parallelising clustering 

algorithms to handle large datasets has been discussed. 



Chapter 3 

Clustering Performance Measures 

3.1 Introduction 

C LUSTERING is an unsupervised classification, and is usually more difficult to assess 

than a supervised approach. The procedure for evaluating the results of a clustering 

algorithm is known as cluster validation. In general terms, there are three approaches 

to investigate cluster validity [7,541. The first approach is based on external criteria. 

This implies that results of a clustering algorithm are evaluated based on a pre-specified 

structure, which is imposed on a dataset and reflects the user's intuition about the clustering 

structure of the dataset. The second approach is based on internal criteria. In this case 

clustering results are evaluated in terms of quantities that involve vectors of the dataset 

themselves (e. g. proximity matrix). The third approach to cluster validity is based on 

relative criteria. Here the basic idea is to evaluate the clustering structure by comparing it to 

other clustering results using the same algorithm, but with different input parameter values. 

The cluster validity approaches based on external and internal criteria rely on statistical 

hypothesis testing. Moreover, the indices related to these approaches aim at measuring the 

degree to which a dataset confirms to an a-priori specified scheme [54]. On the other hand, 

the third approach aims at finding the best clustering scheme that a clustering algorithm 

can define under certain assumptions and parameters [551. There are many validity indices 

which are used for relative criteria, namely, the Davies-Bouldin index [561, Dunn's index 

26 
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[57], Calinski-Harabasz index [581, "1" index [59], and many other indices described in 

[55,60,61,62,63,641. 

The major drawback of external and internal criteria is their high computational cost 

[65]. Moreover, these are used to decide whether an algorithm performs its function or 

not, and cannot tell how well an algorithm works for the data that contain overlapped 

clusters as well as well-separated data. In relative criteria, the evaluation of the clustering 

scheme and determining the optimum parameters ignores the effect of the initialisation and 

randomness on the part of the algorithm, i. e., one can get different results for two different 

runs on the same dataset using the same parameters, and this can pose extra problems for 

the clustering algorithm using higher dimensional data that contains overlapped structures. 

Maulik and Bandyopadhyay [591 initialised the same set of cluster centres in order to make 

comparison among clustering algorithms fair, but the main drawback of this approach is 

that it does not study the effect of different initialisation on the degree of stability and the 

evaluation procedure to get the optimum setting of the parameters. 

The problem of deciding the number of clusters in the data is common to all clustering 

methods [1]. There are numerous algorithms for cluster validity in the literature. These 

methods use some criteria to estimate the number of clusters that are present in the dataset. 

Tibshirani et al. [661 propose the Gap statistic for estimating the number of clusters in a 

dataset, it relies on computing the total sum of within-cluster dissimilarities on the dataset 

for a given number of clusters which corresponds to the squared-error criterion optimised 

by the K-means algorithm [2]. Then, this quantity is compared against the average over 

data which is uniformly sampled from a hyper-rectangle containing the original data. The 

main drawback of Gap statistic is the bias to spherical distribution datasets with compact 

clusters packed around cluster centres. Law et al. [671 propose bootstrapping approach 

for estimating the number of clusters by considering a clustering algorithm as an estimator 

for the partition of the data space. It uses bootstrapping to estimate the variability of this 

estimator. If the partition is valid, the variability should be low. Lange et al. [68] pro- 

pose stability-based model selection for estimating the number of clusters by considering 

the average dissimilarity of solutions computed on two different datasets that have been 
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generated by the same source. The estimated number of clusters corresponds to the min- 

imum dissimilarity between partitions for different number of clusters. Other approaches 

[69,70] cluster two nondisjoint datasets to measure the similarity of the clustering struc- 

tures obtained for the intersection of both datasets and many other methods described in 

[60,71,72,73,741. 

In the literature, numerous approaches have been proposed to assess clustering results. 

These approaches are belong to either validity based approach or stability based approach. 

The validity based approach is used to assess the quality of clustering results, while stability 

based approach is used, to assess the stability of clustering results. Therefore, there is a need 

for perfon-nance measures that are able to examine not only the quality of the clustering 

results but also the stability of results in a quantitive manner. This offers guidelines for 

choosing the proper clustering algorithm for a particular dataset, and the parameter settings 

which give the most promising results. 

In this chapter, new measures - called clustering performance measures (CPMs) - for 

testing the robustness and reliability of a clustering algorithm are introduced. The proposed 

CPMs can be used to evaluate different clustering algorithms. These measures are applied 

on sub-sampled datasets, the original dataset, and datasets with extra samples. Therefore, 

one can use the proposed CPMs to evaluate: 1) clustering algorithms that have a structure 

bias to a certain type of data distribution as well as those that have no such biases, 2) 

clustering algorithms that have initialisation dependency (e. g. K-means algorithm) as well 

as the clustering algorithms that have a unique solution for a given set of parameter values 

with no initialisation dependency (e. g. hierarchical algorithm [1,7]). Furthermore, a novel 

cluster validity index, which is called VI index, and a repeatability measure as alternative 

methods for estimating the number of clusters in a dataset are proposed. 

3.2 Datasets 

In order to examine the CPMs to be proposed in Section 3.3, different types of real-world 

and synthetic datasets are used. 



CHAPTER3. CLUSTERING PERFORMANCE MEASURES 

0 ...................... ................................. 

(a) 

-15 

p ' 
05 

, 
.. . 

-46 
-. 

I S -21 - 
"Z 

-1 45 

. 

(b) 

29 

(c) 

Figure 3.1: (a) Constellation diagram of communications data, (b) QAM-4 at SNR = 15 
dB, and (c) QAM-4 at SNR = 10 dB. 

3.2.1 Communications data 

Communications data are good benchmark test problems for unsupervised clustering algo- 

rithms, primarily due to clean delineation between different clusters within constellation 

[75] at high SNR (Signal to Noise Ratio). However, by lowering the SNR of the signal, 

less well separated clusters result, which can pose more of a problem to a clustering algo- 

rithm. Figure 3.1 shows the constellation diagram of communications data and two QAM-4 

datasets with different SNR values. 
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Figure 3.2: Synthetic datasets containing (a) three ring-shaped clusters, and (b) spiral arms. Cý 

3.2.2 Breast cancer data 

Two Wisconsin breast cancer datasets [761 are considered in this chapter. The first contains 

683 samples of 9 features each, and two classes: Benign (class I and 444 samples) and 

Malignant (class 2 and 239 samples). The second contains 569 samples of 30 features 

each, and two classes: Benign (class I and 357 samples) and Malignant (class 2 and 212 

samples). 

3.2.3 Synthetic data 

Two synthetic datasets are used to evaluate the clustering algorithms that are able to cluster 

datasets with arbitrarily shaped clusters. Figure 3.2 shows two synthetic datasets. 

3.3 Clustering Performance Measures - basis and definitions 

For reliable and fair evaluation, two stages are used to measure the robustness and reliability 

of a clustering algorithm; The first is the validation measure which is used for determining 

how well the algorithm works for a given set of parameter values. The second is the re- 

peatability measure which is used for studying the stability of the clustering solutions. The 

proposed CPMs are derived from these two measures. 
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3.3.1 Validation measure 

The assessment of most clustering algorithms using visual tools is a crucial verification of 

the clustering results; however it is very difficult for humans that are not accustomed to 

higher dimensional space. Therefore, cluster validity methods are used for evaluating and 

assessing results from a clustering algorithm. Consequently, the efficiency and degree of 

robustness of a clustering algorithm can be determined by reliable validity indices to judge 

the relative merits of clustering structures ih a quantitative manner, i. e. a good clustering 

algorithm is the one that can achieve better validation values for many possible sets of pa- 

rameter values. It should be noted that some clustering algorithms are biased to certain 

types of data distribution (e. g., K-means algorithm has a structure bias to spherical distri- 

bution clusters). Other types of clustering algorithms have no such biases (e. g., spectral 

clustering algorithm [77]). 

In case of no structure biases 

A new validation index, which is called VI index, to assess clustering results of clustering 

algorithms that are able to cluster the datasets with arbitrarily shaped clusters (e. g. spectral 

clustering algorithm [77]) is proposed. The proposed VI index is based on a connectivity 

criterion which helps in determining the intercluster separation and the intracluster scatter 

that respectively corresponding to the between-cluster separation and within-cluster scat- 

ter of the validity indices that have a structure bias to compact or spherically distributed 

clusters. The intracluster scatter and intercluster separation are based on the creation of a 

minimum spanning tree [78] which is a graph with no cycles. It minimises the total length 

over all possible spanning trees. In clustering, a minimum spanning tree represents the 

data objects as nodes which are connected by weighted edges. The weights indicate the 

similarity between objects. 

The intracluster scatter of the i-th cluster, Iaj, is equal to the largest dissimilarity of 

the minimum spanning tree [781, Ti, that connects the memberships of cluster i, i. e., Iaj = 

MaXa, bETý dT, (XaiXb), where dTi(Xa7Xb) 
---: 

11 Xa -A 
11 is the dissimilarity between two 

consecutive objects in Ti. Small values of Iai refer to closer memberships. The intercluster 
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separation between cluster i and cluster j, Ieij, is defined as the maximum dissimilarity 

between two consecutive objects in the minimum spanning tree (Tij) when cluster i and 

cluster 3 are merged together, i. e., Ieij ` MaXa, bETj dTj (Xa 
i Xb). The overall intercluster 

separation of cluster i, lei, is equal to the minimum intercluster separation between cluster 

= Mi K i and all other clusters, i. e., lei n3=1'j, ýi Ieip Large values of lei refer to large cluster 

separations. The V, index is defined as the ratio of the sum of intercluster separation to the 

sum of intracluster separation, as described in Eq. 3.1. Large values of VI index indicate 

the presence of low intracluster and high intercluster separations. Furthermore, the number 

of clusters that maximises the VI index is considered as the optimal number of clusters. 

KTe. 
Vi (K) - 

E'= 
1't 

ffi 
I Iai 

where K is the considered number of clusters. 

For fuzzy clustering algorithms, a partition matrix U(X) --` [Uij]Kxn for the data is 

used to describe the membership degree of each data object to every cluster. In order to 

deal with fuzzy clustering algorithms, the proposed validity index is generalised as follows: 

EKJ 
Vo= 

ZK 
l 

En 
i= Iei 

(3.2) 
i= 3=i Uij X MaXa, br=Ti-j 11 Xa - Xb 11 

where x,, and Xb are two consecutive objects in Ti-j which is the minimum spanning tree 

of cluster i when object j belong to its membership. 

Figure 3.3 shows the assessment of path based and spectral clustering results using VI 

index. For the three-ring shaped dataset, the corresponding number of clusters K for which 

V, validation index is maximised, is K=3. The value of K=3 represents the best fit 

number of clusters which actually coincides with the true number of clusters. Similarly, 

for the other datasets, the corresponding number of clusters K to the maximum value of VI 

index is consistency referring to the number of clusters underlying the datasets. 
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Figure 3.3: (a) Clustering results of different datasets; having arbitrarily shaped clusters at 
the true number of clusters, and (b) the assessment using V, validation index at different 
number of clusters. 
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In case of a structure bias to compact or spherical distributions 

In case of clustering algorithms that have a structure bias to spherical distributions (e. g. 

K-means algorithm), VI index can be used as a validation measure, but for computational 

time reduction a so-called "I" index [59] has been selected from a number of available 

validity indices for use as a validation measure for this type of clustering algorithms. This 

index has been experimentally tested on artificial and real-life datasets and attained its 

maximum value when the appropriate number of clusters is achieved [59]; this index has 

also been compared with the Davies-Bouldin index [56], the Dunn's index [57] and the 

Calinski-Harabasz index [581. The "I" index is defined as: 

1 Ei 
x 7ý- x DK)p (3.3) 

K Kw 

where: 

* Epý represents the compactness for K clusters (partitions) and is computed as EK ý 

I: K 
, 

I: n 
k= j=1 Uki 110i - Bk 11, where n is the number of objects in the dataset, Oj is 

an object, Bk is the cluster centre "prototype" of k-th cluster, and Uki =1 if Oj is a 

membership of k-th cluster; otherwise Uki = 0- 

DK represents the maximum separation between two clusters over all possible pairs 

', jljBj-Bjll, whereBjandBjarethe of clusters and is computed as DK = maxN-= 

cluster centres "prototypes" of i and j-th clusters respectively. 

El is a constant for a given dataset and is cornputed as El = Ej'=, 110j - Bill, 

where B, is the cluster centre of the entire dataset. 

P is a power used to control the contrast between different cluster configurations. In 

this study, P=2 is used. 

The value of K for which I(K) is maximised is considered to be the correct number of 

clusters. 
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Table 3.1: Number of clusters estimated by different clustering algorithms using different 
validity indices and information criteria for six datasets. 

Datasets d Clustering Validity index Information criterion 
Algorithm 

1 1 

DB Dunn CH I Vi AIC MDL CAIC 
Three-ring 2 Path based[3 11 20 2 20 12 3 18 2 2 

clusters Spectral [77] 18 2 18 9 3 19 14 14 
(3 clusters) (unbiased) 

Three-spirals 2 Path based [3 11 20 2 19 18 3 15 15 15 
arms Spectral [77] 12 2 16 8 3 16 16 16 

(3 clusters) (unbiased) 
Comm. data at 2 K-means [2] 4 4 4 4 4 4 4 

15 dB K-medoids [6] 4 4 4 4 4 4 4 4 
(4 clusters) 

Comm. data at 2 K-means [21 3 2 5 4 4 4 4 .1 
lOdB K-medoids [6] 3 2 4 4 4 4 4 4 

(4 clusters) 
Breast cancer 9 K-means [2] 2 7 2 2 2 8 2 2 

data I K-medoids [6] 2 3 2 2 2 10 2 2 
(2 clusters) 

B east cancer r K-means [2] 2 6 2 2 2 4 2 
data 2 

I : 
K-medoids [6] 2 14-19 2 2 2 7 2 2 

2 clusters) ( 
where d is the number of dimensions 

Table 3.1 shows the number of clusters estimated by each of the five validity indices 

(see Appendix A) and three information criteria from two clustering algorithms in each of 

the six datasets. The first type has arbitrarily shaped clusters (three-ring shaped clusters, 

and three spiral arms), while the second type has spherically distributed clusters (cornmu- 

nication data, and breast cancer data). For three rings and spiral arms datasets, DB, Dunn, 

CH, "I" indices failed to estimate the number of clusters, as these indices are biased to 

spherically distributed clusters, while VI index has successfully determined the true num- 

ber of clusters in the underlying datasets. For communication data at 15 dB SNR, which has 

well-separated clusters, all cluster validity indices are able to provide the correct number of 

clusters. However, none of DB or Dunn indices are able to find the appropriate number of 

clusters for communication data at 10 dB SNR where the clusters are overlapped, while "I" 

and VI indices provided the correct number of clusters, but CH index is partly successful. 

For breast cancer datasets, only Dunn index fails to indicate the correct number of clusters. 

For the purpose of comparison, the performance of the proposed VI index is compared with 

information criteria [79,80], namely, Akaike's information criterion (AIC), the consistent 
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Akaike's information criterion (CAIC), and minimum description length (MDQ criterion 

which formally coincides with the Bayesian inference criterion (BIC). As shown, for three 

rings and spiral arms datasets, AIC, MDL, CAIC information criteria methods failed to 

estimate the number of clusters, as these methods assume that the data are distributed ac- 

cording to a mixture of Gaussian distributions which favour spherical and hyperspherical 

distributed clusters. For communication data (which contains spherically distributed clus- 

ters), all information criteria methods are able to provide the exact number of clusters. For 

breast cancer data, only AIC failed to estimate the correct number of clusters as it tends to 

overestimate the number of clusters as reported in [81 ]. 

As demonstrated in Table 3.1, the proposed VI index is found to be more consistent and 

reliable in indicating the correct number of clusters underlying the datasets, irrespective of 

the clustering algorithm and data distribution. However, it requires a high computational 

complexity compared with other validity indices, as it needs more time in computing the 

minimum spanning trees, where the computation cost for a minimum spanning tree [78] 

for cluster i is 0 (mi log ni), with ni denoting the number members belonging to cluster i 

and mi = ni - 1. These correspond to the number of vertex and edges in the spanning tree 

K 
respectively. Therefore, for K clusters, the running time is Ei= 10 (mi log ni). Apart from 

V, index, only "I" index is able to indicate the correct number of clusters for datasets that 

have spherical distributions, which is consistent with its validation principle. In addition, 

the complexity of "I" index is O(Kn) which gives less computational time than VI index. 

Therefore, for reducing the computation time, "I" index is used as a validation measure for 

clustering algorithms that are tendentious to spherical distributed clusters (e. g. K-means 

algorithm), and VI index as a validation measure for clustering algorithms that have no 

such biases (e. g. path based clustering). This vindicates the choice of "I" and VI indices 

as validation measures. 
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The assessment criterion is based on the ratio between the average value of the validity 

index values obtained from the r experiments and the maximum validation index value 

obtained from the used clustering algorithms; a higher value gives better robustness. The 

proposed validation measure assessment criterion of K partitions Qv(K) is defined as: 

' Er 

Qv(K) r -i=l 
Vi 

(3.4) V. 
ax 

where 0< Qv(K) :51, Vi is the validation index value of run i for K partitions, and 

V.,,.,, is the maximum validation index value obtained from the used clustering algorithms. 

Figure 3.4 depicts the validation measure for communication data at SNR = 10 dB using 

the three clustering algorithms. 

For each of the three clustering algorithms, Fig. 3.4 depicts the mean and the standard 

deviation of the r validity index values obtained from r experiments (r = 100) for every 

value of K. In these cases, the validity index possesses a clear maximum which corresponds 

to the number of clusters in the underlying the dataset. Moreover, the absence of a knee 

may be an indication that the dataset possesses no clustering structure. Additionally, the 

high variability of the validity index values at the same clustering scheme may impede the 

identification of the correct number of clusters as well as the robustness of the algorithm. 

3.3.2 Repeatability measure 

A novel stability measure is proposed, which is called a repeatability measure, to study the 

stability of a clustering algorithm. It is based on examining the common cluster member- 

ships along a series of r experiments which are carried out for each set of parameter values. 

The procedure is described as follow: 

9 Obtain r results from the same clustering scheme using either: 

1. The original dataset with different initialisation. 

2. Sub-samples from the datasets (r datasets). 
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Figure 3.4: Validation measure of communications data with SNR = 10 dB, (a) K-means, 
(b) SOM, and (c) K-medoids. 
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3. r datasets (the original dataset plus extra samples) resulting in less separated 

clusters. 

" Select a reference result out of the r results obtained above by using a reliable validity 

index to get the best one. 

" Determine the number of runs R that achieve the common cluster memberships with 

respect to reference clusters (q) for each cluster of the reference run, where 71 is 

the ratio between the number of common cluster memberships and the size of the 

reference cluster. In this study, q=0.8 is used. 

" For each cluster of the reference run: 

1. Calculate the gain per run (NIM) that equals the ratio between the number of 

common members (N) obtained by the R runs in the comparison cluster and 

the number of members (M) (size of reference run cluster) in the reference 

cluster. 

2. Calculate the weighted gain, (NIM) * R', where m is used to control the 

contrast between the number of runs R that achieve the common cluster mem- 

berships in the reference cluster. In this study, m=2 is used. 

The proposed repeatability measure is presented in algorithm 1. 

Figure 3.5(a) and 3.5(b) depict the repeatability measure of SOM algorithm on 10 dB 

SNR communication data at r= 100 with different initialisations and 77 = 0.8. The two 

sub-figures contain three subplots each, these subplots show the difference in magnitude 

between the size of reference run clusters (AI) and the comparison clusters (N) (topmost 

plot), the number of runs R that achieve the common cluster membership for each cluster 

in the reference run (middle plot), the gain per run (NIM) and the weighted gain per run 

(NIM) * R' (bottom plot). 
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Algorithm 1 Repeatability measure procedure 
MV is the run member vector of size equal to the dataset length and contains clusters 
memberships. 

For each cluster of the reference run Ci, i=1,... , I'C,, f 

# Find the cluster membership MCi of Ci and its size Ali 
Mci = (Mv"f == CO 
Ali = SUM(Alv"f == CO. 

For each run x of the r runs, x=1.... ,r 
For each cluster Cj of run x, j=1, ..., Kj 

# Find the common cluster membership between Ci & Cj and its size Alij. 
MCjj = MCj n Af Cj 
Afjj = SUM(MCij == 1) 

End 

# Find the best cluster Cj that achieve > 77 with Ci 
Mibest ý MaXj=l ... Kj Afij 
if Mibest > 77 then 

MCi = -AlCibest 
R=R+1 

End 
End 

End 

The proposed assessing criterion is based on the expected value of the weighted gain; 

a higher value gives better repeatability. Thus, a good clustering algorithm is the one 

that can achieve higher values for many possible sets of parameter values. The proposed 

repeatability measure assessment criterion of K partitions QR(K) is defined as: 

QR(K) = E((NIAI) * R") (3.5) 

where 0< QR(K) < 1. 
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Table 3.2: Estimated number of clusters by different methods. 
dataset Repeatability Gap Stability Bootstrapping True 

statistic method [671 clusters 
[661 [681 

QAM-4 15 dB 4 4 4 4 4 
(K-means) 

QAM-4 10 dB 4 2 4 2 4 
(K-means) 

Breast cancer 1 2 2 2 2 2 
(K-means) 

Breast cancer 2 2 8 2 2 2 
(K-means) 

2 Ring-shaped 2 1 2 2 2 
(Path based 

Competing repeatability methods for estimating the number of clusters 

It should be noted that there are other choices for a repeatability measure like Gap statistic 

[66], Stability-based validation method [68], and cluster validity by Bootstrapping [67]. In 

the following these alternative measures are compared using different datasets and different 

clustering algorithms. As shown in Table 3.2, all methods are able to estimate the correct 

number of clusters for QAM-4 (SNR = 15 dB) and breast cancer dataset 1. The Gap statistic 

fails in finding the correct number of clusters for QAM-4 (SNR = 10 dB) which indicates 

its shortfalls for noisy datasets, in addition to the drawbacks mentioned in the introduction 

section. Also, it fails with the breast cancer dataset 2 in which the effect of the comparison 

with random data may not scale well for higher dimensional datasets. For bootstrapping, 

experiments have highlighted the sensitivity of this method for noisy datasets which is 

clearly observed in QAM-4 (SNR = 10 dB). In order to determine whether the proposed 

repeatability measure contains a structure bias or not, the path based clustering algorithm 

[3 11 is applied on a dataset contain two ring-shaped clusters as shown in Fig. 3.6. As shown 

in Table 3.2, the proposed repeatability measure can infer the correct number of clusters as 

stability-based validation method and bootstrapping validation method compared against 

Gap statistic that infers K=1 as the correct number of clusters, because it directly in- 

corporates the assumption of spherically distributed datasets. Overall, both the proposed 

repeatability measure and the stability-based validation method can infer the correct num- 
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Figure 3.6: (a) Dataset containing two ring-shaped clusters, and (b) path based clustering 
algorithm performance at K=2. 

ber of clusters in each of the five datasets used, as shown in Table 3.2, while the Gap 

statistics and the bootstrapping methods are only partially successful. C, 

3.3.3 Clustering performance measures (CPXIs) 

Two important aspects are considered to determine the reliability of a clustering algorithm; 

a repeatability measure is used for studying the stability of a clustering algorithm in terms 

of the common clusters memberships of several clustering results, and validation measure 

is used for measuring the robustness, quality, of the clustering results. 

3.3.3.1 Clustering performance measure I (CPAIj) 

This proposed assessment criterion is based on the weights of the tested partitions. Let 

QR(K) and Qv(K) be the repeatability and validation values of the K partitions. Now it 

is worth referring to the Fig. 3.7, which plots QR versus QV. Each experimental result will 

be represented by one point on this plot. It should be remarked that the ideal performance 

will be achieved by a point with QR ý_- 1 and QV =1 (i. e. the top right-hand corner 

of the plot). Any point further away from this corner represents lower performance. This 

can be modelled by a weight corresponding to the reciprocal of the distance between the 

point and the ideal position Of (QR 
i QV) = (1,1). However such a ratio may produce 



CIIAPTER3. CLUSTERING PERFORMANCE MEASURES 44 

Sý 
.0 
.m 

't 0 

dK 
0.8- OV(K) 

K 

OFt(K) 

0.2 

o* 1[. 

1 

0.1 0.2 0.3 04 05 na 0.7 0Rn (1 1 

Ov (Validation) 

Figure 3.7: Clustering performance measure I- basis. 

a singularity when the distance is zero. To avoid such a singularity and yet to capture C, C, 
the previously described trend, the weight of the K partitions is defined as 

ýd 
, where I+dK 

dIN7 V(1 - Qv(K))2 + (1 - QR(K))2, dK ý! 0. The clustering performance measure, 

CRAII, is defined as: 

Nk 
1 

CPAI1 = 1: 
1+ dK (3.6) 

K=2 

where Nk is the number of tested partitions that are considered in the evaluation procedure. 

This takes into account all the points (partitions) and ensures that larger values of 

CPMI represents better clustering performance. 

3.3.3.2 Clustering performance measure 2 (CRA12) 

This clustering performance measure is based on the contribution of the repeatability mea- 

sure and validation measure on the evaluation procedure. The assessment criterion, CPM2, 

is defined as: 

CPA12 = E(QR) + E(Qv) - E(QR)E(Qv) (3.7) 

where: 

CPM2 ý! max(E(QR) i 
E(Qv)), E(QR) = 1- F-Nk 2 QR(K) is the expected value of Wk- K= 
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the weighted gain (repeatability measure), E(Qv) =1 
ENk 

yk- K=2 Qv(K) is the expected 

value of the corresponding validity index values (validation measure), where Nk is the 

number of tested partitions that are considered in the evaluation procedure, QR(K) is the 

repeatability value of K partitions, and Qv(K) is the validation value of K partitions. 

From Eqs. 3.6 and 3.7, a higher value of the overall performance gives more reliability 

to the clustering al-orithm. Moreover, these equations can be used to com are clustering C, ;Dp 

algorithms from the two important points of view - the repeatability and robustness. 

For the trivial case K=1, all clustering solutions will be the same, so there is no need 

for any computation in this case. 

In this study, five relatively common clustering algorithms are evaluated by the pro- 

posed CPMs. Three of the clustering algorithms have a structure bias to spherical distribu- 

tions, namely, K-means [1,2], K-medoids [6], Self Organising Map (SOM) [291, The other 

two algorithms are spectral clustering, and path based clustering which have no structure 

biases [30,31,77]. 

3.4 Experimental Results 

The degree of stability of a clustering algorithm is investigated using well-separated datasets 

and datasets containing outliers as well as overlapped clusters. 

3.4.1 For algorithms that have a structure bias to spherical distributions 

3.4.1.1 Considering the effect of initial conditions 

In this sub-section, the effect of initial conditions on the cluster memberships of clustering 

algorithms that have initialisation dependency will be examined. 
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Communications data 

A series of experiments (r = 100) for every K (K = 2,... 
'30) with 77 = 0.8, using dif- 

ferent initialisation each time, were carried out on different SNR values, SNR = 15 dB and 

SNR = 10 dB using three clustering algorithms. Thus a total of 17,400 experiments were 

carried out. The validation measure and repeatability measure are used for the evaluation 

procedure. In these experiments, "I" validity index is used as a validation measure. 

Figures 3.8 and 3.9 contain two plots each, part (a) contains two subplots: the top sub- 

plot shows the mean validation index (of 100 runs) of three different clustering algorithms 

versus the number of clusters that are considered above, where the number of clusters 

corresponding to the "knee" point are expected to be the true number of clusters. Further- C, 

more, higher validation values indicate better robustness. The bottom subplot shows the 

repeatability of the three clustering algorithms over the same number of clusters consid- 

ered above. Clearly, the resistance of the clustering algorithm against the noise and outliers 4n 

is identified by detecting the cluster members that remain together regardless of the ini- 

tial conditions. Furthermore, the higher value represents more repeatability at the given 

number of clusters. As shown, the number of clusters corresponding to the "knee" points 

of the repeatability for the three clustering algorithms are the true number of clusters that 

underlying the dataset, i. e. the estimated number of clusters is corresponding to the higher 

repeatability value. Part (b) shows the relation between the validation index values and 

their repeatability, where each point has two coordinates; the repeatability value QR(K) of 

K partitions and its corresponding validation value Qv(K); a better clustering algorithm 

is the one that achieves higher validation as well as repeatability. 

Tables 3.3 and 3.4 contain four values per clustering algorithm. The first is the repeata- 

bility value which is the expected value of the weighted gain (repeatability measure) over 

all the number of tested partitions that are considered in the evaluation procedure. The 

second is the validation value which is the the expected value of the validity index val- 

ues (validation measure) over all the number of tested partitions that are considered in the 

evaluation procedure. Finally, the third and the fourth are the corresponding CPM values. 
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Figure 3.8: (a) Testing rule procedure on different clustering algorithms for QAM-4 at SNR 
= 15 dB, and (b) relationship between validation (Qv) and repeatability (QR)- 

Table 3.3: Results of different clustering algorithms on QAM-4 at SNR = 15 dB commu- 
nication dataset. 

I SOM I K-means IK 

< Repeatability > 0.26 0.30 0.55 
< Validation > ("I" index) 0.26 0.31 0.36 

CPMI 14.53 14.85 16.55 
CRA12 0.45 0.52 0.71 
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Figure 3.9: (a) Testing rule procedure on different clustering algorithms for QAM-4 at SNR 

= 10 dB, and (b) relationship between validation (Q v) and repeatability (QR)- 
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Table 3.4: Results of different clustering algorithms on QAM-4 at SNR = 10 dB commu- 
nication dataset. 

F- I SOM I K-means I K 
< Repeatability > 0.16 0.21 0.43 

< Validation > ("I" index) 0.31 0.38 0.40 
CPMJ 14.14 14.80 16.08 
CPA12 0.42 0.51 0.66 

As shown in Table 3.8, the SOM algorithm achieves lower validation as well as repeata- 

bility than K-means and K-medoids clustering algorithms. As the SNR value decreases, the 

SOM algorithm loses its level of validation as well as repeatability as shown in Fig. 3.9 and 

Table 3.4. Additionally, the repeatability is not affected by decreasing the SNR value and 

K-medoids appears to offer higher repeatability. Finally, one can deduce that K-medoids 

algorithm possesses higher robustness as well as repeatability and K-means algorithm per- 

forms well for noisy dataset compared to SOM algorithm in addition to its simple design. 

Breast cancer data 

A series of experiments (r = 100), for every K (K = 2,... , 30), were carried out for 

each of the two breast cancer datasets. Thus a total of 17,400 experiments were carried out. 

Figure 3.10 and 3.11 show the testing rule procedure results of breast cancer dataset I and 2. 

Although, the overall performance of SOM algorithm is better than K-means algorithm for 

breast cancer dataset 1, it gives the lower perfonnance for breast cancer dataset 2, This is 

because the lower compactness of clusters on breast cancer dataset 2 compared against the 

breast cancer dataset I which coincides with the conclusion obtained from the experiments 

that have been done on the communication datasets. From Table 3.5 and 3.6, one can 

deduce that the overall performance of K-medoids algorithm is better than SOM algorithm 

and K-means algorithm. 
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Figure 3.10: (a) Testing rule procedure on different clustering algorithms for breast cancer 
dataset 1, and (b) relationship between validation (QV) and repeatability (QR)- 

Table 3.5: Results of different clustering algorithms on breast cancer dataset 1. 
I SOM I K-means I K-mcdoid 

< Repeatability > 0.26 0.20 0.58 
< Validation > ("I" index) 0.15 0.17 0.18 

CPAII 14.06 13.88 15.16 
CPM2 0.37 0.34 0.65 
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Figure 3.11: (a) Testing rule procedure on different clustering algorithms for breast cancer 
dataset 2, and (b) relationship between validation (Qv) and repeatability (QR), 
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Table 3.6: Results of different clustering algorithms on breast cancer dataset 2. 
som I K-means I K-medoid 

< Repeatability > 0.15 0.19 0.41 
< Validation > ("I" index) 0.18 0.29 0.30 

CPMI 13.66 14.08 15.37 
CPA12 0.30 0.43 0.58 

3.4.1.2 Ignoring the effect of initial conditions 

In order to confirm the conclusion obtained above, similar experiments were carried out 

on: 

* Sub-samples from the datasets (r datasets). 

*r datasets (the original dataset plus extra samples) resulting in less separated clusters. 

Sub-sampling 

The idea is based on randomly selecting samples from the dataset with a sampling ratio 

SR (a proportion of data points sampled) where SR < 1. In this study, SR = 0.8 is used. 

Therefore, one can get r datasets, each of which is sampled from the original dataset. Then, 

a series of experiments are carried out for every sub-sampled dataset (r = 1, ..., 100) with 

K (K = 2,... 20), i. e. one can get r clustering solutions for every K. Therefore, a 

total of 22,800 experiments were carried out. However, the proposed CPMs cannot be 

applied, because there are missing samples for each clustering solution. To overcome such 

a problem, each missing sample is assigned to the most appropriate cluster that is consistent 

with the clustering algorithm. In the case of K-means algorithm, the missing sample is 

assigned to the cluster with the closest centre. It should be remarked that the value Of SR 

should be greater than 0.5; otherwise not all clusters may appeared in the sub-samples. 

As shown in Figures 3.12,3.13,3.14, and 3.15, and Tables 3.7,3.8,3.9, and 3.10, 

the clustering performance for the three clustering algorithms is consistent with the per- 

formance obtained in the experiments on the original datasets without sub-sampling. 
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Figure 3.12: (a) Testing rule procedure on different clustering algorithms for QAM-4 at 
SNR = 15 dB (sub-sampled datasets), and(b) relationship between validation (QV) and 
repeatability (QR)- 

Table 3.7: Results of different clustering algorithms on sub-sampled QAM-4 at SNR = 15 
dB communication dataset. 

I SOM I K-means I K-medoi 

< Repeatability > 0.26 0.34 0.40 
< Validation > ("I" index) 0.33 0.38 0.42 

CPMI 9.83 10.08 10.63 
CPA12 0.50 0.59 0.65 
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Figure 3.13: (a) Testing rule procedure on different clustering algorithms for QAM-4 at 
SNR = 10 dB (sub-sampled datasets), and (b) relationship between validation (QV) and 
repeatability (QR)- 
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Table 3.8: Results of different clustering algorithms on sub-sampled QAM-4 at SNR = 10 
dB communication dataset. 

I SOM I K-means I K-medoid 

< Repeatability > 0.18 0.22 0.31 
< Validation > ("I" index) 0.38 0.45 0.48 

CPMI 9.56 9.85 10.43 
CPA12 0.49 0.57 0.64 
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Figure 3.14: (a) Testing rule procedure on different clustering algorithms for sub-sampled 
breast cancer dataset 1, and (b) relationship between validation (QV) and repeatability 
(QR)- 

Table 3.9: Results of different clustering algorithms on sub-sampled breast cancer dataset 
1. 

II SOM I K-rneans I K-medoi 

< Repeatability > 0.31 0.21 0.30 
< Validation > ("I" index) 0.22 0.23 0.25 

CpAll 9.62 9.39 9.64 
CPA12 0.46 0.39 0.48 
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Figure 3.15: (a) Testing rule procedure on different clustering algorithms for sub-sampled 4D 
breast cancer dataset 2, and (b) relationship between validation (QV) and repeatability 
(QR)- 

Table 3.10: Results of different clustering algorithms on sub-sampled breast cancer dataset 
2. 

I SOM I K-means I K-medoi 
< Repeatability > 0.17 0.19 0.23 

< Validation > ("I" index) 0.25 0.29 0.39 
CPIVII 9.27 9.36 9.70 
CPIV12 0.37 0.43 0.53 

Creating a dataset of less separated clusters 

Randomly, 20% extra samples are added to the original datasets in the range of the ob- 

served values for each feature; effectively this constitutes adding noise. Therefore, one 

can get r new datasets. Then, a series of experiments are carried out for every dataset 

(r = 1,... , 100) with K (K = 2,..., 20), i. e. one can get r clustering solutions for every 

K. A total of 28,500 experiments has been carried out for this part of investigation. The 

proposed CPMs are applied after removing the extra samples from the clustering solutions. 

As shown in Tables 3.11,3.12,3.13, and 3.14, both CPAII and CPA12 point consistently 

to the superiority of K-medoids over K-means and SOM. Moreover, the effect of the extra 

samples can be observed on the overall clustering performance of SOM algorithm due to 

the lower compactness of the clusters on the datasets which coincides with the conclusion 

obtained from the experiments that have been done on the original datasets. It should be 
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remarked that the number of extra samples constitutes no more 25% of the original dataset; 

otherwise, the distribution of the clusters will be lost as the dataset will not possesses clus- 

tering structures. 

Table 3.11: Results of different clustering algorithms on QAM-4 at SNR = 15 dB commu- 
nication dataset after adding extra samples. 

I SOM K-means I K-medoid 

< Repeatability > 0.31 0.36 0.48 
< Validation > ("I" index) 0.32 0.40 0.43 

CPMI 9.94 10.51 11.06 
CRN12 0.53 0.61 0.70 

Table 3.12: Results of different clustering algorithms on QAM-4 at SNR = 10 dB commu- 
nication dataset after adding extra samples. 

I SOM I K-means I K-medoid 

< Repeatability > 0.21 0.28 0.37 

< Validation > ("I" index) 0.37 0.44 0.45 
CpAll 9.65 10.26 10.63 
CPA12 0.50 0.59 0.65 

Table 3.13: Results of different clustering algorithms on breast cancer dataset I after adding 
extra samples. 

I SOM I K-means I K-medoi 

< Repeatability > 0.24 0.25 0.46 

< Validation > ("I" index) 0.21 0.23 0.24 
CPAII 9.38 9.62 10.17 
CRA12 0.41 0.43 0.59 

Table 3.14: Results of different clustering algorithms on breast cancer dataset 2 after adding 
extra samples. 

I SOM I K-means I K-medoiTs] 

< Repeatability > 0.16 0.21 0.27 
< Validation > ("I" index) 0.25 0.29 0.38 

CPMI 9.24 9.44 10.01 
CPA12 0.37 0.44 0.55 
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3.4.2 For algorithms that have no structure bias 

To evaluate the clustering algorithms that have no structure biases using the proposed 

CPMs, similar experiments were carried out using the sub-sampling criterion as demon- 

strated in Section 3.4.1.2. A total of 7,600 experiments were carried out. In these ex- 

periments, VI validity index is now used as a validation measure. Furthermore, these ex- 

periments are carried out on two synthetic datasets containing arbitrarily shaped clusters. 

Tables 3.15 and 3.16 show the testing rule procedure results. As shown, the path based clus- 

tering algorithm achieves low level of repeatability compared with spectral clustering algo- 

rithm. However, it consistently offers higher validation than spectral clustering algorithm. 

For spiral data, to some extent, the decrease in the repeatability of path based clustering 

is met by an increase in the validation of spectral clustering with the same amount which 

leads to comparable performance of both algorithms as demonstrated in Table 3.16. This 

vindicates the necessity for correlating the repeatability measure and validation measure to 

obtain a reliable and fair evaluation. 

Table 3.15: Results of different clustering algorithms on dataset containing three-ring 

shaped clusters. 

I Path based clustering Spectral clustering 
< Repeatability > 0.23 0.25 

Validation > ("Vi" index) 0.40 0.31 
CPAII 9.88 9.62 
CPAf2 0.54 0.48 

Table 3.16: Results of different clustering algorithms on dataset containing three spirals 
arms. I Path based clustering I Spectral clustering 

< Repeatability > 0.37 0.41 
< Validation > ("Vi" index) 0.29 0.25 

CRAII 10.0 9.90 
CPA12 0.56 0.55 
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3.5 Summary 

In this chapter, a new validity index Vi and a repeatability measure have been proposed. 

The VI index has been used to assess results of clustering algorithms that are able to clus- 

ter the datasets with arbitrarily shaped clusters, while the repeatability measure has been 

used to study the stability of clustering results. Comparisons with other methods indicate 

the applicability of the proposed validity index, Vi index, and repeatability measure in 

estimating the number of clusters correctly. In addition, new measures (CPMs) for the ro- 

bustness and reliability of clustering algorithms have been proposed. These CPMs are used 

to evaluate clustering algorithms that have a structure bias to certain types of data distri- 

bution as well as those that have no such biases. As demonstrated, the effect of initial and 

random guesses on the clustering algorithms that have initialisation dependency is tested 

and evaluated using different types of real-world data and synthetic data which contain 

well-separated datasets, as well as overlapped datasets. These measures have been applied 

on sub-sampled datasets and datasets with less separated clusters. Therefore, one can use 

the proposed CPMs to evaluate the clustering algorithms that have a unique solution for a 

given set of parameter values with no initialisation dependency. 



Chapter 4 

Radius Based Clustering Algorithm 

(RACAL) 

4.1 Introduction 

C LUSTERING algorithms are becoming an ever more common tool for use in dif- 

ferent real-life applications. Many different clustering algorithms exist, and these 

can be used to find different numbers of cluster centres depending on the requirements of 

the particular problem. In well bounded and understood datasets, it is relatively easy to 

determine how many different clusters are required. Once this number is known, then it is 

relatively easy to perform the clustering and interpret the results. However, when tile data is 

either noisy or not easily separable (which is often the case with many different real-world 

datasets), it can be much more difficult to determine with confidence the true number of 

centres for the clustering algorithm. 

In this chapter, a new clustering algorithm, which is a RAdius based Clustering AL- Zý 

gorithm (RACAL), is proposed. The proposed algorithm uses a distance based principle 

to map the distributions of the data assuming that clusters are determined by a distance 

parameter, without having to specify the number of clusters. The proposed clustering al- 

gorithm is enhanced by a reliable validity index to choose the best clustering results for a 

given input parameter. Additionally, an adaptive partial supervision strategy is proposed 

57 



CHAPTER4. RADIUS BASED CLUSTERING ALGORITHM (RACAL) 58 

for use in conjunction with RACAL to make it act as a classifier. Furthermore, a parallel 

algorithm for RACAL is proposed to reduce the clustering time of large datasets. 

4.2 The RACAL Clustering Algorithm 

The basic idea of the proposed clustering algorithm is to find the proper prototypes, cluster 

centres, that can map the distributions on datasets at a given input parameter value with- 

out neglecting the sparsely populated areas as in density based approaches and it does not 

require the knowledge of the true number of clusters. The proposed algorithm uses a dis- 

tance based principle, which fundamentally differs from density based methods in the way 

that the algorithm determines what constitutes a cluster. Simply expressed, the proposed 

algorithm defines a normalised distance parameter, J,, (0 < 6,, < 1), which acts as the 

determinant of the cluster. From a given object which is characterised by d features, any 

other objects that fall within J, are regarded as belonging to the same cluster, i. e., have sim- 

ilar features. The control of the cluster size is achieved through the value of J,, parameter. 

Small values will lead to a high number of small and tight clusters, while large values of ý, ' 

will create a smaller number of larger clusters. Extremely large values will cause only one 

cluster to be formed. 

Clustering procedure 

Clustering is a process of grouping objects into clusters in such a way that each object 

within a cluster is close or similar to one another, but dissimilar from the objects in other 

clusters. This section presents the proposed RACAL algorithm to cluster a dataset. Let 

0= Joi Ii = 1'... , n} be a set of n objects, where each object, Oi ERd, is characterised 

by d features. As a first step, obtain the relational matrix "normalised distance matrix" 

R= [rij], where rij indicates the relative distance between Oi and Oj, and satisfies the 

following conditions: 

rij = rji, rii = 0, and rij E [0, l] 
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Then, search for the proper prototypes that can represent the "spatial" distributions in 

the dataset by identifying the most centralised objects - that can attract a large number 

of objects - at a given input parameter value ý, A hyperspherical region of radius J,, is 

defined as the neighbourhood of object Oi, NOi, and the total number of neighbouring 

objects within this region, TV(Oi), is considered as a weight for this object. 

Prototypes generation can be summarised in the following steps: 

1. Choose the object with maximum weight, Om, and all objects Oml,..., OMj within 

its neighbourhood NOM and find their corresponding neighbourhoods 

NOAII, .. -, 
NOAjj. 

2. Find the intersection between neighbourhood of OAI and neigbbourhoods of its clos- 

est objects OAII, ---, Ovlj as: 

NINT = NOAf n NOM, n NOM 2 ... n NOAfj 

3. Define "prototype" Bk as the object (or mean of objects) that results from the inter- 

section operation. 

4. Clear all weights for O. &f and OAI I,... OAfj to avoid possibility of generating more 

than one prototype within J, This allows the possibility of generating prototypes in 

the sparsely populated areas, where the objects will have lower weights. 

5. The process of generating prototypes is continued until no more weighted object is 

found. 

After generating proper prototypes (K prototypes), the clustering problem is reduced to 

assigning the n objects to the nearest of K prototypes to create K clusters. The prototypes 

(cluster centres) are subsequently updated to the mean of their assigned objects. This pro- 

cess is repeated until no more changes occur in the prototypes. In order to achieve more 

compact clusters and yet with wider separations between clusters, i. e., better clustering 

quality, RACAL is enhanced with a reliable validity index to evaluate the clustering result 

at each update of the prototypes. The best clustering result with a given J,, is the one that 
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achieves a maximum value of the validity index. Therefore, the enhancement of the clus- 

tering function with a reliable validation index can be used to produce the best results for 

a given J, value. The cluster validity index "1" [59] has been selected from a number of 

available validity indices (see Section 3.3.1). The objective is to maximise the "I" index 

for achieving proper clustering with a given J,, value. The proposed clustering algorithm 

(RACAL) is detailed in Algorithm 2. 

4.3 Datasets 

Five different types of real-world data are used to investigate whether the proposed algo- 

rithm. scales well with the size and dimension of the dataset or not. 

4.3.1 Communication data 

Two communications datasets with different noise conditions have been used to demon- 

strate the clustering behaviour of RACAL, namely, QAM-4 and QAM- 16 at SNR = 15 and 

SNR = 10 dB (see Section 3.2.1). 

4.3.2 Breast camer data 

Two Wisconsin breast cancer datasets [761 have been used in this study (see Section 3.2.2). 

4.3.3 Leukaemia data 

This dataset [821 consists of 72 bone marrow samples over 7,129 probes (which are treated 

as features) from 6,817 human genes, and contains two classes: class 1 (25 AML "Acute 

Myeloid Leukaemia" samples) and class 2 (47 ALL "Acute Lymphoblastic Leukaemia" 

samples). 

4.3.4 Iris data 

This dataset is one of the best known dataset found in pattern recognition literature [761. 

The dataset consists of three classes of fifty examples and each with four features, where 

each class refers to a type of iris plant namely Iris Setosa, Iris Vcrsicolor, Iris Verginica. 
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Algorithm 2 The proposed clustering algorithm (RACAL) 
1. Read the input data 0= 101, ---, 0,, J and the radius value J, 
2. Calculate the distance matrix D and its corresponding relational matrix "normalised 
distance matrix" R= [rij], and rij E [0,11. 
3. For each object Oi. Identify the neighbouring objects NOi according to the value of J, 
and its corresponding weight W(Oi). 

NOi = (rij :5J, ); # (bi-valued vector) 
IV(Oi) = sum(NOi == 1); 

let K=1. 
4. Do 
# Find the max weighted object & clear the weights of its neighbouring objects 

Wmax = maxi=l,..., n MOO; 

TV(NOM == 1)) = 0; 
#Find the intersection between neighbourhood of 01, f and neighbourhoods of its neigh- 

bouring objects Om I, ---, Omj 
NINT = Nom n NOM, n NOA12 

... n NMj # (bi-valued vector) 
# Generate a prototype 

Bk(K) = mean(O(NINT == li: )); 
K=K+1; 

Until no weights. 
let Vp,,,, = 0. 
5. For each object Oi 

For each prototype Bk 
IF (d(Oi, Bk) :5J,, ) break; 
Else Continue; 

EndFor 
IF no prototype found 

Generate this object as a new prototype 
Else 

Continue; 
EndFor 

6. Let each object select the nearest prototype. 
7. Calculate the validation value Vi = I(K) of the clustered data. 

IF (Vi > Vpr,, ) 
CR = the clustering result of Vi. # (partition vector) 
Vprev == Vi; 

EndIF 
8. Repeat step (5) until no change. 
9. Save the clustering result (CR) of the best validation value. 

_ 
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The first class is linearly separable from others while the other two classes are not linearly 

separable. The measurement consists of the sepal and petal lengths and widths in cms. 

4.3.5 STARE data 

STARE dataset is a publicly available dataset [83]. The dataset consists of 20 images 

which are digitised slides captured by a TopCon TRV-50 fundus camera at 35* FOV. Each 

slide was digitised to produce a 605x7OO pixels image, standard RGB, 8 bits per colour 

channel. Every image has been manually segmented by two observers to produce ground 

truth vessels segmentation. In this application, each object "pixel" is characterised by three 

features [84] and the dataset corresponds to the set of all 423,500 (605 x 700) pixels, each 

with its three feature values. 

4.4 Clustering Results 

4.4.1 Conimunication datasets 

A series of experiments at J, = 0.01 . ..... 0.99 were carried out to investigate the clustering 

behaviour of the proposed algorithm. Figure 4.1 shows the clustering performance on a 

QAM-4 signal at SNR = 15 dB for four different values of J, Each colour on the plot 

shows different clusters. At &=0.01, the number of clustered objects are 264 out of 512 

objects with 117 clusters (the blue colour in Fig. 4.1 (a) represents the unclustered objects). 

The performance is very poor, because the radius value is insufficient to capture the whole 

dataset. As the value of J,, is increased, the spread around each cluster increases, increasing 

the membership of each cluster, and encompassing more of the data. At J" = 0.2,0.28, 

and 0.4, all the data objects are being clustered to 12,8, and 4 clusters respectively. Finally, 

the validation indices, 1 [59], DB [561, Dunn [57], and CH [581, are used to evaluate these 

different results. Figure 4.2 contains two plots: part (a) shows the validation indices values 

versus the radius (&), and part (b) shows the number of clusters K corresponding to the 

same & values. As shown in Fig. 4.2, the corresponding number of clusters K to the Jý 

= [0.34: 0.64] for which I, CH, Dunn validation indices are maximised and DB validation 
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Figure 4.1: Clustering performance for QAM-4 at SNR = 15 dB, for (a) 6,, = 0.01 "the blue 

colour represents the unclustered objects", (b) 6,, = 0.2, (c) 6, = 0.28, and (d) 6,, = 0.4. 

index is minimised, is K=4. The value of K=4 represents the best fit number of 

clusters which actually coincides with the true number of clusters. 

Communications data with SNR = 15 dB or higher is relatively easy to cluster; however, 

data with SNR = 10 dB is much harder, as the definition between clusters is much less clear 

than the higher SNR values. Figure 4.3 shows the clustering performance on QAM-4 at 

SNR = 10 dB for four different values of 6, This shows that as the value of 6,, is increased, 

the clustering becomes consistent and relatively well distributed through the data space. As 

J,, is increased, all clusters would gradually merge to form one large cluster. As shown in 

Fig. 4.4, all the selected validation indices indicate K=4 as the best tit number of clusters 

which actually coincides with the true number of clusters. The flat region in the plots of 

Fig. 4.4 within the range 6, E [0.48 : 0.621 is narrower than the flat region of SNR = 15 
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Figure 4.2: (a) Evaluations for different 6,, values on QAM-4 at SNR = 15 dB, and (b) the 
number of clusters versus the radius J, 
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Figure 4.3: Clustering perfonnance for QAM-4 at SNR = 10 dB, for (a) 6,, = 0.01 "the blue 
colour represents the unclustered objects", (b) 6,, = 0.12, (c) 6,, = 0.3, and (d) 6,, = 0.48. 

dB within the range J. E [0.34 : 0.64], as shown in Fig. 4.2. This is because of the low 

separation between clusters. 

Similar experiments were carried out on QAM- 16 at SNR = 15 dB and SNR = 10 dB. 

Figure 4.5 shows the clustering performance on a QAM-16 at SNR = 15 dB, 6" = 0.18 

for producing 16 clusters and the clustering performance at 10 dB SNR, ý, = 0.20 for 

producing 16 clusters. Figure 4.6 shows the validation indices values against the input 

parameter ý,, for QAM- 16 at SNR = 15 dB. As shown, the number of clusters K for which 

I, CH, Dunn validation indices are maximised, and DB validation index is minimised is 

now K= 16, which actually coincides with the true number of clusters. 
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Figure 4.4: (a) Evaluations for different J,, values on QAM-4 at SNR = 10 dB, and (b) the 
number of clusters versus the radius ý,. 
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Figure 4.5: Clustering performance for QAM- 16 at SNR of (a) 15 dB, and (b) 10 dB. 

4.4.2 Breast cancer datasets 

Similar experiments were carried out on the breast cancer datasets. As shown in Fig. 4.7, 

within the range 6. E [0.69 : 0.991,1, DB and CH indices clearly indicate two clusters 

as the best fit clusters, however the maximum values of Dunn index do not agree with the 

above conclusion, because of its sensitivity to the presence of noise in the datasets [7,551. 

As shown in Table 4.1, the clustering performance at K=2 (true number of clusters) for 

dataset I and 2 is 96.4 % and 92.7 % respectively. 

4.4.3 Leukaemia dataset 

Similarly, when RACAL is applied to cluster leukaemia dataset, two clusters are chosen 

by I, DB and CH indices as the best fit clusters which coincides with the true number of 

clusters underlying the dataset. Figure 4.8 shows the clustering performance of dataset at 

different 6, values. 

4.4.4 Iris dataset 

similarly, Fig. 4.9 shows the clustering performance of RACAL when applied to cluster Iris 

data at different 6, values. As shown, three clusters are chosen by 1, CH and Dunn indices 

as the best fit clusters which coincides with the true number of clusters underlying the 

dataset; however, DB index chooses two clusters as the best fit clusters, where its between- 
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of clusters versus the radius J, 
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Table 4.1: Clusterin accuracies comr)arison. based on 100 Pxnc-. rimpntq 
d K-means Som K-medoids CLARA RACA 

QAM-4 2 100% 99.8% 100% 100% 100% 
(15 dB) 
QAM-4 2 91.3% 96.1 % 100% 98.33% 100% 
(10 dB) 

QAM-16 2 90.26% 91.25% 100% 92.76% 100% 
(15 dB) 

QAM-16 2 88.21 % 82.26% 99.85% 92.48% 100% 
(10 dB) 
Breast 9 96.2% 97.2% 95.9% 95.34% 96.4% 

cancerl 
Breast 30 91.1% 91.6% 89.1 % 90.61% 92.7% 

cancer 2__J 1 
Leukaernia 7,129 63.3% 70.5% 60.3% 60.7% 72.2% 

Iris 4 83.2% 86.4% 1 90.1% 89.8% 92.6% 
wfiere a is me numoer or cimensions 

cluster term outpaces the decreasing rate of the within-cluster term [85]. This indicates the 

importance of using different validation methods for estimating the number of clusters. 

4.5 Comparison with other Clustering Algorithms 

For purposes of comparison, the performance of the proposed RACAL algorithm is com- 

pared with other clustering algorithms: K-means [1,7], SOM [29], K-medoids [61, and 

CLARA [6,181 algorithms. As shown in Table 4.1, the performance of the proposed 

RACAL clustering algorithm is more efficient and able to find clustering results of bet- 

ter accuracies than those found by other algorithms mentioned above. In the following, 

extensive comparisons based on the clustering performance measures (CPAIs) are carried 

out (see Chapter 3), where the performance of the proposed clustering algorithm, RACAL, 

is evaluated at different number of clusters which are produced by varying the radius pa- 

rameter J, (J,, = [0 : 1]). This process is repeated one hundred times using sub-sampling 

approach. The number of clusters K that produced by the radius parameter J,, using the 

proposed RACAL clustering algorithm is used to partition the dataset by the other partitional 

clustering algorithms that are considered in this study. Therefore, one can get a fair com- 

parison. The four Figures 4.10,4.11,4.12, and 4.13 contain two plots each. The subplot 
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on top shows the mean validation index (of 100 runs) of each clustering algorithm ver- 

sus the number of clusters (K), where higher validation values give better robustness. The 

lower subplot shows the repeatability of clustering algorithms over the same K values. The 

number of clusters K corresponding to the higher validation and repeatability values are 

expected to be the true number of clusters that underlying the dataset. As shown in Tables 

4.2,4.3,4.4 and 4.5, RACAL possesses higher robustness as well as offers better repeata- 

bility compared with other clustering algorithms. Also, the performance of K-medoids 

algorithm is better than the performance obtained by K-means, SOM and CLARA algo- 

rithms. However, K-medoids algorithm is not as efficient computationally as others, as its 

computational time is higher than other algorithms. 

K-medoids 
SOM 
RACAL 

0 0.5 CLARA 

2 68 10 12 14 16 18 

K-means 
K-medoids 
SOM 
RACAL 

0" 0.5 I CLARA h 
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0 
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Number of clusters 

Figure 4.10: Testing rule procedure on QAM-4 at SNR = 15 dB. 

Table 4.2: Perfon-nance evaluation results on OAM-4 at SNR = 15 dB. 
II SOM I K-means I K-medoids I CLARA I RýýL 

< Repeatability > 0.32 0.40 0.44 0.27 0.46 

< Validation > ("I" index)_ 0.35 0.42 0.46 0.44 0.50 
CpAI1 6.4 6.6 6.9 6.5 7.1 
CPA12 0.55 0.65 0.70 0.59 0.74 
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Figure 4.11: Testing rule procedure on QAM-4 at SNR = 10 dB. 

Table 4.3: Performance evaluation results on OAM-4 at SNR = 10 dB. 
I SOM I K-means I K-medoids I CLARA I RACAL 

< Repeatability > 0.20 0.24 0.33 0.19 0.35 
< Validation > ("I" index)_ 0.40 0.47 0.50 0.46 0.55 

CPMJ 8.18 8.41 8.94 8.31 9.16 
CPM2 0.52 0.59 0.66 0.56 0.71 
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Figure 4.12: Testing rule procedure on breast cancer dataset. 
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T, ihlt-. A 4- Pi-. rfc)rmnnrt-. P. wihintinn n-Qidfv nn hrpqQt rinri-r tint. n-u-t 
I SOM I K-means I K-medoids I CLARA I RAýL 

< Repeatability > 0.27 0.23 0.31 0.12 0.34 

< Validation > ("I" index) 0.24 0.26 0.27 0.25 0.29 
CPMI 8.02 7.95 8.19 7.61 8.41 
CPA'12 0.45 0.43 0.49 0.34 0.53 
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Figure 4.13: Testing rule procedure on Iris dataset. 

iame 4.. ): rerro rmance evamation resuns on iris a ataset. 
I- I SOM I K-means I , K-medoids CLARA I R 

< Repeatability > 0.56 0.42 0.53 0.41 0.55 
< Validation > ("I" index)_ 0.43 0.49 0.54 0.51 0.58 

CRAI, 4.81 4.73 5.02 4.74 5.31 
CPA12 0.75 0.70 0.78 0.71 0.81 
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4.6 RACAL with Partial Supervision Strategy (RACAL-PS) 

In this section, adaptation of RACAL algorithm with some labelled objects to guide the 

clustering process of the unlabelled objects, i. e. RACAL with partial supervision (RACAL- 

PS), is proposed. The proposed method is divided into two stages. First stage is to cluster n 

objects (the entire objects) into K clusters according to the input parameter J, as described 

in Section 4.2. Therefore, K clusters can be obtained according to the input parameter 6, 

Second stage is to randomly select Np objects from the dataset to be labelled data objects, 

then each cluster is classified according to the class label of the majority of its objects 

(the choice of Np and J,, ensure that all clusters can be classified). For each labelled 

data object, if its cluster is classified to different class (label), then this data object will be 

assigned to the nearest cluster that has the same label as it. Once the clusters' memberships 

are updated, the cluster centres can be updated, and the process continues checking the 

cluster memberships of the labelled data objects until no changes. Then, all the data objects 

that belong to different clusters with the same class labels can be assigned to that label. 

This proposed method will bias clustering towards a better search space. The proposed 

supervised method is detailed in Algorithm 3. 

A soft classification, where all objects are allowed in principle to belong to all classes 

with different degrees of membership, is achieved by adding the fuzzy memberships for 

each object with the clusters that belong to the same class label. Eqs. 4.1 and 4.2 show the 

fuzzy membership (Mik) of object k to cluster i, and the soft membership (AICk) of object 

k to class Ci respectively. 

1 
Mik == K 2/(q (; d 

Ilk 
,k 

j=l 

K 
AfC. k mjk if cluster jE class Ci (4.2) 

where q is the fuzziness exponent, dik is the distance from object k to the current cluster 
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Algorithm 3 RACAL with partial supervision strategy (RACAL-PS) 

Step 1: Cluster the dataset using RACAL algorithm to find the proper prototypes. 

Step 2: Apply the supervision strategy asfollow: 

I. Randomly select Np objects from the dataset to be labelled data objects. 
2. Classify the clusters obtained by RACAL algorithm to the class of its most la- 

belled data objects. 
3. For each labelled data objects, if its cluster is classified to different class (label), 

then this data object will be assigned to the nearest cluster that has the same 
label as it. Otherwise, assign it to the nearest unclassified (unlabelled) cluster. 

4. Update the clusters' memberships and the cluster centres. 
5. goto (2) until no change in the clusters' memberships. 

centre i, and dik is the distance from object k and any of cluster centre j (1 <- j :5 K). 

4.6.1 Classification results 

A series of experiments were carried out to examine the performance of RACAL when ap- 

plying the proposed supervision strategy, where there are some labelled objects. In these 

experiments, effects of the number of labelled objects on the classification accuracy are 

investigated. Fractions of objects from the entire dataset are randomly selected to be used 

as labelled objects. For each fraction, this process is repeated one hundred times without 

replacement. The best, average, and standard deviation of classification accuracy are ob- 

tained over one hundred runs for each fraction of labelled objects. For breast cancer dataset 

I as demonstrated in Table 4.6, the best classification accuracy increases initially with the 

increasing fraction of the labelled objects and then settled down. By examining the aver- 

age and standard deviation of the classification performance, when 5% of the entire dataset 

are labelled, the average performance is being the lowest and it has the highest standard 

deviation compared with the other fractions of labelled objects. For more than 5% labelled 

objects, the average classification accuracy is higher than 97% with comparable best accu- 

racies and small magnitude of standard deviation as demonstrated in Table 4.6. For breast 

cancer dataset 2 as demonstrated in Table 4.7, standard deviations are higher than standard 

deviations of breast cancer dataset 1. This is because of the lower compactness of clus- 
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ters on breast cancer dataset 2 compared with breast cancer dataset 1, as indicated in [86]. 

As demonstrated in Table 4.7, the best and average classification accuracy of 98.3% and 

95.2% respectively were achieved at 30% labelled objects, with the lowest being 95.8% and 

90.6% for best and average accuracies respectively at 5% labelled objects. Similarly, for 

leukaemia dataset as demonstrated in Table 4.8, it can be observed that using 20% labelled 

objects achieves average performance of 89% which is 9% higher than the average per- 

formance when using 10% labelled objects, while the standard deviation of classification 

accuracy when using 20% labelled objects is 6% less than the standard deviation of classi- 

fication when using 10% labelled objects. In case of Iris dataset, as demonstrated in Table 

4.9, the best and average classification accuracy of 99.3% and 97.1% respectively were 

achieved at 30% labelled objects, with the lowest being 97.1 % and 95.8% for best and av- 

erage accuracies respectively at 10% labelled objects. With the increase of labelled objects 

percentage, the overall performance increases, i. e. higher average and best classification 

accuracy with smaller magnitude of standard deviation. 

Table 4.6: Classification accuracy (%) for breast cancer dataset I using RACAL-PS, based 
on 100 experiments. 

labelled 
objects % Best Average 

5 97.5 96.6 1.4 
10 97.9 97.2 0.3 
15 98.2 97.4 0.3 
20 98.6 97.6 0.3 
25 98.6 97.7 0.3 
30 98.6 97.9 

Table 4.7: Classification accuracy (%) for breast cancer dataset 2 using RACAL-PS, based 

on 100 experiments. 
labelled 

objects % Best (%) Average (%) Stcl (%) 
5 95.8 90.6 4.7 
10 96.3 92.1 3.2 
15 96.8 93.5 2.3 
20 97.5 94.4 1.8 
25 97.9 94.9 1.6 

ý3 95.2 1.7 
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Table 4.8: Classification accuracy (%) for leukaemia dataset using RACAL-PS, based on 
100 experiments. 

labelled 
objects % Best (%) Average 

10 94.4 80.2 10.6 
20 97.2 89.6 4.2 
30 97.2 90.9 3.0 
40 97.2 93.1 2.4 
50 100 94.7 1.8 

Table 4.9: Classification accuracy (%) for iris dataset using RACAL-PS, based on 100 ex- 
periments. 

labelled 

objects % Best Average (%) 

10 97.1 95.8 3.3 
15 98.0 96.1 3.2 
20 98.7 96.2 2.8 
25 99.3 96.7 2.6 
30 99.3 97.1 2.4 

In these experiments, the performance of RACAL-PS is also examined in segmenting 

retinal blood vessels, where only 30% of all pixels are known as vessels or non-vessels pix- 

els. Figure 4.14(a and b) shows two examples-, abnormal (top) and normal (bottom) images 

and their results after blood vessels segmentation using RACAL-PS. In this application, the 

performance is measured with Receiver Operating Characteristic (ROC) curves [871. An 

ROC curve plots the false positive rates against the true positive rates, and these rates are 

defined in the same way as in [881, where the true (false) positive is any pixel which was 

hand-labelled as a vessel (not vessel) and whose intensity after segmentation is above a 

given threshold. The true (false) positive rate is established by dividing the number of true 

(false) positives by the total number of pixels hand-labelled as vessels (not vessels). 

By using the whole 20 retinal images, average sensitivity (true positive rate) of 81.34% 

is achieved at average specificity (]-false positive rate) of 96.70% as surnmarised in Table 

4.10. These values are calculated using the retinal field of view only (FOV). 
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(a) (b) 

Figure 4.14: (a) Colour images, and (b) output as hard decision using RACAL-PS. 

Table 4.10: RACAL-PS hard decision results (average from 20 images). 
Image type Specificity Sensitivity 

Normal 97.02% 85.01% 
Abnormal 96.39% 77.67% 

All 96.70% 81.34% 

4.6.2 Comparison with other classifiers 

4.6.2.1 Breast cancer data 

For purposes of comparison, the classification results obtained by RACAL-PS on breast can- 

cer dataset 2 are compared with results from different classifiers [89] (PCAIMDC "Principal 

Component Analysis / Minimum Distance Classifier" [7,111, FLDAIMDC "Fisher Linear 

Discriminant Analysis / MDC" [I I], MLP "Multi-Layer Percepton" [901, SVM "Support 

Vector Machine" [91], and GPIMDC "Genetic Programming/ MDC" [89,92]). In order 

to achieve fair comparisons as in [891, random samples (100 samples) are selected, from 

the entire dataset for training, and 100 samples for testing; this process has been repeated 

100 times. The target information, class labels, of the training samples is used to guide 
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Table 4.11: Comparison of classification accuracy (%) for breast cancer dataset 2 (testing 
set) using RACAL-PS and different classifiers [89], based on 100 experiments. 

Algorithms Best (%) Average (%) Std (%) 
PCAIMDC 88.7 88.6 N/A 

FLDAIMDC 88.9 88.6 N/A 
MLP 97.3 96.2 1.7 
svm 96.7 96.3 0.8 

GPIMD C 98.9 97.4 1.5 
RACAL-PS 100.0 97.3 1.6 

the clustering process of the testing samples using RACAL algorithm. Table 4.11 shows 

the comparison results of RACAL-PS along with different methods for classification. As 

shown, the best classification accuracy is achieved by RACAL-PS (100%), with the lowest 

being 88.76% obtained by PCAIMDC which gives comparable results as FLDAIMDC. Al- 

though the average and standard deviation of classification accuracy obtained by GPIMDC 

is comparable with RACAL-PS, it gives 1.1% less than the best performance RACAL-PS. 

Therefore, the proposed method is more robust compared with the other methods. 

4.6.2.2 Retinal images 

For purposes of comparison, classification results obtained from the proposed algorithm 

(RACAL-PS) are compared with the classification results obtained by the KNN classifier. 

For the KNN classifiers, two sets are required; one for training and the other for testing, 

so the dataset is randomly divided into two sets of images, each contains 5 normal and 

5 abnormal images. The training set contains large number of training samples (423,500 

pixels/image), which is huge and is the main problem with this type of classifiers. To 

overcome such a problem, random number of pixels are chosen from the field of view 

(FOV) of each image in the training set [84]. The targets for these training samples are 

available from the manually segmented images. The testing set contains 10 images to test 

the performance of the classifier. While for RACAL-PS, only 30% of all pixels are known 

(as vessels or non-vessels pixels). Figure 4.15 compares results from RACAL-PS with the 

KNN classifier. 
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(a) (b) (c) 

Figure 4.15: (a) Colour images, output as hard decision from (b) RACAL-PS, and (c) KNN 

classifier. 

Table 4.12: RACAL-PS and KNN hard decision results (average from 10 images (testing 

set)). 
RACAL-PS KNN [841 

Image type Specificity Sensitivity Specificity Sensitivity 

Normal 97.18% 85.96% 93.56% 88.59% 
Abnormal 96.90% 80.32% 91.92% 82.36% 

All 97.04% 83.14% 92.74% 85.47% 

For hard classification, the results are surnmarised in Table 4.12. As shown, average 

sensitivity of 83-14% is achieved at average specificity of 97.04% from RACAL-PS com- 

pared with average sensitivity of 85.47% at average specificity of 92.74% from the KNN 

classifier. On average, the proposed RACAL-PS achieves better specificity than KNN clas- 

sifier with comparable sensitivity. 

By comparing the soft classification results of RACAL-PS and KNN classifier as sum- 

marised in Table 4.13, it is clear that the proposed RACAL-PS offers better results than the 

KNN classifier for abnormal images, and comparable results for normal images. 

For automation purposes, RACAL-PS can be used as a classifier by learning from 10 
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Table 4.13: Averaize sensitivitv at certain sr)ecificitv values. 
RACAL-PS KNN [841 

Image Specificity 
type % 

Sensitivity % Sensitivity % 

Normal 
Abnormal 95% 

85.31% 
81.04% 1 

86.60% 
76.24% 

All images 83.18% 81.42% 

Normal 
Abnormal 90% 

92.89% 
93.53% 

92.56% 
86.13% 

All images 93.21% 89.35% 

Normal 
Abnormal 85% 

94.08% 
97.70% 

95.03% 
90.89% 

All images 95.89% 92.96% 

N rmal 
Abnormal 80% 

98.07% 
96.64% 

96.51% 
93.65% 

All images 97.36% 95.08% 

Table 4.14: RACAL-PS as a classifier and the KNN classifier hard decision results (average 
from 10 images (testing set)). 

RACAL-PS KNN [84] 
Image type Specificity Sensitivity Specificity Sensitivity 

Normal 98.64% 91.33% 93.56% 88.59% 
Abnormal 98.32% 89.52% 91.92% 82.36% 

All 1 98.48% 90.43% 92.74% 85.47% 

images and testing on the other images. In the training step, each image is clustered to 

K clusters, then from ground truth images, each cluster is assigned to the corresponding 

class. Afterwards, describe each cluster statistically and geometrically by calculating mean 

of features for its objects, cluster compactness, major and minor diameters. For testing, 

cluster each image as in Section 4.2, then for each cluster; calculate the mean of features 

for its objects, cluster compactness, major and minor diameters. For each cluster in the 

testing image, find the nearest cluster "with known class" from the training set, then assign 

it to the same class. Results to compare between RACAL-PS as a classifier and the KNN 

classifier are shown in Table 4.14. As shown, average sensitivity of 90.43% is achieved 

at average specificity of 98.48% from RACAL-PS compared with average sensitivity of 

85.47% at average specificity of 92.74% from the KNN classifier. On average, the proposed 

RACAL-PS performs better than the KNN classifier. 
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4.7 Parallel Implementation 

In this section, a parallel version of RACAL clustering algorithm is proposed to cluster large 

datasets with high dimensions. The proposed algorithm (P-RACAL) is based on the Single 

Program Multiple Data (SPMD) model using message passing. A group of massively par- 

allel processor machines or network of PCs can be used by the proposed parallel RACAL 

(P-RACAL). The problem of large datasets is addressed by partitioning the dataset into 

small subsets. These subsets are distributed among processors. i. e, each processor has its 

own local data (subset). The communication between processors is managed by MPI, the 

Message Passing Interface, which is a standard and portable message-passing system [93]. 

The proposed algorithm (P-RACAL) is detailed in Algorithm 4. The speedup and scaleup 

measurements are used to measure the performance of parallel algorithms [46,48]. The 

speedup captures the gain obtained when an algorithm is run in parallel and, ideally should 

equal to the number of processors. In other words, speedup is defined as the ratio between 

the execution time when using one processor to the execution time when using p proces- 

sors as described in Eq. 4.3. The scaleup captures how a parallel algorithm handles larger 

datasets where more processors are available. It can be achieved by fixing the problern size 

per processor while increasing the number of processors. 

Speedup = 
Ts 

(4.3) TP 

where TS is the sequential execution time, and Tp is the parallel execution time. 

To examine the performance of P-RACAL in parallel environments, P-RACAL is imple- 

mented on a computer cluster using the standard MPI which allows P-RACAL algorithm to 

be completely portable to the other shared-nothing parallel architectures. All experiments 

are carried out on a cluster of 12 nodes, each node consists of 4 processors (each, Xeon 2.8 

GHZ CPU with 512 MB RAM). These nodes are connected via a fast Ethernet network. 

In this study, retinal images are used to examine the effect of data size n and the number 

of features d on the speedup and scaleup of P-RACAL, where n= 423,500 which corre- 
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Algorithm 4 The Proposed Parallel Algorithm P-RACAL 
Read the input data 0= 101,..., 0,, 1, the radius value J., the number of processors p. 
Compute the partition (block) length per processor, np: 

n 
n/p if pis even 

Pý 
ý 

'n/p+1 if p is odd 

where n is the data size. 
Each processor: 

1. loads its local data subset (partition). 

2. finds the neighbourhood and the weight of each object in its local data according to the input 
radius J, 

3. creates a list that contains neighbourhoods of some objects from other processors. 

4. communicates with other processors in such a way that every two processors can commu- 
nicate at a time. It should be noted that there will be one processor in idle case when p is 
odd. 

Apply the client-server process strategy: 
Let Pserver the server processor and P,. Ii,,, t a client processor. 

I. Server: collects the weights from all clients (other processors). 

2. Generating prototypes (cluster seeds) 
Do 
Server: finds the max weighted object 0,,,,,, clears the weights of its neighbourhood (clos- 
est objects), and sends a request to the client that have 0 ... ,, asking for the common objects 
between 0,,,..,,: and its neighbourhood. 
Clients: if Pli,,, t is the requested processor, then send to Pserver the common objects be- 
tween 0,,,,,. ý and its neighbourhood, else Prii,, t remains idle until receiving permission from 
Pserver- 
Server: calculates mean of the common objects between 0,,,,, and its neighbourhood to 
generate a prototype Bk (cluster seed). 
Until no weights are found 

3. Clustering process 
Do 
Server: broadcasts the prototypes (cluster seeds) to all clients. 
Server: assigns each object Oi - in its local data - to the nearest prototypes, and requests the 
local partition from all clients. 
Clients: assign each object Oi - in its local data - to the nearest prototypes. Then send its 
local partition to Pserver and remain idle until receiving permission from P. erver- 
Server: calculates the validation index value as in Eq. 3.3. 
Server: collects the local partitions and then update the prototypes (cluster centres). 
Until no more changes 

4. Server: saves the clustering result of the best validation value. 
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sponds to a retinal image of 605 x 700 pixels with 31 features per pixel [94]. The effect of 

data size n is obtained by varying n and fixing the number of features d, Le, one can get 

different dataset corresponding to each variation of n, and then, apply P-RACAL on each 

dataset several times using different number of processors. While, the effect of number 

of features d is obtained by varying d and fixing the data size n, Le, one can get different 

dataset corresponding to each variation of d, then, apply P-RACAL on each dataset several 

times using different number of processors. 

Results from varying the data size n and the number of features d are plotted in Fig. 

4.16. Figure 4.16(a) shows the effect of varying the data size n on the execution time. For 

small data sizes, the execution time is reduced faster than that for larger data sizes, which is 

consistence with the obtained speedup. On the other hand, a large data size gives nearly lin- 

ear speedup at high number of processors. Similarly, when varying the number of features d 

and fixing the data size n as shown in Fig. 4.16(b), the observed speedup for larger number 

of features remains nearly linear at high number of processors. Consequently, the proposed 

P-RACAL is not affected by the number of features which indicate the scalability. It should 

be noted that the above results are affected by the communication overhead among proces- 

sors. Figure 4.17 shows the relative scaleup results when the number of processors and the 

data size are simultaneously increased. Where, the relative scaleup of P-RACAL is defined 

as the ratio between the execution time for clustering n pixels using one processor to the 

execution time for clustering nxp pixels using p processors. As shown, P-RACAL delivers 

nearly constant execution time. It should be noted that the convergence time when running 

the algorithm using single processor is much higher than its convergence time when it runs 

in parallel. However, it is noteworthy to take into consideration the effect of problem sizes. 

For small problem sizes, the communication overhead among processors has a significant 

effect on the convergence time compared with large problem sizes. 
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Figure 4.16: (a) The execution time versus number of processors and its corresponding 
speedup when using four different data sizes n at d= 31, and (b) the execution time versus 
number of processors and its corresponding speedup when using three different dimensions 
d at n= 423,500. 
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Figure 4.17: Scaleup versus number of processors at different J,, values. 
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4.8 Summary 

In this chapter, a new clustering algorithm, RACAL, has been presented. As shown, it 

is possible to control the behaviour of the cluster membership (small or large) through 

a radius parameter J, Unlike many partitional clustering algorithms, which require the 

specification of the number of required clusters, the proposed RACAL does not need a pri- 

ori knowledge of the number of clusters. Moreover, the augmentation of RACAL with a 

reliable validation index produces the best results for the given J,, values. Four different 

types of real-world data have been used to demonstrate that the proposed algorithm scales 

well with the size and dimension of the dataset. The clustering performance measures, 

CPMs, indicate that RACAL possesses higher robustness as well as offers better repeata- 

bility compared with other mentioned clustering algorithms. Moreover, an adaptive partial 

supervision (PS) strategy has been proposed for RACAL to make it act as a classifier. Ex- 

perimental classification results obtained by RACAL-PS indicate its superior performance 

compared with the other classification methods. Additionally, a parallel version of RACAL 

(P-RACAL) has been proposed. As demonstrated, P-RACAL is scalable in terms of speedup 

and scaleup, which gives the ability to handle large datasets of high dimensions in a rea- 

sonable time. 



Chapter 5 

Nearest Neighbour Clustering 

Algorithm (NNCA) 

5.1 Introduction 

IN the previous chapter, a radius based clustering algorithm (RACAL) has been proposed. 

This algorithm, RACAL, achieves clustering using a radius parameter 50 which acts 

as the determinant of the cluster and controls the size of the clusters, which is the main 

constraint of RACAL algorithm. 

In this chapter, a novel clustering algorithm which achieves clustering without any 

control of cluster sizes is proposed. The proposed clustering algorithm, which is called 

Nearest Neighbour Clustering Algorithm (NNCA), uses the same concept as the K-nearest 

neighbour (KNN) [84] classifier with the advantage that the algorithm needs no training set 

and it is completely unsupervised. Additionally, a partial supervision strategy is proposed 

for using in conjunction with NNCA to make it act as a classifier. Furthermore, a parallel 

algorithm for NNCA is proposed to reduce the clustering time of large datasets. 

89 
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5.2 The NNCA Clustering Algorithm 

NNCA is a modified version of the KNN classifier which requires human intervention to 

define a training set, i. e. supervised, while NNCA needs no training set and it is completely 

unsupervised. In this context, NNCA is divided into two stages for creating NC clusters. 

The first stage is to randomly select N objects (the choice of N should be large enough 

to describe the distribution of the data), where an object is a single data item used by the 

clustering algorithm and is characterised by d features (attributes). Then non-overlapping 

clusters are created from these N objects, each of maximum size Ki"it objects (the choice 

of Ki,, it ensures that more than NC clusters are generated here). Afterwards an iterative 

control strategy is applied to update the clusters and their memberships by increasing the 

number of neighbours until NC non-overlapping clusters are created. The second stage is 

to cluster the remaining objects. For each unclustered object q, K nearest clustered objects 

are found. Then, the cluster to which most of these K clustered objects belong is deemed 

to be one to which the object q belongs to. 

The NNCA clustering algorithm is detailed in Algorithm 5. Let each object x be de- 

scribed by the feature vector: 

al (x) a2 (X) 
i ....... ad(X) 

where a, (x) is used to denote the values of the r-th attribute of data object x. If two objects 

xi and xj are considered, then the distance between them is defined as D(xi, xj), which is 

expressed in Eq - 5.1. 

d 

(xi, xj) E (ar (Xi) - ar (Xj))2 

r=l 
A fuzzy clustering, where all objects are allowed to belong to all clusters with different 

degrees of membership, is achieved by obtaining the mean value of the K nearest neigh- 

bours for each object in the dataset. Therefore, hard partition as well as soft partition can 

be obtained. For an object Xq to be clustered, let x I, ..., XK denote the nearest K clustered 

objects to Xq and C(xi) E 11,... 
, 

NcJ be the cluster index for object xi. 
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Algorithm 5 Nearest Neighbour Clustering Algorithm (NNCA) 
Input (data, N, Kiit, Nc, K) 

where: 
*N is the number of random objects to be clustered. 
* Ki,, it is the nearest neighbour objects from N. 
* NC is the user defined number of clusters. 
*K is the number of nearest clustered objects. 

# Step 1: Create N(-, non-overlapped clusters 
# (a) Create initial clusters: 

Initially, all the N objects are unclustered. 
let Al 1 
For i1 to N 

IF ( object i is unclustered 

- Assign i and its unclustered neighbours (from N) 

of the Ki,, it nearest neighbours to cluster # M. 

-M=M+1 
End IF 

End For 

(b) Merge clusters: 
DO 
- Kinit 

-.. ' 1ý , init +1 

- Assign each clustered object to the common cluster 
of the Ki,, it nearest neighbours. 

- UPdate the number of clusters --+ M 
WHILE (M> Nc) 

Sten 2: Find the nearest K nei2hbours for each remainimz obiect 
- Assign each unclustered object to the common cluster 
of the K nearest clustered objects. 
-Use Eq. 5.2 to find hard partition and 
Eq. 5.3 to find soft partition. 

Output ( Hard partition vector, Soft partition matrix) 
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Figure 5.1: (a) Original sub-image, and (b) sub-image with blood vessels clustered using 
NNCA. 

The hard partition for Xq iS: 

K 
C(Xq) = arg max C(x, )), (5.2) 

nENC 

and soft partition is: 

K 
C(Xq) r=l 

C(Xr) 
(5.3) K 

Figure 5.1 shows the result for clustering blood vessels for a sub-image from a colour 

retinal image. 

When using 20 images where each pixel is characterised by three features [841, average 

sensitivity of 77% is achieved at average specificity of 90% as summarised in Table 5.1. 

These values are calculated using the retinal field of view only. The setting parameters of 

NNCA were N= 50,000, Ki,, it = 200, NC = 2, and K= 60. 
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Table SA: NNCA results (average from 20 images). 
Image Specificity Sensitivity 
type %% 

Normal 92.30% 81.42% 
Abnormal 87.61% 72.13% 

All 89.95% 76.77% 

Z, 

1 

5.3 NNCA with Partial Supervision Strategy (NNCA-PS) 

93 

In this section, adaptation of NNCA algorithm with some labelled objects is proposed to 

guide the clustering process of the unlabelled objects, i. e., NNCA with partial supervision 

(NNCA-PS). The proposed method is divided into two stages. First stage is to randomly 

select Np objects from the dataset to be labelled data objects and cluster these Np objects 

into NC clusters, as described in Section 5.2. Second stage is to classify each cluster 

according to the class label of the majority of its objects. For each labelled data object xI 

of class Ci, assigned to cluster j (1 <i !ý Nc), if its cluster is classified to different class 

(label), then this data object will be assigned to the cluster that has the nearest objects and 

with the same label of it as in Eq. 5.4. 

i if clusteri E Ci 
3 .. 

arg min 
EzEk D,,.,, 

if clustcrj ý Ci 
(5.4) 

kECi Icluster kI 

where Icluster kI is the number of objects in cluster k, and D,,, is the euclidean distance 

between an object z and the labelled object xI. 

This process continues until all labelled objects within a cluster have the same class 

label. Then, the process continues to assign each unlabelled object x,, to the cluster that 

has the nearest labelled objects as in Eq. 5.5. Then, all the data objects that belong to 

different clusters with the same class labels can be assigned to that label. 

j= arg min 
EzEk D,, ý. (5.5) 1: 5k<NC Icluster kI 

where D,,. is the euclidean distance between an object z and the unlabelled object x,,. 
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Algorithm 6 NNCA with partial supervision strategy (NNCA-PS) 

9 Step 1: Clustering using NNCA algorithnz 

1. Randomly select Np points from the ground truth to be labelled objects. 
2. Cluster the Np objects into NC cluster using NNCA clustering algorithm. 

* Step 2: Apply the supervision strategy asfollow 

1. Classify the clusters obtained by NNCA algorithm to the class of its most la- 
belled objects. 

2. For each labelled object, if its cluster is classified to different class (label), then 
this object will be assigned to the cluster that has the nearest objects and with 
the same label of it. 

3. Each unlabelled object is assigned to the cluster that has the nearest objects and 
then classified to the class (label) of this cluster. 

The proposed supervised method is detailed in Algorithm 6. In order to reduce the misclus- 

tered objects and finally achieve higher classification performance, the average separation 

between all possible pairs of clusters (cluster centres) is calculated at each update of the 

neighbourhoods in step I (b) of Algorithm 5. Then, the clustering result that has maximum 

separations between clusters is used in conjunction with the proposed partial supervision 

strategy (NNCA-PS) to achieve better classification accuracy. 

The soft classification of NNCA-PS is achieved in the sarne way as tile soft classirk 

cation of RACAL-PS (see Eq. 4.1 and 4.2), where each objects is allowed in principle to 

belong to all classes with different degrees of membership, achieved by adding the fuzzy 

memberships for each object with the clusters that belong to the same class label. 

5.4 Experimental Results 

The performance of the proposed algorithm using datasets from real-world problems is 

examined. The proposed method is used to segment the blood vessels from retinal iniagcs, 

and it is used to classify breast tumors as either malignant or benign. 
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(a) (b) (C) 

Figure 5.2: (a) Colour images, output as hard decision from (b) NNCA, and (c) NNCA-PS. 

Table 5.2: NNCA and NNCA-PS results (average from 10 images). 
Image NNCA NNCA-PS 
type Specificity Sensitivity Specificity Sensitivity 

Normal 91.7% 83.4% 95.4% 90.2% 
Abnormal 87.2% 77.7% 94.4% 87.8% 

All 89.5% 80.5% 94.8% 89.0% 

5.4.1 Retinal images 

In these experiments, retinal blood vessels are segmented using the NNCA and NNCA with 

partial supervised strategy (NNCA-PS). For NNCA-PS, only 30% of all the pixels are known 

as vessels or non-vessels pixels. Figure 5.2(a and b) shows two examples; abnormal (top) 

and normal (bottom) images and their results after blood vessels segmentation using NNCA 

and NNCA-PS. As shown in Table 5.2, NNCA-PS achieves average sensitivity (true p()si- 

tive rate) of 89% at average specificity (I -false positive rate) of 94.8%, while the NNCA 

achieves sensitivity of 80.5% at average specificity of 89.5%. On average, the NNCA-PS 

achieves better specificity as well as sensitivity than NNCA as it is completely unsuper- 

vised. This indicates the effect of labelled objects in improving the clustering process. 

-- 
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Table 5.3: NNCA-PS, RACAL-PS and KNN hard decision results (average from 10 images 
(testing set)). 

NNCA-PS RACAL-PS KNN [84] 
Image type Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity 

Normal 95.4% 90.2% 97.2% 85.9% 93.6% 88.6% 
Abnormal 94.4% 87.8% 96.9% 80.3% 91.9% 82.4% 

All 94.8% 89.0% 97.0% 83.1% 1 92.7% 85.5% 

Table 5.4: Average sensitivity at certain specificity values for 10 images. 
NNCA-PS RACAL-PS [951 KNN [841 

image Specificity 
type % Sensitivity % Sensitivity % Sensitivity % 
Normal 
Abnormal 95% 

90.8% 
86.7% 

85.3% 
81.0% 

86.6% 
76.21/7, '0 0 

All images 88.8% 83.2% 81.4c-l'o 

Normal 
Abnormal 90% 

95.1 ik-j 
c 0 Cx 92.8 0 

92.9% 
93.5% 

92.6% 
86.1% 

All images 93.9% 93.2% 89.4% 

Normal 
Abnormal 85% 

96.9% 
95.4% 

94.1% 
97.7% 

95.1% 
90.9% 

All ima(yes 96.1% 95.9% 92.9% 

Normal 
Abnormal 80% 

98.1% 
96.9% 

98.1% 
96.6% 

96.5% 
93.7% 

All images 97.5% 97.4% 95.1% 

For purposes of comparison, the performance of NNCA-PS is also compared with KNN 

classifier [841 and RACAL-PS [951. For hard classification in NNCA-PS, the same set of 

images (10 images for testing) as used with the KNNclassifier are studied. Tile hard classi- 

fication results from NNCA-PS, RACAL-PS and KNN are presented in Table 5.3. As shown, 

NNCA-PS achieves average sensitivity of 89% at average specificity of 94.8%, while the 

KNN classifier achieves sensitivity of 85.5% at average specificity of 92.7%. On average, 

the proposed NNCA-PS achieves better specificity as well as sensitivity than KNN classifier. 

When comparing with RACAL-PS, although RACAL-PS achieves 2% higher sped ficity (on 

average) than NNCA-PS, it gives 6% less sensitivity (on average) than NNCA-IS. 

For soft classification as shown in Table 5.4, the soft classification results of the pro- 

posed NNCA-PS are compared with the soft results of RACAL-PS and KNN. As shown, at 

95% specificity, the proposed NNCA-PS achieves 5.5% and 4.2% higher sensitivity than 
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RACAL-PS and KNN respectively in case of normal images. Also in abnormal images at 

95% specificity, NNCA-PS achieves 5.7% and 10.5% higher sensitivity than RACAL-PS 

and KNN respectively. For higher specificity, KNN classifier achieves the lowest average 

sensitivity compared with NNCA-PS and RACAL-PS, while both NNCA-PS and RACAL-PS 

achieves on average a comparable sensitivity. 

5.4.2 Breast cancer data 

For purposes of comparison, a series of experiments were carried out to examine the per- 

formance of NNCA when applying the proposed supervision strategy (NNCA-PS) on breast 

cancer datasets, where the classification results obtained by NNCA-PS on breast cancer 

dataset 2 are compared with results of different classifiers [89]. As shown in Table 5.5, 

the best classification accuracy is achieved by NNCA-PS (99.5%), with the lowest being 

88.7% obtained by PCAIMDC which gives comparable results as FLDAIMDC. Although 

the average classification accuracy obtained by GPIMDC is comparable with NNCA. PS, 

it gives 0.6% less than the best performance of NNCA-PS with higher standard deviation 

in classification accuracy. Therefore, the proposed method is more robust compared with 

other methods. 

Table 5.5: Comparison of classification accuracy (%) for breast cancer dataset 2 (testing 
set) using NNCA-PS and different classifiers [891, based on 100 experiments. 

Algorithms Best (%) Average (%) Std (%) 
PCAIMDC 88.7 88.6 N/A 

FLDAIMDC 88.9 88.6 N/A 
MLP 97.3 96.2 1.7 
SvM 96.7 96.3 0.8 

GPIMDC 1 98.9 97.4 1.5 
NNCA-PS 1 99.5 97.2 1.2 

In order to reduce the amount of a priori knowledge, a small number of objects from 

the entire dataset are used as labelled objects. In these experiments, the effect of tile num- 

ber of labelled objects on the classification accuracy are investigated. Fractions of objects 

from the entire dataset are randomly selected to be used as labelled objects. For each frac. 

tion, this process is repeated one hundred times. The best, average, and standard deviation 
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Table 5.6: Classification accuracy (%) for breast cancer dataset 2 (entire dataset) using 
NNCA-PS, based on 100 experiments. 

labelled 
objects % Best (%) Average (%) 

5 96.2 91.5 2.3 
10 96.3 93.1 1.8 
15 97.0 94.4 1.3 
20 97.2 95.3 1.0 
25 97.6 95.6 0.9 
30 98.2 96.3 0.7 

Table 5.7: Classification accuracy (%) for breast cancer dataset I (entire dataset) using 
NNCA-PS, based on 100 experiments. 

labelled 
objects % Best (%) Average 

5 98.0 96.0 1.2 
10 98.1 96.3 1.1 
15 98.5 96.7 0.9 
20 98.7 97.0 0.8 
25 98. 97.4 0.7 
30 99.2 97.9 0.5 

of classification accuracy are obtained over one hundred runs for each fraction of labelled 

objects. For breast cancer dataset 2 as demonstrated in Table 5.6, the best and average 

classification accuracies increase with the increasing fraction of the labelled objects. As 

shown, the best and average classification accuracy of 98.2% and 96.3% respectively were 

achieved at 30% labelled objects, with the lowest being 96.2% and 91.5% for best and aver- 

age accuracies respectively at 5% labelled objects. By examining the average and standard 

deviation of the classification performance, when 5% of the entire dataset are labelled, the 

average performance is the lowest, while it has the highest standard deviation compared 

with other fractions of labelled objects. For breast cancer dataset I as demonstrated in 

Table 5.7, standard deviations are lower than standard deviations of breast cancer dataset 

2. This is because the higher compactness of clusters on breast cancer dataset I compared 

with breast cancer dataset 2 [861. For 5% labelled objects and higher, the best classifi. 

cation accuracy is higher than 98% with a small decrease in the standard deviation and a 

significant increase in the average classification accuracy as in Table 5.7. 
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When comparing the proposed NNCA-PS with RACAL-PS for breast cancer data clas- 

sification, where a small number of objects from the entire dataset are used as labelled 

objects. The average classification accuracy for breast cancer dataset 2 using NNCA-PS is Cý 
I% higher than RACAL-PS while it achieves comparable accuracy for breast cancer dataset 

I as demonstrated in Tables 5.8 and 5.9. Moreover, the standard deviation of the classifica- 

tion performance of NNCA-PS for breast cancer dataset 2 is lower than RACAL-PS which 

favors compact clusters, while it achieves slightly higher standard deviations in breast can- 

cer dataset 1. This may be the result of achieving clustering without any control of cluster 

sizes in NNCA-PS, while RACAL-PS is constrained with a radius parameter 50 which con- 

trols the size of the clusters. 

Table 5.8: Comparison of classification accuracy (%) for breast cancer dataset 2 (entire 
dataset) using NNCA-PS and RACAL-PS, based on 100 experiments. 

labelled 

objects % 

NNCA-PS 

Average(%) ± Std(%) 

RACAL-PS 

Average(%) ± Std(%) 

5 91.5 ± 2.3 90.6 ± 4.7 
10 93.1 ± 1.8 92.1 ± 3.2 
15 94.4 ± 1.3 93.5 ± 2.3 
20 95.3 ± 1.0 94.4 ± 1.8 
25 95.6 ± 0.9 94.9 ± 1.6 
30 96.3 ± 0.7 95.2 ± 1.7 

Table 5.9: Comparison of classification accuracy (%) for breast cancer dataset I (entire 
dataset) using NNCA-PS and RACAL-PS, based on 100 experiments. 

labelled 

objects % 

NNCA-PS 

Average(%) ± Std(%) 

RACAL-PS 

Average(%) ± Std(%) 

5 98.0 ± 1.2 97.5 ± 1.4 
10 98.1 ± 1.1 97.9 ± 0.3 
15 98.5 ± 0.9 98.2 ± 0.3 
20 98.7 ± 0.8 98.6 ± 0.3 
25 98.7 ± 0.7 98.6 ± 0.3 
30 99.2 ± 0.5 98.6 ± 0.3 
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5.5 Parallel Implementation 

In this section, a parallel version of NNCA algorithm is proposed. The proposed P-NNCA, 

Parallel NNCA, algorithm is based on the Single Program Multiple Data (SPMD) model us- C, 
ing message passing. The problem of large datasets is addressed by partitioning the dataset 4n Cý 
into small subsets. These subsets are distributed among processors. Le, each processor has 4ý 
its own local data (subset). The proposed P-NNCA is detailed in Algorithm 7. 

5.5.1 Fast K nearest neighbours process 

The problem of finding the nearest K neighbours for a data object (pixel) xi can be achieved 

by either sorting algorithms or recursive methods. There is no doubts that these methods 

suffer from large computational complexity specially for higher number of data objects. In 

this study, a new method for obtaining the nearest K neighbours for a data object is pro- 

posed, which is called Fast K Nearest Neighbours (FKNN). This method aims to minimise 

the number of comparisons which are necessary to find the nearest neighbours that corre- 

spond to the smallest distances (highest similarities). The proposed method is based on 

breaking the distance vector of length n (data size) for a data object xi into small subsets 

(vectors) of length 1. For each subset, find the smallest distance, Le, one can get Y dis- 

tances. The first nearest neighbour is the one that corresponds to the smallest distance from 

the T distances. Then, find the second smallest distance within this subset, that contains the 

first nearest distance, and compare between it and the smallest distances from other subsets 

n- 1) distances previously found). This means that only the subset that has the smallest T 

distance will look for the next smallest distance, Le, instead of searching through the entire 

distance vector (of length n), search through a smaller subset (of length 1). This process 

will continue until the nearest K neighbours are identified. 

Now, it would be worth the effort to find the optimum subset length 1 to minimise the 

time necessary to find the nearest K neighbours. Let: 

D is a distance vector of length n (data size) 

K is the number of neighbours 
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Algorithm 7 The Proposed Parallel Algorithm P-NNCA. 

* Read the input parameters of NNCA algorithm and the number of processors p. 

9 Compute the partition (block) length per processor, np: 

n/p if p is even 
np 

n/p +1 if p is odd 

where n is the data size. 

Each processor loads it local data subset (partition). 

Apply the client-server process strategy: 
# Step 1: Create N(- non-overlapped clusters 
# (a) Create initial clusters: 

1. Server: creates a list IN of randomly selected N objects to be clustered. 

2. Server: broadcasts the IN list to all clients, and finds the nearest Ki"it neighbours 
for each object in the IN if it is belong to its local data. 

3. Clients : receive the IN list, and finds the nearest Ki,, it neighbours for each object in 
the IN list if it is belong to its local data. 

4. Server: collects the neigbourhoods from clients. and creates non-overlapped clusters 
as demonstrated in Algorithm 5. 

# (b) Merge clusters: 

I. Server: increments the neighbourhoods, Le, Ki,, it = Ki,, it + 1. 

2. Server: broadcasts the neighbourhoods Ki,, it and the clusters' memberships to all 
clients, and then assigns each clustered object in its local data to the common cluster 
of the Ki, it nearest neighbours (from N). 

3. Clients: receive the neighbourhoods Ki,, it and the clusters' memberships, and assign 
each clustered object in its local data to the common cluster of the Ki"it nearest 
neighbours (from N). 

4. Server: updates the clusters' memberships. if the updated number of clusters (AI) is 

greater than the desired number of clusters (N, ), then go to step (b-1). 

# Step 2: Find the K neighbours for each remaining object 

Server: broadcasts the updated clusters' memberships to all clients, and assigns each 
unclustered objects in its local data to the common cluster of the K nearest clustered 
objects. 

2. Clients: receive the updated clusters' memberships, and assign each unclustered ob- 
jects in its local data to the common cluster of the K nearest clustered objects. 

Server: collects the updated clusters' memberships, and save the results. 
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* CK is the number of comparisons to find the nearest K neighbours, 

oI is the subsets length. 

The number of comparisons per subset = 1, and the number of comparisons to find the 

smallest distance out of 1 distances = number of subsets = ! I! * 
For K=1: There is no need to divide D into small subsets. Therefore, the minimum 

number of comparisons to find the nearest neighbour is n, Therefore, C, = n. 

For K=2: The distance vector D can be divided into small subsets. Then, C2 = The 

number of comparisons to find the first minimum distance + The number of comparisons 

to find the second minimum distance, i. e, C2 = (1 Xý+ in) + (1 + ý) TT 

For K=3: C3 = C2 + (1 + T) 

For K=4: C4 = C3 + (1+ 12) 

Therefore, 'for K=k: 

Ck -: -: 
Ck- I+ (1 

7 

or 

Ck=(lx n+n)+(, +n) x (k- 1) =n+(1 x k) _1+nx 1111 

The optimum subset length 1 can be obtained as: 

dC 
dlll-=k-l- 'xk=O I'T 

Therefore, the optimum subset length I for k>2: 

Vnx 
kk 1) 

(5.6) 

Figure 5.3 shows the execution time of different procedures to find the nearest K neigh- 

bours that correspond to the minimum K distances out of 423,500 distances (distances be- 

tween a pixel xi and 423,500 pixels for a retinal image of size 605 x 700 pixels). As shown, 

the proposed method (FKNN) gives lower execution time at all different values of K com- 

pared with bubble and selection sorting methods, and the partial sorting method (selection 

sorting for only K steps). 

AC 
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Figure 5.3: Execution times of different procedures to find the nearest K neighbours. 

5.5.2 Parallel evaluation 

To examine the performance of P-NNCA in parallel environments, P-NNCA is implemented 

on a computer cluster (as in Section 4.7) using the standard MPI which allows P-NNCA to 

be completely portable to the other shared-nothing parallel architectures. 

The speedup and scaleup of P-NNCA are examined in the same way the speedup and 

scaleup of P-RACAL (see Section. 4.7). Results from varying the data size n and the 

number of features d are plotted in Fig. 5.4. Figure 5.4(a) shows the effect of varying 

the data size n on the execution time, while Fig. 5.4(b) shows the effect of varying the 

number of features d and fixing the data size n. As shown, the observed speedup for larger 

data sizes and larger number of features remains nearly linear at high number of processors, 

This indicate the scalability of the proposed P-NNCA. Figure 5.5 shows the relative scaleup 

results when the number of processors and the data size are simultaneously increased. As 

shown, P-NNCA delivers nearly constant execution time. 

By comparing the parallel performances of P-NNCA and 1-1-RACAL algorithms, P- 

RACAL achieves more linear speedup than P-NNCA as it requires more processing power 

in generating the prototypes (cluster centres). 
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5.6 Discussion 

When applying the proposed NNCA-PS algorithm for segmenting blood vessels from reti- 

nal images, NNCA-PS gives promising results of 89% average sensitivity at average speci- 

ficity of 94.8% for hard classification. Furthermore, the results are compared with KNN 

classifier [841 and RACAL-PS [951 as shown in Table 5.3, where KNN classifier achieves 

85.5% sensitivity at 92.7% specificity while RACAL-PS achieves 83.1 % sensitivity at 97% 

specificity. On average, the proposed NNCA-PS achieves better specificity as well as 

sensitivity than KNN classifier. When comparing with RACAL-PS, although RACAL-PS 

achieves 2% higher specificity (on average) than NNCA-PS, it gives 6% less sensitivity (on 

average) than NNCA-PS. For soft classification as shown in Table 5.4, at 95% specificity, 

the proposed NNCA-PS achieves 90.8% and 86.7% sensitivity for normal and abnormal im- 

ages respectively. When compared with other methods at the same specificity, the proposed 

NNCA-PS achieves 5.5% and 4.2% higher sensitivity than RACAL-PS and KNN respec- 

tively in case of normal images. Also in abnormal images at 95% specificity, NNCA-13S 

achieves 5.7% and 10.5% higher sensitivity than RACAL-PS and KNN respectively. 

In order to investigate the difference between the proposed NNCA-PS and RACAL-PS, 

it is better to examine the clustering behaviour of both methods. RACAL achieves cluster- 

ing using a radius parameter ýO which acts as the determinant of tile cluster and controls 

the size of the clusters, which is the main constraint of RACAL, while NNCA achieves clus- 

tering without any control of cluster sizes as described in Section 5.2. This is demonstrated 

through experiments (see Section 5.4.1) as demonstrated in Table 5.3, where RACAL-IS 

achieves better specificity at the expense of the sensitivity compared with NNCA-PS where 

only 2% higher specificity gives 6% less sensitivity than NNCA-PS. 

By comparing NNCA-PS with other classification methods for classifying breast tumors 

into either malignant or benign. The best classification accuracy is achieved by NNCA-PS 

(99.5%), with the lowest being 88.7% obtained by PCAIAIDC as demonstrated in Table 5.5. 

Based on 100 experiments, although the classification accuracy of GIIIAIDC is comparable 

with NNCA-PS, it gives 0.6% less than the best performance of NNCA-PS with higher 

standard deviation in classification accuracy. Additionally, GIIIIAfDC requires a nonlinear 
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feature generation, while the proposed NNCA-PS does not. This indicates the robustness 

of the proposed NNCA-PS compared with other sophisticated methods. 

5.7 Summary 

In this chapter, a novel clustering algorithm (NNCA) has been proposed, which achieves 

clustering without any control of cluster sizes. In addition, NNCA has augmented with a 

partial supervision (PS) strategy to act as a classifier. As shown, the proposed NNCA-PS 

has the ability to classify pixels of retinal images into those belonging to blood vessels 

and others not belonging to blood vessels, and it also has the ability to classify breast 

tumors into either benign or malignant. Experimental results show that the NNCA-PS offers 

better classification accuracies compared with other classifiers. Additionally, a parallel 

version of NNCA (P-NNCA) is proposed. As demonstrated, P-NNCA is scalable in terms of 

speedup and scaleup, which gives the ability to handle large datasets of high dimensions in 

a reasonable time. Moreover, P-NNCA is enhanced with a fast nearest neighbour procedure 

which helps in further reduction in the processing time. 



Chapter 6 

Investigations on Clustering 

Microarray Data 

6.1 Introduction 

Microarrays are a comparatively new technology to investigate the expression levels of 

thousands of genes simultaneously. Microarrays present new statistical problems because 

the data is highly dimensional with very little replication. Microarrays offer an exciting 

entry point for statisticians and computational scientists into the modern areas of computa- 

tional biology and bioinformatics. 

Gene expression data measured by microarrays are preprocessed using image analysis 

techniques to extract expression values from images and scaling algorithms to make corn. 

parable expression values. Expression data are typically analysed in matrix form with each 

row representing a gene and each column representing a sample. There are two types of 

clustering relevant to microarrays; the first is gene clustering (i. e., finding -sets of genes with 

similar expression patterns), while the second is sample clustering (i. e., finding which sarn- 

ples are similar in terms of similarly expressed genes). In gene clustering, genes are treated 

as objects and samples are treated as features or attributes for clustering. Similarly, sample 

clustering treats samples as objects and genes as features or attributes. Cluster analysis for 

grouping functionally similar genes, gradually became popular after the application of the 

107 
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average linkage hierarchical clustering algorithm for the expression of budding yeast and 

reaction of human fibroblasts to serum by Eisen et al. [961. Herwig et al. developed a vari- 

ant K-means algorithm to cluster a set of 2,029 human cDNA clones and adopted mutual 

information as the similarity measure [97]. Tomayo et al. [98] made use of SOM to cluster 

gene expression data. Since many genes usually display more than one function, Demb616 

et al. [99] developed a fuzzy c-means clustering method for exposing these relations. Of 

course there exist many clustering algorithms already but the demand and structures of bi- 

ological data are very different from those that have been studied using existing clustering 

algorithms. There are four important differences in the post-genomic, biological data. A 

standard requirement for existing clustering algorithms is to specify the number of clusters. 

In the present context, one does not know the number of clusters in these datasets; this lack 

of knowledge constrains the applicability of these algorithms. While in standard scenarios, 

all data belong to one or more clusters, only a small proportion of genes belong to clusters. 

Furthermore, the size of the datasets can be very large and yet statistics of specific examples 

can be rather low. All these point towards new techniques for clustering. Recently, novel 

clustering algorithms are developed to alleviate the requirement of the number of clusters. 

These algorithms include SOON (Self-Organising Oscillator Network) [1001, and RACAL 

algorithm [95,1011 - In addition, there is no existing guideline for accepting one set of 

clustering results over another in extracting useful biological information from a particular 

dataset. 

In this chapter, the use of a recently developed clustering algorithm, SOON that does 

not require the knowledge of the number of clusters, in analysing microarray datasets is 

investigated in Section 6.2. In addition, a novel integrated clustering performance measure 

(ICPM) is proposed to assess the reliability of results from a clustering algorithm used in 

analysing microarray data (see Section 6.3). 
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6.2 Self-Organising Oscillator Network (SOON) 

6.2.1 Theory 

6.2.1.1 Basic principles 

The SOON algorithm, first proposed by Rhourna and Frigui [100], has its roots in a number 

of different biological processes that share the same physical characteristics. Fireflies flash 

at random when considered by themselves; however, when in large groups, fireflies exhibit 

the characteristic of firing together when in groups that are physically close to each other. Z-1 
Groups which are separated by distance will fire as disparate groups, each synchronised 

within itself. Heart pacemaker cells also share a similar behaviour, along with the men- 

struation cycles of groups of women in close proximity to each other. This behaviour, of 

self-organisation of components with an oscillatory nature, gives rise to the name of the 

algorithm - the Self Organising Oscillator Network (SOON). 

6.2.1.2 Oscillator basics 

C os The basic unit of clustering under the SOON algorithm is the Integrate and Fir (IF) .- 

cillators which are simply described by some real valued state variable-representing for 

example a membrane potential- monotonically increasing up to a threshold. When this 

threshold is reached, the oscillator relaxes to a basal level by firing a pulse to tile other 

oscillators, and a new periods begins. Mathematically, an oscillator can be defined using 

the following Eq. [1001: 

1 
xi = fi(o) = Tln[l + (e 

where b is a constant value used to control the curve of the oscillator. Positive values 

of b will make the curve concave down, while negative values will make the oscillator 

concave up. 0E [0,1] is the phase angle of the oscillator, and determines the likelihood C 

of the oscillator to fire, where 0 is just fired and I is firing. Tile output of the oscillator, 

xi is bounded in the range [0,1], for all values of fi(O). This is achieved using a limiting 

function 
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x if O<x<l 

B(x) 0 if x<0 

1 if x>1 

Returning to the principle of the fireflies, it was noted that those which were physically 

close to each other would over time synchronise together to fire as one. This will require 

that the clustering algorithm will adjust the phase of individual oscillators such that the 

oscillators which are physically close will gradually take on first similar and then synchro- 

nised phase. Some form of adjustment of the phase values will be required in order to allow 

this process to occur. 

At the end of each iteration of the training algorithm, the output value of an oscillator 

will change to a new value xj(t+), using the formula 

xj (t') =B (xj (t) + ci (0j)) (6.2) 

where ci (0j), the coupling strength of an oscillator i at a given phase Oj, is perhaps the most 

important concept of the whole algorithm. At this stage, adjustments are made to tile state 

variables (and hence, ultimately the phase values) by applying an adjustment which con- 

siders the distance an oscillator is from the winning oscillator. Those oscillators physically 

near to the winning oscillator are made more likely to fire at the same time as the winning 

oscillator by adjusting the phase towards that of the winning oscillator, while those further 

away have the phase values adjusted so as to push them away down the phase curve, away 

from the winning oscillator. Depending upon the individual problem under consideration, 

the exact formulation of the coupling function used to calculate these adjustment values 

may vary; however, for the problem under consideration in this chapter, the following cou- 

pling function is proposed to calculate the coupling strength for oscillator i, fi, when tile 

distance dij is measured against the winning oscillator Oj- 
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( dt CE[l - u)2], if djj<ýo 60 
tL-60)21, 

fi(oj)= -C, [( 
-So 

if Jo < dij: 5 J, (6.3) 
1- n 

-C, otherwise 

Having decided on a limit distance JO, JI is set to be five times JO. The coupling 

function promotes all oscillators which lie within the distance Jo, increasing the phase 

value by the constant of excitation, CE, multiplied by a factor depending on the ratio of 

the distance between the winning oscillator and the oscillator under consideration, and Jo. 

This in turn makes the group of oscillators more likely to synchronise with the winning 

oscillator in future iterations. The phase of all those with distance lying in the interval 

JO < dij :ý 91 are inhibited by CI, the coefficient of inhibition multiplied by a ratio that 

takes account of how close the oscillator under consideration is to the winning oscillator. 

All values of dij > J, are hard limited to -CI. CE is typically relatively small, of the order 

0.1-0.2. CI is normally set to the value CEIN (N is the number of data points, objects, in 

the training set), as any given data point is likely to be inhibited more often than it is likely 

to be excited. 

6.2.1.3 SOON-1 algoritlini 

The SOON- I algorithm is the most basic form of the SOON algorithms. In this form, all 

training points start off as being the initial set of oscillators. All oscillators use a spheroid 

enclosure of the same radius, which is set as a parameter on commencement of the algo. 

rithm. The algorithm determines which of the oscillators is the next to fire by examining 

individual phases of each oscillator and selecting the one with phase Oi closest to 1, and 

increases the phase of all oscillators by a set amount (1 - Oi). Having adjusted all phases 

as necessary, the state xi of each oscillator is calculated using Eq. 6.1. From tile state 

variables, the distances to winning oscillator are updated and then the coupling strengths 

(ci) are calculated using the coupling function in Eq. 6.3, which allows tile state variables 

to be adjusted based on the distance of each oscillator to tile winning oscillator. The statc 

variables are then adjusted using Eq. 6.2, giving the revised output values. Having calcu- 
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lated the revised state variables (which take account of the proximity coupling effect ci), 

the new phase values can be calculated using the inverse of the oscillator function: 

0i =f -1 (6.4) 

At the end of this cycle of the algorithm, points which were physically close to the 

oscillator which fired will move closer together, gradually tending to synchronise, whilst 

those which were further away will move away from the winning oscillator. As other 

different oscillators fire in different iterations of the algorithm, then these in turn will start 

to synchronise with their closest neighbours. Alternatively, certain oscillators will be too 

far away from any others to form a cluster, and will essentially remain as individual clusters. 

6.2.1.4 SOON-2 algoritlim 

One potential problem with the SOON-1 algorithm is that it requires the calculation of a 

large distance matrix which records the distance of every point in the training set from 

every other point, where SOON-1 algorithm uses all training points as initial oscillators. 

By reducing this number to a lower value, and distributing the reduced number of points 

over the data space, a series of protolypes can be created. The selection of the points may 

be either existing points in the training set, or alternately the points may be selected to 

highlight specific areas of interest in data-space, increasing the likelihood of clusters being 

created that shares the profiles of interest. This is of particular interest in certain areas, such 

as that of microarray analysis, where certain gene expression profiles may be of interest due 

to biological or physiological processes that are thought to be of significance in a particular Z' 

operation. Biologists can provide a certain profile that they believe would approximate the 

behaviour of interest, and then see whether any genes share a similar profile. 

Cluster shape 

The simplest cluster is a spherical cluster using a Euclidean distance measure; this is ideal 

for many scenarios - particularly in the case of QAM-4 communication data, where the 

clusters are often spherical. Many other data types do not naturally form spherical clusters. 
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Ellipsoidal clusters better map the distribution of data in these cases where the Mahalanobis 

distance measure [121 can be more appropriate. Given a point x, and series of vectors 

which form a cluster C1 with cluster mean T1,1, the covariance matrix of the cluster CI 

gives a measure of the variance in each dimension of the data under consideration. This in 

turn allows the ellipsoid to take on different "widths" in each dimension. In the case of an 

equi-variance cluster, the Mahalanobis distance will be equal to a Euclidean distance. 

2 (X, CI) = (X _ rz, 1) Cý- 1 (X dl_ TI, 1) (6.5) cl 

Having calculated the Mahalanobis distance, this is then normalised using a X2 distribution 

with p degrees of freedom, where p is the number of dimensions of the input dimension. 

This then gives a normalised Mahalanobis distance. A normalised Mahalanobis distance in 

conjunction with the coupling function given in Eq. 6.3 is proposed. 

d2 (X, Cl) = 
d2 (X, Cl) 

5X2 (p, C, ) 
(6.6) 

where a is the percentile of inclusion of the X2 distribution. The value of a is varied to fit 

the size of the Mahalanobis cluster relative to the data. 

6.2.2 Cluster validation 

When the number of clusters present within the dataset is known a priori (for example, 

microarray liver cancer dataset contains two clusters, one representing benign samples and 

the other representing malignant samples), it is useful to verify the validity of the Clustering 

results (i. e., how well the clustering algorithm discovered the clusters of the dataset). Sonic 

attempts have been made to estimate the number of clusters by evaluating the clustering 

results based on a unique validation index [102,103]. Some other attempts have been 

made to combine different validation techniques to estimate the number of clusters [104, 

105,1061. Therefore a combination of different validation methods can be Successfully 

used for the estimation the number of clusters. In this study, DB [56], C11 [581,1 [591, and 

XB [64] cluster validity indices are used to assess the clustering results obtained by SOON. 
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6.2.3 Datasets 

In addition to the communication dataset which is used as a validation dataset, three mi- 

croarray datasets have been used to examine the applicability and reliability of the SOON 

algorithms, alona with some standard algorithms, in analysing microarray data. 0 

Microarray yeast data 

Microarray yeast data is taken from the Stanford Yeast Cell-Cycle Project [1071. The 

initial data consists of 17 observations taken at 10 minute intervals on approximately 6,400 

different genes during the cell cycle process. A variation filter was used to eliminate genes 

that did not change significantly across samples. After normalisation and prefiltering in 

order to remove minimally variant genes, the number of genes available for consideration 

drops to just over 1,000 (1,002 genes). Therefore, the input data consists of 1,002 genes 

each of 17 observations. The number of clusters present within this dataset is not clearly 

defined, as the data is not clearly separable; however there are a number of groups present 

within the data that represent different biological processes within the cell cycle of the C, 

yeast organism. There have been a number of papers [98,108,1091 which describe these 

clusters, along with their biological meanings. 

Microarray lymphoma data 

Microarray lymphoma data [110,1111 has three most prevalent adult lymphoid malignan- 

cies: Diffuse Large B-Cell Lymphoma (DLBCL), Follicular Lymphoma (FL), and Chronic 

Lymphocyte Leukaemia (CLL). To provide a framework for interpretation of the gene ex. 

pression in these patient samples, gene expressions are profiled in purified normal lym- 

phocyte subpopulations under a range of activation conditions, in normal human tonsil 

and lymph node, and in leukaemia cell lines [112]. Fluorescent cDNA probes, labelled 

with Cy5 dye, were prepared from each experimental messenger RNA sample. A refer- 

ence cDNA probe, labelled with Cy3 dye, was prepared from a pool of mRNAs isolated 

from nine different lymphoma cell lines. Each Cy5-labelled experimental cDNA probe 

was combined with Cy3-labelled reference probe and the mixture was hybridised to the 
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microarray. The fluorescence ratio was quantified for each gene and reflected the relative 

abundance of the gene in each experimental mRNA sample compared with the reference 

mRNA. The use of a common reference probe allows the treatment these fluorescent ratios 

as measurements of relative expression level of each gene across all experimental samples. 

Approximately 1.8-million measurements of gene expression were made in 96 normal and 

malignant lymphocyte samples using 128 Lymphochip microarrays, and the total number 

of genes is 4,026 genes. 

Microarray liver cancer data 

Microarray liver cancer data [113,114] has two classes: the first represents I-lepatocellular 

carcinoma (HCQ samples, and the other represents non-tumor liver tissues. Primary data 

were carried out using GenePix Pro 3.0 (Axon Instruments). Areas of the array with ob- 

vious blemishes were manually flagged and excluded from subsequent analysis. The raw 

data were deposited into Stanford Microarray Database [1151 at [114]. All non flagged 

array elements for which fluorescent intensity in each channel was greater than 1.5 times 

the local background were considered well measured. Genes for which less than 75% of 

measurements across all the samples in this study met this standard were excluded from 

all analysis. Therefore, one can get 3,180 genes (represented by 3,964 cDNAs) with tile 

greatest variations in expression in 156 liver samples (74 non-tumor liver and 82 IICQ. 

6.2.4 Experiments and Results 

At all stages, the coupling function was kept constant, as given in Eq. 6.3. The constant 

of excitation was set to 0.1, with CI = CEIN = 0.11N (N is the number data points 

available for clustering), and b=3. 

6.2.4.1 Communication data 

This dataset consists of 512 points of data, which is a typical training sizc for data in 

this application. Starting with an initial 512 cluster centres, then SOON- I was allowed to 

train until the number of clusters stabilised, when the training was stopped. Tile number 
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of clusters and cluster centres were then compared with the constellation diagram for the 

correct signal. This was carried out for two different signal-to-noise ratio (SNR) values: 15 

and 10 dB. For each SNR value, five different values of 50: 0.0 1,0.06,0.11,0.16 and 0.2 1. 

This gave a total of 10 different experiments. Each SOON-I was allowed to train for 350 

training epochs, and then the results were examined. 

Figure 6.1 shows the clustering performance on a QAM-4 at SNR = 15 dB for five dif- 

ferent values of Jo. Each colour on the plot shows a different cluster. At the smallest value 

(0.01 - (a)), the radii of the clusters are insufficient to capture any significant membership 

of points, and as a result, the performance is very poor, with a lot of small single member 

clusters being created in one of the large clusters, while the other three large clusters are 

too far away from the centres to be enclosed in a cluster. As a result, most of the data is 

not assigned to a cluster. If the algorithm had been allowed to train longer, then the whole 

dataset would have become individual clusters, where the smallest value of Jo inhibits any 

oscillator to synchronise with the winning oscillator as described in Eq. 6.3. 

As the value of JO increases, the spread around each cluster increases, increasing the 

membership of each cluster, and encompassing more of the data. Figures 6.1 (b) through to 

6.1 (e) show the clustering performance as the value of JO is increased. At Jo = 0.01 and 

0.06, several points are not clustered. At J,, = 0.11,0.16, and 0.21, all the data points are 

clustered to 23,6, and 4 clusters respectively. 

For communication data with SNR = 10 dB, Fig. 6.2 shows the results of tile clustering 

performance. Once again, this shows that as the value of 50 is increased, the clustering be- 

comes consistent and relatively well distributed through the data space. As Jo is increased 

further, all the clusters would gradually merge to form one large cluster. Of importance, 

however, is the fact that the clustering behaviour remains controlled over time; by exercis. 

ing choice of th 5o parameter, it is possible to control the size of the clusters that are gener- 

ated, even on data which is intrinsically non-separable in nature. The desirable behaviour 

of the SOON algorithm has been verified with a series of such validation sets with varying 

values of SNR. This bodes well for the biological data, and shows that the behaviour of tile 

algorithm is consistent with the desired behaviour for non-separable data. 
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Jo = 0.01 

60 = 0.11 

(b) ýo = 0.06 

(d) 5o = 0.16 

; ;. 44.. '. 

(e) 60 0.21 

Figure 6.1: Clustering performance for QAM-4 at SNR 15 dB. 

6.2.4.2 Microarray data 

Microaffay yeast data 

For microarray yeast data, SOON-2 was initially tested using Euclidean distance mea- 

sure, giving spheroid clusters. Using randomly selected 501 prototypes, one half of the 

total number of data points avaflable for clustering, the algorithm was allowed to stabilise, 

whereupon the clusters were examined. This process was then repeated using the Maha- 
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Figure 6.2: Clustering performance for QAM-4 at SNR = 10 dB. 

lanobis distance measure. Any cluster with fewer than six members was disregarded. 

For the Euclidean distance experiments, the value of 60 was allowed to vary between 

0.01 and 0.29 in increments of 0.02. The value of both a and 60 were varied for the Maha- 

lanobis distance measure experiments, with a ranging between 0.01 and 1.01 in increments 

of 0.1, and 60 varying between 0.0 1 and 0.21 in increments of 0.05. This allowed an exam- 

ination of the effect of the two different parameters upon the clustering performance of the 

algorithm, particularly with regard to non-separable data. 
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Figure 6.3 shows results of a clustering run using the Euclidean distance measure and 

the microarray yeast data. Only clusters with more than six members are displayed. Tile 

horizontal axis of the plots represent the time course in ten minute intervals, while the 

vertical axis represents the gene expression magnitude after normalisation. 

As can be seen from Fig. 6.3, there are a number of different clusters that make them- 

selves clear as a result of the SOON analysis. Clusters 9 and 177 both show the same 

characteristics, containing 67 and 49 members respectively. Clusters 36 and 132 also form 

a larger cluster, both containing 12 members. Clusters 17 contains 41 members, while citis- 

ters 6,118 and 221 all exhibit a broadly similar general trend where a low initial expression 

level is replaced by a sharp peak at around timepoint 10, followed by a decrease, and then 

a increase towards time point 16. 

These four groups of clusters broadly correspond to phases 0 1, S. G2 and NI respec. 

tively, as identified by Cho et A [1091 and Spellman el A[ 1081. Additionally, the clusters 

also match fairly closely in shape to those identified by Tarnayo et aL 198). 

Of interest are clusters 100 and 112 on the figure which describe a small cluster of 

rather distinctive behaviour; the gene remains predominantly stable around level 0 for mog 

of the experiment, however at timepoint 10 there is a sudden trough to approximately .3 in 

magnitude. This occurs at the same time as several other groups of genes are peaking in 

the opposite direction. 

It is interesting to note that in Thmayo et A 1981, none of the CILI%ters %hown as the 

output of the SOM show a similar pattern. This may in part be, due to the fact that the 

variation filter used in these experiments gave different results to that of Thinayo, selecting 

1,002 genes rather than the 823 used in their experiments. This may cxplain Wily this grotill 

of clusters (100 and 112) appears in one analysis and not in another. however carrying out 

tests using a NIATLAB based SOINI (oolbox on the same datasct (Fig. 6.4) with initial 

geometry of nodes in 6x5 grid as in Thmayo et aL 1981 also failed to highlight this 

relatively small cluster as a point of interest. The effect of varying the geometry of the 

SOM does not produce fundamentally new patterns as demonstrated in Thmayo et aL 1981. 

With only a few nodes, no distinct patterns are obtained and there is a large within-cluster 
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scatter. As nodes are added, distinctive and tight clusters emerge. Beyond this point, the 

addition of further nodes tends to produce no fundamentally new patterns. As shown in 

Fig. 6.4, only cluster 6 is the closest match to the two clusters, however the depth of the 

dip in the profile is much wider, and also less pronounced than for the SOON. 

When using the Mahalanobis distance [12] measure instead of the Euclidean distance, 

having two independent control Parameters gives some degree of flexibility as to the con- 

figuration of the algorithm. Experimentation with the two parameters, Jo and a, tended to 

suggest that small values of Jo (< 0.05) will cause a very high number of very small and 

tight clusters to be created, very often with only one or two members. Increasing the value 

of JO increased the size of the membership of each cluster, while still tending to keep the 

variance within cluster membership relatively tight. Increasing the value of JO to large val. 

ues meant that the clusters became so large that all the clusters held no clearly discernible 

significant details. 

The effect that the variation of the a parameter values were having upon the perfor- 

mance of the algorithm was less clear; selecting a value of a effectively moves the cut-off 

point used to determine membership of the cluster by scaling the distribution of the data. 

Adjustment of each parameter affects the performance of the clustering algorithm in 

different ways. Adjustment of a controls the "tightness" of the cluster, while 6 controls 

the size of the clusters through the radius parameter of the cluster. This is demonstrated 

through the second set of experiments using the Mahalanobis distance measure. Figures 

6.5 through 6.8 show the effect of increasing the a value while keeping the Jo value fixed. 

In Fig. 6.5, where a=0.01, or only one percent of the confidence interval, clusters 6, 

173 and 205 show three basically similar clusters which correspond to the GI phase of tile 

cell cycle, containing 53,51 and 19 members respectively. In Fig. 6.6, the (v value has been 

increased to 0.11, and the cluster numbers with this general profile arc 30 and 74, with 28 

and 88 members respectively. Increasing the a value again to 0.21, Fig. 6.7 shows Clusters 

144 and 224, with 103 and 14 members, while Fig. 6.8 shows the transition of membership 

to one single cluster 159 with III members. These results are sunimariscd in Table 6.1. 

it is observed from Table 6.1 that numbers of members (genes) of GI phase with similar 
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Table 6.1: Cluster size and distribution for varying sizes of a, when 50 = 0.21. 
Cluster no. (membership) Number of members 

a GI S G2 M GI S G2 M M 
20(14) 

0.01 6(53) 30(9) 115(12) 39(15) 

1 

173(51) 149(22) 182(10) 113(12) 123 48 42 6 9 
205(19) 191(17) 238(20) 118(8) 

248(20) 
30(28) 144(19) 51(19) 45(20) 

0.11 74(88) 229(12) 171(9) 123(41) 116 45 48 61 
245(14) 179(20) 

144(103) 52(13) 55(32) 65(13) 
0.21 224(14) 139(21) 120(13) 167(28) 117 43 45 54 

249(9) 193(6) 
238(7) 

181(26) 61(6) 11(6) 
0.31 159(111) 198(12) 82(16) 133(55) 111 38 44 61 

165(22) 

Table 6.2: Detailed memberships of similar clusters for GI phase at different a Values. 
Af-=0.01 U Ala=0.11 U -Afa=0.21 U Ma=0.31 F fj78 

AI, 0.01 nn Afý=0.21 n Af. =0.317Fjýq] 

behaviour at a values of 0.01,0.11,0.21 and 0.31 are respectively 123,116,117 and I 11. 

Let these be represented by Afý=0.01, M, 0-11, Afa=0.21, and Afa=0.31. It is clear that as 

the values of a changes within this range, the number of members does not change much. 

This is a desirable quality of a cluster algorithm. 

Furthermore one can investigate the detailed memberships of these similar clusters at 

different values of a. To this end, the union of memberships at these values of a is calcu. 

lated, and that gives a total of only 138 genes that are involved in all these clusters found 

at different a values. Also, by calculating the intersection of these members to discover 

that one hundred members out of the 138 members are common to all clusters at different 

a values. These are presented in Table 6.2. It is clear from Tables 6.1 and 6.2 for the GI 

phase of the cycle the relevant membership is very robust with respect to the choice of 

the a parameter values (varying by a factor of 30, frorn 0.0 1 to 0.3 1). Such robustness is 

an important and desirable characteristic of an algorithm. Another example of robustness 

is the interesting observation that the pattern of cluster 55 in Fig. 6.5 (a = 0.01) is also 

present in cluster 8 (a = 0.11), cluster 42 (a = 0.21), cluster 75 (a = 0.21) and cluster 74 
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Table 63: Evaluation of different combinations of a and J parameters using different va- 
lidity indices. 

Validity index a=0.01 a=0.11 a=0.21 a=0.31 
1 [591 33.97 40.20 6.69 34.58 

ýo = 0.01 CH [581 647.48 881.36 279.48 684.47 
XB [64] 0.055 0.036 0.075 0.038 
DB [561 0.303 0.24 0.479 0.25 

1 4.60 0.87 3.17 1.05 
50 = 0.06 CH 181.91 98.64 120.25 112.44 

XB 0.106 0.504 0.289 0.459 
DB 0.373 0.484 0.417 0.456 

1 0.274 0.468 0.330 0.748 
Jo = 0.11 CH 46.24 59.65 53.51 71.16 

XB 2.39 0.53 0.79 0.24 
DB 0.74 0.56 0.68 0.50 

1 0.06 0.15 0.07 0.10 
J,, = 0.16 CH 25.10 32.42 26.44 27.08 

XB 10.79 3.51 5.23 4.34 
DB 1.13 0.85 1.06 1.02 

1 0.014 0.017 0.013 0.020 
Jo = 0.21 CH 17.52 19.99 18.35 21.78 

XB 14.01 34.88 16.52 4.80 
DB 2.16 2.03 1.87 1.50 

(a == 0.31). These generalised cluster shapes are held across both the Euclidean distance 

and Mahalanobis distance measures; again, the algorithm is fairly robust with respect to 

the choice of the distance function. Using the Mahalanobis distance measure offers more 

control than the Euclidean measure; however this is at the cost of increased complexity in 

the calculations. It is also important to note that the SOON is capable of finding all the 

same clusters as the SOM, however with the added bonus of highlighting smaller clusters 

that are swamped by the higher density of other clusters in close proximity when clustering 

using the SOM. 

Conversely, results for keeping the a value constant and changing the 60 value havc 

been obtained but are not presented here. As the value of So is increased (So = 0.01, 

0.06,0.11,0.16,0.21), the number of clusters with high membership (>6 members for 

the purposes of this work) increases. Table 6.3 shows the evaluation of SOON clustering 

results at different combinations of a and JO using different validity indices. As shown, 

the best combination of a and JO is achieved at a=0.11 and So = 0.01 where I and C11 

validation indiCes are maximised and XB and DB validation indices are minimiscd. In this 
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Figure 6.7: Clustering results with a=0.21 and So = 0.21 using Mahalanobis distance 

measure. 
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Figure 6.8: Clustering results with a=0.31 and So = 0.21 using Mahalanobis distance 
measure. 
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way, through the choice of the values of a and 50, it is possible to modify the output of the 

clustering algorithm for achieving proper clustering result. Finally, SOON offers a flexible 

degree of control in the granularity of the clusters, which can be exercised over cluster 

formation. 

Microarray cancer data 

For microarray cancer data, SOON-2 is applied along with Euclidean distance using ran- 

dom prototypes set to one half the total number of data points available for clustering (i. e., 

48 and 78 prototypes for lymphoma and liver cancer data respectively). For each data, a 

series of experiments were carried out using SOON-2 at different So values (i. e., one can 

get different clustering partitions). Then, DB [56], CH [58], 1 [59], and XB [641 and cluster 

validity indices are used to assess the clustering results which are obtained by SOON-2 

algorithm, and checking its ability to bring out the inherent structures in the dataset and 

discover the clusters of the dataset. 

A series of experiments at different 50 values were carried out to investigate the clus- 

tering behaviour of SOON algorithm on microarray cancer datasets, and its ability to bring 

out the inherent structures in the datasets and discover the clusters in the datasets. 

Figure 6.9 contains two subplots: the topmost subplot shows the validation indices 

values versus the radius (50), while the bottom subplot shows the number of clusters K 

corresponding to the same 60 values. As shown, the change of validity index appears as 

a "knee" in the plot and it is an indication of the number of clusters underlying the data 

(i. e., more compact clusters and wider cluster separations between clusters). As shown 

in Fig. 6.9, the number of clusters corresponding to the "knee" points for which I and 

CH validation indices are maximised and XB and DB validation indices are 111ininlised, is 

K=3. The value of K=3 represents the best fit number of clusters which actually 

coincides with the true number of clusters. The result of sample clustering suggests that 

genes in the same cluster have similar functions, or they share the same transcriptional 

regulation mechanism. From biological and clinical points of view, identifying similar 

genes can help medical researchers to investigate the mechanisms for cancer development 
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Table 6A Comvarisons with other clustering algorithms for lymphoma cancer data. 
F-Number of lusters Validity index Hierarchical I SOM I K-mea7ni- T7ýý 

1 [591 700.00 610.01 612.25 604.06 
K=2 CH [581 11.00 4.83 5.09 2.22 

XB [64] 1.04 1.59 1.45 0.85 
DB [561 1.12 2.03 1.62 1.79 

1 613.05 400.63 436.93 862.04 
K=3 CH 7.84 4.19 4.61 15.72 

XB 1.37 2.39 2.08 0.37 
DD 1.24 2.25 2.09 1.18 
1 298.70 178.62 201.51 328.66 

K=5 CH 4.77 2.93 3.35 8.82 
XB 4.97 6.82 5.64 4.82 
DB 2.93 3.78 3.18 2.87 
1 126.22 80.87 85.07 155.97 

K=6 CH 4.52 1.94 2.12 5.52 
XB 4.82 6.00 5.72 4.22 
DB 3.39 3.91 3.62 3.16 
1 110.71 56.52 64.87 117.62 

K=9 CH 3.56 1.61 1.87 5.57 
XB 3.30 4.48 4.00 3.20 
DB 2.84 4.29 3.71 2.72 

and treatment. 

Similarly for liver cancer dataset as shown in Fig. 6.10, the number of clusters corre- 

sponding to the "knee" points for which I and CH validation indices are maximised and 

XB and DB validation indices are minimised, is now K=2, which coincides with the 

true number of clusters. Finally, the obtained results indicate that the use of SOON algo- 

rithm along with a combination of validity indices significantly support genome expression 

analysis for biomedical knowledge discovery, and may lielp in identification of new tumor 

classes. 

For purposes of comparison, the clustering results obtained by SOON are compared 

with the clustering results obtained by Hierarchical clustering (which is used in [110,1141), 

SOM, and K-means clustering algorithms. The number of clusters K produced by the 

radius parameter J,, using SOON clustering algorithm is used to partition the dataset by the 

other clustering algorithms that are considered in this work. Therefore, one can get fair 

cornparison. Table 6.4 shows the evaluation of clustering results obtained by I lierarchical, 

SOM, K-means, and SOON clustering algorithms on lyniphoma cancer data at different 
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Table 6.5: Comnarisons with other clusterin2 al2orithms for liver cancer data. 
Number of clusters Validity index Hierarchical SOM K-means SOOR] 

1 [59] 1.95 1.59 1.60 2.93 
K=2 CH [581 300.01 116.94 117.81 337.05 

XB [64] 0.16 0.20 0.19 0.075 
DB [561 0.46 0.72 0.72 0.34 

1 1.52 1.02 1.24 1.53 
K=3 CH 207.56 71.65 77.51 209.53 

XB 0.46 0.60 0.47 0.45 
DB 0.92 1.19 1.05 0.88 

1 0.89 0.69 0.82 0.97 
K=4 CH 153.29 54.32 57.29 167.53 

XB 0.55 0.71 0.65 0.51 
DB 1.52 2.06 1.93 1.08 

I1 0.16 0,09 0,10 019 0,19 
K=9 CH 68.81 42.47 43.19 71.64 

XB 0.72 0.96 0.89 0.66 
DB 1.65 2.41 1.98 1.15 

1 0.13 0.07 0.08 0.15 
K= 12 CH 60.84 35.91 38.01 66.73 

XB 1.20 2.26 1.74 1.06 
DB 1.68 2.48 2.09 1.52 

number of clusters using different validation indices. As shown, the best values of validity 

indices for Hierarchical, SOM, and K-means clustering results estimate that tWO Clusters 

are the best fit to the data, while the best values of validity indices for SOON clustering 

results indicate that three clusters are the best fit number of clusters which actually concurs 

with the true number of clusters. At K=3, the true number of clusters, the validity 

indices values of SOON algorithm are better than the values obtained by the other Clustering 

algorithms (i. e., higher values of I and CH indices, and lower values of XB and DB indices). 

These indicate the ability of SOON algorithm to discover the relevant clusters and it also 

achieves clustering of better quality (i. e., more compact clusters and yet wider separations 

between clusters). For liver cancer data as shown in Table 6.5, the number of clusters 

corresponding to the best values of validity indices for the clustering algorithms that arc 

considered in this work are two clusters which are the best fit to the data. By compiring 

the validation indices values at K=2 for all clustering algorithms, it is clearly seen that 

SOON algorithm achieves better validation values, i. e., better clustering quality. 
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6.3 Integrated Clustering Performance Measure 

In the previous section, a combination of different validation methods have been used to 

assess clustering results obtained by SOON algorithm. This gives a novel idea for con- 

structing a validity measure based on a combination of various validity indices to measure 

the quality of clustering results. Similarly, the stability of clustering results can be ex- 

amined by constructing a stability measure based on a combination of various stability 

indices. In this section, a novel integrated clustering performance measure (ICPAI) for as- 

sessing the reliability of results from a clustering algorithm used for analysing microarray 

data is proposed. The proposed ICPM is derived from these validity and stability measures 

which will be defined in this section. This 1CPM can provide a guide for choosing clus- 

tering algorithms that have the ability to extract useful biological information from a given 

dataset. 

6.3.1 ICPM - basis and definitions 

For a reliable evaluation, two different kinds of measures, which are constructed based on 

a combination of various approaches, are used to measure the robustness and stability of a 

clustering algorithm. The first is the validity measure which is used for determining how 

well an algorithm works with a given set of parameter values. The second is the stability 

measure which is used for studying the consistency of clustering results. The proposed 

JCpM is derived from these two measures. 

In the demonstration of the ICPM, two different approaches are used in this study: 

Sub-sampling: The idea is based on randomly selecting samples from a dataset with 

a sampling ratio Sit (a proportion of data points sampled) where Sit < 1. In this 

study, Sit = 0.8 is used. Therefore, one can get r datasets, each of which is sampled 

from the original dataset. 

* Leave-one-out: The idea is based on deleting the observation (feature orattributc) at 

i-th position of either the expression profile vectors (in case of gene clustcring) or 

the expressed genes (in case of sample clustering), i. e., for r observations, one can 
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get r datasets. 

Then, a series of experiments are carried out with each of these r datasets to produce K 

clusters and for each value of K (K = 2.... i Kmax), i. e., one can get r sets of clustering 

results for every value of K clusters. In the following, the construction of a validity measure 

in Section 6.3.1.1 will be discussed, followed by the construction of a stability measure in 

Section 6.3.1.2, and finally the ICPM in Section 6.3.1.3. 

6.3.1.1 Validity measure 

In this study, a combination of different validation methods are used to define the validity 

measure where it is useful not to rely on one validation method, but to apply a variety of 

approaches. Therefore a combination of different validation methods can be successfully 

used for estimating the number of clusters and measure the quality of clustering results. In 

this study, eight validity indices are used in the construction of a validity measure to assess 

the clustering results which are obtained by clustering algorithms, namely, DB index [56], 

DI index [571, CH index [58], 1 index [59], XB index [641, GI index [ 102], CS index [ 1161, 

and Silhouette index [ 1171. These indices have shown to be fairly robust for the predication 

of the optimal number of clusters [102,103,104,105,106]. 

Let nv be the considered number of validity indices; in this study ? iv is equal to eight. The 

overall validity measure is composed of the above nv (= 8) validity indices and is proposed 

as follows: 

Suppose a clustering algorithm is applied to r datasets to Produce K clusters, i. e., one 

obtains r sets of clustering results for a particular value of K. This is then repeated for every 

value of K (K = 2,... , Ký,,, ). Every validity index can be applied to each of these r sets 

of clustering results. Let vijK,,, be the validation signature obtained for (lie clustering result 

generated by the i-th clustering algorithm on the j-th dataset (j = 1, .., r) to produce K 

clusters (K = 2,... , Ký,,,, ) using the m-th validity index (rn = 1, ., itv). Let us further 

define 

ViKm =-- 
1 

(6.7) VijKm 
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where ViKm is the average value of the m-th validity index when applied on r sets of 

clustering results from i-th clustering algorithm at K clusters. 

In order to compare different clustering algorithms, the validation signature of each 

algorithm (at K clusters) is normalised by the maximum validation index value obtained 

from clustering algorithms as in Eq. 6.8. 

ViKm Inorm' 
ViKm 

(6.8) 
max (vijK,,,, f orj r, ne) 

2<K<Kmax 

ViKm Inorm----: fViKl Inormi ViK2 Inarmi 
... i 

ViK8 Inarm} (6.9) 

where 0< ViKm Inorm: 5 1, and nc is the number of clustering algorithms. Thus the 

ViKm In, m is the normalised value of the m-th validity index, averaged over r sets of 

clustering results obtained from i-th clustering algorithm for K clusters. 

The proximity of the value of the normalised clustering validity index of an algorithm (i) 

at K clusters to the ideal value is measured as follows: 

nv 
CViK E (Videal, 

m - ViKm Inorin )2 (6.10) 

M=l 

where Vid, al, m is the ideal normalised value of validity index m. In case of "I" index [591, 

'a, = 1, while Videal =0 for "GI" index [102]. Hence, the overall valklity measure for Vide 

K clusters obtained from the i-th clustering algorithm is defined as: 

Qv(i, K) =1- 
cviK 

(6.11) 
max (CVijf , for K=2, ..., KM, X '71c) 

where 0< Qv(i, K) :51. A higher value of Qv(i, K) indicates better clustering qual. 

ity. The proposed validity measure, Qv(i, R) for K clusters (Eq. 6.11), is an integration 

of eight validity indices to assess clustering results which are obtained by clustering algo- 

rithms. 
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6.3.1.2 Stability measure 

The stability of clustering results is evaluated using a combination of stability indices. Let 

ns be the considered number of stability indices; in this study ns is equal to six. Four of 

these are derived from statistics and similarity measure of partitions [2,65]. The other two 

stability indices represent repeatability measure [861 and bootstrapping method [67]. 

The overall stability measure for K clusters obtained from i-th clustering algorithm can 

be constructed in a similar way as the overall validity measure in Section 6.3.1.1. Hence, 

the overall stability measure for K clusters obtained from the i-th clustering algorithm, 

using ns(= 6) stability indices, is defined as: 

Qs(i, K) =1- 
CSiK 

(6.12) 
max (CSiK7 for K= 27 ... i Kmax 

ii nc) 

where the proximity of the clustering stability of an algorithm (i) at K clusters is measured 

from: 

na 
CSiK 1: (Sideal, 

m - SiKm Inorm )2 

M=l 

where Sideal, m is the ideal normalised value of the stability index ? rL and the SiKlyt 1"Or", 

is the normalised value of the m-th stability index, based on i- sets of clustering results 

obtained from i-th clustering algorithm for K clusters. Note that, 0< QS(i, K) :51. 

A larger value of Qs(i, K) indicates better stability. Thus, a good clustering algorithm 

is the one that can achieve higher values for many possible sets of parameter values. The 

proposed stability measure, Qs(i, K) for K clusters (Eq. 6.12), is an integration of six 

stability indices to assess the clustering results which are obtained by clustering algorithms. 

6.3.1.3 Integrated clustering performance measure (ICIIINI) 

The proposed ICPM provides an indication of the reliability of results obtained from a clus- 

tering algorithm. This is derived from the overall stability measure and the overall validity 

measure described above. Let Qs(i, K) and Qv(i, K) be the stability and validity values 
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Figure 6.11: Integrated clustering performance measure -a pictorial representation. 

corresponding to the K partitions (clusters) obtained by the i-th clustering algorithm, where 

Qs(i, K) is based on ns stability indices and QV(i, K) is based on nv validity indices. 

Now it is worth referring to Fig. 6.11, which plots Qv versus Qs. Each set of r experi- 

mental results obtained from the i-th clustering algorithm corresponding to each value of 

K clusters will be represented by one point on this plot. It should be remarked that the 

ideal performance, that may possibly be achieved, is represented by the point with QV=1 

and Qs =1 (i. e. the top right-hand corner of the plot). Any point further away from this 

corner represents lower performance. Let di, K be the distance of such a point from the 

ideal position, where di, K = Vav(l - Qv(i, K))2 + aS(j - Qs(i, K))2, dj'j': ý! 0, 

av and as are weighting parameters to represent the importance of Qs and QV in the 

evaluation procedure. In this study, av = as = 1. The smaller distance corresponds to 

higher performance. The integrated clustering performance measure is defined as: 

ICPAI = min(dl, K9 for K=2,..., A"", ) (6.14) 

This takes into account of all points (corresponding to different partitions for different 

values of K) and ensures that smaller values of ICPM represents better clustering perfor- 

mance. 

For the yeast cell cycle dataset, Fig. 6.12 plots the validity measure, Qv(i, K), and 

the stability measure, Qs(i, K), corresponding to K clusters for each of the nc clustering 

algorithms. Each point refers to a specific number of clusters (a particular value of K) and 
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Figure 6.12: Relationship between validity and stability measures for yeast cell cycle 
dataset. 

a specific clustering algorithm. The four sets of clustering results chosen by the ICPAf - one 

from each of the four clustering algorithms - are marked on the plot by the corresponding 

values of K. 

This measure can be used to obtain fair comparison between clustering algorithms from 

the two important points of view - the stability and validity - for the identical range of 

desired numbers of clusters. In should be noted that this 1CPAf can be extended to take into 

account other measures of clustering, e. g., the cornputational complexity, the effect of data 

size, number of dimensions, etc. Therefore, The general ICPAI is proposed as follows: 

c 
JCpAj = 

1: aj (1 _ Q, )2 (6.15) 
j=l 

where c is the number of different measures, and aj 's are weighting parameters of a nlea- 

sure j, aj E [0,11. 

6.3.2 Datasets 

6.3.2.1 Yeast cell cycle dataset 

The yeast cell cycle dataset [1091 shows the fluctuation of expression levels of approxi- 

mately 6,400 genes over approximately two cell cycles (17 time points). In the study of 
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Yeung et aL [103], only a subset of 384 genes was adopted and used for the purpose of 

validation and can be found at http: //faculty. washington. edu/kayee/model/. The dataset is 

normalised as in Tamayo et A [981 to zero mean and unit standard deviation. 

6.3.2.2 Leukaemia dataset 

The data contain 38 samples (27 acute lymphoblastic leukaemia (ALL) and II acute myeloid 

leukaemia (AML)) described by 7,129 probes from 6,817 human genes. In this study 

of (1181, only 50 genes have suspected roles in this type of cancer. These data were 

obtained from a study published by Golub and co-workers [ 118] and can be found at 

http: //sdmc. lit. org. sg/GEDatasets/Datasets. html#ALL-AML-Leukemia. 

6.3.2.3 Lyinphoma dataset 

Distinct types of diffuse large B-cell lymphoma (DLBCL) is the most common subtype 

of non-Hodgkin's lymphoma. There are 47 samples, 24 of them are from the "germinal 

centre B-like" group while 23 are from the "activated B-like" group. Each sample is de- 

scribed by 4,026 genes. In the study of [1101, only 100 genes, that best differentiate a 

germinal centre B-like from an activated B-like, are considered. This dataset can be found 

at http: //llmpp. nih. gov/lymphoma/. 

6.3.2.4 Rat CNS dataset 

The rat CNS data was obtained by reverse transcription-coupled PCR to study the exprcs- 

sion levels of 112 genes during rat central nervous system development [1191 over nine 

time points. As suggested in [119], the raw data was normalised by the maximum expres. 

sion level for each gene. The dataset was then augmented with slopes (differences between 

consecutive time points) to capture parallel trajectories of the time series data. This resulps 

in a dataset with 112 genes and 17 conditions. Wen et al. [ 1191 categorised genes in the rat 

CNS dataset into four families using biological knowledge. 
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6.3.3 Clustering algorithms 

In this study, four commonly used clustering algorithms are considered. These algorithms 

are popular in the biological community, particularly in the field of microarray analy- 

sis. These include hierarchical clustering algorithm with average linkage (HC), SOM, 

K-means, and K-medoids clustering algorithms [96,97,98,120]. 

6.3.4 Experimental results 

In this sub-section, comparisons of various clustering algorithms, which are applied on 

the aforementioned datasets, are presented. These comparisons are achieved using the 

proposed integrated clustering performance measure VCPM) and two different approaches 

are used for reliable conclusions. 

6.3.4.1 Sub-sampling approach 

in this approach, from each dataset, random samples from the entire dataset are selected 

with a sampling ratio SR = 0.8. By repeating this process r times, r datasets are obtained, 

each dataset is sampled from the entire dataset. Then, the clustering algorithms are applied 

to every sub-sampled dataset (i = 1, ..., r) to fi nd K clusters (K = 2, .., 20), i. e., one 

can get r clustering results for every K. In this study, r= 100 is used. It should be 

remembered that at the first stage of clustering, not all objects are clustered due to sub. 

sampling. In the following experiments, 20% of the samples, as SI? = 0.8, will need to be 

assigned to clusters. To address this issue, each unassigned sample is assigned to tile most 

appropriate cluster that is consistent with the clustering algorithm. For example, in (lie case 

of K-means algorithm, each unassigned sample is assigned to tile cluster with the closest 

centre. 
Figures 6.13,6.14,6.15, and 6.16 present results corresponding to cach of these four 

datasets and each of these figures contain two subplots each. The subplot on top shows 

the validity measure versus the number of chosen clusters for each of tile four different 

clustering algorithms. For each of the clustering algorithms, the number Of Clusters corre- 

sponding to the "knee" point is an estimate of the true number of clusters in the underlying 
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dataset. Of course, the higher validity values for any given number of clusters corresponds 

to better robustness. The lower subplot shows the stability measure over the same number 

of clusters. As shown, the number of clusters corresponding to the "knee" points of the 

stability for the four clustering algorithms is an estimate of the true number of clusters in 

each of the underlying datasets, i. e. the estimated number of clusters is corresponding to 

the higher stability value. Clearly, a better clustering algorithm is one that achieves higher 

validity as well as stability values. 

Tables 6.6,6.7,6.8 and 6.9 contain four values per clustering algorithm. The first is 

the expected value of the validity measure, averaged over different numbers of clusters K 

(K = 2.... Ký,,, ). The second is the expected value of the stability measure, averaged 

over different numbers of clusters K (K = 2.... ICm,,. The third corresponds to the 

JCPM value, while the fourth provides the value of K,, t, the estimated number of clusters, 

corresponding to the ICPM. 

For the yeast cell cycle dataset, as shown in Fig. 6.13, the validity and stability mea- 

sures of K-means, K-medoids, and SOM algorithms select four (K = 4) as the best number 

of clusters underlying the dataset, which correspond to the main phases G 1, S, G2 and M, 

as identified by Cho et A [109], Spellman et aL [1081, and Tamayo et aL [981, while 

the validity and stability measures of HC algorithm select five (K = 5) as the best number 

of clusters where the fifth cluster corresponds to late GI phase [1021. Thus in this datasCt 

both four and five clusters have been reported by the biological community. The design 

of HC clustering algorithm is based on a hierarchical decomposition of the data, which 

is represented by a tree structure that splits the data into small subsets until each subset 

consists of only one object. Each node of the tree represents a cluster of data. In case 

of K-means, K-medoids, and SOM clustering, optimisation criteria are used to rnininlise 

within-cluster discrepancies, and these reflect the choice of four clusters by validity and 

stability measures of K-means, K-medoids and SOM, as these algorithms favour compact 

clusters. K-means and SOM algorithms achieve lower 1CPM values as recorded in Table 

6.6. These algorithms give lower validity and stability values than IIC and K-mcdoids clus- 

tering algorithms, where HC algorithm achieves higher validity as well as better stability 
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Figure 6.13: The validity (QV) and stability (QS) measures versus the number of clusters 
for yeast cell cycle dataset using sub-sampling approach. 
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Figure 6.14: The validity (QV) and stability (Qs) measures versus the number of clusters 
for leukaemia dataset using sub-sampling approach. 
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Figure 6.15: The validity (Qv) and stability (QS) measures versus the number of clusters 
for lymphoma dataset using sub-sampling approach. 
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Figure 6.16: The validity (Qv) and stability (Qs) measuies versus the number of clusters 
for rat CNS dataset using sub-sampling approach. 
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than the other algorithms. Overall, all four algorithms perform well. 

For the leukaernia, lymphoma, and rat CNS datasets, as shown in figures 6.14,6.15, and 

6.16, the validity and stability measures of all clustering algorithms correctly estimate the 

true number of clusters in the underlying datasets. Corresponding results are presented in 

Tables 6.7,6.8, and 6.9. In the case of leukaemia and lymphoma datasets all four algorithms 

offer similar results, while for the rat CNS dataset the HC algorithm offers the best results, 

followed by K-medoids and then SOM which is followed by the worst performing K- 

means. 

Table 6.6: Performance evaluation results on yeast cell cycle dataset using sub-sampling 
approach. 

I K-means I K-medoids I SOM I HC 

< Validity > 0.31 0.33 0.18 0.45 
< Stability > 0.21 0.37 0.36 0.42 

ICPAI 0.16 0.23 0.17 0.28 
K"F. 't 4 4 4 5 

Table 6.7: Performance evaluation results on leukaemia dataset using sub-sampling ap- 
proach. 

I K-means I K-medoids I SOM I HC 

< Validity > 0.19 0.20 0.14 0.31 

< Stability > 0.12 0.28 0.25 0.36 
ICPM 0.23 0.20 0.25 0.31 

lc. ýýt 2 2 2 2 

Table 6.8: Performance evaluation results on lymphoma dataset using sub-sampling ap- 
proach. 

I K-means I K-medoids I SOM I HC 

< Validity > 0.15 0.19 0.13 0.35 
Stability > 0.09 0.32 0.32 0.42 
ICPM 0.20 0.17 0.17 0.23 

lc. ýýt 2 2 2 2 

Table 6.9: Performance evaluation results on rat CNS dataset using sub-sampling approach. 
FI K-means [ K-medoids I SOM I )FIC] 

< Validity > 0.23 0.25 0.08 0.41 
_ < Stability > 0.13 0.35 0.33 0.41 

ICPM 0.98 0.52 0.71 0.40 
Kest 4 4 4 4 
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6.3.4.2 Leave-one-out approach 

In this approach, the effect of features (observations or attributes) on the stability and qual- 

ity of clustering results is examined by omitting the feature at i-th position of either the 

expression profile vectors (in case of gene clustering) or the expressed genes (in case of 

sample clustering), i. e., for r features, one can get r datasets. Then, the four clustering al- 

gorithms are applied to every dataset with K (K = 2,... , 20), i. e. one can get r clustering 

results for every K. 

By comparing the stability and validation measures obtained from leave-one-out ap- 

proach with those achieved by sub-sampling approach, although the quality of the cluster- 

ing results, which is represented by validity measure, does not have a significant change 

compared with sub-sampling approach, i. e., comparable results. There is a significant 

change in stability measures at different datasets, e. g., K-medoids achieves higher values at 

leukaemia, lymphoma, and rat CNS data in case of leave-one-out approach compared with 

values obtained from sub-sampling approach. 

Finally, by examining the ICPM values as demonstrated in Tables 6.10,6.11,6.12, and 

6.13, HC algorithm achieves on the whole higher average validity as well as better stability, 1=1 

and K-medoids algorithms is chosen as a second choice with better IC13M values. Again, 

the proposed ICPM of all four clustering algorithms on the four microarray datasets verities 

the correct estimation of the number of clusters. 

Table 6.10: Performance evaluation results on yeast cell cycle dataset using leave-one-out 
approach. 

I K-means I K-medoids I SOM 

" Validity > 0.32 0.35 0.19 0.48 
" Stability > 0.23 0.39 0.29 0.46 

ICPAI 0.16 0.14 0.25 0.29 
I, C,!. t 4 4 4 5 

Table 6.11: Performance evaluation results on leukaemia dataset using leavc-one-out ap- 
proach. 

I K-means I K-medoids I SO ýý 

* Validity > 0.22 0.25 0.16 0.35 
* Stability > 0.10 0.64 0.41 0.67 

ICPAI 0.22 0.17 0.23 0.17 
Kest 2 2 2 2 
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Table 6.12: Performance evaluation results on lymphoma dataset using leave-one-out ap- 
proach approach. 

_ II K-rneanS SOM H 
< Validity > 0.16 0.20 0.13 0.37 
< Stability > 0.12 0.82 0.75 0.66 

ICPAf 0.19 0.18 0.20 0.24 
K, ý ,, t 2 2 2 2 

Table 6.13: Performance evaluation results on rat CNS dataset using leave-one-out ap- 
proach. 

I K-means I K-medoids I SOM I HC 
< Validity > 0.26 0.28 0.09 0.45 
< Stability > 0.08 0.51 0.19 0.42 

ICPAI 1.09 0.45 0.62 0.45 
Ký?,, t 4 4 4 4 

6.3.5 Clustering accuracies 

In this sub-section, accuracies of clustering results from two microarray cancer datasets - 
leukaemia and lymphoma datasets using sub-sampling approach are investigated. It has al- 

ready been observed from Tables 6.7 and 6.8 that ICPM values of each of the four clustering 

algorithms estimate correctly the true number of clusters in the underlying datasets. From 

each of these datasets, two sets of 100 sub-sampled datasets have been generated using the 

previously described sub-sampling approach. Each of these 100 sub-sampled datasets have 

been clustered using four aforementioned clustering algorithms. Results obtained are av- 

eraged for clustering accuracies and presented in Table 6.14. In case of leukaemia dataset, 

K-means, K-medoids and SOM algorithms achieve similar average clustering accuracies 

of around 98%, while HC algorithm achieves clustering accuracy of 91% with a high stan- 

dard deviation. In the case of lymphoma dataset, all four algorithms achieve similar average 

clustering accuracies of around 98%, though HC has a high standard deviation. It should 

be noted that there is no supervised learning or training involved here but only clustering 

with the aid of ICPM. In the absence of any training, the clustering accuracy of 98% for 

the lymphoma dataset is remarkable. For the purpose of comparisons, in the case of lym- 

phoma dataset, classification performances of 84.6% using KNN classifier [121], 95.0 % 

using either nearest neighbour classifier or diagonal linear discriminant analysis [ 1221, and 
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Table 6.14: Clustering accuracies based on 100 runs using sub-sampling approach on two 
microarray cancer datasets. 

I Leukaemia data I Lym 
K-means 98.4 ± 2.8 98.7 ± 1.1 

K-medoids M 98.1 ± 1.2 99.3 ± 1.0 
som (%) 97.3 ± 1.8 98.5 ± 0.9 
HC (%) 91.0 ± 13.4 97.0 ± 4.5 

98.1% using logistic discrimination [123]. In the case of leukaemia dataset, classification Cý 

performance of 94.7% using cross validation sets was achieved [118]. 

6.4 Summary 

In this chapter, the efficacy of SOON algorithm, that does not require the knowledge of 

the number of clusters, in analysing biological datasets has been examined. As shown, it 

is possible to change clustering behaviour to show the desired characteristics (small, tight 

clusters or large, loose clusters) through the choice of the values of a and Jo. The useful be- 

haviour of the algorithm on non-separable data has been verified with a series of validation 

sets with varying values of SNR. The useful properties of the clustering algorithm were 

also demonstrated using microarray datasets along with different distance measures. Ex- 

periments on microarray yeast data has shown the ability the SOON algorithm to discover 

new patterns which are not discoverd by the SOM algorithm. Furthermore, the assessment 

of SOON clustering results using a combination of validation methods indicate the ability 

of SOON to discover the clusters of a dataset and also achieve clustering of better quality. 

Finally, a novel integrated clustering performance measure (ICPM) for assessing the 

reliability of results from a clustering algorithm has been proposed. This is cornposed of 

a validity measure, which is constructed in this study out of eight validity indices, and a 

stability measure, which is constructed in this study out of six stability indices. The pro- 

posed ICPM has been tested using different types of microarray data. Experimental results 

indicate that the integration of clustering performance measures with various approaches 

to measure the stability and quality of clustering results can be used for evaluating dif- 

ferent clustering algorithms and examining shortfalls of such algorithms in a robust way. 
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As demonstrated, the proposed ICPM provides a guide for examining the suitability of 

an algorithm for clustering microarray data. In these experiments on different microarray 

case studies, the proposed ICPM estimates correctly the true number of clusters in the un- 

derlying datasets. The number of validity indices, the number of stability indices can be 

changed as well as the proposed ICPM can be extended naturally to include other desirable 

measures than validity and stability. 



Chapter 7 

Conclusions and Future Work 

7.1 Summary and Conclusions 

Clustering is a common tool for data analysis. Of course there exist many clustering al- 

gorithms already but there is a demand for a guideline for choosing the proper clustering 

algorithm for a particular dataset, new algorithms for achieving clustering with no a priori 

knowledge of the data, and efficient methods for handling the rapid growth of the data. 

This thesis has proposed possible solutions for these challenges. 

Chapter 3 has proposed new measures (CPAIs) for the robustness and reliability of 

clustering algorithms. These CPMs are used to evaluate clustering algorithms that have 

a structural bias to a certain type of data distribution as well as those that have no such 

bias. As demonstrated, the effect of initial and random guesses on the clustering algo- 

rithms that have initialisation dependency is tested and evaluated using different types of 

real-world data and synthetic data which contain well-separated datasets, as well as over- 

lapped datasets. These measures have been applied on sub-sarnpled datagets and datasets 

with less separated clusters. Therefore, one can use the proposed CPAIs to evaluate tile 

clustering algorithms that have a unique solution for a given set of parameter values with 

no initialisation dependency (e. g. hierarchical clustering algorithm). Additionally, these 

measures can be used for evaluating the performance of different Clustering algorithms and 

examining shortfalls of such algorithms. 

150 
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Chapter 4 has proposed a new clustering algorithm, RACAL, which does not require 

the knowledge of the number of clusters. As demonstrated, it is possible to control the 

behaviour of the cluster membership (small or large) through a radius parameter J, More- 

over, RACAL is augmented with a reliable validation index to produce the best results for 

the given & values. Four different types of real-world data have been used to demon- 

strate that the proposed algorithm scales well with the size and dimension of the dataset. 

The clustering performance measures, CPMs, indicate that RACAL algorithm possesses 

higher robustness as well as offers better repeatability (stability) compared with the other 

mentioned clustering algorithms. In addition, an adaptive partial supervision strategy has 

been proposed for RACAL to make it act as a classifier. Experimental results obtained by 

RACAL-PS show that it achieves higher classification performance than other classifica- 

tion methods. Additionally, a parallel version of RACAL (P-RACAL) has been proposed. 

As demonstrated, P-RACAL is scalable in terms of speedup and scaleup, which gives the 

ability to handle large datasets of high dimensions in a reasonable time. 

Chapter 5 has proposed a novel clustering algorithm, NNCA, which achieves clustering 

without any control of cluster sizes. In addition, NNCA has been augmented with a partial 

supervision strategy to act as a classifier. Comparisons with other methods have indicated 

the robustness of the proposed method in classification. Experimental results show that the 

NNCA-PS offers better classification accuracies compared with other classifiers. Addition- 

ally, a parallel version of NNCA (P-NNCA) has been proposed. As demonstrated, P-NNCA 

is scalable in terms of speedup and scaleup, which gives the ability to handle large datascts 

of high dimensions in a reasonable time. 

Chapter 6 has examined the efficacy of SOON algorithrn, that does not require the 

knowledge of the number of clusters, in analysing biological datasets. As shown, it i's 

possible to change clustering behaviour to show the desired characteristics (small, tight 

clusters, or large, loose clusters) through the choice of tile values of a and So. Tile useful 

behaviour of the algorithm on non-separable data has been verified with a series of vali- 

dation sets with varying values of SNR. The useful properties of the clustering algorithm 

were also demonstrated using microarray datasets. Furthermore, the assessment of SOON 45 
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clustering results using a combination of validation methods indicate the ability of SOON 

to discover the clusters of a dataset and also achieve clustering of better quality. 

Finally, a novel integrated clustering performance measure (ICPM) for assessing the 

reliability of results from a clustering algorithm used for analysing microarray data has 

been proposed. This is composed of a validity measure, which is constructed in this study 

out of eight validity indices, and a stability measure, which is constructed in this study out 

of six stability indices. The proposed 1CPM has been tested using different types of nii- 

croarray data. Experimental results indicate that the integration of clustering performance 

measures with various approaches to measure the stability and quality of clustering results 

can be used for evaluating different clustering algorithms and examining shortfalls of such 

algorithms in a robust way. As demonstrated, the proposed ICPM provides a guide for ex- 

amining the suitability of an algorithm for clustering microarray data. In the experiments 

on different microarray case studies, the proposed ICPM estimates correctly the true num- 

ber of clusters in the underlying datasets. The number of validity indices, the number of 

stability indices can be changed as well as the proposed 1CPM can be extended naturally 

to include other desirable measures than validity and stability. 

7.2 The Road Ahead 

The following is a list of possible avenues for the continuation of this work: 

Every clustering algorithm has certain advantages over others, and there is no clus- 

tering algorithm that can be universally used to solve all problems. Therefore, tile 

development of an integrated clustering algorithm based on a combination of var- 

ious clustering approaches can give better and meaningful clustering results. This 

requires a structure phase test to examine the data tendency. Then, a selection phase 

selects the best fit clustering criteria to the examined data structure. Of course, one 

might think of the high computational complexity, but it is preferable to take into 

consideration the recent advances in computer networking, data storage technolo- 

gies, and parallel computation in reducing the computational resources as well as 

improving the clustering performance and accuracy. 
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* Extend the use of NNCA and RACAL with partial supervisions for microarray data 

classification. 

* Incorporate the constructed validity measure, Qv, with a clustering criterion for 

achieving automatic data clustering. 

9 As there are a lot of applications which would benefit from efficient parallel cluster- 

ing algorithms, further studies are needed to unearth the potential of these emerging 

algorithms. 



Appendix A 

Validity indices 

Validity indices are used forjudging the relative merits of clustering structures in a quanti- 

tive manner, and selecting appropriate parameter settings. The following are seven validity 

indices used in this thesis. 

11GI" Index: This index [102] measures the geometrical feature of the data. Its prin- 

ciple is to measure the value of the squared total length of the eigen-axes of the data with 

respect to the between-cluster separation. This index is defined as: 

z: d 2 (2 
j=l \/-Ajk) GI = maxl<k<K (A. 0.1) 

I 

mznl<q<K 
(Ilzk- 

- Zq112) 

where K is the number of clusters, d is the number of dimensions, Aik (k = 1, ..., K) are 

eigenvalues of the covariance matrix, Zk and zq are cluster centres for i-th and q-th clusters 

respectively. If the value of GI index reaches the minimum, the clustering result is an 

optimum solution. The ideal value for the GI index is 0. 

11CS" Index: This index [116] is a function of the ratio of the sum of the within-cluster 

scatter to between-cluster separation. This index is defined as: 

EK, 
i= TA-iIEX, EAimaXxkEAi{d(xj, Xk)) 

cs - (A. 0.2) 
{MilljEKJýýi {d(zi, zj)) 

where d is a distance function, Ai is the set of data points assigned to i-th cluster, jAjj 

is the number of data points in Aj, zi and zi represent the i-th and j-th cluster centres , 
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respectively. The smallest value of CS index indicates a valid optimal partition. The ideal 

value for the CS index is 0. 

"CH" Index: Calinski Harabasz index [58], for n data points and K clusters is com- 

puted as trace (B) I (K- ! 
-) where B and TV are the between-cluster separation and within- trace (VV)/(n-K) I 

cluster scatter matrices. The maximum hierarchy level is used to indicate the correct num- 

ber of partitions in the data. The trace of the between cluster scatter matrix B can be 

calculated as trace (B) = j: K 
I nk jjZk _ Z112' where nk is the number of points in clus- k= 

ter k and z is the centroid of the entire dataset. The trace of the within cluster scatter matrix 

W can be calculated as trace (IV) = EK 1 E7kl 112 k= 11-ri - Zk . Therefore, the CH index 

is defined as: 

y: K ]/ [ZK 
1 

1: ýk 
CH k=, nk llZk _ Z112 k= j=I 

11Xi - Zkl12 
(A. 0.3) K-1 n-K 

1 

The objective is to maximise the CH index for achieving proper clustering. The ideal 

normalised value for the CH index is 1. 

"D111 Index: Dunn index [57] is defined as the ratio of the between-cluster separation 

to the within-cluster scatter. The DI is defined as: 

DI =1 minl<i<K minl<j: 5K 
J(zi, zj) 

(A. 0.4) 
nI maxl<k<K IA(Zk)l 

II 

where: 
6(zi, zj) --,,: min {Ilxi 

- Xi 112 Ixi E zi, xj E Zj), A(Zk) = max I 11xi - XA12 IXil Xj E zjj. 

Large values of DI represent good clustering results and the value of K that maximises 

DI corresponds to the optimal number of clusters. The ideal nornialised value for the DI 

index is 1. 

"Silhouette" Index: For a given cluster, Xj (j = 1, --., K), this index [ 117] assigns 

each data point (i) of cluster Xj a quality index, s(i) (i = 1, .. '7z), known as the Silhou- 

ette width. The Silhouette width is a confidence indicator on the membership of the i-th 

data point in cluster Xj, and it is defined as: 
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b(i) - a(i) 
max{a(i), b(i)j 

where a(i) is the average distance between the i-th data point and all points included in 

Xj, and b(i) is the minimum average distance between the i-th data point and all points 

clustered in Xk(k = 1,... , K; k: ý j). From this formula, it follows that -1 < s(i) : ý_ 

1. When s(i) is close to 1, one may infer that i-th data point has been well-clustered. 

When s(i) is close to zero, it suggests that i-th data point could also be assigned to the 

nearest neighbouring cluster. If s (i) is close to - 1, one may argue that such a data point has 

been misclassified. Thus for a given cluster Xj (j = 1, ..., K) , it is possible to calculate 

the Silhouette Sj, which characterises the hetero0eneity and isolation properties of such a 1P 

cluster: 

1 
Sj 

where m is the number of data points in Xj. 

Therefore, for any partition U +-+ X: X, U... XiU... XK, a Global Silhouette index, 

GS, can be used as an effective validity index for U. 

GS =1 (A. 0.5) K 
Sj 

j=l 

The most appropriate number of clusters corresponds to the maximum value of GS 

index. The ideal normalised value for the Silhouette index is 1. 

IIXB" Index: Xie Beni index [641 is defined as the ratio between the compactness 7r of 

the fuzzy K-partition of a dataset to the minimum separation s of the clusters. I lere 7r and 

s can be written as 7r = EK, J: ýicl U2 IIXi - Zk 112 and s= ini7ii, 4j 
IIZ, _Zj 112 

. The XB k= z= ki 

index is then defined as follows: 

EK 
, 

Eýkl U2 
2 

XB = 
7r 

- 
k= t= ki 

lki - Zkll 
(A. 0.6) 

n*s n* minioj IIZ, 
_ zj 112 

Note that when the partitioning is compact, value of 7r should be low while.,; should be high, 
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thereby yielding lower values of the XB index. The objective is therefore to minimise the 

XB index for achieving proper clustering. The ideal value for the XB index is 0. 

"DB" Index: Davies-Bouldin index [561 is a function of the ratio of the sum of within- 

cluster scatter to between-cluster separation. The scatter within i-th cluster, Si, is computed 

as Si = C1. Excx, Jjx - zill and the distance between cluster Xi and Xj denoted by dij, TX 7 
is defined as dij zi - zj 11. Here, zi represents the i-th cluster centre. The DB index is 

defined as: 

K 
DB= ERi (A. 0.7) 

i=l 
S+S. 

The objective is to minimise the DB index for where Ri = maxiojRij, Iý-j 

achieving proper clustering. The ideal value for the DB index is 0. 



Appendix 

Stability indices 

Stability indices are used to measure the stability of clustering results. The following are 

five stability indices which used in chapter 6. Four of these are derived from statistics and 

similarity measure of partitions. There are several similarity measures for partitions of a 

finite set 12,65]. For two partitions P, and P2, a pair of data points (xi, xj) from the dataset 

is referred using the following terms: 

e SS: if both points belong to the same cluster of P, and P2. 

e SID: if points belong to the same cluster of P, and to different cluster of P2. 

* DS: if points belong to different clusters of P, and to the same cluster of P2. 

9 DD: if both points belong to different clusters of P, and to different clusters of P2. 

Let a, b, c and d are the number of SS, SID, DS and DID pairs respectively, then a+b+c+(i = 

M which is the maximum number of pairs in the dataset, i. e., M= ? i(it - 1)/2, where 

n is the total number of points in the dataset. Now the indices to measure the degree of 

similarity between P, and P2 can be defined as: 

Rand Statistic =a+b (B. O. 1) 
Al 

Jaccard Coef f icient =a (13-0.2) 
a+b+c 
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Folkes and Afallows axaa (B. O. 3) 
+-b -a+ c ýjm 2 vfM 

where mi = (a + b), M2 = (a + c). 

Hubert Statistic = 
Ala - MIM2 (B. O. 4) V-7nlM2(M - 7'nl)(M - M2) 

In case of Rand index, the overall similarity of r partitions is defined as follows: 

1rr 
Overall Rand similarity index - r(r - 

Rand(Pi, Pj) (B. O. 5) 

Similarly, Eq. B. O. 5 can be applied on other similarity indices, i. e., one can obtain 

four stability indices. It should be noted that higher values of the overall similarity indices 

indicate better clustering stability. The ideal normalised value of each of these four stability 

indices is 1. 

Bootstrapping method 

Law et aL [671 uses bootstrapping to estimate the variability of a clustering algorithm by 

considering it as an estimator for the partition of the data space. If a partition is valid, 

its variability should be low. This is achieved by generating r bootstrap samples, each of 

size s, by sampling the data, then apply the clustering algorithm on each sample to obtain 

the corresponding partition. Then, the variability of the i-th clustering algorithrn can be 

defined as: 

1r 
Br1E d(Pj, A*) (B. O. 6) 

j=l 

where B is a measure of variability, Pj is the partition obtained by running tile i-th clus- 

tering algorithm on bootstrap sample j, A* is the average partition, and d is the distance 

measure. The lower values of the B index indicate better clustering stability. The ideal 

value of the B index is 0. 
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