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SUMMARY 

This thesis concerns the effect'of an irregularly-rough surface 

on the behaviour of turbulent shear-flows - such as 

boundary-layer flows. Attention is focussed on the 

hull roughness which arises from natural corrosion, 

and biological growth. The economic importance of 

effects of ship-hull roughness has been accentuated 

fuel costs in recent years. 

exist in pipe and 

problem of ship- 

painting defects 

research into the 

by the rises in 

A novel feature of the work has been a method of replicating a 

sample area of hull-roughness while a ship is in dry-dock. This was 

accomplished using a thixotropic silicon rubber. By means of an 

additional stage of replication a plastic pipe-line can be manufactured 

whose inside surface is a positive copy of a real ship-hull roughness. 
It is well established that surface effects are confined to the so- 

called 'inner region' of the mean velocity distribution - providing 

the longitudinal pressure gradient is not too severe. Moreover, for 

a given surface, the roughness function, arising from the inner-region 

velocity distributions". is a'unique function of a 'roughness Reynolds 

number' formed by a typical height measurement relating to the surface. 
Hence, for identical surfaces, but regardless of the fluid media, the 

inner . region velocity distributions for pipes and boundary-layers are 

related through the roughness function. 

Six air pipe-lines were manufactured - one of which was smooth. 

The remaining pipe-lines were rough and corresponded to hull surfaces 

which were different in terms of both roughness-height and texture. 

At present hull roughness is measured in terms of the 'mean apparent 

amplitude' (M. A. A. ), which is a form of peak-to-valley height based on 
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a surface wavelength of 50 mm. Measurements in the five rough pipes 

have shown, however, that no correlation exists between the roughne3s 

functions (and hence the wall friction) and the M. A. A.; this casts 

doubt on the validity of correlations between shaft horse-power and 

M. A. A. currently being employed by naval architects. 

A hot-wire anemometry system was used to measure the turbulent 

normal and shear stresses. It has been found that the variation of 

these quantities across the pipe radius depends on the surface rough- 

ness - indicating the existence of a weak secondary flow. By Fourier- 

transforming the measured frequency spectrum function of the longitudinal 

normal stress, estimates were made of the size of a typical energy- 

containing eddy at various radial locations. 

A digital method was used to analyse the topography of the surfaces 
in order to search for an 'effective roughness height' which would 

cause the measured roughness functions to collapse onto a single curve. 

The measured eddy size near the pipe wall was used as a guide to the 

longest surface wavelength which should be considered in the topography 

analysis. It has been-found necessary to take into account the average 

slope of the surface and the average skewness and kurtosis of the height 

distributions, in addition to a one-dimensional measure of the roughness 

height, in order to produce a 'universal' roughness function, 

Integral methods of predicting the development of two-dimensional 

turbulent boundary-layers, which can include the effect of surface 

roughness, have been developed. Predictions have been compared with 

published experimental data for boundary-layers developing over*smooth 

and rough surfaces. The method based on the energy integral equation 

has been found to give good agreement with experimental measurements 
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for both smooth and rough surfaces in an arbitrary pressure distri- 

bution. This method has been used to investigate the effect of surface 

roughness on the separation of the two-dimensional boundary-layer 

developing over a flat plate with an external pressure distribution 

analogous to that found on a typical ocean-going vessel. For a fixed 

body-shape and plate Reynolds number it has been found that an 

increase in surface roughness causes the position of separation to 

move towards the leading edge. 

The most important aspect of the proposed prediction methods, 
however, is that the roughness function for a particular surface can 
be incorporated directly into one of the governing equations (the 

wall friction relationship). Hence, using measurements in a pipe 
lined with a certain roughness, boundary layer predictions, over a 

surface with an identical roughness and in a specified pressure 
distribution, can be extended to arbitrarily high plate Reynolds 

numbers - providing the roughness function is adequately defined. 
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CHAPTER I 

INTRODUCTION 

1.1 General Outline of the Problem 

The flow characteristics of a fluid moving past a solid boundary 

are known to change with the roughness of the boundary surface. In 

some circumstances surface roughness is negligible, in which case 

the boundary may be considered to be smooth. This, of course, is a 

limiting case; in practice most engineering surfaces exhibit roughness, 

which may be due to manufacturing processes, deterioration or surface 

coating*. It is perhapý surprising that the problem of surface rough- 

ness on ship-hulls was appreciated as long ago as the middle of the 

seventeenth century and documented in The Philosophical Transactions 

of The Royal Society (1666): 

"There is in the Indian Seas a kind of small worms 

that fasten themselves to the timber of the ships, 

and so pierce them that they take in water every- 

where; and so weaken the wood, ýhat it is almost 

impossible to repair them. Many things have been 

tried to prevent this evil, but without success. 

Some have lined their ships with deal, hair and 

lime, but, besides that this does not altogether 

prevent the worms, it much retards the ship's way". 

To this day the role of hull-roughness in the prediction of 

overall ship resistance is not understood. For very large tankers, 



-2- 

sea trials have established that surface roughness is a major con- 

sideration from the point of view of performance and economy. 

Lackenby (1962) has reported differences of 20% in power require- 

ments between sister ships with different surface finishes, and has 

noted that for the vast majority of the world's mercantile fleet 

between 800% and 90% of the total ship resistance can be attributed 

to wall friction. 

On modern aircraft, streamlining has reduced the form drag to 

such an extent that wall friction constitutes more than half of the 

total drag. Contributions to the wall friction come not only from 

surface protusions, such as rivets and spot-welds, but also from the 

surface micro-geometry. The effect of the latter is highlighted 

w hen a military aircraft is coated with camouflage paint, which can 

-ee Bertelrud alter the aerodynamic characteristics of the wings (s 
(1976)). 

Although a great deal of experimental research has been done 

over the last two decades on the problem of flow over rough surfaces, al- 

most all of it has been concerned with regular roughnesss by which is 

meant that the excrescences are uniform both in shape a'nd distribution. 

This is extremely valuable from an academic standpoint since the 

experiments can be considered to be controlled, but the results of 

the research are of limited use to the engineer who is confronted 

with a flow problem associated with a naturally-rough surface, as 

might be found on a corroded plate or on the inside surface of a 

concrete pipe-line. What little work has been done relating to 

these irregularly-rough surfaces is mainly confined to pipe flows. 
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1.2 Reasons for the Present Investigation 

From the enpineer's point of view there is a dearth of knowledge 

in three main areas concerning hydraulic roughness. Firstly, there 

is the obvious problem of how the rough surface interacts with the 

fluid moving over it. It is doubtful whether this problem will ever 

be solved in its entirety in a mathematically-closed form, and so 

recourse must be made to semi-empirical modelling. For anArregularly 

rough surface, there is the difficulty of adequately describing the 

topographical features not only geometrically but also statistically. 

Nearly all flows over rough surfaces are turbulent, and so it is 

important to know how the turbulence structure is affected by the 

presence of the roughness. What is particularly challenging is to 

ascertain whether the length scales of the turbulence field and the 

surface micro-geometry are in any way correlated. If such'corre- 

lations do exist, it should be possible to-make flow predictions 

without the need for intermediate experimentation other than an 

investigation of the micro-geometry of the surface., 

Secondly, there is the problem of how boundary layer predictions 

can be made, in relation to a particular rough surface, using data 

from flow experiments performed in a laboratory. It is quite clear 

that in order to carry out such experiments for a complex irregular 

roughness, such as is found on ship-hulls, some method of replicati. ng 

the surface is required. 
Thirdly, there is the important problem of boundary layer separa- 

tion and to what extent it is affected by surface roughness. This 

has particular applications to aerofoil behaviour with reference to 

the stall and associated hysteresis characteristics. in the after- 
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body of large ships, where large pressure rises occur due to the 

qqntractit,. ' streamlines, separation of the flow, with the resultant 

formation of large-scale eddies, can cause very significant increases 

in resistance and can even affect the handling of the ship and the 

performance of the propeller. 

1.3 The Present Investigation 

In view of the rapidly rising costW, fuel in recent years, much 

effort has gone into improving the surface finish of large ship-hulls. 

However, the hull condition quickly deter, orates after dry-docking. I 

This is due to poor surface preparation before painting, the formation 

of corrosion products, and organic fouling in tile form of weeds and 

barnacles. It is most important, therefore$ to be able to quantify 

these roughness effects in terms of the total ship resistance. 

Ideally, this should be done in a laboratory, since the only alterna- 

tive is to have regular sea-trials which are both costly and time- 

consuming. - - 

In order to investigate the feasibil4ty of such a laboratory 

method funds were sought from the U. K. Science Research Council to 

establish the necessary facilities. These funds were-provided and 

the author was employed to carry out the investigation. Work com- 

menced on lst January 1975, and this original work has been docu- 

mented in a report to the Science Research Council by Musker, 

Lewkowicz and Preston (1976). The British Ship Research Association 

provided the necessary financial support to continue with the work 

for a further two years commencing Ist January 1976. 

Some of the original work (which has already been reported as 
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mentioned above) is included in this thesis because it is considered 

to be an essential prerequisite for the understanding of the subse- 

quent work. A discussion of the basic concepts and a review of the 

relevant literature is presented in Chapter 2 of the thesis. This 

chapter is divided into four sections. The first section concen- 

trates on the particular areas of concern to the naval architect. 

The second section describes the physical modelling of a turbulent 

flow over both smooth and rough walls in the light of more recent 

knowledge about the turbulent mean velocity profile. A review of 

two-dimensional prediction methods for rough-wall boundary layers 

is given in the third section together with descriptions of the 

tYrbulent shear stress distribution. The last section describes the 

problem of obtaining profile records of a rough surface - an area 

which is becoming increasingly-important to the production engineer. 

Chapter 3 describes the methodology for the present 'Investi- 

4 

gation and the flow experiments which have been performed for a 

variety of irregularly-rough surfaces. A novel method of experi- 

mentation is used which relies on'manufacturing a replica of a given 

roughness using a moulding process. In this way, copies of ship- 

hull roughness can be transferred onto the inside surface of a 

pipe-line which is subsequently used for flow studies. A smooth- 

pipe experiment serves to check the instrumentation and methodology 

employed in the main investigation. Apart from the mean-flow measure- 

ments, the turbulence field is studied, using a hot-wire technique. 

In particular, the integral length-scales of turbulence are measured 

for all of the six surfaces under scrutiny, and the turbulence results 

are compared with others reported in the literature. 
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4 Integral prediction procedures for turbulent boundary layers 

usually rely on an accurate knowledge of the distributions of both 

turbulent shear stress and mean velocity. Chapter 4 shows how the 

experimental data relating to the rough-wall mean velocity profiles 

leads to a modified wall-friction relationship which can be incor- 

porated into two-dimensional boundary layer equations. The use of 

entrainment methods obviates the need for empirical shear stress 

distributions, and such concepts have been successfully used by 

other workers to predict flows over uniformly-rough surfaces. Semi- 

empirical modelling of the turbulent shear stress in terms of the 

mean velocity is necessary if use is to be made of the auxiliary 

equations derived from the boundary layer momentum equation. These 

points are discussed and a new, improved version of the Lewkowicz- 

Horlock family of integral prediction methods is presented, together 

with comparisons between theory and. experiment for known test cases. 

This is done for both smooth and rough walls. Additionallyt a 

numerical experiment is described which investigates the effect of 

hull-surface roughness on the onset of separation. 

Chapter 5 deals with the analysis of surface topography. The 

analysis is necessarily restrictive and does not attempt to answer 

such philosophical questions as whether a profile peak is synonymous 

with a surface summit. Three-dimensional surface description is in 

its infancy and it must be assumed that the statistical geometry of 

surface. profiles adequately represents the true topography. The 

roughness parameters used in the analysis are defined and the experi- 

mental technique used to measure them is described. 
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Chapter 6 shows how the length scales associated with the 

, ýT 
turbulence field and the surface topography can be used to search 

for a universal velocity distribution in terms of the surface 

statistics. This is one of the ultimate goals of rough-wall 

boundary layer work. It is important to realise that a waveform 

corresponding to a surface profile contains a wide spectrum of 

frequencies, and it is by no means clear which frequencies are 

responsible for the observed change in flow characteristics. 

Long wavelengths will certainly not influence the flow in the 

immediate vicinity of the surface, since they may be regarded as 

being ejuivalent to body curvatures. Included in the topography 

analysis, therefore, is a technique for filtering the profiles 

a'nd thus rejecting wavelengths above a certain quantity determined 

by the turbulence measurements. 

The conclusions drawn from the investigation, together with 

recommendations for future work, are presented in Chapter 7. 
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CHAPTER 2 

BASIC CONCEPTS AND A REVIEW OF THE LITERATURE 

2.1 The Problem of Roughness in Naval Architecture 

It is instructive to examine the nature of ship resistance in 

terms of its constituent components. For a smooth ship, immersed 

in a hypothetical frictionless fluid, the net longitudinal component 

of normal pressures arising from the streamline flow around the hull 

is zero. At the breaking surface, waves are created against gravity 

which give rise to normal pressures on the hull. Hence the resistance 

to motion is confined to these normal pressures. For a real fluid, 

of course, the situation is far more complicated. 

For an infinitely thin flat plate of wetted-area equivalent to 

the submerged hull-form and at zero incidence to the flow, surface 

shear stresses arise, due to the viscosity of the fluid. 

The viscosity creates a boundary layer which grows in thickness 

along the length of the plate. This flat-plate analogy is still 

used as a basis on which the wall friction is calculated. Because 

the plate is infinitely thin there can be no form drag. For a real 

ship-hull, of course, the wall friction is slightly different from 

its, equivalent flat plate due to the stream-line flow around the 
hull-form. The true wall friction is the integration of the longitu- 
dinal components of the surface shearing stresses. Because of the 
displacement effect of the boundary layer a form drag arises which 
manifests itself in the form of a net pressure force in the longi- 

tudinal direction. Finally, the presence of the waves at the breaking 
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surface not only creates a further drag force in the form oF normal 

pressures, but also produces its own viscous forces. It is apparent, 
therefore, that the wave-making and viscous forces are not entirely 

independent of each other. 

The presence of surface roughness on the hull not only changes 
the wall friction, but also modifies the development of the boundary 

layer and consequently alters the form drag. The geometry of the 

aft end of the hull can, in some circumstances, give rise to another 

type of drag caused by the separation of the boundary layer from the 

hull surface. The pressure distribution is largely determined by 

the hull geometry, and if this is such as to cause large decelerating 

flow regions in the after-body, then reverse-flow can occur which 

creates large-scale eddies leading to a significant loss of energy. 

In situations where separation occurs it is usual to include the 

extra resistance in the form drag, since it is of viscous origin and 

is to be distinguished from the wall friction. 

The effect of separation has been quantified by Lackenby (1962) 

for the particular case of a mercantile ship-TForm. Model tests were 

carried out in order to study the variation of resistance with the 

position of the longitudinal centre of buoyancy (L. C. B. ). It was 

found that a 1% change in the L. C. B. resulted in a 20% change in the 

overall resistance. Flow visualisation using cotton tufts confirmed 
the suspicion that separation had occurred. It is important to be 

able to relate these model experiments on separation to full-scale 

ships, and to this end it is necessary to take into account the 
different relative thicknesses of the boundary layers. Sachdeva 
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(1973) examined this problem for a smooth surface, using a numerical 

method, and concluded that the scale effect is favourable in going 

from model tests to the full-scale ship. Hence, in so far as the 

effect of separation on ship resistance is concerned, model tests 

tend to be pessimistic. To the author's knowledge no theoretical 

work has been donee on the influence of ship-hull roughness on separa- 

tion. 

The nature of wall friction in relation to ships was first 

investigated by Froude (1872 and 1874). He assumed that the wave- 

making and viscous components of resistance are separable. He further 

assumed that the wall friction of the ship and the model would be 

equivalent to that of a plane surface with identical length and 

wetted-area as the ship and model respectively. By measuring the 

wall friction on a series of planks towed in a tank he was able 

to isolate this pasticular component of resistance. A rather crude 

method of extrapolating Froude's results to ship-lengths of approxi- 

mately 400 metres was described by Payne (1936). Lackenby (1937) 

pointed out that Froude had been unaware, at the time of his experi- 

ments, that there existed different flow regimes depending on the 

Reynolds number based on the plank length, towing-speed and kinematic 

viscosity. He re-analysed Froude's results and concluded that the 

smaller planks exhibited a substantial amount of laminar flow. A 

unique turbulent friction line was established from the data and this 

was corroborated by the measurements on painted steel surfaces by 

Kempf (1929 and 1937). 

Theoretical work by Prandtl and von Karman lent support to the 
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empirical correlations of wall friction in terms of Reynolds number, 

and Schoenherr (1932) published a wall friction formula based on this 

work which is stillin use today. The formula relates the total wall 

friction coefficient, Cfj to the ship Reynolds number, Rs (these 

parameters are defined in the list of symbols): 

cf= 
[0.242/loglo 

(RsCf) 
12 

(2.1) 

The formula is valid for smooth ship-hulls. To allow for the surface 

condition of clean new ships a standard allowance, ACf = 0.0004, is 

added to the Schoenherr value of Cf* This supposedly. takes into 

account both the structural roughness of the hull in the form of 

rivets, plate overlaps and welding seams, and also the micro-georretry 

of the hull-plates. The latter depends on the surface preparation 

and the paint finish. 

Although this roughness allowance seems rather crude it was 

arrived at after extensive sea-trials performed on the 'Lucy Ashton' 

by Conn, Lackenby and Walker (1953). One of the main problems 

associated with the measurement of the resistance of full-scale ships 

is that the thrust of the propellers is not equal to the ship resis- 

tance, due to interaction with the hull. To overcome this difficulty 

the 'Lucy Ashton' was fitted with aircraft jet engines -whose combined 

thrusts could be accurately measured. Initially, tests were made 

with the hull in a clean condition and coated with red-oxide paint. 
The resistance was found to be 16% higher than the smooth ship 

prediction, based on model experiments,, and this figure corresponds 

to the previously-mentioned roughness allowance. A similar allowance 
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was arrived at on the basis of sea-trials of the vessel 'Meteor' 

as reported by Grothues-Spork (1968). A slight Reynolds number 

dependence was noticed, resulting in the value of AC f rising to 

0.0005 at low speeds. Various other wall-friction correlations 

have been suggested for clean new ships; for example, by Schultz- 

Grunow (1940), Hughes (1954) and Telfer (1960). The formula most 

favoured by naval architects, however, is the one arising frcm the 
International Towing Tank Conference held in 1957, the so-called 
I. T. T. C. (1957) line: 

cf=0.075/(log, ORS-2)2 (2.2) 

This formula renders wall friction coefficients somewhat higher than 

t he Schoenherr line at lower ship Reynolds numbers. 
Returning to the 'Lucy Ashton' trials, a systematic study was 

made to relate the surface finish of the hull to the wall friction. 

Differences of 3% on total resistance and 5% on wall friction were 

observed between red-oxide paint and a smoother aluminium paint. 

The ship was then allowed to become biologically fouled by barnacles, 

measuring a few millimetres in height, and fine grasses clinging to 

the sides of-the hull.. Increases of 30% and 50% -were recorded for 

the total and wall friction resistances respectively. These trials 

drew attention to the underlying importance of hull-roughness from 

the point of view of performance and economy. 

The British Ship Research Association (B. S. R. A. ), who were 

responsible for the 'Lucy Ashton' trials, began to study the relation-. 

ship between the hull-roughness and the total resistance. The 

roughness was quantified by means of a wall-gauge specially manu- 
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factured for use on ship-hulls. The details of the instrument can 

be found in the paper by Lackenby (1962), but essentially the gauge 

produces a5 centimetre-long trace of a local surface-roughness 

profile on the hull. Envelope curves are drawn through points of 

maxima and minima and the area contained within them is calculated. 

The 'mean apparent amplitude' (M. A. A. ) is defined to be this area 

divided by the profile length. Some fifty samples are used, corre- 

sponding to different locations around the hull, and an average 

M. A. A. is assumed to describe the magnitude of the hull-roughness. 

Although this one-dimensibnal measure of surface roughness may 

seem rather arbitrary, it has proved immensely popular and is still 

widely used. The M. A. A. cannot take into account the structure of 

the surface roughness, which undoubtedly is a controlling factor in 

the generation of wall friction. It is claimed by Lackenby (1962) 

that an increase in M. A. A. of 100 microns results in an increase of 

approximately 10% in total resistanc-- for large single-screw ships. 

However, this correlation only applies to new ships recently wire- 

brushed and painted in dry-dock, and highlights the importance of 

careful surface preparation and painting. Canham and Lynn (1961) 

have attributed the deterioration of a hull, after several years 

service, largely to corrosion rather than organic fouling, and this 

has been confirmed by Aertssen (1960) who noted a 17% increase. in 

power requirements, due to the effects of corrosion, over a five-year 

period. 

It is doubtful whether violations of all the rules of good 

painting practice occur anywhere else as frequently as they do in 
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dry-docks. This is accentuated by economic pressures on the ship- 

owners to minimise the dry-docking time, resulting often in the 

anti-fouling coating being applied over anti-corrosive paints which 

have not had time to dry fully. Indeed the anti-corrosive paints 

are often applied before even the ship has had time to dry out 

following descaling and fresh-water hosing. It is unfortunate that 

this problem persists in spite of the recent advances in the quality 

of marine paints. 

Faced with these problems, therefore, it is clear that the naval 

architect is in need of a method which will give accurate correlations 

between the micro-geometry of a corroded hull-surface and the associ- 

ated frictional resistance. 

A systematic laboratory study of hydraulic roughness was pre- 

sented by Nikuradse (1933) in his now classic paper. Using tightly- 

packed sand-grains glued onto the inside surface of a pipe-line he. 

measured the wall friction coefficients in terms of the pipe Reynolds 

number for differently-sized grains. Prandtl and Schlichting (1934) 

later used these results to calculate the friction line of a flat 

plate with uniform, tightly-packed sand roughness in a constant 

pressure flow such as occurs for the major part of the length of a 

large ship. These calculations were confirmed experimentally by 

Allan and Cutland (1955) using different grades of emery powder 

glued to a plank. However, these friction lines do not agree in 

shape with earlier observations by Todd (1951), who used an equivalent 

sand roughness to describe simulated ship-hull roughness on his test- 

plates. 
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In attempts to relate the surface finish to wall friction, manu- 

facturers of marine paints often use rotating drum and disc methods. 

These involve coating the drum or disc, which is then rotated-in sea 

water in a concentric housing under laboratory conditions. The torque 

is related to the relevant roughness parameter, and the peripheral 

speed is set equal to a chosen ship speed. Although such experiments 

are useful to the designers of new paints they are of limited use to 

the naval architect. This is because the flows are subject to centri- 

fugal forces which are absent in the case of pipes and flat plates. 

This causes a destabilising influence in the case of the rotating 

drum, for example, which may alter the roughness effects. In addition, 

there is the problem of end-effects caused by the three-dimensional 

nature of the apparatus, requiring corrections to the measured wall 

friction before extrapolations can be made tO the full-scale ship. 

Despite the above objections these methods will still be in use for 

some time to come and the interested reader is referred to papers 

by Roy (1975) and Granville (1972). 

Before leaving this section mention should be made of various 

drag-reducing chemicals which have been available in recent years. 

Firstly, there are the 'self-polishing' polymer paints, which rely 

for their efficacy on their resilient nature. The drag reduction 

claimed. is attributed to the paint's ability to conform to the 

roughness topography while the ship is at sea, in such a way that 

the paint effectively Ismoothes over' the roughness excrescences. 
The compliant properties of the paint may well alter the character 

of the flow, in a manner similar to that recorded by Kramer (1960 

and 1961) in his experiments to elucidate the drag-reducing properties 
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of a dolphin's skin, first noted by Gawn (1950). A theoretical 

treatment of this problem is given by Brooke-Benjamin (1960). There 

has been much controversy about the actual amount of drag reduction 

obtained using these paints, but it is now generally accepted that 

there are gains to be had by using them although they tend to be 

short-lived. Secondly, there are the long-chain polymers, such as 

polyethylene oxide. Solutions containing minute amounts of these 

chemicals exhibit drag-reducing properties. It is known that the 

associated drag-reducing properties of these polymers are not cen- 

nected with a reduced fluid viscosity, but rather by the tendency 

to inhibit the production of turbulence. A complete review of the 

subject is given by Hoyt (1972). 

The inclusion of the effects of these paints and chemicals is 

beyond the scope of this thesis. For the work which follows, it is 

assumed that the surface has originated from a conventional paint 

finish or from a drag-reducing paint which has aged sufficiently for 

it to have lost its effectiveness. It is also assumed that the con- 

tribution to the wall friction from the small'amount of laminar flow 

near the leading edge is negligible, which is certainly the case for 

most ocean-going vessels. 

2.2 The Turbulent VelocitZ Distribution Over Smooth and Rough Walls 

Before discussing the effects of wall-roughness, it is important 

to recapitulate the state-of-the-art in relation to the representation 

of the turbulent mean velocity distribution over a smooth wall. Near 

to the wall this has the classical functional form 
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u=' 
fyu 

0, 
0 

(2.3) 

where u= the velocity at a distance y, uo = YIT- 0 
7p where T0= the wall 

shear stress and p= the fluid density, and v= the fluid kinematic 

viscosity. Away from the wall, where viscous shear stresses are 

considered entirely negligible, the velocity distribution depends on 

the wall shear stress and a pressure gradient parameterý TI: 

U -u 2 (2.4) 
u0 

Here, 6 refers to the boundary layer thickness or, in the case of a 

pipe, the pipe radius, and U., refers to the free-stmam velocity. 

Millikan (1938) showed that the region of simultaneous validity of 

these two laws must have a logarithmic form and this leads to the 

well-known law of the wall: 

og 
c-o 

+B, (2.5) U-o 'ev 

where K and B are universal constants. 

This representation of the velocity distribution near the wall 

implies an insensitivity to the external pressure gradient. For cases 

where the wall shear stress approaches zero, however, Townsend (1960) 

and Szablewski (1955) have shown that the velocity distribution near 

the wall assumes the limiting form: 

u3d a 
( ip 2-1 1/3 3 

(Lv*23- lp Px (2.6) 
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I 

where dp/dx is the longitudinal pressure gradient. Thompson (1967) 

has suggested the following modification to (2.3) to take the pressure 

gradient into account: 

uu 
= ý4 

ýU2 

0 

where 

dp 

uo dx 

However, Rotta (1962) has shown, in an analysis of experiments by 

(2.7) 

Ludwieg and Tillmann (1949) on the effects of a very strong positive 

pressure gradient on týe flow in a diverging channel, that the 

influence of the pressure gradient term A on the universality of (2.3) 

was negligible. For flows very close to separation, the extent of 

the law of the wall ceases to be significant, as has been observed 

by Stratford (1959). Patel (1965) has also noted this in relation 

to the separating aerofoil-flow of Schubauer and Klebanoff (1951). 

An analysis by Coles (1968) of hundreds of velocity profiles, 

submitted at the Stanford University. Conference on turbulent boundary 

layers, has produced irrefutable evidence that the law of the wall 

adequately describes the overlap region between the inner and outer 

flows for the vast majority of engineering situations. In the light 

of this evidence it is interesting to see how the concepts of mixing 

length and eddy viscosity can usefully be used to describe the velocity 
distribution from the wall right up to the logarithmic overlap region. 

Following a suggestion by Professor J. H. Preston, the author proposes 

* Emeritus Professor, University of Liverpool. 
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the following analysis. 

Denoting the eddy kinematic viscosity by vt, the equation of 

motion for two-dimensional turbulent flow in the x direction is 

(using conventional notation): 

au +v au 
-1 

ýP- 
+a 

(V+V 
t) 

aul (2.8) 
-ax Wy --p dx By 

I 
TYJ I 

At the wall, the pressure gradient is balanced by the laminar shear 

stress gradient, 

ýp -a2u dx ::: ý'aY2 

which leads to 

V 

(2.9) 

ýY' 
(vt 

-'a-U. +vI y-u =a- ýa yyu) s 
for the region very close to the wall. Here, the viscous shear 

stresses predominate, which means that the velocity profile is linear. 
2 The continuity equation therefore implies that vy, and hence 

from equation (2.10) 

vt (2.11) 

which was first derived by Reichardt (1951). 

Use is now made of the experiment ally-observed fact that very 

near the wall the longitudinal turbulence intensity, 4`ý', 
when non- 

dimensionalised with respect to the wall-friction velocity u0, varies 

linearly with the dimensionless wall distance yu 0 
/v. This has been 



20 

verified by Laufer (1954). Hence, as before , 
r2 

,U0x Y* 
2, 

where 

y* = yu /v. Since v 
lu 

= u'v' it follows that 0t Dy 

vt 3 
A (2.12) 

v 

as y* -ý-O. Away from the wall, 
V 

-ý Ky*, which results in the 

familiar derivation of equation (2.5). The following interpolation 

formula incorporates these two limiting flow regions in a compact 

form, as is readily confi med by inspection: 

+1 
3' 

vt v CY*3* 
Ky* 

where C is the constant of proportionality in (2-12). Remembering 

that in the near-wall region: 

T 
(V+vt) ! 

-U (2.14) 

and putting u* = u/u 0, 
there results the final expression for the 

dimensionless velocity gradient which is continuously valid from the 

wall to the logarithmic-overlap region: 

due K+CYk 
2 

2 --, 7 (2.15) 
K+Cy* +CKY* 

This will be referred to again shortly. 

The outer region function, ý2, has been found by Coles (1956), - 
by analogy with wake flows, to take the following form: 

U. -U 
: 

11 (2-w (2.110) 
u0 

IK 
loge 2s- 

s 
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where wk is a universal function which has since been endorsed at the 

Stanford conference. An analytical fit to this wake function has 

been given by Hinze (1959),, and is often used in the literature: 

Wk =1- Cos 
(y] (2.17) 

A more convenient and equally accurate expression, however, is the 

polynomial due to Moses (1964): 

w6 
rvj 24 rv) 3 

(2.18) k 

Unfortunately, incorporation of the universal wake function into 

(2.16) and subsequent combination with (2.5) leads to a discrepancy 

in the slope condition at the edge of the boundary layer, as discussed 

by Cornish (1960), Bull (1969) and others. The effect of this dis- 

crepancy is most noticeable in cases of strong negative pressure 

gradient. The problem is overcome by introducing a modification 

function, r, into equation (2.16): 

U--u 
= 11 (2-w -r u0Kk lic 10 9e 26- 

Ic 

A polynomial representation for r leads to a unique solution which 

satisfies all the boundary conditions, as first shown by Finley (1966) 

and later by Granville (1975): 

(y6-) , (I 
- 

160 (2.20) 



22 

Combining equations (2.5), (2.19) and (2.20) results in the familiar 

Itwo-layer' velocity profile with the new wake function: - 

u (yj 2 (y 
-43]+I 

rv) 2 
(2.21 0+B+ [6 

og TO KevK 
r6 

Returning now to equation (2.15), this can be integrated analytic- 

ally for known values of K and C. C is found by trial and error by 

performing a Simpson integration of (2.15) in order to match equation 

(2.5) in the limit as 
Yuo 

The value of C is found to be 
V 

0.001093 for 0.41 and B 5.0. The values assigned to the latter 

two constants are the ones recommended by Coles at the Stanford 

Conference. After integrating (2.15) and combining with (2.19) and 
(2.20), a good deal of algebra yields the following closed-form 

expression for the velocity distribution over a smooth wall which is 

valid continuously from the wall up to the free-stream: 

u* = 5.424 tan-' 
-2y*-8.154 (y*+10.593)9,603 

16.704-- 
.+ 

10910 
(Y* 2-8.154y*+86.38) 1.992 

2 
. 
12 

_ 
(Y)3] 

- 3.52 + 2.44 6-4+ '(2.22) 
6 

As far as the author is aware there is no other explicit expression 

available for the smooth-wall velocity distribution which satisfies 

both the momentum and continuity equations at the wall. Dean (1976) 

hTs recently published a formula which combines Spalding's (1961) well- 



23 

known relationship for eddy viscosity near the wall with Finley's 

(1966) -expression for the wake region. However the dimensionless 

velocity is implicit in Dean's final equation, making it difficult 

to use. 

The description of the mean velocity distribution afforded by 

equation (2.22) is In excellent agreement with experimental data 

near the wall as Fig. 2.1 shows. Here, the equation is compared 

with the data of 11-aufer (1954). Away from the wall, as y* -)- -, 

equation (2.22) asymptotically approaches (2.21) so the outer 

region is adequately described. 

The two-layer concept of mean velocity distribution is extremely 

useful for taking into account the effects of the introduction of 

surface roughness. Although in-absolute terms the outer region 

velocity profile is augmented by the increased wall shear stress, 
it is essentially independent of viscous effects near the wall. 

Assuming, for the moment, that the roughness can be characterised 

by a one-dimensional roughness height, h, the logarithmic law becomes 

u1 yu 0+B- AU (2.23) U0-- Z ; ý-loge -v WO 

where Au is a roughness function uniquely related to the roughness 
I 

ýo 
hu 

Reynolds number 
V0. 

Nikuradse (1933) used the logarithmic law in 

a slightly different form thus defining an alternative rouqhness 

function, x, such that 

u log -(2.24) u0ýý+x, 
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hence forming the identity 

Au 
og hk -u (2.205) 

e0 

where h* = hu 
0 
/V. 

The experimental verification by Hama (1954)ý Perry and Joubert 

(1963) and'others that the roughness effects are independent of the 

external pressure gradient has been perhaps one of the most signifi- 

cant contributions to the roughness problem. This means, for 

example, that roughness functions measured in a pipe are valid in 

a boundary layer for a particular surface. 

Reverting to equation (2.23) the value of y needs defining in 

the case of a rough wall. The origin for y can occur anywhere between 

the top and bottom of the protuberances or may even occur outside 

of these limits. This does not, of course, mean that u=0 at this 

point since (2.23) is only valid in the overlap region. The correct 

origin for yAs the one which produces the best fit to equation (2.23) 

as first pointed out by Clauser (1956), a6d later by Perry and 

Joubert (1963). 

It is important to understand the nature of the wall friction 

for a rough surface. For extremely low roughness Reynolds numbers 

the wall friction is largely of laminar origin. As the roughness 

Reynolds number, h*, increases, however, pressure forces act on the 

individual excrescences. The wall friction now originates from a 

laminar shear gradient and a form drag associated with the protu- 

berances. The flow is disrupted still further, with increasing h*, 

until eventually the viscous forces may be negligible in relation 
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to the pressure forces. This is the fully-rcugh flow region which 

is characterised by the wall-friction coefficients being independent 

of Reynolds number. 

Much work has been done on this fully-rough region with respect 

to the behaviour of the roughness functions. Schlichting (1936) 

showed how any roughness geometry could be assigned a value of 

equivalent sand-grain roughness, hS, in order to compare the fully- 

rough frictional effects of different surfaces. The procedure is 

simply to find a value of h such that x (whose value is dependent 

on the choice of h) is equal to 8.5, which corresponds to Nikuradse's 

measurements for uniform sand-grain roughness in this region. Here 

the roughness function is described by equation (2.25) which now takes 

the form: 

, AU 
-1 log 

LS5- 
+C1* u- -Kev 

0 
(2.26) 

Hama (19054) showed that when a uniform, roughness is dcscribedýby 

a typical length dimension, h, the roughness function in the fully- 

rough region (if it exists) becomes: 

AU =I log 
hu 

+C (2.27) ý _0 Ic 21 

where C2 is a constant dependi. ng on the roughness geometry and is to 

be compared with C1 in (2.26) which is a universal constant. Using 

the wire-screen data of his co-workers, Rand and Sarpkaya, and the 

square-bar results of Moore (1951), Hama demonstrated the . universality 

of equation (2.26) for roughnesses of similar geometries but different 
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absolute dimensions, and for identical roughnesses in different fluid 

mediums. 

Betterman (1965) introduced the concept of roughness density in % 

attempting to quantify C 2' Defining d to be the ratio of the total 

projected surface area to the projected roughness area, for uniformly- 

rough cases he found that-the following correlation adequately described 

the available experimental data in the range 1<d<5: - 

c2= 17.35(l. 625 loglo d- 1) (2.28) 

Beyond this range C2 is found to decrease with increasing d, which 

implies that the departure -from the smooth law of the wall, AU/L109 

reaches a maximum value for constant huo/v at a critical spacing of 

the roughness elements. A little thought will show that this must 

be the case. -Considering a roughness geometry in the form of 

regularly-spaced bars of rectangular cross-section, it is obvious 

that in the limiting cases of d approaching one and infinity the 

surface becomes smooth. A single roughness element, at low values 

of d, is subjected to a wake-flow created by the nearby upstream 

element. As d is increased, the frontal area exposed to the flow 

must increase due to the diminishing extent of the oncoming wake flow, - 

and consequently the form drag predominates, producing a fully-rough 

region. The critical value of d must occur when the spacing is such 

as to allow reattachment of the flow immediately upstream of the 

element, since increasing the spacing still further then allows 

laminar shear gradients to be formed near the wall. ' 

In view of the above comments, it is perhaps not surprising that 
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attempts to find expressions for C2 in the-range d>5 have met with 

limited success. Such correlations have been proposed by Dvorak 

(1969), Simpson (1973) and Dirling (1973), but recent measurements 

by Furuya, Miyata and Fujita (1976) highlight the importance of 

taking into account the shape of the elements. 
The effect of depression roughness was examined by Ambrose (1954). 

His roughness consisted of holes and cylinders uniformly distributed 

over the inside surface of a*pipe. He found that a fully rough flow 

region occurred at high Reynolds n6mbers and he calculated the con- 

tribution to the wall friction arising from the presence of the holes 

alone by'a process of interpolation. He deduced that Au/u 0 was 

essentially constant, having a value determined only by the roughness 
density. The assumption he made was that the presence of the 

cylindrical roughness did not affect the flow over'the depressions, 

but this seems a reasonable one in view of the roughness distributions 

used. Ambrose observed, however, that in the intermediate region 
(often called confusingly 'the transition region') between smooth 

and fully-rough flows Au/u 0 also depended on the roughness Reynolds 

number. 

Encouraging support for these ; bservationss comes from Townes and 

Sabersky (1966) in their highly informative flow-visualisation studies. 

They observed steady vortex patterns in square-section slots for 

values of hu /v greater than 150, where in this instance h represents 0 
the slot depth. For lower values of huo/v, however, the flow was 

observed to disrupt periodically. This was attributed to large-scale 

disturbances from the external boundary layer, rather than an 

instability in the vortex flow itself, because simultanecus disruptions 
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were observed in neighbouring slots. The fact that these two regions 

of slot-flow can be defined in terms of a roughness Reynolds number 

goes a long way towards explaining Ambrose's results in the inter- 

mediate region. 

Perry, Schofield and Joubert (1969) have also demonstrated the 

redundancy of the roughness Reynolds number for depression-type 

roughness in the fully-rough region. They have proposed that a 

characteristic length scale which can be identified with Au/u 0 
is 

the 'virtual origin error', measured from the top of a slot, which 

produces a best fit to the logarithmic velocity distribution (as 

described earlier in this section). There is no obvious physical 

reason why the virtual origin error should feature as a significant 

flow variable, however, and in any case the expression which the 

authors propose in their paper introduces a constant which must be 

related to the slot geometry. 

What emerges, therefore, is a distinct lack of hard experimental 

facts with respect to the behaviour of roughness functions for 

uniformly-rough surfaces. The different flow regions are well-defined 

in a qualitative sense, but what is particularly striking is the 

difficulty of adequately describing the intermediate region between 

effectively-smooth and fully-rough flows. The situation will now be 

examined for irregularly-rough surfaces. 

Among the early investigations in this direction are the ones 

carried out by Colebrook and White (1937) shortly after Nikuradse's 

work. Using a pipe-flow they tested the effect of distributions 

of differently-sized sand grains on the roughness functions. They 
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found that the roughness functions differed from Nikuradse's curves 

which applied to tightly-packed sand grains of equal diameter. This 

led them to test naturally-occurring surfaces such as cast iron and 

galvanised steel. These surfaces displayed equally different 

characteristics as Fig. 2.2 shows (only the trends are shown here 

and not the actual data points). Later, Colebrook (1939) published 

his well-known formula describing the intermediate flow region, 

for natural surfaces, in terms of the pipe friction coefficient, f, 

and the equivalent sand-roughn--ss: - 

1.74 
Is 18.7 

-2 loglo R+- (2.29) 
iT Relf 

where Re is the pipe Reynolds number. This can be transformed into 

an expression for the roughness function Au/u 0. 
Musker, Lewkowicz and 

'Preston (1976) derived the following expression using the two-layer 

velocity profile: - 

Au = 5.66 log� 
u0 

0+3.31 su 
- 2.72 . (2.30) 

A similar expression is given by Hama (1954). 

The validity of equation (2.29) has been confi med by Rouse 

(1942), and later by Bradley and Thompson (1951), despite earlier 

objections to its universal use by O'Brien, Folsom and Jonassen 

(1939). However, the Colebrook formula certainly does not apply to 

all irregular surfaces, and there are many instances of artificially- 

produced irregular roughnesses which exhibilt- Nikuradse's trend in 
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the intermediate region. 

Millionshchikov et al. (1974) observed this phenomenon, for 

example, with irregularly-shaped elements distributed at random in 

a pipe. Hama (1954) performed experiments on simulated paint- 

surfaces. A typical surface consisted of fine glass beads which 

had been air-blasted onto a tacky surface which was subsequently 

painted with several coats of varnish. He found a considerable 

departure from Colebrook's intermediate region, even more so than 

for Nikuradse's results, and he found that this could not be 

related to the size-frequency distribution of the beads within 

range investigated. The concrete pipe investigated by Straub, 

Bowers and Pilch (1960) showed a very limited intermediate region 

which became fully-rough at a value of hsuo /v of about 15. This 

contrasts with a value of about 60 for Nikuradse's sand-grains and 

about 45 for the natural surfaces measured by Colebrook and White. 

It should be pointed out that equation (2.29) does-not relate 

to pipe-flows for which the equivalent sand-roughness is greater 

than about one tenth of the pipe radius. These flows are difficult 

to describe because of the non-existence of a well-defined logarithmic 

overlap-region. The two'-layer concept of velocity distribution con- 

sequently breaks down for these macro-roughnesses, and the problem of 

relating these pipe measurements to a boundary layer flow cannot be 

tackled in the usual way, if at all. Monzavi (1972) has presented a 

method of calculating the pipe friction coefficients in such cases in 

terms of surface statistics. This resulted from his work on distri- 

butions of large pebbles on the inside of a pipe. He found that the 
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significant surface parameters were the averaged surface slope, 

standard deviation and an autocorrelation-length (this will be defined 

I in Section 2.4). This work resulted in a formula from which estimaltes 

can be made of head-losses in extremely-rough pipes. 

The above review points to the need for identifying a particular 

surface with its associated roughness function. It is clearly 

dangerous to predict the behaviour of the roughness function knowing 

only the equivalent sand-roughness. Nomograms exist for estimating 

this equivalent roughness for a range of different surfaces (see 

Moody (1944)), but their use inevitably relies on the intuition of 

the engineer. The criteria for applicability of the Colebrook 

formula in the intermediate region have not been investigated in 

terms of the surface micro-geometry and it is this region which is 

of major importance to the naval architect. 

2.3 Two-Dimensional Boundary-Layer Flows and Prediction Methods 

Methods of predicting turbulent boundary-layer flows fall into 

two broad categories: differential methods and integral methods. 

In both methods the transient details of the flow are of no conse- 

quence and instead the time-averaged properties of the turbulence 

field are considered. 

The differential methods make use of the partial differential 

equations of momentum, continuity and energy. To obtain mathematical 

closure the various turbulence terms occurring in these equatiops 

must be related to each other. Bradshaw, Ferriss and Atwell (1967), 

for example, assumed that the ratio of the turbulent shear stress to 
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the turbulent kinetic energy is a constant. Alternatively,, the 

turbulent shear stress can be accounted for using mixing-length or 

eddy-viscosity relationships, such as the popular van Driest (11956) 

model used in the methods of Patankar and Spalding (1970), Cebeci 

et al. (1970) and Pletcher (1970). When wall-roughness is present 

these models require modification. There are indications that 

Bradshaw's constant, as defined above, does not apply to rough 

walls, or at least needs modification (see El-Samanoudy (1974)). 

The van Driest model does not agree with experimentally-determined 

velocity profiles even in the fully-rough region, and does not 

account for the different types of behaviour observed in the inter- 

mediate region. 

The differential methods cannot make direct use of empirical 

roughness functions because they do not assume any lonA of velocity 

profile. Other ways of describing the roughness effects are obviously 

needed and it would seem that a modified molecular viscosity is the 

most appropriate, such as proposed by Perry and Joubert (1963). They 

generalised the logarithmic overlap region, described by equation 

(2.5), by postulating that roughness modified the value of v depending 

on the roughness Reynolds number. The differential methods can then 

calculate rough-wall flows, for a particular surface, by linking the 

viscosity to the wall shear-stress and thereby changing its value ill 

accord with experimental observations. Singhal and Spalding (1975) 

have used this Couette-flow analogy near the wall with reasonable 

success. 

Integral methods rely on cross-stream integration of the boundary- 

layer equations using an assumed velocity distribution. They lead to 
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a set of ordinary differential equations which can be numerically 

integrated very quickly by a computer. They are in general less 

superior to the differential methods, unless the turbulence structure 

changes slowly in the direction of the flow. Head (1970) has demon- 

strated that for such flows over smooth walls there is no noticeable 

difference in accuracy between the two methods. 

What is. required, for the purpose of the present work, is a 

method which can be incorporated as a subroutine into a three- 

dimensional calculation procedure for ship-hulls, such as the one due 

to Gadd (1971). In view of the above comments, it was decided to use 

an integral procedure for the numerical experiment described in 

Chapter 4. Accordingly, the following discussion and review is 

orientated towards integral methods of calculation. 

The boundary-layer momentum equation for steady incompressible 

flow is (in the usual notation): - 

zu - zu 
y 

2u dU 
Co 1 ýT 

-Z 
=l -7 

Uý7x - i-y *ax dY = UCO -d -x +p 7y i -x (u- v' ) 

01 

where u' and v' denote the instantaneous values of the fluctuating 

components of velocity in the x and y directions respectively, and 

the over-bar denotes time-averaged values. (This convention will be 

used throughout the thesis. ) After defining the usual integral thick- 

nesses, this becomes (after integrating across the stream): - 

Co 
dU c1 da 

+ (H+2) 8 (» f+dU, 7 
-7 dy UX- u- -a-x -2 UX- 2 «b u 

(2.32) 
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where e= momentum thickness = 
cof uI dy 
0 

U00 

= dis'placement thickness = 
00 

dy 
Of 

H= shape factor = S*/e 

and C'f = local wall-friction coefficient =-0 ipu. 

The last terms in equations (2.31) and (2.32) are known to be 

negligible except near separation and will be ignored for the moment. 

It is clear that for constant pressure flows only one other equation 

is needed for closure, and a'wall-friction relation provides this. 

Prandtl and Schlichting (1934) carried out predictions for the 

case of a flat plate covered with uniform sand-grains in a zero 

pressure-gradient. They assumed that the logarithmic overlap region 

(to use the present terminology) applied right up to the free-stream 

and they ignored discontinuities there arising from a finite velocity 

gradient. Using the pipe data of Nikuradse (1933) they incorporated 

the roughness function into their calculations and produced charts 

of wall-friction coefficients, plotted against plate Reynolds number 

(based on free-stream velocity and distance from the leading edge), 

for a range of non-dimensional roughness heights. 

Granville (1958) performed similar calculations for engineering 

roughness on flat plates (for constant pressure) and produced a 
formula which tan be likened to Colebrook's (1939) expression for 

pi pes: 
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0.544 
_ 5.61 Xf- + 0.638 loge + 

4.84 x 
(2.33) I- 

VT-f 
17xuf 

F -, YIý 
where Cf is the total wall-friction coefficient and Rx is the plate 

Reynolds number. The above formula has been used by Harrison (1967), 

together with an assumed relationship between shape factor and local 

wall friction coefficient, to calculate the development of displace- 

ment thickness. This shape factor relationship has been found by 

Clauser (1954) to apply to both smooth and rough walls in constant 

pressure flows: 

H16.7 (2.34) 

For the more general case of variable pressure another equation 
is required and the effect of pressure gradient needs to be taken into 

account in the wall-friction equation. In the past these modifications 

to the friction equation have often not been directly related to the 

assumed form of the velocity distribution. For example Arndt and 

Ippen (1967) proposed the following friction law for constant pressure: 

A= 1-109 B- "u (2.35)- TKev 
U0 

This is a direct consequence of the universality of the velocity defect 
law (equation 2.16) for such flows. For variable pressure they proposed 

a modified form: 
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Uj* AU 1-zle 
v. 

B- ü- +n, (2.36) UT-f --0 

where n is the additional pressure gradient term. Following the 

arguments of Section 2.2 this term must be independent of roughness 

effects. and relationships derived from smooth wall experiments can 

therefore be used. Arndt and Ippen used 

n --- 1.253 (GI-6.7) (2.37) 

for G' >, 6.7, corresponding to positive pressure gradients, and 

0=0.404 (G'-6.7) (2.38) 

for G' < 6.7, corresponding to negative pressure gradients, where 

G' is related to a pressure gradient parameter (6*/To)dp/dx (see eqn. 

(2.42)). These are in good agreement with alternative expressions 

offered by Nash and MacDonald (1967), but they are strictly only 

applicable to equilibrium boundary layers (see Clauser (1956)). 

This will be discussed shortly. 

It seems more desirable to avoid such empiricism by including 

the effect of pressure gradient in terms of the two-layer concept 

of velocity distribution. After inserting the free-stream boundary 

conditions into equation (2-21) the following results: 

r8u rr-r-1 
Co ' f] 211 

9 (2.39) e+B+ 
, log U, 2K 

which is the smooth-wall friction law used by Lewkowicz, Horlock 

et al. (1970). (It should be mentioned that equation (2.39) does 
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not depend on the form of the law of the wake except in so far as this 

in turn governs the absolute magnitude of the wake parameter, IT, 

defined at the free-stream. Hence, for the outer region velocity 

profile proposed in Section 2.2 (equation (2.19)) the normalising 

procedure of Coles (1956) is satisfied, but the quantitative defini- 

tion of n is necessarily different from that of Coles. The differences 

become smaller for increasingly positive pressure gradients. Lewkowicz 

et al. used the original Coles law in conjunction with Hinze's (1959) 

curve fit. ) 

Equation (2.39) is easily modified for the case of rough-walls 

by including the roughness function corresponding to the surface: 

a 
c. 

Cf Au II log +B+ (2-40) 
FUT 

evu0 

EI-Samanoudy (1974) used this relationship (for the fully-rough 

region only) in a method to be described shortly. 

Returning now to the problem of closure, the third so-called 
'auxiliary' equation can originate in two different ways. Firstly, 

there are the empirical equations which, in the older methods, related 

the x-wise derivative of the shape 
iactor H to suitable flow variables. 

A full account of these older methods is given by Rotta (1962). A 

good empirical equation is the one proposed by Nash (1965) who pro- 

posed that the departure from equilibrium conditions could be 

quantified in terms of Clauser's (1956) shape factor G'. Head's 

(1960) entrainment method (and the later improved version by Head 

and Patel (1970)) also comes under this category. Secondly, there 

are the energy and moment of momentum methods which are derived by 
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multiplying equation (2.31) by u and y respectively and then inte- 

grating across the stream. These methods usually require a knowledge 

of the shear-stress distribution. 

Brief mention will be made here of Nash's (1965) method. 

Reference has already been made to Clauser's (1956) shape factor 

G' in relation to equations (2.37) and (2.38). This is now defined: 

00 2 

01 
UO--l 

d 6*--UO. -l (2.41) 

and is to be distinguished from the geometrical shape factor H. For 

equilibrium layers (which can be defined as those layers for which 

the pressure gradient forces and the shear-stress forces, acting on 

a stream-wise element, are in constant ratio) Clauser showed that G' 

could be related to the pressure gradient parameter (S*/T 
0 
)dp/dx. 

After analysing available experimental data for equilibrium boundary- 

layers Nash proposed the following relationship: 

P. 
- 

'* di 6.1 + 1.81 1.7 (2.42) 

Nash further proposed that this equilibrium relationship could 
be applied to non-equilibrium flows by introducing a new differential 

equation for*the shape factor. His argument was that for these non- 

equilibrium flows the distribution of shear stress across the layer 

is not related to the local velocities in the layer but to their 

x-wise derivatives (see equation 2.31)). Hence, two flows with 
identical initial velocity profiles and downstream pressure distri- 
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bution will develop in a different manner unless the initial shear 

stress distributions are also identical. To take account of the 

upstream history of the flow, therefore, he proposed that the 

x-wise derivative of G' should be an additional initial condition. 

Of necessity this led to a second-order differential equation for 

G' and the departure from equilibrium (G'-Ge'), where Ge' is the 

local equilibrium value. It took the following form: 

d2 G' d 
F (G'-G '), (GI-G 5 

[Tx 
e CFX 

IxI 

where 7 is a non-dimensional distance defined by dx/dx = S*. Pre- 

dictions of non-equilibrium flows using this equation gave signifi- 

(2.43) 

cantly better agreement with experimental data than older equations. 

The non-equilibrium boundary layer has also been studied by McDonald 

and Stoddart (1965), Nash and MacDonald (1966), Goldberg (1966) and 

McDonald (1966). 

Dvorak (1969) used Head's (1960) entrainment method as the 

auxiliary equation, together with Arndt and Ippen's (1967) wall 

friction relationship (equation (2. ý6)), and found satisfactory 

agreement with the limited experimental data available for rough- 

wall boundary layers in the fully-rough region. A significant 
finding was that the rough-wall data of Betterman (1965) collapsed 

onto the same entrainment curve as Head had originally proposed for 

smooth walls. This is not surprising in view of the fact that the 

entrainment is related to the outer part of the boundary layer. 

Referring to the second class of au. xiliary equations, the 
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energy and moment of momentum equations are: - 

dU3 Zu dy -a x- 
1. 

-i y- 

.. 0 
and 

(2.44) 

Id [U. 
2 
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L dy] + -L 
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- 
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+ 
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YI U. U,, ý 0. 

dx 
ly 

0 
U. - 

T dy (2-45) 

respectively, where 

u dy Tico 

The use of the energy equation requires an expression for either 

the shear-stress distribution or the integral of the shear work 
(corresponding to the last term in equation (2.44)). Expressions 

for the shear-work integral have bee"n proposed based solely on experi- 
mental observations. A well-known one is due to TruCkenbrodt (1952): 

1 I-Udy 

= 
0.0056 U 

Co 
3; 

(2.46) ay eu 1/6 
(' 
-vul 

but it is only reliable for a very restricted range of shape factor. 

Rotta (1962) argued that the major contribution to the integral must 
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come from the wall region where most of th-- energy is dissipated. 

Denoting the energy dissipation by E', and an arbitrary point in the 

logarithmic region of the velocity distribution by y1l, the dissipation 

integral can be written as: 

E' dy E' dy + 
t*IE' 

dy (2.47) 

01 0 yl. 

Using the turbulent energy equation (and a convenient algebraic 

identity) the following results: 

E' dy = U02[U. + uoF' (2.43) 
00 

0 

where Inn 

+ -Vo i(u li +V 
2w1,2 )+ P/P 

iI- -1 
12 (, ý; c -1 'ý F+ (El -u0 

3u ) dy. "4*" (2. '49) 33 BY. Uo %', U6 y 

The first term (representing the transport of energy to tile wall region 

by turbulent diffusion) is evaluated at y' so that P should be 

independent of roughness. Rotta assumed that F1 depended only on 

the shape factor for a given pressure distribution and after analysing 

available experimental data he proposed the following relationship 
for the shear work integral in terms of n: 

2 [U. 
+ uo n2 + pT ay- 

dy =u0 (1.84 1.5H - 5.55) (2.50) 

0 
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Fediaevsky (1937) suggested that apolynomial could represent the 

shear-stress distribution subject to itssatisfying certain boundary 

conditions. The method was improved by Ross and Robertson (1950), but 

agreement with available measurements was generally poor. 

Tetervin and Lin (1951) showed that the boundary layer equation 

could be transformed into an expression for the shear-stress distri- 

bution by assuming a one-parameter family of mean velocity profiles. 

No theoretical support can be given for the existence of such a 

family, however, so that the final equation for the shear stress is 

only as good as the assumption that was made. 

For equilibrium boundary layers Clauser (1956) showed that the 

eddy viscosity in the outer region was essentially constant and pro- 

portional to the free-stream velocity and the displacement thickness. 

The variation in the inner region follows from the universality of 

the logarithmic overlap region. Hence, 

Vt = czU* � (2.51) 

for the outer region, where a is a constant and is equdl to 0.018, and 

Vt =KYU 0 (2.52) 

for the inner region. These expressions are valid for both smooth 

and rough surfaces. Lewkowicz, Horlock et al. (1970) combined these 

simple relationships with the two-layer velocity distribution (using 

Hinze's approximation for the outer velocity distribution) and derived 

the following analytical expressions for the shear and shear-work 

integrals respectively: 
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(2.54) 

where no = a(l+n)/r, 
2, 

and w=u0 /U.. The quantity .0 defines the 

value of yls at the join between the inner and outer regions. These 

equations were incorporated directly into equations (2.44) and (2.45) 

and the use of these auxiliary equations (which strictly apply to 

equilibrium flows) resulted in satisfactory agreement with a variety. 

of measured boundary-layers. 

The above method was extended by El-Samanoudy (19714) to include 

the effects of an irregularly-rough surface. This was done by incor- 

porating the roughness function (corresponding to his sand-paper 

roughness) into the friction equation (see equation (2.40)). Unfor- 

tunatelys El-Samanoudy's measurements covered only the fully-rough 

region corresponding to low values of plate Reynolds numbers; conse- 

quently, the computer predictions could not be extended to arbitrarily 
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high Reynolds numbers. The ability to do this is essential if 

laboratory measurements of roughness functions corresponding to ship- 

hull roughness are to be of any practical use. 

2.4 The Acquisition of Roughness Records 

The method currently in use for specifying hull roughness has 

already been mentioned in Section 2.1. It will be recalled that the 

M. A. A. is a one-dimensional parameter which represents the distance 

between the highest and lowest points along a profile of length live 

centimetres. Accepting, for the moment, that the M. A. A. does not 

correlate well with hydrodynamic drag, the naval architect will 

require to know the answers to three questions: 

a) What roughness parameters need to be measured? 

b) How can they be measured in a practical way? 

c) What accuracy is necessary? 

It is likely that the answer to (a) involves parameters which 

are related to the high-frequency structure of the roughness, rather 

than to single height measurements associated with long wavelengths 
(such as M. A. A. ). Accordingly, a brief review of the literature is 

presented relating to methods of obtaining records of roughness 

profiles. The questions which have been posed will be dealt with 
in later chapters. ' 

Specification of surface finish has become an important topic in 

the manufacturing industry due to the decreasing tolerances of high- 

precision components. Attempts were made in the early 1930's to 

assess roughness using optical amplification of surface profiles 
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obtained either by sectioning the specimen or by tracing the surface 

with a stylus whose vertical displacement could be mechanically 

amplified. One rather bizarre scheme involved listening to a loud- 

speaker connected (via anamplifier) to a phonographic pick-up which 

was travelling over the surface. 

The first quantitative assessment of roughness was performed 

by Abbott and Firestone (1933) using a stylus-instrument. 

The significance of Abbott and Firestone's work lies in the 

fact that the stylus was connected to a transducer which (after 

suitable electronic processing) was used to trace. an amplified version 

of the original profile. Furthermore, the input and output devices 

were linked via a gearbox so that the profile could be deliberately 

distorted. Most stylus-instruments still use these principles. 

Early transducers used piezoelectric crystals and moving-coil 

elements, but these suffer from poor low-frequency response due, 

respectively, to high leakage rates (of electric charge) and the nend 

for integrating circuits. Modern instruments use linear variable 

differential transformers (L. V. D. T. 's) which rely on an inductance 

effect to produce a linear output voltage throughout the frequency 

range - even for static displacements (see Reason (1956)). 

It is customary to mount the transducer on a skid so that the 

actual signal corresponds to the distance between the stylus and the 

skid. In this way a datum is not required, but Reason (1944) has 

pointed out a serious disadvantage in that the skid acts as a mech- 

anical filter, so that the final profile record does not exhibit 

the original low-frequency components. 
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Diamond styli which can resolve wavelengths less than ten microns 

are commercially available. However, the ultimate fidelity of the 

profile record also depends on the traverse speed and the stylus 

tracking force. The latter cannot be too great, due to the danger of 

the stylus delving into the surface, and if the traverse speed is too 

high the stylus will 'hop' over the surface features. This problem 

has been treated by Guerrero and Black (1972). 

The actual signal can be processed in one of two ways (assuming 

that quantitative information is required rather than a graphical 

record). Firstly, there are the analogue techniques which employ 

electronic circuits to measure the surface statistics. The difficulty 

here is that the signals are generally of low frequency (because of 

the low traverse speeds) and there are inherent ele6tronic compli- 

cations concerning such signals. Oonishi (1966) introduced a simple 

method of overcoming these problems, which involved recording the 

signal on a tape recorder and replaying it at a higher speed. Examples 

of analogue techniques can be found in the papers by Myers (1962) and 

Kubo. (1964). 

Secondly, there are the digital techniques which use an analogue- 

to-digital converter to produce a digital record of the surface 

profile. The availability of such a record has clear advantages. 
Almost any statistical parameter can be calculated on a computer 

simply by altering the program, whereas new hardware is required if 

analogue methods are used. Of course such hardware might not exist 

for complicated measurements. 

Objections to the use of stylus instruments have come from 

Tarasov (1945) and Shaw and Peklenik (1963). Deep undercuts cannot 

I 
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be recorded by the stylus, and the accuracy with which the roughness 

'valleys' are tracked by the stylus is limited by the tip dimensions. 

Williamson, Pullen and Hunt (1969) demonstrated that for a bead- 

blasted aluminium surface the cumulative height distribution was 

Gaussian except near the valley bottoms. Although such a surface 

need not necessarily be Gaussian, the same effect could be explained 

in term. s of lack of fidelity in the roughness record. 

To summarise, therefore, it is desirable to have digital records 

of roughness profiles so that computers can be used to investigate 

the more'complicated aspects of the surface microgeometry. If stylus 

instruments are to be used, then an analogue-to-digital converter is 

required. Moreover, the dimensions of the stylus tip must be smaller 

than the lowest wavelengths under consideration. Alternatively, if 

optically-amplified traces are to be used, then the method of 

sectioning the roughness must be such as to preserve the high-frequIncy 

components of the surface. A method must then be found of digitising 

the roughness records into a form suitable for input to a computer. 

These points will be discussed further in later chapters. 
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CHAPTER 3 

THE PIPE-FLOW EXPERIMENTS 

3.1 Introduction 

The discussions in Sections 2.2 and 2.3 have demonstrated the 

need for empirical data concerning the behaviour of the roughness 

function for a particular rough surface. For the case of a ship-hull 

roughness it is proposed to make an accurate full-scale copy of a 

representative sample of the surface micro-geometry while the ship is 

in dry dock. 

A two-dimensional flow is required to measure the roughness function, 

and a flat plate or pipe seems the obvious choice. Since the roughness 

function is uniquely related to the roughness Reynolds number, it is 

important to ensure that the range of Reynolds numbers being measured 

coincides with the actual ship. Clearly, flumes are not suitable for 

this purpose. Of course the fluid medium need not be water; it is the 

Reynolds number per unit length which is -the important parameter (since 

the one dimensional roughness height is the same for both the experi- 

ment and the ship). A flat plate irr a high-speed wind-tunnel poses 

measurement problems, which would undoubtedly affect the accuracy of 

the measured roughness functions. 

Pipes provide a steady, two-dimensional flow whose associated wall 
friction can easily be found from the measured pressure drop. Since 

air compressors were readily available at Liverpool University it was 

decided to use air as the fluid medium. At high Reynolds numbers small 

corrections'to the pressure drop are required, to take into account slight 
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changes in fluid density (this does not invalidate the assumption of 

a unique relationship between the roughness function and the roughness 

Reynolds number. Goddard (1957) has demonstrated that the only 

observable effect of compressibility is in the reduction of the fluid 

density term appearing in the roughness Reynolds number) and a si. mple 

one-dimensional analysis is adequate for this purpose. Finally, the 

use of air has a useful spin-off in that the measurements of turbulence 

quantities are made easier. 

3.2 The Method of Surface Replication 

The aim of copying a sample area of hull-roughness in dry dock is 

to obtain a nominally flat positive replica which shall be referred to 

As the 'master copy'. It is the master copy which will subsequently 

be used in order to manufacture a pipe-line containing the original 

surface roughness. 

Ships were visited in dry dock and their hulls were inspected. 

A representative sample area was chosen for replication subject to 

itssatisfying the following requirements: - 

a) The sample area must measure approximately 

0.7m x 0.6m 

b) The sample area must not contain double curva- 

tures (it must be either flats or curved about 

a single axis) 

A thixotropic (free-flowing) silicon rubber paste was applied to the 

hull, using either a fine-quality paint brush or a squeegee. All 

moulding materials were subjected to lengthy tests and field trials 

before they were finally accepted for use in Ithe experimental prograrim. e. 
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Experience showed that the problem of minute air-bubbles did not 

arise if the paste was applied correctly. This conclusion was drawn 

after measurements of both the original and the replicated test sur- 

faces. were compared. Qualitative examination under a microscope also 

confi med the accuracy with which this moulding compound could reproduce 

features measuring down to approximately 20 microns. 
A fine nylon mesh, applied over the paste, gave. the final rubber 

negative some reinforcement. The time taken for the paste to cure 

was found to vary with the ambient temperature (cold weather tending 

to prolong the cure time considerably). A simple wooden framework 

was used to secure the rubber patch whilst it was curing. 

After several hours the rubber could be removed from the hull and 

taken to the workshop. The rubber was then laid out face downwards 

so that the required rough surface was in contact with a smooth flat 

horizontal board. A wooden frame was placed in position around the 

board and filled with dental plaster. After the plaster had set, the 

whole arrangement was turned over and the board could be removed, thus 

exposing the original negative rubber copy, which was now nominally flat. 

This plaster backing was found necessary because it was not possible to 

apply a perfectly even coating of rubber to the hull. 
I 

The master copy was made by applying a coat of epoxy resin to 

the rubber, followed by alternate layers of medium-grade glass-fibre 

matting and resin. The choice of the resin which was used resulted from 

the field trials mentioned earlier. After the resin had catalysed, the 

master copy was removed and cut to size - the exact dimensions depending 

on the circumference and length of each pipe section. The details of 

all the chemicals used can be found in Appendix 1. 
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3.3 Manufacture of the Pipe-Sections 

Two types of pipe were used in the investigation and they may 

conveniently be referred to as the 'large' and 'small' pipes. The 

nominal inside diameters of these were 130 mm and 60 mm respectively. 

The two different designs arose from the experience gained with tile 

initial large pipes. It was decided that for the particular measure- 

ments under consideration a smaller pipe diameter could be used with 

very little loss in accuracy and it will be seen, in this section, 

that this resulted in a considerably simpler method of manufacture. 

Each pipe was divided into a number of flanged sections whose 
inside surfaces were positive replicas of a particular master copy. 
Two large pipes were manufactured, one of which was smooth and the 

other corresponded to a ship which had recently dry-docked but had not 

received any treatment to its hull (this was the roughest surface in 

the range under. consideration). Four small pipes were fabricated 

using the same basic method but with differences in detail. They 

corresponded to different ships - all of which had received surface 

preparation of one form or another (the samples were taken shortly 

before the ships were due out of dry-dock). The degree of roughness 

for these four samples was deliberately staggered (within the limits 

imposed by the availability of co-operative shipping companies) so 

that a continuous range of roughness could be tested. Details of the 

manufacture of the pipe lines can be found in Appendix 1. 

3.4 Apparatus and Instrumentation 

The large pipes in the series were the first to be tested and 

their dimensions were chosen after a thorough design study. Since 
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there was ample power available in the 750 kW 'Reavell' compressor, 

the two main constraints on the pipe diameter were imposed firstly 

by the need for a fully-developed flow and secondly by the limita-'Cims 

on pipe length set by the size of the laboratory. 

The length-to-diameter ratio required for a fully-developed pipe- 

flow is generally accepted to be about 50 for a smooth surface and 

somewhat lower for a rough surface, although the actual figure does 

depend on the inlet conditions. Walklate, Heikal and Hatton (1977) 

have shown, using theoretical predictions supported by experimental 

measurements in a smooth pipe, that the turbulent shear stress distri- 

bution in the radial direction reaches its fully developed state after 

approximately 30 pipe diameters. Logan and Jones (1963) have reported 

one instance where turbulence quantities became fully developed in as 

few as 15 pipe diameters following an abrupt increase in surface rough- 

ness. The figure of 50 is thus a fairly pessimistic one when applied 

to rough surfaces. 

In order to ensure a fully-developed flow a smooth P. V. C. inlet- 

pipe was connected between the supply line and the working sections 

(containing the test surfaces). The inlet-pipe was common to both 

systems and had an internal bore of'150 nn and a length-to-diameter 

ratio of 52. 

At the junction between the supply-line and the inlet-pipe a 0.2m 

Wiseman valve was fitted to control the flow-rate. A 50 mm layer of 

honeycomb was housed 12 diameters downstream of the valve to eliminate 

any swirl which might have been present in the flow. In addition to 

the 750 kW compressor a 'Sturtevant' fan was connected to the supply 

duct. This was powered by a 15 N English Electric motor which was 
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wired to an Allenwest, control unit. A series of valves allowed the 

flow to be directed to the 'inlet-pipe and these were set according 

to the power requirements. 

The particular test-pipe under consideration was connected to 

the end of the inlet-pipe via a matching fairing section to ensure a 

gradual change in cross section. The lengths of these sections were 

approximately 0.23m and 0.6m for the large and small pipes respectively. 

In the case of the small pipes an additional honeycomb housing was 

placed immediately after the fairing section to eliminate any distur- 

bances which may have been set up. The diameter of the test-pipe was 

determined by filling a section with water at room temperature and 

weighing it. A mean diameter was calculated from the weight of the 

empty section and its length. A total of 12 sections was used for 

each type of pipe, giving working lengths of 56 diameters and 100 

diameters for the large and small pipes respectively. These figures' 

for working length do not include the inlet-length. Neoprene gaskets 

were incorporated in all the flanged joints to ensure an air-tight 

seal . 
The whole apparatus was mounted on wooden cradles which could be 

adjusted to ensure perfect alighment. of each pipe-line. Air was dis- 

charged to atmosphere and an open-ended collector duct served to 

divert the flow away from the working area. This was situated approxi- 

mately two metres downstream of the exit so that the exit static pres- 

sure was essentially atmospheric. Figures 3.4 and 3.5 show the general 
layouts for the two types of pipes. 11 

1 

For the large smooth pipe a total of six static pressure tappings 

was made. Each tapping had an internal bore of 1.6 mm and great care 
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was taken to ensure that there were no burrs remaining on the insides 

of the liners resulting from the drilling operation (see Shaw (1960)). 

The tappings spanned a distance of . 14 pipe diameters upstream of the 

exit plane (their exact locations are indicated in Fig. 3.4). 

Although wall tappings have been used in the past for measurement 

of static pressure in rough pipes (see, for example, Townes, Gow et al. 

(1972)) it was felt that conventional probes immersed into the stream 

would provide more accurate measurements. According to Hinze (1959) 

accurate measurements of absolute static pressure are almost impossible 

to achieve in a turbulent flow, due to the lack of correlation between 

the hole size (of the probe) and the length scales of the turbulence 

field. For measurements of pressure drop in a pipe, however, the 

difference in readings between two probes of identical dimensions and 

at the same radial positions is all-that is required - providing the 

turbulence structure is similar at both measuring stations. This latter 

condition is satisfied if -the flow is fully developed. 

For the large rough pipe a single static pressure probe was inserted 

to a depth of 25 mm and at a distance of 25 pipe diameters from the 

exit plane. The probe, which measured 3.2 mm in diameter, is shown in 

Fig. 3.6. Calibrations were performed in a wind tunnel, using a 

standard N. P. L. ellipsoidal probe as a reference. The static pressure 

was also measured at a distance of 10 mm from the exit plane and at the 

same radial location as the upstream station, using a similar probe 

mounted on a traverse gear. The static pressure recorded at this 

station was found to be signficant, only at high Reynolds numbers. 

A 'Mitutoyo' dial gauge, mounted on the traverse gear, could 

locate the radial distance from a datum position with an accuracy of 
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0 + 15 microns. The traverse gear could rotate through steps of 45 

degrees in order to check for flow symmetry and could accommodate a 

variety of probes. 

It is known that the maximum variation in static pressure across 

the radius of a pipe is of the order of one percent of the wall static 

pressure for a fully-developed flow. For a smooth pipe the radial 

static pressure distribution can be derived from the equations of 

motion (see Goldstein (1958)) but the analytical expression which 

results probably requires modification for rough pipes. In view of 

the very small variations involved it was decided to follow the example 

of Laufer (1953) and measure mean velocity (for the rough pipes) using 

a total head tube in conjunction with the static pressure measured at 
6 fixed radial location. 

All mean velocity profiles and turbulence measurements were made 

at a distance of 10 mm upstream of the exit plane. This applied to 

all the pipes. The pitot tube was square-headed, with an outer diameter 

of 0.9 mm and an inner-to-outer diameter ratio of 0.6. 

For the small pipes two static pressure probes whose dimensions 

are shown in Fig. 3.6 were used (the same design was used for both 

types of pipe). The probes were positioned at 19 and 44 diameters 

upstream of the exit plane and at a distance of 10 mm from the wall. 
A special traverse gear, which incorporated a stream-lined shaft to 

minimise blockage effects, was manufactured for use with the small 

pipes. In addition, the whole assembly could be rotated about the 

pipe axis to enable traverses to be made along any radius. A photo- 

graph of the instrument is shown in Fig. 3.7. 

Measurements of stagnation temperature were made, using a con- 
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ventional thermocouple probe, at the exit plane and also at the 

beginning of the inlet pipe. These measurements were needed to cal- 

culate the static temperature when compressibility effects became 

noticeable. 

An inclined multi-tube manometer or a null-reading micromanometer 

was used for measurements of pressure. The choice of instrument and 

manometric fluid (methylated spirit or mercury) depended on the 

magnitude of the pressure. Head measurements could be read to within 

accuracies of + 0.1 mm and + 0.02 mm for the multi-tube instrument and 

the micromanometer respectively. 

Turbulence quantities were measured using a two-channel hot-wire 

system. Platinum-coated tungsten wires were used throughout the 

investigation to reduce the problem of oxidation. A 'Disal miniature 

X-probe (type 55P61) was connected via a 25m cable to two constant 

temperature anemometers ('Disa' type 55AOI) whose output signals were 

processed, if required, by two linearising units ('Disa' type 55M25). 

The summing and differencing circuits of a random signal indicator 

and correlator ('Disa' type 55AO6) were connected to the outputs of 

the linearisers for measurements of traverse normal stresses. Voltages 

were read from a digital voltmeter ('Weir' type 500, mk. 3) which had 

a variable integration time. 

The signals from both channels were displayed on a double-beam 

storage oscilloscope ('Telequipment' type DM64). This was particularly- 

necessary during-the calibration and alignment of the instrumentation 

in order to minimise spurious oscillations in the anemometer bridge 

circuitry. The oscilloscope also enabled the frequency character- 
istics of the probe to be determined. 
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A frequency analyser and level recorder ('Brýell and Kjaer' types 

2107 and 2305 respectively, with a frequency response of 20Hz to 20kHz) 

were used to calculate the frequency spectrum of the signals. The 

two instruments were mechanically-synchronised by means of a drive- 

cable. The interconnections for the electronic equipment are shown 

in Fig. 38. 

In order to establish a datum from which wall distances were 

measured for the rough pipes, a flat-headed copper pin was introduced 

among the roughness excrescences in the measuring plane. The top of 

the pin was allowed to assume a position approximately 0.5 mm above 

the local peaks in the roughness. The other end of the pin was con- 

nected to one side of a transistorised continuity tester. The other 

S ide of the tester -was wired to the traverse gear so that when the 

pitot tube just made contact with the pin a small light came on. For 

the smooth pipe a short-focus telescope was used to visually determine 

the point of contact between the wall and the pitot tube. 

The datum for the hot-wire traverses could not be established 

using the above contact methods because of possible damage to the probe. 

A cathetometer, with a vernier scale accurate to within + 10 microns, 

was used in-order to measure the distance between a pre arranged datum 

just above the surface and either the surface itself (in the case of 

the smooth pipe) or the top of the contact pin. Once the datum had 

been established the wall distances were measured using the dial gauge 

mounted on the traverse gear. 

3.5 Experimental Measurements and Procedure 

Each pipe was thoroughly checked for flow symmetry before any of 
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the experimental measurements were taken. For the smooth pipe, peri- 

pheral variations in longitudin al mean-velocity for a fixed wall dis- 

tance were found to be of the order of one percent. This figure rose 

to approximately li percent for all the rough pipes. 

The air supply was switched on at least 30 minutes before the 

start of a measurement session for the apparatus to reach equilibrium 

conditions. The values of air density and kinematic viscosity were 

corrected for daily variations in barometric pressure and air tempera- 

ture. Since methylated spirit is hygroscopic it was discarded every 

fortnight and the manometers were replenished with fresh fluid. 

The velocity distribution was measured across the radius of the 

smooth pipe for pipe Reynolds numbers of approximately 9.5xlO 4 
and 

3.5xlO5 and the corresponding pressure drops were determined from the 

static pressure distribution. It was found that any departure from 

a linear pressure gradient was negligible, except at high Reynolds 

numbers when changes in air density became appreciable. The friction 

curve for the smooth pipe was found by measuring the pressure distri- 
46 bution for Reynolds numbers ranging from 5. OxlO to I-WO 

The mean-flow measurements for all the rough pipes con. centrated 

on the velocity profile in the wall region. For each profile the 

static pressure. and centre-line velocity were recorded. It was found 

from experience that the logarithmic overlap region extended to about 

15% of the pipe radius from the wall and that it could be adequately 
defined by five measurements. Due to the high turbulence levels near 

the wall particular care was necessary when reading the manometers. 

The meniscus was observed, using a magnifying glass, and after a period 

of sometimes three or four minutes an estimate of the average head 
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reading was made. The number of inner-region distributions per pipe 

measured in this way averaged about fourteen and covered the maximum 

range of Reynolds numbers possible with the equipment available. 

Mean velocity distributions across the radius of each pipe were also 

measured at three different Reynolds numbers. 

(I A smooth perspex pipe with a diameter of approximately 35 mm and 

a length-to-diameter ratio of 120 was used to calibrate the hot-wire 

probe. The pipe was connected to a low-power, fan which was controlled 

by means of a variac. 

The response of the wire to a square-wave input was observed on 

the oscilloscope so that any necessary adjustments to the bridge 

balance of the anemometers could be made. The upper frequency limit 

of the probe was found to be approximately 20 kHz and the frequencies 

above this were rejected using the filtering unit on the anemometers - 

thus ensuring a good signal-to-noise ratio. 

Frequency analysis was performed at a constant 6% bandwidth. The 

unfiltered signal was fed to the level recorder which was than adjusted 

to coincide with a datum recommended by the manufacturers. Filtered 

signals were recorded on the pen chart relative to an internally- 

generated reference voltage. 

The probe was operated at a constant overheat ratio corresponding 

to a temperature of approximately 2500C which is sufficiently low to 

prevent oxidisation at the surface of the wire. After initial cali- 

bration the distribution of the turbulence shear stress -pUvl was 

measured in the calibration pipe and compared with the theoretical 

distribution based on the measured pressure gradient. The pressure 

gradient was determined using three static pressure holes. The direc- 
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tional sensitivity coefficient (see Section 3.6) was found by matching 

these two distributions. This procedure was repeated for each test- 

pipe before any measurements were taken. 

Correct alignment of the probe with respect to the axis of the 

test-pipe was ensured by the judicious design of the probe holder on 

the traverse gear. For the rough pipes the dial gauge was set to zero 

corresponding to a distance of 1.29 mm measured from the top of the 

copper pin to the mid-point between the prongs of the probe. The true 

wall distance, measured from the geometric mean of the surface, was 

calculated from a knowledge of the surface geometry. Measurements 

were made of the transverse normal stresses and the shear stress -pulw' 
in the conventional manner by rotating the probe through 900. . 

Measurements were taken of the three components of turbulence 

normal stresses and the above mentioned shear stresses for a pipe 

Reynolds number which, for all the test-pipes, was within a few per- 

cent of 9.5xlO 4. The corresponding pressure gradients were also 

measured. Spectograms of the longitudinal normal stress were recorded 

at wall distances of y/R equal to 0.02,0.08 and 1.0 - the first two 

stations representing extreme values of the wall distance in the loga- 

rithmic overlap region. For the small pipes these measurements were 
4 repeated at a Reynolds number of 4.5xlO . Although the air intakes 

for both compressors were supplied with filters to remove dust particles 
the probe was regularly cleaned in acetone during the experimental 

sessions. Aft er cleaning, the probe was returned to the pipe centre- 
line and the anemometer bridge d. c. voltage was compared with its 

value at the start of the experimental session. If these voltages 

differed appreciably the results were discarded and the probe was 
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examined for damage or contamination under a stereo-microscope. 

replacement was available in the event of the original probe needing 

repa i r. 

3.6 Reduction of Data 

The main objective of the mean flow measurements was to determine 

the relationship between the roughness functions and the roughness 

Reynolds number, for all the rough surfaces. As a starting point, 

the roughness Reynolds number was defined in terms of the M. A. A. for 

the particular surface (these values were found using the B. S. R. A. wall 

gauge - see Lackenby (1962)). 

Before discussing the procedure which was used for calculating 
., 

the roughness functions from the experimental measurements, some 

definitions will be made. Whereas in Chapter 2 the wall distance, y, 

was generalised to give the best fit in the logarithmic overlap 

region (see equation (2.24)), it will now be defined as the wall 

distance measured from the geometric mean of the surface (this inter- 

pretation has already been used in the previous section in connection 

with the position of the hot-wire probe). A distance c is defined 

such that the equation described by 

u 
.1 log (Y+C) 

+x u0Keh 

gives the best fit to the experimental values of u and y in the inner 

region (with y now assuming its new meaning). This distance will be 

referred to as the 'origin error' after Perry and Joubert (1963), 

although this is something of a misnomer. 
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At high Reynolds numbers the value of u0 in equation (3.1) cannot 

be determined directly from the pressure drop because of changes in 

air density along the pipe. It should be pointed out that the com- 

pressibility effects encountered in the investigation are too insignifi- 

cant to invalidate the law of the wall. Walz (1961), in his discussion 

of compressible turbulent boundary layers, has demonstrated that the 

inner-region velocity distribution assumed in this investigation applies 

up to a Mach number of at least 9. The effect of compressibility on 

the roughness function was mentioned in Section 3.1. Relationships 

will now be established from which accurate values of X can be deter- 

mined from the experimental measurements. 

The pipe average-velocity can be related to the wall friction 

velocity, u0s 'centra-line velocity Uc and wake-strength parameter n. 

Defining the pipe average-velocity, Uav, in the usual way: 

R 

U u(R-y)dy (3.2) av R2 
0. 

where R is the mean radius determined from the weighing experiment, 

and using the velocity distribution described by equation (2.21), 

the following expression results: 

u 
av u0 ((AOý+ý42n 

-u-c KUC 0 (3.3) 

Furthermore, the same result occurs when the roughness function is 
introduced into equation (2.21), so that (3.3) is valid for fully- 

developed flow in smooth and rough pipes. This relationship was 
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tested in both the large pipes and the resulting values of pipe average- 

velocity agreed with the integrated velocity profiles to within one 

percent. Preston and Norbury (1960) proposed a method of measuring 

the average velocity by means of a single measurement at the three- 

quarter radius position. Although this method was found to yield the 

same accuracy it can be shown that a small correction is required whose 

magnitude depends on n. The correction becomes zero with ji is approxi- 

mately 0.3 (assuming the effects of turbulence on the readings of the 

instruments are negligible). It was decided to use equation (3.3) 

for the present investigation. 

Assuming a one-dimensional, adiabatic flow with friction, it can 

be shown that the wall friction velocity at the exit plane, uo, is 

related to the pressure drop, Ap, measured over a length, Ll, by the 

following equation: 

+l u2Z ApD 1- 
PaUav 

(3.4) 
0 4Pa L YPa 

"F - -jp 

where Uav is the pipe average velocity at the exit plane; Pa is the 

static pressure at the exit plane and y is the ratio of specific heats. 

The above formula reduces to the incompressible form as Uav tends to 

zero. Details of the derivation of equation (3.4) can be found in 

Appendix 2. 

A regression analysis (in the least squares sense) of equation 

-6 (3.1) leads to the following expression for X: 

5u 
+ (3.5) 5 UO 

-K loge 
[Lh 
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where ui and yi represent the five inner-region measurements of mean 

velocity and wall distance respectively. The analysis assumes that 

u/u 0 and y1h are expressed in semi-logarithmic co-ordinates. The sum 

of the squares of the residuals a,, is given by: 

5 rui 
= 1. log + -ýLj + Xi 

12 
(3.6) aI 

i-i LUO -Iý, e 

1h 
h 

Finally, combining equations (2.25) and (2.40), for the case of 

pipe-flow, leads to a relationship between X, n, and the centre-line 

velocity, UC: 

log Rx+ "1 (3.7) 
KeF+K 

Hence equations (3.3) to (3.7) lead to the solution set: 

(x' uop eb ', ' Uav) ' 

I 
for known values of: 

(Kg 
y, h, R, L1' Pa) t 

and for experimentally-determined values of: ý 

(yi, ui' Ucl API Pa) 9 

subject to a, being minimised. A PDP8 computer was programmed in 

'BASIC' to perform the necessary calculations. Details of the method 

are given in Appendix 3. 

For the smooth pipe, equations (3.3). (3-4) and (2.39) form a 

closed system from which uo, n and Uav can be found from the measured 
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values of Uc, Ap and Pa. For all total head measurements the Young 

and Maas (1936) correction for the displacement of the effective 

centre of the pitot tube was applied. 
The interpretation of the signals from a hot-wire anemometer 

depends on the assumed law for the effective cooling of the wire. For 

an infinitely-long wire the components of velocity along the wire does 

not influence the cooling. For finite wire-lengths, however, Hinze 

(1959), Champagne (1965) and others have shown that the instantaneous 

effective cooling velocity, qeffI is given by: 

q eff --= qn 
2+k2qp29 (3.8) 

where q and q are the instantaneous components of velocity normal np 
and parallel to the wire and k is a directional sensitivity coefficient. 
The value of k depends mainly on the length-to-diameter ratio of the 

wire and a value of 0.2 was found for the probe used in the present 
investigation. Kjellstrom and Hedberg (1970) observed a iendency for 

k to decrease for increasing flow velocities but this could not be 

detected within the range of flow velocities encountered in the present 

calibration experiments. 

The forced-convection law takes the well-known form: 

eb 
2=A1+A2q 

eff 
mI (3.9) 

where A,. A2 and m are calibration constants and eb is the instantaneous 

anemometer bridge voltage. The constant m is assumed to be universal 

and was found to be 0.465. This compares with 4. -he original value due 

to King (1915) of 0.5 and the value of 0.45 chosen by Collis and 
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Williams (1959). Details of the determination of the turbulence 

normal and shear stresses from the electronic measurements are given 

in Appendix 4. The influence of wall proximity on the hot-wire 

measurements, as reported by Oka and Kostic (1971), was found to be 

negligible, even at the smallest wall distances encountered in the 

investigation. Oka and Kostic found that a correction becomes neces- 

sary for values of yuo/v less than 5. However, the smallest value 

encountered in the investigation was approximately 25. 

The frequency spectrum of the longitudinal turbulence normal 

stress was calculated from the spectograms. Denoting the frequency 

.z spectrum function at a frequency n by F(n) then the quantity ul F(n)dn 

is defined to be the fraction of the total unfiltered value of u 

associated with the frequency interval dn. It follows that: 

F(n)dn 
m 

0 
(3.10) 

The signal voltage-ratios could be read from the level-recorder charts 
in units of decibels and these ratios were then used to calculate the 

spectrum function at different frequencies. 

For two points in a turbulent flow, separated by a distanCe AX 

in the x direction, the longitudinal spatial correlation coefficient, 
R T' is defined to be: 

RT = U'(X)U'(x (3.11) 

U. 
2 

where u'(x) represents the instantaneous value of the longitudinal 
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fluctuating velocity at a particular value of X. This is difficult 

to measure accurately using hot wires because the wake of the upstream 

probe is bound to affect the flow near the downstream probe.. Taylor 

(1938) postulated that the sequence of changes in ul at a fixed point 

is due to the passage of a 'rigid' turbulent eddy past the point. 

This simplified model becomes less accurate as the fluctuating component 

of velocity increases in relation to the mean velocity. The advantage 

of the model lies in the fact that space correlations can be deduced 

from time correlations. The latter can be measured either directly, 

using a time-delay unit such as a frequency-modulated tape recorder, 

or indirectly by calculating the Fourier transform of the measured 
frequency spectrum function (as first shown by Taylor (1938) and later 

by Stewart and Townsend (1951)). Taylor's hypothesis of rigid con- 

vection of turbulent eddies has been investigated by Favre, Gaviglio- 

and Dumas (1958) for a turbulent boundary layer on a flat plate. Their 

results show good agreement between direct measurements of space corre- 

lations and calculated values, using time correlations, for values of 

Y16 as low as 0.03. The Fourier transform method was used throughout 

the present investigation. The required relationship between the spatial 

correlation coefficient and the frequency spectrum function is: 

F (n) cos 
27rn6x dn 

00 

u 
0 

The above correlation coefficient was calculated by numerically- 

integrating a set of curves which were fitted piece-wise to the measured 

spectrum function. The PDP8 computer was programmed to carry out the 
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necessary calculations; details can be found in Appendix 5. 

An integral length scale of the turbulence field can be defined 

in terms of the longitudinal spatial correlation coefficient by: 

LT RT d (Ax) (3.13) 

This will be referred to as the 'macro-scale' of the turbulence and 

is a measure of the size of-a typical energy-containing eddy. Taylor 

(1938) defined a length-scale, x in terms of the curvature of the 
. T' 

RT curve at its vertex: 

p I-R T 
t (AX) 2 

Ax-*o 

(3.14) 

Taylor showed that a series expansion for the cosine tem in equalCion 

(3.12), as AX-+O, leads to: 

1 4, ff 
2n2 

F(n)dn 
ýT 

2u20 

Hence xT can be calculated from the second moment of the frequency 

spectrum function. The length xT will be referred to as the 'micro- 

scale' of the turbulence; its value lies between the macro-scale and 

the length scales associated with the dissipation of the turbulence 

energy. Details of the calculation procedures for the two length 

scales are given in Appendix 5. 
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3.7 Presentation and Discussion of Results 

Each rough surface was given a code number for identification 

purposes. These numbers were related to the 'mean apparent amplittude' 

of the surface as measured using the B. S. R. A. wall gauge (see Section 

2.1). Hence the code number R345 refers to the rough surface with an 

M. A. A. of 345 microns. The five rough surfaces have the following 

code numbers which will be used throughout the thesis: 

R550 - large pipe 

R420 - small pipe 

R345 - small pipe 

R253 - small pipe 

R173 - 'small pipe 

The experimental data havebeen compiled in tabulated form by Musker 

(1977). 

The mean velocity distributions for the smooth pipe are shown in 

Fig. 3.9 in the 'law-of-the-wall' co-ordinates of equation (2.5). In 

addition to the corrections outlined in the previous section, the raw 

data werecorrected for the effect of turbulence on the pitot tube and 

the variation of static pressure across the pipe radius. These correc- 

tions are described by Goldstein (IiM) and are of the order of one 

percent near the wall. Away from the wall these corrections become 

negligible. - Excellent agreement is obtained with equation (2.5) if the 

constantsic= 0.41 and B=5.0 are selected. The extent of the logarith- 

mic overlap region is seen to be about 15% of the pipe radius. The 

value of the wake-strength parameter n in equation (2.21) was found 

to decrease slightly from 0.31 at the low Reynolds number to 0.27 at 

the high Reynolds number. 
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The variation of pipe friction coefficient with Reynolds number 

for the smooth pipe is shown in Fig. 3.10. Good agreement-is obtained 

with the universal friction law for smooth pipes due to Prandtl (1933). 

This law has been validated by many experimenters up to arbitrarily 

high Reynolds numbers. There is some discrepancy at the lowest 

Reynolds number which is probably due to inaccuracy in the measure- 

ment of mean velocity. The highest Reynolds number corresponds to a 

Mach number of about 0.45. It is clear that equation (3.4), which 

was used to calculate uo and hence f, adequately takes into account 

the effects of compressibility. 

Figs. 3.11 to 3.15 show the mean velocity distributions for the 

smooth and rough surfaces plotted in the 'velocity-defect' form of 

equation (2.4). When plotted in this way the distributions, according 

to the two-layer concept of velocity distribution, should be independent 

of surface roughness. A universal curve would be expected if R were 

independent of the pipe Reynolds number. However, measurements indi- 

cated that n decreased from approximately 0.3 to 0.1 as the respective 

Reynolds numbers increased from the lowest to the highest values. 

Despite this weak dependence on the value of na near-universal curve 

is obtained for all the pipes tested. 

The inner-region velocity distributions for the rough pipes are 

shown in Figs. 3.16 to 3.20. Superimposed on each diagram are the 

points relating to the inner-region for the smooth surface taken from 

Fig. 3.9. For low roughness Reynolds numbers the profiles were close 

to the smooth logarithmic region. However, it proved to be impossible 

to measure a profile, for any of the surfaces'. which merged with the 

smooth region. This indicates that even for extremely low roughness 
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Reynolds numbers the roughness excrescences inhibit the formation of 

a viscous sub-layer. For the sake of clarity some of the plots at 

the highest Reynolds numbers for the surface R550 are not shown in 

Fig. 3.16. 

The roughness function Au/uo is the amount by vihich the logarithmic 

region is displaced from the smooth line, measured along the u/u axis, 0 
in accordance with the definition given by equation (2.23). Using the 

M. A. A. to form a roughness Reynolds number the roughness functions for 

all the rough surfaces are plotted in Fig. 3.21. All the surfaces 

exhibit increasing values of Au/u 
0 with increasing roughness Reynolds 

number. The surface R253 does appear, however, to have an extensive 

region at low roughness Reynolds numbers where Au/uo does not vary 

significantly. Despite the scatter of the data it seems that the 

general trends of the curves are similar to those of Colebrook and 
White (1937) as shown in Fig. 2.2. It is apparent that the M. A. A. is 

quite incapable of producing a universal curve for the roughness 
function. This is exemplified by Fig. 3.22 which shows the variation 

of x in terms of the same roughness Reynolds number. This non-univer- 

sality of the roughness functions, when expressed in terms of a rough- 

ness Reynolds number formed by the M. A. A., highlights the importance 

of taking into account the topography of the surfaces in attempts to 

find a more representative one-dimensional height. This problem will 

be dealt with in Chapter 6. 

In the fully-rough flow regime the value of x is constant. This 

regime was attained for the surface R550. The roughness functions 

for the surfaces R345 and R420 extend well into the intermediate flow 

regime and appear to fall just short of the fully-rough regime. Sur- 
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prisingly, the data for the surface R173 extend into the intermediate 

regime more so than the surface R253; however, the roughness Reynolds 

numbers for both sets of data are too low to show an approach to a 

plateau region. 

The distributions of the three R. M. S. components of the velocity 

fluctuations are shown in Fig. 3.23 for the large pipes at a Reynolds 

number of 9.5xlO4. The velocity fluctuations have been non-dimension- 

alised with respect to the wall-friction velocity uo. The results 

for the smooth pipe are in good agreement with those of Laufer (1954). 

Due to the damping influence of the wall the radial fluctuations are 

significantly lower than the peripheral fluctuations - the difference 

becoming smaller as the wall. distance increases.. The fact that they 

become equal at the pipe centre-line is a good indication that the flow 

is symmetric about the axis. The flow at the centre-line of the 0 

smooth pipe is very nearly isotropic, whereas the longitudinal fluctu- 

ating velocity for the R550 pipe is too high at the centre-line for 

isotropy to occur. Most noticeable is the fact that the longitudinal 

fluctuating velocity near the wall is higher for the rough surface. 

The corresponding results for the small pipes are given in Figs. 

3.24 to 3.27 for the two Reynolds nambers considered in the investi- 

gation. It appears that the Reynolds number has little effect on the 

distribution of the longitudinal component within the ranges of Re 

and y+c/R considered. This is probably not the case very near the 

wall, however, because here the correct non-dimensional wall distance 

must involve uO and v, with huo/v featuring as a parameter. A feature 

which is present for all the small pipes is that the increase in 

Reynolds number is associated with a marked decrease in the components 



73 

of the radial and peripheral fluctuating velocities. This was not 

observed by Laufer (1954) in his investigation of a smooth pipe. 

Fig. 3.28 shows the distributions of the turbulent shear stresses 

-p7v' and -ýTulw for the smooth and R550 surfaces. Starting with the 

time-averaged Navier-Stokes equation, Pai (1953) and Laufer (1954) 

independently derived the following expressions for the above turbulent 

shear stress distributions in a smooth pipe: 

-PU vv au 
T0T0 ay 

and 

(3.16) 

--Pu w0 (3.17) 
TO 

The derivations are straight-forward and they assume that the mean 

velocity components, v and w, and all partial derivatives with respect 

to ý, an angular co-ordinate measured about the pipe axis, are zero. 

Except for a region very close to the wall the term involving the 

mean-velocity gradient in equation (3.16) is negligible. The smooth- 

pipe data agree well with both the above equations; however, the 

rough-pipe data exhibit significant departures from the theoretical to 

distributions. 

The corresponding data for the small pipes arepresented in Figs. 

3.29 to 3.32. The effect of an increase in Reynolds number is to 

increase the departure from the smooth distributions. At the low 

Reynolds number the measured values Of -PU'V'/To tend to merge with 

the smooth distribution as the pipe centre-line is approached. Since 

non-zero values of the correlation Trw_r imply a transport of longi- 
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tudinal momentum in the peripheral direction, it is clear that the 

above-mentioned partial derivatives with respect to ý cannot be ignored 

for rough pipes. Also, amongst the roughness excrescences there must 

exist mean velocities in the transverse directions in addition to the 

longitudinal component. 

Townes, Gow, Powe and Weber (1972) reported anomalous measurements 

of turbulent shear stresses in rough pipes similar to those mentioned 

above. In anýattempt to model the flow in rough pipes they proposed 

spatially-averaging all the terms appeari. ng in the governing equations. 

The spatial average of any variable, say u, is defined to be; 

21T 
udý 

oý 

(3.18) 

The spatial average of the mean radial velocity must be zero, by con- 
tinuity, and, similarlypartial derivatives with resPect to ý must 

also be zero. Using the same analysis as Pai (1953) and Laufer (1954), 

Townes, Gow et al. derived the following expression for the spatially- 

averaged turbulent shear stress -p7uýv 

A 

T0 

A 

+ 
P2V 

0 
By T0 

(3.19) 

where, strictly, 

Rj 2p- 
Y ax (3.20) 

According to equation (3.19) an average value of v of less than 

ten centimetres per second would be sufficient to explain the maximum 

observed departures in the 7-7 correlation in relation to the smooth- 
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pipe distribution described by equation (3.16). Unfortunately it 

proved impossible to confirm the existence of such a weak secondary 

flow with the apparatus available. The experimental difficulties 

here are two-fold. Firstly, there is the problem of measuring the 

transverse mean velocities. This can be done, using a single inclined 

wire, by referencing the hot-wire signal to the pipe centre-line where 

it can be assumed that the mean velocity vector is along the pipe axis. 

A single inclined-wire probe, which can be rotated 1800 above the 

probe axis, is necessary for this purpose since there is a danger of 
4 

a significant disturbance to the flow caused by the introduction of 

an X probe. Secondly, it can be shown that the generalised response 

equations for an inclined hot-wire in the x-y plane, when the probe 
axis is not aligned with the direction of the mean flow, involve not 
only the correlation 7-7 and the angle between the mean velocity 

vector and the hot-wire, but also the normal fluctuating components 

U, 2 and V, 2. Since only two equations are available relating the 

three unknowns uI2, V'2 and -d"Tr (the equations corresponding to the 

sum and difference of the squares of the two anemometer signals when 

the probe orientations are 1800 apart) it is necessary to measure 

ul independently, using another wire approximately normal to the 

flow. The experimental errors in such a procedure become unacceptably 

large in view of the low order of magnitude of the transverse mean 

velocity v. This itself could not be measured so that its effects on 

the true value of 77r, as determined from the generalised response 

equations, remains uncertain. 
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The frequency spectra of the longitudinal fluctuating velocity 

are shown in Figs. 3.33 to 3.38. The results are displayed in terms 

of the viave-number, 2. ffn/u, which is inversely proportional to the 

eddy wave-length. The wave-length is thus related to the frequency, 

n, and the local mean velocity, u, by Taylor's hypothesis (see 

Section 3.6). Various theoretical studies, have been performed on 

the nature of the wave-number spectrum in turbulent flow. A sub-range 

of turbulence production can be identified, within which energy is 

extracted from the mean flow. Tchen (1953) predicted that this sub- 
1. 

range should have a -1 power law. Hence (u/21T)F(n) ev (27rn/u)- 

Abell (1974) derived the same power law using a dimensional argument. 

For the sub-range corresponding to the smallest eddy sizes (high wave- 

numbers) Heisenberg 11948) proposed that the energy received from 

lower wave-numbers is dissipated by the action of molecular viscosity. 

He showed that a -7 power law should exist at high wave-numbers. An 

intermediate sub-range was proposed by Kolmogoroff (1941) (and later 

by Heisenberg (1948)) which must, from dimensional arguments, obey 

a -5/3 power law. In this sub-range energy is transferred from large 

to small eddies without being influenced significantly by either the 

production or dissipation mechanisms. 

The experimental data show that the -7 law is approached asymptotic- 

ally in all cases. The last couple of data points, corresponding to the 

highest wave-numbers, are probably an artefact of the instrumentation 

since they approach the upper frequency limit of the hot-wire. All 

three sub-ranges are clearly defined at y+c/R = 0.08, particularly at 

the higher Reynolds number. At the pipe centre-line the production sub- 

range is non-existent at both Reynolds numbers. This is not surprising 
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in view of the fact that the energy production term in the turbulent 

energy equation (see Rotta (1962)) is 77 au/ýy, which is zero at 

the pipe centre-line. The results for the low Reynolds number at 

y+clR = 0.02 show a gradual change from the -1 to the -7 laws with a 

rather ill-defined intermediate sub-range. At the higher Reynolds 

number (Fig. 3.34), however, it is evident that the -5/3 power law 

does apply over a range of wave-numbers which, by close inspection, 

depends on whether the pipe is large (corresponding to the smooth 

and R550 surfaces) or small. Unfortunately, there is considerable 

scatter in the data for the low wave-number range due to the high 

turbulence levels associated with the near-wall region. Also, since 

the equipment did not respond to frequencies less than 20 Hz it is 

Possible that the largest eddies were not detected by the equipment. 

The production sub-range for the smooth pipe, for example, is defined 

by only five points, starting at a wave-number of unity (per cm). 

The second momen'ts of the frequency spectra are shown in Figs. 

3.39 to 3.45. These have been plotted in the form of a product of 

the wave-number and the first moment of the spectrum function against 

the wave-number. It is believed that this emphasises the near-univer- 

sality of the second moments at a given non-dimensional wall distance, 

as can be inferred from Figs. 3.40 to 3.45. It will be recalled that 

the micro-scale of the turbulence is related to the area beneath the 

second-moment curve (see equation (3.15)). Fig. 3.39 shows a poor 

collapse of data for the smooth and R550 pipes at (y+c)/R = 0.02. 

This indicates that the micro-scale is affected by surface roughness 

very near the wall, particularly at high Reynolds numbers. This 

latter qualification seems justified in view of the more perfect 
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collapse of data evident in Fig. 3.40 (at a low Reynolds number) 

when compared with Fig. 3.41 (which applies to a high Reynolds 

number). 

The macro-scales of the turbulence are calculated from the 

spatial correlation coefficients (see equation 3.13)) which are 

shown in Figs. 3.46 to 3.48. Referring to the smooth and R550 

results, it can be seen that the effect of the surface roughness 

in the wall region (y+c/R = 0.02 and 0.08) is to increase the macro- 

scale. However, at the pipe centre-line surface roughness has little 

effect, although the shapes of the correlation curves appear to be 

slightly different. The results for the small pipes in the wall 

region indicate increasing values of the macro-scale with increasing 

pipe Reynolds number. The Reynolds number dependence appears to 

diminish at the pipe centre-line. A detailed inspection of the data 

has shown that the macro-scale does not relate to the M. A. A. (given 

by the surface code-numbers) in any obvious way. This is not sur- 

prising in view of the results concerning the measured roughness 

functions (see Figs. 3.21 and 3.22). 

The ratios of the macro-scale to the micro-scale are shown in 

Fig. 3.49. At the centre-line the ratio is equal to approximately 

4 at both Reynolds numbers and for all the surfaces investigated. 

The data for the small pipes indicate that the ratio reaches a maxi- 

mum value at some distance from the wall and subsequently decreases 

to its centre-line value. This trend is not followed, however, for 

the R253 pipe or, at the high Reynolds number, for the R173 pipe. 

For the large pipes the R550 surface shows the same behaviour, whilst 

the smooth-surface results are quite different. Similar results have 
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been reported by Robertson, Burkhart and Martin (1965). The experi- 

mental accuracy associated with the ratio, however, is no better than 

about 20% based on tests of repeatability. Consequently, more experi- 

mental data is required before unequivocal conclusions can be 

reached. 
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CHAPTER 4 

THE PREDICTION OF TWO-DIMENSIONAL TURBULENT 

BOUNDARY-LAYERS ALONG AN IRREGULARLY-ROUGH SURFACE 

A 

4.1 Introduction 

Two-dimensional turbulent boundary-layers, developing over a 

smooth or rough surface, can be conveniently divided into two classes: 

those in a region of constant pressure and those subject to a pressure 

gradient. For Reynolds numbers (based on distance from the point of 
transition to turbulent flow, and the free-stream velocity) which are 

not too low, the constant-pressure case can be dealt with by assuming 

that the wake-strength parameter, ii, is a constant. If the surface 

is rough then the measured roughness function must be incorporated into 

the wall friction equation. 

It will be recalled from Section 2.3 that for flows with a pres- 

sure gradient at least three equations are required for prediction 

purposes (if a two-layer concept of velocity distribution is used). 

Furthermore, the auxiliary equation must be able to take into account 

the effects of roughness. In this respect the eddy-viscosity concept 

due to Clauser (1956) is appropriate if the energy or moment of momentum 

equations are to be used, since Clauser's model applies to both smooth 

and rough surfaces. An entrainment equation offers an alternative 

approach. Such an equation is applicable regardless of the nature of 

the surface because entrainment is essentially an outer-region phenom- 

enon. 
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Clauser's eddy-viscosity model is strictly applicable only to 

equilibrium boundary-layers. Flows with moderately high negative 

(favourable) pressure-gradients approximate quite well to equilibrium 

flows. Flows with positive (unfavourable) pressure gradients, however, 

are usually associated with a departure from equilibrium conditions. 

Equilibrium pressure distributions are, of course, an exception to the 

above comments. A method is required, therefore, of extending Clauser's 

model to non-equilibrium 1lows. 

4.2 A Semi-Empirical Formula for the_Roughness Function X 
Although the measured roughness function could be curve-fitted to 

provide the numerical information required in a calculation procedure, 
it is desirable that the formula should be semi-empirical in nature. 
A continuous expression for X can be determined by considering the IaV 

of the wall in its simplest form 

u log y+ 
0e 

where a is a constant. This may be rewritten as: - 

(4.1) 

u (log y- log y (4.2) 
u0eeo 

where, for a smooth wall, y0 is of the order of the sub-layer thickness 

which, by dimensional arguments, is of the order v/uo. Hence, for 

a smooth wall: - 

B'v (4.3) YO u0 
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where B' is a constant. For fully-rough flow (when x is constant), 

YO must be of the order of the roughness height: - 

y0= C'h , (4.4) 

where C' is a constant. 

A simple interpolation formula for yo can be found by adding the 

two quantities appearing in equations (4.3) and (4.4): - 

B "" + C'h YO u0 

which may be rewritten as: - 

Bl cI + (4-5) 

where h* is the roughness Reynolds number hu 
0 
/V. Substituting equation 

(4.5) into (4.2) and comparing with equation (2.24) results in the 

following expression: - 

h* 
(4.6) 

K 
loge 

BI I+ cl h* 

-I. 
Fr 

The addition of a dam-ping term to 'accelerate' the effect of the rough- 

ness at low roughness R'eynolds numbers is found to give better agree- 

ment with experimental data: - 

log 
h* 

(4.7) 
e 

BI e-0-005h* + cl 
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The value of C' for a particular surface depends on the choice 

of the roughness height used to describe the surface. If the Mean 

Apparent Amplitude (see Section 2.1) of 550 microns is used to 

describe the surface R550 then C' is found to be 0.00747. B' has a. 

universal value of 0.129. The comparison between the measured data 

and equation (4.7) is shown in Fig. 4.1. It can be seen that the 

equation adequately describes the limiting cases of h* -* 0 and h. " -)- -, 
but more importantly it also describes the intermediate region between 

smooth and fully-rough flows. 

4.3 The Development of Flows in a Zero Pressure Gradient - 
The boundary-layer momentum equation for the case of a constant 

pressure flow is given by (see equation 2.32): 

0 do 
- 

Ci f 
TX - -Z -9 (4-8) 

where the term involving the normal stresses has been neglected. The 

momentum thickness, e, is lound by integration of the velocity profile. 

Using the new wake function embodied in equation (2.21), it can be 

shown that 

w6(GI -A 2) (4-9) 

where w= uO/U., 6= the boundary-layer thickness, and G, and G2 are 

given by: - 

+ 0.9167) (4-10) 
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and 

G2': 1 (1.485711 2+3.0428ji 
+ 1.9123) (4-11) 7 

It should be noted that the evaluation of equations (4.10) and (4.11) 

is independent of the roughness function. For values of the Reynolds 

number Rx greater than about 105 the value of ii is approximately 

constant and equal to about 0.55. 

Equation (4.8) can be written in the following form: - 

d 

dx 

The quantity S/h can be expressed, using the wall-friction relationship, 

equation (2.40), and equation (2.25), as: - 

a= 
exp (4.13) 

The quantity e/6 is given by equation (4.9). Inspection of equations 

(4.12) and (4.13) shows that an expression is required for dX/d(l/W). 

Since h* =w hU. /v, it is easily shown that for a constant value of 

hU 
400 

hU d2 4)0 dx 
w- ýý (4.14) 

dv 

The value of dx/dh* is found by differentiating equation (4.7). 

For convenience, the term x/h in equation (4.12) is written as 

0. /v/hUý/v = Rx/h+. Equation (4.12) becomes, after combining with 



85 

equations (4.7), (4.9), (4.13) and (4.14): - 

dR 
x- 2n -I og 

dR 
= h+exp 

we d- 
M 

- wh+/B' 
C-T w- 

2wG2 
exp(-O. 005h+W) + yr + 

KG, [l + 0.005wh+] exp (-O. 005wh+) 
G-- KG 1w 21 + 

2K, 
C'h+ 

+1 exp (-O. 005wh+) 
1- F -w 

i 

For a constant value of h+, the above equation can be integrated 

numerically using Simpsot. 's method. For flow over a flat plate it is 

convenient to assume fully-rough flow near the leading edge in order 

to start the integration process. The initial value of w can then be 

found from the Prandtl-Schlichting (1934) formula for fully-rough flow 

over a flat plate: 

2w2 =L (2.87 + 1.58 loglo 11 
s 

)-2.5 

where hs is the equivalent sand-roughness height (this was equal to 

approximately 80 microns for the surface R550). It was found that the 

integration process was not sensitive to the initial conditions chosen 

so the starting-method could be used with confidence. 
A PDP8 computer was programmed in BASIC to perform the calculations. 

For a fixed value of h+ the calculation of friction curves is straight- 

forward. Friction curves for constant values of x/h were found by an 

iterative procedure. The results of these calculations will be presented 
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in Section 4.8. 

4.4 Evaluation of the Shear-Stress and Shear-Work Inte2rals 

If the moment of momentum or the energy equations are to be used 

for the prediction of flows with a pressure gradient, then the shear- 

stress distribution must be modelled. Using Clauser's concept of 

eddy viscosity (see Section (2.3)), vtq the shear stress, T, can be 

written as: - 

P (V + Vt) 
ZU 

ay 

where vt = Kyuo in the inner region and vt= all. S* in tile outer region. 

Incorporating the roughness function, Au/uo, into equation (2.21), the 

mean velocity distribution becomes: - 

2 u (Y) 31 
+I 

(y log 
Yuo 

+B- Au + 11 
[6 2 

(4.18) 4 U0evu0K 

The shear-stress integral can now be calculated from the above two 

equations. The result is: - 

2T dy = Sw 
2n0[1+ 211 - log 

e n. o+n02 
(5-6H 

_ no 
3 (7+28n) 

s (4.19) 
Pucc 

01 

(M 
t -, T-j 

I 

where no = (aG, /K). It will be recalled (Section 2.3) that for equil- 

ibrium layers a=0.018. 
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The shear-work integral can be evaluated by splitting the integral 

into three parts: - 

(» 
'Y 19 YO CO , 

1T ýu dy =1. 
ýu dy T 

ýu dy -r 
LU dy - (4.20) 

pu. 
0 

Ty- 
pu. 

0- 

ay 

y 11 
ay 

yo. 

ay 

i 

The limits of the first integral correspond to an inner sub-range (see 

Lewkowicz, Horlock et al. (1970)) within which the shear stress is 

assumed to be constant and equal to the wall shear stress. The other 

parts correspond to the inner and outer regions where y0 denotes the 

Joining point. Using equations (4.17) and (4.18) the result of the 

integration is: - 

00 , 
Du 232 

3T -- dy w+ -2- +1 og 'n - llo + 4.8n - 12n 
0 pu C» 

ay Keo0 

01 

14.4n 5-4.8n 6] 
+ ll[-2 + 12.4no - 12n 2+ 4n 3_ 4n 4+ 6n 5-2.4n 6] 

0000000 

02 .ý T103 - 0.333n04 + 0.6n 
05 - 0.3 n06 + 

[0.133no 

- 2n (4.21 

where, as before, n 0=y0A= 
(aG I 1K). The terms involving powers 

greater than three can probably be neglected in most cases. Equations 
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(4.19) and (4.21 ), derived using the new wake function, can be com- 

pared with equations (2.53) and (2.54) which were derived by Lewkowicz, 

Horlock et al. (1970) using Hinze's approximation for the outer region. 

It should be noted that both of the integrals are independent of the 

roughness function. 

Clauser's concept assumes that the eddy viscosity can be repre- 

sented by two straight lines (equations (2.51) and (2.52)) describing 

the inner and outer regions. Although this gives satisfactory results$ 

an improvement can be obtained by representing the distribution by 

the following quartic equation: - 

vt 
a+ blii + c, n2 + d, n3 + elii 

4 
6wu -1 

Co 
(4.22) 

whererl= y16. The coefficients, aI to ep can be found by considering 
the known boundary-conditions which are: - 

(1) T, = Ol vt=0. 

(2) 0, 
dv t= K6WU,,,. (For the purpose of 7T, 

calculating the shear-stress and shear-work 

integrals, the cubic relationship for vt 

near the wall (see equation (2.12)) can 

safely be neglected. This boundary condition 
is certainly true at a small distance away 
from the wall). 

(3) n= Ti*, vt = all. S*. The value of n* defines 

the point at which vt reaches its maximum 
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value in the outer region. 

(4) n=1, vt = 0. This must be the case at the 

edgeof the boundary layer. 

(5) n=I, 
dvt 

= 0, since for n>1, vt = 0. dn 

The last two boundary conditions account for the intermittent nature 

of the turbulence in the outer region with which Clauser's model is 

inconsistent. 

Applying the above boundary conditions to equation (4.22) results 

in the following matrix equation: - 

n* 
2 

n* 
3 

n* 
4c 

aG, - KTI* 

2TI* 3n* 2 4n* 3d 
-K 

el 

subject to: - 

9 (4.23) 

K+ 2c I+ 3d I+ 4e 1*=0 (4.24) 

The term aG, is evaluated using equation (4.10). The above two equations 

are easily solved for the coefficients cS d, and el by finding n*, 
using an iterative technique, such that both equations are satisfied. 
The coefficients aI and bI are found to be zero and K respectively. 
Hence equation (4.22) becomes: - 
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vt 234 
KTI + c, n + d, TI + eln (4.25) 

Co 

This equation was compared with the eddy-viscosity distributions 

measured by Bradshaw and Ferriss (1965) in an equilibrium boundary-layer. 

An example is shown in Fig. 4.2 where the value of a=0.02 was used 

in accordance with the authors' findings. It can be seen that equation 

(4.25) leads to better agreement with the experimental data than the 

original eddy-viscosity model. 

Very simple expressions can be found for the shear-stress and 

shear-work integrals by combining this eddy-viscosity distribution 

with the new wake function. From equal. -ions (4.17), (4.18) and (4.25) 

it-can be shown, after some algebra, that: - 

CO , 
1ZT 

dy = 6w 2G 
10 (4.26) 

pu Co 01 

and 

00 , 

T ýu dy = w2 + w3G11 (4.27) 
PU 

ýy 

01 

where G 10 and G 11 are functions of H given by: - 

K 
Glo- - 11 (K + 0.6c + 0.4d + 0.2857el) 

(0-9167K + 0.4c, + 0.2333d, + 0.1548e, )o (4.28) 



91 

and 

GII ýIzn2 (2.4K + 1.3714c, + 0.8572d, + 0.5714el) 
KI 

+ n(2K + 1.8857cl + 1.0571d, + 0.6571el) 

(OAK + 0-9191C 1+0.3774d I+0.2048e, )l . (4.29) 

It is interesting to note that equation (4.27) has the same form as 

Rotta's expression for the shear-work integral (see equation (2.50)) 

although both formulae originate in quite different ways. 

Equations (4.26) and (4.27) can be used for non-Lquilibrium flows, 

where a is no longer constant but varies along the x direction. The 

functions GIO and Gll are related to cc by equations (4.23) and (4.24). 

This is discussed further in the next section. 

4.5 The Proposed Family of Prediction Methods 

The prediction methods to be described in this section are 

variants of the methods proposed by Lewkowicz-Horlock et al. (1970). 

The new methods differ from the old methods in three ways. Firstlys 

the original methods were based on a mean velocity profile whose 

outer region was described by Hinze's (1959) approximation to Coles' 

(1956) wake function (see equations (2.16) and (2.17)); the proposed 

methods incorporate the new wake function into the mean velocity dis- 

tribution. Secondly, the energy and moment of momentum methods 

originally applied only to equilibrium flows. It is proposed to 

extend these methods to cases of non-equilibrium flows for which a is 
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no longer-constant. Thirdly, whereas the original methods applied 

to smooth walls, the proposed methods take into account the effects 

of surface roughness. 

Although the governing equations have been discussed in Section 

2.3 they will be re-stated for convenience in this section. The 

momentum, wall-friction, energy and moment of momentum equations are: - 

dU do m2du ly -7 + (H+2) U- dy (4.30) 0 
dx u- -dx- 2 

C» U(» 
01 

6wu 
11+B Au , 

211 
0K lOge 

[v]u0K 

Co 

-d (U 3 40 =1 -r 
ýU dy 

CTX- p ay 

0 

and 

(4.32) 

Co Co y, 

1dU2 
Y[l - UU-L] -ýL dy + -L - uuu-, -] -ý- u. 

(y 
+u dy] dy 

uco 2 dx Co u. u. dx 
0 00 

PU2 
dy 

0 

(4.33) 
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respectively, where: - 

H (4.34) 

co 

dy (4.35) 

(4.36) u 'y 

0 

and 

U ru)2 
u dy (4.37) 

u 01 
co 

I-) 
I 

The normal-stress term in equation (4.30) can be accounted for 

in the following way. After analysing a total of 34 distributions 

.7 -- -Z 
of U' and v corresponding to the present pipe-flow experiments 

and the data of El-Samanoudy (1974) for boundary-layer flows in 

different pressure gradients, it was found that the quantity 

U, 
2 

V, 
2 

d 

ol 
UO 

was equal to approximately unity with a standard deviation of 0.21. 

The normal stress term in the momentum integral equation is very often 

neglected in prediction procedures since its magnitude becomes appre- 

ciable only near separation, as noted by Net-nan (1950). However, using 

the above quantity, the normal-stress tem can be expressed as follows: - 
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Co 
-1 1- 2 

d U, 2 
_ v, 2 

dy -dU, 
2 

_ V, 2 
d (Y6-) 6u0-d 

(etü2) (4.38) ux --u -= - -a -x v2 - -U7 T' -x 

0 Co 0. to, Co 
Z 

By treating 6, n and w as dependent variables which describe the 

mean-velocity distribution at a particular streamwise co-ordinate, x, 

equations (4.30) to (4.33) can be transformed into differential equa- 

tions of the first order using the definitions embodied in equations 

(4.34) to (4.37) and the mean velocity distribution described by 

equation (4.18). The algebra, which is extremely laborious, leads to 

the following relationships for the momentum, wall-friction, energy 

and moment of momentum equations respectively: 

wds w6dlI [I + 6dw 
d-x 

[GI 
- w(l+ G2)] + ux- 17C wG3] -d-x 

[Gl 
- 2w(I+G2)] 

2 wS 
dU. [3G 2w(l+G "- U- -d-x I-A 

co 
i 

ds 2 dii, dw 
UX K dX + dX 

(4.39) 

0.005 
hU, 

» exp _O. 005 tühUco cl hU. . 

vvv 

KC' whU. 
+ Kexp 0.005 

whU(»' 
rr vvýi 

whU(* whU. Ce whU. 0.005 - exp 0.005 -- ýT -v dU vv 
co 

KU T 
co c, whU whU! I) 1* + exp -0.005 - Fr vIv 

i 

(4.40) 
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wdS 2 w6dH [1 2w [Gl 
- 3wG +32G G 1.5wG +wGý-1.5wG w G5] + ýd- w ux- 

II-2 
41 + ux- K3+ dx 2 41 

dU 23 ()o 2 
w+wG, 

[3G 
4.5wG 2+ 3w G4] (4.41) 

and 

wds 2G A+ w6dii '- 
wG 

[G 
wGq 

[ýK do 
Tx 

[6 
7] TX 8] + Tx 

dU 
= w2G 

8w 00 4G - wG9 9 
(4.42) 

10 - u- -a-x 6 
00 

11 

where BI and C' are given by equation (4.7), and G,, G 2' Glo and G, l 

are given by equations (4.10), (4.11), (4.28) and (4.29) respectively. 

The remaining IG functions' are: - 

G3 12 (2.9714H + 3.0428) (4.43) 
K 

G -L (1.2286n3 + 4.0474n2 + 5.4084n + 2.9388) 4K3 

(4.44) 

GI (3.6857n 2+8.0984n 
+ 5.4084) (4.45) 53 
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(0.311 + 0.2) (4.46) 

(0.5n2 + 1.9895H + 0.0211) (4.47) 
72 

K 

1 
G8=z (0.842911 + 1.2876) (4.48) 

K 

and Gg = 
12 (0-842 gn2 + 2.8024n + 0.4320) (4.49) 

K 

It will be recalled that the functions Gio and Gil are related 

to a by equations (4.23) and (4.24). For equilibrium flows a is a 

constant, in which case a boundary-layer prediction involves the 

simultaneous solution of equations (4.39), (4.40) and either (4.41) 

or (4.42). For non-equilibrium flows, however, a may be regarded as 

a dependent variable in addition to 6, n and w. Hence, if the energy 

or moment of momentum auxiliary equations are to be used, a fourth 

equation is required which must relate a to the other dependent variables. 

The following rate equation for the eddy kinematic viscosity is 

proposed: - 

dv ' 
-- 

t=CU. (a a d -x r eq 
(4.50) 

where v't represents the local maximum value of vt in the outer region 

which is equal to aa*Uco, Cr is an empirical constant, and a eq 
is the 

equilibrium value of a which is assumed to be 0.018. The stream-wise 

rate of change of eddy viscosity is related by this equation to the 
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degree of departure from equilibrium conditions. For the prediction 

of equilibrium flows a= aeq can be used as one of the initial con- 

ditions. Once the integration process is started it is found that 

quickly settles on a value which is slightly different from 0.018 - being 

consistent with a non-zero value of dv' t /dx. 

The effect of equation (4.50) is to reduce the value of a for flows 

with adverse pressure gradients, which is in accord with experimental 

observations*. To some extent this overcomes an inherent difficulty with 

the older integral methods in that they fail to predict regions where 

the wall friction coefficient is approaching zero. 

Equation (4.50) can be transformed, as before, into a differential 

equation of the first order. The result is: - 

d5 6 Il dw 
+ 

w8G1 Lot 
=C -eg w6G1 dU. 

wG + ýL L+ 
6G (4.51) 

1 dx K dx 1 dx OL dx r 
[l 

ot 

) 
Uf» dx 

A value of Cr= -0.06 was used throughout the investigation since this 

was found to give good agreement with measured boundary-layers. 

Instead of the energy or moment of momentum equations an entrain- 

ment relationship can be used for the. auxiliary equation. Head (1960) 

postulated that the rate per unit length at which fluid is entrained 
by the boundary layer, given by the quantity 

[u - 

is a function of the free-stream velocity, a measure of the boundary- 

layer thickness, and the shape of the velocity profile. Head chose the 

*this, of course', applies, only,, to non-equilibrium 

: flows. 
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quantity (6-6*) as a representative thickness and as a shape 

parameter. Hence: - 

d [U. 
(6-6*)] = fl U., (4.52) 

dx 

For the two-layer concept of mean-velocity distribution used in 

this investigation the profile shape can be specified by w and II. 

However, it is easily shown, by integrating the velocity distribution 

in accordance with equation (4.35), that w and n are related by: 

+ 0.9167 S* 
K 

Hence equation (4.52) can be expressed as: - 

du1 6-8*9 Ws 8*) -d-x f2 (. 

In non-dimensional terms this becomes: - 

=f lu: -a-x 3 -66* 

(4-53) 

(4-54) 

(4.55) 

After analysing a total of eleven boundary-layer flows published in 

the Proceedings of the Stanford University Conference (see Coles (1968)) 

the following empirical formula is proposed for the dimensionless 

entrainment eq,., ation: - 
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d 
17 -27x 97w (4.56) 

00 

In tems of n this becomes: - 

loglo 
IlA [U. (S-S*)] 3 loglo (11+0-9167) + 3.15 (4.57) 

4 U. 
ax- 

This equation is compared with experimental data in Fig. 4.3 where the 

code numbers refer to those used at the Stanford Conference. The data 

cover a wide range of pressure gradients and, although logarithmic 

axes are used, the data collapse satisfactorily when plotted in this 

way. Equation (4.57) can be transformed, as before, into the following 

differential equation: - 

da 1- GI] -L 
dn 

-G 
16 dw = 1410(KG, w)3 +s 

dU. [GI (4.58) 
a-x 

1w 
Ic Ux w -rx U- -ax- 

Co 

S ummarising the calculation procedures, the energy method involves 

the simultaneous solution of equations (4.39), (4-40), (4.41) and 
(4.51); the moment of momentum method involves the simultaneous solution 

of equations (4.39), (4-40), (4.42) and (4.51); and the entrainment* 

method involves the simultaneous solution of equations (4.39), (4-40) 

and (4.58). A FORTRAN program was written for processing by the 

1906S machine at the Liverpool University Computer Laboratory. 

Details of the program can be found in Appendix 6. 
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4.6 Starting Conditions for the Test-Cases 

Seven test-cases were studied, four of which were for smooth 

surfaces. A brief descriptive note of each flow follows: - 

a) Schubauer and Klebanoff (Stanford code 2100). 

Boundary-layer on large aerofoil-like body; 

pressure gradient firstly mildly negative, then 

strongly positive. 

b) Bell (Stanford code 3000). Boundary layer on 

heated plate at constant pressure. 

c) Moses (Stanford code 4100). Boundary layer on 

cylinder in axially-symmetric flow, with initial 

moderate pressure rise followed by relaxation 

at constant pressure. 

d) Bauer (Stanford code 6300). Near-equilibrium 

boundary layer growing beneath potential flow 

on model spillway. 

e) Betterman (1965). Uniformly-spaced square bars 

on a flat plate in a zero pressure-gradient. 

f) Perry and Jouberst (1963). Unifomly-spaced 

square bars on a flat plate in a positive 

pressure-gradient. 

g) Arndt and Ippen (1967). Saw-tooth roughness 

on a flat plate in a negative presSUre-gradient. 
The Stanford code numbers refer to the Stanford University Conference 

on turbulent boundary layers (see Coles (1968)). It should be pointed 

out that none of the above flows was used to formulate the entrainment 

equation described in the previous section. 
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The above flows were chosen for two reasons. Firstly, they 

represented a broad spectrum of test-cases. Secondly, with the 

exception of Perry and Joubert's flow, the experimental data show 

reasonable agreement with the momentum integral equation (equation 

4.30)) thus indicating that the flows were essentially two-dimensional. 

Three-dimensional effects are nearly always present to some extent, 

however, for flows with positive pressure gradients. 

In order to start the process of numerical integration it is 

necessary to know the initial values of the dependent variables 6,11 

and w. The fourth dependent variable, a, will be dealt with at the 

end of this section. The results of experiments are usually given in 

terms of w, H and 6. However, for the proposed prediction procedure 

it is important that these values are consistent with the constants 

in the logarithmic overlap region. This can be accomplished by 

selecting two of the initial dependent variables and calculating the 

third variable in terms of the relevant constants. The two initial 

variables selected for the present investigation were w and 0. Cer- 

tainly e is known to a greater accuracy than H, since H involves the 

ratio of two integral quantities (equation (4.34)), but it is debatable 

as to which of the quantities, w or H, has the lesser experimental 

error. 
Using equations (4.9) and (4.53), equation (4.34) becomes: - 

(4.59) 
wG 2 

where G, and G2 are given by equations (4.10) and (4.11). Remembering 

that Cf = 2w 2, 
equations (2.40) and (4.9) can be combined to give: - 
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,-, 
[ 

log 
R0+ 

211] =B- 
Au 

7 
(4.60) 

weG1- wG2 u0 

where R0= OU. /v. 'Hence, knowing w and R,, the value of n can be found. 

A Newton-Raphson iterative procedure was used for this purpose. For 

a smooth surface the roughness function, Au/uo, is zero. For a rough 

wall it can be calculated from: - 

, AU hwU. hwU. 1 
log 

eB exp 0.005 (4.61) 
v il 

The above equation results from combining equations (2.25) and (4.7). 

It was seen in Section 4.2 that B' has a universal value of 0.129; 

C' must be evaluated, for a given one-dimensional measure of roughness 

height, in terms of the measured roughness function. The third 

dependent variable, 6, can be calculated in terms of w and n from 

equation (2.40). 

For the energy and moment of momentum methods a appears as an 

additional dependent variable. The initial value of a depends on the 

departure from equilibrium conditions of the cross-stream distribution 

of turbulent shear stress at the starting point. An estimate of the 
departure can be made on the basis of the value of Clauser's (1956) 

shape factor, G', as defined by equation (2.41). For the smooth 

surfaces, the initial values of G' were found to be very close to the 

equilibrium values given by equation (2.42); hence, an initial. value 

of 0.018 was used. It was not possible, however-, to repeat the exercise 
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for the rough walls because of a dearth of experimental data. Conse- 

quently, the same equilibrium value was used to start the integration. 

4.7 The Effect of Surface Roughness on the Separation of a Two-Dimensional 

Turbulent Boundary-Layer 

It is proposed to represent the free-stream velocity distribution of 

a ship in two-dimensions as shown in Fig. 4.13. The point of two- 

dimensional separation, at which the wall shear stress, T0, equals 

zero, is denoted by Xsep' Assuming the flow is fully turbulent at 

the leading edge, 

fdu 1 (dU 1 
xý Zl v' h' U- ' 

(-7a-X 
1, 

-1 (4-62) 
sep 0 

71 1-ax- 
2- 

Defining a non-dimensional separation distance to be 

AFý 

I 

and applying the Pi Theorem to equation (4.62) results in the following 

dU (dU 1 tugn 
Z1h0 

U- 2 U7 
0( 

dx), 
00 

dx ýdx j 
2' 

A fixed body-shape implies constant values oft, /U. 
0 

(dU. /dx),, 

klueo 
0 

(dUC. /dx )2 and t/k,. Keeping these three parameters constant, 
therefore, the effect of surface roughness on the value of the non- 

(4.63) 

dimensional separation distance can be calculated for a given Reynolds 
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number, W 
000 

/V. 

4.8 Presentation and Discussion of Results 

The variation of the wall-friction coefficient for a smooth flat 

plate can be calculated using the method outlined in Section_4.3 but 

without the incorporation of the roughness function. The results are 

shown in Fig. 4.4 in terms of the total wall friction coefficient 
(obtained by integrating the local wall friction coefficient) and the 

plate Reynolds number based on the plate length and the free-stream 

velocity. The calculated values lie between the Schoenherr (1932) 

and I. T. T. C. (1957) curves (see Section 2.1) at low Reynolds numbers. 

There are no significant differences between the threp curves, however, 
7 for Reynolds numbers typical of ocean-going vessels (greater than 10 

Fig. 4.5 shows the results of the integration of equation (4.15) 

for typical fixed values of either hMAAU. /v or x/hMAAI where hMAA 

represents the mean apparent amplitude of the roughness as measured, 

for example, using the B. S. R. A. wall gauge (see Section 2.1). The 

calculations are based on the roughness function for the surface R550 

and it is assumed that the roughness function has universal application 

regardless of the absolute value of the mean apparent amplitude. TW"i -4 
would be true if the texture of the surface remains unchanged. However, -- 7- the results of the measured roughness functions presented in Chapter 3 
(Fig. 3.22) showed that the mean apparent amplitude is incapable of 4ý 
producing a universal curve for the different surfaces tested in the 

present investigation. Consequently, the results shown in Fig. 4.5 

merely serve to demonstrate the method of calculation rather than to 

provide useful results. The predictions would be valid, however, for 
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the particular case of a ship (or, strictly, its equivalent flat plate) 

whose hull-roughness was identical to the surface R550. 

The predictions for the smooth-wall test cases are shown in 

Figs. 4.6 to 4.9. The Bauer 6300 and Bell 3000 flows are pre- 

dicted accurately despite an obvious mis-match, in the case of Bell's 

flow, of the experimental data (in relation to the law-of-the-wall 

constants) at the starting station (see Section 41.6). The difference 

in the predictions for the energy and moment of momentum methods are 

negligible in both cases. It should be pointed out that although 

Bell's flow corresponds to a zero pressure-gradient, the values of R 

are too low for n to be regarded as constant - as was the case in the 

analysis described in Section 4.3. Generally 11 can be reg; rded as 

constant in a zero pressure-gradient for R, greater than about 6000, 

as reported by Coles (1956). 

Fig. 4.8 shows the results for the Schubauer and Klebanoff 2100 

flow. The predictions are accurate up to the point where the calculated 

development of R0 departs from the experimental values. This point 

coincides with the onset of three-dimensional effects as is evident 

from the fact that, according to Coles (1968), the two-dimensional 

momentum integral equation, equation (4.30), is no longer satisfied 

at x greater than about 7 metres for this. particular flow. 

The results for the Moses 4100 flow are shown in Fig. 4.9. All 

the methods show reasonable agreement with the experimental data, 

although there appears to be some disparity in the absolute magnitudes 

of the flow variables.. The entrainment method responds rather 

sluggishly to the initial positive pressure gradient but subsequently 

gives the best prediction in the relaxation region. The moment of 
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7 
momentum method, on the other hand, over, responds to the pressure 

gradient and is slow to recover following its removal. The energy 

method seems to give the best all-round prediction. 

The prediction for Betterman's rough-wall flow is shown in Fig. 

4.10. The energy and moment of momentum methods show good agreement 

with experiment. The entrainment method, however, over-estimatesboth 

the local wall friction coefficient, C'fp and the Reynolds number, R 

Equation (2.27) was used to describe the roughness function with 

C2= -4.98 (in accordance with Betterman's measurements). 

The constant C2 for Perry and Joubert's roughness was found to 

be -0.2; the corresponding predictions are shown in Fig. 4.11. Unfor- 

tunately there is considerable disagreement in the original exp6ri- 

mental data between the values of C'f deduced from the local velocity 

profiles (shown in Fig. 4.11) and the values deduced from the two- 

dimensional momentum integral equation indicating the presence of 

three-dimensional effects. Consequently, the development of R6 is 

poorly predicted and this in turn affects the predictions for 11 and 
C1 f, Clearly, however, the predictions for the moment of momentum 

and the entrainment methods show considerable deviations from the 

experimental data, the former method tending to over-respond to the 

positive pressure gradient - as was the case for the Moses 4100 flow. 

By contrast, the energy method produces acceptable results. 

Fig. 4.12 shows the results for Arndt and Ippen's saw-tooth 

roughness. The equivalent sand-roughness height was used to estimate 
C2 which was found to be equal to -3.2. The entrainment method 
failed to predict this flow - probably because the entrainment 
function is poorly defined at the low values of n associated with 
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such flows. The energy and moment of momentum methods, however, 

predict the flow with reasonable accuracy despite evidence of a mis- 

match in the experimental data at the starting station. 
Summarising the performance of the three methods proposed, the 

energy method generally appears to predict the test flows most 

accurately. The proposed entrainment method, whilst producing 

acceptable results for the smooth surfaces and the rough surface in 

a zero pressure gradient, is unsatisfactory in its present form for 

rough surfaces in a pressure gradient. The moment of momentum method 

provides accurate predictions of the test flows except for a rough 

surface in a positive pressure gradient. 

Fig. 4.14 shows the dimensionless separation distance in terms 

of" the dimensionless roughness height. The calculations apply to 

the roughness function corresponding to the surface R550 and are 

subject to the same restrictions as those mentioned earlier in this 

section in relation to the validity of the roughness function for 

different values of the mean apparent amplitude. The value of Xsep 

was found, using the energy method, by a process of extrapolation. 

The numerical integration was stopped when C'f became less than 0.0001 

in order to avoid the inherent problems of ill-conditioning associated 
with very low values of w (inspection of equations (4.39) and (4.41), 

which are two of the four equations used in the energy method, shows 
that they become identical as w tends to zero). A parabola was then 
fitted to the last three values of uo in order to find the value of 

x for a zero value of u 0. 
The parameters associated with a fixed body-shape (see Section 4-7) 

were set to typical values (shown in Fig. 4.14) and held constant for 
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all the calculations. The calculations were performed for four 

typical Reynolds numbers. It is apparent that the effect of an 

increase in roughness height at a given Reynolds number is to bring 

forward (nearer to the leading edge) the point of separation. Similarly, 

for a given dimensionless roughness height the separation point is 

brought forward by a decrease in the Reynolds number. This latter 

phenomenon becomes less marked as the relative roughness increases. 

As the relative roughness decreases, the curves asymptotically approach 

the predictions for a smooth surface and the dimensionless separation 

distance then becomes independent of the roughness. The analysis thus 

confirms Sachdeva's (1973) predictions (that model tests tend to be 

pessimistic in so far as the effect of separation on total resistance 

is concerned) for the more general case of a surface with specified 

roughness. This is subject, however, to the underlying assumption that 

the dimensionless roughness height does not change appreciably between 

the model and full-scale cases. 

Finally, a comparison for the Schubauer and Klebanoff 2100 flow 

between the new and the original (Lewkowicz-Horlock (1970)) families 

is presented in Figs. 4.15 to 4.20. An obvious improvement is obtained, 

using the new procedure, for both the energy and moment of momentum 
methods (the different methods predicted almost identical developments 

of R, and consequently the graphs are restricted to comparisons of H 

and Vf). Referring to the entrainment method, the shape factor is 

predicted more accurately by the new procedure; the opposite is true, 
howevers regarding the development of the local wall friction coef- 
ficient. It should be pointed out that the original entrainment pro- 

cedure was based on Head's (1960) entrainment relationship so that a 
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comparison with the new entrainment procedure is tantamount to com- 

paring the performance of the relationship described by equation 

(4.57) with that due to Head. 
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CHAPTER 5 

THE TOPOGRAPHY OF THE SURFACES 

5.1 Introduction 

The investigation of the topography of the surfaces had two main 

objectives. ' Firstly, for a given section of pipe it was considered 

desirable to investigate the homogeneity of the surface roughness. 

Although each sample was originally selected for its homogeneous 

appearance, this property needed to be checked numerically. Secondly, 

quantitative information about the topography of the surfaces was 

required in order to search for roughness parameters which might charact- 

erise the behaviour of the roughness functions. The application of the 

surface measurements to the flow problem is dealt with in Chapter 6. 

Initially, attempts were made to obtain profiles of the surfaces 

using a conventional stylus instrument ('Talysurf'); however, several 

problems were encountered. The rubber negativescould not be used 

because of their resilient nature. After one of the master copies had 

been traversed by the 'Talysurf' instrument it was found that the 

stylus had left a permanent track on the surface. This track was not 

visible to the naked eye but could be detected under a microscope. 

Rather than manufacture replicas of the master copies using a harder 

material it was decided to explore alternative methods of measuring 

the roughness. 

After some experimentation a sectioning method was chosen. El- 

Samanoudy (1974) measured his sand-paper roughness by taking a plaster 

cast of the surface which was then cut at right-angles to the nominal 
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plane of the roughness. * The plane of the cut was smoothed with fine 

sand-paper and a roughness profile was examined using, a shadow-graph 

machine at a magnification factor of 25. The profile, of length 

64.5 mm, was divided into 126 equally-spaced ordinates which were 

then used to calculate an average roughness height for the whole 

surface. 
Because of the brittle nature of the plaster it is doubtful 

whether the final profile obtained on the shidow-graph machine contained 

much of the original high-frequency components of the roughness. For 

the present investigation the rubber negativeswhich were used to manu- 

facture the pipe-sections were also used to measure the surface rough- 

ness. The use of a surgical scalpel to section the rubber ensured the 

preservation of the high frequency components. 

For a given pipe section two stages were involved in the measure- 

ment of its surface roughness. Firstly, a number of surface profiles 

were obtained. These profiles then had to be transformed into digital 

form suitable for input into the I. C. L. 1906S computer at the University 

of Liverpool. Secondly, the analysis of the profiles was performed by 

the computer, using a program specially designed for this purpose. 

5.2 The Acquisition of Digital Profiles of the Surfaces 

After all the sections of a test-pipe had been manufactured, the 

corresponding rubber negative was cut through the seam and laid, out 

on a flat board with its rough side uppermost. Tfie rubber was then 

cut, with an un-used surgical scalpel, along fivelines which were 

coded according to the convention shown in Fig. 5.1. The profile B34, 

for example, corresponds to a profile along the line labelled B and 

This method was suggested to EI-Samanoudy by A. K. Lewkowicz, 
University of Liverpool. 
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approximately mid-way between the lines labelled 3 and 4. A total 

of nine profiles was measured along the lines A, B and C which corre- 

sponded to the longitudinal direction of the pipe. No profiles were 

measured in the circumferential direction. 

A special jig was used to ensure that the cuts were made at 

right-angles to a nominal plane of the roughness. The sharpness of 

the blade, ccmbined with the resilience of the rubber, ensured that 

any deformation of the local surface profile caused by the cutting 

process was minimal. 

The six rectangular strips of rubber containing the nine profiles 

to be measured were mounted individually on blockboard. The blockboard 

was firstly tested for flatness and then sealed to prevent absorption 

of. moisture. A thin film of adhesive was applied to the under-side of 

the rubber which was then placed in position on the blockboard. 

Tracings of the surface profiles were obtained using a shadow- 

graph machine with a magnification factor of 25. The length of each 

sample was 50 mm (this is the length currently being used to assess 
hull-roughness) corresponding to a trace of length 1.25m. A great deal 

of patience was exercised in making the traces and it is estimated 

that the maximum departure from the true profile was less than 15 

microns (referring-to the actual surface rather than the trace). 

Digital records of the profiles were obtained using a Marconi 

digitising table. A rectangular 'window', measuring 40 mm by 1250 mm, 

was drawn around each tracing of a profile and the tracing paper was 

then fixed to the digitising table with adhesive tape. The table, 
2 

which measured approximately 1.5 m, could be regarded as a Cartesian 

mapping space and the co-ordinates of a point were sent to a buffer 
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register by means of a cross-wire cursor. The location of the cursor 

was detected electronically by a mesh of fine wires embedded just 

beneath the surface of the table. The manufacturers claim a resolution 

of 25 microns and the maximum manual error associated with positioning 

the cursor is estimated to be approximately 500 microns (these figures, 

when referred to the actual surface, become I and 20 microns respectively). 

Before the profile was digitised the corner points of the rectangular 

window were sent to the registers using a push-button on the cursor. 

These were used later to apply a transformation from table co-ordinates 

to window co-ordinates. Each point registered by the cursor was sent 

automatically to a tape-punching machine. 

The profiles were digitised using a free-stream operating mode. 

The time interval between successive recordings of the position of the 

cursor could be varied on the control panel to suit th3 complexity of 

the profile. A total of at least one thousand points were recorded 

for each profile (corresponding to nine thousand points for each 

surface). 

The paper tape records were used to create data files onto the 

disk storage system of the 1906S computer. A co-ordinate transforma- 

tion was applied to each file to refer the profile to the Cartesian 

co-ordinates of the respective rectangular window. Copies were made 

on magnetic tape of all the transformed data files in case of damage to 

the original paper tapes. 

5.3 Analysis of the Surýa'ce Profiles 

The first part of the computer program used to analyse the profiles 

consisted of the determination of a mean line through the profile. It 
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will be appreciated that consecutive points along the profile corre- 

spond to equal time intervals. An intlerpolation procedure was used to 
0 

convert the, profile points so that they corresponded to 1001 equally- 

spaced intervals of length 50 microns in the X direction (the upper 

case will be used for Cartesian co-ordinates relating to surface profiles 

to distinguish them from the co-ordinate system used in the fluid 

dynamics aspect of the investigation). A least-squares straight line, 

corresponding to an un-filtered mean line, was then computed. A co- 

ordinate transformation was performed with respect to the window co- 

ordinates so that the X axis was in the direction of the mean line. 

The Y axis now referred to the surface height in microns. 

four different roughness heights were evaluated. The peak-to-valley F 

height is simply the difference between the highest peak and the lowest 

valley. It is similar in magnitude to the Mean Apparent Amplitude 

(see Section 2.1). The ten-point height is the difference between the 

averages of the five highest peaks and the five lowest valleys. The 

ten-point height is a better parameter, from a statistical standpoint, 
than the peak-to-valley height, since the latter is very sensitive 
to 'altypical surface featureg such as a single sharp peak or valley. 

The centre-line average height is defined to be the quantity 

1 i=r 
r ill 

ly 

where r is the number of sampled height ordinates per profile (= 1001). 

Finally, the root-mean-square height is simply the standard deviation 

of the profile about the mean line: - 
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i=r 2]1 IYi 
I-F 

'T 
i=1 

In addition to the above height measurements the maximum peak and 

minimum valley ordinates were stored for subsequent printing. 

The cumulative form of the height distribution was calculated 

using a class interval eýual to one thirtieth of the peak-to-valley 

height. The skewness of the height distribution is the quantity 

i=r 
y3 J1 

r7-r 

and the kurtosis is the quantity 

1=r 4 y 

i=r 2 4 ] 
y 

For a Gaussian height distribution these quantities are known to be 0 

and 3 respectively. A positive skewness implies that the peaks are 

more prominent than the valleys (and vice versa for negative skewness). 

A kurtosis greater than 3 describes profiles with exaggerated peaks 

and valleys and the distribution is said to be leptokurtic. Platykurtic 

distributions, on the other hand, are associated with rather flat 

profiles and have a kurtosis less than 3. 
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A peak occurs at the i'th point along the profile if 

Yi-i <yi>y i+l , 

Similarly, a valley occurs if 

Yi-i >yi<y i+l 

These definitions of a peak and a valley are dependent on the length 

of the sampling interval between successive points. Hence peaks of 

short wavelength will not be detected if a large sampling interval is 

used and vice versa. The sampling interval used in the present analysis 
0 was 50 microns. ýý'D 

The radius of curvature of the profile at a point is: 

2 3/2 
(dyxl 

dz y 
dX 

For a peak or valley, dY/dX = 0, hence the radius of curvature is 

simply the reciprocal of the second dbrivative. A numerical technique 

was devised, based on Stirling's formula (see Lennox and Chadwick (1970)), 

to estimate the second derivative knowing seVen equally-spaced height 

ordinates. -This results in the following expression for the second 

derivative at a peak, or valley, occurring at a point denoted by the 

subscript j: 

id 2yl I 2Y - 27Yj+2 + 270Yj+l - 490Y + 270Yj-l - 27Y 
-2 + 2Yj 

x- j+3 -3]' 

4 

dX 180s 
(5.1) 
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where s is the length of the sampling interval. An average value was 

calculated for each profile. 

An auto-correlation coefficient was calculated by defining the 

lag, AX, to be an integral number of sampling intervals. Hence, 

Ax = js . (5.2) 

The auto-correlation coefficient is: - 

Ii =r-T-i (y y 
r-A-j i11i 

i+j 

i=r 
(5.3) 

FIT 
I 

j=l 

When j is zero the coefficient is unity. If AX is large compared with 

the size of a typical feature then C is nearly zero. The auto-corre- 

lation coefficient was calculated for values. of i from zpro to 100, 

corresponding to a maximum lal of one tenth of the profile length. 

Lag-lengths greater than this can cause instability in the calculation 

procedure (see Bendat and Piersol (1966)). 

The rate at which the coefficient decays from its initial value 

of unity is a measure of the spacing of the surface texture. This 

can be quantified by defining a correlation length by the lag-length 

corresponding to the auto-correlation coefficient having a value of 
C), 

0.5. Since j is an integer, an interpolation procedure had to be used 

to find the exact value of the correlation length. 

The slope of the profile is simply the first derivative. This 

can be derived from Stirling's formula in the form: - 

(dY) 1y+ 45Y - 45Y (5.4) (dXj 60S j+3 - 9yj+2 j+l j-1 + 9yi-2 - yi-31 
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Rather than use a fixed value of s equal to 50 microns, as was done 

earlier for the radius of curvature, the slope was evaluated for two 

different values of s. The values were: - 

a) 50 microns 

b) the correlation length 

It should be noted that when s is not equal to 50 microns (which is 

the distance between adjacent points in the X direction) the serial 

representation of the height oýdinates in equation (5.4) no longer 

corre'sponds to consecutive points along the profile. Since seven 

points are used, the distance between the first and last points in 

equation (5.4), measured along the X axis, is always 6s. The average 

slope is the average of the moduli of the first derivatives measured 

along the profile. 

All the above roughness parameters were calculated for a band- 

width whose maximum wavelength was 50 mm. This upper limit was set 

by the length of the profile. Since the'points were originally sampled 

at intervals of 50 microns, this establishes a Nyquist short-wavelength 

cut-off of 100 microns. Reference to the Appendix describing the 

computer program will be deferred until the next Chapter, when a method 

of filtering the profiles will be described. 

5.4 Presentation and Discussion of Results 

The 1906S computer was programmed to create grid-files of the 

surface profiles for subsequent plotting on a CALCOMP 936 digital graph 

plotter. The profiles are shown in Figs. 5.2 to 5.6. 

The most striking feature of the profiles is that they exhibit 
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differences in texture between the surfaces besides differences in the 

degree of roughness. The surface R550, for example, which corresponds 

to an untreated hull-roughnqss (see Section 3.3), contains a good deal 

of high-frequency structure. The surfaces R420, R345 and R173 appear 

to have similar textures but the high-frequency structure,. whilst 

present, is not as prominent as in the surface R550. The surface 

R253 shows evidence of a phenomenon known in the paints industry as 

'pinholing'. This can be caused, for example, by contamination by 

rain or by the applicati. on of a further coat of paint before the pre- 

vious coat has fully dried. The valley regions associated with this 

defect tend to be prominent features of the high-frequency structure. 

Figs. 5.7 to 5.11 show the cumulative height distributions of the 

most Gaussian profile for each surface. The profiles were selected 

on the basis of the values of the skewness and kurtosis. The results 

are plotted on a scale so arranged that a Gaussian distribution appears 

as a straight line. The straight lines represent Gaussian distributions 

based on the measured values of standard deviation from the mean. The 

truncation of both the valleys and the peaks is a consistent feature 

for all the surfaces. This is undoubtedly caused by the application 

of protective paints, although it is surprising that the effect is 

observed for the R550 surface. The distributions for the most non- 

Gaussian profiles are shown in Figs. 5.12 to 5.16. Truncation of the 

valleys is again in evidence, although in the case of the R550 surface 

(Fig. 5.12) the extreme valley regions appear to revert to a near- 

Gaussian distribution. With the exception of the R550 surface all 

the distributions are skewed in the positive sense and show little 

evidence of truncation in the peak regions. 
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Whitehouse and Archard (1970) showed that surface profiles can 

be specified statistically in terms of the standard deviation of the 

height ordinates and a correlation length (which is defined differently 

from the one used in this investigation), providing the height distri- 

butions are Gaussian. Hence other parameters like the average slopq 

and the average radius of curvature of the peaks can be related to 

these fundamental parameters. Since the present height distributions 

are obviously non-Gaussian, it would appear that specifications of the 

surface must involve more than two parameters. 
The results of the analysis of the surfaces are shown in Tables 

5.1 to 5.5. Bearing in mind the locations of the profiles with respect 

to the inside surfaces of the pipe-sections (see Fig. 5.1) there does 

not appear to be any systematic variation of the surface parameters 

with position, although the variance of some of the parameters is high. 

The measurements of roughness height are shown on the first sheet 

of each table. The very small differences between the peak-to-valley 

and the ten-point heights indicate that a single peak-to-valley measure- 

ment is a much better representation of surface roughness than originally 

thought. This is substantiated by the near constancy of the ratio of 

the peak-to-valley height to the standard deviation. The value of this 

rati o is approximately 5 for all the surfaces. The minimum valley 

generally occurs at a greater distance from the mean line than the 

maximum peak for both the R550 and the R253 surfaces. 

I Unfortunately, the variance associated with the measurements of the 

peak and valley curvatures are too high to draw any conclusions. However, 

this does not affect the ability to detect differences in surface texture, 

since the significant parameters in this context are the slope and the 
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correlation length. The slope - based on a sampling interval equal 

Face, to the correlation length - is highest for the R550 sur-I which is 

consistent with the visual appearance of the profiles (see Fig. 5.2). 

None of the measured parameters shows any evidence of the unusual 

valley regions reported earlier for the surface R253. This is not 

surprising, however, in view of the large bandwidth of wavelengths 

on which the analysis was based. The variation in the surface 

statistics with different bandwidths will be investigated in the next 

chapter. 
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THE SEARCH FOR A UNIVERSAL ROUGHNESS FUNCTION 

IN TERMS OF THE SURFACE STATISTICS 

6.1 Introduction 

Three types of roughness can be identified on a ship's hull. 

Firstly, there is the macro-roughness comprising structural protuber- 

ances, welding seams and barnacles. The contribution to the total 

resistance made by the macro-roughness can be estimated knowing the 

form drag of one type of excrescence (for example a welding seam) and 

the associated'roughness density. Secondly, there is the micro-rough- 

ness with which the present investigation is concerned. From the 

resistance point of view -11. his manifests itse-If in the form of a rough- 

ness function and is present over the entire hull-surface - being 

responsible for the major part of the total wall-friction. Thirdly, 

lying between these two extremes of roughness is a bandwidth of surface 

wavelengths which does not contribute significantly to the total 

resistance. The wavelengths are too long to produce turbulence and 

hence affect the roughness function, and the associated roughness heights 

and surface slopes are too small to create any form drag. The latter 

may be regarded as 'long-wave curvature'. 

This chapter is concerned with relating the measured roughness 

functions to the statistics of the surface micro-geometries. The problem 

is to define the boundary between the above-mentioned second and third 

categories of surface roughness. This is necessary because the statistics 

depend on the longest wavelength present in the surface profiles - hence- 
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forth to be referred to as the 'cut-off wavelength'. This wavelength 

must be of the same order of magnitude as the size of the energy-con- 

taining eddies near the surfaces if any correlation is to be observed 

between the roughness functions and the micro-geometries. 

6.2 Investigation of the Surface Statistics for Different Cut-Off 

Wavelehgths 

The statistical analysis of the surface profiles has been described 

in Chapter 5. The analysis was repeated for two different cut-off 

wavelengths - 10 mm and 2 mm. These are in contrast with the unfiltered 

value of 50 mm for the raw profiles. The two cut-off wavelengths were 

chosen on the basis of the measured values of the macro-scales of 

turbulence as defined by equation (3.13). The average value of the 

macro-scales was found to be less than 10 mm at y+elR = 0.02. It is 

to be expected that nearer to the wall this figure would be lower in 

magnitude. There is no reason to suppose, however, that this length 

scale should be taken as an absolute measure of the cut-off wavelength 

required for the statistical'analysis; the -macro-scale merely represents 

the size of a typical energy-containing eddy. For this reason, although 

it was clear that a cut-off wavelength greater than 10 mm seemed rather 

high, it was by no means clear which was the best cut-off wavelength 

to choose. It was decided that 10 mm and 2 mm would represent the 

most likely extreme values. 

A mid-point locus method was used to filter the surface profiles. 

For the case of a 10 mm cut-off wavelength the procedure was as follows. 

The raw profile was divided into five equal 10 mm lengths along the X 

axis forming what will be referred to as five 'sub-samples'. Regression 



124 

lines were then calculated for each sub-sample and the mid-points of 

each regression line were determined. Using a simple Lagrange inter- 

polation procedure, parabolas were calculated to join the three con- 

secutive mid-points of each group of three sub-samples (the three groups 

being sub-samples 1,2 and 3; 2, and 4; and 3,4 and 5). The first 

halves of these parabolas, when joined together at their points of 

intersection, constituted the output of a low-pass filter since the 

high frequencies had been removed. The required high-pass output was. 

obtained by finding the difference in height ordinates between the 

original profile and the low-pass output. The low-pass outputs corre- 

sponding to the first half of the first sub-sample and the last half 

of the last sub-sample were represented by the respective regression 

lines. A similar procedure was used for the 2 mm cut-off wavelength. 

The high-pass output for each profile was then subjected to the same 

analysis as was described in Chapter 5. Details of the computer 

program can be found in Appendix 7. 

6.3 The Proposed Modification to the Roughness Reynolds Number 

It was found in Chapter 3 that the roughness functions showed 

similar trends but differed in absolute magnituden. Instead of a 

simple one-dimensional measure of roughness height, such as the mean 

apparent amplitude used thus far, it is proposed to modify the chosen 

roughness height in a way which depends on the texture of the surface 

and the degree of departure from a Gaussian height distribution. 

Although the investigation in the previous chapter showed that the 

peak-to-valley height and the standard deviation of a profile were in 

a nearly constant ratio for all the surfaces, the standard deviation 
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will be used for the one-dimensional measure of the roughness height 

since, from a statistical point of view, it is more efficient. 

A good measure of the texture of the surfaces was found to be 

the average slope (see Chapter 5) based on a sampling interval equal 

to the correlation length. A Gaussian surface with a fine texture, 

associated with high values of the average slope, must have a higher 

effective roughness height than a Gaussian surface with a more open 

texture but with the same standard deviation. This is exemplified by 

considering isolated roughness elements with identical heights but 

different shapes. Referring to Fig. 6.1, consider the 'private' 

boundary layers associated with the two surface features shown in the 

diagram. Although both features have the same height, clearly the 

boundary layer is more likely to separate in the case of a steep slope 

downstream of the peak on account of the stronger adverse pressure 

gradient. Moreover, as this slope becomes steeper the point of separa- 

tion of the private boundary layer moves nearer the peak. Thus the 

associated form-drag coefficients increase with the degree of bluffness 

of the roughness elements which can be crudely quantified by the values 

of the average slope of the elements. Within the small range of 

values of the average slope observed in the present investigations it 

is proposed to augment the standard deviation by an amount equal to 

(1 + as p 
), where sp is the average slope and a is an empirical constant, 

so that the effective roughness height for a Gaussian surface. is 

assumed to be of the form: 

ar (1 + as p)9 
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where hl is the modified roughness height and or is the standard 

deviation. 

The degree of departure from a Gaussian height distribution can 

be represented by the skewness and the kurtosis. The effective 

roughness height, as defined in equation (6.1), must increase if the 

skewness is positive, since this corresponds to the peaks ol the surface 

being more prominent than the valleys. Conversely h' must decrease if 

the skewness is negative. The magnitude of the increase in h' associated 

with a postive value. of-skewness must also depend on the kurtosis - 

which is a measure of departure of both the peaks and the valleys from 

a Gaussian height distribution. The increase must be greater for a 

leptokurtic distribution (kurtosis greater than 3) since this implies 

that the extreme height ordinates (and therefore the peaks) represent 

greater departures from the mean line than would be obtained if the 

surface was Gaussian with the same standard deviation. These exaggerated 

peaks create extra form drag which must be accounted for by an increase 

in h'. The opposite is true for a platykurtic distribution (kurtosis 

less than 3). Denoting the skewness by sk and the kurto:; is by ku it is 

proposed, in view of the above comments, that the product skku should 

be regarded as a significant parameter. This can be introduced into 

equation (6.1) to form the following modified roughness Reynolds number: 

Wu 
0aru 

vv0 
(1 + as p 

)(1 + bs kk U) 
(6.2) 

where a and b are empirical constants. 

This rather crude model is expected to fail for highly non-Gaussian 

surfaces with zero skewness since then the kurtosis ceases to feature as 
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a parameter. It was found, however, that none of the surfaces investi- 

gated came under this category. 

6.4 Presentation and Discussion of Results 

The effect of the filtering technique for a cut-of-ic wavelength of 

2 mm is shown in Figs. 6.2 to 6.6, which relate to the most non-Gaussian- 

profile for each surface. The graphs were obtained using a CALCOMP 936 

digital graph plotter and are distorted in such a way that the hori- 

zontal scale is magnified five times and the vertical scale is magnified 

fifty times. In general, the surface R420 was found to contain the 

largest amount of long-wave curvature. 

The results of the analysis for the three different cut-off wave- 

lengths considered are shown in Tables 6.1 to 6.5. The average values 

for the nine surface profiles are shown together with the errors corre- 

sponding to one standard deviation. Some trends can be found upon close 

inspection of the data. The errors associated with the measurement of 

both the centre-line average height and the standard deviation become 

less than those for the peak-to-valley and ten-point heights as the 

cut-off wavelength decreases - which lends support for the choice of 

one-dimensional roughness height used in equation (6.2). It appears that 

the kurtosis increases as the cut-off wavelength decreases; there is no 

reason to suppose, however, that this should always be the case. The 

effect of a shorter cut-off wavelength is to decrease the correlation 
length, so that it is not surprising to find a corresponding increase 

in the average slope based on a sampling interval equal to the corre- 

lation length. 

Despite the relatively high errors associated with some of the 
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surface measurements, attempts were made to relate the measured rough- 

ness functions (see Figs. 3.21 and 3.22) to the modified roughness 

Reynolds number as defined in equation (6-2). This was done by 

programming the PDP8 computer to plot the roughness functions on a 

TETRONIX visual-display unit. The relevant surface measurements for 

a given cut-off wavelength were sent to the machine and the graphs 

were plotted for particular values of a and b. It soon became clear 

that a cut-off wavelength of 10 mm was too large to allow the roughness 

functions to collapse onto a single curve. This is not surprising in 

view of the fact that the statistics of the surfaces hardly changed 

as the cut-off wavelength decreased from 50 mm to 10 mm (see Tables 6.1 

to 6-5). For a cut-off wavelength of 2 mm, however, the results showed 

encouraging support for the proposed form of the modified roughness 

Reynolds number. The roughness functions are shown in Figs. 6.7 and 

6.8 where a=0.5 (corresponding to units of degrees for sP), b=0.2 

and the cut-off wavele . ngth =2 mm. The above values for a and b are by 

no means the optimum ones; it. was felt that a more thorough numerical 

investigation could not be justified using the available statistical 

data. 

The existence of universal curves for the roughness functions, when 

expressed in terms of the surface statistics, opens up new possibilities 

for predicting the wall friction on ships' hulls. The availability, 

in chip-form, of micro-processors and random-access-memory units should 

enable hull-roughness measurements to be processed on location using 

a purpose-built portable computer. The required resolution calls for 

a stylus tip-dimensionof the order of 20 microns, although further 

studies are needed in order to define this figure more precisely. 
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Knowing the modified roughness height, h', it is a simple matter to 

incorporate the roughness function into the boundary-layer equations 

in the manner described in Chapter 4. 
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CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

7.1 Conclusions 

This thesis has been concerned with turbulent shear flows near 

irregularly-rough surfaces-with-particular reference to ships' hulls. 

The investigation has been carried out in three phases: air-flows 

I. - have been studied in a series of pipe-lines, five of which were lined 

with replicas of real ship-hull roughnesses; methods of predicting 

two-dimensional turbulent boundary-layers developing over irregularly- 

rough surfaces in an arbitrary pressure distribution have been pro- 

posed; finally, an a. 'tempt has been made to relate the statistics of 

the surface micro-geometries to the flow measurements. 

In the past, methods of predicting the effects of hull-roughness 

on ship performance have relied on correlations between shaft horse- 

power and a one-dimensional measure of the pcak-to-valley height of 

the surface roughness - such as the mean apparent amplitude (M. A. A. ). 

The flow measurements have shown, however, that the M. A. A. is unsatis- 

factory in this respect. Specifically, for different degrees of surface 

roughness, the measured roughness functions diverge when expressed in 

terms of a roughness Reynolds number based on the M. A. A.. For a given 

hull-roughness, however, the roughness function is unique and, its 

determination by experiment, using a process of surface replication, 

enables predictions of the effect of the surface on the development of 

turbulent boundary-layers to be made. This is possible because the 

roughness function is a parameter associated with the inner region of 
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the mean velocity distribution and its value is independent of the 

external pressure gradient. Moreover, once the roughness function is 

defined by experiment, boundary-layer predictions can be made up to 

arbitrarily-high Reynolds numbers based on the ship's. length and 

speed. 

The following important conclusions can be drawn in relation to 

the first phase of the investigation. 

A method of replicating a sample area of a ship's hull whilst 

the ship is in-dry dock has been established, using silicon rubber. 

2) A pipe-line can be manufactured in such a way that the inside 

surface of the pipe is a positive copy of an actual hull-roughness. 

3) Mean velocity measuraments confirm that the outer region velocity 

distribution, when expressed in the velocity-defect form, is inde- 

pendent of the surface roughness. 

The roughness functions show trends similar to those of Colebrook 

and White (1937) which apply to naturally-occurring surfaces. 

5) The M. A. A. is incapable of producing a universal curve for the 

roughness functions. This highlights the importance of taking 

into account the statistical geometry of the surfaces. 

6) For a given pipe Reynolds number, the effect of surface roughness 

on the non-dimensional longitudinal fluctuating velocity, /uo' 

is to increase its value in relation to tl-., e value corresponding to 

a smooth surface - particularly in the region near the wall. 

7) An increase in the pipe Reynolds number, for a rough-walled pipe, 

is associated with a decrease in the non-dimensional radial and 

peripheral fluctuating velocities, v/7/u 0 and v7lu 0 respectively. 
CZFI I. 
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8) The existence of very weak secondary flows in the rough pipes 

could account for the unexpectedly low values of the shear stress, 

-Pu'v', and the non-zero values of the cross-correlation, UrWr. 

9) All three sub-ranges of the frequency spectrum function, F(n), were 

clearly defined at (y+c)/R = 0.08. At the pipe-centre-lines there 

was no evidence of a production sub-range. At (y+c)/R = 0.02 the 

spectrum function shows a gradual change from the -1 (production) 

to the -7 (dissipation) sub-ranges with an ill-defined intermediate 

sub-range. The latter becomes more prominent as the pipe Reynolds 

number increases. 

10) The value of the micro-scale of turbulence, for a given wall dis- 

tance and pipe diameter, is independent of surface roughness 

except very near the wall, where roughness increases its value. 

11) In the inner region, surface roughness acts so as to increase the 

value of the macro-scale of turbulence at a given pipe Reynolds 

number and pipe diameter. In the outer region, however, the macro- 

scale remains essentially constant. 

For the surface with the code-name R-5-50 (M. A. A. = 550 microns) it 

was possible to achieve fully-rough flow conditions and hence to define 

the roughness function at any roughness Reynolds number. A simple 

interpolation formula was used for this purpose. At moderately high 

Reynolds numbers it can be assumed that the wake-strength parameter, 

ii, remains constant for flow over a flat plate in a zero pressure gradient 
(corresponding to the major part of a ship's hull). Hence predictions 

of the resulting boundary-layer can be made by combining the momentum 

equation with a wall friction relationship derived from the mean velocity 
distribution - which incorporates the measured roughness function. The 
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resulting equation is easily solved numerically using Simpson's pro- 

cedure, resulting in a prediction of the wall friction coefficient of 

a ship whose hull is covered with a roughness identical to the surface 

R550. 

Calculations were performed firstly for a smooth ship. It was 

found that the friction line (total wall friction coefficient versus 

ship Reynolds number based on length and speed) lay very close to, both 

the Schoenherr (1932) and I. T. T. C. (1957) lines - thus confirming the 

accuracy of the calculation procedure. Simple calculations, based on 

the predictions for a rough ship with a hull-roughness identical to the 

surface R550, suggest that for a ship length of 100m and speed 10 m, /s 

the total resistance, due to wall friction alone, increases by approxi- 

mately one-third by comparison with the value for a smooth hull. This 

emphasises the great economic importance of research into the effects 

of hull roughnesses on the performance of large ships. 

For flows in an arbitrary pressure distribution, prediction pro- 

cedures have been proposed based on the Lewkowicz-Horlock (1970) family 

of integral prediction methods. The original family has been improved 

in four ways. Firstly, a new mean velocity profile for the outer - 

region has been used which ensures a zero value of the cross-stream mean 

velocity gradient at the edge of the boundary-layer. Secondly, a new 

cross-stream distribution of the turbulent shear stress has been proposed 

which not only satisfies known boundary conditions but also gives good 

agreement with reliable experimental data. This new shear-stress dis- 

tribution has been used to derive simple expressions for the shear-stress 

and shear-work integrals which appear in the energy and moment of 

momentum equations. Thirdly, the inclusion of a rate equation for the 
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eddy viscosity enables better predictions of non-equilibrium flows to 

be made. Finally, the new family has been extended to include the 

effects of surface roughness by incorporating the measured roughness 

function into the wall friction equation. Additionally, a new entrain- 

ment relationship has been tentatively proposed which directly relates 

a dimensionless entrainment parameter, to the wake strength parameter. 

The relationship was based on experimental data published at 4.6-he 

Stanford Conference on turbulent boundary layers (1968). 

The following conclusions can be drawn in relation to the pre- 

dictions of seven test-cases with different pressure distributions 

and surfaces. 

1) All three methods gave good predictions for a smooth surface 
in a zero or negative pressure gradient. 

2) The energy and moment of momentum methods gave satisfactory pre- 

dictions for rough surfaces in a zero or negative pressure gradient; 

however, the entrainment method failed to predict the rough-wall 

flow in a negative pressure gradient. It is thought likely that 

this was due to the poor definition of the entrainment relationship, 

at low values of the wake strength parameter, resulting from the 

lack of experimental data used in its formulation. 

3) The entrainment method responded sluggishly to a positive pressure 

gradient although it predicted the correct trends. This resulted 

in the predicted wall friction coefficient being too large. 

4) The moment of momentum method gave good predictions for a smooth 

surface in a positive pressure gradient. The method over-responded, 

however, for a rough surface, resulting in the wall friction coef- 
ficient being too low. 
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5) The energy method gave good predictions for both smooth and rough 

surfaces in a positive pressure gradient. 

A numerical experiment has been performed to investigate the 

effect of surface roughness on the position of separation of a two- 

dimensional turbulent bcundary-layer developing over a flat plate 

covered with ship-hull roughness. The plate was subjected to a pres- 

sure distribution typical of that existing on an ocean-going vessel 

and the calculations were performed for a fixed body-shape. It was 

found that, for a given plate Reynolds number, an increase in rough- 

ness brought the separation point forward towards the leading edge and 
that, for a fixed non-dimensionall roughness height, the separation 

point was again brought forward by a decrease in the plate Reynolds 

number. 

The micro-geometry of the surfaces was investigated using a 

sectioning technique to obtain surface profiles. Nearly fifty thousand 

height ordinates were processed to test the homogeneity of the surfaces 

and to search for a measure of the surface roughness which, by contrast 

with the M. A. A., relates more closely to the measured wall-friction. 

A method of filtering the surface profiles was devised which rejected 

wavelengths greater than a certain cut-off value. It was*assumed that 

this cut-off wavelength should be of the same order of magnitude as 

the size of the energy-containing turbulent eddies in the fluid near. 
the surface. The turbulence macro-scale was used for the purpose 

of estimating the size of these eddies. A new effective roughness 
height has been tentatively proposed whose magnitude depends not only 

on a measure of the roughness height (the standard deviation of the 

profile was used in the present investigation) but also on the values 
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of the average slope (based on a sampling interval equal to the corre- 

lation length) and the skewness and kurtosis of the height distribution. 

This has resulted in a modified roughness Reynolds number which gives 

rise to a near-universal curve for the roughness functions, as measured 

in the pipe-flow experiments, if a cut-off wavelength of 2 mm is chosen. 

7.2 Suggestions for Fulture Work 

The following suggestions are offered in relation to future work 

in the field of turbulent shear flows near irregularly-rough surfaces. 

1) Flow experiments can be performed using a pipe whose internal 

surface can be made irregularly-rough in a controlled manner using, 

for example, beads of different sizes. Hence the effects of 

skewness, kurtosis and average slope can be investigated. 

2) More raw data is required to search for a roughness function which 

is universally applicable to ship-hull roughness. The test surfaces 

should cover a wide range of roughness heights and textures. 

3) To study the effects of welding seams and barnacles it is necessary 

to-investigate the interaction between macro-roughness elements 

and the background (micro-) roughness. 

4) A hot-wire technique is needed to detect weak secondary flows in 

rough pipes. This must be perfected before attempts can be made 

to explain the anomalous radial distributions of turbulent shear 

stress reported in Chapter 3. 

5) In relation to the boundary-layer predictions it would be useful 

to know how sensitive the energy and moment of momentum methods 

are to the starting value of the equilibrium parameter, a. 
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6) The value of the constant, Cr :2-0.06, appearing in the rate 

equation (equation (4.50)) should be checked by means of experi- 

ments in non-equilibrium flows over smooth and rough surfaces. 

7) The conclusions reached in relation to the numerical exercise 

concerning two-dimensional separation on rough surfaces should be 

checked experimentally. 
8) There is a dearth of reliable measurements of two-dimensional 

turbulent boundary-layers near rough surfaces. This situation needs 

to be rectified in order to improve proposed prediction methods. 

9) Gadd's (1971) approximate method of calculating turbulent boundary- 

layers on ships' hulls should be extended, using the prediction 

procedures described in Chapter 4, to include the effects of surface 

roughness. 

10) The theoretical and experimental aspects of the work should be 

complemented by boundary-layer measurements resulting from full- 

scale ship trials. 

11) There is a need for an instrument which accurately records the high- 

frequency components of ship-hull roughness. 

12) Future experimental investigations into the effect of surface 

roughness on the wall friction should include non-rigid roughness 

elements to simulate marine growth such as sea-weed. Such investi- 

gations would have to be performed using water as the fluid medium. 
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APPENDIX I 

CHEMICALS USED FOR ROUGHNESS REPLICATION 

Rubber negative from ship's hull: 

100 parts SILASTIC(R)504 
manufactured by Dow Corning 

100 parts SILASTIC(R)3110 - International Limited 
I part CATALYST 4 

Cure time approximately li hours at 200C. 

2) Epoxy-resin positive from rubber negative: 

100 parts EPIKOTE 816 manufactured by Shell 

60 parts EPIKURE RTV Chemicals U. K. Limited 

3) Rubber negative from epoxy-resin positive: 
Q 10 parts SILASTIC G manufactured by Dow Corning 

I part SILASTIC 0G 
catalyst 

I 

International Limited 

4) Plastic pipes from second rubber negative: 

100 parts FILABOND 8748A 

I part CATALYST 'KI 

I manufactured by Beck, Koller 

and Co. (England) Limited 

QS) Registered trade mark of Dow Corning International Limited. 

(b) MANUFACTURE OF THE PIPE-LINES 

A frame was first built around the master copy which was placed 

face upwards and subsequently adjusted so that the surface lay in a 

nominally-horizontal plane. A liquid form of silicon rubber was then 
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poured onto the surface to a depth of approximately 5 mm. The slight 

meniscus formed at the edges of the frame could easily be removed with 

a razor once the rubber had cured. (Details of the chemicals are 

presented in the first part of this Appendix. ) 

This 'rubber negative' was then wrapped around a wooden mandrel, 

which had previously been accurately turned'in a lathe, so that the 

exterior surface comprised the negative roughness. The seam was then 

joined, using a special adhesive (a slight under-cut in the seam of 
the negative was found necessary to allow for the slight compression 

on the underneath surface), and subsequently trimmed with a razor to 

ensure that no artificial features had been introduced into the rough- 

ness. The combined diameter of the mandrel and the rubber negative was 

such as to correspond to the type of pipe being made. A photograph of 

a rubber negative and the mandrell used for the small pipes is shown 
in Fig. 3.1. 

. 
The small pipes were manufactured in such a way that the flanges 

were an integral part of each section. The length of a section was 
0.5m and the mandrel was first cut to this length so that the rubber 

negative was flush with each end. Wooden patterns of the flanges were 

then fixed at the ends of the mandrel and a coat of epoxy resin was 

applied over the rubber negative and on the inside surfaces of the 

patterns. This was followed by alternate layers of glass fibre matting 

and resin up to a thickness of approximately 4.0 mm. After the resin 
had catalysed (thus forming a section) the flanges were drilled and 
the patterns were then removed. The mandrel could now be pushed out 

of the rubber negative which was subsequently easily separated from 

the final pipe section (see Fig. 3.2). 
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Initially it was thought that the process of pushing the mandrel 

out of the completed section might have damaged the rubber negative - 

thus necessitating a new negative for each section. Accordingly, the 

silicon rubber used for making the negative was chosen for its good 

resilience and high tear-strength. In fact it transpired that the 

mandrel came out with no difficulty at all so that the same negative 

could be used for the whole pipe. 
The large rough pipe was manufactured in a similar way with the 

exception that the flanges did not form an integral part of the sec- 

tions. The sections in this case were used as liners and they were 

inserted into an outer pipe or 'jacket'. The safety officer at the 

university felt that the structural properties of glass-reinforced- 

plastics were rather unpredictable and in view of the fact that the 

larger diameter would give rise to large hoop stresses he recommended 
the use of such a jacket. For this purpose heavy-duty P. M. ('Polyork') 

piping which had an internal bore of 150 mm was used. This was cut 
into lengths of 0.6m and matching P. M. flanges were fixed to each 

end with a high-strength cement. A recess was machinod on the inside 

rim of each flange to locate with steel clips which were glued onto the 

ends of the liner-1. The liners themselves were machined to overlap 

with adjoining liners thus providing accurate joints and avoiding 

step-wise jumps in surface roughness. The joints were greased to pre- 

vent minor air leakages and the liners were seated in their jackets 

using foam rubber. A completed liner is shown in Fig. 3.3. 
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APPENDIX 2 

EFFECT OF COMPRESSIBILITY ON THE MEASUREMENT OF WALL FRICTION 

It will be assumed that the pipe wall is sufficiently insulated 

for any heat transfer across the walls to be negligible. This seems 

a reasonable assumption in view of the fact that*the measured tempera- 

ture of the air-flow was typically within a few degrees of the ambient 

temperature. The flow can therefore be treated as adiabatic - but not 

as isentropic on account of the irreversible nature of the wall friction. 

The velocity profile will be considered to be sufficiently uniform for 

the flow to be treated in one-dimensional terms. 

The continuity equation is: - 

PUav = constant m 
irDZ 

where ý is the mass flow-rate. The equation of state is: - 

P- = IZ T' (A2.2) 

where R is the gas constant. For aaiabatic flow the stagnation enthalpy, 

must remain constant: - 

h=p+IU2+cT (A2.3) 
0p2 av v 

The steady-flow momentum equation for a horizontal pipe is: - 

dp 
2+ 

dU 
av +f dx =0 (A2.4) 

PU av 
-Uav 15 
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2 where f is the pipe friction coefficient = 8To/PUav . Expressing 

cv in equation (A2.3) in terms of the ratio of the specific heats, y, 

and the gas constant: cv = IT/-y-1, and introducing the Mach number, 

M= Uav /p7-yp, equations (A2.1) to (A2.4) can be combined to give: - 

m 2_ 1 dM +f dx =0 
Y-1)M 

z +1- YM 
1 711 (A2.5) 

which is a standard result (see, for example, Massey (1970)). If the 

term j(Y_l)M2 is small in relation to unity then the denominator in 

the first term of equation (A2.5) can be expanded using a binomial 

series: - 

M2 2 
+ M" (A2.6) 

Hence equation (A2.5) becomes: - 

x2 
fdx 2 2) m22 

(A2.7) Kyl- 
2111 w *ry 

11 
-1 

) loge --Z l' 
x1, 

) (bi 
-m -1 

hbl2 
- Ml 71 

[jýy 
M, 

where the subscripts 1 and 2 refer to the upstrrýam and exit stations 

respectively. 

It is experimentally more convenient to measure the static 

pressure than the Mach number. Combining equations (A2.1), (A2.2) 

and (A2.3) it is easily shown that: 

M2 A (A2.8) 
yp 
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where A is a constant to be determined from the exit conditions. 

Hence equation (A2.7) becomes: - 

X2 
fdx A (-y 

2111 21A (P2 2_ 
P1 

2) P12 
2D 4y 2- ; T-2 

+yl log (A2.9) 
[T21 

Ie2 X11 11 P2 

Now Pl/P2 =1 'ý Ap'p2' where Ap is the pressure drop. If Ap is small 

in relation to P2 then 

2 
log 

e -1 2 
P2 

2AP 
P2 

(A2.10) 

Combining the above three equations gives: 

2' 
fdx 

p2 u 
av2 y+I 

x 
27 YP2 

(A2. I I) 

The pipe friction coefficient, f, is a function of Reynolds number, 

Re= PU aVD/U. 
However, PU av 

is constant, according to equation (AM), 

so that for a given flow f is a function of x only in so far as the 

temperature affects the value of thd molecular viscosity. At 20% V 

changes by only 0.23% per degree C. Since the static temperature was 

observed to change by a maximum of approximately 50C over the length 

of the whole pipe-line, f may be considered constant between the 

measuring stations. After integrating the left-hand-side of equation 

(A2.11) and subsequently replacing f by 8u 02 
/Uav 2, the final relation- 

ship for the wall friction-velocity becomes: 
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2 
+1 u2 ApD P 2Uav III Apy- (A2.12) 

0 402 L, YP2 2 202Uav 2 

where uo and U 
av are referred to the exit plane and L, corresponds to 

the distance between the measuring stations-. 
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APPENDIX 3 

CALCULATION OF THE ROUGHNESS FUNCTION 

For a given value of e, u0 and X, the sum of the squares of the 

residuals, a, in equation (3.6), becomes a minimum when 

5u2 +c Yi+e 12 yi 2+ 2X 
ax UO 

2+K2 log 
eh+XK Cg eh 

2u 
1 log 

Yi+C 
+x (A3.1 

uo 7e1 

This leads to equation (3.5). 

The five equations in the five unknowns (x, uo, c, n and Uav) 

are: - 

U 
av uo (43+4211 

"2 1--9 (A3.2) -Uc KTC 

2 
pu +1 2 ApD a av =1 

9 (A3.3) 
0 4Pa L, YPa 2 

5 
I 

ui i+r (A3.4) 
[ 

-uo - "I 
IC 10 9e 

Lh-] 
I 

uc 

-I log R+x+ 211 (A3.5) u0KehK 
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and 

ru, 
log 

Yi+E 
L-u 1 i=l 

(A3.6) 

where yis uis Uc, Ap and pa are experimentally-dete-mined, parameters 

and K, y, h, R, Ll and Pa are known. The five equations must be 

solved subject to a, being a minimum. The procedure used in the investi- 

gation was to set c and then solve the above equations to find a,. 
This procedure was repeated, using different values of e, until the 

minimum value of a, was located. The following intermediate parameters 

can be defined in terms of e and the experimental measurerrents: - 

log ý-i. 5 
'1 

Yj+c 
Keh5iIIK 

loge h 

Be 
2-yp 

a 

C+ 
e Ppa 

D 
4Pa L 

e LpD 

5 21 uc Uil 2 eý 
Uc ýo 

43-21KA 

JUIC 

and 

ui 

(A3.7) 

(A3.8) 

(A3.9) 

(A3.10) 

(A3.11 

(A3.12) 

(A3.13) 



147 

It is easily shown that the required quantities can be expressed 

in terms of these intermediate parameters as follows: - 

u0 
2E 

eFe+ 
AE 

e2F-e2- 
4(F 

e2+BeDe 
)(E 

e2-BeC e) 
2(F 

eZ+B eDe) 

Uav' ý 
he(Ce 

-D euo 
z) 

91 

EGeA 
2 

lu 

0 e) 

x= 
UC-Ge 

+A .1 loge R 
and ueK-N 

(A3.14) 

(A3.15) 

(A3.16) 

(A3.17) 



APPENDIX 4 

THE RESPONSE EQUATIONS FOR AN INCLINED HOT-WIRE 

The diagram at the end of this appendix (Fig. AM) refers to an 

inclined hot-wire for two orientations in the x-y plane. The two con- 

figurations will be denoted by the subscripts 1 and 2. 

For the first configuration the component of the instantaneous 

velocity along a normal to the wire is given by: - 

22 12 qnI= 
[(u+ul)sinD 

- vlcosD] +w 

Fo. r the component parallel to the wire: - 

PI 
2=I (u+u')cosý + v'sinD] 

2 

According to equation (3.8) the instantaneous effective cooling velocity 

is therefore: - 

eff 
2= [(u+u')sinD 

-vlcosD 
2+w 

.2+k 2[(U+ul)coso 
+ v1sino 

-2 
(AM) 

II- 

The time-averaged value is (witht= 450): - 

2 22+k +1 U2+u, 2+v 2v qeff 
I=W 

(ýv (, "+ (k -I)T= (A4.1a) 

Similarly, for the second configuration: - 
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eff2 
2= [(u+u')sin, 

ý + v'coso] 
2+w 

12 + k2 
I (u+ul)coso - vlsiný] 

2 
(A4.2) 

and 

q2= WiT + 
fk2+11 (U2 + 

-W-7 
+ 

-V-7) 
_ (k 2 

_, )-OVr (A4.2a) 
eff2 121 

The electronic lineariser generates a transfer function such that 

equation (3.9) transforms to: - 

eb=ALq eff ' (A4.3) 

where eb is the instantaneous linearised bridge voltage which can be 

expressed as the sum of the mean and fluctuating parts as follows: - L, 

eb = Eb + e'b * (A4.4) 

The quantity AL in equation (A4.3) is a constant which depends on the 

setting of the lineariser gain controls. 

S ubtracting equation (A4.1a) from (A4.2a) gives: - 

q eff2 
2' 

- qef f12= 2(1-k2)U-Tr . 
(A4.5) 

Combining equations (A4.3), (AM) and (A4.5): - 

(E b2+ ei b2 )2 (Ebl + elbl) 
22 

2 --ý =2 (1 -k )U-rV-'r (A4.6) 
L2 LI 
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The mean components of the bridge voltages are arrived at. in the 

following way. The effective cooling velocity can be expressed as 

the sum of the mean and fluctuating parts: - 

q eff = qm +q1 

hence 

q eff 
Z= 

qm 
2+ 

qlZ . 

It is clear from equations (AM) and (A4.2) that: - 

22 I+k 22 

,2 
qm qm - -ýýl u 

Combining this result with equations (A4.3) and (A4.4) it is seen that: - 

Eb 2 Eb 2 
I+k 22 21 12 

u (A4.7) 

12 

Clearly, if it is arranged that AL 
1=A L2' then the mean bridge voltages 

are equal. Hence equation (A4.6) becomes: - 

UIVI = 
elb2 

2- 
e1b, 

2 

(A4.8) 
2AL 2 (1-k 2) 

Defining a new lineariser constant (for experimental convenience), 
GL = u/E V it follows from equation (A4.7) that: - 

GL 242 
AL (1+0) 
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Substituting for AL in equation (A4.8), the final expression for the 

cross-correlation of the longitudinal and transverse fluctuating 

velocities becomes: - 

GL 2 
1+k2 [-e 

(M. 9) 4 1-k 2b2 

Expressions for the longitudinal and transverse fluctuating 

velocities can be derived by expanding equations (A4.1) and (A4.2) 

using a binomial series (with o= 450). For the first configuration: - 

21 2 V, 2 u2+W, 2 
+ 1+k ++ q1+ ik U 

F=-1 
U2 U2 U2 

ýul 
ef T1V -2 2 

- (1-k2 (ý ýul +-2 (A4.10) 

Considering only the' fluctuating parts, it follows from equation (A4.3) 

that: - 

elb 2 gk 
2; 

2 
v 12 ivl 

« 
uw+ I+k + 17 + 

ý-u-U, (142) fv' 
,u 

Luu 
(lu- 

Similarly, for the second configuration; - 

(A4.1 I) 

I 
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el b2 
-u 

-W, 
2++ 42 +v2+U, + (1-k2 ) fv' 

+ UIVII 
. 

u-- 
ý-u - -j * -"L- fT u 

*1 

ul Ul U -uz 

Expressing AL in terms of GL and introducing the instantaneous 

sum and difference voltages so that: - 

els = el b2 + el b1 

and 
el d= egb2 - elb, , 

it follows from equations (A4.11) and (A4.12) that: - 

GL 2 
e's 

2 

4 (1 +k 2) 

and 

(A4.12) 

(A4.13) 

2-77 2 
V, 2 

= 
GL el d (l+k ) 

(A4.11) 
4(1-k 2 

to first or-der approximations. 
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FIG. A4.1 ORIENTATIONS OF HOT-WIRES IN 

x-y PLANE 

Configuration 1 

x 
Configuration 2 
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APPENDIX 5 

CALCULATION OF THE LENGTH SCALES OF THE TURBU- 

LENCE FROM THE MEASURED FREQUENCY SPECTRA 

The computer program* used to calculate the length scales of the 

turbulence begins by calculating the frequency spectrum function. The 

only input data required for the whole program are the local velocity 

(m/s) and the. readings from the level recorder (dB). The associated 

frequency is pr 

data is divided 

frequency: - 

2) 

3) 

4) 

5) 

inted prior to each request for a decibel reading. The 

into six regions, each having a fixed interval in 

20 n 100 in steps of 10 

100 n 300 in steps of 50 

300 n 1000 in steps of 100 

1000 n< 3000 in steps of 500 

3000 n< 10000 in steps of 1000 

6) 10000 n< 18000 in steps of 2000 

where n is measured in Hz. 

A least squares parabola is fitted to each of the six regions so, 

that for the i'th region the spectrum function is represented by: - 

F(n) =ai+bin+ci n2 $ (A5.1) 

where ais bi and ci are the coefficients of the parabola. The quantity 

6 
n2 

(a i+bin+cin )dn 
nII 

is then calculated and compared with unity (see equation (3.10)). The 

The program is written in TSS/8 BASIC. 
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limits of the integral, n, and n 2' represent the lowest and highest 

frequencies for the i1th region. Small adjustments are then made to 

the reference level (of the unfiltered signal) so that the above 

quantity is within approximately 1% of unity. The program then prints 

out the quantities 2, nn/u, uF(n)/21T, F(n) and n2 F(n) for each value of n. 

The spatial correlation coefficient is: - 

co 
e, 

RT F(n) cos' 
I 2, ffýAx dn 

U 
0 

which is approximately equal to 

n2 

(ai +bn+c n2 ) Cos 
2TrnAx dr; 

n I. 
iiu 

u6+2_ 
_ciu 

2 

sin 
2ffný' x 

[ai 
bin + cin 22u 27r Ax 

,n2 
+u (b +2c n) cos 

21rnAX 
27rAx iiu (A5.2) 

-n 

for a given value Of AX. This is printed for increasing values Of AX. 

The value of Ax at which 
:: Zhj 

s zero is calculated by parabolic 
12, S 

interpolation and it is this value which is used to define the upper 
limit of the integration for the determination of the macro-scale (see 

equation (3.13)). A Simpson integration is used for the final calcu- 

lations of the two length scales. A listing of the program is given at 

the end of this appendix. 
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10 
15 
16 
17 
is 

Cp -20 

,, -25 
30 
40 
45 

, 50 
55 
60 
65 
70 
75 
so 
85 
90 
95 

100 
110 
115 
120 
125 
130 
135 
140 
145 

"150 
155 
160 
165 
170 
175 
177 
17 8 
179 
180 
181 
182 
183 
184 
18 6 
188 
190 
192 
194 
196 
211 
212 
215 
220 
221 

PROGRAM LISTING 

D114 F(37). #N(37). PS(37)., A(6)jB(6)., C(6)., R(70)oD(5), T(5), E(70) 
X= 0.0 5\, L( I ja 20 
Sl=-iO. 05 
P2=3.14159265 
REM INPUT '-EXPERIMENTAL DATA 
D5=1-0, NPRINT "VEL(M/S)ý"; \INPUT U\U=U*1007 
FOP. 
PRINT "W(fiZ)="; \PRINT N(I); \PRINT IIS(DB)="; \IIJPUT 
N(I+ D=N(I )+D5 , 

Us T I, - 
Bl=(S(I)-46)/20\B2=l0tBl 
F(I)=(B2t2)/(0.06*ýJ(I))\DJEXT-1, 
M=9\DI=O\F! =O\Gl=O\HI=O\Jl=O\LI=O\PI=O 
M I= I\M 2= 9\J= I 
GOSUB 400 
D5=50\N(10)=150 
FOR Iý-lq TO 3 
PRINT "N(I[Z)="; \PRINT"-N(I); \P', 'IIiNT IIS(DB) ="; \INPUT 
N(1+1)=tJ(I)+D5\Bl=(S(lý-, 46)/20\r32=lOtBl 
F(I)=(B2t2)/(0.06*N(I))\\NEXT I 
M=5\DI=O\FI=O\GI=O\HI=O\jl=O\LI=O\PI=O 
LM 1=9\M2= 13\J= 2\ GOSUB 400 
D5=100\N(14)=400 
FOR I=14 TO 20 
PRINT 'IN (HZ)= "; \PRINT N(I); \PRINT "S(DB)="; \INPUT 
N(I+I)=N(I)+D5\Bl=(S(I)-ý46)/20\B2=IOTBI 
F(I)=(B2t2)/(0-06*N(I) )\NEXT I 
M=S\DI=O\FI=O\GI=O\HI=O\JI=O\LI=O\PI=O 
141=13\142=20\J=3\GOSUB 400 
D5=500\N(21)= 1500 
FOR I=21 TO 24 
PRINT "N(HZ)="; \PRINT N(I); \PRINT "S(DB)="; \INPU-& 
N(I+ 1)=N(I)+D5\Bl=(S(I)-46)/20\B2=lOtBI 
F(I)=(B2t2)/(0.06*N(I))\NEXT I 
M=5\DI=O\FI=O\GI=O\HI=O\JI=O\LI=O\PI=O 
Ml=20\M2=24\J=4\GOSUB 400 
D5=1000\N(25)=4000 
FOR I=25 TO 31 
PRINT "N(HZ)="; \PRINT N(I); \PRINT "S(DB)=II; \INPUT 
DJ(I+I)=tJ(I)+D5\Bl=(S(I)-46)/20\B2=lOtBI 
F(I)=(B2t2)/(0-06*N(I))\NEXT I 
M=S\DI=C\FI=C\GI=O\Iil=O\JI=O\LI=O\PI=O 
M1=24\, M2=31\J=5\GOSUB 400 

D5=2000\N(32)=12000 
FOR I=32 TO 36 
PRINT "N(HZ)="; \PRINT N(I); \PRINT "S(Db)="; \INPUT 
N(I+I)=t, 1(1)+D5\Bl=(S(I)-46)/20\B2=lOtBI 
F(I)= (B212)/(O. 06*N(I) )\NEXT I 
M=6\DI=O\FI=0\01=0\111=0\jl=O\LI=O\PI=O 
Ml=31\M2=36\J=6\GOSUB 400 
S6=0\GOSUB 600 
REM Sl IS DECREMENT IN S(DB)TO SECURE INT. F(N)DN=1 
PRINT 

SC I) 

SC I) 

S(I) 

Sc I) 

SC I) 

SC I) 

PRINT N". -" F(N)", "Nt2 F(N)", "2PIN/U". #, #UF(rJ)/2PI" 
PRI14T HZ"-p"SECS", "SECt- CZ-1 "\ PR INT 
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Continued 

225 FOR I= I TO 36 
226 REM OUTPUT SPECTRP1- DATA 
230 PRINT N(I), F(I).. * ((N(I) 12)AF(I))., 2*P2*N(I)/U, U*F(I) (2*P2) \NEXT 1 
233 PRINT "X( DI) It, of RM 11 
235 PRINT\S3=0\FOR K=l TO 58\S2=0 
236 REM CALCULATE R(K)=CORRELATION FUNCTION 
240 J=l\L=20\Ul=100d\G0SUB 500\S2=S2+S3 
245 J=2\L=100\Ul=300\GOSUB 500\S2=S2+S3 
250 J=3\L=300\UI=IOOVj\GOSUB 500\S2=S2+S3 
255 J=4\L= I OVO\U 1=3'0100\ GOSUB 500\S2=S2+S3 
260 J=5\L=300Z\Ul=10000\GOSUB 500\S2=S2+S3 
261 REM START MACROSCALE CALCULATION ON LINE 269 
262 J=6\L= l0000\Ul--20000\GOSUS 500\R(I<)=S2+S3 
265 PRINT X. -R(X)\IF K>19 COTO 266\X=X+0.05\X=X-I\GOTO 267 
266 IF K>29 COTO 267\X=X+0.2\X=X-1 
267 X=X+l\NEXT K\GOTO 285 
268 PRINT\PPINT "DATA POSr4-". -"DlACROSCALE(MM)" 
269 EI=0.0166667*(S6+4*R( I)+R(2)) 
270 FOR K=l TO 9\EI=EI+0.016667*(R(2*Y, )+4*R(2*K+I)+R(2*K+2)) 
271 PRINT (2*K+2)., 10*-E-1\NEXT K\G2=0 
272 FOR K=10 TO 14\EI=EI+0.066667*(R(2*K)+4*P(2*K+I)+R(2*IC+2))\E(K)=EI 
273 PRINT (2*1<+2)., 10*EI\IF R(2*K+2)<O COTO 275 
274 COTO 276 
275 MI=K-3\M2=K\Vi=4\GUSUB 800 
276 NEXT K 
277 FOR K=15 TO 28\EI=EI+0.3333*(R(2*K)+4*R(2*K+I)+R(2*K+2))\E(K)=EI 
273 PRINT (2*K+2)., IO*EI\IF R(2*K+2)<O COTO 280 
279 COTO 281 
280 Ml=K-3\M2=K\M=4\GOSUB 800 
231 NEXT K\GOTO 900 
282 PEM CALCULATE MICROSCALE 
285 E2=166-67*(4*N(15)? 2*F(15)+N(2O)t2*F(20)) 
290 E2=E2+166-67*Ctl(20)t2*F(20)+4*NC2l)t2*F(21)+N(22)t2*F(22)) 
295 E2=E2+333.33*(ý1(22)t2*F(22)+4*N(24)?, O-*F(24)+. rJ(25)t2*F(25)) 
300 FOR 1=25 TO 29 STEP 2 
305 E2=E2+333.33*(tl(I)t2*F(I)+4*N(I+I)t2*F(I+I)+tJ(I+2)t2*F(I+2)) 
306 NEXT I\FOR I=31 TO 33 STEP 2 
307 E2=E2+667*(N(l)f2*F-%I)+4*tl(I+I)? 2*F(I+I)+N(1+2)t2*F(I+2)) 
310 NEXT I\PRINT 'I-IICROSCALE(MM)="; IO*U/(2*P2*SQR(E2)) 
315 COTO 268 
320 COTO 900 
399 R&M CALGULATE LEAST SQUARES PARABOLA TO FI*T F(N) DATA 
400 FOR I=M I TO M2 
405 DI=Dl+rJ( I)\ Fl= Fl+rj( I)t 2\GI=G l+N( I) t4 
410 H I=H l+N( I) t 3\J ]=JI+F( I )\L I=L I+N( I )*F(I 
415 Pl=Pl+F(I)*N(I)t2\NEXT I 
42 0 D3= (FI*G I-H '&*H 1) *114 -- (D I*GI-FI *H 1) *DI+C 61 *H I-FI *F 1) *F 1 
425 NI= (F I*G I-H I*H 1) *j I-CDIGI-F1 *111) *L I+(D1 *111 -FI*F 1) *P 1 
430 N21= (F1 *111 -D 1* G 1) *J I-(FIFI -M* GI *L I+(DI*FI -M*H 1) *P 1 
435 N3= CD1 *1111 -F 1* F 1) *j I- (M*ll I-D1 *F I *L 1+ (M* FI-D1*D 1) *PI 
440 A(ty)=N I/D3\B(J)=tJ2/D3\C(J)=N3/D3 
445 RETURN 
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Continued ........... 

499 REM CALCULATE FOURIER TRANSFORM INTEGRAL 
500 I= 1%%D(I)=U I 
505 AI=U/(2*P2*X) 
510 A2=(A(J)+B(J)*D(I)+C(J)*D(I)t2)*SIN(D(I)/Al) 
515 A3=Al*(B(J)+2*C(J)*D(I))*COS(D(I*)/Al) 
520 T(I)=A2+A3-((Ut2)*C(J)/(2*(P2t2)*(Xt2)))*SIN(D(I)/Al) 
525 I=I+I\D(I)=L\IF I=2 GOTO 505 
530 S3=(T( I)-T(2))*Al 
535 RETURN 
539 REM CALCULATE INTEGRAL UNDER F(N) CURVE 
540 S5=A(J)*UI+B(tJ)*(Ult2)/2+C(J)*(Ult3)/3 
545 S5=SS-(A(J)*L+B(J)*(LT2)/2+C(J)*(Lt3)/3) 
550 RETURN 
599 RF-', i ADJUST S(DB) TO ENSURE THAT INTEGRAL F(N)DN<1 
600 J=1\L=20\UI=100\GOSUB 540\S6=S6+S5 
605 J=2\L=100\UI=300\GOSUB 540\S6=S6+S5 
610 J=3\L=300\Ul=1000\GOSUB 540\S6=S6+SS 
615 J=4\L=1000\UI=3000\GOSUB 540\S6=S6+S5 
620 J= 5\L= 3000\U 1= 10000\ GOSUB 540\S6=S6+ S5 
621 J=6\L= 10000\UI=20000\GOSUB 540\S6=S6+S5\0=Q+l 
622 PRINT "INTEGRAL F(N)DN="; S6 
625 GOTO 700 
630 FOR I=l TO 31\S(I)=S(I)+Sl 
635 Bl=(S(I)-46)/20\b2=l0tBl 
640 F(I)= (B2t 2)/(0.06*N(I) )\NEXT I\S6=0 
645 M=9\DI=O\FI=O\GI=C, \HI=O\JI=O\LI=O\PI=O 
650 M 1= l\M 2=9\J= 1\ GOSUB 400 
655 M= 

, 
5\DI=O\FI=O\GI=O\HI=O\JI=O\LI=O\PI=O 

660 M 1=9\M 2= 13\J=2\ GOSUB 400 
665 M=B\Dl =O\FI=O\GI=C\HI=O\JI=O\LI=O\PI=O 
670 M 1= 13\M2=20\J= 3\ GOSUB 400 
675 M=S\DI=O, \FI=O\GI=O\HI=O\JI=O\LI=O\PI=O 
V80 MI=20\M2=24\J=4\GOSUB 400 
685 M=B\DI=O\FI=O\GI=0\111=0\JI=O\LI=O\PI=O 
690 Ml=24\N2=31\J=5\GOSUB 400 
695 GOTO 600 
700 IF Q=l GOTO 710 
705 IF S1<0 GOTO 720\GOTO 725 
710 IF S6>1 GOTO 630 
715 S I=- S 1\ GOTO 630 
720 IF S6<1 GOTO 750\GOTO 630 
725 IF S6>1 GOTO 750\GOTO 630 
750 RETURN 
799 REM SUBROUTINE TO FIND MACROSCALE FOR ZERO R(X) 
800 J=6\DI=O\FI=O\GI=O\HI=O\JI=O\LI=O\PI=O\G2=G2+1 
801 IF G2> I GOTO 820 
805 FOR I=Ml TO M2\N(I)=R(2*I+2)\F(I)=E(I)\NEXT I 
810 GOSUB 400\PRINT "L4AGROSCALE(Mý"1)="; (IO*A(J))\Pl"ýINT 
820 RETURN 
900 END 
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APPENDIX 6 

COMPUTER PROGRAM FOR PREDICTION OF TWO-DIMENSIONAL 

TURBULENT BOUNDARY-LAYERS 

The program prints the values of the flow variables at the end of 

each step in the integration, given the starting values of C' f and Ra 

and the longitudinal distributions of U., and dUO/dx. 

The program firstly calculates the starting values of 8, n and w 

which must be compatible with the constants in the law of the wall 

(see Section 4.6). Starting with the energy method, the subroutine 

D02AHF, which integrates the system of equations (see Section 4.5) 

over one step interval in x, is called. This subroutine calls the 

auxiliary subroutine DERIVS to calculate the derivatives, which in 

turn calls the following subroutines: 

INTVAL - this finds, from the input data, the intermediate 

values of U. 
0 and dU. /dx at any value of x; 

COMPARE 
auxiliary subroutines called by INTVAL; 

INTERP 

F04ATF this is called by DERIVS to solve algebraically the 

system of simultaneous equations; the solution set 

for the derivatives is returned to DERIVS. FO4ATF 

is also called by INTERP to calculate the inter- 

mediate values of Uc, and dU. /dx; 

SHEARCOEF - this calculates the coefficients in GIO and G 11 which 

are needed to find the shear stress and shear work 

integrals (see Section 4.4). 
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The integration Proceeds until the maximum value of x is reached - 

when the process is restarted for the next method. The accuracy of 

the integration can be assessed by the value of the FORTRAN variable 

B2, which is the constant B in equation (4.60). This should be equal 

to 5 but in practice the step size is controlled to keep B2 to within 

a maximum of + 0.1 of this value. 

The following input data is required: - 

FORTRAN SYMBOL DESCRIPTION 

RTHETO 

CFO 

XB(I) 

starting value for R 

starting value for C' f 

array containing x values 

UINF(I) array containing U., values , 

DUINDX(I) array containing dU. /dx values - 

DX step interval in x 

NO, RHI., 
-, 

"V 9ý 

RC2 CI/Bl (equation 

N maximum value of I 

ORDER order of matrix for Lagrange inter- 

polation (a value of 3 is recom- 

mended). 
i 

At the end of each step in the integration the following is printed: 

FORTRAN SYMBOL DESCRIPTION 

xx 

CF cl f 
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HI H 

RTHETA R 

B2 B 

DELTA 

OMEGA 

PI 

U00 U0 

CRATE Cr'("2 constant) 

ALPHA a 
yl. aG, (equation (4.23)) 

DUST estimate of step size used for 

next interval. 

The subroutine D02AHF employs an Adams method of integration and 

has been developed by The National Algorithms Group (U. K. ), as has 

subroutine F04ATF. These subroutines are not listed in the FORTRAN 4 

program which follows. 
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PROGRAM LISTING 

MASTER MAINPROG 
REAL KlrNU 
INTEGER ORDERsTpUDpJMAX(, 3) 
DIMENSION Y(4)#G(4)pYO(4)#EE(4)pAA(4#lb)#BB(4#15) 
COHmON K1 #DELTA,, OmEGA, PI , UlP4FJ oDUIND1 # XB(b0) #UINF (bO) UUINDX(bO) fN 

ItORf)ERiýIETHODiNU#ALPHA#CRATE*RHIoNCIeRC2 
EXTERNAL DERIVS 

C READ INPUT DATA 
READ(b#1000) NrORDER 
REAU(5pl0l0) RHI 
READ(5#1010) RTHETO 
READ(bil0to) CFO 
READ011010) RC2 
RLAD(bpl0l0) NU 
READ(bolU103 .0x 
METHUD=1 
DO b I=I*N 
RLAD(50020) X13(I) 

5 CONTINUE 
00 6 I=IpN 
READ(5,1020) UINF(I) 

6 CONTINUE 
DO 7 I=I#N 
READ(5,1020) UUINDX(I) 

7 CONTINUE 
X=XB(l) 
CRATE=-0*00 

C CALCULATE INITIAL VALUES FOR DELTA#PI#OMEGA 
bl=b8o 
RCI=0,005 
ALPHA=0,018 
K1=0041 

20 OHEGA=5QRT(CFo/2,0) 
UINFI=UINF(l) 
DUUO= (I, 0/K1 ) *ALO(; (RC2*RHI *UMEGA*UINFI/NU+EXP (-I . J*RC 1 *Kill *OMLLiA*U 

JINFI/NU)) 
PI=00 

22 PI I=It O/UtIEGA) -(1, O/K IC ALOG (RTHE TO/ (GI (KI p PI ) -OMEGA*G2 (K I -P PI 
l+2,0*P1)-bl+DUUo 

P12= (I, 01K I)*C(((I, O/K I -OMEGA* (I, 0/ CKI **2,0) (2,9/ 1 4**Pl +3,0428 
1/(GI(KLIPI)-OMEGA*G2(KlIPI)))-2.0) 

PIJ=PI-CPII/PI2) 
1F(At'8(F1J-Pj), LT, Wt0Aol)-G0TO 23 
P. I=PI. 3 
GOTO 22 

23 DELTA=EXP(Kl*(IoO/UMEGA+DUU4-5,0-290*PI/Kl)-ALOG(OMEGA*UINFI/fill)) 
C METHUD=1 .... ENERGY 
C HETHOU=2 s,,. ENTRAIr4f1LNT 
C MENUD=3 9-. 01UMENT OF MOMENTUm 

I=mETHOU 
IF(METH009E(l, l) GOTO 25 
IF(HETHUP, E1112) GOTO Jo 
WRITL(6#1050) 
GOTO 40 

2b wRITE(6,1060) 
GOTU 4U 
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Continued 

STARTING VALUES 
30 WRITE(6j1070) 
40 WRITE(6pjkýJo) DELTAV(Jt, iEGA#Pl 

X=XB(I) 
UINFI=UINF(l) 
DuINUj=UUINL)X(j) 
YCI)=DELTA 
Y(2)=PI 
Y(J)=OmEGA 
Y(4)=ALPHA 
G(l)=0901 
G(2)=0901 
GM=4,01 
G(4)=O, ol 
IFAILzl 
OXEST=0.05*UX 
T=l 

C INTEGRATE FOR STEP-LENGTH DX 
50 CALL D02AtIF(XtYfGpTl4fDXfl))(ESToDERIVS#Yv)#EEIAA#88p4oDD#IFAIL) 

IF(IFAIL, EQ, l) GOTO 56 
DELTA=Y(l) 
PI=Y(2) 
OtIEGA=Y(J) 
IF(OMEGA, LT, 0,0) GOTO 56 
ALPHA=Y(4) 
Hl=(GI(KIPPI))/(GI(KIPPI)-(IMEGA*(G2(KloPl))) 
kTHETA=CUINFI/Nif)*(DELTA*UMEGA*(GI(KitPI)-Ot, IEGA*(G2(KlpPl)))) 
82=(I, O/UMEGA)-('. O/Kl)*(ALUG(HI*RTHETA/(; I(Kl#Pl))+2.0*Pj)+(IoO/KI 

I )*ALOG(RC2*RH1 *OMEGA* (UINFI/NU)+EXP(-l O*RCI *RHI *IJINF1 *OMEGA/NLI) 
CF=2j0*(0MEGA**2) 
bDIFF=ABS(62-5.0) 
IF(ODIFF, GT. 0.1) GOTO 56 
U00=OMEL; A*lJINFJ 
"HITF-(6110-30) X#, CFoýfl#WTHETAoU2tDELTA#UMEGAIPI, UotI 
Yl=ALPHA*Gj(KjjPI) 
wRITE(6tjoao) CRATEfALPtiAjyl#0XEST 

5b IF(Yl, LT, 64, U) GOTO b6 
IF(CF. LT, W. o0oj) GOTO 56 
IF(X, 09, ý80)) GOTO 50 

56 METHUU=fiETHOD+j 
lf("F-THOD, GT43) GOTO 2000 
ALPHA=v), 018 
GOTO 20 

1000 FORflAT(2(I2)) 
1010 FORMAT(Fo, i)) 
1020 FORMAT(F0.0) 
lujo FORtiAT(Fl2o2tFl2lboFl2,4oFl2,1#FI2,4oFl2.3#FI29b#FI2,5oFI2, b) 
1050 FURMAT(14H MOMENT METHOD) 
1060 FORMAT(l0i ENERGY METHOD) 
1070 FORMATC19H ENTkAINMENT MEMO) 
1080 FORMAT(JF12j3pFlbj(J) 
2000 STOP 

END 
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Continued 

SU8ROUTINE DERIVS(C#Y, X) 
C CALCULATES DERIVATIVES FOR ADAMS INTEGRATION SUBROUTINE DW2AHF 

REAL Kl#NU 
INTEGER ORDER 
DIMENSION Y(4)pA(4t4)P"C(4)#B(4)#AA(4*4)tWKSI(4)#WKS2(4) 
COMMON KIPDELTA#OtiEGAPPIPUI! iFloDUINDIpXB(50)tUINF(50)oUUINDX(5id)IN 

ItORDERpýIETHUOtt4UtALPtiAtCRATE#RkiloRCloRC2 
DELTA=Y(j) 
PI=Y(2) 
OMEGA=Y(3) 
ALPHA=y(4) 
CALL INTVAL(I)ItJFIpUUINI)IpXfXBoUINF#DUINDXtNtORUER) 
A(Ill)=(GI(KipPI)*OtIEGA)-((, 2(KIIPI)*(UMEGA**2,0))-OHEGA**2, kI 
A(1#2)=OýIEGA*DELTA/Kl-(OtiLGA*k2gO)*DELTA*GJ(KIIPI). 
A(1#3)=CGI(KIIPI)*DELTA)-2lo*G2(KI#PI)*DELTA*OMEGA-290*DELTA*UMEGA 
A(lp4)=O, O 
8(1)=UMEGA**2,0-(I, O/UINýl)*DUlt4Dl*(3oO*GICKIoPI . )*OHEGA*DELTA-2v0* 

IG2(KIPPI)*(OtiEGA**2,0)*DELTA-2, ijý: DELTA*OMEGA**2,0) 
A(2#1)=I, O/(KI*ULLTA) 
A(2p2)=2,0/Kl 
RLIFI=EXP(-I, O*RCI*UMEGA*Rýil*UINFl/NU) 
RUFCUR=(RCI*RUFI-RC2)/(KI*RC2*OMEGAtKI*RUFI/(RHI*UIt4FI/tJU)) 
A(2#3)=Ioo/(OMEGA**2,0)+IoO/(OMEGA*Kl)+RUFCUR 
A (20 4 )=0,0 
8(2)=(-I, O/(KI*UINFI))*UUINDI*(IgO+RUFCUR*KI*UMEGA) 
IF(METHOD, EQ, I) GOTO 10 
IF(METHOD, EQ. 2) GOTO 20 
GOTO 30 

C ENERGY METHOD 
10 A(Jol)=011EGA*(GI(KIIPI)-lo5*OMEGA*G2(KI#Pj)+(UMEGA**2,0)*G4(Ki.. Pj) 

1) 
ACJ#2)=UMLGA*UELTA*((I, U/Kl)-1*5*OMEGA*G3CKIpPI)+(OMEGA**2*iJ)*Gb(K 

IIFPI)) 
A(JtJI=DELTA*(GI(KIpPl)-3eO*OMLGA*G2(KlpPj)+310*(OMEGA**2*03*(; 4(KI 

11PI)) 
A(3p4)=O, o 
CALL SHEARCUEF(KI, PI#CI, C2pC3pC4,, C5#ALPHA) 
b(3)=UMLGA**2,0+(()MEGA**J, O)*(GII(KI#PI*CJPC4pCb))-CUELTA*UMEGA/UI 

INFI)*DUINDl*(J, O*Gl(KI*PI)-4,5*0ýiEGA*G2(KIIPI)+J*U*(UIIEGA*'*2.0)*G4 
l(KloPI)) 

GUTU 40 
C ENTRAINMENT METHOD 

20 A(-J#, l)=(l*0-Gl(KlpPI)*0MEGA) 
A(JP2)=-j90*OME(; A*DELTA/Kl 
A(J#J)=-I, O*GI(KIpPI)*DELTA 
A(J#4)=Ogo 
B(3)=(I, U/UINFI)*(GI(KI#Pl)*UýIEGA*DELTA-DELTA)*UtJjt4Dl+l4lo, u*((Kl* 

lGl(KlPPI)*OMEGA)**J)*0mEGA 
IFAIL=u 
GOTU 40 

C MOMLNT OF MONENTUm METHOD 
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Continued ........ 

30 ACJII)=OMLGA*(290*G6(KI, PI)-OMEGA*G7(KipPl)) 
A(3#2)=OMEGA*DELTA*(0,3/KI-OMEGA*G8(KIpPl)) 
A(3,3)=DEL. TA*(G6(KIpPI)-OtIEGA*G9(KI#PI)) 
A(3#4)=Ooo 
CALL SHEARC(JEF(KI, PIoCl#C2rC3tC4*C5rALPHA) 
8(3)=(-190/UINFI)*DtJIr4DI*(4.0*G6(Kl, PI)-OMEGA*G9(KIpPl))*UtILGA*DLL 

ITA+(OMEGA**29U)*(GIO(KI, PIoClpC2)) 
40 IFAIL=O 

A(4jj)=UI? 4FI*OMEGA*GI(KIpPI) 
A(4,2)=UlNFI*OMEGA*t)ELTA/Kl 
A(4#J)=UltlFI*I)ELTA*Gl(KIFPI) 
A(4r4)=OMEGA*DELTA*UINFI*GI(KIpPI)/ALPHA 
B(4)=CRATE*OINFI*(190-(09018/ALPýIA))-OMEGA*DELTA*GI(KI#Pl)*UUINUI 

50 CALL F04ATF(Af4p8#4fC#AAp4t; 4KSloNKS2olFAIL) 
RETURN 
END 

SUBROUTINE SHEAIICOEF(KI#PI#Cl#C2oC3pC4#Cb#ALPHA) 
C THis SUbROUTINE FINDS THE COEFFICIENTS CItC2, C3#C4 AND C5 
C WHICH ARE NEEDED IN OROER TO CALCULATE THE GIV AND Gil 
C FUNCTIONS APPEARING IN THE SHEAR STRESS AND DISSIPATION INTEGRALS 

REAL KI 
A=Kl 
YI=ALPHA*GICKIIPI) 
X=01001 
X-3=0, I 
K=l 
1=3 - 

30 Il=I 
EI=A*(190-290*X)*(X**210-X**ýOO)wCA*(X-X**2oO)-Yl)*(2.0*X-3#0*X*42 

140) 
E2=(290*X-4.0*X**J, O)*(X**290-X**3,0)-(X**290-X**4,0)*(2.0*X-3.0*x 

1**2,0) 
E=El/E2 
L)I=A*(Illýi-2,0*X)*(X**2.0-X**3.0)-E*C2,, O*X-4, ti*X**3*0)*CX**2. k4-X**j 

190) 
D=Dl/((2oO*X-Joti*X**2,0)*(X**2#0-X**3,0)) 
C=-A-L-D 
8=A+2,0*C+3j0*0+4,0*E 
RI=ABS(R) 
IF(R1, LT, o, ooool) GOTO 300 
K=K+l 
IF(KlGT, 2) GOTU 110 
Il=IFix(siGN(i, w, R)) 

110 I=IFIXCSIGN(I, O#R)) 
IFCI, EU, 11) GOTO 120 
GOTU 140 

120 X=X+XJ 
GOTO 40 

130 XJ=-XJ/10,0 
x=x+x3 
GOTO JO 

300 CIZý109167*Kl+Cii*4*C+(i. 2J3J3*D+o, lb48*E) 
C2=K1+(0s6*C+0j4*0+0,26b1*E) 
C-3=0 t 91905*C+11,37/38*L)+(i*2L'47t)*E+', ) ,1 *Kl 
C4=1,88b7l*C+1,05714*D+il, 65114*E+2$vJ*KI 
Cb=lt37l43*C+Olf35/15*U+iJob/142*L+2,4*KI 
RETURN 
ENU 
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Continued 

SUBRUUTINE INTVAL(UINFliDUINDIoXtXBpUINFIDUINUXoNtORDER) 

C INTYAL IS A LAGRANGE INTERPOLATION SUBROUTINE TO FIND INTERMEDIATE 
C VALUES OF UINFI AND DUINDI FOR A GIVEN VALUE OF X AS-REQUIRLD BY THE 
C AUXILIARY SUBROUTINE OERIVS WHICH FINDS THE DERIVATIVES, A TWO- 
C DIMENSIONAL ARRAY OF ORDER MAL TO 'ORDER' 15 FIRST SET UP AND SUd- 
C SEOUENTLY SOLVED IN SUBROUTINE INTERP, - 

I14TEGER ORDER 
DIMENSION Xii(N)pUINF(N)pUUI, 4DX(N)IC(lb) 
CALL COMPARE(XoXBjNj#NP0RUER) 
CALL INTERP(XBIUIt. 4'Fot4#C#ORDERoNI) 
UINFI=090 
DO 10 I=l, OHDER 
UINFI=tJINFI+C(I)*X**CFLOAT(I-1)) 

10 CONTINUE 
CALL ItJTERPCXB#, DUINDXpN#C#ORDER#Nl) 
DUINUI=13,0 
DO 20 I=IfURDER 
OUINt)I=DUINDI+C(I)*X**(FLOAT(I-1)) 

20 CONTINUE 
RETURN 
ENU 
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Continued 

SU8ROUTINE COMPARE(X#X8#Nj#NjORDER) 

C COMPARE WILL FIND THE DIFFERENCES BETHEEN X AND THE TABULATEU DATA VAL- 
C UES OF XC=XB), THE MINIMUM VALUE OF THE RESULTANT ONE-DIMENSIONAL ARRAY 
C DIFF(l) IS THEN FOUND AND THE CORRESPONDING ARRAY SUBSCRIPT IS PUT 
C EOUAL TO Nj, Nj IS ADJUSTEU IF NECESSARY TO ENSURE IT 13 CENTRAL, THIS 
C OCCURS WHEN NI IS LESS THAN (ORDER+I)/2 OR GREATER THAN N-CORDERtl)/2 

-INTEGER ORDER 
DIMENSIUIN Xb(t4)jDIFF(50) 

C NJ IS SUBSCRIPT FOR Xb SUCH NAT X IS NEAREST TO Xti 
DO b 1= J, N 
DlFF(I)=Ab5(X-XB(I)) 

5 CONTINUL 
Jzl 

10 I=J 
J=J+l 

15 IF(J, GT, N) GOTU 100 
IF(DIFF(I)vGT, 0IFF(J)) GUTO ld 
J=J+l 
GOTO lb 

luO N1=1 
IFCN19LT. ((ORDER+I)/2)) GOTO 120 

110 GOTO 130 
120 NI=CORDER+I)/2 
130 IF(NI, GT*(N-(ORDER+I)/2)) GUTO 150 

140 GOTO 160 
150 NI=N-(URDER+I)/2+1 
160 RETURN 

END 
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Continued .......... 

SUHROUTINE INTERP(XB,, 8jfltCpORDERfl4l) 

C INTER, ̀  "ALCULATES THE ELEMENTS OF THE TWO-DIMENSIONAL MATRIX AS RE- 
C QUIRE; ý UY THE LAGRANGE INTERPOLATION HETHOD. THE MATRIX EQUATIUN IS 

-C THEN SOLVED BY CROUTIS FACTORISATION MENUU(NAG SUBROUTINE FvJ4ATF)At4D 
C THE SOLUTION HATRIX RETURNED TO INTVAL TO CALCULATE THE INTERMEOIATE 
C VALUES OF UINFI AND DUIND1, 

- INTEGER ORDER - 
CH EQUALS EITHER UINF(N) OR DUINDX(N) 
C (ORDER 15 ORUER OF MATRIX FOR LAGRANGE INTERPOLATION) 
C ORDER MUST BE UDD 

DIMENSION XBCN)tb(14)pC(ORDER)pXA(15#15)tWKSI(lb) 
DIMENSION WKS2(15)jWKS3(jboj5)*8A(j5) 
DO 10 I=IPORDER 

'DO 10 J=lpORDER 
XA(IoJ)=Xb(f'41-(ORDER-1)/2-1+I)**(FLOAT(J-1)) 

10 CONTINUE 
IFAIL=O 
DO 20 I=l, 0RDER 
8A(I)=B(Nl-(ORDER-l)/2-1+I) 

20 CONTINUE 
CALL F04ATF(XAP15#BA#ORDERPCtWKS3#15oWKSIINKS2#IFAIL) 
IF(IFAlL, EQ, 0) GOTU 30 
IsRITE(6t100) IFAIL 

100 FORMAT(N) 
STOP 

30 RETURm 
EN0 
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Continued .......... 

FUNCTION GICKI#PI) 
REAL KI 
Gl=(PI+0,91667)/Kl 
RETURN 
END 

FUNCTION G2(KIPPI) 
REAL KI 
G2=(I*O/(Kl**2,0))*(104857*PI**2oo+3lO428*PI+119123) 
RETURN 
E14D 

FUNCTION G3(KllPI) 
REAL KI 
GJ=(I, O/(K]**2.0))*(2o9714*PI+3,0428) 
RETURN 

END 

FUNCTION G4(KIPPI) 
REAL KI 
G4=(1#22857*PI**3lO+4,04742*Pj**2.0+5940835*PI+2o93879)/(Kl**Jeo) 
RETUR14 
END 

FUNCTION Gb(KIpPl? 
REAL KI 
G5=(3,68571*PI**2, o+8,09483*Pj+bo4O835)/(Kl**390) 
RETURN 
END 

FUNCTION G6(KIIPI) 
REAL KI 
G6=(0@2+043*Pj)/Kl 
RETURN 
END 

FUNCTION OCK101) 
REAL KI 
G7=(0,02io9l4+1,939524*PI+4.5*Pl**2,0)/(Kl**210) 
RE TURN 
END 

FUNCTiUN G8(KIPPI) 
REAL KI 
G8=(1,287619+0,842857*Pj)/(Klk*2.0) 
RETURN 
END 

FUNCTION G9(KI#PI) 
REAL KI 
G9=(00432044+29ao2381*PI+0,8428b7*Pl**2,0)/(Kl**2,0) 
RETURN 
ENU 
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Continued ........... 

FUNCTION GIO(KlpPItCloC2) 
REAL KI 
GIO=(CI+C2*Pl)/Kl 
RETURN 
END 

FUNCTIU! 4 GII(KltPjfCJ, C4pC5) 
REAL KI 
Gll=(C3+C4*PI+C5*Pl**2#0)/(Kl**2#0) 
RETURN 
END 
FINISH 
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APPENDIX 7 

COMPUTER PROGRAM FOR ANALYSIS 

OF SURFACE PROFILES 

The input data correspond to an array of X, Y co-ordinates 

measured with respect to a rectangular 'window' (see Section 5.2). 

The co-ordinates correspond to the actual surface profiles and 

distances are measured in microns. A maximum of 1050 data points 

can be entered into the program (although this can be increased 

by suitable modification to the DIMENSION statement) although after 

interpolating the data to correspond to equal X intervals the final 

number of points used in the analysis is 1001. 

The analysis is performed for three different cut-off wavelengths: 

50000,10000 and 2000 microns. The following is a list of the FORTRAN 

names used in the output: - 

FORTRAN NAME DESCRIPTION 

HN(K) ordinate corresponding to the 

top of the Wth class interval 

divided by the class interval. 

P (K) probability density 

PCUML(K) cumulative probability 

HNM(K) normalised height from mean 
SLOPEl average slope based on sampling 

interval = CORLEN 
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SLOPE average slope based on sampling 

interval = 50 microns 

PTV peak-to-valley height 

TENPTH ten-point height 

CLA centre-line average height 

S standard deviation 

PL maximum peak from mean 

SV minimum valley from mean 

CORLEN correlation length 

PRCAV average radius of curvature of 

peaks* 

VRCAV average radius of curvature 

of valleys 

PPERMT number of peaks per metre 

(sampling interval = 50 microns) 

FLAT kurtosis 

SKEW skewness 

LAMDAC cut-off wavelength 

4 

A listing of the FORTRAN 4 program follows. 
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PROGRAM LISTING 

MASTER TUPOG 
REAL ýIAXIMIN#LAG(120)#MX(Ikl)ttit4tlo)oMPX(50), MPY(bi! ) 
DIMENSION 

I PFC50) #HN(5J) jHNH(50) pD(50) iE (50) p AP(50) #Q-P(50) PCP(5W) s XLPO-lbO) fY 
ILP(1050) 

LAHOAC=5000o 
DX=50,0 
XA=O il 
I=j 
X(IXA 

2 READ (5#1000) X1, Y1 
5 READ (5plood) X2, Y2 

IF ()(2, EQ, Xl) GOTU 5 
IF (X29GT. XA) GOTO 20 

10 XJ=X2 
YI=Y2 
GOTO 5 

20 Y(I)=Yl+(X(l)-Xl)*(YI-Y2)/CXI-X2) 

C Y(I) CORRLSPOt4DS TO EQUAL X VALUESCLINEAR INTERPOLATION) 

XA=XA+DX 
IF(XA, GT, 50000jO) GOTO JO 
I=I+l 
X(I)=XA 
IF (XAGT, X2) GOTO 10 
GOTO 20 

25 GOTO 30 
30 Do 3b I=1#1001 
J5CU NT I NUE 

Al=o, o 
A2=OeO 
A .3= it' ,3 A4=0t'6 
00 40 I=1#1001 

C CALCULATE LEAST SNUARES STRAIGHT LINE THROUGH DICON COORDINATES 
C AFTER PROCESSING FOR EOUAL X INTERVALS 

1=A1+X(I) 
A2zA2iX(1)**2 
A3=A3+XCI)*Y(I) 
A4=A4+Y(I) 

40 CONTINUE 
A:: (A l *A4-JOVII q 0* A3 j/ (A l **2-lklell so *A2) 
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Continued 

C FACTOR ADJUSTS COORDINATES FOR TILT OF MEAN LINE 

FACTOR=COS(ATAN(A)) 
V=010 
SKEW. =O, O 
FLAT=OoO 
CLA=0,0 
tIAX=0,0 
MIN=010 
00 50 1=10001 
X. '-t(l)=X(I)/FACTOR 
YMCI)=FACTOR*(Y(I)-B-(A*X(I))) 
V=V+YM(I)**2 
SKEW=SKEW+Yt'-I(I)**J 
FLAT=FLATtYti(I)**4 
CLA=CLA+A6S(YM(I)) 
IF(YM(I)vLTjfiAX) GOTO 45 

C CALCULATE: HIGHEST PEAK AND LOWEST VALLEY 

MAX= YM (I) 
45 lF(YM(I), GTqMIN) GOTU 50 

MIN=YM(I) 
50 CONTINUE 

PL=MAX 
SV=MIN 
V=V/1001,0 
S=SQRT(V) 
SKEW=SKEW/(1001,0*(3**3)) 
FLAT=FLAT/(1041,0*(S**4)) 
CLA=CLA/1001,0 
P7V=A8S(MAX-MIN) 
CLASIN-WTV/300 

C NEXT SEGMENT CALCULATES AUTOCOVARIANCE FUNCTION 

90 J=l 

C (J) =0,0 
95 C(J)=C(J)+Ytl(i)*Ym(il) 

IF(I, riT. (io0l-J)) GOTU 100 
GOTO 95 

100 C(J)=C(J)/CFLOAT(I)) 
J=J+l 
IF(J, GTsl00) GOTO 110 

CW=010 
GOTO 9b 

110 CONTINUE 
DU 120 Jzlploo 
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Continued .......... 

C AUTOCORRELATION FUNCTION IS NOW NORMALISED 

C(J)=C(J)/V 
LAG(J)=FLOAT(J)*DX/FACTOR 
IF (J, EQ#I) GOTO 120 
IF(C(J). LT. O. b. ANDsC(J-1). GT. 0,5) GOTO 115 
GOTO 120 

115 CORLEN=((0,5-C(J-1))*(LAG(J-I)-LAG(J))/(C(J-I)-C(J)))+LAG(J-1) 
120 CONTINUE 

-C HN(K) IS THE ORD114ATE CORREýPONDING TO THE TOP 
C OF THE CLASS INTERVAL DIVIDED BY STU, DEVIATION 

DO 1,30 K=100 
HN(K)=CLASIN*FLOAT(K)/S 
HNM(K)=(MIN/S)+HN(K) 
WRITE(6#1170) HN(K)jP(K)jPCUt4L(K)pHNM(K) 

. 130 CONTINUE 

C NEXT SEGIMENT CALCULATES SLOPE OF PROFILE AND PEAK 
C AND VALLEY CURVATURES AND DENSITIES 

NP=O 
NV=0 

. SLOPE=O t0 PEAKRC=040 
VALLRC=0,0 
DO 180 I=1095 
SLOPE=SLOPE+ABS(-Yýl(I)+9oO*yý"(I+1)-45*k)*Yýl(I+2)+45.0*YM(I+4)1990*Y 
M (1 +5 )+ YN C1 +6) ) 131100 10 1 IF(YM(I+3)eGToYM(I+2), Aý10, Yti(I+3). GT#YM(I+4)) GOTO 150 
IF(Yti(I+3), LT#Yti(I+2)gAt4D. y: i(1+3),, LTqYtl(I+4)) GOTO lbv) 
GOTO 180 

150 PEAKRC=PEAKRC+ABS(450000,, I/(2,0*YI4(j)-27,0*'fm(I+I)+2/0. il*YN(1+2)-4 
19t3sO*YMCI+3)+27OsO*Yý)(I+4)-27gi)*YMCI+5)+2, k)*Yil(I+6. ))) 

NP=14P+l 
GOTO 180 

160 VALLRC=VALLRC+ABS(*4bOi3VO, O/(2, LA*Yti(I)-27.0*Yfi(I+I)t27[l, kl*Yti(I+2)-4 
19kipi'*Yti(1+3)+270,0*Ym(I+4)-27. vj*Yti(I+5)+2#kJ*Yti(1+6))) 

NV=tqV+l 
180 CONTINUE 

PPERH T=FLOA T (NP) /0,05 
VPERMT=FLOATviV)/o, o5 
SLOPE=(ATAN(SýOPE/995,0))*b7, S 
PRCAV=PEAKRC/FL0AT(NP) 
VRCAV=VALLRC/FLOAT(NV) 
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Continued 

C THIS SECTION FINDS 5 HIGHEST AND LOWE, ST POINTS 

J=l 
200 J=J+l 

MX(J-J)=MAX 
MN(J-I)=MIN 
IF(JlEQ, 6) GOTO 300 
MAX=0,0 
MIN=090 
DO 250 I=Iolool 

205 IF(YM(I), GE, HX(J-1)) GOTO 250 
IF(YM(I)sLE, MIJ(J-j)) GOTO 250 
IF(Ym(l)tLT, MAX) GOTO 210 
MAX=YM(I) 

210 IFCYM(I)oGT. MIN) GOTCI 250 
V, IN=YM(I) 

250 CONTINUL 
GOTO 200 

300 TLNPTH=O, LA 
DO 310 J=Ifb 
TENPTH= TEN PTH+MX W) -M, *4 (J) 

'310 CONTINUE 
TENPTH=TENPTH/510 
J=j 

320 1=1 

C M=N0jOF POINTS PER CORRELATION LENGTH 

-M=IFIX(CORLEN/53, O) 

C THIS SECTION CALCULATES SLOPES FOR DIFFERENT SAMPLE LENGTHS 

325 SLOPEI=090 

12=I+M 
I3=I+2*tl 
I 4= 1 +4 *, '1 

16= 1 +6 *M 
SLOPE I =SLOPE I +ABS(-YM( I I) +9, O*Yfl( I 2)-45,0*YM( 13) +45, O*Yti( 14 )-9*V, *Y 

I M(15)+yti( 16) )/ (JA00,0*FLOAT (M) 
I= I+. " 
IF((I+6*m), GE, 1001) GOTO 3bO 
GOto J30 

350 I=I-M 
NO= Pi+I-I )/H 
SLOPEI=(ATA14(SLOPEI/FLOAT('NU)))*57l3 
WRITL(612000) SLOPEI#SLOPEPPTVPTENPTH#CLA, SoPL 
WRITE(6,2010) SV#CURLENO'PRCAVpVRCAV#PPERtiTiFLAT, SKEA#LAýIDAC 
DO 410 I=10001 
x(i)=XM(i) 
YCI)=YM(I) 

410 CONTINUF 
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Continued 

C LAMDAC IS THE CUT-OFF LENGTH 

LAMDAC=LAMDAC/5 
IF (LAMDAC. LT. 1000) GOTO 5000 

415 N=LAMDAC/bO 
KD=1000/N 
Do 450 K=IPKD 

C CALCULATE REGRESSION-LINE FOR SUB-SAMPLES 

AI=0,0 
A2=ov0 
A3=OtO 
A 4=j J 
KE=I+(K-I)*t4 
KF=I+K*t4 
DO 420 I=KE#KF 
AI=AI+DX*FLOAT(I-KE) 
A2=A2+(DX*FLOAT(KE-1))**2 
A3=AJ'+Y(I)*(OX*FLOAT(I-KE)) 
A4=A4+Y(I) 

420 CONTINUE 
FN=FLOAT(N) 
D(K)= (A I *A4-Ft4*A3)/ (A 1 **2-FfJ*A2) 
E(K)=(AI*A3-A4*A2)/CAI**2-Ft4*A2) 

C CALCUI-ATE MID-POINTS OF SUB-SAMPLE REGRESSION LINES 

MPX(K)=FLOATCLAMDAC/2+LAMUAC*(K-1)) 
MPY(K)=E(K)+(D(K))*FLOAT(LAI, IDAC/2) 

450 C014TINUE 
KG=CIOOO/N)-2 

CALCULATE JOINING PARABOLAS 
DO bOi) J=I#KG 
XPI=MPXCJ) 
YPI=llpy(j) 
XP2=HPX(J+I) 
YP2=MPYCJ+I) 
XP3=MPX(J+2) 
YP3=mPY(J+2). 
CP(J+I)=((YPI-YP2)*(XP2-XP3)-(YP2-YP3)*(XPI-XP2))/((XPI**2-XP2**2) 

1*(XP2-XP3)-(XP2**2-XPJ**2)*(XPI-XP2)) 
BP(J+I)=(YP2-YP3-(XP2**2-APJ**2)*CP(J+t))/(XP2-XP3) 
AP(J+I)=YPI-XPI*BP(J+I)-(CP(J+I))*XPI**2 

500 CONTINUE 
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Continued ............. 

C CALCULATE LOW-PASS OUTPUT 

J=2 

C XLP AND YLP ARE ARRAYS HULDING 4014 PASS OUTPPT 
C ORIGIN (0$0) IS L, H, S, OF REGRESSION LINE FOR 500J0 CUT-OFF 

XLP(l)=0t0 
YLP(l)=E(l) 
Do 505 1 =2 o( (N/2) +1 ) 
XLP(I)=XLP(I-I)+DX 
YLP(I)=E(l)+r)(l)*XLP(I) 

50ý CONTINUE 
DO 600 1=( (N/2) +2) f (10100-N12) 
XLP(I)=XLP(I-1)+[)X 
IF (J, GT, KG) GOTO 510 
IF(XLPCI). GT, MPX(J)) GOTO 520 

510 YLP(I)=AP(J)+13P(J)*X(I. )+CP(J)*X(I)**2 
GOTO 600 

520 J=J+ I- 
GOTO 510 

600 CONTINUE 
1=(1000-N/2) 
XLP(I)=-50,0 
Do 610 J=(j00j-(N/2))jlool 

. XLP(I)=XLP(1-1)+DX 
YLP(I)=E(KD)+L)(KD)*(XLP(I)+FLOAT(LAIII)AC/2)) 

610 CONTItWL 
DO 620 I=1#1001 

C XM AND YM ARE ARRAYS HOLDING THE HIGH-PASS OUTPUT 
C ORIGIN FOR HIGH PASS IS SAmE FOR LOw PASS 

xM(I)=x(I) 
Ytl(I)=Y(I)-YLP(I) 

620 CONTINUE 
DO 630 I=Jfl"ol 
Y (I )=ytj (I) 

630 CONTINUE 
GUTO 3b 

1000 FORMATIP2EI9,10) 
1160 FURMAT(lHjol7HNOR! lALISED HEIGHTp5Xj19HPR0BAt3ILlTY DEf4SlTYj5Xs22HCU 

IMULATIVE PROBABILITY, 5XI17HNORMALISEU HEIGHT) 
1165 FORMA T (I 6HOFROli M IN VALLEY t 61 Xf 9HFROti ME AN) 
1170 FURMAT(4X#Fb, 3,16XfF6q4o22XIF6l4pl9X#Fb. 3) 
2000 FoRMAT(lXj/F8,2) 
2010 FORMATUX17F8e2lM 
5000 STOP 

E NU 
FINISH 
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FIG. 2.2 COMPARISON OF ROUGHNESS FUNCTIONS 

FOR DIFFERENT SURFACES 

Au 

15 

10 

5 

0 

is -U0 v hs = equivalent sand-grain roughness 

1 10 100 1000 



FIG. 3.1 MANDREL WITH ONE OF RUBBER 

NEGATIVES USED IN MANUFACTURE 

OF SMALL PIPES 

FIG. 3.2 COMPLEIED SECTION FROM ONE 

OF SMALL PIPES 

FIG. 3.3 COMPLETED LINER FROM ONE 

OF LARGE PIPE-LINES 
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FIG. 3.6 DETAILS OF STATIC PROBEE 
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FIG. 3.7 TRAVERSE GEAR USED FOR 

SMALL PIPE-LINES 



FIG. 3.8 INTER-CONNECTIONS FOR TURBULENCE- 

MEASURING EQUIPMENT 
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FIG. 3.11 MEAN VELOCITY DISTRIBUTIONS FOR THE 

SMOOTH AND R550 SURFACES 
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FIG. 3.12 MEAN VELOCITY DISTRIBUTIONS FOR 

THE SMOOTH AND R420 SURFACES 
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FIG. 3.13 MEAN VELOCITY DISTRIBUTIONS FOR 

THE SMOOTH AND R345 SURFACES 
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FIG. 3.14 MEAN VELOCITY DISTRIBUTIONS FOR 

THE SMOOTH AND R253 SURFACES 

c- 
u 

u 14 
0 

12 

10 

8 

6 

4 

2 

01 

Y+c 
R 

0.2 0.4 0.6 0.8 1.0 



FIG. 3.15 MEAN VELOCITY DISTRIBUTIONS FOR 

THE SMOOTH AND R173 SURFACES 
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FIG. 3.16 INNER-REGION VELOCITY DISTRIB I ONS 

FOR THE SMOOTH AND R550 SURFACES 
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FIG. 3.17 INNER-REGION VELOCITY DISTRIBUTIONS 

FOR THE SMOOTH AND R420 SURFACES 
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FIG. 3.18 INNER-REGION VELOCITY DISTRIBUTIONS 

FOR THE SMOOTH AIND R34S SURFACES 
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FIG. 3.19 INNER-REGION VELOCITY DISTRIBUTIONS 

FOP, THE SMOOTH AND R253 SURFACES 
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FIG. 3.20 INNER-REGION VELOCITY DISTRIBUTIONS 

FOR THE SMOOTH AND R173 SURFACES 
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FI9.3.23 R. M. S. COMPONENTS OF VELOCITY 

FLUCTUATIONS FOR THE SMOOTH AND R550 SURFACES 
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FIG. 3.24 R. M. S. COMPONENTS OF VELOCITY FLUCTUATIONS 
FOR THE R420 SURFACE 
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FIG. 3.25 R. M. S. COMPONENTS OF VELOCITY FLUCTUATIONS 

FOR THE R345 SURFACE 
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RIG. 3.26 R. M. S. COMPONENTS Or' VELOCITY FLUCTUATIONS 

FOR THE R253 SURFACE 
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FIG. 3.27 R. M. S. COMPONENTS OF VELOCITY FLUCTUATIONS 

FOR THE R173 SURFACE 
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FIG. 3.28 TURBULENT SHEAR STRESSES FOR THE SMOOTH 

AND R550 SURFACES 
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FIG. 3.29 TURBULENT SHEAR STRESS FOR THE 

SURFACE R420 
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FIG. 3.30 TURBULENT SHEAR STRESSES FOR THE 

SURFACE R345 

1.00 r- 

0.75 

0.50 

0.25 

00 L- 
0.00 

1.00 

0.75 

0.50 

0.25 

0.00 1 
0.00 

0.25 

0.25 

Re=4.5xlo4 

Re = 9.5XIO 4 

0.50 

0.50 

0.75 

0.75 

Y+E 

R 

Y+C 

1.00 

1.00 



FIG. 3.31 TURBULENT SHEAR STRESSES FOR THE 

SURFACE R253 
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FIG. 3.32 TURBULENT SHEAR STRESSES FOR THE 

SURFACE R173 
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FIG. 3.33 FREQUENCY SPECTRA OF THE LONGITUDINAL 

FLUCTUATING VELOCITY AT Re=4.500 
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FIG. 3.34 FREQUENCY SPECTRA OF THE LONGITUDINAL 

FLUCTUATING VELOCITY AT Re = 0-5XIO 4 

AND Y+" = 0.02 R 
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FIG. 3.35 FREQUENCY SPECTRA OF THE LONGITUDINAL 

FLUCTUATING VELOCITY AT Re=4.500 4 

AND ho = 0.08 R 
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FIG. 3.36 FREQUENCY SPECTRA OF 'iHE LONGI-ILIDINAL 

OCT 4 
FLUCTUATING VEL ITY AT Re':: 9.5xlO AND 

0.08 
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FIG. 3.37 FREQUENCY spitc-r'RA OF THE LONGITUDINAL 

FLUCTUATING VELOCIM' AT R=4.5xlO4 
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FIG. 3.38 FREQUENCY SPECTRA OF THE LONGITUDINAL 

FLUCTUATING VELOCITY AT R 9.500 4 

AND "c=1 
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FIG. 3.46 LONGITUDINAL SPATIAL CORRELATION 
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FIG. 3.48 LONGITUDINAL SPATIAL CORRELATION 
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FIG. 3.49 DISTRIBUTIONS OF THE RATIO OF THE 

MACRO-SCALE TO THE MICRO-SCALE 
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FIG. 4.3 THE PROPOSED ENTRAINMENT FUNCTION IN TERMS 

OF THE WAKE-STRENGTH PARAMETER 
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FIG. 4.6- PREDICTION OF SMOOTH-WALL FLOW IN A 

NEGATIVE PRESSURE-GRADIENT (BAUER 6300) 
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FIG. 4.7 PREDICTION OF SMOOTH-WALL FLOW IN A 

ZERO PRESSURE-GRADIENT (BELL 3000) 

H 

cl 

R0 

2.0 

1.5 

1.0 L- 
0.0 

O. Oos I 

0.004 

0.003 

0.002 1 
0.0 

5000 - 

4000 - 

3000 - 

2000 - 

1000 - 

0 
0.0 

0.5 1.0 1.5 2.0 
x (M) 

0.5 1.0 1.5 2.0 
X(M) 

0.5 1.0 1.5 

Energy Method x(m) 

Entrainment Method 

--- -- - Moment of Momentum Method 

2.0 



FIG. 4.8 PREDICTION OF SMOOTH-WALL FLOW IN A POSITIVE 

PRESSURE-GRADIENT (SCHUBAUER AND KLEBANOFF 2100) 

4 

L 
0 

0.005 - 

0.004 - 
cl f 

0.003 - 

0.002 - 

0.001 

0.000 
0 

100000 

10010 

R 60000 

40000 

20000 

0 

0 

2 4 
0 

X(M) 

246x 

Energy Method 

Entrainment Method 

-- -- -- Moment of Momentum Method 

8 

x 



H 

0.007 - 
cl f 0.006 - 

0.005 - 
0.004 - 
0.003 - 
0.002 - 
0.001 - 
0.000 L 

0.0 
5000 r 

4000 

FIG. 4.9 PREDICTION OF SMOOTH-WALL FLOW IN A 

POSITIVE PRESSURE-GRADIENT FOLLOWED BY 

RELAXATION AT CONSTANT'PRESSURE (MOSES 4100) 3. *0 
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FIG. 4.10 PREDICTION OF FLOW OVER A REGULARLY-ROUGH 

SURFACE IN A ZERO PRESSURE GRADIENT (EXPERIMENT 

3 DUE TO BETTERMAN) 
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FIG. 4.11 PREDICTION OF FLOW OVER A REGULARLY-ROUGH 

SURFACE IN A POSITIVE PRESSURE GRADIENT 

(EXPERIMENT DUE TO PERRY AND JOUBERT) 
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FIG. 4.12 PREDICTION OF FLOW OVER A REGULARLY-ROUGH 

SURFACE IN A NEGATIVE PRESSURE GRADIENT 

(EXPERIMENT DUE TO ARNDT AND IPPEN) 
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FIG. 5.2 PROFILES FOR SURFACE R550 
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FIG. 5.3 PROFILES FOR SURFACE R420 

PROFILE HORIZONTAL MAGNIFICATION =3 
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FIG. 5.4 PROFILES FOR SURFACE R345 
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FIG. 5.5 PROFILES FOR SURFACE R253 
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FIG. 5.6 PROFILES FOR SURFACE R173 
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FIG. 5.7 CUMULATIVE HEIGHT DISTRIBUTION FOR THE 

MOST GAUSSIAN PROFILE FROM SURFACE R550 
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FIG. 5.12 CUMULATIVE HEIGHT DISTRIBUTION FOR THE , 

MOST NON-GAUSSIAý PROFILE FROM SURFACE R550 
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FIG. 5.13 CUMULATIVE HEIGHT DISTRIBUTION FOR THE 

MOST NON-GAUSSIAN PROFILE FROM SURFACE R420 
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FIG. 5.14 CUMULATIVE HEIGHT DISTRIBUTION FOR THE 

MOST NON-GAUSSIAN PROFILE FROM SURFACE R345 
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FIG. 6.1 EFFECT OF SLOPE ON FLOW OVER 

ROUGHNESS ELEMENT 

mild adverse 
pressure gradient 

gentle slope - no separation 
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strong adverse 
pressure gradient 

steep slope - separation bubble formed downstream 
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