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ABSTRACT

Simulation of chiral ordering process 

in the adsorption of chiral organic molecules on metal surfaces 

by Monte Carlo methods 

by

Serge Olivier Ayissi

Doctor in Philosophy in Computational Physics/Chemistry 

University of Liverpool, United Kingdom 

Professor Werner Hofer

Experimental observations have shown that haloalkane molecules, e.g. 1-chlorododecane, 

physisorbed on Si(l 11)-(7 x 7) self-assemble to form dimers stable to 100° C which corral 

silicon adatoms. The corral size is governed by the haloalkane chain-length. Spectro­

scopic and theoretical evidence shows that the haloalkane dimer induces electron transfer 

to the corralled adatom. The enclosed silicon adatom, within a bistable dimeric corral of 

self-assembled chlorododecane molecules, switches its energy levels permanently (Type-H 

corrals) or discontinuously (Type-I corrals). Both types of corral, switching and stable, can 

be seen to alter the local surface charge distribution. Density Functional Theory and elec­

tron transport (STM) simulations of the switch and the stable molecular configurations can 

help the theoretical understanding of both phenomena in order to characterized the exact 

molecular conformations that produce field effects to the corralled silicon adatom and local 

surface charge distribution.

Chiral heterogeneous catalysts are mostly fabricated from chiral molecules on a metal 

support. They play a crucial role in intermediate reactions in the fabrication of pharma­

cies, itself and important part of today’s health economy. However, the key parameters in

the fabrication of these catalysts, a requirements for their rational design, are still poorly
1
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understood despite years of experimental research. In essence, such an understanding can 

only come from high-level simulations.

Here, we present the first predictions about the structure of such a catalyst, tartaric acid on 

a copper support, over the whole phase space of temperature and coverage. Interestingly, 

we find that molecular vibrations play a key role in the ensuing ordered structures, and that 

tuning the fabrication temperature should allow for a wide range of molecular separations, 

which can be targeted at specific molecules and reactions in chiral heterogeneous catalysis.
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Chapter 1 

Introduction

1.1 Motivation
The theoretical foundations of our microscopic understanding of matter and energy were 
laid down one century ago, when quantum mechanics and statistical mechanics were de­
veloped. Now those laws are known and accepted. In the 21st century, one of the main 
endeavors in science is to understand, predict, and to engineer the consequences of these 
laws found one hundred years ago. The advent of powerful computer systems in the past 
few years has allowed first-principles theories (based on the electronic structure of matter) 
to be developed and applied to materials of technological interest. Thus, computer simula­
tions are gradually becoming another tool beside experiments for studying and engineering 
materials.
In a computer simulation (or computer experiment) a model is provided by theory, and the 
calculations are carried out in a machine by following a ’’recipe” (the algorithm, imple­
mented in a suitable programming language). In this way, complexity can be introduced 
and more realistic systems can be investigated, opening a road towards a better understand­
ing of nature.
On one hand, simulations can be considered as theory, since they deal with models and not 
with reality. On the other hand, the procedure of running calculations and analyzing the 
results closely resembles an experiment. There is no sharp distinction between the theoret­
ical or experimental nature of computer simulation, it is therefore best viewed as a branch 
on its own.

The optimum approach to modem scientific research often requires the interplay be­
tween theory, experiment, and simulation as shown schematically in Fig. (1.1). Both, 
simulations and experiments are related to theory. An understanding of the theoretical 
principles behind the natural phenomena being studied is thus an indispensable requisite 
for the experiments and simulations.

To become a useful tool in studying nature and technological processes, simulations 
have to have predictive power. This means, the results of the simulations should be based, 
as much as possible, only on the basic laws of nature, and not on experimentally determined 
model parameters. This requirement poses a big burden to computer simulations, because 
as the systems studied come closer to systems of technological interest, the theoretical
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Simulation <■ >  Experiment

Figure 1.1: Schematic representation of the modem approach to scientific research in sci­
ence (adapted from Ref [1])

description becomes very complex.
Thus, the application of simulations to ’’real world” problems requires the development 

of transformations and coarse graining algorithms to suitably and systematically simplify 
the enormous complexity of macroscopic systems in terms of microscopic processes.

The theoretical link from microscopic processes to macroscopic phenomena is provided 
by statistical mechanics (SM), and models trying to capture how macroscopic phenomena 
are related to microscopic phenomena and microscopic processes are necessarily based on 
SM. When the parameters of the SM model are derived from first-principles calculations, 
we are talking about first-principles statistical mechanics. Such an approach allows for the 
model to be based completely on the electronic structure of the system. As a result, such 
model has predictive power.

1.2 Objectives
In this thesis, we pursue the study of first-principles statistical mechanics applied to the 
calculation of adsorbate macroscopic ordering and phase transitions. The study of these 
phenomena is a central topic in modem surface science and enters directly into the dis­
cussion of many important processes at surfaces such as heterogeneous catalysis. For this 
purpose, we applied the methodology to the Bitartrate/Cu(110) system. This system has a 
variety of technological applications in finechemicals and pharmaceuticals. We shall also 
explore the ability of surfaces to recognise chirality in the critical step from the molecular 
gas phase to the adsorption on chiral centres at extended surfaces.
The methodology has already been applied to the calculation of the phase diagram of adsor­
bates on metal surfaces. However, at present there is not a standard and general procedure 
in order to systematically obtain phase diagrams from first-principles statistical mechanics
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calculations.
In this work, these questions are therefore studied thoroughly with the aim of gaining 

insight into first-principles statistical mechanics in the context of molecular ordering and 
phase transitions. We discuss and assess many of the approaches which have been proposed 
in the literature in order to address these problems.
Concerning the object of study, i.e. the Bitartrate/Cu(l 10) system, we show how the micro­
scopic and macroscopic approaches complement each other in order to obtain a complete 
picture of the system. Special emphasis is put on showing how the observed behavior of 
the system at the macroscopic level is nothing but the result of interactions operating at the 
microscopic level. Thus, we pursue a multiscale modelling approach.
Since our methodology is based on the electronic structure of matter, all of our results are 
based only on theory. That is, experimental results (from the literature and from the differ­
ent collaborations) are used exclusively for comparison and no fitting to the experiments is 
carried out. Applications include: TPD spectra[6], island nucléation and growth[7] and the 
study of reactions on metal surfaces[8].

1.3 Outline
The theory behind the first-principles statistical mechanics approach used in this thesis 
is discussed in Chapter 2. In particular, emphasis is put on the microscopic and macro­
scopic description and the bridge between both of them. This approach in surface science 
is partially known as the ab-initio lattice gas Hamiltonian method and in alloy theory more 
commonly known as the cluster expansion method.

1.3.1 Static Simulations
In Chapter 3, a review of the experiments concerning the different Halododecane/Si(lll) 
systems is presented. A general mechanism leading to the formation of the type-I and type- 
II chlorododecane adsorbates studied in the Chapter 3 and 4 respectively is demonstrated. 
Chapter 3 studies the darkened silicon adatom phenomenon surrounded by two chlorodo­
decane molecules forming the Type-II adsorbate once physisorbed at S i( lll) . The first- 
principles calculations are performed within the DFT-GGA approximation and the PW91 
method as implemented in the computing code VASP[101,102]. The STM simulations are 
performed with bSKAN36 using a Tungsten tip.

The chapter 4 is a review of the experiments concerning "type-I Chlorododecane ph­
ysisorbed at S i( ll l) .  This chapter studies the switching states of the free silicon adatom 
around the comer hole of the silicon surface, where the 5 remaining adatoms are supporting 
the two chlorododecane molecules forming the Type-I adsorbate. The first-principles DFT 
calculations and the STM simulations are performed under the same conditions as the work 
done in chapter 3.

3



1.3.2 Dynamic Simulations
Chapter 5 reviews the parameters used in a Metropolis Monte Carlo simulations: 4', the 
order parameter and C y, the heat capacity, by performing simulations using a simple 
adorbate/substrate. This simple model helps to understand the interpretation of an order- 
disorder transition and to predict the general behavior of a more complicated system such 
as bitartrate/Cu(l 10) described in the following Chapter.

In Chapter 6, a review of the literature concerning the Bitartrate/Cu(110) system is 
presented. Also, a first principles study, with the aim of identifying the most important 
microscopic factors governing the cooperative behavior of Tartaric Acid molecules on the 
Cu(110) surface, is carried out. The first principles calculations are performed within the 
DFT-GGA approximation, using a supercell geometry and the PW91 method as imple­
mented in the computing code VASP[101,102]. The general statistical mechanics model 
is described in Chapter 5, together with the simplifications in the model based on first- 
principles study, leading to a Lattice-gas model. The set of first-principles calculations 
needed in order to parameterize the lattice gas Hamiltonian is presented. The parameters of 
the Hamiltonian are derived in a simple way by considering only short-range interactions. 
Metropolis Monte Carlo simulations are carried out based on this Hamiltonian in order to 
identify and characterize order-disorder phase transitions in the Bitartrate/Cu(l 10) system.

The conclusions related to the first-principles statistical mechanics methodology em­
ployed in this thesis and the Bitartrate/Cu(l 10) system are discussed in Chapter 7.
Finally Appendix A shows, in Fortran 90, the skeleton of the Monte Carlo program. This 
simple program is written in the canonical ensemble for a simple cubic system, its subrou­
tines are also described, which are useful to determine the order parameter 4', and the heat 
capacity Cy. Appendix B explains in detail the Lattice gas Hamiltonian parameters. They 
are determined taking in account the limits of the system added to the periodic boundary 
conditions.

1.4 Organization of the Research

1.4.1 Chlorododecane/Si(lll) systems: Chapter 3 and 4
• Collaboration with: John Polanyi / University of Toronto (Toronto, Canada)

• Experiments: Polanyi Group / University of Toronto (Toronto, Canada)

•  Supervision: Wemer Hofer

1.4.2 Monte Carlo on Bitartrate/Cu(110) system: Chapter 5 and 6
•  Collaboration with: Karsten Reuter / Fritz-Haber Institut (Berlin, Germany)

• Experiments: Rasmita Raval Group / Surface Science R.C. (Liverpool, UK)

• Supervision: Wemer Hofer and Karsten Reuter
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Chapter 2

Theoretical approach

Microscopic insight into the nature of macroscopic behavior is only possible by adopting a 
multiscale approach. Such an approach models macroscopic phenomena based on micro­
scopic models, the energetics of which are determined by the use of quantum mechanics. 
Multiscale modelling of materials aims to develop improved descriptions of material be­
havior through the incorporation of information about material structures and processes 
from various length- and time-scales.
Fig. 2.1 highlights the elements of a multiscale methodological approach. At the elec­
tronic regime, methods based on quantum mechanics, especially density functional theory 
(DFT), link to e.g. atomic/molecular dynamics, lattice gas models and Monte carlo simula­
tions in the mesoscopic regime. For each length and time scale regime alone, a number of 
methodologies are well established. It is however, the appropriate linking of the method­
ologies that is only now evolving. Conceptually quite challenging in this hierarchy of scales 
are the transitions from the electronic to the mesoscopic, and from the mesoscopic to the 
macroscopic regime. The former transition is dominated by the importance of statistics 
due to the large number of particles and possible processes involved; while in the latter, the 
discrete nature of matter is neglected and treated as a continuum.
The theoretical framework of this thesis deals with the transition from the electronic to the 
mesoscopic regime. A number of methodologies (for a review [11,12]) have been devel­
oped to extract quantities in the electronic regime, which can be used to define parameters 
of the model operating in the mesoscopic regime. These methods are mostly based on 
matching or combining DFT data with concepts from statistical mechanics or thermody­
namics in order to reach a proper description of the statistical interplay of the large number 
of processes taking place in the electronic regime. The thermodynamic matching is more 
appropriate if we are only interested in the macroscopic properties of matter. It is possi­
ble to match thermodynamics with DFT and obtain a first-principles description with the 
so-called ”ab-initio atomistic thermodynamics” approach [13-16]. The approach is limited 
to equilibrium structures and its predictive power extends only to the structures which are 
directly considered.
The statistical mechanics (SM) matching [11,17,18] is more general and more applicable, 
but usually more involved and difficult. SM are the bridge linking thermodynamics with 
mechanics (especially quantum mechanics) it tries to interpret and predict the macroscopic 
properties of matter in term of its microscopic constituents [19]. Due to its microscopic na-
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Figure 2.1: Schematic representation of the time and length scales relevant for most mate­
rial science applications. The elementary molecular, which rule the behavior of a system, 
take place in the electronic regime. However, the observable effects only develop over 
meso and macroscopic lengths and times [11]

ture, SM provides insight into the microscopic structure of matter. SM allows for studying 
atoms and molecules. By directly considering the interactions among atoms and molecules, 
SM is able to predict the behavior of macroscopic systems based on the postulated micro­
scopic interaction model.
In the following, we describe a generic system, and the concepts necessary to study its 
behavior. Next, the theory behind every regime in the multi-scale modelling approach of a 
system is described. In particular, the electronic regime was treated with the help of DFT, 
simulations in the mesoscopic regime were carried out using Monte Carlo methods. The 
electronic and mesoscopic regimes were linked using tools from statistical mechanics. For 
the purposes of this study, only equilibrium states are included, kinetic processes remain 
unconsidered.

2.1 Adsorption of atoms and molecules
The general system, which the theoretical discussion in this chapter refers to, consists of 
adsorbate species (i.e. atoms or molecules) on a close packed single-crystal metal surface 
(Fig. 2.2). We are interested in the collective behavior of the adsorbed species. The 
behavior is characterized by the phase diagram of the species adsorbed on the surface, 
i.e. the arrangement as a function of the gas phase conditions (e.g. temperature T and 
pressure p of the gas phase, or temperature T  and coverage 0  on the surface). The study of 
adsorbate phase diagrams is a central topic in modem surface science and enters directly 
into the discussion of many important processes at surfaces such as heterogeneous catalysis. 
One can address the question of what happens when atoms or molecules become attached 
to a surface,i.e. adsorbed, at three levels; specifically one can aim to identify:

• the adsorption mechanisms, i.e. the kinetics of adsorption.

• the nature of the adsorbed species and its local adsorption geometry, i.e. its chemical
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Ordered state Disordered state

T

Figure 2.2: Section of a close packed metal with adsorbed atoms on its surface occupying 
ordered adsorption sites at low T (left) and random adsorption sites at high T (right). At 
intermediate temperature there is an order-disorder phase transition.

structure and co-ordination to adjacent substrate atoms.

• the overall structure of the extended adsorbate/substrate interface, i.e. the long range 
ordering at the surface.

All of these levels are intimately related; together they describe the adsorption of atoms 
and molecules on metal surfaces. Comprehensively, any of these levels constitutes today an 
active field of research, mainly because of the ultimate microscopic nature of the processes 
and phenomena being studied. The emphasis in this thesis is on the last item, i.e. the 
collective behavior of adsorbates on surfaces. To this aim, we leave aside the question of 
the adsorption mechanism and concentrate on the nature of the adsorbed species and the 
overall structure of the extended adsorbate/substrate interface.
Molecules and atoms can attach to surfaces in two ways:

• physisorption: The only bonding is polarization (i.e. Van der Waals) forces. There 
is no significant redistribution of electron density in either the molecule or at the 
substrate surface.

• chemisorption: A chemical bond, involving substantial rearrangement of electron 
density, is formed between the adsorbate and substrate. The nature of this bond lies 
anywhere between the extremes of virtually complete ionic or complete covalent 
character.

The problem of distinguishing between chemisorption and physisorption is basically the 
same as that of distinguishing between chemical and physical interaction in general. No 
sharp distinction can be made and intermediate cases exist (e.g. adsorption involving 
strong hydrogen bonds or weak charge transfer). Typical binding energies are 1-10 eV 
for chemisorption and 10-110 meV for physisorption [25].
It has been experimentally determined that adsorbed species often occupy a series of dis­
tinct sites on a solid surface, i.e. minima in the potential energy surface of the substrate- 
adsorbate system. The extent of surface coverage is then expressed as a fractional coverage 
© in terms of the adsorption sites

number of adsorption sites occupied
number of adsorption sites available ^
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The symmetry of overlayers of adsorbates may be related to the symmetry of the underlying 
surface. One can distinguish three regimes [22]:

• Random adsorption corresponds to the lack of two-dimensional order in the overlayer 
even though the adsorbates may occupy (one or more) well-defined adsorption sites 
(fig. 2.2).

• Commensurate structures are formed when the overlayer structure corresponds to 
the structure of the substrate in some rational fraction, i.e. the overlayer exhibits two 
dimensional order (fig. 2.2).

• Incommensurate structures are formed when the overlayer exhibits two dimensional 
order; however, the periodicity of the overlayer is not related in a simple manner to 
the periodicity of the substrate.

Adsorbed species on single-crystal surfaces frequently reveal long-range commensurate 
structures; that is to say that the adsorbed species form a well-defined overlayer structure. 
Each particular structure may only exist in a limited region as the surface coverage is gradu­
ally increased. This phenomenon is caused by interactions between the adsorbed particles, 
which may have different origins and be repulsive as well as attractive. These give rise to a 
wealth of two-dimensional phases and phase transformations[25].
If the interactions are strongly attractive, the adsorbate molecules will have a tendency to 
cluster together in small patches, called islands. If the adsorbate is mobile, additional ad­
sorbate molecules will be drawn into small patches so that the rest of the surface will be 
cleared of adsorbate. The result is a situation where small patches of the surface are cov­
ered by adsorbate but the rest of the surface is almost adsorbate free.
The periodic potential ’’seen” by a single adsorbed particle due to the periodicity of the sub­
strate lattice and the interaction potential between particles determines, whether a second 
particle will still prefer a site defined by the substrate geometry (leading to so-called lattice- 
gas structures) or if its location is governed by the mutual interaction (causing the formation 
of incommensurate structures with the underlying lattice). Frequently, a compromise be­
tween both situations is reached in that the lattice of an incommensurate structure (lattice 
constant b) matches with the substrate lattice (lattice constant a) after a certain number of 
lattice constants (e.g. 4b = 5a, ’’coincidence lattice”), leading again to a commensurate 
structure [26].
The ordering behavior of adsorbates on surfaces depends amongst other things on the tem­
perature T  of the system. Generally, random site filling occurs when the interactions be­
tween adsorbate molecules at adjacent sites is small with respect to kBT , where kB is the 
Boltzmann constant; In this case there is no preference for one site over another. Ordered 
adsorption occurs when the adsorbate/adsorbate interactions are larger than kBT. In such 
cases the sites in close proximity to the ones already are occupied filled with enhanced or 
reduced probability depending on whether the adsorbate/adsorbate interaction is attractive 
or repulsive.
Each ordered surface has a limited temperature range of stability. At the boundaries of this 
range, phase transitions occur. These transitions may be reversible or irreversible. In a 
case of a reversible transition, the low temperature phase changes upon heating to a high- 
temperature phase, but is reordered upon cooling. In case of an irreversible transition, the
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high-temperature phase, once being formed, remains stable also upon cooling[25]. 
Another subdivision of transitions includes order-order transitions and order-disorder tran­
sitions. An order-order transition means a transition between two ordered surface phases 
with different structures. The loss of ordering is described by order-disorder transitions; 
this process is known as symmetry-breaking (Fig. 2.2).
Transitions are also subdivided into first order (discontinuous) transitions and second order 
(continuous) transitions. In first order transitions, the system changes abruptly from one 
distinct surface phase to a second distinct surface phase. Phase coexistence, nucleation, 
and growth of the domains of a new phase are the features of first-order transitions. By 
contrast, in second-order transitions, one phase transfers continuously to a second phase 
and the competing phases are indistinguishable at the transition temperature [25].
Earlier efforts to microscopically understand the adsorption of atoms and molecules on 
surfaces began with the seminal work of Langmuir[27]. Based on rather indirect evidence 
obtained from measurements of the equilibrium gas uptake of metal surfaces at very low 
pressures, Langmuir was able to draw a remarkably accurate picture of adsorbate/surface 
interactions. His ideas are still alive and accessible to direct experimental investigation by 
using well-defined single crystal surfaces and the arsenal of modem surface physics [26], 
A Product of those early investigations is the Langmuir isotherm which was developed to 
describe the dependence of the surface coverage of an adsorbed gas on the pressure of the 
gas above the surface at fixed temperatures. However, the simple Langmuir model is lim­
ited by the fact that it neglects the forces between adjacent adsorbed particles (a problem 
which Langmuir himself recognized [27]). Such forces are responsible for the wealth of 
two-dimensional phases and phase transformations which have been firmly established ex­
perimentally [26].
Modem systematic studies of phases and phase transformations (i.e. two-dimensional 
phase diagrams) of adsorbates on surfaces have been carried out by means of experiments 
[26]. The magnitude of the lateral interactions between adjacent particles has been usually 
derived by fitting two-dimensional Ising-like models to the experimental data. It is only the 
recent development in computing power and numerical algorithms which has opened the 
possibility of studying adsorbate/surface systems from first-principles.
The accurate theoretical description of substrate-adsorbate binding is very demanding, es­
pecially when the substrate is a transition metal. The reason is that in a metal most of the 
bonding occurs via the conduction band (i.e. the electrons that can move more or less freely 
through the metal and hence carry electricity). Long-range electrostatic attractions between 
the cores (atomic nuclei) in the metal play a minor role. Thus, the chemical binding is a 
product of electronic interactions (electronic regime) and their quantitative description de­
mands a quantum mechanical approach.
The theoretical study of a system consisting of a collection of adsorbate species on a surface 
can, in principle, be studied by methods based on the positional space of the adsorbates such 
as molecular dynamics. Due to the quantum mechanical nature of the adsorbate chemical 
binding, the potential energy needed for a molecular dynamics simulation of adsorbates on 
surfaces should be obtained from first-principles calculations. This is today the approach 
of choice to study the adsorption of single molecules[23,24]; it is unpractical/unfeasible for 
the study of a collection of adsorbates, due to the enormous computational requirements 
which such an approach would require.
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Instead of searching the positional space, it is more efficient to search the configurational 
space of the system in order to study the phase behavior of the adsorbed layer (mesoscopic 
regime). Thus statistical methods are best suited to tackle the theoretical description of the 
mesoscopic behavior of adsorbate species on surfaces [22].
In the following sketch, the theory behind the electronic and mesoscopic regimes on the 
basis of first principles simulations of adsorbed overlayers is outlined.

2.2 The electronic regime
In general, the physics in the electronic regime is determined by the laws of quantum me­
chanics. The energies are computed by solving the Schrodinger equation, which for sta­
tionary electron reads

• -,rNa N) =  r ^ i ,-  • - , rNaN), (2.2)

where rj are the spatial and Oi are the spin coordinates of the N  electrons, and

H  — Te + Vee +  Ven
i  N  N  N

=  ì E v ? +  E £
i= i j>l

(2.3)
1

r,: -  r,-

N  N a
- E Ei=l Q=1 Ti ~  R 0i—1 i—1 j> 1 I ' 1 '3

is the Hamiltonian (in atomic units) of the electronic system in the Bom-Oppenheimer [28] 
approximation, where the ’’slow” nuclei coordinates R a are treated as fixed parameters. 
The Hamiltonian operator H  consist of a sum of three terms:

• the kinetic energy Te

• the electron-electron coulomb interaction Vee

• the interaction of the electrons with the external potential Ven, i.e. the Coulomb 
interaction with N a nuclei of charges Za and coordinates Ha­

lt is thus understood that the electronic wave function depends parametrically on the 
specific positions of the nuclei used in the electron-nucleus interaction, and that the total 
energy of the system is E  + Vnn, where Vnn is the total repulsive energy among the nuclei. 
Since the wave function describes a system of fermions, it should satisfy the anti-symmetry 
requirement

’£(• • •r ^ i  ■ ■ • TjOj ■ •■) =  -(&(•• -TjOj ■ ■ • riOi • ••)■ (2.4)
In most circumstances, we are content with finding only the lowest energy eigenvalue (i.e. 
the ground state energy) E 0 of the electronic problem, and Eqs. (2.2-2.4) embody then all 
the information that is needed in order to obtain this quantity.
The calculation of the many-body wave function \E'(rj<Ji) of a system of interacting elec­
trons is a formidable task which can only be carried out in a meaningful way for systems 
with a few tens of electrons [29]. If observables for larger systems are to be determined, the 
calculations of the many body wave function has to be avoided. One possibility is to write 
the desired quantities as functionals of the electronic density p, a scalar function of only 
three variables rx,ry,rz. A  modem and rigorous approach to do this is density functional 
theory (DFT).
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2.2.1 Density functional theory
The development of density functional theory dates back to 1964 by Hohenberg and Kohn[31], 
a compact review of the formalism has been done by Jones and Gunarsson[181]. Its goal 
is to replace the many-particle wavefunction by the electron density n  which is defined as

n(r) =  N  j  dr2 - ■ ■ J ip*(r,T2,- ■ -,TN)ip(r,T2,- ■ -,rN)drN, (2.5)

The energy of an electronic system can thus be written as a functional of the density,

E[n] =  min (ip | H  | ip), (2.6)■0|n

where H  is the Hamiltonian of a many-electron system in an external potential Vext,

m in^\n denotes a minimization with respect to the wavefunctions ip which are consistent 
with the density n(r).
The groundstate of the many-electron Hamiltonian can be found by minimizing the func­
tional E[n] with respect to the density which is subject to the constraint

J n(r)dr  == N, (2.8)

where N  is the total number of electrons.
Hohenberg and Kohn proved that (a) for every ground-state density a unique external poten­
tial Vext exists and (b) indeed m in nE[n] = E 0, E 0 being the ground-state energy, relative 
to all density functions n '(r) fulfilling (2.8) that are associated with some other external 
potential V^xt. There is a slight flaw in their argument, however, since by the possible ex­
istence of other densities not realisable with an external potential but satisfying (2.8) one 
may exceed the range of definition when applying the variational principle to minimize 
E[n\. This problem has been solved by Levy[182], who has extended the argument to 
N-representable density-functions, which can be obtained from some antisymmetric wave- 
functions. Soon thereafter it was shown by Harriman[183] that indeed every nonnegative, 
normalized density can be constructed from such wavefunctions.

Investigating the energy functional (2.6) further, it can easily be seen that the contribu­
tion including the external potential Vext does not depend explicitly on the wavefunction, 
but only on the density n (r). It can therefore be extracted from the minimization. We thus 
arrive at the equation:

E[n] = min [(ip \ H0 \ ip)] + [  Vext(r)n(r)dT , (2.9)
0 | n J

with
H  = H0 + Vext(r). (2.10)

The part to be minimized in (2.9) can be written as a new functional of the density,

F[n] =  min (ip\ H0 \ ip). (2.11)
ip\n
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The functional F[n] is universal and holds for every external potential. Instead of finding 
the multi-particle wavefunction for a given Hamiltonian one has now ’’only” to deal with 
the problem of determining the universal functional F[n] for an electron number N .

What follows is a crucial step for the success of density functional theory, which was 
first suggested by Kohn and Sham[32], Two additional terms are extracted from the func­
tional F[n}. The first one is the classical Coulomb energy, whose separation is already 
suggested by Hohenberg and Kohn[31] because of its long range. The second is kinetic 
energy of a system of noninteracting electrons with density n (r), T[n\. Eq. (2.9) becomes 
now

E[n] = T[n] + J Vext(r)n(r)dr + Ĵ dr J y r *  +  E xc[n]. (2.12)

The minimum requirement for E[n] under the constraint (2.8) leads to

dT[n] „ 1 , , dE xr\n]
dn(r)

+  Vext(r) + J nCO— ~ r/ | dr +  =  An(r), (2.13)

with the Lagrange parameter A. The form of equation (2.13) is identical to that of an Euler- 
Lagrange equation following from the Hohenberg-Kohn variational principle for a system 
of non-interacting electrons in an external effective potential. In this non-interacting case 
the ground-state energy and density can be obtained by calculating the eigenfunctions and 
eigenvalues of a single-particle Schrödinger equation. Defining the exchange-correlation 
potential Vxc[n\ as

KccHr)]
d E xc[n] 
dn(r) (2.14)

and treating all but the first terms in (2.13) as an ’’effective potential” Vef f (r),

Vef f ( r) =  Vext(r) +  Fxc(r) +  /  n(r')---- — —dr', (2.15)
J | r  — r  |

the solutions satisfy the so-called Kohn-Sham equations which are equations of the form 
of single-particle Schrôdinger equations:

( - ^ V 2 +  V"e/ / ( r ) )  V'fc(r) =  ekipk(r). 

The groundstate density is then given by

(2.16)

< *)  =  £  I V»*(r) |2 ■ (2.17)
k=l

Note that neither the eigenfunctions ipk nor the eigenvalues ek have any directly observable 
meaning except for the influence on the density n(r), Eq. (2.17). The highest occupied 
energy value ek relative to the vacuum being the ionisation energy.
The Hamiltonian in (2.16) depends on the density, therefore we have to solve an implicit
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equation of n (r) which is done selfconsistently. Comparing (2.16) and (2.12) one can 
determine the ground state energy to be

E  = \  (  dr f  Y ^ ^ j d r '  + Exc[n] -  i  VIC[n(r)]n(r)dr, (2.18)
k=l l  J J | r  r  | J

where the sum goes over all occupied states. (The are generally named Kohn-Sham 
eigenvalues.)
The only unknown in the whole formalism is now the exchange-correlation functional 
E xc[n] and its functional derivative, the exchange-correlation potential Vxc[n]. They can 
both be approximated as local functionals of the electron-density n(r). In principle, the 
expression for the groundstate energy (Eq. 2.18) is exact and contains no approxima­
tions, as long as the exchange-correlation functional can be derived exactly. E xc contains 
the electron exchange energy, which is treated exactly in the Hartree-Fock approximation. 
However, this neglects the whole correlation part of E xc, which consists of the difference 
between the kinetic energy of noninteracting and an interacting electron system (remember 
that T[n] is only the kinetic energy functional of a noninteracting electron gas), i.e. the 
dynamic correlation effects due to Coulomb interaction between the electrons. The only 
result that shall be mentioned at this point is that in case of a slowly varying electron den­
sities n (r) the local exchange-correlation energy can be approximated by one of a uniform 
electron gas. A more detailed discussion of the approximation to E xc will follow in Section 
2.2.5.
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2.2.2 Models to describe metallic surfaces
The calculations cannot describe all atoms in a solid surface, 
and a strategy must be chosen to limit the number of atoms 
treated explicitly.Two basic types of methods exist,today:

• Cluster methods, which describe only a limited cluster 
of surface atoms in the hope that the surface atoms 
farther away from the adsorbates of interest are not 
important.

• Slab methods, whereby the surface is described as a 
slab with a periodic structure along the surface, the 
size of the surface unit cell determines the computa­
tional effort.

Slab

Vacuum

Slab

The cluster method is a local approach which focuses on the 
interaction of the adsorbed molecules only with the nearest 
atoms on a surface and it corresponds to a truncated model 
of the environment. The slab method is a localized approach 
which is based on the band theory of the electronic structure 
of solids. For metals, the slab method is generally found 
to describe the surface properties better than the cluster ap­
proach [37].

A simple, but effective geometric surface model is the 
repeated slab geometry, i.e. the supercell method (Fig. 2.3).
Through an infinite array of slabs, the surface is cast into a 
three dimensional periodicity, which e.g. allows one to ex­
ploit 3D periodicity and make efficient use of plane waves 
and fast fourier transforms in the solutions of the DFT equa­
tions.
In order to give a reliable description of surfaces, firstly 
the vacuum layer between the slabs, and secondly the slabs
themselves have to be thick enough to be a reasonable model for the surface of a semi­
infinite substrate. Both these properties can be checked by convergence tests of any cal­
culated property with respect to the width of the vacuum layer and the thickness of the 
slab.

Vacuum

Slab

Figure 2.3: Illustration of 
the supercell approach, in 
which surfaces are repre­
sented through an infinite ar­
ray of slabs

2.2.3 Plane-wave basis sets
To solve the Kohn-Sham equations (2.16) numerically, the one-particle wave-functions 
ipi(r) need to be approximated. In the modelling of macroscopic systems periodic bound­
ary conditions are an obvious choice. In this context a plane-wave basis set is convenient, 
since any periodic function can be expressed as a sum of plane waves. The (discretised) 
single-particle wave-functions are written as



and the sum is truncated at some finite value N. Now only the plane wave coefficients cni, 
need to be stored. The use of plane waves brings about several advantages:

• The electronic structure of many solids conforms relatively well with a nearly-free 
electron picture. The wave-functions of free electrons are plane waves.

• Basis set convergence is easily checked by increasing the highest kinetic energy of 
the plane waves contained in the basis set.

•  Passing from real to reciprocal space requires a Fourier transformation which can 
by the use of fast-Fourier transformations (FFT) be implemented very efficiently in 
computer codes. Using the wave-function alternately in real and reciprocal space 
allows very efficient evaluations of operations like Hijj. Plane-wave basis functions 
are independent of the locations of the atoms. Hence, in the calculations of the forces 
acting on the ions, no corrections for the spatial variation of the basis set have to be 
taken into account.

In practice it turns out that the plane-wave method is entirely inapplicable to real atomic 
potentials. The reason for this failure lies in the atomic potential becoming very large in­
side the core. This results in the need for a prohibitively large number of plane waves to 
reach reasonable results. However, the core electrons do not participate in the inter-atomic 
interactions, the tractability of the problem can be reestablished by the use of pseudopoten­
tials.

2.2.4 Pseudopotentials
The concept of pseudopotentials goes back to the 1930s when Fermi and Heilman inde­
pendently suggested dealing with the Schrôdinger equation for the valence electrons only 
in a subspace of Hillbert-space orthogonal to the core states. This idea was continuously 
advanced ever since, leading to the rise of norm-conserving pseudopotentials in the early 
80s, ultrasoft pseudopotentials in 1990, and PAW potentials that already go beyond pseu­
dopotentials in 1994.

General ideas

A comprehensive review of the development of pseudopotential methods with many refer­
ences (though in German) can be found in Kresse[101]. Here the most important steps can 
be briefly sketched.
As mentioned above, in most materials the core electrons do not contribute to the bonding. 
Only their absolute energy is affected by the average electrostatic potential in the vicinity of 
the core (core level shift). A fundamental idea therefore is the ’’frozen-core approximation”. 
The core electrons are calculated for a (in general spherical) reference configuration and 
are kept fixed thereafter. The wave-functions for the valence electrons are ’’pseudised” to 
give the same energy levels as the all-electron wave-functions. The pseudo wave-functions 
differ from all-electron wave-function only inside a region around the nucleus and are con­
structed to be nodeless. If the pseudo wave-functions still contained nodes they would not
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describe the lowest valence-states. It can be shown that the removal of nodes from the all­
electron wave-functions has no effect on the scattering properties of the atom for valence 
electrons, since the number of nodes of the valence wave-functions in the core region only 
add multiples of 7r to the phase shift <5. The nodes in the valence wave-functions are neces­
sary to make valence states orthogonal to the core states. Node-less pseudo-wavefunctions 
reduces the number of required plane waves considerably.
The procedure is therefore as follows:

• Solve the spherical radial Schrodinger equation for an atomic or ionic reference con­

within the framework of density functional theory. This yields the self-consistent 
potential Vsc as well as the all-electron energy eigenvalues and wave-functions.

• Inside some core radius R c the valence wavefunctions ipni are replaced by nodeless 
pseudo wavefunctions ifiu. Outside the radius R c the all electron and the pseudo- 
wavefunction are identical.

• The corresponding pseudopotential is found by the ’’inversion” of the spherical Schrodinger 
equation for the pseudo-wavefunctions.

Obviously one gets different pseudopotentials for each spherical quantum number l. To 
combine them to a single potential, projection operators are used that subsequently also 
enter the energy functional (2.12).
The pseudo-wavefunction inside the core region is chosen to reproduce the scattering prop­
erties of the all-electron wavefunction in an energy window around the atomic reference 
energy. A central role in this context is played by the logarithmic derivative x lf of the 
wave-function and its energy dependence,

since it essentially describes the scattering properties.
Topp and Hopefield have found that the requirement of an identical energy derivative of 
xu  for all-electron and pseudo wavefunction at R c is equivalent to the two wavefunctions 
having the same norm inside the core. This idea was extended to the general concept of 
norm-conserving pseudopotentials by Hamann[184].

The norm-conserving pseudopotentials work well for all elements except for the first 
period and the 3d transition metals. In those elements the requirement of norm-conservation 
prohibits the use of large cutoff radii and soft pseudopotentials, therefore the energy cutoff 
for the plane waves still lies at 30-70 Rydberg. The reason for this is that for those elements 
the all-electron valence wavefunctions are already nodeless, consequently the construction 
of the pseudopotential only shifts the maximum of the valence wave-function and does not 
improve it considerably. To solve these problems Vanderbilt[42] developed a new concept 
for so called ’’ultra-soft” pseudopotentials, improving previous pseudopotentials in several

figuration

(2.20)

(2.21)
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ways. The two most important improvements are the removal of the constraint of norm 
conservation to optimize smoothness, and the matching of the logarithmic derivatives at 
several energies to improve transferability. The drawbacks are twofold: On one hand, the 
hermiticity of the nonlocal pseudopotential operator can only be preserved by the introduc­
tion of an overlap operator in the Hamiltonian. On the other hand, the non-conservation 
of the charge density leads to the need for augmentation charge density operators for the 
valence wavefunctions. However the reduction of the number of plane-waves by a factor 
of 3-4 largely outweighs the small computational overhead.

PAW method

In the previously described pseudopotential methods a potential and its corresponding 
pseudo-wavefunctions are constructed to reproduce the atomic scattering properties in an 
energy window around the atomic eigenvalues. They are then used as input parameters 
to the many-particle density functional calculation. The projector augmented-wave (PAW) 
method is in principle a frozen-core all electron method that aims to make the advantages 
and accuracy of all-electron methods available to the formally more simple (and computa­
tionally less demanding) pseudopotential approach. It was established by Blochl[43]. Its 
close connection to ultrasoft pseudopotentials was derived by Kresse and Joubert[185].

The PAW method starts from a simple linear transformation that connects the exact 
valence wavefunction | ip) to a pseudo (PS) wave function | ip) which is the one expanded 
into plane waves,

I =1 ^ ) -  5Z I <i>N,i)(PN,i \i/>) +  J 2  I <i>N,i)(pN,i | Ip)- (2.22)
N,i N,i

All quantities related to the (PS) representation of the wave function are indicated by a tilde. 
The (j> are local wavefunctions, the index N goes over all sites, i over the quantum numbers 
n, l,land m. The pi are localized projector functions that have to fulfill the condition

^ 53 | 0)(33i | - =  1- (2.23)

Defining cjv.i of an arbitrary wave function ip at the atomic site N  as

cjv.i = (p N ,i I '0), (2.24)
the pseudo-electron and all-electron wavefunctions at an atomic site N can be easily recon­
structed from the plane-wave expanded pseudo wave function as

I = I <pN ,i)cN ,i, (2.25)
I ^ n ) = ¿3 I ^ N ,i ) c N,i- (2.26)

i

The variational quantities that need to be determined during the ground state calculation 
are the PS wavefunctions ip. However, contrary to the ’’simple” pseudopotential methods
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the operators A representing physical quantities need to be consistently extended to their 
all-electrons forms,

A  = A  +  ^ 2  I VN,i) ((4>N,i | A  | <pN,j) — (4>N,i | A  | (pNi j  | • (2.27)
N,i,j

This equation is valid for local and quasilocal operators such as the kinetic energy. Truly 
nonlocal operators need a special treatment but are also tractable.
The valence-only PAW method is implemented in the program package VASP. Its results 
are almost identical to the most accurate density functional calculation presently available, 
which are based on the full-potential linearized augmented plane-wave method (FLAPW) 
[185]. This scheme describes all electrons essentially exact (with a much higher compu­
tational effort), even in the most difficult cases such as strong magnetic moments or large 
electronegativity differences [185].

2.2.5 Approximating the exchange-correlation functional
From its definition it is clear that the exchange-correlation functional can be written as

E xc[n] = T[n} -  T0[n\ +  Uxc[n\, (2.28)

where the first two terms describe the difference in the kinetic energy of an interacting and 
the non-interacting electronic system and Uxc is the Coulomb interaction of the electrons 
with their exchange-correlation hole (the classical Coulomb energy is treated separately, 
cf. Eq. (2.12)). The exchange-correlation hole nxc around an electron at the position r  and 
with spin a  is defined from the two-electron density matrix p2 as

p2(r<7, r V )  =  nCT(r) ( rv ( r )  +  nxc(r<7, rV )) ,  (2.29)

which can be further decomposed into exchange and correlation contributions,

n xc(ra, r V )  =  n x(rcr, r V )  +  n c(rcr, rV ) .  (2.30)

The exchange correlation hole is local,

lim nxc(ra, r V )  =  0, (2.31)
|r—r'|—*oo

since there is no interaction over infinite distances, at this limit the two-electron density 
matrix can consequently be written as the product of two single-particle density matrices 
(Eq. 2.29). Furthermore, the Pauli exclusion principle for electrons with parallel spin is 
satisfied,

n xc(ra ,ra) = - n a(r). (2.32)

The exchange hole is negative semi-infinite and obeys the integral condition

J nx(TO,r'e')dr =  —Sata>, (2.33)
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which may be deduced from the fact that the non-interacting wave-function is antisymmet­
ric. The integral condition for the correlation hole comes from the normalization of the 
two-electron density matrix,

J n c(r<r, r'a')dT =  0. (2.34)

The expression for Exc can be rewritten by introducing a coupling parameter A that de­
scribes the strength of the electron-electron interaction. The non interacting system corre­
sponds to A =  0 while A =  1 describes electrons interacting by the full Coulomb inter­
action. The exchange-correlation energy of the interacting system can then be expressed 
exactly in terms of the interaction of the density and the exchange-correlation hole averaged 
over the coupling constant [186,187],

E xc[n] = ^ J  nrdr j  dr £  (2.35)

where we have summed over the spin variables a  and <r'. The above result is also known as 
adiabatic connection formula. By a simple variable substitution R  =  r  — r ' one can see that 
the exchange-correlation energy depends only on the spherical average of the exchange- 
correlation hole.

Local density approximation (LDA)

The simplest approximation to the exchange-correlation energy is to replace it in every 
point r in space by the exchange-correlation energy exc of a uniform electron gas with the 
constant densities n j and n±,

E xc = J n(r)exc(n(r))dr. (2.36)

Using the spin-decomposed electron density the approximation is called local spin-density 
approximation (LSDA). The exchange acts only between electrons having the same spin 
while the correlation describes interactions between all electrons. The exchange energy in 
the LSDA is exactly known, it is given as

E * = Y . - \  ( ¿ ) 3 /  nH*)dr.  (2.37)

The correlation part can be obtained from the quantum Monte carlo simulations and then 
be parameterized. VASP uses a parametrization by Perdew and Zunger[188] based on cal­
culations by Ceperly and Alder[34],
Although this approximation leads to a qualitatively wrong picture for the exchange-correlation 
hole (it is symmetric and centered at the electron, whereas the exact hole is highly asym­
metric and centered around the nucleus), the LSDA yields surprisingly good results for the 
exchange-correlation energy. The spherical averages of LSDA and the exact hole are re­
markably similar, and only these averages enter into the exchange-correlation energy (see 
above). One reason for its success is that the LSDA describes the exchange-correlation 
effects of a physical system (the uniform electron gas) and therefore obeys all of the exact 
universal relations except the non-uniform scaling relations.
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Gradient expansion approximation (GEA)

The first possible improvement to the purely local LSDA, the gradient expansion approx­
imation, was already proposed by Kohn and Sham[32], It considers the LSDA as the first 
term in a Taylor expansion for E xc[n^,ni) around the uniform density. The exchange- 
correlation energy then becomes

E x c A\n h n i\ =  /  ™ (r)excK(r )>«l(r ))dr  (2-38)

a,a' riff1 nj,
While the GEA is an improvement over the LSDA for slowly-varying systems, it typically 
worsens results on real electronic systems. The exchange-correlation hole is not the hole 
of any physical system, which is probably one reason for its failure.

Generalized gradient approximation (GGA)

One way to rectify the failure of the GEA is to include the (spin) density gradient in a more 
general way and allow all powers of V nCT to occur in the exchange-correlation energy. Such 
approximations are called generalized gradient approximations (GGA). Eq. 2.38 takes the 
form:

E xcGA{nh ni} =  f  / ( nt(r ) ,nj.(r ), VnT(r), Vri|(r))dr, (2.39)

with the function /  being chosen by some set of criteria. Exchange-correlation approxi­
mations of the form of (Eq. 2.39) are semilocal, in the sense that the energy density at r 
depends on the electron density at an infinitesimal neighborhood of r. In the following a 
few GGA functionals are presented in their chronological order.

•  Langreth-Mehl approximation (LM)
One of the earlier popular works going beyond the GEA was the approximation by 
Langreth and Mehl[189]. The small k-vector contributions are eliminated by replac­
ing the correlation term for small gradients by zero. The corrections to the GEA are 
in the right direction, however the LM functional still shows some major shortcom­
ings, e.g. the uniform gas limit is not correct.

• Perdew-Wang 86 (PW86)
Perdew and Wang [191] introduced a real space cut-off on the exchange part of the 
GEA to restore the negative semi-definiteness as well as the integral condition of 
the exchange hole. The correlation contribution is approximated similar to the LM 
procedure. The resulting functional obeys some of the exact conditions better than 
the LM approximation. •

• Becke-Perdew (BP)
Becke[190] constructed an improved exchange functional by restoring the correct 
asymptotic behaviour of the energy as r  —> oo in finite systems. It is only semi- 
empirical since it contains a single adjustable parameter that was fitted to achieve 
minimum error for a large number of atoms. This exchange functional was combined 
with Perdew’s correlation term[191] to form the BP functional.
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• Lee-Yang-Parr (LYP)
The Lee-Yang-Parr correlation functional[192] starts from the Colle-Salvetti formula 
which is derived from a number of theoretical approximations and fitted to the cor­
relation energy of the helium atom. The non-interacting kinetic energy density in 
the Colle-Salvetti formula is replaced by its second-order density-gradient expan­
sion. The LYP correlation is often combined with Becke exchange, together named 
BLYP. The resulting exchange-correlation functional violates many of the universal 
relations but does scale correctly for uniform high densities, a quality that even the 
otherwise superior PW91 functional does not have.

• Perdew-Wang 91 (PW91)
The second exchange-correlation functional by Perdew and Wang discussed here 
(PW91)[193] is like LSDA and GEA and unlike other GGAs discussed here purely 
ab-initio. It is constructed using only uniform electron gas data and exact conditions. 
PW91 includes a real space cutoff also for the correlation functional and takes the 
Becke exchange with only small refinements. It fulfills almost all of the scaling rela­
tions known, including such that were only found after the functional’s formulation.

• Perdew-Burke-Emzerhof (PBE)
Perdew, Burke, and Emzerhof[194] simplified the cumbersome derivation of PW91 
and corrected some of its minor flaws such as the spurious wiggles in the exchange- 
correlation potential for small and large (dimensionless) density gradients. The re­
sulting energies change only marginally.

• Revised Perdew-Burke-Ernzerhof (RPBE)
Zhang and Yang[195] proposed a small modification of the local exchange enhance­
ment factor in the PBE functional, introducing the revPBE functional, which im­
proves atomization energies of atoms and molecules on transition metal surfaces. 
However, revPBE violates the Lieb-Oxford criterion[196]. Subsequently, Hammer, 
Hansen, and Norskov[197] devised the RPBE functional which gives the same im­
provements of the chemisorption energies but at the same time fulfills the Lieb- 
Oxford criterion locally.

2.3 The Vienna Ab initio Simulation Package
The previous sections gave a brief overview of density functional theory with special con­
sideration of exchange-correlation functionals and this different degrees of sophistication 
and accuracy. There was also a description of the advantages of plane-wave basis sets and 
the concepts of pseudopotentials, as an indispensable ingredient for efficient plane-wave 
based calculations.
The following paragraph outlines the key features of the Vienna Ab-initio Simulation pack­
age (VASP), a plane-wave based density functional code developed by Georg Kresse and 
Jurgen Furthmuller[101,102], maintained and extended under the direction of Georg Kresse 
by many people from the Computational Materials Science group at Institut fur Material- 
physik of the University of Vienna. VASP includes an optimised set of ultrasoft pseudopo­
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tentials and PAW potentials for all elements of the periodic system. The first parts of the 
code were written in the early 90’s of the last century, currently it consists of more than 
80000 lines written in Fortran90.
VASP solves the Khon-Sham equations of local density or spin-density functional theory 
iteratively within a plane-wave basis set. The electronic ground state is determined ei­
ther by a conjugate gradient algorithm as optimised by Teter[198], by a blocked Davidson 
scheme as first proposed by Davidson[199]), or via an unconstrained band-by-band matrix- 
diagonalisation scheme based on a residual minimization method (RMM)[ 102,200]. A 
comprehensive review of iterative minimisation techniques have been written by Kresse 
and Furthmuller[102]. After each iteration the charge density has to be recalculated. To 
guarantee numerical stability the new density is mixed with the input charge density of the 
previous cycle by use of an improved Pulay mixing[201].
Besides the pure local density approximation (LDA) for exchange-correlation functional 
the following gradient corrected functionals as presented in Section (2.2.5) are imple­
mented in VASP to account for the nonlocality in exchange and correlation:

• LM

• BP

• PW91

• PBE

• RPBE

The PKZB metaGGA functional is included in a non-selfconsistent way based on orbitals 
obtained by selfconsistent PBE calculation. Implementation of hybrid functionals is in its 
initial stages.
Another important issue is the energy band dispersion in the Brillouin-zone. Sampling 
in the reciprocal space is done on points of Monkhorst-Pack special grids[45]. For the 
integration over the brillouin zone the tetrahedron method with Blochl corrections[43] and 
a generalized Gaussian smearing[202] are available among other less involved methods. 
Further informations about VASP can be found at http://cms.mpi.univie.ac.at/vasp/.

2.4 The mesoscopic regime
The mesoscopic regime deals with entities composed by a large number of particles (i.e. 
atoms and molecules); yet, the discrete nature of matter is still explicitly taken into account. 
Characteristic length scales range from fractions to hundreds of microns. Such scales are 
presently intractable by direct implementation of computational quantum mechanics; yet, 
in a multiscale modelling approach we need to have atomic resolution even in this regime. 
The way to deal with such a large number of degrees of freedom is to adopt a coarse grained 
approach and match or combine data from first-principles calculations with concepts from 
thermodynamics or statistical mechanics (fig. 2.1).
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2.4.1 Thermodynamics
Thermodynamics can only formulate relationships among macroscopic properties derived 
from the laws of thermodynamics [19]. The formulations of these laws are derived from, 
and are precise representations of, the essential features of the observed behavior of matter 
at the macroscopic level. Since these laws are statements of observation at the macroscopic 
level, they are independent of any assumption about the microscopic structure of matter, 
which could be either atomic or continuous as far as the principles of thermodynamics 
are concerned. As such, thermodynamics alone does not give insight into the microscopic 
structure of matter.
The laws of thermodynamics must be postulated. They cannot be proven in any way and 
have been developed through the observation of a large number of systems.

• Zeroth law: if systems A and B are in thermodynamic equilibrium, and systems B 
and C are in thermodynamic equilibrium, then systems A and C are also in thermo­
dynamic equilibrium.

• First law: Energy can be changed from one form to another, but it cannot be created 
or destroyed. The total amount of energy and matter in the Universe remains constat, 
merely changing from one form to another.

• Second law: The second law can be stated either in its classical form or its statistical 
form.

-  Heat can only flow from a higher temperature to a lower temperature.

-  The entropy of a closed system (i.e. a system of particles which does not ex­
change heat, work or particles with its surroundings) tends to remain constant 
or increases monotonically over time.

• Third law: The entropy of a system approaches a constant as the temperature ap­
proaches zero Kelvin.

A thermodynamic description of a system containing many molecules is characterized by 
the use of a small number of macroscopic variables, whereas a complete microscopic me­
chanical description needs a vast number of variables. It is very clear, from the nature of the 
different analysis, that, if a thermodynamic description of a system is to be consistent with 
a microscopic description, some grouping together, or averaging, or systematic ignoring 
of microscopic variables must be an inherent part of the connection between the two theo­
ries. The thermodynamic description of a system is inevitably coarser than the microscopic 
description.

2.4.2 Statistical mechanics
Statistical mechanics (SM) provides the link between the microscopic properties of matter 
and its bulk properties, i.e. the link between the microscopic mechanical and thermody­
namic descriptions. Instead of looking for exact solutions to the microscopic mechanical 
equations of motion, SM deals with the probabilities of the system being in one state or
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another. Hence the name statistical mechanics[19].
The objects whose properties are calculated by statistical mechanics are known as systems. 
SM deals with the states of the system. To specify a state, one specifies values for every 
variable of the complete microscopic description. Specifying values for all of the micro­
scopic variables is sufficient to fully specify the state of the system.
Statistical mechanics can deal with classical or quantum systems. Even though the mi­
croscopic description of the adsorbate/substrate system studied in this thesis requires a 
quantum mechanical treatment; its mesoscopic description can be satisfactorily carried out 
within classical statistical mechanics (this point will be extensively discussed in Chapter 5). 
As a result, we are concerned here with the statistical mechanics description of ensembles 
of classical systems.
The state space of a given system S  consists of all possible configurations i, i.e. microstates. 
The system evolves in time occupying different configurations, which gives a probability 
distribution over configuration space. For each point C  in configuration space, the proba­
bility P(i, t) of finding the system in configuration i at time t satisfies the master equation

=  - £  W ( t -  j )P ( i ,  i) +  £  W ( j  -  i)P(j ,  t), (2.40)
j  j

where j  is any point in configuration space, and W{i  —» j )  and W ( j  —> i) are the proba­
bilities of making a transition from configuration i to j  and vice versa [19]. In fact, there 
is an equation like Eq. (2.40) for each point in configuration space, and the set of all such 
equations constitute the master equation. The probabilities P(i. t) must also obey the sum 
rule

£ P ( t , f )  =  l, (2.41)
i

for all t, since the system must always be in some state.
In general, a master equation (also known as the Chapman-Kolmogorov equation in prob­
ability [19]) is a phenomenological first order differential equation describing the time- 
evolution of the probability of a system to occupy each one of a discrete set of states. The 
master equation and its sum rule, Eqs. (2.40) and (2.41), can be considered as a ’’continuity 
equation” expressing the fact that the total probability is conserved. Probability of a state i 
that is ’’lost” by transitions to state j ,  is gained in the probability of state i, and vice versa. 
Eq. (2.40) just describes the balance of gain and loss processes.
An observable macroscopic property Q of the system at time t is related to the configura­
tions C  by the expectation value of Q

(Q{t)) = ' £  QiP(i , t) ,  (2.42)
i

where Qi is the value of the system observable Q in configuration C.
Since the master equation Eq. (2.40) is first order with real parameters, and since the 
variables P(i, t ) are constrained to lie between zero and one (which effectively prohibits 
exponentially growing solutions to the equations), all systems governed by these equations 
must come to equilibrium at the end. Thus, at equilibrium, there exists a unique distribution 
Pi which satisfies the following stationary condition: dP(i, t ) /d t  =  0, i.e.

E -  m  = e  in* -  (2.43)
j  j
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which expresses the condition of global equilibrium. A numerical method based on Markov 
processes (e.g. Metropolis Monte Carlo method) using transitions given by this condition 
does not guarantee that the transition probabilities lead to an equilibrium distribution ir­
respective of the initial state. Indeed, the system can satisfy Eq. (2.40) and actually be 
rotating in a so-called limit cycle (dynamic equilibrium), where the probability distribu­
tion is not invariant after one transition, but only after n transitions [48]. In practice, this 
problem can be avoided by imposing a stronger condition called detailed balance:

W{i  -> j)Pi = W ( j  -> i)Pj, (2.44)

which is essentially assuming local equilibrium for every allowed transition in order to 
force global equilibrium.
The condition of detailed balance given by Eq. (2.44) implies that, at equilibrium, the 
average number of moves i —► j  is the same as the average number of inverse moves j  —> i. 
This is also known as the principle of microscopic reversibility; i.e. every microscopic 
process in the system is exactly balanced by its inverse process so that there is no net effect 
on the system. As this is true for any two arbitrary conformations it follows that if the 
system in equilibrium is submitted to moves that obey the detailed balance condition there 
will be no change in the probability of any conformation and the system will remain in 
equilibrium.
The fundamental postulate of equilibrium statistical mechanics can be stated as follows:

• All possible quantum states (microstates) of an isolated system consistent with a 
given set of macroscopic parameters of constraints are to be considered as equally 
probable.

This postulate of equal a priori probabilities is also known as the ergodic hypothesis and 
cannot be obtained from more fundamental arguments. Although eminently reasonable, 
and consistent with the laws of mechanics, the postulate stated must be recognized as a 
fundamental assumption in the development of the statistical theory. Such an assumption 
can only be indirectly verified a posteriori by the success of theoretical calculations in in­
terpreting and reproducing the results of observation.
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The ergodic hypothesis can be equivalently formu­
lated by saying that time average and average over sta­
tistical ensembles are the same [50]. This formulation 
allows for the development of ensemble theory in statis­
tical mechanics (Fig. 2.4).
In practice, during the time of measurement on a single 
system, the system undergoes a large number of changes 
from one microstate to another. The observed macro­
scopic properties of the system are time averages of the 
properties of the instantaneous microstates, i.e. of the 
mechanical properties. Simulating the evolution of the 
system in time would in principle requires one to fol­
low the trajectory of every particle in the system. It is 
not feasible to solve the equations of motion for such a
system because there are simply too many equations. An alternative to time averaging is 
provided by the concept of an ensemble average.
An ensemble (Fig. 2.4) is a very large set of similar systems, i.e. replicas of the system, 
considered all at once. The systems in the ensemble could interact with each other and 
with a system called reservoir (or heat bath). Thus, instead of looking at one system over 
a period of time, one looks at a collection of a large number of systems (all of which are 
replicas of the system under consideration) at a given instance of time. The nature of the 
boundaries between the systems determines the type of ensemble:

Figure 2.4: An ensemble, or col­
lection, of macroscopic systems 
in equilibrium with a reservoir. 
The whole ensemble is isolated 
from the universe.

• If the boundaries are impermeable, each system is completely isolated, and there 
are no interactions among the systems, the ensemble is called micro-canonical. The 
systems are constrained to a fixed number of particles N ,  fixed volume V,  and fixed 
energy E.

• If the walls are permeable to energy but not to anything else, and only energy can 
be transferred among systems, the ensemble is called canonical. The systems are 
constrained to fixed number of particles N,  fixed volume V,  and fixed temperature 
T.

• If both energy and matter can be exchanged among systems, but the walls are imper­
meable to all other influences, the ensemble is called grand canonical. The systems 
are constrained to fixed V,  fixed chemical potential /i and fixed temperature T.

These are the ’’standard” ensembles; however, it is possible to define ensembles with dif­
ferent types of constraints [19].
Every ensemble has a characteristic partition function. The partition function is the sum 
over all available microstates of the system. It encodes the statistical properties of a system 
in thermodynamic equilibrium, i.e. all thermodynamic properties can be derived from it. 
The partition function in statistical mechanics is the equivalent of the Schrodinger equation 
in quantum mechanics. Table 2.1 shows the partitions function and the constraints for each 
ensemble. The microcanonical partition function is denoted by i). The Dirac delta function 
6 ensure that there is a contribution only from those states with an energy equal to E. Q is
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Microcanonical Canonical Grand canonical
Constraints (N ,V ,E ) ( N , v , T )

Partition function n  = Z  i S ( E i - E ) Z  = E i  e - Ei/ ksT 2  =  e-(Ei+tHNi)/kBT

Table 2.1: Ensembles in statistical mechanics

equal to the degeneracy of the system, i.e. the number of microstates with the energy E. 
The canonical partition function is denoted by Z.  Roughly, Z is a measure of how many 
different energy states of the system are appreciably populated when the system is in ther­
mal equilibrium at temperature T, i.e. it indicates how the energy is partitioned among the 
different states. The energy of the microstates Ei is weighted by the factor (/c^T /-1) where 
kB is the Boltzmann constant. The grand canonical partition function is denoted by E. It 
is analogous to Z  for situations, where the number of particles is allowed to vary. That is 
why one has to introduce chemical potentials i.e. denotes the energy cost of adding 
or removing a particle i from the system.
The sums in table 2.1 are over all possible states of the system allowed by the constraints. 
The sums depend upon the size of the system and the number of degrees of freedom for 
each particle.
The transition rates W(i  —> j )  appearing in the master equation Eq. (2.40) take particular 
values which arise out of the thermal nature of the interaction between the system and the 
thermal reservoir. It is important that they are chosen in a way that mimics the interactions 
with the thermal reservoir correctly [48]. The important point is that the equilibrium values 
of finding the system at configuration i are known a priori. These equilibrium values are 
known as equilibrium occupation probabilities and are denoted by

Pi =  lim P(i , t) .  (2.45)
t— XX)

The nature of the system and its surroundings determines its equilibrium occupation proba­
bilities P^ For a system in the microcanonical ensemble Pt = I /O  (i.e. the microcanonical 
distribution function), the equilibrium distribution of electrons (Fermions) is given by the 
Fermi-Dirac distribution function, that of a non-interacting Bose gas (Bosons) is given by 
the Bose-Einstein distribution function. In general the distribution function of a quantum 
system is given by \ip\2, i.e. the probability associated with the wave function solution of 
the Hamiltonian under investigation [19].
In a particular problem, the choice of ensemble depends on the characteristics of the system 
under study. In principle, all ensembles are equivalent, and they lead to the same results; 
however, an appropriate choice of ensemble can simplify a statistical mechanics calculation 
considerably.
The experimental measurement of two-dimensional adsorbate phase diagrams is mostly 
carried out through LEED experiments [49]. Those experiments are carried out at (N, V, T ) 
approximately constant and the adsorbate overlayer can usually be assumed to be a clas­
sical system. Thus, in order to mimic the experimental situation, the canonical ensemble 
is the appropriate choice to numerically simulate the two-dimensional phase transitions of 
adsorbates. In the following, the canonical partition function Z  is used in the formulas; 
however, they are valid for all the ensembles, provided the right partition function is used.
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The probability P(i, t), of finding the system in configuration i at time t —» oo (i.e. the 
equilibrium occupation probability Pi) is given by the Boltzmann distribution [50]

where Ei is the energy when system is in the ¿th state.
From Eq. (2.42) and (2.46) the expectation value of any observable Q for a system in 
equilibrium at temperature T  is

For example, the expectation value of the energy (E),  which is also the quantity known in 
thermodynamics as the internal energy U, is given by

The only information needed to apply Eq. (2.42) is the knowledge of the microstate ener­
gies E^  In principle, those can be obtained from quantum mechanics at T  — OK. Thus, 
statistical mechanics allows calculation of the thermodynamical properties of the system at 
any temperature T from the knowledge of the energetics of the system at T =  OK. In fact, 
in the absence of work, the energy levels of a system remain fixed when heat is added to 
the system. The energy levels are functions of the external parameters alone (e.g. volume, 
magnetic and electric fields). It is the occupancy of the levels, i.e. the Boltzmann prob­
ability distribution, that changes when heat is added to the system. Statistical mechanics 
prescribes the way the changes in probabilities determine the thermodynamic properties of 
the system at temperature T. If work is done on the system, but no heat is added to it, the 
Boltzmann probability distribution remains constant, but the energy levels change. In this 
case, the quantum mechanical reference system at T  = OK has to be modified in order to 
work out the corresponding energy levels.
For a system consisting of only a few interacting particles, the partition function can be 
written down exactly with the consequence that the properties of the system can be cal­
culated in closed form. However, in general, for large systems of interacting particles the 
partition function cannot be evaluated exactly. One has to resort to Monte Carlo methods 
to numerically evaluate the partition function.
Before getting into the details of Monte Carlo algorithms, it is convenient to introduce a 
simple statistical model through which the algorithms will be explained.

(2.46)

(Q) =  Z Q ^  =  ^ Z  Qie~E'/kBT (2.47)

(2.48)
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Ising model Lattice-gas model
Canonical ensemble Grand canonical ensemble
Coupling constant J Interaction energy e
External field B Chemical potential /i
Magnetization M Coverage ©
Susceptibility x Compressibility a
Curie point Critical point

Table 2.2: Correspondence between the Ising model and the Lattice-gas model

2.4.3 The Ising and Ising-like models
The Ising model [51] is one of the simplest and most fundamental models of statistical me­
chanics. It can be used to describe such diverse phenomena as magnets, liquid-gas coexis­
tence, alloys, adsorbates on metals, and many others. 
The particular form of this model considered 
here is that of an infinite regular square lattice in 
two-dimensions only. Each site in the lattice con­
tains an elementary variable s called spin with 
possible values s = ±1 (see 2.5). The spin at 
each lattice site i interacts with its four nearest 
sites such that the overall Hamiltonian for the 
system is

H Is in g
(hj)

SiS (2.49)

MM*  
M M 
M M
Figure 2.5: One possible arrangement 
of Ising spins on a lattice. Each spin is 
either up or down. The nearest states of 
the spin in the center have been high­
lighted

where the sum over (i, j )  represents a sum over 
the nearest neighbors of all the lattice sites, and J  
is the nearest sites interaction energy. Each state 
of the system, i.e. each configuration of spins s 
occurs with probability given by Eq. (2.46)
Even though the Ising model is a drastic simpli­
fication compared to realistic situations, it is able 
to describe the occurrence of order at low tem­
peratures and disorder at high temperatures, and especially the phase transition between 
those situations, in which spin correlations over very large length scales become essential. 
The lattice-gas model (LG) is isomorphic with the Ising model. The only difference is that 
each cell can be either occupied by a particle (rij =  1) or unoccupied (ti* =  0). The vari­
ables n  are usually called point or occupation variables. The correspondence with the Ising 
model is established by making the change of variables

Si 277,,; 1. (2.50)

The interaction of a lattice-gas model model can then be expressed as an Ising-like hamil-
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tonian
(2.51)Hlg =  - e ^ 2  /riiTij.

(*J)

The correspondence between the Ising model and the lattice-gas model up to a constant or 
a factor is summarized in table 2.2[50].
The Ising model is important because similar (more sophisticated) models, like the lattice- 
gas model, can be constructed by generalizing the nature of the lattice and the number of 
components and states. The Ising model can be extended by:

• Letting Si have several values (Potts model)

• Introducing vectors s,: and writing the interactions as (s, • Sj) (Heisenberg model).

• Introducing complex lattices (fee, bee, trigonal, hexagonal...)

• Introducing several sub-lattices (decorated lattices)

• Introducing interaction of more distant neighbors and multisite interactions (cluster 
expansion technique)

• Making J random (glass models)

• Extending the model to three dimensions (three dimensional Ising model)

• Introducing kinetics and making the model time-dependent (non-equilibrium simu­
lations, cellular automata)

The Ising model can be solved exactly only in the simplest cases (in one spatial dimension, 
and on a two-dimensional square lattice [52]). In most cases of practical interest, one has to 
resort to numerical techniques like Monte Carlo simulations, or use approximate analytical 
techniques.

2.4.4 Monte Carlo Methods
Monte Carlo [48] is a numerical technique that makes use of random numbers to solve 
a problem. Monte Carlo methods are used in statistical mechanics for the calculation of 
thermal averages according to the principles of statistical mechanics in a given equilibrium 
ensemble.
In a Monte Carlo simulation, a set of random numbers is used to determine the sequence of 
states through which the system evolves. Consequently, the changes in the system do not 
occur in a predefined fashion, i.e. deterministically, but in a stochastic manner such that 
the average quantities obtained from two independent runs agree within some statistical 
error. The time in connection with Equilibrium Monte Carlo simulations is referred to as 
the ’’Monte Carlo time” and it is not directly related to the real physical time [48], In 
contrast, the Kinetic Monte Carlo method [53] has been specifically designed to describe 
the dynamical evolution of the system, and therefore it can be used to study time-dependent 
physical properties.
Since in this thesis we are interested in equilibrium properties of Ising-like systems (Section
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2.4.3), we concentrate here on the theoretical foundation behind the standard application of 
Monte Carlo methods (e.g. Metropolis and Wolff algorithms) to the simulation of thermal 
equilibrium systems.
The usual goal in such Monte Carlo simulations of thermal systems is the calculation of the 
expectation value (Q) of some observable quantity Q. The ideal route of calculating such 
an expectation value is averaging the quantity of interest over all states i of the system, 
weighting each with its own Boltzmann probability, i.e. Eq. (2.47). However, complete 
enumeration of configuration space in medium size systems is impossible with present day 
computers, let alone that it is inefficient and unnecessary.
In Monte Carlo simulations this difficulty is solved by replacing the set of all configurations 
in Eq. (2.47) by a representative tractable subset of M  configurations, where M  is much 
smaller that the total number of configurations, N.  An estimate for the thermal average, is 
then obtained by

Qm  —
£*=i Qie-E^ ksT (2.52)

It is clear that the accuracy of the estimate will depend directly on the quality of the rep­
resentative subset of M  configurations. In a simple sampling method, for example, where 
the M  configurations are chosen randomly, the immense majority of the configurations will 
have energies very different from the average energy of the system at temperature T  and 
their contribution to the estimate will be insignificant due to the small Boltzmann factor. 
The estimate obtained by simple sampling would be, therefore, very inaccurate, unless M  
becomes as big as N,  or even larger.
The idea of importance sampling in MC simulations is to choose the representative set of 
configurations not completely at random, but in such a way that the selection is somehow 
biased towards configurations that are significantly populated at equilibrium. In general, if 
the probability that a given configuration appears in the sample representative of configu­
rations is P/, then one should weight the contribution of configuration i by the inverse of 
the sampling probability [53], i.e. Eq. (2.52) becomes

Qm —
sr^M

sr^M 2^i=1

Qie~EilkBT
P[

e- E J k B T

Pl
(2.53)

The real system is not sampling all states with equal probability, but instead sampling 
them according to the Boltzmann probability distribution, Eq. (2.46). If one can mimic 
this effect in the simulations, one can exploit these narrow ranges of sampling to make 
estimates of such quantities very accurate. Thus, if the configurations are chosen with 
sampling probability P'i aeEi/kBT , then the Boltzmann factors cancel out and the estimate 
for the thermal average just becomes

i M

QM = T 7 Y , Q i -  (2-54)
l—l

The only remaining question is how exactly to pick the states so that each one appears 
with its correct Boltzmann probability. One cannot simply choose states at random and 
accept or reject them with PlaeEi/kßT. That would be no better than the original scheme of
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sampling states at random. Instead, almost all Monte Carlo schemes rely on Markov chains 
as the generating engine for the set of states used. Concerning Monte Carlo applications, a 
Markov chain is a mechanism which, given a system in one state i, generates a new state 
of that system i +  1. It does so in a random fashion; it will not generate the same new state 
every time it is given the initial state i. The probability of generating the state i +  1 given i 
is called the transition probability P{i —> i +  1) for the transition from i to i +  1. Thus the 
Markov chain

Oj ► ®j+l * 2 * &i+3 ' '■ * 1 * ®i+ra> (2.55)
has the following properties [48]:

• Each ’’link” in the chain depends only on the configuration of the ’’link” immediately 
before it.

•  Links from further in the past are irrelevant for determining the next configuration,
i.e. the probability of transitions between states is independent of history

• The transition probabilities do not vary over time

The transition probabilities from state i to state j  (i.e. i +  1) in the Markov chain must also 
satisfy the constraint

E  =  (2.56)
j

since the Markov chain must generate some state j  when handed a system in state i.
In order to achieve an equilibrium distribution, the Markov chain must obey two require­
ments [48]:

• It must be ergodic, i.e. there must be a ’’path” from every state i to every state j

• It must obey detailed balance, (i.e. microscopic reversibility)

The condition of ergodicity implies that one is allowed to set some of the transition prob­
abilities P(i  —► j ) of the Markov chain to zero, but that there must be at least one path of 
non-zero transition probabilities between any two states picked at random. This is neces­
sary to achieve the stated goal of generating states with their correct Boltzmann probabil­
ities. Every configuration j  appears with some non-zero probability Pj in the Boltzmann 
distribution. If that state was inaccessible from another state i, no matter how long the 
Markov process continues, the goal is thwarted if one starts in state i.
The condition of detailed balance ensures that the system converges to the selected equi­
librium probability distribution. It also allows free choice of the equilibrium probability 
distribution of configurations [48]. For a system in the canonical ensemble at thermal equi­
librium this probability distribution function is given by the Boltzmann distribution.
Thus, substituting Eq. (2.46) into Eq. (2.44) leads to the following form of the detailed 
balance condition

> _  IjL _  e—(Ej—Ei)/kBT ^  5 7 )
* i)

Note that the partition functions cancel out in the ratio Pj/Pi. The transition probabilities 
can also be written as

W (i  -> j )  = g(i -> j )A ( i  -> j )  
32

(2.58)



where the quantity g(i —> j )  is the selection probability, which is the probability, given 
an initial configuration i, that the algorithm will generate a new target configuration j ,  and 
A(i  —* j )  is the acceptance probability of the new configuration. Writing the transition 
probabilities in this way gives us complete freedom about how to choose the selection 
probabilities g{i —*■ j ) ,  since the constraint Eq. (2.59) only fixes the ratio

j )  _  9 { i  j ) A { i  ~ > j ) _  (.E j - E i ) / k BT

w Ü  0  9Ü -* i )A(j  - »  i)
(2.59)

The constraints on the choice of transition probabilities W (i  —> j )  are given by Eq. (2.59). 
Satisfying such constraints and the condition of ergodicity ensures that the equilibrium 
distribution of configurations generated by the Markov process will be the Boltzmann dis­
tribution.

The Metropolis Monte Carlo algorithm

The Metropolis algorithm [55] is the workhorse of stochastic simulations. Its simplicity, 
range of application, and power make it the algorithm of choice in Monte Carlo simula­
tions. In the following, we discuss the derivation of the Metropolis algorithm based on the 
general theory of Monte Carlo methods (Section 2.4.4). The derivation is more transparent 
if it is applied to a specific system. For that purpose, we use the Ising model (Section 2.4.3), 
since it is the generic model used later to describe adsorbed overlayers on surfaces in this 
study.
The derivation of the Metropolis algorithm consists of choosing selection probabilities 
g(i —» j )  and acceptance probabilities A(i —» j )  such that Eq. (2.59) satisfies the condition 
of detailed balance. The algorithm works by repeatedly choosing a new configuration j ,  
and then accepting or rejecting it at random with the chosen acceptance probability. If the 
configuration is accepted, the system changes to the new configuration j .  If not, it just 
leaves it as it is. Then, the process is repeated again and again.
The selection probabilities g(i —» j )  should be chosen so that the condition of ergodicity, 
i.e. the requirement that every state be accessible from every other in a finite number of 
steps, is fulfilled. Besides, since the real system in thermal equilibrium spends most of 
its time in a subset of configurations with a narrow range of energies [48], the algorithm 
should avoid configurations whose energy is very different from the energy of the present 
configuration. The simplest way of achieving this in the Ising model is to consider only 
those states which differ from the present one by the flip of a single spin, i.e. single-spin- 
flip dynamics. For a N  spin system, there are then N  different spins that one could flip, 
and hence N  possible states j  that one can reach from a given state i, i.e.

=  (2.60)

Using single-spin-dynamics also ensures that the algorithm obeys ergodicity, since it can 
get from any state to any other on a finite lattice by flipping one by one each of the spins 
by which the two states differ.
With the selection probabilities given by Eq. (2.60), the condition of detailed balance Eq.
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It remains only to choose the acceptance probabilities A(i  —> j )  and A ( j  —» i) to satisfy 
this equation. The only constraint is that both acceptance probabilities remain between zero 
and one.
To make the algorithm as efficient as possible, the acceptance ratio should be as large 
as possible (i.e. the algorithm should move freely about configuration space and sample a 
wide selection of configurations according to the Boltzmann distribution). The way to max­
imize the acceptance ratio (and therefore produce the most efficient algorithm) is always to 
give the larger of the two acceptance probabilities the largest value possible, namely 1, and 
then adjust the other to satisfy the constraint [48]. For example, suppose that of the two 
states (i.e. i and j )  i has the lower energy and j  the higher (i.e. Ej >  Et)\ then the larger 
of the two acceptance probabilities is A ( j  —> i) , because e~(Ê E’E kBT <  1 in Eq. (2.61). 
Thus, one sets A(j  —»•*) =  1; and, in order to satisfy Eq. (2.61), A(i  —> j )  must take the 
value e~('Ei~Ei'>/kBT. Thus the optimal algorithm is one which satisfies

P ( E 1 -*• E 2) =  m in \e - {E2- El)/kBT, 1]. (2.62)

In other words, if a configuration is selected with an energy lower than or equal to the 
present one, the transition to that state should always be accepted. If it has a higher energy, 
then the new configuration might be accepted with the probability given by e_('Ej_£'i)/,csT. 
This is the acceptance rule which characterizes the Metropolis algorithm. There are actu­
ally many ways to choose acceptance probabilities which satisfy the condition of detailed 
balance Eq. (2.61); however, the Metropolis acceptance rule appears to date to be by far 
the most efficient one[48].
Any Monte carlo algorithm, applied to any model, which chooses acceptance probabilities 
according to the rule Eq. (2.62) can be said to be a Metropolis algorithm [48]. The explicit 
rules for the Metropolis algorithm applied to the simple Ising model of Section 2.4.3 are:

1. Start with an arbitrary spin configuration a k =  {s1; s2, • • -, s ^ }

2. To generate a new configuration o^+i

(a) Pick a particle i randomly

(b) Reverse i ’s spin direction to create a trial configuration str
(c) Calculate the energy E{a tr) of the trial configuration

(d) If E ( a tr) <  E ( a k), accept the trial; that is, set a k+i =  a tr

(e) if E (a tr) >  E ( a k), accept with probability P  — e ~ ^Etr~Ek^
i. Choose a uniform random number 0 <  r < 1

The Metropolis algorithm generates a random walk of points distributed according to the 
Boltzmann distribution Eq. (2.46). From an initial ’’position” in phase or configuration 
space, a proposed ’’move” is generated and the move is either accepted or rejected accord­
ing to the Metropolis algorithm. By taking a sufficient number of trial steps all of the
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relevant phase space is explored and the Metropolis algorithm ensures that the points are 
distributed according to the Boltzmann distribution.
Note that the temperature T  enters into the simulation through the Boltzmann factor e~EP sT, 
i.e. the properties of the system can only be calculated at the specific temperature T  of the 
simulation. To study how the system depends on T, it is necessary to carry out simula­
tions at different temperatures. After equilibration at a specific temperature, any macro­
scopic quantity of interest can be averaged over different configurations generated by the 
Metropolis algorithm. Observables are evaluated by sampling the system at different con­
figurations M  belonging to the Boltzmann distribution, i.e. observables are calculated from 
the statistical average Eq. (2.54).
Thus, rather than finding an exact solution, Metropolis Monte Carlo allows one to stochas­
tically sample a probability distribution P  (in this case the Boltzmann probability distribu­
tion) and obtain an ensemble of configurations i which conform to P. Ensemble averages 
over that distribution may then be obtained to within arbitrary precision by increasing the 
number of states sampled.
The Metropolis algorithm is also useful in combinatorial optimization problems. By per­
mitting the system to accept sometimes configurations with higher energy (i.e. go ’’uphill” 
for a while), this technique is successful at finding a global extremum for situations in 
which other techniques stick in local ones. Its success relies on imposing a slow cooling 
schedule to the combinatorial problem. This optimization technique is known as simulated 
annealing [56].
Even though simple and powerful, the Metropolis algorithm has some limitations, espe­
cially near phase transitions. Those limitations will be explained in Chapter 5, when dis­
cussing the calculation of thermodynamic properties from Metropolis Monte Carlo simu­
lations. Here, we discuss a different approach to Monte Carlo simulations that avoids the 
problem of the Metropolis algorithm near phase transitions.

The Wang-Landau Monte Carlo algorithm

A class of Monte Carlo methods, called the generalized ensemble algorithms [57] have been 
conceived in order to overcome the multiple-minima problem of the standard Metropolis al­
gorithm. In a generalized ensemble simulation, each state is weighted by a non-Boltzmann 
probability weight factor so that a random walk in potential energy space may be real­
ized. These methods (e.g. multicanonical method [53], flat histogram method [53], the 
broad histogram method [53], Wang-Landau method [58-62]) have been developed based 
on re-writing the partition function as a sum over energies

Z(T)  = e~Ei/kBT = 22  n(E)e~Ei/kBT, (2.63)
t E

where Q(E)  is the configurational density of states (CDOS), i.e. the number of possible 
configurations for an energy level E. thus, the partition function Z  is reduced from a sum 
over all configurations i to a sum over all energy levels. The partition function would be 
tractable if the configurational density of states Q(E)  could be evaluated.
The Wang-Landau algorithm is designed to calculate an estimate of Q(T). In practice, 
this estimate is so close to the true density of states that thermodynamic quantities can
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be accurately derived from it. The Wang-Landau algorithm has its origin in the entropie 
sampling method [63], the difference being only the update rule of the CDOS estimate. 
The basic idea is to sample from a distribution other than the Boltzmann distribution. In 
principle, one can sample configurations from any probability distribution P[, as expressed 
be Eq. (2.53), and still get an estimate QM of the observable Q. In the entropie sampling 
and Wang-Landau methods, instead of sampling configurations with P'ae~E^ kBT as in 
the Metropolis algorithm, one samples configurations with P i a e W W ,  i.e. the reciprocal 
of the density of states. In other words, states in the ranges of E where there are many 
configurations, so that the density of states is high, are sampled with lower probability than 
those in ranges where there are few configurations.
With a probability P[ for a single configuration of energy E,  the probability of sampling 
an arbitrary configuration with energy E  is given as

p E =  n(E)P ' , (2.64)

where the density of states Q(E) counts the number of configurations with energy E. Upon 
choosing Pla l /Q (E )  instead of the canonical weight P(E)ae~E/kBT one obtains a con­
stant probability PE for visiting each energy level E,  and hence a perfectly flat histogram. 
With this sampling selection, the estimation of the observables , Eq. (2.52), becomes

E £ i
ü { E i ) e - ^ B T (2.65)

This formula applies for a sample of size M. However, if one has knowledge of the complete 
density of states f1(E), observables are better calculated from:

E g  Q M E J e - W W
E s  n ( E i ) e - ^ B T (2 .66)

Implementation of entropie sampling is straightforward. One only has to employ the con­
dition of detailed balance w(i -> j) = Pj =  n(£?o

W ( j  -> i) Pt Q(Ej)
which, using the same arguments as in the Metropolis algorithm, 
acceptance probability ratio

A(i  -> j ) =  fl(EQ 
A ( j - i )  n ( E j Y

can be reduced to an

(2 .68)

To make the algorithm as efficient as possible, the acceptance ratio should be taken as 
large as possible. Thus, similar to the Metropolis algorithm, the optimal entropic sampling 
algorithm is one which satisfies

P{Ei E2) =  min
n {E 2)

i (2.69)

The condition of ergodicity is satisfied, because through single spin flipping dynamics (in 
the context of the Ising model, Section 2.4.3) and a random walk in energy space (due to

36



the flat energy distribution), the entropic sampling algorithm is able to find a path from 
every state i to every state j .
The only major problem left is that the density of states Q(E)  is not known a priori and has 
to be calculated by the simulation algorithm. Most of the generalized ensemble methods 
estimate Q(E) based on the accumulation of histogram entries in energy space / / ( E), i.e. 
the quantity which keeps track of the number of visits at each energy level E  [48,53]. 
Due to the exponential growth of the density of states in energy space, this process is 
not efficient because the histogram is accumulated linearly. The Wang-Landau algorithm 
iteratively modifies the density of states using a carefully controlled modification factor. 
The histogram entries H{E)  are accumulated during the random walk, but H(E)  is only 
used to check whether the histogram is flat enough to go to the next level random walk with 
a finer modification factor.
The Wang-Landau algorithm for the simple Ising model of Section 2.4.3 has the following 
steps:

1. Start with an arbitrary spin configuration =  {si, s2, • • ■, sN}

2. Create a flat initial density of states f l(E)  — 1 and take an initial modification factor 
fi  =  fo =  e1 (greater than 1)

3. Flip random spin and calculate the new energy E2

4. Accept spin flip with probability P(Ei  —> E2) = min lj

5. Update energy histogram H (E j ) —► H(Ej)  +  1 (in either of both cases, i.e. E} =  E x 
or Ej  =  E 2)

6. Update density of states according to tt(Ej) —> /,U (E y) (in either of both cases, i.e. 
Ej = Ei  or Ej — E 2)[15]

7. Continue doing step 3-6 until a flat energy histogram is created. In practice this 
means until H(E) > c(H(E))  where c is the flatness criterion parameter, typically
0.6 < c <  0.9

8. Enhance the modification factor f i+ 1 =  (/¿)a where exponent a <  1 defines the 
smoothness of the iteration (a =  1/2 has been recommended [58], however any 
a < 1 will do). Reset H ( E ) =  0 for all E

9. Do steps 3-8 until f n < f f inau where f f inai = e10-8 1.00000001 (i.e. when the
modification factor is essentially equal to 1)

10. Finally make the generated relative density of states f l(E)  absolute using the knowl­
edge of the ground state Q(E0) or the total number of states J2e &{E)

Since the density of states f2(i?) does not depend on the temperature T, only one simulation 
is necessary for the whole range of T. Thermodynamic properties can then be determined 
from averages in the form of Eq. (2.66).
Because the running estimate of the density of states U(T) changes at every state in the
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simulation, the Wang-Landau algorithm does not satisfy the condition of microscopic de­
tailed balance Eq. (2.68). However, over the course of the iteration, the magnitude of the 
density of states modification factor f  is decreased until changes are just within the preci­
sion of the computer (i.e. until /  «  1). At this point, the detailed balance is essentially 
satisfied.
Various questions about the Wang-Landau algorithm remain unanswered. For example, 
what determines the rate of convergence to the true energy of states?, How is flatness of the 
algorithm related to the accuracy?, What is the relation between the modification factor and 
error?, and How does the simulation actually find out the density of states? As a result, the 
algorithm is sometimes regarded as an empirical method [64], Nevertheless, the standard 
version of the method and tuning parameters (e.g. modification factor / ,  energy histogram 
flatness criteria [58]) have proven to be very effective in calculating accurate estimates of 
the density of states for a great variety of systems [62]. Efforts are currently underway in 
order to study these important aspects of the algorithm [64-66].

2.5 Multiscale modelling: bridging the regimes
Statistical mechanics provides a way of evaluating the properties of large ensembles of 
particles. Central to this description is the partition function, see Table 2.1. In practice, 
one often evaluates the partition function numerically using e.g. Monte Carlo methods, as 
described in Section (2.4.4).
Monte Carlo methods sample the configuration space of the system under study in order 
to estimate quantities of interest (e.g. energy E,  entropy S, heat capacity C, transition 
temperatures Tc). Such sampling schemes require many evaluations of the system Hamil­
tonian, i.e. the energy of many different configurations. The straightforward matching with 
electronic structure theories would thus be to determine with DFT the energetics of all sys­
tem configurations generated in the course of a Monte Carlo Simulation. Unfortunately, 
this direct link is currently and also in the foreseeable future computationally unfeasible. 
The exceedingly large configuration space of most materials science problems requires a 
prohibitively large number of energy evaluations (which can easily go beyond 106 for mod­
erately complex systems), making the direct matching impossible.
A multiscale modelling approach in this context would evaluate the energy of the system 
from first-principles, yet this approach is not possible in view of Monte Carlo simulations. 
The solution to this dilemma is to map the properties of the system under study onto a 
simpler model that preserves the essential features of the system, i.e. to carry out a coarse- 
graining of the system. The model should allow for a fast and flexible way of calculating 
the total energy of the system; yet it should preserve the most important characteristics of 
the real system giving rise to the properties one is interested in. Such an approach (i.e. 
replacing a part of the real world under investigation by a simpler model) is nothing but 
an example of scientific abstraction, an approach which lies on the very foundations of 
modem science.
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2.5.1 The lattice-gas model
Single crystal surfaces exhibit variations in the surface electron density that reflect the sym­
metry of the surface atom arrangement. The ability of different regions of the surface to 
exchange electrons with adsorbates, and thereby form chemical bonds, is strongly influ­
enced by the coordination number of the various sites on the surface. More fundamentally, 
the ability of various surface sites to enter into bonding is related to the symmetry, nature 
and energy of the electronic states found at these sites [67].
Thus, the heterogeneity of single-crystal surfaces presents an adsorbate with a regular ar­
ray of different sites. Similarly, the strength of the interaction varies in a regular fashion 
that is related to the underlying periodicity of the surface atoms and the electronic states 
associated with them. These variations (geometric and electronic) are known as corruga­
tions and its corresponding PES is called corrugation potential [67], A corrugation of zero 
corresponds to a completely flat surface. A high corrugation corresponds to a mountainous 
topology.
For chemisorbed adsorbates, the wells of the corrugation potential are steep and high. The 
locations of the minima of the corrugation potential thus form a well-defined lattice, at 
which the occupation probability density of adsorbates is sharply peaked. Then, in the 
study of equilibrium properties of adsorbed overlayers, one can neglect deviations of the 
adsorbate positions from the sites of this ’’preferred lattice” altogether, introducing the lat­
tice gas model. This model has a single degree of freedom, namely an occupation variable 
rii for lattice site i, with n.; =  1 if at site i there is a particle, and n, =  0 if site i is empty 
(multiple occupancy of the lattice sites being forbidden).
In the Lattice-Gas model, the complex many-body interactions in the adsorbate/substrate 
system are coarse grained to lateral interactions among the adsorbates on the surface. The 
energy of the system is then given by a Lattice-Gas Hamiltonian of the form of Eq. (2.51). 
Thus, what is preserved in the model is the energy dependency on the lateral interactions 
among the atoms. These are the main, relevant physical quantities that enter from the real 
system and that are responsible for the collective behavior of atoms on surfaces. In this 
way, one is able to study the system by means of a simplified model that exhibits the most 
important features of the real system.
A quantitative description of adsorbed overlayers on metal surfaces usually requires more 
lateral interactions than the simple nearest neighbors interactions of Eq. (2.51), e.g. next- 
nearest neighbors, trios [49]. Besides, the value of the lateral interaction energies are an 
input to the model rather than an output. As a result, the application of the lattice-gas model 
faces two main problems:

• How to determine the value of the lateral interaction energies?

• How to determine how many and which type of interactions to include in the Hamil­
tonian?

Traditionally, in the application of the lattice-gas model in surface science, the interaction 
parameters have been assumed to be just close range pairs and trios, and the interaction 
energies were obtained by simply fitting to experimental data (e.g. phase diagrams, TPD 
spectra) [22,49,68,69]. This procedure obviously results in ’’effective parameters” with an
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unclear microscopic basis, ’’masking” the possible effect and importance of higher order 
interactions. The Hamiltonian obtained in this way is unlikely to be transferable to calcu­
lation of other properties of the system.

An alternative approach is to derive the interaction parameters from electronic struc­
ture theory instead of fitting them to experiment. The appealing aspect of determining 
the interaction parameters in this way is that there is a ’’microscopic” meaning to the pa­
rameters. Earlier applications of this approach used the embedded cluster model [70] and 
tight binding theory [71] in order to derive interaction parameters. The predictive power of 
such parameters has been limited by the level of approximations to describe the electronic 
structure of the adsorbate/surface systems.

The development of computer power and high level first principles methods such as 
DFT has made it possible to derive interaction parameters with increased predictive power 
[2-4,6,7,72-74]. Since the parameters are determined from first-principles, the approach 
has been called ab-initio lattice-gas Hamiltonian method [6], in the surface science context. 
On the other hand, improvements in electronic structure methods have also been exploited 
in the study of alloy composition and phases. Here, the system interactions are usually 
mapped onto three dimensional lattices instead of two dimensional ones as in surfaces. 
The energy of the system is also given by an Ising-like hamiltonian as in the lattice-gas 
model. This approach in alloy theory is known as the cluster expansion method [5].

Both approaches, ab-initio lattice-gas Hamiltonian method and cluster expansion method, 
are essentially the same: they express the energy of the system in the form of an Ising-like 
expansion. The interaction parameters of the expansion are best derived from its first- 
principles calculations, so that the parameters have a firm microscopic basis.

Thus, the problem of how to determine the value of lateral interactions seems to have 
been solved by the use of first-principles methods. However, there still exists the problem 
of deciding upon the number and kind of interaction parameters to include in the Hamil­
tonian. This problem is by no means trivial and it is a very important one, because it 
determines how systematic the approach is.

One of the main purposes of this work is to systematically study the different ap­
proaches which have been suggested in order to derive the lateral interaction parameters 
from first-principles. To that end, it is convenient to couch the discussion of lateral interac­
tion energies in terms of the cluster expansion method. However, we have to bear in mind, 
that the concepts apply to the ab-initio lattice-gas Hamiltonian method as well.

2.5.2 The cluster expansion method
The cluster expansion (CE) is a generalization of the Ising Hamiltonian in Eq. (2.49). In the 
common case of an adsorbed monolayer on a surface, the Ising model consists of assigning 
a spin-like occupation variable er* to each site i of the lattice. The spin variable at takes the 
value +1 if the site is occupied and -1 corresponds to a vacancy at that site. Recall that point 
variables (1,0) are also possible. If the surface lattice contains N sites, each configuration 
of ad-atoms is characterized by a configuration vector a = (0 1 , cr2, • ■ ctjv). A particular 
arrangement of spins of the parent lattice is called a cluster figure (see Fig. 2.6) and can 
be represented by a vector aa containing the value of the occupation variable for each site

40



belonging to a determined cluster figure. The energy E(cr) can be described by a infinite 
sum over contributions arising from all possible spin clusters a  on the surface lattice[75].

E(a) = Y ,  J M a ) ,  (2.70)
a

where the index a  labels the various different cluster figures, i.e. isolated atoms, nearest- 
neighbor pairs and further distant pairs, triples of different shapes, quartets, and so on (Fig. 
2.6). The n Q are given by products of the spin variables that make up the clusters a, i.e.

na = n  <*■ (2.71)
i£oi

The coefficients Ja are the corresponding interaction energy parameters which do not de­
pend on the configuration o  and are called the effective interactions (ECI). When expanded, 
Eq. (2.70) and (2.71) take the Ising-like Hamiltonian form

H  —  -£/((t ) =  J q -I- )  ' cTjTj -(- )   ̂ 'J ij(7 l ( j j  -(- 'y  ̂ T - (2.72)
i ij ijk

When all clusters a  are considered in the sum Eq. (2.70), the cluster expansion is able to 
represent any function E{a)  of configuration a  by an appropriate selection of the values of 
Ja. However, it is not practical to consider all the terms in the sum and the expansion has to 
be truncated. In general, one could expect that the expansion would converge rapidly after 
keeping only clusters a  that are relatively compact (e.g. short-range pairs or small triplets). 
The accuracy of the truncated expansion is then hopefully enough to calculate properties 
of the system (e.g. ground state configurations, phase diagram, TPD spectra) from Monte 
Carlo simulations. The big advantage of the CE is its ability to rapidly calculate the en­
ergy E(a)  for any configuration a, which renders the technique useful for sampling the 
configuration space in Monte Carlo simulations. The unknown parameters of the cluster 
expansion, Ja, can be determined by fitting them to the energy of a relatively small number 
of configurations obtained, for instance, through first-principles computations. This ap­
proach is known as the structure inversion method (SIM) or the Connolly-Williams method 
[76].
The expansion of the energy of a determined configuration of adatoms a  in terms of cluster 
figures aa requires one to find the 7ra’s in Eq. (2.70) and Eq. (2.71). One then obtains the 
multiplicity ira of a determined cluster figure crQ, i.e. how often a determined cluster figure 
aa (e.g. one of the cluster figures in Fig. 2.6) appears in a configuration o. If such counting 
is done inside a periodic unit cell, care has to be taken so that the counting considers not 
only the interactions with ad-atoms inside the unit cell, but also with their periodic images. 
In that way, the coefficients of Ja, i.e. the n Q’s, are found and one ends up with a linear 
expression of the form of Eq. (2.72) for every configuration a. The known quantities in 
Eq. (2.72) are the E(a)  (from first principles calculations) and the unknown quantities are 
the ECI’s J Q.

Another way of determining the ECI’s in Eq. (2.72) would be to carry out expansions 
for isolated cluster in infinite (very big) lattices. This would allow us to isolate the energetic 
contribution of every cluster figure aa and unambiguously determine its Ja value. This ap­
proach is unfortunately incompatible with the supercell approach (Section 2.2.2), required
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maximal clusters

Figure 2.6: Some cluster figures between adsorbates atoms on the fee sites of a (111) metal 
surface, two possible choices of maximal clusters are also shown.

to accurately describe metallic surfaces, because very big unit cells would be needed, which 
are very expensive to calculate from first principles.
Thus, the application of the cluster expansion technique comprises the following steps:

• First principles energy calculations for periodic configurations a

• Expansion of the energy in cluster figures aa, i.e. application of Eq. (2.72)

• Set up of a system of linear equations where the known quantities are the energies 
E(a)  (from first principles calculations) and the unknown quantities are the ECI Ja 
(from the cluster expansion)

• Inversion of the system of equations to obtain the ECI’s

Since the cluster expansion is truncated and therefore approximate (small contributions 
from far-reaching interactions are mixed in an uncontrolled way) and the E(a)  have nu­
merical errors due to the approximations in the first principles approach (Section 2.2) it is 
advisable to use more configurations (equations) than ECI’s (unknowns) in order to derive 
the value of the E d ’s. By doing so, one expects to have some error cancellations and to 
obtain (through least squares fits) the set of optimum parameters which are able to repro­
duce the set of given DFT energies.
The cluster expansion should accurately reproduce not only the DFT energies of the con­
figurations used in the fitting procedure, but also the DFT energies of any configuration. 
In this context, the Monte Carlo simulation results using a cluster expansion should be the 
same as if the energies would have been calculated directly from DFT(Something that is 
still impossible due to the enormous computational burden). In this way, one is able to
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study the energetic properties of large systems with the accuracy of first-principles calcula­
tions. Thus, the more DFT energies are used in the fitting procedure, the better the cluster 
expansion can be tuned to reproduce any DFT energy.

Optimal cluster expansion construction

Deciding which ECI’s Ja are retained in the cluster expansion and which structural ener­
gies are used in the fit is still largely a process of trial and error, based on the experience of 
the researcher, making an automated procedure difficult. The algorithms used a range from 
a set of heuristic rules [77-82] to the use of genetic algorithms [83,84]. Even though the 
process of obtaining a reasonable CE still requires a lot of skillful human decisions ”on the 
fly”, the rules do provide at least some guidance on the task of extracting ECI’s from first 
principles calculations.
Obtaining a reasonable CE from first-principles calculations implies addressing the follow­
ing questions:

• Which cluster a  should be included in the cluster expansion (nearest neighbour pair, 
second nearest neighbour pair, triplets, quadruplets, etc...)?

• Which atomic arrangements should be used in order to determine the unknown ECI
Jo?.

ECI selection

The selection of ECI’s to be included in the CE is based on the concept of a maximal clus­
ter (see Fig. 2.6). The maximal cluster is generated by the principle of a complete set of 
most compact clusters that are found within a circle of a given radius. Thus, one selects a 
distance d and identifies the most compact clusters that have atoms separated by a distance 
no larger than d. In (Fig. 2.6), for instance, a distance corresponding to the third nearest 
neighbour (adsorption only on fee places) leads to the centered triangle and the hexagon 
depicted in (Fig. 2.6) as maximal clusters. All the sub-clusters included in the maximal 
cluster are available as ECI’s. One ends up with a hierarchy of pairs, triplets, quadruplets, 
etc. that should be included in the CE.
After establishing a hierarchy of available cluster figures, the following three rules deter­
mine which ECI should be considered in the CE[79]:

• If an n-body cluster is included, then include all n-body clusters of smaller spatial 
extent (e.g. third nearest neighbor clusters can only be included if second and first 
nearest neighbors have been included)

• If a cluster is included, include all its sub-clusters (e.g. a triplet can only be included 
if all its pairs have been included) •

• To prevent both under-fitting and over-fitting minimize the so-called cross-validation 
score (C V )
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The first two rules are based on ’’physical intuition” [79]. The CE should decay with 
increasing separation and number of sites involved, i.e. ECI’s associated with clusters 
consisting of many sites should be much smaller than those associated with effective pair 
interactions.
The last rule is aimed at evaluating the predictive power of a CE using the so-called C V  
score

c v 2 =  -à  £  (£i>FT -  -Ecb)! i (2.73)
iV i=  1

where E ^ e  is predicted by a least squares fit to (TV — 1) DFT energies excluding E lDFT. 
While a least squares fit using N DFT energies measures the error in reproducing known 
of values of E lDFT, the CV score estimates an uncertainty of predicted values. Both too 
few (under-fitting) or too many (over-fitting) parameters give poor prediction. Thus the CY 
score is designed as a statistical critérium to select the best set of cluster figures given a set 
of E d f t -
Although this way of ECI selection is frequently used when deriving Ising-like Hamilto­
nians from first-principles for alloys, there is no proof that this is really the best way of 
selecting ECI’s. They are just heuristic rules that guide in the selection process.
There are additional tools in order to find out a good set of cluster figures; e.g. linear 
programming techniques to reproduce the ground state and relative values of E d f t  [77], 
penalty functions to ensure that long range and multi-site parameters decrease to zero 
[78,80], leave-many-out CV scores [178]. The need of using such additional tools and 
their suitability depends on the problem at hand.

Structure selection

The main critérium to select structures for the CE is the ground state search, i.e. the CE 
has to reproduce the same ground state configurations as predicted by the first-principles 
calculations. In practice, this, of course, is limited by the size of the structures one is able 
to directly calculate using first-principles methods.
The implementation of this critérium commences by calculating an initial set of config­
urations by DPT. Such configurations are typically chosen according to the symmetry of 
the lattice. Subsequently, ECI’s are calculated from this initial set and used to search for 
ground state structures. The ground state search can be done either by a direct enumeration 
scheme, where the energy of all possible structures with a limited number of adsorbates 
per unit cell is computed [78,81]; or by simulated annealing runs. Usually, such a ground 
state search predicts new ground states different from the ones computed so far from first- 
principles. These new ground state configurations are computed from first-principles and 
new ECI’s are derived in order to follow up the ground state search. The procedure is 
repeated until the first-principles and CE ground states are the same. Recently, a variance 
reduction scheme [79] has been proposed in order to select structures for the CE. It is based 
on the idea of selecting the structure that yields, for a given amount of computational time, 
the largest reduction in the prediction error of the least-squares fit. Even though such an 
approach has potential applications in CE, it is particular characteristics of the problem 
at hand that determines its applicability (e.g. the size of unit cells that can be calculated
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Figure 2.7: Schematic ground state diagram for an adsorbed layer. Besides the full mono- 
layer 0  =  1 ML, the ground state line is formed by three structures a, a, and /?. If a would 
lie energetically above the broken straight line between a  and 6, a mixture of both would 
be more stable than a  (from Ref. [81])

imposes practical limitations).

Formation energy

In general, when studying ground states and phase stability, the central energetic quantities 
used in the theoretical discussion are the formation enthalpy A Hf  or the mixing enthalpy 
A Hmix [5]. These are defined as the excess energies taken with respect to the equivalent 
amounts of pure constituents.
In the case of two-dimensional phases, the situation does not change: the energy of the 
system has to be defined as an excess energy

A E ,  -  i  [e % £  -  (1 -  e )  -  a E g s y , (2.74)

here A E j  is the formation energy, E 1̂ 1 is the total energy for a specific adsorbate con­
figuration with the coverage 0 ,E ’cfean is the total energy of the clean surface, e-EffS) is 
the total energy of a full monolayer of adsorbate and N is the total number of adsorption 
sites per unit cell. Thus A Ef  reflects the relative stability of a particular configuration with 
respect to phase separation into a fraction 0  of the full monolayer configuration ( l x l )  
and a fraction (1 — 0 )  of empty sites (clean surface).
The formation energies A E f  allow us to determine the ground-state energy versus compo­
sition curve by constructing a convex hull (Fig. 2.7). The convex hull is the set of straight 
lines that connects all the lowest-energy ordered phases [53], When the energy of a partic­
ular ordered structure is above a straight line, it is unstable with respect to a mixture of the 
two structures that define the end points of the straight line. This is schematically shown 
in (Fig. 2.7): an individual structure a  only contributes to the ground-state line if the linear 
energy average between the stable structures at the next highest and lowest concentration 
is energetically less favorable than the formation energy of a. More precisely, for three 
calculated structures a, a, and ¡3 with 0 (a )  <  0(cr) < 0(/3), which are the lowest in
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energy for their individual coverage, the structure cr has to fulfil the condition

A Ef(cr) <
e ( a ) e ( ß )
e (a )Q (ß )

A E f ( a )  +
0 (cr)0 (a)
0(/3 )0 (a) A E f (ß), (2.75)

in order to be the ground state at 0(cr). If Eq. (2.75) holds, a mixture of the phases a  and 
f3 would be higher in energy than structure a  [81],
The formation energy A E f  is not the same as the adsorption energy Eads. The last one mea­
sures the gain in energy of the adsorbate-substrate system with respect to the free substrate 
(clean surface) and the free molecule, i.e.

E a d s n -G/total
slab

rptotal 
^  clean (2.76)

where E ads is the adsorption energy per ad-atom, E ^ f  is the total energy for a specific 
adsorbate configuration, Elf^h  is the total energy of the clean surface, E l̂ ec is the energy 
of the free molecule (formed by its respective ad-atoms) and n is the number of ad-atoms in 
the surface unit cell. Eads indicates if the dissociative adsorption of a molecule is exother­
mic or not with respect to the binding energy of the molecule in the gas phase. E ads cannot 
be used in order to compare the relative stability of different phases.
The formation energy A E f  can also be calculated from the adsorption energy Efds at cov­
erage 0  by

A E f  = Q(E®ds — Effo1ML). (2.77)

2.6 Summary
Due to their reactive properties, metallic surfaces are the place of many reactions of in­
dustrial importance (heterogeneous catalysis). Typically, metals are used in industrial ap­
plications in a polycrystalline form and interact with a multitude of particles on their sur­
faces. The study of such systems is very complicated due to the microscopic nature of 
the processes taking place (e.g. adsorption, reaction, desorption). Since the metal surface 
consists of many single-crystal surfaces, understanding of the metal surface properties can 
be gained by studying microscopic processes on single-crystal surfaces. The collective be­
haviour of adsorbates on the metal can conveniently be studied by adopting a multiscale 
approach. Such an approach, in the context of this work, uses modem electronic structure 
methods, i.e. first-principles methods, to provide information used to parameterize interac­
tions, which are then used as input to mesoscopic simulations of the system.
The microscopic description of the system is based on quantum mechanics and its meso­
scopic description on statistical mechanics. The most important equations for both types 
are the Schrodinger equation (contains all information about the system) and the partition 
function (contains all thermodynamic information about the system), respectively.
Metal and semi-conductor surfaces are conveniently modelled using the supercell approach 
within density functional theory (DFT). By focusing on the electronic density instead of the 
wave function of the system, DFT considerably reduces the dimensionality of the many- 
body problem posed by the Schrodinger equation. Due to the unique characteristics of the
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electronic structure of transition metals, elaborate DFT implementations are needed in or­
der to obtain accurate ground state energies for those systems. The statistical mechanics 
description renounces the need to keep track of every single particle in the system, in fa­
vor of a probabilistic treatment. Thus, equilibrium systems are studied through probability 
distribution functions. Temperature effects are reflected by changes in the occupation of 
microscopic states. Those changes are governed by the probability distribution functions. 
The equivalence of time and ensemble averages postulated by statistical mechanics, allows 
practical implementation of many statistical mechanics concepts.
The application of Monte Carlo methods to systems in thermal equilibrium is based on the 
conservation of microscopic probabilities (i.e. the Master equation). Through the ergodic 
hypothesis and the detailed balance condition it is possible to design importance-sampling 
Monte Carlo methods that converge to an arbitrary probability distribution. The thermal 
equilibrium of classical systems is governed by the Boltzmann probability distribution. 
The Metropolis Monte Carlo algorithm calculates thermodynamic properties by sampling 
the Boltzmann distribution of the system at equilibrium and averaging over multiple mea­
surements. Because of its random walk in energy space the Wang-Landau algorithm is 
expected to perform better than the Metropolis algorithm near phase transitions.
The direct coupling of the micro and mesoscopic regimes (i.e. the quantum mechanics 
and statistical mechanics descriptions) is not possible because many calculations would be 
needed in the mesoscopic regime, while the first principles calculations are very expensive. 
Thus, a physically sound model of the system is needed that retains the most important 
microscopic parameters responsible for the collective behavior of adsorbates in the meso­
scopic regime. This model is the lattice-gas model and the most important microscopic 
parameters, in this context, are the lateral interactions between adsorbates.
Using first-principles methods, the lateral interactions of the lattice-gas model can be cal­
culated and Monte Carlo simulations can be carried out in order to study important prop­
erties of the adsorbate/surface system. This expansion of the energy by means of an Ising- 
like Hamiltonian and derivation of the Hamiltonian interactions from its first principles is 
known as the ab-initio lattice-gas Hamiltonian method in surface science, and the cluster 
expansion method in alloy theory. They are actually different names for the same approach. 
Unfortunately, there is currently no satisfactory systematic procedure to derive interaction 
parameters from first-principles calculations. The principal questions are which and how 
many interactions should be included in the lattice-gas Hamiltonian. Some heuristic rules 
and optimization methods have been proposed within the cluster expansion method and 
will be applied to the tartaric acid/Cu(110) system.
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Chapter 3

Self-assembled corrals on Si (lll)-(7  x 7)

The fabrication and electronic properties of nano-corrals[121-123], are of interest as build­
ing blocks in molecular electronics[124,125]. The favored substrate is a semiconductor 
surface[126]. Although a Scanning Tunneling Microscope (STM) can be used to manip­
ulate any type of adsorbates at these surfaces[127,128,108], this has not provided a ready 
path to the construction of corrals It is, moreover, recognized that self-assembly is prefer­
able to atom-by-atom fabrication. Molecular adsorbates have been shown to self-assemble 
to yield a variety of patterns, though not previously nano-corrals, at semiconductor sur­
faces.
Here we describe a different approach to corral formation, with the desirable attributes of 
(a) self-assembly, (b) a semiconductor substrate, and (c) stability at elevated temperatures. 
Physisorbed haloalkane molecules such as chlorododecane self-assemble on Si(l 11)-(7 x 7) 
to form dimers stable up to 400K, which corral silicon adatoms. The corral size is deter­
mined by the haloalkane chain-length. Spectroscopic and theoretical evidence is presented 
to show that the haloalkane dimer induces electron transfer to the corralled adatom, shifting 
its energy levels. Isolation of a labile pre-cursor suggests a model for corral formation in 
which monomers diffusing in a vertical state meet and convert to the observed immobile 
horizontal dimers, forming corrals. Variations in the alkane chain-length and dipolar sub­
stituent suggest a means for the self assembly of nano-corrals and dots of defined size and 
electronic properties.
In this chapter we focus on the properties of a type of corral formation featuring two 
chlorododecane molecules bending over a silicon adatom, which darkens under the molec­
ular effect, since the experiments examined previously the effect of this corral on its single 
enclosed adatom. The adsorption of chlorododecane molecules at Silicon (111) — ( 7 x 7 )  
has been studied by Scanning Tunneling Microscopy.

3.1 Experimental methods and research
This section displays the principle methods of measurements carried out to study different 
haloalkanes on a silicon(l 11)-(7 x 7) surface. The results are presented step by step reflect­
ing the history of how the different phenomena were understood by the experimentalists. 
Similar measurements were carried out with different molecules such as Di-haloalkanes or
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small carbon chained haloalkanes which are not presented here. Only the halododecanes 
were studied by DFT and STM simulations.
The main device for imaging is the Scanning Tunneling Microscope (STM). All surface 
deposition took place under Ultra High Vacuum conditions. The haloalkanes in question 
are halododecanes studied with different halogens to observe different behaviors with re­
spect to their eletronegativity. Bromide (Br), Chlorine (Cl) and Fluorine (F) atoms are 
the main terminations of these halododecane molecules. The surface deposition is per­
formed at 50K. Some scans were carried out to study the low temperature behavior and 
the kinetic mechanism of the physisorbed molecules below room temperature. Then static 
STM measurements were done at room temperature up to 400K, to observe the features of 
halododecane on silicon(l 11). The bias voltages did not exceed 2.5V.

3.1.1 STM imaging
The Observations were carried out by Scanning Tunneling Microscopy (STM) in a Ultra 
High Vacuum (UHV) chamber using phosphorus n-doped silicon (0.02 — 0.5f2 cm). Three 
STM instruments were used to perform the measurements, an Omicron-VT, a RHK300,and 
the RHK400 STM.

3.1.2 Halododecane molecules
The following part presents the research on Halododecane by Scanning Tunneling Mi­
croscopy (STM). Three halogens were considered in this research, Chlorine (Cl), Bro­
mide (Br), and Fluorine (F) giving: Chlorododecane, Bromododecane and Fluorododecane. 
These three molecules, once deposited on the silicon surface, are physisorbed to form dif­
ferent types of adsorbates containing one to three molecules. One configuration containing 
a single molecule on the surface called a monomer, two or three molecules forming repro­
ducible and stable configurations are called dimers and trimers.

Quantum Corrals and Molecules

The idea was to imitate the atomic quantum corral using molecules with the possibility to 
cover several adatoms of a metal or semiconductor surface. The electronic properties of the 
corral are then extended to three or more adatoms for better control of a spatial and spec­
tral distribution of surface electrons. The 1-Chlorododecane molecule, for example, has a 
carbon chain of twelve atoms, fully saturated with hydrogen and terminated with chlorine. 
Such a molecule has no asymmetrical carbons but the carbon chain can bend in different di­
rections leading to different conformations in two dimensional or three dimensional space. 
The length of the molecule is close to 15 angstroms, it can theoretically cover 3 adatoms 
on a silicon(l 11) surface.

3.1.3 Halododecanes on Silicon(lll)-(7 x 7)
Bromododecane, Chlorododecane, and Fluorododecane, once physisorbed at the S i( lll)-  
(7 x 7), give very specific and reproducible patterns at room temperature, stable up to 400K.
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Figure 3.1: Chlorododecane lengths

One observes very rarely the presence of monomers. They tend to form dimers or trimers 
as stable configurations especially at room temperature. With respect to the very specific 
shape of the S i( lll)-(7  x 7) surface, the features of molecules bend quite substantially 
around the comer holes of the silicon surface or around silicon adatoms. No STM image 
shows straight molecules at 300K.
Fig. (3.2(a)), Fig. (3.2(b)) and Fig. (3.2(c)) show the STM images of Chlorododecane, Bro- 
mododecane and Fluorododecane at Si(l 11)-(7 x 7). The STM measurement were carried 
out in identical conditions and at room temperature. The bias voltage in each case is 1.5 V. 
The same dosing (1L) was used in all three cases. As one can see easily the adsorbates are

(a) C12H25Cl/S i lU

1

* * ♦ u *
' # ' -vj  *

Tf ii
I#r |

(b) Cl2H 25B r / S i l l l (c) Cl2H25F/S iU \

Figure 3.2: STM measurements at room temperature for a Bias voltage of 1.5V. For the 
same dosing, one observes a very low coverage of chlorododecane and bromododecane 
compared to the fluorododecane. The types are mainly type I and type II for the first two 
cases and different types for the fluorododecane

represented by brighter features in the images. These bright features have different shapes 
called types, each type can be oriented in different directions retaining the same shape. One 
observes that the coverage is very low for the three different halogens. The images show 
that the coverage is 4 times higher for Fluorododecane than for Chlorododecane or Bro­
mododecane. The reason is that Fluorododecane has a higher sticking coefficient than the 
two other halogenated molecules. This may be due to the strong electrostatic interaction 
between Fluorine and the silicon substrate compared to Chlorine and the Bromide.
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On Fig. 3.3 (a),(b), and (c)), one observes very low rates of Type I and Type 13 (see Fig. 
3.4) configurations for Fluorododecane, while for Bromo- and Chlorododecane these two 
types are dominant. The relative number of type I and II configurations depend on the 
molecules: in the case of Chlorododecane one finds T y p e l /T y p e l l  = 1.9. For Bromodo- 
decane, ty p e l / ty p e ll  =  0.52 which is almost exactly the opposite relative occurence. The 
type I and type II configurations represent 80% of the adsorbate types for Bromododecane 
and Chlorododecane. For Fluorododecane these two configurations amount to only 20% 
while the type III, IV, V, VI (see Fig. 3.4) represent together 80% of the configurations (see 
Fig. 3.3 (a),(b), and (c)). Due to the specific structure of a halododecane, one may infer that

h s t y p e  h s  ty p e  h s ty p e

(a) Types for C uC l (b) for C\2B r  (c) for C\2F

Figure 3.3: For the same dosing (1L) of halododecane onto silicon, these diagrams show 
the different rates of appearance of the types of adsorbates registered by the experimental­
ists.(a) For Chlorododecane, the type I and type II have the highest probability of appear­
ance, Type I appears twice as much as the Type II. Some residue of Type III, IV and V 
exist (b) For Bromododecane, Type II and type I are the most probable; Type II appears 
twice as often as the type II. Some residue of Types III, IV and V also exist (c) For the 
Fluorododecane, types I and II are residual. Some undefined types represent 10 percent of 
appearance. Types III, IV and V have the highest probability for this molecule

each type of adsorbate configuration contains more than a single molecule. One finds from 
the shape and size of the structure that Type I, Type II, and Type III contain two molecules. 
Type IV and V contain between two and four molecules.
Fig. (3.4) shows three unit cells of the silicon (111) surface with the comer holes (ch) and 
the silicon adatoms (orange spheres). Distances are indicated, to determine the adsorbate 
position and calculate the number of chlorododecane molecules contained in each type of 
configuration. The distance between the comer holes is roughly 26.9A. The smallest dis­
tance between two silicon adatom is close to 5A. The closest adatoms in this case are the 
6 adatoms located around the comer holes (ch). This diagram also shows the distances 
between the silicon adatom corralled after the deposition of the chlorododecane. Note that 
no corral is larger than the distance between two comer holes, or 26.9A. The average ex­
tension of a corral is between 10A and 20A. With respect to the position of the silicon 
adatoms and the corner holes, the different configurations can be characterized as follows: •

• Type I: This type is around a comer hole (ch). It covers 5 silicon adatoms. One 
silicon adatom around the comer hole remains unoccupied, with very characteristic 
properties as it is influenced by the molecules forming the adsorbate. Considering the
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Figure 3.4: Main structures on the silicon surface, (red dashed line) shows the Type I 
configuration, (pink dashed fines) show the Type II configuration positioned onto its cor­
responding silicon adatoms, (green dashed fines) show the Type III configuration, (yellow 
dashed fine) shows Type IV. (light blue dashed fine) shows Type V.

length of the Chlorododecane molecule (around 15A), the Type I adsorbate should 
contain two molecules with their Chlorine atoms next to the free silicon adatom.

• Type II: This configuration encloses a silicon adatom (orange sphere). It covers 6 
silicon adatoms. The corralled silicon adatom is darkened by the presence of such 
a feature. One expects the Type II adsorbate configuration to contain 2 molecules, 
with their Chlorine atoms at the same positions as the chlorine atoms of Type I, but 
corralling a silicon adatom, instead of corralling a comer hole.

• Type III: It covers 6 silicon adatoms around two free adatoms of the silicon surface. 
The two corralled adatoms are darkened by its presence, like the silicon adatom in 
the type II configuration. Type III contains 2 molecules. The start and end point of 
the chlorododecane molecules is undetermined. This configuration is not studied in 
the following sections. •

• Type IV: It covers 5 silicon adatom close to a comer hole with a free silicon adatom
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in between. The adatom is darkened by the presence of the corral as the silicon 
adatom in type II. 3 chlorododecane molecules form this type which is not studied in 
the following sections

• Type V: This adsorbate covers 7 silicon adatoms with one silicon adatom in between. 
This adatom is darkened by the presence of the corral like the silicon adatom in Type 
II. 3 to 4 chlorododecane molecules are contained in this type which is not studied in 
the following sections.

3.1.4 Type-II configuration of Chlorododecane
One can observe, from the relative appearance of halododecane dimers on the surface that 
the Type-II halododecane configuration exist for all three halogen terminations molecules, 
respectively, Bromide, Chlorine and Fluorine. It seems to be the most stable configuration 
for twelve-carbon Haloalkanes on silicon. The configuration is stable up to 400K. Beyond 
this temperature it breaks apart into carbon chains separated from halogen atoms.

Figure 3.5: STM picture of a Chlorododecane molecule physisorbed on silicon(l 11). (1.5V, 
0.2nA). This configuration contains two molecules corralling a darkened silicon adatom.

3.1.5 Experimental results on Typell-Chlorododecane
Here we focus on the properties of the type-II corral of 1-Chlorododecane on S i( lll) -  
(7 x 7), since experiments revealed a clear effect of this corral on the single enclosed 
adatom. The dissociation of one molecule of the dimer (corral) above 400K was always 
accompanied by desorption of the other molecule, showing that interaction between the 
molecules is vital for the stability. At elevated temperatures, in addition to the dissocia­
tion, (C w H ^C l^  corrals were also observed to desorb leaving no residue. This, indicates 
that {Ci2H 2 5 C l )2  has physisorbed intact at room temperature. Since it is unlikely that both 
molecules desorb simultaneously, one can conclude that the desorption of the first molecule 
triggers the desorption of the second. Again, this indicates that the dimer is stabilized by 
the interaction between its component molecules.
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Figure 3.6: High resolution STM image of a single type-II corral (30 x 30A, +1.4V, 230pA) 
with two 1-chlorododecane molecules, drawn to scale, superimposed; blue atoms are car­
bon, white hydrogen and green chlorine; (a) marks an uncorralled Si adatom (bright), (b) 
the corralled Si adatom (dark) and (x) a comer-hole surface site

At room temperature bromo and fluorododecane molecules form similar dimer structures 
to 1-chlorododecane, corralling a comer hole (type-I) or a single adatom (type-II). Experi­
mentally the sticking probability increases with the electronegativity of the halogen atom. 
Dodecane, without a terminal halogen atom, does not stick to a room-temperature surface. 
Dosing 1-chlorododecane onto a cold surface, around 21 OK, prevents the formation of 
corrals, instead forming exclusively curved monomeric adsorbates. Such semi-circular 
monomers, were observed as a lesser constituent at room temperature. From this effect 
of cooling we infer that corral formation involves diffusion of single molecules across the 
surface to form pairs. Yet the monomeric features does not diffuse even at elevated tem­
peratures around 400K. Corral (dimer) formation, it thus appears, is due to the diffusion of 
a mobile state of the monomer different from the strongly-physisorbed multiply-attached 
horizontal states, monomer or dimer. Such a mobile state has been observed in the present 
work, at 50K, as indicated below. Fig. (3.7) shows an STM image of 1-chlorododecane 
at 50K. One finds two molecular features, both mobile and markedly different from those 
obtained at higher temperature. These comprise a single bright feature on top of an adatom, 
stable for up to five minutes, and mobile lines of bright features along the Si(l 11)-(7 x 7) 
dimer-rows joining comer holes. Some molecules (not shown) exhibit streaking under 
these scanning conditions indicating mobility. Successive imaging at intervals of 1 minute 
show the bright lines increasing in length at one end due to addition of single adsorbed 
molecules, or decreasing in length due to loss of single molecules. The overall effect is that 
the bright features appear to be moving across the viewed area.
With increasing temperature the bright single-atom features (vertical chlorododecane), seen 
at 50K, are no longer observed. Instead, half-corrals (horizontal molecules) and, at still 
higher temperatures (220K), full dimeric corrals appear. These changes have been mod­
eled kinetically, leading to an energy barrier of several kcal/mol for conversion from the 
vertical state of chlorododecane to the horizontal state.
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Figure 3.7: Mechanism for corral formation, (a) STM image taken at 50K (400 x 400A, 
+1.5V, 200pA) showing two types of 1-chlorododecane precursor on S i(lll)-(7  x 7), one 
type on top of an adatom (circled) and the other forming lines along silicon-dimer rows 
(the latter are marked at either end by a dash); (b)-(d) shematic of corral formation: (b) 
molecules in vertical pre-cursor states diffusing along silicon-dimer rows; (c) a pair of 
molecules meeting one another and (d) molecules stabilized by lying down to form a hori­
zontal corral-structure of type-13.

Since adsorption of the mobile structure is at single-adatom sites (cf. the mutliple-site ad­
sorption of Fig. 3.6), one proposes a mechanism whereby gas-phase molecules first form 
mobile vertical pre-cursor states on top of an adatom and then diffuse to a silicon-dimer 
row which acts as a conduit for transport across the surface (e.g., Fig. 3.7(b)). If a pair of 
molecules become attached to another one (Fig. 3.7(c)) they stabilize forming the observed 
horizontal corral structure (Fig. 3.7(d)). This process is in competition with desorption, 
and also in competition with forming stable monomers. The mechanism, which we find to 
be general for these and non-halogenated alkanes is noteworthy since it provides a means 
to mobility (due to single-point attachement) and subsequent immobility (due to multiple 
attachement); a mechanism known also to skiers, who are only mobile when upright.
A significant feature of type-II 1-chlorododecane corrals is the invariable presence of a 
darkened corralled adatom. This darkening, evident at ’b’ in (Fig. 3.6), consists of a 
0.4 ±  0.1 A  lowering in the image relative to an unperturbed adatom ’a’ in (Fig. 3.6), for a 
bias near +1V (surface voltage, relative to the tip) and a tunneling current near lOOpA. (The 
z-piezoelectric A  V ~ l was calibrated by measuring a single step on a clean Si(l 11)-(7 x 7) 
surface with tunneling parameters of +1.5V and 150pA). The observed lowering is not due 
to a missing adatom, since the measured height at ’b ’ return to normal when a corral des­
orbs (>  400K). For this measurement a particular corral was imaged at high temperature, 
(400K), until it desorbed leaving behind a clean area of silicon. Moreover, were corrals to 
form only around naturally occuring defects (typically <  0.2 % defects) corralling would 
halt at this coverage; in the experiments one does not find such limit.
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From the darkening of the corralled adatom one concludes that its dangling bonds states (at 
+0.5 and -0.3eV with respect to the Fermi level for clean S i(lll)-(7  x 7) [137-139]) are 
no longer available for tunneling. The loss of both of the dangling-bond states is analogous 
to covalent bonding. The corral has caused the enclosed adatom to behave as if it had an 
adsorbate attached[140].
To characterize the effect of the corral on the adatom’s electronic states, scanning tunneling 
spectroscopy (STS) I-V curves were taken over a clean adatom (Fig. 3.8a(a)) and over a 
corralled adatom (Fig. 3.8a(b)). The +0.5eV adatom state was present for (a) the clean 
adatom, but missing for (b) the corralled adatom (Fig. 3.8a). The absence of this state is 
also clear in the STM inset image taken at +0.5eV. Owing to the low tunneling current in 
the band gap, the state at -0.3eV is absent from both spectra of (Fig. 3.8a), but the differ­
ence between the clean and the corralled adatom can be seen in the inset STM image taken 
at -0.6V. Below -1.6V the corralled adatom shows a large increase in tunneling current not 
seen for the clean adatom, suggesting a new (or shifted) state at the corralled adatom site at 
large negative bias. Difference-current-imaging tunneling spectroscopy (ACITS [137]) can

Figure 3.8: Electronic properties of the corralled adatom, (a) I-V spectra taken over (a) a 
clean (unperturbed) silicon adatom and (b) a corralled adatom (both with set-points +2V, 
500pA). Inset STM images (40 x 40A, 230pA) show a type-II corral at bias voltages of 
+0.5 and -0.6V and panel (b) ACITS from the difference detween CITS images taken at 
-2.0V and -1.8V; dashed black curves indicate the 1-chlorododecane dimer, (a) marks an 
uncorralled adatom and (b) marks the corralled adatom. The set-point used in the CITS 
images was +2V,500pA.

isolate a state between two voltages (energies) giving a map of the total density of states 
(DOS) between these voltages. (Fig. 3.8b) shows a ACITS map between -1.8V and -2.0V 
taken over a corral, as indicated. The bright feature over the corralled adatom, ’(b)’, gives 
evidence of a large density of states at this site at -1.9V, not seen at other atomic sites, e.g. 
’(a)’. The corral is inducing electronic change only at the corralled adatom.
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3.2 Typell-Chlorododecane adsorption energies and ge­
ometries

Different conformations of chlorododecane molecules have to be determined in such a way 
that can fit the Type-II on 5 i ( l l l )  — ( 7 x 7 )  surface. As shown above, the chlorodode­
cane molecules fits three silicon adatom in variable orientation on the silicon surface, from 
room temperatures up to 400K. In the case of the Type-II configuration, one expects two 
Chlorododecane molecules to corral the surface by physisorption around the dark silicon 
adatom symmetrically, as six silicon adatoms are covered with respect to the bright feature 
shown by the STM pictures. Here, two questions arise. The first one is which carbon of 
the 12 carbon-chained molecule is bending. The second is to determine which part of the 
molecule is terminated by the Chlorine atom.
To do so, the calculations of the different conformations of CIC \ 2  were performed in vac­
uum. We calculate the different geometries by bending the carbon chain of the molecules 
at different carbon positions.
The adsorbate/substrate system, Chlorododecane at 67(111) — (7 x 7), is the third part of 
the calculations. First, we need to obtain the ground-state of this system. The fully con­
verged CIC 1 2 / — (7 x 7) is then studied by STM simulations. The ground state of 
such a system is calculated by DFT, STM simulations are performed by bSKAN[103,104]. 
Individual slabs in the supercell periodic geometry were separated by 20A of vacuum, suf­
ficient to accurately describe the exponential decay of surface wave functions and exclude 
coupling in the z-direction. One corrected for dipole interactions between adjacent unit 
cells. Ionic cores were represented by ultrasoft pseudopotentials. Exchange correlation 
functionals were parameterized within the general gradient approximation (PW91 [141]). 
Given the large system-size of more than three hundred atoms per unit cell, the simulation 
had to be performed with a single k-point at the centre of the Brillouin zone.

3.2.1 Computational details
In this work, the structure optimization is carried out with the Vienna ab-initio Simula­
tion Package (VASP)[101,102], a density functional theory code for systems with periodic 
boundary conditions. After the calculation of the electron ground state and the creation 
of the input for the STM simulation, we calculate the tunneling current in a perturbation 
model of tunneling. The STM images are produced with bSKAN[103,104]. The tip used 
in all the simulations was the tungsten tip.

3.2.2 Chlorododecane molecules in Vacuum
Many conformations of the Chlorododecane molecule can fit geometrically the three silicon 
adatom positions of the Type-II configurations of Chlorododecane on the silicon surface. 
We find the best match with STM experiments by bending the carbon chain from the first 
carbon atom to the 12th. The first logical step is to consider a molecule bent on the 5th, 
6th or 7th carbon atoms, which are roughly located at the middle of the molecule. The 
ground state conformation of Chlorododecane molecules, in vacuum, retaining the shape
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Figure 3.9: Chlorododecane molecule in the vacuum

of the two molecules found in STM experiments, can be determined from the known inter­
atomic distances and bond angles. A carbon-carbon bond length of 1.20 — 1.54A, a carbon- 
hydrogen bond has a length of 1.4A, and a carbon-chlorine bond a length of 1.06 — 1.20A. 
The C — C  — C  bond angle is 110°. Fig. (3.10) shows the different conformation of the 
chlorododecane molecule in vacuum from the straight conformation to the most bent fit­
ting the type II adsorbate on both sides. The following step of the study is to calculate the

(d) btC4b (e) btC6bl (f) btC6b2

Figure 3.10: Different conformations of chlorododecane molecules in vacuum

ground state energies of such molecules in the vacuum. The set up is the same for each 
conformation, the fully relaxed state is calculated within the same volume. One observes 
than the conformation btC$b2, fitting the type II adsorbate, is the least stable in the vacuum. 
This information shows that the molecule is forced to have this shape due to the interactions 
with the silicon surface at the adsorbed state.
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Conformation in vacuum Ground state energies
Straight E(tot) = -203.040 eV
opC6b E(tot) = -203.160 eV
opC8b E(tot) = -203.668 eV
btC4b E(tot) = -203.060 eV
btC6b2 E(tot) = -202.730 eV
btC6bl E(tot) = -203.664 eV

Table 3.1: In vacuum, the ground state energies of the 6 Chlorododecane molecules are 
roughly the same at -203eV. However for the btC6b2 molecule, which fits the type II ad­
sorbate,the ground state is lower by about 70meV compared to all other configuration.

3.2.3 Chlorododecane on S i(lll)-(7  x 7)
DFT calculations on silicon(l 11) were performed with a (7 x 7) of 249 atoms. This number 
contains two types of atoms:

• Silicon atoms: forming 4 layers of the (111) arrangement. The total number of silicon 
is 200 atoms. This unit cell has 12 adatoms and 188 restatoms. The bottom of the 
silicon surface is fully passivated by hydrogen

• Hydrogen atoms: these atoms passivate the bottom of the silicon surface. There is a 
total number of 49 hydrogen atoms, which passivate the dangling Si-bonds in order 
to avoid charges up effects.

The chlorododecane molecule (38 atoms) has 12 carbon atoms passivated by hydrogen 
(25 atoms) and terminated with a chlorine atom. Once the molecule is deposited onto the

Figure 3.11: The two chlorododecane molecules, the silicon atoms (green) onto which they 
are deposited, the silicon adatom (green) between the molecules, and the rest of the silicon 
adatoms (green) are free to move during the DFT calculation. The hydrogen at the bottom 
of the unit cell and the silicon restatoms (yellow) are frozen

silicon surface for a DFT calculation, the total system contains 287 atoms. For the system 
including 2 Chlorododecane molecules the corresponding number of atoms is 325. In all
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simulations the molecules and the silicon adatoms were fully relaxed.

(3.1)
(3.2)
(3.3)

Eads(c12ci/Sin\) =  E tot(cl2c i /su n )  ~  ( E s a u  +  E Cl2ci) 

Eads{2Ci2Cl/Silll) — Etot(2C12Cl/Siili) ~  i ß  Sill! + 2 E c 12Cl)

The adsorption energies of one and two molecules on the silicon surface can be calcu­
lated using the ground state energy differences described above. Eq. (3.1), Eq. (3.2), Eq.
(3.3) gives the general equations for determining the adsorption energy of a system (adsor- 
bate/substrate). The total energies obtained are: Table 3.2 displays the DFT ground state

Table 3.2: Ground state energies and adsorption energies of the clean silicon surface, the 
C u C l in the vacuum, the system C u C l /S i l l l ,  and the system 2Cu C l/ S i l l l

values of the systems and the results for the adsorption energies for the two interesting ad- 
sorbate/substrate systems: the C u C l /S i l l l  and 2 C 1 2CI / S HI I .  The adsorption energy of 
the adsorbate/substrate system C 1 2 C I / S H I I  is -1.94eV. The adsorption energy of the Type 
II corral at Silicon(l 11) is -3.84eV. This system is now studied by STM simulations.

3.3 STM Simulations of Chlorododecane/Silll systems

3.3.1 STM simulations using bSKAN
Fig. 3.12 shows a charge density contour map of the surface for comparison with the STM 
image (Fig. 3.6). Owing to numerical limitations the molecules of adjacent unit cells were 
in close proximity, making an STM simulation including the tip-structure unreliable[142]. 
Instead we used a charge density contour of the surface for states in the unoccupied range 
from the Fermi level to +1.2eV (Fig. 3.12). The apparent height of the molecule was 1.5A. 
The contour, at a maximum distance of 7A from the silicon surface, showed that the adatom 
in the corral was depressed (black cross) compared with the equivalent adatoms outside 
the corral (white cross). The difference in apparent height between the corralled and the 
uncorralled adatom is about 0.4A, matching experiments. Fig. 3.13 shows the computed 
density of states at three locations: (a) the position of the comer adatom on a clean silicon 
surface (yellow line), with only one adsorbate molecule present (dashed yellow line), and

System TOT/ADS energies
Silicon surface 
Chlorodod.(vacuum)

E(tot) = -1179.30 eV 
E(tot) = -202.73 eV

IChlorodod./Sil 11 E(tot) = -1383.97 eV 
lChlorododVSil 11 E(ads) = -1.94 eV

2Chlorodod./Sil 11 E(tot) = -1588.60 eV 
2Chlorodod./Sil 11 E(ads) = -3.84 eV
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Figure 3.12: Simulation of the electronic ground-state of a corral . (a) charge density 
contour of electronic states integrated from the fermi level to +1.2eV. The position of a 
dimer-pair of molecules is indicated by a ball-and-stick model. The apparent height of the 
molecules is 1.5A. The difference in apparent height between the corralled adatom (black 
cross, lower) and an uncorralled adatom (white cross, higher) is 0.4A

(b) within the dimer-corral (red line).
A single molecule gives rise to a minor perturbation in the electronic states, whereas the 
corral comprising two molecules, shifts the corralled adatom’s electronic states by -leV. 
This indicates that the potential in the vicinity of the corralled adatom has changed by 
about this amount. The steep onset of the density of states of the corralled adatom below 
-1.7eV is in agreement with our spectroscopic measurements (Fig. 3.8)

3.3.2 Dipole moments
The corral’s electronic properties originate from induced dipoles in the silicon surface. 
Figs. 3.14 show the dipole moments induced by the two molecules (d and e), and by the 
corral (f). Adding the individual dipole moments induced by the two molecules does not 
produce the dipole moment computed for the corral. The corral has therefore induced an 
extra dipole (red arrow). This is due to charge-transfer into the corralled adatom. The 
computed surplus charge of about 0.6 electrons on the corralled adatom is thought to orig­
inate from the shift of its valence-band to a lower energy (Fig. 3.13), placing additional 
states within the occupied range. This accounts for the observed darkening of the corralled 
adatom in the STM images both for positive bias, as the dangling bond state is now filled, 
and negative bias, as the state has been lowered by -leV.
Variation in chain length and chain substituents could provide a means to self-assembly of 
nano-corrals and filled corrals (nano-dots) of varied but defined size and electronic proper­
ties.
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Figure 3.13: Density of states (DOS) of an uncorralled adatom (yellow curve) correspond­
ing to position (a): red silicon adatom , and of corralled adatom (red curve, corresponding 
to position (b): dark yellow silicon adatom

Figure 3.14: (d)-(f) Induced surface dipoles due to the adsorbed molecule(s); (d) and (e) 
Single molecules and induced dipoles (blue arrow) and (f) corral and induced dipole (light 
blue arrow); dipole due to additional charge-transfer in the corral (red arrow)

3.3.3 Summary
The STM simulations show a direct influence of the two chlorododecane molecules, form­
ing the type-II configuration, on the corralled silicon adatom which darkens in the STM 
images. This phenomenon is described by a decrease of the apparent height of the silicon 
adatom.
The dipole moments finally show that two molecules on the Si(l 11)-(7 x 7) surface form a 
very stable system which is qualitatively different from single molecules.
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Chapter 4

Electronic Switching of Single Silicon 
Atoms by Molecular Fields Effects

Single-molecule switches have been the subject of numerous experimental and theoretical 
studies aimed at understanding their behaviour and engineering their properties. Molecu­
lar conductance has been controlled largely by conformational change in the conducting 
molecule[90-92], by external electric fields[93-95], and subsidiarily by structural changes 
in the embedding environment[96]. A recent study demonstrated changes in molecular 
conductivity due to a local electric field, namely, a single negatively charged silicon dan­
gling bond[97], A critical next step is to find a more general means of varying the local 
electrostatic field. Here, this is accomplished by surrounding a conducting atom by dipolar 
molecules that switch their configuration. The field from the fixed point charge is thus re­
placed by a variable field. The dipolar molecules consist of a self-assembled halododecane 
dimer[98] that abuts a single silicon adatom on either side. These dimers are shown here 
to be bistable; they have a high and a low conductance state of the single corralled adatom. 
A small shift in the dimer’s dipolar end groups changes the induced electric field at the 
corralled adatom by IV, leading to an order of magnitude conductance change of the cor­
ralled adatom. This effect is comparable in size to that generated by semiconductor doping. 
The following study demonstrates that small changes in molecular configuration can have 
substantial effects on the surrounding medium, a finding relevant for molecular electronics 
and also biochemistry, where links between molecular conformation and function are of 
importance[99].

4.1 Experiments

4.1.1 Experimental methods and results
STM imaging

The experiments were carried out in ultrahigh vacuum (UHV) using an RHK room tem­
perature scanning tunneling microscope (STM) or an Omicron variable-temperature STM. 
All STM bias voltages are sample voltages. Samples were cut from n-type (phosphorus- 
doped) silicon (111) wafers and were resistively flashed in UHV to produce large terraces
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of S i( lll)-(7  x 7). Liquid chlorododecane was repeatedly freeze/pumped/thawed to re­
move contamination. STM tips were electrochemically etched from 0.38-mm diameter 
polycristalline tungsten wire, using a drop-off technique[100].

4.1.2 Type-I corral formation mechanism

■ Â (1)

In this section, we report the distinctive mechanism for self- 
assembly by vertical molecules that glide across the surface 
loosely attached at a single halogen atom, and thereafter lie 
down to contact the surface at multiple points and become 
immobilized. The most facile glide path across the sur­
face appears to be the dimer row on S i( l l l) ,  joining comer 
holes.[179]
At low temperature, as it has been illustrated previously for 
12-carbon-chain haloalkanes (see chapter 3), we have been 
able to observe vertical molecules progressing along dimer 
rows for two- and three-carbon alkyl bromides [98,119,120].
The existence of these lines, rather than isolated molecules, 
even at low coverage is evidence of their affinity for one an­
other even for two- and three-carbon chains. One attributes 
this, most probably, to hydrogen bonding entanglement be­
tween even short adjacent hydrocarbon tails.
Significantly experimentalists have been unable to observe 
rows of methyl bromide lining up on our 50K silicon surface.
The presence of even a two- or three-carbon chain appears to 
be enough to give rise to the adsorbate-adsorbate attraction 
necessary for the (occasional) formation of such lines of ethyl 
bromide or propyl bromide, though not for methyl bromide.
Similar topographs have been obtained for ethyl bromide at 
50K.
With this vertical precursor state confirmed by the observation 
of physisorbed rows of adsorbates at individual Silicon atoms, 
an analogy with earlier kinetic studies of dodecyl halide[120], 
it has been proposed a simple mechanism for the formation 
of dimeric corrals of octyl chloride and octyl bromide. The 
principal mechanism for corral formation proposed, as in the 
visualization of Fig. 4.1, involves a deceleration of motion of 
the vertical, v, molecules in their vertical encounters with cor­
ner holes, followed by attractive hydrogen bond interaction 
between pairs of alkane chains as for the nested lines of verti­
cal molecules at low temperature.
At room temperature a loosely bound molecular pair, after
leaving the dimer row, topples into the observed horizontal dimeric configurations; type 
I if they fall in one direction around the comer hole, and type II if they fall in the other 
direction around an adatom.

Figure 4.1: Schematic di­
agram showing Type I 
corral formation at the 
S i(lll)-(7  x 7) surface. 
Two mobile physisorbed 
vertical monomers pro­
ceeding along dimer rows 
meet at a comer hole. Fol­
lowing migration to an ad­
jacent comer adatom they 
’fall’ (2v —> h2) to form 
a type I (around a comer 
hole). The corralled atom 
switches on and off (white 
rays) as the corral opens 
and closes.
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Earlier work[98,l 19,120] showed evidence of a significant gain in stability for the horizon­
tal pair (h2) as compared with the horizontal monomer (h). This was evidenced by the fact 
tat if one half of h2 was removed from the surface by breaking its C-X bond by electron 
impact, the other half of the dimer desorbed. The dimer h2 at the surface is stabilized rel­
ative to the monomer by the observed charge transfer to its centre. The importance of this 
is highlighted by recent experiments that have shown that interference with this charge- 
transfer process by co-adsorption of a sub-monolayer of sodium causes all h2 to separate 
into 2h.[179]
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4.1.3 Type-I configuration of Chlorododecane
We can observe, from the appearance of halododecane dimers on silicon, that the Type-I 
halododecane configuration exists for three different halogen terminated molecules: Bro­
mide, Chlorine and Fluorine. It seems to be the most stable configuration for twelve- 
carbons Haloalkanes once physisorbed on the silicon surface. Such a configuration is sta­
ble from room temperature up to 400K. Beyond this temperature it breaks apart into carbon 
chains separated from the halogen atoms. For this chapter, we study the type-I Chlorodo-

Typo-l

Figure 4.2: STM image of the Chlorododecane molecule physisorbed at silicon(l 11) (1.5V, 
0.2nA). This configuration contains two molecules corralling a corner hole and switching 
the states of a silicon adatom.

decane dimer configuration(Fig. 4.2). As said above, two chlorododecane molecules are 
part of this specific configuration. The corral bends over a comer hole of the silicon surface 
and switches the states of the next silicon adatom following the hole and the dimer.

4.1.4 Typel-Chlorododecane corral study
Fig. 4.3 shows an STM image of a Si(l 11)-(7 x 7) surface after exposure to chlorododecane 
molecules self-assembled through non-covalent bonds into two types of dimer structures, 
type I (around a comer hole) and type II (around a comer adatom). The circles in Fig. 
4.3 indicate type I, and the square indicates type II. The type-I structure leaves only one 
of the six comer adatoms uncovered (Fig. 4.2). This uncovered adatom, located between 
the jaws of the corral, images as a streaky feature. We now show that the adatom switches 
repeatedly between conductance states, leading to its streaky appearance. This adatom, 
the corralled adatom, is the focus of this section. Type II corrals form around a central 
adatom which undergoes charge transfer induced by the corral to create, instead, a stable 
darkened adatom[98]. The invariable presence of a streaky corralled adatom only for type I 
corrals implies that this effect is associated with the corral and is not a tip effect[105,106]. 
A chemical change such as C-Cl bond breaking could explain the observed conductance 
change but the energies of the tunneling electrons (<  2.5eV) are insufficient to break the 
C-Cl covalent bond of chlorododecane, we therefore discount this possibility[98,107,108]. 
We also rule out extensive changes in the molecular adsorption geometry[109] required
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Figure 4.3: (A) large-area STM image of a Si(l 11)-(7 x 7) surface at room temperature after 
exposure to chlorododecane molecules (230 x 100A, +2V, O.lnA). Two types of dimer 
corral are present: those that surround a comer hole (indicated by circles, labelled type 
I) and those that surround a comer adatom (indicated by squares, labelled type II). Also 
marked is a unit cell of the surface indicating the faulted (f) and unfaulted (u) halves.

to bring the halogen atom(s) of the intact alkane halide to within bonding distance of the 
corralled adatom, as the bright features associated with the adsorbed molecules extend far 
from the corralled adatom and show little or no change (noise) during imaging. Instead, 
as discussed below, a more subtle change in the molecular dimer at a distance from the 
corralled adatom appears to be responsible for the conductance switching.
We also considered the possibility that a mobile impurity hopping between tip and adatom 
could be the cause of the observed switching, but discounted it on the grounds that when 
switching is halted by cooling there is no detectable (immobilized) impurity, as well as on 
the grounds that an alteration in current has no effect on switching rate, and, finally, on the 
grounds that (in three different UHV machines) switching is invariably present for type I 
configuration corrals but always absent for type II configuration corrals.
The S i(lll)-(7  x 7) unit cell has two electronically distinct halves, faulted and unfaulted 
(see Fig. 4.3), that result from the stacking fault layer of silicon atoms. There are there­
fore two kinds of type I corralled adatom: faulted (Fig. 4.4B) and unfaulted (Fig. 4.4F). 
Experimentally it is found that these two kinds exhibit different STM imaging properties. 
A faulted corralled adatom had long streaks while an unfaulted one has short streaks. We 
show below that this difference is due to slow conductance switching and fast conductance 
switching, respectively. Measurements of the tunneling current into the corralled adatom 
give time-resolved information with respect to both, the slow and the fast switch.
During an image scan of a type I corral, the raster motion was stopped at preset locations 
and the feedback loop was disabled. Before resuming the scan, the tunneling current was 
measured every 25/j.s over 0.4s, building up a time trace of the tunneling current. Fig. 
4.4C shows a time trace taken over a faulted corralled adatom, the Fig. 4.4G shows a 
time trace taken over an unfaulted corralled adatom. The difference in switching rates is 
apparent. For the faulted corral, the distribution of tunneling currents in the time trace
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is clearly bimodal (Fig. 4.4D); the corralled adatom was repeatedly switching between 
two conductance states. One labels the high-current state ”on” and the low-current state 
’’off” . In the STM images of Fig. 4.4B, Fig. 4.4F, the on-state corresponds to the cor­
ralled adatom’s bright streaks and the off-state corresponds to the dark streaks. Two pairs

Figure 4.4: (B and F) High-resolution STM images of a type I corral with the comer adatom 
that lies in the jaws of the corral belonging to the faulted half of the unit cell (B) and the 
unfaulted half of the unit cell (F). Each image has two chlorododecane molecules, drawn 
to scale and superimposed. Chlorine atoms are shown in green, and the alkane chain is 
blue. (B) 30 x 30A, +2.5V,0.4nA; (F)30 x 30A, +2V,0.15nA. (C and G) Tunneling current 
versus time measurements over (B) a faulted corralled adatom at -2.5 V and (F) an unfaulted 
corralled comer adatom at +2.4V. (G, inset) Low temperature (227K) tunneling current 
versus time measurements over an unfaulted corralled comer adatom at +2V. (D and H) 
The corresponding tunneling current distributions with a pair of Gaussian functions fitted 
in each case; high-current (on) and low-current (off) states are labelled. (E and I) The 
autocorrelation of the tunneling current time traces of C and G. The fitted functions are 
exponential decays (see Method for details).

of parameters characterize conductance switching: the on-state and off-state tunneling cur­
rents, and the on-state and off-state lifetimes. Gaussian functions fitted to the distribution 
of tunneling currents determined the on-state and the off-state tunneling currents, whereas 
auto-correlation of the time traces determined the lifetimes. The Gaussian fits in fig. 4.4D 
for the faulted corral gave an on-state tunneling current of 150 ±  20pA and an off-state 
tunneling current of 50 ±  15pA (errors are the full width at half-maximum). This yields a 
3 ±  1 ratio for on-current to off-current for this particular time trace.
A similar analysis for the unfaulted corral (fig. 4.4H) gave only one fully defined state, the 
off-state at 30 ±  15pA. Yet, when cooled, the unfaulted corrals showed two well-resolved
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states in their time traces (Fig. 4.4G, inset). The unresolved on-state of Fig. 4.4H therefore 
resulted from the room-temperature unfaulted corral’s rapid switching near the limit of time 
resolution. To allow these fast switching corrals to be examined, the experimentalists in­
creased the effective time resolution by analyzing the time traces using the auto-correlation 
technique, as follows.
Auto-correlation is commonly used to study time-resolved measurements of fluorescence 
blinking[ 110,111]; here it is used to measure the fluctuation in the tunneling current. The 
maximum correlation occurs at zero delay; at long delay times there is no correlation and 
the auto-correlation tends to unity. Fig. 4.4E-Fig. 4.41 show the auto-correlated time traces 
of the faulted corral and the unfaulted corral. Both auto-correlation plots displayed an ex­
ponential decay. The exponential fits to the auto-correlation yielded the lifetimes of the 
on-state and the off-state for both the (slow switching) faulted corral and the (fast switch­
ing) unfaulted corral. The average on-state lifetime, over a range of tunneling currents,

Temperature IK)

Figure 4.5: (A) Lifetime as a function of the sample temperature of the faulted on-state and 
off-state and the unfaulted on-state and off-state Fits are exponential, (inset) Arrhenius plot 
with linear fits. (B) Schematic of the potential energy, derived from the Arrhenius fits, for 
the faulted and unfaulted corralled adatoms.

bias voltages, and 11 different type I corrals, was 930 ±  50/j,.s for the faulted corral. For 
the off-state lifetime it was 310 ±  20fis. The faulted corral adatom preferred the on-state. 
The average on-state lifetime for the unfaulted corral was 150 ±  6/j.s , and for the off-state 
lifetime it was 215 ±  16/is. The unfaulted corral marginally preferred the off-state. The 
ratio of on-current to off-current for the faulted corral was 3.8 ±  0.1, which corresponds 
to a change in the tip height of 0.67 ±  0.0lA(with the decay constant k = l A _1). For 
the unfaulted corral, the tunneling current ratio is 8.7 ±  1.1, corresponding to a tip height 
change of 1.08 ±  0.06A.
One now considers the controlling factors for the conductance switching of the corralled 
adatom. The exponential decays of the auto-correlations imply that the switching rates 
(on-to-off and off-to-on) are both stochastic. Two possible sources of excitation that could
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produce stochastic switching rates are the tunneling current and thermal fluctuations.
A process driven by the tunneling current will have a dependence on the tunneling current 
and a threshold voltage[112,113]. Over a range of tunneling currents from 0.1 to 1.2nA, 
no change was found for any of the lifetimes. Equally no threshold behavior was found for 
the bias dependence of the lifetimes (+2.5 to +0.7 and -0.7 to -2.3V)[114,115]. Further­
more, within the scatter of the experimental results, the tunneling ratios were also found 
to be independent of either tunneling current or bias voltage. It follows that STM-induced 
electronic effects do not drive the switch. By contrast, heating the sample above room tem­
perature, as fig. 4.5A shows, reduced the on-state and off-state lifetimes, while cooling the 
sample increased their lifetimes. Therefore, thermal fluctuations at constant temperature 
drive the switch.
By fitting the Arrhenius equation to the temperature dependence of the lifetimes (Fig. 4.5A, 
inset), we can calculate the activation energies and pre-exponential A-factors for the switch­
ing processes. Fig. 4.5B presents the activation energies as two schematic potential energy 
curves. The average pre-exponential A-factor was 107 5±0 5s_1, much lower than the stan­
dard value of 1013s- 1[116,117]. Reduced A-factors have been associated with thermally 
induced charge transfer from the substrate to adsorbate. To determine if such processes 
are involved in the switching, further experiments with different surface doping would be 
required; these lie outside the scope of the present study.
To probe the molecular properties that govern the conductance switching, type I corrals 
were built from different halogenated alkanes. Changing the length of the alkane chain 
from 12 carbon atoms (chlorododecane) to 10 carbon atoms (chlorodecane) did not mea­
surably affect the on-state and off-state lifetimes. Similarly, changing the halogen atom 
from Cl to F did not significantly change the on-state lifetime: 200 ±  60/is for a fluorodo- 
decane corral and 150 ±  6//s for a chlorododecane corral. However, this change of halogen, 
Cl to F, increased by more than a factor of three the off-state lifetime: 710 ±  130/i,s for a 
fluorododecane corral compared to 215 ±  16ns  for a chlorododecane corral. It appears 
that the conductance switching of the corralled adatom is controlled by atoms toward the 
halogen end of the corralling molecules.
The surface itself, faulted and unfaulted, also affected the conductance switching. As al­
ready noted, the two halves of the S i(lll)-(7  x 7) unit cell give different switching rates. 
To explore this surface effect, one combines time-resolved measurements with the spatial 
resolution of the STM to form a map of the ratio of on-state to off-state tunneling currents, 
that is, the switching amplitude. These maps are presented in Fig. 4.6A for a faulted corral 
and Fig. 4.6B for an unfaulted corral. The faulted map contains data from 234 time traces 
taken over 35 different faulted corrals. Similarly, the unfaulted map contains data from 348 
time traces taken over 47 different unfaulted corrals. The symmetry of the corraL/substrate 
system imposes a vertical mirror plane in the switching maps. Most striking is the location 
of the switch; for the unfaulted corral (Fig. 4.6B) the switch is centrally located between 
the corralled adatom and its neighboring rest atom; the faulted corral (Fig. 4.6A) also has a 
large switching ratio at the equivalent location of the corralled adatom. This result mirrors 
the location of the switching effect observed in high-resolution STM imaging (Fig. 4.6C, 
4.6D).
The difference between faulted and unfaulted regions is the location of the substrate sil­
icon atom in the stacking fault layer. For the faulted section, the stacking fault atom is
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Faulted (slow) Unfaulted (fast)

Figure 4.6: (A and B) Plane view spatial maps of the ratio of on-state tunneling current 
to off-state tunneling current for chlorododecane type I corrals with (A) a faulted corralled 
adatom and (B) an unfaulted corralled adatom (see side bar for color code). Large blue cir­
cles represent silicon adatoms, and the smaller blue circle represents a rest atom. Blue dots 
indicate the position of individual time-trace measurements. A vertical plane of symmetry 
exists in the dimer/surface system, and the symmetry was imposed in the switching maps. 
(C and D) STM images of Fig. 4.4B, 4.4F shown with adatoms and rest atoms indicated to 
allow easy comparison

directly below the corralled atom, whereas for the unfaulted section it is halfway between 
the corralled adatom and the neighboring rest atom. Therefore, there appears to be some 
correlation between the location of the stacking fault atom and the location of the switch. 
One tentatively proposes that the stabilization energy of the on-state is dependent on the 
stacking fault atom, so that when this atom is close to the corral (faulted) the on-state
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potential is twice as deep than when it is further away (unfaulted); 400meV rather than 
200meV.

4.2 Type-I Chlorododecane adsorption energies and ge­
ometries

Different conformations of chlorododecane molecules have to be determined in such a way 
that they fit the type-I adsorbate at a ¿'¿(111) — ( 7 x 7 )  surface. As shown in chapter 3, the 
chlorododecane molecule fits three silicon adatom in any orientation. In case of the Type-I 
corral, the two Chlorododecane molecules corral 5 silicon adatoms around the comer hole 
symmetrically. The two chlorine atoms lie on different silicon adatoms. Then the molecules 
terminate with the carbon chains joining each other on the last silicon adatom of the corral. 
Successive DFT calculations of these different conformations of CIC \ 2  have to be done in 
the vacuum. Here we calculate the different geometry possibilities by bending the carbon 
chain of the molecules at different carbon positions.
The adsorbate/substrate system Chlorododecane at 52(111) — ( 7 x 7 )  is the second part of 
the calculations. The fully converged 2 CIC 1 2 / S i ( l l l )  — ( 7 x 7 )  is then studied by STM 
simulations. The ground state of such a system is calculated by DFT and STM simulations 
are performed with bSKAN[103,104].

4.2.1 Computational details
Density functional theory simulations on a full unit cell were carried out using the Vienna 
ab-initio Simulation Package (VASP)[101,102]. The switching adatom was chosen to be 
in the faulted half of the unit cell. The molecules were suspended above the silicon 7 x 7  
unit cell, and the whole system was fully relaxed until the forces on individual atoms were 
less than 0.02eV/A. The initial position of the chlorine atoms was selected by placing them 
either above or below the alkane chain in the initial configuration. The Brillouin zone was 
sampled at the F-point only. STM simulations were performed using bSKAN[103,104], 
and the tip model in this case was the tungsten film in (110) orientation with a tungsten 
pyramid of two layers at the apex.

4.2.2 Cholododecane molecules in vacuum
Many conformations of the Chlorododecane molecule can fit geometrically the three silicon 
adatom positions of the Type-II configuration on the silicon surface. With respect to the 
specific geometry of type-I, the degree of freedom is more limited than for the type-II 
corral, as both ends of the carbon chains of the two chlorododecane molecules lie on the 
same silicon adatom. Two specific conformations fit the type-I corral with the same carbon 
chain conformations. The difference between these molecule comes from the chlorine 
atom oriented into different directions. Fig. 4.7 shows the three different conformations. 
If the chlorine atom are facing the silicon surface at different angles the carbon chain lies 
differently on the surface, and still matches STM images. The first step of the study is to
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(d) btCen u b l (f) btC§n\\b2

Figure 4.7: By rotating the chlorine atom around nearest carbon, one obtains two different 
conformations of Chlorododecane. The Chlorine of the btCenu b2 molecule is the only one 
facing the silicon surface

calculate the ground state energies of the molecules in vacuum. The set up is the same for 
each conformation, the fully relaxed state is calculated within the same volume. We observe 
three conformations, matching the type II corral, with similar ground states energies. The 
lowest energy state (see Table 4.1) is 0.4eV more favorable than other states.

Table 4.1: In vacuum, the ground state energies of the 2 conformations of the chlorodode­
cane molecule are close to -203.5eV.

4.2.3 Type-I Chlorododecane/Silll systems calculated by DFT
By depositing the three different conformations of chlorododecane molecules on the silicon 
surface, we expect to determine the molecular ground state. Here, it is necessary to also 
relax Si atoms of subsurface layers. The top layers of the silicon surface have been fully 
relaxed in our simulations. Equally, we have also relaxed the two molecules. The forces on 
the ionic cores at the final iterations were less than 0.02eV/A

The adsorption energies of an adsorbate on a silicon surface can be calculated using the 
ground states energies of the systems described above. Eq. 4.1 gives the general relation 
for determining the adsorption energy of a system (adsorbate/substrate), in this case the 
adsorption energy of a type I corral of chlorododecane on silicon. Table 4.2 displays the 
DFT ground state values of the two calculated systems and the results of the calculations 
of adsorption energies for the adsorbate/substrate system. The btC§nnb2 chlorododecane 
molecule shows the highest adsorption energy with -2.08eV while the other molecules, 
btC6n n bl have got lower adsorption energies around -1.54eV. The two systems are now to 
be studied by STM simulations.

Conformation in vacuum Ground state energies
C 6 n llb l
C 6nllb2

E(tot) = -203.651 eV 
E(tot) = -203.524 eV

(4.1)
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System TOT/ADS energies
Silicon surface E(tot) = -1179.30 eV

2 C 6 n llb l/S illl  E(tot) =-1588.14 eV 
2 C 6 n llb l/S illl  E(ads) =-1.54 eV

2C6nl Ib2/Sil 11 E(tot) = -1588.42 eV 
2C6nl Ib2/Sil 11 E(ads) = -2.08 eV

Table 4.2: Summary of the ground state energies and adsorption energies of the clean 
silicon surface, the C\2Cl in the vacuum, and the systems 2Ci2C l/ S i l l l

4.3 STM Simulations on the Tÿpel-Chlorododecane/Sil 11
system

To determine whether conformation changes could account for the conductance switching 
of the corralled adatom, we performed electron transport (STM) simulations on a chlorodo- 
decane corral with a faulted corralled adatom (see computational details). In the calcula­
tions, two stable adsorption configurations have been identified, shown in Fig. 4.8. The 
two configurations below correspond to an on-state (blue molecules of Fig. 4.8) and an 
off-state (red molecules of Fig. 4.8) of the corral. Given the size of the molecules, one 
cannot be certain that these configurations are unique. In accord with the interpretation 
of the experiments given above, the main geometric difference between the pair of con­
figurations is the position of the chlorine end of the molecule; the terminal chlorine ends 
of the molecules are either closer (off-state) or more distant (on-state) from the corralled 
adatom. The calculated energy difference between the two configurations was 270meV per

Figure 4.8: Molecular configurations: on-state (blue molecule) and off-state (red
molecule).

molecule. However, it should be noted that owing to the large size of the simulated unit cell
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the precision of the calculation, which is satisfactorily small at ImeV per atom, amounted 
to a total energy uncertainty of 300meV. For this reason, we had to consider the energies of 
the two configurations equal to within the limits of the calculation. Nonetheless, the simu­
lations establish that the molecular arrangements have a small enough energy difference so 
that they can be changed in a thermally driven process. In this process, the chlorine ends of 
the molecules alternate their distance from the corralled adatom. In neither configurations, 
however, is the chlorine nearer than 6 to 7 A from the corralled adatom; too far even for 
weak chemical bonding.
While the computed configuration changes from the on-state to the off-state appear to be 
minor, they have a substantial effect on the electron states at the position of the corralled 
adatom. Figs. 4.9B,4.9C reveals that the height of the calculated charge density contour at 
the corralled (top) adatom changes by more than 0.5Â. Successive contour lines in these 
plots describe a height variation of 0.5Â. To compute the changes in the tunneling cur-

Figure 4.9: (B and C) Density contours from Ep  to Ep  +  2eV, value 10~5e/A[92], The 
contour lines correspond to a vertical distance of 0.5A. White circles indicate the sil­
icon adatoms at the comer hole. (D and E) Simulated STM constant current contours 
(+2V,50pA). (D) On-state. (E) Off state. The difference in apparent height measured at the 
top of the adatom is lA

rent flowing into the corralled adatom, we performed STM simulations with a (theoretical)
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tungsten tip. Fig. 4.9D, Fig. 4.9E present the simulated STM images of the two molecular 
geometries shown in Fig. 4.8A. It can be seen that depending on the configuration of the 
molecules the corralled adatom appears either as a distinct protrusion (Fig. 4.9D) or as 
a ’’missing” feature (Fig. 4.9E). The computed height difference between the two states 
of the corralled adatoms is lA, comparable to the experimental height difference of 0.7A. 
These two states of the molecules thus correspond to the on-state and off-state of the corral. 
The switching behavior is established as being dependent on small changes in the position 
of the polar end of the molecules.
We note the absence of tunneling current in the theoretical STM images of Fig. 4.9D, Fig. 
4.9E to the adatom at the bottom of the corral. This is despite the fact that Fig. 4.9B, Fig. 
4.9C shows a high DOS at this location. We attribute this to a numerical artifact stemming 
from the finite size of the simulated STM tip.
It was found previously that the molecular chlorododecane type I corral induces lateral sur­
face dipoles in the silicon surface, which are accompanied by substantial charge transfer 
along the surface[98]. The occurence of surface dipoles due to the formation of a corral. 
Here, we find that the type I induced surface dipoles are switched on and off by a change 
of the conformation of the molecules. This can be seen in the analysis of the density of 
states (DOS) at the position of the corralled adatom. Fig. 4.1 OF shows that the off-state

Figure 4.10: (F) DOS integrated over a silicon adatom. The DOS is bodily shifted by leV, 
indicating the change of the dipole field due to molecular configurations

of the molecules corresponds to a bodily downward shift of the DOS, relative to on-state, 
at the corralled adatom by about leV. The DOS also reveals that the main contribution 
to the tunneling current originates from the lowest unoccupied state at the position of the 
adatom(see the distinct peak at low positive energy). This state is shifted below the Fermi 
level in the ’’off” configuration, which means that in this case it carries additional electron 
charge. A similar shift to lower energies has been observed for the type II corral in the 
previous chapter[98].
This type of DOS shift is only observed if an electrostatic field is applied to the surface at 
this location. From the simulated STM images and the corresponding changes in config­
uration, we therefore conclude that the small configuration changes induces electric fields 
in the vicinity of the corral, which amount to an electrostatic potential of about IV. Given 
that defect atoms in semiconductors (e.g. dopants) show effects of a similar magnitude, we
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conclude that modest molecular configuration changes can produce effects equal in magni­
tude to the effects of chemically doping a semiconductor. However, the effect in this case 
is not due to localized charges, but due to a substantially enlarged dipole field in the ’’o ff’ 
configuration. We find that the lateral dipole moment in the off-state is increased by a factor 
of 7. Due to decay characteristics of dipole fields, proportional to the inverse square of the 
distance, the effect is limited to a very small region of the surface, in contrast to charges at 
dangling bonds[97], where the Coulombic field decays with the inverse distance.
In summary, we have shown a single-atom electronic switch in silicon due to molecularly 
induced field effects. Small changes in the configuration of a self-assembled pair of dipolar 
adsorbate molecules surrounding a silicon atom are shown to have a large electronic effect 
characterized by a high and a low conductance. The finding that small changes in confor­
mation of molecules can have substantial external electronic effects should be of interest in 
contexts ranging from nanoscale electronics to molecular biology.
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Chapter 5

Monte Carlo and statistical mechanics 
for a simple model

This chapter presents a visualization of the Monte Carlo simulation and the statistical me­
chanics theories, using a simple model. The combination of the Monte Carlo/Metropolis 
algorithm and statistical mechanics parameters is a key to determining the evolution of the 
physical states of a complicated system such as Tartaric Acid molecules adsorbed at Cop- 
per(llO). Thus, it is quite important to study the accuracy of the information entered into 
or received from a Monte Carlo simulation, performed in the Canonical ensemble.
There are different states during the run of a Monte Carlo program which can be verified 
and determined by use of statistical mechanics. These are the initial states and the final 
states for a single Monte Carlo simulation, analyzing exactly what one expects a Monte 
Carlo simulation to render. In the case of Monte Carlo simulations performed with the 
evolution of the size of the cell of the system, one can sort out the accuracy of the ther­
modynamic information, following the evolution of statistical mechanics parameters from 
two initial cases such as the perfect ordered state and the full disorder state. Monte Carlo 
simulations performed at successive and increasing temperatures give an evidence of the 
reliability of the order parameter and the heat capacity parameter with respect to the state 
of the system especially at low temperatures, at the temperature of the critical phase, and 
at high temperatures.

To do so, a simple cubic surface at the (100) face is used as a reference. This surface 
admits a lattice parameter a of an undefined value. The supercell of the following simula­
tion is squared of the following dimensions (10 x 10), (20 x 20) (30 x 30) and (40 x 40). 
A particle p, once adsorbed at the cubic surface sits, at a hollow site of the cubic (100) face 
and has a repulsive interaction of +0.1eV  at the smallest distance of d =  a to the next par­
ticle. For simplicity no other particle-particle interaction is considered in the simulations. 
The ordered structure of such a Monte Carlo set-up for © =  0.5 ML is c(2 x 2) at low 
temperatures.
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5.1 Order parameter
Surface phase transitions are usually discussed in terms of an order parameter [68,83,84].
It can be a scalar, a vector, or a tensor of a higher rank. The order parameter is defined to be 
zero above Tc , when there is no long-range order, and it is usually normalized to unity for 
a fully ordered state. In a second-order phase transitions, 'k increases continuously from 
zero as T decreases below Tc, while in a first-order transition, it changes discontinuously. 
One can choose as an order parameter the low-energy-electron-diffraction (LEED) inten­
sity of a suitable diffraction spot. Thus, as in LEED intensity measurements, the critical 
temperature of the order-disorder transition can be estimated from the inflection point of 
the curve \k versus T for constant 0 .
The order parameter \k is supposed to measure the periodicity of a determined surface 
structure with a defined symmetry. As such, it can conveniently be evaluated by Fourier 
transform techniques. The information in real space is transformed into frequency space 
and patterns in real space can then be effectively measured.

5.1.1 Discrete Fourier transform
The configurations of particles in a lattice can be represented as matrices. Thus, a specific 
ordering behavior can be measured by applying a discrete fourier transform to the matrix 
representation and extracting the Fourier coefficients that correspond to the frequency of 
the ordered configuration.
The discrete Fourier transform of a vector x is given by [82]

’ ^ n 1 ^ n 2 ’ • K ' n  ' x 0 Co

W l l W l 2 ■ ■ X \ = Cl

lU" '1 L n < 2 ' ■ K ' n  . . ^-(n— 1) . _ C (n —1) .

(5.1)

— 2z7 r(r— l ) ( s —1)
where K s =  e and c is the vector of Fourier coefficients; Eq. 5.1 can be also
expressed in matrix notation as

Fx = c, (5.2)

where F is called the Fourier matrix. Note that F is a symmetrical matrix.
Since the ordering on a surface takes place in 2 dimensions, the discrete Fourier transform 
has to be applied in 2 dimensions. Two dimensional Fourier transforms simply involve a 
number of one dimensional Fourier transforms. More precisely, a two-dimensional trans­
form of a matrix is achieved by first transforming each row, replacing each column with its 
transform. The two-dimensional fourier transform of a (n  x n ) matrix A is given by

F(FAt)t =  c, (5.3)

where the transpose, T symbol, refers to the transpose without conjugate.
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5.1.2 The (2 x 2) ordering
The ordering corresponding to the (2 x 2) symmetry is illustrated in Fig. 5.1(a). Two types 
of structures are possible: c(2 x 2) corresponding to 0  =  1/2 ML and p(2 x 2) correspond­
ing to 0  =  1/4 ML. The structures have respectively one and two atoms per unit cell. 
Usually, spin variables (+1 if the site is occupied, -1 if the site is empty) are used when 
calculating order parameters. However, the calculation with point variables (+1 if the site 
is occupied, 0 if the site is empty) is readily carried out. One only need to convert ev­
ery element of the point configuration (usually given as a matrix of +1 and 0) to a spin 
configuration through the relationship:

Si = 2m  -  1. (5.4)

The direct calculation with point variables is also possible. However, additional normaliza­
tion factors should be found in order to ensure that T =  1 for a fully ordered state.
In a point variable configuration, the coverage 0  is given by

1 N
0 = T?E^> (5-5)

JV ¿=i

where N is the number of lattice sites. The equivalent quantity configurations is called

(a) 0  =  1/2 ML (b)

Figure 5.1: (a) Ordered c(2 x 2) phase in a square lattice, i.e. a (100) surface. The c(2 x 2) 
unit cell is sketched as well. Note that the coverage has two atoms per unit cell (b) Division 
of the square lattice into sublattices

magnetization, it is given by
N

M  = Y* (5.6)
1=1

Note the magnetization can be positive or negative. The magnetization per spin is given by

(5.7)
1 N

m  =  si-

80



The coverage 0  then is simply related to the magnetization per spin m

0  =  ^(1 +  m). (5.8)

The (2 x 2) configuration can be described by decomposing the original lattice into two 
sublattices made up of sites connected by next nearest-neighbour bonds.
The total magnetization of every sublattice is given by

M a =  £  Si, (5.9)
i€.a

with a  = A,B,C... The order parameter can be written in term of the magnetizations M a. 
In order to do so, one has to express the p(2 x 2) ordering in term of Ma. This is accom­
plished by writing the c(2 x 2) configurations in matrix notation. The possible c(2 x 2) 
configurations can be expressed in matrix notation using a (2 x 2) matrix. The degenerate 
matrix representations of the c(2 x 2) configurations in terms of spin variables are:

1 - 1  " ■ - 1  1 ■
- 1  1 1 1 - 1

Thus one can set up a general matrix for the p(2 x 2) configurations in term of the magne­
tizations M a according to the sublattices in Fig. 5.1(b).

M  =
1
2

M a M b 
M b M a

(5.10)

The next step is to Fourier transform the (2 x 2) matrix M. For that purpose, one needs the 
(2 x 2) Fourier matrix. From the definition in Eq. (5.1).

^2 =
1
1 (5.11)

By applying Eq. (5.3) to Eq. (5.10) and taking the absolute value of the Fourier coefficients, 
one arrives at:

M a + M b 0 
0 M b  —  M a

(5.12)

From this Fourier transform it is possible to derive the order parameter for the c(2 x 2) 
configuration. The matrix component M A + M B is not suitable as the order parameter 
because it is constant for all the configurations, i.e. M A + M B = M where M is the total 
magnetization given by Eq. (5.7). The remaining nonzero matrix elements measure the 
frequency of the c(2 x 2) configuration. They are degenerate and their algebraic expression 
can be used as order parameter

'F' =  M a -  M b . (5.13)

The expression in Eq. (5.13) can be conveniently normalized to 1 by finding its maximum 
value. Since \F' measures the frequency of the c(2x2) configuration, its value must be 
maximum when the surface exhibits such a configuration. If this is the case, then I M a |= |
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M b I, because of the twofold degeneracy of the c(2 x 2) configuration. Assuming M B — 
—M A one can simplify to

I I * ' 11=2 M a , (5.14)

| || is the factor by which Eq. 5.13 should be divided in order to normalize 'F' to 1.
|| ^  || can be conveniently expressed in terms of the number of the lattice sites N. For the 
assumed c(2 x 2) configurations M A =  y ,  so that

|| $ ' ||=  A. (5.15)

The normalized order parameter is given by

(5.16)

The computational implementation of the order parameter given by Eq. (5.16) is straight­
forward. One only needs to count the sublattice magnetizations MA and M B from a given 
matrix and evaluate For disordered states '¡> =  0 and for ordered states with c(2x2) 
symmetry =  1. By cooling down the system near the critical temperature Tc, the order 
parameters rapidly increase from values near zero (disorder) to one (order). The mea­
surements point of ^  versus T for constant theta can be fitted by sigmoidal curve. The 
inflection point of the curve corresponds to the order-disorder transition temperature for a 
given ©.
The order parameter 'I' can be confirmed to accuracy, for that purpose, thermodynamic 
methods (e.g. heat capacity measurements) are necessary.

5.2 Thermodynamic approach

5.2.1 Thermodynamics
Thermodynamics establishes the relationships between the different macroscopic thermo­
dynamic properties of a system. The corresponding mathematical framework is based on 
the laws of thermodynamics. The first law of thermodynamics states that the total energy 
of a system is conserved, i.e. the energy is invariant, it remains the same going forward and 
backward in time (time symmetry). The energy U of a system (associated with its capacity 
for doing work) can only be transferred, but not destroyed, i.e. for an infinitesimal process 
[19]

dU = SQ + SW. (5.17)

The differential heat flow into the system 6Q and the differential work done on the system 
6W  represent ways that energy can transferred from one system to the other. They are 
dependent upon the path followed in making the transfer (i.e. 5Q and 5W  are inexact 
differentials, since their value depends upon the path taken by the system). Though 6Q 
and 5W  change with the path, their sum produces always the same dU, since U is a state 
function and dU is independent of the path (an exact differential). The work term, has the 
general form

SW  = f.dX  
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where f  is the applied ’’force”, and X stands for a mechanical extensive variable. The 
variables f  and X are called conjugate variables. The work done in changing an extensive 
thermodynamic variable X is the product of the change in that variable and its conjugate 
intensive variable f. For the type of closed (constant mass) systems we are interested in, 
the work term takes the form

SW = -pdV,  (5.19)

where V is the volume of the system and p is the pressure on the system.
The first law establishes the equivalence of the different forms of energy (radiant, chemical, 
physical, electrical, and thermal), the possibility of transformation from one to another, and 
the laws that govern these transformations. The first law considers heat and energy as two 
magnitudes of the same physical nature.
While the first law of thermodynamics says that the total quantity of energy in a closed 
system remains constant (this is the principle of the conservation of energy), the second 
law of thermodynamics states that the quality of this energy (its ability to do work) is 
degraded irreversibility (this is principle of the degradation of energy) [85].
The quantity which measures the extent to which the energy of a system is available for 
conversion to work is the entropy S. If a system undergoing an infinitesimal reversible 
change takes in a quantity of heat 6Q at absolute temperature T, its entropy increased by

dS = 6Q/T.  (5.20)

The second law thus states that the total entropy change of a closed system is always pos­
itive and the amount of energy not available for doing work, TdS,  increases continually. 
The increase in entropy defines the thermodynamic arrow of time.
The fundamental thermodynamic relationship that applies to any process in a closed system 
(where only pdV work is present) can be obtained from Eq. (5.17), Eq. (5.19), Eq. (5.20), 
i.e.

dU =  T d S  — pdV. (5.21)

Eq. (5.21) can be applied to any differential change in both reversible and irreversible 
processes, because it states a relationship between functions of state only, i.e. their values 
depend only on the state of the system and not on the path to reach that state [8 6 ].
The equilibrium state of a system can be characterized by the variational statement of the 
second law [50]. For small displacements away from the equilibrium manifold of the states, 
the entropy remains constant or decreases

(SS)uy  <  0 . (5.22)

It means that, for a system in thermodynamic equilibrium with a given energy, the entropy is 
greater than that of any order state with the same energy. This entropy maximum principle 
has a corollary that is an energy minimum principle [50], i.e. for small displacement away 
from the equilibrium state

(6U)s,v > 0 . (5.23)

The fundamental thermodynamic relationship Eq. (5.21) and the variational statement of 
the second law, Eq. (5.22) and Eq. (5.23), are the principles necessary for analyzing the 
macroscopic thermodynamics of systems at equilibrium. However, the characterization of
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the system is greatly facilitated by changing the independent variables of the fundamental 
relationship.
The variational principle in Eq. (5.23) tells us facts about equilibrium states characterized 
by S and V, i.e. U is a natural function of S and V (see Eq. (5.21)). Now, suppose we 
want to construct a natural function of T and V to characterize the equilibrium states of a 
closed system (in fact, T is experimentally more accessible than S); but the new function 
must contain not more or less information than E. The way to achieve this is a Legendre 
transformation [50]. To construct a natural function of T and V for a closed system, one 
has to subtract from dU the quantity d(TS),  i.e. the extensive variable S times its conjugate 
T, to obtain

d(U -  T S ) =  - S d T  -  pdV. (5.24)

This quantity, U — T S ,  is called the Helmholtz free energy, or simply the free energy

F  = U - T S .  (5.25)

Similar transformations are possible by selecting different (non-conjugate) pairs of inde­
pendent variables, i.e. the independent variables describing the system have to be non­
conjugate [50]. The resulting state functions: energy U(S,  V), enthalpy H(S, p), Helmholtz 
free energy F(T, V), and Gibbs free energy G(T,p ); are called thermodynamic potentials 
[19]. All of them can be used to characterize equilibrium states through the use of varia­
tional principles of the form of Eq. (5.23).

Since heat flow and temperature changes are intimately related, it is useful to quantify 
their connection by introducing heat capacities. The heat capacity at constant volume is 
given by

(5.26)

The last equation provides a way for evaluating the entropy S  of the system from Cy 
measurements, i.e. integrating Eq. (5.26).

S(T) = S(T0) +  f T % d T .J t 0 1
(5.27)

However, the result given by Eq. (5.27) is not reliable, because the specific heat itself is not 
easy to determine, particularly in view of its divergence at a phase transition. In the case 
of theoretical Monte Carlo simulations, where the Hamiltonian of the system is known and 
its energy U is usually a direct result of the simulation, one can calculate the entropy from 
the thermodynamic relationship

(5.28)

Integrating Eq. (5.28)

S(T)  =  S(T0) +  £  (5.29)

These last equations illustrate the practical utility of thermodynamics. It makes inferences 
about unmeasurable quantities from observable ones (e.g. the Maxwell relations [50]).
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However, thermodynamics says nothing about the actual value of the thermodynamic prop­
erties. For that, we need to carry out experiments or run simulations using statistical me­
chanics.

5.3 Statistical mechanics approach
Statistical mechanics was developed to obtain averages of the mechanical variables of the 
molecules in a system and to provide the coarse features of the system. These coarse fea­
tures turn out to be, precisely, the macroscopic thermodynamic properties. Thus, statistical 
mechanics anchors thermodynamics to mechanics.
The statistical mechanics description of thermodynamic equilibrium considers a manifold 
of microscopic states consistent with the constraints imposed on the system. The basic idea 
is that during a measurement every microscopic state or fluctuation that is possible does in 
fact occur, and observed properties are actually the averages from all the microscopic states 
(the fundamental postulate) [50].

Thus, if the value of some quantity X in the i-th microstate is X ly and the probability 
that the system is in that microstate is Pt, then the value of X in the macrostate is given by 
the ensemble average

(X) =  £  PiXi. (5.30)
i

This is crucial link from microscopic to macroscopic properties. In the molecular interpre­
tation, the energy E is the energy stored within the molecules of a system. It is related to 
the macroscopic internal energy U by

U = ( E )  =  Y ,  PiEi. (5.31)

The temperature is a measure of the molecular activity of a substance. The greater the 
movements of the molecules (kinetic energy), the higher the temperature, and the more mi­
crostates the molecule can populate. The physical constant relating temperature to energy 
is the Boltzmann constant kB.
For an isolated system with a fixed total number of particles N, fixed volume V, and fixed 
energy E, statistical mechanics assumes that all attainable microscopic states are equally 
likely at thermodynamic equilibrium (ergodic hypothesis). If the number of such mi­
crostates is Q, the probability that the system is in any one microstate will be:

1  n 1
Pi = a  and £  Pi = f t -  =  1 . (5.32)

1=1

The statistical definition of entropy S for a macroscopic state composed of microscopic 
states is given by [172]

S  = kB lnfl,  (5.33)

where kB is the Boltzmann constant. Thus, according to the statistical mechanics interpre­
tation, entropy increase (or a molecular basis) means that a system changes from having 
fewer accessible microstates to having a larger number of accessible microstates.
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The increase in entropy in a closed system to a maximum at equilibrium is the consequence 
of the trend from a less probable to a more probable state. At equilibrium, the system will 
be in the manifold of microstates corresponding to the macrostate having the highest num­
ber of microstates.
From Eq. (5.21) and Eq. (5.33) we obtain the statistical mechanics definition of tempera­
ture

3 1 n il \  1
~ d E ~ ) Ny = l ^ f ’

(5.34)

which relates the temperature to the change in the logarithm of the microscopic degeneracy 
with energy. Since the degeneracy increases with the energy, the temperature is a positive 
quantity.
The Boltzmann entropy in Eq. (5.33) is defined for a macroscopic state, whereas the Gibbs 
entropy is defined over a statistical ensemble. That is, over the probability distribution of 
macrostates [87]

5  =  (5.35)

For one macrostate (i.e. the microcanonical ensemble) all probabilities are equal and are 
given by Eq. (5.32). Then Eq. (5.35) reduced to Eq. (5.33)

S =
n

¿=1
i l n i  = *Blnn. (5.36)

By using the variational formulation of the second law Eq. (5.22) and the Gibbs entropy 
formula Eq. (5.35), one is able to derive the equilibrium distribution functions for other 
ensembles [50]. According to the second law, at equilibrium

m Ey,N = 0. (5.37)

That is, the partitioning of microscopic states at equilibrium is the partitioning that maxi­
mizes the entropy. Thus, the equilibrium distribution of the canonical ensemble (table 2.1) 
can be obtained by maximizing Eq. (5.35) subject to the canonical ensemble constraints

(E) =  E lPi and ^  P* =  1. (5.38)
i i

By combining Eq. (5.35), and Eq. (5.37), and Eq. (5.38) one obtains

P J n P . - A ^  E ,P - 7 E  (5.39)

where A and 7  are Lagrange multipliers. When the extremum is obtained [50], the canonical 
probability (Boltzmann distribution function) is given by

e - E i / k B T

E i
(5.40)

The sum in the denominator of Eq. (5.40) is over all states and normalizes the distribution. 
It plays a central role in statistical mechanics and is called the canonical partition function

Z  = Y ,  e - Ei/kBT. (5.41)
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The partition function encodes all thermodynamic information of the system. The connec­
tion of Z to thermodynamics is obtained by writing Eq. (5.40) as

\nPi = i ^ - l n Z 7 (5.42)

and substituting in Eq. (5.35). Recognizing that the energy U is given by Eq. (5.31), one 
obtains [8 6 ]

S  = ^  + kB lnZ ,  (5.43)

which, from the definition of the free energy in Eq. (5.25), can be written in compact form 
as

F  = - k BT \ n Z .  (5.44)

This is an important result. It shows that the free energy F  is the bridge between the 
canonical partition function and thermodynamics. All other thermodynamic quantities can 
be calculated by appropriate differentiation of Eq. (5.44) [143].
The internal energy U can be obtained from the free energy via

N ,V

the entropy S  from

and the heat capacity Cv from

S  =

Cv =

d F
d T

dU
d T

N ,V

N , V

(5.45)

(5.46)

(5.47)

Statistical mechanics also relates the size of the spontaneous fluctuations in the energy to 
the heat capacity Cy  [50]

((ÔE)2) = ((E -  (E))2) = (E2) -  {E)2 = kBT 2Cv , (5.48)

which is a remarkable result relating the size of spontaneous fluctuations ((6E )2) to the 
rate at which energy will change due to alterations in the temperature. This result could 
never have been derived within the framework of thermodynamics, since it depends on mi­
croscopic insight in statistical mechanics.
The microscopic insight contained in statistical mechanics can be illustrated by considering 
the Ising model near the critical region (Phase transition). The system tends to form into 
large clusters (spins in the same direction). These clusters contribute significantly to the 
energy of the system. They form and disappear, producing large fluctuations in E, called 
’’critical fluctuations”. As the typical size £ of the clusters diverges as T  —> Tc , the size of 
the fluctuations does too, and, consequently, the heat capacity Cy. This is the microscopic 
origin of the abrupt change in the heat capacity during a continuous phase transition in the 
Ising model [50].
Similar to the canonical ensemble, it is possible to derive the probability distribution for
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other ensembles from the variational form of the second law Eq. (5.22) and the Gibbs 
entropy formula Eq. (5.35). Likewise, the bridge to thermodynamics is given by an ap­
propriate thermodynamic potential as illustrated in Eq. (5.44) for the canonical ensemble 
[50],

5.4 Theory of phase transitions
A phase is a region of a system with uniform properties. Equivalently, two states of a sys­
tem are in the same phase if they can be transformed into each other without abrupt changes 
in any of their thermodynamic properties [19].
The transition from one phase to another is marked by sudden alterations in the thermody­
namic properties of a substance. It is thus, a transition of a thermodynamic system from 
one phase into another. A phase transition occurs when there is a singularity in the free 
energy or one of its derivatives. What is often visible is a sharp change in the properties 
of a substance. This non-analytical behavior generally stems from the interaction of an 
extremely large number of particles in the system, and does not appear in systems that are 
too small.
During a phase transition, the heat capacity dramatically increases as the transition temper­
ature is approached, because due to the cooperative nature of the transition it is increasingly 
easy for the heat supplied to drive the phase transition rather than to be stored as thermal 
motion.
A phase transition is classified by the type of its singularity. The first attempt at classi­
fying phase transitions was the Ehrenfest classification scheme [8 8 ] which grouped phase 
transitions based on the degree of non-analytical behavior involved. Ehrenfest classified 
transitions with a discontinuity in the first derivative of the free energy as first order (for 
which the Clausius-Clapeyron equation holds [19]). In a first-order transition the free en­
ergy is a continuous function that has a kink at the transition point, so that the first (and 
higher) derivatives are discontinuous. Examples of first-order phase transitions are melting, 
freezing, and vaporization. In the same way, transitions where the first derivative is contin­
uous, but the second derivative is discontinuous are called second-order. In a second-order 
transition, there is a kink in the first derivative of the free energy. Typical examples of 
second-order transition are the critical vaporization of a liquid or the phase transition of 
an Ising model. Third-order phase transitions are identified by discontinuity in the third 
derivative of the free energy, and so on. Later, it was shown that this was an inappropriate 
scheme of classification [19], because in these higher order phase transitions what identifies 
the transition is a divergence in one or more of the derivatives, rather than a discontinuity. 
In view of this, although first-order transitions continue to be classified as ’’first-order”, 
higher order transitions are best termed ’’continuous”, though they are often called critical 
transitions. Also, the term second-order transition still appears quite often, and synony­
mous with ’’continuous transition”.
The number of phases which can coexist at equilibrium is given by the Gibbs phase rule 
[19]. However, the rule does not apply to continuous phase transitions, since there is no 
phase separation; both phases are critically identical.
The nature and general characteristics of first and continuous phase transition in three and
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Order Disorder

Figure 5.2: Order-disorder phase transition in a square lattice. The ordered phase at low 
temperature has c(2 x 2) symmetry and corresponds to 0  =  1/2 ML

two dimensions are very similar, independent of the type of substances involved. This be­
havior is an example of universality, i.e. at a phase transition systems exhibit the same 
microscopic behavior, independent of their interatomic interactions [19].

5.4.1 Two-Dimensional phase transition
The molecular theory of 2D phase transition was discussed in Chapter 2. Here, we proceed 
to discuss general thermodynamic aspects related to order-disorder phase transitions in 
chemisorbed layers. 2D phase transitions, which are the subject of the present discussion, 
are illustrated in Fig. (5.2).
The experimental measurement of phase transitions of adsorbates on metal surfaces, e.g. 
through LEED intensity measurements [25], often takes place at constant temperature T, 
number of particles N and volume V. In such cases it is thus appropriate to use the canonical 
ensemble (table 2.1) in order to carry out Monte Carlo simulations of the system. The 
canonical ensemble imposes constraints on (N,V,T) and therefore mimics the experimental 
conditions.

The thermodynamic potential which determines the phase behavior of the system in the 
canonical ensemble is the free energy F - see Eq. (5.44). The free energy shows that there 
is a competing tendency between energy and entropy (F = U - TS). The equilibrium state 
between the two is determined by the temperature. At low temperature, energy dominates 
and we see the emergence of ordered (weak-entropy) and low energy states. However, at 
high temperature, entropy prevails, and it is usually expressed in molecular disorder.

Microscopically, as the temperature increases, the particles (atoms or molecules) ac­
quire enough thermal energy to populate higher energy microstates. As more microstates 
are energetically accessible to the particles, the entropy of the system increases. Thus, the 
microscopic entropy is a measure of the degree of spreading and sharing of thermal energy 
within the system.

It is also possible to carry out Monte Carlo simulations of chemisorbed systems in the 
grand canonical ensemble, i.e. by constraining (p ,V,T) (table 2.1). If it is done properly, 
both ensembles should lead to the same results. In fact, simulation results in the grand 
canonical ensemble, in the form of adsorption isotherms (fi ,0 ), can be readily translated 
back to the canonical ensemble, in the form of phase diagrams (0,T)[49].
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Even though the results of simulations in different ensembles should be the same, there 
are sometimes computational advantages in choosing a particular ensemble. It turns out, 
for example, to be rather difficult in the grand canonical ensemble to tune to a coverage 
that deviates significantly from ideal coverage, i.e. those that correspond exactly to a deter­
mined symmetry. In a grand canonical Monte Carlo run, the system tends to jump between 
the competing ideal structures, and very long runs are necessary to achieve accurate statis­
tics [89]. One can get rid of such problems by carrying out simulations in the canonical 
ensemble.

On the other hand, first order phase transitions are generally better simulated in the 
grand canonical ensemble. First-order phase transitions show up as two-phase coexistence 
regions. Each of these phases has a different coverage 0 , and the phase transition from 
one phase to the other is best simulated at constant temperature by letting the number of 
particles in the system N vary according to the chemical potential ¡i of the system [49].

In order to obtain a detailed picture of the phase transitions of a system, it may often be 
convenient to carry out simulations in both: the canonical ensemble and the grand canonical 
ensemble.
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5.5 Metropolis/Monte Carlo approach
Different molecular simulation algorithms are required for different choices of the depen­
dent and independent state variables. Common choices for the independent variables are 
EVN (the microcanonical ensemble),TVN (canonical ensemble), TPN (isothermal-isobaric 
ensemble) and TV/i (grand canonical ensemble) (see Table 5.1). Other choices are possi-

Extensive variable Conjugate field
Internal energy E Temperature T
Volume V Pressure P
Number of molecules N Chemical potential /i

Table 5.1: Physical quantities in statistical mechanics

ble, but note that there must always be at least one extensive variable in the set; otherwise 
there is nothing to specify the absolute size of the system, and the state is not well defined 
(violation of the Gibbs phase rule). The Monte Carlo simulation using the Metropolis algo­
rithm is performed in the canonical ensemble (See Fig. 5.3), which means that the number 
of particles N,  the volume V  and the temperature T  are constant. As the whole system is 
closed and stable, one can represent it in terms of diagrams. Diagrams take into account 
the physical parameters to perform the simulation, as well as the initial state to study. The 
conditions of calculation must be defined at the beginning of the simulation. The system 
admits some constants as it performs Monte Carlo simulation in the canonical ensemble. 
As stated above, the temperature and the volume remain constant during the calculation. 
This state needs to be defined in the first step of the simulation so to say the ’’choice of 
parameters and conditions”. The number of Monte Carlo steps has also to be defined in the 
first step of the simulation. The second step is to construct the size of the cell and the initial 
configuration of the particles pre-adsorbed on the surface as it is known that Monte Carlo 
simulations do not provide any kinetic information on the system. This initial state comes 
from experiments enforced to study its stability, or is defined as a random configuration. 
Then a Monte Carlo cycle begins the simulation of the defined system. A loop of the Monte 
Carlo simulation contains displacements, or rotations of the particles, the Metropolis algo­
rithm, and the possibility to save the new system if a time-step is accepted. The degree of 
freedom of the system and the accuracy of a simulated result depend directly on the number 
of Monte Carlo steps defined initially. An infinite number of Monte Carlo steps leads to 
optimum convergence of the system. As this is not feasible, the highest number of Monte 
Carlo steps has to be defined. In this case, the accuracy of the simulated results is related 
to the size of the cell.

The derivation of thermodynamic properties from the free energy (Section 5.3) is ele­
gant and compact. However, the actual calculation of thermodynamic properties of (two- 
dimensional) systems is the Metropolis algorithm used in the simulations.
The algorithm has been discussed previously. Here, we proceed to discuss the way how 
thermodynamic properties are calculated from Metropolis Monte Carlo Simulations. The 
discussions are confined to the canonical ensemble and two dimensional phase transition 
in chemisorbed layers, i.e. of lattice-gas models.
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Figure 5.3: Monte carlo simulation in the canonical ensemble

Essentially, what the Metropolis algorithm does, is to generate an unnormalized canonical 
distribution of microstates

P(E,T) = n{E)eE'kBT, (5.49)
corresponding to the thermodynamic equilibrium of the system. Microstates belonging to 
this distribution are then sampled M-times and the thermodynamic properties of interest, 
Qi, are measured. Since the microscopic thermodynamic properties fluctuate according to 
the canonical distribution, the macroscopic properties QM are obtained from the ensemble 
average

Qm
i M

= M p i Qh (5.50)

lim Qm -M-*+oo (5.51)
whereby

If the Hamiltonian of the system is known (i.e. the energy function of every microstate), 
the internal energy of the system can be calculated from

U =  <B > =  i  £  E < (5-52)
1V1 t=l

The heat capacity Cv can, in principle, be calculated from Eq. (5.47) However, given that 
the energy U from Eq. (5.52) is an estimate of the energy of the system and is only known
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at discrete points (i.e. at the temperature T  of the simulations), the derivative cannot be 
analytically determined and its numerical estimate is prone to errors. It turns out that it is 
much better to calculate Cy from the energy fluctuations of the system, i.e.

(E2) ~  (E ) 2 

k eT 2
(5.53)

where (E2) is given by
M

(■B 2) =  H  E l (5.54)

After reaching thermal equilibrium and measuring the properties of interest, the system 
is brought to equilibrium at another temperature and equilibrium properties are calculated 
at the new equilibrium temperature. After repeating this for a range of temperatures, one 
obtains a discrete set of thermodynamic properties as functions of temperature.
The entropy S can be calculated by integrating the Cv data according to Eq. (5.27). How­
ever, as pointed out in Section 5.2, the numerical evaluation of the integral in Eq. (5.27) is 
not reliable, because the specific heat itself is not easy to determine accurately, particularly 
considering its divergence at a phase transition. A better way to calculate the entropy is 
from the U(T) data and the thermodynamic relation Eq. (5.28), i.e.

This expression allows a better estimate of the entropy, because the integral can be accu­
rately estimated from Monte Carlo simulation data of U (T ).
In practice, the U(T) is spline-fitted and numerically integrated. This way of obtaining 
thermodynamic quantities from integrations is known as the thermodynamic integration 
method.
If one is only interested in how S  varies with T, then it is not necessary to know the value of 
the integration constant S(T0) and one can give it any arbitrary value. If the absolute value 
of S is needed, then one has to fix S(T0) by choosing T0 to be some temperature at which 
the value of the entropy is known (e.g., for perfect crystals, S  — 0 at T  =  0 according to 
the third law of thermodynamics).
Once the entropy is known, the free energy of the energy of the system is readily calculated 
from

The thermodynamic properties discussed before, i.e. U, CV, S, F  are general and can be 
used to identify phase transitions of any type in any system. The transition is triggered 
when a thermodynamic parameter, e.g. the temperature, is varied and leads to a sharp 
change in the thermodynamic properties of the substance.

Additionally, depending on the type of phase transition under study, additional param­
eters can be defined which identify a phase transition. Such parameters are known as order 
parameters and defined as normalized parameters that indicate the degree of a system. An 
order parameter of 0 indicates disorder; the absolute value in the ordered state is 1. Thus, 
for the familiar cases of a liquid-vapor phase transition or a ferromagnet, appropriate order

(5.55)

F = U  - T S . (5.56)
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parameters are the normalized density difference between the liquid and the vapor and the 
homogeneous magnetization, respectively.
In the case of order-disorder phase transitions of adsorbates on metal surfaces, order param­
eters are defined according to the symmetry broken during the transitions. If the symmetry 
change affects the long-range order at the phase surface, LEED spot intensities may also 
be used to represent an order parameter.
In practice, numerical simulations of order transitions of either type will appear partly 
smeared due to finite size effects, i.e. from the simulations being carried out on finite lat­
tice sizes.
The criterion to determine the critical temperature of the transition, i.e. Tc,  is the inflection 
point in the 'I' (T) curve. It marks the transition from an ordered regime to a disordered 
regime. Thus, 'I'(T) data from Metropolis Monte Carlo simulations are conveniently fitted 
to a sigmoidal curve

=  ( 1  +  e(T—Tc)M3) +  A2’ ('5'57^
where A\,  A 2, A3, and Tc  are fitting parameters.
Analogous to the energy and the heat capacity, the phase transition can also be determined 
from the fluctuations in the order parameter ip

X(T) = m  -  w 2

N k BT
(5.58)

The susceptibility x (T )  peaks at the order-disorder transition studied, N is the total number 
of atoms.
The order parameter ip(T) and its susceptibility x(T)  can only measure phase transitions 
where the c(2  x 2 ) symmetry is broken.

5.5.1 Limitations
Even though simple and powerful, the Metropolis algorithm becomes inefficient at phase 
transitions because of sampling problems. This is a known problem of Metropolis al­
gorithm [48], Here, we discuss these problems in the context of phase transitions in 
chemisorbed layers, i.e. lattice-gas models.
In a first order phase transition, the canonical distribution at the phase transition exhibits a 
double peak structure due to the two-phase coexistence typical at first-order phase transi­
tions [58], Conventional Metropolis Monte Carlo simulation is not efficient, since it takes 
an extremely long time to tunnel from one peak to the other in energy space. As a conse­
quence, the algorithm easily gets trapped inside metastable states and exhibits hysteresis, 
i.e. the behavior of the system in the transition region depends on its thermal history. Due 
to this uneven energy landscape, very long simulation times are needed to properly sample 
the energy space of the system near a first order phase transition.
In second order transitions the Metropolis algorithm suffers from ’’critical slowing down”. 
This problem arises from the fact that the long-range critical correlations of the adsorbates 
correspond to the occurrence of large clusters of correlated adsorbates. It takes a very 
long time until such a cluster disintegrates and finally disappears by many subsequent tri­
als as dictated by the metropolis algorithm. As a consequence, the correlation time r  of
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the Metropolis algorithm is very large and very long simulation times are needed to obtain 
accurate estimates near the phase transition.
Additionally, the standard Metropolis algorithm suffers from inefficient sampling at low 
temperatures because the acceptance probabilities becomes quite small and virtually noth­
ing happens for a long time.
There are a number of Monte Carlo algorithms which seek to overcome these difficulties. 
The continuous time or N-fold way to Monte Carlo algorithm [48,53] has an acceptance 
probability equal to 1 at every step. Other algorithms, like the Swendsen and Wang al­
gorithm, or the Wolff algorithm [48,53], reduce the critical slowing down by conducting 
moves on whole correlated clusters. However, none of these algorithms seems suitable for 
every type of problem. All of the algorithms mentioned before are based on generating a 
canonical distribution of the type in Eq. (5.49). A Monte Carlo algorithm which avoids 
all of these problems of acceptance in energy space can be constructed by shifting the 
acceptance rule to entropy space.

5.6 Wang-Landau/Monte Carlo approach
In this approach, one first recognizes that the partition function can either be written as a 
sum over all states i or over all energies E,  i.e.

Z  = Y ,  e~Ei/kBT = J2 Q (E )e~ Ei/kBT, (5.59)
i E

where f l(E)  is the configurational density of states (CDOS), i.e. the number of all possible 
states (or configurations) for a fixed energy level E of the system. Since f1(E) is indepen­
dent of temperature T, it can be used to find all properties of the system at all temperatures. 
In fact, once f t(E)  is known, the partition function Z follows automatically and from it all 
of the thermodynamic properties of the system.
Instead of generating a canonical distribution, Eq. (5.49), at a given temperature T, the 
Wang-Landau algorithm aims at estimating Q(E) directly via a random walk that produces 
a flat histogram in energy space [58-62], The algorithm has been discussed in Section 2.4.4 
Here, we discuss the way thermodynamic properties are calculated from the Wang-Landau 
Monte Carlo simulations.
From the density of states, the internal energy U can be calculated by taking the canonical 
average of the microscopic energy E

“  '  E £ Ü (B )e -E*/teT '

The heat capacity can be determined from the fluctuations of the internal energy

where (E 2) is given by

(E2) -  (E)2 
kBT 2

2 Y.E E 2n {E ) e - Ê kBT 
£ E i I ( £ ) e - ^ / fcBr  ‘ 
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The free energy can be calculated directly from the partition function

F = - k BT \ n Z -kBT  In f e n ( E ) e - E i / k g T

\ E
(5.63)

and the entropy can then be easily computed from

U - F
T

(5.64)

The nature of the phase transition (first order or continuous) can be conveniently determined 
by plotting the canonical distribution at the transition temperature Tc

P ( E , T C) = n (E )e~ Ei/kBTc (5.65)

A canonical distribution which exhibits a single peak indicates a continuous phase transi­
tion, where there is no phase coexistence. If the canonical distribution is double-peaked, it 
indicates a first-order phase transition. Every peak corresponds to a stable phase and the 
transition is characterized by phase coexistence. The latent heat for a temperature-driven 
first order phase transition can be estimated from the energy difference between the double 
peaks.
The acceptance rule of the Wang-Landau algorithm is proportional to the reciprocal of the 
CDOS. As a consequence, the algorithm performs a random walk in energy space and is not 
limited by the slow sampling of first-order transitions, metastable states or critical slowing 
down.
The Wang-Landau algorithm has not yet been as extensively employed and assessed as the 
Metropolis Monte Carlo algorithm. Some understanding of the convergence and limita­
tions of the method have already been provided [65]. However, more work is needed to 
better determine under which circumstances the method offers substantial advantage over 
other approaches, and how the method can be further improved.
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5.7 Monte Carlo simulations on a simple model
The use of discrete Fourier transforms leads to the calculation of the order parameter if, 
while statistical mechanics and thermodynamics lead to the heat capacity parameter Cv- 
The physical meaning of these parameters can be demonstrated and interpreted using the 
Metropolis/Monte Carlo simulation on the simple model defined above. Several identical 
Monte Carlo simulations need to be performed for the same set at different temperatures to 
be able to discuss phase transitions.
The Monte carlo simulation set up is the following:

Calculation parameter Value
Particle P
Surface s
Lattice parameter a
Coverage 0 0.5 ML
Supercell 1 0  x 1 0

part.-part. interaction energy +0.1 eV
Monte carlo steps 1 0 8

Start configuration Random

Table 5.2: Monte Carlo/Metropolis set up for simple adsorbate/substrate (pis) model

5.7.1 Order parameter
The parameter needs to be estimated at the end of the simulation by calculating the degree 
of ordering of the final state. The initial configuration does not count in the calculation of 
the parameter. For perfect ordering (in this simple model case c(2 x 2)), we get 'I' =  1. Full 
disorder leads to Vt =  0. The unstable state, called the critical phase, can be determined 
from the '1/ =  f ( T )  curve. It is located exactly at the transitibn between the full ordered 
state and the full disordered state. Fig. (5.4) shows the order-disorder transition from the 
evolution of the order parameter 'I' in the temperature range from 500K to 2500K. At low 
temperature we observe that the Monte Carlo simulation finds the perfect ordering c(2 x 2) 
corresponding to a coverage 0  =  0.5ML. This is the logical ordering as the interaction 
between the particles is repulsive for the first nearest neighbour at a distance a (lattice 
parameter). The increase of temperature shows a stability in the ordering till 1100K. Then, 
the phase starts to disorder smoothly around 1200K, to decrease monotonically from this 
temperature to 1400K, where the order parameter 'I' =  0.05. The fully disordered state 
starts at 1500K where ’L =  0.2 and remains stable up to 2500K. decreases very slowly 
in this region
Note that the full disorder with \& =  0 is very difficult to obtain on any structure. In 
practice a system is fully disordered when \I> «  0.1. For more details about the critical 
phase a combination of the order parameter and the heat capacity parameter is a convenient 
measure. The next curve shows the evolution of the heat capacity in terms of temperature.
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Figure 5.4: Curve =  f ( T )

5.7.2 Heat capacity
During the Monte Carlo simulation one needs to collect the value of the total energy of the 
system to obtain the heat capacity at the end of the calculation. The total energy value of 
the system needs to be collected in two forms:

• {E 2): average of the squared total energies

• (E)2: square of the averaged total energies

The heat capacity also depends on the temperature T  of the system and the Boltzmann 
constant kB- The value is given by:

(E2) -  (E ) 2 

kBT
(5.66)

This parameter admits a maximum and two minima. The fully ordered state leads to a 
minimum in terms of the heat capacity. Another stable state is fully disorder and also leads 
to a minimum of the heat capacity. The maximum is reached at the critical phase of the 
system during heating. Fig. (5.5) shows the order-disorder transition in terms of the heat 
capacity Cy  in the temperature range from 500K to 2500K. At low temperature, so for a 
4/ =  1 , we observe a minimum of Cy  =  f (T ) .  This corresponds to a small difference 
between (E 2) and (E )2. Cy  increases monotonically to a maximum value of 0.06meV/K  
at 1350K. From this point the heat capacity decreases with temperature. The peak in the 
curve corresponds to the critical phase. The critical phase is the most unstable state for a 
adsorbate/substate system. The normal workspace of a Monte Carlo simulation is therefore 
between OK and the critical temperature at about 1300K.
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5.8 Summary
This section pointed out the different methods to study any kind of adsorbate/substrate 
system and to adapt these methods to systems of very large molecules like bitartrate on 
copper(llO). The parameters characterize the behavior of the molecules at surfaces. They 
can be used to predict stability and instability. The heat capacity parameter is implemented 
in the Metropolis/Monte Carlo code for the study of the tartaric acid on copper (110). The 
order parameter calculated using the unit cell of the ordering of the bitartrate on Copper 
at 400K is also implemented in the code. The combination between these two parameters 
gives specific determination of the order-disorder phase transition. Then the Lattice-Gas 
Hamiltonian is used to construct the different configurations of molecules onto the surface.
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Chapter 6

Chiral Ordering Process in the 
Adsorption of Tartaric Acid Molecules 
on Cu(110)

Although chiral surfaces offer intriguing possibilities in a range of technological fields such 
as nonlinear optical materials, heterogeneous enantioselective catalysis and sensor devices, 
it is only recently that the manifestation of chirality in two dimensions has been captured 
with the advent of sophisticated surface science techniques[143-165]. A particularly suc­
cessful way of endowing a nonchiral metal surface with chirality is via the adsorption of 
complex organic molecules. The presence of the organic functionality provides chiral selec­
tivity for already reactive metal catalysts. There is a manifold of chiral expressions that can 
be realized via this approach from the creation of local chiral motifs to the supramolecular 
assembly of chiral organizations; they have been reviewed elsewhere[143,144]. Interest­
ingly, it is found that chirality is not simply limited to systems in which chiral molecules are 
adsorbed at achiral surfaces [144-154] but can also be displayed in systems where no initial 
chirality is present, i.e., from the adsorption of achiral molecules at achiral surfaces[155- 
162], Much of the work published on aspects of two-dimensioneil chirality deals with 
physisorbed or weakly adsorbed systems[155,161,162], and especially the subtle influence 
of stereochemical alterations on both the local and the organizational characteristics. For 
systems, where a strong molecule-metal interaction exists, a very rich adsorption phase 
space can often be found, where the nature of the adsorbate can change significantly with 
coverage and temperature. Thus, a deeper understanding of the factors that affect two- 
dimensional chirality requires a range of spectroscopic techniques that not only probe the 
nature of extended supramolecular assemblies but are also able to relate this information to 
the detailed nature of the local adsorption unit. A case in point is the behavior of the chiral 
molecule, (R,R)-tartaric acid (see Fig. 6.1), on the achiral Cu(110) surface[143-146,151], 
where chiral expression encompasses both, the creation of a variety of local chiral motifs 
and a range of supramolecular chiral assemblies, with the nature of the former intimately 
controlling the nature of the latter.
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fftflHartaric acid

Figure 6.1: Diagram showing the (R,R)-tartaric acid molecule and the two asymmetric 
carbons

6.1 Experimental research
The systems bitartrate/Cu(110) and bisuccinate/Cu(110) have been extensively researched 
experimentally at the Surface Science Research Centre in the group of R. Raval. The exper­
imental conditions and results shown below have been previously published [143-147] and 
this section displays the most important parts of this work. The tartaric acid molecule[180] 
has been deposited in Ultra High Vacuum (UHV) conditions and the imaging results have 
been carried out by Scanning Tunneling Microscopy (STM).

6.1.1 STM imaging conditions
The STM experiments have been carried in an Omicron Vacuumphysik variable temper­
ature VT-STM chamber with facilities for STM, LEED, AES, and sample cleaning. All 
STM experiments were carried out with the sample at room temperature. The images were 
acquired in constant current mode.
In each chamber, the Cu(l 10) crystal was cleaned by cycles of Ar-i- ion sputtering, flashing, 
and annealing to 800K. The surface ordering and cleanliness were monitored by LEED 
and AES. (R,R) tartaric acid (99%) obtained from Sigma Aldrich used without further pu­
rification. The adsorbate sample was contained in a small resistively heated glass tube, 
separated from the main vacuum chamber by a gate valve and differentially pumped by a 
turbo molecular pump. Before sublimation, the sample was outgassed at 330-340K. The 
sample was then heated to 370K and exposed to the copper crystal. During sublimation 
the main chamber pressure was typically 2 x 10_9mbar. The copper crystals were provided 
with a purity of 99.99% (4N), and alignment accuracies of 0.5 degree and 0.1 degree for 
the RAIRS and the STM experiments, respectively.

6.1.2 Adsorption of Tartaric acid on Copper(llO)
The chiral influence of (R,R)-tartaric acid on Cu(l 10) can be discerned at two levels: firstly 
at the local level, where adsorption events conserve the chiral centers and thus give rise 
to point chirality and, secondly, at the organizational level where self-assembled struc-
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tures form which are chiral in arrangement and thus destroy the mirror symmetry of the 
underlying surface[143-146,151]. Various phases are observed for (R,R)-tartaric acid on 
Cu(l 10)[146]. Here, we concentrate only on the low coverage phases, namely the c(4 x 2) 
phase created at room temperature (300K) and the (1 2,-9 0) phase created at a higher tem­
perature (400K). RAIRS data have shown that the former phase consists of the monotartrate 
unit that bonds to the surface via its single carboxylate functionality, while the latter phase 
consists of the doubly deprotonated bitartrate species bonded with both carboxylate groups 
to the metal surface with the C2 — C3 bond parallel to the surface. Previous DFT[166] cal­
culations confirm the general adsorption configuration for the bitartrate and, additionally, 
show that the adsorption site is across the long bridge site on the Cu(l 10) surface with each 
of the four carboxylate oxygens placed on top of a metal atom. Although the bitartrate unit 
is thermodynamically preferred at low coverage, the monotartrate unit forms upon initial 
adsorption at room temperature due to kinetic factors, and only upon heating to 400K is 
the bitartrate phase created. An activation barrier of roughly 73k Jm o l -1 is associated with 
this transformation[151]. In the 300-400K temperature range the tartaric acid is capable of 
existing in at least three different forms. The adsorption of tartaric acid at 300K never leads

Figure 6.2: Schematic adsorption phase diagram showing the molecular nature and two- 
dimensional order adopted by tartaric acid on a Cu(l 10) surface as a function of coverage, 
temperature, and time[180].

to the formation of the bitartrate species, and instead, islands of monotartrate molecules are 
always formed upon adsorption at 300K[146,151]. Conversion to the thermodynamically 
preferred bitartrate species then only occurs when temperature is raised to 400K. The ex­
perimentalists attribute this general behavior to an increased propensity for intermolecular 
interactions in the tartaric acid system due to additional COOH/OH hydrogen bonding be­
tween the acid groups and hydroxyl groups of adjacent monotartrate molecules[146]. This 
encourages the formation of high density islands, which locally reach the threshold cov­
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erage that favors the monotartrate species. Under the flux conditions used in experiments, 
the rate of island growth exceeds the rate of the second deprotonation to form the bitartrate 
species, and so the monotartrate species is formed first. Fig. (6.2) illustrates this with a 
schematic adsorption phase diagram comparing the behavior of both succinic and tartaric 
acids in the temperature range 300 and 400K. The different LEED structures found for each 
characteristic bonding of the molecules are also indicated.
The c(4  x 2) arrangement corresponds to a local coverage of 0.25ML and is identical to 
that occupied by the monotartrate phase[146]. It would, therefore, seem that the loss of 
the chiral centers does not materially affect either the density or the organizational packing 
of this phase, it also does not influence the chirality of the organization which remains 
as the achiral c(4 x 2) for the chiral monotartrate[146]. Therefore, it would seem that 
the primary influence on packing and positional organization is determined by the gen­
eral nature of the adsorption motif and its molecule-metal interactions; in this case, the 
monocarboxylate-copper interaction. The alteration at the chiral center causes a lesser, 
second order effect, namely in the detail of the supramolecular H-bonding. The imaged 
(1 2,-9 0) (R,R)-bitartrate and (9 0,-1 2) (S,S)-bitartrate phases have large repeat unit cells 
of 23.04A  x 7.68A  with a  = ± 1 9 .4 7 °  degree, a coverage of 1 /6 ML and also display 
chains of ’’trimer” molecules that lie along nonsymmetry directions, thus endowing the 
system with a similar organizational chirality. So, again, it appears that the general na­
ture of the bicarboxylate adsorption motif with its two COO-Cu bonding interactions is 
the primary factor determining the overall nature, ordering, density, and chirality of the 
superstructure adopted, regardless of whether the adsorbed molecule is chiral or achiral. 
In previous research and reports of these systems, it was assumed that the intermolecu- 
lar hydrogen bonding between neighboring bitartrate molecules governed the nature of the 
superstructure, forcing growth along nonsymmetry directions. Subsequent DFT calcula­
tions showed that the neighboring molecules in the bitartrate structure are too far apart for 
intermolecular hydrogen bonding interactions to occur and only intramolecular H-bonds 
were present. These calculations suggested that supramolecular assembly was instead gov­
erned via through-space lateral interactions and/or through-metal lateral interactions. It 
was shown that H-bonding interactions of any kind are not the driving force for the chiral 
assembly. Equally, the through-space lateral interactions and/or through-metal interactions 
must be dominated by the metal-molecule interactions so that both systems produce a sim­
ilar trimer chain structure. So, overall, the presence of the OH groups at the chiral centers 
does not affect the general type of supramolecular assembly. Instead, their influence is ex­
erted more subtly within the finer detail of the self-assembly.
By looking at the unit cell within each chain it can be seen that the (R,R)-tartrate chain 
possesses a (3 1,-2 1) structure growing in the [-1 14] direction (Fig. (6.3b)) and the (S,S)- 
tartrate chain grows along the [1 -14] direction. Here, it is possible that the intramolecular 
H-bonds between the OH groups at the chiral center and the bonding carboxylate groups 
affect the detail of the metal-molecule interaction by influencing the precise distortion of 
the adsorbate blackbone and the bonding carboxylate groups.
Finally, one considers the relative stabilities of the bitartrate phases. Temperature pro­
grammed desorption (TPD) data from the bitartrate adlayer show explosive desorptions at 
around 440K (see Fig. (6.4)). Inspection of the thermal evolution products shows that no 
desorption of the molecular ion is observed, indicating that the data are not monitoring des-
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(a) STM images of tartaric acid molecules on Cu(l 10)

(R,R)-Bitartrate (S,S)-Bltartrate

(b) Adsorption models for (R,R) and (S,S) tartaric acids on Cu(l 10)

Figure 6.3: (a) Depiction of the (1 2,-9 0) and (9 0, -1 2) bitartrate phases formed after 
the adsorption of (R,R)-tartaric acid and (S,S)-tartaric acid, respectively, on Cu(l 10). STM 
images (108A  x 108A) [V=-1.7V;I=1.18nA] showing the (R,R)-tartaric acid (1 2,-9 0) 
phase and (108A  x  108A) [V=-2.73V;I=1.02nA] showing the (S,S)-tartaric acid (9 0,-1 2) 
phase (b) Adsorption model of the bitartrate phases on Cu(110). Structural models of the 
bitartrate phases of the two tartaric acid enantiomers on Cu(l 10): (S,S)-bitartrate (9 0,-1 2) 
and (R,R)-bitartrate (1 2,-9 0). The (3 1,-2 1) unit cell is also shown for the (R,R)-bitartrate 
phase showing the packing within the chain[180]

orption of the whole adsorbate but rather the products of surface decomposition of adsorbed 
molecules. In other words, reaction limited desorption processes are observed, suggesting 
that the molecule-metal interaction is so strong that intramolecular bonds break prior to 
metal-molecule bonds, with the decomposition products, H2 , CO 2 , and CO  released in a 
sharp peak. From the TPD information, this suggests that the presence of OH groups leads 
to a significant destabilization of the intramolecular bitartrate bonds. Although the TPD 
data in this case give no information of the relative strengths of the molecule-metal interac­
tions, it does point to very different temperature stabilities that arise in surface phases from 
small changes to the molecular structure.
For the (R,R)-bitartrate system the major factors governing the creation of the chiral super­
structure must be induced by the bicarboxylate-Cu interactions, to create a similar super-
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Figure 6.4: Thermal stability of the bicarboxylate phases is demonstrated by TPD data for 
the (R,R)-bitartrate (1 2,-9 0) phase created on Cu(110) at 400K[180]

structure. However, (R,R)-bitartrate yields a single domain of one-handedness only sug­
gesting that the presence of the OH groups at the chiral centers crucially restricts the dis- 
tortion/reconstruction to one-handedness only. One notes that DFT calculations on (R,R)- 
bitartrate on Ni(110)[147] show an energy difference of 6  kJ/mol between the two mirror 
image distorded/reconstructed adsorption motifs, sufficient to ensure that over 90% of the 
nucleation points at 300K would be of the lower energy form. The role of the OH groups 
as ’’chiral directors” of the supramolecular assembly is illustrated when adsorption of the 
(S,S)-bitartrate unit is examined, Fix. (6.3b). Here, the rigid adsorption structure of the 
bitartrate unit forces the OH groups to lie in a uniquely defined direction that is reflected in 
space compared to the (R,R)-bitartrate unit. As a result, the energy preference of the local 
adsorption unit is switched to the opposite distortion/reconstruction, and thus, chiral lateral 
interactions are switched in direction and the induction and propagation of the chiral as­
sembly occurs in the mirror image construct, leading to a mirror chiral surface. Therefore, 
from this work, one may conclude that overall global or local chirality is determined prin­
cipally at the nucleation stage. Finally for the (R,R)-bitartrate system, the OH groups force 
the molecular distortion/reconstruction to adopt a favored chirality, which then generates 
one favored chiral domain only, bestowing the system with global chirality at the macro­
scopic scale. For the (S,S)-enantiomer, the OH group alignment is reflectionally flipped, 
and the mirror distortion/reconstruction is created, generating the mirror chiral organiza­
tion. The OH groups are, therefore, important as chiral propagators or directors and enable 
asymmetry to be promoted to chirality.
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6.2 Theoretical Research
The collective behavior of atoms or molecules chemisorbed on a single-crystal substrate 
is characterized by their tendency to form distinct phases which possess well defined two- 
dimensional (2D) periodicity and order. This phenomenon is caused by the operation of 
interactions between the adsorbed particles. The stability of a surface phase depends on the 
temperature T and the coverage 0  of the chemisorbed species. Phase transitions may oc­
cur depending on variations in (0,T)-space for a specified system, which are conveniently 
described by means of the adsorbate phase diagram of the system.
The phase diagram of atoms and molecules adsorbed on surfaces is a central topic in sur­
face science and enters directly into the discussion of many important processes at surfaces 
such as heterogeneous catalysis. Among others, this includes:

• At temperatures below critical, when ordered phases are formed in the adsorbed over­
layer, the kinetics of different surface phenomena obviously cannot be described by 
simple equations that do not take into account the ordering.

• Information of phase diagrams enables evaluation of the scale of lateral interactions 
between adsorbed particles, which may strongly influence the kinetics of different 
processes even at temperature above the critical one.

• The problem of describing phase transitions provides examples and tests of theoreti­
cal models of 2D critical phenomena.

Much research has been carried out on phase transitions at surfaces (see e.g. [49],[167- 
171]). Experimentally, order-disorder phase transitions of chemisorbed species at surfaces 
can be quantitatively characterized by means of low-energy electron diffraction (LEED) 
measurements. Theoretically, two dimensional phase transitions are usually discussed in 
terms of the Ising model (Section 2.4.3). Up to now, the lateral interaction energies of 
the Ising model, have been usually determined empirically, e.g. by fitting to experimental 
LEED phase diagrams (see e.g. [49]). As explained in Section 2.4.4, the microscopically 
correct procedure is to derive the lateral interactions from first principles calculations. In 
this way, predictive calculations of surface phase diagrams for arbitrary systems are in prin­
ciple possible. In order to properly understand the power and limitation of this approach, a 
description of the principles and approximations behind the theoretical description of phase 
transitions in chemisorbed layers is necessary.
The following exposition is complementary to the theoretical approach described in Chap­
ter 2. The emphasis here is put on the application of the theory described in Chapter 2 to 
the phase transitions in chemisorbed layers.

6.2.1 Phase transitions in two dimensions
In the physical sciences, a phase is a set of states of a macroscopic physical system that 
have relatively uniform chemical composition and physical properties (i.e. density, crystal 
structure, index of refraction, and so forth). Those states correspond to local minima in 
the free energy space. The most familiar examples of phases are solids, liquids, and gases.
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Less familiar phases include plasmas, Bose-Einstein condensates and fermionic conden­
sates, strange matter, liquid crystals, superfluids and supersolids, and the paramagnetic and 
ferromagnetic phases of magnetic materials. In two dimensions, chemisorbed atoms or 
molecules constituting a phase possess well defined two-dimensional (2D) periodicity and 
order.
Although phases are conceptually simple, they are hard to define precisely. A good defini­
tion of a phase of a system is a region in the parameter space of the system’s thermodynamic 
variables in which the free energy is analytical. Equivalently, two states of a system are in 
the same phase if they can be transformed into each other without abrupt changes in any of 
their thermodynamic properties.
All the thermodynamic properties of a phase (the entropy, heat capacity, magnetization, 
compressibility, and so forth) may be expressed in terms of the free energy and its deriva­
tives. For example, the entropy is simply the first derivative of the free energy with respect 
to temperature. As long as the free energy remains analytic, all the thermodynamic proper­
ties will be well-behaved.
When a system goes from one phase to another, there will generally be a stage where the 
free energy is non-analytic. This is known as a phase transition. Familiar examples of 
phase transitions are melting (solid to liquid), freezing (liquid to solid), boiling (liquid to 
gas), and condensation (gas to liquid). Due to this non-analyticity, the free energies on 
either side of the transition are two different functions, so one or more thermodynamic 
properties will behave very differently after the transition. The property most commonly 
examined in this context is the heat capacity. During a transition, the heat capacity may 
become infinite, jump abruptly to a different value, or exhibit a ’’kink” or discontinuity in 
its derivative.
Phase transitions occur because all systems in thermodynamic equilibrium seek to mini­
mize their free energy F:

F = U — TS,  (6.1)

In general terms, a phase transition is a change of order. Order is determined by the com­
petition between energy U and entropy S, the former wanting to produce order, the latter 
wanting to destroy it. Thus the free energy F is the thermodynamic quantity which controls 
the state of order.
One phase will replace another at a given temperature T because different states (e.g., liq- 
uid/vapor, magnetic/non magnetic, cubic/tetragonal) partition their free energy between 
the internal energy U(T) and the entropy S(T) in different ways. It is useful to character­
ize competing phases and phase transitions in terms of a so-called order parameter. By 
construction, the order parameter has a non-zero value in one phase (usually the high sym­
metry state) and vanishes in the disordered (low symmetry state) phase. For the familiar 
cases of a liquid-vapor phase transition and a ferromagnet, appropriate order parameters 
are the density difference between the liquid and the vapor and the homogeneous magneti­
zation, respectively.
In the case of chemisorbed atoms on surfaces, the order parameter can be formulated in 
terms of lateral periodicity so that the LEED diffraction spots of the surface may be used 
as order parameter. The phase transition can also be characterized by an abrupt sudden 
change in one or more of the thermodynamic properties (e.g. the heat capacity C v )• Both
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approaches, i.e. order parameter and thermodynamic properties, should lead to the same 
results, if the order parameter is chosen properly.
A common type of phase transition taking place in chemisorbed overlayers of atoms is 
an order-disorder phase transition. Here, a phase transition takes place between an or­
dered state, with well defined two dimensional periodicity and symmetry, and a disordered 
state. An example of such a transition is schematically depicted in Fig. (6.5). At low
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Figure 6.5: Schematic representation of LEED diffraction intensity measurements (order 
parameter \&(T)) as a function of temperature for constant coverage 0 . The inflection 
point of the ’i'(T ) curve marks the critical temperature Tc  of the phase transition. A higher 
coverage slightly changes the critical temperature of the system

temperatures, the adsorbed atoms (small dark spheres in Fig. 6.5) possess well defined 
two-dimensional periodicity and order. As the temperature increases, the disorder replaces 
the order and an order-disorder phase transition occurs. The degree of order of the atoms 
can e.g. be measured by means of LEED diffraction intensity measurements. Fig. 6.5 
shows a typical result of LEED measurements, where the LEED diffraction intensity (or­
der parameter see chapter 2) is plotted against the temperature T for constant coverage 
0 . The inflection point of the 'I' versus T curve marks the critical temperature Tc  at which 
the phase transition takes place. By carrying out similar measurements for different cover­
age 0 , the order-disorder phase diagram of the system can be constructed from the (Q,TC) 
data.
The behavior of the order parameter near the transition temperature Tc  distinguishes two 
rather different transformation scenarios. A discontinuous change in the order parameter 
occurs at a first-order transition. In this case, two independent free energy curves simply 
cross one another. The system abruptly changes from one distinct equilibrium phase to a 
second distinct equilibrium phase. First order transitions exhibit the familiar phenomena 
of phase coexistence, nucleation and growth.
By contrast, two competing phases become indistinguishable at Tc  for a continuous phase
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transition (there is no phase coexistence, e.g. liquid-gas transition at the critical tempera­
ture). Here, the order parameter rises smoothly from zero as the temperature is lowered, 
although there are large fluctuations in its value around the average. One typically finds 
that the order parameter at a continuous transition varies as (T — Tc)13 for T  very near to 
Tc . Moreover, the numerical value of the critical exponent ¡3 (and a few other related ex­
ponents [48]) only depends on a few physical properties, e.g. the symmetry of the system, 
the dimensionality of the order parameter (scalar,vector, etc.) and the dimensionality of 
space. This property is called universality and it implies that near the critical point Tc  the 
properties of phases are largely independent of the underlying microscopic physics, so that 
the same types of phase arise in a wide variety of systems.

6.2.2 Molecular theory of 2D phase transitions
There are two basic approaches that can be followed in constructing a molecular theory of 
phase transitions. The simpler of these uses directly the thermodynamic condition defining 
that equilibrium state under a given set of constraints, for example, that the free energy 
must be a minimum for fixed temperature.
Suppose one considers two phases of the system I and II. It is, in principle, possible to 
calculate the free energy of phases I and II assuming that they are isolated from one another 
and also that they are stable over the whole temperature range of interest. A schematic plot 
is displayed in Fig. (6 .6 ). As shown in Fig. (6 .6 ), the phase I has a lower free energy for 
T  < T C whereas the phase II has lower free energy for T  > Tc . The temperature Tc  can 
then be identified as the critical temperature of the phase transition. The method described

Figure 6 .6 : Schematic representation of the location of a transition point by comparing the 
free energies for each of the phases I and II. The critical temperature of the phase transition 
is denoted by Tc

above is the standard thermodynamic approach[19]. It has been extended to the study of 
surface phase diagrams [172-174] by evaluating the appropriate thermodynamic functions 
by means of ab-initio calculations. This is a powerful connection, not only improving 
the link between thermodynamics and atomic-level computations, but also increasing the 
predictive range of ab-initio techniques. However, this approach has limitations. Most
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prominently, the results are restricted to the number of considered configurations, i.e. only 
the stability of exactly those structures plugged in can be compared. The method is not 
able to predict stable structures outside the ones a priori considered.
The second approach is based on the postulation of statistical mechanical models (e.g. the 
lattice gas model, see Section 2.5.1) that retains only the skeleton of the real properties 
of the system. It is then hoped that, through this abstraction process, the most important 
physical interactions governing the phase behavior of the system are retained in the model; 
and, as a consequence, the effect of the configurational entropy on phase stability can be 
accurately evaluated. Such an approach has the potential of truly predictive power, in the 
sense that it is able, in principle, to predict new stable configurations different from the 
ones considered in the parametrization of the model.
When the parameters of the statistical mechanical model are derived from first-principles 
calculations, we are talking about first-principles statistical mechanics. In the context of 
this thesis, this approach is understood as the use of modem electronic structure methods 
to provide information used to parameterize interactions of statistical mechanical models.

First-principles statistical mechanics modelling of surface transitions

The formal statistical mechanics procedure for calculating F  in Eq. 6.2 is well defined. 
Quantum-mechanical calculations can be performed to compute the energy E(s) of different 
microscopic states s (configurations) of a system, which then must be summed up in the 
form of a partition function Z

Z =  £  e~£(5)/fcsT, (6 .2 )
S

from which the free energy is derived as F  = U — T S  = —kBTln(Z),  where ks  is Boltz­
mann’s constant. The partition function Z corresponds to the canonical ensemble, which is 
appropriate for the usual experimental conditions of surface phase transition measurements 
(LEED experiments) at constant coverage 0 .
The sum in Eq. 6.2 runs over all possible microscopic states s of the system. This is an as­
tronomically large number which precludes the direct application of quantum mechanical 
calculations to obtain thermodynamic quantities from Eq. 6.2. Thus, physical insight into 
the problem has to be used in order to simplify the partition function Z.
Atoms are identical particles indistinguishable from each other. As such, their collective 
behavior is described by Bose-Einstein or statistics, i.e. the counting in Eq. 6.2 has to be 
done taking into account that the particles are indistinguishable. However, the potential 
energy of atoms adsorbed on metal surfaces usually has very localized minima correspond­
ing to the adsorption site of the atoms. The chance of any two particles exchanging places 
by a tunneling motion is small. Thus, the effects arising from Bose-Einstein statistics are 
negligible; they only make themselves felt if the particles can exchange places. The same 
argument applies to the atoms in the metal substrate: the chance of the particles exchang­
ing places is extremely small and so quantum statistics play no role. As a result, the atoms 
in the system can be treated as classical distinguishable particles. Additionally, a lattice 
corresponding to the minima in the potential energy surface can be used as coordinate sys­
tem for the atoms. With these simplifications, the partition function Z  for the substrate +
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adsorbate system can be conveniently factored as follows[175]

2  = E E E E  e ~ E ( L ,c ,v , e ) / k B T (6.3)

where

• L is the so-called parent lattice, it is a set of sites where atoms can sit. In principle, 
the sum would be taken over any Bravais lattice augmented by any motif. Recon­
structions of the substrate could be considered by this term. The only requirement is 
that the potential energy exhibits well defined minima.

• a  is a configuration of the parent lattice. It specifies which type of atom rests on each

• v denotes the displacement of each atom away from its local equilibrium position.

• e is a particular electronic state when the nuclei are constrained to be in a state de­
scribed by cr and v.

• E(L,  cr, v, e) is the energy of the system in a state characterized by L,cr,v and e.

Each summation in Eq. 6.3 defines an increasingly coarser level of hierarchy in the set of 
microscopic states. For instance, the sum over v includes all displacements such that the 
atoms remain close to the undistorted configuration cr on lattice L. While in principle exact, 
Eq. 6.3 represents a formidable task to be dealt with by first principles calculations.

6.2.3 Molecular vibrations

Figure 6.7: Vibrational modes of C S 2: Bending mode (left), symmetric stretching mode 
(middle), and antisymmetric stretching mode (right).

The discussion is based on Fig. 6 .8 , which shows a typical potential energy curve of 
a diatomic molecule. In regions close to R e (at the minimum of the curve) the potential 
energy can be approximated by a parabola, so one can write

where k is the force constant of the bond. The steeper the walls of the potential (the stiffer 
the bond), the greater the force constant.
To see the connection between the shape of the molecular potential energy curve and the

site.

V  =  \ k x 2 x  =  R  — R e, 
2 (6.4)
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value k, note that one can expand the potential energy around its minimum by using a 
Taylor expansion:

V{x) = V{0) +
d V \  1
^ J o X + 2

cPv
dx2

x 2 +  • • • (6.5)

The term V(0) can be set arbitrarily to zero. The first derivative of V is 0 at the minimum. 
Therefore, the first surviving term is proportional to the square of the displacement. For 
small displacements one can ignore all the higher terms, and so write

V(x)
1

2
d2V
dx2

x
o

(6 .6)

Therefore, the first approximation to a molecular potential energy curve is parabolic a po­
tential, and one can identify the force constant as

k = (6.7)

If the potential energy curve is sharply curved close to its minimum, then k will be large. 
Conversely, if the potential energy curve is wide and shallow, then k will be small.
The Schrödinger equation for the relative motion of two atoms of masses m i and m 2 with 
a parabolic potential energy is

h d2%jj 
2  m ef f  dx2

+  ^-kx2ip = Eip, (6 .8)

where m e/ /  is the effective mass:
m \m i

meff  = ---- -------mi +  m 2
(6.9)

From the Schrodinger equation for a particle of mass m eff  undergoing harmonic motion, 
one can write down the permitted vibrational energy levels:

E v =  {v  + \ ) D x j  u j = ( — — ),  (6.10)
2  \ m e f f J

and v  =  0 ,1 ,2  • ••. The vibrational terms of a molecule, the energies of its vibrational states 
expressed in wavenumbers, are denoted G(v), with Ev — hcG(v), so

G(”) = (v + b *  p = 2 ^ ( ^ )  - (6-n)
It is important to note that the vibrational terms depend on the effective mass of the molecule, 
not directly on its total mass. This dependence is physically reasonable for, if atom 1 were 
as heavy as brick wall, then one would find m ef f  ~  m 2, the mass of the lighter atom. The 
vibration would then be that of a light atom relative to that of a stationary wall (this is ap­
proximately the case in HI, for example, where the I atom barely moves and m e/ /  ~  m#). 
For a homonuclear diatomic molecule m i  =  m 2, and the effective mass is half the total 
mass: m e/ /  =  \m .
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Anharmonicity

A parabola cannot be correct at all extensions because it does not allow a bond to disso­
ciate. At high vibrational excitations the swing of the atoms (more precisely, the spread 
of the vibrational wavefunction) allows the molecule to explore regions of the potential 
energy curve where the parabolic approximation is poor and additional terms in the Tay­
lor expansion of V Eq. 6.4 must be retained. The motion then becomes anharmonic, in 
the sense that the restoring force is no longer proportional to the displacement. Because 
the actual curve is less confining than a parabola, one can anticipate that the energy levels 
become less widely spaced at high excitations. One approach to the calculation of energy

Internuclear Separation (/■)

Figure 6 .8 : The Morse potential (blue) and harmonic oscillator potential (green). Unlike 
the energy levels of the harmonic oscillator potential, which are evenly spaced by hu,  the 
Morse potential level spacing decreases as the energy approaches the dissociation energy. 
The dissociation energy De is larger than the true energy required for dissociation D0 due 
to the zero point energy of the lowest (v = 0 ) vibrational level.

levels in the presence of anharmonicity is to use a function that resembles the true potential 
energy more closely. The Morse potential energy is

(6 . 12)

where De is the depth of the potential minimum (Fig. 6 .8 ). Near the well minimum the 
variation V with displacement resembles a parabola (as can be checked by expanding the 
exponential as far as the first term) but, unlike a parabola, Eq. 6.12 allows for dissociation
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at large displacements. The Schrodinger equation can be solved for the Morse potential 
and the permitted energy levels are

GW) + 7jJ>; -  (« +  r,
a2h u 
2/icj 4 D e

(6.13)

The parameter x e is called the anharmonicity constant. The number of vibrational levels of 
a Morse oscillator is finite, and v = 0,1, 2, • • -, vmax, (as shown in Fig. 6 .8). The second 
term in the expression for G subtracts from the first with increasing effect as v increases, 
and hence gives rise to the convergence of the levels at high quantum numbers.
Although the Morse oscillator is quite useful theoretically, in practice the more general 
expression

G(v) = (v +  ~ ( v  + ^ ) 2x eu + (v +  ^ ) 3yei? +  • • • (6.14)

where x e, ye, ■ ■ ■ are empirical constants characteristic of the molecule, is used to fit the ex­
perimental data and to find the dissociation energy of the molecule. When anharmonicities 
are present, the wavenumbers of transitions with A u  =  + 1  are

AG„+ i =  u — 2(v + 1 )xeu -(- • • • (6.15)

The latter equation shows that when x e ^  0 the transitions move to lower wavenumbers as 
v increases.
Anharmonicity also accounts for the appearance of additional weak absorption lines corre­
sponding to the transitions 2 <— 0, 3 <— 0, etc., even though these first, second,... overtones 
are forbidden by the selection rule A v  =  ±1. The first overtone, for example, gives rise to 
an absorption at

G(v +  2 ) — G(v) =  2 u — 2(2v + 3)xeu +  • ■ ■ (6.16)

The reason for the appearance of overtones is that the selection rule is derived from the 
properties of harmonic oscillator wavefunctions, which are only approximately valid for 
an anharmonicity oscillator, all values of A v  are allowed, but transitions with A v  > 1  are 
allowed only weakly if the anharmonicity is slight.
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6.3 Application to the Bi-tartrate/Cu(110) system

6.3.1 Periodic Boundary conditions and limits of the system
The (6  x 6 ) unit cell used to derive the lateral interaction is illustrated in Fig. 6.9. This cell 
was chosen because it is the largest cell which can be simulated in a reasonable amount of 
time.The k-mesh used for all calculations, for the defined ( 6 x 6 x 4 )  cell, was (3 x 2 x 1). 
These two (6  x 6 ) unit cells give evidence of the difficulty of the task, when it comes to

(a) Horizontal limit of (6  x 6 ) cell (b) vertical limit of (6  x 6 ) cell

Figure 6.9: These two figures show the limitations caused by the large size of the bitartrate 
radicals and the small size of the (6  x 6 ) unit cell used to perform DFT calculations to 
obtain the configurations for the Lattice Gas Hamiltonian. The vectorial positions (4,0) 
and (0,4) are defined as negligible with respect to their complementary distances (2,0) and 
(0,2) respectively on the X and Y axes of the (6  x 6 ) unit cell.

define the positions with respect to the periodic boundary conditions. In vectorial terms 
one can define the positions between a hollow site and its nearest neighbor hollow site 
position as (1,0) on the X axis and (0,1) on the Y axis. The molecular positions from (1,0) 
to (3,0) or from (0,1) to (0,3) respectively on the X and Y axes can be calculated assumed 
to interactions by linear equations. Two molecular positions at a distance (4,0) or (0,4) 
remain undetermined. This is caused by the periodic boundary conditions on the (6  x 6 ) 
cell each of them amounts to the complementary distance with respect to the (6  x 6 ) cell 
being smaller than the distance within the cell (see Fig. 6.9).

6.3.2 Lattice Gas Hamiltonian (LGH)
To evaluate the binding energies of the bitartrate radicals during the Metropolis/Monte 
Carlo simulations, we used a Lattice Gas Hamiltonian (LGH). Including nearest neighbor 
pair and triple interactions, together with the on-site interaction, the LGH is given by:

E iatt =  Y 2 aiE0 + W  Vpair{dij)aioj +  (6.17)
i i,j ° i,j,k

Here, i represents the on-site position of a given particle, j and k run over the correspond­
ing neighboring sites. Thus, the Lattice Gas Hamiltonian contains three different parts,
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including the on-site interaction for the bitartrate radicals on hollow sites, the second part 
for the nearest neighbour pair interactions, and the last part for the nearest neighbour triple 
interactions. In this section 27 configurations of bitartrate ions on Cu(110), which have 
been used for the fitting of the Lattice Gas Hamiltonian parameters, are presented with the 
corresponding LGH expansion and DFT binding energies.
The PW91 exchange correlation functional has been used and the computational set up is 
equivalent to the one discussed in the first Chapter. The numbering of the listed structures 
follows the one listed in the Appendix B. The 13 parameters of the LGH formula have 
been obtained by solving the resulting set of 27 linear equations using a least square fit. 
Due to the small size of the unit cell used to calculate the ground state energies of all the 
27 configurations, the periodic boundary conditions play an active role for determining the 
Lattice Gas Hamiltonian. In the case of a 6  x 6  cell the degree of freedom is very low 
due to the large size of the molecules. If we add the periodic boundary conditions to the 
Lattice Gas Hamiltonian for a specific configuration the result can be (See Fig. 6.10): The

Figure 6.10: Schematic illustration of the interactions involved in a triple molecular con­
figuration. In an infinite unit cell, considering that the on-site particle is located at the (0,0) 
position, one obtains: E latt = E0 +  2 V ^ 1~) + V^“lr2) +  L(i2”i ’1;4 _2)

different configurations are represented by schematic illustrations where large red spheres 
represent the oxygen atoms, white spheres hydrogen atoms of the Bitartrate radicals. The 
Blue spheres represent the copper atoms of the (110) surface. Additionally in all figures 
the (6  x 6 ) unit cell is shown. In this case the triple molecular interaction energy can been 
calculated considering an infinite unit cell and a small and finite (6  x 6 ) unit cell. For the 
finite cell there are additional interactions to take in account in order to determine the triple 
interaction energy of this configuration:

E0 + 2 V ^ i ,  +  + V g :_ 2) +  V(“ f1A. 2) +  2V(! " V 2,_2).

In the case chosen above, the trio interaction could not be determined by linear equations 
because of the unsolvable interactions due to the periodic boundary conditions, so this 
specific configuration was not a part of the Lattice Gas Hamiltonian used for the study of 
bitartrate on Copper(l 10).
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6.3.3 LGH and Chirality for the R,R-Bitartrate/CullO system
The complete Lattice Gas Hamiltonian set has been also determined taking into account 
the chirality of the R,R-bitartrate ions. In fact in terms of distances one obtains different 
configurations due to chirality. Two bitartrate ions located at (2,1) and (2,-1) positions with 
respect to a third one located at the (0 ,0 ) position are not equivalent in term of configuration 
due to chirality. This has to be taken in account in the LGH to represent two different pair 
interactions. However, due to the small size of the unit cell (6 x 6 ), two mirror configu­
rations can then be equivalent because of the periodic boundary conditions, especially the 
configurations located at (3,y) and (x,3) with x and y varying from 0 to 3 in terms of vecto­
rial positions of the hollow sites as initially defined above. This is due to the equal distance 
between the two molecules within the (6  x 6 ) cell and their complementary positions due 
to periodic boundary positions. This particularity lowers the number of DFT calculations 
in order to obtain the full set of Lattice gas Hamiltonian. Fig. (6.11) represents the full 
Lattice Gas Hamiltonian set performed by DFT calculations. With respect to the periodic 
boundary conditions some pair configurations are equivalent as discussed above. All trio 
interactions are different with respect to their mirror image configurations. Some pair and 
triple interactions are achiral, like the pair interactions situated onto the black line and at 
the bottom of the image. The horizontal and vertical lines are also geometrically achiral. 
The complete set of LGH has 27 set different configurations. Due low progress in DFT 
calculations (it takes 3 weeks for each configuration with k-points (3 x 2 x 1)) and the 
low degree of freedom on the (6  x 6 ), cell this work has taken effectively two years. The 
following subsection presents the lateral interaction values and the method to determine 
each of those has been explained and described in the Appendix A.

6.3.4 Lateral interactions
The process of deriving lateral interaction parameters from first principles calculations re­
mains to date a delicate task. There are some general guidelines to obtain the lateral in­
teraction parameters, but their actual application strongly depends on the system at hand. 
Even though the following discussion uses the expression ’’interaction parameters between 
bitartrate radicals”, it must be clear that such parameters refer to the interaction of bitartrate 
ions through the Cu(l 10) substrate. Which configuration(s) should one use to derive the lat­
eral interaction parameters? This is one of the crucial questions when applying the cluster 
expansion methodology (CE). There are different criteria aiding in selecting configurations 
for the expansion. The main critérium to select structures for the CE is the ground state 
search, i.e. selection of configurations based on the energetic ground state of the system as 
a function of the coverage. The application of such criteria for bitartrate/Cu(110) rapidly 
runs into trouble because configurations produced by the ground state search are frequently 
based on unit cells beyond the actual calculation possibilities of DFT of present.
There are 25 possible molecular positions on the 6  x 6  unit cell of Copper (110). These 
positions can be represented by letters from A to Y and are going to describe in the fol­
lowing part the configurations used to construct the Lattice Gas Hamiltonian. The results 
of the calculations using this unit cell depicted in Fig. 6.12 are presented in table 6.1. All 
calculations in Table 6.1 correspond to bitartrate adsorbed only on the hollow sites of the
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Figure 6.11: Complete Lattice Gas Hamiltonian of the bitartrate/Cul 10 system. By taking 
into account the chirality of the R,R-bitartrate radicals the LGH is divided in three parts: 
at the bottom of the image and situated onto the black line, achiral configurations; left 
hand, the chiral configurations, complete set; and right hand, its complete mirror set of 
chiral configurations. Some configurations in the chiral part (left hand) and its mirror part 
(right hand) are equivalent due to the periodic boundary conditions and the small size of 
the (6 x  6) cell

Cu(l 10) cell. These sites of the (6 x  6) cell have been identified with the letters explained 
above. Table 6.1 lists the position of the molecules on the unit cell (denoted by letters), 
the coverage 0  and the adsorption energy. The table 6.1 gives the complete Lattice Gas 
Hamiltonian set of configurations and interactions. One can observe the on-site adsor- 
bate/substrate interaction which is E ads = —6 .418eV  and corresponds to a chemisorption 
phenomenon described by the experimental research. The pair interactions do not exceed 
35 meV in average, while the triple interactions average below 25 meV. One notes that 
the molecular interactions increase constantly with respect to the number of molecules on 
the copper surface. To determine the value of the interactions corresponding to the con-
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Figure 6.12: Schematic illustration of the Cu(110) surface showing the unit cell used to 
carry out DFT calculations for the bitartrate/CullO system. The white letters on the site 
are used to label each configuration in Table 6 .1

figurations calculated by DFT, some linear equations are needed. This part of the work is 
described in the Appendix B.
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Positions 0  (ML) Molecular interactions E ads(meV)
R 1/9 0 -6418.3
RA 2/9 2int(2,-3) +24.6
RB 2/9 2int(l,-3) +30.5
RC 2/9 2int(0,3) +35.2
RD 2/9 2int(l,3) +31.0
RE 2/9 2int(2,3) +25.3
RF 2/9 int(2 ,-2 ) +34.0
RG 2/9 int(l,-2 ) +19.7
RH 2/9 int(0 ,2 ) + 1 1 .2

RI 2/9 int(l,2 ) +17.2
RJ 2/9 int(2 ,2 ) +34.1
RK 2/9 int(2 ,-l) +62.0
RO 2/9 int(2 ,l) +77.1
RT 2/9 int(2 ,0 ) +67.3
TQ 2/9 2int(3,0) +14.4
TL 2/9 2int(3,-l) +2 1 .6

TG 2/9 2int(3,-2) +28.8
TRP 1/3 2int(2,0) + 3 int(2,0;4,0) -5.5
WMC 1/3 2int(0,2) + 3 int(0,2;0,4) - 1.0
ISL 1/3 2int(0,2) + 2int(2,l) + 2int(2,-l) + 3 int(2,l;0,2) +6 .0

HSQ 1/3 2int(2,0) + 2int(l,2) + 2int(l,-2) + 3 int(l,2;-l,2) +7.6
EMU 1/3 2int(2,2) + 3int(2,2;4,4) -25.7
AMY 1/3 2int(2,-2) + 3int(2,-2;4,-4) -29.2
EGN 1/3 2int(l,2) +2int(2,-l) +4int(3,l) + 3int(l,2;3,l) -6 8 .1

AIL 1/3 2int(l,-2) +2int(2,l) +4int(3,-l) + 3int(2,l;3,-l) -56.6
JCS 1/3 2int(2,-l) + 2int(l,2) + 4int(l,3) + 3int(l,2;2,-l) -60.3
CFQ 1/3 2int(2,l) +2int(l,-2) +4int(l,3) + 3int(l,-2;2,l) -35.7

Table 6.1: Adsorption and formation energies, i.e. Eads (per site), for different configura­
tions of Tartaric acid molecules on Cu(110) obtained from DFT calculations. The surface 
unit cell used in the calculations is depicted in Fig. 6.9. The k-mesh of Monkhorst-Pack 
special k-points for every surface unit cell is ( 3  x 2 x 1 ). The letters denote the positions 
of the Bitartarates radicals in the unit cell according to the nomenclature described in Fig. 
6.12. The number of interactions takes in account the periodic boundary conditions of the 
(6  x 6 ) unit cell of the copper(llO) surface

6.4 Metropolis/Monte Carlo Simulations (First part)
This section presents the First Metropolis/Monte Carlo tests carried out using the values of 
the DFT calculations of different configurations of bitartrates on copper forming the Lattice 
Gas Hamiltonian. The average total energy values of the different interactions has to de­
crease with respect to the number of molecules on the surface. For the pair interaction one 
finds an average of <  Epair > =  33.5m eV. For the triple interactions between the bitartrate
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molecules, the absolute average energy values decreases to <  E trio > =  24.5meV. Taking 
in account these results are used the on-site, the pair, and the trio interactions to perform 
the Metropolis/Monte Carlo simulations.
The construction of the Lattice Gas Hamiltonian is added to the Metropolis/Monte Carlo 
program and the result is studied at a temperature T and coverage 0 . The logical tem­
perature used for the first simulations equals the temperature of formation of the complete 
chemisorption of the tartaric acid molecules on copper (110). The experimentalists find a 
temperature of T  = 400A' for which the bitartrate has four Cu-O bonds with the surface.

6.4.1 Simulations with complete Lattice Gas hamiltonian
The simulations performed on the R,R-bitartrate/Cu(l 10) system start by studying the cov­
erage within a constant unit cell and temperature. The temperature of chemisorption of 
the bitartrate radicals on copper reported by the experimentalists, T  =  400X, is used as 
reference. By choosing a large unit cell, successive Metropolis/Monte carlo simulations 
with different coverages will give information on the pattern, the unit cell and the growth 
direction. So far no statistical mechanics and order parameters are used. The set up of 
the Monte Carlo simulations can be summed up as follows: The particle used to perform

Calculation parameter Value
Particle R,R-Bitartrate
Surface Cu(110)
Lattice parameter am = 2.5743Â an =  3.6400Â
Temperature T 400K
Coverage 0 from 0.20ML to 0.80ML
Supercell (27 x 27)
Molecular interaction energies 27 Configurations (see previous section)
Monte carlo steps 1 0 8

Start configuration Random

Table 6.2: Monte Carlo/Metropolis set up for R,R-bitartrate/Cu(110) system

the simulations is the R,R-bitartrate, the surface is Copper(llO). The Lattice parameters 
am = 2.5743A  and an =  3.6400A  are state-of-the-art constants for the copper (1 1 0 ) sur­
face. The temperature is T  = 400K  as discussed above. Each Monte Carlo simulation is 
started with a random configuration: for a specific coverage the program distributes par­
ticles on the copper surface until the coverage is reached. The size of the supercell is 
(27 x  27). The number of Monte Carlo steps is one hundred billion. The only varying 
parameter is the coverage 0  which is chosen to be increasing from 0.20ML to 0.80ML at 
successive calculations, the results are in Fig. 6.13:
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Experimeta) growth
direction <1

ftySerimental 
pattern unit ce ll

(a) 0  =  0.225ML

(c) 0  =  0.698ML (d) 0  =  0.775ML

(b) 0  =  0.375ML

Figure 6.13: Figures showing the result of a Metropolis/Monte carlo simulation performed 
on the R,R-bitartrate/Cu(l 10) system in equivalent conditions with an increase of the cov­
erage to study its evolution, (a) MC simulation at © =  0.225ML. (b) MC simulation at 
0  =  0.375ML. (c) MC simulation at 0  =  0.700ML. (d) MC simulation at © =  0.775ML.

122



These four figures (a),(b),(c) and (d) show the evolution of an organization of R,R- 
bitartrate molecules on copper (110). At very low coverage 0  =  0.225ML one observes 
that the interaction between the molecules is globally attractive. A group a molecules 
sticking together shows a specific and homogeneous ordering. This arrangement grows 
along a specific direction, < 114 >. This growth direction is in agrément with the previous 
experimental research on the subject. At a higher coverage 0  =  0.375ML, we observe a 
similar pattern unit cell. This domain grows in the same direction as above but its width 
is not controlled and seems to rise with higher coverage. At very high coverage for 0  =  
0.700ML and © =  0.775ML one observes clearly the growth direction with an ordering 
going beyond the cell limits and stopped by the limits of the system. However the width of 
the ordering still increases continuously with the coverage.
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This section presents the final results of Metropolis/Monte Carlo simulations considering 
that a force breaks the global ordering of the phase demonstrated in the last section into 
trimers growing along the same direction < 114 >. The molecular pattern unit cell remains 
the same, but the empty space between the trimers changes the global unit cell of the 
system. An order parameter will be calculated taking into account the experimental global 
unit cell (with the empty space) and the heat capacity parameter can be determined in the 
simulations by measuring the total energy of the system. Thanks to these two parameters 
one can discuss the phase transition and the accuracy of the simulations above or below 
the critical temperature. The vibration of the OH bonds is found to be the origin of the 
repulsive interaction.

6.5.1 Order parameter
Considering the experimental ordering of bitartrate radicals and the growth direction, it is 
possible to study the phase transitions thanks to the order parameter and statistical mechan­
ics parameters such as Cy (the heat capacity). The ordering pattern of the R,R-bitartrate 
on Cu(110) can be represented by a (2 x 2) matrix (9 0,1 2). The growth direction of the 
system is <  114 >. The difficulty is to find a unit cell which matches the ordering of 
the phase, and which can be calculated by a discrete Fourier transform. This new unit cell 
takes into account the smallest number of molecules involved in the ordering and the empty 
space separating the molecules as they grow by trimers along the specific direction.

Discrete Fourier Transform

Surface phase transitions are usually discussed in terms of an order parameter ^[68,202,203] 
It can be a scalar, a vector, or a tensor of higher rank. The order parameter is defined to be 
zero above Tc, if there is no long-range order, and it is usually normalized to unity for a 
fully ordered state.
To look at lateral periodicity on a surface, we can choose as an order parameter the low- 
energy-electron-diffraction (LEED) intensity of a suitable diffraction spot. Thus, as in 
LEED intensity measurements, the critical temperature of the order-disorder transition can 
be estimated from the inflection point of the curve versus T for constant ©.
The order parameter is supposed to measure the periodicity of a surface structure with 
a defined symmetry. As such, it can conveniently be evaluated by Fourier transform tech­
niques. The information in real space is transformed into frequency space and patterns in 
real space can then be effectively detected. The configurations of particles in a lattice can 
be represented as matrices. Thus, a specific ordering behaviour can be measured by apply­
ing the discrete Fourier transform to the matrix representation and extracting the Fourier 
coefficients that correspond to the frequency of the ordered configuration. The discrete

6.5 Metropolis/Monte Carlo Simulations (Second Part)
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Fourier transform of a vector x is given by [84]

’ ^ n 1 W n 2 ' ' X i  ‘ ' Ci '
W n 2 ■ • X 2 — C2

. K 1 < 2 ' ’ w n U . . x n . _ .

— 2 i7 r ( r  —l ) ( s —1) ____
where K s = e , and c is the vector of Fourier coefficients; Eq. 6.18 can be also
expressed in matrix notation as

Fx =  c, (6.19)

where F is called the Fourier matrix. Note that F is a symmetrical matrix.
Since the ordering on a surface takes place in 2 dimensions, the discrete Fourier transform 
has to be applied in 2 dimension. Two dimensional Fourier transforms simply involve a 
number of one dimensional Fourier transforms. More precisely, a 2 dimensional transform 
of a matrix is achieved by first transforming each row, replacing each column with its 
transform. The 2 dimensional Fourier transform of a (n  x n) matrix A is given by

F(FAt )t =  c, (6.20)

where the transpose, T symbol, refers to the transpose without conjugate.

The specific B itartrate/C ullO  ordering

The ordering corresponding to the chemisorption of Bitartrate on Cu(110) is illustrated in 
Fig. (6.4) only. One type of structure is possible for the R,R-bitartrate, its unit cell can be 
described by the following matrix notation, which defines the unit cell unambiguously:

M r ,r =  (  i  g )  ■ (6.21)

This matrix notation will be (9 0,1 2) in the text.
The molecules form extended molecular rows along the < 114 > direction. These parallel 
rows are assembled in groups of three, each group separated from the next by an empty 
space (trough). These troughs can provide a chiral adsorption site on the otherwise achiral 
Cu(110) surface. The self-assemblies were originally attributed to the close proximity of 
the Qf-hydroxy groups on the neighboring bitartrates, leading to intermolecular hydrogen 
bonding.
Usually, spin variables (+1 if the site is occupied, -1 if the site is empty) are used when 
calculating order parameters. However, the calculation with point variables (+1 if the site 
is occupied, 0 if the site is empty) is readily carried out. One only needs to convert ev­
ery element of the point configuration (usually given as a matrix of + 1  and 0 ) to a spin 
configuration through the relationship

St = 2m -  1, (6.22)
and apply the order parameter formula developed for spin variables. The direct calculation 
with point variables is also possible. However, additional normalization factors should be
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Figure 6.14: Ordered phase of Bitartrate on Cu(l 10). The black line sketches the (9 0,1 2) 
unit cell, this unit cell contains 3 molecules. The red line sketches the simplified unit cell 
used to mathematically calculate the order parameter taking in account the empty space. 
This simplified cell contains also 3 molecules

found in order to ensure that =  1  for a fully ordered state.
The configuration can be described by decomposing the original simplified lattice into 4 

sublattices made up of sites connected by next nearest neighbors bonds. Each sublattice 
now has a lattice constant related to the original lattice with respect to the geometry of the 
bitartrate ion. The total magnetization of every sublattice is given by

M a = J 2 si a  ~  A, B ,C , D.
i € a

The order parameter can be written in terms of the magnetization M a. In order to do so, one 
has to express the (9 0,1 2) ordering in terms of M a. This is accomplished by writing the 
simplified unit cell (red line in Fig. 6.14) in matrix notation. Note that one can transform 
the simplified unit cell configuration into a linear lattice by rotation. The corresponding

Oblique lattice Linear lattice

Figure 6.15: the (9 0,1 2) unit cell simplified in an oblique lattice and its linear equivalent 
representation

configurations for the (9 0,1 2) simplified unit cell are obtained by exchanging 1 and -1.

126



Thus one can set up a general matrix for this configuration in terms of the magnetizations 
M a according to the sublattices:

M = \ [ M A M b M c M d ]. (6.23)

The particular case of the adsorption of bitartrate on Cu(l 10) is that none of the unit cells 
one can choose in any of the directions along the rectangular surface is reversible in terms 
of spin. One can thus transform the previous matrix into a new matrix which contains the 
same information for the same dimensions. If we simplify the parameters of the matrix as 
M a = M c  = M d =  1 and M B ^  M A one obtains the following result:

M  = ^ [ M A M a M a  M b ] . (6.24)

The next step is to Fourier transform the (4 x 1) matrix M. For that purpose one needs the 
(4 x 4) Fourier matrix. From the definition in Eq. (6.18) we obtain:

r i  i  i  i i
1  i —1 —i

By applying Eq. (6.24) to Eq. (6.25) we get to a final result of the discrete Fourier transform

c =  [ 3M a +  M b 0 0 0 ] . (6.26)

From this Fourier transform it is possible to derive the order parameter for the (9 0,1 2) 
configuration. The matrix component 3MA + M B for the specific case where M A =  M c  =  
M d =  1 and M b ^  M A which represents the frequency of the (9 0,1 2) configuration. It is 
degenerate and its algebraic expression can be used as an order parameter

4^ — 3M a +  M b - (6.27)

The expression in Eq. (6.27) can be conveniently normalized to 1 by finding its maximum 
value. Since 4'' measures the frequency of the (9 0,1 2) configuration, its value must be 
maximum when the surface exhibits such a configuration. If this is the case, then assuming 
that M b =  —M A one can simplify to

II ||=  2 M a , (6.28)

|| || is the factor by which Eq. (6.27) should be divided in order to normalize 4/' to 1.
|| 4'' || can be conveniently expressed in terms of the number of particles n, as the number 
of lattice sites is difficult to obtain due to the geometry of the oblique unit cell contained in 
a square or rectangular supercell for the Monte Carlo simulations. For the assumed (9 0,1 
2) configurations M A = n  as for this specific case all the particles are contained in the MA 
sublattices which equals 1 and then for this case M B =  — 1, Thus:

4' =  -i-(3  M a + M b ). (6.29)
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The computational implementation of the order parameter given by Eq. (6.29)is straight­
forward. We only need to count each particle of the surface used in the simulation and 
calculate its order parameter by verifying that its environment matches the discrete Fourier 
transform. For disordered states \I> =  0 and for ordered states with (9 0,1 2) symmetry 

=  1. By cooling down the system near the critical temperature Tc , the order parameters 
'P rapidly increase from values near zero (disorder) to one (order). The inflection point of 
the curve corresponds to the order-disorder transition temperature for a given © (coverage). 
The order parameter’s accuracy can be verified, for that purpose, thermodynamic methods 
(e.g. heat capacity measurements) are necessary.

6.5.2 Vibration of the OH bonds of the R,R-bitartrate
The upper OH bond of the R,R-bitartrate has been studied in or­
der to discover its effect on the ordering on copper© 1 0 ) from 
300K to 500K. We have selected the configurations for which 
the OH bonds of two different bitartrate are at the closest dis­
tance, in the clusters formed as a result of the Metropolis/Monte 
Carlo simulations performed above, to determine if they affect 
the cluster growth along the <  114 > direction.
Fig. 6.16 shows a hydrogen atom linked to a oxygen on the up­
per part of a Bitartrate ion. This hydrogen can, due to vibration, 
move by translation or rotation or both around its oxygen and 
produce free energy. Our aim in this section is to calculate within 
a wide range of temperatures the vibrational energy caused by the 
OH bond and the effect on a cluster of Bitartrate radicals if this 
vibrational energy is added to several molecules in a line. This 
vibrational energy of the OH bond of each bitartrate radical can 
be written as E v- 0h - One bitartrate ion has two OH bond on its 
upper carbon atoms, but only one of those is interacting with the 
next bitartrate ion at the shortest distance between the OH bonds 
of the two bitartrate considered. The vibrational energy between 
two molecules counts as one interaction; if three molecules are
involved we get two vibrational interactions and so forth. The calculations of vibrational 
energies lead to a curve shown in Fig. 6.17. This curve represents the vibrational free 
energy F, well known from the following equation:

Figure 6.16: Bitartrate 
ion with the vibrational 
effect localized at the 
hydrogen atom of one 
of its two OH bonds. 
Two vibrational effects 
are involved between 
the oxygen and the hy­
drogen of an OH bond: 
the translation and the 
rotation.

F  =  Z P E  -  T D S. (6.30)

From this equation, the D S  part represents the vibrational entropy taken for the vibrational 
partition function. Z P E  is the zero point energy of the harmonic oscillator. This is also the 
reason why the vibrational energy does not equal zero at T  =  OK because the Z P E  value 
still remains. Fig. 6.17 shows two curves: the red curve represents the addition of two vi­
brational energy components of two isolated molecules, and the green curve represent the 
vibrational energy of two molecules interacting with each other within the configuration 
described in Fig. 6.18.
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TH/Cu(110) - vibrational free energy

Figure 6.17: Result of the vibrational energy calculated for two Bitartrate ions on Copper 
(110). The red curve represents the addition of two vibrational energy components of two 
isolated molecules. The green curve represents the vibrational energy of two molecules 
interacting with each other within the configuration described in Fig. 6.18.

It is important to note that two interacting molecules (green curve on Fig. 6.17) have ZPE 
components larger than two isolated molecules (red curve on Fig. 6.17) because upon inter­
actions three translations and three rotations (of one OH bond of a bitartrate) turn into low 
energy vibrational modes (with their corresponding ZPE). As the temperature increases, the 
excited levels of these extra modes for the two interacting molecules get populated more 
and more and this causes D S  to increase more rapidly for interacting bitartrate than for two 
isolated bitartrate radicals. This is one of the causes of the crossing of the two interacting 
particles curve (in green on Fig. 6.17) with the curve for non interacting (in red on Fig. 
6.17)at higher temperature. The other cause is the small shifts in energy for the modes of 
two interacting Bitartrate radicals upon interaction, which affect the curvature of T  * D S  
for two interacting bitartrates.

If we add the vibrational interaction to the Lattice Gas 
Hamiltonian, we have to select each parameter of the LGH, 
for two or three particles interactions, where the specific 
configuration described in Fig. 6.18 is involved. Then the 
addition of the vibrational component will be added to a 
specific new parameter containing three or four molecules 
successively configured as the two molecules described in

129 Figure 6.18: Configuration,
within the ordering, creating 
the vibrational interaction en­
ergy of the OH groups of two
R it i ir t r f l t p  in n c



Fig. 6.18. The second set of Metropolis/Monte Carlo sim­
ulations will show how and where the cluster breaks, and 
if the growth direction < 114 >  and the thermodynamic 
properties are conserved. Then the comparison between 
the statistical mechanics, represented by the specific heat, 
and the order parameter will give the evidence of the accu­
racy of the new vibrational parameters.

6.5.3 Implementing the OH bond vibration in the LGH
Two components of the Lattice Gas Hamiltonian are affected by the addition of the vi­
brational energy of the OH groups of tartaric acid. A new and independent parameter is 
added to the complete LGH set. This parameter contains the vibrational interaction energy 
of four bitartrates together in a line. The vibrational energy of the OH bond E v- oh at a 
given temperature T  influences the ordering pattern of the Bitartrate/Cu(110) system sim­
ulated by Metropolis/Monte Carlo methods. Fig. 6.19 displays the pair, trio and quattro 
interactions that are affected by the vibrational interaction energy. The pair and the trio

(a) 0>) (c)

Figure 6.19: The pair, trio and quattro interactions containing the OH bond vibrational 
energy, (a) and (b) configurations are part of the Lattice Gas Hamiltonian and influence 
the molecular ordering, (c) is the independent vibrational parameter influencing the macro­
scopic ordering.

configuration in Fig. 6.19 are already part of the Lattice Gas Hamiltonian. They both 
contain one vibrational interaction of the OH bond E v_oh- This vibrational component 
increases the value of the pair interaction energy, and then decreases the value of the trio 
interaction energy. They are calculated respectively by m i(pair) =  int(pair- DFT) +  E v_0 h 
and int(trio) = int(trio_DFT) — 3 /4E û 0 h - The quattro interaction energy is calculated by 
int(guattro) =  0 +  2>Ev- 0h as it contains the three times the vibrational interaction energy 
of the OH bond.
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6.5.4 Bitartrate/Cu(110) thermodynamic properties
The thermodynamic properties of bitartrate/Cu(110) at © =  0.5ML and 0  =  0.3ML cal­
culated from Metropolis/Monte Carlo simulations are shown in Fig. 6.20. We choose dif­
ferent systems to perform these Monte Carlo simulations. The simulation at © =  0.5ML 
was performed in a 40 x 26 cell with an accuracy of 50 million Monte Carlo steps. The 
simulation at 0  =  0.3ML was performed in a 60 x 40 cell with 20 million Monte Carlo 
steps.
The specific heat C y(T) and the order parameter (T) show an abrupt change at the critical 
temperature of the phase transition, Tc- Furthermore, all estimates of the critical temper­
ature at 0  =  0.5ML lead approximately to the same value, i.e. Tc  =  2600K for both the 
order parameter and the specific heat. At 0  =  0.5ML the estimates shows the same accu­
racy and lead to a critical temperature of Tc =  1850AT for the order parameter and the heat 
capacity. These results cannot be confirmed by the experiments as the critical temperature 
Tc  is beyond the physical stability of the bitartrate and the tartaric acid molecule (around 
500K).

Figure 6.20: Thermodynamic properties of the Bitartrate/Cu(110) system for 0  =  0.5ML 
and 0  =  0.3ML calculated from Metropolis/Monte Carlo simulations. N represents the 
number of molecules, (a-b) Order parameter and heat capacity for 0  =  0.5ML. (c-d) 
Order parameter and heat capacity for © =  0.3ML.
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We performed the Metropolis Monte Carlo 
simulations with a better accuracy by in­
creasing the size of the cell and the number 
of Monte Carlo steps in order to determine 
a more precise critical temperature Tc  and 
sharpened phase transition. We trace the 
evolution of the order parameter with 
respect to the temperature T  at two differ­
ent coverage values 0  =  0.3ML and © =
0.5ML. Both simulations were performed 
under the same condition using a 90 x 90 
cell and an accuracy of 100 million Monte 
Carlo steps. We observe that the criti­
cal temperature increases with the cover­
age. This result is in agreement with the 
schematic representation of LEED diffrac­
tion intensity measurements in Fig. (6.5)
(order parameter \&(T )) as a function of 
temperature for constant coverage 0 . The 
inflection point of the (T) curve marked the critical temperature Tc  of the phase transi­
tion at different temperature with respect to different coverage values as the curves in Fig. 
6 .2 1  shows.

Snapshots of the order-disorder phase transition configurations of bitartrate/Cu(110) 
at 0  =  1/2ML are shown in Fig. 6.22. At 400K, trimers are growing in lines along the 
<  114 >  direction separated by large gaps. These lines stop because of the periodic bound­
ary conditions and discontinuity due to the asymmetrical geometry of the ordering. At the 
critical temperature Tc — 2600K , the size of the ordering pattern is shortened mixed to a 
complete disorganized feature of bitartrate radicals, so that arbitrarily organized and disor­
ganized clusters are formed. The above described critical slowing down of the Metropolis

0 1000 2000 3000 4000 5000
T(K)

Figure 6.21: Estimate of Phase transition and 
critical temperature Tc  at 0  =  0.5ML and 
0  =  0.3ML for bitartrate/Cu(110) system in 
agrement with the schematic representation of 
LEED diffraction intensity measurements as a 
function of temperature T for constant cover­
age 0 .

(d) T  =  400K (e) Tc  =  2600AT (f) T  =  5000A-

Figure 6.22: Snapshots,in a 40 x 26 cell, of the order-disorder phase transition configura­
tions of Bitartrate/Cu(110) at 0  =  1/2ML. The critical temperature of the transitions is 
Tc =  2600K .
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algorithm has to do with small clusters which are formed at Tc. It is quite difficult for 
the algorithm to move one of these large organized domains, because it has to be done 
molecule by molecule. Each move has a high probability of being rejected because the 
lateral interactions stabilize all atoms that are part of the cluster. Other approaches called 
cluster algorithms like Wolff and Swendsen-Wang algorithms try to avoid this problem by 
sampling entire cluster of particles [48].
At 5000K the full disordered state is reached, the organized clusters are no longer found. 
Therefore the order parameter 4> rarely equals 0 due to small randomly organized trimers 
that can still be found.

6.5.5 Diagrams of phase and ordering limits
We performed Metropolis/Monte carlo simulations at constant temperature T  and vibration 
of the OH bond E v-.0h =  50meV, at the temperature of formation of Bitartrate trimers re­
ported by the experimentalists, on the bitartrate/Cu(110) system, i.e. T  =  400K . Starting 
from the minimum coverage to the maximum 0  =  0.76ML we observe the evolution of 
the phase by the order parameter ’3/ (T) with respect to the coverage 0 . These simulations 
are performed to find an agreement of the coverage limits of the bitartrate ordering pattern 
on copper (110) at 400K. The system used to perform this kind of calculation is a 40 x 26 
cell and an accuracy of 50 million Monte Carlo steps. The curve in Fig. 6.23 displays the 
4/ =  / ( 0 )  curve at 400K and the some snapshots taken at different coverages see (Fig. 
6.24): Fig. 6.23 shows the evolution of the order parameter with respect to the coverage in

Figure 6.23: 4/ =  / ( 0 )  at 400K and constant vibrational energy of the OH bond E u_0H =  
50meV for the Bitartrate/Cu(110) system from the Metropolis/Monte Carlo simulations in 
a 40 x 26 cell and 50 million Monte Carlo steps.

the curve 4/ =  /(© ). The order parameter remains constant at 4/ =  1 until 0  =  0.60ML 
and falls dramatically above this coverage to a value of 4' =  0.82ML at 0  =  0.76ML. This
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indicates that with respect to the order parameter, a certain limit of the coverage can be tol­
erated in order to still consider the ordering described by the experiments. At 0  =  0.76ML, 
the maximum coverage obtained by the random distribution of the particles on the copper 
surface, we obtain an order parameter \l> =  0.82ML that we could define as the limit of the 
ordering of the phase (trimers growing along the <  l l4  > direction) described by the STM 
images. The snapshots shown in Fig. 6.24 gives a visual representation of how the parti-

(a) 0  =  0.20ML (b) 0  =  0.35ML (c) © = 0.60ML (d) 0  =  0.76ML

Figure 6.24: Thermodynamic properties of the Bitartrate/Cu(110) system for 0  =  0.5ML 
and 0  =  0.3ML calculated from Metropolis/Monte Carlo simulations. NO represents the 
number of molecules, (a-b) Order parameter and heat capacity for 0  =  0.5ML. (c-d) Order 
parameter and heat capacity for 0  =  0.3ML.

cles orders with a constant increase of the coverage 0 . At low coverage © =  0.20ML, we 
observe a small cluster of bitartrate radicals organized in trimers growing in the <  114 > 
direction in a system globally attractive. As the coverage increases, the ordering remains 
globally the same, on the image representing a coverage of © =  0.35ML. At 0  =  0.60ML 
we observe the trimers giving longer ordering along the same direction but separated by a 
gap formed by the trimers growing along the <  114 >  direction.
The ordering phase is completely saturated at 0  =  0.76ML but the order parameter still 
shows a high value of 4/ =  0.82ML characteristic of a globally ordered phase. The gap 
formed by the vibration of the OH bond is destroyed by the saturation of bitartrate radicals 
on the copper surface. From the curve =  / ( 0 )  and the snapshots showing the ordering 
on the bitartrate/Cu(110) surface we can conclude that the coverage describing most accu­
rately the ordering of bitartrate ions on the copper© 10) surface is 0  =  0.60ML. Above 
this limit the system no longer describes the ordering of the phase reported by the experi­
mentalists as the saturation of bitartrate ions destroys the gap between the trimers growing 
along the <  l l4  >  direction.

Low temperature Phase diagram (T,0)

The OH bond vibration of a bitartrate radical, chemisorbed on the Copper surface, is evolv­
ing with respect to the temperature, We can thus trace a (T,0) phase diagram. This phase 
diagram shows at different temperature and coverages the evolution of the two phases re­
ported in last section, and also a possible disordered state. The disordered state can occurs 
at very high temperature as the order-disorder transition showed in the section (6 .2 .1 ), or 
it can occur at high coverage. The following (T,0) diagram shows the evolution of the 
phases of the bitartrate/Cu(110) system taking in account the OH bonds vibrations: This 
(T,0) diagram shows that the increased temperature leads to a transition from one phase
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Figure 6.25: Low temperature phase diagram (T,@): This curve shows three different 
domains. At low temperature and low coverage the ordering grows in trimers along the 
<  114 >  direction. If we increase the temperature to 475K the pattern changes to a clus­
ter of bitartrate radicals growing along the same direction <  114 >, and more compact 
than the previous one. Both of these phases lead to disorder if the coverage goes beyond 
0  =  0.75ML.

(trimers) to another (cluster) at low and medium coverage. At 475K the vibration of the OH 
bonds reaches the limit of the biphasic transition energy, reported in the previous section of 
E v- oh =  18meV. Below this energy we obtain trimers, above this point clusters. Both of 
these domains vanish at very high coverage and lead to a completely disordered state. This 
agrees with the evolution of the =  /(© ) displayed in section (6.5.6), which showed an 
order parameter constantly decreasing as the coverage © increases above 0.65ML.

6.5.6 Summary
The thermodynamic properties of a system in thermodynamic equilibrium completely char­
acterize its macroscopic state. Phase transitions in a system are identified by abrupt changes 
in the thermodynamic properties of the system.
Thermodynamics establishes relationships among the macroscopic properties of the system 
which are based on the laws of thermodynamics. The link of the macroscopic properties to 
the microscopic states of the system is provided by statistical mechanics.
The probability function of any statistical ensemble can be derived from the variational 
statement of the second law of thermodynamics, and the Gibbs entropy formula.
The connection between the statistical description and thermodynamics is made through a

135



thermodynamic potential, according to the constraints imposed on the ensemble. For the 
canonical ensemble, the connection with thermodynamics is made through the free energy 
F.
Phase transitions in chemisorbed layers are conveniently simulated in the canonical ensem­
ble, because this ensemble mimics the typical experimental conditions used when measur­
ing such transitions (constant number of particles). However, the simulations can also be 
carried out in the grand canonical ensemble (constant chemical potential).
The phase transitions can be classified as

• First-order phase transitions: Characterized by phase separation, metastable states 
and hysteresis.

• Continuous phase transitions: Characterized by critical fluctuations and divergence 
of the spatial correlations in the system.

The Metropolis algorithm is most widely used in Monte Carlo simulations. The algorithm 
suffers, however, from limitations near phase transitions due to the uneven energy land­
scape (first-order phase transitions) or critical slowing down (continuous phase transitions). 
The Wang-Landau Monte Carlo algorithm avoids these problems, because it is based on a 
random walk in energy space.
The thermodynamic properties of the bitartrate/Cu(l 10) system (calculated from Metropo- 
lis/Monte carlo simulations) at 0  =  1 /3ML shows a continuous phase transition at Tq =  
1850K which is above the temperature at which the tartaric acid molecule and the bitar­
trate radical decompose. This high critical temperature is due to the high energy of the 
Lattice Gas Hamiltonian interactions. For this both sets of interaction (with and without 
the OH bond vibration) the Metropolis/Monte Carlo algorithm performed very well at the 
phase transition. By carrying out similar simulations at different temperature T and vibra­
tion energies of OH bond Ev- oh , we can construct the Bitartrate/Cu(110) phase diagram 
E „ - o h  =  f (T)-  It displays at 0  =  0.50ML the limit between two phases, clusters and 
trimers, growing along the same direction < 114 >. This diagram is incomplete, it has to 
be extended in a third dimension taking into account the coverage.
Then the curve '¡/ =  / ( 0 )  at 400K indicates full coverage of the ordered phases of the 
Bitartrate/Cu(l 10) system. It turns out that the coverage of the ordered phase observed by 
the experimentalists is 0  =  0.60ML. One thus finds in this particular system that vibrations 
play a crucial role in the ordering process.
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Chapter 7

Conclusion

The main aim of this thesis was to study first-principles statistical mechanics for the calcu­
lations of adsorbate phase-diagrams. The main system under study, i.e. the bitartrate/Cu(l 10) 
system, proved to be a difficult one because of the very small energies determining the 
ground state configurations compared to the on-site energy (6418 meV) due to chemisorp­
tion. Thus, first an exposition about the conclusion related to the studied methodology will 
be presented and finally, the conclusions regarding the systems under study will be dis­
cussed.
We also computed the chlorododecane/Si(lll) systems which produced stable and switch­
ing corralled silicon adatom according to experimental research. The different conforma­
tions of chlorododecane, that theoretically created the same effects, have been determined 
using Density Functional Theory and electron transport (STM) simulations.

7.1 The ChIorododecane/Si(lll) systems

7.1.1 Stable corral
The stable corral’s electronic property appear to originate from induced dipoles in the 
S i( lll)-(7  x 7) surface, known to be metallic in nature. We have shown that the addi­
tion of dipole moments induced by single molecules on both sides of the corralled silicon 
adatom does not equal the dipole moment produced by the corral. This corral has therefore 
induced an extra dipole coming from the charge-transfer into the corralled adatom. The 
computed surplus charge on the corralled silicon adatom accounts for its experimentally 
observed darkening in the STM images.
Variation in chain length and chain substituents could provide a means to the self-assembly 
of nano-corrals and filled corrals (nano-dots) of varied but defined size and electronic prop­
erties

7.1.2 Switching corral
We reported a single-atom electronic switch in silicon due to molecularly induced field ef­
fects. Small changes in configuration of self-assembled pair of dipolar adsorbate molecules
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that surround a silicon atom are shown to have a large electronic effect characterized by a 
high and a low conductance. The finding that small changes in conformation of molecules 
can have substantial external electronic effects should be of interests in contexts ranging 
from nanoscale electronics to molecular biology.

7.2 The Bitartrate/Cu(110) system
The multiscale nature of our methodology led to a microscopic and macroscopic study of 
the bitartrate/Cu(l 10) system. Thus we present first the conclusions of the microscopic 
study and afterwards, we discuss the conclusions of the macroscopic study.

7.2.1 First-principles calculations and ground state line
Due to the high energy accuracy demanded by the proper description of highly correlated 
systems like bitartrate/Cu(l 10), it was necessary to use one unit cell in the first principles 
calculations: (6 x 6) with a (3 x 2 x 1) k-point mesh.
We have investigated many of the approaches which have been proposed in the literature in 
order to determine the interaction parameters of the Lattice Gas Hamiltonian.
The simplest of the approaches (within the first-principles statistical mechanics methodol­
ogy) is to use a square system of equations in order to derive the parameters. That is, to 
set up a linear system of equations where the number of unknown variables (interaction 
parameters) is the same as the number of first principles energies. Thus, the parameters are 
obtained by simply inversion of the system of equations. The interactions selected for the 
expansion are typically short-range pairs and trios.
The natural extension of the square system approach is to use more equations (first-principles 
energies) than unknowns (interaction parameters).

7.2.2 Macroscopic study
The Metropolis/Monte Carlo simulations for bitartrate/Cu(110) with the addition of the 
OH-bond vibration component performed very well at the phase transitions under study. 
The analysis of the Bitartrate/Cu(110) thermodynamic properties at the phase transitions 
led to the conclusion that there are continuous or second-order phase transitions. The order 
parameter calculated by the discrete Fourier transform method gives an accurate location 
of the phase transition. The accuracy of this parameter and the heat capacity parameter to 
locate the critical temperature increases with the size of the cell and the number of Monte 
Carlo steps.
The critical temperature of each system always depends on the coverage. The high critical 
temperatures of the Bitartrate/Cu(110) system are a consequence of the high lateral inter­
actions operating in this system.
The addition of the OH-bond vibrational component to the Lattice Gas Hamiltonian strength­
ens the ordering and still leads to thermodynamic stability as we could see with the heat 
capacity. Therefore at very high coverage the gap between the growing trimers cannot be
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controlled. The Monte Carlo simulations determine a specific full coverage of the ordering 
from 0.60 to 0.65ML.

7.3 Final words
This thesis studied the first-principles statistical mechanics approach as used in the calcu­
lation of the Bitartrate/Cu(110) phase diagram. Experimental results (from the literature) 
are used for comparison only and not for fitting purposes. That means, all of our results 
are based on theory. Such an approach is very powerful, because many processes and ideas 
can, in principle, be studied theoretically without actually carrying out (many expensive) 
experiments. Thus, the design and engineering of material and technological processes 
should benefit enormously from first-principles methodologies.
Yet, as the systems under study become more and more relevant for technological appli­
cations, the computational complexity increases dramatically and the need for experiments 
cannot be substituted. However, the improvement in hardware and, above all, methods and 
algorithms, should gradually push the frontier of practical applicability of first-principles 
methodologies. We have studied here a small area of a subject that constitutes nowadays a 
vast field of research.
Thus, our technological progress will benefit dramatically from the increasing application 
of quantum and statistical mechanics. This demands a lot of understanding and ingenuity 
in order to apply and engineer the consequences of those theories. At stake is the advance­
ment of our knowledge in order to create sustainable technological processes and ways of 
living, given the limited natural resources of our planet.
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Appendix A

Metropolis/Monte carlo program on a 
simple model in Fortran 90

A. 1 Diagram of Metropolis/Monte carlo step by step (canon­
ical ensemble)

-Canonical ensemble: N,V,T constant

- Metropolis method: To generate a new configuration with probabilities

0. G enerate  the in itia l con figura tion  (random  or c(2><2))

Beginning of the MC cycle

1. Calculate Eold
2. Randomly select a particle
3. Random displacement (or rotation)
4. Calculate Enew
5. Accept the move with probability (Metropolis method)

En<Eo accept (the move)
En>Eo accept with probability exp[-(En-Eo) /kT] 

(Periodic boundary conditions)

End of MC cycle
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A.2 Diagram of Metropolis/ Monte carlo in the canonical 
ensemble
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A.3 Main features of Metropolis/Monte carlo program

Choice of the parameters
Initial configuration
do
en1=EN
typ-1
c a 11 ra n d_p o s ( m at ,typ ,xrp ,y rp ) 
x1=xrp, y1=yrp_____________
typ=o
call randj30s(mat,typ,xrp,yrp) 
x2=xrp, y2-yrp
mat(x1 ,y1 )=0 
mat(x2 ,y2)=1
call totJENirnat.EN.eiO.eM)
en2=EW
mat(xl ,y1)=l
mat(x2,y2)=Q___________
metropolis conditions
acceptance: save new values+ add MC step 
Rejection: add MC step

If (count.eq.mcs+1 ) then
exit
end if
end do
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A.4 Parameters of the simulations

real, pararneter:: h -ü ,b  173 'jyE -5  
real*8:. eriT,enT2

prmt *," tem pera ture :" 
re a d (* * j  T

p rm t* ,"M C  steps:" 
read(*,*) rncs

p n nt *," sta rti n g c o nf i g urati o n , R o r C :
read(*,*) st
start=0
select case (st) 
case ( "c", "C") 
start= 1 
end select
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A.5 Initial configurations

if (s ta rt.e q . 1) th e n  
do v —1,10  
do u —1,5
if (m od (v ,2 ) eq.O ) th e n  
m a t (u *2 ,v )= 0  
e lse
m a t (u*2-1 ,v)=0  
end if, end  if, end do

% %  S ta r t c (2 x 2 )  % %

else
do
x r=  m t (ra n d ()*1 0 )+ 1  
y r=  in t (ra n d ()*1 0 )+ 1  
if (m a t(x r ,y r ) .e q .1 ) th e n  
m a t(x r ,y r)=  0 
nb=nb+1  
end if
tt=  in t (1 0 *1 0 *(1 -c o v ))  
if ( tt.e q .n b ) then  
exit
end if, e nd  d o , end  if

% %  S ta rt ra n d o m  % %
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A.6 Metropolis probabilities to accept or reject a move

if (en2 Jt.enl) then
mat(x2,y2)=1 
mat(xl ,y1)=0 
enT=enT+en2 
enT2=enT2+en2*e n2 
EN=en2
count=count+1
else

% %  Acceptance %%

if (exp(-(en2-en1)/(k*T)) .gt .rand())then 
mat(x2,y2)=1
mat(x1 ,y1)=0 
enT=enT+en2 
enT2=enT2+en2*en2 
EN=en2

%% probability % %

count=count+1
else
enT=enT+en1
enT2=enT2+enren1
EN=en1

%% Rejection %%

count=count+1 
end if, end if
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A.7 Subroutine for the nearest neighbors detection

Subroutine Number of nearest neighbours

NNE=0

id=xri+1
if (id.gt.10) then 
id=id-10 
end if %% periodic boundary
ig=xn-1 
if (ig.lt.1) then 
ig=ig+10 
end if

conditions %%

jh=yn-1
if (jh.gt.1 0) then 
jh=jh-10 
end if

jb=yn+1 
if (jb.lt.1) then 
jb=jb+10 
end if
NNE=id + ig + jb + jh
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A.8 Subroutine for the total energy of the system

Subroutine Total energy of the system

EN=0
¡¡-.J IQ %% periodic boundary

do j j - i  1 0  conditions %%

if mat(ii,jj).eq.1) then
xn=ii
yn-ij

call near_numb (mat,xn,yn,NNE)
EN=NNE*ei1 +eiO
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A.9 Subroutine for random selection of a particle

Subroutine Random selection 

do
xe= int(rand()*10)+1 
ye= int(rand()*10)+1

if (mat (xe.ye) .eq. typ) then
xrp=xe
yrp=ye
exit
end if, end do
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A.10 Subroutines of the heat capacity C y  and the order 
parameter \I/

Subroutine Order parameter

matf=rnat*2-1

do r=  1,10 
do q = 1,5

if (mod(r,2).eq.O) then
ma=ma+matf(2*q-1 ,r) 
mb=mb+matf(2*q ,r)
else
ma=ma+rnatf(2*q, r) 
mb=mb+matf(2*q-1 ,r)
end if, end do, end do
Psi = sqrt ((ma-mb)*(ma-mb)/100

Subroutine Heat capacity parameter 

cv = ((enT2/mcs)-(enT*enT) / (mcs*mcs))) / (k*T*T)

149



Appendix B

Tartaric acid on Copper(llO) / Lattice 
Gas Hamiltonian

B .l Clean surface

Esurf =  -4 7 5 .0 5 1 e V

B.2 Bitartrate ion

Etar =  —87.458eV
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B.3 Positions on Copper surfaces

B.4 Adsorption energy of one molecule at the R position

E ads E j:0( (E surf  +  E moi )

E ads(R) ~  E f 0t^fQ {E c u ( lW )  E ta r)

Eads(R) =  -568.927 -  (-475.051 -  87.458)

E a ds(R ) =  —6.418eV

151



B.5 Adsorption energy of two molecules at R and A

E ads

E a d s (R A )

E a ds{R A )

E a d s (R A )

E to t  (E su r f  +  2 E moi )

E to t (R )  — ( E c u (  no) +  2 E t a r ) 

-662.705 -  (-475.051 -  2(87.458)) 
—6.369eV/  partial e

E a d s (R A - R )

P B C  : E a ds {R A - R )  

in t( 2 , —3)

+0.0491eF
2int(2, —3) +  2 m i(—4, —3) 

+24.6 m eV

B.6 Adsorption energy of two molecules at R and E

E a d s E to t  (E su r f  +  2 E moi)

E a d s (R E ) — E tot(R j — ( £ Cu(n o) +  2 E t a r )

E a d s (R E ) =  - 6 6 2 .7 0 2  -  ( -4 7 5 .0 5 1  -  2 (87 .458))

E a d s (R E ) =  —6.368eV/particle

E a d s ( R E - R ) =  + 0 .0 5 0 5 e l/

P B C  : E a d s ( R E - R ) =  2 in t(2 ,3) +  2in t(—4 ,3 )

in t(  2, —3) =  + 2 5 .3  m eV
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B.7 Adsorption energy of two molecules at R and B

E a ds

E a d s (R B )

E a d s (R B )

E a d s (R B )

E to t  ( E su r f  4- 2 E m o{)

Etot(R) — (Ecu( no) +  2 E tar) 
-6 62 .681  -  (-4 7 5 .0 5 1  -  2(87.458)) 
—6.357el7/ particle

E a d s ( R B - R )

P B C  : E ads(RB-R)
+0.0610eV
2 m i(l, —3) +  2 in t(—5, —3)

in t(  2, —3) =  +30.5meV

B.8 Adsorption energy of two molecules at R and D

E a ds 

E a d s (R D )  

E a d s (R D ) 

E a d s{R D )

Etot (E surf  +  2E moi)

Etot(R) — (Ecu( no) + 2 E tar) 
-6 6 2 .6 7 9  -  (-4 7 5 .0 5 1  -  2(87.458)) 

—6.356eV/  particle

E a d s ( R D - R )

P B C  : E ads(rd—r)
=  +0.0619el/
=  2m i(l, 3) +  2int{—5,3)

in t(  2, —3) =  +30.9meV
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B.9 Adsorption energy of two molecules at R and C

E a d s E to t  (E su r f  +  2 E moi)

E a d s (R C ) — E tot(R ) — { E C u ( n o )  +  2 E t a r )

E a d s(R C ) =  -662.662 -  (-475.051 -  2(87.458))

E a d s (R C ) =  —6.348eV/particle

E a d s ( R C - R ) = +0.0703eV
P B C  : E a d s ( R c - R ) =  2 m i(0 , 3)

int{ 0 ,3) =  +35.1m ey

B.10 Adsorption energy of two molecules at T and Q

E a d s E to t  (E su r f  +  2 E moi )
E a ds(TQ ) — E to t (R )  — ( E c u (  no) +  2 E t a r )

E a ds(TQ ) =  -662.745 -  (-475.051 -  2(87.458))

E a ds(TQ ) =  —6.389eV/particle

E a d s (T Q - R ) = +0.0288eF

E a d s{T Q —R) =  2 in t(3 ,0)

in t(3 ,0) =  +14Am eV

154



B .ll  Adsorption energy of two molecules at R and F

Eads 
E a d s ( R F )  

E a d s (R F )  

E a d s {R F )

Etot (Esurf  +  2 S m o ; )

=  Etot(fy —  ( - E c y n o )  +  2  Etar)
=  -662.735 -  (-475.051 -  2(87.458)) 
=  —6.384eV/particle

E a d s ( R F - R )  

P B C  : E ad s ( R F - R )

+0.0339m eV
in t(  2 , —2 ) +  in t{—4, —2 ) +  int{ 2 ,4) +  in t(—4,4)

mi(2, —2) =  +34.0m eF

B.12 Adsorption energy of two molecules at R and J

E a d s

E a d s ( R J )

E a d s ( R J )

E a d s (R J)

Etot ( Esurf  +  2 Emoi)

Etot(R) — (Ecu(U0) +  2 Star) 
-6 6 2 .6 7 9  -  (-475 .051  -  2(87.458)) 

—6.384eV/  particle

E a d s ( R J - R )

P B C  : E ad s { R j - R )

+0.0341eF
in t(2,2) +  m i(—4 ,2) +  in t(2, —4) +  in t(—4, -4 )

in t(  2,2) =  +34.1raeV
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B.3 Positions on Copper surfaces

B.4 Adsorption energy of one molecule at the R position

E a ds E i 0i (E su r f  “I” E m(,i )

E a d s (R )  =  EtQ tiH ) (i?Cu(110) •E’tar)

Eads(R) = -5 6 8 .9 2 7 -(-4 7 5 .0 5 1  -87 .458) 

E ads(R) =  —6.418eV
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B.5 Adsorption energy of two molecules at R and A

Eads =  

Eads(RA) — 

E ads(RA) ~  

Eads(RA) ~

Etat ( Esurf  “I-  2 Emoi)
E to t(R ) ~  { E c u (  110) +  2E t a r ) 

-662.705 -  (-475.051 -  2(87.458)) 
—6.369e 1// partial e

E a d s(R A -R )  

P B C  : E ads(R A -R )

+ o . o m e v

2int(2, —3) +  2 m i(—4, —3)

in t( 2, —3) =  +24.6m eF

B.6 Adsorption energy of two molecules at R and E

Eads
Eads(RE)

Eads(RE)

Eads(RE)

E to t (E surf  -f- 2E moi)

Etot(R) — (Ecu(llO) + 2 Etar) 
-662.702 -  (-475.051 -  2(87.458)) 
—6.368eV/particle

E a d s(R E -R )  

P B C  : E a d s(R E -R )

+0.0505eV
2int(2 ,3) +  2 in t(—4,3)

in t (  2, —3) =  +25.3meF
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B.7 Adsorption energy of two molecules at R and B

Eads
Eada(RB)

Eads(RB)

Eads(RB)

Etot {Esurf  +  2Emoi)
E to t (R )  — ( E c  u ( iw )  +  2 E t a r ) 

-662.681 -  (-475.051 -  2(87.458)) 
—6.357eV/  particle

E a d s(R B -R )

PBC : Eads(RB- R)
+0.0610eK
2 in t(l, —3) +  2int{—5, —3)

in t( 2, —3) =  +30.5 m eV

B.8 Adsorption energy of two molecules at R and D

E ads — E tot — (E surf  +  2 E moi)

Eads(RD) — E tot{R) — (Ecu(no) +  2 E tar)

Eads(RD) = -662.679 -  (-475.051 -  2(87.458))
Eads(RD ) =  —6.356eV/particle

E ads(RD—R) =  +0.0619eV

E ads(R D -R ) =  2m t(l, 3) +  2in t(—5,3)

in t(  2 , —3) =  +30.9meV
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B.9 Adsorption energy of two molecules at R and C

Eads — E ^ t  (E surf  +  2 E moi)

Eads(RC) — E tot(R ) — (-fic+llO) +  2 E ta r)

Eads(RC) =  -662.662 -  (-475.051 -  2(87.458))

Eads(RC) =  —6.348eV /p a rtic le

E ads(R C -R ) =  +0.0703eK

E ads(R C -R ) =  2m£(0,3)

in t(  0, 3) =  +35.1meV

B.10 Adsorption energy of two molecules at T and Q

Eads

Eads{TQ)

E ads(TQ)

E ads(TQ)

Etot (E surf  +  2  Emo{)
— Etot(R) — (Ecu( no) +  2 Etar)
=  -662.745 -  (-475.051 -  2(87.458)) 
=  —6.389eV/particle

E ads(TQ—R)

P B C  : E ads(TQ- R)
+0.0288eV 
2m i(3,0)

m i(3,0) =  +14.4 m e V
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B .ll  Adsorption energy of two molecules at R and F

Eads
E ads(RF) =  

Eads(RF) =  

Eads(RF) ~

E to t (E surf  +  2 E moi)

Etot(R) — (Ecu( no) +  2 E tar) 
-662.735 -  (-475.051 -  2(87.458)) 
—6.384e V/  p a r tic l e

E a d s(R F -R )  

P B C  : E a d s iR F -R )

+0.0339m e V

in t{  2, —2) +  in t ( —4, —2) +  in t{  2,4) +  in t{ —4,4)

in t(2, —2) - +34.0772617

B.12 Adsorption energy of two molecules at R and J

E ads

E ads(R J) =  

Eads(RJ) =  

E ads(R J) =

Etat (E su r f  +  2 E m oi )
E to t (R )  — ( E c u (  no) +  2 E t a r ) 

-662.679 -  (-475.051 -  2(87.458)) 
—6.384eV /  p a r tic le

E a d s(R J -R )

P B C  : E ads( R J -R )

=  +0.0341ey
=  ¿77.4(2, 2) +  in t{—4,2) +  mi(2, -4 )  +  i n t ( - 4, -4 )

m i( 2,2) =  +34.1meV
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B.3 Positions on Copper surfaces

B.4 Adsorption energy of one molecule at the R position

E ads E ¡ni (E.huj J 4“ E moi)
E ads(R ) =  E t0t(jty (•£'Cu(H0) “I“ E%a r)

Eads(R) =  -5 6 8 .9 2 7 -(-4 7 5 .0 5 1  -  87.458)

E ads{R) = —§A\&eV
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B.5 Adsorption energy of two molecules at R and A

E ads
Eads(RA)

Eads(RA)

Eads(RA)

E to t (E surf  -+■ 2  E moi)

E to t (R )  — (Ecu( 110) +  2  E t a r )  

-662.705 -  (-475.051 -  2(87.458)) 
—6.369eV/particle

E ads(R A -R )

PBC : Eads^RA-R)
+0.0491eF
2int(2, —3) +  2 m£(—4, —3)

in t( 2, —3) =  +24.6meV

B.6 Adsorption energy of two molecules at R and E

Eads — Efot {Esurf  +  2  Emol)
Eads(RE) = Etat(R) ~  (^Cu( 110) +  2Etar)
Eads(RE) = -662.702 -  (-475.051 -  
Eads(RE) =  —6.368eV/particle

2(87.458))

Eads(RE-R) =  +0.0505eV 
Eads(RE—R) — 2in t(2 ,3) +  2m£(—4,3)

m£( 2, —3) =  +25.3meV
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B.7 Adsorption energy of two molecules at R and B

Eads

Eads(RB)

Eads(RB)

Eads(RB)

Etot (E surf  +  2Emoi)
Etot(R) ( E c u ( i io )  +  2 E tar) 

-662.681 -  (-475.051 -  2(87.458)) 
—6.357eV/  particle

E a d s(R B -R )

P B C  : E ads(RB-R )
+0.0610eK
2 m t( l, —3) +  2 m i(—5, —3)

in t( 2 , —3) =  +30.5m ey

B.8 Adsorption energy of two molecules at R and D

Eads

Eads(RD)

Eads(RD)

Eads(RD)

Etot {E surf  4“ 2 Emoi)
E tot(R ) — { E c u ( iio )  +  2 E ta r) 

-662.679 -  (-475.051 -  2(87.458)) 
—6.356eV/  particle

E ads(R D -R )

P B C  : E ads(RD- R)
+0.0619el/
2m t(l, 3) +  2int{—5,3)

in t{  2, —3) =  +30.9 m e V
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B.9 Adsorption energy of two molecules at R and C

Eads E to t (Esurf  +  2 E moi)
Eads(RC) E tot(R ) { E c u i m  4“ 2 E ta r)

Eads(RC) = -662.662 -  (-475.051 -  2(87.458))
Eads(RC) =  —6.348eV ¡•particle

E ads(RC—R) =  +0.0703eF

E ads(RC—R) =  2 in t(0 ,3)

int( 0, 3) =  +35.1m el/

B.10 Adsorption energy of two molecules at T and Q

Eads 
E ads(TQ) 

E ads(TQ) 

E ads(TQ)

Etot (Esurf  +  2  Emoi)
=  E t 0t(R ) — ( E C u ( n o )  +  2  E t a r )

= -662.745 -  (-475.051 -  2(87.458)) 
=  —6.389eV/particle

E ad s(T Q -R )

P B C  : E ads(TQ-R)

+0.0288eF 
2mi(3, 0)

in t(  3,0) =  +14.4m el/
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B .ll Adsorption energy of two molecules at R and F

E ads

Eads(RF)

Eads(RF)

Eads(RF)

E to t ( E surf  +  2 E moi)

— E tot(R) — (-B cu(llO ) +  2 E tar )

=  -662.735 -  (-475.051 -  2(87.458)) 
=  —6.384eV/particle

E ads(R F -R )

PBC  : Ead^RF-R)
+0.0339m eV
in t(2 , - 2 ) +  in t{—4, - 2 ) +  in t(2 ,4) +  m t ( - 4,4)

m t(2, —2) =  +34.0meK

B.12 Adsorption energy of two molecules at R and J

Eads ~  

Eads(RJ) 

E ads(RJ) —

Eads(RJ) =

-Etot (E.̂ urj  +  2Emoi)
Etot(R) ~  (-Ecu(iio) +  2J57tor) 
-662.679 -  (-475.051 -  2(87.458)) 
—6.384e V/particle

E a d s (R J -R )

P B C  : E ads(R j-R )

+0.0341eV
in t(2, 2) +  m i ( - 4 ,2) +  mi(2, -4 )  +  m i( -4 ,  —4)

in t(  2,2) =  +34.1meV
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B.13 Adsorption energy of two molecules at R and G

Eads

E ads{RG)

Eads(RG)

Eads(RG)

E to t (E surf  +  2 E moi)

E tot(R ) — ( E Cu( 110) +  2£/tar)
—662.763 -  (-475.051 -  2(87.458)) 
—6.398eV/particle

E ads(R G -R )  

P B C  : E ads(RG- R )

+0.0197eK
int{ 1 , —2 ) +  in t{—5, —2 ) +  int{ 1,4) +  in t{—5,4)

int{2, — 1) =  +19.7m eV

B.14 Adsorption energy of two molecules at R and I

Eads
Eads(RI)

E ads{RI)

Eads(RI)

Etot {Esurf  4 “  2 Emol)
Etot(R) ~ (Ecu(UO) +  “̂Etar)

—662.769 -  (-475.051 -  2(87.458)) 
—6.401 eV/  particle

E a d s(R I-R )

P B C  : E ad s(R I -R )

+0.0172eF
int{ 1 , 2 ) +  m i(—5, 2 ) +  m £(l, —4) +  in t{—5, —4)

m £(2,1) =  +17.2 m e V
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B.15 Adsorption energy of two molecules at R and H

E ads

E a d s (R H )

E ads{RH)

E a d s{R H )

Etot (E surf  -)- 2 Emoi)
E to t(R ) ~  (E c u (n o )  +  2 E ta r) 
-662.781 -  (-475.051 -  2(87.458)) 
—6.407eV/  particle

E ads(R H -R )

P B C  : E ads(RH- R)
+0.0U 2eV  
in t(0, 2) 4- m i(0,4)

in t(  0 , 2 ) =  + 1 1 .2 meV

B.16 Adsorption energy of two molecules at R and T

E ads

Eads(RT)

E a d s (R T )

E ads(RT)

E to t (E surf  +  2 E moi)

Etot(R) — {Ecu( 110) +  2 Etar) 
-662.668 -  (-475.051 -  2(87.458)) 
—6.351 eV/particl e

E a d s (R T -R )

P B C  : Ead^KT-R)

+0.0673eV 
m i(2,0) +  m i(4,0)

in t ( 0,2) =  +67.3meV
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B.17 Adsorption energy of two molecules at R and K

Eads
Eads(RK )

Eads(RK )

E ads(RK)

Etot (E surf  +  2Emoi)
Etot(R) (Ecu(no) P
-662.679 -  (-475.051 -  2(87.458))
—6.356eV/particle

E a d s(R K -R )

P B C  : E ads(RK_R)
+0.0620eK
in t(2, —1) +  in t{—4, —1) +  in t{2,5) +  in t(—4, 5)

m i(2 , — 1 ) =  +62.0m el/

B.18 Adsorption energy of two molecules at R and O

E ads

Eads(RO) =  

Eads(RO) =  

E ads(RO) =

E to t { E SUr f  4" 2 E moi )

Etot(R ) ~~ (-E'cu(llO) +  2-Etar)
—662.649 -  (-475.051 -  2(87.458)) 
—6.401 eV/particl e

E ads(RO—R)

P B C  : E ads(RO- R)

+0.077eV
int( 2 , 1 ) +  in t(—4 , 1 ) -f- m i(2 , —5) +  in t{—4, —5)

m i(2 ,1) =  +77.1meV
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B.19 Adsorption energy of two molecules at T and L

E ads E to t (E surf  4- 2 E moi)

E ads{TL) — Etot(R ) — {E cu (llO ) +  2 -Star)
E ads(TL) =  -662.717 -  (-475.051 -  2(87.458))
E ads(T L) =  —6.375eV/particle

E ads(TL—R) =  +0.0432eV

E ads(TL—R) =  2mt(3, —1) +  2m t(3 ,5)

in t(3 , —1 ) - + 2 1 .6 meV

B.20 Adsorption energy of two molecules at T and G

Eads E to t (E surj  +  2  Emoi)
E ads(TG) — E t o m  — (£^cu(no) +  2  E ta r)

E ads(TG) =  -662.688 -  (-475.051 - 2(87.458))

E ads(TG) =  — 6.361 eV/particle

E ads(TG—R) = +0.0576eV

E ads(TG—R) =  2mi(3, —2) +  2 in t(3 ,4)

in t(  3, —2) =  +28.8meV
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B.21 Adsorption energy of three molecules at T, R and P

Eads

E ads(TRP)

E ads(TRP)

E ads(TRP)

E to t ( E surf  +  3 E moi )

Etot(R ) ~  { E c u ( n o )  +  3 E tar) 

-756.325 -  (-475.051 -  3(87.458)) 
—6.300eV/  particle

E ads{T R P -R )  

P B C  : E ads{TR p - R )

+0.01182eV
2 in t(2 ,0) 4- 2m i(4 ,0) +  3m i(2 ,0; 4,0)

m i(2 ,0 ;4 ,0) =  —5.5 m eV

B.22 Adsorption energy of three molecules at W, M and C

Eads
E ads{WMC)

E ads(W M C)

E ads(W M C)

E to t ( E s u r f  P  3 E moi)

E tot(R ) — (E cu (U O ) +  3 E ta r ) 

-756.620 -  (-475.051 -  3(87.458)) 
—6.398el/'/particle

E ads(W M C —R) 

P B C  : E ads(W M C —R)

=  +0.01974eF
=  2m i(0 ,2) +  2 m i(0 ,4) +  3mi(0, 2; 0,4)

m i(0,2;0 ,4) =  —0.9 m e V
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B.23 Adsorption energy of three molecules at I, S and L

Eads
Eads(ISL)

Eads(ISL)

Eads(ISL)

E to t (E surf  4- 3 E moi )

=  E tot(R ) —  ( E Cu( no) +  3 E ta r )

=  -756.361 -  (-475.051 -  3(87.458)) 
=  —6.312 eV/particle

E a d s (I S L -R )

P B C  : 3E ads(ISL-R)
+0.106el/
2m i(0 ,2) +  2 in t{2 ,1) +  2int(2, - 1 )  +  3 m i(2 ,1; 0, 2)

m i(2 ,1; 0,2) =  4-6.0 m eV

B.24 Adsorption energy of three molecules at H, S and Q

Eads — E to t (E surf  4- 2>Emoi)

Eads(HSQ) =  E tot(R) — (i?cu(no) 4- 3E tar)

Eads(HSQ) = -756.448 -  (-475.051 -  3(87.458))

Eads(HSQ) =  —6.341 eV/particle

E ads(H SQ -R ) =  +0.077eF

■ 3 E ads(HSQ -R ) =  2int{2 ,0) +  2m t(l, 2) 4- 2m i(l, - 2 )  4- 3 tn i(l, 2; -1 ,2 )

int{ 1 , 2 ; —1 , 2 ) =  4-7.6 m eV
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B.25 Adsorption energy of three molecules at E, M and U

E ads

E ads(EMU)

E ads(EMU)

Eads(EM U )

Etot (E surf  -)- 3 E moi)
=  E tot(ii) — (-Ecu(llO) +  3 E tar)

= -756.498 -  (-475.051 -  3(87.458)) 
=  —6.358eV/particle

Eads(EM U-R)  

P B C  : E ads(EMu~R)

in t{—2 , —2 ; 2 , 2 )

+0.0604eV
2 in t(2 ,2) +  3 m i(—2, -2 ; 2,2) 

—2.6 m eV

B.26 Adsorption energy of three molecules at A, M and Y

Eads

E ads(A M Y )  

E ads(A M Y )  

E ads (AM Y)

E to t (E surf  -f- 3 E moi )

Etot(R) ~  (-Ecu(iio) +  3Etar) 
-756.741 -  (-475.051 -  3(87.458)) 
—6.438eV/particle

E a d s (A M Y -R )  

P B C  : E a d s (A M Y -R )

=  —0.016961/
=  2int(2, —2) +  3 in t(—2 ,2; 2, —2)

m i(—2,2; 2, —2) =  -2 9 .2m el/
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B.27 Adsorption energy of three molecules at E, G and N

E ads

E ads(EG N)

E ads(EG N)

Eads(EGN)

Etot (E SUTf  “b 3 Emol)
Etot(R) — (-E'Cu(no) +  3 E tar) 
-756.638 -  (-475.051 -  3(87.458)) 
—6 A05eV/particle

E a d s (E G N -R )

PBC  : 3Eads(EGN-R)
=  +0.0136eV
=  2 in t(l, 2) +  2mt(2, -1 )  +  4 m t(3 ,1) +  3*nt(l, 2; 3 , 1 )

m £ (l,2 ;3 ,l)  =  —§&.lmeV

B.28 Adsorption energy of three molecules at A, I and L

Eads E t 0t \ E surf  -f- 2>Emoi)

Eads(AiL) =  E tot(R) — ( E Cu( no) +  3 E ta r )

Eads{AiL) =  -756.549 -  (-475.051 -  3(87.458)) 
Eads(AiL) =  -6 .375eV/particle

E a d s(A IL -R )

PBC  : 3Eads(AiL- R)
+0.0433eF
2 m i(l, - 2 ) +  2 in t(2 ,1) +  4mt(3, -1 )  +  3 m t(2 ,1; 3, -1 )

in t(2,1; 3, —1) =  — 56.6raeV
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B.29 Adsorption energy of three molecules at J, C and S

Eads
E ads(JC S)

E ads(JC S)

Eads(JCS)

E to t (E surf  +  3 E moi)

Etot(R) — (Ecu( 110) +  3  Etar)
—756.679 -  (-475.051 -  3(87.458)) 
—6.38 beV/particle

E ads (JC S—R) 

P B C  : 3 E a d s (J C S -R )

+0.0334el/
2int(2, - 1 )  +  2 in t(l, 2) +  4m i(l, 3) +  3 m i(l, 2; 2, -1 )

in t(  1,2; 2 ,-1 )  =  -60.3m eV

B.30 Adsorption energy of three molecules at C, F and Q

E ads Etot ( Psarf 4” 3Efaol)
E ads(CFQ) = E t o m  — (i?Cti(110) +  3 E ta r )

E ads(CFQ) =  -756.475 -  (-475.051 -  3(87.458))
E ads(CFQ) =  —6.350eV/particle

E ads(C F Q -R ) = +0.0681el/
■ 3 E ads(C F Q - R ) =  2 in t(2 ,1 ) +  2 tn i(l, - 2 ) +  4 tn i(l, 3) +  3 m t(l, - 2 ;  2 , 1 )

in t(  1 , —2 ; 2 , 1 ) =  -3 5 .7  m eV
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