The Marine Polyzoa of the Isle of Man

by
David Tggleston

Ph.D Thesis
(University of Iivarpool)

Dec. 1363

BEST COPY

AVAILABLE

Variable print quality
"The zoologist finds his pleasure in the contemplation of their novel forms, in the examination of those characters which distinguish them as species, in the quost of thoir mitual affinities, their relations and analogios with other beings, the order in which Creative Wisdom may seem to have called them into existence, their hobits, economy and uses ${ }^{7}$

Johnston (1838)
"A Histary of the British Zoophytes"
List of Contents
Topic Page No.
Introduction 11
Part I. Phylum Entoprocta
Introduction 1
Material and Methods 1
Family Loxosomatidae -3
Host Praferonces in the Loxosomatidae 18
Family Podicelinidae 22
Distribution of Pedicellima cernua
and Barentsia gracilis 25
References 27
Figuros 1-16
Part II. Fhylum Ectoprocta
Section I. Introduction 1
Conoral 1
Provious work on Manx Ectoprocts 2
Aims of the Investigation 3
Area investigated 3
Mathode 4
Section II. Results 9
Introduction 9
Fomily Crisildae 9
Fa ily Oncouseciidae 14
Family Tubuliporidae 16
Fanily Diastoporidac 20
Fa-ily Pntalophoridae 24
Family Lichenoporidao 25
Tamily Aetiidac 26
Tamily Scruparifaae 28
Family Membroniporidac 30
Family Flustridae 43
Fanily Microporiidae 46
Fanily Collariidae 46
Family Scrupocellariidae 49
Family Beanifdae 51
Family Bicellariellidae 51
Pamily Freculidae 53
Family Gribrillnidas 57
Family Hippothoideo 61
Family Reteporinao 65
Family Adeonidac 66
Fanily Fscharol7trae 67
Family Schizoporellidao 70
Family Hippoporinidao 76
Family Microporellidae 79
Fanily Smittinidno 80
Family Phylactoiniobu 86
Family Exochellidae 87
Family Umbonulidae 88
Family Celleporariidae 90
Family Octhinosizidao 91
Pamily Alcyonidiidae 93
Family Arachnidildae 98
Family Fluctrellidridao 99
Contents (contimued).
Topic Pago No.
Family Vesiculariliae 99
Family Duskilaoo 102
Pamily Valkerildas 103
Fanily Tricollidao 106
Family Nolallid-o $10:$
Family Hypophorellidao 109
Fomily Minosollidao 109
Fanily Ponetrantifdae 110
Soction III. Distribution of Manx Eatoproctr 111
Pactors influencing dintribution 111
Salinity 111
Tomperature 112
p.H. 112
Light $1: 3$
Tood 173
Larvac and Disperaal Mechanisms 113
Depth 115
Wator Novament 115
Support 116
A1gao 118
Zoophytos 120
Sholls and Stoned 122
Arthropods etc. 126
Coocraphical Iistribution 127
Conolusion and Sumnary 128
Soction IV. Reproduction of Vanx Zotoprocts 131
Introduction 131
Reproductive Habits 132
Length of Dovologmont'; Thno 133
Heproduction and Goosraphical
Distribution 134
Larval Colour and Taxomomy 136
Conclusion 137
Section V. Relationships wit'l other Anjmals 138
Summary 112
Poferences 142
Acknowlodgomonto 188
Tablos 1-47Pigmeos 1-77
:1aps 1-7I
Aprondix I Station List am
Aprendix II Records on Reproduction A-D
Appenciz If Embryo Colours i-iii
Appendix IV: Koys ImIIX

INTRODUCTION

Nitsche (1870) proposed that the Polyzoa (= Bryozoa) should be divided into the Ectoprocta and tho Entoprocta. The Entoprocta woild contain the genera Pedicellina M.Sars, Urnatella Iaidy and Loxosoma Keferstein, the rest of the Polyzoa would be included in the Ectoprocta. In the Ectoprocta the ams is situated outside the tentacular circlet, in the Entoprocta it is inside the Lophophore. Hatschek (1888) raised tho Entoprocta to phylum level but this view was not generally accopted and even today somo authorities treat the Entoprocta as a sub-group of the Polyzoa. In 1921 A. H. Clarke recognized the non-coelonate nature of the Entoprocta and proposed placing them in a new phylum the Calyssozoa. Cori (1929) agreed that they were a separate phyium and suggested the term Kamptozoa. Both Calyssozoa and Kamptozoa are used by some contemporary authors but in this account the original term Entoprocta will be used and tho group will be treated as a phylum distinct from the phylum Ectoprocta.

Introduction,
The Entoprocta are divided into three familios, the fresh-water Urnatellidae, and the Loxosomatidae and Pedicellinidae. Mombers of the Loxosomatidac and the Pedicellinidac are procent in Manx wators. Bofore the prosent study only Loxosomella fauveli Eobin and Prenant, Pedicellina cormag (Pallas) and Earentsia aracilis (M.Sars) had been recorded from the Isle of Man.

Material_and_Mothods_used in_the_present_invostigation.
Between October 1959 and June 1962 large amounts of supports suitable for entoproct colonization were examincd. This material included large numbers of polychaete worms (including 28 Aphrodite gouloata L., 18 Hermione hystrix (Savigny) and many other Polychaetae Aphroditidae), many and various worm tubos (particularly those of Chaotonterns variopedatus (Renier)), 41 Phascolion strombi (Montagu), large mumbers of various entoprocts and hydroids, some ophiuroids, crinoids, sponges and ascidians and large quantities of dead sholl. Most of the material was dredged off the south of the Islo of Man, but some, including specimens of Aphrodite aculesta; was trawled E. of Langnoss (by A. B. Bowers) and in Iuco Bay (by D. J. Symonds). Suitable materials from the "Faunal Collections" at Port Erin were also examined, this source provided 23 of the Phascolion strombi examined. All fresh matorial was examined under a binocular microscope and observations made on the living Entoprocts. The material was then stored in alcohol or, better, formalin. No specimens were stained, nor were any sections cut. Identifications were made under the high magnifications of a monocular microscope. Specimens were measured by using an eye-piece micromater. In all 16 species wero collected and are listed bolow with notes on their occurrence:

Family Loxosomatidae.
Gerus Loxosoma Keferstein.
L.oxosoma sp.nov.

Loxosomella obess Atkins	New record for Irish sea.
Lemurmanica (Nilus)	New record for Irish sea.
Lenitschei (Vigelius)	New record for Irish sea,
L.compressus Nielsen \& Ryland	lew British record.
If. fanvaly Bobin \& Prenant	Provionsly recorded from Isle of Man.
Learvyae Bobin \& Prenant	New British record.
Lebouxini Bobin \& Prenant	New British record.
Lefungiformis Bobin \& Prenant	New British record.
Loxosomelln sp.nov.	
Lemarsyons Niolsen \& Ryland	New British record.
Lecloviformis Hincks	Widely distributed in N. W. Europe.

Family Pedicellinidae
Germs Pedicellina
Pedicollina cerma (Pallas) Widely distributed.
P.mitans Dalyell Widely distributed.

Gemus Barentsia
Barentsia Gracilis (M.Sars) Widely distributed. Barentsia sp.nov?

In addition to these species it is quite likely that further entoproct specios would be found in Manx waters if the corroct supports wore searched. The data obtained from each of tho above species are discussed below.

FAMIIY LOXOSOMATIDAE

Diagnosis

Solitary marino, often epizoic Entoprocts in which the calyx is never separated from the peduncle by a diaphragn and is never deciduous. Peduncle rarely absent, usually more or less long and often terminating in an adhosive attachment. An adhesive-producing gland may be present in the peduncle at some stage in the life-history. Buds dovelop on the anterior face of the calyx but soon separato from the parent and do not form colonies but some species by rapid fixation
of the buds soon ofter separation, form dense porulations.
Of the four genera (Loxosoma, Loxosomella, Loxocalvx and Loxomesnilon) included in the family species of only Loxosoma and Loxosomella have been collected in Msnx wators.

GEMUS JOXOSOMA Keferstein 1862 (emend. Mortensen 1911)

Diagnosis

Foot developed as sucking disk, peduncle with straight and oblique muscles. No foot gland, only single gland-cells on the disk. Animal able to change position.

The only Loxosoma collected appears not to have been previously described.

Inoxosoma sp.nov. Collection

About 30 specimens were found on the inside of an unidentified, arenaceous worm-tube dredged $5 \mathrm{mi} . \mathrm{N} 46^{\circ} \mathrm{W}$ of the Chicken Rock, depth $28 \mathrm{fm} .(50.5 \mathrm{~m})$ on 12.4 .61 . Description (Sce FigI1)

This description is taken from 6 specimens in semi- to wholly contracted states after preservation in 5% formalin for some weeks.

This a large species measuring up to 1.2 mm . total length of which the calyx moasures about half. The calyx, clearly demarcated from the peduncle, has the shope of an inverted pear. 16-21 long tentacles have been counted. Sensory papillae aro absent but what are probably lateral sence organs can be seen under high power magnification. These consist of a small pit with a few short cilia and are well supplied with nerve and muscle fibres. Thore are no trace of 'flask organs' such as are found on Ledavenport, 1 Nickerson, Leloxaling Assheton and Iesaltans Assheton. The tri-lobed stomach is slightly wider than long. The thick-walled intestine leads into the rectum which terminates at a conspicuous anal papilla reaching to about the middle of the lophophore. The budding zone istenterior and slightly proximal to the top of the stomach. No large buds were

Bimension	Speciman						
	1	2	3	4	5	6	Yean
Total							
10ngth	1188	1012	1012	924	915	853	984
Fecuncio	616	484	528	396	396	378	465
longth							
Maximum	405	369	350	326	360	405	371
$\begin{aligned} & \text { Focuncle } \\ & \text { width } \end{aligned}$	14	132	132	123	149	132	134
$\begin{aligned} & \text { Stamach } \\ & \text { jength } \end{aligned}$	141	123	132	142	132	132	133
Stomech with	149	132	149	158	149	155	149
Tentacle numbor	20	20	18	16	21	20	-
1:0. of tuads	1	-	2	1	1	2	-

Tablo 2. Fronortions of Invosorg ep. nov. based on moecuremonte of
aix specituns.

Ratio	Yoan	Rango
Calyx Length: Feiuncle Longth	$1 \cdot 10$	0.91-1.33
Calyr Innsth: Calys Uidth	2.75	
Calya Width: Podunclo Width	$2 \cdot 70$	2.4
Stomach Iength: Storoch Inath	. 87	76-95

present. Most specimens bear one or two tiny buds, usually one on each side. The calyx is narrow in profile and the parenchyma is not dense. The peduncle hos well-defined longitudinal muscles some of which become oblique and cross the peduncle level with the stomach. There is a silight development of oblique musclo in the foot region. A few longitudinal and circular fibres can bo seen in the calyx. The pedal disk is well developed. A row of large, square cells (similar to those described in Loxosoma dovenporti Nickerson, Leloricatum Harmer, Loxosomella crossicondata (Salonsky), and Inoxocolyx tethyae (Salonsky) runs along the dorsal surface of the peduncle to the level of the stomach where it merges with and becomes indistinguishable from the other cells of the dorsal surface.

The dimensions of the 6 specimens (semi-contracted and in formalin) measured are summarised in Table 1 and 2.

Live specimens are very active and when disturbed sway in all directions. The calyx can be rotated through 180° relative to the foot. No specimens were observed to detach themsolves from their support but when detached with a needle specimens quickly and easily reattnched themselves. Discussion_

The absence of a pedal gland in the adult (no large buds were seen and therefore the condition in the bud is unknown) and the ability of the specimens to reattach themselves to supports place this species in the gemus Loxosoma. In this gemus it has obvious affinitios with the group of species Lepectinaricola Franzen, L, davennorti, Leloxalina and Lesaltans. It differs from the last three in the absence of flask organs but.does not say what proportion are without them; it seems unlikely that all of 30 specimens collected would be without these organs. Other similerities with L, dovenporti are in the row of large cells along the dorsal surfece of the peduncle (which also occur in Lessitans, Leloxalina, etc.), the position of the anal papilla and the position and shape of the stomach. It differs from L.davenporti in the absence of flask orgens, the absence of lateral
alae in the contracted state, and the tentacle number (18-29 in Iedovennorti) and in the absence of largo numbers of buds (this may be a sossonal effect). Lepectinaricola has fewor tentacles (14-16) than the present species and locks the row of large cells on the peduncle.

GENUS IOXOSMETIA Mortensen 1911

Diggnosis

Foot gland present only in the bud, atrophying after secreting a fluid which cements the animal to the support for life. The adult peduncle may be more or less expanded into a pedal disk.

A Iist of the Loxosomella species recorded from Manx waters is givon on p.2 . For other N. W. European species seo Bobin and Prenant (1956), Ryland (1960, 1961), Ryland and Nielsen (1961) and Franzen (1963).

Key to the Manx species of Loxosomella

1. Largo species, up to 2 mm . Iophophore small in relation to calyx. Calyx often greatly swollen, budding zone immedintely below Iophophore
L. obess

Usually smaller than 1.5 mm , calyx not enlarged nor stomach Ereatly swollen. Lophophore normal size relative to calyx 2
2. Compressed laterally, single median budding zone. Among dorsal spines of polynoid worm

L. comnressa

Not comrressed laterally, two lateral budding zones 3
3. Inside worm tubes

Not inside worm tubes, on ectoprocts, polychaetes or sipunculids
4. Highly contractile peduncle atteched in pocket of worm tube Iining. Calyx rounded

> Le marsyons

Wery short peduncle terminating in pedal disk, not in pockot of worm tube lining. Calyx with obvious lateral sense organs on "shoulders"

Loxosomel1a sp.nov.
5. 8 tentacles only (raroly more)

More than 6 tentacles 7
6. Frequently with secondary brown 'cuticle' covering part of peduncle. Stomach wider than high, relatively small and well separated from body wall. Relatively small lophophore, budding zone above stomach. On Phascolion strombi

> Le murmanica

Rarely with secondery 'cuticle' lophophore normal size. Stomach very wide in rolation to its height ond almost reaches body wall, and with well marked latoral pouches. Budding zone level with stomach. On Phascolion strombi and ectoprocts

Le nitschef
7. On Aphrodite aculeata or Hermione hystrix 8

On Phascolion strombi 9
8. Peduncle and calyx not clearly demarcated, animal club-shaped. Large, woll-defined podal disk, 8-13 (usually 11) tentacles Le claviformis Not club-like. Peduncle and calyx clearly demarcated. 8-11 tentacles. Peduncle shortor than calyx and with a small pedal disk

> Le fauveli
9. The large, ovoid, stomach, slightly higher than wide, may extend to body wall and is tangential to the lophophorc. No lateral pouches but cuperior and lateral stomach walls are very thick. 8-12 (usually 10-11) tentacies. Buds lovel with base of stomach and may be directed laterally or towards base Le bouxini

Stomach of median dimensions, about round, a little wider than high but well separated from body wall. 8-10 short tentacles.

Le arvyee
Stomach thick-walled, much wider than high, 9-10 tentacles. Fungiform.
L. fungiformis

Loxosomella obesum Atkins (FigI 2)
Degcrintion
Large (maximum length recorded at Port Erin 1.8 Mn., at Plymouth

Table 4. Froportions of Inxosomelin abeso baced on moasurements of 50 specimens.
natio Kean Range

Calyx length:recuncle length	2.55	1.10-2.50
Calyx Iongth: Calyx width	1.41	0.9-2.0
Calys wiath: forunclo width	$3 \cdot 6$	2.2-8.9
Feduncle length: Pedunclo width	$3 \cdot 1$	1.]-5.0

2.4 mm .). Small circular lophophore with 8 tentacles. (rarely 9 at Plymouth (Atkins 1932)). Calyx cloarly separated from the peduncle and often greatly swollen by enlargement of parts of the stomach. In small specimens the calyx is fairly narrow below the lophophore. Calyx equals $\frac{1}{3}-\frac{1}{2}$ total length in large specimens. Only longitudinal muscle fibres in stalk. Pedal disk slightly developed. Vestiges of podal gland may be visible. Budding zono Immediately below lophophora. Numerous buds - up to 6 each side often present. Up to 26 embryos may be present in vestibule (Atkins 1932).

As noted by Atkins there are 3 types of individual. 1. Without swollen stomach, 2. Stomach swollen, calyx oval, 3. Stomach swollen, calyx globular. At Plymouth the peduncle of type 2 zooids equels $\frac{1}{2}-\frac{2}{3}$ of their total length and that of type 3 is loss than $\frac{1}{2}$ the total length. In Manx naterial the peduncle of type 3 is slightly shorter in proportion to total length than in type 2, but the difference is slight and in both type 2 and 3 the mean peduncle length is less than $\frac{1}{2}$ the total length.

Dimensions from 50 individuals are given in Table 3xtwhich includes very few type 1 individuals and about equal numbers of types 2 and 3

Discussion
Proviously recorded only from Plynouth, L.obosum occurred on 7 (32\%) of 22 Aphrodite aculeata from the Isle of Man and on 2 of 6 A, aculesta from Iuce Bay (S. W. Scotiand). At Plymouth it was present on 12.3% of 146 A, aculesta examined (Atkins 1932). It oscurs only on the ventral surface of the posterior elytrac and on the posterior half of the dorsal surface of A.aculeata. Over 100 L.obesumave been noted on a single A, aculeata.

Buds were observed in April, Moy and June the only months in which Leobesum was collected.

Ioxosomella compressa Nielsen and Ryland (FigT3)
nescristion
The mean length of Manx material is ca. $500 \mu_{\text {., }}$ maximum size

Toble 5 Dimensions of Yax and Morwegian (from liolsen and Ryland) specimens of Iovosomollo commson. 16 hanx opecimens and 20 Nowogion sfecinens moasured. Units aro p

Dinension Calyx length	Manx		Norwegior.	
	Megn	Rongo	Voan	S.D.
	198	1/2-263	178	28
Fedunclo Iength	298	184-528	267	78
Total length	496	352-704	445	91
podunile depth	84	52-714	78	12
Calyx dopth.	150	132-211	120	H_{4}

Table 6 Propertions of Manx Yomonomiln conmenen bascion mearuremonts of 16 specimons.

Ratio	Nonn	Range
Pocunclo Iengthicolyx Iength	1.5	$1.0-3.0$
Calyx IongthiColyx depth	1.4	$11-1.9$
Calyx depth:Pyiturclo depth	1.9	$1.3-3.0$
Fedunclo length: Feduncio dopth	3.7	$2.1-6.0$

recorded 700μ. Calyx laterally compressed to about $\frac{?}{3}$ its depth 8 tentecles (rarely 9), lophophore slightly oblique. Sensory papillae absent. Stomach not tri-lobed. Ono or two buds occasionally present in median group about midwoy up calyx. Pedal gland present in large buds. Calyx passes abruptly into peduncle which is also slightly compressed. Pcduncle, $1 \frac{1}{2}-2$ times length of calyx, tapers towards base.

Table $5+b$ includes the dimensions of 16 Manx spocimens. Discussion

The type material was collectod by Nielsen and Ryland (1961) on the notopodial sotae of the polynoid Lagisca extemata (Grube) from the North Brattholmen Ionhelia-reef near Bergen. About 20\% of Manx Leextemunts searched bore Loxosomella commessa. Most of the worms were collected either in tufts of Cellaria fistulosa L. or Chaetoptomis tubes dredged about 4 ml . $(6.5 \mathrm{~km}) \mathrm{N}$. W. of tho Chicken Rock (depth 27-30 $\mathrm{f}_{0}=49-55 \mathrm{~m}$) but some wero dredged in 10 f. (18 m.$)$ close to Port Erin Breakwater. Up to about 40 Lecomrressa may occur on a worm and all are attached to the notopodial setae.

Specimens were collected in September, October and November. In all the populations examined some specimens bore buds. A few individuals with embryos and well-developed gonads were present in October.

This species has proviously boen recorded only from the Norwegian type locality. I have collected it off both Manx and Northumbrian coasts.

Loxosomella marsyons Nielsen and Ryland (figI4)

Tho original description of this species was based on only a few specimens. A large number of specimens have been collected from Manx waters. Manx specimens are larger than the type material; all dinensions in the description are based on Manx specimons.

Tablo 7 . Dimension of Ioxosmolln maraynes. 50 specimens mossured. Units are μ

Dimension	Caly		Todu		
	(5a)	Relaxad (13)	$\begin{gathered} \text { Slichtly } \\ \text { contracted } \\ (16) \end{gathered}$	Noderately contractod (20)	Pully contricted (11)
Yean length	253	363	277	276	222
Length ranco	167-396	23c-510	176-387	2.38-370	176-290
Yosn wirth	229	202	208	242	271
Winth ronge	132-309	106290	141-309	185-290	202-352

Tablo 8 Proportions of Lozannolln morsyons. Easod on 50 epecimen:
Istio Stato of Pedunclo

$$
\text { Relaxod Slishtiy Moderatoly Fully }
$$

controcted contractod contractod

Large fully relaxed individuals measure up to 800μ in length. Highly contractile peduncle; when relaxed it equals $\frac{\pi}{3}$ total length, when contracted it is shorter than calyx. 8-12 long tentacles. Sensory papillae absent. Stomach deep, not clearly tri-lobed. Budding zone antero-lateral, near base of stomach. Pedal gland well-developed in large buds. Pedunclo and foot characteristic of tho species. The Aully relaxed peduncle brosdens abruptiy just below calyx and tapers gradually to base, when slightly contracted a pair of subcircular lateral expansions are present below calyx, the fully contracted peduncle is basically coordate in form and cups the base of tho calyx in its distal end. Peduncles in different states of contraction are illustrated in FigI 4. No pedal gland in adult but one to three oval bodies occur in pedunclo of sone specimens, these may be vestiges of podal cland of bud.

Dimensions of 50 Manx specimens aro given in Tables 7 and 8. Discussion_

Previously recorded only fron the type locality, the North Brattholmen Iopholia-reef neor Bergon, where it occurs in the tubes of Eunice pennata (0. F. Muller) in $44-75 \mathrm{f}$. ($85-130 \mathrm{~m}$) (Ryland Nielsen 1961). Off the Isle of Man Leconpressa occurs in the tubes of Chretopterus variopedatus. The majority of the 200 specimens collected were in Chnotopterus tubes dredged about $4 \frac{1}{2} \mathrm{ml}$. (7.2 km .) N. W. of the Chicken Rock in 27-30 f. ($50-55 \mathrm{~m}$.) . In both Manx and Norwegian material the entoproct occupies a characteristic site. The peduncle is attached to the lining of the tube at the apox of a small triangular pocket in the lining mambranos, contraction of the peduncle withdraws the animal into the pocket. (See FieI 5). Ryland and Nielson found only small "colonios" of few individuals but Manx "colonies" are larger; up to 60 individuals have been collected from a single Chsotonterus tube. FigI5 gives a semi-diagromatical indication of the density reached in somo "colonies". Manx specimens measure up to 800μ., the largest spocimen moasured by Ryland and Nielsen was 370μ long.

Toble 10 . Proportions of ynonemily sp.nov. BaEed on 20 arocimens

Ratio	Yosn	Rance
Calyx length: 5ocuncle lnegth	$3 \cdot 4$	2.3-4.4
Calyx width: Fedunslo width	3.0	2.1-3.6
Calyx Lonth: Calyx widh	1.3	1.0-1.7
Fedunclo Iongth: Foduncio width	$1 \cdot 1$	1-0-1.5

The mature gonads are large and appear white by direct light. Under low-magnification they appear as small conspicuous paired, white spots. Specimens were collected in October and Jamery; buds and well developed gonads wero present in both months and embryos in October only.

Loxosomelle sp.nov.
A description of this species will be published shortly and specimens will be deposited at the British Museum. Descrintion (FigI6)

Small. (Maximum length 440μ). Peduncle much shorter than calyx. Large oblique lophophore, in lifo peduncle is bent so that lophophore inclines towards support. 10-14 tentacles. Calyz slightly longor than wide, and resembles inverted pear. Lofhophore slightiy narrower than rest of calyx. Lateral sense organs on conspicuous shoulder-like protrubsrances, on each side of and lovel with centre of lophophore. Short peduncle not clearly demarcated from calyx. Peduncle firmly attached by thin, often triangular, pedal area. Pedal gland absent in adult, well-developed in large buds. Budding zone anterior, level with top of stomech. Most specimens have one bud, some two. Heart-shaped stomach without lateral lobes. Up to 7 embryos occur in the atrial cavity. Ovaries lie between stomach ond distal part of lophophore.

Dimensions and proportions of 20 individuals are given in Table 9 and 10 Habitat

Collected $4^{2} \mathrm{ml}$. (7.8 km .) at $\mathrm{N} 36^{\circ} \mathrm{W}$ of Chichan Rock. (Decca Co-ordinates Red E 13.65, Crcen E 45.95) in 27 f. (50 m .). About 30 individuals were found attached to the membranous inner lining of an arenaceous worm-tube.

Affinities_

In general appearance this specios is similor to Lefagei but it can be readily distinguished fron this spocies by its greater tentocle numbers of 10-14 (8 in L.fagei), its heart-shaped stomach (almost round

Tablell Dimensions of Loxosomella marmanica. 19 specimens measured,

Dimension	Yoan	Range
Total Iength	331	$220-1,40$
Colys Iength	210	$141-317$
Fenuncle length	121	$79-176$
Salyx width	200	$114-370$
Feruncle virth	61	\cdots

Table 12 Proportions of Inxosomolla murmonics. Based on 19 spocinens.

Ratio
Yean
Range

Calyr Tength: Pedunclo length
1.8
$1 \cdot 1$
3.2
2.0
$1 \cdot 1-2 \cdot 3$
$3-1 \cdot 7$
$2 \cdot 0-4 \cdot 4$
1.1-2•8
in Lefaref) and the different host (Lefegei has been recorded only on Hermione hystrix).

Loxosomella marmanica Nilus (FigI7)

Description
Small (Bobin and Prenant(1956) give maximum length 650μ, Manx specimens resch $450 \mu_{0}$) Feduncle usually shorter than calyx sometimes alightly longer. Peduncle mscular, thick, ofton arched in sagittal plane. Peduncle cuticle ridged, pedal disk slightly developed. Pedal gland in bud, absent in adult. Calyx, flattencd antero-posteriorly, well-marked cuticular "opaulettes" often present near origin of calyx from peduncle. Calyx racquet-shaped. Lophophore is tangential to calyx and its outlino may extend beyond the oval contour of the calyx. No visible sensory papillae. Small stomach, ellipsoidal and transversally elongated; lateral pouches absent. Distance between body wall and stomach usually cquals about half stomach width. Budding zono between Iophophore and stomach. Not more than 1 bud per sideusually present. Hermaphrodite. When welldeveloped eggs present calyx becomes distended and almost circulor in outline including even the retracted lophophore within its outlino.

Tho dimensions and proportions of 19 Manx specimens are given in Teble II and 12

Discussion
Lemurmonica occurs on Phoscolion strombi. A krown "secondary cuticle", thought to be produced by the sipunculid host, often covers all or part of the peduncle and calyx of Lemurmenica. This "cuticle" somotimos occurs on othor entoproct species but is more extensively developed on Lemurmanica and if present on a apecimen indicates that it is probably Lomurmanica. This "cuticlo" sometimes partly or completely encloses the entoproct. Specimens in which tho "outicio" is extensive are often distortcd.

Lemurmanica is widely distributed. It has been recorded from Kola Fjord, "oscoff, Dinard, Concarneau, Arachon, Plymouth etc. In all casea it occurs on Phascolion strombi. In Manx collections it

Tablo 14 . Froportions of Marz Ioxosomij19 nitachede "ased on 40 apecimons.

Ratio	Yean	Rango
Colyx length:piduncle length	1.5	1-0.2.3
Calyx lemithtcalyx widh	1.04	.7-1.5
Calyx widthifodunclo widh	2.8	2.0-4)

occurred on 14 (329) of 41 Dastromblexamined. (cf. Conoarneau 57 (66\%) of 87 Pantrombi "infected" and Roscaff 100; "infection"). Lamomanica has been found mixed with populations of Lebouxint, Lenitschai and Lefungiformig. (Seo p 20 for discussion of entoprocts and Pastramil.

Duds were soen in April.

Loxognalla nitschal (Vigelius) (Fig. I 8)
Eoserintion
Calyx and contour loss elongate than I.mirmanica. Lophophore relatively larger and with strongor euseles than Lemurmanien. when contracted lophophore lies within calyx outline but when expanded it modifies calyx contour to a regulor oval. 8 (rarely 9) tentacios, when retracted have wider bace than Lememinica. Isteral sonse-argins absont. Inrec, wido stomsch almost as wido as calga. Stomach lensth is about half its width but varise with stato of contraction. Tho well marked latoral pouchos aro loss conopicuas when the stamach is at its loncost. Large pharynx obvious in anterior viow. Budding zono lovel with top of stomach. In French material up to two buds oceur on each side (Eobin and Fronent 1956), in Manx material only ons bud has beon seen on cach side. Foduncle shorter than calyx. Cuticle thin end uniform but may be ridged on poduncle. Distanco between atpmach and baly wall is always less than a quarter of stamach width.

Dimonsions of Manx ond Normegian and Northumbrian material Arom Ryland 1361 are sumorized in Tablo 13 and 14 Disousion

Lenitschei occurrod on 28 (63x) of 41 Fhncoolion etrombi examined. It occura most ofton eround the ams und on the postorior port of tho sipunculid. It has boon recorded on Pestrombi from Dinard and Concarnozu (Bobin and Fronant 2956). Kanx spocimens, like tho French nateriol, oceur in mixod poculations with othor epocios o.E. Leborxini, Lemmanica and Lennalformis (sec also p 20). Tho typo material (Vigelius 1882), which has been loct,
was described from the ectoproct Meninen ternata (Ellis and Sol.) from the Barents Sea. Roper (1913) and Harmer (1915) described material collected in Northumberland on ectoprocts, hydroids etc. Recently Ryland (1961) found this species on Dendrobeania mirreyens (Johnston) and Callopora craticula (Alder) from the Raune Fjord near Bergen. Ryland's materiol is Identical with Roper's but differs from French specimens (Bobin end Prenant 1956) in the pattorn of budding. In N. Sea and Norwegian material the younger buds are below the older; French specimens have the younger buds above the older. Unfortunately nonc of the Manx specimens have more than one bud on each side. (I have recently (at the Dove Morinc Laboratory Cullercoats) examined specimens (from hydroids, ectoprocts and shell fragments) indentical with those of Ryland, Ropor and Hermor and am of the opinion that this is a species separate from that occuring on Fhascolion strombi from Manx, Northumbrian and French coasts.)

Buds were present on Manx material collected in May and in specimens from the Port Erin Faunal Collections dated 1.8.46. Buds were prosent on Narwegian material in May.

Loxosomella claviformis (Hincks). (FigI9)
This is a very variable species and different forms have been described seyorally as separate species or as varieties of Leclaviformis. Manx specimens are only of one type which is described below. For a discussion of the variation of Lecleviformis see Atkins(1932) and Bobin and Prenant(1953 and 1956) Description

The Manx Leclaydiformis are of the type designated Lecloviformis var. by Bobin and Prenant 1956.

Up to 700μ in total length. Club-like, no clear demarcation between calyx and peduncle. Nost $\mathrm{cl}_{\text {a }}$ 保orm when tentacles retracted. Calyx slightly longer than peduncle which tapers to large, often saucerlike pedal disc. Up to 14 tentacles (usually 10-12). Lophophore slightly oblique. No sensory papillae in Manx specimens (small papillae occur in other varieties of L.cläviformis). Stomach often

Tablo 15 . Dimensions of Loxospu 119 eloviormis. 40 spocimons mostured. Tnite are H

Timension	onn	rance
Total		
Increth	590	290-606
Calyx		
longth	25i	158-370
Tounole		
7ert'?	2,46	132-39
$\begin{aligned} & 9 \times \pm m m \\ & \because 4,4 \end{aligned}$	181	
$\begin{aligned} & \text { Pe'unclo } \\ & 1, m+h \end{aligned}$	83	$62-106$

Tabl? 16 Fronarions of loxomanaln alovicnums. Daeed on 40 aomament

Rotio	Yean	7anco
Qriyx longtis Foruncle length	I. H	.6-2.0
Salye Inngth:Calyz width	I-4.4	$1 \cdot 0-2 \cdot 0$
Tolyx withirounclo widh	$2 \cdot 18$	1-8-2.8
Foruncle lencthiporumole width	2.93	1-5-5.0

reaches almost to body wall, almost circular; lateral pouches absent. Budding zone opposite top half of stomach. Few buds at a time. Buds directed anteriorly. Longitudinal muscles well-developed in peduncle which has oblique muscles in upper part.

Dimensions from 40 Manx specimens are given in Table 15 and 16 Discusgion_

Described by Hinoks (1880) from a Guernsey Hirmione hostrix and later collected on the same host and from Aphrodite aculeata at Plymouth (Atkins 1932) and Roscoff (Bobin and Prenant 1956). Loxosomella claviformis occurred on 8 (44\%) of 18 Hermione hystrix and 7 (32\%) of 22 Aphrodite aculeata from Manx waters examined. It occurred on 2 of 6 A, aculeata trawlod in Lace $B_{a y}$. Atkins believed the type she called Loxosoma sp. to bo restricted to A, aculeata and Lecloviformis sensu stricto to bo found only on Hehystrix but Bobin and Prenant found both Atkins types and intermediato forms on both A.sculeata and Hehystrix.

Leclnviformis occurs on dorsal and ventral surfaces of the hosts as well as on parapodia bases and the ventral surfaces of the elytra:。

Embryo have been seen in August, November and February and buds in August and November. Leclaviformis has not been collected in other months.

Loxosomolla fauveli Bobin and Prenant (FigI10)

Descrintion

Calyx oval or pear-shaped in frontiliview and joins smoothly with peduncle but in such a way thot the two can be readily distinguished. Large, slightiy oblique lopiophore. 8 tentacles in bud, up to 10-11 in adult. Calyx almost circular in transverse section. No obvious lateral sense-organs, one or two sensory bristles may be present. Stomach wider than long and lacks lateral pouches. Always a small space between stomach and body wall. Buds lateral, level with stomach, rarely more than one or two on each side. Peduncle shorter than calyx, pedal disk slightly developed. Up to 3 embryos

Fooin ond Irenent (1756). Units are μ. Fimension											
Sarree	"Yast"	Totsl length		Calys 1 noth		Feduncle Jongth		Calyx width		Fosuncle width	
		Mern	Rance	Iosn	Rarga	Oenn	Ronot	Yoon	Ranco	"san	Rance
Iole of Men	Aservients	316	246-528	234	15?-352	112	72-176	149	11/-211	58	53-79
	1:Statrix	S	220-572	260	176-370	126	$62-202$	179	1. $3-229$	72	$4:-77$
Fly rith	Lectesta	530	130-300	305		225		179			30-80
noseren	Hesulnato		170-540								

in posterior brood pouch.
Dimensions of Lefouvelf are given in Table 17 and 18 Discussion_
L.fauveli occurs in large numbers on tho parapodia bases, dorsal and ventral body surfaces and the ventral surface of the elytra of Aphrodite sculonta and Hermione hystrix. 9 (50\%) of 18 Hehystrix and 9 (42%) of 22 A, cculeata fron tho Islo of Man and 5 of 6 A, aculeata from Iuce Bay bore Lefouvelie L.fauveli often occurs mixed with other entoprocts e.ty. Leobesa and Leclaviformis. It occurred on 40% of 156 A, aculeata from Plymouth (Atkins 1932).

From Tablel7+18it is obvious that there is little difforence between I, fanvali from A, aculeata and those from Hehvstrix. Specimens from Hehystrix tend to be a little larger than those from 1 aculeata but the proportions of the two groups are almost identical. Both Fronch (Bobin and Prenant 1956) and Manx specimens tond to be smaller than Plymouth specimens.

In Kanx collections embryos and buds were present in June, August and November, mature gonads wero present in Moy; neither embryos, buds nor mature gonads were present in specimens collected in February. In the English Channol (Bobin and Prenant 1956) this specios is sexualiy mature and buds from March to October, Atkins (1932) records embryos and maturo gonads from April to August and buds in June, August and September.

Loxosomella bouxini Bobin and Frenant (FigIII)

Doscription

Op to 700μ in length. Calyx cloorly separated from the thick, cylindrical poduncle. Peduncle swollen in some specimons. Largo buds with 8 tentacles, adults usually 10-11. Contour of large lophophore determines that of distal part of calyx. In frontal view calyx either parallel aided or slightly oval. Calyx slightly flattened antero-posteriorly, its widh equals about $1 \frac{1}{2}$ times its thicmess. Very large ovoid stomach usually reaches body wall but there may be a small space botween stomach and body wall. Stomach widor than long

Table19. Dimensions of Inyomoln homini. 20 specimans neamured. Units aro u.

Dimoncion	lorn	Rango
Total		
length	372	202-616
Poruncle		
Ioncth	200	se-352
3ndye		
lensth	172	$96-264$
Caly:		
width	162	106-228
Fodunclo wirth	78	-106

Tablo20. Proportions of Inonomella bmyini. Based on 20 epecimons.

Ratio	Hean	Range
Colyr longth: Pecuncle lenjth	$2 \cdot 8$. $6-1.5$
Calys length: Calys u1dth	2.07	-2-1.5
Calys width: Fecunslo width	2.1	1.7-2.8
Pedunclo Iondth: retuncle wieth	3-2	1.7-3.6

and ite superior edpe almost tangentiol to lophophorc. Stomach cavity lorgo often filled with dobris. Latoral and suporior atanach wallo very thick, inforior wall thin. Gonads may bo so lorgo as to distort lateral walls of calyx. Fedunclo $1 \frac{1}{2}$ tines as long as calyz. Fodunclo porenchyan not donse. Up to 2 buds ench sino, incorted lovel with inforior part of ctarach eenerally laterally and usually inciined dormuards.
 Digonesion

Previously described only from Concarnoau whero it occurred on 31 (36%) of 87 Phacoolion atrombi examinod by Bobin and Pronant (1953) Loborixini occurrod in nmoll mubers on 9 (22t) of 47 fontrombi fron Manx wators exnminod. Manx spacimens ore very ainilar to French spocimens but tend to have a wider range in the proportion calyx lengthicalyx width. Manx apecimens wero in mixod pogulations with Lemumanica and Lanitechei.

Buds were probent in April and in material from tho "Faunal Collections" labellod "1.8.16". Specimons woro not obtained in other months.

Loxosomelin orvon Bobin and Pronst (FigI 12)
Dogerintion
All Manx apocimens had 9 short tentacles (Bobin and Frenant found 6-10 tontásles). Colys slightly comprossod antero-posterionly, almost rectangulor in frontal contour, more or less abruptly seporated from podunclo. Larco lophophore inclined anteriorly. Cuticlo thin, uniform, not rideg on pedunclo. No onlarged podal disk. Foduncle shortor than calyx in young spceimens, Iongor in lorgo specimons. Stomach a little longer than wide, without lateral pouchos, always soparated from body wall. Budding zono lateral and opposito centro of stomech. Sensory papiliso absont.

The dimensions of the six spocinens collectod are included in Tablo 21 and 22

Tablo 21. Dimencicis of Lozosomelin nrume from the Iole of Non ('b apecimons moocurod) and fro Conasine u (dato from Dobin ard Fronant 1956).

Denominn	Yont srecimens	French epsoinons
Total		
longth	229-370	3:8-672
Calyx		
lonsth	141-212	180-312
Fedunclo		
lonstin	80-158	160-360
Caly:		
vidth	106-158	120-216
$\begin{aligned} & \text { Fedunslo } \\ & \text { wiath. } \end{aligned}$	4503	32-65

Toble 22 Foportions of lovemonoltr arymer from the Ialo of Yan und irom Concarnoau (data from Pobin and Fren nt $\therefore 56$;

Ratio	Manx		French	
	Sonn	Nong	lean	Rance
Galyz Iengtheredunclo longth	1.3	1 1-1.6	-	-83-1-25
Calve loncth:Calyz wicth	1.3	1 3-1.4	1.46	1.20-1.66
Oolyz widhsFedunclo width	2.6=	2. $4-3 \cdot 2$	$3 \cdot 63$	270-5:0
Fodumic widthtoduncle leneth	.12	. $34-5$		

 (16 apoosimons monsu"er) sn Ery Concarno3u (lata from Bosin and Pron rt (1053)).

Discneinm	Ible of Man		Comenrmeau	
	Yoan	Tancor	Von	Tanco
Totrl				
lenth	172	132-220	-	156-1,08
Coshy				
lenry	218	8 Em 141	-	1081216
Pratunio				
Ion*i':	73	408	-	48-192
$1 \mathrm{ex}=0$				
$\because \cdots$	166	111/-2/6	-	132-192
exunde				
v̇ \because	58	$44-2$	-	$54-90$

27

 am Trom Concernonu (data From bohin cra^{2} Fronant (1953))

Ratio	$\begin{aligned} & \text { Islo of Ven } \\ & \text { Ionn } \end{aligned}$		- Concsrmaz	
			Yen	Range
Calve lenth: Femuclo length	1.7	1-2-2.5	2.7	1.2-3.6
Ca?rw whencoumelo wicth	2.9	$2 \cdot 1-1 \cdot 0$	2.3	1.9-3.0
Salye Ionoth:Calyx width	. 7	-6-1. 2	. 9	-
Fedunelo longth: Podumelo winth	$1 \cdot 3$	$10.2 \cdot 0$		

Discussion_
Loxosomella arvyoe has been collected only oned in Manx waters rpecimens were found on a Phascolion strombi collected in April. One specimen bore a bud. Learyrae has previously been recorded only from the type locality, the Bay of Morlaix where it occurred on 3 of 8 P.strombi examined (Bobin and Prenant 1953).

Loxosomella fungiformis Bobin and Prenant (FieT13)

Descrintion

Maximum length 410μ. Wide thick calgx joins short thick peduncle almost at right angles giving the animal a fungiform contour. 9-10 (rarely 8) tentacles. Lophophore inclined antcriorly. Calyz often semi-circular in shape, $\frac{2}{3}$ as thick as wide. The much wider than high stomach never reachos body wall, Iumen wide but not long, no lateral pouches. Embryos brooded in atrium. Cylindrical peduncle narrows slightly at base into small pedal disk. Cuticle thin on calyx, thicker and ridged on peduncle. Largo longitudinal and oblique ruscles in pedunclo. Some longitudinal fibres extend to lophophore. Dense, opaque, parenchyma. Budding zone lateral at base of stomach, buds horizontal or inclined towards base.

Dimensions of 16 Manx specimens are curmarizod in Tablo 23 and 24 Discussion

Described by Bobin and Prenant (1953) from Concarneau where it occurred on 33% of 87 Phascolion strombi examinod. Lefungiformis occurred on only 2 of 47 Pestrombi from tho Isle of Man. Lefungiformis was mixed with Lemurmanica and Lonitschoi.

Embryos and buds were present in specimens from the "Faunal Collections" dated 1.8.16.

Discussion_on hogts and host_preforences_
In_the gems Ioxosomella.
For the purposes of this discussion the substrates on which Loxosomalla spp. have been found in Manx waters can be divided into three groups:

Croup A: Worm tubes.
Croup B: Polychaeta Aphroditidae. Hermions hystrix, Aphrodite aculeata and Ingisca oxtemuata often bear species of Ioxosomella.

Group C: Phascolion strombi. 5 Loxosomella spp. occur on P.strombi in Manx waters.

The three groups will be discussed separately.
A.- Worm_tubes_

Ioxosomella marsyons and Loxosomella sp,nov. (as woll as
Loxosoma sp.nov.) have been found on the inner, mombranous lining of worm tubes. Only one entoproct species occurred in any one worm tube but tho ectoproct Hyponhorella expansa Ehlers occasionally occurs in the same Chactopterus tube as Lemarsyonse Heexpansa is colonial and has a thin autozooid-bearing stolon which ramifios anong the membranous Iinings of Chontopterus and Innice tubes. The Heexpansa zooids protrude their tentacles through small holes into the lumen of the tube. Lemarsyons is solitary and feeds by ciliated tentacies in the Iumen of the worm tube. But despite tho similarities in habit and habitat competition is probably reduced by the fact that while Heexpansa occurs most often in the newer parts of the tubo Lemarsyons is most often present in the older more friable parts of the tube. Heexpansa occurred in about 80% of the Chnotonterus tubes examined, L, marsyons occurred rarely.
B. - Polychgeta_Mgroditidae

Loxosomella compressa has been found only on the nobopodial setae of Lepisca extemata.

Loxosomiclla claviformis and Lefauvoli occur on both Aphrodite aculeata and Hormione hystrix, Leobesa occurs on Aeaculeats.

Atkins (1932) examined 146 A, gculeata and a few Hehrstrix at Plymouth. Her results can be summarized as follows: Leobesum occurred on the dorsal surface of 12.3% of the Aneculenta. Lefauvoly occurred on 397 of tho A.aculeata and was not frequentiy prosent on the ventrol surface but when present on tho dorsal surface was in greater mumbers than on the ventral surface, it was absent from H. hystrix.

 Inxosonella fournil
 Alundanco on
Docral Vonted Elytrec 8
0
4
4
6
0
0
4
4
H
6
0
0
0
6
4
0
8
8 $+++$ \pm
$\pm+$
.+4
as Occurrenco

$1 \begin{array}{ll}\text { H } \\ \text { O } \\ \text { O }\end{array}$ Abundanco on
Dorsal Vontral Elytrac uriece suriaco

data irot Atking (1932), Rosconf dato

$$
\begin{aligned}
& \text { A. noulento fron: } \\
& \text { Dymonth }(145) \\
& \text { Moscoif (} 9 \text {) } \\
& \text { Port Erin (22) }
\end{aligned}
$$

Hehystrix Prom

$$
\begin{aligned}
& \text { Rorcoff (19) } \\
& \text { Port Brin (18) }
\end{aligned}
$$

 A undanco on
 Ioronomalla clnvicorria
 A Occurrence
 \(-\)
 \(+++\)
 \(\pm \pm \pm\)
 D Decurrence surfece surface
 Abundance on
 Dorsal Ventral Elytran data rom Atkins (1932
Plymouth(rew)
Abundance on
Dorsal Ventral Elytran
10xonoralln obom:
seon surioco
 spo

$$
8
$$

$$
4
$$

Typical Lecloviformis were found only on H,hystrix and occurred all over the ventral surface and on the parapodia, when present dorsally they wore in greater mumers on the dorsal surface than on the ventral surface of the elytras. On one A,aculeata Atkins found "Loxosome sp." which Bobin and Prenant later (1956) showed to be a variety of Lecloviformis. Atkins (1932) remarked "there seems to be no reason why Leclaviformis should not be found on A, aculeata, or Lefauveli on Hehystrix".

Bobin and Frenant (1953), working at Roscoff, examined 9 A, aculeata and 19 Hehystrix. They did not find Leobosa. Leclaviformis occurred on both worms; it was found most frequently and in lorgost mumbers on the ventral surfaces, some occurred on the dorsal surface but fow on the elytrai. Lefauvoli occurred regularly under the elytrac and on the dorsal surface of Hehystrix, a few were found on tho ventral surface of one Hehystrix, and it was more abundant on the ventral than the dorsal surfaceof the one $\Lambda_{\text {, aculeata }}$ on which it was found. Examples of Lefngei Bobin and Frenant and Loxosoma Ioricatum Harmer were also found on Roscoff. H.hystrix. At Port Erin during 1959-62 I examinod 22. A, aculeata and 18 Hehystrix.

Leobess occurred on the posterior dorsal surface and elytrar of 31% of the A,aculeata. Lefauveli occurred on 43% Aegculepta and 50% Hehystrix on both it is most frequently prosent on the dorsal surface but is occasionally present in smaller mubers on the ventral body surface and ventral surface of the elytrai. (df. with situation at Plymouth (above and Table25)). Leclaviformis (Port Erin specimens are Leclaviformis var Bobin and Prenant = Loxosoma sp. Atkins) occurred on 27% of A,aculesta and 4% H, hystrix. On Hermione it was almost exclusively present on the vontral surface (only 1 individual was found on the elytrae); on Aphrodite it was most frequent on the ventral surface but some occurred on the dorsal surface and on tho ventral surface of the clytrac. This is similar to the situation at Roscoff but differs from that at Plymouth (see above and Tablo25).

The data from Plymouth, Rosooff and Port Erin are summarized

Table 26 Fercontage occurrene of Entoprocts on Fhncenlionntrombit Croa Roscoif, Consornou and Fort Esin. From Bobin the Provont (3953).			
locality and percontage occurrence of Entoprocti			
Entoproct sresine	$\begin{align*} & \text { Fort Erin } \\ & \text { Dastronin }(a \sigma) \tag{8}\\ & \text { Tron } \\ & \text { Turritelin } \end{align*}$	$\begin{aligned} & \text { Fort Fin } \\ & \frac{\text { fistrombi }}{\text { fro }} \\ & \text { nortilium } \end{aligned}$	Concarnozu Roscoff (87)
	42	13	65180
	73	53	55
	-	$6 \cdot 6$	37.5
$\frac{\text { Inonemalya }}{\text { ynanti }}$	-	-	16
	7.6	-	30
$\frac{\text { Ioxosmollo }}{\text { bowini }}$	35	6.6	36
$\frac{\text { Iornenmolin }}{n t \ln 1}$	-	-	12.5

in Tablo 25 . It can be said as a general conclusion that although mixed popalations occur on both Aegculenta and Hehystrix the entoprocts involved show slight differences in distribution on the hosts which will tend to reduce inter-specific competition. Leclaviformis and Lefouveli occur on both Asaculeata and Hehystrix. The two worms have slightly difforent distributions Hehvotrix being most common on graveliy groubds and A.aculeata on sandy grounds. Thus by infecting two 'hosts' the ontoprocts gain a wider distribation.
C.- Phascolion strombi (Montema)

Specimons of Pstrombi wore collected off the south of the Isle of Man from depths between 20 and 40r. ($37-73 \mathrm{me}$). Pestrombi occurs in dead Turritella corminis Risso, Anorrhais nesmolocani da Costa and Dentolium entalis L. shoils. 5 Entroproct species Lemurmanica; Lnitschei, Lebouxini, Lenrvyae and Lefungiformis were fouhd on the sipunculids. Mixed populations of up to 3 species occurred on single Pestrombi. Leatkinsao Bobin and Prenant, Lecuonoti Bobin and Prenant and Lebrumpti Nilus have been recorded from Pestrombi elsewhere but not from tho Isle of Man. Bobin and Prenant (1953 a, b, c,) examined Phascolion strombi from Roscoff, Morlaix, Concarneau, Dinard, ctc. and their findings together wit's those from Port Erin are sumarized in Table 26 . Most of the French Phascolion were from Thmritella shells; the data from Manx Pastrombi from Dentolium shells and from Turritolla (+1 from Aenesmpolecanf) are prosented separatoly.

From Table 26it is apparent that the os occurrence of all tho Loxosomolla spp. excopt Lenitschoi is Iowest at Port Erin. At Port Erin Lenitschof occurs more frequently than Lemumanica; the opposito is true at Concarncau and Lenitschei was not rocorded at Roscoff. All entoprocts at Port Erin occur Loss froquentiy on Pestrombi from Dentalium sholls than on those from Turritella shells. This may reflect tha difference in shapo of Turritella and Dentaliun sholls.

Bobin and Prenant (1953) state that the distribution of Entoprocts on Pestromb1 does not follow any pattern but thoy note the abundance of Loxosomolla, porticuloriy Lenitschoi and Lemimanica, on the

TEXT BOUND INTO

THE SPINE

Teble 27 Distrimitinn 0 Ioxasomalls srecics on Ihascoltion ntromi "ron off th" lels of an. (Gec text P. 22 cos explonation as divisinn of get-ninht.)

	Mubor oo osmurraces (26 mosin 20)			Number of specturns			
Entoprost apecios	Around anus	Sipiry zorion	Smooth region	$\begin{aligned} & \text { Around } \\ & \text { grus } \end{aligned}$	Sping rogion	Smooth region	Tot:
$\frac{10 y n s a n y}{\operatorname{sitanot}}$	13	15	δ	72	110	22	2
	7	10	-	16	114	-	1
$\frac{\cos \sin i 2 n}{\min }$	5	6	1	33	10	7	
	-	1	2	-	\cdots	10	
$\frac{\text { Engogral]s }}{\operatorname{targn}}$	\cdots	1	-	-	3	-	
Total				121	259	39	5

convex posterior flank of P.strombi. During the present investigation the position of each Loxosomolia on the Pestrombi was noted. For the purposes of the investigation each Phascolion was considered to be divisible into three regions (a) the area around the ams, (b) the posterior region with papillae and cuticular spines and hooks ("the spiny region") and (c) the anterior "smooth" region without cuticular hooks or spines. Region (a) is much maller in area than (b) or (c) and (b) is smalier than (c). The number of each Ioxosomella species in each region of the Phascolion are given in Table 27. Although the numbers are small some interesting points emergo. There are many more entoprocts present around the ams and on the "spiny" region than on the "smooth" part. Same species appear to show preforences for particular sitas 0.g. Lenitichoi is most camon around the ams and on the "spiny" pert, Lomurmenica is absont fron the "smooth" region and abundant in the "spiny" area, Le bouxini is commonost around the amis, Lefurgiformis and Lesrvyes have not been found around the ams.

Lemurmanica and Enitschei aro rarely present togother on a Fhascolion but whichevor is present is usually dominant. Bobin and Pronant found this situation in Franch populations also.

FAMIIY PEDICELLINIDAE

Diagnosis

Marine or brackish. Sessile, colonial Entoprocts with the calyx separated from the peduncle by a diaphragm. Calyz deciduous. Larva settlos and forms obzooid which devolopes a peduncle and calyx, peduncle then gives off stolon which usually adheres to substrate. Stolons bud off peduncles which develop cälyces, buds do not detach but form colonies.

Manx genera are Pedicelling M.Sors ond Barentsia Hincks.

> GENUS PEDTCEITINA M.Sars

Diggnosis
Cylindrical peduncle is muscular and flexible throughout. No basal muscular node. Two Manx species Pedicelling cerma (Pallas)
and Pamans Dalyall.
Key to the_Manx species of Pedicellina
(After Bobin and Frenant 1956)
Peduncle not or very alightly tapered, not narrowing markediy below calyx which it joins by a large surface. Large calyx, up to 6 times peduncle width. Dorsal side of calyx is convex

Pedicollina cerma
More of less fusiform peduncle retracted almost to a point below calyx. Galyx small, not more than 3 times width of poduncle. Asymnetrical in profile

Psmutans

Several forms of Pecerma have been described, some were originally desiganted species but recent work (and the present study) shows that more than one type of zooid may be budded off a singlo stolon Jolict (1877) distinguished three forms:

foglabra	Peglnbra of Dalyell (1848) and Ehlërss (1890)
	peduncle and calyx glabrous.
foechinata	
	1835 all zooids with spinos on peduncle and
	calyx.

f.typica Peduncle spiny, calyx glabrous.
F.typica is most comon in Manx waters, tho other forms are rare.

Pedicellina cerma (Pallas) (FigII4)
The largest Entoproct collected, zooids are easily visible to the unaided eye and vary in length from $0.4-5 \mathrm{~mm}$. It occurred in most localities from between L.W.S.T.L. and 50 f. (91 m.) and secms to occur wherever there are suitablo supports. Its distribution on various supports is discussed on p. 24 in comparison with Berentsia gracilis. Colonies are largest in summer and it is then (July October) that reproduction takes place. Small colonies of 1 or 2 zooids have been found during the winter months, colonies collected in winter are often without calyces. In the Channel P.cermue reproduces all summer (Bobin and Prenant 19j6); Lo Bianco (1908) found reproducing colonies at Naples in November.

Pecerma is widely distributed in the Arctic, on No.tlantic
coasts and in the Mediterranean.

Pedicollina nutons Dalyell. (See Bobin and Prenant 1956)
Collected only twice, once from L.W.S.T.L. at Port Erin Breakwater and once on Bugula plumosa (Pallas). from 18 f. (33 mo) off Port Erin Breakwater.

Pemutens is recorded from several points on British, Nowegian and Danish coasts and from the St. Lawrence Estuary.

GENUS BARFMTSIA Hincks

Diagnosis
Peduncle not muscular throughout its length but has muscular regions separated by narrower, non-mascular rigid regions with strong cuticle.

Two Manx suecies Barentsia gracilis and Barentsia sp.nov?

Brrentsia mracilis (M.Sors)
Smaller than P.cerma zooids range from0.5-1.5 mm. and calyx from $100^{\prime}-350 \mu$. Easily recognised by ita characteristic peduncle consisting of basal mascular node and narrow rigid stalk which may have one or more small muscular nodes along its length. 12-14 tentacles.

Widely distributed from L.W.S.T.I. to 45 f. $(82 \mathrm{~m}$.$) where it$ occurred on a Nephrons norvegicus L. carapace. Tho stiff puppet-like movements of the poduncle in living material attract attention. Bepracilis occurs on a wide variety of supports (shells, stones, hydroids, ascidians and even Hermione hrstrix). A discussion on its support proferences is given below.

Most Hanx specimens are of the typical type but occasional specinens of Var nodosa with up to 3 muscular articulations on the peduncle havo been colleoted. Some colonies have both typical and nodosa zooids.

Barentsia sp.nov? (Eigistll)
Specimens of a colonial entoproct which differs from other described species (See Marcus 1949) have been collected on several

Tablo 28 Dinensions of Eapentinis sp nov? 20 s,ocimns montrod. Units are μ

Dimension	!onn	Range
Tot21 10ngeh	1090	$707-1400$
Saly		
length	143	122-272
Galy widt	110	$60 \sim 176$
Totsi nocurcle longth	670	580-1280
nigld part of pocunsio Ioneth	200	136-612
nasal ruscular nodo leneth	117	109-310
Dasal rascular node usth	87	$68-136$

occasions from the walls of the Aquarium tanks at Port Erin Marine Biological Station.

Descrintion (Seo FigTisand Table 28)
Stolon, $30-40 \mu$ thick, attached to substrato, bears zooids singly in small groups up to 1 mm . apart. Zooids up to 1.5 mm . totel length. Calyx small (mean length 140μ) and slightly assymotrical in lateral view. 10-11 tentacles. Above its basal ruscular node tho peduncle is divisible into two more or loss distinct regions. The proximal part varies in length from a few μ to about half the peduncle length and is narrow, rigid and non-muscular. The distal part is thickor, membranous walled, very flexible and miscular. The distal part of the peduncle narrows shorply at its junction with calyx. Spines ore absent from the pedunclo and the calyx.

In ilfe the zooid can be moved by the muncular bsse of the peduncle and the distal part of the peduncle is also highly mobile and readily takes up a \cap shape (See FigIt6). Affinities

Other Barontsia species in which the upper part of the stalk is flexible are Bemsior Hincks, Belaxa Kirkpatrick, and Bantiria Jullien and Calvet. Each is Iisted below together with some 'characters by which it differs from Barentsia sp.nov?

Bemajor Lower part of stalk annulated. Tentacles
B. Iaxa Up to 9 mm . Fleshy part of stall annulated. 13-23 tentacles.
B.stiria Fleshy part of stalk only $\frac{t}{2}$ calyx length. 12 tentacles.

Tho Distribution_of Pedicellina cermio and Berentsio procilis on different_supnorts.
Pecerma and Beprocilis occur on a wide variety of supports; specimens of both species have been collected on most types of shell, on stones, hydroids, cetoprocts, spider crabs, lobsters, etc.

Table 29. Distribution of Fodicelilina germa and Rarentesia Execilis on various supforts. Tha aix mupports on which each apocies is most common aro Heted togother with tho porcentage occurence of the spociea on each eupport. $1 / 1$ peeorning and 245 Eegractile colonioe ware exauinod.

Pecornua		Begracilis	
Support	\% of Total on each cupport		\% of Total on each support
1.14ydroid	31	1. Chlatyo onorcularis outor expraco of doad bboll	$30 \cdot 6$
2. Ghlarys onertularis outor surfaco of tiond sholl	16	2. Ifvine Chlowgs onercularis	13.0
$\begin{aligned} & \text { 3. IIving GhTamys } \\ & \text { opercularis } \end{aligned}$	15	$\begin{aligned} & \text { 3. Chlapys ovorcularis } \\ & \text { Inner surfaco of } \\ & \text { dood ehall } \end{aligned}$	9.7
4. $\frac{\text { dodiolus modiolus }}{\text { doad sholl }}$	5.6	4. Pocton maximua outer surfeco of dead thell.	7.7
5. Eucratea Iorioata	4.2	E. Ilyuroid	$7 \cdot 3$
dood ehal.a.	$3 \cdot 5$	6. Modiolus moitolus	$5 \cdot 3$
Eto.	24.7	Etc.	$26 \cdot 0$
Zoaphyte	42.9	Zoophyto	11.3
Inner surface of dead thell	$3 \cdot 2$	Inner aurface of doad aboll	21.2
Outer Eurface of doad bhell	33.3	Outer enriface of doad sholl	49.0
Eotal on doad sholl	36.5	Total on dead sholl	$70 \cdot 2$

Betracilis has been observed on tiny Anomig spat, on small
Emarginula reticulata Forbes and Hanley, on the operculse of Pomatocoros triquetere. (L_{0}), on the legs of pyenogonids, on barnacle valves, on spines of Hermione hystrix and on the ventral surface of Aphrodito sculeata; Pecerman rarely occurs on such bizarre supportz. P.cerma is less common than Bepracilis; 224 Pecermag were noted in a sories of samples which contained 377 Befracilis colonies. Although the two species occur on a similor range of supports the quantitative distribution of the two species on each type of support differs considerably (See Tablo29). 42% of P.cermaa colonies occur on erect zoophytes but only 11.3% of Bepracilis colonies grow on those supports. Bepracilis is about half as common on inner shell surfaces as outcr while Pecernua is 10 times more abundant on outer than on inner sholl surfaces. Ilve Chlamys opercularis are colonised by both Pecermis and Befracilis. In one sample of 90 Ceomorcularis 56 bore Becracilis and 50 P.cermus, 21 of a sample of 33 lower valves carried Begracilis and 9 Pecorma and of 21 upper valves in another somple 8 bore Begracilis and 5 Pecermag. On theso shells Pecerma is usually confined to the ears and around tho margin of the shell while Begrncilis occurs all over the shell surface.

Thus although those two species occur on sinilar supports their distribution on the various supports differ.

Entorrosta		
ATXIHS, ${ }^{\text {D. }}$	1932	The loxosometive of the Plymouth ares, incluting Iomorom obemme sp, nov.
BODI', G. \& Femami M.	1953a	Sur les Loxosomes du thascolino ntrombl (Montagu) ot and lo spocificité fo I'Inquilinimo des Loxosoms. Arch.7001.exp.Ein., IT. et R., Yg: 93-104
	19536	Demx Laxocoros notwooux de Rossorf Ibid., N. of R., XII : 25-36
	29530	Sur los poplation dea Loxosones dos Aphroditos at cos Inrmiones "ul1.Soc.zno1. ${ }^{1}$., IMXVTIT(2-3): 122-132
	1956	womatres I. Entoproctes, Fhylas'olemos, Ctonowomos. Doune te. 60 : 1-396; 151 ©iE.
CIMRE, $2 . \mathrm{H}$	201	A now claowinication of onimale Bulinnet.ocianotr.*oneco, L50; 1-24
CORI, C.	1080	Tametozoo Tardb.Zool.,Fcrl., II(5): 1-64
FRataty, A	1962	Studies on tho Entompocta from the Wost Coast of Sworon Zonl.E10r. Uposolo, 33: 311-326
HAMER, 3.7 .	1915	Tho Polyzon of tho Siboga Expedition I. Entorrocta, Ctenostomsta and Cyclontomata Siboga Exped. ionozr., XXVITIS ; $1-180$ p1. I-XII
	1839	Iehriuch der Zoolozie Lief. I. Jena
HMMTS, T 。	1880	A History of tho Dritioh karine Folyzoa I (toxt):I-0xII \& 1-601, II: pl.I-IKXIII
	1808	The Polyzoa of the St. Inwrence Ann. Tag.nat. TY at., ver. 6, I: 214-227; VI. XIV-XV.
JOLTMT, L.	1377	Contri"utions a"I'hictoire naturolle dos Syozoniros des cstes de Fronse. Aroh.7001.exp.ën. ser.T, VI: 133-334; p1. TV-XII.
RROMBACH, 5	192	Famptozoa und Bremhiutrema des arkicohen Geliotes. Pauna arct., Jena, $¥$ El-92
Mrousi E	1947	Somo Eryozoa from tho Brozilian cosst. Comun.zool.tus.Montevireo,ITII :1-33
MOREMTSEN, 1	1911	A now areciec of Entomrocta, Inxosomila antenonis from. Orenlan:. Yedd. Cronlard, XIW(7): Panm,-xred. Gronland Vordostkwst 1006-100, V(9): 376-106; pl. XNVI.

NICKERSON, W.S.	1901	On Loxosoma davennorti n.sp. An Fintooroct from the New England coast. T. ${ }^{\text {orph}}$.,XVII : 351-380; DI.XXX:I-XXXIII.
NITSCHE, H .	1870	Bleträge zur Kenntnis der Eryozoen II. Uebor die Anatomie von Podicellina echinata Sars. Z.wiss.Zool., XX ; 13-36.
ROPFR, R.T.	1913	The Marine Folyzoa of Northumberland.
RYIATD, I.S.	1961	Two species of Loxosomelln (Entorro:ta) from hest Norway. Sarsia, I: 31-38
PVIUT, J.S. \& MISISEM, C.	1961	Three now species of Entoprocta from West Norway. IbId., I : 39-46
vigelius, W.J.	1882	Catalogue of tho foly colle:ted duiritre the Dutch North-Polar cruises of the 'Wilhelm Barents'. Nied.Arch.Zool., I(suppl.); 1-20.

Fig. I.i. Loxosoma sp. nov. A. Frontal view of contracted specimen (Length 853μ). B. Frontal view of partly contracted specimen (Length 11.88) C. Posterior view of partly contracted specimen (Length $924 \mathrm{\mu}$) D. Lateral view of contracted specimen (Length 915μ). Tiny buds can be s seen in specimens A, B and C. Specimens are not drawn to the same scale.

Fig. I. 2. Loxosomella obese. A. Frontal view of Type 2 specimen (Length 1364μ). Female gonads and four developing buds are visible. B. Frontal view of Type 2 specimen (Length 1056μ). C. Frontal View of small Type 3 specimen (Length 563μ). D. Posterior view of large Type 3 specimen (Length 1249μ). Five buds are partially visible. E. Frontal view of Type 3 specimen (Length 862μ). Two buds are visible. Vestiges of the pedal gland are visible in specimens A, B and E. All specimens are not drawn to the same scale.

Fig. I.3. : Ioxosomella compressa. Specimens on notopodial spines of Legisca extemuata. A. Frontal view of expanded specimen (Iength 598μ). B. Lateral view of partly contracted specimen (Length 616μ). C. Lateral view of contracted specimen(Iength 651μ) with one bud. Specimens are not drawn to the same scale.

Fig.I.4: Loxosomella marsyops. A. Frontal view of fully extended specimen (Length 730μ). One gonad and two buds are visible. B. Frontal view of partly contracted specimen (Iongth 633μ) Two gonads are visible. C. Fully contracted specimen (Iength 422μ) with two buds. D. Lateral view of A. E. Lateral view of fully contracted specimen (Iength 448μ) • Specimens are not drawn to the same scale.

Fig. I.5.- Semi-diagrammatic representation of a dense Loxosome11a marsyops 'colony' in a Shaetopterus tube. The area included is $2.5 \mathrm{~mm}^{2}$
ξ

Fig. I. 6. Ioxosomellà sp.nov. A. Frontal view of expanded specimen (i., (length 343μ) with one bud. B. Frontal view of partly contracted specimen (length 281μ) with one bud. C. Frontal view of partly contracted specimen (Length 281μ) with one bud. D. Frontal view of partly contracted specimen (Length 440μ) with two small gonads, Five embryos and one bud. E. Posterior view of specimen (length 413μ) with two gonads and six embryos. F. Lateral view of specimen (Length 343μ), one embryo and one bud are visible. The specimens are not drawn to the same scale.

Fig. I. 7. Loxosomella murmanica. All specimens are in frontal view. B. Contracted specimen (Iength 326μ) partly encased in 'secondary cuticle'. C. Contracted specimen (Length 396μ) partly encased in isecondary cuticle'. D. Specimen (Iength 440μ) almost completely encased in 'secondary cuticle'. E. Specimen (length 264μ) without. 'secondary cuticle'. Specimens are not drawn to the same scele.

Fig. I. 8. Loxosome17a nitschei. A. Frontal view of contracted specimen (Length 264μ) B. Frontal view of contracted specimen (Iength 264μ) C. Frontal view of contracted specimen (Iongtho 334μ) with two large gonads. D. Frontal view of contracted specimen (Iength 308μ) with two gonads. Specimens ere not drawn to the same scale.

Fig. I. 9. Loxosomella claviformis. A. Frontal view of contracted specimen (Length 528μ) with two small gonads. B. Posterior view of specimen (Length 43I μ). C. Frontal view of specimen (Length 545μ). D. Frontal view of specimen (Length 563μ) with two buds.
Specimens are not drawn to the staid scale.

Fig. I.10.. Loxosómella fauveli. All specimens are contracted. A. Frontal view of specimen (Length 325μ) with one bud. B. Lateral view of A.C: Frontal view of specimen (Length ${ }^{-} 458 \mu$) with two embryos and one gonad visible. D. Postero-lateral view of specimen (Length 484μ) with four embryos visible. E. Frontal view of specimen (Length $387 \boldsymbol{r}$) with two small gonads. F. Frontal view of specimen (Length 502μ). G. Lateral view of specimen (length 352μ) with female gonad. H. Posterior view of specimen (Length 484μ) with gonads visible. The peduncles of specimens E-H are partly encased in a brown substance. Specimens are not drawn to the same .scale

Fig. I. 11. Loxosomella bourini.
A. Frontal view of specimen (length 475μ) with three buds. B. Frontal view of calyx of a damaged specimen. Ope bud is present. C. Lateral view of specimen (length 616μ) with buds.

Fig. I.12. Loxosomella arvyae. A. Frontal view of specimen (Leingth 308μ.) with bud. B. Frontal view of contracted specimen (Iength 367μ) C. Frontal view of specimen (Length 343μ).

Fig I. 13. Loxosomellan fungiformis. A. Frontal view of specimen (length 158μ) with visible gonads. B. Frontal view of specimen (Length 194μ) with large bud. C. Frontal view of specimen (Length $202 \mu)$. Specimens are not drawn to same scale.

Fig I. 14. Pedicellina cermua . Part of a colony growing on Crisia eburnea. Some of the zooids contain embryos.

Fig I. 15. Barentsia sp, nov? Specimens A-G are all in lateral view. Of the two calyces on the right the upper is in frontal and the lower in lateral view. In specimens A-G the arrows mark the ends of the rigid part of the stalk. Specimen A measures 1188μ in total length, $B 836 \mu, C 924 \mu, D 950 \mu, E 414 \mu, F 1408 \mu$
and $G 1232 \mu$. and $G 1232 \mu$.
\qquad

Fig I. 16. Illustrates the mobility of th stalk of 最烈entsia sp. nov?

```
PART 2
```

Phylum Fictorrocta

Goneral

The cctoprocts are a very interesting and, in same localitios, an extromely abundant group of onimals but probably because, (a), they are of little direct econonic importance (except as shipisifoulers) and, (b), they have a reputation as a difficult group, they have been neglected by many zoologists. Their reputation as a difficult group is probably a result largely of the ins.roquate accounts given in the majority of non-specialist text-books, and of the incomplete spocies Iists, poor descriptions and deficient accounts given in the books by which the non-specialist is introduced to the problem of identification of the Ectoprocta. There is no good, recent, monograph on the British Ectoprocta. To use Eincks (1880) in conjunction with the key to genera given by Harmer (1910) is probably still the best moans of identifying British Ectoprocta but the taxonany used by these authors is now out-dated. A key to Manx Ectoprocta is given in Appendix IV . Marcus (1940) "Danmarks Fauna: Mosdyr" is very good but in Danish and "Faune de France VOL 60: Bryozaires Pt.I., Entoproctes and Ctenostomes." (Bobin and Prenant 1956) is of great valuo to the student of ectoprocts but the figures are rather poor.

The study of the Ectoprocta, probably as a direct result of the pausity of workers on the group, has evolved slowly. Much of the work boing done today is of a taxonomic nature. Johnston, Hincks, Waters, Busk, Hormer etc. laid the foundations for the study of British Ectoprocta. Thoy accumulated lorgo collections of species from many localities but did very Iittle systematic collecting nor did they pay much attention to the internal structure and the biology of the various species. The result was that although the Eeographical range and distribution of a large number of species was fairly well known only a very little was know about the structure of the ectoproct polyp and the biology of the majority of the species had not been investigated. Thero was very littlo systematic collecting to try to
establish which factors were important in controlling the distritution of ectoprocts, nor was much, apart from inolated records seattered in the literaturo, known of the durotion, intensity or timing of repreduction in the Ectoprocta. Calvot (1900), Mercus (1901) and Bore (1923) described tho anatary of saversl ectoproct spocios and Harcua (1926) assembled tho know data on tho season of reproduction of European apocios into a singlo tablo. Within tho last 20 yoars interast in the Fctoprocta has insroased but own today most of tho work on Ectoprocta is of a tazonocic naturo. Howovor attention has been focused on the biolow of ectoprocts by silon (1955 a, b) and othor authors. Gautier has rocently (1962) published on excellent paper on the distribution and genoral ecology of the Ectoprocta of the Hediterranoan wich is tho first study to investigate the influence of various enviromental factors in controlling the dictribution of merino Ectoprocta. In Eritain work hss bean Iorgoly of a taxonaic nature but Pylond (1959, 1960) studied tho behaviour of ectoproct lorvae; this work is boing continued by Williams (Crisp and willians 1960).

Provious_urk on Han Ectorrocta.
The ectoproct section of the 1937 edition of the "itarino Fauns of the Isio of Man" is bsced lorgoly on tho rocortis of Edward Forbos, T. Hincks and the L.M.B.G. workers: Frof. W. A. Hordman, Miss L. R. Thomely and J. Lomas. All thoso workors collected and identifiod Manx ectoprocts. The 2rd edition of tho I.O.M.1.E. (In prop.) also includes the moro recent rocords of icentificotions by II. S. Jonos and M, C. Millor. A fow other biologista have recards in the lint but, apart fron sa:o pystematic drodging and shore collecting by the LoM.B.C. noor Port Erin (ilerdman 1900) and, indiroctly, the work of M. C. Hillor (1959) thero has benn littio worls recentily on tho Ectoprocta of tho Ielo of Ven. The records of ectoprocta given by Jones (1940,1951) aro incomploto.

No freshuator ectoprocta have been recorded fron the Iele of Han.

Aims_of the present investigation

At the outset of the investigation it was roalized that either of two courses could be followed, either (a) a dotailed study of a small number of species could be made or (b) the ectoproct population could be studied as a whole but in a less detailed manner. It was considered that as there had been little or no systematic dredging over a period of time in any locality, and little was known of the factors controlling the distribution of ectoproct species or of the season and extent of reppoduction in ectoprocts, course (b) would probably produce results of greater value. It was therefore decided to concentrate on three principal aims:

1. To investigate by systematic collecting the distribution of ectoprocts around the south of the Isle of Man and to attempt to evaluate the importance of factors such as water movement, bottom substrate (sand, muddy sand, etc.), the availability of supports suitable for ectoproct colonization (shells, hydroids etc.) depth, water movement, etc. in controlling the distribution of ectoprocts.
2. To gather information on the time and extent of the reproduction period in as many species as possible.
3. To note any genoral information and data on the ecology of Marx Ectoprocta.

It was felt that if these aims wore satisfactorily fulfilied the results would be of value to future workers in suggesting lines of research and would provide a great deal of basic data on distribution and reproduction of the Ectoprocta.

It was hoped to investigate by experiment the settlement behaviour of ectoproct larvae (see Ryland 1959) but because of the aifficulty of obtaining sufficient quantities of larvae and the shortage of time available this lino of rosearch was abandored.

Area_invostigated

The erea sampled is bounded by lines to the wast of Niorbyl for 11 miles (17.7 km .) then south for 16 miles (25.7 km .) then east for 13 miles (20.9 km .) then north to meet the shore-Ine
slightly to the west of Scarlett Point. This area is approximately the same as that investigated by Jones (195t) in his study of the bottom communities off the south of the Isle of Man. It encloses a wide range of enviromental conditions: depth ranges from sea-level to more than 50 fathoms (90 mo), bottom substratos vary from rocky shore to offshore glutinous mud and tidal currents may be very strong or almost negligible. Map (shows the area sampled and indicates tho distribution of bottom sediments. Many dredge hauls were taken at atations A, B, C, D and E and several from the Modiolus bod, the "Chasms" station and bohind Bradda Hd., in other localities sampled during the surves only single hauls were taken. At Station r A the bottom sediment is intemediate between the inshore muddy sand of Station D and the cloan sand and shell of Station B. Station C and the "Chasms" atation are on coarse grounds consisting of eravel and abundant sholl and stonosjat both tidal currents ore strong. Station E is on muddy-sand in an area of littlo tidal movement.

Mothods used_in this_investigation

(a) Collection_of matorial

A wide variety of sampling mechanisms were used to obtain material.

Shore collections were made fortnightly at the period of spring tides: A number of shores were visited but most of the samples were collected at Port Erin Breakwater and particularly from the boulder beach of the outer surface of the "T-block". (The "T-block" is the local name for the inner breakwater built at the shoreward end of the main (ruined) breakwater and which runs parallel to tho shore for about 25 yds.) The stonos of the "T-block" beach besr rich growths of ectoprocts, sponges and ascidians. Collections of algae and stonos of manageable size were made in the Ascophyllum nodosum, Fucus serratus and Iominaria zones. Observations indicated that there were no oppreciable differences in mubors and species of ectoproct between the small atones taken back to the laboratory and large boulders examined on tho shore.

Sub-littoral collectionswere obtained by a variety of means. A
few collections from the shallow sub-littoral (L.W.S.T. to 100 ft . (30 m.)) were obtained by snorked or aqua-lung diving.

Offshore samples were obtained from the research vessel
"William Herdman" and the motor boat "Cypris". The gear used depended on the nature of the bottom and the species of ectoproct it was hoped to sample. The great majority of samples were obtained by using a scallop dredge lined with shrimp-netting so as to retain small material: The dredge used from the "William Herdman" measured $4^{\prime \prime} 6^{\prime \prime}$ across the mouth, that from "Cypris" $3^{\prime \prime} 0^{\prime \prime}$. Samples from "William Herdman" and "Cypris" were too similar to justify separating the results from the two boats. Usually the sample of material present in the dredge was too large to be examined in toto, and if this was the case the procedure varied with the function of the sample. If the sample was for work on distribution a random sample was taken after crabs, fish, echinoderms and other unwanted material had been removed. A sample usually filled a large sweet jar ($=2-3$ litres volume), this was found to be about the optimum size for the purposes of the investigation. If the haul was in an area where ectoprocts were not abundant a larger sample was taken. If the haul was to obtain material for work on reproduction seasons then a random sample was not taken; shells and other supports with rich growths of ectoprocts were selected. Such samples were often larger then the samples used for distribution purposes so that more colonies of less common species would be obtained.

Some samples were obtained with an otter trawl. This instrument was particularly useful on offshore muddy grounds where the scallop dredge is inefficient. The trawl was used from the "William Herdman" and all hauls were of 1 hours duration. Nephrops norvegicus $L_{\text {. }}$ was the principal trawled support suitable for ectoproct growth but occasionally crabs and dead shell bearing ectoprocts were obtained.

The runner or ski-dredge was used twice in deep water ($65 \mathrm{f} .$, 120 m.$)$. A few Calocaris macandreae Bell were the only supports
suitable for ectoproct growth present in the ski-dredged samples.
A naturalist's dredge with a canvas bag was employed after the manner of a bucket-dredge to obtain bottom camples from some localities.

When possible weekly samples of plankton from about 6 fathom (11 m.) below tho surface were obtained by using a compound plankton net from "Cypris". These samples were scrutinized for cyphonautes and other octoproct lervae.

The positions of early "William Herdman" hauls and all "Cypris" hauls were fixed by compass bearings or landmarks and afterwards plotted on Admiralty or OrdnancenSurvey Charts. The installation of a Decca Navigator on the "William Herdman" in 1961 groatly facilitated the problem of fixing positions and enabled duplicate hauls to be taken from a locality without difficulty.

The depths of all "William Herdman" samples were road on an echo sounder; depths of "Cypris" samples were estimated from Admirality charts, local knowledge or by visiting the area from which the somple was obtained in the "William Herdman" and establishing the depth by echosounder.

All samples were taken to the laboratory alive and in sea-water.
(b) Examingtion ofmaterial

The great majority of samples wore exomined fresh within 3 days of collection but some "distribution" samples were prescrved in alcohol for a short time bofore examination. All samplos were examined under the low-powor of a binocular microscope. The data recorded depended on the function of tho sample.

Samples obtained_for_investigations on distribution. Those were examined and a species list produced for each sample; The muber of colonies of each species, tho mumber of colonies of each species on each type of support, the total Ectoprocta in the sample, the surface area of each type of support in the sample and the total surface area in each were reciorded. From theso data conolusions could be drawn as to the distribution of each species over the area as a whole, samples from the
same area could be compared to check the efficiency of the sampling method, the abundance of a species or the total Ectoprocta on different supports could be compared, and the distribution of each spccios could be elucidated in terms of numbers/surface area or as a proportion of the total Ectoprocta in a particular area or over the area as a whole.
(ii) Samplos obtainad_or the investigation_on reproduction Hyman (1959) says that "available data indicate that ectoprocts have an anmual breeding season that extends over 2 to 3 up to 5 or 6 months" and "the great majority (of ectoprocts) breed within the months April and May through October". Because of these and similar statements in the litorature, it was thought tiat brief records of any reproductive activity observed in spocimens from the 'distribution' samples would be sufficient to give information on the time and direction of reproduction in each species. However it was soon realized that many species reproduce during much or all of the year and that moro detailed information was necessary. Accordingly a programe of regular samples to investigate quantitatively the intensity of reproduction in as many species as possible throughout the year was initiated. Samples for this programme were obtained from the shore and from areas A, B, C, D and E (See Map 1.) so as to obtain specimens of a large number of species from a variety of locslities. Each colony of each species was examined and the data recorded included whether or not it was of mature size together with the numbers of any eggs, embryos, and empty ooecia or ouicells presenti. From these data various conclusions $c_{a} n$ be drawn: if eggs and empty ooecia are present this is an indication that a colony is beginning to reproduce, if mumerous eggs and embryos are present reproduction is in full swing, if a few embryos are present together with empty ooecia the colony is censing reproduction, if only numbers of empty ooccia are present then the colony has ceased to reproduce. From the data obtoined histograms of the percentage of colonies with eggs, \mathcal{q} colonies with embryos, the $\%$ ocecia containing embryos and the muber of eggs rolative to the muber of empty ooecia were plotted on a monthly basis. The mamber of small immature colonies present at different times gives an indication of the growth to maturity
of new generations, Up to 100 specimens of each spocies present were examined from each dredge sample.

Larval colour is an important taxonomic character in tho Ectoprocta (Silen 1945, Ryland 1958). Larval colour was assessed objectively for many species by using Munsell Colour Charts. These charts consist of an orderly arrangement of colour papers which serve as standards for the classification of colours. The standard papers ropresent equally spaced?divisions of the three attributes of colour know in this system as he, value and chroma. The hile notation of a colour indicates its relation to Red, Yellow, Blue and Green, the value notation indicates its lightnoss end the chroma indicates its saturation. In recording a colour by the Nunsell system the symbol for hue is written first and is followed by a symbol written in fraction form, the mmerator indicating the volue and the denominator the chroma (H V). For example, a colour which is 5.0 Red in hue, 5 in value and 8 in chrome is written 5.0 R $^{5} / 8$.

Munsell Colour Charts were used to establish larval and embryo colour by the following method. Several embryos or larvae were placed in sea-water on a cavity-slide. The appropriate colour charts were placed on a microscope stage and the slide placed on this, the whole being illuminated by a single $240 \mathrm{\nabla} .60$ watt bulb at about 12 inches distant at 45° above the horizontal. Care was taken to eliminate shedows from the microscope field. The colour of the embryos and larvae was assossed by looking at them under a low magnification against backgrounds of various hues, values and chroma3. If thoir colour was between two standords the $H \underset{L}{W}$ was estimated as closely as possible.

Introduation

The results obtained in this investigation are given below. Data on the distribution and reproduction of each species in the Uanx area is given together with available information on geographical distribution and season of reproduotion in other localities. The taxonomioal arrangement and the names used are those used in the 2nd edition of the "Marine Fauna of the Isle of Han". The names used in the 1st edition of the I.O.M.M.F., the 3rd edition of the Plymouth Marine Fauna, and in the work of Hinoks (1880) and Gautier (1962) are given in brackets when they differ from the name used here. Keys to the Manx Eotoprocta are given in Appendix II.

Results

PHILUM ECTOPROCTA

CLASS GMMNOLAEMATA

ORDER CYLOSTOMATA

FAMILYCRISIIDAE

CRISIDIA CORNUTA (L.)
(Hinoks (1880) and I.O.M.M.F.(1937) as Crisia)

Distribution_(See Map 3 and Table $1+2$)
Crisidia cormuta is typically present on vertical rook faces and overhangs at and belon L.W.S.T. In such sites if
there is little algal growth C.cornuta, together with Crisia ramosa Harmes, Crisia denticulata (Im.) and Scrupocellaria reptans (L.), often forms a short thick turf. Such a turf is well-developed amongst the blooks of Port Erin Breakwater about L.W.3.T. Colonies of C.cornuta are sparsely distributed on Laminaria holdfasts, stones and red algae on most rocky shores. Although most abundant on sub-ilttoral rook C.pornuta has been regularly taken in dredge samples. Colonies have been dredged on most types of supports (shells, stones, hydroids, eto.) but the majority of colonies from deeper water were attached to hydroids. C.cornuta has been dredged-down to $30 \mathrm{f} .(59 \mathrm{~m})$ but this species is taken most frequently in shallow water (less than 20 f. $(37 \mathrm{~m})$) and is most abundant where there is ample water movement.

Colonies of C.oornuta and other eotoprocts more usually found in shallower water were observed on the carapace of a Maia squinado (Herbst) trawled in $41 \mathrm{f} .(75 \mathrm{~m})$ but the orab may have migrated from shallow to deeper water after the ectoprocts had attached themselves.

Reproduction (See Fig. II.1)
Colonies of Crisidia cornuta bearing ovioells have been collected in all months exoept August, September, llovembor and December. Ovioells are most abundant in April, Way and June. Embryos have been observed from April to July with the mardmm in May and June. A aingle colony with embryos was collected in October 1961 but no other colony displaying any reproductive activity was observed between August and December. In 1962 the first embryos were noted on April 5th and by the end of April and during Hay many colonies bore ovicells filled with embryos. Oricells containing embryos are yellow in oolour but the small larvae when viewed singly are almost colourless.

Harmer (1891) found ovicells to be commonest at Plymouth during April and May: Roper (1913) found ovicells on Northumberiand speoimens in November.

Geographical Distribution

Arctic Ocean; Faroes, Icoland, European coast south to N.Spain; Not recorded from W.Atlantic; Pacific from Vanoouver Island and Queen Charlotte Island (Marcus 1940).

FILICRISIA GENTCULATA (kilne-Edwards)

(Hinoles (1880) as Crisidia cornuta var ganioulata)
Distribution
Previously unrecorded from Manx waters, Filiorisia
genioulata has been colleoted twice during the present investigation. One colony, growing on Plumaria elegans Scm., was found (30.10.59) at I.W.S. near Port Erin Swimming Baths, the other, a fine colony, was attachod at the base of a clump of Lomentaria articulata Lyngb collected at E.L.W.S.T. on the "T-block" of Port Erin Breakwater (10.9.60).

Reproduction
Neither of the Port Erin colonies bore ovicells.
Harmer (1891) found ovicells in Channel Island material in summer (June-August).

Geographical distribution
Arotic Ocean; Norwegian, French and Spanish Coasts, Mediterranean; S.Alaska, Vancouver Island, California; Torres St. (Marcus 1940).

CRISIA EBURNEA (L_{0})
Distribution (See kap 4 and Table $1+2$)
Ocoasionally colleoted at L.W.S.T. under boulders and rock overhangs or among red algae, Crisia eburnea is common on sub-littoral
red algae and is often present in dredge samples. More speoimens have been dredged than of any other Crisia . Dredged colonies are usually attached to erect hydroids such as Halecium haleaimum (L.), Abietinaria abietina (L_{0}), Hydrallmania faloata (L_{0}), Sertularella spp. 6 to, or to the oreot ectoprocts Flustra foliacea (L.), Eucratea Iorioata (L.), Cellaria spp., oto., but colonies sometimes occur on shells and stones., C.eburnea has been dredged down to $37 \mathrm{f} .(70 \mathrm{~m})$ but is less common in depths greater than 25 f. (44 m). The distribution of this species may be limited by the occurrence of suitable supports.

Reproduction (See Fig.II. 2.)
Ovicells observed from Karch to November, embryos and larvae from April to June. The highest percentage of colonies with embryos noted was 508 in June 1961.

Harmer (18\$1) recorded ovicells at Plymouth from February to May with the peak numbers in Maroh, April and Hay. Hoper (1913) found ovioells in May, June, August and Oatober but she sampled mainly in the summer months.

Goographical_distribution
Arctic Regions, Iceland, Faroes, European Coast to Madiera; Hediterranean, W.Atlantio Coast south to Chesapeako Bay (Marous 1940).

CRISIA ACULEATA Hassall
(ilinoks (1880) as Crisia eburnea var, aculeata.)

Distribution_(See Kap 5 and Table $1+2$)
Not previously reoorded from Manx waters, Crisia aculeata is widely distributed in small numbers and ocours on a wide variety of supports including sheils, zoophytes, stones, etc., but never forms more than a small fraction of the total ectoprocta in a sample.

Like Crisia ramosa, Crisia denticulata and Crisidia cornuta it is most common where there is considerable water movement but it extends into deeper water and areas of soft bottom substrates more frequentiy than the other Crisiidae. It has been collected at L.W.S.T. and was present in the deepest dredged sample ($37 \mathrm{f} ., 67 \mathrm{~m}$) and on the carapace of a Maia squinado trawled in 41 f. (75 m).

Reproduotion
Ovicells have been observed from May-July, from October-January and in Marah, and embryos in January, May, July, October and Decomber, but'samples'are too small to allow estimates of the period of peak reproductive aotivity to be made.

Harmer (1891) noted ovicells at Plymouth in April and May and in Rosooff specimens in June.

Geographical Distribution
Faroes; Finmark; Shetlands; Irish, English, Danish and French Coasts; Morocco; Mediterranean (Marcus 1940).

CRISIA DENTICULATA Lamark.

Distribution (See Kap 3 and Table $1-2$)
Crisia dentioulata has a very restricted distribution. It is commonest in an area bounded by lines N. of Calf Stack and H. of Port Erin (This is the area in which all of the Manx Crisiidae are most abundant). It always occurs in small numbers and never forms more than 12 of the total ectoprocts in a sample. A few colonies have been collected at E.I.W.S.T. C.dentioulata grows on a variety of substrates inoluding dead shell; stones and ereot zoophytes. Reproduotion

Small numbers of colonies have been examined in all months of the year but no ovicells have been seen.

Harmer (1891) recorded ovicells in Guernsey material from June to August. Gautier (1958) found ovicells in August in Sicily.

Geographical Distribution
Arctic Ocean, Iceland, European Coast to Vadiera; Mediterranean; E.Coast of Amerioa to Florida and the Gulf of Hexico.

CRISIA RAMOSA Harmer

Distribution_(See Kap 5 and Table 142)
Crisia ramosa has been dredged from depths between 10 and 35 f. (18-65 m). It has not been found on the shore. It grows on a variety of supports including dead shell, stones and erect zoophytes. It is most common in areas where there is abundant olean shell and water movement but it does extend, in smaller numbers, into deeper water.

Roproduction (See Fig. III.3)

Ovicells noted in all months except February and April; embryos seen in May and from August to January. September to Ootober is the period of greatest reproduotive activity. At Plymouth Harmer (1891) found ovicells from April to August with a peak in May and June whilo Todd (P.M.F.) found 'breeding' colonies in February.

Eoogeaphical Distribution

Skagerrak, English, Frenoh and Spanish Coats; Azores;
Cape Verde Islands; Lediterranean and Red Sea; Japan (Marous 1940), North Carolina, Puerto Rico, Brazil (Laturo 1957).

FAMILY ONCOUSECIIDAE

Because members of this family show great variation in form and habit and cannot be certainly identified unless ovicells are present
few conolusions can be drawn about their distribution in Manx waters.

```
PROBOSCINA INCRASSATA (Milnem-Edwards)
    (Hincks (1880), as Stomatopora.)
```


Distribution

Several specimens lacking ovicells but displaying the typical colony shape of this speoies were colleoted which almost certainly are this species. Poincrussata colonies encrust shells and stones and have a characteristio appearance. The branches divide and fuse among themselves frequently and give the compact colony a retiform appearance. The spaces between the branches are usually long, narrow and pointed at both ends and the branches frequently give rise to short oylindrical erect processes with a cellular apex. Such colonies were dredged, on shell, in the following localities: $2.5 \mathrm{mi}(2.8 \mathrm{~km}) \mathrm{N}$ of Chicken $\operatorname{Rock}(23 \mathrm{f} ; 42 \mathrm{~m})$, and $7.1 \mathrm{mi}(11.4 \mathrm{~km})$ at $511^{\circ} \mathrm{E}$ of the Chicken Rook ($37 \mathrm{f} ; 67 \mathrm{~m}$).

Geographical Distribution

Arctic Region; European Coasts from Faroes to Madiera; Morocco, Lediterranean; Cape Verde Is., Azores; Queen Charlottes Land and Vancouver; Japan; and less certainly from Gulf of st.Lawrence, Tristan da Cunha, Hagellan Str., New Zealand and Australia (Marcus 1940).

STOMATOPORA GRAMULATA (Milne-Edmards)

Distribution
Previously reoorded from Manx waters (I.O.M.M.F. 1937). Several small oyclostones lacking ovicells but which may be of this species were collected during the present survey.

Geograrhical Distribution

N.Atlantic E.Coast from Faeroes to Nadeira; Cape Verde Is. and Mediterranaan; Queen Charlottes Land and Japan (Marcus 2940).

STOMATOPORA INCURVATA (Hincks)

```
Distribution_
Not collected in this survey; previousiy recorded (I.O.N. M.F. 1937) from 16-20 f. (29-37 m) E. of Calf Sound.
```

Geographical Distribution

$$
?
$$

ONCOUSOEGIA DILATANS (Johnst)
(Hinoks (1880) as Stomatopora; P.M.F. (1937) as Tubulipora)

Distribution
Ovicelled specimens definitely this species were dredged at the following localities: $8 \mathrm{mi}(12.9 \mathrm{~km}) 20^{\circ} \mathrm{S}$. of E. of Langness Lighthouse ($22 \mathrm{f} ; 40 \mathrm{~m}$), $4.5 \mathrm{mi}(7.2 \mathrm{~km}) \mathrm{m} 33^{\circ} \mathrm{S}$ of Chicken Rock ($23 \mathrm{f} ; 42 \mathrm{~m}$) and $1.3 \mathrm{mi}(2.1 \mathrm{~km})$ at $31^{\circ} \mathrm{S}$ of Port Erin Breakwater Bouf (16 f; 29.25 m). Kany other small encrusting cyolostomes which may have been this speoies were collected but as they were withcut cricells their identity could not be confirmed.

Reproduotion

Ovicelled colonies were collected in March, Lay and June. No embryos were seen.

Geographical Distribution
Arctic Ocean; Newfoundland Banks; Norwogian, Shatland and other European Coasts to the Kediterranean (harous 1940).

FAMILY TUBULIPORIDAE

A great many colonies of the Tubulipora spp. collected lacked oricells and could not be definitely assignod to a particular species.

TUBULIPORA LIIITACEA Pallas.
(Hinoks (1880) and I.O.M. M.F. (1937) as Idmonea serpens)

Distribution
Specimens positively identified as Tubulipora 1iliacea have been collected over much of the area between 10 and $30 f(18-55 \mathrm{~m})$ particularly where there is abundant hydroid growth. T.ilizaoea grows almost exclusively on hydroids e.g. Halecium halecinum (L.), Sertularella polyzonias (L.), Diphasia pinnoster (Ellis and Solander), Sertularia spp. and particularly on Hydralimania falcata (id). Up to 30 colonies have been seen on a single H.falcata colony. A fer colonies were growing on shell.

Reproduotion
Ovicelled specimens were observed in all months except February, May, July and August.

Roper (1913) found ovicells at Cullercoats in June, September and October.

Geographical_Distribution
Arctic; all European coasts to Madeira; Mediterranean; Morocco; Azores; Woods Hole; Magellan Stri; Australia and New Zealand; Vancouver, and Galapagos Islands (Marous 1940).

TUBULIPORA PHALANGEA Couch

(Hincks (1880) and I.O.M.M.F. (1937) as T.flabellaris)
This speoies can only be positively identified if ovicells are present.

Distribution ($\$$
Tubulipora phalangea is the only Tubulipora spp. positively identified in shore oolleotions. It is quite common on the undersides of rooks and stones from E.L.W.S.T. at Port Erin Breakwater and in the shallow sub-littoral. The majority of positively identified, dredged Tubulipora colonies are of this species. It has been recorded from areas A, B, C and D, from the Modiolus bed and from several other, scattered localities.

Rarroduction_(Fig.II4)
Ovicells have been observod in all months and embryos from June to llovember and in March and April. Embryos are colourloss and the ovicell zust bo openod to see if they are present.

Goosconhtonl Diotritution

S.W. Norway and Shetlands to tho Azoros, Morocco and Mediterronesn.

TUNOITPORA FENTCILLATA (Fabr.)

(Hircka (1880) as stomatorons funcia)
Not proviously rocorded fron the Isle of Man, this species is not uncomon in soversl localitios off Port Erin. Young opecimens without orect shoots cannot bo identified with certainty but the erect mushroom-1ike shoots of maturo colonies are typical of the species. T.monicillyta is distinguishod from Entalonhors clovata Busk by tho following choracters: the erect bolotiform shoots of Tarenicilinte arise at the end of encrusting branchas end usually have zococis opening only at tho top of tho shoot ned not ot the sides whilo the frequontly bi- or trifid shoots of Ecelavats ariso from small incrusting baces ond have zooecial openings on all sides of the shoot. Tho ovicells are terainal in T, renicillata and Lateral in Exclnvatg.

Temenialllata has been drodged down to 37 f. (68 n) but is inost comion in water shallower than 25 f . (46 m). It has been dredeed frequentiy in areas A, B and C (1.0. coarsor grounds) but rarely in E and D (muldy sand grounds). In orcas A, B and C rospoctively .27, . 27 ond .49 colonios have boon collected por $1000 \mathrm{~cm}^{2}$ surface sres of shell and stone. Table 3 shows that in aross A, B and C, Tenenicilintg is randoniy distributed on the verious supports availablo. It is, however, more comon on the outer than on the inner surface of deod shell. In aroa A it has been frequontly noted growing among the tubes of Pomatoceros trinuetor (L.) which are vory
common on the outer aurfaces of dead Chlamys operoularis (L.) and Modiolus modiolus (L.) shells in that area.

```
Reproduction
    Ovicells were present in all months. Over 100 small,
colourless embryos were present in the only ovicell opened (September
1961).
Geographical Distribution_
    Arotic Region incluaing Labrador Coest and Gulf of St.Lawrenoe;
Norwegian and British Coasts.
TUBULIPORA APERTA (Harmer)
```


Distribution

Not previously recorded from the Isle of Man. After examination of the oricell and ooeciostome three small tubulfora colonies growing on dead Glyoymeris glycymerts (L_{0}) shells dredged $8 \mathrm{mi}(32.8 \mathrm{~km})$ at $E 20^{\circ}$ S of Langness Lighthouse (depth $23 f ; 42 \mathrm{~m}$) were identified as this species.

Reproduotion
Ovicells present in June.

Geographical Distribution
Arotic Ocean, Norwegian W.Coast, Faroes; Kadeira; Magellan Str.; Juan Fernandez Islands (Marcus 1940).

TUBULIPORA LOBULATA Hassall
Colonies of this speoies can be identified only if ovioells are present.

Distribution_(Pom

Specimens definitely Tubulipora lobulata have been collected at several localities inoluding areas A and C. On the Modiolus bed several ovioelled specimens were dredged and tubulinora colonies without ovicells but probably Tilobulata were quite numerous (about

5 per $1000 \mathrm{~cm}^{2}$ area of shell or stone). T.lobulata has been collected only on shells and stones.

Reproduction
Ovicells have been noted in January, May and June and from August to November. Embryos have been observed in June and November.

Geographical Distribution

Faroes, Norwegian, Danish and British Coasts; Gulf of St.Lawrence and Maine coast (Marcus 1940):

FAMILY DIASTOPORIDAE

DIAPEROECIA MAJOR (Johnston)

Distribution_ (Map 7.)
D.major is widely distributed in depths between 20 and 35 f. (36-64 m). The numbers present are usually small but in some localities, e.g. $4.6 \mathrm{mi}(7.4 \mathrm{~km}) \mathrm{N} 47^{\circ} \mathrm{W}$ Chioken Rock and 1.3 mi (2.1 km) N $65^{\circ} \mathrm{w}$ of Calf Sound, D.maior numbers over 4% of the total eotoproct colonies present. Numbers obtained are too small for comparisons to be made of number of specimens per unit area, but D.mafor forms a higher proportion of the total eotoproots present in muddy sand areas than elsewhere (S6e arance). This is probably because as bottom substrate becomes muddier both numbers of ectoproct colonies and numbers of speoies decrease, and therefore colonies of speoies able to tolerate the mudier conditions make up a higher proportion of the total ectoproct population.
D.major occurs on a variety of clean hard supports (See Table 4) but is more common on smooth inner shell surfaces than on the rougher, outer surfaces; it has not been collected on algae or hydroids.

Reproduction
Ovicells were observed in June and from November to April. Developing ovicells were seen in November 1961 and embryos in February, March and Juns.

The embryos sro colourless.

Geogranhical_Distribution.
Arctic Ocoan; Furopean Cossts; Mediterranosn; Moroceo; Cape Verde Islands; Azoros; Queen Charlottes Lend; Galapagos Islands; Sendwich Islands; New Zeoland. (Marcus 1940).

DIAFRROEGIA TOHNSTONI (Heller)
(Hircks (1.80), I.O.M.M.F. (1937) and P.M.F. (1957) as Stomatonora)

Very omall specimens of this spoises and of Proboscino incrassata aro very similar; a few small P.incrassata may have been inentified as D.iohnstoni.

Distribution

Diaperoecia iohnstoni occurs with D.major in many samples, but has a slightly wider distritution than Demaior in Manx waters; neither species is comon. Like D,maior Deiohnstoni occurs on a variety of shells and stones and is more frequently prosent on the inner than the outer surface of dead shelis. Demajor zooecta are much larger than those of D. iohnstont. Roproduction

Ovicells noted in February and March; no embry os seen.

Geogrophical Distribution
Plymouth (P.\%.F. 1957); Adriatic (Hincks 188C)

DIPLOSOLEN OBELTA (Johnston)
Digtribution (See Map 8 and Table 5)
Almost all the Diplosolon obelia colonies obtained were drodged in tho area designated "Cround A - gravel and shell" by Jones (1951), vory few srecimens wore obtained from softer erounds. It is most common an dead and living Hodiolue modiolue from the Modiolus bed where it reaches a density of . about 1 colony per $100 \mathrm{~cm}^{2}$ surface area and forms about 7% of the total octoproct forulation. D. obelia has boen oollocted from. depths botweon E.I.K.S.T. and 37 f. (68 mo). It has been notcd on most types of dead ohell.

Reproduction
Ovicolls were observod in November and April, ombryos in April.

Georsraphical Digtribution
Arotic Region; European coasts south to Moroccos
Mediterranean; Maine Coact; Cuba; Japan; Sandwich Ioland; Vancouver.

DIASTOPORA PATINA (Lamark)

Distribution (Sce Map 9 and Table 5)
Diastopora patina is widely distributed. It has becn collectod on stones at L.W.S.T. and dredged on a wido varioty of supporta. About 10% of D. patina colonies grow on erect zoophytesparticularly the 'hydroide Hydrallmania faloata and Sertularia spp, and the ectoprocts Eucratea loricata (L.), Cellaria spp, Scrupocellaria epp. eto. Horo colonies of D. natina grow on the inner than on the outer surface of doad chells. D. patina usually makes up only a amall proportion of the total ectoprocta in a sample tut in some samples it is more
common. 16.5% of the ectoprocts present in a sample from $3.6 \mathrm{mi}(5.75 \mathrm{~km}) \mathrm{N}$. of Thousla Leacon were of this apecies. The highest density recorded for this apecios is 15.3 colonies per $1000 \mathrm{~cm}^{2}$ hard surface arca is one sample from area C. The mean densitico for aroas A (10 samples), B (15 samples) and C (10 samples) aro $.6,1.5$ and 2.3001 onies per $1000 \mathrm{~cm}^{2}{ }^{2}$ hard surface respectively.
D. patina has been noted on the oarapace of specimens of Maoropodita longirostin (Fabr.) and Hyas coarotatue Leach.

Reproduotion
Ovicells have been noted in January, Karch, June-August and Hovember. Embryos were seen in June, July and August.

Ceogaphioal_Diotitibution
Kara Sea; N. Coast of Norways S. Coast of Lairador; Newfoundland Banka; Faroes and all temperate European Coasts to the; Azores; Mediterranean; Moroccos Tristan da Cunla and Atlantic Patagonian Coast; Queen Charlottes Land; Vencouver Island; a variety from Japan (Narcua 1940).

DIASTOFORA SUBORBICULARIS (Hincks)

Distrilution (Sce Maplooll and Table 5)
Diastonora suborbicularis is widely distributed in the area sampled. It is most abundant on erounds whore there is abundant shell and gravel, most of there erounds are shallowor thon 25 f. ($45.7 \mathrm{~m}_{\circ}$) but whoro they extend deeper than this C.E. south and south west of the Calf, the distribution of D. suborbicularis parallels their extension. D. suborbicularis hes been collected from L.H.S.T. and was prosent in tho deopest dredged samplo (37 l f. $; 68.5 \mathrm{~m}$.). It is one of the commoner ectoprocts in tho Manx area, in many inshore oamples it conotitutes botween 5 and 10% of the total cotoprocte present.

It does not grow on al gae or zoophyts but is more or less randomly distributed amons various types of shells and. stones. It is sensitivo to surface toxture and on shells where the outer curface is rough e.c. Chlamys opercularis; it is most common on the inner smoother surface but on shells such as Ensio spp or Lutraria lutraria (L), where both surfaces are smooth it occurs in approximately equal numbers on both surfaces. (Table 6).

Feproduction
Ovicells are present throughout the year. Larvac and embryos have been noted in September, October, and from December to April. Eeriy in tho dovelopment of embryos the ovicell contents are yellowish tut later becomes colourless.

Geographiogi Distribution.
Arctic Osean; Fooroed; Eurorean Coast to Horocoos Mediterranoan; Sucen Charlottes Land? (Marcus 1940).

FAMIIY EITYALOPHORIDAE_

EMTALOPHORA CLAVATA (EuBK)

Distrikution
Previously unrecorded from the Isle of Man, five specimens were collcoted in this investieation. Four wore dredged at area C and one about $\frac{1}{3}$ mile (.8 lcm) \mathbb{N} of Bradda Ha. All werc growing on doad shell.

Reproduction
No ovicells wore present.

Georaphical Diotribution
Arctic Ocoan; European Coasts to Liadelra; Moditerranean; Canary Island; Vancouver (Marcus 1940).

LIGHENOPORA RADIATA (Audouin).

Distribution
Hot colleoted in this survey, Lichenopora radiata is recorded in the I.O.M.K.F. (1937) from the mouth of Fort Erin Bay.

Geopraphical Diotribution
British Coasts; Hadicra; Hediterranoan; Samoa;
Australia; Japan; California.

LICITROFORA HISPIDA (Fleming)

Distribution (See Map 12+13 and Table7+8)
Fresent in almost every sample Lichenopora hispida has been collected at dopthe from L.W.S.T. to 42^{2} f. (78m.). It is a comon species and over much of the area more than 5 colonied per $1000 \mathrm{~cm}^{2}$ surfaco area of support are present and In many samples between 5% and $10 ; \%$ of the total ectoprocts present are of this speoies. The maximus dencity recordod for this species was 41 colonies per $1000 \mathrm{om}^{2}$ surface aroa in a sample from 7.6 ml . (11.2 km .) at $\mathrm{S} 22^{\circ} \mathrm{E}$. of the Chicken Rock where over 25% of the ectoprocts wero L. hispian. About 1% of L. hispida colonies grow on hydroids, the romainder on stonce and vorious shells, L. hisplda is more common on tho inplor than the cuter surface of dead shells, this is particularly true of shells in which the outer surface is much roughor than the inner (Tablo 7).

Roproduction

Larco colonics becoming ovicells have been observed in 011 months. Embryos and larvae wore noted in February, Narch, April, June and September. Ancestrulac and tiny oolonies were seen in April and Kay.

```
Gcocraphical Distribution
    Arotio Ocean; Farocs, Norway and W. European Consts
to Madoira; Fediterranoan; W. Coost of Labrador; Naine
Coast; Florida; Gueen Charlottes Land; Vancouver; Tristan
da Cunha; sustralia and New Zealand.
IICHENOPORA VERRUCARIA (Fabr.)
Digtribution
    Not collcoted in this survoy. Recorded in the I.O.N.M.F.
(1937) is present off the E. coast of the Inle of Man.
Goocraphical_Distribution
    Throughout Arctic Region; American Atlantio Coast to Woods
Hole; Ioeland; Farocas Norwogian and other European Coastes
Meditorranoan; Alaskas Qusen Charlottes Land; Vancouver;
N. Japan; Capo of Cood Mope; Loyalty Islands.
                    ORDER _CHEILO-CTEMOSTOMATA
                    FMMILY_ AETEIDAE_
AETEA AJGTITPA: (L)
Digtribution_(Sce Table 9, Map 14.)
This specios is not widoly distributed but idits in somo looalities and is of regular occurence. Itsidistribution appears to bo correlated with the presence of suitable oreot zoophyte supports. Ovor 70\% of tho colonios collocted were erowing on hydroids or erect ectoprocts, particularly on the hydroids Hydrallmania faloata and Sertularia app. and the eotoproots Eucatea loricata ( L ). and Collaria cpp. the remaining colonies
```

were on shells md stones. A. ancuinas has been collected from depths between L.K.S.T. to 37 f. ($69 \mathrm{~m}_{*}$) but it is rare bolow 27 f. (49 m.). It has boen dredged regularly in areas A, B, and C where almost cvery ercet mophytes bears a colong of this species.

Feproduction
Embryos were observed only once (August 1961) they aro coldenryellou.

Geoexaphical Distribution

Present in all areas except polar ceas (Oantier 1962.).

AFTRA SICA (Couch)

(Hincka (1880) and 1.0. H. M.F. (1937) as Aetoa rocta).

Digtribution_ (See Map 15 and Tablo 9,10all).
Aetea sica is widely distributed in areas of sandy shell ground with abundant dead shell but is less comon elsowhere. In only a few samples were over 10 solonies per $1000 \mathrm{om}^{2}{ }^{2}$ surface area rocorded and it rarely makes up more than 5% of the cotoprocts precent in a sample but is frequently precont in small numbers, istea sioa occurs on a variety of supports but principally on dead sholl. It is much more common on the outor than the 'inner surface of doad shell (Tablo 10). It has been collected from L.H.S.T. and dredged down to 37 f. ($69 \mathrm{~m}_{\circ}$).

Roproduction (S $\in 0$ Figuro IIS.).
Very few "ooccia" were observed without embryos, they may be oither withdrawn or discarded after larval reloase. In 1961 enbryos were prosent from Hay to November with the highest number of colonies (15%) with embryos in Aurust. Only a few (10-20,6) of the individuala in a colony bear embryos at any timo.

Embryos are golden-yollow in colour.

Goographical Diotribution
Frosent in all excopt Polar neas.
\therefore

AETEA TRUNCATA (Landsboroueh)

Distribution_(Map 14)
A for colonies of this species have been collocted, mostly In areas A, B, and C. It is a vory variable species (Hincks 1880 P.9) and both dwarf and crect "varioties" as woll as the "normal" form havo been seen. The orect type has been observed most ofton atraceling over erect hydroid and cotoproct colonion, dwarf and "normal" coloniesuore oolleoted on dead shells.

Eeproduction
No reproductive activity was noted.

Goopaphical Distribution

Widely diatributed in all but Polar soas.

FAMILI SGRUPARIIDAE

SCRUPARTA GHBLATA (L) and S': AMBIGHA (d'Orbigny)
(Hincks (1880) and I.O.M.M.F. (1937) as Fucratea ohelata)

Distribution_(See Map 16)
Colonies of both species are small and somo may have boen overlooked but noither specios appears to be common. On tho shore tufts of plumaria elegans Schm. usually bear colonics of one or both species. In dreder samples both speoies have been collectod on a variety of dead cholls and erect zoophytes; Sch cholata is recorded in equal numbers from shells and zoophytes whilo E(0. ambirua is twice as common on zoophytcs than sholl but tho numbers collected aro very nall.

Reproduotion
Somparia chelata oceoia were observed in August and September; S6, ambicua oocoia were seen in Aucust.

Goocranhical Distribution

guoratea lontcata (1).
(Hincks (1880), I. O. H. H.F. (1937) as Gomellaria)
Distribution_(Sce Hap 17 and Table 12)
Encratea lorioata has a limited distribution, beine confined to areas of abundant dead oholl and considerable water movements. It is most comon at area C but also occurs in and around arcas A and B. It has bcen collected on a wide variety of supports but occurs most often on the outer surface of dead Chlanys onercularis, Glycymonis plycymoris and Peoton maximus. Small colonies havo been noted on Cellaria spp. and other zoophytes.

Reprounotione
I have found no previous published record of any roproductive wotivity in this opocies. Ono colony of Eucratos loricata colleoted in March 1962 bore membranous "ooecia" similar to those of Aetca spp. Tho "ooecia" are transparent, membranous and plaod singly at tho distal odge of tho operculum, they appoar to extend into the zooecial cavity. Tho embryos are whitish colours and in various states of development.

The difference between the endozooecial oricells of
Scruparin spp. and the "000cia" Eucratea loricata indicates that theso gonera should be placod in separate fonilios.

Geographical_Distribution
Arotic Region; Duropean Coasts to Channel; N. Amerioan Const from Arctia to Woods Hole and Voncouver.

FAMII MEMBRAMTFORIDAE

IEPBRANIPORA MEIGRATACFA (L)

Distribution
Llombranipora membranacea is abundant on all rocky shored, it forme extensive shect-like colonics on tho fronds of Laminaria app. from L.W.S.T. down to the lower limits of the Laminaria. It also oocurs but less frequentiy on Fuous serratus $L_{\text {. and }}$ on broad-fronded red alenc suoh as Gigartima, Chondmas and Delesseria opp. A few colonies erowing on stones have been collected on the shore and a colony was present on a stone dredgod in 23 f. (42 me).

The anmal Erowth oycle of M. Membranacea is corrolated uith that of tho Laminaria app. At the end of summor (Soptember October) tho majority of Laminaria planto bear larce colonies of 1 . rembranace. During the wintor erowth of both organiems is checkod and \therefore some of the Laminaria fronds, with their M. mombranacea colonies, aro torn from the stripes during the rinter Gales. Grouth of tho new Lamineria frond boetns in January and contimes into Juno and July, In early April "rapid" Grouth on tho part of those M_{0} membranscea, colonies remaining on the old fronds enablea some of them to oolonise the new crowth before the remainder of the old frond are oost in April or May. The overwintering colonies of M. membranacea are sexually nature and release many eges during April, May, and probably later months (not examined for eges). Tho lensth of time spent in the
plankton by the oyphonautes larras of M. membransoea is not know. Sottloment bogina in late hay and continues until Aucust so that by the end of summer nost Laminaria fronds boar M. nembranacea colonies. This species is very quick-growing Lutand (2957) recorded a growth of 1-2 cm. in 4 days during laboratory experimonts.

Reproduction
Thoro are no brood protection mochanisma in M. mombranaoea the oge id laid and developa into the cyphonautes larva known as Gyphonauteg sohneideri Lohm.

Zooids wore ccrutinized for eges and operm between January and Juno 1962. Sperm morulae wore observed in Fobruary and eges and sperm in April, Hay and Junc. Host reproducine zooide contained between 10 and 20 buff, coloured egen but over 50 were present in one zooid. Then maturo sporn are present they often completely pack the zoocoial cavity. Some of tho zooecia containing egss also contained a fow opermatozoa.

EEG-layine was observod on two oacasions in hay 1962, on both occasions tho pattern of events was tho dame. Tho oce layine process was watched through a binocular microscopo and is as follows the zooid extends its tentanes in the normal manner and an ege oan be scen at tho bace of tho intertentacular organ, tho egE enters the lumen of the tube and moves elowly towards tho aperture until it begins to protrude whon it is quickly cxtruded and swopt away by the tentaoular curronts of the zooid and its noighbours. The zooid does not usually rotrast whilo the ogE is in the inter-tentacular organ but if it does retract the oge is expelled almost immediately on rem extension. The time between ontering the lumen of the intertentacular orean and final expulsion varied between 15 seconds and one minute 40 seconds of which only a few seconds were spent in expulsion from the aperture of the inter-tentacular organ, the
the rest being spent in passing along the lunen of the tube. The egen are laid in quite rapid succession; ono zooid laid 9 eges in less than 20 minates and 12 zooids laid a total of $42=$ eges in tho samo time. Tho eges are distorted into a ciganm shape during laying but socn becomo a flattened oval shape. They noasure from 80 to 120 pin longth, about 80μ in width and about 30 p in dopth. Soon after laying a translucent membrane currounding the eGE becomes visible. Soveral handred eges were kopt in aquaria for a fow days but apart from a fow initial cleavages littlo development took place.

Flankton aanples were colleotod throughout the year by towing a compound plankton not at a depth of about 6 f. (11 m.) for 10 minutes just off Port Erin Broakwater. Cyrhonautes Sohnoideri was colleoted in all months from Fobruary to llovember and in greatest numbers in Juno, July and August. Nowly settled larvee and small colonics rere collected in largest mumbers in June, July and August.

Several Cr. schneidert kept in the laboxatory metamorphosed into the typical "doublomancestrula" of ll. membranacea on 207.60 , after a wrek all tho colonies consiated of the ancostrula plus at loast 4 zooids; after two weeks from 7-13 zooida verc present and aftor 5 weeks over 50 individuals were present in all the colonies and rapid growth was continuing.

At Plymouth Atkins (1955) found AC, solnnoideri throughout tho year but most commonly in autume. Hastings (Pus 1957) observed eges aperm and egE laying in Plymouth material in June.

Goofraphionl Distribution

European Coasta; South to Madeira and Horocoos Meditermanean Amorican Coasto from Labrador to Mortugas and from Alaska to California; S. Afrioa, Australia, Now Zcaland, Chile.

ELECTRA PILOSA L.

Digtribution_ (Sce Map 18)
Tho spectes has a wider distribution than any other cotoproct in Manx waters, it has been colleoted from L. H.N.T. level on rooky shores down to 47 f. ($\varepsilon 1 \mathrm{mo}$) where it frequently occurs on Hophrops norvestous (L), Offshore it is present almost overywhore but has not been colleoted from the coralline and soft grounds couth and west of nifarbyl. It has bcen noted on a wide variety of dead shelle, stones, hydroids (particularly Hydrallmania faloata and Sertularia appi), exeot eotoprocts (e.c. Collarin app, Eucratoa loricata eto.) on deveral species of largo cristacea (Menhrops norvericus, Cancer pagurus (1). Homarus rammarus (L) Palinurus clephas (Fabr.), Haoropipus opp. Ebalia app. and a varioty of spider crabs oto.,) On the other shoro E. pllosa Erows on fucus serratus, Leminorla sppos Chondrus criopus Lyagh, Gisartina stellata Batt., Plumaria elegans, and numorous other algue as well as boulders and stonos. Floctra pilosa is froquently precent on the chells inhabited by the hermit crab, apagurue bernhardus L. Throughout tho invostigation data woro colleoted on the ocourrenoo of Eopilosa on Succinum sholls inhabited by P: bernhardus on Iive Bucoinum sholls, and on empty Bucoinum sholls. The data obtained are included in table 13 and oan be summarized as follows: (a) F. piloga is twico as common on shells inhabited by hermits than on expty shells without hermits (although at some time hormits may have lived in the empty shells, (b) E. pilosa Is more of ten present on ompty ohells with hermits than on empty shelle with hermits than on empty broken shells unsuitable for hermits, (a) E. nilosa is found more frequently on tho inner than the outer surfaco of Bucoinum shells. Typically E. pilosa efther lines the inner surface of the mouth of the sholl or erows immediately outside the mouth; it is rarely prosent hich on
the apire of the choll. Two colonies were observed on the opercula. of Iive nuocimm undatum. These results indioato that a looso association may be present between tho eotoproot and tho hermit crab; both species oan, and do, occur without the othor. It may bo that orabminhabited shells aro cleaner than elther ompty shells or Iiving Bucoimum ahells and are therem foro more likely to bo colcnized by tho ectoproot, or that the wator movements oaused by the hermit crab may encourace sottlement on the crab-inhabited sholls. It is hoped that the opportunity to perform cottling exporiments to inveaticate this association will arise in the future.

Roproduotion
Tho larva of Electra nilosa is Cyphonautes oomprossua Ehr: (Atkins 2955) which was present in planikton aamples from Ootober to April and in July and in eroateat mubors in Hovombor, Fobruary and Arril. Small colonies vero neen in October, Novomber, Hay and July.

Atkins (1955) found this oyphonautes at Plymouth throughout 1953, but chiefly in the autumn. Harcus (1940) records it from tho Baltic and North Sea particularly in the winter months and (1925) at Maples from February to April.

Geocraphical Diotribution

Arctio; M. Atlantic south to Vorocco and Chesapeako Days Rediterranean; Red and Arabian Soos; S. Africa; Australia and New Zealand (Harcus 2940).

FYRIPORA CATEMULARIA (Fleming)
(Hincks (1880) and 1.0.M.M.F. (1937) and Marcus (1940)
as Membreniporaj):

Mintribution (See Vap 19 and Tables 14 and 15)
greirora oztrminaia 10 widaly diatributed in omall numbora on coarco eroundo whoro it has boon collested on a varicty of dead cholls (o.E. Chluryo oporculario, Holiclus rediolus, Footon rayimus, Giveyperis flycymeris otc.) and etonco. It ocouro froquentiy on smoll piccea of cravel and choll fracmonts of about 2-5 on. ${ }^{2}$ turfaco aroa. Cno colcny was obeorved on fydrallnanin faleata. It has beon collcotod in verious dopthe from 12-30 f. (22-55 ne) tat is nont comen whero thero is oonsiderable water morocont c.e. arcund the calf. It hes not beon colleotod from Euldy excunds.

A fov oolonico of p. ontoruinma havo beon obcorvod uith excot chooto rising fron tho incrusting part of tho colony. On orcot shoota tho zoolde aro longer and narrower than nomal fyritora catcmularia zooids. I havo not found ony provious desoription of oroot ohoota in f. octominaria.

Howrolution
Ho roysoductivo aotivity wan notod.

Gooriaphical Distributicn
Faroces lioway; Dritioh Cocotas Iiboany Arored;
Noditorranean; Labrador; Gulf of St. Lawronees Tanmibary B. Australia.

Coroprm RMicoman (1)
(Hinckrs: (1880 and 1.0.1.13.F. (1937) an Kembranizora Tamrotail (iud.).
nintrikution
Provicucly rcoordod from tide-poold at Rancey (1.0.1.\%.F. 1937) Gonopeun reticuitun was not collooted during the procont eurroy.

Georaphical Distribution
Scottish; Danish and European Coasts south to Boditerranean;
Amores; Conary Islands; Cape Verdo Islandes Culf of St. Lawrenco and temperato cast; H. America Coasto; Bramil; Red Soas Indian Ocecn; Lustralia; New Zealand; Japan; American W: Coast from Vancouver to Califormia.

ALDERTIIA IHBFLITS (Hincks)
(Hincks (1880), I. O. M.H.F. (1937) and Harcus (1940 as Membranipora).

Distribution (See Haps $20+21$ and Table 15 and 16).
Aldorina imbellis is videly distributed. It is most common on muddy cand Erounds particularly those N.W. of Bradda Eid. Where more than 20 colonies per $1000 \mathrm{~cm}{ }^{2}$ support surface area were noted; it is scarce on courso erounds mith mich water movement. Alderina imbellia was trawled in water ovor 40 f . ($73 \mathrm{~m} \mathrm{~m}_{0}$) deep and dredged in less than 10 f. (18 m) on the maddy Grounds (Area D.) close to Port Erin Broakwater.
A. imbellis occurs on a wido variety of dead aholls and stones and on I1ve Buccinum undatum, Anomia app., Feoten Maximn oto. It is more common on smooth than on rough surfaces. 5 times an maxy colonies are present on the inner than the outer surfaco of chlamys operalaris shells but equal numbers occur on the two Eurfaces of Cyprina islandica ahells. It has not been collected on zoophytes.

Reproduction (Sce Figit 6+7)
Oocoia cabryos and egs have bcen observed in all months. From Juno 1961 to Hay 1962 over 50% of woll-Erown colonies bore ombryos in all months except July (44\%) and Soptember (30\%) and In the samo period over 30° of the ooecia contained embryos in tho months September to llay and over 75% in Fobruary and hay.

A cecond, well-developed oge may be present in zooid while the previous embryo is atill in the ooecium.

Embryo colour varies botweon white and pale buff (lunsoll notation $20.0 \mathrm{YR} \frac{8.5}{6}$).

Geographical Distribution
Homiay to Biscay; Tunis; Phillipines (Marcus 1940).

ALDERINA SOLITOLA (Hincks.)
(Hincks (1880) as Mambranipora) :.

Distribution
One colony was identified on a shell dredged 3.5 m . $(5.6 \mathrm{~km})$ at H. $82^{\circ} \mathrm{E}$. of the Chicken Rock (depth 22 f. 40 mo). Roproduction

Mo data.

Geocraphical Distribution
Countier (1962) lists this apooies as recorded from the Hoditerranean by waters but does not inolude tho reforence in his bibliocraphy.

CALLOFORA DISCRETA (Hincks.)
(Hinoks (1880) and 1.O.M.K.F. (1937) ad Kombranipora).

Ifigtribution.
This species was recorded by Eerdman (1896) from !E. of the Calf Scuind, 16-20 f." It was not collected in this survey.

Goocraphical_Dictribution
No data.
gallopora limeata (1)
(IIIncks (1880) and 1.0.1.M.M.F. (1937) as Membranipora)

Distribution (Map 22° 」 Table 15)
Callopora lineata occurs on most rocky shores below K.T.L. It forms large colonies inorusting the undersides of boulders and stones; it also grows Laminaria holdfasts and occasionally on red algae, e.g. Plumaria elegans: Callopore lineata is extremely abundant on the fronds of Leminaria saccharina where it forms circular colonies in the concavities of the frond surface; by the end of summer (September-Ootober) several thousand colonies may be present on a single frond. C.lineata is present in small numbers on dead shell on much of the coarse ground around the south of the Isle of Man and has been dredged in $37 \mathrm{f} .(69 \mathrm{~m})$.

Reproduction_(See Fig. II 8 and III 9)
Ooecia, eggs and embryos are present throughout the year; reproductive activity is at its highest in June, July and August and its Iowest from October to December.

Gaukier (1962) recorded ooeaia in Decomber in the Mediterranean.
Eggs, embryos and larvae are red (kunsell colour 5 OR $\frac{5}{10}$)

Geographical_Distribution
Arctic Region; NoAtlantic Coasts to Madra and Florida;
Mediterranean; S.Alaska to Vancouver (Marous 1940).

CAILOPORA DUNERILI (Aud.)
(Hinoks (1880), I.0. M. M.F. (1937) and Marous (1940) as
Membranipora.
Distribution_(SeepMap 23) and vable
Callopora dumerili is present in small numbers on all coarse grounds where it occurs most frequently on the inner surfaces of dead shells: A few colonies were oollected on stones from E.L.H.S.T. at Port Erin Breakwater and the Calf Sound. It has never been collected on algae.

Reproduotion (See Fig. II 10 - II II)
Doecia, embryos and eggs are present throughout the year, peak
reproductive activity is from June to November.
Gautier (1962) recorded ooecia in Maroh, April, JuneSeptember and in December, embryos in May and June and ancestrulae in Pebruary in the Lediterranean.

EGES, embryos and larvae are yellow-orange (Munsell $2.5 \mathrm{YR} \frac{6-7}{10}$). A large egg may be present in a zooid while the previous embryo is still in the ooecium.

Geograhhical Distribution

European coasts from S.F.Norway to Madiejra; Mediterranean; Korocco; Gulf of St.Lawrence; Maine; Tristan da Cunha? (Marous 1940).

CAMLOPORA AURITA (Hinaks)
(Hinoks (1880), I.O.K.M.F. (1937) and Marcus (1940) as
Membranipora).

Distribution
Callopora aurita has been oollectod only from the shore (Port Erin Breakwater, Spaldrick, Fleshwick, The Sound, Perwiok, eto.) where it forms extensive colonies on the undersurface of stones and boulders, It occurs from the mid-Ascophyllum zone through the Laminaria-zone fringe, its lower limit has not been doterminod but it was not dredged. It does not grow on algae.

Reproduction (See Fig. II 12 and II 13)
Embryos wera noted from August to February and a few in April.
Peak reproduotive activity is in October to January.
Embryos, eggs and Iarvae are white.

Geographical Distribution
European Coasts from Faroes to S.England; Azores; Hudson Str.;
Maine and Cape Cod; Var norvegicus occurs in N.Norway and the White Sea.

CALIOPORA CRATICULA (Hinaks)
(Hinaks (1880), I.O.M.M.F. (1937) and Marcus (1940) as
Membranipora.)

Distribution (Sco Hap 23)
Callonora craticula has a limited distribution; it is confined to shallow (less than $20 \mathrm{f} .(57 \mathrm{~m})$), inshore, muddy erounds, e.c. those close to Day Fino, Port Erin Dreaknater and Mradds IId. A few colonics grom mixad with Callopora lineata on Ianinaria sacoharina fronds but most of the colonies collooted were crowing on the inner surfaco of dead sholls. It is not comon.

Renroduotion_(Fig II 14 andIIS)
Enabryos havo boon noted in 0.11 months and oges in 0.11 crecpt Junc and February (nonths in which very fow colonios were collected). Early cabryos are red (Lunsell 10.0nG्ठ) but become more orange as devolopment proceeds $\left(7.5 \frac{6}{10}\right.$ to $2.5 \operatorname{YR} \frac{6}{12}$).

Goorranhical Distribution
Throughout Arotic Occan and in il.AtIantic south to Cornwall and Foods IIOIE.

ATPITDITSTMUU FLEIIIGI (Dusk)
(ILincks (1880), I.O.H.H.F. (1937) and Harcus (1040) as
Yenbraninora)

Distribution (See Liap 24 and Tablcs 15 and 16)
Amphiblestrum ploninef occurs on coarse grounds in small numbors. It has boen dredged down to $97 \mathrm{f} .(69 \mathrm{~m})$ and twice recorded on stones from E.L.H.S.T. Over a quartor of the A.flominfi colonies collooted wore growing on livo lamellibrancha, particulariy Chlamy operoulnris, llodiolus modiolus and Anonis spp. In area B, living Chlamys operoularis are common and over 50\% of thom bear at least one colony of this ectoproot, which ocours on both upper and 10wor aholls. A.merning also occurs on a great varioty of doad shells and usuaily is most comon on the fincer surface, but on Chlanys operaularis it ocurs moro comonly on the outer. surface
probably as a rosult of tho high sottlenont on living C.opercularis. Rcproduction (Sco.Fic. II 16 and II 17.)

A hich percentage of colonies with embryos wis noted throughout tho ycar. The \% of ooccia containing embryos is hichost in sumer (Juno-ilovember).

An egs is srequentiy visible in a zooid whilo the previous embryo is still in tho ooecum.

Eges, cmbryos and larrae are orange (Hunscll colour 5.0 10.0 YR 7/6-10).

Georranhical Distribution
Arotio Occan and N.Atiantio south to Biscay and Moods IIOIo; Heditermanean.

MIPIIIBLESTRUE SOLIDUN (Packard);
(finnols (1830), I.O.L.LH.F. (1937) and Larcus (1940) as
Lembranipora trifolium)

Distribution
INot colloctod in this sirroey;" recorded by Ilordman (1803)
from $8 \mathrm{ml}$. (15 lan) west of Fleshaick.

Gcographical Distribution
II.Horway, Faroes, Shotland, Rockil Bank, II.Scotland, Iroland; Adriatio:

AMMATOPHORA IVODULOSA (ILinoks)
(ILnolis (1830) and I.O.H.L.F. (1937) as Ljabranipora.)

Distribution
liot collocted in this survey, rocorded by llerdman (1890) from
E. of tho Sound 16-20 I. $(20-37 \mathrm{n})$.

Georeanhical Distribution
Antrin, S.Doron (Hincles, 1830).

CAULORAYPIUS SPITIFENU: (Johnston)
(IIfncks (1830), I.O.LH.H.F. (1937) and Larcus (1940) as
liembranipora.)

Distribution

Freept for ona colony dredzed on a dond Chlarys sholl in area C, this apcaics has been collected only on rocks, stones and Laminaria holdfasts on the shore. It oxtonds from tho midAsconhyllum zone through the Leminamia zone frinee; its Iover Ifmit was not deternincd. It is a comon speoies and forms largo noat colonics apreading over stoncs.

Roproduation_(See MIE. II 18.)
Tho ooocia are vory gmall (Bobin and Prenant, 1061). C.eniniferun roproduces fron August to Liay with a well-marised poak in reproductivo notivity from January to Haroh whon up to 80% of the colonios contain ombryos.

Enbryos and oegs aro orango in colour (early stoges aro Iunsell 2.5 YR $\frac{6-7}{12-14}$ Iator staces 7.5-10.0 IR $\frac{7}{6}$).

Goorranical Distribution
Faroes, ShotIand, Dritish and II. French coasts; W.coast of Il.America from Salaska to Califormia; Galapagos Is and Chilo. Records from tho Arotic are of doubtful validity. (Harous 1940)

POSSELIATA ROSSELII (Aud.)
(Gcustior (1003) shoms that two specics bavo boen confusod undor R.rossolif; the opecimens colleoted in this Eurrey aro of R.rossclil (Aud.) sensu.stricto.)

Distribution

Only 7 Rerossclif oolonios wore colloctod; ono exch from aroa B, aroa D, tho mouti of Floshmick Has (13 f, 35 m) and 3.2 ml (5.1 man) $S 23^{\circ} \mathrm{W}$ of Port Erin Broakrater Bow, and threo colonios from area A. A11 wero on doad sholl.

Reproduction
 No reproductive activity was noted.
 Geographical Distribution
 Temperate European seas; Hediterranean; British Columbia ? (Gdütier, 1962).

> EAMILY _ FLUSTRIDAE

FLIS TRA FOITACEA (L.)

Distribution
I cannot agree with the $I_{.} O_{.} M_{0} M_{0} F_{0}$ (second edition) which states that Flustra folincea is "common on shells and stones on coarse grounds around the S. of the Island, 12-30 fim". The only locality where I have found F.foliacea to be common is area C where as many as 20 large colonies may be obtained in a single dredge haul; elsewhere more than 1 or 2 colonies are rarely present in a dredge haul and the majority of hauls contain no P.follacea. At area C there is abundant olean shell and stone and atrong tidal flow. F.foliacea colonies grow on dead shell and stones.

Loosl knowledge tells of a bed of Fofoliacea E. of Langness but two exploratory trips failed to locate it; this bed may, like area C, be of limited extent.

Reproduotion and Growth
Flustra foliacea colonies are perennial; large colonies are several years old.

Young Fifoliaca colonies are unilamellate and enorusting, when they reach a diamoter of about an inch they give rise to erect bilamellate shoots by a process analogous to folding. These ereot shoots grow and branch while the enerusting base spreads further over the support and gives rise to more ereot shoots. In larger mature
colonies there is a definite oycle of reproduction and growth. At the end of Ootober vegetative erouth ceases and embryos are present in the majority of the oceoia, the polyps soon degenerate and the colonies remain dormant. In late February the first swimming larvae are released, the polyps begin to regenerate and vegetative growth begins. During March and early April the majority of the larvae are released and vegetative growth quickens; the polyps are fully regenerated and aotive, and a well marked growth zone is present at the tip of the branch. This growth zone consists of rows of developing zooids and at the ond of April when growth is in full swing consists of about 5-6 rows of partly differentiated zocecia, growth continues but beoomes slower until October when the growth zone has returned to its dormant winter level of $\frac{1}{2}-1$ row of incomplete zooecia. The eggs first become visible in August and begin to enter the ooecia in early Cctober. By the end of Ootober all vegetative growth has ceased and the eggs have all passed into the ooecia.

Observations suggest that the Iines which oross the branohes at intervals are a result of the annual cessation of erowth from Octobor to February. The interval between two of these lines represents a year's erowth; these lines could probably be used to determine the age of the Flustra foliagea colonies.

The embryos of Fefoliaces are usually produced in patches or zones on the frond where they give the area a distinot pinkishorange appearance. The large larvae are orange (lunsell 7.5 YR 8/6).

Geographical Distribution
Murman Coast, White Sea, N.E.Atlantic to Biscay (Marous 1940); Adriatic (Gautier, 1962).

SECURIFLUSTRA SECURITRONS (Pallas)
(Hincks (1880), I.O.M. M.F. (1937) and Marcus (1940) as
Plustra)

Distribution

Previousiy recorded from Manx waters but not collected in present survey.

Geographical Distribution

Arotic Ocean; N.Atlantic south to Newfoundiand, Spain and Kediterranean.

HINCKSINA FLUSTROIDFSS (Hinoks)
(Hinoks (1880) and I.O.M.M.F. (1937) as
Membranipora.)

Distribution
Previously unrecorded from the Isle of Lan. Three speoimens of Hincksina flustroides were dredged on shells in area C and one $6.2 \mathrm{ml}(9.9 \mathrm{~km})$ at $3.19^{\circ} \mathrm{E}$ of the Chioken Rock in $37 \mathrm{f} .(69 \mathrm{~m})$.

Reproduation
Coeoia were absent in colonies collected in April and kay but both eggs and embryos were prosent in Fobruary 1962 and November 1961.

Embryos are yellowish-orange in colour, rather more yellow than those of Fustra foliacea (Munsell colour not assessed).

Geographical Distribution
British Coasts, south to Morocco; Madeira; Kediterranean (Gautier 1962)

FAKILY MICROPORIDAE

KICROPORA CORIACEA (Johnston non Esper)
Distribution_(See Map 25)
Micronora cortacea has not been collected on the shore or from soft erounds but is not uncommon in area C and the area stretching about $\frac{1}{2} m(.8 \mathrm{~km}) \mathrm{N}-\mathrm{M}$ I of C , elsewhere on coarse grounds it is rare. It occurs on a variety of dead shells and stones and erons most often on smooth surfaces.

Reproduction_(See Figi III 19 and 1120)
Embryos are present in small numbers from Way to August. They aro most abundant from Sopteriber to April but ovon then less than 30% of the ooscia contain embryos.

Goutier (1962) recorded ooecia from Hay to Septemberiand embryos in August in Lediterranean material.

EgEs, embryos and larvae are orange-red (hunsell colour: $2.5 \mathrm{IR}^{6 / 12)}$.

Geographical: Distribution
Widely distributed in tho temperate:Atiantio and Pacific, also Antarotic (Gautier, 1962).

> FAMILY _CELLARMDAE

CELLARTA FISTMLOSA Hinaks (8 non L.)
(Marous (1940) as C.salicornia)

Distribution_(Sce Kap 26)
Cellaria fisturosa occurs on most coarse grounds and muddy sand grounds off the west coast of the island but is less common off the south coast. In fem localities are more than 5 colonies present per $1000 \mathrm{~cm}^{2}$ support surface area present but the conspicuous nature of
the large, white colonies often give an impression of abundance greater than that indicated by quantitative samples. The finest colonies of this speoies, some larger than a clenched fist, occur on muday sand grounds, O.g. areas A and E. Large colonies are usually attached to sholls and stones by a network of stolons but tiny colonies of only a few zooids are rarely attached directly to these supports and are almost exclusively attached to hydroid stems and similar supports (some were found attached to the spines of Hermione hystrix (Savigny).). Stolons from tho young colony attach it firmly to the hydroid and, by growing down the hydroid's stem, effect attachment to the support on which tho hydroid is growing. Thus the primary support on which Collaria fistulosa (and C,sinuosa) larvae settle is hydroid and only later by growth and secondary attachment do they fix to sholls and stones. Large oolonies occur most frequentiy on the outer surface of doed shells.

Reproduotion_(Fig. II 2i)
Eges were noted in November, December, February, April and May and embryos from September to Kay. The highest \% of colonios with embryos were noted in Febriary, April and May.

Eegs and embryos are yellow (Hunsell colour not assessed).

Geographical Distribution

Distributed in all warm, temperate and boreal waters but absent from Polar seas (Gautier, 1962).

CELLARIA SALICORNTOIDES Andouin (? Lamaroux)
(IIIncks (1880) as C.johstoni)

Distribution
One colony was dredeed in area A and one in area E.
Reproduction
Neither colony displayed any reproductive activity.
(1962) found 00ecia all the year and embryos in Hay in Vediterranean material.

Geogranhical Distribution

Less widespread and of a more southorly distribution than
C.fistulosa (Gautier 1962).

CEILARIA SINUOSA (Hassall)

Distelbution (Sco Map 27)
The distribution of Collaria sinuosa overlaps that of C.fistulosa but Cosinuosa is usually prosent in smalior numbers. Only in a very few samples wore more than 5 colonies per $1000 \mathrm{~cm}^{2}$ support surface arca recorded. It is most abundant in areas A, B and E. Large colonies havo been collected on a mide varioty of dead shells and on tones but, liko C.fistulosa, small colonies only occur on hydroids.

Roproduction(See Fig. II 22.)

Eges waro observed in September, Hovember, December and a fem in Kay; embryos were presont from August to Juno. Larvae wero released, in the laboratory, in Karah and April. The \% of colonies With embryos was hiehost from liovomber to March.

Gautier (1962) recorded orioells from April to November and embryos in Juno and July.
C.ginuosa eges are tiny and bright golden-yollow. Early embryos are golden yellow too, but during dovelopment becomo palor, the releasod larvae are almost white (funsell 2.5 y $8 / 4$ and paler) with about 8 red 'eye-spots'. The ooeciforous zooecia ocour prinoipally in tho distal half of each segment and whon numerous embryos are present that part of the segment appoars yellowish.

Geographical Distribution

E. Temperato AtIantia; Keditorrancan (Goutior, 1962).

FAMLY _ SCRUFOCELLARTDAE

SCRUPOCELLARIA SCRUPOSA (L.)

Distribution. (See hap 28 and Table 17 and 18)
Widely distributed and locally common on coarse erounds but less so on softer, fine grounds, Sissoruposa raroly forms ovor 5\% of the total eotoprocts present in a sample. Sbiscruposa was not colleoted from the shore but was dredged in depths from 12 to 35 f. (22-64 m) and trawled on a Maia squinado in 41 f. (75 m)(See also p. 13). Sc:sorupose occurs on a pido variety of supports including dead shell, stones and hydroids. In area B it occurs on live Chlamys opercularis and in area C it is present on almost every sholi. Cn doad shells (exoept Glycymoris clyoymoris) S.iscruposa is more common on the outer than the inner surface. The majority of the colonies on Glyovmeris are primarily attached undor the overbanging hinge of the shell.

Reproduction_(See Fig. II 23)
Embryos nere present from Juiy to Docomber with maximum \% of colonies with embryos in September.

Roper (1913) recorded ooecia at Cullerooats in September and Octcber. Gautior (1962) noted ooeaia from Hay to Septembor and embryo in Karch, Hay and September in Mediterranoan specimens.

Eegs and embryos are red (kunsell colour not assessed).

Geogranhiogi Distribuition

Temperate Atlantic from Iceland to Korocco and Madeira; Mediterranoan; NeAmerica?; Galapagos; New Zealand (Gautier 1962); Gulf of California (S_{t} einbeck and Ricketts, 1941).

SCRUPOCELLARIA SCRUPEA Busk

Distribution
23 colonios were collected on dead shell: 15 from area $C, 5$
from $B, 2$ from A and 1 from E.

Reproduction
No activity vas noted in Manx specimens. Gautior (1962) recorded ooecia from August to September, embryos in June, November and December and ancestrulao in Hay in Hediterranean colloctịions.

Goographical Distribution
Temperate Boreal Atlantic; Azores; Cape Verde Is?,
Mediterranean; Red Sea; Indian Ocean; Japan; EsIndies; Australia and Hew Zealand. (Gautier 1962)

SGRUPOCELLARTA REPTANS (L.)
Distribution (See Hap 29)
Commonly present at about L.TH.S.T. on,most rocky shores where it occurs on rocks and stones and among red algal turfs, Scrucocellaria reptans, mixed with Crisidia cornuta and Crisia eburnes frequently forms cal short turf covering extensive areas of vertical or overhanging rock at about L.W.S.T. and sub-littorally. Such turfs have been seen at Niarbyl, Fleshwick, BraddaبSker, Port Erin Breakwatcr, Perwick, otc. Sorrontans is also very abundant on the alga Desmarostia aculeata (L.) Lamour.; over a hundred colonies may occur a single D. aculeata plant: D.aculeata plants
 dredeed regularily in area D, close to Brada IId. and on the landara side of area A. Se.reptens also occurs in these and other localities with S.."scruposa on dead sholl and stones; Si.soruposa is usually more abundant on dredged shell than Sbiroptans.

Reproduction_(See FiE. II 24
Embryos ware noted in all months except April and Ootobor, the highest $\%$ of colonies with embryos were recorded from Juno to August.

Roper (1913), at Gullercoats, found ooecia from yay to October; Gautier (1962) working with koditerranean material found ooecia in February, Lay, June, September and Noverber and embryos in February, June and November.

Eegs, embryos and lorvae ure rod.

Goopraphical_Distribution
Temperate boreal Atlantio coasts of Europe; Mediterranean; Azores; Liadeira (Gautier, 1962).

> FAMLY

BEANIA MIRABIIIS Johnston

Distribution_(Seo Map 30)
Beania mirabile; is widely distributed in small numbers on coarso erounds and slightly muddy sand erounis. It is generally absont from samples from mudidy sand or mad grounds but has been dredged from tho muddy ground D. In this investigation it has been dredged down to 37 f. $(69 \mathrm{~m})$ but lierdman (1893) reoords a colony from $60 \mathrm{f} \cdot(110 \mathrm{~m}) \mathrm{W}$. of Dalby. It is most common in depths from 15-25 f. (27-46m). One colony was collcoted at E. L.W.S.T. on Port Erin Breakwater.

This species has been found strageling ovor a pide varioty of supports and including most of tho available species of dead shell, Iive Anomia spp., hydroids and the eotoprocts Cellaria spp., Flustra foliacea, Lepralia foliacea, Eucratea 1oricata, otc. It occurs in equal numbers on both surfaces of dead shell.

Reproduction
No data recorded.

Geopranhical Distribution

N. Scotland and Ireland represent this speoies' northern limit In Europe; it is recorded from all tomparate and tropical seas. (Liarcus 1940, Gautier 1962.)

> PAZCLY_ _ RCGLLARIELIDDAE

BICELLARIELLA CILIATA (H_{*}) (Hincks (1880), I.O.M. M.F. (1937) as Bioellaria).

Distribution_(See Kap 31 and Table 19
Bicellariella ciliata is scarce and of irrogular occurrence in areas other than A, B and C where from $5-20$ colonies may ocour in a brcffit sample. A single, small colony was collected among Crisia turf from L.B.S.T.L. at Calr Sound and a colony was trawled on a hydroid in $41 \mathrm{f} .(75 \mathrm{~m})$ but the species is most abundant, on coarse grounds with rich zoophyte growth, betmeen 15 and 25 f. (3747 m).
B.ciliata ocours on a variety of dead shells and zoophytes, O.E. the hydroids Flydralmania faloata, Sertulareila: polyzonias, Abietinaria abiotina and Sertularia spp., and the erect ectoprocts Cellaria spp., Scrupocellaria reptans and scruposa, Crisia 3pp., eto.

Feproduction (See Fig. II 25)

Bicollariella cillate has two generations each ycar, one overwinters and its offspring are the rapid growing summer generation which in turn produces the next overvintering eeneration.

The 'summer' generation ceases to produce lervae by midNoveaber and soon dies and disintegrates. The offapring of the summer ceneration grov very slomiy until about February-March when Eromth becomes very rapid. In 1961 the first embryos were noted in late larch but in 1962 (a cold spring) they were observed until early Hay. By the end of Hay and during June the roproductive activity of this generation is at its peak and many larvae are boing produced. The young colonies developing from these larvae grow rapidiy and themselves bear embryos in the ocecia by August. The overvintering population has by this time almost ceased larval production and socn dies and disintegrates. Peak reproductive aotivity of the sumer gencration is in Septembor but Iarrae are produced into November when this generation also dies The offisping of the summer eoneration are the small overvintering olonics.

In large, reproductingcolonies a zonation similar to that described by Correa (1948) in Bupula flabellata (Ihompson) is
prosent. From tho tip of a branch tomards tho baso of the colcny are found duccossivoly (a) a zono of young zooscia nithout ooecin, (b) a zono of older zooscio with cmpty ocecia, (c) a zono of zoccoin with degenorating polype and developing ominyos in the ooocio, (d) a zono of zovecia with dogencratod polypa, brom body, ard fully dovoloped larveo in the ccecia, (b') a zeno with ecopty ocecia and regenorating polyps; and (c^{\prime}) zono of zooser with Covoloping embryos in tho ooecin, and so on. Each zone is usually only tro or thrio sooocia lone; but tho comloto zonation may be ropontod cnco or tirico in large colonios. This zonation eivos insight into tho pattern of Ife of tho colony (Sco also puculo Mabollata; p. 56) of

It Plywouth 'lacoding' has been rocorded in Juily and ocoola' in march (F. H. F. 1957).

Grocanhicg Distribution

Shotiands (not Faroos), Eritish, Irish and othor Burcioan consts to tho Hoditerranean W.Atinntic froa islends of Canadian Iratio to Woods ilolo; Rod Sea; Indian Ocoan; S.Aatraila; 3.Africa.

Bucina Avicilaita (L.)

Distribution (Sco hap 32)
Eurula aviculeria, 1ike othor British Dumla spocies, ovarmintors as inconspioucus colonics of only a fom zoceoia. Tho cajority of deopmator samples wero obtaincd in winter; during the summer, whon Benvicularin colonios are large and oonspiouous, samples poro, for sovoral unavoidable reasens, taikon mainly at 3tations ohallown than $25 \mathrm{f}(46 \mathrm{~m})$. Thus tho doop atations noro not adequately sampled mon Benvioularia mas most ocnsploucus and therefore no roliable conolusions can bo dram about its distribution.

30\% of the Boavicularia colonies collected were erowing on erect zoophytes. The immediate support of the majority of colonics was an incrusting or nodular entoproct colony, the stolons of the Beavicularis ramifying among the zooids of the other colony. (See also p. 55)

Keproduction (Sce Fig.II26)
Embryos mere noted from June to November; they are pale yollow. At Naples Lo Bianco (1908) recorded Iarvae in October.

Geographical Distribution

Widely distributed around British coasts (Byland 1960), Shetlands, British and European coasts south to Lorrooco, Madeira and Hediterranean; Red Sea; Loyalty Isiands, Australia and New Zoaland; Queen Charlotte Land; Vancouver; Panama (Harcus 1940).

BUGULA PLUMOSA (Pallas)

Distribution_(See Map 32)

This specios, 1ike other Bugula species, oror-irinters as inconspicuious small colonies or as remnants of the previous summer's colonies. Any irformation on distribution is therefore likely to be biased by the preponderance of inshore hauls during the summer. A fen smail colonies were seen during the finter months, their polyps were active and not degenerated. Large colonies were collected from June to December, the majority were dredged in area.B but colonies were collected from the mouth of Fleshodak Bay (10E; 18 m), area E and a few other localities. Buplumosa was not collected on the shore; the deepest colony was collected in $30 \mathrm{ft} .(55 \mathrm{~m})$ S.W. of the Chicken Rook.
B.plumosa occurs on a variety of supports inoluding shells and atones, hydroids and Cellaria spp.

Reproduction

Empty ooecia Fere observed in August 1962 and embryos in September, October and December 1962.

Pyland (1960) recorded embryos from July to September and settlement in September in the Honai Straits.

Embryos are pale yellor.

```
Geographicel Distribution
N.E.Atlontic from Norway to Kadeira; Moditerranean; (Ryland 1960.)
```

bugula plabgijata (Thompson)

Distribution (Seo lap 32)
The overwintering ancestrulae, tiny caleaios and tattered remnants of the provious summer's generation are fairly conspicuous and easily recognisable; it is unlikaly that many were overlooked. Pugula flabollats is the commonest Burula spp. in Lanx waters and in summer recularly occurs in fair numbers ($5-20$ per brellit sample) in dredged material from coarse inshore grounds such as A, B and C and from areas (e.g. area D, close to Brada Hoad, etc.) where the bottom doposit is finer but there is still ample shell. B.flabollata is most abundant in areas Λ and C.

Superficially B.flabellata appears to grom on a wide variety of dead shells, stones, otc., but on close examination it is seen that every colony is attached (at least primarily) to another ectoproct colony usually of an incrusting species. The yellow stolons frcm tho base of the Boflabellata colony ramify through the colony and at intervals put out eroct shoots through the orifices of the 'host' colony. The flirst zooid of these oreot shoots is ancestrule-like. The stolons ramify through living colonies without causing the death of tho colony but some of the Lndividual zooids of the 'host' colony are usually killed. Porella concinna (Busk) and Celleporeria pumioosa (IIIncks) are most frequently 'infected' but B.flabellata colonies have also been obsorved on colonies of Schizomavelin euriculata (Hassall); Cellaria sppo, etc.

Reproduction_(See Fig. II 27)
B.flabellata overwinters as ancestrulae and small colonies, as ancestrula-like erect shoots from stolons and as tattered, broken stumps of lerge colonies (these last may regencrate oither by normal zooecial Erorth at the ond of branches or by ancestrulalite shoots from individual zooecia). Fem large colonies were seon between November 1961 and January 1962 and nons between Jamary and Harch 1962. Growth is very slon from November to Larch but rapid erowth begins in Harch and in 1962 the first sexually mature colonies were seen in early way (embryo production may occur earlier in warmar years). By tho ond of Hay many colcnies are reproducing and the offspring of these colonies bocome the rapid-growing summer generation. The summer genoration begins to produce embryos by mid-Soptembcr and soon after this the overwintering goneration ceases reproduction and degenerates. The summer ecneration produces larvae until the end of October when all reproductive aotivity ceases and large colonies begin to degonerate. The overwintering population is a mixture of the stumps and stolons of the 'sutaer' generation and the ancestrulae and small colonies developing from the larvae of the 'summor' generation.

During peak reproductive activity zonos of zooeoia and embryos in different states of development occur along the branches of B.flabellata colonies (See also Bicellariella oiliata, p.5 3). Correa (1948) described similar zones in Brflabellata from Brazil.

Eges; eribryos and larvae are bright golden-yellow.
Ryland (1960) noted embryos from August to October and settlement in September at Henai. Gautier (1962) recorded ooeoia from April to June and in Cotober and Dccember and embryos in April, October and December in the Koditerranean.

Goographical Distribution
North Sca and coasts of Europe from Skagerrak to Portugal; Atlantic coast of Koroceo; Mediterranean; Adriatic; Mauritius;

Erazil (Eyland, 1960).

EUCImA GALATHIS Norman

```
Distribution
    Previously rccorded (I,O.H.W.E.) Sram "off Bradda Ild.",
Fumila calnthus wos not collocted in tho prosant aurvey.
Gcourchicm1 Distributicn
    S.W.Eritain, Spaing Meditorranoan; Adriatio; 3.ASrico.
(Goutior, 2962).
```

BMCUMATHOMNTA Alder

Distrikution

Ono colony manded in area A and cnother from D. A fino specimon mas collectod mbile diving at Fort Erin Eroaknator. ficcila turbinata has beon recorded from 33 f . $(60 \mathrm{~m}), 6$ wilon W. of tho Cniaken Hook (I.O.W.K.F. 2nd odn.).
nemraduction
Embryos wore prosont' in Soptombcr, Ootober and Novanbor.
Fylands (1960) rocoriod embryos in Fiolsh spcoimens in August and Septomber. Lo Bianco (1909) found larvac at laples from February to kay. Gautior (1962) found oosaia in Soptomber, Sovoriber and Doconber and enbryos in Soptomber in toditerrancan material.

Distribution
Widoly distributod in southern parts of British Isles, Eronch coasts; Uoditorranoun and Adriatic (Kyland 1960).

FAHIIY CBIBTIIIHIDAE

RSMELAMPORnLIA MITTDA (Johnston)
Digtribution (See lay 33)
Lombranincrolla nitida is largely a spooios of tho littoral
and imnediste sub-Iittoral regions. It occurs on stones at L.W.S.T. on most rocky shores and on stones colleoted by diving in shallow water (20-30 ft: 11-18 m). It does, however, occur in some offshore areas, particularly where there is considerable water movement, e.g. area C , and has been dredgod down to $30 \mathrm{f} .(55 \mathrm{~m})$.

Reproduction (See Fig. II 28 and 3 30)
Eges and embryos are present throughout the year with peak reproductive activity in 1961-62 in August-September.

Roper (1913) at Cullercoats, recordod ooecia in Ootober and Gautier (1962) in the Hediterranean recorded ooeoja from Hay to Soptember and embryos from March to June.

Embryos and eges are yellowish-orange (kunsell colour 2.5 7.5 YR $\frac{6-7}{8-10}$).

Coographical Distribution

European Atlantic coasts from Shetlanas to Hadeira and Kediterranoan (harcus 1940).

CRIBRILIMA FUNCTATA (Hassall)
(Gautier 1962 as Collarina)

Distribution

Gribiling punctata is one of the commonest eotoprocts on Manx rooky shores. Where there is thick algal cover C.punotata occurs under stones from the upier Asconhyllum-zone to belor lowwater mark. . A few colonies were dredged on shallow grounds, e.g. areas A and D.

Reproduction_(See Fig. II 30 \& 31)

During the pariod Xay. 1961 to Kay 1962 embryos were present from August 1961 to kay 1962. Very fen embryos were seen in September 1961 and Lay 1962. Reproductive activity reached its poak from November to February.

Gautiar (1002) Sound poocis in Leditormanon naterial in April and October; Soper (1915) recordod ooccia at Cullorcoats in April, Hay, Aujust and Doconbor.

Eies, cmbryos and lasvae aro red (iuncell colour 10.0n$\left.25 \times 2 \frac{5-7}{8-10}\right)$.

Gcorrahitcal Distribution
Tompernto Voroal Atlentio; Lalitorranoon; Arctico; Adolio Land; Indian cacan (Iarcus 1040).

CRIERTETMA ATUUNTA (Fabrioius)

Dictribution
Vory fon colonics of C.amulnta wro colloctod, the najority nore dredsod in area C but ono cono fren ared D and one from $26 \mathrm{f} .(43 \mathrm{n})$ at $5.7 \mathrm{nl}(0.1 \mathrm{ln})$, $\mathrm{H.W}$. of the sound. 1.11 wore on tho inmor curface of doad sholl.

Ronnoduction
Eubryos wero scen in July and Lovonber. llany of tho fortilo raised
:izooccia aro dirod abovo the rest of the colong.
Fabryos aro oranco (iuncoll colour 5.0 z2 0/10)

FUHETIA GATMYAE (Dusis)
(IIInoles (1030) and I.O.H.H.F. (1057) as Cxibrilina)

Distribution

Lot collectodin this investigention. Rocorded by llordman (1300) fron 16-20 I. (50-37 n) E. of the Calr Sound.

Gcourphical Distribution

Loditorrancan (Gautior, 1002).

CRTIRITARIA MADTATA (RO11.)
(Ifinotm (1830) and I.O.N.N.F. (1037) as Cxibuilinn,
Harus (1940) as Collotosia.)

Cribrilinis radiata is nost abuncant in area C and the westem part of area $\mathrm{B}_{\text {. }}$ It has also been dredged in small numbers in arca A and from other, scattered localities on coarse grounds botrroen 15 and $25 \mathrm{P}_{\mathrm{p}}(27-46 \mathrm{~m})$. Var α hinoks nos drodzod on two occasions, from 1 to $1 \frac{1}{2} \mathrm{mls}(1.6$ and 2.4 km) about S.E. of Spanish Ild. (Map 34)

41 of 45 spocimens camined wero growing on the innor suriaco of dead sholls (mainly Chlanys oncrcularis and Glyoymerds elycymoris)

Roproduction (Seo Fis.II 32)

Embryos were noted tixroughout tho year. The hichest \% of colonies with embryos was noted in summer and the lowost from Fobruary to April (1092).

Gautier (1962) rocordod oocoia in all months and embryos and Iarvac in January, July, November and Deccabor.

Embryos ara dull orancomred.

Goocranhical distribution

E.AtIantic from Shotland to Cape Vordo Islando; VeAtiantic from Georgia and Brazil; Aroros; Tristan da Cunha; Lediterranoan; iRed Sca; Indo-Pacific Occan from Japan to Zanmibar, Ilawail, Australia, Solomon and Loyalty Is., Tahiti and IIcy Zcainnd. American W.Coast from Queon Charlotto's Land to Voncouver, Galapacos Is. (Uarcus 1040).

FIGULARIA FIGULARIS (Johnston)
(Hinoks (1880) as Cribrilina)

Distribution (See Mep 35)
Proviously unrecordod fron Warx wators, Faflrularis has a Vory limitod distribution: it has bcen colleotod in amall mabors from arca C and tho western part of B_{1} It has also bem drodecd in aroas A and D and two colonios wero drodged S.W. of the Chiotems.

The majority of colonios gron on the inner aurface of dead sholls,

Roproduotion (Seo Fig.II 33 and 34)
No acmplo was examinod in February and only very amall aamplos were Obtained in May; June and July. Embryos and egge were present in all months in which samples were examined exoept July: lio definite period of peak roproduative activity can be distinguishod.

Gautior (1962) found ooeoia throuchout the yoar, embryos and larvae from Hay to Deoomber and ancestrulae in Aprily Way and June in the Liediterranean. Io Blanco (1909) recoried eges and Iarvae from Itaples in June. Ooeola have beon reoorded at P2ymouth in April (P.W.F. 1957).

Embyyos are red-brown (Munsell coloure $10.08-2.5 \% \frac{6}{10-14}$); the larrae are yellower ($5.0 \mathrm{YR}-7.5 \mathrm{IR} 6 / 8$) .

Gogeranheal Distribution
Eitemporate AtIantic from Engiand and Ireland to Arores (Gautier 1962).

EAMILY ITPFOMOIDAE

HIPPOTHOA DIVARICATA Lamouroux.

Distribution (See Map 36)
Fidely distributed on shelly, fairly coarse grounds under $25 \mathrm{f} .(46 \mathrm{~m})$ but nowhere common, Hippothoa divarioata is often mixed with H,distans in samples; Hedistans is usually the commoner. Two colonies of H.divarioata were colleoted on stones at E.L.W.S.T.
70% of Hedivarioata colonies were growing on the inner surface of dead shells and 10% on stones.

Reproduotion
Ooeoia were observed from December to July; no embryos were seen.

Roper (1913) found ooecia in Juno, July and September at Cullerooats. Gautier (1962) found ooecia in koy and June and embryos in June.

Geographioal_Distribution

Present in most cold and temperate seas but absent from tropical waters (Gautier 1962):

KIPPOTHOA DISTANS KacGillivray
(Hincks (1880) \& I.O.M.M.F. (1937) and Gautier (1962)
as HoflageIIum)
Distribution_(See Kap 37 and Tablos 20 and 21)
H.distans is much commoner than Hidivarioata and has a much wider distribution, occurring throughout most of the area sampled. However, it rarely forms more than 5% of the ectoproct population or is present in numbers greater than 10 colonies per $1000 \mathrm{om}^{2}$ surface area of shell and stone. H.distans oocurs on most types of dead shell and on stones, it does not occur on algae or orustaceans and has not been oollected on the shore. It is more common on smooth than on rough shell surfaces.

Reproduotion_(See Fig. II 35)

Embryos were noted from September to Karch and in May. The highest \% of colonies with embryos was recorded in October 1961.

Gautier (1962) noted ooecia in April, May, June and October in Kediterranean.

Embryos are yellow.

Goographioal Distribution

Cosmopolitan but living in the main in warmer waters than H.divarioata (Gautier 1962).

HIPFOTHOA ITYALINA (L_{0})
(Hinoks (1880), I.O.M.H.F. (1937) as 3ohizoporella)

Distributicn (Soo Kap 38)

On the shore Hippothoa hralina is oomen below the lower Fucus serratus-zone and grows on alge, e.ge Plumaria olepans, Laminaria holdfasts, eto., and coonsicrally on the underside of stones. Sub-littcrally it is abundant on Iaminaria saooharing fronds; several hundred colonios may be prosont on a frond in the autumn. Lesacoharina fronds with Hehyailina have boen collectod by diving and by dredging close to roaky abores, - .E. areas A and D_{0} and olose to Bradda Ill. otc. Hehvalins has also boen dredged in amall numbers on supports other than algae from various localitios (particularly areas A, B and C) between 8 and $33 f_{0}(25-60 \mathrm{~m})$, about 70% of these coionies vere groving on hydroids, a few on creb carapaces, one on a pyorogonid and the rost on doad shell. Hehvalina occurs muah more frequentiy on smooth than rough aholl:surfaces.

Reproduction_(HzoII 36 and 37)
large numbers of egge, embryos and tiny colonies have been noted throughout the yoar.

Roper (1913) sound ooecia in Vorthusborland specimons in Septerber and October.

Eegs and embryos are yellow (隹nsell colour 2.5-5.0 y $\frac{8-9}{3-8}$). Copraphioal Distribution

Cosmopolitan (Harous 2940).

COHORTZOFORA BROMGMTARTI (Audouin)
Distribution (Soe Lap 39 and Tables $20+21$)
Shorfizopora brongntarti is widely distributod on grounds where there is aboundent dead shall. In some localities, e. 5 . around and inoluding area C, more than 20 colonies por 1000 an ${ }^{2}$ surface area of aupport have been noted but only in a few
localities are more than 5% of the eotoproct colonies of this species. C.brongniarti has been collected on the shore at Port Erin Breakwater and at the Sound and has been dredged in 37 f. (69 m).

No C.broneniarti colonies were seen on algae or hydroids, and only 17 of 997 colonies were oclleoted on stones, the remaining colonies occurred on shell. C.brongniarti is oommoner on smooth inner shell surfaces than rough outer shell surfaces.

Reproduction_(Fig.II 38 and 39)
Embryos and eggs were noted in all months. Reproductive aotivity is highest in late summer (September to Ootcber) and lowest in Spring(February to June).

Gautier (1962) recorded ooccia, embryos and larvae in all months and ancestrulae in April and August in Mediterranean material.

Embryos are red (Kunsell colour $9.0 \quad\left[\frac{5}{10}\right.$)

Geograhiogi_Distribution

European coasts south of Shetland; Mornnoo, Canaries, Cape Verde Is.; Mediterrenean; S.Africa; Australla; Nem Zealand; Galapagos I3. (Karous 1940).

HAPLOPOMA GRANTPERUM (Johnston)
(Hincks (1880) and I.O.M.H.F. (1937) as Mioroporella
impressa; See Ryland 2963.)

Digtribution

Haplopoma graniforum occurs under stones and boulders from WTL to below 10w mater mark on all rooky shores examined and is probably present on sub-littoral rock. It has not been observed on algae other than Laminaria holdfasts. It has not bean dredged. Reproduction_(See Fig. II 40 and 41)

Embryos were noted throughout the year; numbers were hichest from June to September in 1961 and deolined until April 1962,

beginning to inorease again in Yay 1962.
 Cautier (1962) reoorded ooeoia in Nay, August, Novenber and December and embryos in May in Hediterranean speoimens.
 Embryos are pink (Munsell colour 2.5-5.0 R $\frac{7}{4}$) early in development but become paler later in development.
 Georraphical Distribution
 Shetland Islends to Kediterranean (Ryland 1963).

FAMILY RETEEPORIDAE

SCHIZOTHECA FISSA (Busk)

Distribution_(See Map 40)
Not common; Less than 100 specimens were collected throughout this investigation. All were dredged between 18 and 27 f.(33-49m); the majority were dredged at area C, some at A, B and E, and the rest from a few other soattered localities. One speoimenwas growing on stone, the rest on the inner surface of dead shells.

Reproduation

No samples were colleoted in May. Eggs were observed from June to October and in February, and embryos in the same months and in December.

Gautier (1962) found 00ecia in Iebruary, April; May, Ootober, November and December and embryos and Larvae in February, Hay and December in the Kediterranean.

Embryos are red.

Geographical Distribution
EoAtiantic Coasts from Great Britain to Cape Verde Islands; Mediterranean.

SCHIZOMHECA DIVISA (Norman)

Distribution
Schizotheca divisa was recorded by Herdman (1896) from 1620 P. $(29-37 \mathrm{~m})$, E. of the Calf Sound. It has not been recollected in the kanx area.

Geographical_Distribution
Ireland, Channel Islands (Hincks (1880)).
EAMTIY_ADEOMDBE_

REPTADEONBLLA VIOLACEA
(Hinoks (1880) and I.O. M. MiF. (1937) as Microporella.)
Distribution (See Kap 41 and $T_{a b l e}$ 22)
Roptadiconelle violacea has been dredged between 18 and 37 f . ($33-69 \mathrm{~m}$) and is locally common in areas with stony bottom and strong tides, o.g. close to the Calf (inoluding area C) and the south of the island.

Reviolaoea from large spreading colonies ranging from white to purple in colour. The colonios on a tone are usually larger than those on shell. In area C about 6 colonies are present por $1000 \mathrm{om}^{2}$ surface area of stone, but only 1 or 2 columns occur on a similar area of shell.

Reproduation

Very large embryos are brooded in gonozooecia which are slightly larger and have a wider aporture than normal zo0ecia. Embryos were noted in January, from March to June and in September.

Gautier (1952) reoorded gonozooecia from May to September and ancestrulae in April in the Moditerranean,

Embryos are brownish (Kunsell colour 7.5-10.0 Yp $\frac{5}{10}$). The larvac have several red "eye-spots".

Geographical Distribution
E.AtIantic from Britain to Cape Verde Is. 3 Mediterranean; Brazil; E.Pacifio from California and Mexdco. (Gautier 1962). Australia; Plorida; Porto Rioo (Marous 1940).

FAMLYESCHARELLIDAE

ESCHARELLA IMMERSAA (Fleming)
(Hinaks (1880) and I.O.M.M.F. (1937) as kucronel1a peachii)
Distribution_(See Waps $42 \& 43$ and Tables 23 and 24)
Esoharella immerse is one of the commonest ectoprocts in Manx waters. It is common on stones and boulders in the rooky sub-littoral and on all rooky shores below L.M.N.T. It is widely distributed offshore and cocurred in almost every sample and was dredged down to $37 \mathrm{f} .(69 \mathrm{~m})$. E.imnorsa is most abundant on coarse grounds and least coarion on muddy erounds. In many localities over 25 (and in scme over 100) colonies are present on each $1000 \mathrm{om}^{2}$ surface area of support. In most samples E. immerse makes up over 5% of the total eotoprocts present and in some localities, e.E. the Modiolus bed, over 50% of the eotoprocts present are this species.

No E.immersa colonies were observed on algae and only 1 colony of over 10,000 colleoted was attached to a hydroid. E.immorsa occurs on a variety of shells and on stones but is most common on smooth surfaces.

Reproduotion_(See Fig. II 42 and 43)
Embryos and eggs were present in all months; a silght peak in reproductive activity occurred from February to Kay.

Eegs, embryos and larvae vary from pink to red (Munsell colours $2.5 \frac{5}{6}, 5.0 \mathrm{R} \frac{7}{6}, 7.5-8.0 R \frac{5}{12}$ and $10.0 \frac{7}{4}$ were recorded on different occasions).

Geographical Distribution
Arotic Region; NoAth ntic to Kediterranean and Woods Hole;
Pacific to Vancouver (Harous 1960).

ESCHARELIA VEMTRICOSA (Hassall)
(Hinaks (1880), I.O.M. H.F. (1937) as Mucronella)

Distribution_(See Maps $44 \& 45$ and Tables 23 and 25)
Escharella ventricose is widely distributed but generally less common than E.immersa although it is more comion than E.immersa in some samples from offshore muddy sand. It is most abundent on muddy sand grounds but in fer samples did over 20 colonies per $1000 \mathrm{om}^{2}$ support surface area ocour and it rarely makes up more than 10% of the total ectorpoots present. One specimen mas colleoted on the shore; others were dredged in $37 \mathrm{f} .(69 \cdot \mathrm{~m})$.

Of 2500 colonies collected none were on algae, one was growing on a hydroid, and the remaindcr occurred on a variety of dead shell and on stones. Eiventricose is more coumon on the inner than the outer surface of all dead shells except Cyprina islandioa. Its apparent abundanoe on Chlamys opercularis is probably because Cioperoularis is the dominant available support in the offshore areas where E.ventrioosa is most abundant.

Roproduation_(See Fig.II 44 and 45)
Embryos are present in all months; the highest percentages of colonies with embryos occur from November to Maroh. imall colonies have been observed in all months.

Gautier (1962) found ooecis in August, September and November and ancestrulee in Kay in the Yediterranean.

Eggs and embryos are white.

Goograhical Distribution

Similar to that of E,immersa.

$$
\text { 11. } 6 \mathrm{~s}
$$

ESCHARELLA VARTOLOSA (Johnston)
(Hinoks (1880) and I.0.M. M.F. (1937) as Macrone11e)
Distribution (See Map 1,6 and Tablos 23 and 25)
Escharella pariolosa is less oommon than the previous two species but is present on most of the shelly grounds around the south of the Island. E.variolosa is rarely present in mumbers above 5 colonies per $1000 \mathrm{~cm}^{2}$ surface area of support. It is most common where there is abundant tidal movement, e.g. area C and the tideway around the south of the island. Absent from muddy and very muddy sand grounds and not collected on the shore it has been dredged from 20 to $37 \mathrm{f} \cdot(37-69 \mathrm{~m})$ and ocours on shells and stones. It is more common on the inner than the outer surface of dead shells.

Reproduotion_(See Fig. II 46)
Eges and embryos have been noted in all months.
Gautier (1962) found ooecia in Hay, June and July and embryos and larvae in June-July.

Eges, embzyos and larvae are orange-yellon (Munsell oolours $2.5 \mathrm{YR} \frac{6-7}{10}$ and $10.0 \mathrm{YR} \frac{7}{10}$ were observed on different occasions). Geographical Distribution
E.Greenland, Hebrides, British, French and N.Spanish coasts; Morooso and Cape Vorde Is.; Mediterranean; Vancouver (Marcus 1940).

ESCHARELLA ABYSSICOLA (Norman)
(Hinaks (1880) and I.O.M.M.F. (1937) as Muoronella)

Distribution

Recorded by Herdman. (1896) from Port Erin, this species has not been recolleated in Uanx waters.

Geographicar Distribution

Arotio Ocean; Faroes, Norwegian coast south to Bisoay and the Azores; Maine.

EAMLY SCHIZOPORELLIDAE

3CHIZOPORELH UTHCORMIS (Johnston)

Distribution_(See map $4 甲$ and Tables 26)
Sohizoporella unicornts is common on rooky shores and forms large patah-like colonies on the underside of stones and boulders from the A3cophylium-anne to below 1.7. It is not comon offshore and is confined to areas of strong tidal ourrent and abundant stone and sholl, e.g. area C and close to the south of the island. It hes been dredged down to $32 \mathrm{f} .(58 \mathrm{~m})$. Offshore specimens are A A ei usually form anasta Hincks and occur on shells and stones. It is more comrion on the inner than the outer surface of dead sholls.

Reprodugtion (Soe Fig.II 47 and 48)
Embryos have been observed from Juno to Jamary, Peak reproductive ectivity appoars to be in June-july.

Gautior (1962) reoorded 0000ia from Aucust to Ootobor and embryos and lorvae in October in the Heditorranean.

Embryos are orange-red.

Geormanifal Distribution
Arotio region; Atlantio temperate and boreal coasts; Hediterranean; Indo-Pacific Ocean frow Zanzibar to Japan, California.

SCHZOPORELIA CRTSTATA Hinoks

Distribution

Secorded by Herdman (1896) from 16-20 f. (29-37 ii) E. of the Sound but not colleoted in this investigotion. Gogeraphical Distribution

Hastings (Hinaks 1880).

SCHIZOPORELIA DISCOIDEA (Busk)

Distribution

Five colonies of this species previously unrecorded from the Iale of M_{an} were dredged during 1961-62. All were on the inner surface of dead shell. Two were dredged at B, t wo at C and one at E .

Reproduction

All five colonies bore eggs and embryos: They were collected in September (two colonies), Ootober and November $196 i$ and January 1962.

Eggs and embryos are red.

Geographical Distribution
Kadeira; Gulf of Gascony; Mediterrancan (Geutier 1962).

SCHIZOMAVELLA AURICULATA (Hassall)

> (Hincks (1880) and I.O.M. H.P. (1937) as Schizoporalla)

Distribution (Sce Map 48 and 49, and Tables 26 and 27)
Schizomavella aurioulata was not collected on the shore but is common offishore oocurring in most dredged samples between 10 and $37 \mathrm{f} .(18-69 \mathrm{~m})$ and being trawled in $45 \mathrm{f} .(82 \mathrm{~m})$. In many samples over 10 oolionies per $1000 \mathrm{~cm}^{2}$ support surface area were noted and where it is most common (muddy sand grounds) over 50 colonies per $2000 \mathrm{om}^{2}$ surface area are present. Frequently more than 10% of the colonies in a sample are of this species and in some areas, e.g. 1-2 mil ($1.6-3.2 \mathrm{~km}$) N.T. of Brada Ha., more than a fifth of the eotoproot colonies are of this species.
S.aurioulata occurs on a wide range of supports inoluding stone, coal, alinker, living epifaunic molluses and most types of dead shell. One of over 6900 colonies examined was on Cellaria, no colonies were seen on hydroids or alge: It grows on both rough and smooth surfaces and ahows no ardered preference for the inner or outer surfaces of dead shell in terms of texture.

Reproduotion_(See Fig.II, 49 \& 50)
Embryos and eggs were noted in all menths with an obvious peak in reproductive activity between September and Larah.

Gautier (1962) recorded embryos throughout the year and ancestrulae in Hay and June in Wediterranean collections.

Eges and embryos are brownish-red. Embryos become less red during development (Munsell assessments range from $2.5 \mathrm{Yp} \frac{6}{14}$ to $10.0 \mathrm{YR}^{\frac{6}{10}}$).

Geggraphical_Distribution
Arotic Region and N.Atlantic coasts south to Kadeira, Cape Verde Is. and Florida; Mediterranean; British Columbia to Callfornia; Korea and Japan to Ner Zealand.

SCIITOMAVELLA LINEARIS (Hassall)
(Hinoks (1880) and I.O.H. H.F. (1937) as Schizoporelia.)

Distribution (See Kap 50 and Table 26 and 27)
Schizomavella linearis is neither as comron nor as widely distributed as S.auriculata but, it occurs in moderate mumbers over much of the area sampled. It is not uncommon on the underside of stones at E.L.IT.S.T. on rooky shores and has been dredged down to 37 f. $(69 \mathrm{~m})$. More than 5 colonies per $1000 \mathrm{om}^{2}$ support surface area were recorded from only a fom samples and it rarely forms over 5% of the ectroproots in a sample.
S.linearis occurs on stones, dead shell, etc. but has not been observed on algae or erect zoophytes. It is more frequently present on the inner than the outer surface of dead shell.

Reproduation (See Fig.II 51 and 52)
Eggs and embryos were seen in all months; reproduative activity is low during the colder months (February to April).

Gautier (1962) saw ooeaia in all months and embryos and larvae from larch to November in the Mediterranean.

Eggs, embryos and larvae vary in oclour from red to orangered (Munsell colours 2.5 YR $\frac{6}{12}, 2.5$ YR $\frac{6}{8}, 5.0 \mathrm{YR} \frac{6}{8}, 7.5 \frac{1}{10}$, and 10.0 㫜 $\frac{6}{10}$ were recorded on different occasions).

Geggraphical_Distribution
Arctic Region, European coasts to Lorocco and Kediterranean; Amerioan W,ooast from Vancouver and Californis; Indion Ocean (Marcus, 1940).

ESCHARINA SPINLFERA (Johnston)
(Hincks (1880) and I.O.M.H.F. (1937) as Schizoporella)

Distribution

Escharina spiniferum is abundant below the mid-Fucus serratus zone on roaky shores and extends on to shallow sub-littoral roak. It occurs on the underside of boulders and stones, on rook surfaces under algal cover and on Iaminaria holdfats. Two colonies were dredged, one at $4.6 \mathrm{ml}(7.3 \mathrm{~km}) \mathrm{s} 79^{\circ} \mathrm{H}$ of the Chiokens (depth 27 f. (49 m)) and the other $1.5 \mathrm{ml}(2.4 \mathrm{~km}) \mathrm{N} 79^{9} \mathrm{kr}$ of the Chickens (dopth 22 fo (40 m)).

Reproduction_(See Fig.II 53 and 54)

E.spinifere has a well marked breeding season. Reproduction begins in January and reaches a peak in May and June and ceases by the end of July.

Eges, embryos and larvae are orange-red. Late embryos and larvae are paler than early stages and have red 'eye-spots'. (lunsell colour: early stages: $10.0 \mathrm{R}-2.5 \mathrm{yr} \frac{6}{10}$; later stages: 2.5-5.0 YR Y $_{10}$).

Gegeraphical_Distribution

Faroes to N. France; Adriatic (Marcus 1940).

ESCHARTNA JOHNSTON (Queloh)
(I.O.M.M.F. (1939) as Sohizoporella, Hincks (1880) as Schizoporella simplex.)

Distribution
Seventeen Escherina johnstoni colonies were dredged in this investigation: 11 from area C, 1 from $B, 4$ from localities close to C and one from $3.2 \mathrm{ml}(5.1 \mathrm{~km})$ at $44^{\circ} \mathrm{S}$ of E of Thousla Beacon (depth $27 \mathrm{f} .(49 \mathrm{~m})$). \mathcal{I}_{4} were growing on dead shell, the rest on stones.

Reproduction
Embryos were noted in January 1962 and May 1961; colonies observed in June, October, November 1960 and Pebruary, March and Decenber 1961 were without embryos:

Goographical Distribution
Shetland, Irish, Scottish and English coats (Hinoks 1880).

ESCIARINA vulcarts (voli)
(Hinoks (1880) and I.O.M.M.F. (1937) as Schizoporalia)

Distribution

11 colonies of Escherina rulgaris were dredged at area C and a further 18 from other scattored localities on shelly grounds. The deepest specimen was dredged in 35 f. $(64 \mathrm{~m})$. All were growing either on dead shells or on stones.

Reproduotion

Embryos and eggs were present in colonies collected in March, June, August and December 1961, a colony seen in April 1960 had empty coeoia and colonies collected in Jamaary, Harch and Mas 1962 aisplayed no reproductive activity.

Gautier (1962) working on Mediterranean material found ooecia throughout the year and embryos and larvae in February, June, September, November and December and ancestrulae in January, May, August and September.

Embryoc are orange-red.

```
Geographical Distribution
    E.Atlantic coasts from Great Britain to Horoco0, Azores and
Cape Verde Is., Hediterranean; California (&autier 1962).
ESCHARINA DUTERTREI (Audouin)
    (Hincks (1880) and I.O.M.M.F. (1937) as Mastigophora)
```

Distribution
Less than 10 colonies were dredged in this survey; the deepest
in 23 P. (42 m).

Reproduation
A colony colleoted in January had empty coeoia.

Geographical Distribution
Madeira; Azores; Mediterranean; Red Sea; Japan; Chile. (Gautier, 1962).

ESCILARTNA ALDERI (Busk)
(Hinaks (1880) and I.O.M.M.F. (1937) as Sohizoporella)

Digtribution
Herdman (1847) recorded this species from "off the west coast"; it was not oollected during the present survey.

Geographical Distribution
Spitzbergen, NoNorway to Belgium and Ireland (Marcus 1940).

HERGMITA MMNDMANII (Johnston)
(Hincks (1880) as Mastigophora)

Distyibution
4 Herentia hymdmanni colonies were dredged on dead ahells during this survey. It has not been previousiy recorded in Manx waters.

Reproduction
Eges and embryos were noted in Noverber 1961. Colonies
examinod in Jamary and Februsry 1960 and August 1961 displayed no raproductive activity.

Geutier (1962) found oocein from Nay to November and saw ombryos and lorvoo in July in Yediterranean specimens.

Eegs and embryos sre pale rod.

Goomanhionl Diotribution
Temperato boren Atlentic; Moditerranoan; S.Africa. (Gautier 1962)

EMMIV_HIPEOPORINIDAE

HIPFOPORJMA PHRTISSA (Espor)
(Hincks (1880) and I.O.M.M.F. (1937) as Inorgina)

Distritution (Seo Map 51 and Toble)
Mipponorinn nortuna is widely distributod on muddy sand Erounds and on muddy grounds whore supports aro available. It is nowhere obundent; moro than 5 colonies por $1000 \mathrm{~cm}^{2}$ support surface area oscur in vory fow sumplos. It is rarely present on coarco grounds.

Herertusn does not occur on zoophyten or algae; it has been collected on stonos and a variety of sholls. It oecurs on both inner and outer sholl surfaces.

Rorroduction_(See Fig. II 55 and 56)

Embryos occur throughout the yoar.
Gauticr (1962) recorded ooceia from November to Jamary and froa Juno to Auguat and embryos in the samo months with the exception of August.

Embryos are bright orenge. (inusell colours 1.0 YRIT andio, $2.5 \mathrm{Mn} \frac{6}{12}$ and $5.0 \mathrm{In} \frac{7}{10}$ wero recorded on differcnt ocossions. Gogerachicgl_Dystritution

Apposrs to be cosmopolitan but somo records are subject to query (Goutior 1962).

IIPPOPORTDRA EDAX (BuSK)
(IHncks (1830) and I.O.H.H.F. (1937) as Ienralia)
Digtribution
2 colonics of Minpoporidro edare wore colleotod in this survey, one from 16f. (29 m) off Bradn H. and from area A. Both mere on omall castrcpod shells containing the hernit orab papurus cuanonsis (Thompson).

Reproduction
Enbryos were noted in Harch 1962.
Embryos aro orango-yollor (Lunsell colour 5.0-5.0 YR 7/10).

Googninh cal Distribution
Florida (Hincks 1880).

CRYPIOSULA PALLASTAIA (LOAI)
(ITincks (1830) and I.O.H.L.F. (1937) as 'Lenralia')

Distribution
Cryntosula pallasiana is comon on nost rooky shores from 14.T. to belor 10π mator nark. It forms extonsive sheot-1150 colonies on rook under thick aleal cover, under stones, bouldors and overiange and in crovicos. A for colonios wero noted on algoe. The I.O.H.H.P. 1962 records this species from 22 f. (50 m) but it ras not drodged in the prosent aurvey.

Roproduction
INo reproductive activity was scen.

Geogranical_Distribution
Atinntic Coasts from Bergen and Shotland to Ladbira and Horocoo and from Ht.Dosert to Hools Hole, Pacific coast of America from Hexico and Alasko (Larous (1040) and Gauticr (1902)).
"LEPRALIA" FOLTACEA (EILIs and Solandor)
(Gautier (1002) as "IIfDnodiplosia")

Distribution
Colonics of "Lepralia" follocea have boan dredecd on screral occasions at arca C and on ono occasion cach frem areas \triangle and B and in $27 \mathrm{f} .(50 \mathrm{n})$ at $5.2 \mathrm{ml}(5.1 \mathrm{~km}) \mathrm{E} 41^{\circ} \mathrm{S}$ of Thousla Beacon. In tho Faunal Collections of tho Port Erin Laboratory aro specimens of Lofolincea phich becamo entancled in fishing lines at the Calf Sound.

Eoproduction
Embryos wero present in June and Septomber 1001. Colonios oxanined in Hay; October, January and Fobruary did not have cmbryos.

Imbryos aro bricht yellow.

Goocraphical Distribution
European coasts from Arotic-boreal to Liorocoo; Indian Ocoan? Alaskar (Gautior 1962).
"LIEPRLLIA" ADPRESSA Busk

Distribution

2 colonios of this species were identified on a annll stonc collcoted 5.5 ml (5.6 lm) $\mathrm{S} 1^{\circ} \mathrm{E}$ of tho Chiokon Rook (dopth 57 f . (597)).

Enproduction
1 colony "drodged" in Ilovember bore a few ooocia.

Gooraphical Distribution
Loditcrranoan; Lazatlan? Chile?? (IHncks (1830)).

```
MMILY WICROPORRTINDAS_
```

UICROPODRLIA CILINM (Pallas)
Distribution_(Soo Lap 52 and 53 and Table 29 a30)
Microporella cilinta comonly occurs on bouldors and stonos, red algeo and Laminaria holdasasts eto. both on the lower shore and in the rooly sub-littoral. It ocours in very great mumbers on Laninaria saccharina fronds. M.oiliata is vidoly distributcd offshore and has been dredeed dom to 37 f (69 m). It is very comion on coarso grounde but beocnes less oormon withinereasing fincness of the bottom substrate. In nany or the samples from coarse grounds over 10% (and in sone asurplog. over 25,5) of the eoteproct colonies presont are of this speoics. Hecillata colonies ocour on a wido varicty of supports, c.E. dead and livine nolluscs, Ieminaria sacohnerina fronds, otc. It is nore frequont on smooth than on rough surfaces. Only 10 of about 8500 colonies exainined were groning on hydroids.

Reproduction_(F1g.II 57 and 58)
IGGo and embryos aro present in all nonths. Over 20% of tho rell-crom colonics cenninod baso embryos in all nonths oxoopt December ond Jacunary. Peak reproduative ootivity is from Lay to September.

Roper (i913) Sound ooccia at Culloreoats in loy, July and Septenber. Gautior (1062) found oocoia in all ronths, cabryos and Inrvae in January, Fobruary, Aprill and September and ancostrulae in June, July and Hoverber.

Eces, cobryos and lorvae are rod, larvae onit wellmdoveloped eabryos are nore orance than carlicr dovelopmental otages (Lunsoll colours are $10.0 \frac{5}{\frac{5}{20}}$ and $\frac{5}{8}$ and $5.0 \mathrm{Fr}_{10}^{70}$ (eariy developmentel stages) and $2.5 \mathrm{In}_{10}^{6}, 7.5-10.0 \mathrm{Yn} \frac{5-6}{10}$, and $10.0 \mathrm{Mn} \mathrm{K}_{8}^{6}$ (lator atcces).

Georranhical Distribution
All arcas axcept the Anterotic Ocean (itarcus 1940).

(Hinoks (1830) and I.O.1H.11. F. (1937) as Mioronorella)

Distribution_(Sco Lep 54 \& 55 and rablos 29-30)
Fenostrulina malusi was not present in shore collootions; it has been dredged botmoen 7 and $37 f_{6}(25-69 \mathrm{~m})$. Offshore it is abundant on coarso shelisy grounds and is prosent in smaller numbers over nost of the rest of the area somplod. It is least comion on muddy crounds. In som sarples particularly those from sholly Erovids betrion 20 and 30 f. ($57-55 \mathrm{~m}$); nore than a tenth of the ectcproct colonies are Fomalusi. Fomalusi erovs chiofly on shalls in aroa C (where over 50 colosiles occur on cach $1000 \mathrm{~cm}^{2}$ cuppont Eurface aroa), 16 colonies were noted, per $1000 \mathrm{~cm}^{2}$ stone while over 100 colonies wrepopresent per $1000 \mathrm{~cm}^{2}$ Innor surfoce of doad sholl. Fomalust is guch nore ocrion an smooth than rouch shell surfoces. Tho of over 7000 colonies collected roro groring on hydroids; nono on algac.

Renroduction (Soe FIS.II 50 and 60)
Eges and orbryos mere noted in 0.11 nonths. Reproductive aotivity ras high from Juna to October but very ferr oges and cabryos woro prosent botween Jomuary and Hay.

Gautior (1962) Samd coccia, obbryos and larvae in all months and ancestrulac in Jaminry, Aprill and liay in Wediterrancan collocm tions.

On ona occasion a larva was watchod mila it crerged from its ogc-meabrane. The fully-derrelopai lorva, still in its meabrane, was romored intact and undomaced from its poocium. Tho larva was rovolving inside the nembrane by cilinary activity. A tiny hole appeared in the rall of tho membrano and a fer cilla pakod throuph it. The larfa rovolvod until the porerful oilin of the vibratile organ
protruced throunh the lolo. Those stout cillo made strong bestine morements a_{e} ainst the membrane whioh appoorcd to beoome softencd and nore floriblo and finally split along about half its leafth. Tho larvas thon retrocted into the remnants of tho nembrane, revolved on its axis and then left the membrano and swan aingy. The process of cmorgence took placo in about 50 seconas.

Eggs, embryos and Iarvac ara colden-yollon in colour. Larvac aro slichtly paler than cmbryos and havo four red "eyospots" (Lunscll colours $2.5 \operatorname{XR} \frac{5}{10}$ (early stages), "and $10.0 \operatorname{yn} \frac{6-7}{6-10}$ (Iate developmontal staces and larvae).

Gcogronhical Diatribution
Cosmopolitan beut not contimously distributed (Gautier 1063).

PALITCETLARIA SKFIBT (EILIs and Solander)

Distribution (Sce liap,56)
About 150 colonics of this species were collected during this Investigation, tho ercat majority from muddy sand erounds. Palmicolloria skenci mas aredsed vetwoen 18 and 35 f. ($35-60 \mathrm{~m}$). 04 of 145 colonios erowing on sholl woro on tho outor surfoce.

Poprounction

Tho oocoia in this spccies aro lifhtiy caloified and dalicate. Enbryos vere notod in Sontombor: Deccmber and Anril. Colonies without eabryos wero seen in August, Soptombor and November and from Jamary to July.

Eabryos aro orange (hunsell colour 7.5 ya $\frac{6}{8}$)

Goographical Distribution
Arctic Ocean and Atlantio coasts south to Morocco and Vaine; Vediterranean; Azores; Brazil. (Maráus 1940)

PORBLLA CONCINNA (Busk)

Distribution (See Haps $57 \& 58$, and Table $31 \sim 32$)
Porella conoinna is widely distributed and particularly common on shelly muddy sand grounds. In a few sample3 over 25 colonies per $1000 \mathrm{~cm}^{2}$ support surface area were noted; more than 5 colonies per $1000 \mathrm{~cm}^{2}$ occurred in many samples. In a number of samples over 10% of the ectoproct colonies are P.conoinna.
P.concinna grows on both rough and smooth surfaces of shells and on stones. One colony out of over 5000 examined mas growing on a zoophyte (Cellaria fistulosa).

Reproduction(See Fig.II 61 \& 62)
Embryos are present throughout the year.
Breeding has been recorded at Plymouth in July (P.M.F.1957) and at Cullercoats Roper (1913) found ooecia in July, Gautier (1962) found ooecia, embryos and larvae in January, Harch and April and ooecia only in June and September in Hediterranean collections.

Embryos are red (Kunsell colours $7.5 \mathrm{~B}_{12}^{5}, 10.0 \mathrm{f} \frac{6}{14}, 2.0 \mathrm{YE} \mathrm{I}_{10}^{5}$ were recorded on separate occasions).

Geographical Distribution
Aretio Region; Atlantic coast south to Madeira, Morrocoo and Hoods Hole; Mediterranean; Pacific coasts from Queen Charlotte's Land to Vancouver and Japan to S.Australia (Harcus 1940).

PORELLA COMPRESSA (Sowerby)
Digtribution
Porella gompressa was recorded by Lomas (1886) from south of Spanish Hd, A single, large but dead colony was dredged during the present survey in 30 P . $(55 \mathrm{~m}) 2.2 \mathrm{mI}(3.5 \mathrm{~km}) \mathrm{s} 23^{\circ} \mathrm{ff}$ from the Chioken Rock.

Geograihical_Distribution
Arctic Region; Iceland, Faroes, and European coasts to Biscay; Lediterranean; Hudston Str. (Marous 1940).

POREILA VINUTA (Norman)

Distribution
Herdman (1896) recorded porella minuta from 16-20 f(29-37 m)
E. of Calf Sound. Two colonies were identified during the present survey. Both were on Chlamys opercularis shells; one was dredged at area C and the other in 20 f at $1.2 \mathrm{ml}(1.9 \mathrm{~km})$ H $10^{\circ} \mathrm{W}$ of Thousla Beacon:

Feproduction
Both colonies, collected in December 1960 and February 1961, bore a few embryos.

Gautier (1962) recorded ooecia in Marah, June, August and September in Kediterranean specimens.

Embryos are bromish-red (munsell oolour 7.5-10.0 Yi $\frac{7}{10}$).

Geographical Distribution
British Coasts; Mediterranean (Gautier 1962).

SMITMTNA LANDSBOROVI (Johnston)
(Hincks (2880) and I.O.M.M.F. (1937) as Smittia)

Distribution_(See Map 59)

Only about 100 colonies of Smittina landsborovi were identified in this survey. The majority were dredged in areas A, B, C and E but speoimens were oolleoted at a few other localities. Most were on dead shell but some wore on living Chlamys opercularis Anomia spp.

Reproduction
Embryos vere noted in Jamary, Maroh, Ootober and November. Colonies without embryos mere examined in June, September, December and February.

Geutier (1962) found ooecia, embryos and Larrae in February, April and September and ooeoia only in Harci in Mediterranean material.

Embryos are orange red.

Geographical Distribution
Appears to be cosmopolitan but a general revision of its distribution is necessary (Gautier 1962).

SMITTINA CHEILOSTOMATA (MonzOni)
(Hincies (1880) and I.O.M.H.F. (1937) as Smittia)

Distribution (See Kap 59)
Smittina cheilostomata is sparsely distributed over shelly grounds, particularly where there is considerable tidal movement. 54 of 63 examined were growing on the smooth inner surfece of dead shells.

Repraduction_(See Fig.II 63 and 64)
Embryos were noted in all months except February, April and May; few mere seen in Jamary and Haroh.

Ieproduaing colonies were, found at Roscoff in September and Ootober (Echalier and Prenant 1951). In Mediterranean specimens Gautier (1962) found ooecia, embryos and larvao in February and May and ooecia oniy in April, June and September.

Geogaphical Distribution
S. and M, Coasts of Britain; Rosooff; Hediterranean (Gautier 1962).

PARASMITIIHA TRISPIYOSA (Johnston)
(IIIncks (1880) and I.O.H.M.F. (1937) as Smittia, Marcus
1940 and P.H.F. (1957) as Smittina.)

Distribution (See Map 60 and Tables 31 - 32)
Parasmittina tiispinosa is not unoommon and is widely distributed

Off the S. of the Isle of tian. One colony was collected on the shore at Port Erin. It is most abundant on coarse, shelly grounds and uncommon on fine muddy Erounds. Usually about 2% of the eotoproot colonies in a sample are Potrispinosa but in some localities its constitutes 5% of the ectoproct population.

Potrispinosa has not been collected on algae or zoophytes but occurs on a wide variety of shells and on stones. Colonies occur on both shell surfeces but are more numerous on the inner surface.

Colonies of P.trispinosa are yollow and frequently spread over areas greater than two 3 quare inches.

Reproduotion (See Fig.II 65 \& 66)
Egegs and embryos have been observed in all months. Ooecia have been recorded in Northumberland in July and October (Roper 1913) and breeding at Flymouth in July (P.M.F.1957).

EgEs and early embryos are bright red (Munsell colour $7.5 \frac{5}{10-12}$, later stages and larváe are more orange (Munsell $5.0 \mathrm{yn} \frac{7}{10}$), all Intermediate shades have been seen. In late embryos the oilia appear bluish through the ooecial mall.

Geographical Distribution
In all seas except Arctio and Antarotic (Marous 1940).

SMTMTOIDEA RETICULATA (MacGillivray)
(Hincks (1880) and I.O.H.H.F. (2937) as Smittis.
P.M.F. (1937) as smittina)

Distribution_(See Map 61)
The revised edition of the I. O. M. M.F. Iists Smittoidea retioulata as "fairly common on shells off the south of the Island" but I identified only about 100 of many thousands of ectoprocts examined as this species: Specimens occurred in small numbers from soattered localities betreen 7 and $35 \mathrm{f}(13-60 \mathrm{~m})$ off the south of the Island. S.ratioulata was dredged most frequently at area C and on the Modiolus bed.

32 of 65 oolonies of recorded support were growing on living Anomia spp. shells (Anomia constitutes only a small proportion of the available support in all areas). S.reticulata also occurs on living kodiolus modiolus on the Modiolus bed south of Spanish Hid. The majority of the colonies not on Anomia or Modiolus were on the inner surface of dead shell.

Reproduction_(Fig.II $67 \& 68$)
Embryos and eggs were observed in June, August, September, November and December; eges but not embryos were seen in Jamary and February and ooecia only in Karch and April.

In Lediterranean collections Gautier (1962) found ocecia throughout the year and embryos and Larvae from Larch to September.

Embryos are orange-red.

Goographical Distribution

E.Atlantic from Arctic to Cape Verdo Is.; Wediterranean; Pacific coasts of N.America (Gautier 1962).

> EMILY _ FHIMCTELIDAE

PHYLACTELLA COLLARTS (Norman)

Digtribution_(See Map 62)
60 Inhlactella collaris oolonies were dredged at seattered localities (including areas A, B, C, D and E) between 7 and 35 f. ($13-64 \mathrm{~m}$). All the colonies were on dead shell, the majority on the inner surface.

Reproduotion
Samples were not obtained in Jamary, April, or October; colonies with empty coecia only were seen in February, Marah, Hay and July. Eubryos were noted in June, August, September, November and December.

Eubryos are orange-red.

Geosxanhionl.Distribution
British Isles (Hincks 1880)

PHYLACTMLIA LABROSA (Busk)

Distribution (See Map (2)
Of 35 Phylaotella labrosa colonios identified over 20 were dredged in area B and the remainder from a few other, soattered localities. All were growing on the incer surface of dead shells.

Reproduction
Culonies displaying no reproduotive activity were colleoted in Januery and February 1960, colonies with ooecia only were noted in December 1959, June and July 1960, and February 1961; a colony with embryos was dredged in August 1961.

Embryos are yellow.

Geogranhical Distribution
British Isles (Hincke 1880)

IAGENIPORA TEYRALTOIDES (Norman)
(Hincks (1880) and I.O.U. H.F. (1937) as L_sooialis)

Distribution
Recorded from 16-20 f. (29-37 f) E. of the Calf Sound by Herdman (1896), this species has not been recolleoted in Manx waters.

Gooeranhical Distribution
Boreal temperate E.Atlantio, Moditorranean (Gautier 1962).
EAMLIY EXOGHELLTDAE

ESCHAROIDES COCCINEUS (Abildgaard)
(IIncks (1880) and I.O.M.M.F. (7237) as Mucronella)

Distribution (See Kap 63)
Escharoides ooocinous is a ocmmon species from the Fuous gerratus zone to bejow 10n-water mark. It is abundant on the Iower shore at Calf Sound and on parts of Port Erin Broakwater. E.cocoinous forms extensive colonics over permanently damp roak surfaces such as the undersides of ovarhangs, under dense algal cover, under stones and boulders and on Iaminaria holdfasts. It occurs on sub-littoral rock and has been dradged from a few localities on coarse shelly or stony grounds. The majority of dredged colonies were in samples from areas A, B and C. 70% of dredged colonies were on the smooth inner surface of dead shells.

Reproduction_(See Fig.II, 69 \& 70)
Embryos were observed in all months, few are present between September and Jamary. • Peak reproductive aotivity in 1961-62 was in July 1961 when ovor 40% of the colonies observed bore embryos. A large number of coecia are present in most colonies but at no time did over 25% of them contain embryos.

In kediterranean material Gautier (1962) found ooecia, embryos and larvae from May to November, only ooecia in January and ancestrulae in July and Noverber.

Embryos are maroon (Munsell colours from 3.0 R $\frac{3}{8}$ for early developmental stages to $10,0 \mathrm{R}-2.5 \mathrm{YR} \frac{4}{8}$ for later stages and larvae were noted).

Geographical_Distribution

E.Atlantic from Kadeira to Spitzbergen (Gautior 1962).

FAMILY UMBOMUIDAE

UMBONULA LITTTORALTS Hastings
(Hinoks (1880) and I.O.M.M.F. (1937) as U.verrucosa)

Distribution
Miller (I.O.N.M.F. 2nd edition, in prep.) records this species as "common on stones at L.T.S.T. around the south of the Island." During the present survay U.1ittoralis was ocoasionally present but never comon in collections from between the lomer Ascophyllumzone and low-water mark on roaky shores.

Roproduotion

In U.Iittoralis the embryos develop not in coocin but within the parent zoocoium. Up to 5 embryos occur together in a fertile zooecium.

Colonies with embryos were collocted in February, September, October and November. Colonies without embryos were colleoted In Jamary and from March to July.

Embryos are present at PIymouth in August (P. W. F. 1957).
Emboyos are red.

Geographical Distribution
British Isles, Hardanger Fford; Bergen (Hastings 1944).

UMBONULA ARCTICA (H.Sers)
(Hincks (1880) as Mucronella paronella, Marous (1940)
as Disoopora)

Distribution
Umbonula aratica has been previously recorded from off Port Erin (I.O.M.M.F. 2nd edition, in prep.) but was not colleoted in present survey.

Geographical Distribution

Arctic Region, Atlantic coasts south to Yorkshire and Hoods Hole; In Pacific from Kurile Is;; Queen Charlottes Land and Vanoouver.

FAKIIT - CELLEEPORARIIDAE

CRILEPORARTA DICHOTOMA (Hincks)
(Ilincks (1880), I.O.M.M.F. (1937) and Harous (1940) as Cejlepora, Gautice (1962) as Harmerella.)

Bistribution (See Map 64)
Cellenorania dichotoma Erows almost exclusively on hydroids;
a very fen colonies mere dredged on shells. C.djchotoma is common on hydroids (partioularly Abietineria abietina (L_{0}), Sertularella nolvzonias ($L_{.}$) and Sertularia spp.) on muddy sand grounds between 25 and $35 \mathrm{~m}_{0}(47-64 \mathrm{~m})$. It is not common on coarse grounds. It is rarely dredged in areas B and C, more camon in A (where the substrate is muddier) and common at E.

Reproduction (See Ftg.II 71)
A high percentage of the larger colonies bore embryos in all months.

Wariing on Mediterrandan matcrial Gautier (1962) Iound embryos from Saptember to December.

Embryos are orange-red (Kunssi1 2.5 Yi $\frac{6}{10}$).

Goographioal Distribution'
Scandinavia to Horocco and the Azores; Nediterranean; Florida? Jepan?. (Gautier 2962).

CRLLEPORARTA FUMCOSA (Hincks)
(Hincks (1880), I.O.M.H.F. as Cellepora, Gautier (1962)
as "Cellopora")

Distribution (See lap 65 and Tables 33 + 34)
Contrary to the statement in the I.O.H.H.F. (reyised edition, in prep.) that Celleporania pumicosa is "conmon on the stems of hydroids and aleac off the south of the Island" I find that C.pumisosa is raroly present on hydroids. Of 372 dradged colonies
examinod μ_{4} were on hydroids, 28 on stones and 330 on shell. Some colonies occur on living Chlemys opercularis, Modiolus modiolus and Anomia spp.. C.pumicoss occurs on both surfaces of dead shells. It is fairly common on inshore dredging grounds (partioulorly area A and close to Bradda Hd. but is less comon further offshore. C.pumicosa is present on the underside of stones and on Laminaria holdfasts at about low-iater mark on most rooky shores.

Reproduction_(See Fig.II 72)
Embryos are present in all months but in very small numbers between January and June.

Gautier (1962) found embryos and Iarvae throughout the jear but less frequentiy in the parmer months in the Mediterranean.

Eubryos are red. (Kunsell colour 10.0R - 2.5Yi \sum_{10}^{5}).

Geographical Distribution

Temperato boreal E.Atlantic from Norway to Horo000; Moditerranean. (Marcus 1940.)

OMALOSECOSA RMULOSA (L_{0})
(Hinaks (1880) and Harcus (1940) as Cellepora)

Distribution

A. Fine Omalosecosa ramulosa colony growing on Cellaria sinuosa was dredged in 30 P. $(55 \mathrm{~m})$ off Port Erin. No accurate position for the haul is available because of poor visibility.

Geographical Histribution
E.AtIantic Prom Horocco to N.Normay; Mediterranean. (Gautier; 1962).

FAMIL OSTHIMOSTDAS

OSTHIPOSIA AVICULARIS Hinoks
(Hincks (1880), I.O.M.M.F. (1937) and Kareus (1940) as

Cellapcra, Guutier (2962) as "Schizmonora".)

Distribution (See Map 66 and Tables 33×34)
Osthimosia ayicularis is fairly common and widely isistributed over most of the shelly grounds investigated but is rare in offshore muddy areas. It was not present in shore collections. About half the D, avicularis colonies collected were growing on hydroias (particularly Abietinaria ebietina (L_{0}), Sertularelia polyzonias (L_{0}), Hydrallmania falcata (L_{0}) and Sertularia spp.). Several $0_{\text {pariculeris }}$ colonies often occur on a single hydroid stem. The other 50% of the colonies were on both rough and smooth shell surfaces and on stones.

Reproduation (See Fig. II 73)

Erbryos were present in all months. The percentage of colonies bearing embryos was highest between September and May. Gautier (1962) found embryos and Iervae in January, February, June and Ootober, and ancestruiae in Lay in Kediterranean colleotions. Embryos are yellow (Munsell colour 10.0 YR $\frac{7-8}{6-10}$).

Geographioal Distribution
Arotio Region, E.Canada and European ooasts from Norway to Cape
Verde Islands; Mediterranean.

OSTHIMOSIA ARHATA IUIncks
(Hincks (1880). I.O.M.M.F. (1937), Karcus (1940) as
Collapora, Gautier (1962) as "Sohizmopora".)

Distribution

Herdman (1900) recorded this species from $30 \mathrm{f}_{\mathrm{o}}(55 \mathrm{~m})$ at $6 \mathrm{ml}(9.6 \mathrm{~km})$ S.E. of the Calf. This is the only record of O,armata in Manx waters.

Gegraphiogi Distribution
North Sea to Morocco; Mediterranean (Gautier 1962).

CEITEPPORTNA COSTATIII (Audouin)
(Hincks (1880), I.0.M. M.F. (1937) as Cellepora, Harcus
(1940) as Siniopelta, Gautier (1962) as C.hessalli)

Distribution_(Seo Map 67).
Celleporina costazif is common under stones, on small red algae and on Laminaria holdfasts at the lowor levels of most rooky shores, it is also common on shelly grounds around the south of the Island. Over 90% of the dredeod colonies were erowing on hydroids, e.g. Falecium halecinum (L_{0}), Sertularella polyzonias (L_{0}) Diphasia spp., Scrtularia spp. etc., the remainder on shelle and stones.

Reproduotion_(See Pig.II 74)
Embryos were observed throughout the year, the of of colonies with anbryos is highest from June to November. Large numbers of tiny coionies were noted on hydroids in March 1962.

Gautier (1962) noted ooecia throughout the year, embryos and Larvae in February, May and Juno and ancestrulae in January, Harah, April, Hay, Dccember.

Embryos are deep red (kunsell colours $7.5 \mathrm{P}_{10}^{3}$ (early stages) to 10.015 ${ }_{10}^{5}$ (Late stages and Larvae) were recorded).

Goographical Distribution
Temperato boreal Atlantic; other records must be regarded with suspicion (Gauticr 1962).

FAMILY ALCYONDITDAE

ALCYONTDIUM PARASITICOL (Fleming)
Distribution
Sevaral Aloyonidium parasiticum colonies were found incrusting hydroids (inoluding Hydrallmania falcata (L_{0})) Erowing on the upper valve of a live Pecten maximus (L_{0}) dredged at area C (depth $23 f$. (42m)).

Geographical Distribution
Spitzvergen to the Channel; Chesapeaice Bay; (Bobin and Prenant, 1956).

ALCYONIDIUM HIRSUTUM (Fleming)

Distribution
Aloyonidium hirsutum is comon on Fuaus serratus on rooky shores around the south of the Island. It docurs, but less frequently, on other algae, e.g. Chondrus crispus Stackh. and Gigartina stellata Batt. atc, and rarely on stones. It was not dredged but was collected on algae from the shallow sub-littoral by diving.

Reproduction
A,hirsutum has a well-marked reproductive season between September and April. The first sign of reproductive activity is the presence or mumerous sperms (visible under the low-power binocular microscope as white patches) in mid-September and Ootober. By November numerous small eggs or embryos are present. Each fertile sooecium contains $4-8$ embryos. By late November all large colonies bear embryos. The first larvae are released in late January and during February the majority of the larvae are released. During Maroh and April only a very fow embryos remain in the parent zovedia. No embryos are present after ipril.

On several ocoasions larvae were observed on the surface of the colony after the colony was exposed by the recoding tide, when placed in sea-water the larvae swam amay from the colony in the normi manner. Large numbers of Ahirsutum lanvae settle on Fuous serratus during January and Fobruary. The majority of ancestrulae are attached close to but on each side of the centre of the frond. The small colonies grow slowly; by early April (about 2 months after settlement) the majority of young colonies had only 2 zooecia, a fortnight later some had reached tho $4-200 e o l a$ stage and two weaks later some colonies were of 6 zooecia, after this
growth accelerated. As growth continued many of the colonies became contiguous and fused; by the ond of July most of the oolonies were of this composite nature.

The embryos of Aehirsutum are white and rhen mature form a conspiouous ring around the orifice of the parent zooid.

Geographical Distribution

Arctic Seas and European coasts south to the Channel (Bobin and Prenant 1956).

ALCYCNIDIUA MAMILLATUM Alder

Distribution (See Map 68)
Less than 50 colonies of Alcyonidium mamillatum were collected during this survey: The majority were dredged on shells at area C and a few other scattered localities on shelly grounds. A few colonies were collected on the shore at Port Erin and the Calf Sound.

Goographioal Distribution

Arotic Seas; British and North Sea Coasts; American Atlantic coast south to Maine; Brazil; Japan; Vancouver (Marcus 1940).

ALCYONIDIUY ALBIDDA AIder

Distribution
Specimens probably of this species have been dredged in several localities including area E and $4 \frac{1}{2} \mathrm{ml}{ }^{\prime}(7.2 \mathrm{~km})$ at 3.57° 菌 of the Chicken Rock.

Geographical Distrybution
Aratio Region and European coasts south to Biscay (Marous 1940).

ALCYONIDIUM GELATINOSUK (L.)
Distribution (Sco Hap 68)
Miller (I, o. M. M.F. 2nd edition, in prep.) reoorded this species from L.W.S.T. on Port Erin Breakwater; it was not collected between
tide-marks during the present survey: Aloyonidium gelatinosum occurs at areas A and B and in a few other localities. The majority of colonies colleeted were less than $3^{\prime \prime}$ high but a fine colony over $6^{\prime \prime}$ in height was dredged on the Modiolus bed. A.gelatinosum was colleoted from about 30^{\prime} below L.W. on Port Erin Breakwater by diving.

Reproduction
Sperm-filled zooecia (which appear whitish and opaque) were noted in September and October; from November to February all large colonies contain embryos whioh are released in March. No reproductive aotivity was noted from Larch to August.

Geoeraphical Distribution
Arctic Region and coasts south to S. E.England, Woods Hole and Vancouver; Mediterranean; Natal; Magellan Str. (Karcus 1940).

ALCYONIDKM VARIEGATUM Prouho

Distribution(Soa Map 68)
Previously recorded only from Eanyuls, colonies of this species oocur on shells off Fort Erin. Speoimens agree in all respects with the description in Bobin and Prenant (1956) and in the reproductive season can be recognised by their bright-orange embryos: Alcyonidium variegatum has been dredged most frequentiy in areas $A ; B$ and C but also occurs in other localities. It ocours on both surfaces of dead shells and occasionally on stones.

Reproduction (Fig.II 75)
Embryos have been seen from August to Hay. About 8 develop in each fertile zooecium and eppear as bright orange areas of colour under the low-power binocular microscope.

Goopraphical Distribution
Banyuls (Prouho 1892).

ALCYOHIDIUM POHYOU: (Hassall)

P1atribution

This apecies has boen oollected on the shore inside the T blook of Port Erin Breakwator. It was not oolleoted on other shores. At Port Erin it oocurs on Fuous sorratus fronds and near the base of Asoophylium nodosum fronds. It is not oommon. The closely related Aloyonidium mytili is comen on the stones of this ahore.

Roproduction

Many enbryos were present in Fobruary L962) and fow in August 1962.

Hastings (P. M.F.1957) found Larvae at Flymouth in August. Bobin and Pronant (1956) record broeding botween April and August in the Channel.

Eifbryos are white.

Goographical_Distypution

The aynonyman and ocnfusion assoointod with this apeoios do not allow any conclusions to be drawn about its distribution.

ALCYONTDTUM MYTILT Dalyell
Digtribution_(See Yap 69)
Alovonidum mytili is coman on stones from below the Ascophylium-zone on most rooky shores. It is particularly comen at E.L.T.3.T. among stones on the outer side of the 'T-blook' at Port Erin Breaknater. It is common offahore on coarse shelly and stony erounds, espeoially where the tide is strong, e.g. area C and In the tidoway around the south of tho Island. A,mytili inorusts shells and stones.

Reproduotion_(Fig.II 76)
Embryos have beoen noted botween Ootober and June (with the exoeption of Jamuary), very fem embryos were seen in Cotober and
from karah to haye
Erbryos are pale pink (kunsell colour $10.0 \mathrm{Nr} \frac{8.5}{2}$).

Gooprachicil_Distribution
The synonytry and confusion assooiated with this species do not allow any conolusions to be made about its distribution. Definitely reoorded from Horlaix (Le Brozeo 1955).

EAMILY ARACIMIDIIDAE

ARACHNTDIUM MPEOTHOOTDES (HAnoks)
Distribution (Hap 70)
25 oolonies of Arachnidium hippothooiaes were oolleoted in this survey. The majority were on Asoldiella spp. and on dead shell dredeod on muddy sand grounds between 25 and 30 r. ($45-55 \mathrm{~m}$). A few were dredged on coarse grounds. Speoimens on ascidian tests are very similar to those on shells but tho individual zooids tend to be smaller in colonies on ascidians.

Geographioal Distribution
Greenland, Spitzbergen, Torbay, Pas-de-Calais, Bonifaoio (Bobin and Frenant 1956).

ARACIMDIOM ETBYCSUM Binoks

Distribution
A large colony apparently of this apeoios was found on a Sabolln tube from $57 \mathrm{f}(103 \mathrm{~m})$ NoI. of the Cals.

Goofraphion 1 Piㄹstribution
Rare on M.Sea coasts; Ceylon; Brazil (Bobin and Prenant 1956).

FAMIX KIUSTRELITDAE

PLUSTBSLITDRA IIISPTDA (Fabrioius)
(Hingks (1880), I. o. H. H.F. (2937), Larcus (1940),
Bobin and Pronant (1956) and P.M.F. (1957) as Flustrella)

Distribution

Vory abundant below L. W.N.T. on all algae-bearing roaky shores the south of the Isiand. Plustrelildra hiapida is most oomonion Fuous serratus but also ocours on other alga e. B. Chondrus orispus. Gigartina stellata, Corallina offioinalis Plumaria elegans, eto., and less frequently on stonos.

Reproduotion

Roproduction takes place during the colder months. Spermfillod zooecia wore noted in lovember and small eges in Fobruary. From Haroh to June all large oolonies contain some ambryos. Esoh fortile zooocium broods from 4 to 8 embryos. In 1961 Iarvae and ancestrulas were noted from laroh to June but in 1962 (a oolder yoar) ancostrulae did not appear until April and continued into July when observations coased.

Gegraphicgl Distribution
Arctio; Atlantio coasts to Channel and Woods Holes Faolifo cousts from Arotio to California; Koditerranean? (Karous 2940).

2AMI

VESICULARIA SPITOSA (L.)

Dintribution
4 Vesicularia spinoss colonies were oolleotod, one from area A_{3}

and one from $11 \mathrm{ml}(17.7 \mathrm{~km})$ S. m . of the Chioken Rook $(42-45 \mathrm{E}$ (75-32m)).

Geogranhical Distribution
English; Irish; Belgium and Channel coasts, Koditermanoan.
(Bobin and Pramant, 2956).

BOAERBANKIA PUSTUNOSA (E11is and Solandcr)

Distribution
During the present survey a colony of Bowerbankia pustulosa was dredged from area $D(10 \mathrm{f}(18 \mathrm{~m}))$.

Roproduotion
Embryos were present in Septeaber.
Enibryos are yellow.

Goographioni Distribution

S.Britain, Channel coasts; Lediterranean; Zansibar (Dobin mad. Prenant, 1956).

BORERBARKIA IMBRICATA (Adams)

Distribution

The I.O.K.U.F. (revised edition, in prep.) inoludes offshore records of this specios but it was only found in shore colleotions during the present survey. It oocurs on most rooky shores with aleal oover from the Ascophyllum sone to Iow-water mark. It occurs on atones and near the base of Asoophyllum nodusum fronds.

Renroduotion

Eebryos were noted from June to Septembor.
At Plymouthroproduotion has beon noted in August (P.M.F. 1957). Embryos are yellow.

Goographical Distribution
Arotio Ragion; European coasts south to M.Franco; Mediterranoan; Caspion Sea; Japan; Guoon Charlottes Land. (Harous 29,0).
bombribargia gractits Leidy
(Hinaks (1880), X. O. H.M.F. (2937), Larous (2940) and P.K.F. (1957) as Beoamdata.)

Distribution

Boserbankia gracilis hes been colleoted on the undorside of stones from most of the rooky shoros of the south of the I.c.ll. and has been drodged in swall numbers in aroas $A, D, C, D, E, c l o s e$ to Eradal Hd. (depth $18 \mathrm{f} .(33 \mathrm{~m})$) and $9.4 \mathrm{ml}(25 \mathrm{~km})$ at $.557^{\circ} \mathrm{m}$ from the Chicken fook (depth 30 f. $(55 \mathrm{~m})$). Bograolils ocours on the walls of the Karine Biological Station aquarium tanks.

Reproduction

Embryos were noted in June and liovembor.
Embryos are pint.

Geographiogl Distribution

Arotic Ragion, Atlantio coosts south to Channel and Gulf of Lexioo; Kediterranoan (Bobin and Prenant 1956).

AMATHIA IENDICERA L.

Distribution
A colony of Amathin lendigara was found on the carapace of a Large Kaia 3quinado (Herbst) trawied S.iF. or the Chioken rook in about $40 \mathrm{fa}(73 \mathrm{~m})$ by the fishing boat "Manx maid" and brought to the 1abcratory on 25.3.61.

Geogerahical Distribution
English, Delgium and French coasts; Hoditerranean; Adriatio; Atiantio as far south as 3.APrica; Indian Dcean as far south as Australia (Bobin and Prenant)1956).

PAMIT EMSEIDAS

BUSKIA MTTENS AIdor

Distribution

Buakin nitens is very inconspioucus and difficult to soe unless a oareful searoh is made for it. It ocours on moophyte atems. The embryos are bright yellow and more conspiouous than the rest of the colony which probably result in more colonies being noticed during the reproduotive season than at other times. Colonics wore noted on eoophytes from areas A, D, C and E but B, nitens pribably has a wider distribution than this. One small colony was noted on the spines of a Hermione hystrix (Savigny)

Reproduction

The embryos are usually brooded singly but a fem inividuals contiainod two embryos. Enbryos vero noted from lugust to November.

Erbryos are bright yollow.

Geogranhiog Distribution
Arotio Saan; Baltic; NoSea; English and Channol coasts; Weditermanoan; Forto Fiooj Brasil; Zansibar; Alaska. (Bobin and Prenant 2956).

FAMILY VALKGRIEDE

VAIKGRIA UVA (I.)
Distribution
Yelkeria uva is a common species on algae-covered rocky shores, o.g. Port Erin Breakwater, the shores at Calf Sound, and Porwiok Bay. Lost colonies were colleoted on plumarin elegans but it does ocour on Corallina offioinalis, other small algae and (rarely) on stones. It has boen colleoted from about M.T. to L.T.S.T.
neproduotion
Enbryos were noted in dugust and 3optomber.
At roscosf reproduotion takes place betreen Kay and Septombor (Bobin and Prenant 1956).

Embryos are oolourloss.

Geographical Diatribution.
Kava Sea; All NoAtlantio From Aratio south to Koditerranean and New Yoric; Red Sea; Zanzibar; Indian Coeany Caina Soa (Bobin and Prenant 1956).

VALKERIA TREGULA (Hincks)

Introduotion

Valkeria tromula was briofly describod by Hinoks (1862 and 1880) who recorded V.tremila from the Isle of Lan, Ilfracombe and Saloombe Bay. The only other record of the spooies is by Hallez (1890) from the Pas de Calais. Several colonies were collected in the present survey and a description of the specios is given below.

Desoxintion

The colony consists of long, thin ($25-35 \mu$) stolons composed of a series of alongate (2-3 ma) kenozooids. Each alongato kenozooid

- Is awolien (to $40-60 \mu$) at its alstal ond immodiately proximal to its terminal septa. From one or both sidos of this swelling a small kenozooid is budded off which eives rise either to a series of similar amall kenozooids or to a further elonzate atolon-life kenozooid. On the small kenozooids and (rarely) on the 8molien tip of the stolon tiny kenozooids are borno on which the autozooids are borne singly. The autozooids are deoiduous and after an autorooid is shod tho tiny kenozooid remans; up to 5 such tiny kenozooids have ten noted on a amall kenozooid as evidence of the former prosenoe of 5 autozooids. Oniy ono autozooid (rarely t (\#o) occurs on a small kenozooid at any timo.

Tho autozooids are amail; 400-650 μ in length, and 270-220 μ in width when fully contracted and almost trioe as long vien the tentzoles are expanded. For most of their length the autozooids are of undform width, but from about $40-70 \mu$ from the proximal and (the end nearest the attachment) they taper rapidiy until they measure only about 20μ in dismoter and are ciroular in ozossceotion whare they attach to tho tiny kenozooid which bears then. This tapered part of the zoold has the appearance of a pedunde. The cuticle is varicusly grooved at about $40-70 \mu$ from the paint of attachment.

In certain states of contraction the usually ciroular orifice bocomes quadranguiar under the oction of the two series of parietal muscies. The tentacle shoath is long and bears a welldeyeloped "pleated collar" (tho "sotose operculum" of Hincks (1880)) which folds spirally during retraction and oloses the Iumen of the invaeinated tentecle sheath. The outicle and body wall are transparent. There are aight compylonomate tentacles (1.e.two tentacies are almays doflected outwards mon the tertacular orown is expandod). The eut is of the usual oterostomatous type. There is no efzzard. The stomach walls are brown. The masoulature is of the typical ctenostomatous type. The lophophore ratractors aro Inserted at the base of the tentacles and to the body wall distal
to the ercoved area of cuticlo and abcut $100-200 \mu$ from tho proximal end of tho cutozoold. Tho tenticio-shoath retractors are moll-developed and attach akout end alichitly distal to the ploated coller and to tho body will. The parietal musculaturo is mailficd do that the entire cutozooid con make slicht movemente in the vertical plano. In tho distal part of tho autcsooid the parictal cusoles are, as in zost atoloniforous ctenostozes, perpondicular to tho longitiadnal nods of tho autozooid but the proximal pair of eroups of fitros aro not perpendicular tut cblique. Tho two prozimal eroups insort olose togother on the wall near the attachenet of the lophophoro rotractor musclos but on the other mell thoy insort aeparately so that thoy form an oblique V-ahapo across the zooecial oavity. Noar thoir most distal attachmont the body wall is moilficd so that contraction of theso proximal pariotal fibres roculta in invagination of the outiole and ecnsequent alteration of the axis of tho cutozooid though about 40°. Thoso novomonts mere mentioned by llinoks and tate place sis follomas for expansion of the tenhecular crobern the pariotel musolios contract and the inoroaso In hyirestatio prossuro in tho body covity begins tho overaion of the tentacular ahoath. At tho samo timo the contraction of the nodifiad prozimal pariotal ausalos causos invacination of tho cuticlo and lifts the distal part of the nutozooid through about 40° into a position moro rearly porpendicular to the support. Further parietal cuscle contraction resuits in ocmipioto everaion of the tentacio shosth and tontacular crowen. Fetraction of the tontacle3 toleos place in tro stacos. Tintil tha pleated collar is levol with the orifice the lophophore ratrictors und the ratractors of the toritacia shasth contract togethor, but at this point tiss loghoghore rotrsotors reach thoir minima length and furthor retraction is performed by the tentaole aheath retractors alono. while the lophophoro retractors are still offective in retraction no arcoping of the autozoold takos pleco, but onco they cosse to bo
effectivo 010% drooping tomards the anal side begins. crton rotraction is only partiol and, tho autozooids do not urocy. Thus craction is controlled by modifiod parietal muscles by invaeination of tho body nall and drooping is not under diract musoular ointrol. Fhis mothod of croction is aimilar to that doscribed by silon (1950) for 1Mrncolin bimeminsta. Faters and diffors ifom Farrolin renons (Earro) whoro tho cusolen controlling movemsut oro cnclosed in tho pechnclo.

Distribution
9 colonies of V.tromuln moro colleotod. Spooimens moro drodecd in aroas A, B, C, D and E mifich iraicatea a mido distribition tut Vetromila is an inconspicucuas apeaies and has not boon obsorvod in asmilesfrom othar localities. Colonios voro on okells and cn the oreot ootoproots Collnem fiotulosa and bormogelinrln norunosa.

Gogemphical Distyibution
Salcombo, Iliracombe, Pas de Colais (IUnctis 1800, Helloa 1890).

EAMIY THITCBLYTDAS

2HETTCHITA KOMFIT G.O.Sors
(I.O.14.H.F. (1937) as T.booini)

Mgitrbution
Triticolin koroni has beon collcotod only on crustncoans and is common on Nephrops normeicus (L_{0}) , Celocnris macandrong Dcll and Gononlex rinombidas (L_{0}) in Lanm mators. fincryopicus and G.macandronn occur only cn mud or very mudidy mand s all tho Gerhombotion exminad mero dredged on muddy and. llenormopicus and

Comagndrens aro abundant on cud grounds dooper than $37-40$ i (69-73 n). Ti:oreni was collcotod botricon 37 and 65 ($69-119$ m). Obserpations on kanx asterial support sizon's (1936) cone -alwion that pritioolla koroni and gaboki aro varietios of a aingle bocies. On Comacindrong in lanx maters tho majority of zooids aro koroni-typo but a pido varicty of zocid ahapos waro noted on Nenorvesious. Korentetypo zooids occur on tho carapaco whilo booki-type zooids aro tost common on tho cholae, tho rostrum, oyos, mouthparts and bases of the walleing loge. Colonioa with both leoroni and booki zooids and zoolas which could not bo classod as elther havo ofton boen soon. Tentaalo numbor varles botzoon 10 and 22.' Tho zocids with lon tontaclo numbery aro usually on tho rostrum or tho cholso and aro almost oirouler in latoral contowr. It is uniliedy that thoy aro meroly young zooids. Devcloping sooids with 18 inoipiont tontocles havo beenscen and sooids having only y_{4} tontscies have beon seon with larco eges in tho body cavity.

ncproduotion

I.koment autozooids aro homaphredito but mature produots of both conads are not oomionily freo topother in the body esity. Zooida paclicd with spoxm havo bcon noted and up to 50 eces havo boen sean in the body cavity of a aingle mooid.

Eicus and sperm woro notod in all months in which oafolos wero collectod. Very fem zooids containod egss or sperm in Jadiary, Way and licvamber and in theso montha only a for oces woro present; in October about 20\% of tho zoolds containod up to 10 oens (and in somo cises up to 30); in August tho majority of autosocids contained over 5 eces, some over 10 and samo up to 50.

Goorranicnl Distribution

Eritioln Islo3, Jormay, Horth Son, Capo Bretcn, BIscay, Portugal; Adriatio; Jea of Varmara; Japan (Bobin and Pronant 1956).

(1uncks (1880) and I.0.Li.K.Y. (1937) as cyzindreocian.)

Bigtribuiticn (Soo Kap 7)
Ifololin dintata is vidaly distriluted on sholiy grounds but is absent fica rud exounds and extromely otcong erourds. It is fairiy comon in aross f, D and C but loss pboudant olsordoro.

Ildilatnta occurs on a mico rarioty of dead shells and zoophytens fou calonios maro soon on atomos. It has been rucordod Cn Byidurncrabs and Iivinc chinmer onoroultris sholls.

Roproduction
When omisyos aro present tho distal part of tho autozcoid is amollen and somotimes appoars whitiah; 3-4 small white cerbyos are presont in eaoh fertile zooid. Colonies roro examinod in all months; oibryes were notad in flovenvor, Docomber and Janiary.

Gogoraphion Distribution
Asotio Legicn; Eurcponn Atlantio Coasts; E'oditorrancan; Iod Sea; India; Mrazil (Eobin ena Eronant 1956).

MOSGITA FUSIIJA (Uncics)
(IIIncks (1380) and I.O.H.H.F. (1937) as Cylinimroogium)

Distrikutien
Racordod in lanx nators caly by Hordman (1901) from ofr Contraxy Hoad.

Gopranhion patribution
British Islos (yyland 1958).

EAMIM MYOPHOABLIDAS

Diatribution

The stolons of fiynonhorelln eypansen remiry between tho lacolino of the membranous tubes of cortain polychactes, e.E. Chnotontorys variopodntus (Fonior) and Innico conchilem (Pollas) and the autozooids protrude the tentecular crown into the lumen of the tubo by ray of a small circulor hole. Each cutozoola bears a "rasp" mith ruich it Loops its holo opon. Heemansa is common in banx wators. It occurrod in about 80,5 of the Chnotonterus tubos examined. Chrotontorus tubes with Hemonnas have boen dredged from much of tho offohoro annd and muddy 8 and areas. Oniy ono of aevoral Xenice tubos searabed containad flexrnesg.

Rompanction

Liany of the rooids of a colony drodgod in October 1961 containod asyoral tiny eges.

Gogranhicgi Distribution
Siorth Sea, Chansel, Eanguls. (Bibin and Fronant 1956).

EAITIY KTBMSEMTDAR

ETMOSRITA GRAGILTS Bincke

Distribution
Eocorded from the Islo of Han only by Lomas (1886) from botricon Port Erin and the Calf.

Cooprachical Distribution
Eritish, Vronah, Spenish end Partuecse coasts; Heditorronoan. (Dobin cna Pronant 2956).

EExETRNTIA ccricuaras silon

Distribution
Fenotrantio conchnrum is vory comen in tanx rators and was fount whorover caca sholls woro collccted. It has not bien fcund on the shore but has beon colleoted betroen 6 and 40 f(11-73m). Poconohnum occurs in a eroat varioty of doad sholls. Almost overy doad Chlamys opercularis (I_{0}) and Panten maximes (I_{0}) oholl is infoctod and it is comonly prosent in doad sholls of Glyomoris
 iolondica (L_{0}), Dosinia luninus (L_{0}), Voruas casina (L_{0}), V.fencinte da Costa, Intrarin lutrarin (L.) , Gnri oppo, Ensta sppo, ciead and living Anomin spp. (tho first rocosd of this species from livo mollescs) and coad Aperritats pes-relcoant (L.), and Fuccinum unciatum (x_{0}) .

Honrodugtion
Vory for ecrezooids wore scon, now contained embryos.

Ceoranhicni Diatribution
fiorway, Sreden (3ilon 244) and Calliomin (Sculo 1950).

Introduction

Ono of the aims of this investigation was to acquire information on tho distribution and the factors influencing tho distribution of marine ectoprocts around the south of the Islo of Man. A lorge area (See p. 5) including a wide rango of onvironmental conditions was eampled both qualitatively and quantitativels (Seo p.b). The data obtaincd allow conclusions to be drawn as to the relative importance of various enviromental factors in the ecology of ectoprocts. The only other study of this type is that of Gautior (1962) on Meditorranoon cheilostomatous ectoprocts, the majority of other warks on rogional ectoproct faunas oro largely taxonomical, e.g. Hincks (1880) "British Marino Polyzoa", Marcus (1940) "Danmark's Fauna 46. Mosdyr (Bryozoa oller Polyzoa)", Bobin et Prenant (1956) "Faune de France 60 Bryozaires Pt I", Osburn (1940)"Bryozoa of Porto Rico", etc.

Factors influencing tho distribution_of Manx Ectoprocts

SALTNITY

The salinity of the sea around tho south of the Isle of Nan varies between about 33 and 35% (Slinn 1961) and cannot be expected to affect the distribution of ectoprocts in the area. No rivers enter the soa within the area samplod and most of the streams entor the sea over sand or through gravel. Ectoprocts ore absent from the beds of the feu small streams which enter the soa over rock or boulder boachos.

Ectoprocts are usually scarco or absent in rock pools where salinity (as well as p.ll. and temporature) may undergo largo fluctuations.

No freshwater ectoprocts havo been recorded from the Isle of Nan.

There are no abrupt temperature changes in Manx waters: the anmual tempersture range is not great (about $6-16^{\circ} \mathrm{C}$ in most years) and temperature differences between surface and bottom wators are small throughout the year (See FigIti) + (Silinn 1962). It is unlikely that temperature has much effect on the distribution of sub-littoral ectoprocts (See p.135for discussion on temperature and reproduction). On the shore abrupt temperature changes do occur and temperature has important effects on desiccation, humidity etc. The majority of shore ectoprocts occur in situations e.g. under stones or thick algal covor, where drying out is unlikely, but some species e.g. Flustrellidra hispida which is abundant on Fucus serratus, appear to bo able to withstand considerable desiccation.

HYDROGEN-ION CONGTNTRATION ($\mathrm{I}, \mathrm{H}_{\mathrm{N}}$)

The p.H. of the open sea varios within narrow limits and seems unlikely to effect the local distribution of ectoprocts. In rockpools fluctuations in p.H. can take place; ectoprocts are not conmon in rock pools.

LIGTT

Because it is an important factor in the distribution of algae light has lorge effects on the distribution of shallow-water ectoprocts. Largo algae serve as supports for many ectoprocts while small unicellular algae are the principal food of shallow wator ectoprocts (soe below). In Manx waters the growth of lorge, attached algae takes place only in the upper 22 m . (Kain 1960) (rock has not yet been found at greater depths) and consequently ectoprocts growing only on algae are restricted to these shallow waters.

Hyman (1959) states that the food of ectoprocts "consists of mimate organisms, mainly diatoms" but it is obvious that the availability of diatoms will decrease with increasing depth. Mare (1941) working off Plymouth found several abundent benthic diator species
at 77 m . depth but only one at 113 m . Micromorganisms other than diatoms e.g. flagellate and ciliate protozoa, must make up an increasing proportion of the diet of ectoprocts with increasing depth.

Tho larvoc of many ectoprocta become photophobid prior to settlement but tho larvae of some species are indifferent to light (Ryland 1960). Ryland worked mainly with shore species. Photophobic larval behoviour would take the larvae into areas of low light intensity e.g. under atones and overhangs, where desiccation would bo less likely and survival of the colony onhanced. In sub-littoral specios photophobic behaviour would result in the larva reaching the bottom where it might find a support on which to metamorphose.

FOOD (See above)
It seems unlikely that food is of great importance in controlling tho distribution of Manx ectoprocts. Availability of food would limit any ectoproct feeding only on algae to aroas where suitablo algas wero precent.

AVAITABIIITY OF IARVAE AND DISFERSAL MCCHANTSMS

All ectoprocts with the exception of Monompyozoon app. are sedentary and grow attached to a fixed support. The larval phase in the life-history is important both as a dispersal mechanism and as a mechanism for finding now areas of suitable substrate. Ryland (1959) showed that the larvae of some algal incrusting spocies select particular algae on which to settle. The larvae of other ectoprocts probably select particular supports for settlement. The present investigation has indicated that many specios aro more or less limited to a particular type of support and are not distributod at random. No experimental wark has been done but the hypothesis thet this non-random distribution is due to larval selection is borne out by the observod fact that fow ancestrules ar tiny colonies of any spocies were found on supports outside the normal distribution of their species. If the non-random distribution was due to post-settlement natural selection then ancestrulac should occur an all available supports.

Two widely difforont types of larvac ara found in marino ectoprocts. Tho majority of apecios have a lecithotrophic, short-lived larva but a few speoios have tho moro complex eyphonsutes lorva; Tho lecithotrophic larvo have a brief swiming existence of fron a fow hours to a day (Grave 1930, Hymen 1959, Rylond 1959). It is not known if motamorphosis can be delayed in the absenco of a cuitable suppert. Lecithotrophic larvio camot dieperso over more than a emall area during thoir frooewirming lifo. Compotition for support is greatost in thoso aroas where supports oro most abundent. Whoro mappert is searco specios which produce eithor moro lorvse por colong or longer-living larvao (both mothods incroase the mubor of"larveo-hourg" per coleny) could bo expectod to bo most suscosaflil. How for this is truo is not know but somo of the commonast apocios in tho muddy sand aroa o.E. Thbilinora 117incos, Lichenonors hionidn, Aldorina imbolis.s, Schizomaviln nuriculate, Onthimosin ovicularis etc., produco lareo mumbors of lsrvoc. Tho majority of apocies found in areas of veant suprort (1.o. mundy cand) also occur in arcas of moro obundent cupport where, as ons might expsot, thoy are ofton equally or more comon, but some species are confinod to eroas of seent support and it must bo assumed that factors other than availability of support are of impartance in thoir distribution. Such factors could bo epocial food requircmants or depth preferences otc., but opecios confinod to theso aroas must havo aprropriately high "larvac-hours" par colony to enabla thom to maintain thomsolves. Thus tho mubor and length of life of tho larvoo of a apecios aro of importanco in detormining tho extont of its distribution.

Oyphonsutes larveo aro planhtonic for a period of eoversi weoks and during this timo becoso disporsed ovor a wice area. Thin is illustratod by tha occurrenco of Nembroninope mombranacen cyphonautos in tho middle of the Irish Sea (D. I. Williamson porsonal comunication); adult Memonbrorocos erou only on Lominerin fronds. Cyphonautes, in bocping with thair longer planktanic life are produced in lorgo mabars, up to 50 oges being produced by a ainglo zoold but lecithotrophic, short-ilived larvae are froduced in smallor mubera.

DEPTH
There are a momber of species confinod to the shore and innediato sub-Iittoral but below tide-marka depth alone is of little importance: coarse grounds have dense ectoproct populations, and oilty, muddy grounds with little hard support have sparse populations irrespective of depth. But depth does affect water movement and bottom substrate which are important factors in ectoproct distribution.

hatcr movemenr

Both tidal currents and wave-action have largo offects on the sea-bottom around the Isle of Man. In localities of powerful curronts or wavo-action all but the largest boulders and atonos are swopt away to be deposited where the strength of the water movement diminishes. Particles are doposited according to density, size and shape. In the area sampled tho strongest tides (up to 4 knots) occur around the Calf (particularly through the Calf Sound and around Chicken Rock) and in these oreas cloan rock surfaces and large boulders make up tho bulk of the bottom matorial. In areas of ilttle or no: wator-movement e.g. some miles to the west and northwest of the Calf, the bottom material is almost entiroly a fino, sticky mud. Between these two extremes a great varicty of bottom types exists.

The occurronce of sholl beds consisting mainly of one species e.g. the Chlamys beds wost of the Chicken and tho Glycymeris beds at area C, can perhaps be explained by referenco to tidal currents. Shells of a particular species are fairly untform in olze and shape and if carried along by a tidal current will bo doposited togother when the current falls below a particular strength. The presenco of a shell bed of a particular species is not nocessarily corrolated with an abundance of living specimons of the samo speciea: live Chlamps onorcularis are not common on the bedis of Chlemys shells nor are live Glycymeris glycymeris comm at areac. The sorting of bottom deposits by water movement affects not only the distribution of dead sholls but also plays a largo part in determining tho point of origin of the sholls. The distribution of many molluses is strongly
correlated with bottom deposits 0.g. Glyeymeris glveymeris lives only in areas of fairly clean sand whilo Cympina islondica is comonest in muddy sand oreas. In areas of ifttle wator movement the dead sholl will be from molluscs originally living in that locality but where powerful tidal currents are sorting dead sholl, sholls of a species may be present where living specimens do not occur.

In addition to its importance in determining the nature of the bottom in a particular locality water movement has two other important effects, (a) it heeps hard surfaces clean and available for colonization by eessile organisms and (b) it ensures that a steady flow of water is moving past sessilo organisms and thus increases the efficiency of filter feeders by reducing the likelihood of them filtering the some water twice.

Tho amount of exposure to wave action is an important factor In the ecology of rocky shores. Very exposed steep shores have no algae above the Iominarin zono and no stones or boulders and hence no ectoprocts but sloping shores exposed to littlo wave action have thick algal cover and often momorous stones and boulders and usually have a rich ectoproct population (soo p. 125).

SUPPORT

All ectoprocts, except Monobryozoon spp., requirc a support for settlement and attachment. Any hard, clean support, e.g. shells, stonos, algae, hydroids, crustacoans, etc., is likely to be colonized by ectorrocts. Support is probably the primary factor in ectoproct distribution but is itsolf dependant on many other enviromental factors. In the area investigated the abundance of supports suitable for ectoproct colonization decreases with increasing fineness of the bottom sediments. In areas of fine sedimentis and littlo wator movement (muddy sand and mua grounds) any hard, inert, material soon becomes covered with silt but on coarse grounds materials are kept clean of silt by wator novoment and are extensively colonized by incrusting organisms. The areas richest in ectoprocts are those with coarse bottoms and abundant water movement; muddy sond and mud grounds
have poor populations (Sce Map 2).
Each ectoproct species grows only on a more or less limited rango of supports which vary from species to species. The range of supports on which a species will grow is reflected in its distribution. The ubiquitous Electra pilosa (see p. 33) grows on a great variety of supports but the closely related Membranipora membranacea grows on a narrow range of supports and has a much more restricted distribution. The ronge of supports on which a species can grow is, in part, dependant on its growth habit. On the basis of growth pattern ectoprocts fall into threo major groups: erect specios, encrusting species and nodular species. In encrusting species all the zooids are in contact with the support. In erect species only one or a few zooded are in contact with supports. Nodular species have a bisel encrusting layer of scoids on which several more layers grow in turn. Encrusting species can be divided into three sub-groups: (1) species in which the colonies spread over the support by stolons, or by rows of zooids placed end to end either singly or in small mumbers; (2) species producing flat, more or loss circular, colonies in which all the zooids except a few of the oldest produce larvac; (3) species producing flat more or lass circular colonios in which nons of the zooids of a large central area and only a small proportion of thoso outside it produce lorvae. The rango of supports availatle for succossful colonization is reduced es the area of support required for growth to mature size increases. Eroct species require only a very small attachment area and, togother with nodular spocies, and spreading species requiring narrow strips of support and encrusting species in which the majority of zooids brood lorvoo, can successfully colonizo small areas (i.e. about $\frac{1}{2} \mathrm{~cm}^{2}$). Encrusting species in which only a small proportion of the zooids ever produce larvae must colonize a larger area if they are to grow to mature size. The ectoproct species from the south of the Isle of Man are grouped according to growth pattern in Tablo 35 which also indicates the main features of the distribution of each specios. Those differences in pattern of growth and support requirements mean that more species can exploit a given
area of support. A single picce of sholl can bo colonized by erect, spreading and encrusting species.

The various types of support availablo for octoproct colonization in the area surveyed are discussed in turn below.

ALGAE as_suprorts for ectoprocts_

Algae only occur where there is sufficient light for photosynthesis. Encrusting red-algae were dredged down to 29 f. (53 m .) and erect algae to 18 f . (33 m) . Encrusting algao are raroly colonized by ectoprocts. Other algae can bo divided into broad and narrow-fronded types. Broad-fronded types include fucoids, Lominarias and some other red, brown and green algae. Narrow-fronded algae are species such as Desmarestia aculoata Lamour, Halldrys silinuosa Lyngb., Chordo filum Iamour., Plumoria elegans Schm., Ceromium spp., etc.. Iaminaria boldfasts are treated separatoly below. Broad fronds allow successful colonization by incrusting ectoprocts and a mumber of spocies grow on broad-fronded algae. Stoloniforous spreading ectoprocts rarely occur on broad-fronded algae. Narrow-fronded algao rarely provide sufficient oroa for incrusting spocies to grov successfully and are colonizen mainly by rampant and erect apocios. Tho octoproct populations of Ieminiria dipitata holdfasts are similor to those of rocks and stones at the same shore levol and consists mainly of incrusting species. The bulbous holdfosts of Seccorhiza polyschidès rarēj"bear èctoprocts': \therefore.

Experimonts have shown (Ryland 1959, Crisp and Williams 1960) that the larvae of algal dwelling ectoprocts settle on particulor algac when offered a choice. Frequently the preferences shown in the laboratory correspond with the field distribution of tho species.

The ectoprocts occurrint on algae are discussed bolow and

Ilstod in Tuble 36 -

No ectoprocts were found at higher levels on tho chore than the Asconhyllum zons. On Ascophyllum nodosum itself colonies of Flustrellidra hispida are frequent and Bowerbenkia inbricata occasionsl on the holdfast region and on the lower stipes. Flustrellidra hisnida
and Aleconidium hirsutum are both extremely common fucus sorratus but competition for support is partly reduced by differences in distribution: Finhisnidn is nost abundant on the stipes and lower fronds while A,hirsutum is most common on tho fronds. Fi.hispida larvae are produced later in the year than A,hirsutum larvae. Both ectoprocts also occur in smallor numbers on other algae. A few colonies of Alcyonidium nolyoum have boen collected on Feserratus and Electra nilosa and Membraninora membranacea also occur on this alga. Membranipora membronacea is abundant on Inminorin holdfasts particulorly in summor (August - October). Colonies of Electra_nilosa, Hinnothoa hyaling, Alcyontdium hirsutum and Flustrellidra hispida frequently occur on broad-fronded red algee e.g. Chondrus crispus and Gigartina stollata and are loss frequont on narrow-fronded algao e.g. Gorallina spp., Plumaria elegans etc. Colonios of Crisidia cornuta, Criaia eburma, Scruparia spp., Valkeria uva occur frequently on narrow-frond rod algoe and occasionally on broad-fronded species. Colonies of specios such as Callonora linoata, Micronorolls ciliato and Colleporinan costaith occasionally occur on littoral algae.

On Imminaria holdfasts the ectoprocts are those of noighbouring rocks and stonos and include the species Mubulinora phalanpea, Gallopora Iinoata, Hipnothoa hyalina, Schizomavallo Iinearis, Celloporinaa costaifif and several other specios in smaller numbers.

The only sub-littoral algae examined were varlous Lominarialos and Desmarestia aculeata. Scrunocollario rentans is very common on Denculeata and Electra pilosa somotimes occurs on this alga. Few ectoprocts have been recorded on Alaria escilenta or Saccorhiza nolyschides but other Laminariales regularly bear ectoprocts. Membraninora membranscen is abundant on tho fronds of Iaminaria dieitata and Lominoris hyporbores and is somotimes procent on the fronds of $L_{\text {esacchorina }}$. Lesaccharina fronds cormonly bear hundreds of ectoproct colonies which are more frequent in the concavities than on the convexities of the frond; the majority of these colonies are of Gallonors Iimoata, Hippothos hyaling and Micronorella ciliata but
colonies of Asten sica, Bugula flabollata, Boania mirabilis and Gallonora craticula have also been noted on this alga. Electra nilose encrusts many Lehyperboroa stipes but ectoprocts do not occur on the stipes of other Laminariales. Holdfasts of Lehymerborea and I.dicitsta frequently bear mumorous colonies of encrusting ectoprocts; Gallopora Iinsata, Hinnothoa hyalina, Eschnrina spinifemin and Escharoides coccineus ere the commonost species.

ZOOFHYTES as_supnorts for $^{\text {getorrocts_ }}$
With the exception of Flustra spp. and "Ienralia" foligees, eroct zoophytes provide only a small surface area for ectoproct colonization. Few oncrusting ectoprocts grow on zoophytes. Hydroids have nematocysts and ectoprocts have aviculariae and these offensive weapons probably deter prospecting ectoproct larvae. The hydroids most frequently colonized by ectoprocts o.g. Hydralimanin falcata, Sertularia polyzonios, Halccium halecimm otc, havo a central stem devoid of polyps which is erequentily the only part which bears ectoprocts. The lateral polypbearing branches of these hydroids and the central polyp-boaring atems of other hydroid species are rarely colonized but Celleporinin costaiki sometimes occurs on them. Bugila avicularia, with many large avicularias is never colonized by other ectoprocts while Encraten Joricata which lacks aviculariae is frequently colonieed.

Ectoprocts with erect; rampant and nodular colonies occur on zoophytes. Encrusting specios rarely occur on zoophytes but Eloctro pilose and Alcyonidiun parasiticum aro excoptions and incrust hydroid stems. Erect ectoprocts attach to the zoophytes by the primary zooid and by stolons and require very little surface area for colonization. Crisidia cormuta, Crisia spp., Bicellariolla oiliato, Bucula spp., Scrunocelloria spp. are of this eruct type. Cellario flistulosa and Gesimosa larvao settie on hydroids but by massive extension of stolons down the hydroid stem the Cellaris colony soon becomos attached to the support on which the hydroid is growing. Thus Celloria spp. grows on hydroids for the early part of thoir life. Nodulor spocies e.g. Celleporinà costaiju, Cellonorania dichotoma and Osthimosia avicularis
etc. attach to tho zoophyte (usually a hydroid) by a calcareous holdfast and do not have stolons. They either form nodular colonios of several layers of zooccia around the hydroid stem (0.g. O, avicularis) or give rise to erect shoots from a nodular base (Gdichotoma). Rampant, sproiding ectoprocts in which tho zoolds are separated by stolons or stolon-like elongations of the zooid frequently occur on zoophytos. Most specios of this type have the orifico raised on on orect elongation of the zooid (e.g. Aetoa spp., Nolella dilatata)but some spccios (e.g. Buskio nitens) do not have the orifice raised in this way.

In general the ectoprocts which occur on zoophytes grow on suitable hydroids and ectoprocts alike but Cellenoraria dichotoma and Buskin nitons were recorded only on hydroids and Bupula flnhollnta colonios erew prinarily on ectoprocts. The majority of ectoprocts Erowing on zoophytes also occur on sholls but the revorse is not truo.

The ectoprocts collected on zoophytos during tho present survey are listed in Table 37 . Species marked with an astorisk are not typically prosent on zoophytes and are not dsscussed furthor. Growth on erect zoophytes raises an ectoproct abovo the levol of the bottom and thus ony species groving on zoophytes is foeding in the same wator lovel as the lorge erect ectoproct species such es Eucratea loricata and Flustra foligees. Groups I and II of Table 37 aro not inoluded in the following discussion.

Of tho spocios in croup III, Gollarin fistnlose and Cellarin simossa grow on zoophytes for the corly part of their life only (soe p.47). Tho other species in Croup III show differonces in distribution which are likely to reduce compotition. Tho distribution of Bumpa nvicularia and Beplumosa is not fully known but they appoar to be commonost on coarse and shelly grounds. Wideapread specios, present wherever ruitable supports occur, inoludo Crisis eburnea, Scmiparia appo, Boania mirabilis, Electra pilosa and Osthimosin nvicularig. Spocies moro or loss onnfined to coarse and shelly grounds are Grisidia cormuta, Actoa anovina and Nolejla dilatata. Spocies moro or less confined to muddy sand are Tubulipora liliacea, Celleporaria dichotoma, Buskia nitons, Bowerbankia Eracilis and Volkeria tremula. Spreading species rorely tako up such
a high proportion of the available support as to exclude other spreading species e.g. on coarse grounds Aeten onguina: is often mixed with colonies of Nolello dilatata or Beania mirabilis and on muddicr Erounds Boverbankio gricilis and Valkeria tremula colonies often intermingle. Closely related species usually show differences in distribution on the zoophyto reducing direct competition between them: Osthimosia avicularis erows only on the main axis of hydroids, Cellaporania dichotoma grows mainly on latoral branches but close to the axis while Celleporinga costajif grows on Iaterig branches away from the axis. Crisidia cormuta and Crisia oburnes both grow on hydroids on coarse grounds but Ceeburnea tends to grow higher up the hydroid than G.cormuts.

Thus competition is reduced in zoophyte-inhabiting octoprocts by differences in distribution and erowth habit but nevertheloss it is not uncommon to find a hydroid colony bearing colonies of up to ten ectpproct specios.

SHETTS_and_STONES gs_supnorts for ectorrocts_
Shells and atones are the principal supports colonized by ectoprocts in the Manx area. They gonerally provide sufficiont surface area for the growth to mature size of all colony-types. The amount of sholl and stone present increases with increasing coarseness of the bottom substrate. Sholl and stone ore absent from mad-grounds. Shell bods occur in most sand and coarse-graval areas. Where tidal currents are very strong e.g. close to the Calf and to Chicken Rock, the only material dredged is stonos and boulders. Stones aro rarely dredgod away from strong currents but tho local scallop-fishermon state that when a scallop bed is fished intensively fow some time "tho stones come to the surface". Such stonos are clean and without sossile organisms. On rocks shores and In the rock sub-littoral stone is available for colonizatice. but sholl is almost absent.

The shells most frequently dredged ere those of Chlangs opercularis, Pecten maxdmus, Glvoymoris glvcymeris, Cyprina islandics, Modiolus modiolus and Buccinum undatum with Vorus app., Gnri spp., Dosinia
lunimus etc. in smaller quantities. The proportions of the various sholls in a sample varies from place to place (see p.lls). Sholls and stones are colonized by many ectoproct species. Usually more colonies are present on the inner than the outer aurface of dead sholls. Shells and stones aro most densely colonized on coarse grounds (see p. 124).

Sholls of different species vary in physical characters. The degree of convexity and concavity varies from species to species and from part to part of the same shell. Most sholls have smooth concave inner surfeces but Pecton and Chlomys shells have broad, smooth ribs on the inner surface. Texture of the outer sholl surface varios greatly. There are many intermediate textures between the glassmsmooth shell of Ensis spp. and the deep ridges of Vemus casing or the hispid surface of Chlamys onercularis. The influences of surface texture on the distribution of individual specios are noted in the account of each specios. Table 40 sumarizes these results. Some species e.g. Fenestmulina malusi and Fischarella voriolosa cannot tolerate rough surfaces while others e.g. Amphiblestrum flemingi occur most often on rough surfaces while still others e.g. Porells concinna are indifferent to surface texture. On Laminaria saccharina ectoprocts occur most frequontiy in the concavities of the frond, it may be that similar preferences for concavities and convexities are important in the distribution of sholl and stone dwelling ectoprocts. Osthimosia avicularis and Bicellariolla ciliata, species common on the convex stems of hydroids, when present on shella usually occur at the edge of the sholl or at the apex of Pomatoceros triqueterc (L_{0}) tubos. Shells with a woll developed periostracum e.g. Ensis spp., Cyorinaislondica and Modiolus modiolus are less frequently colonized by ectoprocts than are species without woll-developed periostraca e.g. Chlamys opercularis and Pecton maximas.

Table 38 1ists the specios occurring on sholls in the area examined. It does not include rare species. Species in Group I are infrequent on shells in the Manx area and are not considered in the following discussion.

Although many species grow on shell few are distributed throughout the area where shell is available and some have a very Iimited
distribution. A mmber of shell-inhobiting species (including Flustra follacea, Fipuloria figularis, Cribrilaria radiata, Micropora coriacea otc.) have been collocted only at or near area C. Palmicollaria skenei, Aldorina imbellis, Hipponorina pertusa and Gellaporaria dichotoma are found mainly in muddy sand areas. Of the remaining specios the majority are most common in areas of abundant available support and considerablo water movement as area C. In such localitios very dense populations are found and competition for support mast be intense. Many more ectoprocts have been collocted on Glycymeris, Chlamys and Pecton shells than on other types of sholl but this is probably because they ore the comnonest shells in areas of powerful water currents. In maddy sand areas Pecton and Chlamys shells do not bear richer ectoproct populations than othor sholls,

On the Modiolus modiolus bed south of Spanish Head sholl of othor spocios is virtualiy absent. The ectoproct population of this bed is noteworthy for the palcity of species prosent. Escharolla immorsa is by the far the most abundant spocies. Diplosolon obolia and Smittoidea reticulata are more abundent on the Modiolus bed than elsewhere.

Living epifaunal molluscs ore frequently colonized by ectoprocts. The Iowor valves of live Chlomys onorcularis are more extonsivoly colonized than those of Pccten maximus. This difference is presuminbly due to the difforent habita of the molluses: C.onercularis is more active than Pemaximus and doos not dig into the substrato to the extont that the Pecton docs. Amphiblestrum flomingi and an Alcyonidium? ap. are frequently, present on the lower valves of Ifving C.opercularis. Gastropods such as Buccimum undatum are frequently colonized by ectoprocts.

Shells are also colonized extensively by the boring ectoproct Ponetrantia conchorum? The activitios of this ectoproct together with other shell-boring organisms e.g. tho spongo Cliona colata (Grant) and Phoronis spp., are important factors in the broakdown of shells in the sea. ficoncharum bores by phosphoric acid (Siten 1947).

Stomes aro in many ways ainilor to sholls and offor extonsive burface orea for colonization by ectoprocts. On tho ehoro tho undersides of stonos not fixod in eediments, the undersides of overhangs and rocks under thick algal cover afford oholtor from desicestion and temperoturo extromos and are colonized by ectoprocto. Sub-littorally there in little ecological difforanco batween etono and rock. Offshore ground with abundont atono are of limited extont. Becsuse of tho sorting ection of tidol currents all the stones in an aroa tend to be of a similer ajze. Stonss oro usually amooth and rounded but in samo locolitios thes are pitted with tho tunnolo of boring molluses. Many atonos in challow water boar insrusting red algao which ero rarely colonized by ectoprocts.

Small atonos loss than $z^{n \prime}$ diamotor ond small fremonte of shoils ore colonizod by only a. few ectoproct speaies notobly pyrinora entomulnrin and Hinnothon distans, the limited area available doos not allow colonies of other apecios to reach pituro aizo.

Ectoprocts occurring on rock and atone on tho chore include tho following (soo also Tablo 35):

Intho hoconhylium zonoz Cribriling ranctinta, Cchizommolis unicornio and Boworhankis inbrienta aro coman undor otoms with occasional colonies of Alcyonditum motili, Bovorhankio mencilis and Valkerio uva. Fucun sorratun zonoz Under atomes tho opocios from tho Ancorhollum zono plus Goulorompas oniniform, Ginlonors nurita, Hanlopoma meaniform, Wicronorelln cilints, Eschnrolla Imeren and Eisharina aniniforum. Guptosuln nallabiana and Umbomila 1ittoralio occur both under atomes and on permanently domp rook surfaces.
Inminarin dicitate zonog All tho abovo spocies with tho excoption of Gerntosuln pallesiana hapo boon collocted in thio zom. Eschorafics coceineus is vory common on rock faces and Seminncollincin rentons, Grisidin cormitn and Crisin eburnon also oceur on rock faces. Under atonos most of the apeciea notod in the Fesarratus zono are common with the regular eddition of Tubulinora pholancea, Lichononora hianida, Filectra piloss, Collonore Iinontn, Schizomavolla linoarin, Mipnothoa

species are present in smaller mumbers.
Table 39 lists the species growing on stone off the Isle of Man; it does not include shore rocords (see p.125). Species rarely present on stone (Croup I of Table 39) will not be considered further. The majority of species growing on stones also occur on other supports. If sufficient support is available all the species in Croup III form large, sheet-liko colonies. "Ienralia" foliacea colonies consist of a large attachment area from which erect foliaceous sheots ariso. None of the other sfocies found principally on stones are erect. Tho larvae of Croup III may have evolved a preferonce for stones as only stones provide sufficient surface arca for the colonies to reach a large size. Croups II and III include the species likely to be present on dredged stones but they are not all equally abundant. The most abundant species on stones are Grisidia cormeta, Crisin denticulata, Iichenonora hispida, Tubulipora spp., Electra pilosa, Pyipora catomiaria, Hipnothoa divaricata, Microporella ciliata, Escharella immersa, Porella concinna, Rentadeonolla vidacea, Schizomaveila Iinearis and Alcyonidium mytili. In localities where species of croup III are very common thoy cover much of the stono surface and leave little space for othor species.

ARTHROPODS_and_OTHER_ORGANISMS_as gupports_for_ectoprocts
Ascidians, tube-worm opercular, crustaceans and even pyenogonids, have been collected with ectoprocts growing on them. The majority of these associations are outside the normal distribution of the ectoproct species involved and are probably of an accidental nature but thero are a few examples which appear to indicate a gemuine affinity on the part of an ectoproct for a particulor, living, suppart. Most of the Arochnidium hipnothodidescolonies collected were on simple ascidinns. Iriticella korent has been collected only on the crustacoans calocoris macandrese, Nephrops norvegicus and Gonoplax rhomboides. The association between T.korenf and these crustaceans is probably due to tho restriction of T.koreni to mud erounds where crustaceans are the only available support. (In the Firth of Clyde Thkoreni occurs on Ohlomys contemradiots (Millor) from mud grounds (Allon 1953 as Tapedicellata). Hipponoridra
ednx has only been collected on small gastropod ${ }_{l}$ containing hermit crabs. A high \% of sholls containing large hermit crabs are colonized by Electra pilosa (See p. 33), but E.pilosa is a comon species and occurs on other supports. The membranous tubes of Chootonterus variopedatus are frequently colonized by Hyponhorella expansa. Spider crabs frequently carry pieces of ectoproct attached to the carapace; the majority of these are probably placed there by the crab.

With the exception of the examples mentiond akove any settiement of ectoprocts on umsual supports must be regarded as accidental. The majority of crustaceans have elaborate cleaning rituals (with tho excoption of spider crabs in which rituals having the opposite effect have evolved) which must reduce colonization by encrusting organisms but occasional ectoproct colonios do become established, particuiaris on the larger crustaceans. Species most usually found on crustaceans are those with a wide range of supports e.g. Iichonopora hispidg, Electra [ilosg, Schizomavella auriculatg and S.linaaris, Escharollaimmorsa etc.

Geogranhical_distribution of_Mgnx ectonrocts_and_ comparison_with othor areas.

In the present survey 230 of the 142 ectoproct spocies recorded from the Isle of Man were collected. 38 of the species recorded from the I.O.M. hsve not been recorded at Plymouth; 13 species recorded at Plymouth have not beon collected in Manx watera. Data on the geographical distribution of Manx ectoprocts have been taken from Bobin and Prenant (1956), Cam and Bassler (1925, 1928, 1929), Echalier and Prenant (1951), Gautier (1962), Hastings (1941, 1944), Marcus (1926, 1940), Maturo (1957), Osburn (1923, 1940), Rogick (1956), Ryland (1956, 1958, 1963), Silen (1954), Soule (1954) etc. But for 8 species I have found no distribution data other than that in Hinoks (1880) but Hinoks' goographical data ore recarded as umreliablo by most authorities, of the remaining 134 species, as far as I am aware, 6 are confined to the European Boreal, 51 have been recorded both from the Mediterranean region (including S.Spain and
N. W.Africa) and the Arctic region, 49 have been recorded from the Mediterranean and not the Arctic and 15 from the Arctic but not the Mediterrancan. 13 species are recorded from other rogions but not from the Mediterranean or the Arctic. Thus the detoproct fauns of the south of the Isle of Man consists largely of Atlantic-Boreal and Widespread species with an excess of Moditorrancan-Atlantic species over Arctic-Atlantic. This situation is similar to that found in the Manx madibranchs by Millor (1959).

Ryland (1962) discusses the distribution of shore ectoprocts with particular reference to Welsh localities (Monai Straits and Anglesey, Milford Haven). He records 47 species including 10 (Electra crustulenta, Conopeum reticulum, Scrupocolloria scruposs, Bugula plumosa, Befulva, Beflntellata, Beturbinata, Fenestrulinn malusi, Cellepora ($=$ Osthimosia) avicularis and Amathia lendipara!) which I have not collected on Manx shores. All except Electra crustulanta and Bucula fulva have been collected in Manx waters. Filicrisia peniculata, Diplosolen obelig, Diastonora suborbiculeris, Aotea sica, Beania mirabilis, Callopors surita, Amphiblostmum flemingi, Membroniporella nitida, Chorhizonora bronmiarti, Hippothoa divaricata, Hanlonoma praniferum, Eecharella ventricosa, Parasmittina trispinosa, Alcyonidium marmillatum and A,mytili are not mentioned by Ryland but have been collected on Manx shores. With the above exceptions the two surveys are in close agreement. The ectoprocts occurring on Manx shores are listed in Table 41

Knight-Jonos and Jonos (1955) sampled the ectoproct fauna of the sub-littoral rock off Bardsey. They recorded about 60 species. There is no reason to suppose that the ectoproct fauna of Manx sub-littoral rock is poorer than that of Bardsey.

Conclugion_and_Sumary_

Of the various factors in the marino enviroment around the south of the Isle of Man it appears that tomperature, salinity, p.H. and depth have little direct effect on the distribution of ectoprocts. Light
affects eotoprost distribution indirectiy through itz importance in controlling tho distribution of algae shich are important to ectoprocts as food and potential supports. The type and abundanco of larvec way also affect ectoproct diatribution. Nil ectoprocts excopt yongbryozoon spp., require a support and the diatribution of axpports (which is dopendant in turn on water movement) is tho most important factor in ectoproct distribution. Supports con bo divided into throo coir: types, algeo, zoophyton and aholls and ctonos. Sono octoproctscan grow on most types of supports but the majority occurnaoro or less limitod range of supports. Supports of ono sort or another vuitablo for ectoproct colonization aro procent throughout tho area. Conorally spoaking any cloan hard support can be colonized by ane or another typo or specics of extoproct.

Hany apecies havo a wide distribution in tho orca investigated but soan apecica are confinod to cortain typos of locality and can probably bo rogarded as 'indicator' apacion analogais to plankton 'indicator' opecios. Just as plankton 'indicators' indicato tho prosenco of a particuler typo of wator so these ootorroot epecies indicate the precenco of particular bottom conditions.

Spocios found only in orcas of vory muddy sand and mad: Iriticello koreni.

Specios typical of mudy eand areas and losa oxmon clecuhoro: Aydorins imballin, Polmicollnrin ohonei, Frohnrolls vontricoss, Collonorarin dichatama Arachntelum himpthooides.

Specios found mainily in areas of powerful water curronts:
On sholl: Eigulario fimetoris, Cribrijarin radinta, Miormora
encioces.
On atona: "Iamralin" folieces, Pentidennollo vinincon,
Escharoideo cocninus, Schizonarollo uniominto.
The majority of the othor apceion (exclueine those confired to the shore) aro most abundant in areas of considerable watcr movemont and abundant varied supparts and becomo less cominon with docroasing water moveront and amount of cleen, hard, support. Pccause of this it in not possiblo to spoak of cotoprocts in torms of different conminities
on different grounds. The majority of species are conmonest in areas such as C which can loosely be described as areas 'best for ectoproct growth' and the distribution of each species through the rest of tho area appears to depend on its toleranco of less favourabla conditions. The distribution of Manx ectoprocts is summarized in Table 35

The Manx ectoproct fauna consists largely of Atlantic-Boreal and widely distributed speciea kith an excess of Mediterranean-Atlantic species over Arctic Atlantic.

SECTION IV : ON THE REPRODHCTION OF THE RCTOPRNCTS OF

TIE SOITH OF THE ISIE OF MAN

Introduction_

Data on the season of roproduction of marine ectoprocts have been collected from various sources: there are a fow works concerened entirely with ectoproct larvae (Barrois 1877, Prouho 1892, Atkins 1955), studies on fouling (e.g. Coe and Allen 1937, Nair 1961, 1962) sometimes include data on the settlement of ectoprocts and some fauna lists include information on reproduction (Echalior and Prenant 1951, P.M.F. 1957).Marcus (1926) compiled a table including all the data available to him on the season of reproduction in European ectoprocts. Howevor all these scattered sources do not give full or satisfactory data on the season of reproduction of the ectoproctsof any given area. The fullest study so far published is that of Gautier (1962) in which he gives information on the season of reproduction of 164 species (fincluding 50 recorded for the $I_{.} 0_{0} M_{*}$) of Mediterranean ectoprocts but for 64 of these he gives information only on the occurrence of ooecia or ancestrulae. The presence of occein in a colony indicates that the colony istaither jabout to reproduce or has reproduced. Only the presence of eggs or embryos can be taken as definite evidence of reproduction at a particulor time. Gautier's data is not quantitativo and his collections were made at several widely separated Mediterranean localitios. So for as I am aware the present survey is the only one in which the reproduction of ectoproctsin a small area has been examined throughout the year. The aim of the investigation was to obtain as much information as possible in as quantitative a manner as possible on the reproduction of Manx ectoprocts. The methods used are described on p. 7 and the results obtained are given separately in Section II for each species in tarn. The data obtained show that there is a wide variety of reproductive habits in the Manx ectoprocts.

Manx ectoprocts can be classified on the basis of their reproductive habits as follows:
A. Non-brooding species e.g. Membranipora membranacea, Electra pilosa, Hypophorella expansa, Triticella korent.
B. Brooding species

I Embryos brooded in unmodified zooccia.
(i) Embryos brooded singly 0.g. Bowerbankia, Valkoria uva.
(i1) Embryos not brooded singly e.g. Cryntosula pallasiana, Umbomla littoralis, Alcyonidium spp., Flustreliidra hispida, Nolella dilatata.

II Embryos brooded in more or less modified zooids.
(i) Embryos brooded singly e.g. Rentadeonolla violacea, Penetrantis concharum.
(ii) Embryos not brooded singly e.g. all Cyclostomata. III Embryos brooded in ooecia.
(i) "Odecia", membranous, evanescent o.g. Aetaa spp., Eucratea Ioricata.
(1i) Ooecia calcareous, permanent e.g. most Choilostomata.
The number of larvae produced by a species is correlated with the amount of protection given to the embryos and the type of larva produced. Brooding species with a short larval life produce fewer larvae than thoce specics with larvac having a long planktonic life. Cyclostamatous ectoprocts produce large numbers of simple shortmlived larvae in each ovicell. The number of ovicells in cach cyclostome colony is usually small but varies from species to species.

The very large larvae of Rentadeonella violacea are produced in small numbers while species Ilke Callonora lineata produce smaller larvae in larger mambers.

Table 43 shows that of 13 species typically common on the shore and less comon elsewhere 8 brood their embryos internally. The distribution of these shore spccies indicates that internal brooding affords better embryo protection thon brooding in ooocia. 7 of the 8 internally brooding species occur in localities where some desioation might occasionally occur e.g. on algae or exposed rock faces, whilo the 5 typical shore species which brood the embryos in ooecia all occur
in sites where desiccation is less likely e.E. under stones and overhangs. All the ooceiferous species which occur both on the shore and sub-littorally occur in sheltered positions on the shore. 8 internally brooding species occur sub-littorally (excluding cyclostomes).

Table 42 includes the 52 species (excluding cyclostomes and cyphonaute-producing species) for which full data on reproductive scasons have been obtained and shows the relationship between length of reproductive season, proportion of fertile zooids in a colony and distribution. The first point is that no typical shore species (i.e. species uncommon elsewhere) have long reproductive seasons. Many shore species compensate for their short reproductive season by producing lorce mumbers of embryos in it. Fertile zooids of internally brooding species usually brood several embryos at once e.g. Alcyonidium spp., Umbomula littoralis etc. and in oceciferous species most of the zooids are fertile and produce embryos. Equal numbers of species with high and low proportions of fertile zooids have a limited offshore distribution but the majority of widely distributed species havd high proportions of fertile zooids in the colony. The largost category in Table 42 , those spocies with a high proportion of fertile zooids and a long reproductive season, inolude many of the most abundant Manx ectoprocts. The other lorge category, offshore species with many fertile zooids and a short reproductive season, also appear to 'compensate' for their shork season by producing large numbers of larvae in it; this group includes common species such as Bicelloriolla ciliata, Bupula spp., Celleporania pumicosa etc.

Length_of period_of develonment

Silen (1945) found that the embryos of Callopora dumerili spend about a fortnight in the ooecium between passing from the body cavity into the ooccium and swimming away from the ooccium as a larva. No individual embryos were watched during the present investigation but
in species with a well de-limited reproductive season the difference between the first appearance of the embryos and the first larvae gives an indication of development time. Data were obtained from several speces. Flustra foliacea eggs first pass into the ooecia in early October and the first larvae are released in late February. Alcyonidium hirsutum embryos appeared in November and larvae in February, Aepolatinosum embryos in early February and larvae in March. The periods given above range from at least a month to five months: All the examples given breed in the colder months; development may be quicker in surmer breeders.

Reproductive_Seasons_and_Ceographical Distribution_

Hyman (1959 p.343) states "available data indicates that ectoprocts have on anmial breceting season that extends over 2 or 3 up to 5 or 6 months. In the Northern Hemisphere tho breeding season falls within the period from spring to autum or even extends into early winter". Gautier (1962) has shown that this is not true of Moditerranean species and tho data on reproduction given in SectionII shows that Hyman's statement does not apply to the Manx area either. Many ectoproct species roproduce throughout the year; other species eithor reproduce only in the winter months or have their period of peak reproduction in the colder months (See Table 44). More species do reach peak reproductive activity in the warmer months but there is no scarcity of species bearing embryos in the colder months.

There is a little scattered data on the seasons of reproduction in other localities but these records usually apply to a few specimens and do not extend over the full breeding season of the species. Almost all the records of reproducing ectoprocts I have found in the iiterature fall within the season of reproduction of the species in Monx waters. The only data full enough for comparisons to be made with tho Manx area
is that given by Gautier (1962) for Mediterranean species. He gives data on the presence of embryos or eggs for 34 species which occur in Manx waters but in the majority of cases his records fall within the range of the species season of reproduction in the Isle of Man. Bugula flabellata, a species which breeds from May to October in the I.O.M., is recorded as reproducing in April and December in the Mediterranean. Gautier (1962) compares the reproduction of Mediterranean ectoprocts with those of the Channel and concludes that the season favourablo for ectoproct reproduction is shorter in the Channel than in the Mediterranean. The sources from which ho draws the data on reproduction of ectoprocts in the Channel are not complete. Table 45 shows that Manx ectoproct speoies reproduce throughout the year and that there is no break in ectoproct reproduction during the winter.

Of more interest is the relation between season of reproduction and geographical distribution. The data on this topic are summarized in Tables 46 shy friom which several points emerge. 62% of widelydistributed species (1.e. species rocorded from the Arctic and oither or both the Mediterranean and the Tropies, and 68\% of the species found in either or both the Mediterranean or Tropics but not the Arctic have embryos present throughout the year, but all the species recorded only from the Arctic and not the Mediterranean and Tropics have short breeding seasons and reproduce in the colder months. Species from warm water but not the Arctic tend to reach peak reproductive activity In Manx waters during the sumer months when the water is at its warmost; widespread species do not appear to favour any particular season, some species reaching peak activity during each season. Tho data of Tablo 46 ere of limited usefulness because of their incomplete nature but, as far as it goon, Thay appear to support that of Table 47 Thus the season of reproduction tends to vary with the geographical distribution of the species; species distributed in cold waters breed in winter; species from warm waters breed in summer.

The ability to roproduce at a wide range of temperatures is necessary if a species is to have a wide geographical distribution and

It is noteworthy that many widely distributed species breed throughout the yoar in Manx waters.

Larval Colour and Toxonomy.

Silén (1943) and Ryland (1958) have pointed out the usefulness of larval colour as a taxonomic character and in the present investigation notes have been made of larval colour wherever possible. The colours of embryos of a species have in all cases been constant although in some species thete are alight differencos in shade and intensity at different stages of development. Early embryos are often brighter in colour than late embryos. Late embryos may appear to have a bluish tinge but this is a structural colour associated with the cilla of the almost fully developed larva. Colours observed range from white, pale yellow and orange to red and maroon. No green or blue pigments have been seen, Embryo colour is a very useful charactor when working with fresh material; buk the colour is lost on prolonged storage in alcohol but it remains in weak formalin solution. The embryo colour is of use in many cases e.g. Escharella immersa has pink embryos, E, variolosn arance and Eeventricosa white; Cribriling punctate pink and Cribrilina anmulata yellow; Osthimosia avicularis yellow, Cellonorovia pumicose red, etc. A full list of the embryo colours recorded is given in Appendix III.

Conclusions

1. The mumber of larvae produced by a species is correlated with the amount of protection given to the embryo and the length of planktonic larval life.
2. Species exposed to conditions on the shore where desiccation is likely tend to brood their embryos internally.
3. Shore species have short reproductive seasons.
4. Reproducing ectoprocts can be found at all times of the year. Arctic species reproduce during the colder months; warm-water species tend to breed during the warmer months but a proportion of warm-water species and widely distributed specios reproduce throughout the year.
5. Larval colour is a useful taxononic character.

I Agsociations

Many associations of varying degrees of constoncy have been observed. Associations can be divided into two groups, those beneficial to the ectoproct and those beneficial to the other animal involved.
(a) Associstions beneficial to the ectonroct

Many ectoprocts depend on other animals for supports. Many spocies are more or less confined to molluse shells; some grow on living moluses, others only on dead sholls. In some cases the association is fatily specific e.g. the majority of Smittoiden reticulata were found on living Anomia spp., Amphiblestrum flemingi is very common on live Chlarys. oporcularis. Other species e.g. Celloporaria dichotoma, Buskin nitong, are dejendent on hydroids for support. The most apecific associations noted in the present investigation wero thoso between Hypophorolla expansa and the tubes of the polychaetes Chsetopterus variopedstus and Ianice conchiloga and botween Triticella koreni and the crustaceans Calocoris macandrese and Nephrons norvegicus.
(b) Associations_benoficial to_other_animale_

Animals occasionally shelter on ectoprocts. Numbers of Porcellana Longicornis frequently occur on large "Lemralia" foliacoa colonies. Turbellarians and nematodes were frequently found in dead zooecia. The tubes of Lenice conchilema from offshore frequently have Celloria aimussa framents incorporated in their walls. Bushy Cellaria fistulosa colonies shelter amphipods and small worms. Caprellid amphipods are abundant on the turfs of erect ectoprocts found about and below ELNST in some localitios. Ectoprocts provide supports for large numbers of
folliculinids, Foraminiferam and hydroids. Very small scallops have been found attacined by byssal threads to erect ectoprocts. Ectoprocts are frequently used as camouflage by spider crabs.

II_ Gompetitors with_ectoprocts

Animals competing with ectoprocts can be divided into two groups: those competing for food and those competing for space. Some compete with ectoprocts for both food and space.

Filter-feeders such as sponges, sedentary worms, seamsquirts, lamellibranchs, folliculinids ond perhaps hydroids, barnacles and Porcellang spp. etc. feed on small food organisms and suspended particies in the water and some or all must compete to a greater or losser extent with ectoprocts for their food. In addition some of these, particuloriy sponges, ascidians, encrusting worms and barnacles compete with eotoprocts for space.

In some localities (e.g. Poyll Breine shore) seamsquirts and sponges are very abundant and ectoprocts virtually absent and in others ectoprocts may predominate (Port Erin Breakwater). This is probably because sponges and ascidians can cope with silt in suspension better thar ectoprocts and therefore predominate on sholtered shores. Sponges can grow over ectoproct colonies e.g. on Chlamys opercularis but ectoprocts rarely grow on sponges. Goodbody (1961) noted the inhibition of development of sessile organisms on "Tuffnol" panols placed noar a mature sponge-anemone-ophiuran community.

Anomia spp. frequentiy grow over and kill ectoprocts. Barnacles and sea anemones may settle on and kill ectoproct colonies. Ectoproct colonies frequently compete for space on the samo support, if two co-specific colonies meet they fuse into a aingle colony but if two different species meet one may grow over the other and kill it.
III _Predators_of ectorrocts_
(a) Predators of - Iarwae

There is littlo information on this topic in the literature. I
have seen ectoproct larvae pass into the water chambers of sponges and lamellibranchs, none of the larvae reappeared; they must have either been eaten or have bocome entangled in mucus. On the Modiolus bed off the south of the I.o.M. both Modiolus modiolus and large sponges are abundant but there are few ectoprocts present. The numbers of ectoproct larvae may be reduced by the activities of the Modiolus and the sponges, Other large filter-feeders as well as hydroids probably take a toll of ectoproct lervae. A Membranipora membranacea cyphonaute was found in the stomach of a Gobius flavescens (Fabr.) (P. J. Miller, personal communication).
(b) Tredatorg of adult_ectorrocts

Osburn (1921) gave evidence that ectoprocts are eaten by ducks and several fish including dogrish and sharks but points out that there is Iittle information on this subject. Miller (1961) found that many nudibranchs feed on ectoprocts. Hartnoll (1961) found that some spider crats use ectoprocts as articles of food as well as camouflage. Quasin (1957) showed that part of the diet of Blennius pholis L. in the Monai Straits consists of ectoprocts. I have found Crisidin cormuta and Grisia eburnag in stomachs of Blennius nholis. I found no ectoprocts in the stomachs of 12 Labrus bereylta Ascanius examinod. Pycnogonids eat ectoprocts and are common on colonies of Cellaria fistulosi and Flustro folincea and I have observed many mudibranchs feeding on ectoprocts. An arachnid is common on Flustrajlidra hispida and Alcyonidium hirsutium colonies which frequently show damage apperently caused by the mite.

Gonclusion_

1. Ectoprocts form associations with other animals out of their noed for support.
2. Some animals use ectoprocts as sholter.
3. Ectoprocts are caten by various animals and compete with others for shelter and support.
4. 142 Ectoproct species have now been recorded from the Isle of Man. Several species new to Marx waters and two, Alcyonidium Variegatum and Penetrantia concharum, new to British waters were collected in the present investigation.
5. The most important factors in the distribution of ectoprocts are availability of support and water movement.
6. Many ectoproct species are most abundant in areas of abundant hard support and considerable water movement.
7. Some species occur only in particular conditions and are 'indicators' of those conditions.
8. Ectoprocts are not distributed randomiy, each species occurs on a more or less limited range of supports. Surface texture and area of the support are important.
9. The Manx ectoproct fauna contains more Moditerraneon-Boreal species than Arctic-Boreal species.
10. Many apecies bear embryos throughout the year but Arctic species tend to reproduce in winter and southern species in sumner.
11. Species which brood embryos internally are proportionately more abundant on the shore than elsewhere.
12. Eotoprocts compete with other animals for food and space and are preyed upon by various animals.

ALIEN, J.A.	1953	Obscrvations on the epifauna of the deep-water mudsof the Clyde Sea area with special referonce to Chlomys septemrediata Mil. Janim.Ecol.9 22: 240-260.
ATYINS, ${ }^{\text {D }}$	1955	The cyphonautes larvae of the Plymouth area and the metamorphosis of Membraninora membranacea (L.) J.mar.biol.Ass.U.K.,34,441-449.
BARROIS, J.	1877	Mémoire sur I'embryologie des Rryozoaires. Ann.Sci.nat. (7,001.), ser.6,IX (7):1-67, pl. XII-XIV.
BOBIN,G. \& PRENAM, M.	1952	Structure at histogenèse au gésier des Vesicularin's (Eryozoaires Ctenostomes) Arch.Zool.exp.Een.,N. et R.,IXXXIX:175-202
-	1956	Bryozo:ires I. Entoproctes, Phylactolèmes, Ctenostomes. Fauno Fr., 60: 1-396, 151 figs.
-	1961	Remarques sur certaines "Hincksinidae", Alderinidae et Flustridae. Cah.Biol.mar.,II: 161-175.
BORG, F:	1923	Structure of Cyclostomatous Bryozoa. Ark.Zool., 15(11): 1-17.
-	1933	Die Bryozoen III. Die marinen Eryozoen (Stenolsomata and Gymnoleemata) des Arktischen Gebiotes. Fauno arct., Jena,V: 515-551.
CALVET, L.	1900	Contributions ©à'l'histoire naturelle des Bryozoaires Ectoproctes marins. Trav, Inst. 7ool.Univ.Montpelier, N.S.,
CANU,F. \& BASSIEK; R.S.	1925	Les Eryozosirns du Monoc et Mauritanie. Mem.Soc.Nci.nat.
-	1928	Les Eryozoaires du Maroc ot Mauritonie. Ibid., 18:1-85; pl. 1-13.
	1929	Bryozoa of the Fhillipine region. Bull.U.S.nat. Hus., 100 (Vol. IX); 1-685, pl. 1-94.
CHRETIEN,M.	1958	Histologie et developpement de l'ovaire chez Alcyonfdium golatinosum (L.) Bull. Iabomarit.Dinard, 43: 25-51.
CLARKG, A.H.	1921	A new classificotion of animals. Pull. Inst.oceanogr Monaco, 400: 1-24.

COE, W.R. \& ALLEN, W.E.	1937	Growth of sedentary orgenisms on experimental blocks and platos for nine successive years. Bull.Scripps instn,0coanogr,tech., (4): 101-136.
COLREA, D. D\%	1948	```A embriologia de Bugula flabellata (J.\nabla.Thompson) (ryyozoa Eotoprocta). Bol.Fac.Filos.Cienc.S.Paulo (Zool.), 13 7-71.```
CORI, C .	1.929	$\begin{aligned} & \text { Kamptozoa } \\ & \text { Hondb.,7ool.,Bcr1., II(5):1-64. } \end{aligned}$
CRISP; D.J. \& WILLIAM, G.D.	1960	Effect of extracts of Fucoids in promofing dettlement of Epichytic Bryozoa. Nature, Iond., 188(4757);1206-1207.
ECHALIER, G. \& fremamt, M.	1951	Bryozosires. in Inventaire de la fauno marino do Roscoif. Trav.Sta.biol.Roscoff.Suppl.4: 1-34.
GAUTIER, Y.V.	1962	Recherches ecologiques sur los Bryozosires Chillostones on Moditerranean oceidentale. Rec.Trov.Sta,mar. indoume, 38 (Bull.24).
COODRODY, I.	1961	Inhibition of developnent of a marine aessile conmunity. Mature, Lond., $190(4772): 282-283$.
GRAVE, B.H.	1930	The Natural History of Pugula flabollata at Woods Hole, Mass. including the rehaviour anl attachment of the lerva. J.Morph., Li9:355-384.
HALLSE, P.	1890	Dragages effectuós dans la Pas-de-dalais pendent les mola d'auot et septembre 1889 III. Les Platiers. Rev, Biol.du Nord, II: 32-40.Eryozeàirea pp 37-38.
HARUER, S.F:	1891	On the British specios of Crisia. Quart.J.micr,Sci., $32: 127-181$.
-	1901	Polyzoa. In Cambrifigo Natural History, IT: 463-533.
Hapmoldi Rog.	2961	TheSpider Crabs of the Islo of Man.敝. D. Thesis. Univ.Ipool.
Hastincs, A . $\mathrm{B}^{\text {. }}$	1941	On the British species of Scruperia (Bolyzoal. Ann.Mag.nat.Hist., cor.II, I :465-472.
-	1944	Notas on Polyzoa(Bryozoa) 1. Umhorula verrucose auctt. : D.ovicellata sp,n. and Uelittoralls ap.n. ITHd., serII, 13 : 273-284.
HATSCHEK, B.	1888	Iehrbuch der Zoolosie. Lief. I. Jena.

hbraman, W.A.		Rep.Mar,biol.Sta.Port Erin, 6.
\bigcirc	1896	Ibid., 2.
\ldots	1897	Ibid.,10.
--- --	1900	Ibid., 14.
-	1901	Ibid., 15.
HINCKS, T.	1862	A catalogue of the Zoophytes of South Devon and South Cornwall. Ann.Mag.nat.Hist., ser.3, IX; 4674475.
-	1880	$\begin{aligned} & \text { A History of the British Marine Polyzoa. } \\ & \text { I (text): I-CXII and } 1-601:: \text { II: pl. } \\ & \text { I-LXXXIII. Lond. } \end{aligned}$
HYMAN, L.H.	1959	Phylum Ectoprocta. In The Invertebrates, \underline{V} (Ch.XX):275 7515 New York.
Jones, N.S.	1940	Distribution of the Marine Fauna and Bottom Deposits off Port Erin. Proc.Lpool. biol.Soc., LIII: 1-34.
----	1951	The Bottom Fauna off the south of the Isle of Man. J.Anim.Ecol., 20: 132-141.
KAIN, J.ME	1960	Direct Observations on some Manx sub-littoral algae. J.mar.biol.Ass. W. K., 39:609-630.
IE BROZEC, R.	1955	Les Alcyonidium de Roscoff et leurs caracter distinctif (Bryozoaires Ectoproctes) Arch.Zool.exp.Een.,N. et R., XCIII:35-50.
Io bianco, S .	1909	Notizie biologische riguar danti specialmente il periodo di maturita sessuale degli animali del golfo di Napoli. Mitt.zool.Sta.Neapel, 19: 515-761.
LOMAS, J.	1886	Reporton the Polyzoa of the L.M.B.C. district. Ah L.M.B.C. First Report upon the Fauna of Liverpool Bay and the neighbouring seas. Proc.lit.phil.Soc.Ipool, XI Appendix:161-200
IUTAUD, G.	1957	Le dévelobpement du bourgeon chez Membranipora membranacea (L.).Bryozoaire Cheilostome. Arch.Zool.exp. fón. 3 N. et R., $24(3): 148-161$.
Marcus, E.	1920	Mittelmeer-bryozoen aus der Sammlung des Zoologischen Museums zu Eerlin. S.B.Ges.naturf.Fr.Berl., 企: 255-284.
- - -	1921	Ueber die Verbeitung des Meeresbryozoen. Zool.Anz.,LIII: 205-221.
	1926	Bryozoa Tierwelt N. in.Ostsee, VII(C):1-100.

MARCUS,E. (cont.)	1940	Mosdyr (Bryozoa eller Polyzoa) Danm. Fauna, XLVI:1-401; 221 fig.
MARF, M.F.	1941	```A study of a marine community with special raference to the micro-orgonisms. +.mar.biol.Ass.U.K.,25:517-554.```
MATURO, F.T.	1957	$\begin{aligned} & \text { A study of the Bryozoa of Eeaufort, } \\ & \text { N.Carolina and vicinity. } \\ & \text { J. Elisha Mitchell Sci.Soc.,73 (1);11-16. } \end{aligned}$
MILIER, M.C.	1959	The Mudibranchiate Molluscs of the Isle of Man. Ph.D. Mhesis. Univ.Lpool.
-	1951	Distribution afdeleod of the Nudibranchiate Mollusca of the south of the Isle of Man. J.anim.Ecol., 30:95-116.
NAIR, N.B.	1961	Some observations on the distribution of Bryozoans in the Fjords of Norway. Sarsia, 3: 37-45.
-	1962	Ecology of Marine fouling and wood-boring organisms in W.Norway. Ibid., ㅇ:1-38.
NITEAHE, H.	1870	Beitrage zur Kenntnis der BryozoonII. Uber die Anato ie von Pedicelling ochinata Sars. Z.wiss.Z001., XX:13-36.
OSBURI; R.C.	1921	Bryozoa as food for other anitals. Science, I'S., LIII (1376): 4「1-453.
-	1923	Eryozoa Rep.Canad.atct.Exped., 1913-18.Southern Party, VIII D:1-13.
-	1933	Bryozoa of the Mt.Desert Region. Biol.Surv.Mt. Desert Reg., 1-97.
-	1940	Bryozoa of Porto Rico and a Resumé of the W. Indian Bryozoon Fauna. Sci.Surv.P.R., XVI (3): 323-385.
-	1944	A survey of the Bryozoa of Chesapeake Bay: Publ.Che:apeake Biol.Lab.,63:1-60.
PROUHO, H.	1892	Contribution à l'histoiredes Bryozoaires. Arch. $\mathrm{BoOl} . \exp . \mathrm{gen}_{0}$, ser 2,X:557-656.
QASIM, S.Z.	1957	The Biolggy of Blennius pholis L. Proc.Zool.Soc.Lond.,128:161-208.
ROGICK, M.D.	1956	Studies on Morine Bryozoa VII Hipnothos. Ohio T.Sci.,56(3): 183-191.
ROPER, R.E.	1913	The marine Polyzoa of Northumberland. Rep.Dove Mar.Lab., ser2, 2: 36-56.
RYLAND, J.S.	19580	Notes on Marine Polyzoa 1. Nolella pusilla (Hincks) Ann.Mag.nat.Hist., ser.13,1: 317-320.

RYIARD, J.S. (cont)	1958b Embryo colour as adiagnostic character in the Polyzoa. Ann.Mag.nat.H1st., Eor13,1:613-631.
	1959 Experiments on the selection of algal substrates by Polyzozn larvae. J.exp.B101.; 36(4): 613-631.
-	1960a Experiments on the influence of light on the tohaviour of Polyzoan larvae. Ibid., 37(4): 783-800
	1960 b The Britioh species of Bugula (Polyzoa) Proc.zool.Soc.Iond., 134(1): 65-105.
	1962a The association between Polyzoa and algal substrates.. J.anim.Ecol., $31(2): 331-338$.
	1962b Biology and Identification of Intertidal Bryozoa. Fld.Stud., 1(4): 1719.
	1963 The species of Hanlonoma(Polyzoa). Sarsia, 10:9-18.
SIIEII, L.	1936 Bryozoa from the Skagerak, with notes on the gemus Triticolla. Ark.Z001., XXVITI A(16):1-16.
	1945a Notes on Swedish marine Bryozoa, Ibld., XXXV $A(7): 1-16$.
	1945b On the diviaion eñdtinovements of the gut Alimontary Canal of Bryozoa. Ibid., XXTVA (12): $1-40$.
	1945c The main features of the development of the ovam, embryo and ousolur in the obeciferous Bryozoa. Oymolaemata. Ibid., XXXV $A(17): 1-34$.
\cdots	1947 on the anatomy and biology of Penetrantildae and Immergentildae (Bryozoa). Ibid., XXXVIII $\mathbf{B}(1): 1-17$.
	1950 On the mobility of entire zoolds in the Bryozoa. Acta zool.,Stockh , ,XXXI: 349-386
-	1951 Notes on the Swedich marine Bryozoa II. Ark.Zool., ser.2,II: 569-573.
12-	1954 Tryozo and"Entoprocta Rep:Prof.T.Gision Expedaust.1951-52, 12: 1-44.
SLum, D.J.	1962 Chemical constituents in sea water off Dorterin rurirg 1960. Anw. Lep.Mar.oninl.Sta. purt Erin,73:23-28.
	1962 Chomical constituents in seawator off Port Erin in 1961. Ann.Rep.Mar.biol.Sta. Port Erin,74,23-28.
SOURE, J.D.	1950 Penetrantildae and Immergentildas from the Pacific (Eryozoa Ctenostomata) Trons.Amer.micr.Soc., Oct.1950: 359-367.

SOUIE, J.D. 1959	Results of the Puritan American Musaum of Natural History Expedition to Western Mexico 6. Anasca Cheilostomata (Bryozoa) from the Gulf of California. Amer, Mus.Novit., 1969:1-54.
STEIMBECK, J. \& RICRETTS, E. ${ }^{\text {P }}$ 1941	Folyzos In Sea of Cortez. A leisurely journal of travel and research. 841-343. New Fork.

Acknowlodprontg

I wish to thank ry supervisor，Dr．N．3．Jones，for much help and encorragomont and for his constructive criticism of ny work．W．J．S．Dolman，Director of the Marine Biological Station， Port Erin，hos show interest in wy work and given helpful advice． I thank lis．J．D．Sin for information on sea temperatures and Dr．Joanna M．Kain for holp with diving matters．I acknowledge the encouragement and help given by the research，literary and technical staff of the larine Biological Station，f if follow students always showed cheerful interest in my work．I am porticuloriy indobtod to tho crews of both the＂William lierdmon＂ and＂Cypris＂for tho efficient manor in which that obtained ry samples．

During stay at the Dove Marine Laboratory，Cullorcoata， Dr．H．O．Bull and his staff have chow m much interest in work． Some of tho photographic work was undertaken by the Deportment of Photography of tho Library of King＇s College，Houcastlo upon Tyre．

I am very grateful to ny family and to my fiancéo Miss Pat Loather，for the constant support and encouragement they have given me in 吗 work．

While at Port Erin（October 1959 －Soptomber 1962）I held a D．S，R．Research Stuciontship and while at tho Dove Marine Laboratory I was holder of the Lard Adams Fellow hip．

Species	No. of colonies on inner surface	No. of colonies on outer surface
$\frac{\text { Crisidia }}{\text { cornata }}$	100	49
$\frac{\text { Crisia }}{\text { amileata }}$	100	44
$\frac{\text { Crisia }}{\text { eburnen }}$	100	101
$\frac{\text { Grisia }}{\text { ramosa }}$	100	80
$\frac{\text { Crisia }}{\text { denticulato }}$	100	109

Table
2. Crisiidac. Percentage distribution on supnorts from dredgo samples.

SFECITS

SUPFORT	$\frac{\text { Crisidio }}{\text { Cormata }}$	$\frac{\text { Crisia }}{\text { aculeata }}$	$\begin{aligned} & \text { Crista } \\ & \text { eburnea } \end{aligned}$	$\frac{\text { Crisio }}{\text { ramoso }}$	$\frac{\text { Crisia }}{\text { denticulote }}$
Chlamys	17-1	$31 \cdot 2$	$3 \cdot 6$	$26 \cdot 1$	16.9
Pecten	16.2	$22 \cdot 5$. 4	$12 \cdot 9$	$6 \cdot 3$
Cyprino	-	$1 \cdot 6$	-3	$4 \cdot 4$	$2 \cdot 1$
Vodiolus	$2 \cdot 7$	$5 \cdot 6$	- 2	$4 \cdot 2$	$4 \cdot 2$
Glycymoris	19.8	15.6	-3	19.9	$19 \cdot 1$
Other shell	63	54	2	86	-
Stone	$4 \cdot 5$	7.9	7	15.1	$17 \cdot 0$
Hydroid	$11 \cdot 7$	5.9	92.0	$5 \cdot 7$	8.5
Celloria	5.4	1.0	. 6	$1 \cdot 2$	$14 \cdot 9$
Flustra	-	. 3	. 9	$\cdot 3$	-
Eucrotea	$4 \cdot 5$	-	. 9	- 8	$8 \cdot 5$
Other supports	. 6	3.5	. 2	-	$2 \cdot 1$
Total on sholl	61.2	$81 \cdot 1$	$5 \cdot 0$	$76 \cdot 1$	48.6
Total on zoophytes	$33 \cdot 3$	$7 \cdot 2$	$94 \cdot 0$	8.0	3159
Total	$99 \cdot 6$	99.7	99.9	99.2	99.6

Table 3 Thhulipors penicil7ati: Percentage distributionon supports dredged in areas $A, B a n d C$. Total support area exemined: 97575 cm . No. of Tepeniciliata colonios: 105.

Support	$\%$ Composition of samplos	$\%$ Distribution of T.penicillata
Chlarys	$45 \cdot 7$	36.0
Modiolus	$22 \cdot 1$	18.0
Pectan	9.8	$16 \cdot 1$
Cymrino	$6 \cdot 1$	9.5
G1voymeris	$4 \cdot 1$	7.6
Giri	$3 \cdot 4$	4.8
Stono	$3 \cdot 2$	1.0
Cerdjum	$1 \cdot 3$	-
En3is	$1 \cdot 1$	\cdots
Other supports	$2 \cdot 6$	$7 \cdot 0$

Table 4 . Diaperoecia maior and Diaperoecia iohnstoni. Percentage distribution on supports from dredge samplos. Total support surface area examined:575,000 cm. No. of Demaior colonies: 387. No. of D.iohnstond colonios:527

Support	\% Composition of samples	$\begin{aligned} & \text { q Dist } \\ & \text { D.major } \end{aligned}$	bution of Dejohnstoni
Chlams	24.6	35.4	39.0
Pecten	$24 \cdot 3$	26.8	26.7
Glucymoris	11.6	16.3	12.7
Stono	$10 \cdot 5$	7.4	8.5
Modinlus	10.4	6.8	$5 \cdot 7$
Cymins	10.4	$4 \cdot 3$	2.0
Buecinum	1.4	. 5	7
Letrarin	1.2	-3	-
Gari	1.0	$\therefore 8$. 6
Other supports	37	2.0	3.8
$\begin{aligned} & \text { D. Demoior on inner surface of dead shell: } \\ & \text { o Dejohnstoni on inner surface of dad shell: } \end{aligned}$			$\begin{aligned} & 66 \cdot 6 \\ & 59.9 \end{aligned}$
$\begin{aligned} & \text { D,maior on outer surface of dead shell: } \\ & \text { \% Defohnstoni on outer surfaco of dead shell: } \end{aligned}$			$\begin{aligned} & 24 \cdot 8 \\ & 28.2 \end{aligned}$
\% Demaior on living molluseg: \% D.iohnstonit on living molluses:			1.2 1.5

Table 5 - Diplosolen obelia, Diastopora_patina and Diactopora suborticularis. Fercentage distribution on supports (excluतing zoophytes) from dredge samples. Total support surface orea examined: $575,000 \mathrm{~cm}$. No. of Deahelia colonies: 457 . No. of Denating coloniest607. No. of D.suhorbicularis colonies: 5268

Support	\% Composition of samples	$\begin{gathered} \text { O D1 } \\ \text { D.ohelia } \end{gathered}$	ribution of n.natina n.	D.suborbicularis
Chlamys	24.6	63	$40 \cdot 0$	21.5
Pecten	24.3	10.6	$23 \cdot 6$	14.6
Glycymeris	11.6	$9 \cdot 6$	6.7	12.9
Stono	11.3	$8 \cdot 0$. 5	3.9
Modiolus	10.5	61.1	15.7	27.6
Cyprina_	10.4	. 2	2.1	$7 \cdot 8$
Buccinum	$1 \cdot 4$. 9	1.0	$\cdot 2$
Intraris	1.2	-	4	$\cdot 9$
Gari	1.0	2	4	$4 \cdot 4$
Other supports	$3 \cdot 7$	2.5	$9 \cdot 6$	6.6
$\begin{aligned} & \text { \% D.obalia colo } \\ & \text { o } \frac{\text { Denatina }}{\text { Deolo }} \\ & \text { on } \\ & \text { D. suborbicula } \end{aligned}$	nies on the in nies on the in ris colonies	surface surfece or surfac	desd sholle ${ }^{*}$ dead shallis:* of dead shells:	
	nios on the cu nies on the ox ris on outor c	surface surface ace of de	dead shells: dead shelle: shells:*	$\begin{aligned} & 18 \cdot 4 \\ & 18 \cdot 7 \\ & 36 \cdot 1 \end{aligned}$
\approx Apbelia colon \% Donting colon $\%$ Lsuborbicular	ies on living ies on living is on living	luses: luses: uses:		$\begin{array}{r} 40 \cdot 3 \\ 21 \cdot 0 \\ 4.9 \end{array}$

Table 6 Disstopora suborbicularis. Number of colonies on the outer surface of dead shell for each 100 colonies on the inner surface of each species of shell.

Shells are listed in ordnr of decreasing roughness of the outer gurfac?

Shell species	No. of colonies on inner surface	No. of colonies on outer surface.
Chlamys	二:	
nnerminris	100	33
Pecten		
maximus	100	34
Gari		
Cyprina		
Modiolus		
Latrario		
Iutraria	100	78
Cordium		
crassixm	100	100
Ensis		
spp.	100	103

Table 7 . Lichenopora hispida. Number of colonies on the outor surface of dead shell for each 100 colonies on the inner surface of each specios of shell.

Sholls are listed in order of decressing roughnoss of tho outer surface.

Sholl species	No. of colonies on inner surface	No. of colonies on outer surface
$\frac{\text { Chlamys }}{\text { opercularis }}$	100	22
$\frac{\text { Pecten }}{\text { maximus }}$	100	45
$\frac{\text { Venus }}{\text { casina }}$	100	38
$\begin{aligned} & \text { Ostres } \\ & \text { edulis } \end{aligned}$	100	17
$\frac{\text { Gori }}{\mathrm{spp}}$	100	54
$\frac{\text { Cyprina }}{\text { islondica }}$	100	85
$\frac{\text { Modiolus }}{\text { modiolus }}$	100	70
$\frac{\text { Iutraria }}{\text { Iutraria }}$	100	25
$\frac{\text { Cardium }}{\text { crassus }}$	100	200
$\frac{\text { Ensis }}{\text { spp. }}$	100	88

Tablo 8 . Lichanonope hirnidas Percentago distribution on suprorts (excluding zoophytec) fron dredge samploc. Total nuriaco area of support examined: 362,000 c-. . Mo. of Lehionida colonies: 3575.

Euphort	400montion of camples	e. Distribution of I.hingids
Chlomy	26-1	31.1
Petten	21.6:	15.3
Stone	12.5	10.9
Mariolus	117	15.0
Glycyroris	10.8	16.0
Cymina	7.9	$2 \cdot 1$
Bucoimm	1.7	17
Intrario	$1 \cdot 7$	14
Gri	1.3	1.6
nosinia	1.3	. 3
Other eupports	$3 \cdot 7$	6.9

[^0][^1]Table 9 - Aetea anguine and Aetea sica. Distribution on supports in drodge samples. No. Aeanguinen colonios: 97, No. A. sice: 846

Support	\% Bistribution A.ancuinaa	$\% \text { Distribution }$ A.sica
Hydroid	49.4	$2 \cdot 0$
Collaria	$10 \cdot 3$	-
Eucrates	11-3	. 6
Flustra	-	$\cdot 1$
Red algae	3.1	-
Stone	$5 \cdot 1$	2.7
$\begin{aligned} & \text { Innor sholl } \\ & \text { surface } \end{aligned}$	$9 \cdot 3$	22.8
$\begin{aligned} & \text { Outer shell } \\ & \text { sur Cace } \end{aligned}$	11.3	63.0
Live molluscs	-	8.4

Table 10 . A of dead shill spocies of de Sholls ar outer ssurface	ca. Number of ch 100 colonies o in order of dec	on the outer sur ner surface on ea roughness of the
Shell species	No. of colonies on inner surface	No. of colonies on outer surface
$\begin{aligned} & \text { Chlemys } \\ & \text { onercularis } \end{aligned}$	100	327
$\frac{\text { Fecten }}{\text { maximus }}$	100	138
$\frac{\operatorname{Gar} 1}{\operatorname{spp}}$	100	166
$\frac{\text { Cyrrina }}{\text { islandica }}$	100	800
$\frac{\text { Modiolus }}{\operatorname{modiolus}}$	100	428

Tabla ll - Antem Aicn. Fercentage distribution on supports from dredge samples. Total zumort surface area exanineds 362,000 ca . lumbor of Aesion colmies: 846.

Support	F Composition of samples	${ }^{4}$ Distribution of A.sioa
Chinmys	26.1	47.9
Pecten	21.6	10.6
Stono	$12 \cdot 5$	$2 \cdot 7$
Modiolus	$11 \cdot 7$	15.9
Glyaymeris	10.8	$8 \cdot 4$
Gymins	$7 \cdot 9$	$4 \cdot 4$
nne? 1 mm	$1 \cdot 7$. 5
Iutrnisia	$1 \cdot 7$	18
Gned	1.3	2.9
Dosinia	1.0	-
Othor supports	$3 \cdot 7$	$1 \cdot 3$

excluding zoophytes

Tablo 12 . Eucratea loricata. Percentage distribution on supports from dredge samples. No. of R.loricata examined: 100

Support	\% colonies of
	E.Ioricate.

Ch7ams
onercularis 49
Glycymer is
glycymoris $\quad 14$
Pecten
maximus 11
Modiolus
modiolus 3
Cyprino
islandica 2
Venue
fasciata 1
Fragments 1
Zoophytes 19
$\%$ colonies on innor shell surface: 5
\% colonies on outer shell surface: 72
$\%$ colonies on living molluses : 4
occurence of the ectoproct species Guccimum undatum，Neptunea anticua and Colus gracilis． on the gastropods Table． 13 ．The
commonly occurring Blectra nilosa

Ectoproct
species $\begin{gathered}\text { Live gastropod } \\ \text { Zuccimum } \\ (129)\end{gathered} \frac{\text { rentunea }}{(54)}$ $\frac{\text { Broken，emply shen }}{\text { Fucinum }}$ ：ieptunea
 H ∞ A゙ 2

 \circ 오 1 $\stackrel{n}{n}$ 12 1

$$
\begin{aligned}
& \text { Shells with } \\
& \frac{\text { Buccinum }}{(139)}
\end{aligned}
$$ 2

$$
\begin{aligned}
& \text { t species } \\
& \text { Shells with }
\end{aligned}
$$

A
$\frac{\text { Colus }}{(2)}$ $\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
shel1s
$\frac{\text { Hentunea }}{(13)}$ $1 \underset{\sim}{\infty}$ $\stackrel{\infty}{\sim}$ $\underset{\sim}{\sim}$ 1 $\stackrel{\infty}{\sim}$ \bullet 1害界 and $\%$
Emp
Buccin Broken，empty shells pod
（54）
 $\stackrel{\infty}{\sim} 1$ － － － in 1 50

Table 14 . Proinora catemularia. Percentage distribution on supports from dredge samples.
Support \% Distribution of
P.catemularis.
Inner surface of dead shell $34 \cdot 5$
Outer surface of dead shell 26.9
Live molluscs 2.0
Shell framents $21 \cdot 3$
Stone $25 \cdot 1$
Hydroid $\cdot 2$

Table 15 . Fyripora catenularia, Aldorina imbeliis, Amphiblestrum flemingi and Collonora linosta. Number of colonies of each species on the oiter surface of dead shell for each 100 colonies on tho inner surface of each species of dead sholl.

Shell species are listed in order of decroasing roughness of outer shell murface.

$\frac{\text { Chlamys }}{\text { opercularis }}$	100	53	18	159	14
Eecton					
maximus	100	22	20	22	10
Glycymeris					
Elycymeris	100	C	-	14	4
Cypring 100					
1slandica	160	-	100	-	66
Modiolus					
monisolus	100	82	100	57	55
Intraria					
lutraria	100	-	-	14	-

Toble 16 . Alderina imbollis and Amphiblestrum flemingi. Percentage distribution on supports from dredge semples. Totsl orea of supports examined 362,000 cm . No. of A, imbollis colonies 673 No. of A, flamingi colonies 508.

Support \quad of	\% Composition of samples	\% Distribution of A.imbellis A.fleringi.	
Chlamys	26.1	45.0	$52 \cdot 8$
Pecten	21.6	26.8	5.9
Stone	12.5	$3 \cdot 0$	$2 \cdot 7$
Modiolus	11.7	8.9	$16 \cdot 1$
Glycymeris	10.8	9	10.4
Gurrina	7.9	11.4	-
Buscinum	1.7	3	. 3
Lutraris	1.7	. 6	-
Ggri	1.3	. 2	. 1
nosinia	$1 \cdot 0$	4	-
Grodiu cerassum	un 7	1.0	-
Enste	- 5	-	-
Other supports	2.5	1.9	11.6

[^2]Tablel7 Scrunocellaria scrunosa. Fumber ofcolonies on the outer surface of dead sholl for each 100 dolonies on the inner surface of each species of dead shell.

Shell species are listed in order of decreasing roughness of the outer surface.

Bpecies of shell	No. of colonies on inner surface	No. of colonies on outer surface.
$\frac{\text { Chlamyin }}{\text { opercularis }}$	100	292
$\frac{\text { Pecten }}{\text { maximas }}$	100	156
$\frac{\text { Glycymeris }}{\text { glycymoris }}$	100	44
$\frac{\text { Gycrina }}{\text { islandica }}$	100	750
$\frac{\text { Modiolus }}{\text { modiolus }}$	100	383

Table 19. Percentage distribution of Eicellariella ciliata on dredged supports. No. of Bicellariella ciliata colonies examined: 249

Support	of Distribution of Beciliate
Inner surface	
of dead shell	

Table 20 . Hipnothon distans and Chorizoporai brongniartie Number of colonies on the outer surface of dead shell foreach 100 colonies on the inner surface of each species of dead shell.

Shell spccies are listed in order of decreasing rougness of the outer surfaco.

Table 21 - Hippothoa distans and Chorizopora rononiorti Fecentage distritution on supports from dredge samples. Total support surface area examined; $575,000 \mathrm{~cm}$. No. of H,distens colonies: 1,429. No. of G, brongniarti colonies:990.

Support	\% Composition of samples	$\begin{array}{r} \text { \& D1 } \\ \text { Hedistens } \end{array}$	ion of ongiarti
Chlamys	$24 \cdot 6$	38.8	$33 \cdot 3$
Pecton	$24 \cdot 3$	22.2	19.4
Glycymeris	11.6	$10 \cdot 2$	23.9
Stone	11.3	2.6	1.7
Modiolus	10.5	11.2	8.5
Cyprina	10.4	$2 \cdot 3$	5.2
Buc:inum	1.4	. 3	2
Lutraria	$1 \cdot 2$	-8	7
Gari	1.0	1.6	$2 \cdot 3$
Dosinio	- 7	-	$\cdot 1$
Clinker	. 5	-	-
Ensis	$\cdot 3$	$\cdot 2$	1.6
Other shell	$2 \cdot 2$	9.9	4.4

\& Hedistans on innor sur aco of shell: 775
$\%$, bronenfarti on inner shell surfoce : 767
\% II, distsns on outer shell cur?ace : 155
$\%$ Cebroneniarti on outer shell syrfoce: 180
F H, distens on living molluses : 40
品 Cebromeniarti on living molluses: 33

Table 22 Reptadeonel1a violocos. Percentage distribution on supports fron dredge samplos. Total support suriace area examined : $575,000 \mathrm{~cm}$. No. of Reviolnces colonies: 190.

Suprort	\because Composition of samples	of Distribution of R.violacen.
Chlonts	246	24.7
Fecten	24,3	$4 \cdot 2$
Glycymeris	11.6	33.1
Stone	11.3	28.4
Yodiolus	10. 5	$3 \cdot 1$
Cymrina	$10 \cdot 4$	- 8
nucoimm	$1 \cdot 4$	-
Interario	1.2	1.6
Gari	1.0	. 8
Dosinia	.7	-
Clinkor	. 5	\cdots
Tnsis	. 3	-
Vemas casino	- 3	$1 \cdot 6$
Chlamys distorta	- 2	-
Other supporta	. 7	-

[^3]${ }^{x}$ Iamellibranchs only.

Table 23 . Escharella immersa, Escharella ventricoscia and Escharella variolosa. Number of colonies on the duter surfece of dead shells for each 100 colonies on the inner surface of each type of shell.

Shell species are listed in order of decreasing roughness of the outer surface.

No. of colonies on outer surface E.immersa E.ventricosa. E.variolosa

Chlomys

oneralaris Pecten maximus 100 56	100	42	85	47
		38	9	

$\frac{\text { Vemus }}{\text { casina }} \quad 100$
Gari. $\quad 100$
7%
77
in -
$\frac{\text { Gltcymeris }}{\text { glycymeris }}$
$44 \quad 78$
$\frac{\text { Cyrrina }}{\text { islondi }}$

islondica	100	50	176	-
Modiolus modiolus 100	55	50		

$\frac{\text { Iutraria }}{\text { Iutrerin }} \quad 100$
$\frac{\text { Cordium }}{\text { crassus }} \quad 100$
$\frac{\text { Ensis }}{\text { spp }} 100$
35^{\prime}

Support	\approx Composition of samples	P Distribution of Esimmersa.
Chlnmys	$26 \cdot 1$	15.8
Pecten	21.6	$6 \cdot 4$
Stone	12.5	29.7
Modiolus	11.7	18.4
Glycymeris	10.8	22.1
Cymring	7.9	$2 \cdot 1$
Buccinum	1.7	. 8
Intrario	$1 \cdot 7$	$\cdot 4$
Gari	1.3	5
Dosinia	1.0	1
Cardium crassum	$\cdot 7$. 3
Ensis	. 5	. 3
Venus casina	. 5	. 5
Ostres	. 5	-1
Other shells	1.5	$3 \cdot 8$
\% E.immersa on inrer shell surfaces: 40.0		
\% E.immerss on outer shell surfaces: 21.4		
\% E.immersa on living molluscs : 7.5		

Table 25 : Escharella ventricoso and Eschorella variolosa. Percentage distribution on supports Rrom dredge samples. Total surface area examinod: $575,000 \mathrm{~cm}$. No. of Eventricosa colonios: 2393. No. of Jivariolosa colonies: 319

Support	\nsim Composition of supports	\approx Distrib E.ventricoso	riolosas
Chlomys	24.3	38.8	186
Peoten	24.3	25.4	$7 \cdot 2$
Glycyeris	21.6	72	37. 8
Stone	31.3	117	10.3
Modiolus	10.5	6.2	15.7
Gymina	10.4	$4 \cdot 8$. 6
Buceimm	1.4	4	$1 \cdot 2$
Iutraria	1.2	. 7	. 6
Gar 1	1.0	-8	-
Dosinio	. 7	$\cdot 1$	-
Clinker	. 5	$\cdot 4$. 6
Ensio	. 3	. 2	-
Venus cosing	$\cdot 3$	4	-
Chlamys distorta	. 2	. 1	1.3
Other sholl	1.7	$2 \cdot 8$	$5 \cdot 8$

\% Eqventricosa on innershell surfaces $68.9($\% Eeverioloss on inner sholl sur aces 61.7
\% Eventricoss on outer shell surfaces 17.5
F Fivariolosa on outer sholl surfaces $12 \cdot 8$
\% E.ventricoss on living molluses 1.5
$\%$ Fivariolosa on living molluses $9 \cdot 4$

Table 26 . Schizoporella unicornis, "chizomavella auriculata and Schizomavella linearise Percentage distribution on supports from dredge samples. Total area of supports examined : $575,000 \mathrm{~cm}$. No. of S.unicornis colonies:232. No. of Ge auriculata colonies: 6905. No. of Selinearis colonies: 799

Support
Composition
of samples
\% Distribution of
Composition of samples

Sunicornis S.auriculata S.Iinearis.

Chlemys	$24 \cdot 6$	13.7	35.0	$24 \cdot 9$
Pecten	24.3	$7 \cdot 3$	$23 \cdot 8$	$13 \cdot 9$
Glycymeris	11.6	41. 5	10.8	$23 \cdot 2$
Stone	$11 \cdot 3$	$26 \cdot 8$	$4 \cdot 8$	$6 \cdot 6$
Modiolus	$10 \cdot 5$	$5 \cdot 2$	$9 \cdot 5$	$21 \cdot 4$
Cyprina	$10 \cdot 4$	6	71	. 1
Fucoinum	$1 \cdot 4$	$2 \cdot 1$. 7	.7
Iutraria	1.2	. 4	. 9	4
Gori	1.0		1.2	. 4
Dosinis	$\cdot 7$		2	
Clinker	. 5		. 1	. 5
Ensis	3		- 5	
Other supports	$2 \cdot 2$	$3 \cdot 0$	$5 \cdot 3$	7.9

[^4]| Table 27 - Schizomavella ouriculata and Schizomavella linearis. Number of colonies on the outer surface of dead shells for each 100 colonies on the inner surface.
 Shell species are listed in order of decreasing roughness o: the outer surface of their shells. | | | |
| :---: | :---: | :---: | :---: |
| Species of shell | No. of colonies on Inrer surface | No. of S.auriculata colonies on the outer surface | No. of S.Iinearis colonies on the outer surfeco |
| Chlamys oncrcularis | 100 | 90 | 56 |
| Pecton maximus | 100 | 73 | 29 |
| Vemus casing | 100 | 118 | |
| $\frac{\text { Ostrea }}{\text { edulis }}$ | 100 | 100 | |
| $\frac{\text { Dosinia }}{\text { Ianililus }}$ | 100 | 100 | |
| $\frac{\text { Gor } 1}{\text { spp. }}$ | 100 | 97 | |
| $\frac{\text { Glycymeris }}{\text { glycymeris }}$ | 100 | 38 | 49 |
| $\frac{\text { Cymrina }}{\text { islandice }}$ | 100 | 91 | |
| $\frac{\text { Morliolus }}{\text { modiolus }}$ | 100 | 179 | 45 |
| $\frac{\text { Iutroria }}{\text { Iutroria }}$ | 100 | 134 | |
| $\frac{\text { Cardium }}{\text { crssens }}$ | 100 | 52 | |
| $\frac{\text { Ensis }}{\text { spp. }}$ | 100 | 13 | |

Table 28 . Hippoporina nortaen.
Fercentag distribution on upports from dredgs samploa. Total gurfece aroa of supports examined: $575,000 \mathrm{~cm}$. No. of Henertusa coloniea: 438

Support	9. Gomposition of sarples	F Diatribution of H.partinso
Chlarys	24.6	50.1
Fecten	$24 \cdot 3$	27.9
Glycymeris	11.6	- 4
Stono	$11 \cdot 3$	1.8
fodiolus	10.5	$1 \cdot 4$
Cyorina	10.4	17.4
Fuceinum	$1 \cdot 4$. 9
Iutrarin	$1 \cdot 2$	$\cdot 2$
Gori	1.0	6
Posinia	$\cdot 7$	-
Clinhar	$\cdot 5$	-
Tnsis	- 3	$1 \cdot 0$
Other supports	$2 \cdot 2$	$2 \cdot 3$

4. Herortusn colonios on inner curfece of doed Iemellibronchs: 43.1
of मemortins colontes on outor suriace of dead lemelifbranshe : 51.8 Homerting colonios on living molluses: $2 \cdot 4$

Table 29 - Macronorello cilinta and Forestrulina noluci. Distribution on cupporte from drodg amples. Total support surface area examinot: $575,000 \mathrm{~cm}$. No. of Mecilinta colonies: 8396. No. of Eemalust colonics: 7109

Support $\begin{aligned} \text { \% }\end{aligned}$	Composition of ssmplea	$\begin{array}{r} \text { g Diet } \\ M, 0 i l i s t \pi \end{array}$	ation of Explusi
Oh2xmye	246	24.8	32.4
Pocton	$24 \cdot 3$	$12 \cdot 0$	14.9
glunyerin	11.6	31.4	$28 \cdot 6$
Stons	11.3	13.5	4.4
K2103118	10.5	11.0	8.6
Gyming	10.4	1.2	1.4
Duceirum	1.4	. 9	. 4
Iutroris	1.2	1.0	2.6
Sani	1.0	- 9	1.3
Dosinis	7	$\cdot 1$	2
Clinker	.5	-	<--
Enats	$\cdot 3$. 4	.6
Othor supports	ts 1.7	$2 \cdot 2$	$4 \cdot 6$

 \% Emalual on inner murfaco of dend lamellitranoh chol: 3: 6.3.4

F Meflietn on outer atraco of desd lemellibranch shells: 21.8 \% Emojnsi on outer aurface of dsad lamellibranch shells: 8.3

F Heqlinta on Ifving molluseas 3.3
\& ${ }^{\text {mannici }}$ on livint Eolluecs: 2.8

Table 30 . Microporella ciliata and Penestruling malusi. Number of colonios on the outer sur:ace of dead shells for each 100 colonies in the inner surfacs of each type of shell. Shell species are listed in order of decreasing roughness of the outer surface of the shell.

Species of No. of colonies	No. of M, cillata	No. of Fomalnsi
shell.	on inner surface	colonjes on
		cuter surface
		outer surface.

Chlames

Oporcularis	100	25

Pecton

maximus	100	24

$\frac{\text { Vonus }}{\text { cocin } \theta}$	100	80

Dosinia	
Iapilins	

$\frac{\text { Ostreo }}{\text { edulis }} 100$
$\frac{\text { Gori }}{\text { SDP: }} \quad 100$

Glycymeris		
glycymeris	1000	33

Moliolus		
modiolus	100	79

$\frac{\text { Intraria }}{\text { Intraris }}$	100	94	14
$\frac{\text { Onrdium }}{\text { crassus }}$	100	50	-
Ensts 100 67			

Add.
Cymina
Islandica

Table 32 . Forella concinna and Parosmittina trisoinosa. No. of colonies on the outer burface of doad shells for eash 100 colonies on the inner shell surfece.

Chlams

onercularis	100	99	76
Pecten			
meximus	100	214	65
Venus			
casina	100	170	-
Ostrea			
edulis	100	88	-
Gari			
spr.	100	144	31

Glycymeris		
glycymeris	100	92

$\frac{\text { Cyprina }}{\text { islandica }}$	100	280	156
$\frac{\text { Modiolus }}{\text { modiolus }}$	100	200	115
$\frac{\text { Iutraris }}{\text { Iutraria }}$	100	136	-
$\frac{\text { Cordium }}{\text { crassus }}$	100	110	-
$\frac{\text { Ensis }}{\text { spp. }}$	100	100	

Shells species decreaso in roughness of outer shell sur aco from top of table towards bottom.

Table 33 - Celleporaria pumicosa and Osthimosia avicularis. lumber of colonies on the outer surface of doad shells for each 100 colonies on the inner surface of the shells.

Shell species decrease in roughness of the outer shell surface from the top of the tablo towords the lbottom.

Species of shell	No. of colonies No. of colonies No. of colonios	
on inner surface	$\frac{\text { C.punicose on }}{\text { outor surface }}$	$\frac{\text { O, avicularis on }}{\text { outer surfaco }}$

$\begin{aligned} & \text { Chlamys } \\ & \text { opercniaris } \end{aligned}$	100	175	310
Pecten			
maximus	100	56	111
Gor 1			
spp.	100	\%	25
Glycymeris			
alycymeris	100	54	64
Cymeins			
islandice	100	100	275
Modinlus			
modiolus	100	450	155

Table 34 Celleporaria puricose and Osthimorio nvicularis. Fercentage distribution on supports other thon zoophytes "rom dredge samples. Total suriece area of cupports examincd : $575,000 \mathrm{~cm}$. No. of Cemumicoss colonies: 372. Ho. of $\theta_{\text {e_ aviculoris: }}$ 1230.

Support	\% composition of supports.	$\begin{array}{r} \mathscr{E} \text { dist } \\ \text { c.pumicoss } \\ \hline \end{array}$	bution of Q.avicularis
Chlamys	$24 \cdot 6$	$38-9$	63.4
Pecten	24.3	6.8	$7 \cdot 4$
Glycymeris	11.6	14.6	11.8
Stone	21.3	7.9	4.1
Hodiolus	$10 \cdot 5$	12.7	7.0
Gyprina	10%	$3 \cdot 8$	1.2
Buceimm	1.4	-	. 9
Iutrorin	1.2	$4 \cdot 5$	1
Gari	1.0	-	- 8
Dnania	. 7	$1 \cdot 1$	-
Clinker	- 5	-	-
Ensis	- 3	1.1	- 3
Other support	2.2	$8 \cdot 6$	28

\% C.erumicose oninner shell curfaces : 33.6
\% Oe avicularis on inner shell surface: 27.4
Q C.mumicosa on outer shcll surfeces: $45 \cdot 4$
of O, avicularis on outer shell surfoces: 54.6

$\neq C$. numicoss on living shells	
ϕ	$: \quad 9.1$
O avinuloris on living shells	2.2

* Lamellibranchs only

	Support					Botton type						烒
Species	$\begin{gathered} 0 \\ \mathbf{d}_{0} \\ \text { of } \\ \text {-1 } \end{gathered}$		$\begin{aligned} & \text { H } \\ & \text { H } \\ & \text { O } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { wa } \\ & 0 \\ & 0 \\ & 0 \\ & \text { to } \end{aligned}$			TExO77!T-qns Syooq	[OMBIS OSTROD	Sandy shelly gravel	pues אppnw əxочsuI		
Eucratea Ioricata			+++				?	+++	+	+	+	
Scrupocellaria reptans	+++		++	+++		++	+++	+	+	+	+	
S.scrupea			+++					+++	+	+	+	
S.scruposa			+++	+			$?$	+++	++	+	+	
Bicellariella ciliata						+		+++	++	+*	+	
Bugula avicularia			+++	+			?	+++	++	++		
B.plumosa		+++	+++	+				+++	++		+	
B.flabellata.		+++	+++	++			$?$	+++	+++	+4	+	
Flustra foliacea			+++	++			?	+++	+			
\times Cellaria fistulosa		+++	+++	$+$			$?$	+++	++	++	++	
C.sinuosa			+++	$+$?	+++	++	++	t+	
Iepralia foliacea			$+$	+++				+++				
Velmicellaris skenei			+++					+			+++	
Celleporaria dichotoma		+++		,				+	+	+	+++	
Crisidis cornuta	+++	++	+++	++	+	++	+++	++	+	+	+	+
Crisis oburnes	+++	+++	+	+		+	+++	+++	++	+	+	
Gaculeata		+	+++	+++	+	+	?	+++	++	+	++	+
C. denticulato		+	+++	+++		+	$?$	+++	++	+		
C.ramosa			+++	+++			?	+++	+++	+	+	
Tubulipora penicillata			+++	$+$				+++	+	+		
Alcyonidium gelatinosum			+++	+				++	+++	+	++	
+++ Common ++ Occasional + Rare x on zoophytes for early part of life.												
Table35a, Distribution bottom type. Ratings ar do not allow direct comp species is given a +++ r which it is most common.	of	erec sess on o fo		topro ndivi unden esupp	cts	by 11y betw and	supp for een bot	ort each spec tom	and b spec ies. type	by ies Ea on	and h	

Rare erect syecies not included in Table 35a are: Filicrisia geniculata, Entslophora clavata, Bugula calathus, Bugula turbinata, Cellaria salicornioides, Porella compressa, Omalosecosa ramulosa, Tasicularia, soinosa, Amathia lendigera, Bowerbankia pustulosa.


```
+++ Common t+ Oscasional + Rare
    †spocies in wich the tentacular crown is raised
        above support
    \(x\) comion on Ascidians
```

Rare species and spocies of unknown distribution not included:
Stnotopoca ramilntn, S. Incurvatn, Dine oncia johnstioni,
Tubulinors lobulnt, Proboscina inersosets. Nolello pusill.

Table 356. Distribution of spreading ectoprootspecies by support and by hottom type. Assessments as Eor Table 35a.

Table 35dDirtribution of nodular ectoprocts by support and by bottom type. Ratings assessed as for Table 350
$\frac{\text { Osthimosia }}{\text { Bvicularis }} \frac{\text { Cellenorsria }}{\text { Eumicose }} \quad \frac{\text { Celleporina }}{\text { Costarij }}$

Sunnort

Algae			+
Zoophytes	+++	+	+++
Shells	++	++	+
Stones	+	++	+++
Crustacea			

Bottom Tyre

Shore		+++	+++
Rocky sub-littorsl		?	?
Cosrse Eravel	++	++	+++
Sandy shelly Eravel	+++	+++	++
Inshoro muddy sand	+	++	+
$\begin{aligned} & \text { offshore } \\ & \text { muddy sand } \\ & \text { Mud } \end{aligned}$	+	+	+++
+++	mon	asional	aro

Rare species not included in Tanle3Sd : Minnonortdra edsx, osthimosia armato

Table 36 . Ectoprocts growing on algae in Manx waters. Rare species re excluded.

Group I. Species occasionglly growing on algae, most common on other suprorts.

	Colony	Type	
Erect	Spreading	Encrusting	Nodular
-	Aeter anguina. Actoa Bics Aoten truncata Bonnia mirnilis Bowerbonkia imbricatn	$\begin{aligned} & \frac{\text { Gollopora }}{\text { Craticula }} \\ & \text { Psoharina } \\ & \text { sniniferim } \\ & \frac{\text { sochnoniros }}{\text { cocinous }} \end{aligned}$	$\frac{\text { Colinporing }}{\text { costarii }}$

Group II. Srecies regularily present on 1geo.

> Colony Typ?

Erect	Sprending	Encrusting
Crisidin	Scrupsiria	Caj1.0nora
cornuta	ambinua	Ijneata
Crisia	Scruparia_	Membronjpora
eburnea	chel to	nmi ranacoa
Serunocellaria	Valberia	Flectra
reptons	11va	n110sa
		$\frac{\text { Macronorells }}{\text { cilota }}$
		Hipnothoa
		hyaling
		Alcronidium
		hirsutum
		Flusinollidre
		4isnida

Table 37 Ectoprocts growing on zoophytes in the Manx area.
${ }^{X}$ Group I . Species occasionally. present on zoophytes but most common on other supports.

Colony Type

| Erect | Spre-ding | Fncrusting |
| :--- | :--- | :--- | Nodular

C Croup II Species growing on zoophytes but which are rare in the area sampled

Erect
$\frac{\text { Omolosecosa }}{\text { ramulosa }} \quad \frac{\text { Alcyonidium }}{\text { nargsiticum }}$

Group III Species common on zoophytes in the area sompled ond which usually grow on or close to the axis of erect zoophyte colonies.
Colony Type

Erect	Spreoding	Encrusting	Nodular
$\begin{aligned} & \text { Crisidia } \\ & \text { cornuta } \end{aligned}$	Astea ancúsra:	$\frac{\text { Diastonora }}{\text { nating }}$	$\frac{\text { Osthimosia }}{\text { avicularis }}$
Grisia	A 0 tea	1actra	
e ${ }^{\text {u urnea }}$	trunesta	pj loga	
BuquIs	Scruparia		
avicularia	chelats		
Puculs	Scruaria		
nlumose	ambjun	'	
Gelloria	Beania		
jicminss	mirn ijis		
Golyaria	Bowerbenkia		
sinnora	racil s		
Collenmaria	Euskia		
dinhotom	nitens		
	$\frac{\text { Vnlkeria }}{\text { tre ula }}$		
	N07.e17a		
	dilotata		

Goup IV Species common in the area sampled and oc urring most, commonly on the laboral. br nchec of zoophyte colonies;

Erect
Bicollariella elliata
Nodular

Tablo 38 Fctoprocte coloninin ahll in Manx watcrs (oxsiuding raro apeoies)

Group I Srocies rars on sholl.
Bolony $\quad y \div 0$

Troct Spesdirg Incmasting
lodular

Coup II. Spocion oow on on shall but in onnor on otion mproris.

Croun III. Srocios commonly precont on ohell, ware on other mprores Crost Solony Tumo

Table 39. Ectoprocts colonizing stone in Manx waters. (Shore records not, included).

Group I. Species rerely occurring on stones. Colony Type

Erect	Spreading	Incrustine		Nodular
		Lorgo	Small	
Bugula	Diaperoncia	Strilaria	Aldering	Osthf cosia
avimlaria	mator	radiata	Imhollis.	avicularis
Badmila	Aeter		Houchos	
Jumose	snouire		byalina	
Criss	Hipnothoa		Schizothecs	
einurnoa	djetons		S.898	
Tximinora			Hirpoporina	
penjcjilata			matuso	
			Alcyonidium	

Group II. Spocios common on stone but also comnonly present on other supportso

Colony Type				Nodular
Erect	Spreading	Incrusting		
		Larem	Small	
Crisidia	Tubulinora	Electra	Dipzosolon	Celleporario
cornuta	phalangea	nilosa	obnlio	pumicoses
Crisia	Anter	crolis	Digatomora	
aculenta	Sica	concinna	natins	
Crisia	Prcinora	Parasmuttina	Dicstenora	
Certijculato	catenularia	tris	guhargoularis	
Crisa	neanio	Eacharolia	Lichenomars	
ranga	nimabilis	variolosa	ajenia	
Scrupacellaria	Hinnothoa		Monconmorila	
cminosa	divaricota		nionde	
Sernocellaria	Acyeminium		Xicrorella	
reat,ons	2 ml 17atum		217859	
Bran 7 Ta	Hololia		Fenstruling	
Preluata	dyatata		2narj	
710tra			Gharizopora:	
Polincea			Inniarts	
Coliorta			Esciarnilo	
97n10s9			戓brsa	
Golior a			Leversia	
ginnosa			ventricoss	
A]cyontiu:			Schizatavello	
zelatinosum			glxiculata	
			$\frac{\text { sch amonalya }}{1 \text { inomris }}$	

Group III. Specios commonly present on stome rore on other supports Colony "ype

Spreading	Spreading	$\begin{aligned} & \text { Incrusting } \\ & \text { Lorge } \end{aligned}$	Small
Leproliaimer	-	Reptadeonella	Wscharoides
foliacea		Vinleces	$\frac{\text { coccincus }}{\text { Schizoporille }}$
			unicornis
			Alcyonidium

Table 40 . Differences in tolerance to rough surface textures among ectoprocts occurring on shell.

Species confined to or clearly most abundant on smooth surfaces

Diplosolen
obelia
Diastopora
suborbicular"s
Lichenopora
hispida
Callopora
craticula
Callopora
lineata
Callopona
dumerili
Alderina
imbellis
Microporella
ciliata
Figularia figularis
Cribrilania
radiata
Fenestrulina malusi
Chorhizopora
brongniarti
Escharella
ventricosa
Escharella
variolosa
Schizotheca
fissa
Schizomavella
auriculata
Schizomavella
linearis
Smittina
cheilostometa
Smittina
landsborovi
Smjttoidea reticulat
Alcyonidium
mytili

Species indifferent to surface texture

Diastopora
patina
Electre p:…
pilosa
Amphiblestrum
flemingi
Hippoporina
pertusa
Escharella
immerse
Porella
concinna
Parasmittina
trispinosa
Schizomavella
aurimulata
Escharoides
coccineus
Alcyonidium
variegatum

Table 41. The Botoprocts occurring on the ahores of the Isle of Man.

Rare species	Species rare on shore not uncommon sub-ittorally	$\begin{aligned} & \text { Species cormon } \\ & \text { on shore } \\ & \text { rare } \\ & \text { sub-Ilttorally } \end{aligned}$	Speciescommon on shore and not uncommon sub-littorally
Filicrisia	Crisia	Membranipors	Crisidia
Eeniculata	aculeata	membranacea	carmata
Conopeum	Crisia	Callopora	Crisia
reticulum	denticulata	日urita	eburnea
	Aetos	Qeuloremphus	Tubulipora
	ancuiner	spinifarim	phalancoa
	Actos	Haplonoma	Diplosolen
	sics	croniforum	obnl1a
	Bicoliariella	Cryptosula	Dinstorara
	cillata	pollastana	natine
	Begnis	Umiomule	DLentiopora
	mirabilds	1ittoralis	sukorbicularis
	Callorora	Escharina	Ifahenopora
	dumorili	spiniforum	hispida
	Amphiblestrum	Alcyonidium	Scmaparia
	fleminsi	hirsutum	ambicua
	Chorfǐoporas	Alcronidium	Scruparis
	brongniatti	polyoum	cholnta
	Escharolls	Flustrallidre	Scrupocellaria rnstarn
	ventricose	hispida	raptans
	Schizomavelia	Bowertankia	Elestra
	auriculata	1 mbricnta	pilosa
	Frimemittina	Yalkeris	Cnj7
	Erispinosa	uve	İnoata
	Alcronidium		Cribrilina
	gelatinosum		panctata
	Alcronidium		Mombroniporella
	Mammillatum		nitida
			Hipoothoa
			hyslina
			$\frac{\text { Micronorollo }}{\text { cilinta }}$
			Escharelis
			inmorsa
			Schizororelle
			Schipomavolia
			Iinooris
			Escharoidos
			coccinnus
			Colloporaria
			Colleporins
			costazid
			Aloyonidium
			mytil1
			Aovorbankia
			Eraclije

Exposed and sholtered refor to the dxpolive fordessiccating influences.

Toble 44 . Seasons of pank mprovaction of 55 ectoproct apecies in Mank wators.

Sermon
No. of species with prak in eanh soason of

25 specios	10	11 brocios	-
	-mily	uth ommyos	'
011 year			
	months	-rors	6 month

Sp.	1	-	1	2
Su.	5	2	3	2
Au.	-	-	1	1
win.	1	1	1	1
Sp-Su.	3	1	2	-
Su-Au.	2	-	1	1.
Au-in.	2	3	2	1
Wnosp,	-	2	-	-
Sp, ona Au.	-	-	-	1
Au-Wnt5p.	1	-	-	-
Cu-Au-in	2	1	-	-
No peat	8	1	-	-

Sp = Springw Hay, Juna, July
Su= Sumor= Augast, Sontomber, october
$\mathrm{Au}=\mathrm{Autuman}$ Yoventer, December, Tamary.
$W_{n=}=$ Uinter "obruary, \%arch, Apri?.

Those seamens aro bacet on sea-tompraturo (ino Fig.1177)

TEXT BOUND INTO

THE SPINE

Table 45 , humber of nctormot apesics raproducing in esch así at Frovonce (lata Erom Gautier 17e 2), in tho Enileh Ohonnol (flymoith and Rossoff co-binod. Dota fran P.M.F. (1957) ard Echaller and Pr nont (19ji:)

Locslity		Month and ro. of apecies reprotucinj									
		J	\%	11	A	M	J	5	Λ	3	01
	ilostonata on	17	19	19	25	33	33	27	31	37	3.1
OLAMETE		\cdots	-	-	1	3	5	6	18	23	25
1SIE	Shallostomgta	43	33	42	38	40	40	38	45	51	47.
at	Ctincostorsta	5	6	6	4	3	4	2	6	5	6
$\therefore \mathrm{AK}$	Gyciostomata	3	3	5	6	3	7	4	3	5	5 !
	$\cdots \mathrm{Ot-7}$	51	47	53	4	46	51	54	54	61	$58:$

Table 46 . lumber of species for which full data on reproduction was not obtained reproducing in each month grouped according to geograph dal distribution.

13 species occurring in Arctic and eithor Mediterrenean or Tropics or both

Season and Month
Winter Sprirg Summer Autumn

F M A M J J A S O N D J
No. of species
recorded as
reproducing
$45.6 .2 \quad 3.3: 4.35 .5 \quad 5 \quad 3$

14 species occurring in Vediterranean and Tropios but not Arctic

Season and Month			
Winter	Spring	Summer	Autumn
F M A	M J	A S	11.

NIO. of species
recorded as
roproducing
$\begin{array}{llllllllllll}2 & 3 & 1 & 3 & 4 & 1 & 5 & 7 & 6 & 6 & 3 & 3\end{array}$

2 species occurring in Arctic and not Mediterranean or Tropics.
........ Sesson and Month
Finter Spring Summer Autumn

No. of specios
recorded os roprolucing

1
11

Scasons are based on sea temporatures (See fig II 7)

Toblo 47. Eumary of the data on roproluctive season of those apecies from which full deta on reproductive sesson has bon obtainod grouped eccording to geogrophical distritution of the smeios included.
24. Epecies Fron Arctic and Yediterranen of Tronice or both

19 Species from Noditerrancon or Tropics but not Aretic.

5 Species from Arctic but not !editerranoen or Trovies.

Sosecn of pesk romrodustion in 15 epcoien fron Arctic and Meditorranom or Tropics or both thich rerroduce all yoer (cee anove)

Sosson of rook roproduction in 13 coscias fros Moditerrancan or Tropics but not Aretic which rerroduco throughout the yaor.

Season of roak romrodution

$\mathrm{Sp}=$ Moy to July
Sur= August to netober
$\mathrm{Au}=$ Noverber to Jemary
Seasons based on sea-tempent mres
(sae fig. II 77.)
$\mathrm{Wn}=$ Pebrusry to April.

Figures 1-77

Fig II. I. Crisidia cornuta. Percentage colonies with embryos each:month': from June 1961 to May 1962.

Fig II. 2. Grisia eburnea - Percentage colonies•with embryos each month from June 1961 to May 1962.

Fig II.3. Crisia ramose. Percentage colonies with embryos each month from June 1961 to May 1962.

Fig II. 4 . Tubulipora phalangea. Percentage colonjes with embryos each month from May ;961 to May 1962

Month 1961.62 \& Nos. of Colonies examined
Fig II. 5. Aetea sica. Percentage colonies with embryos in each month!s samples from May 1961 to May 1962.

ig II. 6. Alderina imbellis. Fercentage colonies with embryos and percentage colonies with eggs in each two month's samples fromJune 1961 to May 1962.

Month (1981.62) a Nos of Ooecia \& Eggs observed
Fig II.7. Aldarina imbellis. Percentage ooecia containing embryos and (no. of eggs: no. of 00ecia) $\times 100$ in each months samples from June 1961 to May 1962

Fig II. 8. Callopora lineata. Percentage colonies with embryos and percentage with eggs in each month's samples between June 1961 and May 1962.

Month 196162 \& Nos of Ooecia \& Eggs observed

Fig II. 9? Callopora Iineata. Percentage ooecia containing embryos and . (no. of eggs: no. of ooecia) $\times 100$ in each month? samples from June 1961 to May 1962.

Month (1961-62) \& Nos. of Colonies examined,
Fig II. 10. Gallopora dumerili. Percentage colonies with embryos and percentage with:egge in eaeh two month's: samples from June 1961 to May 1962.
 and (no. of eggs: no. of ooecia) $\times 100$ in each month's samplesfrom June 1961 to May 1962

-Fig II.12. Callopora auritae Percentage colonies with embryos and percentage with eggs in each month's samples from May 1961 to April 1962.

_Fig II.13. Callopora aurita. Percentage ooecia containing embryos and (no. of eggs: no. of $00 e c i a$) $\times 100$ for each month's samples from May 1961 to April 1962.

Fig II. 14. Callopora craticuls - Percentage of colonies with embryos and percentage with eggs in each two month's samples from June 1961 to May 1962.

Fig II. 15. Callopora craticula. Percentage ooecia containing embryos and (no. of eggs: no. of ooecia) $\times 100$ for each two months samples from June 1961 to May 1962.

Fig II. 16. Amphiblestrum flemingi. Percentage colonies with embryos and percentage with eggs in each month's samples from June 1961 to May 1962.

-Fig II.17. Amphiblestrum flemingi. Percentage ooecia containing embryos and (no. of eggs: no. of ooecia) $\times 100$ for each month's samples from June 1962 to May 1962

Fig. II.18. Gauloramphus sniniferum. Percentage colonies with embryos in each month's samples from June 1961 to May 1962.

Fig. II.19. Micronora corisces. Percentage colonies with embryos and percentage with eggs in each two month's samples from June 1961 to May1962.

ᄂ

Fig. II. 20. Micropora coriacea. Percentage ooecia containing embryos and (no. of eggs: no. of ooecia) 100 in each two month's semples from June 1961 to May 1962

Fig. II. 21. Cellaria fistulosa. Percentage colonies with embryos in esch months samples from June 7961 • to May 1962.

Fig. II. 22. Cellaria sinuosa. Percentoge colonies with embryos in each month's samples from June 1961 to May 1962.

Fig. II. 23. Scrupocellaria scruposa. Percentage colonies with embryos in each month's samples from Junel961 to May 1962

Fig. II.24. Scmpocellaria reptons. Percentage colonies fith ombryos' in each month's samples from June 1961 to May 1962.

Fig. II. 25. Bicellariella ciliata. Percentage colonies with embryos in each month's samples from June 1961 to May 1962.

Fig. II. 26. Bugula avicularis. Percentage colonies with embryos in each two month's samples from May 1961 to April 1962.

Fig. II. 27. Bugnla flabellata. Percentage colonies with embryos in each month's samples from June 1961 to May 1962.

Fig. II.28. Membraniporella nitida. Percentages of colonies with embryos and with eggs in each month's samples from June 1961 to May 1962.

Month (1961-62) \& Nos. of Ooecia and Eggs examined.

- Fig. II.29. Membraniporella nitida. Percentage ooecia containing embryos and (no. of eggs: no. of ooecia) $x 100$ for each month's samples from June 1961 to May 1962.

Fig. II.30. Gribrilina punctata. Percentages of colonies with embryos and with eggs in each Month's samples from June 1961 to May 1962.

Fig.II.31. Cribrilina punctata. Percentage ooecia containing embryos and (no. of eggs: no. of ooecia)x 100 for each month's samples from June 1961 to May 1962.

Fig. II. 32. Cribrilaria radiata. Percentage colonies with embryos in each two month's samples from May 1961 to April $\$ 962$.

Fig. II.33. Figularia figularis. Percentages of colonies with embryos and percentages with eggs in each two month's samples from June 1961 to May 1962.

Fig II. 34. Figularia figularis. Pecentages of ooecia contrining embryos and (No. of eggs: no. of ooecia)l00 for each two month's somples from June 1961 to May 1962.

Fig. II.35. Hippothoo distans. Pecentage colonies with embryos in each two month's samples from June 1961 to May 1962.

Fig. II. 36. Hippothoa hyalina. Percentage colonies with embryos and percentage with eggs in each month's samples from June 1961 to May 1962.

Fig. II. 37. Hippothoa hyalina. Percentage ooecia contoining embryos and (No. of eggs: no. of ooecia) 100 for each months samples from June 1961 to May 1962:

Fig. II. 38. Chorizopore brongniarti. Percentage colonies with embryos and percentage with eggs in each months samples from June 1961 to May 1962.

Fig. II. 39. Chorizopora brongniarti. Percentage ooecia containing embryos and (No. of eggs: no. of $00 e c i a$) 100 for each month's semples from June 1961 to May 1962.

Fig. II.40. Haplopoma graniferum. Percentage colonies with embryos and percentage with eggs in each month's samples from June 1961 to May 1962.

Fig. II. 41. Haplopoma graniferum. Percentage ooecis containing embryos and (No. of eggs: No. of ooecia) 100 for each month's samples from June 1961 to May 1962.

Fig. II. 42. Escharella immerse. Percentage:colonies with embryos and percentage with eggs in each month's samples from June 1961 to May1962.

Fig.II. 43. Escharella immersa. Percentage ooecia containing embryos and . No. of eggs: No. of ooecia) 100 for each month's samples from June 1961 to May 1962.

Fig. II. 44: Escharella ventricosa. Percentage colonies with embryos and percentage with eggs in each month's samples from June 1961 to May 1962.

Fig. II. 45. Escherella ventricosa Percentage ocecia containing embryos and (No. of eggs: No. of ooecia) 100 for each'month's samples from June 1961 to May 1962.

Fig. II. 46. Escharella variolosa. Percentage colonies with eggs and percentage with embryos for each two month's samples from June 1961 to May 1962.

Fig. II.47. Schizoporella unicornis. Percentage colonies with embryos in each month's samples from June 1961 to May 1962.

Fig. II.48. Schizoporella unicornis. Percentage ooecia containing embryọs in each months samples from June 1961 to May 1962.

Fig. II.49. Schizomavella auriculata. Porcentage colonies with embryos and percentage with eggs in each month's samples from June 1961 to May 1962.

Fig. II.50. Schizomavella auriculata. Pecentage ooecia containing embryos and (No. of eggs: No. of doecia) 100 in each month's samples from June 1961 to May 1962.

Fig.II. 51. Schizomavella linesris. Pecentage colonies with embryos and percentage with eggs in each months samples from June 1961 to May 1962

Fig. II.52. Schizomavalla linearis. Percentage ocecia with embryos s and (No.offeggs: No of ooecia) 100 for each month's: samples from June 1961 to May 1962.

- Fig.II.53. Escharina soinifera. Percentage colonies with embryos and percentage with eggs in each month's samples from June 1961 to May 1962.
-

Fig.II. 54. Eschorina spinifers. Percentage ooecia containing embryos and (No. of eggs: No. of ocecia) 100 foreach month's samples from June 1961 to May 1962.

Fig.II. 55. Hipporina pertusa. Percentage colonies with embryos in each two month's samples frpm June 1961 to May 1962.

Fig. II.56. Hipporina pertusae Percentage ooccia containing embryos in each two month's semples from June 1962 to May 1962.

Fig. II:57. Microporella ciliata. Percentage colonies with eggs and percentege with embryos in each month's samples from June 1961 to May 1962

Fig. II.58. Microporella ciliata. Percentoge ooecia containing embryos and (No. of eggs: No. of ooecia) 100 for each month's samples from June 1961 to May 1962.

Fig. II. 59. Fenestrulina malusi. Percentoge:colonies with embryos ond percentage with eggs in each month's samples from Moy 1961 to May 1962

Fig.II.60. Fenestrulina malusi. Percentage ooecia containing embryos and (No. of eggs: No. of ('ooecia) 100 for each month's sample from May 1961 to May 1962.

Fig. II. 61 Porella concinna. Percentage colonies with embryos inseach month!s samples from June 1961 to May 1962.

Fig.II.62. Porella concinna. Percentage ooecia containing embryos in each month's samples from June 1961 to May 1962.

Fig.II. 63. Smittina cheilostomata. Percentoge colonies with embryos in each two month's samples from June 1961 to May 1962.
Embryos

Fig. II.64. Smittina cheilostomata. Përcentage ooecia containing embryos in each two month's samples from June 1961 to May 1962.

Fig IT. 65. Perasmittina trispinosa. Percentage colonies with embryos and percentage with eggs in each month's samples from June 1961 to May 1962.

Month (196164) \& Nos of Ooecia a Eggs examined
Fig.II.66. Parasmittina trispinosa. Percentage ooecia containing embryos and (No. of eggs: No. of ooecia) 100 'for each month's samples from June 1961 to May 1962.

Fig.II.67. Smittoidea reticulata. Percentage colonies with embryos in each two month's samples from June 1961 to May 1962.

Fig.II.68.' Smittoidea reticulata. Percentage ooecia containing embryos in each two month's samples from June 1961 to May 1962.

Fig. II. 69. Escharoides coccineus. Percentage colonies with embryos in each month's samples from June 1961 to May 1962.

Month (1961.62) © Nos. of Ooecla examined

Fig. II. 70. Escharoides coccineus. Percentage ooecia containing embryos in each month's somples from June 1961 to May 1962.

Fig.II. 71. Celleporaria dichotoma. Percentage colonies with embryos in each two months samples from June 1961 to May 1962.

Fig. II.72. Celleporaria pumicosa. Percentage colonies with embryos in each month's samples from June 1961 to May 1962,

Fig. II. 73. Osthimosia avicularis. Percentage colonies with embryos in each month's samples from June 1961 to May 1962.

Fig.II. 74. Celleporina costazii. Percentage colonies with embryos in each month's samples from June 1961 to May 1962.
E Colonies with

Fig. II.75. Alcyonidium variegatum. Percentage colonies with embryos in each two month's samples from June 1961 to May 1962.

Fig.II. 76. Alcyonidium mytili. Percentage colonies with embryos in each month's samples from June 19,61 to May 1962:

Fig. II: 77. Sea temperatures from May 1961 to May 1962;

- Surface temperature at Port Erin Breakwater.
- Bottom temperature at 10f. (Bay Fine)
+ Bottom temperature at 40f. (off Port Erin)

Map 1. Ares investigated, bottom deposits and localities of dredging stations. -mon Approximate bounduaries of bottom deposits (after Jones 1951). -. - . 10 fathom, -..-20 Fathom, -... - 30 fathom.

Map. 2. Abundance of ectoprocts in the area sampled in terms of number of colonies per 1000 cm surface area of support (excluding erect zoophytes) suitable for ectoproct colonisation.
$0=$ less than 50 colonies,
$0=50-100$ colonies,
$0=100-250$ colonies,
$\theta=250-500$ colonies,

- = more than 500 colonies per 1000 cm , rest as Map 1.

Map. 3. Crisidia cormuta and Crisia denticulata. Offshore distribution within the area sampled
$0=$ locality at which C.cornuta was obtained,
$t=$ locality at which C.denticulata was obtained,

- = locality at which neither was obtained, rest as Map l.

Map. 4. Offshore distribution of Crisis eburnes in the area sampled. O = locality at which C.eburnea was obtained,

- = locality at which C.eburnea was not obtained, rest as Mapl.

Map. 5. Crisis aculeata and Crisia ramosa. Offshore distribution within the area sampled.
$t=$ locality at which C.aculeate was obtained,
0 = locality at which C.ramosa was obtained,

- = locality at which neither was obtained, rest as Map 1.

Map. 6. Tubulipora peniolilatag offshore distribution within the area sampled.
$0=$ locality at which T.penicillata was obtained,

- = locality at which T.penicillatánas not obtained, rest as

Map 1.

Map.7. Diaperoccia major and Diaperoecia johnstoni. Offshore distribution within the area sempled.
$O=$ locality at which D,maior was obtained,
$t=$ locality at which $\overline{\text { D.johnstoni was obtsined, }}$

- = locality at which neither was obtained, rest as Map 1.

Map. 8. Diplosolen obelia. Offshore distribution within the area sampled $0=$ locality at which D.obelia was obtained,

- = locality at_which D.Obelie was not obtained, rest as Map 1.

Map.9. Diastovora patina. Offshore distribution within the area sampled. $0=$ locality at which D.patina was obtained,

- = locality at which Depatina was not obtained, rest as Map 1.

Map.10. Diastopora suborbicularig. Offshore distribution and abundance within the area sampled in terms of no. of colonies per 1000 cm surface ares of support (excluding erect zoophytes) suitable for ectoproct golohissation.
$\dot{0}=$ locality at which D. suborbicularis was not obtained,
$0=$ less than 1 colony per 1000 cm ,
$0=1-5$ colonies per 1000 cm
$0=5-10$ colonies per 1000 cm ,

- \pm IIO - 20 colonies per 1000 cm
- more than 20 colonies per 1000 cm , rest as Map 1 .

Map.II. Diastopora suborbicularis. Relative importance in the ectoproct population within the area sampled.

- = locality at which D. suborbicularis was not obtained,
$0=$ locality at which less than 5\%
© = locality at: which from 5-10 \%
$0=$ locality at which more than 10% of the ectoprosts are D.suborbicularis, rest as Map 1.

Map. 12. Lichenopora hispida. Offshore distribution and abundance within the area sampled in terms of no. of colonies per 1000 cm surface area of support (excluding erect zoophytes) suitable for ectoproct colonization.

- = locality at which L.hispida was not obtained.
$0=$ léssithan $t 5 \mathrm{colonies}$ per 1000 cm
$0=5-10$ colonies per 1000 cm
$0=10-20$ colonies per 1000 cm ,
= more than 20 colonies per 1000 cm , rest as Map 1.

Map. 13. Lichenopora hispida. Relative importance in the ectoproct population within the area sompled.

- = locality at which L.hispida was not obtained
$0=$ locality eat which less than 5%,
0 = locality at which from $5-10 \%$,
© = locality at which from $10-20 \%$,
- locality at which more than 20% of the ectoprocts are Le hispida, rest as Map 1.

Map. 14. Aetea anginea and Aetea truncata. Distribution within the area sampled.
$0=$ locality at which A.anguinea was obtained, $+=$ locality at. which A.truncata was obtained,
. = locality at which neither was obtainedy rest as Map. 1.

Map. 15. Aetea sica. Distribution and abundencervithin the area sampled in terms of number of colonies per 1000 cm surface area of support (excluding erect zoophytes) suitable for ectoptoct colonization.
$\dot{0}=$ locolity at which A. sica was not obtained, ${ }^{\prime}$
$0=$ less than 5 colonies per 1000 cm ,
$=$ = more than 5 colonies per 1000 cm , rest as Map 1.

Map. 16. Scruparis cheleta ond Scruparia ambigua. Offshore distribution. O = locality at which S.chelata was obtained;
$+=$ locality ot which S.embigue was obtained,

- = locality at which neither was obtaired, rest as Map. 1.

Map 17. Eucratea loricata. Offshore distribution within the area sompled. $0=$ locality at which E. Ioricata was ohtained,

- = locality at which E. Ioricata was not obtained; rest as Map I.

Map . 18. Electra pilose. Offshore distribution within the area sampled. $\therefore 0=$ locality at which E.pilosa was obtoined,

- = locality at which E.pilosa was not obtained.

Map. 19. Pyripora catenularig. Offshore distribution within the area sampled.
$0=$ locality at which P.catenuloria was obtained,

- = locality at which P.catenularia was not obtained, rest as Map.1.

Map.20. Alderina imbellis. Distribution and abundance within the area sampled in terms of number of colonies per 1000 cm surface orea of support (excluding erect zoophytes) suitable for ectoproct colonization. - = locality at which A. imbellis was not obtained,
$0=$ less than I colony per 1000 cm ,
$0=1-5$ colonies per 1000 cm
$\omega=5-10$ colonies per 1000 cm
$0=110 \div 20$ colonies per 1000 cm ,

- = more than 20 colonies per 1000 cm , rest as Map 1.

Mop: 21. Alderina imbelin. Relative importance in the ectoproct population within the area sampled.
 A.imbellis, rest as Map.l.

Map. 22. Callopora lineate offshore distribution within the area sampled.

$$
\begin{aligned}
0 & =\text { locality at which C.lineata was obtained. } \\
\therefore & =\text { locality at which C.Iineata was not obtained, rest as }
\end{aligned}
$$

Map.1.

Map .23. Callopora dumerili and Callopora craticula. Offshore distribution within the area sampled:
$0=$ locality at which C.dumerili was obtained,
$t=$ locality at which C.craticula was obtained,

- = locality at which neither was obtained, rest as Map.1.

Map. 24. Amphiblestrum flemingi. Offshore distribution within the area sampled.
$0=$ locality at which A.flemingi was obtained,

- = locality at which A.flemingi was not obtained, rect as

Map. 1.

Map. 25. Micropora coriacea. Offshore distribution within the area sampled
$0=$ locality at which M.coriacea was obtained, - = locality at which M.coriacea was not, obtained;
rest as Map 1.

Map. 26. Cellaria fistulosa. Distribution and abundance within the area sampled in terms of number of colonies per $1000 \mathrm{~cm}^{2}$ surface area suitable for ectoproct colonization.

- = locality at which C. fistulosa was not obtained,
$0=$: Iess than 5 colonies per $1000 \mathrm{~cm}^{2}$,
0 = more than 5 colonies per $1000 \mathrm{~cm}^{2}$, rest as Map. 1.

Map. 27. Cellaria sinuosa. Offshore distribution within the area sampled. 0 = locality at which C, sinuosa was obtained,
\because - locality at which C.sinuosa_was not obtained, rest as
Map.1.

Map. 28. Scrupocellarie scruposa. Offshore distribution and abundance within the area sampled in terms of number of colonies per $1000 \mathrm{~cm}^{2}$ surface area of support (excluding erect zoophytes) suitable for ectoproct colonization.

- = locality at which S.scruposa was not obtained
$0=$ less than 1 colony per $1000 \mathrm{~cm}^{2}$,
$0=1-5$ colonies per $1000 \mathrm{~cm}^{2}$,
- = 5-10 colonies per $1000 \mathrm{~cm}^{2}$,
- = more than 10 colonies per $1000^{2} \mathrm{~cm}$, rest as Map 1.

Map. 29. Scrupocellaria reptans. Offshore distribution within the area sampled.
$0=$ locality at which S.reptans was obtained,

- = locality at which S.reptans was not obtained, rest as

Map 1.

Map 30. Beania mirabiles Offshore distribution within the area: sampled.
$0=$ locality at which B.mirabiles was obtained,

- = locality at which Bemirabileswas not obtained, rest as

Map 1.

Map. 31. Bicellariella ciliata. Distribution within the area sampled. $0=$ locality at which Beciliata was obtained, $\therefore=$ locality at which Beciliata was not obtained, rest as

Map.1.

Map. 32. Bugula avicularia, Bugula plumosa, Bugula flabellata. offshore distribution within the area sampled.
$t=$ locality at which Bavirularia was obtained,
$-x=$ locality ot which Replumosa was obtained,
$0=1$ locality at which B.flabellata was obtained,

- = locality at which none of these species was obtained,
eest as Map 1.

Map. 33. Membreniporella nitida. Offshore distribution within the area sampled.

$$
0=\text { locality at which M,nitida was obtained, }
$$

- = locality at which M.nitida was not obtoined, rest as

Map 1.

Map. 34. Cribrilaria.radiata. Offshore distribution within the area sampled.
$0=$ locality at which $\frac{\text { aradiata }}{}$ was obtained, - = locality at which C. radiata was not obtained, reat as

Map 1.

Map 35. Figularia figularis, Offshore distribution within the area sampled.
$0=$ locality at which F.figularis was obtained,

- = locality at which F.figularis was not obtoined, rest ad Map 1.

Map. 36. Hippothoa divaricata. Offshore distribution in the area sampled.

$$
\stackrel{\circ}{\circ}=\text { locality at which H, divaricata was obtained, }
$$ as Mop. 1.

$$
=\text { locality at which Hídivaricata was not obtained, rest }
$$

Map. 37. Hippothoa distens. Distribution and abundance within the area sampled in terms of number of colonies per $1000 \mathrm{~cm}^{2}$ surface area of support (excuding erect zoophytes) suitable for ectoproct colonization.

- = locality at which H.distans was not obtained,
$0=$ less than 1 colony per $1000 \mathrm{~cm}^{2}$,
$0=1-5$ colonies per $1000 \mathrm{~cm}^{2}$
(1) = 5-10 colonies per $1000 \mathrm{~cm}^{2}$,
- = more than 10 colonies per $1000 \mathrm{~cm}^{2}$, rest as Map 1.

Map. 38. Hipnothoa hyalina, Offshore distribution within the area sampled.
$0=$ locality at which H,hyalina was obtained,

- = locality abiwhich Hahralina was not obtained, re日t as Map 1.

Map. 39. Chorizopora brongniarti. Offshore distribution and abundance within the area sampled in terms of number of colonies petr $1000 \mathrm{~cm}^{2}$ surface area of support (excluding erect zoophytes) suitable for ectoprocticolonization.

- = locality at which Congniarti was not obtained,
$0=$ less than 5 colonies per $1000 \mathrm{~cm}^{2}$,
$0=5-10$ colonies per $1000 \mathrm{~cm}^{2}$
- = more than 10 colonies per $1000 \mathrm{~cm}^{2}$, rest as Map 1 .

Map 40. Schizotheca Cissa. Distribution within the area sampled. - = locality at which S.fissa was not obtained, $0=$ locality at which S.fissa was obtained, rest as Map 1.

Map. 41. Reptadeonella violacea. Distribution within the area sampled.

- = locality at which R.Violacea was not obtained, $0=$ locality at which R.violacea was obtained, rest as Map 1.

Map. 42. Escharella immersa: Offshore distribution and abundance within the area sampled in terms of number of colonies per $1000 \mathrm{~cm}^{2}$, surface area of support (excluding erect zoophytes) suitable for ectoproct colonization.

- = locality at which E.immersa was not obtained,
$0=$ less than 5 colonies per $1000 \mathrm{~cm}^{2}$,
$0=5-20$ colonies per $1000 \mathrm{~cm}^{2}$,
$0=20 \div 50$ colonies per $1000 \mathrm{~cm}^{2}$,
- $=50-100$ colonies per $1000 \mathrm{~cm}^{2}$
- = more than 100 colonies per $1000 \mathrm{~cm}^{2}$, rest as Map 1 .

Map. 43. Escharella immersa, Relative importance in the ectoproct population within the area sampled.

- = locality at which Enimmersa was not obtained,
$0=$ locality at which less than 5%,
$0=$ locality at which from 5-10 \%,
o = locality ot which from $10-20 \%$,
- = locality at which from $20-40 \%$,
- locality at which more than 40% of the ectoprocts are E.immersa, rest as Map 1.

Map. 44. Escharella ventricose. Offshore distribution and abundance within the area sampled in terms of colonies per $1000 \mathrm{~cm}^{2}$ surface area of support (excluding erect zoophytes) suitable for ectoproct colonization.

- = locality: at which E.ventricoso was not obtained,
$0=$ less than 5 colonies per $1000 \mathrm{~cm}^{2}$,
$0=5-10$ colonies per $1000 \mathrm{~cm}^{2}$,
$0=10-20$ colonies per $1000 \mathrm{~cm}^{2}$,
- = more than 20 colonies per 1000 cm , restitas Map 1 .

Map. 45. Escharella ventricosa. Relative impottance in the ectoproct population ifithin the area sampled.

- = locality at which E, ventricosa was not obtained
$0=$ locality at which less than 5%,
0 = locality at which from $5-10 \%$,
- = locality at which more than $10 \frac{\%}{\epsilon}$ of the ectoprocts are E.ventricosa, rest as Mapl.

Map 46. Eschare1la variolosa, 'Offshore distribution and abundance within the area sampled in terms of number of colonies per $1000 \mathrm{~cm}^{2}$ surface area of support (excluding erect zoophytes) suitable for ectoproct colonization.

- = locality at which E. variolosa was not obtained,
$0=$ less than 5 colonies por $1000 \mathrm{~cm}^{2}$,
$0=$ more than 5 colonies per $1000 \mathrm{~cm}^{2}$, rest as Map 1. .

Map 47. Schizoporella unicornis. Offshore distribution within the area sampled.
$\dot{-}=$ locality at which S.unicornis was not obtainod, $0=$ locality at which S.unicornis was obtained, rest as Map 1.

Map 48. Schizomavella auriculata. Distribution ond abundance within
the area sampled in terms of number of colonies per $1000 \mathrm{~cm}^{2}$ surface area of support (excluding erect zoophytes) suitable for ectoproct colonization.

- = locality at which S. auriculata was not obtained,
$0=$ less than 5 colonies per $1000 \mathrm{~cm}^{2}$,
$0=5-10$ colonies per $1000 \mathrm{~cm}^{2}$,
$0=10-20$ colonies per $1000 \mathrm{~cm}^{2}$;
$\theta=0$ more than 20 colonies par $1000 \mathrm{~cm}^{2}$, rest as Map i.

Map 49. Schizomavella auriculatg. Relative importance in the ectoproct population within the area sampled.

- = locality at which S. auriculata was not obtained,
$0=$ locality at which less than 5%,
$0=$ locality at which from 5-10\%,
$0=$ locality at which from $10-20 \%$
- = locality at which more than 20% of the ectoprocts are S.Auriculata, rest as Mapl.

Map 50. Schizomavella linearis. Offshore distribution and abundance within the area sampled in terms of number of colonies per $1000 \mathrm{~cm}^{2}$ surface area of support (excluding erect zoophytes) suitable for ectoproct colonization.

- = locality at which S.linearis was not obtained,
$O=$ less than 5 colonies per $1000^{2} \mathrm{~cm}$,
0 = more than 5 colonies per $1000^{2} \mathrm{~cm}$, rest as Map 1 .

Nap 51. Hipporina pertuss. Distribution within the area sompled. - = locality at which H.pertusa was not. obtained, $0=$ locality at which $H_{\text {epertusa }}$ was obtained, rest as Mapl.

- Map 52. Microporella cilintg. Offshore distribution and abundance within the area sampled in terms of number of colonies per $1000 \mathrm{~cm}^{2}$ surface area of support (excluding erect zoophytes) suitable for ectoproct colonization.
- = locality at which M.ciliata was not obtained,
$0=$ less than 5 colonies per $1000 \mathrm{~cm}^{2}$,
$0=5-28$ colonies per $1000 \mathrm{~cm}^{2}$,
$0=20-50$ colonies per $1000 \mathrm{~cm}^{2}$,
$0=r, 50-100$ colonies per $1000 \mathrm{~cm}^{2}$
- = more than 100 colonies per $1000 \mathrm{~cm}^{2}$, rest as Map 1.

Map 53. Micronorella ciliata. Relativeimportance in the ectoproct population within the orea sampled.

- = locality at which M.ciliata was not obtained,
$0=$ locality at which less than 5%
$0=$ locality at which from 5-10 ${ }^{\prime}$,
$0=$ locality at which from 10-25 \%,
$0=$ locality at which more than 25% of the ectoprocts ore M.ciliata, rest as Map 1.

Hap 54. Fenestrulina malusi. Distribution and abundance within the aree sompled in terms of number of colonies per $1000 \mathrm{~cm}^{2}$ surface area of support (excluding erect zoophytes) suitable for ectoproct colonization.
$\cdot=$ locality at which F. malusi was not obtained,
$0=$ less than 5 colonies per $1000 \mathrm{~cm}^{2}$,
$0=$ from 5-10 colonies per $1000 \mathrm{~cm}^{2}$,
$0=$ ffrom $10-25$ colonies per $1000 \mathrm{~cm}^{2}$,

- $=$ from $25-50$ colonies per $1000 \mathrm{~cm}^{3}$, .
- = more than 50 colonies per $1000 \mathrm{~cm}^{2}$, rest as Map 1.

Map 55. Fenestrulina malusi. Relative importance in the ectoproct population within the area sempled.

- = locality at which Femelusi was not obtoined,
$0=$ locality ot which less than 5%,
$0=$ locality at which from $5-10 \%$,
0 = ilocalityatt which from $10-20 \%$,
© locslity at which fiore than 20% of the ectoprocts ore Fe melusi, rest as Map 1.

Map 56. Palmicellaria skenei. Distribution within the area sampled.

- = locality st which P.skenei was not obtained, $0=$ locality at which P.skenei was obtained., rest as. Map 1.

Map. 57. Porella concinna. Distribution and abundance within the area comnle sampled in terms of number of colonies per $1000 \mathrm{~cm}^{2}$ surface area of support (excluding erect zopphytes) suitable for ectoproct colonization.

- = locality at which P.concinna was not obtained,
$0=$ less than 5 colonies per $1000 \mathrm{~cm}^{2}$,
$0=$ from $5-10$ colonies per $1000 \mathrm{~cm}^{2}$
$0=$ from $10-25$ colonies per $1000 \mathrm{~cm}^{2}$
- $=$ more than 25 colonies per $1000 \mathrm{~cm}^{2}$, rest as Map 1.'

Map 68. Poralla concinna. Relotive importance in the ectoproct population within the area bampled.

- = locality at which P.concinná was not obtained,
$0=$ locality at which less than 5%,
$0=$ locality at which from 5-10\%,
- = locality at which more than 10% of the ectoproct colonies are Porella concinna, rest as Map 1. .

Map 59. Smittina landsborovi and Smitt,ina cheilostomata. Distribution within the area aampled.

F = locality at which S. Iendsborovi was obtained,
$0=$ locality at which S. cheilostomata was obtained,

- = locality at. which neither was obtained., rest as Map 1.

Map 60. Parasmittina trisoinosa. Ofeshore distribution ond abundance within the area sampled in terms of number of colonies per $1000 \mathrm{~cm}^{2}$ surface area of supnort (excluding erect zoophytes) suitable for ectoproct golonization.

- = locality at which Petrispinosa was not obtained,
$0=$ less than 5 colonies per $1000 \mathrm{~cm}^{2}$,
$0=$ ffom 5-10 colonies per $1000 \mathrm{~cm}^{2}$,
© = more than 10 colonies per $1000 \mathrm{~cm}^{2}$, rest as Map 1 .

Map 61. Smittoidea reticulata. Distribution within the area sampled. - = Iocality at which S.reticulata was not obtained, $0=$ locality at which S.reticulata was obtained, rest as
Map 1.

Map 62. Phylastella collaris and Phylactella Iabrosa. Distribution within the area sampled.
$0=$ locality at which P.colleris was obtained, $+=$ locality at which P.labrosa was obtained,

- = locality at which neither was obtained, rest as Map 1.

Map 63. Escharoides coccineus. Offshore distribution within the area sompled.

- = locality at which E.coccineus was not obtained, $0=$ locality at which E.coccineus was obtained, rest as
Map 1.

Map 64. Celleporaria dichotoma - Distribution within the area sampled.

- = locality at which C.dichotoma was not obtained, $0=$ locality at which C.dichotoma was obtained, rest as
Map 1.

Map 65. Celleporaria pumioosa. Osfshore distribution within the area sampled.
$\dot{-}=$ locality at which C.pumicosa was not obtained, $0=$ locality at which C, pumicosa was robtained, rest as Map 1.

Map 66. Osthimosia avicularis. Offshore distribution within the area sampled.

- = locality, at which O.avicularis was obtained,
$0=$ locelity at which 0.8vicularis was not obtained, rest
as Map 1.

Map 67. Celleporina costazii. Offshore distribution within the area sampled.
$\cdot=$ Iocality at which C.costazii was not obtained, $0=$ locality at which Cocostazii was obtained, rest as Map 1.

Map 68. Alcyonidium mamillatum, Alcyonidium gelatinosum, and Alcyonidium varisgatum. Offshore distribution within the area sampled.
$0=$ locality at which A. mamillatum was obtained,
$t=$ locality at which A.gelatinosum was obtained,
$x=$ locality at which A, variegatum was obtained,

- = locality at which none of these species was obtained, reest as Map 1.

Map 69. 'Alcyonidium mytili. Offshore distribution within the area sampled. = locality at which A,mytili was not Bbtained,

$$
0=\text { locality at which A,mytili was dbtained, rest as Map } 1 .
$$

Map 70. Arachnidium hippothooides. Distribution within the area sampled. $\cdot^{\prime}=$ locality at which A, hipnothooides was not obtained, 0 = locality at which A_{2} hippothooides was nbtained,
rest as Mapl.

Map 71. Nolella dilatata. Distribution within the area sampled. $0=$ locality at which N.dilotata was obtsined, - = locality at which N.dilatata wes not obtained, rest as Map 1.

Appendices

Appondix I . Sampilis Stations. (Sea Kap 1)

Dredco Contanta
(ch $=$ ghell
st $=$ storo
$c r=$ Grava
$z=$ zoophtos $)$

1.	$4 \cdot 6 \mathrm{ml}$	W35 ${ }^{\circ} 1$	of Miariyl 2	34	-t. ch.
2.	3.2 ml	$222^{\circ} \mathrm{N}$	2	22	
3.	$2 \cdot 2 \mathrm{ml}$	H26 ${ }^{\circ} \mathrm{H}$	17	17	at. sh. Ponton
4.	2.1 nl	W24\%	2	22	oh.at. Pegton. Onherra.
5.	4.2 m	$\mathrm{Wa}^{\circ} \mathrm{s}$	2	24	Fmpty
6.	$4 \cdot 5 \mathrm{ml}$	177:50 ${ }^{\circ}$	2	25	ah. Peaton, Porinia, Guryinn.
7.	3.1 nc	1203	2	21	ch.Freten.
8.	2.0 ml	W	1	19	ct. sh. Iutdin3Pooten
9.	. 9 Fl	146°	1	18	ch. Peoton
10.	. 6 ml	H20 ${ }^{\circ}$	1	18	Empty
11.	$\cdot 6 \mathrm{mil}$	H40 ${ }^{\circ}$	n 1	16	St. sh. Fecton, Antarian.
12.	1.1 ml	5	1	12	$\begin{aligned} & \text { OP: oh. olverreris; } \\ & \text { Actropectan!. } \end{aligned}$
13.	2.1 m1	3	" 16	16	ch. Pooten, Intraria, Aut.oriag Solnetor.
14.	$4 \cdot 0 \mathrm{nz}$	W30 ${ }^{\circ}$	\# 20	20	ch, lareo ettizhlems Pheton, Onhinthrix.
15.	3.9 ml	W16 S	H	10-13	0imer. she 3. Chlamis Glvertarisin Hi=7mimis.
16.	5.2 mL	$12 c^{\circ} \mathrm{W}$	of Thousla	27	
17.	6.6 ml	1H0	!	3\%	Ch. घ. Eypring.
18.	$5 \cdot 7 \mathrm{ml}$	In	"	26	Fonton, Cymeing,
19.	$5 \cdot 0 \mathrm{ml}$	$133^{\circ} \mathrm{H}$	"	30	sh.grrinn Echima
20.	40 ml	$1554{ }^{\circ} \mathrm{W}$	of Broskwater Bowy 24 (Port Erin)		st.sh. Ponten
21.	3.7 ml	$1150{ }^{\circ} \mathrm{F}$		23	nh. Gymrina, Peotion
22.	3.4 ml	1540	4	22	$\begin{aligned} & \text { astrappeton, Iuldia } \\ & 3 \text { hoyprina, Forton. } \end{aligned}$
23.	$3 \cdot 2 \mathrm{nl}$	$43^{\circ} \mathrm{V}$	"	23	ch, at. Fnotinn, Ormarg
24.	2.6 ml	137\%	\#	22-23	
25.	$3 \cdot 6 \mathrm{Il}$	$13^{\circ} \mathrm{H}$	of Thouble	20	$\begin{aligned} & \text { yorinn, Palmim: } \\ & \text { thont Pectinn, inime } \end{aligned}$
26.	2.0×1	$129{ }^{\circ} \mathrm{H}$	uf Ercakwater Bow (part Erin)	21	Poranig.
27.	2.7 ml	185		18-20	$\begin{aligned} & \text { Gyring } \\ & \text { Ghoat. Dyming, Fecton } \end{aligned}$

Sax ${ }^{\text {a }}$		Locality		Dopth	Drodgo Contonts.
28.		Flobhwio	k Bay	15-10	st. Pu-tan, Hemricio
					Astioring.
29.	1.4 mi	$1833^{\circ} \mathrm{H}$	of Broniwator Body (Port Erin)	22	oh. Pocton, Antorian, Iutd Palmimar Pomnin
30.	1.5 nl	$\mathrm{N} 30^{\circ} \mathrm{V}$		18	sh. Forton, istorisis,
					Pblatrom.
31.	2.0 ml	$1554{ }^{\circ} \mathrm{W}$	"	27	
32.	4.3 nl	II	of Chichona	19	sh, Chlongipecten, Cyming
33.	2.7 ml	Nós ${ }^{\circ} \mathrm{N}$	of Eroakvater Bo	27	
			(Port Erin)		z.
34.	3.2 ml	N62 W		25	
35.	3.6 ml	W $60{ }^{\circ} \mathrm{H}$	\%	36	$\frac{\text { Euntinit }}{\text { Empty }}$
36.	$4 \cdot 0 \mathrm{ml}$	$40^{\circ} \mathrm{U}$:	38-33	Erpty
37.	4.7 ml	3390	of Thousio	26	Sh. Gorton Beaphender
33.	$5 \cdot 3 \sim 1$	W $7^{\circ} \mathrm{C}$	of Chiakons	32	ehov. Anocrthis.
30.	5.0 mz	$126^{\circ} \mathrm{W}$	*	30	sh.z. Gqnenr.
40.	42 ml	1340N	Ot TKousla	25	sh.iyrinn, recton
42.	4.8 im	$150^{\circ} \mathrm{W}$	of Ereakuater it (Part Erin)	$\text { oxy } 24$	ah. Gurreins Pavtan Antram-ion, inhiura.
4.	3.3 ml	$1477{ }^{\text {N }}$	of thousla	23	ah.zost. Footon
43.	$3 \cdot 4 \mathrm{ml}$	1196	of Brealwater B (Fort Erin)	$30 \text { y } 27$	on.sorentan princioin
4%	4.2 nl	$113{ }^{\circ} \mathrm{H}$	of Chickois	20-21	3h. Fontion Sornila
45.	$3 \cdot 8 \mathrm{ml}$	$1772^{\circ} \mathrm{H}$	of Droakwater Bor	Boug 25	:t.sh. Footinn, Eehinna Antrornotion
46.	2.2-1	H23 ${ }^{\text {a }}$	oi Thounla	28	Glyoymerin.
47.	2.4 11	H8\%	\#	20	Sh. Frotarichimg
	2.0 ml	$\mathrm{N} 5 \mathrm{~s}^{\circ} \mathrm{W}$	\cdots	22	
48	2.0 ar	N5EW		. 2	Pecten, Chlomye, z, en.
47.	2.0 ml	W6.5 ${ }^{\circ} \mathrm{H}$	"	19	ch.r.Ch]nopropentan
56.	$2 \cdot 6 \mathrm{ml}$	$1132{ }^{\circ} \mathrm{H}$	of Chiskens	27	
1.	2.8 ml	$1322^{\circ} \mathrm{W}$	\#	30	phozomotan, Satinta
					Amhtothrix. Actorgn
52.	2.8 ml	$1129^{\circ} \mathrm{W}$	n	27	ot.oh, whinun Astarins
53.	3.0 ml	$133{ }^{\circ} \mathrm{W}$	"	27	an. Yalaines, Fernnia.
$54 ;$	$3 \cdot 2 \mathrm{ml}$	$\mathrm{H} 35^{\circ} \mathrm{W}$	*	34	sh.z.
55.	5.2 mz	$579{ }^{\circ} \mathrm{W}$	o. Sreohust (Port E	ter Eow (in)	32 eho Inoten, Concor, Senrhanicr Mormiono
56.	$3 \cdot 8 \mathrm{ml}$	W51 ${ }^{\circ}$	of Chichars	10	roten, ontelium
57.	3.5 nl	H56\% V	u	42-4	ch. ahimooimp zuronimis
58.	3-2 01	M32 ${ }^{\circ} \mathrm{W}$	"	34	Arpochaio. ch. Cr . Freton Falmims
59.	$2 \cdot 7 \mathrm{ml}$	739 ${ }^{\circ} \mathrm{W}$	n	27	$\frac{\text { maseump }}{\text { shata }}$
60.	$1 \cdot 8 \mathrm{ml}$	11	n	18-20	$\frac{\text { hhlamy }}{\text { shochlomys finmetois. }}$

$\begin{aligned} & 61: \\ & 62, \end{aligned}$	1.8 ml .9 ml	W9\％ NS\％	or Ohickons of Thouala	$27-23$ 16	$\begin{aligned} & \text { oh.z. Gnnecr, Elodono } \\ & \frac{\text { un manga }}{\text { st. Pecten }} \end{aligned}$
63.	.6 ml ．	$11677^{\circ} \mathrm{W}$	＂	21	$\text { th. Foton, } 1 \text { loinn }$
64.	1.4 ：1．	$12.1{ }^{\circ} \mathrm{W}$	of Chiskens	24	Larg nt．shochima isterise
65	2.2 ml ．	$1556^{\circ} \mathrm{N}$	＂	32	ch．Pentan，Chlowys，
66.	1.6 ml 。	1 $655^{\circ} \mathrm{W}$	＂	27	
67.	1.5 ml ．	NTO ${ }^{\circ} \mathrm{W}$	π	20	shostoinlontor，
68.	2.3 ml ．	$177{ }^{\circ} \mathrm{H}$	＂	24	chicin：Deaton Bucoinn
69.	2.7 ml ．	$174{ }^{\circ} \mathrm{W}$	＂	34．	ch．Dentaniun
70.	3．2－1．	$1775^{\circ} \mathrm{W}$	n	35	ch．Pontan，Gyminn， Colun
71.	2.0 ml 。	S79\％	n	23	Et．Sh．rehimin， Atoris8
72.	2.6 ml ．	S790 W	n	27	Sh，acton，vodinlue chimp，notingis
73.	3.7 ml ．	$579{ }^{\circ} \mathrm{V}$	＊	27	lart rt．ch．enemys Lecton
74．	4.6 ml ．	S79＊＊	＂	27	$\begin{aligned} & \text { hhoh-gr.Chlomer } \\ & \text { anton, onr } \end{aligned}$
75.	5.4 ml ．	$579{ }^{\circ} \mathrm{H}$	n	30	$\begin{aligned} & \text { choontar, indows } \\ & \text { yncirme } \end{aligned}$
76.	6.1 ml ．	$579{ }^{\circ} \mathrm{W}$	＂	35	3hortomenn，Antoristy Solnathrintromoctets？
77.	3.6 ml 。	$557{ }^{\circ} \mathrm{V}$	＂	27	st．cheistnrine．
78.	4.5 ＝1．	$557{ }^{\circ} \mathrm{W}$	＂	23	ch．Suntanoing， Ionricia
79：	5.4 ml ．	$557{ }^{\circ} \mathrm{W}$	＂	27	
86.	6.3 ml ．	S $577^{\circ} \mathrm{W}$	＂	30	sh．ce，n ，chlonys， Golun，Termion，
d1．	7.2 ml	$557{ }^{\circ} \mathrm{W}$	1	33	shocotoncolug
E．	8.0 ml ．	S57 ${ }^{\circ} \mathrm{W}$	＂	30	ch．Astromantin， rocton
83.	$0: 9 \mathrm{ml}$ ．	S57\％	＂	30	$\frac{\text { Astarion }}{\text { h. Alcvor }}$
84.	9.4 ml ．	$557{ }^{\circ} \mathrm{W}$	＂	33	
85.	10.3 ml ．	$557{ }^{\circ} \mathrm{W}$	＂	36－40	
86.	6.9 ml ．	S34 ${ }^{\circ} \mathrm{W}$	$\underline{1}$	32	ChIngus Mostoneverrirs
87.	5.9 ml ．	$334^{\circ} \mathrm{W}$	＂	32	brtangia ecton，
88．	4.8 ml ．	534°	n	33	Ebointncire, recoimm
89．	3.9 ml ．	5340	＂	30	mpampugemhire ch，artorins，
90．	2.9 ml.	S34 ${ }^{\circ} \mathrm{W}$	＂	28	
91.	1.91.	33i\％	＂	30	
92．	9 ml ．	S34\％	n	27	
93.	1.5 ml 。	S25 ${ }^{\circ} \mathrm{W}$	＂	32	

Sarplo	Locality		Depth		Dredge Contonts
940	2.0 ml .	S12 ${ }^{\circ} \mathrm{W}$	of Chictens	32	shoz. Modiolue, nooinm, Clinker, latinting iononeter
55.	2.2 ml .	$525^{\circ} \mathrm{W}$	$\underline{0}$	32-36	sh. Sratomold, Polminos,
\%.		S25 \%	n	30	Eornnia, Solector
26\%	$3 \cdot 4 \mathrm{ml}$.	325		30	Asterio.
07.	42 nl .	325\%	"	32-38	1.sre ot. jFecton, Fueirun, Tumentus
98.	5.2 ml .	S25\%	"	35	
99:	4.5 ml .	S11 ${ }^{\circ}$	"	28	
100:	5.5 ml .	5120	"	37	sh. Sratremen, Orhiuroids
101.	6.1 ml .	$510^{\circ} \mathrm{E}$	"	37	st. sh. Sngt, nngin, Wehimis $\sin \ln 0$
102:	7.1 ml .	S110 E	"	375	sh.Chloves, Bucoimp, Fohimus Srotonneis, Polmimer, Fonnia
103.	7.6 ml .	S20 E	"	37	St.shochlews, Artoring, Ghiuroter.
104.	6.2 ml .	S19 ${ }^{\circ} \mathrm{E}$	"	37	Ophineotids
105.	6.481.	S25 E	"	37	Ophiuroids, Chlamyg, Snatanyin
106:	5.6 ml .	$530^{\circ} \mathrm{E}$	"	37	$\begin{aligned} & \text { ohozofstarion, weoim, } \\ & \text { ocigolyn } \end{aligned}$
107.	5.4 ml .	S54 ${ }^{\circ} \mathrm{E}$	*	33	
108.	4.7 ml ,	S81 ${ }^{\circ} \mathrm{E}$	"	32	Ophiuroices Vorioling, ct.oh. Tritonin, rusoimme
109.	$3 \cdot 2 \mathrm{ml}$	$352^{\circ} \mathrm{E}$	"	32	Ophiuroide, st, Eh. Antarine
110.	3.2 ml .	S620 E	"	32	st.ch. Clycumers, "caliolue
111.	2.7 ml .	S61E	"	25-26	nt. a. Alevoriunastarinn, Echimum
112:	2.8 nl .	S65 E	"	27	st. Orhiuroids, Antarins: Glycymorin
113*	3.9 ml .	S76 E	-	23-24	
114.	2.401.	$1779^{\circ} \mathrm{E}$	"	20	Ophiuroide, 5 .
215:	2.7 ml .	1285	"	22	
216:	3.4 ml .	N75 E	"	20	Ophiuroids.sh. largo st. AJoyondum.
117*	4.0 ml .	$1775{ }^{\circ} \mathrm{E}$	"	28	Ophiuroids, et.ch.
118.	$4 \cdot 3 \mathrm{ml}$.	$1177{ }^{\circ} \mathrm{E}$	"	18	Ophiuroisc, alycymotig, eh. Coismas, Antrrine
112:	4.6 ml .	1779° (E	"	17	Er.corallino-zr. sh. Schams rimannezo, Antoriar
120:	$4 \cdot \mathrm{Cal}$ \%	S $87^{\circ} \mathrm{E}$	"	20	Thiursides mo:chinys,
121.	$3 \cdot 9 \mathrm{ml}$	$1886^{\circ} \mathrm{E}$	n	16-18	sh-Er.ch. [octon, Gh]n-ys.
122.	4.2 ml .	$1: 86^{\circ} \mathrm{S}$	"	18	sh. 3 hlomvs
123.	$4 \cdot 7 \mathrm{ml}$ 。	1268	n	18	ch. Antinige, Porgnin, ighinus
1210*	5.1-1.	$1133^{\circ} \mathrm{S}$	"	20	Ophiuroills, ${ }^{\text {a }}$.

Apperdit II Rocorda of reproduction (based onty on presence of eges of anbryos) for Marx ectoprocts. Volum inficoto whthor or not cach epocion has boen rncorie:? Pon liorway and the Foditerranean roanctivnly. + poaitivo recmed.

Species Month Dictrilution

Anton

anminea Leken		-	\div	\div	¢	-	\cdots	$+$			-	-	+	+
4 min	-	-	-	-	$+$	+	+	+	+	+	$+$	-	+	+
5uprotan														
70-icnta	-	-	\pm	\cdots	-	-	-	-	-	-	-	-	+	+
Mombraninorn														\dagger
momhrimices	-	-	\cdots	\cdots	$+$	+	-	-	-	-	-	-	+	+
As:0.17														
2, min ${ }^{\text {a }}$	+	+	+	4	$\stackrel{\rightharpoonup}{*}$	$+$	+	+		+	+	+	4	
Cnj10nara														
1.1nosta	+	+	$+$	+	+	+	+	+	+	+	+	+	4	4
Collarara												+		+
dutarill	+	$+$	$+$	+	$+$	+	+	+	+	$+$	$+$	+	+	+
Gnlionx														
murita	+	+	\cdots	+	-	-	-	+	+	+	+	+	+	\cdots
Qn7"020rs														
craicirla	+	-	*	+	$+$	-	+	+	+	+	4	\pm	4	-
Amohillostmo														
9]mont	+	$+$	$+$	+	+	+	+	+	+	+	+	+	\cdots	+
Gmiderarris														
aricmy	+	$+$	$+$	$+$	+	-	\cdots	+	+	*	+	t	$?$	$?$
Plutra														?
alisens	$+$	$+$	+	+	-	-	-	-	-	$+$	+	$+$	$+$	

Apmadix If (cont).

Specios				Yont									ntr 1	tinn
			H	A		J	J	A	s	0	n			Sod.
Kicrorfa														
cosizcoa	+	+	+	+	+	+	+	+	$+$	+	$+$	+	-	+
Celleria														
fistulosa		+	+	+	-	-	-	-	+	+	+	+	+	+
Gentrie														
civino	+	+		+	+	+	-	+	+	+	+	+	?	$?$
Mancinacian			-	-		-	*	$+$	+	+	+	$+$	+	
Smmaneiliris														
-ntnic	+	+	+	-	+	+	+	+	+	-	+	+	+	+
700017ariojla														
-1901-3is		-	-	-	-	+	+	+	$+$	+	+		-	
E10279														
Flysoi	-	-	-	-	-	-	-	-	+	+	-		+	
Bural2														
Clabollet	4		-	-	+	+	+	+	+	+	-		+	+
Broila														
twithats	-		-	-	-	-	-	-	+	+	$+$?	$?$
critrilion														
gnmints	-		-	-	-	-	+	-	-	-	+		?	7
Cribrilatia														
71097 la								+	+	+	+		-	
flatinrio	+		+	$+$:	+	-	+	+	$+$	+	+	-	?
nippothos														
distons			+	-	+	\ddagger	-	-	+	+	;	$+$	+	
Hiprothon														
bralina	*		+	+	+	+	++	+	+	+	+	+	$+$	+
Chorhizorars														
Hacloroma														
Fronifem	+		+	$+$	t	+	+	+	+	+	+	+	+	+
pertacernila +														
Exchrralia +														
$1=$ mesm	+		+	$+$	+	+	+	+	+	+	+	+	+	
Etcharolis														
mitricoss	+		+	+	+	+	+		+	+	+		+	+
Becharnilo														
Sehizonorolia														
schimonorelin + - - + + + + + + + +														
dincotido			-	-	-	-	-	-	4	$+$	$+$			
schincmanis														
Epohring														
onini ${ }^{\text {amm }}$			+			+	$+$	7	-				?	

AppondixII(cont.)


```
Appendix III . Enlyyo Colour in Manx Ectoprocta.
```

Cyelortomen: Ovicells containing eorly eniryos ay appoar yollowish (partic larily in tho Crisisdeo) but Nully downocod enbryos are uswills colourloss.

Oho13nstomets:

Spocios	Oolour on emiryo:	
	Munsoll	$\begin{aligned} & \text { Enelish } \\ & \text { description. } \end{aligned}$
Aetea		
ancuines	-	coldon-yollour
Aetor		
sicn	-	coldon-ycilow
nucrates		
loricata	-	white
jomilis	10.0 7R ${ }^{8}$	yollowich-uhite
gallopors		
dumarizi	2.5 IT: $\frac{67}{16}$	cranco
Gnllorora		
gurits	-	whito
$\frac{\text { cringora }}{\text { craticing }}$		rod
flemingi	5.0-10.0 YR ${ }^{\text {7 }}$	crange
Gonloramhus	early 2 nto	
sninifemin	$2.5 \mathrm{Mm} \frac{67}{12-14} \quad 7.5-10 \cdot 0 \mathrm{YR} \geqslant$	aranco
Flustra		
folinces	7.5 mi\%	ornno
lifnokatng		
flustroines	-	yollow-oranco
Micromer		
cortimas	2.5 IR $4 / 2$	orange
Gelisrin		
coinuogn ${ }^{\text {a }}$	2.5 Y $7 / 4$	colden-yollow to pala
$\frac{\text { Cal } 1 \text { aria }}{\text { P1.stulosn }}$	2.5 Y $/ 4$	" " ${ }^{\text {n }}$
Sorinocellorio		
Ecminos?	-	rod
Bicolimidella doop roil		
ciniots	-	white
Pumia		
avtculerin	-	yellow
Buen 18		
n7x ${ }^{\text {a }}$,	-	yollow
manla		
rimus	-	tricht golden-yclios
turinnta	-	2") ${ }^{\text {n }}$
Membraninorella		
	2.5-7.5 XR $\frac{6.7}{10}$	yoll.ou-oranco
$\frac{\text { crimatime }}{\text { matata }}$		jollow-oramo
$\frac{\operatorname{man}+\tan }{\operatorname{cotheting}}$	10.0 R-2.5 $\mathrm{XR} \frac{\mathrm{s}-10}{8-10}$	roc
anmilints	5.8 YR 5 ¢	orencm
Crimploris		
rarsatre	-	dull orsneo-rod

Aprendix III . (cont.)

Appendix Ill (cont)

Species		Muncell notation	Nelish
Escharoices	early		
coselmus	late	$5 \cdot 0 \mathrm{TR}$ 年	maroon
Uniomin			
19t.ornlis		-	rod
Colonornrio			
dichatoms		$2.5 \mathrm{YR} \%$	crancourd
colleporarin			
rumicosm		0:2.5 YR	red
0 Othimsin			
avimate		10.0 mm	yclow
Collonstins	arrly	$7.5 \mathrm{R} \frac{10}{}$	
contngit	1nte	10.0 \%	red

Gtenortr"ata:
Aleyonidisen $\frac{\text { hirsution }}{\text { anconiliug }}$ solstinosw
Alevoniotum rariegatum
Aleronidiun
polyoum
Aleyonidim MIPt111
Thatrollicira hiseids
movorhmikis
gustulosn
romericnita
3 mixtinata
onerbankin
52801115

-	whito
-	whito
-	orsnco-rod
-	whito
	poin pink
-	whito
-	yellow
-	yollow
-	pink
-	9:130.s
-	oninurless
-	whito

niten: Volkeria
111ntnta

whito

Apeerdix IV . Kety to tho Ectoprocta of tho IsIo of Man.

This key shovid be urod in conjunotion with the toxt and picures of Hincks (1000) "rritish Morino Polyzon", or liorcun (19/0)"Danmarke Founa:Mocdyr".

1 Colony not calcoreous or ctrongly chitinimed 2
Colony calcaroous or atrongly chitinized 18

2 Colony often flochy, zooids contiguous excopt: parhaps, at colony edgo.Aparture Srontsi. 3

Tooids in more or lets manching chains or with soporate
zoocia unitet by ?iliform stolons.

3 Sperture with cuticuler spines

Aperturo without sptres
$\frac{\text { Fhestrojiden }}{\text { hionidn }}$
Family Alcronidildiso
(3XIX)
4. Colony a netwark formed of ansatomosing prolongations
from the outozonecia which ocoupy the noxes of tho rot. "w, 5
Colony a kranchod stolonisl axis o? long kenozooids placed ond to ond and oither bearing the autozoxocia directiy or on endll lateral bonozooict 8

5 Pristomo short 6
Feristomo long (over $50 \mathrm{H}_{\mu}$) 7
6 Autozosid with Aringe of filamentous rolongntions
Arnchnidium firenom
Autozooid without rolongations
A. hiponthonifone

7 Ferietome about $550 \mu, 10$ tentacios nolo11s mie111n
Poria, ono from $550-150 \mu, 16-20$ tontncios Medilntenta
8 Eoring
9
llot bering
10

9 Eoring in monbronous worm tukes
Wyonheralln
axpanen
Boring in calcoreous matorials
Ponetrantin
concharm

10 Stolonisl kenozoolds reroly of unisom thicknoss usually illiform and slimtly nollen at distal end. The distel en sivos rive ither to ney, loteral ctolons (usually two) ar to latorol serien of snall konozooids which bour tho autozooide. Antonooids often millo. No ginzard. 21

Stolons generally robust and of unifors thichmecs. Aytozooids aro budded direstly "ro" the stalon oither aingly or in one, two or threo mors or loce hricoldol ories. Autozonids imoniln.Gizzard presont. It

11 Aut aooida docirucus, eperturc cusironeular, no membsanos area or bilateral symotry 12

Hore or loss bilatorally ammotrical and with
momitanoue area 13

12 Autozooid topering towzids attableont. Autozosif

131 Autozooids on a long, rigta pociunclo urusily at jeact half th: Iength of tho autozosid. Stolons incusting. $\frac{\text { Triticolin }}{\text { homnt }}$ Autozooids not on lone peduncle. Colony srect. $\frac{\text { Mimnonlin }}{\text { Crinilin }}$

14 futozooid uith an antorior mombranous area and ottochod directis to the stolon. Autozosids not cylindric 1 or in rogulnr corios. Funkis nitons

Autozooids without membronous ares, oylindrical and sontracted ot their sasos which ors atteched direatiy to the stolon. 15

15 Autozonids cloroly contiguous, tubular, in two poralicl holisoidel serios divided into close Eroupe. Eroct Amsthta Inndima

Autozooids not clocely contigucus, Eudicod eparcoly or In mall croups which ithaitcoidal ore not as rorulor as Aglendirers. Colow ercet or rarpant. 16

Eroct
Erinchanksin
mpatulnons
Rompant at encr ating 17
17. Autososid with tail-liko prolongntion near its sttechmont to tho stolon. Fontacles

Fover? nnlyia
Autozoold without "tail". 10 tentaslos
arnetin.
Rownrigntia
jorgicato
(Colong cilcorons or atrongly chitinized.)
18 Erect 19
Encrusting 42
19 With articulated, chitinous jainto 20
Unjointed 23
20 Branchs of on or two matien on zooids. Aviculsrioea"eent. Embryos dovelop in ovicelln. Orifice terainsl
Far. Crisisdac.(pXIII)
Eranchs tulular with masroun zooids in rogular sorics. Aviculariae and ooosia my be procent. Orifiso frontsi 2121 Orifice (aporturo) with rrosd tooth in lower in Gejlneinmifice anore ilip slightiy incurvod tut withoutroad tooth.22Zooccis contiburas.Collorinfint11]on9
Zococia distant, soperoted is a raicod lino. Colinria
raliomenintios
23 Colonzen angio morion of zo000is2.4
Calony of noveral ceries of zoxcia 27
24 Zooocla ssporatisd ty "atolons", epines prosent around aporturc.Tosnin mirabilnZooocin not soporated ky "stolons", no apinos $\frac{\text { Connin } \frac{\text { Eirabi }}{25}}{25}$
25 Brancha loteral, larea monbranoun Prontal arna ocoupyingmost 0^{-}the front of zosid.Iyrineraontomunaris
Pranchs ariso from front of zooid bolow oporture. llo membranous frontal arna 26
26 Colony spresdins over cupport by inorusting otolona.
Scrungin
cholotsColony apreading over support hy attoching, incrusting zooids.Scminnrio
anhem
27 Colony storit, inelexiblo 28
Colon plont-11ke, Eloxitio. 35
28 Colony a series of oroct, anmstomosing, foliaceoun,bi-lamelisr platen"Iertalin" Coliocon
Colong not as aboro29

29	Aviculariso and/or ooecin reecent.Zococia totutubular. Aperture varisile tut not on on orect tuko. Ho coman calcarcous satrix.
	Avicularino and osecis nover prosent, ovicelis may bo prosent. Zoocia tubuilor, embodded in a aomen chi caroous matrix. Aperture circuler on an erect tub..
30	Bronchs flot zonocia regulor. Enlutoollarin
	Eranchs rounded or oval not flat. 31
31	Spatulste avicularino preeont 32
	Spotulate aviculariae obsent $\quad \frac{\text { Porajla }}{\text { comarasen }}$
32	Ooscium punctate. Rostrum short, stumpy with an oviculariun to ono aide. Small circular aviculariae mreant on colory Ooaciun ontira. Rostrum well-dovolopod, pointed, with contral avizulariun. No circular givicularioe. Omnloscoorn ratulina
33	```Zooocio zeperato, on all aides of branch. 34 Zoocaia contiguona, basal aico of tranch without```
34	
35	Zooceia in two lisyere (beck to back) 30
	Colony 3 single neries of zovecia 26
	Colony of cevaral series of zosocia all on the amo sico
36	Zosecta in a singlo series of paitist (back to back) Gurnton loricota
	Zooocis in several serion in each brach 37
37	Zooocia with opines Flustra folinenn
	Without spinos $\frac{\text { Scouricluntre }}{\text { nonuripons }}$
38	Aviculsriso pedunculato 41
	Aviculcrino coselio 39

I

40 Scutur entira, randed
Scutum tranchod

Smur molincia amunss
40

Sarunomiliorin neruma
Sommenilario rentang

41 Inss then 6 spires on ooch zooncium, ir birerial
losa than 5 puculn opp. (poxVII)
More than 6 spinoo on ouch zooociun, kucoriol Micollopiolia cilinta
(Colory calcaroous, oncrustinc)
42 Aporture tersinal, no osecta(onicifiod), no avicularisa or viraculso. Antozocesia tulular. 43

Aprorture not terninal, autozosecia not tubular, osecis (calcifiod), aviculariae or vitromiloo nay io procent 61

43 Zooceio saperate, no cozmon celcoroous metrix. 4
zonecia not seporated, in comon calcaroose extrix 46

4'. Trect part of zooeciun with very :Ino an-ulationa 4.5
Uithout euch snmulations Acton tminate

45 Zovecis mey to curvod, top of orect part swoldan
and apoon-lika. Aoton gncilion
Zococio atraight, and not spooz-liko at tip Antos sica_
4. Colony wart-11he or merraiform. 47

Colony not as above 50

47 Colony maniform, sonations corpand. Ton of mamy Corm disk roundod and currowet. Zococia in multisorinl rows. Colony appors to bo onerorinpoced layera

Domornga
trunostn
Colongtay be oub-coniool but not mameiform, zosocis
unicorinl, colny not ridg or furrown

Zopocia connate in radiating rows
Lichononora radinta
Zosocia not connato
4

49 Zosocia frocuntiy with two or more enines.Alvoli thick waliod. Nonciontore littio raicod and not trumpot-liko. Lichenonorn hientida

Zonsola rarely fore thon ono apine. Alvooll thin wolled. $0000100 t$ one trumpot-shrod wtih a broid ilarco. lichanomra vormeorin
Colony entire, circulor or lobulatod.
Colony brenehed, linoar, not ontire 53
Dwarf zooids presontDiplomalon nomiaDwarf zooidn absont52

52 Colony with othin calcarcous lamina or ound odze. Sore outozoolls with aporturo closed by a calsoreous plug. Dingtionorg natimn

Colony without colcarous lamins zoose: a reaching to

Colony rotiform, composed of mumrous anostonosing branchos coperated ty alongate spaces, brenches frequently eiving rico to short orect processes torminatine in o collular apex. Frhorcing ingroesota
Colony not rotiform and ulthout oroct enllular procescos. 54

Zococia in not moro then two rows except nour tho ovicoll 56

Zooscla in more then two rows for most of tha con ry 57Dichotcmously tronohod. Aparturos opon upsardsMinporoccinRarmly tranched, Apertures open Zatorallyrows of zocecin, rocuantiy in trensvoren veries.

$$
\begin{gathered}
\text { Pamily Tuiuliporidoo (} \\
(\mathrm{p} \cdot \mathrm{XI})
\end{gathered}
$$

Ooociostom indopandent of other zosecia
$\frac{\text { Thbulfars }}{\text { aparta }}$
Oonciostomo lecking
ro

III.

60 Branchs radiating from e com on point, zooncio shott and stout. Purple when fresh.

Turulipora 1nh:inta
Pranches serpentine, zoseciz slender. White in colour
Oncousoncia dilntans

61 Zooecia seperate, joined by elongate "stolons". 62
3ooecis contiguous 64

Zooecia crect, with spines
Bonnia mirabila
Zooecia encrusting without spines
63

63 Aperture orched above and with notch in lowor morein.
More or less woll-developed keel on front of zosecium
"inrothoa divaricato
Averture sui-ovate, broador above than relow, okeel absent
Minnothos dist.ons

64 Front wall on zooenia not completoly colcifiod loaving a momeronous area.

Ir irt wall of zosecia rully onlcifisd but moy in punctato 67

65 Avicularium mandilie pointed, avicularize Femily Yembraniporidao somet,jmes absent.

Avicularium manditia rounded, aviculariac usually
66 present.

Flustra follacos

Hincksira PInstrodios

67 A pair of vibraculae or aviculariac, (the in a aimilar position on each sirle of the autozosid) on most zooids, othor aviculariac may 'o present. 68
Avicula"iao or vi'rasulae, when ragnt, rorely poired, or if paired dissimilar in sizn and ap caronce 77

68 Vibraculao or vibraculoid oviculorise prosent 69 Aviculariae not vitroculoid. 72

69 Frontal calciciod area punctate, Inver arein of sporture
Frontal surfece entire, lowor marein of aperturo with
sinus (notch)
71

VIII

70.	5-6 merginal spines. Aviculario nomally prosent. Doocia globos", heoled. Gricrilerin radints
	5 goresmal cnines. Avicularia obeent. Noo ia punctate: Pipl11.ng onttyos
71	Vibraculum on ench oide of orifice Nestivonhors cutertroi
	Vireculold avicularium woll bolow ori ice Rrchoring migotis
72	Colory on trrogular mose of zoxocia 73
	Colory plotomlike, zooecia regilor 746
73	Stout rostrum boaring aviculorium precont in many zosenis nathinosin avioularis
	Ho rostru* below the aprrturo. Cellenoring oostnoils
74	Frontal rurfacs of zomann ornotato Crilxiling runctato
	Frontal surfece entire 76
75	Marginal epines mrosontaround aperturo 76
	No apinos Eohizonorolls unioornis
76	Largo avicularian, lewer marein of arerturo with at laost two indentations Escharoides osceinons
	Avicularino small, inoonspicuouc, lower margin of operturn With one notch. Sohizomovalla limerina
77	(Frontal calcoreous, avicularioe or vitracion, ic proment not aired)
	An avicularium prosent dirootly lolos aper ure 72
	Avicularium if prosent not directly tolow aporiurc E6
78	Avicularium on pointod rostrun knlow apcoturo 79
	Avicularium nat on pointed rostrum. 80
79	Spatulate avicularino scottored amonget zonocia Qathimatn armata
	Spotulate aviculariso sbsont Sellennrarin nuniooso

Aviculorion mandilo pointed

Avicularium manizio rounded or spot lato

81 Avicularius srect on sido oi pointed mucro, aportive With sinus(notoh) which doas not have tooth on inmer margin. Schtromimpla 1hroaris var. hnetota
Avicalorlum not as above, aperture with on withoat simus, if sirus rrecent a rrominent tonth precent on its innor margin.

Aperturo without cims, aviculerium mandibio directed towerde rporture.0ocia novor presont. Bertedoorells yin? meen

Aperture withasimas avieularian mandiblo curoatod away from aprit aperturs.Doocio may ba proonnt. Smittoiden roticulat,

Vell-developed collar around aperture 84
Collar absunt e6

Aporturs with simo uith medion denticlo, a mall rounded aviculnoiur fartlo onclored in sints Bntilng Iordowonovi

Without sinus ond dentiole. 85

Ooceis never Frosent. Zococio in Ifres, minl" Ixt:orsi
Gryntomin maliasinna

Ooscia domotimes prosnct. Zosecis quircuncial.Sub-littoral "Inmalin" Enliocos

Sinus but no conticio in aparturcox-4 apinonoAvicularin immedately below aporture Ibver IIp. Schiznonvolla auriculnt?
Sirus accent, Nevor moro than 2 epinos, aviculnrinn on lower margin 0° aporturo a 7

Zonocia very small. Aviculurium on rounded enimanoo.
Hero nometime procent. Erolla mimuts

Avicularino or pirsaculae reasent	89
Aviculmane and vitrealoo srent	104

Colony an frognter maes of zooscin, aporturo koy-holo sherod

IIfnonoritry cine
Colory regular, mooocia ordora, aperture not koy-hole shamd. 90

Frontel curfaco of aooid covorez ? y syetom of Anod onines soperated by alita.

Mingroniporolle nitide
Prontal punctata or entire.
91

Movablo s-ine kolow aperture
Spines, if any, only sround tho oporturo

Emoharira mininomim
92

Som-Iunate pore below aporture
46ranomallo
cy1intn
lo cuch pro

X

Norginal opinos 102

Wo mareinal spines 109
Virsoculue with ling "flegollita" on orch sornsis
$\frac{M a t i g o n h t h ~ h e n d m a n i s}{L}$
Yotrmo vitreculum mocent although aviculerion ney have elongato-merdible 94

Marginal spitres 95

Ho murging cornea 96

Avimularise on distinot aros sororate roz noxeciun. Docela with wedgo-shapod frontal fiscure. 6 apinos.

Sohizothoen fissa

Aviculoria lotormi on zocosia surfece, ho elesuro in 009siun. 6-7 opines

$$
\begin{aligned}
& \text { Very larce potulate arimlarine sest orod among zoocia } 97 \\
& \text { Large apotulnta avicialarioo abont }
\end{aligned}
$$

Frontal arreocs entire. Rostmul bearing mall aviculariun to ons wide bolow aperturs

Avicularizo on frontal surfase on zooscia

Aporture without simus
Aperture with sinus
Hipnorina mptucs

Aporture with broad flat coller
Po much collar
Fschering alcori

Frontal surfoco punctato, punctures in roin,
Frontal without rove of punctures 103

Semi-lunate pore bolow aportura

Gqimonorelin dimotima
ngthymain armat,

Eschoring rionlox

Gririlinice antilata

Zonontmiling maluat
No much pore
104

Orificisl collar abont or porly dovalowd113
Coller vedl davelored 211
113 Aporturo oomi-circulor, lower margin strsight, ususlly with a knob on oach eldy of tho aporture. Meronorg oniogeg Frontal punetate in all zocosia

Aperture os a'ove, only young zoodsia with frontsl punctate, in older zonecia frontsl eranular or riged. Iemealis ndrroseg

Arerturs nit po alove 134

XII

115
Without simus
With sinus

Escharolla variolosa
Smittina Chnilostomats

116 Aperture almost circular, osecia may be present No redtating fidges on frontal surfaco Hipnorina nertusa

Lower lip incurved,0oecia nover present, frontal
suriace with radisting ridges
自
117 Collor around aperture flat Escharing simn]ex

Collar around operture zaitsed 118

118 Aperture with sinus 119
Aperture without sims 120

119 Nedion denticle in lower lip of aporturo Smittirn choilostonat:
No median denticie Hipmothoo hyoling

Zooecia in comnon colcarcous crust Zooceia wall smooth except for the snooth erect part bearing the aporture.Ooccia smooth Lagenipora gochalis

Zopecia in radiating Iines, n common crust. Wall smooth, aperture not on erect part of zoocium. Ooecia punctete

Key to the Crisildae recorded from the Isle of Man

1. Most or all the internodes of a single zooid 2
Internodes of a cinglo zooid only in thec aldest parts of the colony 3

Spines present No spines

Crisidia cormuta
Filicrisia geniculato

3 Trenches, particularily in youngest narts of the colony, strongly incurved.

Grisia aburnca
Granchos not, or very slightiy, incurvod 4

4 With spines
Crisia aculenta
Without spimes 5

5 Joints jet-black. Oosciostome a ver short tube Crisio denticulata

Joints colourless. Oosciostome long, funnel-shaped tubs. Crisis rmosa.

Ky to the Tutuliporidae recorded erom the Islo of Man.

1. Colony with neat, transverse rows of connate zooecin 2

Colony without, or with only short trensverse rows of moncia 4

2 Oocciostome not recumbent on a zooccium funnel shapod often with one side folded over, much lorger then a zooid and opening upwards or obliquely horizontal.

Tubulipora plumosa

Ooeciostome tube recumbent on a zocesium. Obeciopore opening horizontaz orvdowniards 3

3 Docciostome mouth larger than a zooccial aporture, and opens borizontally Tubulipord 1311acea

Oociopore coricealed, maller than an aperturea and focing down.

Tukulipore phalancea
4 Short encrusting part of colony gives rise to erect mush-room-like branches Tubulinora nennidillinta

No erect branchos
5
5 Uolony brood, lobed orpear-shapod. If lobed, lobes fan-like. Ooeciostome tube wide or opens upwards. Tuhulinora aperta

Colony broad, narrowert part has 6 rows of zooecia which increases to 10 rows near an ovicell. Oocciostomo without tube Trbulipora Iobulata

	to tho Ectoprocto of the Wamily Momiraniponildac rocorded fron
1.	Avicularise ori amela sosont 2
	Avicularise or ooseia or toth present $?$
2	zoocela rectongular, Frontal ara four comered Mamenipora morrmocos
	Zooci: not regulorily rectengilar, frontal roa reanded 3
3	Calcaroous part of zoocin with poremilis spots 4
	Mot as abore 5
4	'3pots' ofer wholo of colcereose pirt of zseolum Eleotre niloca
	Fex'spots' loosely scot ered Flectre hantingeas
5	Opereulum white, colearoous Electrs en otulanta
	Oporculum not calcareous 6
6	7000ia taper markody below mid-1imo 7
	7ooecia not topering coumrards 8
7	Frontsl area with epinos ginotro hastinman
	No spinos Eurieore entominrio

f Cryrtocyst alluhtiy davolopod eround ndge of frontal aroa which is snowth ore cocled and may havo ino spines. Amons zonecie ara mal calareous mounde with entral triongulor or rounded hollowo

Cononeum retjculua

t Ihin calcarcus cryptocyst duvioped telow membranous frontol orea particularily at its bosel endn lio mounds or hollown amon tho zosacia "ut ocaasionelly rodo-ilke spinoo cecur at corners of z000c10. Aesnthoringh tomut	

9 Gryposyst àsent or poorly a volored nover covering moro thana thire of tho frontel area,10

3trongly avelowod cryptocyet nevor covars less than a third of the frontal eroa.

10 Avicularis and srines absent 11

$$
\text { Aviculorive ond cpines both proment } 12
$$

XXI

Nost ococia with aviculorium obliquely on uprer surface
Tecclla unicornis
No aviculoria on upper surface of onecia
13

Pedunculate aviculariae.
Not as above
Qauloramnhus sniniform

> Aviculariun absent, more then 20 delicate spines Galloora disreta Avicularia prosent, less then 20 spines.

Oocia front wall with curved or angular ridge gnot
glistening. "mryo colour not orange-yellow
Ooccial wall smooth, glistenine. Embryos orange-yollow
Callopora dunarili

At least 6 spines. Withoo without a single avicularium above the oosciun. En ryos red. 17

4 spines. OE゙ten two aviculariae al ove saoh ooeciun, om'ryos whi's

Callopora nurita
foll spines. Spines not flat, glistoning or cace-like across front of zooecium.

Callonors lineate
12-14 :lat, glistening spinos form o cage-like orch over front of zoseciun

Callonora craticila

Aviculariae absent19
Aviculariae present 21
4-6 spines on top of zooid and sometimes a chitinous vibreculoids spine on front wall Meropora ringens
No spines 20
Zooit margin slightly raised, gromular. Large sub-triangular no notule at baso of eoch zooid. Anmotophora nodulosa

Margin of zooid raised and besded, no sub-triangular
nodules

Rosseliang_rosseli
Avicularium mandible tri-angular, pointed. Spines
simple never branchel.
Avicularian mandirle rounded, spotulate, lovest padr
of spinostranched.
$\frac{\text { Larnacicus }}{\text { cornieer }}$

6-8 spines, one spine often stouter and longer then others, Ofton 2 avicularia por zooscium Amohiblestrum fleminei

Spines sometimes absent, never one more develo cod than the othors. Only 1 avicularium per zo resium

23 Spinos present. Avicularium on frontal area marein, manditle long, taporing to fine noint, Pomnhonotus minax

No spines, avicularise letween zovecia, manible acu'e Amphitiestrum solicium

Koy to the species of Rygula recorded from Manx waters.
1 Biserial 2
Multiserial 3

22 spines on outor disial angle of zoocia. I on inner angle. Avicularium $\frac{1}{2}$ way down opesium is longer than the zooccial width. neak elongated, domeurved Bugulo aviculoria

I'spine on esch distal angle. Avicularid atteched immediately Eelow spine on outer woll. Beak sharply downeurvod.

Eugula turbinata
1, more or less marked, unjointed spine on the outer diatal angle, iner angle unarmed.Avicularium $\frac{1}{3} \frac{1}{2}$ way down oposium. Bosk slightly "owncurved. Bugula plumosa

3 One spine on each distal angle Pugula turhinata
3 spines on outer distal angle, 2 on others 4

4 Aviculnrium beok down-curved. Aviculorium length oquals or
surpasses width of two zooecia
Avicularian bonk akruptly down curved. No avicularium e uals 2 zooecia widths.

Dymin sinhoalata

Key to the Alcyonidiidoe recorded from Manx waters. (modified Crom Bobin and Prenant 1956)

1 Colony incrusting, terraceous, zonecis with mumpous filiform imperforate papillae around the aperture and perictomial ragion.

Alcyonidium parasiticum
Colony ircrusting or erect, not terraceous in appenrance or consistency.

2 Fiach zooid has 5-6 conical, imperforste papilloe around the aporture. Alcyonidium hirsutum

Without such papillae 3
3 Ortfican on Iong peristomial tube. L Peristanial tube very short or aboent 5
4 Feristomial tubes5- $\frac{3}{4}$ zooid length when contracted. Crifice circuler. Colony incrusting, generally entito but may give off series of zooecia near the edge of the colony Alcyonidium mamrillatum

Peristomial tubes long, but not as long as in the provious specdos.Zooecia in cisfointed linear series at tho edge o: the colory ivt are irregularily placed towarde the centre. Orifice often tri-foliate whon contracted.

Alcyonidinm alricum
5 Colony erect,
Alcyonidium alatinosm
Encrusting . 6
6 . Colony of uniform thickness to edge of colony, zooc:ia perpendicu to support. Embryos rright orange Alcyonidium variegatum

Colony thiner toward s odge where zooccia are parallel to supnort. Smrryos white or pale pink

7

7 Fmbryos white. Zooccial walle of ton difficult to see in older parts of colony. 17-13 tentacies Alcyonidium polyoum

Embryos pink. Old zooecia walls whitish and obvious to naked eyo. 19-20 tentacles. Alcyonidium mytili

[^0]: * Lehisnida colonies on inner surface of dead bholl:*
 $57 \cdot 3$
 \% Lehtonidn colonies on outer surrece of dea ahell: $21 \cdot 6$
 H. Lehtrinta colonien on living molluses:
 $8 \cdot 3$

[^1]: * Iamollibranchs only.

[^2]: Y_{0} A, imbellis on inner shell surfaces; 71.E
 \% A.flemingi on inner shell surfoces: 33.0
 of A.imbellis on outer sholl surfacos: 23.2
 A A.flemingi on outer shell surfaces: 37.6
 x_{x} A. imbellis on living molluses: 1.9
 $\%$ A.flemingi on living molluses: $\quad 26 \cdot 2$

[^3]: \% Reviolaces on inner sholi sureaces: 51.5
 \% Revinlaces on outer sholl surcaces: 20.2
 q° R.violaces on living molluses

[^4]: \% S.unicornis on inner Eurface of dead lamellibranch shells . :61.2 \% S.auriculota on Inrer surface of dead lamellibranch shells ; 18.2 \% Selirearis on inner surface of dead lamellibranch shells :55.4
 \% S.unicornis on outer surface of dnad lamellibranch shells : 9.5㣻 S. nuriculota on outer surface of dead lamellibranch shells :44.0
 $\%$ S.linearis on outer surface of dead lamelilibranch shells :26.4
 Sounicornis on live mollueco:
 ot Sopurioulnta on inve … $\mathrm{L}: 3$
 1.5
 © S.linearis on live molluscs
 $10 \cdot 0$

