An SOPC Based Image Processing System



Wu, Fan
(2007) An SOPC Based Image Processing System. PhD thesis, University of Liverpool.

[img] Text
491110.pdf - Unspecified

Download (39MB) | Preview

Abstract

Recent advances in semiconductor technology have made it possible to integrate an entire system including processors, memory and other system units into a single programmable chip - FPGA, these configurations are called 'System-on-aProgrammable- Chip' (SOPC). SOPCs have the advantage that they can be designed quicker than existing technologies and are cheap to produce for low volume «10,000) applications. Also, SOPCs are of great benefit as they offer compact and flexible system designs due to their reconfigurable nature and high integration of features. One processor intensive application, which is ideal for SOPC technology, is that of image processing where there is a repeated application of operations on the 2D data. This research investigated the use of SOPC technology for image processing by developing a modular system capable ofreal-time video acquisition, processing and display. An sope Based Image Processing System Abstract Abstract This system is comprised of a CameraLink CMOS camera with a custom designed camera interface card for video acquisition, a VGA mode CRT monitor with a Lancelot VGA card for video display, an industrial SDRAM device for video data buffering, and an Altera Apex 20K FPGA for evaluating the SOPC design. Four custom designed IP components have been developed and integrated with other Altera provided standard IP components to drive all off-chip peripherals and perform the required video functions such as processing the images. These custom designed IPs are the video capture controller, video display controller, video memory controller and Cache. A Nios processor was chosen to perform the actual image processing, and the whole system was developed on the Altera Nios development board. In order to solve the complex on-chip data communication, while not degrading the transferring speed of largeamounts of video data, an effective solution called Simultaneously Multi-Mastering Avalon Streaming Transfer with Peripheral-Controlled Waitrequest was raised. Rather than using the software approach to initialise DMA-like transfers, this solution takes advantage of the FPGA hardware resource to perform bus arbitration and hence increases the system efficiency. The system produced is an alternative to conventional desktop-based, i.e. a visionbased closed loop process control system for weiding, or microprocessor-based vision systems. September 2007 FanWu Supplied by The British Library - 'The world's knowledge'

Item Type: Thesis (PhD)
Depositing User: Symplectic Admin
Date Deposited: 20 Oct 2023 09:24
Last Modified: 20 Oct 2023 09:25
DOI: 10.17638/03174493
Copyright Statement: Copyright © and Moral Rights for this thesis and any accompanying data (where applicable) are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge
URI: https://livrepository.liverpool.ac.uk/id/eprint/3174493