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ABSTRACT 

The shear and bending response and finite deflection 

behaviour of a clamped beam struck by a mass at any point 

on the span are presented in Chapter 3 and Chapter 4 of this 

thesis, respectively. The interaction effect of bending moment, 

shear force and membrane force corresponding to a cubic shaped 

yield surface may be obtained in a simple way b~ combining 

Chapter 3 with Chapter 4 when the effect of membrane forces is 

ignored in the shear sliding phases. A theoretical procedure has 

been developed in Chapter 5 to predict the threshold external 

dynamic energy for the onset of a tensile tearing failure and 

shear failure of a clamped beam struck by a 

point of the span. 

mass at any 

A total of 260 aluminium alloy and steel beam specimens were 

tested with the impact points varied from the midpoint of the 

beam to the immediate v1cini~ of the supports. The experimental 

data are reported and discussed in Chapters 2 and 6. 

It is found that the theoretical analyses which are 

developed in Chapters 3 to 5 give 

with the corresponding test results. 

reasonable agreement 
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CHAPTER 1 

INTRODUCTION 

The rigid-plastic method of analysis has been used widely to 

examine the dynamic plastic response of beams, plates, shells and 

other structures subject to short duration, high intensity 

loading [1-5J, which arise in the fields of structural 

crashworthiness, energy absorbing systems and the safety of 

nuclear and chemical plant, etc. Lee and Symonds [6J first 

introduced this method for the analysis of beams under transverse 

impact. The techniques of analysis have also been incorporated 

successfully into many design procedures and design codes [7J. 

Ignoring material elasticity leads to significant simplifications 

for many problems and appears reasonable, provided the external 

dynamic energy is at least 3 times larger than the maximum amount 

of strain energy which can be absorbed by a structure in a wholly 

elastic manner [8J. 

Parkes examined the dynamic response of a cantilever beam 

struck by a mass at its tip [9J and a clamped beam struck 

at any point on the span [10J. If the striker mass is large 

compared with the beam mass, the moving hinge phases are very 

short and most of the external energy is absorbed by plastic 

deformation during the final phase of motion in which the beam 

rotates about the supports. Reference [9J also found that the 

permanent deformation is larger when the gravitational effects 

are considered. Reference [10] ignored some cases in which the 

bending moments near the impact point may be larger than the 
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plastic limit moment. These cases are considered in Chapters 3 

and 4 of this thesis. The dynamic response of a beam struck by a 

mass were also discussed in references [11-15J. 

There are many other investigations into the dynamic plastic 

response of beams with different loads and different support 

conditions [1-5J. Two approaches can be used to analyse the 

dynamic response of beam; one uses linear and angular momentum 

equations and the other employs the equilibrium equations of a 

beam element. In most cases, velocities and permanent 

deformations are more easily obtained from the first approach, 

but the static admissibility conditions can be more easily 

checked from the second approach since velocities and permanent 

deformations are obtained from consideration of the shear force 

and bending moment expressions. 

Many papers have been published on the dynamic plastic 

response of circular plates and annular plates [1-5J, but few 

investigations have been conducted on square and rectangular 

plates [16-20J. Conroy [21J discussed the dynamic response of a 

simply supported circular plate subjected to a dynamic circular 

loading in the central region and obtained permanent deformations 

of plate when the radial bending moment M is not negative in the 
r 

plate. In other words, the external loading P is less than some 

certain value P2 • Her work can be extended for loads with P>P2 

but a numerical method is required to solve the differential 

equations. Some researchers also have examined plates struck by 

a mass [20,22,23J. 
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The dynamic response of shells [1-5J, beam grillages [24,25J 

and various energy absorbing devices [5,26J have also been 

studied. 

Although ignoring material elasticity is a significant 

simplification, analytical solutions for many problems of dynamic 

response are still very difficult due to the complexity of this 

class of problems. Some numerical procedures [1-5J and some 

approximate methods [1-5J have been developed. 

Transverse shear forces according to classical (bending only) 

theories are initially infinite at the boundaries of loaded zones 

in rigid-plastic beams, plates and shells subjected to an 

impulsive load [13,27,28J or struck by a mass [9-15J. 

However, by way of contrast, the transverse shear forces for a 

statically loaded structure are finite because they must be in 

equilibrium with the total external transverse load. This 

situation is responsible for the observation that transverse 

shear forces exercise a more important influence on the response 

of dynamically loaded rigid-plastic structures than on the 

static-plastic behaviour. Indeed beams, for example, may fail 

due to excessive transverse shear forces at the supports when 
~ 

subjected to impulsive velocities [29J or a~act point when 

struck by a mass [30J. Transverse shear effects play 'an 

important role in a structure which responds with higher modal 

deformation forms [31J and dominate the behaviour of ideal fibre-

reinforced beams [32,33J and plates [34J. 

The transverse shear effects of beams struck by a 



mass were examined by Symonds [13J, Jones and Oliveira 

"[14J and Oliveira [15J, etc. Nonaka [12J analysed some 

interaction effects in a rigid-plastic beam which carried a 

concentrated mass at the centre subjected to an impulsive load. 

His results can be directly used for a clamped beam with a 

uniform cross-section struck by a mass if the 

concentrated mass m and impulse I are replaced by the o 

mass and its impulse at the instant when it contacts the beam, 

respectively. It is doubtful whether the static admissibility 

conditions of shear force were correctly checked for the second 

and third phases of motion, since inertial forces and transverse 

shear forces shown in Fig. 6-8 of reference [12J for second and 

third phases of motion are not correct [55J. 

Plastic yield criteri~ of beams relating the generalized 

stresses M and Q wey~ examined by several authors [35J with local 

or non-local theories. It is shown in Reference [35J that a 

number of local and non-local theories give similar curves in 

M/M _Q/Q plane for beams with rectangular cross-sections, but 
o 0 

there is a large difference between the local and non-local 

theories for beams with I shaped cross-sections. The non-local 

interaction curves for I-beams are non-convex if the maximum 

shear force Qo is based on the total cross-sectional area. 

Oliveira and Jones [35J suggested that one may select whichever 

M/M _Q/Q curve for beams with rectangular cross-section is the 
a 0 

most convenient and a suitable compromise from an engineering 

viewpoint between local and non-local theories might be achieved 

for I-beams when using a local theory with a maximum transverse 

4 
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shear force based only on the web area. 

Recently, Jones further developed bound methods with 

transverse shear effects in the dynamic plastic behaviour of 

structures [36J. He shows that the simple bound theorems provide 

excellent estimates of the response durations and permanent 

displacements of impulsively loaded beams, circular plates and 

cylindrical shells when transverse shear effects are important 

and also provide exact agreement with the behaviour of all the 

dynamic ideal fibre-reinforced structures examined. 

Jones and Oliveira examined the influence of rotatory 

inertia of dynamical loading beams [14,15J, circular plates [37J 

and cylindrical shells [28J. Their results show that the 

influence of rotatory inertia is less important than some other 

influences and can be neglected from an engineering viewpoint for 

most practical cases. 

Bending only solutions or shear and bending solutions give 

good agreement with some experimental results [9-12J, provided 

the maximum permanent deformation is small compared with the 
, 

thickness or there is no axial restraint on the supports. As 

previously stated, ignoring material elasticity is reasonable 

when the external dynamic energy is very large compared with the 

energy that could be stored elastically in the structure. On the 

other hand, large external energy will cause large deformation 

then the influence of finite deflections, or geometry changes, 

can introduce in-plane or membrane forces which might exercise an 

important influence on the structural behaviour. This phenomenon 



is particularly important for axially restrained beams and 

cylindrical shells and for circular and rectangular plates 

subjected to transverse dynamic loads [7J. 

6 

Symonds and Mentel [38J examined finite deformations of 

simply supported and clamped beams subjected to an impulsive 

loading. They assumed that the normal force N on a cross-section 

is a constant along the beam, provided the deformation is small 

compared to the half span of a beam. This assumption is also 

used in some other examinations of finite deformation effects 

[12,39,40J. References [17,38J show that membrane forces playa 

dominant role when maximum permanent deformations are larger than 

the corresponding thickness of clamped beams and plates or larger 

than half thickness of simply supported beams and plates at least 

for beams governed by the parabolic interaction yield curve 

('exact' yield curve) shown in Fig. 1 of reference [40J. 

Solutions relating to approximative square yield curves, shown in 

Fig. 1 of reference [40J, do bound the 'exact' solutions 

[17,39,40J and also give good agreements with experimental 

results [17,40J. 

Nonaka [12J developed a one degree-of-freedom theoretical 

solution for beams struck by a mass, in which the first 

phase of motion with travelling hinges is ignored unless the 

mass is small. The one degree-of-freedom theoretical 

method leads. to some simplifications and enabled him to more 

easily analyse the influence of both finite deflection and strain 

rate sensitivity. Some approximabl theoretical procedures have 

been developed to estimate the dynamic plastic behaviour of 
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arbitrary shaped plates (including beams as a special case) [17] 

and shells [41] undergo finite displacements and have provided 

reasonable estimates of the available experimental results. 

Oliveira [20] has examined the influence of finite deflections of 

beams and rectangular plates struck by a falling mass at the 

centre using a mode approximation technique and an energy 

approach. A large difference might occur between these two 

methods when the mass of a falling body is much larger than the 

mass of the whole beam. 

Another important complicating factor on the dynamic 

behaviour of structures is the dependence of yield stress on 

strain rate. Hot rolled mild steel, for example, is notoriously 

strain rate sensitive since the yield stress is double the 

corresponding 'static' yield stress at a strain rate of 40 s-1 

approximately [42]. On the other hand, aluminium 6061T6 is 

essentially strain rate insensitive at usual strain rates 

encountered in practice [42]. Therefore, the correction for the 

dependence of yield stress on strain rate should be made in the 

rigid-plastic theory for those strain rate sensitive materials. 

Parkes [9,10] and Ezra [11] have catered for the influence 

of strain rate in their examinations on cantilever, clamped and 

simply supported beams struck by a mass. The 'dynamic' 

yield moment with the influence of Btrain rate sensitivity is 

obtained by multiplying the corresponding 'static' yield moment 

with a constant dynamic factor based on a mean rate of strain 

[10] at the outer fibre during the entire response. This 
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procedure is not strictly correct since the strain rate may vary 

through the depth of a beam [40J and even the strain rate at the 

outer fibre would change with time. Nevertheless, Symonds [42J 

demonstrated that a mode approximation with stationary plastic 

hinges of finite width could be used to develop an accurate 

theoretical procedure for viscoplastic cantilever beams and 

indeed' Parkes [9,10J and Ezra [llJ obtained good agreement 

between their theories and experimental work. Nonaka [12J 

assumed that plastic strains occur uniformly in triangular 

regions in the middle and at the supports for his one degree-of-

freedom model of a beam. The Cowper-Symonds empirical expression 

C1 ' o 
C1 o 

is employed for considering the influence of strain rate 

sensitivity, where C1 ' and C1 are 'dynamic' and 'static' yield o 0 

stresses, £ is the uniaxial strain rate and D and P are material 

constants. Equation (1) is also used in many other papers 

[26,39,40,42,43J. Many simplifications have been developed over 

the years [1-5J since material strain rate effects are a highly 

non-linear phenomenon which make theoretical analyses difficult. 

The influence of material strain hardening has also been 

examiried [1-5J. It appears that material strain hardening is not 

important for moderate strains or permanent transverse 

deflections of beams unless a material hardens significantly [7J. 

Symonds [42J and Perrone [43] suggested that a product-type 

mathematical representation could be used to describe a strain 



hardening rate-sensitive material; thus 

a ' c 
a o 

where feE) and geE) are strain-rate sensitive and strain 

hardening relations, respectively. 

9 

(2) 

Menkes and Opat [44J conducted an experimental investigation 

into dynamic plastic response and failure of fully clamped 

aluminium beams subjected to uniformly distributed velocities 

over the entire span. On the basis of these experimental tests, 

Menkes and Opat classified the three failure modes for fully 

clamped beams with rectangular cross-section as 

Mode 1: large inelastic deformation of the entire beam; 

Mode 2: tearing (tensile failure) of the beam at the 

supports; 

Mode 3: transverse shear failure of the beam material at 

the supports. 

It appears likely that similar types of failure modes exist for 

other kinds of structures and for beams with different loadings, 

but the failure locations may be different. 

As previously stated, large inelastic deformation as a 

f~a~~ of dynamic behaviour has been widely discussed for a 

variety of structures subjected to different dynamic loads. 

However, most theoretical methods and most numerical schemes for 

the dynamic behaviour of structures use a material with an 

unlimited ductility. Clearly, this is a severe idealisation for 
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real materials [44J. Few papers [29J have been published on the 

dynamic behaviour of structures made from a material with a 

limited elongation. The reason may be that it is difficult to 

correctly estimate the maximum strain in structures. Jones [29J 

used his former work [17J with Nonaka's assumption [12J, in which 

plastic strains occur in triangular regions in the middle and at 
tJte 

the supports, to estimate the threshold velocity fo~set of 

mode 2 behaviour of clamped beams subjected to uniformly 

distributed loading. He obtained reasonable 

agreement between his theoretical predictions and Menkes and 

Opat's experimental tests. 

Instead of an 'exact' amount of shear sliding which cause 

shear failure in structures, a vague criterion W = kH, where W 
s s 

,~ 
is~magnitude of shear sliding, H is thickness of beam and plate 

and 0 < k ~ 1, is usually given [15,28,37,45J because of paucity 

of both theoretical and experimental work. It appears nobody has 
1M 

examined the value o~fficient k for a particular problem. 

Nevertheless, Jones [29J did obtain a reasonable prediction on 

shear failure with k=1 compared to Menkes and Opat's experimental 

tests [44J. 

It shows that Mode 3 failures can occur at lower velocities 

than Mode 2 failures when ratio 2l/H is rather small [29]. It 

also appe"ars that this phenomenon may occur with higher Ytlt.f;tr,('(~ 

materials. Indeed, equations (15) and (24) in 

reference [29] predict that Mode 3 failure precede Mode 2 

failures provided the limit elongation 
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It is clear that Mode 2 failures cannot occur if Mode 3 failures 

precede Mode 2 failures since transverse shear forces are 

dominant in the early stages of motion when the displacement of a 

structure remains small (small strain) [~5J. 

It should be noted from Menkes and Opat's experimental tests 

[~~J that some of the beams exhibited failures which involved 

both the tearing and shearing modes when subjected to the 

impulsive velocities which lay between the smallest velocities 

required for the Mode 2 and Mode 3 failures [29J. The mixed 

failure of tearing and shearing also might occur before the pure 

tearing failure (Mode 2) and the pure shear failure (Mode 3) for 

some dynamic problems since the reduced cross-sectional area 

after shear sliding would have a reduced bending moment carrying 

capacity. 

A lot of experimental work has been done with the 

development of theoretical analysis on dynamic behaviour of 

structures [1-5J. Duwez, Clark and Bohnenblust [~6J performed 

some experimental tests on simply supported long beams deformed due to an 

impact load at the centre. Parkes [10J reported some 

experimental test results on clamped beams without axial 

restraints struck transversely by a 'heavy' (~ lb.) or a 'light' 

(0.005 lb.) mass at 3 different points. Nonaka [12J conducted 

some tests on beams with and without axial constraints (fully 

clamped and clamped) subjected to an impulsive load on the centre 

concentrated mass. Most of these tests on beams yielding large 
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plastic strain, but no broken specimens were reported in these 

papers [46,10,12J. Parkes [9] and Bodner and Symonds [8] 

conducted some experimental tests on cantilever beams struck by a 

falling mass at the tip. Some researchers who were interested in 

deformations and perforation velocities of plates struck by a 

mass in the middle have performed experimental tests [47]. Beams 

and plates subjected to impulsive loading are also an important 

topic and many experimental tests have been done over the past 

years [8,40,44,48-52]. Most experimental tests give good 

agreement with correspondihg available theoretical analyses [8-

12,48-52, etc.], therefore, some theoretical analyses are further 

confirmed by experimental tests. 

Jones [53] examined the scaling of geometrically similar 

structures subjected to large dynamic loads which cause an 

inelastic material response. It appears that the wholly ductile 

dynamic response (without fracture) of small-scale models and 

full-scale prototypes might conform to the principle of 

elementary geometrical scaling. However, the well known size 

effect associated with material strain rate sensitivity should be 

taken into account and might be exacerbated in structures with 

load-deflection relationships which decrease after an initial 

peak value. It shows from experimental tests [54] that 

geometrical scaling is not satisfied when tearing, cutting or 

ductile-brittle transitions occur during a structure response. 

In this thesis, the main attention is focussed on the 

dynamic response of clamped beams struck by a mass at any 



pOint of the beam span. This is an important practical problem 

which arises in a number of industries including nuclear, 

offshore and naval architecture. This subject might be 

particularly useful for ship collision since the longitudinal 

members of ships can sometimes be idealised as beams. 

13 

The theoretical work of Parkes [10J, Symonds [13J, Nonaka 

[12J and Oliveira [15J has been further developed and extended to 

shear and bending response and finite deflection of clamped beam 

struck by a mass at any point of its span. Furthermore, 

the phenomenon of beam failures is discussed. A series of 

experimental tests (total over 250 specimens) has been conducted 

with external dynamic energies which cause not only large 

inelastic response but also fracture of the beam specimens. 



• 14 

CHAPTER 2 

EXPERIMENTAL DETAILS 

2.1 Introduction 

A wide range of experimental facilities are available for 

dynamic testing in the Department of Mechanical Engineering at 

Liverpool University [56]. The drop hammer rig can achieve 

impact velocities up to 12 ms- 1 The tup mass can be varied 

between 5 kg and 210 kg and electronic instruments are available 

to record the test results which can be processed uSJng various 

microcomputer facilities. 

The experimental tests on clamped beams which were struck by 

a falling mass, which are reported in this thesis, were conducted 

on the above drop hammer rig. A total of 260 specimens of 

aluminium alloy and steel was tested. 

2.2 General Arrangement and Equipment 

The experimental arrangement is shown in Fig. 1. The drop 

hammer has a variable drop height up to a maximum value of 9 m. 

The tup impact face area is 130 mm x 150 mm with a typical 
~ 

maximum speCimen height of 300 mm. The width betwee~ 

vertical guides is 130 mm. There are ten levels of height 

designed in this rig. The tup can also be stopped at any 

intermediate height by pushing the stop button switch and the 

corresponding height can be read from a ruler which is attached 



FIG. 1 The experimental arrangement. 
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FIG. 2 The specimen holder. 1) steel cover plates, 2) beam 

specimen, 3) steel stocks, and 4) thick steel plates. 
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FIG. 3 The tup. 1) steel sheets, 2) wood stock, 3) tup 

head connector, and 4) tup heads. 
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to the rig. A remote control for the motion of the tup is 

available. A specimen was held in a specimen holder, shown in 

Fig. 2, which was designed to obtain the desired clamped boundary 

conditions. The specimen holder consists of three parts; two 

covers, two steel blocks and one thick steel plate. There are 

four holes in each cover and each steel block. Four bolts hold 

the specimen. In order to prevent sliding between specimen and 
the holder, the covers and steel blocks were serrated. The connection 
between the thick steel plate and the steel blocks are made through four 

elongated holes in the plate and two tapped holes in each block. 

The elongated holes in the plate allow the span between two 

blocks to be varied. The specimen holder was placed on the 

platform of the base of the rig and was tightened by bolts to 

prevent it from moving during the test. The tup shown in Fig. 3 

consists of two pieces of steel sheet, a wood block, a tup head 

connector and tup head. The steel sheet provides a guide for the 

tup. The tup head connector enables the tup head to be changed. 

Two tup heads were designed to satisfy the experimental 

requirement that a tup can strike at any point of the beam. The 

width of impact area is 5.08 mm shown in Fig. 3. The total 

weight of the tup is 5 kg toy both de.sifns. 

2.3 Specimen and Material Properties 

The two kinds of specimens shown in Fig. 4 were designed in 

order to assess the effectiveness of clamping. The large end 

specimen shown in Fig. 4a models an ideally clamped beam since 

the deformation at the supports would be negligible in comparison 

with that in the beam sections. However, the flat end specimen 
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FIG. 4 Beam specimens. (a) large end specimen; (b) flat end 

specimen. 

(4) 

1.25" 

(b) 

FIG. 5 Static tension test specimens. (a) standard 0.25 in-

round specimen; (b) standard 0.25 in-wide plate 

specimen. 
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Type Yield 
of Thickness Specimen Original Stress UTS Elongation 

Beam Material (in) Number Material N/rnrtf N/rnrtf t", (%) 

0.15 AI 1-7 
181 and 321 and 

0.2 AII1-12 Thick 183; 315; 
Aluminium Aluminium average average Approximate 
Alloy 0.25 AlII 1-6 Plate 182 318 19% 

Large 0.3 AIVl-6 
End 
Beams 0.15 SI1-6 

321 and 504 and 
0.2 SII 1-12 Thick 327; 498; 

Steel Steel average average Approximate 
0.25 SIIIl-6 Plate 324 501 31% 

0.3 SIVl-6 

0.15 AlI 1-25 348 and 466 and 
361 ; 485; 

0.2 AtII 1-25 Aluminium average average 
Aluminium Bar 1 354.5 415.5 Approximate 
Alloy 0.25 AtIIl; 1-25 19% 

average average 
Flat 0.3 AlIVl-25 Aluminium from 4 from Approximate 
End Bar 2 tests tests 15% 
Beams 412 553 

0.15 STIl-25 335 and 461 and 
Steel 339; 468; Approximate 

0.2 STIIl-25 Bar 1 average average 39% 
Steel 337 464.5 

0.25 STIIIl-25 229,301 444,441 
Steel 303 and 443.5 Approximate 

0.3 STIVl-25 Bar 2 304; and 441; 40% 
average average 
302 444 

Table 1. The specimen details and some mechanical properties of materials. 
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is more easily machined and saves machining time. A total of 60 

large end specimens and 200 flat end specimens of aluminium alloy 

and steel were tested. 

The beam width was chosen as B:0.4 in (10.16 mm). The span 

of beam is 4 in (101.6 mm) (the total length of specimen is 8 in 

(203.2 mm». The thickness of beam was varied from 0.15 in (3.81 

mm) to 0.3 in (7.62 mm). The dimensions and other details of the 

specimens were shown in Table 1. 

The large end specimen was made from one aluminium alloy 

thick plate BS1470-HS15 and one steel thick plate BS4360-43A, 

while the flat end specimen was made from similar materials but 

from different bar materials. At least two static tensile tests 

were conducted for each piece of material in order to obtain the 

mechanical properties. The static tensile tests were carried out 

on the Dartec testing machine, which is installed in the 

Department of Mechanical Engineering at Liverpool University, at 

-4 -1 average strain rates of approximat€l~ 5 x 10 s • The tensile 

test specimens are standard 0.25-in-round specimen made from 

thick plates and bars with original thickness of 0.5 in and 

standard 0.25-in-wide plate specimen made from bars with original 

thickness of 0.3 in. The static tensile test specimens are shown 

in Fig. 5. The typical stress-strain curves for aluminium alloy 

and steel are shown in Fig. 6. Some of the test data are given 

in Table 1. It shows that the test results are different with 

different bars. A distinct yield flow region appeared in the 

stress-strain curves of the steel, while aluminium alloy strain 

hardens. The yield stresses are obtained from the average values 



of stress in the yield flow region of the stress-strain curves 

for steel, while for aluminium alloy the yield stresses are 

obtained from stress-strain curves using offset method with 0.2% 

strain. 

'7 

Six large end specimens and six flat end specimens of 

aluminium alloy and steel were statically loaded in the Dartec 

testing machine until failure. The load was applied at different 

POints of the beam and the locations from the right-hand support 

are £, = 0.5 in, '.0 in and 2 in. The load-deflection curves are 

shown in Figs. 7 and 8. These show that when a beam broke at the 

support a clear unloading region appears in the load-deflection 

curves, while for a beam which breaks at the loading point the 

load continuously increased with the increase of the deflection 

of the beam until the beam failed and suddenly dropped to zero. 

It appears that tensile tearing governed the failures of the 

aluminium alloy beams and the large end steel beams except for 

the case when the load was applied at the centre of the beam or 

£, = 2 in, while for flat end steel beams and the large end steel 

beam with £, = 2 in, the failure was governed by shear*. Strain 

gauges were used on the flat end beams at some special points, 

e.g. at supports and the loading point. However, only limi tE.J viol..A, 

were recorded at each support and loading pOint since the strains 

at these points increased sharply and exceeded the allowable 

strain for the strain gauges when the maximum deformation of beam 

was small in comparison with that corresponding to beam failure. 

* The failure of these beams is further discussed in Chapter 7. 
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2.4 Loading 

The impact loads were applied on beams by the tup, or the 

striker. The large end beams with thickness of H = 0.15 in, 0.25 

in, and 0.3 in were struck at the centre, while the beam with H = 

0.2 in were impacted at both !1 = 2 in (the centre of beam) and 

!,= 0.5 in. The flat end beams with H = 0.15 in, 0.2 in, 0.25 in 

and 0.3 in were struck at !, = 2 in, '.5 in, , in, 0.5 in and 

0.25 in. !, = 2 in means that the impact point is at the centre 

of beam, while the impact point i1 = 0.25 in is very close to the 

support. The tests with the same specimen materials, same impact 

pOint and same thickness of beam were classified as a type of 

test. There were 50 types of test and at least four specimens of 

each type were tested with different impact velocities. A 

failure (cracked or broken beam) was sought for each type of test 

in order to examine the phenomenon of beam failures so that the 

range of external kinetic energy is from very low value (a small 

plastic deformation of beam) to a very high value (a cracked or 

broken beam was obtained). 

2.5 Data Recording Instruments* 

A considerable amount of experimental data, e.g. the 

velocity-time history at the impact point, motion of beam and 

strain-time relations at some particular pOints, were recorded 

during the tests. 

* More details of these instruments are given in reference [56J. 
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The velocity of the tup or the velocity at impact point of 

beam (it is assumed that the tup is in contact with beam) was 

measured using a laser doppler velocimeter. Transient signals 

were stored using DL1080. transient recorders. The DL1080 

transient signals recorder is a digital instrument designed to 

capture single shot; low repetition and other analogue signals. 

After capture the signals are presented for continuous display on 

a eRO, analogue readout to an XY plotter, digital storage on an 

internal casb£tte recorder or digital output to an external 

peripheral processor. There are two independent signal inputs in 

the DL1080 transient recorder so that it is possible to sample 

both inputs simultaneously. The test data were recorded on mini

cas~ettes. On playback to DL1080 transient recorder's memory 

thLs data can be re-examined. 

A Hadland high speed camera was used to take some films 

during tests. Different speeds with ~ or half frame exposures 

were used. These films clearly show the motion of the beam and 

the tup during the entire response. 

Several specimens with strain gauges at some particular 

points were tested. The strain gauge signals were amplified 

using 1 MHz Tektronic differential amplifiers. The amplified 

strain gauge signals were again stored in DL1080 transient 

recorders and were recorded on mini-cas~ctt~~ with digital 

storage. 
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2.6 Data Processing, Analysis and Measurement of Deformation of 

Beam 

Transient data from recorders can be processed on a BBC 

microcomputer. A series of software for signal processing is now 

available in the Department of Mechanical Engineering [56]. A 

'Readit' programme transfers the data from the DL1080 transient 

recorder to the microcomputer's memory, and a 'Try8' programme is 

used to process this data. After filtering of frequency, the 

displacement of the beam at the impact point is obtained by 

integrating the velocity signal which was recorded during the 

test, and the acceleration or load is obtained by differentiating 

the velocity signal. The filtered velocity signal, displacement 

of beam at the impact point and load curves can be obtained by a 

printer or an XY plotteY. The 'Readit', 'Try8' and some other 

programmes were written by Birch [56]. The strain gauge signals 

were processed with some similar software~ 

~ 
The films taken wit~dland high speed camera can be 

analysed on a Vanguard motion analyser. The deformation profiles 

can be measured in this analyser and the data can be directly 

printed on a printer or transferred into a BBC microcomputer. 

Most of the permanent deformation profiles were measured 

after the,test by a travelling microscope. This microscope can 

travel in both x and y directions and measures the profile with 

an accuracy of 0.01 mm. 
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CHAPTER 3 

SHEAR AND BENDING RESPONSE OF A RIGID-PLASTIC CLAMPED BEAM STRUCK 

BY A MASS AT ANY POINT OF ITS SPAN 

3.1 Introduction 

The dynamic response of a rigid-plastic clamped beam due to 

an impact loading has been examined by several authors [10,13-15]. 

The extension of this work to examine the shear and bending 

response of a clamped beam struck by a mass at any point 

of its span, shown in Fig. 9a, is presented in this Chapter. 

-The beam, which is of length t1 + t2 = 2t and mass m per 

unit length, is struck at a point 11 from the right-hand support 

by a mass G shown in Fig. 9a. After impact the striker G is 

sUpposed ~o remain in contact with the beam. Therefore, the 

striker and the struck point of beam have the same velocity 

throughout the entire response and the initial velocity is Vo at 

the instant of first contact. The square yield curve relating to 

shear forces and bending moments shown in Fig. 9c, which is used 

in references [13~15], is employed herein. Without loss of 

generality 11 can be taken as less than 1
2

• 

A general velocity profile shown in Fig. 10a is assumed and 

is suitable for most cases discussed in Section 3.3. The 

corresponding equations of motion and the shear force and bending moment 

distributions are given in Section 3.2. The basic equations for 

the cases ignored by Parkes [10], in which a travelling bending 
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FIG. 10 Motion of beam with two plastic travelling hinges, one 
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plastic hinge develops at z = Zo or z = -zO instead of a 

stationary hinge at z = 0, are given in Section 3.3. Some 

continuity and discontinuity conditions of motion at plastic 

bending and shear hinges are also displayed in Section 3.2. 

Theoretical analysis and the method of solution are given in 
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Sections 3.3 and 3.4, respectively, while discussion is given in 

Section 3.5. A detailed examination of the static admissibility 

of the solution is given in Appendix I. 

3.2 Basic Equations 

If a beam struck by a mass G yields a stationary 

bending hinge at the impact pOint x=O with two travelling bending 

hinges at x=a 1 and x=-a2 which move towards the suppor.ts, and two 

parts of beam between the stationary hinge and travelling hinges 

rotating as rigid bodies about the travelling hinges while the 

rest of beam beyond the travelling hinges is undeformed, the 

velocity profile shown in Fig. lOa can be written as 

0 -1.2 <: x .;; --a2 
W' (1 x + -+ -) -a <: x < 0 2 a2 2 

(3-1) 
W(x) = W' (, x + -- -) o < x < a, 1 a, 

0 + a 1 .;; x ~ I., 

Where W' and W' are the velocities on the right and the left side 1 2 

adjacent to the impact pOint, respectively, i.e. W' = W2 at x = 

0- and W' = W' + 6() 1 at x=O , ( )1 = ar- and T is time. 
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+ -The linear and angular momentum equations for 0 ~ x ~ a 1 

and -a- ~ x ~ 0 - , are 2 /~) 

1 -1 -
-2MO - Q'Oa, (3-2a) -m a 2W" + 1) 1m W 'a 'a = 3 1 .. ', 1 1 1 

. ('Vt-~ , ~ 'rT . - "V 

(3-2b) 2 m (W "a + W 'a ') = -Ql0 , , , 1 

1 - a 2 W " 1 - W' , -2MO + Q20a2 (3-2c) -m + b m 2 a2 a2 = 3 2 2 

1 - (W "a + W 'a ') = Q20 (3-2d) 2 m 2 2 2 2 

since the shear force is equal to zero in a plastic hinge in 

Timoshenko beam if rotatory inertia is neglected and no external 

concentrated forces act on the plastic hinge and where Q,O and 

Q20 are defined in Fig. lOb. 

The transverse equilibrium condition at the impact point 

gives 

-Q,O + Q20 = -GWO" (3-2e) 

where Wb is the velocity at the impact point x = O. 

According to transverse equilibrium condition and moment 

equilibrium condition with M = -MO at the supports of the beam, 

the shear force and bending moment distributions shown in Fig. 

'Oc can be expressed as 

M2(x) = -M 0 -Q2(x) = Q20 
m 

[W " + W"(x)]x +-2 2 
M2(x) M ' - ,- 'Y!-= o + Q20x + '3 m W2"'Y!- + 1) m W"(x) 

for -a2 ~ x ~ 0 (3-3c,d) 

Q, (x) Q ' -= '0 + 2 m [W," + W"(x)]x 

M1 (x) Mo + Q,Ox 1 - 'Y!- 1- 'Y!-= + - m W " + 1) m W"(x) 3 , 
for 0 C x C at (3-3e,f) 

Q, (x) = 0 

Ml (x) = -M 0 
for a, ( X ~ fl (3-3g,h) 
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since the shear forces and bending moments are continuous in whole 

beam [13,14J and where subscripts' and 2 indicate shear forces 

and bending moments on the right side and left side of impact 

pOint, respectively. 

Equations (3-'), (3-2), (3-3) and (3-4) can be rewritten to 

0 1 ---~ z ~ -z2 r . z W
2
(, + -. + -) -z2 ~ z " 

0 
W(z) = z2 (3-4) . z 

W, (1 + -- -) o (z ~ z, 
z, 

0 + 
z, ~ z ~ 

.. , .:. 12u( , + q,ov,z,) 
z, W, + '2 W1 Z, = g z, (3-5a) 

.. . 
z, W, + W,z, = - 8uv,q'O/g (3-5b) 

.. , .:. 
z2 W2 + '2 W2Z2 = -'2u ( , - q20v ,z2)/gz2 (3-5c) 

.. . 
z2 W2 + W2Z2 = 8uv,q20/g (3-5d) 

.. 
-q,o + Q20 = -Wo/4uv, (3-5e) 

and 

, 
for - r ~ z ,-z2 (3-6a,b) 

m2 (z) = -, 

Q2(z) = 
for -z2 ( z ~ 0 (3-6c,d) 

= , + 2q2· Ov,z + JL ~ Z2 + -'- ~ ~(Z)Z2 
ou 2 '2 u 

Q 1 (z) 
g .. .. 

= Q10 + ~ [W 1 + W(z)Jz 
1 

m1(z) 1 + 2Q10V,z + fu ~,Z2 1 .. = + - ~ Q(Z)ZI 
12 u 

for 0 ~ z , z, (3-6e,f) 

Q, (z) = 0 

m, (z) = -1 
for z, ~ z ~ , <3-6g,h) 
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where 

a, a2 Qal, GV 2 
X 0 W W/l" z = -, zl = T," , z2 = T," , v 1 =~, u = 2Ma 

, = 
l, a 

iiill II Ma 
(3-7a-l) 

Q M ( . ) a( ) 
t g =0' q = Qa 

, r = i' m = 
MO 

, = --at" and = T 
2 GVOll 

At a bending plastic hinge z = z*, the deformation and 

velocity must be continuous, the acceleration may be 

discontinuous but it must satisfy [6J 

(3-8~) 

where [xJ means the difference in X on either side of an 

interface travelling with a velocity z*, e is angular velocity at 

z=z* and it is positive according to clockwise rotation. At a 

shear hinge Z=z, the velocity may be discontinuous to accommodate 

any transverse shear sliding, but the geometrical condition 
. 

[awJI _ = 0 
6z z=z 

<3-8b) 

must be satisfied and the shear forces and bending moments are 

continuous at both bending hinges and shear hinges [13,14J. 

3.3 Theoretical Analysis 

The general procedure for generating a theoretical solution 

for the dynamic response of beams is that a kinematically 

admissible velocity field which describes the motion of a beam is 

first postulated. The solution usually can then be obtained from 

the equilibrium equations or the linear and angular momentum 

equations with the initial and boundary conditions. Finally the 

static admissibility conditions have to be checked to examine if any 
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yield violatiomhave occurred during entire response. If both 

kinematic and static admissibility conditions are satisfied, then 

the solution obtained is 'exact'. 

It is evident from references 

profile of beam may change with the 

[13-15J that the velocity 
Q011 

magnitude of v 1 = ~ 
o Q012 ~ 

or v2 = ~ when finite shear strength of materials is 
o 

considered. 

A) Phase 1, shear sliding 0 , t < t~ 

After impact,shear sliding appears at both sides of the 

impact point (Z=O- and Z=O+) where the shear forces q10 = -Q20 = 

-1 and a stationary plastic hinge is formed at Z=O while two 

stationary plastic hinges appear at z=z1 and z=-z2. The velocity 

profile shown in Fig. 11a is the same as equation (3-4). 

Equations (3-4) and (3-5) with Q10 = -Q20 = -1 and Z1=Z2=0 give 

12u ( 1 - v 1 z 1 ) 
Z 12 W 1 = (3-9a) g 

.. 
z1W1 = 8uv,tg (3-9b) 

.. 12u ( 1 - v1z2 ) 
2- (3-9c) z2 W2 = g 
.. 

z2W2 = 8uv 1/g (3-9d) 

.. 
and Wo = -8uv1 (3-ge) 
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Integrating equations (3-9) with respect to time t, we 

obtain 

2 • 8 v 1 u • 
W 1 = 3' -g- t, W 0 = 2u - 8uv 1 t 

C3-10a-e) 

. . . . 
and z2=z" W2=W, and W2=W 1 since the initial conditions W,=W2=O, . 
W1=W2=O, WO=2u and Wo=O at t=O. 

At C3-"a) 

. . . 
W1 = W2 = WO' the shear sliding stops and the deformations in 

this phase are 

3 ug(v 1 
+ 1. g) 

3 ug WO(ts ) 2 , W1 (ts ) W
2
(t

s
) <3-11b ,c) =2'v

1
(v

1 
+ 3g)Z = = 4' (v 1 + 3g)Z 

3 ug 
= 4' v 1 (v 1 + 3g) (3-11d) 

where W1s and W2s are the maximum shear sliding on the right and 

left side of the impact point, respectively. 

In this phase, equations (3-6) give* 

B) Phase 2, ts < t ( t1 

. . . 
It is suggested from the end of phase 1 that Wo = W1 = W2 and 

Z1 = z2 but z1 and z2 are no longer constants in this phase and 

they are a function of the time t. The velocity profile in this 

phase is shown in Fig. 12. 

* The examination of static admissibility conditions in this 
Chapter is given in Appendix I. 
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Equations (3-4) and (3-5) with z1 = z2' q10 =-q20 and 
. . . 
Wo = W1 = W2 give 

. 
and (1 +gz 1) W 1 = 2u 

3 .:. 
since z1 = ~ and W1 = 2uv1/(v1+3g) at t=ts' 

Equations (3-12) can be rewritten to 
.. 

W 1 - 4u
2 

W 1 IQ 12 - 24ug = 0 

and 

When z1 = 1, equations (3-13b) and (3-12b) give 

1 g 
t1 = 12 1(1 + g) 

. 
W

1
(t

1
) = 2u/(1+g) 

. 
Integrating (3-13a) after multiplying W1, we obtain 

substituting (3-14b) into (3-14c), we obtain 

Equations (3-6) give 

(3-12a) 

(3-12b) 

C3-13a) 

C3-13b) 

(3-14a) 

C3-14b) 

C3-14c} 

(3-15 ) 

(3-16a) 



and q, i = -q2max > -1 m n 
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(3-16b) 

since zl ~ v1 > 3, or -1 < q1 ~ 0, 0 ~ q2 < 1 and -1 ~ m1 ~ 1, 

-1 ( m2 " ,. 

C) Phase 3, t, < t < t2 

The right side travelling plastic hinge arrives at the right-

hand support at t=t, and will remain there in this phase. So, in 
. . . 

this phase zl=', z,=O and WO=W,=W2. The velocity profile is shown 

in Fig. 13a. 

Equation (3-5b) is not valid in this phase since the reactive 

force on the right-hand support acts on the hinge at Z=Z1=1. 

Fortunately, we know z,=', z1=0 and we can obtain our solution 

from the rest of equations (3-5). 

Equations (3-4), (3-5a) and (3-5c-e) with Zf', zl=O and . . . 
WO=W,=W2 give 

(3-'7a) 

and 1:': g:': 
- 2u W1 - 6U W,-2 (3-17b) 

Integrating equations (3-'7), we obtain 

(3-,8a) 

~u z2Q, + ~ Q + ~ Q = -2(t-t ) + C 
~u 2u 1 ~ , 1 (3-,8b) 



Equations (3-18) give 

• 12u(B+C) 
W1 = gZ22 + 3gz2 + 6 + 2g 

Equations (3-19) and (3-17a) give 

2(gz22 + 3gz2 + 6 + 2g)2 

Z2 = gZ2 (3gZ2 + 12 + 4g)(B+C) 

Combining equation (3-20) and equation (3-19) gives 

aWl 6ugz2(3gZ2 + 12 + 4g)(B+C)2 

aZ2 = (gz2" + 3gz2 + 6 + 2g)l 

• aw 1 • 
since w1 = aZ

2 
z2. 

Integrating equation (3-21), we obtain 

where 24 2gz2 + 3g 
---- arctg [ ] for g < 24 
4g(24-g) 4g(24-g) 

12 2gz2 + 3g - 4g(g - 24) 
---- in[ ] for g > 24 
4g(g-24) 2gz2 + 3g + 4g(g - 24) 

and Band C are defined by equations (3-18c,d). 
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(3-18c,d) 

<3-19 ) 

(3-20) 

(3-21) 

(3-22a) 

(3-22b) 



From equations (3-6) , we can 

gZ2 + 4 + 2g +g/z2 

q1min = 4 + 4g/3 = 
Vl gZ2 + 

q2max 

since z2 > 1 and v1 > 3. Thus 

obtain 

3 gZ2/3 + 4/3 --v1 gZ2 + 
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+ 2g/3 + g/3z2 
4 +4g/3 > 

<1< 
v

1 

(3-23a) 

(3-23b) 

(3-23c) 

and o ~ q2 < 1 , - 1 ~ m2 ~ 1 if 1 )...!. z 2 - 1 (3-23d) 
g 2 2 

Equations (3-23) shows that the solution given by equations 

(3-22) are valid 4 2 
only when g ). -z-2 (-t-

1 
..... ) - z2 (t 1 ) 

3 1 2 
when g > 2 z2 - 1. with time t and 

For i < 2 (t ) 
(t ) - z2 1 ' g z2 1 

since z2 increases 

is a yield violation of bending moment on the right side at z=O 

since m1=1 at z=O. The velocity profile shown in Fig. 13a is no 

longer valid. In this case, we assume that the velocity profile 

shown in Fig. 14a is 

o 

. 
W(z) = (3-24) 

.:. 1-z 
W -3 1-z0 

* see equations (ge) and (9f) in Appendix 1. 

-1 
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which means that the plastic hinge at impact point Z=O now 

disappears and a new travelling plastic hinge occurs at z=zO. 

The linear and angular momentum equations of beam shown 

in Fig. 32a are 

(3-25a) 

1 :.: 
= -2u - 2 z2 W(O) 

<3-25b) 

and (3-25c) 

" 
where W(X) indicates the acceleration at z=X and can be obtained 

from equation (3-24). 

Equations (3-24) and (3-25) give 

(3-26a) 

12u [g(Z2+Z0)2 (z/ +2z2Z0-Z02 -2+4z0 )+4(Z2' +2Z02 -Zo)] 

g [g(Z2+Z0)3+4(Z2'-ZOZ2+Z0z )](Z2+ 1)(1-Z0) 

(3-26b) 

C3-26c) 

A numerical method has to be employed to solve equations (3-26) 
. . 

until zO=O. The initial conditions at t=tl are z2=1, W
3

=W
3
(t,} and 
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zo(t,) is determined by equation (3-26b) with zO(t,)=O. The 

static admissibility conditions need to be checked during numerical 

calculation*. 

_F_or--li~<---::~:;...-Z...::2:...2_-_', ::2Iz=o- = 2",q20 < 0 and 

violation occurs in the bending moment on the left 

The velocity profile is shown in Fig. 15a 

o 

. 
W(z) = 

.:. '-z W --
3 1+Z0 

a yield 

side at z=O. 

(3-27) 

is assumed which indicates that the plastic hinge at the impact 

point z=O is now transferred to z=-zO. 

The linear and angular momentum equations of beam shown in 

Fig. 32b are 

g (1+Z0)2Q(-zo+) -2u 
1 ~ 

b = - - W(O) 2 (3-28a) 

g .. 
g:':( +)( a 

b (Z2-Z0)2 W( -ZO -) + 12 W -Z2 Z2-Z0) = -2u <3-28b) 

~ 
.. 

and [W(-Zo-) 2 + Q(-Z2+)](Z2-Z0) = 0 (3-28c) 

Equations (3-27) and (3-28) give 

<3-29a) 

* see equations (11) in Appendix I. 
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(l+Z0)2 [(Z2-Z0)2 - 2(ZO+1)2] - 6( 1+z0 )/g 
= 4u --~-------::---------

(Z2-Z0)(Z2+1)[} g(l+z0 )' + 1] 
(3-29b) 

(3-29c) 

Equations (3-29) also need a numerical method to solve until 

1 
z2 = r at t=t2• This type of movement starts with zO=O when 

Z2 = p + 2 <3-30) 

which is obtained from ~ = ~ Z22-1 given by equation (3-23d), and 
. 

the initial conditions of W3 and W3 are defined by equations (3-19) 

and (3-22) with z2 given by equation (3-30). The static admissibility 

conditions should be checked during numerical calculation·. 

D) Phase 4, ta < t , t f 

The left side travelling plastic hinge reaches the left-hand 

support at t=t2 and two parts of the beam rotate as rigid bodies 

in this phase of motion. The velocity profile is shown in Fig. 16a • 

[2. 
3 

.. 
(1+r)g+r]W 1 = -4ur(1+r) 

Integrating equation (3-31), we obtain 

* see equations (13) in Appendix I. 

<3-31 ) 

<3-32a) 
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and W1 = <3-32b) 

. 
At t=tf , W=O and 

<3-33) 

Finally, we obtain the maximum permanent deformation in the beam 

<3-34) 

Equations (3-6) give 

1 1~ 1 g 19 1 1 (2 g + 3 r + 1 + b gr) 3 (6 + 9 r + 3 + 18 gr) 
= - - --~---::------- > -1 

.1.g+.1.£+ v 1 .1.g+.1.£+1 
3 3r 3 3r 

1 1 g 
1 3 gr + 2 g + + 6 -

= \1
1 
~-::"'1---:1~g----r , -q 1min < 1 

-g+--+ 3 3 r 

<3-35a) 

<3-35b) 

since v 1 > 3 and r < 1, therefore, -1 < q1 < 0, -1 ( m1 < 1 (3-35c) 

and 3 1 if g ~ rr -,. <3-35d) 

3 1 6m2 I For - < ~ -1, -- - = 2v,q20 < 0 and a yield violation of g r 6z z=O 

bending moment occurs on the left side of the impact point z=O. 

The velocity profile shown in Fig. 16a is no longer valid. A new 

velocity profile shown in Fig. 17a may be expressed in the form 

. 
W(z) = <3-36 ) 
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v
2 
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FIG. 19 Motion of case II for 

1. 5 ~ v 1 < 3 when 
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t#t..e. 
is postulated which means the stationary plastic hinge a~act 

point z=O disappears and a new travelling plastic hinge now 

occurs at z = -z00 

The linear and angular momentum equations of beam shown 

in Fig. 32c give 

C3-37a) 

and 
• (, + Z )2(, + 1)(1 _ 1 -2z ) _ 3(1 + zO) -g' Orr ,0 
W3Z0 = 4u --~----:::-----:"-----------="-- C3-37b) 1 1 1 (or - zo)(r; + 0[3 g(l + ZO)3 + lJ 

Equations (3-37) can be solved by a numerical method until 
. 

the movement of beam stops at w3 = O. The initial conditions are 
. . 

that W3 = W
3
(t2 ) and zo(t2 ) is, defined by equation (3-37b) with 

Zo = O. The static admissibility conditions should be checked during 

the numerical calculation*. 

3.3.2 Case II, 1 ~ v1 ' 3 and v2~ 

Equation (3-10a) shows that if v
1 

< 3 the velocity profile 

introduced in phase I of case I is no longer valid since zl must 

be less than 1 (ll>r equal to 1, we will discuss when z 1 = 1 in this 

section). Equation (3-10) gives zl = 1 when v1 = 3. Therefore, 

we assume that a stationary plastic hinge occurs at the right-hand 

support when vl'~ 3. Equations (3-4), (3-5a) and (3-5c-e) with 

zl = 1 and Z, = 0 give 

. 
12 ~ (W2z22)~ = 2 C3-38a) 

* see equations (17) in Appendix I. 
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(3-38b) 

(3-38c) 

and (3-38d) 

~) Phase 1, shear sliding 

After impact the mechanics of motion are the same as those 

described in phase of case I except the plastic hinge which is 

located on the right side of impact point now remains at the right-

hand support z=l. The velocity profile is shown in Fig. 18a. 

Equations (3-38) with q10 = -1 and q20 = 1 give 

• 12u 
2u - 8v 1ut, W1 = -g- (v 1-1)t , (3-39a-c) 

= _ 6u (1-v ) t 2 
g 1 <3-39d-f) 

(3-39g) 

. .. 
since Wo = 2u, W1 = W2 = 0 and Wo = W1 = W2 = 0 at t=O. Compared . . 
with equations (3-39c) and (3-394), we obtain that W

1 
~ W2 when 

~ < v
1 

< 3, otherwise, Q
1 

< Q2" Therefore, the shear sliding on 

the right side of the impact point first stops if~' v
1 

< 3, 

3 while the left side one will stop at an earlier time when 1 < v1 < 2" 
3 " 

Equations (3-39b-d) for 2 ~ v 1 ~ 3, give Wo = 
" 
W

1 
at 

<3-39h,i) 
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while for 1 < v 1 < ~ 

C3-39j ,k) 

Equations(3-6) show that the static admissibility conditions 

are satisfied, Le. -1 <: q1 ~ 0, -1 ~ m1 ~ 1, 0 ~ q2 ~ 1 and 

-1 ~ m
2 
~ 1. 

3 + For 2 ~ v 1 < 3, shear sliding stops at z=O when t=ts1 while 

the other continues and the velocity profile is shown in Fig. '9a. . . 
Equations (3-38) with Wo = W, and Q20 = , give 

and 

. 
W 1 = 

'2u ( '+v, ) 

(3+g) 

6u{ '+v,) 

(3+g) W, = 

W
2 

= ~ ~ V 2 t 2 
3 g , 

. . 
W2 = W, at t = 

t 

t 2 

Equations (3-6) give 

6u . 8 u 2 3 -+- , W2 = '3 g v, t, z2 = -3+g v, 

+~t 3 ug 
3+g -2 (3+g)(2v,g-3+3V,) 

(3-40a-c) 

(3-40d) 

(3-40e) 

C3-40f) 

If~ ~v" the static admissibility conditions are satisfied 
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3 3-v , 3 
since g ~ 2(v,-') for 2 ~ v, ~ 3. The following motion is the 

3 = -same as phase 3 and phase 4 in case I with t, = t s2 ' z2(t 1) v
1 

The static admissibility conditions (3-23) 
. . 

and W,(t,) = W,(ts2 ). 

3 and (3-35) are also satisfied with v, ~ 2 and z2 > ,. 

3 If g < v" the solution of equations (3-40) corresponds to a 

yield violation of bending moment an the right side of the 

am11 impact point since az- z=o+ = 2v,q,0 > O. Therefore, a new velocity 

profile shown in Fig. 20a 

. 
W(z) = 

o 

. 
W

2
(1 +~.) 

z2 

.:. l-z 
W --3 l-z0 

is postulated. The linear and angular momentum equations of beam 

shown in Fig. 33a are 

2~ + g(1-z0 ) w(zO ) = - '2u 

2gz0
2Q(zo-) + gZ02Q(0+) = - '2u + 12um2(0) 

2gZ2~Q(0-) + gZ22Q(-z2+) = - '2u - 12um2(0) 

gZo[Q(O+) + Q(zo-)]' + 2Q(0+) = - 8uv, 

(3-42a) 

(3-42b) 

(3-42c) 

(3-42d) 

(3-42e) 

where Q(-z2+) = Q2Z2/z2' Q(O-) = Q2' Q(O+) = Ql' W(zo-) = Q3 -

(Q3-Q,)zO/zo and Q(zo+) =Q
3 

+ Q3Z0/('-zo) are given by equation 

<3-41) • 
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Equations (3-41) and (3-42) with geometrical condition at the 

shear hinge z = 0- give 

.. . 
W3 + W3~0/(t-zo) = - 12u/[g('-zo~J (3-43a) 

•• '" •• .1 

zo[W, + W3 ~ (W3 - W,)zo/zo] + 2 W1/g = - 8uv 1/g 

.. . 
and z2W2 + W2~2 = 8uv,/g. 

<3-43b) 

<3-43c) 

<3-43d) 

<3-43e) 

The equations (3-43) can be solved by a numerical method until 
1 • • 

Z2 = r or W1 = W2• If the left side travelling hinge reaches the 
. . 

left-hand support before W, = W2 , the motion is still governed 

equations <3-41) , (3-42a-d) and (3-43a-d) with z2 = * and ~2 = 

Otherwise,the motion is the same as phase 3 and phase 4 of case 

and the static admissibility conditions (3-23) and (3-35) are 

3 satisfied with v 1 ~ 2 and z2 > 1. 

by 

O. 

I 

For 1 < v, < ~, the shear sliding at z=O- stops at t=ts1 while 

the other continues. The velocity profile is shown in Fig. 2'a. . . 
Equations (3-38) with q10 = -1 and Wo = W2 give 

• 12u W1 = -g- (v,-')t, 
6u W, = g (v,-1 )t2 

, (3-44a,b) 

(3-44c,d) 

Equations (3-44c,d) give 

(3-44e) 
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or 

and 
(3-44g) 

Integrating equation (3-44f) with respect to time t, we obtain 

<3-44h) 

where a = 9ft UZ 
- 24gv, uZ

, b = '2guZ 

and b2 
In(2at + b + 2ra JatZ +bt) for a > 0 

8ara 
f(t) = <3-441) 

bZ 

arcsin (-2at-b) for a < 0 
8a.r::B. b 

Equations (3-44a) and (3-44c) give 

<3-44j) 

o ° 
when W, =W2 o Therefore, two types of motion can be followed which 

depend on the magnitude of z2 0 

at 

<3-45a, b) 

(3-45c) 

The following motion is the same as phase 3 and phase 4 in 
• ° 

case I with t, = t s2 ' z2(t,) = z2(ts2 ) and W1(t,) = W,(ts2 )o The 

static admissibility conditions (3-23) and (3-35) are satisfied 



with z2 ;. JV,~, . , < v, < % and r' < ~ (v,-ll. 

-, , 
If z2 ~ r or ~ ~ 2 (v,-')' the travelling plastic hinge on 

the left side reaches the left-hand support before the shear 
. 

Sliding at z=O+ stops. In other words, W2 is still larger than . 
W, when z2 = r. Therefore, equations (3-44a-i) are valid until , 
z2 = r ~.:t 
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(3-46a) 

Then, the motion of beam is governed by equations (3-5a), (3-5c) 

and (3-5e) with q,o = -', z, = " z, = 0, z2 = r' z2 = 0 and . . 
Wo = W

2
• The velocities and deformations of beam are 

. 12u . 
[~ - , 

W1 = -- (v 1-1)t, W2 = 4u( '+v2)t]r2 /(3 g+r) (3-46b,c) g r 

W, 6u ( ) 2 = - v -, t g , (3-46d) 

and W2 = 2udt-t2 ) [1 - - ] , (r+v,)(t+t2 ) /(3 g+r) + W2(t2 ) (3-46e) 

where W2(t2 ) is obtained by substituting equation (3-46a) into 

(3-44h) • 

At (3-46f) 

. 
W, = W2 and the shear sliding at z=O+ stops. The following motion . . 
is the same as phase 4 of case I with W,(t2 ) = W,(t

s2
) and W,(t2 ) = 

W,(ts2 ). The static admissibility conditions (3-35) may not be 

satisfied, i.e. the absolute value of shear forces ql at the right

hand support may be slightly larger than the limit shear strength, 

if v, < , + 0.5gr('+r)/[g('+r) + 3rJ, but we neglect this case 

herein. 
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For 1 < v1 < ~, equations (3-6) shows that equations (3-44) 

6 2 3 v 1 
and (3-46b-f) are valid only when g ~ v 1z2 and g ~rr' respectively. 

6 3 v 1 
If g < v 1Z2

2 (corresponding to equations (3-44» or g < rr 
(corresponding to equations (3-46b-f», a yield violation of 

bending moment occurs on the left side of impact point since 

6m2 I az- z=O- = Zv,q20 < O. Therefore, a new velocity profile shown 

in Fig. 22a 

. 
~i(z) = 

o 

•• z .:. 
(W2-W

3
) - + w 

Zo 2 

. 
W,(1-Z) 

<3-47 ) 

+ a ~ z ~ 1 

is assumed which means that the bending moment at z=O is now less 

than plastic limit moment but a new travelling hinge appears at 

z = -zOo The linear and angular momentum equations of beam shown 

in Fig. 33b are . 

gQ1 = -6u - 6um 1(O) + '2uv, 

- Buv , 
-'2u + 12um,(O) 

2g(z2-z0)2 g(-zo-) + g(Z2-Z0)2 Q(-z2+) = -24u 

and g(-zo-) + Q(-z2+) = 0 

(3-4Ba) 

(3-4Bb) 

(3-4Bc) 

(3-4Bd) 

(3-48e) 

It It. :.: + II •• 

Where W(-zo-) = W3 + W
3

Z0/(Z2-Z0), w(-zo ) = W3 + (W2-W3 )ZO/zO and 

Q(-z2+) = Q3Z2/(z2-z0) are given by equation (3-47). 

Equations (3-47) and (3-4B) with the geometrical condition at 

the shear hinge Z=O+ give 
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[2( Z02 2 1 .. + 2z0 + -)v - 4(z + -)] 
W1 2u g 1 o g <3-49a) = 2 3 1 4 2 2 

'3 Zo + '6 gzo + '3 gzo + '3 

[2(~ z 3 + Z 2 2 - 2z 2] 
W2 -2u 3 0 0 + '3)v 1 0 (3-49b) = 2 3 2 1 4 2 

'3 Zo + '6 gzo + '3 gzo +-
3 

.. . 
(W2-W3) + w,zo = 0 <3-49c) 

(Z2-Z0)2 Q
3 + (z2-z0)(zo + ~ Z2)~3 = -12u/g (3-49d) 

. 
W

3
z2 = 24u/[g(z2-z0)] (3-4ge) 

Equations (3-49) can be solved by a numerical method. For 

6 g < v,z22 (corresponding to equations (3-44», this type of motion 

starts with zO=O when z2 = [!: and the other Igv, initial conditions 

can be obtained from equations (3-44) with z2 = ~. 
3 v, 

For g < ?"' 

(corresponding to equations (3-46», the motion is governed by 

equations (3-47), (3-48a-d) and (3-49a-d) with z2 = * and z2 = 0, 

and the initial conditions are given by equations (3-44) with 

t=t2 which is defined by equation (3-46a). The static admissibility 

conditions should be checked during the numerical calculation-. 

The shear deformations in this case discussed in this section 

are 

3 
if 2''' v 1 ~ 3 (3-50) 

Where W's is defined by equation (3-39i) and ts2 is the time when 

the shear sliding at z=o- stops; or 

<3-51) 

- see equations (26) in Appendix I. 
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where W2s is defined by equation (3-39k) and ts2 is the time when 

+ the shear sliding at z=O stops. 

Case III, 0 < v, < , and v~ 

. .. 
Equation (3-39c) shows that W1 < 0 and W1 < 0 when v 1 < 1. 

This is impossible since q, < q10 = -1 and yield violations of shear 
.. 

force will occur in 0+ ~ Z ~ 1, if W, < O. Therefore, a new velocity 

profile shown in Fig. 23a is assumed, in which the part of beam on 

the right side of impact point remains stationary during the entire 
. 

response. Equations (3-4) and (3-5c-e) with W1 = 0 and q10 = -1 

give 

and 

, g . 
q20 = ~ uv, (W2z2)~ 

A) Phase', shear sliding 

1 .. 
= - 4 uv, Wo 

(3-52a) 

(3-52b) 

(3-52c) 

Two shear slidings occur at z=O- and z=O+ after impact, shown 

in Fig. 23a. Equations (3-52) with q20 =, ' give 

. . 
8 u 2 l... Wo = 2u - 8uv,t, W2 =3'gV, t, z2 = 

v, 
(3-53a-c) 

Wo = 2ut - 4uv, t 2 and W2 
- i ~ v 2 t 2 
- 3 g , (3-53d,e) 

. . 
since Wo = 2u, W2 = 0, Wo = 0 and W2 = O. Equations (3-53a) and 

. . 
(3-53b) give Wo = W2 at 
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v2 > 3 (case III). 6 2 g < v 1Z2 • 
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t = t 3 g and W 
s1 = 4 v 1(v,+3g) 2s <3-53f ,g} 

The static admissibility conditions can be proved to be satisfied 

by equations (3-6) with q, = q,o = -1, -, ~ m, ~ 1, 0 ~ q2 ~ 1 and 

-, < m2 ' ,. 

The shear sliding at Z=O- stops at t=ts , and the following motion 
. . 

shown in Fig. 24a is still governed by equations (3-52) with Wo = W2• 

The equations (3-44c-i) are valid in this case and the velocities 
. . 
W, and W2 and the deformations W, and W2 can be obtained from 

equations (3-44a,b,e,h) with t s , given by equation (3-53f) until 

(3-54) 

since equations (3-38) is the same as equations (3-52) when 
. 

q,o = -, and W, = 0, where t2 is the time when the travelling 

plastic hinge reaches the left-hand support. It shows from 

previous analysis in case II that equations (3-44) are valid only 

when ~ ..... v z ... g 9' 1 2 • 

6 6m2 
If -g < v,z22

, equations (3-44) are no longer valid since ----6 
z2 z=O-

2v,q20 < O. Therefore, a new velocity profile shown in Fig. 

25a. 

0 ' -- - " z , -z r 2 . z2+z 
Q

3 
+ 

z ~ 
z2-z0 -z2 ' -zO . 

W(z) = (3-55) . 
Q

2 
+ 

-za ~ z~ D-

O + o ~ z " , 

= 
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. . 
is postulated, where ~2 = ~3 according to geometrical conditions 

at shear hinge. The linear and angular momentum equations of 

beam shown in Fig. 34 are 

.. .. 
zog W2 + W2 + 4uv,= 0 (3-56a) 

2g(z2-z0)2i(-zo-) + g(Z2-Z0)2 i<-z2+) = -24u (3-56b) 

.. 
~ + W(-zo -) + Wl-z 2 ). = 0 . (3-56c) 

.. zOW2 ~ + W2z2 where· W(-zo-) = W2 + and W(-z2 ) = z2-z0 z2-z0 
(3-56d,e) 

. 
since W

2 

Equations (3-56) give 

12u --g 
C3-57a) 

.. 
(gZO+1) W2 = - 4uv 1 

(3-57b) 

and (3-57c) 

Equations (3-57) can be solved by a numerical method until 

z2 = *. This kind of motion starts with Zo = 0 when z2 = ~ W, 
and the other initial conditions can be obtained from equations 

(3-44e-i). Equations (3-55), (3-56) and (3-57) are only valid 

when m,(') ~ -1 or 

(3-57d) 

and the other static admissibility conditions must be checked 

during the numerical calculation-. 

- see equations (30) in Appendix I. 
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If equation (3-57d) is not satisfied, the motion of beam 

is controlled by equations (3-47), (3448) and (3-49). 

c) 

The travelling plastic hinge at z = -z2 reaches the left-hand 

support at t = t2 which is defined by equation (3-54). The 

following motion is that the right part of beam still remains 

stationary while the left part rotates about the left-hand 

support, and the shear sliding at Z=O+ continoE5. 

. .. 
Equations (3-4), (3-5c) and (3-5e) with W1 = 0, Wo = W2 , 

1 d· 0 i = -1, z2 = r an z2 = g ve 

12u(r+~1)r • 
g+3r (t-t2 ) + W2(t2 ) 

-6u(r+~1)r • 
W2 - g+3r (t-t2 )2 + W2(t2 )(t-t2 ) + W2(t2 ) 

. 
Equation (3-58a) gives that W2 = 0 when 

. 
t = t f = W2(t2)(g+3r)/[12u(r+~1)r] + t2 

The maximum permanent deformation 

w = (g+ 3r) Q 2 (t) w ( ) 
2f 24u(r+~1)r 2 2 + 2 t2 

is obtained from equations (3-58b,c). The shear sliding at 

Z=O+ is 

where W2s is defined by equation (3-53g). 

(3-58a) 

(3-58b) 

(3-58c) 

(3-58d) 

(3-59) 

Equations (3-6) show that the static admissibility conditions 



are satisfied and the solution given in equations (3-58) is 

'exact', provided 1 ~ v1/~,. 
g 
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If ~ < v1/r2, the motion of beam is governed by equations 

(3-51a) and (3-51b) with z2 = * and Z2 = O. The initial conditions . . 
are that W2 = W

2
(t

2
) and zo is defined by equations (3-51a) and 

(3-51b) with zo = O. 

3.3.4 

Equations (3-39a) shows that if v 2 < 3 the velocity profile 

introduced in phase 1 of case II is no longer valid since z2 must 

1 1 1 
be less than r (or equal to r' but when z2 = r we will discuss in 

this section). In this case we assume that z1 = 1, Z, = 0, 

1 
z2 = r' z2 = O. 

Equations (3-4), (3-5a), (3-5c) and (3-5d) with z1 = 1, 

1 
z1 = 0, z2 = rand Z2 = 0 give 

and 

.. 
w, = 

12u ( 1 +q 1 0 v,.> 

g 

A) Phase', shear sliding 

<3-60a) 

(3-60b) 

(3-60c) 

Two shear hinges occurs on both sides of the struck point 

of beam, i.e. shear sliding occurs at z=O- and z=O+ where shear 
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force q10 = -1 and Q20 = 1, respectively. Two parts of beam rotate 

about the supports. The velocity profile is shown in Fig. 26a. 

Equations C3-60) with Q10 = -1 and Q20 = 1 give 

. . 
12u (v _,) t 

. 12ur Wo = 2u - 8uv l t, Wl = W2 = -- (v l -r)t C3-61a-c) g 1 ' g 

Wo = 2ut 4uv, t 2 
, Wl 

6u (v,-l ) t 2 
, W2 

6ur 
(v1-r) t 2 C3-61d-f) = = g g 

. · · since Wo = 2u, W, = W2 = Wo = W, = W2 = 0 at t = O. 

It is shown from equations C3-61b) and (3-61c) that 

· · . . g 
if v, ~ , + r, W, ~ W2 and Wl = Wo at t = t = sl 4v,g-6+6v l 

(3-62a) 

· · . . g if v 1 < 1 + r, Wl < W2 and W2 = Wo at t = t = 
s' 6dv ,-r)+4v,g 

C3-62b) 

The shear deformations are 

Wls = 
ug 

if v l ~ 1 + r (3-62c) 4v,g-6+6v l 

W2s = 
ug 

6rC v,-r>+4v,g if v, < , + r (3-62d) 

Equations (3-6) shows that the static admissibility 

conditions are satisfied. 

b) ~, < t § ts2 

+ If v, ) , + r, the shear sliding at z=O stops at t=ts ,' where 

tsl is defined in equation (3-62a), while the shear sl1ding at z=O-
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continues. The velocity profile is shown in Fig. 27a. 

and 

. 

. . 
Equations (3-60) with q20 = and W1 = Wo give 

. 
W 1 = 

12U(v1+1) 6u· 12ur 
3+g t + 3+g' W2 = -g- (v1-r)t, 

W 1 = 

W = 6ur (v _r)t2 

2 g 1 

The shear sliding at z=O- stops at 

when W
1 

and 

Equations (3-6) shows 

1 gvl+3g+6 

2g+6 

that 

~ -1 

3 if g ~ v 1 • 
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<3-63a, b) 

0-63c) 

<3-63d) 

<3-63e) 

(3-63f) 

If 1 < v 1, the solution given by equations (3-63) is no 
g am I 

longer valid since az 1 z=O+ = 2v 1ql0 > 0 and a yield violation of 

bending moment occurs on the right side of impact point. In this 

case, the motion of beam is controlled by equations (3-43a-d) 

1 
with Z2 = 0 and z2 = r' 

Equation (3-63f) shows that the absolute value of shear force 

at z = 1 may be slightly larger than 1 in a very narrow range of 
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~ < v < 1* if 1 > btl t thi h i 3 1 2 g ~ v 1, u we neg ec s case ere n. 

If v 1 < 1 + r, the shear sliding at z=O- stops at t = t
s1

' 

where tsl is defined by equation (3-62b), while the shear sliding 

+ at z=O continues. The velocity profile is shown in Fig. 28a. 

and 

and 

* 

. . 
Equations (3-60) with Ql0 = -1 and W2 = Wo give 

. 12u . 12u(r+v 1 )r 6ur W1 = - (v
1
-,)t, t:i2 = 3r+g t +--g 3r+g (3-64a,b) 

t:i, 
6u 

(v ,-' ) t 2 = -g <3-64c) 

t:i2 = -
6u(r+v, )r 

t 2 + 6ur t _ 3ur t • 
3r+g 3r+g 3r+g s1 C3-64d) 

The shear sliding at z=O 
+ stops at 

<3-64e) 

Equations (3-6) shows that 

-1 ~ m, ~ , 
3 v, 

if g ~ 7". 

<3-64f) 

v 
If 1 < 1 the solution given by equations (3-64) is no longer 

g 7"' 

4 v, 1 
It is clear that v 1 > 3 since v, ~ 1 + rand r = v > 3. Equation 

3(2v,+3) 2 3 
(3-63f) shows that q'min ~ -, if v, ~ (6v,+3) or v, ~ 2 since 

4 
Therefore Iq,minl may be larger than 1 only in 3 < 
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am21 valid since --- - = 2v 1q20 < 0 and a yield violation of bending az z=O 

moment occurs on the left side of impact point. In this case, the 

1 motion of beam is governed by equations (3-49a-d) with z2 = rand 

Z2 = O. 

Equation (3-64f) shows that the maximum shear force q2 max 

which occurs at z = - * may be larger than 1 for 1 < v1 < ~ r* if 

1> g ~ v 1, but we neglect this case herein. 

B) Phase 2, ts2 < t ~ t f 

The motion of this phase is the same as that of phase 4 in case 

I. The absolute value of shear force q1 at z=1 may be larger than 

1 3 1 1 for 1 < v, < 1 + '2 r.2 if g ~ rr - 1, but this case is neglected 

herein. 

The shear deformations in this case are that 

<3-65 ) 

where Q1S is defined by equation (3-62c) and ts2 is the time when 

the shear sliding at z=O- stops; or 

(3-66) 

where W2s is defined by equation (3-62d) and ts2 is the time when 

+ the shear sliding at z=O stops. 

• 
3r.2 +2rv1 

Equation (3-64f) shows that q2 ~ 1 if v 1 ~ --~2~~ or max r+ v2 
3 since i ~ v,. 
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3.3.5 Case V, 0 < v, ~ , and' < v2 ~ 3 

It is assumed according to equation (3-53c) that z, = 0, , 
z, = " z2 = 0 and z2 = r' Equations (3-4), (3-5c) and (3-5e) , 
with Z2 = 0, z2 = rand q,o = -1 give 

.. 
W2 = -'2u(r-q20v,)r Ig C3-67a) 

and q20 = -1 - 4ut, Qo C3-67b) 

A) Phase 1, shear sliding 

a) O,t,ts ' 

Two shear slidings occur at Z=O- and 0+ after impact and the 

velocity profile is shown in Fig. 29a. Equations (3-67) with q20 = 

give 

. . '2u{v,-r)r 
Wo = 2u - 8uv

1
t, W2 = t g (3-68a, b) 

Wo 2ut - 4uv, t 2 and W2 

6u(v,-r)r 
t 2 = = g (3-68c,d) 

. . 
since Wo = 2u, W2 = Wo = W2 = O. 

-The shear sliding at z=o stops at 

(3-68e) 

. . 
when Wo = W2 

and the shear deformation at Z=O- is 

W = ug 
2s 6(v 1-r)r+4v,g (3-68f) 

Equations (3-6) show that the static admissibility conditions 

are satisfied with 
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The shear sliding at z=O- stops at t=ts1 but the other one 

+ at z=O continues. The right part of beam remains stationary, 
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while the left rotates about the left-hand support. The velocity 

pr6file is shown in Fig. 30a • 

. 
Equations (3-67) with Wo = 

. 12 ( r+" 1 ) ur 6ur W2 = g+3r t +-g+3r (3-69a) 

W2 

6(r+"1 )ur 
t 2 6ur t _ 3ur t 

= g+3r +-g+3r g+3r sl (3-69b) 

The motion of the beam stops at 

(3-69c) 

. 
when W2 = 0 and the permanent deformation is 

3ur (v,-r) 
C3-69d) 

Equations (3-6) shows that equations (3-69) are valid only 

3 ", when - ~~ because of the static admissibility conditions. (The 
g r 

1 absolute value of shear force q2 at z = - r may be larger than 

" for 1 < "2 < 1 if 1 >. 1 , but this case is neglected herein.) 2 g ~ rr 

" If 1 < 1 there is 
g rr' 

left side of impact point 

a v1olation of 
8m

2 
since - -8z z=O 

the bending moment at the 

the motion of beam is governed by equations (3-57a,b) with Z2 = * 
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and z2 = 0, provided inequality (3-57d) is satisfied. Otherwise, 

it is governed by equations (3-49a-d). 

The shear deformation at z=O+ in this case is 

<3-70 ) 

where W2s is defined by equation (3-68f) and t f is the time when the 

motion of beam stops. 

3.3.6 Case VI, 0 < v1~2~ 

. .. 
Equation (3-68b) shows that W2 < 0 and W2 < 0 when v2 

v, 
= -< 1. r 

This is impossible since q2 > q20 = 1 and yield violations of shear 
1 .. 

force will occur in -r < z < 0- if W2 < O. Therefore, a new velocity 

profile shown in Fig. 31a is assumed, in which two shear slidings 

occur at Z=O- and Z=O+ and the struck point of beam moves transversely 

downwards with the striker while the rest of beam remains stationary. 

Equation (3-5e) with q10 = -q20 = -1 give 

. 
Wo = 2u - 8uv 1t and Wo = 2ut - 4uv t 2 

1 <3-71a, b) 

. 
since Wo = 2u and Wo = 0 at t = O. 

The motion of beams stops at 

(3-71c) 

. 
when Wo = O. The maximum permanent deformation of beam is 

u 
=1N, <3-71 d) 

Equations (3-6) show that the static admissibility conditions 
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are satisfied with q1 = -1, q2 = 1, -1 ~ m1 ~ 1, -1 ~ m2 ~ 1. 

3.4 Calculation 

A computer programme was written to generate results for the 

response of a beam struck by a mass at any point of its 

span. A flow diagram showing the solution method is given in 

Fig. 35. 

The maximum permanent deformations and shear sliding 

deformations of most cases can be directly obtained from the 

theoretical analysis in Section~.3Jwhile for the remaining cases 

with a travelling plastic hinge occurs at z = -zO or z = Zo 

instead of a stationary plastic hinge at z = 0, a numerical 

method has to be employed. In the numerical programme the 

approximations 
.. 
W = 

and 

W n+1 

. . 
W -W n+1 n 

l1t 
.1.* _ ,,,, -
. . 

z* -z* n+1 n 
l1t 

(W +W 1)l1t - n n+ =W +-~~;..-...-
n 2 

were employed with the dimensionless time step 
MO 

l1t = GV 1 l1T 
o 1 

to simplify the differential equations, where z* indicates 

<3-72a, b) 

<3-72c) 

(3-72d) 

locations of the plastic bending hinge. The static admissibility 

conditions are checked at each step. 

With the aid of equations (3-72a,b), the differential 

equations appeared in Section a.) can be finally simplified as a 

nonlinear algebraic equation of zOn+1. Therefore, a very simple 

method can be used to solve this nonlinear algebraic equation. 
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An example of this simplification is given for 

equations (3-26). 

Equations (3-26) give 

.. . 
W1(1-Z0 ) + W1Z0 = 12u 

<3-73a) 

and . . 
[W 1(z2+z6) - W1z0J(z2-2z6) + Wiz2(2Z2-z0) 

24u 
= --g 

(3-73b) 

Substituting equations (3-72a,b) into equations (3-73), we 

obtain 
.. . 

(Wln+l-Wln)(l - zOn+l) + w1n+1(zOn+l-z0n) = 
12uAt 

or 
. 
W In+l 

. 
= [W 1 n ( l-z0n+ 1 )2 12uAtJ /[(1_Z )(l-z )J 

g On On+l (3-74a) 

. . . 
[(Wln+l-Wln)(z2n+l+z0n+,) - W,(zOn+,-zOn)](z2n+,-2Z0n+,) + 

or 

. 
+ W'n+l(z2n+l-z2n)( 2z2n+l-z0n+l) = 

24uAt 
g 

. . . . 
where a = 3W -W b = In+l In' aZOn+l-Wln+1Z0n + 2Wln+1Z2n 

= 2Z2 Q -2Q z Z +Q Z Z _ 24uAt 
c On+l In In+l In In+l In+l 2n On+' g 

. 

(3-74b) 

(3-74c,d) 

<3-74e) 

and the values of W1n ' zOn and Z2n have been obtained in the last 

step. 

Equation (3-26c) with equations (3-72a,b) give 

(3-75) 

Substituting equation (3-74a) into (3-74b) then substituting 

equations (3-74a,b) into (3-75), we obtain a nonlinear algebraic 
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equation of zOn+1' Equation (3-75) seems very complex, but it is 

easily solved by computer with a given accuracy. Substituting 

zOn+1 which is obtained from equation (3-75) into equations . 
(3-74a,b), we obtain the values of W1n+1 and finally obtain W1n+1 

with equation (3-72c). 

which 
Equations (3-26) and other differential equatio~ear 

in Section 3.3 can also be solved by Runge-Kutta's method and 

other methods, but for equations (3-43) it is easier to obtain 

the solution by using equations (3-72) and the method described 

above. 

3.5 Discussion 

The theoretical predictions in Sections 3.2 and 3.3 extend 

Parkes' [10] and other authors' [13,15] work into shear and 

bending response of a rigid-plastic beam struck by a mass 

at any point of its span. It shows that according to the yield 

curve shown in Fig. 9c the number of deflection mechanisms of beam 

with a limited shear strength, shown in Figs. 36 and 37, is much 

larger than that with infinite shear strength. Fig. 36 shows 

that the deflection mechanism occurred in the first phase of 

motion may change with the different ratios of shear strength to 

bending moment v1 and ~2' A flow diagram showing the change of 

deflection mechanisms with time t is given in Fig. 37. 

According to Parkes' bending only solution [10], the 

transverse shear force is initial infinite at the impact point of 

the beam. However, for a real beam the shear strength is finite. 
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Therefore, some shear deformation may occur at the impact point. 

Figs. 38 and 39 shows that when the impact point is close to the 

support or when the mass ratio g is very large, the shear 

deformation may dominate the dynamic response and the beam would 

fail due to shear. Indeed, experimental results reported in 

Chapter 6 of this thesis show that some beams failed due to large 

shear deformation. The theoretical analysis in Sections 3.2 and 

3.3 can be reduced to Parkes' results when v1 and v2 (the shear 

strength of beam) tend to infinity. 

It is found that dependent on the ratio of mass g, the ratio 

of two part lengths of beam ~ and the ratio of shear strength to 

bending moment v1 ' the shear forces-Q'lO and Q20' which lO,cate at 

x = 0+ and x = 0-, respectively, may change their values from 

negative to positive or from positive to negative when a 

stationary plastic hinge is assumed to remain at the impact point 

x = O. In other words, 010 may be larger than zero and Q20 may 

be less than zero. Therefore, the bending moment at both sides 

of the impact point x = 0 may be larger than the plastic limit 

8M moment MO since ax = 0 and M = MO atx = O. For these cases 

which were ignored by Parkes [10J, new velocity profiles with a 

travelling plastic bending hinge occurred at z = -zO or z = zo 

instead of the stationary hinge occurred at z = 0 are assumed in 

Section 3.3 of this Chapter. The limitation of Parkes' result is 

shown in Fig. 40 according to the rigid-plastic yield condition. 

It shows that when the impact point is at the centre of the beam 

there is no limitation, but for other cases Parkes' solution has 

some limitation, especially when the mass of the striker is very 
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small. 

It shows that the theoretical analysis in Section 3.3 

satisfies the required kinematic relation given in Section 3.2 

and satisfies the boundary and initial conditions. Thus, it is 

kinematically admissible. It also shows that the static 
toY. 

3 admissibility conditions are satisfied excep~< v 1 < '2 or 

1 < v2 <~. Therefore, the theoretical analysis given in Section 

3.3 is exact excep~< v 1 < ~ or 1 < v2 <~. When 1 < v 1 < ~ or 

1 < v2 <~, the shear force at the right-hand support or at the 

left-hand support may be slightly larger than the limit shear 

strength. Therefore, new velocity profiles have to be assumed, 

but these cases are neglected in our analysis. However, this is 

not a practically important case when 1 < v 1 < v2 < ~ because 

H < i1 < i2 

1 

< ~ for rectangular cross section beam with 

QO = ~HOO and Mo = 1 2 4 BH 0 0 • Furthermore, equations (3-35a), 

(3-63f) and (3-64f) show that the maximum absolute value of shear 

force may only be slightly larger than 9
2
, or q1min ~ -1 and 

m 1 
q2max ~ 1, since the ratio of mass g = -a- should be small when 

h < n < 1 h 
~1 2 • 

A wide range for v 1 = 0.2-50, r = 0.01-1, u = 0.01-10 and 

g = 0.00001-10 are assumed and the corresponding dynamic 

behaviour of beam struck by a body are obtained. As we 

expected, the characteristics of the motion for the cases with a 

travelling plastic hinge occurr~~S at z = -zO or z = Zo are 

similar to that with a stationary plastic hinge at z = O. The 
. 

velocity Wo decreases and z1 and z2 increase gradually with time. 

In other words, the ·~Y"tkeY" decelerates and two travelling 
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plastic hinges at z = z, and z = -z2 move towards the 

supports. The static admissibility conditions are checked at 

each step and there are no violations of yield conditions. 

It is shown from Fig. 38 that the maximum permanent 

deformation and shear sliding displacement from the theoretical 

analYSis in Section 3.3 are in proportion to the initial kinetic 

energy u, but the maximum permanent deformation decrease~Jwhile 

shear sliding increase~/with the increase of the mass ratio g, 

especially when g is large, the maximum permanent deformation 

decrease, sharply, while shear sliding displacement increases 

sharply. Thus, shear influence play an important role when the 

mass ratio g is large" i..e. sm!l.LL q.. 

It is evident from Fig. 39 that the maximum permanent 

deformation increases sharply with decrease of the ratio of shear 

strength to bending moment v, when v, <,. Actually, the maximum 

deformation equals shear sliding displacement when v, < 1. 

Therefore, the shear influence dominates the dynamic response of 

a rigid-plastic beam struck by a mass. The beam would be 

broken when shear sliding displacement W_ = kH, where 0 < k ~ 1. 
s 

It shows from Fig. 4, that the maximum permanent deformation 

decreases sharply with increase r, provided g is small, but 

little change occurs when g is large. 
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CHAPTER 4 

FINITE DEFLECTION OF RIGID-PLASTIC BEAMS DUE TO DYNAMIC LOADING 

4.1 Introduction 

When a rigid-plastic beam with axial restraints at its 

SUpports is subjected to a large dynamic load, a large 

discrepancy between the theoretical analysis of a bending only 

solution, or shear and bending solution, and experimental results 

[12,40J may occur. In this case, the influence of finite 

deflections, or geometry changes, play an important role on the 

beam behaviour. This phenomenon has attracted some attention 

[12,17,37-40J. 

In this Chapter, we consider the influence of finite 

deflections on a clamped beam struck by a body at any 

point of its span shown in Fig. 42a and pin-ended beam 

SUbjected to a uniformly distributed impulsive loading as shown 

in Fig. 42b. The square yield curves shown in Fig. 42d, which 

are used by several authors [17,39,40J and give good agreement 

with experimental results [17,40J, are employed herein. The 

membrane force N is assumed to be a constant along the beam. 

This assumption is used by Symonds and Mentel [38J and other 

authors [12,39,40J and follows from the in-plane equilibrium 

equations when axial inertia is neglected. 

Symonds and Mentel [38J examined the effects of axial 

constraints for simply supported and clamped beams subjected to 

impulsive uniform loading using an 'exact' yield curve (parabolic 
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curve) as shown in Fig. 42d. Jones [39J solved this problem from 

elementary equilibrium equations with square yield curve. 

Furthermore, this solution can be obtained from Jones' 

approximation method [17J when PT tends to mvO. We discuss this 

problem again in Section 4.2. It is the purpose of the present 

work to show that an analytical solution can be more easily 

obtained from linear and angular momentum equations when the 

square yield curves are employed and to show how the solution 

relating to the square yield curves bound that relating to 

parabolic yield curve. 

The influence of finite deflection on a clamped beam struck 

by a mass at any point of its span is examined in Section 

4.3. Several authors [12,20,30J examined the influence of finite 

deflection of beam struck by a mass at the centre. It 

appears that the influence of finite deflections of a beam struck 

at any point of its span has not been examined, but Jones' 

approximation method developed in reference [17J can be used for 

this problem and the formula of maximum permanent deformation is 

given in reference [30J. All these formulae of maximum permanent 

deformation of a clamped beam with rectangular cross-section are 

listed in Appendix II and some results calculated from these 

formulae are plotted in Fig. 54. 

4.2 Finite Deflection of Pin-Ended Beams Subjected to 

Impulsive Loading 

Two phases of motion for a pin-ended beam subjected 
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to impulsive loading shown in Fig. 42b are assumed according to 

experimental evidence and previous analysis. In the first phase, 

two travelling plastic hinges originate from the supports at T=O and 

travel towards the centre of beam. Therefore, there is a central 

Position which translates at the initial velocity V , while 
o 

segments at each end rotate as rigid bodies. The velocity 

profile is shown in Fig. 43a. The second phase starts when two 

travelling hinges meet at the centre of the beam. A stationary 

plastic hinge remains at the centre of the beam and two half 

beams rotate as rigid bodies, as shown in Fig. 44a, until all the 

initial kinetic energy is dissipated as plastic work. The 

membrane force N is assumed to equal the fully plastic tensile 

force of cross-section NO during the entire response [39,40J*. 

One half span of the beam is considered because of symmetry about 

the centre of the beam. 

* 

A) First phase, 0 ~ T ~ T£ 

In this phase, the velocity profile shown in Fig. 43a is 

(4-1) 

When a parabolic yield curve as shown in Fig. 42d is 
employed, the membrane force N of beams may increase from 
zero to fully plastic tensile force of a rectangular cross 
section NO corresponding to the deformation W of beams 
varied from zero to full thickness H of a clamped beam or to 

H half thickness 2 of a simply supported beam and N will 
H remain NO for W > H or W > 2 [12,17,38-40J. However, the 

difference may be small when the membrane force is assumed 
to remain NO in whole response of the beam, provided the 
permanent deformation Wf of the beam is large in comparison 
with the beam thickness. 
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where Vo is the initial impulsive velocity and a2 is the location 

of the travelling plastic hinge. 

The angular momentum equation about the support of the beam 

shown in Fig. 43b is 

(4-2) 

where Wo is the displacement at the centre of the beam and 

(4-3) 

in this phase. 

Integrating equation (4-2) with respect to time T after 

substituting equation (4-3) into equation (4-2), we obtain 

since W' = Vo at T=O. 

Equations (4-1) and (4-4) give 

MO 1 mtl 

N IV I + 3' r· 
000 

The maximum deflection in this phase is 

(4-4) 

(4-5) 

(4-6 ) 

(4-7 ) 
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B) Second phase, TI < T § Tf 

The two travelling plastic hinges coalesce when a2=1 at T=TI 

and the velocity profile of following motion shown in Fig. 44a is 

W' -_ W' x 
a I· for a ~ x ~ Jl. (4-8) 

The angular momentum equation shown in Fig. 44b is 

(4-9) 

Integrating equation (4-9) after multiplying by W~, we obtain 

1 - n2 W '2 M W 1 N W 2 1 - n2 V 2 M W 1 N W 2 ( 4 1 a ) 6" m If. a + a a + '2 0 0 = '6 mlf. 0 + 0 al + '2 0 al -

since W~ = Vo and Wa = Wal at T=T I , where WOI is defined by 

equation (4-7). The motion stops when W~ = 0 at T=T
f 

and the 

maximum permanent displacement WOf is defined by 

or (4-11 ) 

1 
If MO = 4 BH20a and NO = BHOO for beam with rectangular 

cross section, the maximum permanent deformation is 

WOf 1 (-1 + /1 8 -
H = 4 + - A) 

3 
(4-12) 

iiiI2 V 2 
where r a 

= Ma A • (4-13 ) 

It can be shown that the analysis discussed in this section 

satisfies both static admissibility and kinematic admissibility 
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conditions during the entire response, relating to the square yield 

Curve employed herein. Therefore, the results are correct. To 

obtain an upper bound on the deflection, using the inscribed 

square yield curve (lower bound yield curve), X would be replaced 

b -Y A/0.618. Several results are plotted in Fig. 45 and it shows 

that the simplified results obtained in this section give good 

agreement with other solutions [17,38,39J. It is quite clear 

that the axial constraints have a sUbstantial effect for large 

deformations. 

Finite Deflection of a Clamped Beam Struck by a Body 

At Any Point of its Span. 

Three phases of motion for a clamped beam struck by a 

mass shown in Fig. 42a are assumed in this Section according to 

experimental evidence and previous analysis [10,57J. In the first 

phase, a stationary plastic hinge occurs at the impact point z=O, 

while two travelling plastic hinges originate from the impact point 

z=O and travel towards the supports. Two parts of the beam 

between the stationary hinge and travelling hinges rotate as rigid 

bOdies about the travelling hinges, while the rest of beam which 

is not disturbed and remains undeformed. The second phase of 

motion starts when the right side travelling hinges reaches the 

right-hand support at t=t" while the third phase starts when the 

left side travelling hinge reaches the left-hand support at t=t2• 

The membrane force N is assumed to equal NO along the beam during 

the entire response.· 

• see page 65 footnote. 



A) First Phase, 0 ~ t ~ tl 

The velocity profile shown in Fig. 46a is 

0 for 1 -
- -" z ~ -z r 2 

. 
Wo ( 1 

z + -+ -) for -z2 ~ z ~ 0 . z2 W = 
. 
W

O
(1 Z 0+ ~ -- -) for z~ z1 zl 

-.: 

0 for zl 
+ ~ z ~ 

where zl=z2 in this phase. 

since 

The linear and angular momentum equations* of beam are 

.. . 
zl WO + WOZl = 

.. 

.. 
- W Ig o 

ql0 = -q20 = W0/8uv 1, 

""here 'Y 
NOl, 

= ~ and the other non-dimensional characters are 
o 

defined by equations (3-7). 

Equations (4-15a,b) can be rewritten as 

and 

. 
since Wo = 2u and z, = 0 at t = O. 
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(4-14) 

(4-15a) 

(4-15b) 

(4-'5c) 

(4-16a) 

(4-16b) 

* The methods deriving these equations are similar to those 
discussed in Chapter 3, except the membrane force contributes 
to the angular momentum equations. 
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Equations (4-16) give 

•• II. 

W - 4u2 W /W 2 - 24ug - 48ug-yWO = O. 
000 

. 
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(4-17 ) 

Integrating (4-17) after multiplying by Wo' we obtain 

. 
since Wo = 2u and W = 0 at t = o. 

At t = t 1, z1 - 1 and velocity given by equation (4-16b) is 

2u 
1+g • (4-19) 

Substituting equation (4-19) into equation (4-'8), we obtain 

or 

2u2 2u = - 4u2 ln (-) - 2u2 + 4u2 ln(2u) (1+g)2 1+g 

- {-1 + 
2r 

ur [g(2+g) ( 1 )]} 
- 3g (1+g)2 + 2ln 1+g • (4-20 ) 

It shows that in this phase the static admissibility conditions 

are satisfied* 1 with -1 ~ m ~ 1 and n = 1 in - - ~ z ~ 1. r .... ... 

B) Second phase, t1 < t ~ t2 

The right side travelling hinge reaches the right-hand support 

at t=t 1 and the following velocity profile shown in Fig. 47a is 

assumed 

* The differentials of m with respect to z in this phase are 
similar to equations (7b) and (7d) in Appendix I, although there 
is an additional term 4r[Wo-Wiz)] in bending moment expressions 
and an additi~nal term - 48urWO/(Z,2g+2z,) in acceleration 
equations of WOo Nevertheless, -, , m ~ , without any 
restrictions. 
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for 1 -0 --~ z ~ -z2 r 
. + W
O

(1 z for z .:::: 0 -+ -) -z2 ::S . z2 W = (4-21) . 
WO(1-z) for 0+ ~ z .:::: 1 

The linear and angular momentum equations with the transverse 

equilibrium equation at the impact point z = 0 and equation (4-21) 

give 

. 
(WOz/)~ = 24u(1 + 2'YWo)/g (4-22a) 

and (4-22b) 

Equations (4-22) give 

(4-23) 

Integrating equation (4-23) with respect to time t, we obtain 

(4-24) 

. 
since z2=1 and W01 is given by equation (4-19) at t=t 1• 

Equation (4-23) also gives 

. 
(3+2z2) gWoz2 
3gZ2+gZ2z+6+2g . (4-25) 

Substituting equation (4-25) into equation (4-22a), we obtain 

24u(1+2'YWO)(3gZ2+gz22+6+2g) 

gZ2WO(3gZ2+12+4g) 

Equations (4-24) and (4-26) give 

(4-26 ) 



aQo 6ugz2(3gz2+12+4g) 

aZ2 = (1+21WO)(3gz2+gZ22+6+2g)3 

. awo . 
since W-o = aZ

2 
z2· 

or 

Equation (4-27) gives 

lW 2 o 
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(4-27) 

1 36z2+54 18z2+12+36/g 

Wo + lW02 = 2 ug [(g-24)(gZ2z+3gZ2+6+2g) - (gZ22+3gZ2+6+2g)2 + 

(4-28a) 

Where 
2gz2+3g 

24 for g < 24 arctg [ ] 
={ ~g(24-g) Jg(24-g) 

f( z2) 
Jg(g-24) 

(4-28b) 
24 2gz2+3g-

In [ ] for g > 24 
Jg(g-24) 2gz2+3g+ Jg(g-24) 

and W01 is defined by equation (4-20). 

It can be shown* that the bending moment and membrane force 

distributions corresponding to the solution of equation (4-28) 

satisfy 

4 2 
-1 ~ m, ~ 1 for 0, z, " if q,o ~ 0 or g ~ z - z2 

2 
(4-29b) 

1 and n = 1 for - - ~ z ~ 1. 1" .... ... 

* The examination of static admissibility conditions is similar 
to equations (8) and (9) in Appendix I. 



Therefore 

4 when _ >. 
g .... 

, 
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the solution given by equations (4-28) are valid only 

3 1 2 
and g ~ "2 z2 -1. 

4 For - < 1, the analysis with the velocity profile (4-21) gives 
om

1
j g 

az-/z=O+ = 2v 1q10 > 0* and a yield violation of bending moment 

occurs in the right side part of the beam, since m
1 

= 1 at z=O. 

It hints that a plastic hinge may occur in the right side of the 

impact point instead of the stationary plastic hinge at the impact 

POint. A new velocity profile shown in Fig. 48a 

. 
W = 

I l':' 1-z 
W3 -,:z 

o 

for - .!. ~ z ~ z r" '-2 

(4-30) 

is assumed. The linear and angular momentum equations of beam are 

and 

* 

(4-31a) 

K g(Z2+Z0)2~(ZO-) + ~2 g(Z2+Z0)2~(-z2+) = -2U(1+21W
3

) -

1 :.: 
- "2 z2W(0) (4-31b) 

(4-31c) 

Equations (4-31) with (4-30) give 

(4-32a) 

The examination of static admissibility conditions is similar 
to equations (8) and (9) in Appendix I. 
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12u ( 1+2rW3) [g( Z2+Z0)2 (Z/ +2Z2Z0-Z02 -2+4z0 )+4 (z/ +2Z 02 -ZO )J 

g [g(Z2+Z0)3+4(Z22_Z0Z2+Z02 )](Z2+ 1)(1-Z0 ) 

(4-32b) 

(4-32c) 

Equations (4-32) can be written to 

. . 
6W

3 
6W

3 
. 

C1 --- + C - = C
3
W

3 6z0 2 aZ 2 
(4-33a) 

. . 
.. aW

3 
dzO aW

3 
dZ 2 since W3 = --- -- + --- -- where 

azO dt aZ2 dt ' 

and (4-33d) 

A numerical method has to be employed to solve equations 

(4-32) or equations (4-33) until zO=O. The initial conditions 
. . 

at t=t 1 are z2=1, W3 = W
3
(t 1) and zoCt,) is determined by equation 

(4-32b) with zo(t,) = O. The static admissibility conditions are 

checked during the numerical calculations. 

For 1 < ~ z22 - " the previous analysis with velocity 
g ~ 

profile (4-2') is no longer valid since az
2

Iz=o- = 2v,q20 < 0 and 

a violation of bending moment occurs in the left side part of the 

beam. Therefore, a new velocity profile shown in Fig. 49a 

, -0 for - - ~ z ~ -z r 2 . . z2+z 
W W3 

+ 
z ~ (4-34) = for -z2 ~ -zO 

z2-z0 

. 
'-z + 

W for -z ~ z ~ , 
3 '+zO 0 
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is assumed. The linear and angular momentum equations of beam are 

and 

and 

Equations (4-35) with equation (4-34) give 

. 
W3z0 : 4u(1+2rW

3 ) 
( 1+Z0)2 [( Z2-Z0)2 -2( zo+ 1 )2 J-6 ( 1+z0) /g 

(Z2-Z0) (Z2+1) [.~ g( 1+Z0)3 +1] 

. . 
.. oW3 • OW3 • 

Equations (4-36) with W3 : OZO Zo + oZ2 z2 give 

(4-35a) 

(4-35c) 

(4-36a) 

(4-36b) 

(4-36c) 

(4-37a) 

(4-37b) 

(4-37c) 

(4-37d) 

A numerical method has to be employed to solve equations 

1 (4-36) or (4-37) until z2 : r at t:t2• This type of motion starts 

with zO:O when 
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Z2 = j% + 2 (4-38) 

which is obtained from ~ = ~ Z22 
- 1. The initial conditions 

. 
of W3 and W3 are defined by equations (4-24) and (4-28) with 

z2 given by equation (4-38). The static admissibility conditions 

should be checked during numerical calculation. 

D) Phase 4, t2 < t ~ t f 

The left side travelling hinge at z = -z2 reaches the 

left-hand support at t=t2 and two parts of the beam rotate as 

rigid bodies during this phase of motion until all the initial 

kinetic energy is dissipated as plastic work. The velocity 

profile shown in Fig. 50a is 

1 
for - - ~ z ~ 0 r 

for 0 ~ z ~ 1 

The linear and momentum equations of beam give 

. 

(4-40) 

Integrating equation (4-40) after multiplying by Wo, we obtain 

(4-41a) 

(4-41b) 

. 
and W

02 
and W02 are the velocity and displacement at the impact 

1 
point when z2 = r at t = t 2 • 

. . 
If r = 1, then W02 = W01 and W02 = 

W
01 

and they are defined by equations (4-19) and (4-20), 



respectively. 4 
If r ~ 1, but - ~ 

g 

are defined by equations 

311 1 and - ) -2 ~ - 1, then 
g r 

(4-24) and (4-28) with 
. 

respectively. Otherwise, W02 and W02 is obtained from 

numerical calculation. 

. 
The motion of beam stops when Wo = O. Therefore, the 
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maximum permanent deformation at the impact point can be obtained 

from equations (4-41) and is 

or 
1 = - [-1 2r 

Ar ] 
u(1+r)r 

where A is defined by equation (4-41b). 

The bending moment and membrane force distribution 

expressions*show that 

1 3 1 
for - r ~ z ~ 0 if q20 ~ 0 or g ~ ? -

(4-42) 

(4-43a) 

for 0 .:::; z ~ 1 and n 1 = 1 for - - ~ z .:::; 1. (4-4 3b) 
r 

Therefore, the solution given by equation (4-42) is valid when 

For 1 < ~- 1, the previous analysis with the velocity 
g am 

profile (4-39) gives az2
/z=o- = 2v 1

q20 < 0 and a yield violation 

of bending moment occurs in the left side part of the beam, since 

m
2

=1 at z=O. Therefore, a new velocity profile shown in Fig. 51a 

* The examination of static admissibility conditions is similar 
to equations (14) and (15) in Appendix I. 
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1 
for - r:- ~ Z ~ -ZO . 

w = (4-44) 
+ for -zO ~ Z ~ 1 

is postulated. The linear and angular momentum equations of beam give 

and 
. 
W3Z0 = 4u(1+2YW3 ) 

(l+z )2(1+J.)(J._1_2z )-3(1+z)J. 
Orr 0 Og 

It is reasonable to assume that zO=O during the whole 

response of this case since the occurrence of this case only 

depends on g and r which are constants. Furthermore, the 

solution of this case with zO=O does satisfy the statical 

admissibility conditions* as well as kinematic admissibility 

conditions. Therefore, equations (4-45) give 

.. 
W + 4ue(1+2YW

3
) = 0 

where 
( 1 +ZO)2 (1 + J.) + 1 

e = ~ ______ ~ ______ ~r~ __ ~g~ __ __ 
1 1 1 

(r:- - zO)(r:- + 1)[} g(1+z0 )'+1J 

and 3 1 1 /.l 1 1 6r 
Zo = - 4 + 4r + 2 J4 + ~ + 2r - g(l+r) 

which is obtained from equation (4-45b) with zO=O. 

. 

(4-45a) 

(4-45b) 

(4-46a) 

(4-46b) 

(4-46c) 

Integrating equation (4-46a) after multiplying by W
3

' we 

obtain 

* The examination of static admissibility is similar to 
equations (16) and (17) in Appendix I. 
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(4-47) 

. 
where W32 and W32 indicate the velocity and displacement of the 

point z = -zO at t=t2 • 

. 
The motion stops when W3 = 0 and the permanent deformation 

at z = -zO is determined by 

(4-48) 

The maximum permanent deformation at impact point z=O is 

(4-49) 

It shows* that the static admissibility are satisfied with 

and n 

4.4 

1 = 1 in - - ~ z ~ 1. r 

Discussion 

A surprisingly simple solution for a simply supported beam 

with axial restraints subjected to an impulsive loading is obtained in 

Section 4.2 when the simplified square yield curves are employed. 

The results given by equation (4-12) give good agreement with 

other authors' previous work shown in Fig. 45. Therefore, the 

square yield curves are very useful from the engineering point of 

view since they simplify the analysis and give good predictions. 

* The examination of static admissibility is similar to 
equations (16) and (17) in Appendix I. 
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The square yield curves are also employed in Section 4.3 to 

analyse the finite deflection of a clamped beam struck by a 

falling mass at any point of its span. The analytical solution 

4 3 1 1 can be obtained from Section 4.3 when - ~ 1 and - >. - -.. - 1. g ~ g ~ 2 r~ 

Otherwise, a numerical method has to be employed to solve equations 

(4-32) or (4-33) and (4-36) or (4-37). 

Equations (4-32) and (4-36) are more difficult to solve than 

equations (3-26) and (3-29) which are given in Chapter 3, since 

equations (4-32) and (4-36) are second-order differential equations, 

while equations (3-26) and (3-29) can be considered as first-order 
. 

differential equations of W
3

. One can use finite-difference 

methods to solve equations (4-32) and (4-36) directly, or use this 

method to solve the partial differential equations (4-33) and (4-37) 
. 

and obtain W
3

, then with equations (4-32b,c) or (4-36b,c) to 

obtain W
3

• However, after comparing the analytical results obtained 

in Section 3 of this Chapter with those in Case I of Chapter 3, 

one may assume that the deformation can be obtained by replacing 

W
3

' of which value obtained in Chapter 3, with W3 + rW32. It is 
. 

shown that the velocity W3 given by equations (3-26) or (3-29) 

are the same as that given by equations (4-32) or (4-36) with 

certain values of Zo and z2' since the same equations as equations 

(4-33) and (4-37) can be derived from equations (3-26) and (3-29), 

respectively. 4 3 1 1 The solutions with - ~ 1 and - ~ -2 ~ - 1 are the g g r 

same as those which ignored the influence of finite deflection, 

or geometrical change, if Wo + rW02 is replaced by W00 Furthermore, 
. 

the velocity Wo at each phase with travelling plastic hinge, 



Z1 i 0 or z2 i 0, are exactly the same between N=O and N=NO' 

provided z1 and z2 are given*. 
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A wide range of y, g and u was assumed and the corresponding 

maximum deformations are obtained. Some of these results are 

plotted in Figs. 52 and 53. The results from bending only 

solution are also plotted in Figs. 52 and 53. It shows that 

the differences between the bending only solution and the 

solution with influence of finite deflection increases sharply 

with the increase of external energy u. Fig. 53 shows that 

when u = 10 the results obtained from bending only solution can 

reach about ten times larger than that with the influence of 

finite deflection. However, this difference decreases with the 

increase of the mass ratio g. 

When r = 1 or £1=£2=£' the maximum permanent deformation can 

be obtained from equation (4-42) in the form 

= __ 1 {-1+/1 + ~ [~+ 21n(1+g»)} 2y 3g 1+g (4-50) 

For beams with rectangular cross-sections with MO = ~ BH200 and 

NO=BHOO' equation (4-50) can be written as 

= ~{-1 + /1 + 3~ H [1~g + 21n(1+g)]} ( 4-51) 

The results which are obtained from equation (4-51) and other 

authors' previous work** are plotted in Fig. 54. It is clear that 

* 

** 

Equation (3-12b) and equation (4-16b), and equation (3-19) 
and equation (4-24) are the same, since B+C in equation (3-19) 
equals 1 when the shear strength of material is infinite. 

These formulae are listed in Appendix II. 
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the results from equation (4-51) do bound well Nonaka's work 

in which the parabolic yield curve or 'exact' yield curve is 

employed [12J. 

Equation (4-19) shows that when g « 1, the first phase 

of motion hardly influences the entire response of beam since the 
. 

value of velocity Wo at the end of first phase is almost equal to 
. 

its initial value 2u, i.e. W = 2u at the end of first phase. Thus, 

it is reasonable to neglect the influence of first phase and assume 
~ 

that two half beams rotate as rigid bodies durin~ire response, 

provided g «1. Indeed, Jones [30J and Oliveira [20J results 
~~ 

give good predictions even when g=1,~wn in Fig. 54. 
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CHAPTER 5 

THEORETICAL ASPECTS OF PLASTIC FAILURE OF A CLAMPED BEAM 

STRUCK BY A MASS AT ANY POINT OF ITS SPAN 

5.1 Introduction 

Jones [29J examined the plastic failure of a clamped beam 

subjected to an impulsive loading uniformly distributed over its 

span. His theoretical work is in good agreement with Menkes and 

Opat's experimental results [44J. 

The theoretical analysis of plastic failure of a clamped beam 

struck by a mass at any point of its span is presented in 

this Chapter. The triangular plastic regions at the supports and 

at the impact point of the beam which were assumed by Nonaka [12J 

are employed herein. Equation (1) of reference [30J is used to 

estimate the maximum permanent deformation of the beam since it is 
mt

l simple and provides a good estimate provided the mass ratio g = -a-

is not very small. The value of shear sliding is calculated from 

the theoretical analysis discussed in Chapter 3 of this thesis. 

The beam has a rectangular cross-section with depth H and width B. 

5.2 Plastic Failure of Beams Due to Tensile Tearing 

Most theoretical methods and most numerical schemes for the 

dynamic plastic behaviour of structures use a material having an 

unlimited ductility. Clearly, this is a severe idealisation for 

real materials since the structure may crack or break when the 



maximum strain in the structure reaches the limit elongation of 

the structural material. Indeed, experimental results reported 

in reference [44J and in Chapter 6 of this thesis show that 

tensile tearing failure occurs in beams when the external 

dynamic energy is sufficient. 

Few papers [29J have been published on the dynamic plastic 

behaviour of structures made from a material with a limited 

elongation. One reason is the difficulty of estimating the 

maximum allowable strain in a structure. 

5.2.1 Plastic Regions 

After examining his experimental beam specimens which were 

subjected to an impulsive velocity loading on a concentrated 
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mass located at the centre, Nonaka [12J assumed that plastic 

strains occur in triangular regions at the supports and at the 

midspan of the beam. The assumed plastic region starts with two 

isosceles right triangles, shown in Fig. 55a, with the larger one 

on the tension side and the smaller one on the compressive side. 

With the increase of beam deformation the triangle on the tension 

side increases while the other on the compressive side decreases. 

The whole plastic region becomes one triangle in tension as shown 

in Fig. 55b when the deformation is equal to the beam thickness H. 

The plastic regions both at the supports and at the midspan then 

spread uniformly along the beam as indicated in Fig. 55b until the 

plastic regions extend over the whole span. At this stage the 

total length of a plastic region for half span of the beam is twice 



( a ) 

~, COMPRESS1VE 

-:y~_ II! =-=----~..b---ilk 

( b ) 

w W 
Plastic regions. (a) for 0 ( H ( 1 and (b) for H ~ 1. 

FIG. 55 
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the deformation at the beam centre. A similar sequence of 

triangular plastic region formation is also found at the supports 

and at the impact point of the beam struck by a falling tup, which 

will be reported in the next Chapter of this thesis. Instead of 

two triangular plastic regions at the midspan in reference [12J, 

a large triangular plastic region occurs at the impact point of a 

clamped beam struck by a mass. It is assumed that the 

large triangular plastic region is the sum of two plastic regions 

at the supports and the distribution of the large plastic region 

to each part of the beam is equal to the plastic region at the 

support of this part of the beam. 

Nonaka's assumption is used for the plastic tension length 

i on the upper or lower surface of the beam struck by a Yn~~5 

at any point of its span shown in Fig. 42a. 

When the deformation of the beam is less than the beam thickness 

W H, or H ~ 1, we have 

and (5-1,2) 

where N is the membrane force, e is the distance from the neutral 

line to the central line of the beam cross section shown in Fig. 55a 

and W is the deformation at the impact point. 

Equations (5-1) and (5-2) give 

W 
e = 2 (5-3) 

* See equation (4) in reference [12J and also see references 
[58,59J. 
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1 
since NO = 00HB and MO = 4 00~B for rectangular section. 

The length of the tensile plastic region on the upper or 

lower surface of the beam shown in Fig. 55a is 

i = 2(~ + e) (5-4) 

Equations (5-3) and (5-4) give 

W 
for 0 ~ H ~ (5-5a) 

W 11 
For 1 < H~ 2H' the plastic regions spread along the beam 

shown in Fig. 55b and 

1 = 2W 
W 11 

for 1 < H ~ 2H (5-5b) 

until the plastic regions extend to the whole beam at i = 11 or 

W 11 
if = 2H-

w 11 
For H > 2H' the plastic region remains 

until the motion of beam stops. 

5.2.2 Maximum Tension Strain 

a) for 0 4 H' , 

W 1, 
for H > 2H (5-5c) 

The increased length of an upper layer of plastic region at 

the support or lower layer of plastic region at the impact point 

of the beam between time T and T+~T, shown in Fig. 56a, can be 

expressed by 

~1'm' (5-6a) 
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FIG. 56 
The increased length of upper layer or lower layer of 

the beam between time T and T + ~T. (a) the 

deformations of beam at time T and T + AT; (b) the 

increased length due to bending moment; (c) the 

increased length due to membrane force. 



where 

is the increased 

is the increased 

length due to bending moment shown 

lli1m llW·sin8 llW W 
!::! = 

.JW2 +i 2 
1 

length due to membrane force shown 

.. hW'- -lli
1m

2 

.JW2 +i 2 
1 

llWi 1 . 
= WZ +1. 2 

1 

Equations (5-6) give 

1 2i1 W 
lli 1 = '2[H W'- +i / + JllW. 

.JW2 +i 2 
1 

in Fig. 

in Fig. 

Therefore, the increased strain between time T and T+llT is 

lli1 1 lHi1 W 
J 

llW llE = = '2[W2 +i 2 + H+W i 1 ../W2 +i ,\2 
1 

and the maximum tension strain at time T is 

W 1 2Hi1 W 
J 

dW 
€ = J 2[W'- +i 2 + H+W o 1 .JW2 +i 2 

1 

H~1 (W+H)2 i 2 
+ .!. In (.!!.... + /1 

1 1 H W 
= (i 2 +H2 ) {'2 In[(W2+i 2 )H 2J + - arctg -} 

1 1 i1 i1 2 i1 

H 

W When H = 1, the strain is 
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(5-6b) 

56b, 

(5-6c) 

56c and 

(5-6d) 

(5-7) 

(5-8) 

W2 
+ p) 

1 

(5-9 ) 

(5-10) 
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(b) for 

W When H > 1, the beam enters into the membrane state as shown 

in Fig. 55b. Therefore, t.l 1b = a and 

L\€; 
t.l

1m W t.W. 
= = (5-11a) 

i .JWz +l z 
1 i 

Substituting equation (5-5b) into (5-11a), we obtain 

W W dW £ = fH 2W + £1 
.JW2 +l z 

1 

+ .J 1 +Wz / l z 
1 WIll 

= "2 In( 1 ) + £ 1· 
HIll + .Jl+Hz / l z 

1 

(5-11b) 

W II 
When H = 2H' the plastic regions extend to the whole beam and 

(c) 
W II 

for H > 2H 

+ /5) 

Substituting equation (5-5c) into (5-11a), we obtain 

(5-12) 

(5-13 ) 
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5.2.3 The Maximum Permanent Deformation of the Beam 

It may be shown that equation (1) in reference [30J, which 

is obtained from Jones' previous work [17J, agrees reasonably well 

with the theoretical analysis discussed in Chapter 4 of this 

thesis, provided the mass ratio g is not small*. 

The maximum permanent deformation from equation (1) of 

reference [30J can be written 

W 
H
m 

= ~[.J1+AA - 1] (5-14a) 

where A 
32 r[3r+g( 1+r)] 

= "3 (1+r)[2r+g( 1+r)J2 (5-14b) 

A 
GV0211 !Ill 1 

and r 11 /1 2· = 2BH' 00 ' g = G = (5-14c-e) 

5.2.4 Threshold External Dynamic Energy for Onset of Plastic 

Failure ~~ Tensile Tearing. 

Equations (5-9), (5-11b), (5-13) and (5-14) show that the 

tensile strain increases with the increase of the external dynamic 

energy A. When the tensile strain reaches the limit strain E of 
m 

beam material, or the corresponding external dynamic energy is equal 

to some certain value At' tensile tearing will occur. At is the 

threshold external dynamic energy for onset of plastic failure due 

to tensile tearing. 

* One can also use equation (7-1) in Chapter 7 of this thesis. 



Dependent on the limit strain £ of material, the tensile m 

tearing may start within three different ranges of deformation 

of the beam; 
W £1 W £1 

1 < H' 2H or H > 2H' If £1 > £m' the 
W tensile tearing may start when 0 < H ~ 1, 

the tensile tearing 

tensile tearing may 

may start when 1 < 

W £1 
start when H > 2H' 

W 
H~ 

W 
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(a) m 
Plastic failure due to tensile tearing occurs when 0 <H~ 

In this case we can obtain the threshold external dynamic 

energy At from equation (5-9) after substituting equations (5-14) 

into (5-9) and replacing £ in equation (5-9) with limit strain £ 
m 

of beam material, 

(b) 

or 

Wm £1 
Plastic failure occurs when 1 < ~ ~2H' 

Equation (5-11b) can be written as 

and £1 is defined by equation (5-10), 

Equations (5-15) give 

W 1 £1 1 
H = 2' H (8 - s)' 

(5-15a) 

(5-15b) 

(5-16 ) 

Substituting equations (5-14) into equation (5-16), we obtain 



~[..j'+AtA 
, l, , 

- , J = 2H (B - -) B 

1 l, 
(B ' 11 1 + 2J, or A =-- --)[- (B - -) t A H B H B 

where A and B are defined in equation (5-14b) and (5-15b), 

respectively. 

(c) 
Wm l, 

Plastic failure occurs when H~2H 

Equation (5-13) gives 

~ = ~ I( £ +..f5 _ £ )2 - 1 , 
H H m 2 2 

where £2 is defined in equation (5-12). 

(5-17) 

(5-18) 

Substituting equations (5-14) into equation (5-18), we obtain 

C 
At = A [C+2J, (5-19a) 

where 

(5-19b) 

5.3 Plastic Failure of Beams Due to Shear Sliding 

It is shown in reference [29J that the shear failure may 

precede the tensile tearing failure, when the limit strain £ of m 

the beam material is large enough, or provided the ratio 21/H is 

sufficiently small. This phenomenon may occur in the present 

problem discussed herein. 

The shear effect on a clamped beam struck by a mass 

at any point of its span has been discussed in Chapter 3. For most 

9' 
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cases, the value of shear sliding can be directly obtained from 

the theoretical analysis in Chapter 3. However, for a few cases 

a numerical method has to be employed in order to obtain the 

magnitude of shear sliding. Fortunately, this occurs only when 

the mass ratio is very large 
ml 1 

3) (g = G > and when the impact 

point is close the support 
II 

< 3). to (H These cases are neglected 

in the following analysis on the shear failure of beams. 

Like other authors [15,28,37,45, etc.], we assume that 

shear failure occurs when the shear sliding Ws = kH, where 0 < k ~ 1. 

Therefore, the threshold external dynamic energy A for onset of s 

shear failure corresponds to W = kH. s 

The shear sliding given by equation (3-11d) is 

W s 
H= 

since u = 4A H 
T," 

(5-20) 

(5-21) 

Therefore, the threshold external dynamic energy for onset of shear 

failure is 

= (5-22) 

(b) 

, 
For r2 < 2("',-1), equation <3-51) with equations <3-39k), 

(3-44b) and (3-44h,i) give 



w s 
Ii = 4AA" 

where A, 
3g(2"',+3g) 

+ 4"" (",+3g)2 

f(t) {
-~ In (2at + b + 2ra.Jat2+bt) 
8ara 

b2 -2at-b 
-- arcsin( b ) for a < a 
8a;=a 

a = 9g2 - 24g", and b = '2g. 

for a > 0 

The threshold external dynamic energy is 

k 
As = '1i"A,"" 

where A, is defined in equation (5-24). 
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(5-23) 

(5-24) 

(5-25a) 

(5-25b) 

(5-26a) 

(5-26b) 

(5-26c,d) 

(5-27) 

, 
For r2 ~ 2(",-1), equation (3-51) with equations (3-39k), 

(3-44h,i) and (3-46d,e) give 

where B, 

w s 
Ii = 4AB" 

3g ( 2" 1 + 3g ) 6 
= F(t2 ) - F(t 1) + 4 ( 3 )2 - - (" -1)t 2 + 

S ", ",+ g g 1 s2 

(5-28) 

(5-29) 



2 -1 = g(6gr + 12r + 2v 1g) , 

F(t) and ts1 are defined in equations (5-26) and (5-25b), 

respectively. Therefore, 

where B, is defined by equation (5-29). 

(c) 1 < v < 3 and v2_> 3 
2--1--"'----
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(5-30 ) 

( 5-31) 

(5-32) 

Equation (3-50) with equations (3-39h,i) and (3-40) gives 

where 

So that, 

w 
s 

1f = 4>.C" (5-33) 

(5-34) 

(5-35) 

Equation (3-59) with equations (3-53), (3-44) and (3-58) 

gives 

w s 
1f=4>.D1, (5-36) 
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where D1 (5-37) 

and F(t), ts1 and t2 are defined by equations (5-26), (5-25b) and 

(5-31), respectively. 

The threshold dynamic energy is 

k 
oX = sw, 

where D1 is defined by equation (5-37). 

(5-38 ) 

For v
1 
e 1 + r, equation (3-65) with equations (3-62a,c) and 

<3-63) gives 

(5-39) 

(5-40) 

For v
1 

< 1 + r, equation (3-66) with equations (3-62b,d) and 

<3-64) gi ves 

(5-41) 

(5-42) 

(f) 0 < v, , 1 and 1 < v2~ 

Equation (3-70) with equations (3-68f) and (3-69d) gives 
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k 
As = ~' (5-43) 

where F1 
3r (v1-r)+g(r+v 1) 

(5-44) 

Equation (3-71d) gives 

(5-45) 

5.4 Discussion 

The tensile tearing failure and shear failure of clamped 

beams struck by a mass at any point of the span are 

discussed in this Chapter. 

Nonaka's assumption about the plastic regions in the beam has 

been employed in the present problem. Of course, when the impact 

point is very close to the right-hand support, the plastic region 

at the right-hand support may differ from Nonaka'a assumption due 

to the proximity of the support. However, the experimental results 

reported in the next Chapter show that triangular plastic regions 

did deveiop at the supports and at the impact point provided 

11 ~ 0.5 in. Furthermore, when the impact point is very close to 

the support the beam may fail in another mode of failure rather 

than in tensile tearing failure. 

With the increase of the limit strain £ of beam material m 

or with the decrease of 1
1

, the shear failure may replace the 
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tensile tearing failure. The shear failure occurs when the shear 

sliding in the beam W ~ kH. Unfortunately, k is an unknown 
s 

coefficient and must be obtained empirically. However, Jones [29J 

did obtain a reasonable prediction on shear failure with k=l 

compared to Menkes and Opat's experimental tests [44J. 

Instead of pure shear failure and pure tensile tearing 

failure, the beam may fail due to the combined influence of 

tensile and shear effects. Further theoretical work is required 

in order to predict the mixed failure due to a combination of 

tearing and shearing. 
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CHAPTER 6 

EXPERIMENTAL RESULTS 

The range and some experimental results of the dynamic tests 

on clamped beams struck by a falling tup at different points of 

the span are listed in Tables 2-5. The experimental data on flat 

end beams of steel and aluminium alloy are presented in Tables 2 

and 3, respectively, while the data on large end specimens of 

steel and aluminium alloy are given in Tables 4 and 5, 

respectively. Wf is the maximum permanent deformation of a beam 

and was measured after test using a travelling microscope. £1 is 

the location of the impact point from the right-hand support and 

Vo is the initial impact velocity measured using a laser doppler 

velocimeter. 

During the tests, the tup was carefully lowered to near 

contact with the beam and the beam which was held in the beam 

holder was set at its test position by reference to the tup head. 

The tup was then lifted to the drop height H' after setting up 

the laser doppler velocimeter, DL1080 transient recorders and 

other data recording instruments. After another check of the 

instruments, the tup was released and dropped vertically along 

the rig guide rails and struck the beam specimen with an initial 

impact velocity VO. 

It was found that the actual impact point may slightly 

deviate from the desired point. The values of £1' which were 

measured from the beam specimens after the test, are listed in 



mpact point 
.21 (mm) 

Impact Wf Specie Velocit:y before after -
No. Vo (m/s) test test A H Comment 

STIl 5.3366 50.8 50.2 18.88 3.622 
STI2 6.2868 50.8 50.6 26.4 4.14 
STI3 7.211 50.8 50.3 34.53 4.7 
STI4 7.9529 50.8 50.28 41.99 5.19 
STI5 8.6005 50.8 49.76 48.6 5.66 
STI6 5.3366 38.1 34.5 12.97 3.33 
STI7 6.2868 38.1 37 19.31 4.14 
STI8 7.211 38.1 41. 1 28.22 4.7 
STI9 7.9529 38.1 36.6 30.56 4.98 
STll0 8.6916 38.1 38.2 38.1 5.56 
STIll 3.3289 50.8 50.6 7.4 2.24 
STI 12 3.3289 38.1 39 5.71 2.15 
STI13 3.3289 25.4 25.8 3.77 1.88 
STI14 5.3366 25.4 24.26 9.12 2.99 
STI15 6.2868 25.4 25.6 13.36 3.59 
STI16 7.0287 25.4 25.5 16.63 broken at the impact 

point due to shear 
STI17 3.3029 12.7 13.7 1.97 1.27 
STI18 5.3366 12.7 13.2 4.96 2.236 
STI19 4.4385 12.7 13.2 3.43 1.8 
STI20 3.3029 6.35 7.22 1.04 0.853 
STI21 5.1772 6.35 7.87 2.79 1.706 
STI22 4.624 6.35 8.2 2.31 1.426 
STI23 9.43 50.8 50.8 59.64 broken at the impact 

point due to shear 
STI24 static test 
STI25 7.3932 50.8 50.2 36.2.z. 4.75 test with strain gauges 

Table 2-1. Experimental Details of Flat End Steel Beam with Thickness 
H = 0.15 in (3.81 mm). 



mpact point 
il (mm) 

Impact W_ 
Speci. VelocitJ before after I -

No. Vo (m/s test test A H Comment 

STIll 5.3366 50.8 49.73 7.89 2.26 
STI!2 7.211 50.8 51.2 14.83 2.97 
STll3 8.6916 50.8 48.6 20.45 3.6 
STII4 9.248 50.8 47.6 22.68 3.853 
STll5 9.9867 50.8 50.51 28.06 4.22 cracked at the impact 

point due to shear 
STll6 5.3366 38.1 37.86 6.01 2.1083 
STll7 7.211 38.1 36.14 10.47 2.88 
STll8 7.9529 38.1 35.63 12.55 3.23 
STII9 9.248 38.1 37.21 17.73 3.75 
STIl10 10.543 38.1 37.1 22.97 broken at the impact 

point due to shear 
STI! 11 3.3289 50.8 50.45 3.11 1.4026 
STII12 3.3289 38.1 41.7 2.57 1.327 
STI! 13 3.3289 25.4 25.64 1.58 1.1067 
STI! 14 5.3366 25.4 24.29 3.85 1.8049 
STI! 15 6.2868 25.4 23.32 5.13 2.1346 
STII16 7.0287 25.4 28.68 7.89 2.69 
STI! 17 3.3289 12.7 12.56 0.775 0.687 
STII18 5.1772 12.7 13. 1 1.96 1.27 
STII19 7.9529 12.7 4.47 broken at the impact 

point due to shear 
STII20 6.2868 12.7 12.245 2.7 1.67 
STII21 3.3289 6.35 5.704 0.35 0.3374 
STII22 5.1772 6.35 8.112 1.21 0.93 
STII23 6.2868 6.35 7.86 1.73 1. 1-94 
STII24 7.9529 12.7 14.307 5.04 2.366 the motion was recorded 

in film no. 7 
STII25 7.3932 50.8 45.9 13.97 2.795 test with strain gauges 

Table 2-2. Experimental Details of Flat End Steel Beam with Thickness 
H = 0.2 in (5.08 mm). 



Impact point 
.e, (mm) 

Impact 
A 

Wf Speci. Velocity before after -No. Vo (m/s) test test H Comment 

STIIll 3.3289 50.8 50.6 1.754 0.9072 
STIII2 5.1772 50.8 50.9 4.346 1. 5893 
STIlI3 7.0287 50.8 49.6 7.796 2.155 
STIII4 9.8012 50.8 45.8 14.017 2.982 
STIllS 10.911 50.8 19.248 broken at the impact 

point due to shear 
STIll6 3.3289 38.1 40.6 1.431 0.8805 
STIlI7 5.1772 38.1 34.8 2.965 1.4855 
STIll8 7.0287 38.1 35.5 5.589 2.0209 
STIll9 9.8012 38.1 41.4 12.652 2.9241 
STIll10 3.3289 25.4 26.3 0.929 0.7157 
STIlI 11 6.2868 25.4 26.1 3.283 1.578 
STIIll2 9.248 25.4 29 7.881 2.397 
STIII13 3.3289 12.7 13.6 0.478 0.43 
STIlI14 6.2869 12.7 14 1.764 1.135 
STIII15 9.248 12.7 12.2 3.316 1.56 
STIII16 3.3289 6.35 5.3 0.187 0.211 
STIII17 6.2868 6.35 6.3 0.793 0.68 cracked at the impact 

point due to shear 
STIII18 5.3366 6.35 5.5 0.495 0.5139 
STIII19 static test 
STIlI20 11.467 50.8 45.5 19.041 3.283 film No.2. sliding 

occurred between the 
beam and the holder 

STIII21 11.467 50.8 21.259 broken at the impact 
point due to shear. 
film No.4 

STIII22 10.728 25.4 26.4 9.67 broken at the impact 
point due to shear 

STIlI23 8.877 12.7 13 3.265 1.687 
STIll24 7.3932 25.4 29.4 5.118 1. 9307 with strain gauges 
STIII25 7.3932 12.7 19.4 3.375 1.4976 with strain gauges 

Table 2-3. Experimental Details of Flat End Steel Beam with Thickness 
H = 0.25 in (6.35 mm). 



Impact point 
..e l (mm) 

Impact 
7\ 

Wf Speci. Velocity before after -No. Va (m/s) test test H Comment 

STIV1 3.3289 50.8 48.1 0.982 0.5752 
STIV2 5.1772 50.8 50.5 2.492 1.145 
STIV3 7.0287 50.8 49.7 4.526 1.5923 
STIV4 9.8012 50.8 49.3 8.72 2.3049 
STIV5 10.911 50.8 51.1 11. 196 2.5226 
STIV6 3.3289 38.1 41.2 0.84 0.5563 
STIV7 5.1772 38.1 38.2 1.888 1.057 
STIV8 7.0287 38.1 39.3 3.576 1.5205 
STIV9 9.8012 38.1 34.9 6.175 2.1136 
STIV10 10.911 38.1 38.4 8.42 2.4167 
STIV11 3.3289 25.4 26.7 0.545 0.4101 
STIV12 6.2868 25.4 27.3 1.987 1.1327 
STIV13 10.3576 25.4 29.1 5.75 2.07 
STIV14 3.3289 12.7 15.3 0.314 0.2807 
STIV15 6.2868 12.7 19 1.383 0.949 
STIV16 9.248 12.7 13.3 2.095 1.3777 
STIV17 3.3289 6.35 8.4 0.171 0.1656 
STIV18 6.2868 6.35 7.4 0.539 0.5189 
STIV19 7.9529 6.35 9.5 1.107 0.832 
STIV20 9.248 6.35 1.003 broken at the impact 

point due to shear 
STIV21 11.653 50.8 49.3 12.33 2.6567 
STIV22 11. 2818 25.4 25.4 5.954 broken at the impact 

point due to shear 
STIV23 static test 
STIV24 10.7286 12.7 16.6 3.191 1.6403 
STIV25 7.3932 50.8 45.4 4.571 1. 5551 with strain gauges 

Table 2-4. Experimental Details of FLat End Steel Beam with Thickness 
H = 0.3 in (7.62mm). 



Impact point 
1. (mm) 

Impact Wt 
Speci. Velocity before after "!\ -No. V 0 (m/s) test test H Comment 

ALIl 5.3366 50.8 50.7 18.134 4.28556 
ALI2 5.3366 38.1 13.616 broken at the support 

due to tensile tearing 
ALI3 4.624 50.8 49.3 13.228 broken at the impact 

point due to tensile 
tearing 

ALI4 4.4385 50.8 49.6 12.262 3.10617 
ALI5 4.8095 50.8 49.8 14.456 broken at the impact 

point due to tensile 
tearing 

ALI6 3.8853 50.8 50.7 9.604 2.8976 
ALI7 3.329 38.1 41.4 5.758 2.7575 
ALI8 3.8853 38.1 39.4 7.464 2.7627 cracked at the impact 

point due to tensile 
tearing 

ALI9 4.3458 38.1 37.1 8.793 broken at the impact 
point due to tensile 
tearing 

ALI10 2.668 50.8 44.6 3.984 2.068 
ALI 11 1.7767 50.8 50.1 1.985 1.1976 
ALIl2 1. 7767 38.1 40.5 1.604 1.1446 
ALIl3 1.8418 6.35 7.2 0.307 0.2318 
ALI14 2.668 6.35 7.7 0.688 0.6417 cracked at the support 

due to tensile tearing 
ALlIS 4.4385 25.4 24.9 6.156 broken at the impact 

point due to tensile 
tearing 

ALIl6 5.7336 50.8 20.957 broken at the support 
due to tensile tearing 
with one strain gauge 

ALI17 1. 7767 25.4 24.5 0.971 0.846 
ALIl8 2.668 25.4 25.6 2.287 1.5816 
ALIl9 3.81 25.4 24.8 4.518 2.5856 
ALI20 1. 7767 12.7 13.3 0.527 0.7039 
ALI21 2.668 12.7 13.8 1.233 0.995 cracked at the support 

due to tensile tearing 
ALI22 3.81 12.7 12.7 2.315 broken at the support 

due to tensile tearing 
ALI23 3.3029 12.7 12.6 1. 725 broken at the impact 

point due to tensile 
tearing 

ALI24 static test 
ALI25 5.7336 50.8 46.9 19.348 4.3963 with strain gauges 

Table 3-1. Experimental Details of FLat End Aluminium Beam with 
Thickness H = 0.15 in (3.81mm). 



Impact point 

II (mm) 
Impact 'tit 

Speci. Velocity before after l\ -
No. Vo (m/s) test test H Comment 

ALII1 5.3366 50.8 49.7 7.4935 2.714 
ALII 2 6.2868 50.8 10.63 broken at the impact 

point due to tensile 
tearing 

ALII3 4.624 50.8 51.2 5.796 2.2813 
ALII4 5.7336 50.8 50.8 8.841 broken at the impact 

point due to tensile 
tearing 

ALII5 5.548 50.8 48.8 7.952 broken at the impact 
point and at the suppo 
due to tensile tearing 

ALII 6 3.7 50.8 51.4 3.725 1.7006 
ALII7 3.1434 38.1 40.2 2.103 1.4154 
ALII8 4.253 38.1 41.9 4.012 2.1283 
ALII 9 4.8095 38.1 41.4 5.07 2.353 
ALII 10 5.3366 38.1 40.2 6.061 2.4543 
ALII 11 1.7767 50.8 50.5 0.844 0.5287 
ALII12 1. 7767 38.1 39.3 0.657 0.6291 
ALII13 1.7767 25.4 25 0.418 0.3957 
ALII14 2.668 25.4 25.4 0.957 0.8069 
ALII15 3.81 25.4 28.2 2.167 1. 7504 
ALII16 4.702 25.4 27.4 3.207 broken at the impact 

point due to tensile 
tearing 

ALII 17 1. 7767 12.7 13.6 0.227 0.2659 
ALII18 2.668 12.7 14.1 0.531 0.573 
ALII 19 3.3029 12.7 14.6 0.843 0.7112 cracked at the support 

due to tensile tearing 
ALII20 1.893 6.35 5.5 0.104 0.1307 
ALII21 2.729 6.35 5.8 0.229 0.2364 
ALII22 3.4138 6.35 8.3 0.514 0.5244 
ALII23 3.7 12.7 16.8 1.218 1.2835 cracked at the impact 

point due to tensile 
tearing 

ALII24 11.2818 50.8 34.231 broken at the impact 
point 

ALII25 11.653 50.8 36.521 broken at the impact 
point 

Table 3-2. Experimental Details of Flat End Aluminium Beam with 
Thickness H = 0.2 in (5.08mm). 

rt 



Impact point 
I.. (mm) 

Impact 
'l\ 

Wf Speci. Velocity before after -No. Va (m/s) test test H Comment 

ALI II 1 5.3366 50.8 49.9 3.821 1. 7024 
ALIII2 6.2868 50.8 52.2 5.592 2.0315 
ALIII3 7.0287 50.8 49.3 6.602 broken at the impact 

point due to tensile 
tearing 

ALII 14 1. 7767 50.8 50.9 0.436 0.3731 
ALIII5 3.81 50.8 50.9 2.003 1.2 
ALIII6 1.7767 38.1 39.9 0.341 0.4384 
ALIII7 3.81 38.1 40.9 1.609 1.3406 
ALIII8 5.1772 38.1 41.7 3.03 1.871 
ALIII9 6.355 38.1 39 4.27 1. 9676 
ALIII10 1.7767 25.4 27.3 0.234 0.2931 
ALII I 11 3.82 25.4 28.3 1.119 0.9783 
ALIII12 5.3366 25.4 27.2 2.1 1. 5831 
ALIII13 6.355 25.4 24 2.627 broken at the impact 

point due to tensile 
tearing 

ALIII14 1.8483 12.7 16 0.148 0.1471 
ALIII15 3.8853 12.7 15.5 0.634 0.649 
ALIII16 5.1772 12.7 13.9 1.01 1.019 cracked at the support 

due to tensile tearing 
ALIII17 4.7167 12.7 13.3 0.802 0.8183 
ALIII18 1.8483 6.35 9.5 0.088 0.1096 
ALIII19 3.3289 6.35 7 0.21 0.2813 
ALIII20 4.7167 6.35 7.8 0.47 0.606 
ALIII21 static test 
ALIII22 7.0287 50.8 6.8027 broken at the impact 

point due to tensile 
tearing. film No.6 

ALIII23 5.3366 12.7 12.7 0.98 1. 1276 film No.10 
ALIII24 5.734 12.7 16.1 1.435 1. 3874 
ALIII25 6.1046 12.7 14.7 1.485 broken at the impact 

point due to tensile 
tearing 

Table3-3. Experimental Details of Flat End Aluminium Beam with 
Thickness H = 0.25 in (6.35mm). 



Impact point 

.t. (mm) 
Impact W, 

Speci. Velocity before after 7\ -No. Vo (m/s) test test H Comment 

ALIV1 5.3366 50.8 49.1 1.887 1.1291 
ALIV2 6.2868 50.8 48.8 2.603 1.5421 cracked at the impact 

point due to tensile 
tearing 

ALIV3 1. 7767 50.8 51.3 0.219 0.1692 
ALIV4 3.81 50.8 50.8 0.995 0.7265 
ALIV5 1. 7767 38.1 41.1 0.175 0.1625 
ALIV6 3.81 38.1 39.6 0.776 0.6627 
ALIV7 5.3366 38.1 38.4 1.476 1.1184 cracked at the impact 

point due to tensile 
tearing 

ALIV8 6.355 38.1 37.5 2.044 broken at the impact 
point due to tensile 
tearing 

ALIV9 1. 7767 25.4 29.8 0.127 0.1328 
ALIV10 3.81 25.4 26.7 0.523 0.572 
ALIV11 5.3366 25.4 25.9 0.996 0.8938 cracked at the impact 

point due to tensile 
tearing 

ALIV12 1. 7767 12.7 17.3 0.074 0.0611 
ALIV13 3.3029 12.7 16.1 0.237 0.243 
ALIV14 4.253 12.7 15.1 0.369 0.4222 
ALIV15 5.3366 12.7 13.7 0.527 0.6147 cracked at the support 

due to tensile tearing 
ALIV16 1. 7767 6.35 9.1 0.039 0.0416 
ALIV17 3.3029 6.35 7.2 0.106 0.1719 
ALIV18 4.253 6.35 6.1 0.149 0.2734 cracked at the support 

due to tensile tearing 
ALIV19 5.3366 6.35 4 0.154 broken at the impact 

point due to shear 
ALIV20 static test 
ALIV21 6.658 50.8 50.8 3.04 broken at the impact 

point due to tensile 
tearing 

ALIV22 5.734 25.4 27.4 1.216 broken at the impact 
point due to tensile 
tearing 

ALIV23 5.734 12.7 0.564 the tup impacted on 
bolts of the holder 

ALIV24 5.734 25.4 28.9 1.286 1.1745 with two strain gauges 
ALIV25 5.734 50.8 49.1 2.1794 1.2703 with strain gauges 

Table 3-4. Experimental Details of Flat End Aluminium Beam with 
Thickness H = 0.3 in (7.62mm). 



Impact point 
i. (mm) 

Impact 
1\ 'it 

Speci. Velocity before afteI -No. Vo (m/s) test test H Comment 

SIl static test 
SI2 8.6916 50.8 48.2 49.9513 5.7014 cracked at the impact 

point due to shear 
SI3 9.248 50.8 49 57.5281 broken at the impact 

point due to shear 
SI4 3.1434 50.8 49.3 6.6907 2.1517 
SI5 5.7336 50.8 48.3 21. 8152 3.7386 
SI6 7.3932 50.8 48.5 36.411 4.4987 

SIll 9.8012 50.8 45.5 25.301 4.1083 film No.1 
SIl2 10.543 50.8 48.1 30.931 broken at the impact poi nt 

due to shear. film No.3 
SI13 7.0287 12.7 11.4 3.262 1.26 cracked at the support d ue 

to tensile tearing. 
film No.8 

SIl4 3.1434 50.8 49.7 2.8434 1.39 
SIl5 7.3932 50.8 48.2 15.244 3.06 
SIl6 7.3932 12.7 19.5 6.1853 1.9329 cracked at the support 

due to tensile tearing 
SIl7 7.7674 12.7 12.7 4.4374 broken at the support 

due to tensile tearing 
SIl8 3.1434 12.7 19.5 1.1142 0.5785 
SIl9 5.7336 12.7 14.4 2.814 1. 317 cracked at the support 

due to tensile tearing 
SIl10 7.3932 50.8 45.1 14.284 2.6929 with strain gauges 
SIl11 5.7336 12.7 10.3 1.962 broken at the support du e 

to tensile tearing. with 
strain gauges 

SIIl2 7.3932 50.8 48.7 15.329 2.748 with one strain gauge 

SIlIl static test 
SIII2 3.1434 50.8 48.4 1.4192 0.8377 
SIlI3 11. 096 50.8 45.8 16.736 3.1323 
SIlI4 11.467 50.8 50.8 19.787 broken at the impact poi nt 

due to shear 
SIlI5 8.877 50.8 49.9 11.665 2.5465 
SIlI6 6.6578 50.8 45.7 6.01 1. 8567 

SIV1 static test 
SIV2 11.467 50.8 49.1 11. 0846 2.3933 
SIV3 9.248 50.8 45 6.6018 2.016 
SIV4 3.1434 50.8 49.3 0.8361 0.4156 
SIV5 11.6528 50.8 48.6 11..3295 2.4131 
SIV6 6.6578 50.8 47.3 3.6 1.416 

Table 4. Experimental Details of Large End Steel Beam with Thickness 
H=0.15 in (3.81mm),0.2 in (5.08mm),0.25 in (6.35mm) and 0.3 in 
(7.62mm). 



Impact point 

.€. (mm) 
Impact 

1\ 
Wi 

Speci. Velocity before afteI -
No. Vo (m/s) test test H Comment 

All static test 
AI2 4.4385 50.8 50.2 24.2014 4.4579 cracked at the support 

due to tensile tearing 
AI3 4.995 50.8 50.6 30.988 broken at the support 

due to tensile tearing 
AI4 1.7767 50.8 48.6 3.7505 1. 8971 
AI5 3.1434 50.8 49.3 11. 8987 3.342 
AI6 3.7 50.8 48.8 16.334 3.777 
AI7 10.7287 50.8 49 142.958 broken at the support 

due to tensile tearing 

AIl1 5.3366 50.8 47.9 14.0675 3.3065 cracked at the support d 
to tensile tearing. film 
No.5 

AIl2 5.3366 6.35 6.35 1.863 broken at the support du 
to tensile tearing. film 
No.9 

AIl3 1.7767 50.8 47 1.5333 1.1171 
AIl4 5.7336 50.8 48.4 16.3943 broken at the support 

due to tensile tearing 
AIl5 4.4385 50.8 50.4 10.2437 2.8189 
AIl6 3.7 12.7 11.2 1. 5815 broken at the support 

due to tensile tearing 
AIl7 3.514 12.7 14.2 1.8086 broken at the support 
AIl8 3.023 12.7 18.4 1.725 1.2717 cracked at the support 
AIl9 8.877 12.7 16.2 13.167 broken at the support 
AIIlO 1.7767 12.7 16.7 0.5441 0.6711 
AII11 5.3366 50.8 50.8 14.9223 broken at the support. 

with strain gauges 
AIIl2 5.3366 50.8 50.8 14.9223 broken at the support. 

with one strain gauge 

AIlIl static test 
AIII2 6.2868 50.8 49.9 10.419 2.7097 cracked at the support 
AIII3 6.6578 50.8 49.9 11.6755 2.826 cracked at the support 
AIII4 7.211 50.8 47.1 12.92 broken at the support 
AIII5 1.7767 50.8 49.4 0.824 0.685 
AIII6 5.7336 50.8 47.5 8.2463 2.334 

AIV1 static test 
AIV2 7.211 50.8 48.6 7.7152 broken at the support 
AIV3 6.6578 50.8 48.7 6.5911 2.0705 cracked at the support 
AIV4 1. 7767 50.8 48.5 0.4674 0.3948 
AIV5 5.7336 50.8 49.9 5.0131 1. 7371 
AIV6 4.4385 50.8 48.8 2.938 1.375 

Table 5. Experimental Details of Large End Aluminium Beam with 
Thickness H=0.15 in, 0.2 in, 0.25 in and 0.3 in. 

ue 
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Tables 2-5 and are taken as the actual values of II and were used 

in the calculation of A and other parameters. It was also found 

that the tup may slide along the beam during the impact, provided 

the impact point was close to the support, but this effect had 

not been measured. 

The external kinetic energy which acted on beam specimens 

depends on the initial drop height H' or initial impact velocity 

Vo (one value of tup mass 5 kg was used in all the tests). The 

drop height H' of the tup in the test varied from 0.17 m to 72 

m and the corresponding initial impact velocity Vo varied from 

1 -1 1.78 ms- to 11.65 ms ,approximately. It was found that the 

velocities from the laser doppler velocimeter were smaller than 

the classical values calculated using the initial drop height. 

This difference is up to 2.7% and is largely attributed to 

friction between the tup and vertical guides of the drop hammer 

rig. 

At least three unbroken beams after impact with different 

velocities Vo were sought for each type of test (one type of test 

means that the beam specimens are of the same thickness and same 

boundary condition - flat end or large end which were made from 

the same material and were impacted at the same point of the 

span). After several tYULL tests, it was found that the 

aluminium alloy beams failed more easily than the steel beams. 

Therefore, the lowest initial impact velocity was chosen as 1.78 

-1 -1 ms for the aluminium alloy beams and 3.33 ms for the steel 

beams, or the corresponding lowest drop height was 0.17 m and 

0.576 m, respectively. Initial impact velocities, or initial 
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drop heights, for the remaining tests were chosen by reference to 

permanent deformations of the previously tested beams. The 

lowest impact velocity was used for the first test of each test 

type. It was then sought to obtain a cracked beam or a beam 

which had just broken. These beams were subjected to an initial 

impact velocity which is slightly higher than the maximum impact 

velocity which the beam can support without failure. Of course, 

it is difficult to obtain this velocity, but some broken beams 

were subjected to an impact velocity which was close to the 

maximum impact velocity. How close the impact velocity is to the 

maximum impact velocity can be estimated from the velocity time 

history curve captured by the laser doppler velocimeter shown for 

two cases 'in Figs. 51a and 57b, or in comparison between two 

parts of the broken beam shown in Figs. 57q and 57b since the 

rest of kin(ti( energy of the tup was dissipated by one part of 

the beam after it broke. The impact velocities for the rest of 

this type of test were chosen between the lowest velocity and the 

velocity corresponding to beam failure. 

Although the specimen holder was serrated, there were still 

some sliding between.the specimens and the holder when the 

initial impact velocity was very high. It may be better to 

prevent sliding by using beam specimens having the support ends 

made longer to cover the whole width of the holder stocks and 

holder covers shown in Fig. 2. Nevertheless, it appears that the 

sliding was small and for most tests no sliding occurred at all. 

The motion of ten beams with different end conditions (flat 
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FIG. 57a The impact velocity was close to the maximum impact 

velocity which the beam can support without failure. 

The upper figure is the velocity-time history trace 

and the lower one is the permanent deformation profile 

of two parts of the broken beam. The beam specimen 

No. was STIlI 5. 
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FIG. 65a Velocity-time history trace which was captured by the 

laser doppler velocimeter and was recorded by DL1080 

transient recorder. Specimen No. STII24 • 
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FIG. 65b Deformation-time history trace obtained by integrating 

the velocity trace in Fig. 65a using a computer 

program 'try 8'. X; the deformation measured from 

film. Specimen No. STII24. 
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FIG. 57b The impact velocity was higher than the maximum impact 

velocity which the beam-can support without failure. 

The beam specimen No. was STII10. 
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end or large end) and different materials were recorded using the 

Hadland high speed camera. The impact point was £1 = 2 in (50.8 

mm) and 0.5 in (12.7 mm). It was the purpose to record the 

transverse displacement-time history of the beam and the bending 

plastic hinge travelling in the beam. Therefore, quarter and 

half frame exposures were used with a camera speed of about 7000 

frames per second. The films taken with quarter frame exposure 

gave more detail on the early response of beam but lost the data 

of the later motion of the beam since some parts of beam picture 

were superimposed on the following picture when the deformation 

of the beam was large. However, the films taken with half frame 

exposure clearly show the motion of the beam during the entire 

response. The motion of the tup can also be seen in these films. 

Some sliding between specimens and the holder were also recorded 

in some of the films. Some displacement profile-time history 

curves and some displacement-time history curves at the impact 

which were measured from the films are plotted in Figs. 58-61. 

Ten specimens with 5 or 6 strain gauges stuck on each 

specimen were dynamically tested. The arrangement of strain 

gauges and tests is shown in Fig. 62. In order to measure the 

bending moment in the beam, two pairs of strain gauges were stuck 

on both upper and lower surfaces* of the beam at the support, 

except when the location of the impact point £1 is 0.5 in, and at 

the centre of half span of the beam or at the centre of the beam 

(defined as middle strain gauges), respectively. For flat end 

beams, one half length of the strain gauge on upper surface at 

* The surface which is in contact with the tup is defined as 
upper surface of the beam and the surface on the other side 
of the beam is lower surface. 
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FIG. 58 

( a ) 

( b) 

Deformation profile-time history curves of beam with 

the impact point £1 = 2 in (50.8 mm). (a) large end 

beam, specimen No. S112; (b) flat end beam, specimen 

No. STIII21. 
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FIG. 59 

( a ) 

( b) 

Deformation profile-time history curves of beam with 

the impact point £1 = 0.5 in (12.7 mm). (a) large end 

beam, specimen No. SII3; (b) flat end beam, specimen 

No. STII24. 
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Maximum deformation-time history traces of beam with 

the impact point i1 = 2 in (50.8 mm). (a) large end 

beam, specimen No. SII2; (b) flat end beam, specimen 

No. STIII21. 
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Maximum deformation-time history traces of beam with 

the impact point 11 = 0.5 in (12.7 mm). (a) large end 

beam, specimen No. SII3; (b) flat end beam, specimen 

No. STII24. 
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The arrangement of strain gauges. (a) il = 2 in (50.8 

mm) and the test specimens were Allll and SII10; (b) 

il = 0.5 in (12.7 mm) and the test specimen was SIll'; 

(c) i, = 2 in and the test specimens were AtI25, 

AiIV25, STI25 , STII25 and STIV25; (d) £, = , in (25.4 

mm), specimen was STIII24; (e) t, = 0.5 in, specimen 

was STln 25. 



the support was inserted into the holder since it was found that 

almost half of the triangular plastic region at the support 

occurred in the support end of the beam shown in Fig. 63. 

6.1 Deformations of the Beam 
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The deformation shapes of the steel and aluminium beams were 

similar, but there was a slight difference between the flat end 

beam and the large end beam. However, the difference was very 

small and only occurred in a small region near the supports shown 

in Figs. 58 and 59. Triangular plastic regions can be clearly 

seen at the supports and at the impact point of the beam and some 

typical shapes are shown in Fig. 63. 

6.1.1 Motion of the beam 

When a beam was impacted by the tup at the centre, like the 

results reported by Duwez et ale [46J and Reid and Hendry [57J, a 

V-shaped deformation spread, or two travelling plastic hinges 

travelled, from the impact point towards the built-in ends and it 

is classified as the first phase of motion. The first phase of 

motion occurred in a very short time compared with the duration 

of the beam response and the travelling plastic hinges reached 

the built-in ends almost at the instant when the tup first 

touched the beam since for our tests the beams are thicker and 

shorter and the tup is much heavier than that used by Duwez et 

ale [46J and Reid and Hendry [57J. Therefore, the motion of the 

beam was governed by those two parts of beam which separated from 

the impact point and rotated as rigid bodies around the supports 



( a ) 

( b ) 

FIG. 63 The plastic regions of the beam at the support and at 

the impact point. (a) flat end beam and (b) large end 

beam, 1) the specimen holder, 2) plastic region at 

the support, 3) plastic region at the impact point, 

4) beam specimen. 



(this is classified as the second phase of motion), until the 

beam fractured or reached its maximum plastic deformation and 

started to vibrate elastically about its final position. 

'03 

The first phase of motion occurred so quickly that it is not 

even clear in the films taken by the high speed camera with 

quarter frame exposures at the speed about 7000 frames per 

second. Fortunately, this phenomenon appears in the strain 

traces. The strain traces shown in Fig. 64 were recorded from 

strain gauges which were stuck on the upper and lower surfaces at 

the same point of the beam, respectively. It shows that at first 

the strain gauge on upper surface was increasingly stretched and 

the other one on lower surface was increasingly compressed, then 

after a short time of about 0.04 ms the situation was suddenly 

totally changed, i.e. the strain gauge on upper surface became to 

be compressed while the other one to be stretched. The interval 

from tension to compression for the upper surface strain gauge or 

from compression to tension for the lower surface strain gauge 

may contribute to the duration of the first phase of motion and 

it is about 0.04 ms for the case corresponding to the traces 

shown in Fig. 64. 

It is clear from the deformation profile-time history 

plotted in Fig. 58 that in a very short time after the impact on 

the beam at the centre i,: 2 in the two halves of the beam moved 

as rigid bodies except for points near the impact point and the 

supports. When the impact point i, was 1.5 in (38.1 mm), 1.0 in 

(25.4 mm) and even 0.5 in (12.7 mm), the motion of the beam was 

similar to that with the impact point il : 2 in but the two 
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FIG. 64 Strain traces obtained from middle strain gauges, 

specimen No. STIV25. (a) strain on upper surface of 

the beam; (b) strain on lower surface of the beam. 
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travelling plastic hinges did not reach the supports 

simultaneously and the interval in which the hinges all reached 

the supports was longer. Fig. 59 shows some deformation profile

time history traces of beams with the impact point at l1 = 0.5 in 

(12.7 mm). When the impact point l1 was 0.25 in (6.35 mm), no 

straight line motion of the beam appeared on the right part of 

the beam since the impact point was too close to the right-hand 

support and the effect of the support was large. 

The films show that the tup was in contact with the beam 

until the beam reached its maximum plastic deformation, then it 

rebounded two or three times and finally rested on the beam, 

while for the broken beams the tup was in contact with the beam 

during the entire response. The maximum deformation of the beam 

occurred during the first impact of the tup and the rebound of 

the tup hardly influences the response of the beam. 

Fig. 65a shows some velocity-time history traces which were 

captured by the laser doppler velocimeter and were recorded by 

DL1080 transient recorders. These traces are actually the 

velocity-time history of the tup, but the positive portion of 

these traces is also the velocity of the beam at the impact point 

since the tup remained in contact with the beam at the impact 

point. It shows that the velocity decreased sharply during 3 

ms, approximately, after impact. However, the velocity reduced 

slowly during the first third of a millisecond after impact which 

may occur because the plastic regions at the impact point and at 

the supports, shown in Figs. 63, were not large enought to allow 
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FIG. 65a Velocity-time history trace which was captured by the 

laser doppler velocimeter and was recorded by DL1080 

transient recorder. Specimen No. STII24. 
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Deformation-time history trace obtained by integrating 

the velocity trace in Fig. 65a using a computer 

program 'try 8'. X· , the deformation measured from 

film. Specimen No. STII24. 
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FIG. 65c Load-time history trace between the tup and the beam 

specimen. Specimen No. STII24. 
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the beam to rotate as rigid bodies. This phenomenon also 

appeared in deformation profile-time history traces shown in 

Figs. 58 and 59 where for first 2 or 3 deformation profile curves 

there are no clear 'plastic hinges' appeared at the impact point. 

The deformation-time history curve of the beam at the impact 

point is plotted in Fig. 65b. This curve was obtained by 

integrating the velocity trace shown in Fig. 65a using the 

computer programme 'try 8'. The data which were measured from 

the film are also plotted in Fig. 65b. It is clear that the 

computer results are in fair agreement with the film data until 

the beam reached its maximum deformation. After that a large 

difference appeared because the tup separated from the beam and 

rebounded upwards. The loads between the tup and the beam, which 

were obtained by differentiating the velocity using 'try 8', are 

plotted in Fig. 65c. 

It is evident from the film data and the strain gauge traces 

that after reaching its maximum deformation the beam started to 

vibrate elastically. The vibration decayed sharply and the beam 

soon reached its permanent deformation position, shown in Figs. 

61 and 83. 

6.1.2 Permanent.deformation of the beam 

The kinetic energy of the tup was dissipated as plastic work 

of the beam and caused a permanent deformation, provided the 

kinetic energy is large. 

Figs. 66-70 show that consistent experimental results for 
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the maximum permanent deformations were obtained, especially for 

steel beams. 

It is evident that the maximum permanent deformations of the 
GV 0

2 
11 

beam increase with the increase of the kinetic energy A = ~~. 
o 

The membrane force played an important role on the response of 

the beam since the maximum permanent deformation is not in 

proportion to the kinetic energy A and the difference is very 

large when A is large (the maximum permanent deformation of the 

beam is in proportion to the external dynamic energy in the 

analyses of the bending only solution [10J and the shear and 

bending solution discussed in Chapter 3 of this thesis). 

It appears that the clamping conditions had no influence on 

the maximum permanent deformation of the beam provided the impact 

point was remote from the support (ll = 2 in), since the 

experimental data in Figs. 66a and 66b show that there were no 

differences occurring between the flat end beams and large end 

beams. However, the clamping conditions may have an influence 

when the impact point was close to the supports (l, = 0.5 in) 

shown in Figs. 69a and 69b. More tests on large end beams with 

different thickness need to be conducted in order to estimate the 

value of this influence. 

Figs. 7' and 72 show that the maximum permanent deformation 

of the beam struck by the tup with certain value of velocity 

decreases with the decrease of r = l'/.£2' especially when the 

impact point is close to the support the decrease of the maximum 

permanent deformation is rapid. 
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It is found that the maximum permanent deformation occurred 

exactly at the impact point when 11 = 2 in, 1.5 in and 1.0 in, 

while for 11 = 0.5 in and 0.25 in the location of the maximum 

permanent deformation may slightly deviate from the impact point 

and approach the centre of the beam. 

After test, the dimensions of beams were measured with the 

travelling microscope and some of dimensions of beams with 

different impact point and different boundary conditions are 

plotted in Figs. 73-76. It shows that after test most par~of 

the beam on both upper surface and lower surface remained 

straight and the upper surface of beam remained in parallel 
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the lower surface except near the impact point and the supports. 

The decrease of beam thickness is large near the impact point and 

the supports. The local effects of compressLve force in 

transverse direction are evident at the impact point and at the 

support for steel beams. It is clear that after testing the 

dimensions of the flat and the large end beams were similar 

except the points near the built-in ends. 

There were three clear triangular plastic regions at both 

the supports and the impact point, shown in Figs. 77 and 78, 

except the case in which the impact point l, was near the 

support. Fig. 79 shows that when the impact point was close to 

the support no clear triangular plastic region appeared at the 

support since the effect of the support was large and the shear 

force might play an important role on the response of the beam. 

When the transverse displacement of the beam was small, the 
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(a) l1 = 0.25 in 

FIG. 73 Dimensions of flat end steel beams 

5 in 
(6.35 mm) , specimen No. STIlI 17; (b) .£1 = o. 

STIlI 15; (c) .£ 1 = 1 in (25.4 
(12.7 mm) , specimen No. 

mm) , specimen No. ST1H 12; (d) .£ 1 = 1.5 in (38.1 

specimen No. ST1119; and (e) l2 = 2 in (50.8 mm), 

specimen No. ST1II4. 

mm) , 
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FIG. 74 Dimensions of flat end aluminium alloy beams. (a) £1 

= 0.25 in, specimen No. A£III19; (b) £1 = 0.5 in, 

specimen No. A£III 24, (c) £ 1 Kn, specimen No. AnII 12, (d) 

£1 = 1.5 in, specimen No. A£III9; and (e) £1 = 2 in, 

specimen No. A£III2. 
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FIG. 75 

l a) 

lb) 

Dimensions of large end steel beams. (a) '1 ~ 0.5 in, 

specimen No. sn6; ( b) '1 ~ 2 in, specimen No. SIl1. 

~ d 

FIG. 76 

Dimensions of large end aluminium alloy beams. (a) '1 

= 0.5 in, specimen No. AII8; (b) i, = 2 in, specimen 

No. All'. 



FIG. 77 

( a ) 

( b ) 

Triangular plastic region at the support. (a) two 

triangles; (b) one triangle. 



FIG. 78 Plastic deformation at the impact point. The impact 

point was a t the centre of the beam. 



FIG . 79 
Plast ic deformations at the impact pOint and at the 

support when the impact pOint was c lose to the support 

(£1 = 0 . 25 in) . 



108 

plastic region is composed of two triangles shown in Fig. 77a, 

the larger one on the tension side and the smaller one on the 

compression side (not clearly shown in Fig. 77a). With the 

increase of the transverse displacement of the beam, the size of 

the triangle on the tension side increases, while the size of the 

other one on the compression side reduces. The plastic region 

finally becomes one triangle on tension shown in Fig. 77b, 

provided the transverse displacement is large enough. The sizes 

of these two triangles was related to the thickness of the beam. 

The size of the triangle on the tension side i ncreases more 

slowly for thicker beams and that on the compress ion side reduces 

more slowly. The maximum length on the tension side of the 

plastic region can also be seen on the upper or lower surface of 

the beam. Within the plastic region, there is a clear reduction 

of the width of the beam on the upper surface (for the plastic 

regions at the supports) or on the lower surface (for plastic 

region at the impact point), shown in Figs . 80. 

The plastic regions of the steel beams are similar to those 

in the aluminium beams and the plastic regions of both the flat 

end and the enlarged end beams at the impact point are similar. 

However, the plastic regions at the supports of the flat end 

beams are larger than those in a corresponding large end beam. 

The apex of the triangular plasti6 region at the support occurred 

exactly at the clamped point for flat end beams shown in Figs. 77, 

while for the large end beams the apex occurred in the beam 

section near the connection between the large end and the beam 

section shown in Fig • 8lb. 



FIG . 80 

(Q) 

( b ) 

Reduction of the beam width at plastic regions. (a) 

at the impact point; ( b) at the support. 



FIG. 81 

( a ) 

( b ) 

Plastic regions of large end beams. (a) plastic 

region at the impact point; (b) plastic region at the 

s upport. 



The shear deformation of the beam is difficult to measure 

since very high local transverse forces occurred at the impact 

point (between the tup and the beam) and at the support (between 

the beam and the specimen holder). These transverse forces 

compressed the beam and some 'plug' deformations shown in Figs. 

78 and 79 occurred at the support and at the impact point. 

However, shear sliding certainly occurred in some beams, 

especially in those with the impact point 11 near the support 

shown in Fig. 79 • 

. 6.2 Strain in the Beam 

Ten specimens with attached strain gauges were tested with 

the test arrangement shown in Fig. 62. The impact velocity was 

1 -1 7.3932 ms- for the steel beams and 5.7336 ms for the aluminium 

alloy beams, respectively. EP type strain gauges which were 

designed for high-elongation measurements were chosen since the 

strain at the support and at the impact point of the beam was 

very large. The strain gauges can measure strains up to 20%. 

However, it was found that tilE: strain gauges which were stuck at 

the support and at the impact point separated from the beam 

before the strain reached 10% approximately, since the curvature 

of the beam at the support and at the impact point was also very 

large. Nevertheless, strain-time history traces were recorded 

with strains up to 9%. 
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The following analysis of the experimental data is undertaken 

for the same impact velocity except in those cases when the impact 

• 
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velocity is defined. 

6.2.1 Strain-time history traces 

The strain gauge signals which were recorded using DL1080 

transient recorders were processed on a BBC microcomputer with an 

improved programme 'try 8'. Some processed strain-time history 

traces are shown in Figs. 64 and 82 to 84. It is clear that the 

strain at the support and at the impact point quickly grew and 

almost increased linearly in a short time after impact shown in 

Figs. 82, while the strain obtained from the middle strain gauges 

went through several cycles after impact and then increased 

steadily until the beam reached its maximum deformation shown in 

Figs. 64 and 83. 

It was found that the strains at the support and at the 

impact point increased more quickly with the increase of the 

thickness of the beam, but the distinction was not large. The 

strain at the impact point and at the right-hand support was very 

sensitive to the value of 11 since the strain increased more 

quickly when the impact point was near the Support. The strain 

at the impact point was larger than that at the support but the 

difference was less when the impact point close to the right-hand 

support. It might appear that the strain at the right-hand 

support is larger than that at the impact point when the impact 

point is close enough to the right-hand Support. For the flat end 

aluminium beams, the tensile tearing failure generally started at 

the impact point when the value of 11 is large. However, with 
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Specimen No. STI25 and impact point t, = 2'in (50.8 

mm) • 
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the decrease of i" the tensile failure may start at the support 

(the phenomenon of beam failure will be discussed in the next 

section of this Chapter). At the impact point, the strain in the 

flat ended beams was similar to that in the large ended beams. 

However, at the support the strain in the flat ended beams, as 

expected, was larger than that in beams with enlarged ends since 

the positions of strain gauges at the support were different as 

shown in Figs. 62. For flat end beams the centre of strain gauges 

was exactly at the end of the beam section, while for beams with 

enlarged ends one end of a strain gauge was at the end of the 

beam section and, therefore, the measured strain was not the 

exact strain at the support. 

A short time delay was found for the response of strain 

gauges situated at the supports and at the middle of the beam 

after the strain gauges at the impact point of the beam were 

stretched due to the impact of the tup. The duration of delayed 

time depended on the distance from the impact point. The longer 

the distance, the longer the delay dur.ation. The duration of 

delay time for the strain gauge response is related to the 

propagation of the stress wave in the beam. The response of 

strain gauges at the supports was delayed Ocl .. -tnd 20- So 

microseconds when the impact point t, = 2 in. 

As previously stated, the first cycle of middle strain gauge 

traces was due to the travelling plastic hinge. The other cycles 

might be due to wave reflection in the beam. These cycles were 

similar for upper surface and lower surface strain gauges. It is 

evident that after the first cycle the strain gauge on the upper 
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surface of the beam was compressed and that on the lower surface 

was stretched as shown in Figs. 64 and 83. However, the strain 

on both upper surface and lower surface increased with the 

increase of time and depends on the beam thickness. It may be 

larger than zero for both upper surface and lower surface shown 

in Figs. 83. The situation in which the strain on both upper 

surface and lower surface is larger than zero was called a 

'string stage'. (In theoretical analysis, 'string stage' means 

that not only the whole cross section of the beam is in tensile 

state but the membrane force in the cross section is equal to 

fully plastic membrane force of the cross section). It was found 
~ 

that for beams with thickness H~81 mm (0.15 in) and 5.08 mm 

(0.2 in), the 'string stage' was associated with maximum 

deformation of 3~5 mm which were obtained by integrating the 

velocity-time history traces captured by the laser doppler 

velocimeter. The strain of the middle strain gauge on the thick 

beam 6.35 mm (0.25 in) and 7.62 mm (0.3 in) was negative on the 

upper surface of the beam throughout the entire response shown in 

Figs. 64. However, the value of the strain obtained from the 

middle strain gauges were very small compared with that at the 

support and at the impact point. It should be noted that not all 

cross-sections of the beam entered into a tensile state when both 

middle strain gauges were stretched. Figs. 83 and 84 show that 

during 2.2 ms, approximately, after impact the strain which was obtained 

from the strain gauge which is attached to the support on the lower 

surface of the beam was less than zero, while both middle strain gauges 

were stretched since about 0.7 ms after impact. 
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6.2.2 Strain rate 

A short time after impact, the strain rate at the support 

and the impact point was nearly constant with time shown in Figs. 

82. The average value of strain rate at the support was about 45 

s-1 when the impact point £1 was 2 in and it may increase with 

the reduction of £,. There were no common values of strain rate 

obtained from middle strain gauges. However, the strain rate 

from the middle strain gauge traces was very small compared to 

that at the support and at the impact point (the difference is 

about two orders of magnitude). 

From these ten test results it is difficult to estimate the 

strain and strain rate etc. for general cases of beams struck by 

the tup at any point, since there were so many types of test 

(total 50 types of tests were conducted) and even in the same 

type of test the strain and strain rate may be different with a 

different impact velocity. Furthermore, for the later motion of 

the beam the strain and strain rate at the support and at the 

impact point are still unknown because the strain gauges 

separated from the beam and the strain traces with strains over 

9% were lost. Nevertheless, a lot of interesting phenomena did 

emerge from the data. 

6.3 Failure of the Beam 

Tables 2-5 show that after a test some beams cracked or 

broke at the supports or at the impact point. Both cracked and 

broken beams were considered as a beam failure due to the impact. 
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Of course, there is a difference between cracked and broken beams 

since dependent on the depth of the cracking through the beam 

thickness, the beam can absorb some more external energy before 

it totally breaks. However, this difference is small compared 

with the energy which the beam can absorb before cracking occurs, 

provided the thickness of the beam is not very large. 

It was found that there were two ways of failure; one is 

that the cracking started from locations of the maximum tensile 

strain, i.e. the cracking started from the upper surface 

(impacted surface) of the beam at the supports or from the lower 

surface of the beam at the impact point shown in Figs. 85; the 

other one is that the cracking started from the upper surface of 

the beam at the impact point shown in Figs. 78 and 79. The first 

one was classified as tensile tearing failure and the latter one 

as shear failure* since the first one failed mainly due to 

bending moment or membrane force while the latter one failed 

mainly due to shear. 

The tensile tearing failure had no regular broken sections 

and the broken position in the same layer of beam thickness had a 

large difference along the beam width, in other words, the broken 

section was convex-concave and was not in a same plane. While 

for the shear failure the broken section was in a plane and this 

* The shear failure may occur at the supports for some special 
cases. Indeed, in preparation for the current test series, 
a wide beam impacted by a large tup (20 kg) exhibited a 
clear shear band and a large shear deformation at the 
support. The failure might have occurred along this shear 
band if the impact velocity were slightly higher. 



FIG . 85 

( Q ) 

( b ) 

Cracking due to tensile tearing. 

(a) cracking at the impact paint, 

(b) cracking at the support. 



o 
plane was a cross section of the beam or made an angle of 45 

with the lateral axis of the beam, approximately. 

It seems that the shape of broken section for tensile 

tearing failure was influenced by the direction of machining 

scores on the surfaces of the beam since the cracking of tensile 

tearing started along these machining scores except the tensile 
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tearing failure occurred at the connection point between the beam 

section and the large end. After some 'plug' deformation the 

shear sliding and cracking occurred at the impact point and the 

machini~g score had no influence on the failure of shear. The 

'plug' deformation was caused by the large concentrated 

compresslve force between the tup and the beam at the impact 

point. 

It should be noted that the shear failure defined herein may 

differ for some cases from that discussed in reference [29J and 

in other theoretical work [13-15, etc.J. In references [29J and 

[13-15J, the shear failure is caused by the shear sliding between 

two adjacent transverse cross sections at one point of the beam 

and it is defined that the shear failure occurs when the shear 

sliding W ~ kH. However, shear failure according to the 
s 

definition herein may be caused by the shear sliding along about 

45 0 direction to the lateral axis of the beam shown in Fig. 78 

where the maximum shear stress occurred when the impact point 

near the centre of the beam. When the impact point was close to 

the support the phenomenon of shear failure was similar to that 

defined in references [29, etc.J shown in Fig. 79. 
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It was found that the type of failure depended on the impact 

point, clamping conditions and materials (mainly the fracture 

elongation of the material) of beams. 

6.3.1 Flat end beams 

A total of 40 types (200 specimens) of test were conducted 

on flat ended beams of aluminium alloy and steel. After testing, 

most of these types of test had at least one cracked or broken 

beam, especially for aluminium beams. 

The flat ended aluminium beams generally failed due to 

tensile tearing except when the impact point was very close to 

the support. The location of tensile tearing failure changed 

from the impact point to the support with the reduction of 1
1

• 

When the impact point 11 was 2 in, 1.5 in and 1.0 in the tensile 

tearing failure occurred at the impact point, while when 1 was 
1 

0.5 in the tensile tearing failure might occur at the impact 

point or at the support. The shear failure occurred at the 

impact point or the tensile tearing failure occurred at the 

support when the impact point 11 was 0.25 in or less than 0.25 

in. It is clear that the shear failure may dominate the type of 

failure, provided the impact point is very close to the support. 

Flat ended steel beams all broke or cracked at the impact 

point since the limit elongation of steel is much larger than 

that of aluminium alloy. But the angle of the broken section was 

different with different impact points. When the impact point 

was close to the support the shear sliding occurred between two 

adjacent transverse cross sections shown in Fig. 79, while when 



the impact point was in the middle of the beam the shear sliding 

occurred along about 450 direction to the lateral axis of the 

beam shown in Fig. 78. 

6.3.2 Large end beams 

"7 

60 enlarged end beams of aluminium alloy and steel were 

struck at the impact point 1, 2 in (the centre of beam) and 0.5 

in. The f~~ure of enlarged end beams was different from the flat 

ended beams because of the effect of the end clamping conditions. 

It is evident that large concentrated stresses may cause 

yielding at the connection point between the beam section and the 

enlarged end since the thickness of a specimen suddenly changes 

at this pOint, and large concentrated stresses may cause failure 

of beam at this point. Indeed, it was found that independent of 

the impact point 1, large end aluminium beams all cracked or 

broke at the support (the connection point) due to tensile 

tearing. Large end steel beams cracked or broke at the impact 

point due to shear when the impact point was near the centre of 

the beam, while for small 1, (0.5 in) the tensile tearing failure 

occurred at the support (the connection point). 

6.3.3 In comparison with the static test 

Six enlarged end and six flat ended beams of aluminium and 

steel were statically loaded in the Dartec testing machine at 

different points (l, = 2 in, 1.0 and 0.5 in) until the beams 

cracked or broke. 
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It was found that the type of failure and the location of 

failure of dynamically loaded beams were the same as those of statically 

loaded beams which were stated in page 17 in Chapter 2. 

6.3.4 Dynamic energy absorbed by cracked or broken beams 

The dynamic energy which was absorbed by cracked or broken 

beams is plotted in Figs. 86-89. For some types of test, the 

maximum dynamic energy which was absorbed by beams which did not 

fail is also plotted in these figures. 

Figs. 86 and 87 show that the absorbing energy capability of 

beams decreases sharply when the impact point was close to the 

However, this difference was small between 1, = 

2 in and 1, = '.5 in, especially for steel beams. 

The variation of dimensionless parameter of dynamic energy 
GV 2 o 

U = ~, which was absorbed by the beams which failed, with the 
o H 

dimensionless parameter i is plotted in Figs. 88 and 89 for 

steel and aluminium alloy beams, respectively. Some maximum 

values for u which was absorbed by beams without failure is also 
::su.,~ntd 

plotted in these figures. It shows that the absorbing energy 

capability of beams decreased with the increase of beam thickness 

and this capability decreases sharply when the impact point 1, 
was 2 in 

energy E 

and '.5 in. 
GV 2 o 

= ~ which 

However, it should be noted that the actual 

was absorbed by beams increased with the 

increase of beam thickness H since the limit plastic bending 

moment MO is the square function of H. 

Some approximate curves from the experimental results are 
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drawn in Figs. 88 and 89. These curves give the approximate 

value of dynamic energy, which can be absorbed by beams until 

failure, for different beam thickness. The flat end beams with 

thickness H = 0.3 in were made from a different piece of material 

as shown in Table 1 and the absorbing energy capability is 

therefore lower than that of the other flat end beams shown in 

Fig. 89. 
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CHAPTER 1 

COMPARISON AND DISCUSSION 

The bending only solution of a clamped beam struck by a 

mass at any point of its span was examined by Parkes 

[10J. It is found in Chapters 3 and 4 of this thesis that 

according to the rigid-plastic yield condition some yield 

violations may occur near the impact point where a stationary 

plastic hinge is assumed. Therefore, in these cases the velocity 

profiles assumed in reference [10J may not be valid. Nonaka's 

examination [12J of a clamped beam subjected to an impulsive 

loading on a concentrated mass at the centre of a beam can be 

used for the analysis of a clamped beam with a uniform cross 

section struck by a mass at the centre. The interaction 

effects of bending moment, membrane force and shear force were 

considered in reference [12J. Nonaka also considered the 

influence of strain-rate sensitivity using the Cowper-Symonds 

empirical expression. Oliveira [15J discussed the shear and 

bending response of a clamped and a simply supported beam struck 

by a mass at the centre. He found that when L ~ ACT 1), 

where L, A and T1 are defined in reference [15J and ACT 1) can be 

obtained from equation (15) in reference [15], a shear violation 

might occur at the supports of the clamped beam and the response 

of clamped beam would follow a different pattern from that 

assumed in reference [15]. However, these cases had been omitted 

in reference [15J since most practical cases have L > ACT 1). 

Some approximate approaches for examining the dynamic response of 



a clamped beam struck by a 

in references [20,30J. 

mass have also been developed 

The theoretical investigation of a clamped beam struck by a 

mass at any point of its span has been extended to cater 

for transverse shear and bending response and finite deflection 

effects which are presented in Chapters 3 and 4 of this thesis, 

respectively. The interaction effect of bending moment, shear 

force and membrane force corresponding to a cubic shaped yield 

surface, which is combined with Fig. 9c and Fig. 42d in this 

thesis and is similar to Figs. 1 in reference [12], may be 

obtained in a simple way of combining Chapter 3 with Chapter 4 

when the membrane effect is neglected in the shear sliding 

phases, since the influence of transverse shear forces is 

important, while the influence of membrane forces is not 

important, in the early stage of motion when the displacement of 

the beam remains small [45]. New velocity profiles with a moving 

plastic bending hinge near the impact point instead of a 

stationary hinge at the impact point are assumed in Chapters 3 

and 4 of this thesis when a bending violation occurs near the 

stationary hinge at the impact point. These cases were not 

discussed in reference [10]. The theoretical prediction of 

threshold external dynamic energy for the onset of plastic 

failures of tensile tearing and shear sliding of a clamped beam 

struck by a mass at any point of its span has been 

discussed in Chapter 5 of this thesis. It appears, according to 

author's knowledge, that nobody has discussed this problem before 

except Jones [29] who examined the threshold velocity for onset 
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of plastic failures of a clamped beam subjected to a uniformly 

distributed impulsive loading. 

Parkes [10J conducted some experimental tests on clamped 

beams without axial restraint struck by a heavy striker (4 lb.) 

and a light striker (0.005 lb.) at three different points with r 

= 0.2, 0.5 and 1 (r = £1/£2)*. The ratio r of the lengths of the 

two parts of the beam varied with the increase of one length (£2) 

while the other (£1) (short one) remained 2 in (some other tests 

with the length £1 = 1 in were reported by Parkes in reference 

[60J). The beam specimens with the same dimensional cross 

section were made of three different materials - steel, brass and 

dural. A total of 21 test results was reported in reference 

[10J. Only one test was performed on each type of test (same 

impact point, same striker mass and same beam specimen are 

classified as one type of test). Nonaka [12J conducted some 

experimental results on clamped beams with or without axial 

restraint subjected to blast loading at a central concentrated 

mass. As in his theoretical analysis, these experimental tests 

may be considered as clamped beams struck by a striker at the 

centre when the central concentrated mass is equal to the striker 

mass and the total explosive impulse acted on the central mass is 

equal to the initial impact momentum of the striker. A total of 

* The definitions of £1 and £2 in this thesis is different 
from that in reference [10J. In reference [10J, £2 is the 
length of the short part of the beam while £1 is tne length 
of the longer part of the beam. However, the definition of 
£1 as short length and £2 as longer length are employed in 
tne whole of this thesis. 
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30 beam specimens of steel and aluminium alloy was reported in 

reference [12] and only one test was performed for most types of 

test. In reference [10] the span of the beam varied from 4 in to 

12 in, while in reference [12] the width of the beam varied from 

0.47 in to 1.15 in. However, only one beam thickness was used in 

both references [10] and [12]. It appears that the external 

dynamic energy which acted on the beam was not very large in 

references [10,12] in comparison with the maximum energy which 

can be absorbed by the beam without failure and no failed beams 

were reported in either of these papers. Furthermore, only the 

permanent deformation of the beam were reported in references 

[10,12]. 

A total of 260 steel and aluminium alloy beam specimens with 

different impact points (r = 0.067, 0.143, 0.333, 0.6 and 1) were 

conducted in the Department of Mechanical Engineering at 

Liverpool University and the experimental results are mainly 

reported in Chapter 6 of this thesis. The thickness of beam 

specimens is H = 0.15 in (3.81 mm), 0.2 in (5.08 mm), 0.25 in 

(6.35 rom) and 0.3 in (7.62 rom). At least 4 tests with different 

impact velocities were performed for most types of test. 

Experimental data, including motion of the beam, strain-time 

history at some special points, forces between the striker and 

the beam and permanent deformation, etc., were recorded or 

processed and these data are discussed in Chapter 6. The 

comparison between Parkes', Nonaka's experimental test programmes 

and that reported in this thesis is shown in Table 6. 



Parkes' [10] 
Those reported 

N(Jnaka's [12 ] in this thesis 

Dimension 21=4, 6 and 12in 21=3.3 in 21=4 in 
of beam B=0.25 in B=0.47 - 1.15 in B=0.4 in 
specimens H=0.25 in H=O.l1 in H=0.15 - 0.3 in 

Material steel, brass and aluminium alloy aluminium alloy 
dural and steel and steel 

Test Boundary flat ended beams flat ended beams flat ended and 
condition without axial without axial enlarged end 
and clamping restraints restraints and beams with 
condition enlarged end axial restraints 

beams with axial 
restraints 

details 
Impact r=0.2, 0.5 and 1 r=1 r=0.067, 0.143, 
point 0.33, 0.6 and 1 

No.of tests 1 or 2 specimens for most types of 
for each 1 were tested for test, at least 4 
type of test most types beams were tested 

Mass of 0.005 lb and the ratio of 5 kg 
striker 4 1b mass g=10 

External from lower to from lower to ver y 
dynamic moderate moderate high 
energy 

Total No. 
of tested 21 30 260 
specimens 

only maximum Max. permanent a quantity of 
permanent deformation experimental data 
deformation and some have been recorde d. 

Experimental data and some permanent processed and 
permanent deformation measured during 

presented deformation profile the test and 
profile photos after the test 
photos which are given 

and discussed in 
Chapter 6 of this 
thesis 

Table 6. Comparison of Experimental Tests on Clamped Beams Struck by A 
Falling Mass. 



7.1 Deformation of the Beam 

The theoretical analysis which is presented in Chapter 4 

shows that when the mass ratio g is very small (g/~ « 1) the 

deformation of the beam which is yielded in the phases with 

moving plastic hinges is very small and almost all of the 

external dynamic energy is absorbed in the last phase of motion 

in which two parts of beam rotate as rigid bodies about the 

supports. In these cases, the maximum permanent deformation 

occurred at the impact point can be apprOXimately expressed as 

or 

-21 [-1 + ~ + 8A ] 
-/1 (1+r) (7-1) 

for beams with rectangular cross-sections where NO = BHOO and MO 

1 2 W = 4 BH 00. Therefore, the maximum permanent deformation Of/H 

only depends on the two parameters A and r. However, when the 

mass ratio is not small the maximum permanent deformation may 

depend on the thickness of the beam since g will remain in 

equation (7-1). This phenomenon can also be observed from the 

experimental results. The experimental data plotted in Figs. 66-

70 lay in narrow regions although the beam thickness is 

different. However, these data might be more discrete if the 

mass ratio g were not small. Figs. 66-70 show that equation 

(7-1) gives fair agreement with the experimental results, 

especially for aluminium beams with impact point at £1 = 2 in, 

1.5 in and 1 in, while for steel beams the strain rate effect 

should be considered. 
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The comparison of maximum permanent deformation predicted by 

the theoretical analysis and some experimental results are shown 

in Figs. 90 and 91 (the comparison of the maximum permanent 

deformation between theoretical analysis and all of the 

experimental results is shown in Figs. 66-70). It is clear that 

the difference between the bending only solution and the 

experimental results is very large when the external dynamic 

energy is large. However, the theoretical analysis which retains 

the influence of finite deflections gives good agreement with the 

experimental results, especially for the aluminium beams. The 

theoretical lower and upper bound solutions do bound most of the 

experimental data as shown in Figs. 90 since aluminium is 

essentially strain rate insensitive at the usual strain rates 

encountered in practice [42J. 

It is well-known that mild steel is more sensitive to strain 

rate. Therefore, the Cowper-Symonds empirical expression 

1 

00' = 00[1 + (tID)PJ (7-2) 

is employed to revise the theoretical solution, where D and pare 

equal to 40.4 s-1 and 5 [7,8,10, etc.J, respectively. It is 

assumed that the strain rate is a constant in the entire response 

of the beam and is equal to 45 s-1 which was obtained from 

experimental results in early response of strain gauges 

(corresponding to the strain less than 9%)*. Therefore, the 

* One could also use the functions given in references 
[7,40,45, etc.) 
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indicates that the curve corresponds to the equation 

(X) given in Appendix II. 
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dynamic yield stress of steel is 

(7-3) 

The revised results are plotted in Figs. 91 using a dashed line. 

It is evident that the revision of strain rate effects is 

slightly higher because the strain rate may be less than 45 s-1 

for later response of the beam. However, it is found that the 

experimental results agree surprisingly well with the revised 

upper bound theoretical solution (corresponding to the lower 

bound yield curve with 00.618 = 0.61800 shown in Fig. 42c). 

Therefore, good agreement between experimental results and 

theoretical solution in Chapter 4 will be obtained if the static 

yield stress 00 obtained from static tensile test is replaced by 

00.618 in equation (7-3), i.e. the dynamic yield stress 

00 = 2.0218 x 0.61800 = 1.24900· (7-4) 

It appears from Figs. 91 that the strain rate with lower impact 

-1 velocity may be less than 45 s corresponding to the impact 

-1 velocity Vo = 7.3932 ms ,while the strain rate with higher 

4 -1 impact velocity may be higher than 5 s , since the experimental 

results with lower impact velocity are larger and those with 

higher impact velocity are less than the revised upper bound 

theoretical solution with strain rate 45 s-1 However, this 

difference is small. 

The deformation profile for most of the beam specimens 

consists of two almost straight parts as shown in Figs. 73-76. 

This phenomenon also agrees with the theoretical analyses in 
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Chapters 3 and 4. When the mass ratio g is small, as 

previously stated, the phase of motion with travelling plastic 

hinges are very short in the theoretical analysis and almost all 

of the external dynamic energy is absorbed by a final phase of 

motion in which two parts of the beam on either side of the 

impact pOint rotates as rigid bodies. Therefore, approximate methods 

in which the phases of motion with travelling hinges are neglected, like 

equation (7-1) and equation (1) in reference [30J etc., can 

estimate not only the maximum permanent deformation, as 

previously stated, but also the deformation profile of the beam 

except for those points near the impact point and the supports 

where the curvature of the beam is large, provided the mass 

ratio g is small. However, when the mass ratio is not small the 

phases of motion with travelling plastic hinges may play an 

important role and the deformation profile of the beam may not be 

linear (the corresponding experimental results with a light 
,5 

striker (0.005 lb.) can be seen in Figs~ and 21 in reference 

[10J). Now, more complex equations in Chapter 4 have to be 

solved and sometimes even a numerical method is required to solve 

differential equations (4-32) and (4-36) if a plastic hinge near 

the impact point moves. 

7.2 Failure of Beams 

When a structure is subjected to a high intensity and short 

duration dynamic loading, large plastic deformations are 

developed in the structure and absorb this external dynamic 

energy. However, with further increase of the external dynamic 
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energy the structure may fail due to tensile tearing since a real 

material has a limited tensile elongation [29], or fail due to 

transverse shear when the shear sliding reaches some proportion 

of the thickness of the structure [29]. Of course, the structure 

may also fail due to the combination of tensile forces and 

transverse shear. 

The theoretical analysis of tensile tearing and shear 

failure of a clamped beam struck by a mass at any point 

of its span is discussed in Chapter 5 of this thesis. It appears 

that the type of failure may change from tensile tearing failure 

to shear failure with the increase of the limit elongation 

€m of material or with the decrease of the distance 1, from the 

impact point to the support. This phenomenon agrees with the 

experimental test results which is mentioned in Chapter 6. The 

aluminium beams (with lower value of €m) failed due to tensile 

tearing except some tests with the impact point very close to the 

support. The steel beams failed with a different type of failure 

except enlarged end beams with impact point 1, = 0.5 in or 0.75 

in* since flat ended beams and enlarged end beams were made of 

different materials and the enlarged end beams have a lower value 

of € (0.31 ) (the concentrated stress at the connection between m 

beam section and enlarged end may also have an influence on the 

beam failure). 

* 

The comparison of tensile tearing failure between 

For enlarged end beams, the impact point 11 was nominally 2 
in and 0.5 in. However, two failed beams had values of 1, 
close to 0.75 in which were measured after the tests. 
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theoretical predic~;o~ and experimental test results is given in 

Tables 7 and 8. Table 7 shows some results of enlarged end 

beams, while Table 8 shows some results of flat ended beams. It 

shows that the threshold external dynamic energy At for onset of 

tensile tearing failure which is obtained from the theoretical 

analysis in Chapter 5 agrees reasonably well with experimental 

results, especially for enlarged end beams. The upper and lower 

theoretical predications do bound most of the corresponding 

experimental test results. Therefore, from an engineering 

viewpoint the theoretical analysis in Chapter 5 can be used to 

estimate the threshold external dynamic energy for the onset of 

the tensile failure of clamped beams struck by a 

any points of the span. 

mass at 

Only a few beam specimens which suffered transverse shear 

failures agree with the theoretical predic~i~ns for the threshold 

external dynamic energy required for the onset of shear failure 

if the coefficient k is about 0.25 (from theoretical analysis 

shear failure occurs when shear sliding Ws = kH, where 0 < k ~ 

1). These few test beams with thicknesses H = 0.25 in and 0.3 in 

were struck by the falling tup with the impact point very close 

to the support (£1 , 0.25 in). For most failed beams, the 

theoretical analysis in Chapter 5 considerably overestimates the 

threshold external dynamic energy for the onset of shear failure 

in comparison with the experimental results. This large 

difference may be attributed to the definition of shear failure 

between theoretical analysis in Chapter 5 and experimental test 

results in Chapter 6. The theoretical analysis in Chapter 5 



Limit Experimental results Theoretical results 
Thickness Impact elong. of 
of beam point material 7\. l\. 
H (in) 1 1(in) E.", Max. value Min. value 

without with failure 1\ 'A. o.,,8 
failure 

For Enlarged End Alumin1um Beams 

0.15 2 0.19 16.334 24.2014C 32.17226 19.88245 

0.5 0.19 0.5441 1.5815B 1.12364 0.69441 
0.2 0.75 0.19 1. 7354C 2.23027 1.37831 

2 0.19 10.413 14.0675C 19.08565 11. 79493 

0.25 2 0.19 8.2463 10.419C 12.85057 7.94165 

0.3 2 0.19 5.0131 6.5911C 9.36809 5.78948 

For Enlarged End Steel Beams 

0.2 0.5 0.31 2.814C 2.42284 1.4973 
0.75 0.31 1.1142 6.1853C 5.07435 3.13595 

* C - cracked; B - broken. 

Table 7. Tensile Tearing Failure of Enlarged End Beams. 



Experimental results Theoretical results 
Limit 
elongation 1\. 1\ 

Thickness Impact of Max. value Min. value 
7\. of beam point material without with failure '1\0.6,8 

H (in) .1, (in) f", failure 

0.25 0.3065 0.6878C 0.58504 0.36156 
0.5 0.5268 1.2327C 1.72367 1.06523 

0.15 1 0.19 4.5177 6.1558B 6.23657 3.8542 
1.5 5.7576 7.4638C 15.26132 9.4315 
2 18.1376 32.17226 19.88245 

0.25 0.5135 0.39617 0.24483 
0.5 0.5314 0.8432C 1.12364 0.69441 

0.2 1 0.19 2.1672 3.2071B 3.84253 2.37469 
1.5 6.0611 9.17936 5.67285 
2 7.4935 7.9523B 19.08565 11.79493 

0.25 0.4704 0.29648 0.18322 
0.5 0.9804 1.0099C 0.81154 0.50153 

0.25 1 0.19 2.0997 2.6273B 2.66709 1.65444 
1.5 4.2694 6.25853 3.86777 
2 5.5924 6.6018B 12.85057 7.94165 

0.25 0.106 0.1489C 0.12729 0.10684 
0.5 0.3687 0.5266C 0.44513 0.27509 

0.3 1 0.15 0.5231 0.9956C 1.38484 0.85583 
1.5 0.7759 1. 4761C 3.09419 1.91221 
2 2.179 2.6034C 6.18034 3.81945 

* C - cracked; B - broken 

Table 8. Tensile Tearing Failure of Flat End Aluminium Beams. 



assumed that transverse shear failure occurs when the shear 

sliding W between two adjacent Transverse Cross Sections is s 

equal to kH. On the other hand, the work in Chapter 6 assumes 
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that the shear failure occurs when cracking starts from the upper 

surface of the beam at the impact point. After examining the 

beam specimens, we found that for most beams which failed due to 

excessive shear cracking did not develop along the transverse 

o cross section but made an angle of 45 to the transverse cross 

section. Therefore, these beams really failed due to the 

combined effect of tensile and shear. There are a few beam 

specimens of H = 0.25 in and 0.3 in with the impact point very 

close to the support (t
1 
~ 0.25 in) which failed due to shear 

sliding between two adjacent transverse cross sections. The 

external dynamic energy of these few beams agrees, as stated in 

the beginning of this paragraph, with the theoretical 

predictions. Therefore, the theoretical analysis in Chapter 5 

may be used to predict the threshold external dynamic energy for 

the onset of shear failure of clamped beams struck by a 

mass at any point of the span, provided the failure is caused by 

the shear sliding between two adjacent transverse cross sections. 

While for thoscfailed beams in which the cracking starts from the 

upper surface at the impact point and develops along an angle of 

o about 45 to the transverse cross section of the beam, further 

theoretical work is required to predict the threshold external 

dynamic energy for the onset of plastic failure. 

Equations (5-9), (5-11b) and (5-13) in Chapter 5 show that 

when the tensile strain £ in a clamped beam is given the maximum 



deformation W of the beam can be theoretically predicted and it 

is independent of the load which is acted on the beam, provided 

the plastic regions in the beam are similar to that assumed in 

Chapter 5. Therefore, it hints that those equations can be 

employed to predict the threshold maximum deformation for the 

onset of tensile tearing failure of both dynamically loaded and 

statically loaded beams when E is replaced by the limit 

elongation E of beam materials. 
m 

predic(~01~ in Chapter 5 agree 

Indeed, theoretical 

well with most of 

experimental data which were obtained from static loading beams. 

The comparison beween theoretical predictions and experimental 

results is given in Table 9. 
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Max. permanent deformation 
Thickness Loading 

Clamping Specimen of beam point experimental theoretical 
condition No. H (in) .t. (in) results (mm) results (mm) 

ALI24 0.15 2 15.4 19.97 
flat ALIII21 0.25 1 10.75 9.93 

ALIV20 0.3 0.5 6.5 4.19 
end STI24 0.15 2 22.5 40.38 

without failure 
STIIIl9 0.25 1 19.5 20.22 
STIV23 0.3 0.5 15 10.26 

All 0.15 2 14 19.97 
large Allli 0.25 1 7.5 9.93 

AIV1 0.3 0.5 5.5 4.19 
end SIl 0.15 2 24.5 32.53 

without failure 
SIIIl 0.25 1 18 16.3 
SIV1 0.3 0.5 8.25 8.33 

Table 9. Comparison of Maximum Permanent Deformation of Statical 
Loading Beams, Which Failed,between Theoretical Predictions 
of Equations (5-9), (s-11b) and (5-13) and Experimental 
Re;;ults. 
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CHAPTER 8 

CONCLUSIONS 

The theoretical work of Parkes [10J and other authors 

[12, 13, 15, etc.J has been further developed and extended to 

examine transverse shear and bending response and finite 

deflection effects of a clamped beam struck by a mass at 

any point of the span. The theoretical analysis on shear and 

bending response in Chapter 3 shows that more mechanisms of motion 

may occur than in the bending only solution [10J (the theoretical 

analysis in Chapter 3 can also be reduced to the bending only 

solution when the fully plastic transverse shear force QO tends 

to infinity). It is clear that with the increase of the external 

dynamic energy, a large difference will occur between bending 

only solution [10J, or shear and bending solution in Chapter 3, 

and one with the influence of finite deflections in Chapter 4. 

This difference increases sharply when the external dynamic 

energy is large. It is found that a bending violation may occur 

near the stationary plastic hinge at the impact point according 

to rigid-plastic yield condition. Therefore, for these cases 

which were ignored by Parkes [10J new velocity profiles with a 

moving plastic hinge instead of the stationary plastic hinge at 

the impact point are examined in Chapters 3 and 4. The 

interaction effect of bending moment, shear force and membrane 

force corresponding to a cubic shaped yield surface may be 

obtained by combining Chapter 3 with Chapter 4 when the effect of 

membrane forces is neglected in the shear sliding phases, since 



the transverse shear force plays an important role in the early 

stage of motion when the displacement of the beam remains small 

[45J. Furthermore, a theoretical method has been developed in 

Chapter 5 to predict the threshold external dynamic energy for 

the onset of a tensile tearing failure and a transverse shear 

failure of a clamped beam struck by a 

of the span. 

mass at any point 
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A total of 260 beam specimens were tested with the impact 

points varied from the midpoint of the beam to the immediate 

vicinity of the support. The beam specimens were made of 

aluminium alloy and steel with flat end and enlarged ends. The 

thickness of the beams varied from 0.15 in to 0.3 in. A quantity 

of experimental data have been recorded, processed and measured 

during the test or after the test, including velocity-time 

history at the impact pOint, reactive force-time history between 

the falling tup and the beam, the motion of the beam and the tup 

in the whole response, the deformation-time history and strain

time history at some special points, etc. The external dynamic 

energy varied from small (small plastic deformations in beams) to 

very large (beam failures). For most types of test, at least 3 

unbroken beams with different impact velocities and a failed beam 

were obtained. 

Most of the experimental test results agree 

reasonably well with the theoretical predictions developed in 

this thesis. The theoretical predictions in Chapter 4 for the 

maximum permanent deformation of the beam do bound most of the 



results obtained on aluminium beams, while for steel beams good 

agreement between the theoretical analysis and experimental 

results is also obtained provided the static yield stress 00 is 

replaced by the dynamic yield stress 00 defined by equation (7-

4). When the mass ratio g is small, the maximum permanent 

deformation of the beam can be estimated using a very simple 

equation (7-1). The theoretical prediction for the threshold 

external dynamic energy for the onset of tensile tearing failure 

also bound most of the test results. For those beam specimens 

which failed due to shear, the theoretical analysis in Chapter 5 

can also give reasonable agreement provided the shear cracking 

develops along the transverse cross section. When the shear 

cracking develops in an angle of about 450 to the transverse 

cross section of the beam, further theoretical work is required. 
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Further theoretical work may be done to predict the maximum 

permanent deformation of the beam using an 'exact' yield curve 

(parabolic yield curve) shown in Fig. 42d. The deformation 

profile of the beam with finite deflection may be obtained if the 

deformation W(z) of the beam at any point which is obtained from 

bending only solution is replaced by W + yW2
• The deformation W1 

at the impact point of the beam with finite deflection can be 

obtained from a bending only solution when W1 from the bending 

only solution is replaced by W, + yw,2. The theoretical analysis 

in Chapter 5 may be further developed to predict the failure of 

beams due to the combined effect of tensile and shear. However, 

this is a very complex problem and a numerical method may need to 

be employed. 
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APPENDIX I 

Details of the proof of static admissibility conditions for 

Chapter 3 are given in this Appendix. We will see that this 

examination into the static admissibility conditions is a 

considerable exercise. However, it is necessary. Otherwise, we 

cannot be sure that the velocity profiles which we assumed in the 

theoretical analysis give the correct solution, since an 'exact' 

solution for the dynamic response of structure must satisfy both 

kinematic and static admissibility conditions relating to the 

yield surface which we chose. 

The general shear force and bending moment expressions (3-6) 

with velocity profile (3-3) can be used for moat cases discussed 

in Chapter 3. Substituting equation (3-3) into (3-6), we obtain 

! =0 I 1'\.1.=-1 2 . 

o 0 of' Jj:Ia (21:2 + i!) a _ IWa it& z' 
"'~ ·~o au.1f.1..a 'I.l"'~l 

1 ,It& (3 )' 1 11I7a. i.. , 
lI'Ia.:: , ... 2 10 l1;! -t fl.Ll.iI£ i!.I"'z. i! - 1.1 fA. ~ ! 

(J c. ~ + ,il-. (1.21-~) a + ,At" '71 
::LI 10 8"'Vj~ 8L1.lf,i,1.. 

M,a '+2.!'.Vif+~ O·f!'-l:)i!.I+t1'.l::~ i!' (1e,f) 

( 19,h) 

Differentiating equations (1) with respect to z, we obtain 

(2a,b) 



".., 1= () , 

a( ) 
where ( )' = az--

Differentiating equations 

j I, 
l. =0 ~ m.i.'=O 

9."- I~f - ,{ij~ i~ 
~ - 4fLV,~ 4U Vi ~L~ 

""t :: Jli. (il -t it) _ ItiT .. i!~ 
2.&L~L." .1LL -L& 

i," = -~ of" ,ifJ,;i, 
.... V, ~, 4,1t tT, ~, L.. • 

1'\"= .J.!t(-! -*J l1if~' 
I llL~, I -+ loU. «,& i" 

~," = 0 ~ JIt,N=O. 

(1) twice, we obtain 

.,.", - -F ~ -a ~ - ~~ 

~ - a£, J! ",-
~ 

/tn()~$C~a, 

~ a,'.! ~, 

A) Phase 1, shear sliding 0 ~ t § ts 

In this phase, equations (3-10) give 

W" = ~, = f 'If~CA. > 0 I ~ I = ~l. .• t.. I 

j" • - fi. = - I IAMIL i!, • iiL ::0 

substituting equations (4) into (2) and (3), we obtain 

j/ ~ tv; (lot t) ~o J lJ,Q ~o 

rna.'. lUi '+ .,. Vi l i .,. f ~&& ~.. ~ D 
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(2e, f) 

(2g,h) 

(3a, b) 

(3c ,d) 

(3e,f) 

(3g,h) 

(4a-d) 

(5a,b) 

(5c) 
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0''& '~ 
Z, = 'S' Vi ( , - if, ) ~ 0 J !lz." < C (5e,f) 

(5g) 

(5h) 

Equations (1a,b), (1g,h) and (5) give 

since q2 = 0 and m2 = -1 at z = -z2' q2 = 1 and m2 = -1 at z = 0 

q1 = -land m1 = 1 at z = 0+ and q, = 0 and m1 = -1 at z = z 1. 

The distributions of shear force and bending moment are 

shown in Fig. 3(c,d). 

B) Phase 2, ts < t ~ t1 

Equations (3-'2) and (3-13a) give 

(6a-c) 

Substituting equations (6) into (2) and (3), we obtain 

tJ' , -ilL 
.l., = - 1f,~,A·C.l.t3~/) (1i!,-1./~- iI,) (7a) 

.... ... 
)r'\.' = W. ~ ~ (2.~, - if) ~ - ~ l I. 8~,) ~~ 4L(. .foIL., ..... , 

=! (,- :,: "'2/~ "- f;-J J ~ 0 ~ ()+~ •• ~, (7b) 

(7c) 

.. 

* Equation (3-5e2 give q10 = -q20 
. W, 

give W,z, = - g- (1 + gz,). 

W, 
= 8uv,· Equations (6a-c) 



Assumed that q,' = 0, equation (7a) give 

r . = 1"'-

Ic,l 
IT 1.3-1. 

Substituting Z i into equation ('e), we obtain m n 

3 since z, ~-. v, 

,46 

(7d) 

(7e) 

(7f) 

Equations (7b) and (7f) with q, = -, and m, =, at z = 0+ and 

q, = 0 and m, = -, at z = z, give 

due to q, = -q2' m, = m2 in this phase. 

C) Phase 3, t, < t § t2 

. . . 
In this phase, z, = " z, = 0 and Wo = W, = W2• Equations 

<3-17) give 

Equations (3-5d,e) with equation (8b) give 

~ 1,.= 1~. + ~v, . (8c,d) 

Equations (2) and (3) with equations (8) give 

D I .il1.... ( ~ (t + Z., ~ ~& + ~~ ... ) 
.J,. 2 4'U",i& a~-t ~) ... 4U.V;.~" 3'" ~£ 

.. . 
q2" < 0 since W, < 0 and W,z2 > O. Assumed that q2' = 0, we 



obtain 

Substituting equation (8e) into ('c), we obtain 

I~,~~~a. 

!lJ.~ = !.~ + 8 1A.V", l ~, ~.A - W, -a~ 
_..L (f-f'l.-f'J~~"~~") 
- 11jil '~4+"'+11) 

since z2 ~ , and v, > 3 in this phase. 

I a .. 
o = Au 'iij (,- r) ~o .1, Tl(.1I; , 

.. 

'47 

(8e) 

since z, = " z, = 0 and W, < O. The minimum value of q, occurs 

at z = , and it is equal to 

(9b) 

since v, > 3 and z2 ~ ,. 

(9d) 

(ge) 

+ since m," < 0 and m,' ~ 0 at z = 0 if 2q,ov, ~ O. 



(9f) 

Equations (9) give 

- I ~ 1, s 0 .I - I ~ ,.,., ~ , if " 1. ->--&.1-I - ~6. 

since q2 = 0, m2 = -1 at Z 1 at z = 0 and m
1 

= 

-1 at z = 1. 

For i < ( ) - z2(t
1
), the shear force and bending moment 

g z2 t1 
expressions (1) are no longer valid since the plastic hinge 

previously occurred at z = 0 now transfer to the point z = z00 

In this case, the distribution of shear force is 

o 

11. = Jv,[ijc~o-J'" ;;(~)Jl~-~o)-~ ij(O} ~-i1~"~ 0- (10a) 

-L[~l~.-J ... roCi-Jll-l-i-.) ~1'fS.~~fo-
'U,'1, 

f.,.~""~" (11b) 

(11d) 
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1," = 

Assumed that q2' = 0, we obtain 

W,t wi. ~A. -iil ~41 ( • .&.T e.) 

~" (i£+ LJ -w~ li. -;'3 a .. 

Equations (lla,g) and (3-26) give 

( 11 e) 

( 11 f) 

( llg) 

The min11:lum value of shear force ql occurs at z = 1 and it 

equals 

1,~:.- __ J __ . 
.L lIi (., - eel) 

It shows from equa~~ons (lla-i) that 

(111 ) 
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since q2 = 0 at z = -z2' q2 = 0 at z + = Zo and 

(11j) 

Therefore, we can obtain 

since m2 

= 1 at z = Zo and ml = -1 at z = -1. 

* It is clear from equations (lle) and (3-26a,b) that z* max is 
negative. 



For ~ < ~ z22 
- 1, the plastic hinge previously occurred at 

z = 0 now transfers to the point z = -z00 The distributions of 

shear force can be expressed as 

( 12a) 

Substituting equation (3-27) into equations (12), we obtain 

(13c) 

(13d) 

<0 (13e) 

> " ( 13f) 

since equations (3-29) give 

<.0 (13g) 

and <0 (13h) 

Assumed that q2 = 0, we obtain 
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( 13i) 

Substituting equation (13i) into (13a), we obtain 

_ -L C;Zj ~""~L-~)tl~ JL _ 3 
!l~ - eu.V; ( • .&.-~.)WJ-£i!L-~)W. - z..lIi'~~-_J (13j) 

The minimum value of shear force q1 occurs at z = 1 and it equals 

I-(.t+~.)~+ 2. 

It shows from equations (13a-k) that 

1.1. ~ () .:... - t c ~ ~ - d.- a..wL ! I ~" ~ - i!. + ~ 1!" I 

1 since q2 = 0 in - r ~ z ~ -z2 and q1 = q2 = ,0 at z = -zOo Therefore, 

we can obtain that -1' m2 ~ 1 and -1' m1 ~ 1 since m2 ' = 2V 1
q2' 

, 2V 1 i - 1.. L ~ 1 m1 = 1q1' m2 = - n r ~ Z...: -z2' m2 = m1 = at z = -zO and 

m1 = -1 at z = 1. 

D) Phase 4, t2 < t § t f 

Equation (3-31) give 

(14) 

1 
Substituting equation (14) with z2 = r' zl = 1, Zl = Z2 = o and . . 
W1 = W2 into equations (1), (2) and (3), we obtain 

1i!Y'( &1'yi!-) "1'''') 

1,. 81,..- ( J C 'f' Y) 3'" r J .a. v, 
( 15a) 

I, :& 1,. -
li. rO·- Ii! )('1' r) 

1.v, (1,,"y)l+ y J 
(15b) 

il.'= -
ly(t.,.~y){.t+r) 

<tJ 
lJi rfl,ty)1 +r J 

(15c) 



1.,'= -
f r (, -l!) (.1+ .,. ) 

<0 
vi( il'for)1 T r J (15d) 

j " 
IyL( ,~.,.) 

~ -- Vi C tl, ... t )I+r] 
<'0 ( 15e) 

1. 11_ 
It'"(.I+r) 

~o , -
lIi [-Sl.+rJ#f'Y J 

( 15f) 

where q20 and Ql0 are defined by equations (3-5a,c) and (14) and 

they are 

and 

iJ.o= Y [j6(1f'r')£'-FJ+y1 
1f. [il1tYJI+r J 

i , (,- yl..) + yo 

1,. =-
Vi li l 'f'r)ITr] 

<0 (.Y"~' ) 

( 15g) 

( 15h) 

Equations (15c,d) shows that the maximum absolute values of 

1 shear force Q2 and Ql occurs at the supports z = - rand z = 1, 

respectively. They are 

lei yLf' f ... -1 r) t'yJ. 

1J.~N( = v, [t l 'f'y)3 T .,. J < I 

1"" y) (t l' f) 1- r 
1.,,..,;,.. = - Vi ffl'+Y)I+r J :-

~ r" =_L ll;+Yt r)+zr 
.a.tf, , (t-." ) '1' ~ Y 

> -/ 

since v 1 > 3 and r ~ 1. 

Equations (15a-j) showed that 

- I <fL c., ~~ - , .. 1, c. 0 

since q2 < -q1 i < 1. Equations (15a-j) also give max m n 

1/. ~() if 114 ]:. # J n., t 1. f,. -, J ~ 1., <. O. 

Therefore, we can obtain 

(15i) 

(15j) 
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since m2 ' = 2v 1q2' m1 ' = 2v 1Q1' m2 = -1 at z = - r' m2 = m1 = 

at z = 0 and m1 = 1 at z = 1. 
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3 1 For g < rr - 1, the plastic hinge previously occurred at z = 

o now transfer to the point at z = -z00 The shear forces are 

f,,:::,b,C\ijl.-ao-) .,.W(~)] (-a.+~) 

-'-- [ ~ (-~+).,.~ , .. ) J l ~o+~) 
i - { '(Lv, , ,. 

I - -;!V, [~,-ao+) + iii (Z-)JC2o+~)'" 4iLV, WCo
) 

Equations (3-36) and (16) give 

since <D 

and 

f.,.- ~:~ ~ ~ 0-

(16b) 
"/rz. 6+ ~ ~ t. I 

( 17g) 

(17h) 

Equations (17c) and (17d) show that the maximum absolute , 
value of shear force q, and q2 occu~ at the supports z = - rand 

z = ',respectively. They are 



(17i) 

:-
(17j) 

Equations (17c) and (17d) also show that q2 ~ 0 and q1 ~ 0 since 

q2 = q1 = 0 at z = -zOo Therefore, we can obtain that 
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-I ~ "'~ ~, ftn- - f ~ a ~ - ill" ~ -I ~ .... , ~ I ~ - ~ s ~ $ I 

1 
since m2 = -1 at z = - r' m2 = m1 = 0 at z = -zO and m1 = -1 at z 

= 1. 

2. Case II, 1 < v 1 § 3 and v~ 

A) Phase 1, shear sliding 

a. 0 < t < tel 

. 
Equations (2c) and (2e), give q2' ~ 0 and q1' ~ 0 with z2 = 

.. .. 
z1 = 0 and zl = 1, since the accelerations W1 and W2 which are 

defined by equations (3-39c) and (3-39d) are positive. q2 ~ 0 

and ql' ~ 0 mean that 0 , q2 ~ 1 and -1 ~ ql ~ 0 since q2 = 0 in 

- ; ~ z ~ -z2' q2 = 1 at z = 0-, q1 = -1 at z = 0+ and ql ~ 0 at 

z = 1. We can also obtain from q2 ~ 0 and q1 ~ 0 that -1 ~ m2~ 

and -1 ~ m1 ~ 1 since m2 ' = 2v1q2' m1 ' = 2v1
ql' m2 = -1 in 

1 - r ~ z ~ -z2' m2 = m1 = 1 at z = 0 and m1 = -1 at z = 1. 
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b. tsl, t , t 2 
-s1 s 

3 
For 2' ~ v 1 < 3 

Equations (3-40a-c) give 

tT ___ 1a.lA.c".TlI,) .' a IA J, _. J i 
N r.I - -TV, ~ ~~= ~r,' 

I 'H' 3 ) .I 1IY,l. - .s ~ I ." 
(18a-c) 

The shear force Q10 can be obtained from equation (3-5e) with Q20 
.. .. 

= 1 and Wo = W1, it equals 

1/~ - (18d) 

Substituting equations (18) with Z1 = Z2 = a and z1 = 1 into 

equations (1), (2) and (3), we can obtain that 

since q2' ~ a 
1 - - ~ z ~ -z2 r ~ 

!l . -,~- -

, 
and m2 ~ 

and q2 = 1 

V,I+3'+~ 
4{HI)Vi 

1 a -in - - ~ z ~ , q2 r 

and m2 = 1 at z = 

> -I 
- I 

)Il1./:: 2.Vi.t" -J3 l,+ V,) l L-~) ~/t~+ /) , 

= a 

-a ; 

Equations (18d), (19c) and (19d) show that 

-I ~ 1, , () ~ -,. M, \. , 

(19a,b) 

and m2 = -1 in 

and 

(19c) 

(1ge,f) 



if ~ ~ v 1, since q1 ~ 0, m1 = 

1 at z = 1. 

1 at z + = 0 , q1min ~ -1* and m1 = 

For the following motion, it can be shown that all static 

admissibility conditions which appear in phase 3 and phase 4 of 

3 case I are satisfied provided v 1 > 2. 

3 If g < v 1, the shear force distributions are 

0 h -.p~ ~ E -il.-

~2 ::. J.v;[~to-)1'~(~' ] i! +- I ~-~~l~O-

-L (i~i'(l; )-tW(;I:)] (-l. - i!o) 
flLVi 

-A- O+*i ~ i o-

1.. =8['" rfA1(-a:)1'W(l)) (~-~,) .,." l:,'t ~ 1: ~ , 

(20a) 

(20b) 

Substituting equation (3-41) into equations (20), we obtain 

o ~-~~i~-i; 

Differentiating equations (21a,b), we obtain 

* 
3-v

1 3 
We can show that v 1 ~ 2(v -1) if v ~2. Therefore, 

1 3 
equation (19c) is satisfied, provided g ~ v1• 
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4 " .L = .. , 

Equations (21a-f) give 

since ql = 0, m1 = 1 at z 

< o. 
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'h~+~~!:.1 (21f) 

(21g,h) 

-1 at z = 1 and m
1 

1 
The shear forces and bending moments in - r~ z ~ zO- can be 

obtained from equation (21a) and the following equations 

For 1 < v 1 < ~, equations (3-44a,c,d) give 

.. I~&,(, W, = T ( v-. - I) > () (22a) 

., '''''l~1.V,'''~) Wl. = -
4i!" +3 l ; 

(22b) 



and 
4L(.(1.~4111+~ ) 

1.f~/~4. 
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(22c) 

Substituting equation (22a) with z1 = 0 and z1 = 1 into equations 

(1-3), we obtain 

(23a-d) 

since m1 = 2v 1q1' q1 = -1 and m1 = 1 at z = 0+ and m1 = -1 at z 

= 1. 

Equations (1-3) and (22b,c) give 

(23e) 

since (23f,g) 

Equation (23e) shows that 

)li;J." fl~t Vi ... 3~f:rJ: ~ J:r~A.j 11; 

(!ll.MMJ...", =2 - I < I ...... r3i .. +z.litv, +4-t1~ it +r a~i:l V'j (23h) 

where z2 = 1- is the position of left side plastic hinge at t = v
1 

t s1 ' since (q2max)' < O. It shows that q2 ~ 0 in - ~~ z ~ 0-
z2 

1 
if Q20 ~ 0 since Q2" < 0 and Q2 = 0 in - ~ , z ~ -z2. Therefore, 

we can obtain 

(23i,j) 

1 If ~ < 2 (v 1 - 1), it appears for following motion that all 

static admissibility conditions discussed in phase 3 and phase 4 

of case I are satisfied with z2 ~ Iv :1' 1 < v 1 < ~ and 
1 

-2<2.(", -1) r- 2 1 • 



1 + If rw2 ~ "2 (v 1 - 1), the shear sliding at z = 0 continues 

until t = ts2 which defined by equation (3-46f) and the 

examination of static admissibility condition is similar to that 

used for ts1 ~ t ~ t s2 ' Equations (1), (2), (3) and (3-46b,c) 

• • d 1. with zl = z2 = 0, zl = 1 an z2 = r g~ve 

g ~ \'" I+~r 
---1'1 --, < ~"'MC - :l. ("If, ) 1+ ~r (24a) 

r 1 1 
since -- = -- < - and v

1 
v 2 3 

(24b) 

and -,,1, <.0 ~ -I ~ Itt, • , (24c) 

It shows that for t > ts2 the static admissibility 

conditions discussed in phase 4 of case I are all satisfied 

except equation (15j) may not be satisfied when v 1 < 1 + 

0.5gr(1+r)/[g(1+r) + 3rJ. 

6 For g < v 1z2
2 

, the shear force distributions are 

fra.-+ f~~ -iJ,-

1.· {,i .. [i.t(-6;) -t;\j,~ J (e .... ;,) -h _~:~ ~~ _~.- (25a) 

i, -{ 
..L r~l-... )'+ ;)(i)) l~.+a) '"'If, 
...L.l ~ u+ ) .... ~ ,.J J ~ -, 
8lty, 

~ _ .. 1'*~ ~o

~ ()+ ~ 'I. ~ I 
(25b) 

Substituting equations (3-47) into equations (25), we obtain 

o .,.,. -f ., *: * -.~-

..L [ijT~'~ ... m!t!!. ~ \J.O-~ole.-i!'~-t) J (26a) 
Illy, al -.. ~~.a.-.o'" l 'i!.&, _ ~.).a (~.T~) 

In - ~t ~ ~ 4 - ~o-
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Equation (26a) with equations (3-49d,e) give 

since " 0 and 0 in 
, 

q2 < q2 = --~z~ -z2 and r 

Therefore, obtain -1 ~ m2 ~ 1 in 1 we can - - < r .... 

at z = -zO 

-z ~ -zO , 

,60 

~-~+ft~$. (J

(26b) 

.,." If'" f: II- ~ I 

(26c, d) 

-. 
since m2 

Differentiating equation (26b) with respect of z, we obtain 

<'0 (26f) 

.. .. 
since W, > 0 and W2 < O. Equations (26e-f) show that the static 

+ admissibility conditions in -zO ~ z ~ , are satisfied since -, , 

q, ~ 0, provided 

3 ~ 
-'" s" I/LV, "I, ~ (26g,h) 

Equations (26g,h) must be checked during the numerical 

calculation. 

3. Case III, 0 < v, ,land v2~ 

A) Phase 1 , shear sliding 

a) O't~tBl' equations (1), (2) and (3) with zl = z2 = 
.. .. 

0, q10 = -q20 = -1, W2 > 0 and W1 = 0 give 
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(21a,b) 

!i., = -I ~ -I ~ 1Yl,,, I (21c,d) 

since 
, 

> 0, " > 0, 0 and -1 in 1 
q2 q2 q2 = m2 = --~ z ~ -z2' q2 = r~ 

, and m2 = -, at z -= 0 , q, = -1 in 0+ ~ Z ~ 1 and m, = , at z = 

b) lS1 < t ~ t 2 , equations (22b,c) and (23e-j) are valid. 

In other words, we can obtain 

(28a,b) 

.. 
It also shows that q1 = -1 and -1 ~ m, ~ 1 in 0+ ~ Z ~ 1 since W, 

= O. 

6 If - < v z 2 the shear force distributions are 
g 1 2 ' 

J~. fA!", [ije-"-J +i;je~)J(~+") 
{ 

J,;;. ij,-~:) (~o+ ~) 
1, = 

-I 

frt - f ~ ~ $: - ~~

f.n - 'J.: , ~ ~ -a,,-

I. .. 

(29a) 

(29b) 

Substituting equation (3-55) with W3 = W2 into equations (29), we 

obtain 

..,..,.. - a.'" 'i:" 0-

fn..D~~~~1 

Equation (29a) with equations (3-51) give 

(30b) 

O. 
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(30c) 

1 -since q2" < 0 and q2 = 0 in - r " Z ~ -z2 and at z = -zO • 
1 

Therefore, we obtain -1 ~ m2·~ 1 in - r~ z ~ -zO since m2 = -1 
1 , 

in - r ~ z ~ -z2' m2 = 1 at z = -zO and m2 ' = 2q2vl in - r~ z ~ 

Equation (29b) with equation (3-57) gives 

-I El,~ 0 (30d) 

.. 
since q, = 0 at z = -zo+, ql = -1 in 0 ~ z ~ 1 and W2 < O. 

According to m1' = 2v,ql' we can obtain 

(30e) 

since m1 = 1 at z = -zO and m1 is continuous at z = O. 

Equation (30e) shows that the velocity profile given by 

equation (3-55) is only valid when m1(1) 3 -, or 

OOf) 

If equation (30f) is not satisfied, the motion is governed 

by equations (3-47) and (3-49) and the examination of static 

admissibility conditions is given in equations (25) and (26). 

c. !2 < t § tt' equations (1), (2) and (3) with Z2 = 0, z2 = -r .. 
anq W2 < 0 give 

-I <I (31a) 

since v2 > 3. Therefore, we can obtain that 
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C31b,c) 

(31d,e) 

.. 
z = 0, W1 = 0 and v 1 ~ 1. 

v 
If 1 < 1 the equations (29) and (30) are still valid if z2 

g 7' 
1 

and z2 are replaced by 0 and r' respectively. 

4. Case IV, 1 < v1~~ 

A) Phase 1, shear sliding 

Equations (1) and (2) with equations (3-61b,c) Z2 = Z1 =0, 

1 
z2 = r and z1 = 1 give 

C32a) 

= -I 't1.c. I - .. 'r) ~o 
~ '" (32b) 

or q2 > 0 in - * < Z < 0- and q1 < 0 in 0+ < z < 1 since v 1 < v2 

< 3. Therefore, we can obtain 

C32c,d) 
I 

C32e, f) 

since M2 = -1 at z = - r' q2 = 1 and M2 = 1 at z = 0- q1 = -1 

and M1 = 
1 

in - - " z " r 
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b. !s1 < t § t sl 

If v 1 ) 1 + r, equations (1) , (2 ) and (3) with zl = z2 = 0, 

1 .. .. 
z2 = r' zl = 1 , W1 < 0 and W2 

> 0 give 

o < 1~ ~I a"vw:I.. - I ~ WI,. ~ I 
. , - (33a,b) """ - r ~~ ~o I 

, 'v,+~"1". -/ "+ 1T. ~ :H~+'.J (33c,d) l,Me:,.. ::. V, 1.1+6 
~ ,..., ~+/J 

. i.#- J and -I ~}f1, ~I "'" O+~ ~ ~ I !l'D ~o n T~ Vi (33e,f) 

since m2 = -1 at z = -- r' m2 = 1 and q2 = 1 at 

0+ , 0 + 1 d z = , q 1 < in 0 ~ z ~ an 

•• 
1, W, 

=1+ 
" 4« Vi 

(33g) 

If ~ < v 1, the equations (21) are valid when z2 and z2 are 

1 replaced by 0 and - respectively. 
r' 

If v 1 < 1 + r, equations (1), (2) and (3) with z2 = zl = 0, 
1 .. .. 

z2 = r' zl = 1, W2 < 0 and W1 > 0 give 

3'("1 +6'y4+1Ii 9-
i~1AM :: ~ Vi (61" ~ ~ ) 

llV,+t"')Y 

1 u = -I -+ l ~ Y-t ') v, 

(34a, b) 
J 

(34c,d) 

(34e) 

(34f ,g) 
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since q1 = -1 and m1 = 1 at z + = 0 , m1 = 1 and q1 ~ 0 at z = 
, + 

and q 1 > 0 in 0 ~ z ~ 1. 

v 
If 1 < 1 equations are valid if z·2 and z are replaced by g ?"' ... 2 

o and ..1. 
r' respectively. 

B) Phase 2, ts2 < t ~ t f 

The motion is the same as that of phase 4 in case I and 

equations (14-17) are valid, but equation (15j) is satisfied only 

1 2 when 1 < v 1 < 1 + 2 r • 

5. Case V, 0 < v1 § 1 and 1 < V2 $ 3 

a. 0§t§ts1 

It is clear from equations (1), (2) and (3) that 

C35a,b) 

1, = -, ~ - I ~ 1"\ I ~ I C35c,d) 

since Z2 zl 0, 1 1 , -1 at 1 = = z2 = r' zl = m2 = z = - r' q2 = 
.. .. 

1 at 0 - -1, 1 at 0+ W2 0 and W1 m2 = z = , q1 = m1 = z = , > = 

Equations (1), (2) and (3) show that equations (34) are 
.. 

valid except ql = -1 and W1 = 0 in 0+ ~ Z ~ 1. 

If 1 < 1 the equations (30) are valid if ~2 and z2 are 
g 7' 

1 replaced by 0 and - respectively. 
r' 

and 

O. 
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6. Case IV, 0 < vl~~ 

It is easy to obtain that 

(36a,b) 

(36c,d) 

'" .. 
since W, = W2 = z, = z2 = o. 



APPENDIX II 

Formulae of maximum permanent deformation of a clamped beam 

with rectangular cross section struck by a falling body at the 

centre. Parke's bending only solution [10J 

(1) 

Nonaka's formula [12J with influence of finite deflection is 

(2a) 

and ~t = J£1i; [J,'" J.t.n<c-t8)]-t- J;.,.(~t - :: 1~ -l 1; t (2b) 

~~>, 
Jones' formulae [17 or 30J with square yield curves 

(3a) 

or -'J (3b) 

Jones' formula [17J with parabolic yield curve 

(4a) 

, and (4b) 

Oliveira's formulae [20J 

(5) 

(6 ) 
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(8) 

Formulae obtained in Chapter 4 

(9a) 

or (9b) 


