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CHAPTER 1 

Introduction 

Computing power is rapidly increasing and the cost of computing capability has 
steadily decreased since the introduction of integrated circuits in the mid-20th century. 

This trend was observed by Moore [180, 1811 in 1965. This has made it possible to 

introduce processing power into places where it would previously have been uneconomic 

or impossible. Since the 1980s, many electronic devices have been fitted with a computer 

in the form of embedded systems, e.g. in radios, watches, TVs, washing machines, cars, 
etc. In developed countries, it has become normal to own a PC and to communicate 
over the internet and via mobile phones. Once there are increasingly many computer 

systems around, the trend is to network them into large distributed systems, an om

nipresent example being the internet. As a result, the complexity of tasks that we can 

automate and delegate to computers has grown steadily. We give more and more con

trol to computers. The realm of our social world is extended to include autonomous 
computer systems. These systems need the capability to act independently in a way 

that represents our interests, while interacting with other systems or humans. It is 

non-trivial to design and build complex systems that exhibit aspects of rationality or 

human intelligence. Hence there is a need to understand such systems. 

"Intelligent" computer systems are studied in Artificial Intelligence (AI) 12151 whose 
beginning as a research field was marked by the Dartmouth Conference in 1956 1171]. 

Since the 1980s, Multi-Agent Systems (MASs) have been studied as a sub-discipline of 
Distributed AI, which focusses on systems in which "intelligent" agents interact with 
each other. Surveys on MASs can be found in 1232, 231, 2711. 

There is no precise definition in AI of what an 'agent' is [215], but, generally, an 
agent (Latin agere, to act on behalf) is seen as a system that acts within a certain range 
of autonomy on behalf of a user and with a certain goal. For instance, some programs, 
robots, but also humans can be seen as agents. A multi-agent system is a collection of 

such agents in which they can interact with each other to meet their objective. The 
interactions between agents may be cooperative or adversarial. To successfully interact, 

they will require the ability to cooperate, coordinate, and negotiate with other agents. 

We can identify four characteristics of MASs [2321: first, each agent has incomplete 

information or capabilities for solving the problem; secondly, there is no global system 

control; thirdly, data is decentralized; and fourthly, computation is asynchronous. MASs 

have dynamic environments: from a single agent's viewpoint, the environment is affected 
by other agents in unpredictable ways. 

1 



2 1. INTRODUCTION 

We now present some advantages of MASs and motivate the interest in MAS re
search. MASs are appropriate to handle the interactions in domains where people or 
organizations have different (possibly conflicting) goals and proprietary information. 
Different organizations will need their own systems to reflect their capabilities and 
priorities. In particular, MASs are suited to model scheduling tasks, resource manage
ment and process control systems. For example, a hospital scheduling system can be 
modelled with a MAS where people in the hospital together with their interests are 
represented by agents [65]. Further examples are air-traffic control [164], electricity 
transportation management and particle accelerator control [129], autonomous space 
craft control [220], climate control [113] and electronic commerce. In MASs, control of 
tasks can be assigned to different agents which provides a method for parallel computa
tion. The system benefits from a speed up and an increase of robustness and reliability 
by having redundant agents. MASs are inherently modular and thus scalable and flex
ible. These features are also studied in the research area of Grid Computing in the 
context of distributed resource sharing systems to make such systems more flexible and 
adaptable; see, e.g., the series of international workshops on Agent Grid Computing 

(AGC) [lJ. Software development can benefit from the modularity inherent to MASs 

which provides a way of simplifying a problem by assigning subtasks to several agents 

that interact with each other and different kinds of computational entities. Modular 
software is easier to develop and maintain than monolithic systems. Thus MASs can 
be seen as a promising paradigm in software development [232]' where interaction is 
recognised as an important characteristic of complex software. Since humans can also 
be understood as agents, we can simulate MASs to investigate various social processes. 
In this way, MASs can help to clarify and explain problems in social and life sciences, in
cluding intelligence itself (64]. The central problems of sociology and MASs are closely 
related: in sociology one tries to find explanations for the existence of social order 
among free but interdependent individuals, in MASs one tries to optimize efficiency of 
the whole system whilst respecting agent's autonomy. 

Research in MASs deals with several areas such as interaction between agents, plan
ning and learning, agent-based software design, engineering of practical applications 
using agent technology, etc. The study of interaction includes agent communication, 
which facilitates automated cooperation, coordination and negotiation, through tech
niques such as argumentation, game theory, computational economics and belief-desire
intention models [271]. The field of MASs is in particular affected by a quest for an 
appropriate theoretical foundation. Theory can supply formal methods that provide 

a semantics to the architectures, languages and tools. In this work, we take a formal 
approach towards such a foundation. We focus on presentation and reasoning about 

interaction and knowledge of a.gents. 
There are several models of agents decision making with different degrees of delib

eration. The simplest form is the reactive agent with no deliberation at all: such agents 
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simply act on observations of the environment 1271, 170J. Another model is the ratio

nal agent as used in economics which is characterised by self-interest, i.e., preference is 

given to those actions that maximise its own utility. The beliefs, desires, and intentions 

(BDI) model 140, 209J incorporates mental attitudes of agents that loosely correspond 

to human characteristics. These attitudes and the context of an agent specify prefer

ences over actions available to the agent. Other attitudes like knowledge, obligation, 

commitment, strategy, etc. can be taken into account as well. We can formalise such 

mental models of agents using modal logic, where attitudes are represented by modal op

erators 12711, and we obtain, e.g., a modal logic of knowledge 1791, a deontic logic 1174J 

or a modal logic of strategic ability 113J. In this thesis, we use modal logic as a tool 

to describe dynamic MASs and reason about agent's interactions over time and their 

knowledge. Modal logics are particularly useful for applications since they often provide 

a good balance between expressivity and computational complexity. Here, by a 'good 

balance' we mean that modal logics provide sufficient expressivity for many applications 

while model checking tasks are solvable with algorithms of relatively low complexity. To 

this end, we introduce several modal logics such as temporal, epistemic, strategic logic 

and combinations thereof, and characterise their expressivity and investigate the com

plexity of reasoning tasks. We focus on relational semantics for modal logic which pro

vides an intuitive way for representing the modal operators. Various logical formalisms 

were suggested in the multi-agent literature to capture different aspects of MASs; see, 

e.g., 1182, 100, 13, 195, 247, 125J. In MASs, we are interested in describing com

bined abilities of agents belonging to a group of agents. But it is not straightforward 

to extend the modalities for knowledge and time to a multi-agent setting. Depend

ing on whether we consider knowledge or time, we obtain several different combined 
modalities. For instance, in epistemic logic, there are at least three ways of combining 

knowledge of single agents: general-, common- and distributed knowledge [79J. A multi
agent account for temporal logic is Alternating-time Temporal Logic (ATL) which was 

provided by Alur, Henzinger and Kupferman 113J in 1997. The novelty of ATL is that 
it provides modalities for single agents and groups of agents for describing combined 

strategic abilities. A model for ATL describes all possible outcomes of the actions of 
interacting agents. However, ATL does not provide any notion of rationality. ATL 
also does not model the process of cooperation and the'notion of a strategy is a purely 

semantic construct, i.e., there is no account of agents having knowledge and sharing 

it, of agents in a coalition communicating, negotiating, compromising and reaching a 

conclusion. To take a step forward to overcome ATL's drawbacks, van der Hoek and 

Wooldridge 1272J suggested in 2002 an epistemic variant of ATL. But the interaction 

between temporal and epistemic abilities of agents is still controversial 1254, 115J an~ 

receives much attention 1219, 125, 117, 118, 120, 119, 110J. 

Suppose a scenario where agents fulfill certain roles in a dynamic MAS. Such roles 

might involve complying with norms such as obligations, permissions, responsibilities 

or powers. Due to the dynamic character of the MAS, agents might need to interact 
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by transferring normative attributes from an agent to another. Such interactions are 
called delegation. Formal models of delegation and control were studied in, e.g., [189, 
149, 191]. In this work, we consider the scenario where agents delegate control over 
propositions to other agents. The distinction between controllable and uncontrollable 
propositions stems from areas like discrete event systems and control theory, where, e.g., 
Boutilier 139] studied control in the context of deontic logic. Control and controllable 
propositions were also studied in [52, 66, 249, 248]. 

We now give an overview of the thesis. The main purpose of Chapter 2 is to 
introduce basic concepts and notation and to review relevant literature. The first section 
presents a brief survey on modal logic. Then, in sections 2.2, 2.3 and 2.4, we introduce 
epistemic, temporal and strategic modal logics and state known results that characterise 

their expressivity and computational complexity. In particular, we consider variants of 
ATL as extensions of branching-time logics. With such ATL-like logics we can describe 
dynamic multi-agent interactions. In Section 2.5, we discuss extensions of ATL with 
epistemic notions. Additionally, we suggest a framework for memory-bounded strategic 
reasoning. In particular, we introduce an epistemic variant of ATL that accounts for 

agents with limited memory resources as this case was neglected in the literature to 

date. 

In Chapter 3, we investigate the computational complexity of ATL and its epistemic 
extension ATEL. We show in detail how the complexity of the satisfiability problem for 
both logics can be settled at ExpTIME-COmplete. The part of the chapter about ATL 
is based on the paper "ATL Satisfiability is Indeed ExpTIME-COmplete" by Walther, 
Lutz, Wolter and Wooldridge in the Journal of Logic and Computation, 2006 [265], 

and the part about ATEL is based on the paper "ATEL with Common and Distributed 
Knowledge is ExpTime-Complete" by Walther which was presented at the 4th Workshop 
on Methods for Modalities, Humbolt University, Berlin, December 1-2, 2005 1264]. 

In Chapter 4, we aim to extend the expressiveness of ATL without increasing its 
computational complexity. We introduce explicit names for strategies in the object 
language and extend modal operators with the possibility to bind agents to strategy 
names. In this way, we can fix the decisions of agents that possibly belong to several 
coalitions. By identifying the behaviour of agents, we can reason about the effects 
of agents changing coalitions. Dynamic coalitions provide more flexibility to adapt 
abilities to a changing environment. We investigate the expressivity of the resulting logic 
ATLES and compare it to ATL and ATV. Moreover, we formulate two model checking 
problems for ATLES and investigate their complexity as well as the complexity of the 
satisflabillty problem for ATLES. Additionally, we present a complete axiomatisation. 
This chapter is based on the paper "Alternating-time Temporal Logic with Explicit 

Strategies" by Walther, van der Hoek and Wooldridge which is going to presented at 
the 11th Conference on Theoretical Aspects of Rationality and Knowledge (TARK), 

Brussels, Belgium, June 25-27, 2007 [266J. 
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The Chapter 5 is devoted to delegation and control. Control in a MAS is typically 

decentralised, i.e., decision making is distributed over the agents in the system. The 

design of decentralised control and efficient coordination mechanisms among agents is a 

challenging issue. In this chapter, we investigate a logical framework that allows us to 

reason about agents that have control over propositions and are capable of transferring 

that control to other agents in the system. This work presents the initial stages towards 

a more rigorous theoretical framework. We introduce the logic DCL-PC and present a 
complete axiomatisation. Moreover, we investigate the complexities of the satisfiability 

and the model checking problems. This chapter is based on work that was undertaken 

in collaboration with van der Hoek and Wooldridge. 





CHAPTER 2 

Epistemic and Temporal Logic 

2.1. Modal Logic 

The purpose of this section is to give a short historical survey of modal logic and to 

introduce basic propositional modal logic together with concepts such as axiomatisation, 

satisfiability checking and model checking. The reader familiar with modal logic may 

skip this section and continue with Section 2.2. 

We start with a brief historical outline of modal logic and describe its basic concepts 
before we present the basic propositional modal logic in more detail. For a more detailed 
overview of the area, see [341. 

Modal logic is an area of logic research that originates in philosophy, but is also 
considered in mathematics, linguistics, computer science, AI and game theory. Modal 

logics Can be seen as formalisations of modalities, which are concepts like possibility and 

necessity. Many notions have a "modal" character by specifying possibility or necessity 
within a certain range. Such notions can be found in the original philosophical study of 

metaphysical modality. In languages, we find auxiliary verbs that indicate a modality 

of a verb: in English, necessity is expressed by verbs like must, need to and have 

to, and possibility by can and could. Several modal logics have been developed that 
handle modalities of time, space, obligation, conditionality, knowledge, computation, 
action, etc. Modal logics extend the descriptive range of "standard" logic. From a 
more technical perspective, modal logics are equivalent to fragments of standard first
or higher-order predicate logic that exhibit an interesting balance between expressive 
power and computational complexity. 

The formal study of modalities started in the early 20th century philosophy with 
the work by C.l. Lewis [1591 who in 1918 introduced the first modal operators in 
an attempt to solve the ''paradox'' of material implication. Previously, the study of 
modalities was informal, dating back to the ancient Greeks. In modern notation, Lewis 
prefixed a logical formula cp with the symbols '0' or '0' to denote cp's modality: Ocp 

means 'cp is necessary' and Ocp for 'cp is possible'. In 1933, Godel [931 gave a formal 
semantics to the modal operators to denote mathematical provability, i.e., Ocp means 'cp 
is provable', and Ocp that 'cp is consistent'. Godel's work turned out to be very influential 

for the development of many other logical formalisms, and, in particular, for the study 

of formal provability predicates in arithmetic and set theory. Later, many more modal 

operators where introduced. In 1951, von Wright [2621 distinguished between four kinds 
of modalities: alethic, epistemic, deontic and existential. Alethic modalities (Greek 

7 
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aletheia, truth) express modes of truth (necessity, possibility), epistemic modalities 
(Greek episUme, knowledge) the modes of knowledge for single agents or for groups 
('known to be true', 'known to be false'), deontic modalities (Greek deont6s, as it ought) 
the modes of morality and norms (obligatory, permitted), and existential modalities the 
modes of existence (universal, existing). Over the years, various modal logics in different 
subjects have been developed including temporal, dynamic logic, epistemic and deontic 
logic, action and strategic logic (or logics of agency), etc. 

Several semantics for modal languages have been suggested, among them algebraic, 
topological and relational semantics 134]. We give a brief overview of these semantics, 
but for more detailed discussion, we refer to 195]. In 1952, J6nsson and Tarski [132, 133] 
introduced Boolean algebras with operators and their representation over relational 
structures, but without mention of modal logic. Later in 1966, Lemmon [154] in
troduced an algebraic semantics for modal logic. In the algebraic semantics, we view 
formulas as terms and evaluate them in suitable algebras, namely Boolean algebras with 
operators. In the topological semantics, modal logic formulas are interpreted in topolog
ical spaces; cf. [8]. Initially, in the 1920s, the application of topological spaces given by 

Kuratowski [1461 suggested the interpretation of closure and interior operators as modal 

operations. Indeed, in the late 1930s and early 1940s, Tarski and McKinsey developed 

an algebraic approach to topology [233, 172]. This approach evolved into an active 
research area with many interesting results within modal logic 178, 224], and applica
tions in metric spaces, dynamic systems, spatio-temporal reasoning, etc. In the rela

tional semantics, modal formulas are evaluated in graph-like structures. The relational 
semantics has its origins in the fundamental work of J6nsson and Tarski 1132, 133], 
Kripke 1142, 143], Kanger 1135, 136] and Hintikka [111] followed by the work of Lem
mon and Scott 1155}. Relational semantics, also often referred to as Kripke semantics, 

is studied in model theory, where one is interested in the interplay between a logical 
language and the relational structures (graphs) for that language. For some applica
tions, however, relational semantics was perceived to be too strong, and weaker versions 
were suggested, among them neighbourhood semantics. Around 1970, Neighbourhood 
semantics were introduced by Montague 1178, 179] and Scott 1221} and then further 
explored by Segerberg 1223]. 

Today, modal logic is primarily involved with relational structures where Modal 
logic is seen as a tool for talking about graphs. A graph consists of vertices, represent
ing possible worlds, and edges between vertices, corresponding to relations between the 
worlds. In the 1960s, Kripke formalised relational semantics by interpreting modal logic 
over directed coloured graphs, so-called Kripke structures [143}. However, the idea of 
possible worlds for the interpretation of modalities can be traced back to the German 
philosopher Gottfried Leibniz [153] in the 17th century. The idea is to interpret the 

formula 0'1' ('<pis necessary') as a claim that 'I' is true at all possible worlds, and 0'1' 
('<pis possible') as a claim that 'I' is true at some possible world. This interpretation 
give rise to a correspondence between between modal and classical logic: '0' and '0' are 
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linked with the universal quantifier ''ri' and the existential quantifier '3', respectively. 

Indeed, as Gabbay 1901 observed, many modal languages translate into fragments of 

first-order logics using only finitely many variables. These finite variable fragments have 

appealing computational properties, e.g., the model checking problem can be solved in 

PTIME 12581 while it is PS PAcE-hard for first-order logic 1501. Moreover, in contrast 

to first-order logic, many modal logics are decidable 1259, 991. Many modal logics, as 

logics on graphs (also called frames), also specify a decidable fragment of the monadic 

second-order logic MSO. Another interesting connection is between graphs and modal 

algebras, which is studied in duality theory: the notions of bounded morphisms, gen

erated subframes and disjoint unions based on relations correspond to the algebraic 

notions of subalgebras, homomorphic images and direct products 1132, 33, 34]. Ex

pressivity of modal languages can be characterised using, e.g., the notion of bisimulation 

identifying those models that cannot be distinguished. 

Modal logics are applied in many areas with theoretical and practical interest. In 

mathematics, we find provability logic 119, 9] and a strong connection between modal 

logic and set theory 1226, 240, 29, 281. Philosophy considers modal logic of belief 

change (belief revision 110, 91] and belief update [137]), the logic of action [31] and 

deontic logic [263, 86]. Linguistics uses modal logic to study the semantics of nat

urallanguage and to analyse its syntactic structure (241]. Modal logics in game the

ory 121, 1901 are used to describe and reason about games, e.g., game logic 11971, Coali

tion Logic 1196] and Alternating-time temporal logic [15]. In AI, modal logics for MAS 

provide a theoretical framework for intelligent distributed systems 1232, 231, 271J. 

Description Logics [241, a notational variant of modal logics, are used for knowledge 

representation and reasoning in AI and, moreover, provide the basis for ontologies in 
knowledge management systems, medical- and bio-informatics 1228, 229, 871 as well as 
in the semantic web 132, 181. In computer science, temporal logics are employed for au
tomated verification of hardware and software 1541, epistemic, temporal and conditional 

operators are used in knowledge-based programming 1941 and modal logics are involved 
in the analysis of query languages for XML documents 147, 481. Among the many 

research forums involving modal logic, at least two are devoted specifically to modal 
logics: Advances in Modal Logic (AiML) [21 and Methods for Modalities (M4M) [31. 

In this work, we focus on the relational semantics forIDodallogic. The basic proposi

tional modal language for describing coloured relational structures is inductively defined 

using countably infinitely many propositional variables n = {PO,Pl, ... }, the Boolean 

connectives of conjunction ('A') and negation (',') and a unary modal operator box 

('0'). The additional Boolean connectives of disjunction ('V'), implication ('-+') and 

the unary modal operator diamond ('0') can be defined in terms of 'A', ',' and '0'. 

A Kripke structure rot = (W, R, 11') is such a coloured graph, where W is a non-empty 

set of worlds, R S; W x W is a binary relation defined on W, and 11' : n -+ 2W is a 

(colouring) function assigning propositions to worlds at which they are true. A world 

w' is considered possible wrt. a world w if it is accessible via relation R from w. Given 
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a formula lp, the satisfaction relation 't=', where rot, w t= <p means '<p is true at world w 

in rot', is inductively defined as: 

• rot, w t= Pi iff w E 7r(Pi)j 

• rot, w t= -'<p iff rot, w ~ <pj 

• rot, w t= <p V "p iff rot, w t= <p or rot, w t= "pj 

• rot, w t= O<p iff rot, v t= <p for all v E W such that (w, v) E R. 

A formula <p is satisfiable if rot, w t= <p for some Kripke structure rot and some world 

w in rot, and <p is valid if rot, w t= <p for all rot and all w in rot. Given the class of 

Kripke structures, it is interesting to look at the modal formulas determined by this 

class, i.e., the formulas that are valid in these structures. The set of modal formulas 

that are valid in every structure of a given class is called its theory. The theory of the 

class of all Kripke structures is denoted by K. Given a theory of a class of structures, it 

is sometimes possible to give a syntactical characterisation of it, which makes it possible 

to reason about those structures on a purely syntactic level. This is a central theme 

in proof theory [2351. Syntactic characterisations can be given, e.g., in the form of 

Hilbert-style axiom systems that provide axioms and inference rules for deriving other 

formulas. Table 2.1 presents such a Hilbert-style axiom system for the formulas in 

K. Axioms reflect essential properties of the modalities and their interaction with one 

another. In Table 2.1, the modality '0' is characterised by the distribution axiom, 
also called (K), and the inference rule necessitation. A formula <p is called provable or 

(TAUT) 

(Distribution) 

(Modus Ponens) 

(Necessitation) 

Propositional tautologies 

O(r.p -+ 1/J) -+ (Or.p -+ 01/J) 

r.p, r.p -+ 1/J 

1/J 
r.p 

Or.p 

TABLE 2.1. The axiom system for K. 

derivable in the modal system K, written I-K lP, if there is a finite sequence of formulas 

that ends in r.p such that each formula in this sequence is an instance of an axiom 

or follows from previous formulas by application of an inference rule. We call such a 

sequence of formulas a proof or a derivation of <p. The axiom system is sound if every 

provable formula is also valid, and it is complete if every valid formula is provable. 

The axiom system in Table 2.1 is sound and complete [331. which shows that the 

syntactic and semantic characterisations indeed specify the same logic. Soundness can 

easily be shown by an induction on the structure of the derivation. Completeness 
theory is concerned with showing completeness of axiom systems, which is usually much 

harder than showing soundness [331. Several methods have been developed to obtain 

completeness. Kripke [142, 1431 originally used tableaux systemsj see Fitting [841 for 

an introduction to modal tableauxs. Another way of proving completeness is via normal 
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forms; see Fine 1831. An important tool in completeness theory is the canonical model 
construction with which completeness results for many modal logics where proven. This 
proof technique appeared first in 1960s in the work of Makinson 11691 and Cresswelll611, 
and later became standard due to the work of Sahlqvist 12161 and Lemmon-Scott 11551. 
However, there are many incomplete modal logics for which the canonical construction 

fails. In the late 1970s, Blok 135, 36, 371 showed that incomplete modal logics are 
not exceptional but rather the norm, and examples of finitely axiomatisable incomplete 

logic were given by Fine 1821 and Thomason 12341. 

reflexive Vx(xRx) Dcp -+ cp 

symmetric VxVy(xRy -+ yRx) cp -+ D-,D-,cp 

serial Vx3y(xRy) Dcp -+ -,D-,cp 

transitive VxVyVz(xRy 1\ yRz -+ xRz) Dcp -+ DDcp 

euclidean VxVyVz(xRy 1\ xRz -+ yRz) -,D-,cp -+ D-,D-,cp 

weakly dense VxVy(xRy -+ 3z(xRz 1\ zRy» DDcp -+ Dcp 

weakly directed VxVyVz(xRy 1\ yRz -+ 3v(yRv 1\ zRv» -,D-,Dcp -+ D ..... 'O-,cp 

TABLE 2.2. First-order properties expressed in modal logic. 

Properties of the relation in a Kripke structure can be expressed in modal logic 

by a set of modal formulas that are each valid on the structure. Such a set of modal 

formulas with a common syntactic form can be specified by a scheme. Table 2.2 shows 

some properties with their definition in first-order logic together with a modal logic 
formula (a scheme) that specifies the property. However, the expressive power of modal 
logic and first-order logic do not coincide. Here are two modal formulas that do not 
correspond to any first-order definable property (see 133]): 

Lob formula: 0(01,0 -+ 1,0) -+ 01,0 

McKinsey formula : 0-,0.....,1,0 -+ .....,0.....,01,0 

For instance, the relations of the Kripke structures on which the Lob formula is valid are 
transitive and the converses of the relations are well-founded (i.e., no infinite path starts 
at any world, which excludes, in particular, any loops). The McKinsey formula defines 
a class of structures with uncountably many worlds. However, the properties specified 

by the Lob and the McKinsey formula are second-order logic conditions. Conversely, 

there are first-order properties that cannot be expressed in modal logic, e.g.: 

asymmetry: 'Vx'Vy(xRy -+ .....,(yRx» 

antisymmetry : 'Vx'Vy(xRy 1\ yRx -+ x = y) 

The expressive power of a modal language is usually measured in terms of the 
distinctions it can draw between two structures. A modal language can distinguish 

two structures if there is a formula of this language that is true at a world of one 
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structure and false at a world of the other structure. The notion of bisimulation helps 
to characterise the expressive power of a modal language. Informally, a bisimulation 
is a relation between two Kripke structures, where related worlds are labelled with 
the same propositional variables, and, for any successor in one of the structures, it is 
possible to find a matching successor in the other structure that are related again via the 
bisimulation. The notion of bisimulation is a quite general: it comprises operations on 
Kripke structures such as disjoint union, generated submodels and bounded morphisms. 
Moreover, bisimulations can be seen as variation of Ehrenfeucht-Fralsse games (112). 
Expressivity of modal logic can be characterised via bisimulations due to the fact that 
modal satisfiability is invariant under bisimulations, i.e., two bisimilar worlds satisfy 
the same modal formulas, and, conversely, in finitely branching structures, two worlds 
satisfying the same modal formulas are bisimilar. Moreover, relating to first-order logic, 
van Benthem (237) showed that modal logic is the maximal such language in the sense 
that each first-order formula invariant under bisimulation is equivalent to a modal logic 
formula. This result demonstrates how bisimulations reflect the local character of the 

modal satisfaction relation. Bisimulations were independently developed in modal logic 

by van Benthem (236, 237) and in computer science by Park (193) and Milner (177]; 
see 1109] for further details. 

The balance between expressivity and computational complexity of modal logics is 
interesting for many applications that involve automated reasoning tasks. For instance, 
applications involving reasoning tasks with temporal logics are hard- and software ver
ification and automated program verification [54, 55), another example is the analysis 
of distributed computer programs (79) which uses epistemic logics and combinations of 
epistemic and temporal logics. Generally, the aim is to find sufficiently expressive log
ics with low complexity. Automated reasoning is mainly concerned with problems like 
checking satisfiability and model checking. The satisfiability problem for a modal logic 
asks whether a given formula can be satisfied at some world in some Kripke structure. A 
logic is called decidable if its satisfiability problem can be solved effectively. The model 

checking task is: Given a world w in some structure and a formula 'P, is 'P satisfied 
at w? The computational complexity states how much time and memory a computer 
would need to solve these problems. Decidability of a logic can be established by re
ducing the problem to known results for other logics, e.g., translating modal formulas 
into the two-variable fragment of first-order logic which is known to be decidable (34). 
However, for establishing complexity results, other techniques are usually required that 
are more constructive. For the basic modal logic, we can show that it has the finite tree 

model property 1259], i.e., every formula can be satisfied in a finite tree structure. More 
precisely, they can be satisfied in tree structures whose depth and branching factor is 

bounded as a function of the length of the input formula. Given this property, it turns 
out that the satisfiability problem for the basic modal logic K is in PSPACE [147]. Note 
that first-order logic, on the other hand, can enforce infinite models and satisfiability is 
already undecidable for fragments of first-order logic with three variables [34]. Many 
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modal logics are ''robustly'' decidable, i.e., they remain decidable even after extending 
their expressive power, e.g. adding path quantification and fixed points to the logic. 
This is partially due to the tree model property which permits the use of automata

theoretic techniques for showing decidability [259, 991. Model checking a basic modal 
logic formula r.p can be done with an algorithm that labels the worlds of the structure 
in a bottom-up fashion with subformulas of r.p that are true there. In this way, model 

checking the basic modal logic can be solved in polynomial time in the size of the input 
formula. 

2.2. Epistemic Logic 

An important application of modal logic is modelling knowledge and doxastic atti

tudes like belief - epistemic logic. Intuitively, the goal in epistemic logic is to describe 

the actual knowledge of agents. But, modeling actual knowledge of human agents ap

pears to be difficult. For instance, we would not always agree with the implication that 

a person knowing both r.p and r.p -+ 1/J also knows 1/J. Despite these problems, epistemic 

logic is still useful for modeling knowledge when we make some assumptions about the 

agents: agents are perfect and rational reasoners. But it is worth keeping in mind that 

no realistic human agent has such capabilities. 

In 1932, C.l. Lewis and C.H. Langford introduced the five systems SI, ... , S5 to give 
an axiomatic account of the alethic modality necessity [1601. In particular, the systems 
S4 and S5 gained much attention for modelling knowledge and belief. Although, Kripke 

and his colleagues introduced a relational semantics for modal logic in the 1950s, it was 

Hintikka [1111 in 1962 who interpreted epistemic logic for the first time in terms of 
possible worlds. A contemporary account of epistemic logic can be found in [175, 791. 
In this work, we focus on the epistemic logic S5. 

In the remainder of this work, we use the Backus-Naur-Form (BNF) [138, 851 as a 
met a-language to specify the syntax of a logic. 

2.2.1. The Logic SS. We now define the syntax and semantics of S5. 

DEFINITION 2.1. (S5 SYNTAX). Let IT be a count ably infinite set of atomic propo
sitions and E = {I, ... , n} be a set of n agents. The set of S5E-formulas r.p is given by 
the following BNF specification: 

p I -.r.p I r.p V r.p 

where p ranges over atomic propositions in IT and a over agents in E. 

Logical truth (T), falsehood (.L) and the Boolean connectives (t\, -+ and +-+) are 
defined as usual. The modality Ka is an epistemic operator that represents 'agent Jl 

knows'. In epistemic logic, it is common to write Ka instead of Da. 
In the literature, the logic S5 for n agents is usually referred to as S5n [791. For 

reasons of consistency of notation, we deviate from this practise and denote this logic 
S5E. 
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S5 is a modal logic which we interpret using a relational semantics. As semantic 
structures we use a special class of Kripke structures. The relations of these Kripke 
structures have properties that reflect how we describe knowledge. In the case of S5, 
the relations are equivalence relations, which we call epistemic accessibility relations. 

The agent's state of knowledge or information is modelled by the current equivalence 
class of the epistemic accessibility relation for that agent. Considering an agent a, we 
denote the epistemic accessibility relation for a with "'a. The information state of a at a 
world w is the set of worlds in the equivalence class [w]~a of w wrt. "'a. All worlds that 
are "'a-accessible from w are considered possible by a, or, alternatively, are epistemically 

indistinguishable for a. Agent a ''knows cp" if cp is true at all worlds a considers possible, 
or if cp is true at all worlds that a cannot distinguish according to her knowledge. That 

is, the smaller the set [w]",,,, the less worlds agent a considers possible at the world w, 
or the less worlds are indistinguishable for a at w, and hence the more a knows. 

DEFINITION 2.2. (EPISTEMIC STRUCTURE). Given a finite set E of agents, an 

epistemic structure for E is a tuple rot = (IT, E, W, {"'a}aEE, 7r} where 

• IT c n is a non-empty set of atomic propositions; 

• W is a set of possible worlds; 

• "'a is an epistemic accessibility relation on W, one for each agent a in E, which 
is required to be an equivalence relation; 

• 7r : IT -+ 2w is a valuation function which assigns to every atomic proposition 
in IT a set of worlds at which it is true. 

For any relation R on the set of worlds (or states), a world w is called R-accessible 

from world v and w is an R-successor of v if (v, w) E R. We use this notation throughout 
this work. 

Formally, SS-formulas are evaluated on epistemic structures as follows. 

DEFINITION 2.3. (S5 SEMANTICS). Given an epistemic structure rot = (IT, E, W, 
{"'a}aeE, 7r}, the satisfaction relation '1=' is inductively defined as follows: For all worlds 
wE W, all a E E, it holds that: 

• rot, w 1= p iff w E 7r(p), for all atomic propositions p E IT; 

• rot, w 1= -'Cp iff rot, w ~ cp; 
• rot, w 1= cp V 1/1 iff rot, w 1= cp or rot, w 1= 1/1; 
• rot, w 1= KaCP iff rot, v 1= cp for all "'a-successors v of w. 

If for some world w in some epistemic structure rot we have rot, w 1= cp, then the SS

formula is true at w, and rot is called a model of cp. An SS-formula is satisfiable if it has 

a model, and it is valid if it is true at all worlds in all epistemic structures. 

Popular examples for illustrating the relationship of knowledge, communication and 
action in a distributed system with S5 are variants of the Cheating Husbands Puzzle 

or the Muddy Children Puzzle. For a general treatment and detailed analysis of such 
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puzzles, see the work by Moses, Dolev and Halpern [1861. Here, however, we use the 

knowledge game Hexa for that purpose. 

EXAMPLE 2.4. (HEXA). We illustrate the use of 85 and epistemic structures by 

modelling states of the knowledge game Hexa as described by van Ditmarsch [2511. 

In Hexa, three players a, b and c each hold one of three cards ace, king or queen. 
Figure 2.1 displays three epistemic structures, where the left one describes the initial 

situation. Each world is marked with three letters, where, e.g., QK A means that player 

a holds the queen, b the king and c the ace. The epistemic accessibility relations are 

denoted by lines, that are labelled by the corresponding agent, between the worlds 

(omitting the reflexive edges). In the beginning, every player only knows her own card 

a AQK AKQ AKQ 

: ;KQA 
QKA QKA 

FIGURE 2.1. Three epistemic structures for the knowledge game Hexa. 

but cannot observe the cards of the other players. That is, everyone has incomplete 

information about the actual state of the game. For instance, at world QKA, player a's 
information state is the set containing the worlds Q K A and Q AK, i.e., a considers both 

worlds possible, or, alternatively, a cannot distinguish between them. In other words, 
a does not know the other players' cards, which we can describe with the 85-formula 

I\i=b,c -.Kaacei 1\ -.Kakingi using propositional variables like aceb to represent the fact 
that player b holds the queen. We can also describe knowledge of a higher order in the 

sense that a player knows about the knowledge of other players. We can state that, at 

QKA, player a knows that b knows her card with Ka(Kbaceb V Kbkingb). Below we 
will come back to this example and show what can be said about the players combined 
knowledge after some players reveal information about their cards to the others. -I 

80 far, we have defined 851: purely semantically. We now go on to give a syntactic 

characterisation of this logic. 

2.2.2. Axiom System. The properties of knowledge and belief can be modelled 

with the following axioms: 

T 
o 
4 

5 

KaCP -+ cP 

KaCP -+ -.Ka-'CP 
KaCP -+ KaKaCP 
-.Ko-'cp -+ Ka-.Ka-'CP 

(Veridicali ty ) 

( Consistency) 
(Positive Introspection) 

(Negative Introspection) 
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Notice that these "axioms" are actually axiom schemes, with <p ranging over SS-formulas 
and a over agents. When a set E of agents is understood, <p ranges over formulas of S5I; 
and a over the agents in E. The veridicality axiom (T) (sometimes also called factivity 
axiom) states that knowledge must be the case or equivalently that there is no false 
knowledge: if agent a knows <p, then <p must hold. When modeling belief, (T) is usually 
dropped in order to enable false beliefs. For belief, typically (0) is used instead of (T). 
The consistency axiom (0) states that an agent must be consistent with her knowledge: 
if a knows <p, then a does not know not <po The axiom (4) and (5) describe positive and 
negative introspection of agents: (4) states that if a knows <p, then a knows that she 
knows <p, and (5) that if a does not know <p, then a knows that she does not know <po 

The axioms (T), (4) and (5) characterise the properties of the epistemic operator 
Ka. An axiom system for SSI; is presented in Table 2.3, where a ranges over the agents 
in E. Essentially, it extends the axiom system in Table 2.1 for the basic modal logic K. 

(AI) Propositionai tautologies 

(A2) Ka('P ~ '1/1) ~ (Ka'P ~ Ka'l/1) 

(A3) Ka'P ~ 'P 

(A4) Ka'P ~ KaKa'P 

(AS) .... Ka .... 'P ~ Ka .... Ka .... 'P 

(RI) 
'P, 'P ~ 1/J 

1/J 
(R2) K'P 

a'P 
TABLE 2.3. An axiom system SS. 

The semantic and syntactic characterisation are connected by the following theorem. 

THEOREM 2.S. The axiom system for BSI; is sound and complete. 

This result is can be found in 1176, 101]. Soundness can easily be shown by an 
induction on the structure of the derivation. Completeness can proven by contraposition 
which involves the construction of a canonical model to falsify the negated input formula; 
see, e.g., Chapter 4 of 133]. 

The axioms give us more insight about the modal logic under consideration since 

they represent properties of the accessibility relations; see Section 2.1: 

T - reflexive; 
4 - transitive; 

o - serial (right unbounded) j 
5 - euclidean. 

Since the system SS contains the axioms (T), (4) and (5), we have that all formulas 
generated by that system are valid on exactly those epistemic models which epistemic 
accessibility relations are reflexive, transitive and euc1idean, i.e. equivalence relations. 
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Notice that this corresponds to our semantic specification of S5. For modeling belief, 

one usually uses the axioms (D), (4) and (5) which yields the system KD45. Formulas 

KD45 are valid on exactly those models with a serial, transitive and euclidian relation. 

2.2.3. Combined Knowledge. Combining the knowledge of several agents yields 

two further interesting concepts: common knowledge and distributed knowledge. Com

mon knowledge was first introduced in 1969, in Lewis's [162] philosophical analysis of 

conventional social practices. It plays an essential role for understanding of naturallan

guage in dialogues [53] and reaching agreements and coordinating actions [101, 102]. 

Common knowledge is also an important concept in game theory for investigating ratio

nality [20]. Distributed knowledge is an important concept for reasoning about knowl

edge in distributed systems [101, 81, 102]. For a survey on multi-agent epistemic logic, 

see [79, 175J. 

We now add to S5I; three modalities for combined knowledge: EA, CA and DA, 

where A ~ E. These modalities are epistemic operators that respectively stand for 

'every agent in A knows', 'it is common knowledge among the agents in A', 'it is 

distributed knowledge among the agents in A'. Given an epistemic structure rot = 

(I1, E, W, {"'a}aEI;, 71'), we introduce abbreviations for epistemic accessibility relations 

that correspond to those three kinds of combined knowledge: 
",E _ 
A- UaEA "'a .. the union of the accessibility relations of the agents in A; 

"'~ = ("'~)+ .. the transitive closure of the relation "'~; 

"'~ = naEA "'a .. the intersection of the accessibility relations of the agents in A. 

The new epistemic operators are interpreted in rot as follows. We extend the definition 

of F in Definition 2.3: For all worlds w E W, all a E E, it holds that 

• rot, W F EACP iff rot, v F cP for all worlds v with w "'~ v; 

• rot, W F CA cP iff rot, v F cP for all worlds v with W "'~ v; 

• rot, W F D A cP iff rot, v F cP for all worlds v with W "'~ v. 

We obtain a hierarchy of combined knowledge of a coalition A: 

CACP:::;' ... :::;. E~cp :::;. E~cp:::;. EACP:::;' DACP:::;' cP 

where E''J:cP (with m> 0) abbreviates EA'" EA cp. In this hierarchy, common knowledge --....--
m-times 

is the strongest form of combined knowledge since it corresponds to what is publicly 

known. Distributed knowledge is the weakest form by the fact that it is distributed 

among A and no member of A necessarily has it. However, the hierarchy collapses in 

some cases, namely when there is only one agent or, in a multi-agent setting, when all 

agents have the same knowledge (e.g., in a system where several processes share the 

same memory). 

EXAMPLE 2.6. (HEXA CONTINUED). We now continue the discussion about the 

card game Hexa in Example 2.4. Suppose that, at this point, player c reveals to the 
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other players that her card is not the king. Clearly, after that public announcement, 
the players' knowledge changes. The current situation is described by the epistemic 
structure in the middle of Figure 2.1. At any world, it is now common knowledge among 
all players that c does not hold the king: Ca,b,c-.kingc' Assuming we are in world QKA, 
player c's statement resulted in the shrinking of a's information state to the singleton 
set containing QKA, i.e., at this world, a only considers QKA possible and a can 
distinguish every other world from it. In other words, a learned the other players' cards 
while band c did not gain more insight. The formula Ka(kingb /\ acec) is now true at 

QKA while we still have A.i=a,c -.Kbacei/\-.Kbqueeni and A.i=a,b -.Kckingi/\-.Kcqueeni. 
If, at this stage in the game, player a announces that she also does not have the king, 
the situation changes again, which is described by the rightmost structure of Figure 2.1. 

Again, this announcement is now common knowledge and, thus, Ca,b,c-.kinga holds at 
all worlds. However, at QKA, player b still did not gain any more insight about the 
other players' cards. On the other hand, both a and c learned something and we have 
that QKA satisfies E{a,c}(queena /\ acec), Le., everyone among a and c knows each 
others cards. Moreover, it is now even common knowledge at Q K A that b has the king: 

QKA F= C{a,b,c}kingb. -l 

The properties of operators for combined knowledge can be described by the axioms 

in Table 2.4 (cf. {lOl, l03}), where E = {at, ... , an} and the subscript E in EE, CE 
and Dr, is dropped. The axiom (A6) defines the operator E in terms of what each 

(A6) El{' +-+ (Kall{' /\ ... /\ Kanl{') 

(A7) Cl{' -+ E(I{' /\ Cl{') 

(R3) 
I{' -+ E(1/J /\ I{') 

I{' -+ C1/J 

(AS) Kal{' -+ DI{' 

(A9) D(I{' -+ 1/J) -+ (DI{' -+ D1/J) 

(AlO) DI{' -+ I{' 

(All) DI{' -+ DDI{' 

(Al2) ....,D-.I{' -+ D-,D-,I{' 

TABLE 2.4. Axioms and rules for common- and distributed knowledge. 

member in E knows. Common knowledge is described with (A7) and (R3), which is 
often referred to as induction rule. The axiom (A7) characterises common knowledge 
as a solution to the greatest fixpoint equation Ccp +-+ E(cp /\ Ccp): the direction from 
right to left is trivial as E(cp /\ Ccp) implies Ccp, and the left to right direction is given 
by (A7). Distributed knowledge is characterised with axioms (AS) to (A12). The axiom 
(AS) describes the interaction between individual knowledge and distributed knowledge: 
whatever an agent a knows is distributed knowledge. The remaining axioms state that 

distributed knowledge behaves essentially like knowledge of a single agent. 
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In order to be able to reason about coalitional combined knowledge, the epistemic 
operators E, C and D can additionally be parameterized with a set of agents A ~ ~, 
i.e., EA, CA and DA. There are at least two new emerging properties: 

• CA'P ~ CB'P, for all A,B ~ ~ with B ~ A; 
• DA'P ~ DB'P, for all A, B ~ ~ with A ~ B. 

We are currently not aware of any literature that explicitly treats the coalitional versions 

CA and DA of the operators C and D. However, the complexity results below in 
Section 2.2.4 is claimed to hold in the more general case [103J. 

We write S5C (S5CD) for the logic S5 enriched with modalities for common knowl

edge (common- and distributed knowledge). The axiom system for S5CE consists of 

the system S5E and the axioms (A6) and (A7) plus the rule (R3) from the Table 2.4. 

The system for S5CDE consists of axioms and rules from the tables 2.3 and 2.4. The 

following results are well known [103, 243J. 

THEOREM 2.7. The axiom systems S5CE and S5CDE are sound and complete. 

In 1985, Halpern and Moses [101J gave an axiomatisation of S5DE. A formal proof 

of soundness and completeness was presented later in 1992 by Fagin, Halpern and 

Vardi [80J. A complete axiomatisation of S5CE with common knowledge was given 

in [176, 152, 1011. A complete axiom system for S5CDE with common and distributed 
knowledge was presented in [80, 103, 243J. 

2.2.4. Complexity. The complexity of the satisfiability problem for variants of S5 

depends on the number of agents and the presence of epistemic operators for combined 

knowledge. The complexity of S5E with or without common knowledge and for one 
or many agents is given in Table 2.5, cf. [103). Adding distributed knowledge to the 
language does not affect the complexity, i.e., S5DE and S5CDE are as complex as S5E 
and S5CE, respectively. 

S5E, S5DE S5CE, S5CDE 

I~I = 1 NP-complete PS PAcE-complete 
I~I > 1 PS PAcE-complete ExpTIME-complete 

-
TABLE 2.5. Complexity of SS-variants. 

2.2.5. Expressivity. We now introduce epistemic bisimulation as a notion of 

equivalence between epistemic structures. This is a variant of the notion of bisimu

lation for the basic modal logic; see, e.g., [33J. 

DEFINITION 2.8. EPISTEMIC BISIMULATION Given two epistemic structures rot = 
(IT,~, W, {"'a}aEE, 11'} and rot' = (IT,~, W', {"'~}aEE' 11"} for a finite set ~ of agents, and 
an agent a E ~, a binary relation H ~ W x W' is an a-epistemic bisimulation between 
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rot and rot' if, for all worlds ql and q2 with (ql, q2) E H, the following three conditions 

hold: 

(i) ll'(ql) = ll"(q2); 

Cii) for every qi with ql ...... a qi, there is a q2 with q2 "'~ q2 such that (qi, q2) E Hj 

(Hi) for every q2 with q2 "'~ q2' there is a qi with ql "'a qi such that (qi, q2) E H. 

If there is an a-epistemic bisimulation H with (x, y) E H, then the worlds x and y are 
called a-epistemic bisimilar, written x t:t~ y. 

Two worlds x and y are A-epistemic bisimilar, written x t:t~ y, if there is a binary 
relation H ~ W X W' with (x, y) EH satisfying the following three properties: 

(iv) H is an a-epistemic bisimulation between rot and rot', for all agents a E Aj 
(v) for all coalitions B ~ A and all worlds ql, qi E Wand q2 E W' with (ql, q2) E 

H, ql "'~ qi implies that there is a world q2 E W' with q2 "''i q2 such that 

(qi,q2) E Hj 

(vi) for all coalitions B ~ A and all worlds q2, q2 E W' and ql E W with (qI, q2) E 

H, q2 -'i q2 implies that there is a world qi E W with ql ""~ ql such that 

(qLq2) E H. 

Intuitively, x t:t~ y means that, at worlds x and y, the agent a thinks the same 

possible, and accordingly has the same knowledge. The generalisation x t:t~ y to a 
coalition A means that at worlds x and y, the agents in A have the same common- and 
distributed knowledge. 

EXAMPLE 2.9. (COMBINED KNOWLEDGE AND BISIMILARITV). Figure 2.2 illus
trates a relation H between worlds of two epistemic structures for the agents a and b. 
The dashed and dotted lines correspond to a's and b's epistemic accessibility relation 
"'a. and -b, respectively (omitting the reflexive edges). It is readily checked that H 
is an a- and b-epistemic bisimulation. Notice, however, that the worlds connected by 

H are not {a, b}-epistemic bisimilar. The equivalence class of ""fa,b} for distributed 
knowledge in the right structure contains two worlds that satisfy different propositions, 

namely blackdot and whitedot, respectively. The problem is that the equivalence classes 
of "'fa,b} in the left structure each lack a world to match those propositions. Hence, 
either condition (v) or (vi) of Definition 2.8 is violated. 

H 

FIGURE 2.2. Bisimilar worlds in two epistemic structures. 
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Intuitively, at each pair of worlds connected via H, the agent a (agent b) thinks 
the same possible, and accordingly has the same knowledge. But, when considering the 
combined knowledge of both agents, they do not have the same distributed knowledge 
at both worlds. This difference in the combined knowledge of a and b is reflected by the 

fact that different S5-formulas are satisfied at the worlds connected via H: all worlds 

of the left structure satisfy either D{a,b}blackdot or D{a,b}whitedot, while the worlds of 
the right structure satisfy neither of these formulas. -l 

The following theorem shows a logical characterisation of epistemic bisimulation. 

For any set A of agents, we denote with A-S5CD the fragment of S5CD with formulas 

using only the epistemic operators Ka EB, CB and DB where a ranges over the agents 

in A, and B ranges over the subsets of A. We denote A-S5D accordingly. 

THEOREM 2.10. Let rot = (IT, E, W, {"'a}aEE, 7r} and rot' = (IT, E, W', {""~}aEE, 7r'} 
be two finite epistemic structures for a finite set E of agents, x E Wand yEW' two 
worlds, and A ~ E a coalition. The following are equivalent: 

(a) x i:%~ y; 

(b) x and y satisfy the same formulas of A-SSD; 

(c) x and y satisfy the same formulas of A-SSCD. 

PROOF. The proof is along the lines of a proof for a similar theorem, Theorem 2.15 
in Section 2.3.5, for CTL 144J. Suppose rot, rot', x, y and A are as in the theorem. 

The direction from (c) to (b) is obvious since A-S5D is a fragment of A-S5CD. In the 

following, the directions from (b) to (a) and from (a) to (c) will be shown, in this order. 

"(b) => (a)": Suppose x and y satisfy the same formulas of A-S5D. Define a binary 
relation H ~ W X W' as follows: 

H = {( q, q') I rot, q F tp iff rot', q' F tp, for all A-S5D-formulas tp}. 

In the following, H is shown to be an A-epistemic bisimulation between rot and rot', 
i.e., that H satisfies the conditions (iv), (v) and (vi) in Definition 2.8 of A-epistemic 
bisimulation. First, consider condition (iv). Let a E A be an agent. We need to check 
that H is an a-epistemic bisimulation, i.e., that the conditions (i) to (iii) in Definition 2.8 
are satisfied. To this end, let (q, q') E H . 

• ad (i). By definition of H, it follows 7r(q) = 7r'(q') . 

• ad (ii). Let rot" = (IT,E,W"'{"'~}aEE,7r") be the disjoint union of rot and 

rot' where W" = WI±IW', "'~= "'aI±lN~ for all a E E, and 7r"(p) = 7r(p)I±I7r'(p) 
for all p E IT. Let fV be a binary relation on W" such that s f'V s' iff sand 

s' satisfy the same A-S5D-formulas in rot". Note that", is an equivalence 

relation. Denote with W"I", the set of equivalence classes induced by"', and 

with [sI the equivalence class {s' E W" Is"" s'} ~ W"I", of world s. Clearly, 
for all sets Is], [s'J E W"I", with [sI =/: Is'], there is an A-S5D-formula tp such 
that rot", s 1= tp and rot", s' ~ tp. Arbitrarily choose such a formula tp and set 
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4'[s],[s'] = 4'. For all [s] E W"I"" let 

4'[s] = 1\ 4'[sJ,[s']' 
[s'JEw"I_,[sJ~[8'J 

Note that W" and thus 4'(sJ are finite by the finiteness of rot and rot'. Let 

t E W be a world such that q "'a t and '1/1 = '""IKa'""l4'lt). Clearly, '1/1 is an A
S5D-formula, and we have that rot, q 1= '1/1. By definition of H, it follows from 

(q, q') E H that rot', q'l= '1/1. That is, there is a world t' E W' with q' "'~ t' 
such that rot', t' 1= 4'lt). For showing (ii), it remains to show that (t, t') E H. 

By definition of 4'lt], it follows that [t] = [t'], i.e., t and t' satisfy the same 

A-S5D-formulas. Hence, (t, t') E H by definition of H . 
• ad (iii). This can be shown similarly to condition (ii). 

Second, we consider condition Cv) only; (vi) is similar. Let B ~ A be a coalition, 

and ql, q2 E W and ql E W' worlds with (qI. qD E H and ql "'~ q2. Notice that 

rot,q21= <p[qa) , where the formula 4'[qa] is as in (ii) above. Let '1/1 = -,DB'""I4'[q2)' Clearly, 

'1/1 is an A-S5D-formula, and we have that rot, ql 1= '1/1. From (qI, qD E H, it follows by 

definition of H that rot', qi 1= '1/1. That is, there is a world q2 E W' with qi ""'fl q2 such 

that rot',q21= 4'[Q2]' It follows by definition of 4'[Q2) that [q2] = [q2]' Hence, (Q2,Q2) E H 
by definition of H. 

"(a) => (c)": Suppose x t:t~ y, i.e., there is an A-epistemic bisimulation H between rot 
and rot' with (x, y) EH. In the following, we show that 

rot, Q 1= 4' iff rot', q' 1= 4', 

for all worlds q E Wand <I E W', and all A-S5CD-formulas 4'. The proof is by induction 

on the structure of <p. Let q E Wand <I E W' with (q,q') E H. The only interesting 

cases are the induction steps for common- and distributed knowledge; the other cases 

are left to the reader. Suppose the induction hypothesis holds for S5CD-formula 4". 

Then: 

• 4' = OB 4" , for some B ~ A. We show the contrapositive of the direction 

from left to right; the other direction is similar and left to the reader. Suppose 

rot', q' ~ OB 4", i.e., rot', t' 1= '""14" for some world t' with q' ""'i t'. By definition 

of "'~' there is a sequence to . .. t~ E W'*, m ;::: 0, of worlds and a sequence 

hI ... bm E B* of agents such that q' = to ""bl ti "'b2 ... ""b.n t~ = t'. We 

show that there is a sequence to ... tm E W* of worlds such that to = q and 

(t;, tD E H and t;-l "'bi t;, for all i =5 m. We show this by induction on m. 

For m = 0, take to = q. Then (to, to) E H since (q, q') E H and to = q'. 

Consider m -+ m + 1. By definition of H, it follows from (tm, t~) E H and 

t~ "'bm+l t~+! by (iv) and (iii) in Definition 2.8 of A-epistemic bisimulation 

that there is a world Sm+! E W such that tm "'bm+l Sm+!. Set tm+! = Sm+I. 

which finishes the nested induction. We conclude that q "'~ tm and, by the 

induction hypothesis, rot, tm 1= '""14". Hence, rot, q ~ OB4" 
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• ep = DBep', for some B ~ A. We show the contrapositive of the direction 
from left to right; the other direction is similar. Suppose Wl.', q' ~ DBep', i.e., 

Wl.', t' 1= -'ep' for some world t' with q' "''i t'. By definition of H, it follows 
by (vi) in Definition 2.8 of A-epistemic bisimulation that there is a world t E W 

with q "'~ t such that (t, t') E H. The induction hypothesis yields Wl., t 1= -'ep'. 

Hence, Wl., q ~ D Bep'. 

o 

2.3. Temporal Logic 

Another application of modal logic is to reason about time. This was first suggested 

by Prior in 1957 [203, 204, 205J who aimed to formalise with his tense logic temporal 

statements of natural language. Tense logic provides two basic box modalities G and H, 

where G stands for 'always in the future' and H for 'always in the past'. In the 1970s, 

Burstall [46] suggested temporal logic for reasoning about programs. This was fol

lowed by the work of Pratt [202]' who introduced Propositional Dynamic Logic (PDL), 

and Pnueli [200], who used temporal logic to reason about concurrent programs. Dy

namic logic received much attention in computer science; see, e.g., Harel [106J. These 

early works had much influence on a variety of subfields of computer science including 
databases, specification and verification, temporal knowledge representation, etc. In 

1968, Kamp [134J extended Prior's basic tense logic with two new binary temporal op

erators U ('until') and S ('since'). Kamp proved that since and until cannot be defined 

in terms of the modalities Hand G and, moreover, that the expressive power of the 
sincejuntillogic equals those of first-order logic over Dedekind complete strict total or
ders (such as (JR, <). Later in 1980, Gabbay, Pnueli, Shelah and Stavi [89] pointed out 
that safety properties can be expressed with the until operator. Safety properties are 
important properties when reasoning about the behaviour of programs. For a survey 
on temporal logics, see, e.g., Emerson 169J and Clarke, Grumberg and Peled 154J. 

Temporal logic can be classified according to aspects like propositional versus first
order, branching versus linear time and discrete versus continuous time. Various tempo
rallogics have been introduced, mainly Propositional Linear Temporal Logic (PLTL), 
First-order Linear Temporal Logic (FOLTL), Computational Tree Logic (CTL), its ex

tension CTL· and the modal JL-Calculus. Models for time are usually irreflexive and 

transitive. Often, time is modelled as discrete and linear which makes the natural 

numbers a preferred model. But also the rational and real numbers have been con

sidered which respectively form dense and continuous linear-time models. Models fo~ 

branching-time are usually taken to be tree-like structures, in which, at each time point, 
the future may appear to be branching while the past is linear. The following are the 
commonly used modalities: the linear temporal operators G ('always'), F ('sometime'), 

00 00 

X ('nexttime'), U ('until'), B or 5 ('since'), F ('infinitely often'), G ('almost everywhere') 
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and, in the branching time versions, the path quantifiers A ('for all futures') and E ('for 
00 00 

some future'). The operators F and G express fairness properties [89]. 

2.3.1. Computational Tree Logic. In 1981, Clarke and Emerson [56] introduced 
the logic for discrete branching time: Computational Tree Logic (CTL). Later in the 
1980s, Emerson and Halpern [73} introduced its extensions CTL + and CTL * . The 
propositional J.L-Calculus was introduced by Scott and De Bakker [222] as a formalism 
for specifying and reasoning about concurrent programs. The J.L-Calculus attracted much 
attention and was further developed; see, e.g., Kozen [140], Emerson and Clarke [71] 

and Stirling [230}. The modal J.L-Calculus is the basic tense logic extended with least 

and greatest fixpoint operators. These operators are expressive enough to encode many 

temporal logics into the J.L-Calculus such as LTL, CTL and CTL*. 

We now define the syntax of these four logics. Notice that we choose to define CTL + 
and CTL* using a distinction between state- and path formulas, but these languages 
can also be defined without that distinction. 

DEFINITION 2.11. (CTL, CTL +, CTL* SYNTAX). Let n be a count ably infinite 

set. of propositional variables. The logics CTL, CTL + and CTL * are defined using the 

following BNF specifications, where p ranges over propositional variables in n. The set 

of CTL-formulas <p is defined as: 

".. - p I -'<P I <p V <p I EO<p I E(<pU <p) I A(<pU <p) 

The set of CTL + -formulas is the set of CTL + -state formulas 1/J which are simultaneously 
defined together with CTL + -path formulas f) as: 

p I 1/J V 1/J I ...,1/J I Ef) 

...,f) I f) V f) I 01/J I 1/J U 1/J 

The set of CTL*-formulas is the set of CTL*-state formulas () which are simultaneously 
defined together with CTL * -path formulas X as: 

e 
X 

p I eVe I ...,e 
e I XVX I ...,x 

The set of J.L-Calculus-formulas 71' is defined as: 

EX 
Ox I XUX 

71' .. - p I ""p I 71' V 71' I 71' 1\ 71' I 071' I 071' I J.Lp 71' I vp 71' 

where in J.Lp71' and VP71' the propositional variable p occurs only positively (i.e., ...,p does 

not occur in 71'). 

The abbreviations T, .L, 1\, -+ and ..... are defined as usual. The temporal operator 

o stands for 'next-time' and was originally denoted by X. Moreover, we can define the 

following abbreviations for some temporal operators: 

• EO<p = E(TU <p)j 
• AO<p = ...,EO-'<pj 
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• AOcp = A(TUcp)j 
• EOcp = -,AO-'cpj 
• AOcp = -,EO-,cp· 

In CTL + and CTL *, we can additionally define the abbreviation A( cp U 1/J) = -,E-,( cp U 1/J). 
Notice that CTL* allows for Boolean combinations and nesting of temporal operators 
inside a path quantifier. CTL + is a fragment of CTL * that disallows nesting of tem
poral operators inside a path quantifier. CTL is a fragment of CTL + that additionally 
disallows Boolean combinations of temporal operators inside a path quantifier. 

Formulas of the CTL variants are interpreted over Kripke structures rot = (W, R, 7r) 
consisting of a set of states W, a binary relation R ~ W x W, and a valuation 7r mapping 

every atomic proposition p to a subset 7r(p) of W. W.l.o.g., we assume that the graph 

of rot is a tree, since any structure can be unwound into a tree. Moreover, we assume 
that for every state, there is an R-successor. Given a state w E W, a w-fullpath is an 
infinite sequence UOUl ••• E WW of states such that Uo = w and (Ui' UHl) E R for all 
positions i ~ O. 

We only present the semantics for CTL. The semantics for CTL + and CTL* are 

similar (cf. [69]) and fairly straightforward, given the distinction between path- and 

state formulas in the syntax. A full definition of the J..L-Calculus can be found in [70]. 

DEFINITION 2.12. (CTL SEMANTICS). Given a Kripke structure rot = (IT, W, R, 7r), 
the satisfaction relation 'F' is inductively defined as follows: For all worlds wE Wand 
CTL-formulas cp and 1/J, it holds that: 

• rot, w FP iff wE 7r(p), for all atomic propositions p E ITj 

• rot, w F -,cp iff rot, w ~ cpj 
• rot, w F cp V 1/J iff rot, w F cp or rot, w F 1/Jj 
• rot, w F EOcp iff there exists an R-successor v of w such that rot, v F cpj 
• rot, w F E(cpU 1/J) iff there exists a w-fullpath UOUl ... and a position i 2: 0 

such that rot, Ui F 1/J and rot, Uj F cp for all positions j < i. 
• rot, w F A ( cp U 1/J) iff for all w-fullpaths UOU 1 ... , there is a position i ~ 0 such 

that rot, Ui F cp and rot, Uj F 1/J for all positions j < i. 

If for some world w in some Kripke structure rot we h~ve rot, w F cp, then the CTL
formula is true at w, and rot is called a model of cp. A CTL-formula is satisfiable if it 
has a model, and it is valid if it is true at all states in all Kripke structures. 

The following valid CTL-formula shows the well-known fact that the operator com
bination AU can be expressed in terms of AO and EU: 

Conversely, however, the combination E U cannot be expressed in CTL in terms of 
EO and AU, as Laroussinie [150] noted. It can be shown that CTL is strictly more 
expressive than its fragment only allowing for EO, AU and EO while CTL is no more 
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expressive than the fragment where only AO, EU and EO are allowed [150]. For 
instance, the formula E( 'P U 1/1) cannot be expressed in the former fragment. 

In CTL, we can specify many important properties of concurrent processes. A 

safety property represents the warranty that in all reachable states, i.e., in all states on 
all paths, a certain property is satisfied. For instance, the safety property 

AO...,(inCS1 !\ inCS2) 

where inCS; means that the process is in critical section i (i = 1,2), states that the 
process can never be in both critical sections. A liveness property is the assurance that 

a good state fulfilling a certain property must eventually be reached. For instance, the 
liveness property 

AOdelivered 

states that at some point a project is delivered. Moreover, CTL can express the property 
where a response must eventually be given whenever a request is made: 

AO(request - AOresponse). 

The next CTL-formula expresses the property that a system goes infinitely often through 

a state that fulfills a certain property, say, a checkpoint: 

AOAOcheckpoint 

This final property states that a state fulfilling a certain property is always reachable. 

EXAMPLE 2.13. (COMMUNICATION PROTOCOL). We illustrate how to state process 
properties with CTL by means of simple communication protocol. The left hand side of 
Figure 2.3 depicts a self-explanatory state transition diagram of this protocol with four 
states. The right-hand side, presents an unravelling of this state transition diagram into 
an infinite tree. Both, the transition graph and its unravelling, can be interpreted as a 

T ready 

~d T lost 

!\end 

Ttost Tackn 

.1 1 1 

FIGURE 2.3. A state transition diagram and its unravelling into a tree. 

Kripke structure with propositional variables ready, send, lost and ackn each labelling 

the states at which they hold. In this structure, we can describe the safety property 
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that no state will be encountered where a message is lost and acknowledged at the 
same time with the CTL-formula AO(....,lost V ....,ackn) being true at all states. We have 
that the liveness property "the system enters infinitely often the send state" is satisfied, 
which can be described by AOAOsend being satisfied everywhere. However, the liveness 

property that ''the system enters infinitely often the ackn state" does not hold, i.e., 
AOAOackn does not hold anywhere. Also it is not the case that "after the system was 
ready, it will eventually enter the ready state again": the formula AO(ready --+ AOready) 
does also not hold at any state. But we have that "the system can always reach the 
ready state from any other state" AOEOready is true at all states in the system. -\ 

2.3.2. Axioms for CTL. Axiomatisations give us an insight into the expressivity 

of the considered temporal logic. In 1982, Emerson and Halpern [721 presented a 

complete axiomatisation of CTL; see Table 2.6 for a compact version (AOcp is used 

as an abbreviation for ....,E(T U ....,cp)). A complete axiomatisation for CTL* turned out 

to be more difficult and was not obtained until 2001 by Reynolds [2121. Gabbay, 
Pnueli, Shelah and Stavi [891 provide several complete axiomatisations for reasoning 

about linear time, and Emerson and Halpern [731 for reasoning about branching time. 

A complete axiomatisation of the J.L-Calculus was shown by Walukiewicz [2671. 

(AI) Propositional tautologies 

(A2) EOT 1\ AOT 

(A3) EO(cp V 1/;) .-. (EOcp V EO1/;) 

(A4) AOcp'-' ...,EO...,cp 

(AS) E(cpUt/J).-.1/; V (cp 1\ EOE(cpUt/J» 

(A6) A(cpUt/J).-.1/; V (cp 1\ AOA(cpU1/;» 

(A7) AO(19 -+ (...,t/J 1\ E019» -+ (19 -+ ...,A(cpUt/J» 

(AB) AO(19 -+ (...,t/J 1\ AO(19 V ...,E(cpU1/;))) -+ (19 -+ ...,E(cpUt/J» 

(RI) cp, cp -+ t/J 
t/J 

cp 
(R2) AOcp 

cp-+t/J 
(R3) EOcp -+ EO1/; 

TABLE 2.6. An axiom system for CTL. 

2.3.3. Model Checking. Model checking branching-time logics can be used for 

verifying high-level properties of finite-state reactive systems. For instance, a concurrent 

program can be represented as a finite state graph, which in turn can be viewed as a 
finite Kripke structure (model). Verifying the correctness of the program wrt. the desireg 

property can be reduced to checking whether the formula describing the property holds 

in the model representing the program. Therefore the name model checking is used for 

such kind of verification methods. A survey on model checking temporal logics including 
CTL and CTL* can be found, e.g., in [55, 541. Model checking for many CTL-variants 
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can be done efficiently. There are several model checking implementations, e.g., SMV 
for CTL by McMillan [173]. 

Automata-theoretic techniques have been developed to reduce satisfiability and 

model checking problems to known automata-theoretic problems (in particular, the non
emptiness problem). Intuitively, each formula is associated with a finite automaton over 
infinite words [257] (in the linear-time case) or infinite trees [260] (in the branching-time 
case) that accept exactly all models satisfying the formula. Optimal decision procedures 
can be obtained by reducing satisfiability to the non-emptiness problem of automata. 
For branching-time model checking, Kupferman, Vardi and Wolper [145] suggested 
alternating tree automata as a uniform framework for satisfiability and model checking. 

For an overview of model checking algorithms for the IL-Calculus, see, e.g., Emer

son [70, 541. 

2.3.4. Complexity. Table 2.7 summarises the complexity of both the model check
ing problem and the satisfiability problem for the four logics CTL, CTL +, CTL * and 

IL-Calculus. The complexity of the model checking problem is measured in the size of 

Model Checking Problem Satisfiability Problem 

CTL PTIME-COmplete [57] 
CTL + ~~-complete [151] 
CTL* PS PAcE-complete [77] 

IL-Calculus NP n co-NP [269] 

ExpTIME-COmplete [72] 
2-ExpTIME-COmplete [130] 
2-ExpTIME-COmplete [256, 76] 
ExpTIME-Complete [74] 

TABLE 2.7. Complexities for branching-time logics. 

the structure (model) and the length of the formula describing the specification, and 
the satisfiability problem is relative to the length of the input formula. The model 
checking problem for CTL can be solved efficiently, while for the other logics CTL + , 

CTL* and IL-Calculus, it is more complex. Note that CTL+'s model checking complex
ity ~~ refers to the polynomial-time hierarchy; consult, e.g., [192], for a reference on 
complexity classes. CTL*-model checking can be polynomially reduced to LTL-model 

checking [77] which is PS PAcE-complete [260]. Model checking LTL and also CTL* can 

be solved in time linear in the size of the structure and exponential time in the size of 

the formula. However, in practice, the length of the formula describing the specification 

is usually rather short, and the exponential growth of the complexity has little impact. 

If we consider the specification to be fixed and thus only the model as input of the 

problem, model checking complexity is called model complexity. CTL· has the same 

model complexity as OTL, which is linear in the size of the model. 
For formulas of the IL-Calculus that do not contain alternations of least and greatest 

fixed points, model checking is in linear time as for CTL [58]. For IL-Calculus formulas 
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with unbounded alternation, the precise model checking complexity is an open prob

lem as yet. However, formulas with more than two alternations are rarely required in 

practice. 
For comparison, the complexities of first-order logic are PSPAcE-complete for model 

checking (see Chandra and Merlin 150D and undecidable for satisfiability. 

2.3.5. Expressivity. The expressivity of CTL was perceived to be rather weak 173, 
144J. For instance, it does not allow any Boolean combination nor nesting of tempo
ral operators after a path quantifier. In particular, CTL lacks the ability to express 

fairness properties like 'infinitely often' and 'almost everywhere'. This has led to the 

introduction of more expressive CTL * -fragments with polynomial-time model checking 

complexity such as CTL2 by Kupferman and Grumberg 1144J allowing for two either 

nested or Boolean-connected temporal operators after a path quantifier, and the exten

sions ECTL and ECTL + of CTL with fairness properties by Emerson and Halpern 1731. 
The expressive power of the logics CTL + and CTL is equal [72), but translat

ing CTL + into CTL yields an exponential blowup in formula length [268, 4). The 

JL-Calculus is more expressive than CTL*, and the alternation-free JL-Calculus is more 

expressive than CTL [69, 62). CTL can easily be translated into the JL-Calculus: 

A( <p U 1/J) translates into JLp( 1/J V O( <p /\p)) and E( <pU 1/J) into JLp( 1/J V O( <p /\p)). Translat
ing CTL * into JL-Calculus is more difficult. The currently best known such translation 

involves a double exponential blowup in formula size; see Dam [621. The expressiv

ity of the modal JL-Calculus can be characterised as follows: JL-Calculus is as expres

sive as monadic second-order logic over trees [207, 75). The expressive power of the 

JL-Calculus is equivalent to the expressive power of alternating tree automata, as de

scribed by Niwinski 1188J. Wilke 1269J solves both the satisfiability and the model 
checking problem for the JL-Calculus by reductions on corresponding problems on al

ternating tree automata. Moreover, Janin and Walukiewicz [128J showed that the 

JL-Calculus is the bisimulation invariant fragment of monadic second-order logic, i.e., 
every monadic second-order logic formula that does not distinguish between bisimilar 
structures is equivalent to a formula of the JL-Calculus. 

We now introduce temporal bisimulation as a notion of equivalence between Kripke 
structures. 

DEFINITION 2.14. BISIMULATION Given two Kripke structures, rot = (w, R, 7l') and 

rot' = (W', R', 7l"), a binary relation H S;;; W x.W' is a temporal bisimulation between rot 
and rot' if for all states ql and q2 with (ql, q2) E H the following three conditions hold: 

(i) 7l'(qI) = 7l"(q2); 

(ii) for every R-successor q~ of ql, there is an R'-successor q~ of q2 such that 

(qi, q~) EH; 
(Hi) for every R'-successor q~ of Q2, there is an R-successor qi of ql such that 

(qi,q~) E H. 
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If H is a bisimulation and (x, y) E H, then x and y a.re called temporally bisimilar, 

written x t::t y. 

In 1988, Browne, Clarke and Griimberg [44) presented the following theorem, which 
gives a logical characterisation of temporal bisimulation. This the,orem shows that two 
states can be distinguished by a CTL*-formula if, and only if, they can be distinguished 
by a CTL-formula if, and only if, they are bisimilar. 

THEOREM 2.15. Let rot = (W,R,1I") and rot' = (W',R',1I"') be two finite Kripke 

structures, and let x E Wand yEW' be two states. The following are equivalent: 

(a) x t::t Yj 

(b) x and y satisfy the same CTL-formulasj 

(c) x and y satisfy the same CTL*-formulas. 

2.3.6. RTCTL. In this section, we investigate the quantitative extension of CTL: 
Real-Time Computational 7ree Logic (RTCTL). It provides, in addition to the CTL

operators for qualitative temporal assertions, quantitative operators for expressing real

time constraints. RTCTL was introduced by Emerson, Mok, Sistla and Srinivasan [68] 

for reasoning about real-time environments. In particular, RTCTL makes it possible to 

formally specify correctness properties of temporal systems in which timing is essential. 

For instance, we can express bounded response requirement: The RTCTL-formula 

AO(request -+ A05;kresponse) 

where k is any natural number, specifies that, whenever a request is made, a response 
must be given within k time steps, irrespective of how the system evolves after the 

request. 
We propose a new method for polynomially reducing satisfiability in RTCTL (whose 

numerical parameters are coded in binary) to satisfiability in the same logic with num
bers coded in unary. The essence of the reduction is to introduce new propositional 
variables that serve as the bits of a binary counter measuring distances. We reprove 
the original result of Emerson et al. (68) that RTCTL is in ExpTIME. A similar (but 

simpler) reduction can be used to show that the corresponding extension of linear-time 
logic LTL is in PSPACE. The reduction technique was introduced by Lutz, Walther and 

Wolter [167, 1681 to show PS PACE-completeness of the since/until logic over the real 

line extended with metric operators 'sometime in at most n time units', n coded in bi

nary, even without the finite variability assumption (which states that no propositional 

variable changes its truth-value infinitely many times in any finite interval). 
For the sake of completeness, we first introduce the syntax and semantics of RTCTL. 

DEFINITION 2.16. (RTCTL SYNTAX). Let n be a countably infinite set of prop os i

tional variables. RTCTL formulas are built according to the following BNF specification, 

where p ranges over propositional variables in n and k ranges over natural numbers 
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that are coded in binary: 

'P .. - P -''P 

E('PU 'P) A('PU 'P) 

The abbreviations - and +-+ are defined as usual. Moreover, we abbreviate AO'P = 

-,EO-,'P and AD'P = -,E(T U -''P). Notice that a CTL-formula is an RTCTL-formula 

that does not use the metric version of the until operator. 

RTCTL-formulas are evaluated over Kripke structures as CTL. 

DEFINITION 2.17. (RTCTL SEMANTICS). We only give the semantics for the met

ric operators; the other operators are interpreted as in CTL. Given a Kripke structure 

rot = (IT, W, R, 71"), the satisfaction relation '1=' is inductively defined as follows: for all 

worlds w E W, all natural numbers k :5 0, and all RTCTL-formulas <p and 'If; , it holds 

that: 

• rot, w 1= E( <pU~k'lf;} iff there exists a w-fullpath UOU1 • •• and a position i :5 k 

such that rot, Ui 1= 'If; and rot, Uj 1= <p for all positions j < i; 
• rot, w 1= A(<pU~k'lf;} iff for all w-fullpaths UOU1 "', there is a position i :5 k 

such that rot, Ui 1= 'If; and rot, Uj 1= 'P for all positions j < i. 

Our aim is to prove the following result: 

THEOREM 2.18. The satisfiability problem of RTCTL is ExpTIME-complete. 

The lower bound is an immediate consequence of the fact that CTL is a fragment 

of RTCTL, and the former is ExPTIME-hard. We prove a matching upper bound by a 

polynomial reduction to satisfiability of CTL, which is known to be in ExpTIME; see 

Section 2.3.4. 

The main idea of the reduction is to replace subformulas E{'If;U~k'P) and A{'If;U~k<p) 

with a binary counter that is implemented using propositional variables to represent 

the bits. Notice that, since RTCTL models are not linear, we cannot simply increment 

the value of a distance-measuring counter when going to a predecessor state. Instead, 

the value at this predecessor state is determined by incrementing the least or greatest 

counter value of its successor nodes, depending on whether we are simulating a formula 

E('If;U~k'P) or A{'If;U~k'P). For identifying the least anet greatest counter value among 

the successors, we use a marking scheme based on additional propositional variables. 

Before we describe this marking in detail, let us fix some formalities. 

Let <p be an RTCTL-formula whose satisfiability is to be decided. As an upper 

bound for the number of counter bits needed, let ne = rlog2 (k + 1) 1 where k is the largest 

natural number occurring as a parameter to an until operator in <po For simplicity, w~ 

assume w.l.o.g. that 'P contains at least one subformula of the form E('If;U~k<p') and at 

least one subformula of the form A('If;U~k<p'). Now, let Xo, ... , Xl' be an enumeration of 

all of 'P's subformulas of the form E{'If;U~k<p'), and let Xl'+ll'" ,Xl be an enumeration 

of all subformulas of <p of the form A('If;U~k<p'}. If Xi = Q{'If;U~k<p'), Q E {E,A}, for 
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some i ::; f, we use 1/Ji to denote 1/J and 'Pi to denote 'P'. For the reduction, we use the 
following propositional variables: 

• the bits of the i-th counter, i ::; f, are represented using propositional variables 

ei ,..!. 
ne-I"'" ""U' 

• to mark the bits of the i-th counter, i ::; f, we use propositional variables 
i i 

mne-l,···' moo 

Intuitively, the marking scheme for finding the greatest counter value among the succes

sors can be understood as follows: start marking bits of the counters in successor nodes 
by proceeding from the highest (ne - I-st) to the lowest (O-th) bit, using the following 

two rules for marking the i-th bit, i < ne, of a successor s' of s: 

(1) if, in s', all bits higher than i are marked and all successors of s whose i + I-st 
bit is marked agree on the value of the i-th bit, then mark the i-th bit of s'; 

(2) if, in s', all bits higher than i are marked and the successors of s whose i + I-st 

bit is marked do not agree on the value of the i-th bit, then mark the i-th bit 

of s' iff it is one. 

The result of this marking is that only those successors of s have all marking bits set 
whose counter value is highest among all the successors of S. A corresponding marking 
scheme for finding the lowest value is obtained by changing the last part of the second 
rule to ''iff it is zero". Recall that Xo, ... , Xl' are existentially path-quantified while 
Xl'+l>"" Xl are universally quantified. The marking of the i-th counter, i ::; f, can be 
implemented using the following formula, where (i ::; f') abbreviates T if i ::; f', and 1-

otherwise: 

1\ ( ((AO~ V AO""'l~) -+ AO(m~ f-+ 1\ m~)) /\ 
t=O .. ne-1 t<j<ne 

((EO~ /\ EO""'l~ /\ (i ::; i'» -+ AO( m} f-+ (""'I~ /\ 
t<i<ne 

((EO~ /\ EO""'l~ /\ (i > fl» -+ AO(~ f-+ (~/\ 1\ m~») ) 
t<i<ne 

To implement the counters, we introduce auxiliary formulas. For I ::; i ::; f, let 

• (Ct = m) be a formula saying that, at the current point, the value of the i-th 

counter is rn, for 0 ::; m < 2nc; 

• (Ct ::; m) is a formula saying that, at the current point, the value of the i-th 

counter does not exceed rn, for 0 ::; m < 2nc. 

There are exponentially many such formulas, but we will use only polynomially many 

of them in the reduction. We now inductively define a translation (.)* of subformulas 



of cp to CTL-formulas. 

(p)* 

(-'1/1 )* 

(1/11 1\ 1/12)* 

(E01/1)* 

(E( 1/11 U 1/12))* 

(A( 1/11 U 1/12))* 

(E( 1/11U$k1/12))* 

(A( 1/11U$k1/12))* 
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.- p 

.- -'1/1* 

.- 1/1i 1\ 1/12 

.- E01/1* 

.- E(1/1i U 1/12) 

.- A ( 1/1i U 1/12) 

.- (Ci ::; k) if Xi = E(1/11U$k1/12) 

.- (Ci ::; k) if Xi = A(1/11U$k1/12) 

It remains to properly update the counters, which is done by the following formulas, 

for i ::; i, set 

{)i 
2 

-.1/1; V 

((i ::; if) /\ AO(Ci = 2n
c - 1)) V 

((i > if) 1\ EO(Ci = 2n
c -1)) 

((-,cpi' 1\ A) --+ (Ci = 2n
c - 1)) /\ 

(( -.cpi 1\ -'A) --+ V ( c~ /\ EO(m~ 1\ -.t4)/\ 
t=O .. nc-1 

1\ (-.c~ 1\ EO(m~ 1\ c~)) 1\ 
l=O .. t-l 

1\ (c~ i-t EO(m~ 1\ c~)) )) 
t<l<nc 

Intuitively, {)~ initializes the counter, and {)~ ensures that the counter is incremented 
correctly when travelling to a predecessor state. The value 2nc - 1 of the i-th counter is 

used to express that, on respectively all paths (for Xi being existentially path-quantified) 
or some path (universal path quantification), the formula CPi is too far to be of any 
relevance. Moreover, the value 2nc - 1 is also used to indicate that 1/1i does not hold on 
some point on the way to the next CPi occurrence. 

The following lemma finishes the reduction. 

LEMMA 2.19. cp is satisfiable iJJ cp. 1\ 1\ AD({)i 1\ {)~ /\ {)~) is satisfiable. 
i$l 

The lemma can be proven similarly to the proof of the reduction of the metric 

sincejuntillogic over the real line to its non-metric counterpart; see Lutz, Walther and 
Wolter 1167, 1681. 
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2.4. Strategic Logic 

The basic modal logic seems not suitable for describing how several agents are in
volved in system transitions. This is because a Kripke structure merely models all 
possible state transitions of a system, and it does not account for how possible simul
taneous actions of agents can determine different transitions. In 2001, Pauly 1194J 

introduced Coalition Logic, an extension of basic modal logic for reasoning about the 
strategic abilities of coalitions in multi-agent systems. The semantic structures of Coali
tion Logic 1195, 196J correspond to extensive games which makes it possible to describe 
how single agents or coalitions (sets of agents) influence system transitions. The Coali
tion Logic expression [C]c,o states that the agents in a coalition C have a joint strategy 
for ensuring c,o in the next state. A drawback of Coalition Logic is its weak expressive 
power over time: formulas can only use the next-time operator to describe future states 
since other temporal operators such as until ('U') are missing. In 1997, Alur, Henzinger 
and Kupferman [13] introduced Alternating-time Temporal Logic (ATL). ATL is a 
logic of strategic ability, intended to support reasoning about the abilities of agents and 

coalitions of agents in open systems, i.e., game-like multi-agent systems. ATL can be 

seen as an extension of Coalition logic with the temporal operators box ('0') and until 

('U') from CTL. Furthermore, from a language point of view, ATL generalises CTL. 
While in CTL, one is essentially restricted to stating that some property is either in
evitable or possible, in ATL, one can also express adversarial properties, such as "agents 
1 and 2 can ensure that, no matter what the other agents do, the system will not enter 
an invalid state" (written: ((1,2))Ovalid). More precisely, ATL offers a more refined 
path quantification: while CTL provides path quantifiers 'for all computation paths' 
('A') and 'for some path' ('E'), ATL provides path quantifiers, which are parameterized 
with a coalition of agents, allowing for quantification over subsets of the available paths. 
From the point of view of semantics, ATL is based on finite structures (called Alter

nating 'ITansition Systems - ATSs) that emphasise the game-like nature of distributed 
computing, thus reflecting current opinion on the semantics of multi-process systems. 
More precisely, an ATL-formula of the form ((C))i!P corresponds to a two-player game 
between a coalition C and its environment (a coalition consisting of all agents outside of 
C) played on a finite state space. Such a game produces an infinite sequence of states, 
where, in each round, the next state is determined by both a choice of the coalition 

and a choice of its environment at the current state. A coalitional choice is composed 

of the choices of the agents that are members of that coalition. And finally, from the 
verification point of view, the model checking problem for ATL is no more complex than 

for its counterpart CTL. 

2.4.1. ATL. We now define the syntax of Alternating-time Temporal Logics ATL 
and ATL* together with the syntax of the Alternating-time JL-Calculus (AMC)j cf. [13, 
14,15J. 



2.4. STRATEGIC LOGIC 35 

DEFINITION 2.20. (ATL SYNTAX). Let IT be a countably infinite set of atomic 

propositions and :E a countable infinite set of agents. A coalition is a finite set C c 
:E of agents. The logics ATL, ATL* and AMC are defined using the following BNF 

specifications, where p ranges over atomic propositions in IT. The set of ATL-formulas 

cp is defined as: 

cp p I -,cp I cp V cp I ((C))Ocp I ((C))Ocp I ((C))(cpU cp) 

The set of ATL*-formulas is the set of ATL* state formulas 1j; which are simultaneously 

defined together with ATL * path formulas t) as: 

p I -,1j; I 1j; V 1j; 

1j; I -,t) I t) V t) 

The set of AMC-formulas e is defined as: 

((C))t) 
Ot) I t)Ut) 

p I -,e I eVe I ((C))oe I ~p·e 

The modality (( )) is called a path quantifier, 0 ('next'), 0 ('always') and U ('until') 

are temporal operators. The symbols T and .1, and the operators 1\, -+ and f-+ are 

defined as usual. The operator ((C))Ocp is defined as ((C)) TU cp. Observe that, in ATL, 

the operator ((C))O cannot be expressed in terms of ((C)) U since formulas of the form 

((C))-'(T U -'cp), which are equivalent to ((C))Ocp, are not acceptable according to the 

ATL syntax. Clearly, ATL is a proper fragment of ATV'. 

The following example formula illustrates why ATL is suitable for modelling MASj 

see [151. Suppose we would like to specify the property that a process or transaction 

denoted by, say a, does not encounter a deadlock, which prevents a from both reading 

and writing the memory. Using ATL, we can express this property as 

((0))O( ((a))Oread 1\ ((a))Owrite). 

This formula states that process a can always access the memory, no matter what the 

other processes do that may be competing with a for resources. 

Several versions of the semantics of ATL and the related Coalition Logic have been 
presented in the literature: concurrent game structures, alternating transition systems 
and coalition eifectivity models. All of these have been shown to be equivalent by 
Goranko and Jamroga [961. Initially, Alur et al. [131 defi-ned ATL over turn-based game 

structures, where each transition is determined by some single agent. Later in 1141, they 

introduce alternating transition systems, where the choices of all agents determine the 

system transitions. Yet another variant of the ATL semantics was introduced in 1151 
with concurrent game structures, where each choice is represented by a label, to improve 

understandability of the logic and clarity of the presentation. In this work, however, w.e 

choose to work with alternating transition systems as introduced in 1141. 

DEFINITION 2.21. (ATS). An alternating transition system (ATS) for a set of agents 

E is a tuple S = (IT, E, Q, 71', 6) with n ~ 1 where 
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• IT c n is a finite, non-empty set of atomic propositions; 

• E = {ab ... , an} c E is a (finite) set of n agents; 

• Q is a finite, non-empty set of states; 

• 7f : Q --. 2ll is a valuation function which assigns to every state a set of 

propositions which are true there; and 

• 8 : Q x E --. 22Q is a transition function which maps a state q E Q and an 

agent a E E to a set 8(q, a) of choices available to a at q such that the following 

condition is satisfied: for all states q E Q and all sets Qal" .. ,Qan of choices 

Qai E 8(q, ai), 1 $ i $ n, the intersection Qal n··· n Qan is a singleton set. 

Observe that the system is completely determined when all the agents have made 

their choice, since then there is a unique successor state. Relaxing the condition on 

the transition function 8 about singleton sets by allowing for arbitrary sets introduces 

non-determinism. Note that this non-determinism corresponds to having an additional 

unknown agent that is not contained in E. In open systems, such an additional agent 

can be seen as representing the environment. However, in the following, we will use the 

ATSs as defined above, i.e., we keep the condition about singleton sets. In Chapter 3, 

we define a variant of ATL's semantics that respects non-determinism by accounting for 

at least one additional agent in the structures that does not occur in any input formula. 

Intuitively, 8(q,a) describes the a-choices available in q: when in state q, agent a 

chooses a set from 8(q, a) to ensure that the "next state" will be among those in the 

chosen set. It is natural to generalise this notion to C-choices for coalitions C: let 

S = {IT, E, Q, 7f, 8} be an ATS. For each state q E Q and each coalition C ~ E, set 

) 
{

{Qc ~ Q I Qc = naEC Qa where for each a E C, Qa E 8(q, a)} if C =f. 0 
8(q,C := . 

{U8(q,E)} if C = 0 

When in state q, the coalition C may jointly choose a set from 8(q, C) to ensure that 

the next state is from this set. Since 8(q, C) is non-empty for all q and C, and 8(q, E) is 

a set of singleton sets, the states appearing in singleton sets in 8(q, E) are the successors 

of q, i.e., whatever choices the individual agents make, the next state of the system will 

be from U 8(q, E). This explains the definition of 8(q, 0): the empty set of agents cannot 

influence the behaviour of the system, so the only choice that the empty coalition has 

is the set of all successors. 

An infinite sequence >. = qOql Q2 • •• E er of states is a computation if, for all 

positions i ~ 0, there is a choice {qi+l} E 8(qi' E) (i.e., qi+l is a successor of qi). As 

a notational convention for any finite or infinite sequence>. = >.0>'1 . .. and any i ~ 0, 

denote with >.[iJ the i-th component >'i in >. and with >'[0, iJ the initial sequence >'0' .. >'i 
of >.. 

A strategy for an agent a E E is a mapping 0' a : Q+ --. 2Q such that for all >. E Q* 
and all q E Q, O'a(>'· q) E 8(q, a). Note that a strategy O'a maps each finite sequence>.· q 
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of states to a choice in c5(q, a) available to agent a at the state q. A strategy for agents 
in a coalition C ~ l: is a set of strategies rIC = {rIa I a E Cl, one for each agent in C. 

The set out(q, rIc) of outcomes of a strategy rIc starting at a state q E Q is the set 

of all computations >. = qOqlq2··· E QW such that qo = q and qi+l E nUaEUc rIa(>'[O, iD 
for all i ~ o. 

DEFINITION 2.22. (ATL SEMANTICS). Given an ATS S = (IT,l:,Q,7r,c5), the 
satisfaction relation F is inductively defined as follows: For all states q of S, coalitions 
of agents C ~ l:, agents a E l:, and ATL-formulas tp, tp}, and tp2, it holds that 

• S, q FP iff pE 7r(q) for all propositions p E IT; 

• S,q F -,tp iff S,q ~ 'P; 

• S, q F 'PI V 'P2 iff S, q F 'PI or S, q F 'P2; 
• S, q F ((C))O'P iff there is a strategy rIC such that for all computations>. E 

out(q, rIc), it holds that S, >.[lJ F 'P; 
• S, q F ((C))Otp iff there is a strategy rIc such that for all computations>. E 

out(q,rIc), it holds that S,>.[i] Ftp for all positions i ~ 0; 

• S, q F ((C))tpl U 'P2 iff there is a strategy rIC such that for all computations 

>. E out( q, rIc), there is a position i ~ 0 such that S, >.[i] F 'P2 and s, >.li] F 'PI 

for all positions j with 0 S j < i. 
If for some state q of some ATS S it holds that S, q F tp, then the ATL-formula 'P is 
true at q, and S is called a model of 'P. An ATL-formula is satisfiable if it has a model, 
and it is valid if it is true at all states in any ATS. 

Notice that there is an intimate relationship between CTL and ATL. Let the finite 
set l: be the set of all agents in an ATS S. On S, we can then interpret CTL's existential 
path quantifier E in ATL as the expression ((l:)), while we can interpret CTL's universal 
path quantifier A in ATL as the expression ((0)). Clearly, this translation only works if 
the set of agents l: is finite and known in advance. 

To better understand ATL and its limitations, consider the following example. 

EXAMPLE 2.23. (DESCRIPTION OF COALITIONAL STRATEGIC ABILITY). This ex
ample illustrates how ATL and ATL* can be used to describe agents' abilities and 
composed abilities in a MAS with two agents. Figure 2.4 shows an ATS for two agents 
a and b. The arrows denote possible system transitions. The four lower states have each 
only one outgoing arrow, i.e., at these states, the next state of the system is already 

determined. The top-most state, however, has four outgoing arrows which means that 

the agents' choices can determine four possible system transitions. The round boxes 
labelled with either a or b denote the choices available to the agents a and b at th~ 
top-most state. As illustrated in Figure 2.4, the states each satisfy some of the three 
propositions blackdot, whitedot and start. Suppose the top-most state is the current one. 
We have that the ATL-formula ((a))Oblackdot is satisfied which states that agent a can 
enforce the next state to have the property blackdot. The formula ((a))Oblackdot asserts 
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FIGURE 2.4. An ATS for two agents a and b. 

controllability of the overall system by agent a wrt. the proposition blackdot. That is, it 

states that a can ensure that the property blackdot always holds in the system, no mat
ter how the other components, here only agent b, behave. Also we can describe agent b's 

capability to ensure that the state satisfying start is reached (a) infinitely many times, 

or (b) finitely many times: both ATL*-formulas ((b}}OOstart for the liveness property (a), 

and ((b}}OO-,start for the property (b) are true at the current state. Using ATL*, we can 

describe a composition of the agents' abilities: the formula ((a, b})O(blackdot /\ Ostart) 
being true at the current state means that the coalition of a and b has the capability to 
ensure the system to always satisfy blackdot and to infinitely often reach the start state. 
The formula Ai=a.b -,((i»)OOwhitedot holding at the top state means that neither agent, 
a or b, is capable of enforcing the system to eventually enter and then to never leave the 
set of whitedot states, irrespective of what the other agent does. In other words, each 
agent can ensure that a blackdot state is always reachable: A=a.b ((i»OOblackdot is true 
at the top state. However, both agents together are capable of ensuring the system to 
enter infinitely many times a whitedot state and infinitely many times a blackdot state: 
the top state satisfies the ATL*-formula ((a, b))(OOwhitedot /\ OOblackdot). Notice that 

this property cannot be expressed in ATL since it requires a conjunction of temporal 
properties inside a path quantifier which is not according to ATL syntax. To overcome 
this limitation of ATL's expressiveness, we introduce in Chapter 4 an extension of ATL 

with explicit strategies (ATLES) which allows us to fix a strategy for an agent and 

thus to fix the set of paths determined by a path quantifier. Then, by using the same 

strategies in another path quantifier, we can describe several temporal properties of 

these paths. -I 

One interesting aspect of ATL is that its model checking problem subsumes a num

ber of other computational problems, such as program synthesis, module checking and 

controllability 115, p.676J. However, the problem of social procedure design or mecha
nism design in ATL can be understood as a (constructive) satisfiability checking prob

lem: given a specification of a social mechanism (such as a voting procedure 1194]), 
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expressed as an ATL-formula cp, the question is whether or not there exists a procedure 

that satisfies the specification cpj and if so, exhibit it. Since such a procedure corre
sponds to a model of cp, the design of a social procedure can be viewed as a proof of 

the satisfiability of cp. The design is constructive in the sense that an actual model is 

generated. In the next example, we discuss this in more detail. 

EXAMPLE 2.24. (SOCIAL PROCEDURES). One area of interest is the use of ATL in 

the specification, verification, and synthesis of social procedures such as voting proto

cols [194]. Consider the following example (adapted from [194]). 

Two agents, A and B, must choose between two outcomes, p and q. 

We want a mechanism that will allow them to choose, which will sat

isfy the following requirements. First, whatever happens, we definitely 

want an outcome to result - that is, we want either p or q to be se

lected. Second, we really do want the agents to be able to collectively 

choose an outcome. However, we do not want them to be able to bring 

about both outcomes simultaneously. Similarly, we do not want either 

agent to dominate: we want them both to have equal power. 

We can elegantly capture these requirements using ATL, as follows. 

(2.1) ((0))O(p V q) 

(2.2) ( ((A, B)) Op) /\ «((A, B)) Oq) 

(2.3) ...,((A, B))O(p /\ q) 

(2.4) (...,«A))Op) /\ (...,«B))Op) 

(2.5) (...,«A))Oq) /\ (...,«B))Oq) 

The first requirement states that an outcome must result: this will happen inevitably, 

whatever the agents do. Requirement (2.2) states that the two agents can choose be

tween the two outcomes: they have a collective strategy such that, if they follow this 
strategy, outcome x will occur, where x is either p or q. Requirement (2.3), however, 

says that the agents cannot choose both outcomes. Req~irements (2.4) and (2.5) state 

that neither agent can bring about an outcome alone. 

Now it is easy to see that there exists a voting protocol that satisfies these require

ments. Consider the following mechanism, (from [198]), intended to permit the agents 

to select between the outcomes in accordance with these requirements. 

The two agents vote on the outcomes, i.e., they each choose either p 

or q. If there is a consensus, then the consensus outcome is selected; 

if there is no consensus, (i.e., if the two agents vote differently), then 

an outcome p or q is selected non-deterministically. 
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Notice that, given this simple mechanism, the agents really can collectively choose 
the outcome, by cooperating. If they do not cooperate, however, then an outcome is 
chosen for them. 

It is similarly easy to see how ATL can be used, in this way, to specify much more 
complex voting protocols and other related social procedures. It is important to note 
that this example is chosen for pedagogic reasons, and realistic protocols will be rather 
more elaborate. One issue for which our complexity analysis becomes important is that 
often we have a considerably larger number of agents who participate in a protocol than 
just two. The example above can naturally be extended to any number n of agents. In 
particular, we would get a formula expressing the requirements for n agents. 

Once we have a protocol, we can use an ATL model checker (such as MOCHA [17]), 

to automatically verify that our implementation of the requirements is correct. How
ever, the problem of synthesising a protocol from such a specification corresponds to 
(constructively) checking the satisfiability of the specification-whence our interest in 
the satisfiability problem. -t 

2.4.2. Axioms. In 2006, Goranko and van Drimmelen (98) presented a sound and 

complete axiom system for ATLr:; see Figure 2.8. ATLr: is the fragment of ATL that 

only allows for formulas whose agents are from the set E. This axiomatisation extends 
Pauly's 1194] axiomatisation of Coalition Logic with axioms and rules for fixed point 
formulas characterising the temporal operators. Completeness is proven by construct
ing an infinite but bounded branching tree model, for each consistent formula. Since 
such tree models correspond to unfolded finite models, this also shows the finite model 
property for ATLE. 

For an axiom system of ATL (without fixing the set of agents), we refer to Sec
tion 4.1.2 in Chapter 4 where we present in Table 4.1 a complete axiom system for an 
extension of ATL with explicit strategies. This axiom system can also be used to derive 

valid ATL-formulas. 

2.4.3. Model Checking. Alur, Henzinger and Kupferman 115] described the sym
bolic model checking algorithm in Figure 2.5. The function ATL-eval(···) computes, for 
a given formula 'IjJ and an ATS S = (II, E, Q, 71', 6), the extension ('IjJ] of'IjJ in S, where 
['IjJ] is the set of states in S satisfying 'IjJ. ATL-eval(···) uses the pre-image operator 

Pre, which maps a coalition A and a set Q' of states to the set Pre(A, Q') containing 
the states at which A can enforce the next state of the system to lie in Q'. Formally, 

for all A ~ E and all Q' ~ Q: 

Pre(A,Q') .- {q E Q I there is a choice Qc E 6(q, A) 
such that Qc ~ Q'}. 

The model checking algorithm is called symbolic, because the state space is symbolically 
represented by formulas, which is more succinct than an explicit representation by 

lists or tables. An implementation of model checking for ATL is, e.g., MOCHA by 
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Propositional tautologies 

-,«A)) 01-

«A»OT 

-,«0»0-,<p -+ «E»)O<p .. 
«(A»O<p /\ «B)O'lj;) -+ «A U B»O(<p /\ 'Ij;) where An B = 0 

«A»O<p - <p /\ «A»)O«A))O<p 

«0»0(0 -+ (<p /\ «A»OO» -+ «0»0(0 -+ «A»O<p) 

«A»'Ij;U'P - <p V ('Ij; /\ «A»O«A»'Ij;U <p) 

«0)0( (<p V ('Ij; /\ «A))OO)) -+ 0) -+ «0)0( «A»'Ij; U 'I' -+ 0) 

'I' 
«(0))0-Necessitation) «0))0'1' 

<p-+'Ij; 
«(A»O-Monotonicity) «A)O<p -+ «A)O'lj; 

TABLE 2.8. An axiom system for ATLI;. 
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Alur et al. [17]. A modification of the ATL model checking algorithm [15] was proposed 

by Jamroga [116] to obtain an algorithm for multi-agent planning. 

1. function ATL-eval('Ij;, S = (rI, E, Q, 71', 6» returns the extension ['Ij;] of'lj; in S 
2. case 'Ij; = p: return 71'(p) 
3. case'lj;=-.fJ: returnQ\ATL-eval(fJ,S) 
4. case'lj; = fJ 1 V fJ2: return ATL-eval(fJt.S) U ATL-eval(fJ2 ,S) 
5. case'lj; = «A»OfJ: return Pre(A,ATL-eval(fJ,S» 
6. case 'Ij; = «A»OfJ: ~l := Q; ~2 = ATL-eval{fJ,S) 
7. while Al ~ ~2 do ~l := ~2 
8. ~2 := Pre(A, ~d n ATL-eval(fJ,S) od 
8. return ~l 
9. case'lj; = «A»fJ1 U fJ 2 : ~l := 0; ~2 = ATL-eval(fJ2 , S) 
10. while ~2 ~ ~l do ~l := ~l U ~2 
11. ~2:= Pre(A,A1) nATL-eval(fJ1,S) od 
12. return Al 

13. end-function 

FIGURE 2.5. ATL symbolic model-checking. 

ATU generalises ATL by allowing for Boolean combinations and nestings of tem
poral operators after path quantifiers. The resulting additional expressivity of ATU 
might be useful for certain applications. ATL * combines the advantages of LTL with the 

ability to reason about agents' interaction: Specifications written in LTL are thought to, 

be more intuitive and more appropriate for reasoning about concurrent systems 1148J. 
However, the drawback of ATL* is its 2-ExpTIME-complete model checking problem 

as opposed to PTIME for ATL. To be able to benefit from both, the intuitive and 
expressive syntax of ATU and ATL's inexpensive model checking, Harding, Ryan and 
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Schobbens 1105] suggested an approximation of ATL*-formulas by formulas of ATL. 

The approximation uses a set of rewrite rules for forming the ATL formulas. More pre

cisely, a given ATV-formula tpATL' is approximated by two formulas of ATL, a strong 

bound tpstrong and a weak bound tpweak, such that: 

tpstrong -+ tp ATL' -+ tpweak· 

Then, using the model-checker MOCHA 117], we can determine whether tpATL' is satisfied 

at a world in an ATS: If tpstrong is true, then tpATL' holds there as well; and, if tpweak is 

false, so is tpATL" 

2.4.4. Complexity. Table 2.9 shows the known complexities of the model checking 

and satisfiability problems for ATL, ATV and AMC. The model checking problems 

Model Checking Problem 

ATL PTIME-COmplete 113] 
ATV 2-ExpTIME-COmplete [13] 

AMC ExpTIME-complete [13] 

Satisfiability Problem 

ExpTIME-COmplete [265, 252] 

2-ExPTIME-hard 1213] 
3-ExpTIME [63, 218] 

ExpTIME-complete [218, 141] 

TABLE 2.9. Complexities for ATL variants. 

for ATL and the AMC-fragment without alternation of fixpoint operators are PTIME

complete. More precisely, they can be solved in time O(m . l) for an ATS with m 

transitions and an ATL-formula of length l [15]. Model checking AMC can be solved 

in time O«m . l)d+l) , where d ~ 1 is the alternation depth of the formula [15]. 
Jamroga and Dix 1121) refined the ATL model checking complexity for the case 

where the number of agents is considered as part of the input for the model check

ing problem. The authors point out that the number of transitions in an ATL-model 

are usually exponential in the number of agents that occur in the input formula. Fol

lowing this observation, the complexity of the model checking problem is settled at 

Ef-complete for concurrent game structures (introduced in 115]), and at NP-complete 

for ATSs. Although concurrent game structures were considered to be more elegant or 

intuitive [96], this complexity result [121] indicates an advantage of using ATSs instead 

of concurrent game structures. 

The complexity of the satisfiability problem for AMC is ExpTIME-complete: the 

upper bound is a recent result employing alternating parity automata over infinite 

trees [218], and the lower bound stems from the ExPTIME-hard JL-Calculus [141] which 

is a fragment of AMC. ATL* satisfiability is 2-ExpTIME-hard and can be solved in 3-
ExpTIME: the lower bound stems from the 2-ExPTIME-hardness of Boolean games with 

LTL objectives [213], and the upper bound follows from the fact that ATL*-formulas 

can be translated into formulas of AMC with doubly exponential increase of the formula 

size [63] and that AMC satisfiability can be decided in ExpTIME [218]. 
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Investigating the complexity of the satisfiability problem for ATL is one main ob
jective of this work and it will be described in detail later in Chapter 3. 

2.4.5. Expressivity. A strategy for an agent in ATL or ATL* might depend on 

the full history, i.e., an unbounded sequence of states up to the current state. However, 
as it was already remarked in [IS], for ATL and ATL* over finite transition systems, 

strategies depending on finite histories suffice. This is due to the correspondence of 
the ATL and ATL* semantics over finite structures to w-regular games. In such games, 
the existence of a winning strategy implies the existence of a finite-state winning strat

egy [45, 208J. For ATL-formulas of the form ((A))Ocp, which correspond to finite reacha
bility games, it suffices to consider strategies without history, i.e., strategies that depend 

on the current state only. 

To establish a liveness property, say, of the form ((A))DOcp on all computations 

specified by coalition A, the computations that delay satisfying cp forever need to be 
ruled out. For this, ATL is not expressive enough. However, fairness constraints added 

to the semantics of ATL can rule out certain computations. The resulting logic is called 

Fair-ATL [15J. Since ATL* can express such fairness conditions, there is no need for a 

Fair-ATL*. 

AMC is more expressive than ATL* and the alternation-free fragment of AMC 

is more expressive than ATL [15J. Notice that this is analogous to the relationships 
between J.L-Calculus and CTL *, and alternation-free J.L-Calculus and CTL as described 

in Section 2.3.5. Note that for one-player ATS (where IEI = 1) the (alternation-free) 

AMC is the same as (alternation-free) J.L-Calculus, ATL* is the same as CTL*, and ATL 

is the same as CTL. A canonical translation of ATL* into AMC is described in [631. 
This translation involves an inevitable doubly exponential blow-up of the formula size. 

Below in Chapter 4, we consider the extension ATLES of ATL with explicit names 
for strategies in the object language. ATLES is clearly more expressive than ATL and 
it can describe some properties that cannot be expressed in ATL* and AMC. 

As bisimulation is a useful tool for characterising expressivity of a modal logic struc
turally, we now generalise temporal bisimulation (cf. Definition 2.14) to the alternating 
case and introduce alternating bisimulation 116J. 

DEFINITION 2.25. ALTERNATING BISIMULATION Given two ATSs 8 = (ll, E, Q, 11', 8) 

and 8' = (ll, E, Q', 11", 8') for a finite set of agents E, and a coalition A S; E, a binary 

relation H S; Q X Q' is an A-bisimulation between 8 and 8' if for all states ql and q2 
with (ql, q2) EH the following three conditions hold: 

(i) 11'(qI) = 11"(Q2)j 

(ii) for every choice Q A E 8 (ql , A), there is a choice QA E 8' (q2, A) such that for 

every state tz2 E QA' there is a state rh E Q A such that (rh, tz2) E H j 
(Hi) for every choice QA E 8' (q2, A), there is a choice Q A E 8 (ql, A) such that for 

every state ql E Q A, there is a state q2 E QA such that (qL q2) EH. 
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If H is an A-bisimulation and (x, y) E H, then x and y are called A-bisimilar, written 

x t:tA y. 

Intuitively, x t:tA y means that at states x and y, the agents in coalition A can 
achieve the same, i.e., ensure the same outcome. 

We now develop a logical characterisation of alternating bisimulation and correct a 
problem with the characterisation given by AIur, Henzinger, Kupferman and Vardi 116}. 
A similar bisimulation characterisation was given for CTL by Browne, Clarke and Griim
berg 144}. We use the following notation: For a coalition A, denote with A-ATL (A
ATL *) the fragment of ATL (ATV) where the path quantifiers of all formulas are 

parameterised with A. Denote with A-ATLO the fragment of A-ATL where the only 

temporal operator occurring in any formula is Q. The following theorem gives a logical 
characterisation of A-bisimulation. 

THEOREM 2.26. Let S = (11,1::,Q,71",8) and S' = (11,1::,Q',71"',8') be two finite 

A TSs, x E Q and y E Q' two states, and A ~ 1:: a set of agents. The following are 

equivalent: 

(a) x t:tA y; 

(b) x and y satisfy the same A-ATLO-formulas; 

(c) x and y satisfy the same A-ATL*-formulas. 

Before proving this theorem, we point out the problem with a similar logical char
acterisation of alternating bisimulation in 116]. 

REMARK 2.27. Theorem 9 of 116J states that, given a set of agents A ~ 1::, two 
states x and y are A-bisimilar if, and only if, x and y satisfy the same ATL*-formulas 
in positive normal form where only A or 1:: \ A occur in any path quantifier. Consider 
the following counterexample for the left-to-right direction of Theorem 9 in [16}. Let 
x and y be two states of two ATSs for the set 1:: = {a, b} of agents. Figure 2.6 shows 
the choices for agents a and b at a state x (left) and y (right). At x, the only choices 
for a and for b coincide and contain only one state, and, at y, there are three a-choices 

and two b-choices available that intersect as shown. A black dot and a white dot 
indicates that the corresponding states satisfy different atomic propositions. Verify 

that x and y are a-bisimilar provided that x and y satisfy the same atomic propositions 

(cf. Definition 2.25). According to Theorem 9 in 116], both states, x and y, should 

satisfy the positive next formula ((1:: \ {a}))Qblackdot. It is easy to see that this is not 

the case since y does not, while x does. Notice that nevertheless both, x and y, satisfy 

the next formulas ((a))Qblackdot and -.((a))Q-.blackdot. Table 2.10 shows implications 

of ATL-next formulas at two A-bisimilar states x and y in two ATSs for a set 1:: of 

agents. Depending on the coalition A, we distinguish three cases: A is a proper, non

empty subset of 1::, A = 0 or A = 1::. For instance, we can read of Table 2.10 that, given 

x t:tA y with 0 c A c 1::, we have x 1= ((A))Qp implies y 1= -.((1:: \ A))Q-.p, but not 

vice versa. -I 
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x 

'-+--t-..J b 
a 

~---+---+---r--~--~b 
a a a 

FIGURE 2.6. The choices for agents a and b at states in two ATSs. 

0cAc~: x 1= -,((~ \ A))O-'p <1=*, x 1= ((~ \ A))Op 

it~ 11'-1)· 
x 1= ((A))Op <1= *' x 1= -,((A))O-'p 

~ (by x ~A y) ~ (by x ~A y) 

Y 1= ((A))Op <1=*, y 1= -,((A))O-'p 

'If{/. it~ 

y 1= -,((~ \ A))O"'p <1=*' Y 1= ((~ \ A))Op 

A=0: x 1= ((0))Op <1==? x 1= ..,((0))O-'p 

~ (by x ~0 y) ~ (by x ~0 y) 

y 1= ((0))Op <1==? Y 1= ..,((0))O-'p 

A=~: x 1= ((~))Op <=*' x 1= "'((~))O-'p 

~ (by X t:tr; y) ~ (by X t:tr; y) 

y 1= ((~))Op <=*' y 1= -'((~))O-'p 

TABLE 2.10. Implications of ATLO-formulas at two A-bisimilar states 
x and y. 

We now give the proof of Theorem 2.26. 

PROOF. The proof is along the lines of the proof for CTL bisimulation character
isation by Browne, Clarke and Griimberg 1441. Suppose S, S', x, y and A are as in 
the theorem. The direction from (c) to (b) is obvious since A-ATLO is a fragment of 
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A-ATL*. In the following, the directions from (b) to (a) and from (a) to (c) will be 

shown, in this order. 

"(b) =? (a)": Suppose x and y satisfy the same A-ATLO-formulas. Define a binary 

relation H ~ Q X Q' as follows: 

H = {(q,q') I for all A-ATLO-formulas <p, S,q 1= <P iff S',q' 1= cpl. 

In the following, H is shown to be an A-bisimulation between S and S'. Notice that 
(x,y) E H. Then it follows that x t:tA y. 

Let (q, q') E H. It needs to be shown that the conditions (i) to (iii) in Definition 2.25 

of A-bisimulation are satisfied. 

• ad (i). By definition of H, S, q 1= p iff S', q' 1= p for all atomic propositions 
pE II. Thus 71'(q) = 71"(q') . 

• ad (ii). Let S" = (II,E,Q",7I''',8'') be the disjoint union of S and S' where 

Q" = QijjQ', 71''' = 71'ijj7l" and 8" = 8ijj8'. Let I'J~ Q" X Q" be a binary relation 

such that s f'V s' iff sand s' satisfy the same A-ATLO-formulas in S". Note that 

rv is an equivalence relation. Denote with Q"I", the set of equivalence classes 

induced by f'V. Clearly, for all [s], [s'] E Q"I"" there is an A-ATLO-formula <P 

such that S", s 1= <P and S", s' ~ cp. Arbitrarily choose such a formula <p and 

set <P[s],{s'J = cp. For all [s] E Q"I"" let 

<P[s) = " <P[s),[s']· 
[s')EQ"I_,[s];f:[s'] 

Note that Q" and thus <P[s} are finite by the finiteness of S and S'. Let QA E 

6(q,A) be a choice and 1/J = ((A)) 0 VtEQA <Pit]· Since the set QA is finite, 
so is 1/1. That is, 1/1 an A-ATLO-formula. It is evident that S, q 1= 1/1. By 

definition of H, it follows from (q, q') E H that S', q' 1= 1/1. That is, there is 

a choice Q'A E 6'(q',A) such that for every state t' E QA' S',t' 1= VtEQA <P[t]· 

For showing (ii), it remains to show that for every state t' E QA' there is a 
state t E QA such that (t, t') E H. Let t' E QA' Then S', t' 1= <P[t] for some 
t E QA. By definition of <p[t) , it follows [t] = [t'l, i.e., t and t' satisfy the same 
A-ATLO-formulas. Hence, (t, t') E H by definition of H . 

• ad (Hi). This can be shown similarly to Condition (ii). 

"(a) =? (c)": Suppose x t:tA y, i.e., there is an A-bisimulation H such that (x,y) EH. 

In the following, it is shown that 

S, q 1= <P iff S', q' 1= cp 

for all states q E Q and q' E Q', and all A-ATL*-state formulas cp, and 

S, p 1= 1/1 iff S' ,p' 1= 1/1 
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for all infinite sequences pE QW and p' E Q'w with (p[iJ, p'[i]) E H for every i ~ 0, and 
all A-ATL*-path formulas 1jJ. Then from (x,y) E H it follows that x and y satisfy the 

same ATL*-formulas. 
The proof is by simultaneous induction on the structures of cp and 1jJ. Let q E Q and 

q' E Q' with (q,q') EH, and p E QW and p' E Q'w with (p[iJ,p'[i]) E H for every i ~ O. 
For the induction base, let cp = p where pE IT is an atomic proposition. By Condition (i) 
in Definition 2.25 of A-bisimulation, it holds that p E 7I"(q) iff pE 7I"'(q'). Thus 5, q ~ P 

iff 5', q' ~ p. Consider the induction step. Suppose the induction hypothesis holds for 
A-ATL*-state formulas cp', CPl and CP2, and for A-ATL*-path formulas 1jJ', 1jJl and 1jJ2. It 
is shown for A-ATL*-formula cP and A-ATL*-path formula 1jJ as follows: 

• cP = -'cP'· Then we have that 5, q ~ -'cP' iff 5, q Pf: cP' iff 5', q' Pf: cp' (by the 
induction hypothesis) iff 5', if ~ -.cp'. 

• cp = CPl V CP2. Then we have that 5, q ~ CPl V CP2 iff 5, q ~ CPl or 5, q ~ CP2 iff 
5', q' ~ CPl or 5', q' ~ CP2 (by the induction hypothesis) iff 5', q' ~ CPl V CP2. 

• cP = ((A))1jJ'. In the following, only the the direction from left to right is 
considered; the other direction is similar. Suppose 5, q ~ ((A))1jJ'. Then there 

is a strategy OA in 5 such that for all computations >. E outs(q, OA), it holds 

that 5, >. ~ 1jJ'. In the following, a strategy O"A, in 5' is constructed such that 

for all computations >.' E outs' (q', O"A,), there is a computation>. E outs (q, 0" A) 
such that (>.[i], >.'[iD E H for all i ~ O. Then, together with the induction 
hypothesis, it follows that 5',>.' ~ 1jJ' for all >.' E outs,(q',O"A,)' Thus S',q' ~ 
((A))1jJ'. 

Define a strategy O"A, : Q'+ ~ 2Q' by induction on the length n + 1 of 
sequences >.' = >'b ... >.~ E Q'+ such that the following property (*) is satisfied: 

For all >.' = >'0' .. >.~ E Q'+ with n ~ 0, >'0 = q' and >'~+1 E O"A, (>.'[0, i]) for all 
i < n, there is a computation>. E outS(q,O"A) such that (>.[il,>.'[i]) EH for all 
i ~ n. 

For n = 0: Since H is an A-bisimulation, it follows by the definition of 
A-bisimulation that there is a choice QA E &'(q', A) with the property: for all 
states t' E QA, there is a state t E O"A(q) such that (t, t') E H. Arbitrarily 
choose such a Q A E &' (q', A) and set O"A, (q') = Q A. For all other states s E Q' 
with s =1= q', arbitrarily choose a choice QA E &'{s,A) and set ffA(s) = Q'A" 

For n ~ n + 1: Let >.' = >'0'" >.~ E Q'+ and suppose O"A, (>.') is already 
defined. For each state s E Q', distinguish two cases: 

- >'0 = q', >'~+1 E O"A,(>.'[O,iJ) for all i < n, and s E O"A,(>")' By (*), there 
is a computation>. E outs(q, O" A) such that (>.[il, >"[i]) E H for all i ~ n. 
Arbitrarily fix such a >. E outs(q,O"A) such that (>'[n + 11, s) E H. Since. 
H is an A-bisimulation, it follows by the definition of A-bisimulation that 

there is a choice QA E t5'(s, A) with the property: for all states t' E QA, 

there is a state t E 0" A (>'[0, n + 1]) such that (t, t') EH. Arbitrarily choose 
such a QA E t5'(s,A) and set u'A(>"· s) = QA. 
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- Otherwise, arbitrarily choose a choice Q'A E &' (s, A) and set £TA (,XI . s) = 

QA' 
Note that in the above construction of £TA' such choices QA and QA always 
exist by definition of ATS. Thus £TA is well-defined. 

• 1/J = cp'. Then we have that S,p 1= cp' iff S,p[O] 1= cp' iffS',p'[O] 1= cp' (by the 
induction hypothesis) iff S', p' 1= cp'. 

• 1/J = -.1/J'. Then we have that S, p 1= ..,1/J' iff S, p ~ 1/J' iff S', p' ~ 1/J' (by the 
induction hypothesis) iff S', p' 1= -.1/J'. 

• 1/J = 1/Jl V 1/J2. Then we have that S, p 1= 1/Jl V 1/J2 iff S, p 1= 1/Jl or S, p 1= 1/J2 iff 
S', p' 1= 1/Jl or S', p' 1= 1/J2 (by the induction hypothesis) iff S', p' 1= 1/Jl V 1/J2. 

• 1/J = 01/J'· Then we have that S, p 1= 01/J' iff S, p[ 1, 00) 1= 1/J' iff S', p' [1, 00) 1= 
1/J' (by the induction hypothesis) iff S', p' 1= 01/J'. 

• 1/J = 1/Jl U 1/J2. Then we have that S, p 1= 1/Jl U 1/J2 iff there is an i ~ 0 such that 
S, p[i, 00] 1= 1/J2 and S, p[j, 00] 1= 1/Jl for all j with 0 ~ j < i iff there is an i ~ 0 
such that S', p'li, 00] 1= 1/J2 and S', p'[j, 00] 1= 1/Jl for all j with 0 ~ j < i (by 

the induction hypothesis) iff S',p' 1= 1/JIU1/J2. 

o 

2.5. Combination of Epistemic and Strategic Logic 

ATL can describe coalitional strategic abilities in MASs, but it does not describe how 

agents interact such as the process of cooperation. One missing aspect is the knowledge 
of agents, which might be necessary for agents' decision making. In 2002, Wooldridge 
and van der Roek [245, 272, 246] combined ATL with S5 and introduced the extension 
of ATL with knowledge operators: Alternating-time Temporal Epistemic Logic (ATEL). 
This extension widens the scope of reasoning over MASs with epistemic notions and 
enables reasoning about agents acting under incomplete information. Reasoning about 
and verification of strategic abilities of agents and their knowledge is useful in several 

application areas such as security [1041, planning [245]. games 1125) and communication 
protocols 1166]. 

An account for ATL with incomplete information but without knowledge operators 

was already given by Alur et al. [15J. 

2.5.1. ATEL. We define the syntax of the Alternating-time Temporal Epistemic 

Logic as combination of ATL (Definition 2.20) and S5CD (cf. Section 2.2.3). 

DEFINITION 2.28. (ATEL SYNTAX). Let n be a countable infinite set of atomic 

propositions and E a countable infinite set of agents. The set of ATEL-formulas cp is 

defined by the following BNF specification: 

cp .. - p "'cp cp V cp ((A}}Ocp I ((A}}Ocp I ((A)}(cpU cp) I 
KaCP I EACP I CACP I DACP 
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where p ranges over atomic propositions in IT, a over agents in :E and A C :E over 

coalitions. 

For an illustration of ATEL, consider the following formula, which states that if 
agent a knows a secret, then she can keep it to herself, i.e., a can make sure that her 
secret will never be known by another agent b (cf. [2641): 

Kasecret /\ -,Kbsecret -+ ((a))O-,Kbsecret. 

As a semantic structure for ATEL, we extend ATSs to alternating epistemic transi

tion systems; cf. [272]. 

DEFINITION 2.29. (AETS). An alternating epistemic transition system (AETS) for 

a set of agents E = {I, ... , n} is a tuple S = (Il, E, Q, {"'a}aEI:, 71", 8} that fulfils the 

following two conditions: 

• (Il,E,Q,7I",8) forms an ATS for E (cf. Definition 2.21), and 
• (Il, E, Q, {"'a}aEI:, 71") forms an epistemic structure for E (cf. Definition 2.2). 

We use the notions of a successor, a computation, a strategy for an agent or a 

coalition and the set of outcomes of a strategy as defined for ATL in Section 2.4.1. 

Moreover, we make use of the abbreviations ",~, "'~ and "'~ for coalitional epistemic 

accessibility relations as defined for S5CD in Section 2.2.3. 
The semantics of ATEL combines the semantics for ATL and S5CD; cf. [272]. 

DEFINITION 2.30. (ATEL SEMANTICS). Given an AETS S = (Il, E, Q, {"'a}aEI:, 
71", 8}, the satisfaction relation 1= is inductively defined as follows: For all states q of S 
and ATEL-formulas 1/J, we have that S, q 1= 1/J is defined as 

• for ATL if 1/J is an atomic proposition or of the form -''P, 'PI V 'P2, ((A))O'P, 
((A))O'P or ((A)) 'PI U 'P2, then S,q 1= 1/J is defined as (cf. Definition 2.22); 

• for S5CD if 1/J is of the form Ka'P, EA'P, CA'P or DA'P (cf. Definition 2.3 and 
Section 2.2.3). 

If for some state q of some AETS S it holds that S, q 1= 'P, then the ATEL-formula 'P 
is true at q, and S is called a model of 'P. An ATEL-formula is satisfiable if it has a 
model. 

EXAMPLE 2.31. (INTERPLAY OF TEMPORAL AND EPISTEMIC NOTIONS). This 
example illustrates the complexity of the properties involving temporal and epistemic 

notions that can be expressed with ATEL. Figure 2.7 shows a part of an AETS for two 
agents a and b: The dashed lines denote the agents' epistemic accessibility relations 
labelled with "'a and "'b; the solid arrows denote the system transitions; and the round. 
boxes denote the choices available to a and b at the upper left state of Figure 2.7. 
Suppose this upper left state is the current state. Using ATEL, we can express epistemic 
properties, temporal properties and combinations of both. For instance, we have the 
epistemic property that agent a knows proposition p, but agent b does not know p, i.e., 
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FIGURE 2.7. A part of an epistemic alternating structure. 

the formula KaP/\ -.KbP holds at the current state. Also the formulas ((a))OpV ((a))O-'p 
and -.((b))Op /\ -.((b))O-'p are satisfied describing the temporal properties that a can 

enforce P or -.p at the next state of the system, whereas agent b cannot. A property 

combining epistemic and temporal notions is, e.g., that a can ensure that b knows P 

at the next state. Indeed, we find that ((a))OKbP is satisfied. Moreover, the fact of a 
being capable of bringing about b to know P at the next state implies that a must know 

P already is reflected by the formula ((a))OKbP -+ KaP being true at the current state. 
-I 

2.5.2. Axioms for ATEL. Van der Hoek and Wooldridge [272, 246) provided 
some sound axioms for ATEL but no complete axiomatisation. Goranko, Jamroga and 
van Drimmelen 197J axiomatised ATEL without operators for distributed knowledge 
and conjectured an axiomatisation of ATEL with distributed knowledge operators by 
extending the axiomatic system for ATL [98J. 

The axiom system of ATEL with distributed knowledge suggested in [97J is similar 
to the union of the axioms and rules for ATL in Table 2.8, for 85 in Table 2.3 and for 
the 85-operators for common- and distributed knowledge in Table 2.4 (parameterized 
with sets of agents). Additionally, we need two axiom schemes: 

• CA'P -+ CB'P, for all A,B ~ E with B ~ Ai 
• DA'P -+ DB'P, for all A, B ~ E with A ~ B. 

Notice that the resulting axiom system deviates from the one conjectured for ATEL 

in [971 and, in this work, is not proven to be complete wrt. ATEL. Anyway, the system 

suggests that epistemic notions in ATEL do not interfere with temporal operators. 

2.5.3. Model Checking. ATEL model checking is tractable as its ATL counter

part: the model checking problem is PTIME-COmplete [246J. In 2004, a reduction of 
the model checking of a fragment of ATEL to ATL model checking was suggested by 
van Otterloo, van der Hoek and Wooldridge [255J. This reduction works by translating 
some ATEL~formulas and transition structures into formulas and structures of ATL in 

a satisfiability preserving way. After that, a similar but more general technique was 
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suggested by Goranko and Jamroga [96], which embeds full ATEL with common and 

distributed knowledge into ATL by "simulating" the epistemic layer of ATEL by adding 

new agents. 

2.5.4. Complexity. The complexity of ATEL's satisfiability problem is settled 

at ExpTIME-complete [264]. That is, ATEL is no more complex than ATL and the 

presence of the knowledge operators in the language does not increase the complexity. 

In Chapter 3, we extend the decision procedure for ATL to decide ATEL. 

2.5.5. Expressivity. We now demonstrate how the notions of epistemic bisim

ulation (cf. Definition 2.8) and alternating bisimulation (cf. Definition 2.25) can be 

combined to develop a notion of equivalence between alternating epistemic transition 

systems. 

DEFINITION 2.32. EPISTEMIC ALTERNATING BISIMULATION. Let S = (IT,~, Q, 
{"'a}aEE,7r,8) and S = (IT,~,Q"{"'~}aEE,7r',8') be two AETSs for a finite set ~ of 

agents, and A E ~ a coalition. Two states x E Q and y E Q' are A-epistemic and 

alternating bisimilar, written x t:%~{ y, if there are two binary relations H, He ~ Q X Q' 

satisfying the following three properties: 

(i) He is an A-epistemic bisimulation with (x, y) E He (cf. Definition 2.8); 

(ii) H is an A-alternating bisimulation with (x, y) EH (cf. Definition 2.25); 

(iii) for all agents a E A, and all states ql. q2 E Q and qL q2 E Q' with (ql, qD E 

H n He, (q2, q2) E He, q1 "'a q2 and qll"V~ q2. there is a state q~ E Q' such that 

(a) 7r'(q2} = 7r'(q~}; 

(b) ql "'~ q~; 
(c) (q2,q~) E H. 

This notion of bisimulation expresses that, given x t:%~{ y, at states x and y the 

agents in A have the same knowledge and the same ability and, moreover, no single 
agent thinks it is possible that the agents in A could have different abilities. 

It would be interesting to develop this notion further to characterize the expressivity 

of ATEL and it variants, which are introduced in the following sections. 

2.5.6. Problems with ATEL. A strategic logic for reasoning about agents un

der incomplete information appears to be non-trivial. After the introduction of ATEL, 

several problems with the integration of the semantics of temporal and epistemic op

erators were pointed out [246, 131, 219, 254, 115, 6, 125, 110}. The criticism is 

mainly directed to the fact that the semantics of ATEL, as defined in [272}, does not 

incorporate incomplete information consistently: epistemic operators assume incom

plete information while temporal operators do not. Another issue is that ATEL does. 

not account for the notion of agent's acting rationally. Many alternative solutions were 

suggested and still no satisfactory solution seems to be found. As emphasised in [6], the 

interaction should be analysed in the context of existing research about the interaction 

between knowledge and action, e.g., Moore [182}, Morgenstern [183, 184], Halpern and 
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Fagin 1100] and also Lesperance 1156, 157]. In this section, we will review the basic 
problems of ATEL and present some of the proposed solutions. 

ATEL describes strategic ability of single agents or groups of agents, and it models 
the knowledge of a single agent or the combined knowledge of the agents in a group. We 
observe that decision making and knowledge interfere: at two states, which an agent 
cannot distinguish to the best of her knowledge, she should make the same decision. The 
knowledge of an agent refers to her information state, Le., which states she considers 
possible or which states are epistemically indistinguishable; cf. Section 2.2. Given this 
observation, we identify a number of problems with ATEL. The first problem has to do 
with the use of inappropriate strategies as illustrated by the following example. 

EXAMPLE 2.33. (A TWO-PLAYER CARD GAME). This example illustrates one lim

itation of ATEL in modelling the interaction of an agent's knowledge and her strategic 
ability. Figure 2.8 depicts an AETS for three agents (two players a and b and a card 

dealer) that describes a simple card game. The arrows denote possible system transi
tions. The dashed lines denote epistemic accessibility relations for the agents a and b 

(omitting reflexive lines) labelled with "'a and "'b, respectively. The card game involves 

only three cards: an ace, a king and a queen. The ace beats the king, the king the 

queen and the queen the ace. The first of three moves of the game is made at the initial 

state So by a neutral player who randomly deals each player one card and puts the third 
card on the table. Neither player knows the others' card nor the card on the table. The 
second move is made by player a who can either keep her card or trade it with the card 
on the table. The final move is made by player b who has the same options. Which 
card each player is holding at a state is indicated by propositions of the form XY, 
where X and Y range over 'A' for ace, 'K' for king and 'Q' for queen and X indicates 
a's card and Y the card held by b. At the end, each player needs to show her card. 
The winner is the player holding the stronger card. Which player won is indicated by 

propositions wine and winb' Ignoring the epistemic accessibility relations, we can state 

AK 
wina 

AQ QK 
winb win" 

QA 
wina 

So 

FIGURE 2.8. A simple card game described by an AETS. 

that at the initial state 80 agent b has a winning strategy, i.e., 80 1= ((b))Owinb. However, 
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the situation is different if we take the episternic relations into account. Traverse the 

game tree and consider the states S2 and S3. At these states, b has to take two different 

choices in order to win at the next state, namely 'trade' at S2 and 'keep' at S3. But 

b's decision of whether to trade or to keep her card depends on the card held by player 

a which b cannot observe. That is, taking b's knowledge into account, player b cannot 

distinguish the states S2 and S3 and, consequently, she cannot act differently at these 

states. Hence, b does not have a winning strategy at So - a contradiction. -t 

The problem illustrated in Example 2.33 can be solved by changing ATEL's seman

tics to restrict the space of strategies to uniform strategies only. Uniform strategies in 

the context of strategic logic of agents under incomplete information were suggested 

and applied, e.g., in 1219, 115, 125, 254, 110]. The concept of uniform strategies 

can also be found in other areas such as game theory, see van Benthem 1238, 239] and 

von Neumann and Morgenstern [261}. 

Uniform strategies are also applied in game theory; see van Benthem 1238, 239]. 

Intuitively, a uniform strategy for an agent disallows the agent to take different choices at 

for this agent epistemically indistinguishable states. That is, uniform strategies require 

the identification of choices. To this end, we extend the alternating epistemic transition 

systems with names for choices. Here, we choose to identify choices with a natural 

number. For applications, however, it might be more intuitive to incorporate proper 

names for choices in the definition of the semantic structure; see, e.g., the concurrent 

game structures for ATL 115]. 

DEFINITION 2.34. (AETS~). An alternating epistemic transition system with choice 

enumeration (AETSA) for a set of agents E is a tuple S = (IT, E, Q, {"'a}ae!:, 1T, 8,~) that 
fulfils the following three conditions: 

• (IT, E, Q, 1T, 8) forms an ATS for E (cf. Definition 2.21), and 

• (IT, E, Q, {"'a}ae!:, 1T) forms an episternic structure for E (cf. Definition 2.2). 
• ~ : Q x E x 2Q -+ IN is a partial function ~ mapping each state q, each agent a, 

and each choice Qi S;;; Q, 1 ~ i ~ f, in the set of choices 8(q, a) = {QI,"" Qd 

to a natural number ~(q, a, Qi) = i. 

A strategy CTa for agent a is called uniform if for all sequences ql ... qn E Q* and 

q} ... tin E Q* of the same length n > 0 with qi "'a q~ for -all 1 ~ i ~ n, it holds that 

~(qn, a, CTa(qI ... qn)) = ~(q~, a, CTa(q~ ... q~)). 

REMARK 2.35. Given the notion of uniform strategies, an interesting question arises 

about the expressivity of ATEL and ATL interpreted over AETSU. Namely, can ATEL 

or ATL distinguish the presence of uniform strategies? Equivalently, do ATEL and 

ATL with and without uniform strategies have the same valid formulas? We leave this' 

question open. -t 

Another related problem with the interaction of knowledge and strategic ability in 

ATEL is concerned with the knowledge of the identity of a strategy. Intuitively, when 
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an agent has the capability to bring about cp, this should mean that the agent knows 
the identity of a strategy available to her that can enforce cp. In AI, Konolige [139J 
and Levesque [158J argued that knowing something requires having an identifier for it. 

In this context, the two knowledge modalities de re (Latin, of the thing) and de dicto 
(Latin, of the word) can be distinguished: an agent has knowledge de re of a strategy 
if she knows the identity of the strategy, and she has knowledge de dicto of a strategy 

if she knows that this strategy exists but she does not necessarily know its identity. 
This distinction between knowledge de re and de dicto was already analysed in the 
context of philosophy of language by Quine [206] in 1956, and it plays an important 

role in Moore's [182] account of the interaction between knowledge and action in which 

he considers the combination of first-order dynamic logic with the modal logic S4 for 

belief. Later, Morgenstern [184, 185] extended and generalised Moore's work. Moore's 

account of ability has been criticised for that the knowledge required for actions is 

indexical (also called de se) rather than de re [156J. We do not consider indexical 

knowledge here; for further information, see, e.g., Lewis [161] and Lesperance [157]. 

To give another reference to work about the interaction between knowledge and action 

where between de re and de dicto is distinguished, see Wooldridge [270] who focusses 

on the belief-desire-intention (BDI) model of agents and develops a logic for rational 
agents. 

In ATEL, we can express knowledge de dicto, e.g., with formulas of the form 

Ka((a))f1, i.e., agent a knows that she has the strategy to achieve the temporal ex

pression f1, but the strategy can be a different one at each state a cannot distinguish 
from the current one. However, knowledge de re cannot be captured in ATEL. We 
illustrate knowledge de dicto by continuing Example 2.33. 

EXAMPLE 2.36. (A TWO-PLAYER CARD GAME CONTINUED). As illustrated in 

Figure 2.8, the states S2 and 83 are indistinguishable for player b. At each of these 
states, we have that player b can act in a way in order to win the game at the next 

state, i.e., ((b))Owinb that is satisfied at 82 and 83. The winning strategies for b differ at 

both states: at 82 she has to trade her card and at 83 she has to keep it. Since b cannot 

distinguish 82 and 83, she can only know of the fact that she can win without knowing 

how. This corresponds to b having knowledge de dicto of her ability to win, which we 

can express in ATEL with the formula Kb((b))Owinb. -l 

Since the existing operators in ATEL lack the ability to express knowledge de re, 

additional operators combining strategic ability and knowledge are needed. Jamroga 

and Agotnes [120, 119] introduced an ATEL-variant with incomplete information and 

imperfect recall (it uses historyless uniform strategies) that provides operators express

ing knowledge de re and de dicto. This variant uses a non-standard semantics, i.e., 

formulas are interpreted over sets of states instead of single states. The authors suggest 

new epistemic operators for "constructive" knowledge that capture the notion of knowl

edge de re, while the standard epistemic operators refer to knowledge de dicto. The new 
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epistemic operators for "constructive" knowledge are OCa , CA, lEA and IDlA formalising 
respectively an agent a's "constructive" knowledge, "constructive" common, everybody's 
and distributed knowledge of agents in a coalition A. Below we will revise the definition 
of ATEL and formally introduce the epistemic operators for "constructive" knowledge. 

Intuitively, an agents' knowledge depends on what was previously known. In ATEL, 
an agent's history and knowledge do not interfere with each other, i.e., the informa
tion of an agent does not depend on previously traversed states. Generally, two crite
ria can be distinguished: perfect or imperfect information, and perfect and imperfect 
recall. To denote which combination is meant, Schobbens [219J introduced a useful 
naming scheme: In Schobbens' [219] account for refining the interaction of knowl
edge and action in ATEL, he suggested four alternative ATL-variants with incomplete 

information: ATLIR, ATLiR, ATLlr and ATLir, where the subscript '1' and 'i' en
code whether respectively perfect or imperfect information is assumed, and 'R' and 
'r' encode whether agents have perfect or imperfect recall, respectively. Jonker [131J 
suggests an ATEL-extension "Feasible ATEL" by introducing additional operators for 
finding a suitable uniform strategy. Yet another account to improve ATEL was given by 

Jamroga and van der Hoek 1125] who proposed two ATEL-variants: Alternating-time 

Temporal Observational Logic (ATOL) for agents with bounded recall of the past, and 

Alternating-time Temporal Epistemic Logic with Recall (ATEL-R*) for reasoning about 

both perfect and imperfect recall. Notice that the variants for imperfect information 
and imperfect recall, ATLir, "Feasible ATEL" and ATOL, have an NP-complete model 

checking problem 1219, 125, 122], whereas the model checking problem for the variants 
for imperfect information and perfect recall, ATLiR and ATEL-R* are believed to be 
undecidable [125, 120]. 

Recently in 2006, Herzig and Troquard [110J investigate an interesting alternative 
approach for reasoning about strategic ability and knowledge within the logic of "Seeing 
To It That" (STIT), a logic about time and choices of agents proposed in the 1990s 
in the domain of philosophy of action; see work by Belnap, PerIoff [30J and Xu [31]. 
In [110], the authors show that the STIT-framework can accommodate uniform strate
gies. Broersen, Herzig, Troquard [43] present an an extension of ATL, introducing ideas 
from STIT-theory, they present a translation from Pauly's Coalition Logic to Chellas' 
STIT logic in [42], and extend this work further in [41J-to a translation of ATL into 
STIT. 

In the following, we revise the definition of ATEL from Section 2.5.1 and integrate 

several suggestions to overcome some of the is!?ues with ATEL. The revised version of 

ATEL is for incomplete information and perfect recall and, following Schobbens' 1219] 
naming scheme, we denote it by ATELiR' To ensure consistency between an agent's 

knowledge and her strategic abilities, ATE4R only allows for uniform strategies. To 
make knowledge depend on the past, ATELiR-formulas are interpreted over histories 
rather than states. This follows ATEL-R'" by Jamroga and van der Hoek [125] whose 
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semantics is based on that of CTL* with past time 1150], where a linear past is as
sumed. For reasoning about knowledge de re and de dicto, ATELiR provides additional 
epistemic operators K, lE, C, l!)) for "constructive" knowledge as suggested by Jamroga 

and Agotnes 1120, 119]. 

DEFINITION 2.37. (ATEL SYNTAX REVISITED). Let IT be a countable infinite set of 
atomic propositions and E a countable infinite set of agents. The set of ATEL-formulas 
'P is defined by the following BNF specification: 

.. - p I -''P I 
KaCP I EA'P I 
Ka'P I lEA'P I 

where p ranges over atomic propositions in IT, a over agents in E and AcE over 

coalitions. 

In order to be able to identify uniform strategies, formulas of the revised version of 

ATEL will be interpreted over AETS~s. Moreover, we want to overcome the problem 

that, in ATEL, knowledge is not dependent on what was previously known, Le., the 

knowledge of an agent does not depend on previously traversed information states. To 

this end, we define the notion of an information history for agents. Consider an AETSU 

S = (11, E,Q, {"'a}aEI:,7r,O,n). Recall that, given an epistemic accessibility relation 

"'a, the equivalence class [q]",,, of a state q E Q is the information state of agent a 

at q. A finite, non-empty sequence of states h = qlq2 ... qn E Q+ is a history if, for 

all positions 1 ~ i ~ n, there is a choice {qi+l} E O(qi, E) (Le., qi+l is a successor 
of qi). The final state qn of the history h is denoted with h. Intuitively, histories are 

finite computations up to the current state. The information history for agent a of 
a history (or finite computation) A = qlq2 ... qn E Q+ with n 2: 1 is the sequence 

ha(A) = QIQ2 ... Qn E 2Q+ of sets of states such that Qi = [qi]"'4' for each i with 
1 ~ i ~ n. In the literature (e.g. 1250)), usually two kinds of information histories are 

distinguished: synchronous and asynchronous. Intuitively, an information history of an 

agent is synchronous if the agent can observe a global clock, Le., she can detect system 

transitions although her information state does not change. An information history for 

an agent is asynchronous if the agent cannot observe a global clock, Le., all adjacent 

information states in the sequence must be different from each other. Here we will focus 

on synchronous information states. 

We now define a notion of equivalence between information histories. Two histories 

A and A' are equivalent according to a's knowledge, written A ~a A, if they give rise to 

the same information histories for a. Formally, 

A ~a A' iff ha{A) = ha{A'). 

This means that, given A ~a A', (in the synchronous setting) the histories are of the 

same length, i.e., IAI = IA'I, and that the information histories ha(A), haCA') for a agree 

on every information state. Notice that ~a is an equivalence relation and, therefore, it is 
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suitable for interpreting it as epistemic accessibility relation, cf. Section 2.2. To account 
for the combined knowledge of several agents, we define three epistemic accessibility 
relations in terms of ~a corresponding to "everyone knows", common and distributed 
knowledge similarly to combined knowledge in S5 in Section 2.2.3: For all coalitions C, 

we set ",E 
"'A .- UaEA ~a; 
",C 
"'A .- (",E)+. "'A , 
",D 
"'A .- naEA ~a· 

We redefine the notion of a strategy to account for agents under incomplete infor

mation. A strategy for an agent a E I; is a mapping (fa : (2Q)+ -+ 2Q such that for all 

histories A E Q+, the choice (fa(ha(A» is in 8(h,a). A strategy for agents in a coalition 

CS;;; I; is a set of strategies (fC = {(fa I a E Cl, one for each agent in C. 
We now redefine the outcomes of a strategy in an AETS~ wrt. a set of histories. 

Let H S;;; Q+ be a set of histories. The set out(H, (fc) of outcomes of a strategy (fC 
starting with a set of possible histories H is a set of pairs (A, i), where A E Q* is a 

computation and i ~ 0 a position, such that A[O, i] = h, for some history h EH, and 

A[j + 1] E nUaEUC (fa(ha(A[O,j])), for all positions j ~ i. 

DEFINITION 2.38. (ATELm SEMANTICS). Given an AETS~ S = {Il, I;, Q, 
{"'a}aE!;, 71", 8, ~), the satisfaction relation 1= is inductively defined as follows where 
H ranges over sets of histories in S, C S;;; I; over coalitions of agents, a over agents 

in I;, IC ranges over K, E, C, D and J't over OC, lE, C, 1Dl, and <p, <PI and <P2 range over 
ATEL-formulas: 

• S, H 1= p iff pE 7I"(h), for all histories hE H and all propositions pE Il; 

• S,H 1= -,<p iff S,H ~ <P; 
• S,H F <PI V <P2 iff S,H F <PI or S,H F <P2i 
• S, H 1= ((C}}O<p iff there is an uniform strategy (fC such that for all outcomes 

(A,i) E out(H,(fc), it holds that S, {A[i + I]} 1= <Pi 
• S, H 1= ((C})O<p iff there is an uniform strategy (fc such that for all outcomes 

(A,i) E out(H,(fc), it holds that S,{A(j]} F <P for all positions j ~ ij 

• S, H F ((C))<pI U <P2 iff there is an uniform strategy (fC such that for all out
comes (A,i) E out(H,(fc), there is a position j ~ i such that S, {A[j]} 1= <P2 
and S, {A[k]} 1= <PI for all positions k with i $ k < j; 

• S, H 1= ICA<P iff S, {h} 1= <P for all histories h, h' with h ~~ h' and h' E H; 

• S,H 1= J'tA<P iff S,H'I= <P where H' = UhEH[h]iO:::A. 
A 

If for some set H of histories of some AETS~ S it holds that S, H 1= <p, then the. 
ATEL-formula <p is true or satisfied at q, and S is called a model of cp. 

To better understand how ATELiR works and to see that it overcomes many of the 

ATEL-problems, consider the following example. 
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EXAMPLE 2.39. (KNOWLEDGE ABOUT ABILITY IN ATELiR). This example il
lustrates how we can express properties of an agent's knowledge de re and de dicto 

depending on her information history using ATELiR. Figure 2.9 depicts a section of an 
AETS~ for an agent a. The arrows denote the system transitions. The dashed ellipses 
contain the states that are epistemically indistinguishable for a. The labelled boxes 
correspond to the choices of a: the labels 'a~l' and 'a~2' respectively mark the first and 
the second choice available to a at the previous state. Suppose the system is currently 

-------- -- ------ , 
\""a 

X3 I 
I 

" 

FIGURE 2.9. AETS~ for one agent with imperfect information. 

in the state VI and agent a can recall one previous state, i.e., the current history is 
hi = XlVI. Notice that a cannot distinguish between the histories hI and h2 = X2Y2 

since both give rise to the same information history for a, i.e., hI ~a h2. But a can 
distinguish h3 = X3V2, i.e., h3 -;j:,a hi, for i E {1,2}. We can express the fact that 
agent a has a strategy at hI to bring about the next state of the system to satisfy p 

with {hI} F ((a}}Op· The same holds for h2. Notice, however, that the strategies at 
hI and h2 differ: for bringing about p at the next state, a needs to choose the choice 
aUl at hI. and the choice aU2 at h2. So, what can be said about a's knowledge at hI? 

Agent a knows that she has a strategy to ensure p at the next state, but she does not 
know the right strategy in the current situation, which can be hI or h2. That is, a 

has knowledge de dicto at hI of being able to bring about p at the next state, but not 

knowledge de re. We can formalise the de dicto part with {hI} F Ka((a})Op and the 

de re part with {hI} V= lKa((a})Op. Notice that the situation is different at h3: here we 

have {ha} F lKa((a}}Op. -l 

Model checking under incomplete information and perfect information can lead to 

undecidability. An undecidability result of model checking epistemic modal logic with 
common knowledge under incomplete information and perfect recall was provided by 

van der Meyden [250]. In this work model checking S5n with common knowledge un

der incomplete information and perfect recall is PSPAcE-complete for the synchronous 
case (Le., with a global clock visible to all agents) and undecidable for the asynchronous 
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case. The undecidability result is based on a reduction of the Halting problem of 'lUring 

machines. Azhar, Peterson and Reif [22, 23) show that multi-player games of incom
plete information can be undecidable, unless some restrictions apply to the distribution 

of information. The authors model multi-player games of incomplete information by 

extending the alternating 'lUring machine of Chandra, Kozen and Stockmeyer [49) and 
the alternating machines by Reif [211). The model checking problem for ATL with 

incomplete information is claimed to be undecidable by Alur et al. [15). For a special 

case in the setting of Fair-ATL with incomplete information, Alur et al. refer to some 

undecidability results on asynchronous multi-player games with incomplete informa

tion [199, 201J. Although a formal proof of this statement has not been published, the 

ATL model checking problem under incomplete information and perfect recall seems 

widely believed to be undecidable [219, 125, 165, 120J. Model checking ATL with 

incomplete information was done, e.g., by Lomuscio and Raimondi [165), Jamroga and 

Dix [123, 124J and Schobbens [219J. 
In the remainder of this section, we cite some literature that appears to be rele

vant for capturing the concept of rationality with modal logic. ATL-like logics provide 

reasoning about strategic abilities of agents, but they do not account for rationality. 

Intuitively, rational agents should act in a way as it serves best their own interests. 

Clearly, modelling rational behaviour is interesting to many research areas such as 

economics, philosophy, cognitive science, computer science and AI. Van der Hoek and 

Wooldridge [247] present an article surveying over theories for rational agency including 

the Cohen and Levesque's [59J intention logic, Rao and Georgeff's BDI logics 1209, 210J, 

and the KARO framework of Linder, van der Hoek and Meyer 1253J. A modal char

acterisation of the game-theoretical concept of Nash equilibrium was provided by Har

renstein, van der Hoek, Meyer and Witteveen [108). Van Otterloo and Jonker [254J 
introduce an ATEL-variant Epistemic Temporal Strategic Logic (ETSL) which captures 
properties of agents acting rationally using a notion of strategy domination to express 
that a goal can be achieved better in one way than another. Later, Jamroga [117, 118] 
revised the semantics for ETSL and showed that a rational player knows that she will 

succeed if, and only if, she knows how to play to succeed, which is not true for rational 
coalitions of players. The link between model logics of games and logics of rational 

agency, where agents are characterised in terms of attitudes such as belief, desire and 

intention, was investigated by Jamroga, van der Hoek, Wooldridge 1126, 127]. 

2.6. Strategic Logic for Agents with Limited Memory 

In this section, we introduce a new ATL-variant that accounts for reasoning about 

strategic abilities of agents with limited amount of memory in the setting of incomplete 

information and imperfect recall. 
Currently, one of the goals of the agent literature is to find an appropriate framework 

for describing multi-agent systems under incomplete information. Many ATL-variants 

have been suggested (cf. the previous section) to overcome the inherent problems with 
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the original version of ATEL [272]. One issue is the amount of resources available to 
an agent. It appears to be a reasonable assumption to restrict the amount of memory 
available to an agent as any real computer system is equipped with a certain finite 
amount of memory. The agent literature suggests to limit the memory of agents and 
proposes to base agents' decision making on imperfect- rather than perfect recall; cf., 

e.g., the logic ATOL by Jamroga and van der Hoek [125]. Remember that perfect recall 
means that an agent memorizes the entire sequence of the previously traversed states 
(the history), no matter how many states this might be. Strategies in the perfect recall 
setting are based on finite but unbounded histories. To memorize such strategies the 
agent needs an unlimited amount of memory at her disposal. Imperfect recall, however, 
only allows for strategies that are based on histories of a certain length. For instance, the 
ATL-variants ATLlr, ATLir introduced by Schobben's [2191 and ATEL-R· introduced 
by Jamroga and van der Hoek [1251 account for imperfect recall. The first two logics use 
historyless strategies, Le., the length of the history is reduced to one such that choices 
merely dep end on the current state. 

Actually, adopting imperfect recall, Le. basing strategies on bounded histories, is 

just half the way to limit the memory consumption of an agent. This approach does 

not account for the fact that storing a strategy even in the imperfect recall setting can 
require a lot of memory. As a strategy specifies a choice for every state in a model, 
the size of a strategy grows linearly with the number of states in the considered model. 
Since models can have many states, the required memory for storing an entire strategy 
may easily exceed the memory available to an agent. 

In the following, we introduce a new family of ATL-variants called Alternating-time 

Tempoml Logic with Bounded Memory (ATLBM) for reasoning about strategic abilities 
of agents under incomplete information, with imperfect recall and limited amount of 
memory. We adopt Schobben's [2191 naming scheme and write ATLBM~, where the 
letter 'i' in the subscript indicates incomplete information, the letter 'r' limited recall 
and the natural number 'rn' (with rn ~ 0) in the superscript stands for the number of 
previously traversed states an agent can recall. The language of ATLBM extends the 
language of ATL in that the ATL path quantifiers are additionally parameterized with 
a natural number that indicates the amount of memory available to the agents. An 
ATLBM-formula of the form ((a))n~ means that agent a can bring about the temporal 
expression ~, where a has a memory of size n. That is, agent a has a strategy of size n 
to enforce ~, or, equivalently, a can achieve ~ without having to account for more than 

n different situations (or n of her information states). 
For an overview on the logical omniscience problem and finite memory, see, e.g., 

Agotnes {5}. Notice the difference to the study of resource-bounded agency, where the 

resource-bounded reasoning of agents is modelled. Agents are assumed to be reasoners 
with a given space and time bound. The question that arises is how much memory an 
agent needs to derive a formula, which is of theoretical and practical interest. The former 
is concerned about the deductive strength of a particular logic, and the latter about the 
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memory requirements of agents to achieve certain goals. For more information, we refer 
to the work by Duc [67], Alechina and Logan [111 and Whitsey [121, and Jago [114J. 
For a general overview on modelling bounded rationality, see, e.g., Rubinstein [214J. 

2.6.1. ATLBM. In the following, we define the syntax of ATLBM~. An extension 

with knowledge operators should be straightforward. 

DEFINITION 2.40. (ATLBM~ SYNTAX). Let n be a countable infinite set of atomic 
propositions and E a countable infinite set of agents. A coalition is a finite set C c E 
of agents. The language of ATLBM~ is defined using the following BNF specification, 
where p ranges over atomic propositions in n, the coalition C ranges over finite subsets 

of E and n ranges over natural numbers. The set of ATLBM~-formulas cp is defined as: 

cp 

The difference to the language of ATL is that each path quantifier ((C}}n in ATLBM~ 
is additionally parameterised with a natural number n, which determines the amount 
of memory available to the coalition C. For instance, this enables us to express with 

the formula 
((a))n+10cp 1\ -.((a))nOcp 

the fact that agent a with memory of size n + 1 can bring about eventually cp while she 
cannot achieve that only with memory of size n at her disposal. 

The semantic structures of ATLBM~ are AETSP as introduced in Definition 2.34. 

Notice that, as for ATL, we could also use concurrent game structures to interpret 

ATLBM~-formulas which would yield an equivalent semantics; see Section 2.4.1 for 
a similar discussion about ATL semantics. We now refine the notions of a strategy 
and the outcomes of a strategy to account for agents with incomplete information and 
imperfect recall. Consider an AETSP S = (Il, E, Q, {"'a}aE!:, 1T', a, ~}. Given two natural 
numbers m and n, an m-step strategy with n decisions for an agent a E E is a partial 
function O'a : (2Q)* ~ 2Q such that for at most n histories >'1, ... , >'n' E Q+, n' ~ n, 
with pairwise distinct information histories for a, i.e., ha(>'i) ¥ ha(>'j) for all i,j ~ n' 

with i ¥ j, the set O'a(ha(>'i)) of states is a choice in a ('xi , a). Notice that, in the setting 
of incomplete information, an agent a can only observe information states, i.e., states 
modulo the epistemic accessibility relation "'a for a. This carries over to sequences 
of states: an agent observes information histories instead of histories. 'Two distinct 

histories >'1 and >'2 (with >'1 ¥ >'2) cannot be distinguished by a if they give rise to 

the same information history for a, i.e., ha(>'I) = ha{>'2)' Consequently, agent a is not 
supposed to be able to make different decisions at >'1 and >'2. This intuition is reflected 
by the requirement of 'pairwise distinct information histories' in the definition of an m

step strategy with n decisions. Also notice that an 'm-step strategy' is a strategy that 
takes histories up to length m into account. Since the logic ATLBM~ is parameterised 
with m, every agent uses m-step strategies and, thus, we assume that every agent has 
the same capability to recall at most m - 1 previous states. Intuitively, an In-decision 
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strategy' is a strategy that determines a choice at not more than n different information 
states/information histories. Therefore, a strategy with n decisions can be stored by an 
agent with memory of size n. 

A m-step strategy (Ja with n decisions for agent a is called uniform if for all histories 

). = ql ... qn and ).' = qi ... q~ of the same length n > 0 that give rise to the same 
information histories, i.e., ha()') = ha(>.'), it holds that 

~(.x, a, (Ja(ha()'») = ~('\', a, (Ja(ha().'»). 

A uniform m-step strategy with n decisions for a coalition C is a set of uniform m-step 
strategies with n decisions (JC = {(Ja I a E Cl, one for each agent in C. 

For defining the outcomes of a strategy, we introduce an auxiliary notion for chop

ping off a history of length at most m of an infinite computation. Given a computation 

A = qoqlq2'" E QW and a position i ~ 0 in A, the history of length m ~ 0 determined 
by A and i is the sequence h~m(A, i) of at most m states defined as follows: 

h (
\.)._ {QOql ... qi if i < mj 

<m /I,~ .-

qi-m+l ... qi-Iqi if i ~ m. 

The set out(h,(Jc) of outcomes of a strategy (JC starting at a history h is the set of 

all pairs (A, i), where A E QW is a computation and i ~ 0 a position in A, such that for 

all positions j ~ i and all strategies (Ja E (JC: 

• A[O, i] = h, and 

• Ali + I} E (Ja(ha(h~m(A,j») if (Ja is defined for ha(h~m(>\,j». 

The semantics for ATLBM~ is similar to the revised semantics of ATEL in Def
inition 2.38. One difference is that ATLBM~ does not have operators for knowledge 
and, thus, formulas are interpreted over single histories instead of sets of histories. An
other difference is that ATLBM~ models imperfect recall of agents, i.e., the histories 
are limited up to length m. 

DEFINITION 2.41. (ATLBM~ SEMANTICS). Given an AETSU S = (IT,~, Q, 
{"'a}aEE'1I',O,~), the satisfaction relation F is inductively defined as follows, where 
h ranges over histories in S, C ~ ~ ranges over coalitions of agents, a over agents in ~, 

and <p, <PI and <P2 range over ATLBM~-formulas: 

• S, h 1= p iff pE 1I'(h), for all propositions p E IT; 

• S, h F -'<P iff S, h ~ <pj 

• S, h F <PI V <P2 iff S, h F <PI or S, h F <P2j 
• S, h F ((c))no<p iff there is an uniform m-step strategy (Jc with n decisions 

such that for all outcomes (A, i) E out(h, oc), it holds that S, h~m(A, i+l) F <pj 

• S, h F ((c))no<p iff there is an uniform m-step strategy (Jc with n decisions 

such that for all outcomes (A,i) E out(h,(Jc), it holds that S,h~m(A,j) F <P 

for all positions j ~ ij 
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• S, h F ((C)) n CPI U CP2 iff there is an uniform m-step strategy GC with n decisions 
such that for all outcomes (A, i) E out(h, GC), there is a position j ;:::: 0 such that 

S, h~m(A,j) F CP2 and S, h~m(A, k) F CPI for all positions k with i :::; k < j. 
If for some set H of histories of some AETSU S it holds that S, q F cP, then the ATEL

formula cP is true or satisfied at q, and S is called a model of cp. 

To understand ATLBMrr better, consider the following example. 

EXAMPLE 2.42. (EXPRESSING PROPERI'IES WITH ATLBM~). This example il
lustrates how ATLBMrr can be used to express properties of a MAS in which agents' 
memory is limited. Figure 2.10 shows a section of an AETSU for agent a. The ar

rows denote the system transitions. The labelled boxes denote a's choices: the label 

'a~l' marks the first choice of a at the previous state and 'a~2' the second choice. The 

dashed ellipse comprises the states which are epistemically indistinguishable for agent 
a. Note that a can distinguish the other states. Suppose a's decisions are solely based 

on her current information state, i.e., a cannot recall any previously traversed states. 

Consequently, to express statements about agent a, we use the logic ATLBMtr' The 

I 
I 
\ 

, , 
, 

--~ 

FIGURE 2.10. An AETSU for one agent with bounded memory. 

system properties a can enforce depend on the memory available to a. First, consider 
the scenario where a has a memory of size one, i.e., a strategy for a specifies a decision 
at exactly one of a's information states. Suppose a decides at state x for the choice a~l 

which determines the next state of the system to be state y. Since a does not recall 

any history and the states x and y are epistemically indistinguishable for a, she again 

decides for the choice a~1. Thus, the system enters a state at which p is satisfied. That 

is, at x, agent a can bring about p at some point in the future. Using ATLBMir' this 

property can be expressed as x F ((a))IOp. Contrary, agent a cannot eventually bring 
about p" starting at state x. To see this, suppose a decides for the choice a~2 at x which 
determines the next two system transitions and leads the system into state z. Notice 

that a can distinguish z from her previous information state. But this means that agent 
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a does not know which choice to take at z since her I-decision strategy does not specify 
any choice. Therefore, a has to pick a choice at random which does not necessarily lead 
the system into the p"-state. This can be expressed with x ~ ((a}}10p". However, if we 
increase the memory of agent a, she becomes capable of eventually bringing about p". 

Consider the scenario where a has a memory of size two, i.e., a strategy for a specifies 
a decision at two of her information states. Now, a is able to choose the choice a"1 at 
state z and thus enforce p". The property that, at x, agent a can enforce p" at some 
point in the future can be formalised as x ~ ((a}}20p". Adding more memory does not 
necessarily increase the agents' capability. For instance, suppose agent a has any finite 
amount of memory at her disposal. Given that the states x, y and y' are epistemically 
indistinguishable for a, it is readily checked that she will not be able to bring about p' 

starting from x. This can be formalised as x ~ ((a))nOp' for any n ~ O. -I 

2.6.2. Axioms. While ATL accounts for agents with unlimited memory, the agents 
in ATLBMrr have limited memory. The axioms in Table 2.11 characterise some interac
tions of the ATLBMrr path quantifiers which determine the amount of memory available 
to the agents. Note that, for the parameters n and m in Table 2.11, we have n ~ 0 and 

m ~ 1. Intuitively, the axioms (((A)) ° 0), (((A)} °0) and (((A)} °U) express the fact that 

((A}}OO) 

((A}}oo) 

((A}}oU) 

((A}}10) 

«A}}OOcp - «0}}nOcp 

«A}) °ocp _ «0}) nocp 

«A}}ocpUt/J - «0)}ncpUt/J 

«A» 
1 

OCP - «A» n+1 OCP 

«(A)} +1 0) «A»nocp -+ «A»n+10cp 

((A}}+1U) «A}}ncpUt/J -+ «A»n+1cpUt/J 

TABLE 2.11. Some axioms of ATLBMrr. 

coalitions of agents without memory can bring about as much as the empty coalition 
with arbitrary amount of memory. This is because, coalitions of agents without memory 
cannot store any strategy, i.e., they can only achieve what is inevitable in the system. 
Observe that an ATLBMrr-formula of the form ((C))°i!; is equivalent to the formula 
((0}}i!; in ATL (where strategies depend on histories of length at most m). The Ax

iom (((A))lO) states a coalition of agents with memory of size one can enforce as much 

at the next system state as the same coalition where agents have more memory at their 
disposal. In other words, the amount of memory required for the agents in a coalition 
to enforce a property at the next system state is exactly one. The axioms (((A}) +10) 
and (((A)) +1U) state that, with a larger amount of memory for each agent, a coalition 

can achieve at least as much, or more. 
An axiom system for ATLBMrr could consist of the axioms in Table 2.11 together 

with the axiom system for ATLE in Table 2.8 where each ATL-axiom is adapted to 
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ATLBM~ by extending each path quantifier with an additional parameter denoting the 

amount of memory available to the agents. This adaptation is straightforward for the 

ATL-axioms and rules in Table 2.12, where n ;:::: O. 

(1-n) -.«A)}n01-

(Tn) «A))nOT 

(En) -.«0))n+10-'cp _ «E))n+lOcp 

(sn) «(A))nOcp 1\ «B))nOt/J) - «A U B))nO(cp 1\ t/J) where An B = 0 

cp, cp - t/J cp 
(Modus Ponens) t/J «(0)) nO-Necessitation) «0)) nocp 

«(A))nO-Monotonicity) «A))no:: ~A))nOt/J 
TABLE 2.12. Some ATL-axioms and rules adapted to ATLBM~. 

(FP[j) 

(FPct) 

(FPu - -a) 

«A)tOcp - cp 1\ «A))lO«A))nOcp 

«A))n+10cp ~ cp 1\ «A))10«A))nOcp 

«a))n+1t/JUcp _ cp V (t/J 1\ «(a))oO«a))n+l(1/JUcp) V 

«a)) 1 o «a)) n (t/J U cp))) 

«A))n+l1/JU cp ~ cp V (1/J 1\ «(A))oO«A))n+l(1/JU cp) V 

«A)) lO«A)) n(t/J U cp)) 

TABLE 2.13. Some ATL-axioms adapted to ATLBM~ where rn = 1. 

Notice that more care is needed when adapting the ATL-axioms (FPo) and (FPu ) 
since the length of the history the agents are assumed to recall is crucial. Table 2.13 

contains some axioms for ATLBM~ where rn = 1, i.e., for the case, where agents' 
decision are solely based on the current state. For each of the ATL-axioms (FPo) and 
(FPu ) , we present two axioms: (FPo) and (FPO+l), and (FP~ +- - a) and (FP~ .... ), 
respectively. Notice the the different parameters of the path quantifiers that indicate 
the memory available to the agents. Also note that the axi<?m (FP~ +- - a) only captures 

single agent coalitions. 

We leave the complete axiomatisation of ATLBM~ for future work. 

2.6.3. Expressivity. At first sight, the expressivity of ATLBM~ and ATL seem 

to be incomparable: ATLBM~ accounts for agents with incomplete information, im

perfect recall and bounded memory, whereas ATL (as defined in Section 2.4.1) does 

neither of these. In order to enable a comparison, consider the logic ATLBM with per

fect information and perfect recall, which we denote by ATLBMIR. Notice that ATL 

and ATLBMJR are both interpreted over ATSs, and that, due to perfect recall, the 

superscript 'rn' is not needed anymore. Consider the following equivalence which shows 
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that ATL-formulas of the form ((A»~ would be equivalent to infinitely long formulas of 
ATLBM/R. (Of course, infinite formulas are not allowed in ATLBMIR.) 

((A»~ ~ V ((A»n~ 
n~O 

To avoid infinitely long formulas, we can enrich the language of ATLBM with additional 
path quantifiers of the form (( . ».. The semantics of the additional path quantifiers is 
defined as follows: for all AETSU S, all states x of S, all ATLBM-formulas of the form 
((C»n~, 

S, x F ((C»*~ iff S, x 1= ((C»n~ for some natural number n ~ O. 

Intuitively, ((C»*~ states that coalition C can enforce the temporal property ~ with 

some finite amount of memory for strategies, no matter what the other agents do. ATL 

can be embedded into the enriched version of ATLBMIR using the following translation 
ot: 

(P)t .- pj 
(..,cp )t .- "'CPj 

(cpV"p)t .- cp V"pj 

(((C»Ocp)t .- ((C»*OlPj 
(((C»Ocp)t .- ((C»·Ocpj 

(((C»)( cpU 'IjJ))t . - ((C»'o (cpU"p) . 

2.6.4. Conclusion. We now conclude this section and give some suggestions for 
future work. We introduced a family ATLBM~ of ATL-variants for reasoning about 
strategic ability in MASs of resource-bounded agents. In particular, the setting of agents 
with limited memory appears to be closer to real-world applications. ATLBM~ con
siders agents under incomplete information, with imperfect recall and limited amount 
of memory for storing strategies. There are three more variants ATLBMTr, ATLBMiR 
and ATLBMIR that, respectively, account for complete information and imperfect re

call, incomplete information and perfect recall, or complete information and perfect 
recall. It would be interesting to investigate the ATLBM-variants further, in partic

ular, to compare their expressivity to each other and to ATL, to characterise their 

expressivity syntactically via axiom systems, or structurally via bisimulations, and to 

explore the computational complexities of their model checking and satisfiability prob

lems. Moreover, it seems interesting to investigate epistemic extensions of ATLBMZ!, 

say ATELBMZ!, which would additionally facilitate reasoning about the agents' knowl

edge in a resource-bounded setting. 



CHAPTER 3 

Complexity of Reasoning in ATL / ATEL 

ATL by Alur, Henzinger and Kupferman [15] is being increasingly widely applied in 
formal system specification and verification of distributed systems and game-like multi
agent systems. The extension ATEL by van der Hoek and Wooldridge 1272, 2461 of 
ATL with knowledge modalities widens the scope of reasoning over multi-agent systems 

with epistemic notions. In this chapter, we investigate the computational complexities 

of the satisfiability problem for ATL and ATEL with epistemic operators for common 
and distributed knowledge. For the case where the set of agents is fixed in advance, 
ATL satisfiability was settled at ExpTIME-complete by van Drimmelen [2521, cf. Sec
tion 2.4.4 in Chapter 2. If the set of agents is not fixed in advance, this result yields 

a 2-ExpTIME upper bound. In this chapter, we focus on the latter case and, in Sec

tion 3.1.1, we define three natural variations of the satisfiability problem. Although 

none of these variations fixes the set of agents in advance, we are able to prove contain
ment of ATL satisfiability in ExpTIME for all of them by means of a type elimination 

construction. We present the ATL decision procedure in Section 3.1.2. In Section 3.2.1, 
we expand the result and show containment of the satisfiability problem for ATEL with 

epistemic operators for common and distributed knowledge in ExpTIME. Thus ATEL 
is no more complex than ATL. 

3.1. Complexity of ATL 

Although the complexity of the model checking problem for ATL was classified in 
the very first publications on ATL [13], the complexity of the satisfiability problem was 
not considered by the developers of the logic; The fact that ATL is a generalisation of 
CTL (almost always) immediately gives an ExpTIME lower bound, but the question of 
whether or not ATL satisfiability was in ExpTIME was left open. By "almost always" 
we mean that, as we shall see later, some variants of the ATL satisfiability problem do 
not inherit ExpTIME-hardness from CTL in an immediate way. 

For the case where the set of agents considered is defined in advance, the complex

ity of the satisfiability problem for ATL was settled in 2003 with an automata-based 
ExpTIME decision procedure by van Drimmelen 12521. The approach in 12521 was to 
show that ATL satisfiability can be reduced to the non-emptiness problem for alter
nating Biichi tree automata. For the overall decision procedure to have exponential 
running time, the branching degree of the constructed trees has to be polynomial in the 
size of the input formula. In the proof in [2521. the constructed trees have branching 
degree kn. where n is the number of agents and k is polynomial in the size of the input 
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formula. Thus, a polynomial branching degree, and hence an overall ExpTIME upper 
bound, is only obtained if the number of agents allowed to appear in input formulas is 
fixed beforehand, rather than being regarded as part of the input. Thus, the obtained 
ExpTIME result by van Drimmelen can be stated as follows. 

THEOREM 3.1. Suppose E is a fixed, finite set of agents. Then satisfiability of 

ATL-formulas based on E in an ATS over E is ExpTIME-complete. 

If input formulas may contain arbitrarily many agents, then n, the number of agents, 
is clearly dependent on the input formula. In this case, the branching degree of the con
structed trees becomes exponential, and the decision procedure only yields a 2-ExpTIME 
upper bound. Thus, if we do not fix the set of agents in advance, the complexity of sat
isfiability in ATL was still open (until recently) - between ExpTIME and 2-ExpTIME. 
Note that the automata-based approach in [252] cannot be generalised by choosing a 
better tree construction since in ATL it is possible to devise a formula that enforces a 
branching degree exponential in the number of agents. To illustrate that this branch
ing degree cannot easily be reduced, we exhibit a sequence of ATL-formulas (CPi)iEN 

such that, for any ATS S, state q, and i ?:: 0, S, q F CPi implies that q has at least 2i 

successors in S: 
CPi:= 1\ (((aj))Opj 1\ ((aj))O-,pj) 

199 
As every agent ~ may choose the propositionalletter Pi to be true or false at a successor 
state, jointly the agents al,'" ,ak may choose any possible valuation of PI, ... ,Pk for a 
successor state. As there are 2i such valuations, there must be as many successors. 

Considering ATL with an unbounded supply of agents, we find there are several 
different ways of framing the satisfiability problem with respect to the agents that can 
appear in both the formula and the structure that satisfies the formula. In particular, 
when not having fixed an agent set in beforehand, there are different possibilities for 
the number of agents that occur in an ATS over which a formula is to be interpreted. 
With this observation in mind, consider the following three formulations of the ATL 
satisfiability problem, where the set of agents is not fixed in advance: 

(a) Given a finite set E of agents and a formula cP over E, is cP satisfiable in an 
ATS over E? 

(b) Given a formula cP, is there a finite set E of agents (containing the agents 
referred to in cp) such that cp is satisfiable in an ATS over E? 

(c) Given a formula cP, is cp satisfiable in an ATS over exactly the agents which 

occur in cp? 

Note that the construction in 1252] does not give an ExpTIME upper bound for any 
of these three variations. The main contribution of this work is thus to prove that all 

three variations are in fact ExpTIME-COmplete. 

3.1.1. Varieties of Satisfiability for ATL. The key syntactic difference between 
ATL and its predecessor CTL is that formulas of ATL explicitly refer to agents. We 
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must be mindful of the way in which such agents are interpreted in the formulation 
of the ATL satisfiability problem. To better understand why, consider the following 

ATL-formula (adapted from [194, p.47]). 

-, ((a)) Op 1\ -, ((a)) Oq 1\ ((a})O(p V q) 

This formula expresses the fact that, in the next state, agent a cannot make p true, and 
cannot make q true; but it can make either p or q true. Now the question is whether 
this formula is satisfiable. The answer depends on the range of AT Ss we are prepared 
to consider. If we admit arbitrary ATSs as witness to its satisfiability, then the answer 
is yes: one can easily construct an ATS containing two or more agents that satisfies it. 
However, suppose we only consider ATSs that contain at most one agent. By virtue 

of the fact that the formula is well-formed, the agent in the structure must be a. But 

then the choice sets for this agent must be singletons, and it is then easy to see that 

the formula could not be satisfied in such a model. So: the agents in the structures 
we are prepared to consider are important in determining the satisfiability or otherwise 
of a formula, and even unknown agents that are not referred to in a formula can play 

a part in determining whether or not the formula is satisfied in a structure. Notice 

that the presence of unknown agents introduces an element of non-determinism, as the 

agents that occur in a formula cannot completely determine the behaviour of the system 

anymore. 
With these concerns in mind, consider the following three variations of satisfiability 

for ATL. 

(a) Satisfiability over given sets of agents: 

Given a finite set E of agents and a formula cp over E, is cp satisfiable in an 
ATS over E? 

(b) Satisfiability over arbitrary sets of agents: 

Given a formula cp, is there a finite set E of agents (containing the agents 
referred to in cp) such that cp is satisfiable in an ATS over E? 

(c) Satisfiability over formula-defined sets of agents: 

Given a formula cp, is cp satisfiable in an ATS over exactly the agents which 
occur in cp? 

Notice that in none of these variations of the problem is the set of agents fixed externally, 
in the problem definition, as in the case of Theorem 3.1. Moreover, the construction of 
van Drimmelen [252J does not give an ExpTIME upper bound for any of these variations: 

the automata theoretic algorithm presented in [252] yields a 2-ExpTIME upper bound 
for all three cases. In variants (a) and (c), the sets of agents are given as part of the 

input, while in Variant (b), we are asked whether an ATS over an arbitrary set of agents 
exists such that this structure satisfies the formula. Our main result is as follows. 

THEOREM 3.2. The variants (a), (b) and (e) of the satisfiability problem for ATL 

are ExpTIME-eomplete. 
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Section 3.1.2 is largely devoted to the proof of the ExpTIME upper bound. The 

lower bound will be discussed briefly at the end of Section 3.1.2. We begin by showing 
that it suffices to prove the upper bound for Variant (c), as the other two cases may 

be reduced to this. Notice that with :E!p we denote the set of agents that occur in the 

formula <po 

LEMMA 3.3. The variants (a) and (c) of the satisfiability problem for ATL are 

polynomially reducible to each other, while Variant (b) is polynomially reducible to (a). 

In fact, we even have the stronger property that, for each formula <p and each set of 

agents :E :::> :E!p, <p is satisfiable in an ATS for :E iJJ it is satisfiable in an ATS for 

:E!p U {a}, for one fresh agent a. 

PROOF. Note that (c) is a special case of (a), where:E coincides with the set of agents 

:E!p which occur in <po Conversely, given a finite set :E and <p from (a), conjunctively 

add to <p any valid formula 'I/J containing exactly the agents from :E which do not occur 

in <po Then <p is satisfiable in an ATS for :E iff <p " 'I/J is satisfiable in an ATS for the 

agents which occur in <p" 'I/J. It thus remains to prove the second part, i.e., that for 

each formula <p and each set of agents :E :::> :E!p, <p is satisfiable in an ATS for :E iff it is 

satisfiable in an ATS for E!p U {a}, for one fresh agent a. 

":::>": Suppose S is an ATS for :E :::> :E!p such that S satisfies <po We convert S into an 

ATS S' for :E!pltJ{a} that also satisfies <po Define the transition function 6' of S' in terms 

of 6 in S as follows: for all q E Q, 

• 6'(q,a') := 6(q,a') for each a' E :E!p, and 

• 6'(q,a) :=6(q,:E\:E!p}. 

It is easy to show by structural induction that, for all q E Q and all formulas 'I/J using 

only agents from the set :E!p, we have S, q 1= 'I/J iff S', q 1= 'I/J. Thus, S' is a model of <p 

as required. 

"<=:": Suppose S is an ATS for :E!p ltJ {a} such that S satisfies <po Let a' E :E \ :E!p. We 

convert S into an ATS S' for :E such that S' still satisfies <po Define 6' of S' in terms of 

6 in S as follows: for all q E Q, 

• 6'(q, a"} = 6(q, a") for each a" E :E!p, 

• 6'(q, a') = 6(q, a), and 

• 6'(q,a"} = {Q} for each a" E:E \ (:E!p U {a'}}. 

Again, it is easy to show by structural induction that, for all q E Q and all formulas 'I/J 
using only agents from the set :E!p, we have S, q 1= 'I/J iff S', q 1= 'I/J. 0 

3.1.2. ATL Decision Procedure. This section is devoted to the proof of Theo

rem 3.2. The main result is containment in ExpTIME of Problem (c) from the previous 

section, i.e., satisfiability of ATL-formulas <p in ATSs over exactly the agents occurring 

in <po By Lemma 3.3, this yields ExpTIME upper bounds also for problems (a) and (b). 

The ExpTIME lower hounds for (a) and (c) are immediate by reduction of CTL as 
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sketched alter the definition of ATL in Section 2.4.1 of Chapter 2. To establish an 
ExpTIME lower bound for Problem (b), we will reduce the global consequence problem 

in the modal logic K. 
We start with the ExpTIME upper bound for Problem (c). Our approach is to use 

a type elimination construction similar to the one commonly used for CTL by Emerson 
and Halpern 172, 69J. One advantage of this approach is that it is constructive: if 
the input formula cp is satisfiable, then the proof actually constructs a model of cp. 
Moreover, this model is finite and of bounded size: the number of states is at most 
exponential in the length of cp. Thus, our algorithm can be used, e.g., for the synthesis 
of social procedures as sketched in Example 2.24 in Section 2.4.1 of Chapter 2. We 

should note that recently a similar construction has been independently developed by 

Goranko and van Drimmelen 198J. However, Goranko and van Drimmelen use their 

construction to prove completeness of an ATL axiomatisation rather than for obtaining 

upper complexity bounds. 
We start the presentation of our decision procedure with a number of definitions. 

DEFINITION 3.4 (Extended Closure). Let cp be an ATL-formula. The extended 
closure eel ( cp) of cp is the smallest set which is closed under the following conditions: 

• cp E eel(cp); 
• eel(cp) is closed under subformulas; 
• eel ( cp) is closed under single negation; 

• if ((A))01/1 E eel(cp), then ((A))O((A))01/1 E eel(cp); 
• if ((A))1/1U't9 E eel(cp), then ((A))O((A))1/1U't9 E eel(cp). 

It is easy to verify that for a given ATL-formula cp, the cardinality of the extended 
closure eel(cp) is linear in the length of cp. 

DEFINITION 3.5 (ATL Type). Let cp be an ATL-formula. The set '11 ~ ecl(cp) is a 
type for cp if the following conditions are satisfied: 

(T1) 1/11 V 1/12 E '11 iff 1/11 E '11 or 1/12 E '11, for all 1/11 V 1/12 E eel(cp); 
(T2) 1/1 E '11 iff -'1/1 fj. '11, for all -'1/1 E ecl(cp); 
(T3) ((A))01/1 E '11 iff {1/1, ({A))O({A))01/1} ~ '11, for all ({A))01/1 E ecl(cp); 
(T4) {{A))1/1U'IJ E '11 iff 't9 E '11 or {1/1, {(A))O{(A))1/1U'IJ} ~ '11, for all ((A))1/1U'IJ E 

ecl( cp). -

The set of all ATL types for cp is designated by r I(J' 

Before continuing, we introduce some convenient notions. We assume that IEI(JI = n 
implies EI(J = {I, ... , n}, i.e., the agents are numbered and their name coincides with 

their number. We call ATL-formulas of the form ((A))1/11 U 1/J2 or -,((A))01/1 eventualities. 
A next-formula is a formula of the form ((A))01/1 or -'((A))01/1. For each formula cp, 
assume that all next-formulas in eel(cp) are linearly ordered and use n", to denote the 

number of the next-formula 1/1 E ecl(cp) (the numbering starts with 0 and the formula 
cp will be clear from the context). The ordering is such that no negative next-formula 
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occurs before a positive one. Since there are as many positive next-formulas in ecl(cp) as 
negative ones, we obtain an enumeration 1/10, ... ,1/1k-l of k next-formulas, with positive 
next-formulas 1/10,"" 1/1k/2-1 and negative next-formulas 1/1k/2,"" 1/1k-l. 

To understand the following, central definition, let us sketch some details of the ATS 
S that our algorithm attempts to build as a model for the input formula cp. If n = I~cpl 

and k is the number of next-formulas in ecl(cp) , then (regardless of some technical 
details) the states of S consist of sequences of n-tuples whose components take values 
from {O, ... ,k - I}. The set of all such n-tuples is denoted with [kin], and the states 
of S will thus be from [kin]·. If q E [kin]· is a state of S, then {q . tit E [kin]} 
will be the set of its potential successors, i.e., the choices in 8(q, a) will be subsets of 
this set. When constructing S, each state q E [kin]· will have to satisfy a number 
of positive next-formulas and a number of negative next-formulas. Clearly, having to 
satisfy a positive next-formula ((A))01/1 at q means that there has to be an A-choice 
C E 8(q,A) such that all states in C satisfy 1/1. Similarly, having to satisfy a negative 
next-formula -.((A))01/1 at q means that all A-choices C E 8(q, A) have to contain a state 
satisfying -.1/1. This can be achieved by defining the transition function and assigning 
formulas to successors as follows: 

(i) For each agent a, we set 

8(q, a) := {{q. t E [kin] I t = (to, ... , tn-d and ta = p} I P < k/2} 

Recall that we assume agents to be natural numbers. Intuitively, every agent 
"owns" a position in t: and via this position he can make an a-choice in state 
q by "voting" for a positive next-formula that he wants to be satisfied. 

Due to this definition, for coalitions of agents A we can characterise A

choices as follows: A subset SA ~ [kin] is called an A-voting set if there exists 
a mapping r: A -+ {O, ... , k/2 - I} such that 

SA := {t = (to, ... , tn-I) Ita = r(a) for all a EA}. 

Then, the elements of 8 (q, A) are exactly the sets {q. f I f E SA} with SA being 
an A-voting set. 

(ii) To satisfy a positive next-formula ((A))01/1 at q, we use the voting set SA in 
which all agents a E A vote for this formula, i.e., 

SA = {f = (to, ... , tn-I) Ita = U((A»01/J for all a EA}. 

The ATS S is constructed such that all states in the corresponding A-choice 

{q. fI f E SA} E 8(q, A) make 1/1 true. 
(Hi) To satisfy a negative next-formula -.((A})01/1 at q, we have to pick an element 

from every A-choice C E 8(q, A), and then make 1/1 false at the picked elements. 
Note that, in being a member of an A-choice, a picked element will au

tomatically also be a member of an A' -choice for all A' ~ A. This is fine as 

-.((A))01/1 implies -. ((A')) 01/1. 
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However, if B g A, then ....,((A))01/J does not imply ...., ((B)) 01/J. Thus we 
should be careful that the picked elements from A-choices are not elements of 
B-choices for any such B. This is implemented by demanding that the element 

t= (to, ... , tn-I) picked for an A-choice satisfies ta ~ k/2 for each a ~ A. 
The description of how exactly we pick elements is given after the next 

definition. 
(iv) A special role is played by negative next-formulas ....,(('Ecp))01/J· As we are 

working with formula-defined sets of agents, 'Ecp is the set of all agents in S. 
For this reason, such negative next-formulas behave differently from formulas 
referring to smaller sets of agents. For example, ....,((A))01/J and ....,((A))01/J' 
imply ...., ((A)) O(1/Jv 1/J') if, and only if, A = 'Ecp. However, dealing with formulas 

....,(('Ecp))01/J is simple: they merely state that no successor of q satisfies 1/J. 

The whole picture of the ATS construction is somewhat more complicated due to the 
presence of box formulas and until formulas, which we will address later. 

We now introduce a ''refutation function" whose purpose is to pick, for states q that 

have to satisfy a negative next-formula ....,((A))01/J, successors that refute 1/J as explained 

under (iii) above. 

DEFINITION 3.6 (Refutation Function). Let cp be an ATL-formula, n = l'Ecpl and k 

the number of next-formulas in ecl(cp). We define a partial function 

f: [kin] x 21:", -+ {k/2, ... , k -I} 

mapping vectors and coalitions of agents to (numbers of) negative next-formulas: for 

each set A c 'Ecp of agents, fix an agent aA E 'Ecp \A. Then set, for all t = (to, ... , tn-I) E 
[kin] and A s;; 'Ecp, 

.... {~""'«A»O'I/J if taA = ~ ..... «A»O'I/J and for all a E 'Ecp, ta < k/2 iff a E A 
f(t,A) := 

undefined if there is no such ....,((A))01/J. 

Intuitively, f(i', A) = ~ ..... «A»O'I/J means that, for every state q satisfying ....,((A))01/J, 
the successor q . t has to refute 1/J. Note that there may be more than one successor 
of q refuting 1/J: at least one element of each A-choice. F<;>rmaily, the most important 
properties of the refutation function are the following: 

(1) for each formula ....,((A'))01/J' E ecl(cp) with A' c 'Ecp and each A'-voting set ., ... 
SA" there is an element t E SA' such that f (t', A') = U.,«A'»O'I/J' (Recall that 
A'-voting sets correspond to A'-choices; cf. explanation (i) above.); 

(2) for all ii = (t~, ... , t~_I) E [kin], fCP, A') = U..,«A'»O'I/J' implies t~ ~ kl2 for all 
a E 'Ecp \ A' (cf. explanation (Hi»; 

(3) for each f E [kin], there is at most a single A s;; 'Ecp with f(i', A) defined. 

It is easily verified that the function f from Definition 3.6 indeed satisfies these prop

erties. A different function satisfying the properties is given by van Drimmelen [252]. 
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To determine the satisfiability of an ATL-formula cp, the algorithm developed in this 
section will check for the existence of a model that is composed from certain trees, 
so-called cp-trees. 

DEFINITION 3.7 (<p-tree, '!9-vector, O-matching). Let cp be an ATL-formula, n = 

I~'PI and k the number of next-formulas in ecl(cp). For each next-formula '!9 E ecl(cp) 
and vector r = (to, ... ,tn-d E [kin], 

• if'!9 = ((A»O'I/J and ta = "1? for each a E A, then ris called a '!9-vectoT; 
• if '!9 = ....,((A»O'I/J with A c E'P' then ris called a '!9-vector if f(t:A) = "1?; 
• if '!9 = -.((E'P»O'I/J E ecl(rp), then ris called a '!9-vectoT. 

For each type W E r'P and each r = (to, ... , tn-l) E [kin], let Sw(t} ~ ecl(cp) be the 

smallest set such that 

(M1) if ((A»O'I/J E W and ris a ((A»O'I/J-vector, then 'I/J E Sw(t), and 
(M2) if ....,((A»O'I/J E W and ris a ....,((A»O'I/J-vector, then ....,'I/J E Sw(t}. 

Given a set M, a (M, k, n)-tree T is a mapping T from a finite prefix-closed subset of 

[kln1'" to M. A (r 'P' k, n)-tree is called a rp-tree. A rp-tree T is called O-matching if, 

for all a E dom(T) and all rE [kin], a . rE dom(T) implies ST(a)(t} ~ T(a· t}. 

Intuitively, a vector ris a ((A»O'I/J-vector if, for all states q satisfying ((A»O'I/J, the 
successor q . rhas to satisfy 'I/J, cf. explanation (ii) above. The -.((A»O'I/J-vectors can be 
understood in an analogous way. This intuition is reflected in (M1) and (M2) and in 
the definition of O-matching. 

Up to this point, we have set up the basic machinery to define ATSs based on the 
states [kin]"', and to treat satisfaction of (positive and negative) next-formulas. To deal 
with eventualities, we introduce cp-trees that witness their satisfaction, so-called witness 
trees. Their definition is largely analogous to the corresponding construction for CTL 

[69J. 

DEFINITION 3.8 (Witness Tree). Let cp be an ATL-formula, r a set of types for cp, 
and W E r. A rp-tree T is called a witness-tree rooted at W in r for a formula ((A»'I/J U '!9 
if it satisfies the following properties: 

(1) for all a E dom(T), T(a) Er; 

(2) T is Q-matching; 

(3) T(c) = '\If; 
(4) for all a E dom(T), ((A»'l/JU'!9 E T(a); 
(5) for all non-leaf nodes a, 'I/J E T(a); 
(6) for all leaf nodes a, '!9 E T(a); 
(7) if a E dom(T), ((A»O((A»'l/JU'!9 E T(a), '!9 fj. T(a) and 

ris a ((A» o ((A»'I/J U '!9-vector, then a . rE dom(T). 

T is called a witness-tree rooted at W in r for a formula ....,((A»D'I/J if it satisfies the 

following properties: 
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(1) for all a E dom(T), T(a) E rj 

(2) T is O-matchingj 

(3) T(c:) = Wj 
(4) for all a E dom(T), -.((A))01jJ E T{a)j 

(5) for all leaf nodes a, -.1jJ E T(a) 

(6) if a E dom(T), -.((A))O((A))01jJ E T(a), -.1jJ fI. T(a) and 

fis a -.((A))O((A))01jJ-vector, then a . f E dom{T). 

75 

Our decision procedure is based on the following core notion of realizability. In

tuitively, a type W is realizable in a set of types r if it is possible to (a) satisfy all 

next-formulas in W using only types from r, and (b) construct witness trees for all 

eventualities in W using only types from r. 

DEFINITION 3.9 (ATL Realizability). Let <p be an ATL-formula and r a set of types 

for <po A type WE r is ATL-realizable in r if the following conditions are satisfied: 

1. for each f E [kin], there is a w' E r such that S\lI(t) ~ W'j 

2. for each ((A))1jJ U -a E W, there is a ((A))1jJ U -a-witness tree rooted at W in rj 

3. for each -.((A))01jJ E 'Ill, there is a -.((A))01jJ-witness tree rooted at 'Ill in r. 

We are now ready to describe the decision procedure. The idea is to start with all 

types for the input formula, then repeatedly eliminate types that are not ATL-realizable, 

and finally check whether there is a type that survived elimination and contains the 

input formula. Let <p be an ATL-formula whose satisfiability is to be decided. The type 

elimination algorithm for ATL is presented as function ATL-Sat(<p) in Figure 3.1. The 

1. function ATlr-Sat(<p) returns 'Yes, .. .' or 'No, .. .' 
2. m:=O 
3. Llm := r '" 
4. do 
5. m:=m+l 
6. Llm := {IJ! E Llm- 1 IIJ! is ATL-realizable in Llm-d 
7. until Llm = Llm- 1 
8. if <p E IJ!, for some IJ! E Llm, 
9. then return 'Yes, <p is satisfiable in an ATS for E",.' 
10. else return 'No, <p is not satisfiable.' 
11. end-function 

FIGURE 3.1. A type-elimination algorithm for ATL. 

algorithm starts with the set of all types r'P for the input formula <p (line 2 and 3). 

Then it inductively computes a sequence ao, al!'" of sets of types for <p as shown 

in the do-until loop (lines 4-7) while repeatedly eliminating the types that are not 

ATL-realizable. Since there are only finitely many types to start with, the algorithm 

eventually leaves the loop with a set am of types such that am+l = am for some m ~ 0 

(line 7). Notice that, at this point, am is a set of types for <p that are all ATL-realizable 
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in Am. The algorithm returns 'Yes, cp is satisfiable in an ATS for ~'P' if the input 
formula cp is contained in some type of Am (line 8 and 9); otherwise it returns 'No, cp 
is not satisfiable.' (line 8 and 10). 

We proceed as follows: first we show that this procedure is effective by proving that 
the existence of witness trees is decidable in exponential time. 

LEMMA 3.10. Let r be a set of types for an ATL-formula cp. Then the existence of 

witness trees in r can be decided in time exponential in the length of cp. 

Second, we prove soundness and completeness of the procedure. 

LEMMA 3.11. Let cp be an ATL-formula. Then the procedure returns 'Yes, the input 

formula cp is satisfiable in an ATS for ~'P' iJJ this is indeed the case. 

Finally, we establish that it runs in exponential time. 

LEMMA 3.12. The described type elimination procedure runs in exponential time. 

The proofs of these lemmas can be found in the next section. 

Let us now consider the lower bound. By Lemma 3.3, it is sufficient to prove 

ExpTIME-hardness for variant (b) of the ATL satisfiability problem. For this vari

ant, ExpTIME-hardness does not trivially follow from ExpTIME-hardness of CTL: the 

translation from CTL to ATL described after the definition of ATL in Section 2.4.1 can
not be used since, when concerned with satisfiability over arbitrary sets of agents, there 

is .no obvious ATL-equivalent of CTL-formulas of the form Ecpu 'IjJ. Note in particular 
that we cannot use (~})cpU 'IjJ since the coalition ~ of all agents is not available for a 
formula. Moreover, the «~}}cpU'IjJ equivalent formula -.((0}}-.(cpU'IjJ) is not according 

to the syntax of ATL. 
To show the lower bound for ATL satisfiability over arbitrary sets of agents, we 

reduce the ExpTIME-hard global consequence problem in the modal logic K. For the 

syntax and semantics of K, we refer to Section 2.1 in Chapter 2 or to, e.g., [2271. To 

avoid confusion with the operators of ATL, we denote the diamond and box of K with. 
and •. Recall that the global consequence problem is to decide, given two K-formulas 

cp and 'IjJ, whether it is the case that for every Kripke structure M, if cp is true in every 

state of M (in symbols, M F= cp), then 'IjJ is true in every state of M. 
For the reduction, we use the following facts: (i) a Kripke structure M with an 

accessibility relation that is serial (right unbounded) is equivalent to an alternating 

transition system with a single agent [15, 961; (ii) «0))Ocp expresses that cp is true at 

all successors; and (iii) «0))Ocp expresses that cp holds in the (reachable part of the) 
whole model. Now let cp and 'IjJ be K-formulas. 'franslate cp and 'IjJ into formulas of ATL 

using the following translation (-)U: 

pU .- Pi 

(cp 1\ 'IjJ)U ._ cpUI\'ljJU; 
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(""<p)~ .- ""<p~; 

(.<p)~ .- ...,((0})O""<p~; 

(-<p)~ .- ((0}) O<p~· 

Now it suffices to show the following: 

LEMMA 3.13. 'ljJ follows globally from <p iJJ ((0}}O<p# /\ ...,'ljJ# is unsatisfiable in ATL 

with arbitrarily many agents. 

PROOF. It is straightforward to prove by structural induction that, for all Kripke 

structures M with serial accessibility relations, all states q of M, and all K-formulas 

1'), we have M, q F 1') if! M, q F 1')", where, on the right hand side, M is viewed as 

a single-agent ATS. We leave details to the reader and continue with a proof of the 

lemma. 

"<:::". We show the contrapositive. Thus suppose 'ljJ does not globally follow from <po 
Then there is a Kripke structure M such that M F <p and M, q ~ 'ljJ for some state q 
of M. Then, M, q F ((0}}O<p~ and M, q ~ 'ljJ#. Hence, M, q F ((0}}O<p" /\ ...,'ljJ~, and this 

formula is satisfiable in a single-agent ATS. 

"=:-". We again show the contrapositive. Suppose ((0))O<p" /\ ...,1j;U is satisfiable and take 

an ATS M and a state q of M such that M, q F ((0}}O<pU /\ ...,1j;~. By Lemma 3.3 and 

since ((0}}O<p# /\ ...,'ljJ" does not refer to any agents, we may assume that M is a single

agent ATS and thus a Kripke structure. We have M, q F ((0})O<pU and M, q ~ 'ljJ#. By 

the former, <p# holds at all points reachable from q. Denote by N the model induced 

by M on those points. Then N F <p but N, q ~ 1j;. Hence, 'ljJ does not follow globally 
from <po 0 

3.1.3. Proofs for the ATL Decision Procedure. 

LEMMA 3.10. Let r be a set of types for an ATL-formula <po Then the existence of 
witness trees in r can be decided in time exponential in the length of <po 

PROOF. Let <p and r be as in the lemma, and Wo a type in r. We only show how 
to check the existence of witness trees for formulas of the form ((A}}'ljJU1'). Witness trees 
for formulas ""((A}}O'ljJ can be treated analogously. Thus, sllPpose we want to check the 

existence of a witness tree for ((A})'ljJU1') E Wo rooted at Wo in r. Start with identifying 

leaf nodes of possible witness trees by marking all types in r which contain ((A))'ljJU1') and 

1'). Then identify inner nodes of possible witness trees as follows: For all unmarked types 

W E r such that ((A))'ljJU1') E W, mark W if'ljJ E wand for all ((A)) 0 ((A)) 'ljJU1')-vectors 

f E [kin], there is a type W' E r such that: 

(i) S\lI{t) ~ w', and 
(ii) w,· is marked. 

Repeatedly apply this procedure until no more types in r get marked. Note that this 

process must terminate since r contains only finitely many types. 
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It is easy to see that a witness tree for ((A)}1/JUtJ exists iff \lIo was marked. For the 
left-to-right direction, suppose a witness tree exists. At the beginning of the marking 
procedure, all leaf nodes of possible witness trees are marked. In every subsequent 
round, all inner nodes of possible witness trees in increasing distance from the leaf nodes 
will be marked. Hence, eventually \lIo will be marked. For the right-to-left direction, 
assume that \lIo is marked and consider the following informal construction of a witness 
tree. Take the type \lIo as the root. For each leaf and for all ((A}}O((A}}1/JUtJ-vectors, 
add a successor type that satisfies (i) and (ii) until a type is reached which was marked 
at the beginning. Note that this process will not generate any infinite paths since, when 
choosing a successor type for some type \lI, we can only use a type that was marked 
strictly before \lI was marked. It is readily checked that all properties of a witness tree 
are fulfilled by the obtained tree. 

For the complexity of the algorithm that checks for witness trees consider the fol
lowing. Let n = Icpl. Note that the cardinality of the extended closure ecl(cp) is linear 
in n, i.e., lecl(cp)I = c· n for some constant c 2: 1. Since r ~ r ep ~ 2ecl(ep), it holds 
tha.t Irl :s; 2c·n . For marking the leaf nodes, maximal 2c·n types have to be considered. 
For the marking of the inner nodes consider the following. Since there are at most 2c·n 

types in r and in each marking round at least one type gets marked, there are maximal 
2c-n marking rounds. In each such round, maximal 2c'n yet unmarked types have to be 
checked. In order to find out whether to mark such a type, not more than nn vectors 
have to be considered and for each such vector, tests for conditions (i) and (ii) with 
maximal 2c·n types need to be performed. Altogether this yields an upper bound of 
2c·n + 2c·n . 2c·n . nn . 2c·n = 20(n

2
) steps. Thus the existence of witness trees can be 

checked in time exponential in the length of cp. 0 

LEMMA 3.11. Let cp be an ATL-formula. Then the procedure returns 'Yes, the input 

formula cp is satisfiable in an ATS for Eep I iff this is indeed the case. 

PROOF. Suppose cp is given, and let E = Eep and n = IEepl. 

",*" (Soundness) Assume that the elimination procedure was started on input cp 
and returns ''Yes, the input formula cp is satisfiable". Let r = {\lIo, ... , \lIm-d be the 
computed set of types. Then all types of rare ATL-realizable in r and there is a type 

WE r with cp E W. Our aim is to construct an ATS that is a model of cp. 

To this end, enumerate all eventualities in ecl(cp) by 1/Jo, ... , 1/Jl-l' For each i with 

i < l and each j with j < rn, fix a cp-tree T(1/Ji,~j) as follows: 

• If 1/Ji E 'Il j, then fix a 1/Ji-witness tree T rooted at 'Il j in r. Supplement all 
inner nodes of T with missing successors; for each inner node 0: E dom(T) and 
each f E [kin], if 0: . f f/. dom(T), then add it and set T(o: . t) = \lI for some 
'Il E r such that ST(a)(t) ~ 'Il. Note that such a'Il must exist by Condition 1 
of Definition 3.9. Let T(1/Jj'~i) be the result of augmenting T in this way. 
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• If 'IjIi fJ. Wj, then let T(tPi,lVj) be the tree comprised of the nodes {c} U [kin] such 

that T(tPi,lVj)(c) = Wj and, for each f E [kin], T(tP;,lVj)(i) = W for some W E r 
with SlVj(i) ~ w. 

It is easy to see that all trees T(tPi,lVj) are Q-matching. To construct a model of <p, 

el-l,D 

T(tPl_l,'VO) 

el-l,m-l 

T(tPl-l,'Vm-l) 

eD,m-l 

T(tPO,'Vm_l) 

FIGURE 3.2. f x m-matrix of witness trees. 

intuitively we do the following: we arrange the selected witness trees in an f x m-matrix 

such that the rows range over the eventualities 'IjIo, ... , 'IjIl-l and the columns over the 
types wo, ... , Wm-l, and then replace all leaf nodes by an 'arrow' from the leaf node's 
predecessor to the root of some other witness tree. For an illustration of the f x m-matrix 
of the witness trees, see Figure 3.2. 

We now define the ATS S = (IT, E, Q, 1T', a) that we then prove to be a model of <po 

IT and E are the sets of those propositions and agents that occur in the input formula <po 

For defining the set of states Q, fix symbols Ci,j with i < i and j < m. Then set: 

Q := {ci,jW I W E dom(T(tP;,lVj») is inner node}. 

Next, the valuation 1T' is easily defined: for q = ci,jW E Q, set 

To define the transition function a, we first define a successor function on Q: for each 

q = Ci,jW E Q and each f E [kin], set 

sr(q) ._ { C8,p 

q·t 

if W· fis a leaf node of T(tPj,lVj) , 

s = i + 1 mod l and T(tP;,lVj)(w, i) = wp ; 

if W· fis an inner node of T(tPi,lVj)' 



80 3. COMPLEXITY OF REASONING IN ATL/ ATEL 

Now the definition of 6 is straightforward: for each q E Q and a E ~, set 

6(q, a) := {{s;(q) I t= (to, ... , tn-I) E [kin] and ta = p} I p < k/2}. 

To show that S is indeed a model of cp, we introduce some auxiliary notions: 

For each strategy (J A = {(J a I a EA} for a set of agents A ~ ~. and each sequence 
of states.x E Q+, we write (JA(.x) to denote the set of states naEA (Ja(.x). Observe that, 
by definition of strategies for single agents, we have (JA(.x· q) E 6(q,A) for all .x E Q+ 
and q E Q. 

For each positive next·formula ((A»Ot/J, the ((A»Ot/J-strategy is the strategy (J A = 

{(Ja I a E A} for the set of agents A that is defined by setting, for each a E A, 

(Ja(.x· q) := {sr(q) It = (to, ... , tn-I) and ta = U((A}}07/l}' 

It is readily checked that we have 

(3.1) (JA(.x· q) = {sr(q) I tis a ((A»Ot/J·vector}. 

For each negative next-formula -.((A»Ot/J, a -.((A»Ot/J-computation for a strategy (J A 
rooted at a state q E Q is a computation .x E out(q, (J A) such that, for all positions i ~ 0, 

.x[i + 1] = s;(,X[i]) for some -.((A»Ot/J-vector t E [kin]. 

CLAIM 3.12. Let -.((A»Ot/J be a next-formula, (J A a strategy and q E Q. Then there 
exists a -.((A»Ot/J-computation for (J A rooted at q. 

PROOF OF CLAIM Let -.((A»Ot/J, (J A and q be as in the claim. Inductively define a 
-.(A»Ot/J-computation ,X E QW for (J A rooted at q as follows: 

• 'x[0] := q, and 
• for each i ~ 0, ,X[i + 1] := s;(.x[i]) for some -.((A»Ot/J-vector t E [kin] such 

that s;(,X[i]) E (JA('x[ij). 

In order to show that .x is well-defined, it remains to show that for each i ~ 0, there is 

a state sr(,X[i)) E (J A (.x[i]) such that tis a ..,((A»Ot/J-vector. Distinguish two cases: 

• A = E. By definition, every vector t E [kin] is a -'((~»Ot/J-vector. Since 
(J A (,X[i]) E 6(,X[i], A), (J A (,X[i]) is non-empty. Thus, any vector from (J A (.x[i]) is 
suitable. 

• A ¥= E. By definition of 6 and since (JA('x[i]) E 6(,X[i], A), (JA(,X[i]) = {sr('x[i]) I 

rE SA} for some A-voting set SA. By condition 1 of the function f used in the 

definition of -.((A»Ot/J-vectors, S contains a -.((A»Ot/J-vector. Thus, there is 

a state sr(,X[i]) E (JA(,X[ij) such that tis a ..,((A»Ot/J-vector. 

... 
To denote the intended type of a state q = Ci,jW E Q, we set t(q) := T(7/lj,\lfj) (w). Using 
the construction of S and property 2 of witness trees, it is straightforward to prove the 

following claim, which, intuitively, states that our ATS is O-matching: 

CLAIM 3.13. For all q E Q and t E [kin], St(q)(t) ~ t(s;(q)). 
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The next claim establishes the property of S that is crucial for showing that it is a 

model of cp. 

CLAIM 3.14. For any state q E Q and any formula 7f; E ecl(cp), 7f; E t(q) iff S, q F 7f;. 

PROOF OF CLAIM Let q and 7f; be as in the claim. The proof is by induction on 

the structure of 7f;. Since the base case and the Boolean cases are straightforward, we 

concentrate on path quantifiers: 

• 7f; = «A))07f;'· ",,*": Suppose «A))07f;' E t(q). Let O'A be the «A))07f;'
strategy and ,X E out(q,O'A) a computation. By equation (3.1), 'x[I] = sr('x[O]) 

for some «A))07f;'-vector t. From «A))07f;' E t('x[O]) and Claim 3.13, it follows 

that 7f;' E t('x[I]). The induction hypothesis yields S, 'x[I] F 7f;'. Hence, S, q F 
«A))07f;' by the semantics. 

"*": Suppose «A))07f;' ~ t(q). Then -,«A))07f;' E t(q) by (T2). Let O'A be any 

strategy for the agents in the coalition A and ,X a -,«A))07f;'-computation for 

O'A rooted at q. Note that by Claim 3.12 there is such a'x. Since 'x[I] = sr('x[O]) 

for some -,«A))07f;'-vector f, -,7f;' E t('x[I]) by Claim 3.13. Condition (T2) 

yields 7f;' ~ t('x[I]). Thus S, 'x[I] ~ 7f;' by the induction hypothesis. Hence, 

S, q ~ «A))07f;' by the semantics . 

• 7f; = «A))07f;'. ",,*": Suppose «A))07f;' E t(q). Let O'A be the «A))O(A))07f;'
strategy and ,x E out( q, 0' A) a computation. We show by induction on i that, 

for i ~ 0, the following holds: 

(1) «A))07f;' E t(,X[i]); 
(2) «A))O«A))07f;' E t(,X[i]) 
(3) 7f;' E t(,X[i]). 

For the base case, (1) is immediate since 'x[0] = q. Thus, condition (T3) yields 

«A))O«A))07f;' E t('x[O]) and 7f;' E t('x[O]) which gives us (2) and (3). For the 

induction step, the induction hypothesis gives us «A))O«A))07f;' E t(,X[i -1]). 
By (3.1), 'x[i] = sr(,X[i - 1]) for some «A))O«A))07f;'-vector t. By Claim 3.13, 
it follows that «A))07f;' E t(,X[i]) and thus we have (1). Now we may again 

use (T3) to infer «A)) 0 «A))07f;' E t('x[i]) and 7f;' E t(,X[i]) and obtain (2) 
and (3). This finishes the induction on i. Finally, (3) and the induction 

hypothesis yield S, ,X[i] F 7f;' for all i ~ 0 and we are done. 

"*": Suppose «A))07f;' rf. t(q). Then -,«A}}07f;' E t(q) by (T2). Let O'A be 

any strategy for the agents in A and ,x a -,«A}}O«A))07f;'-computation for O'A 

rooted at q. In the following, it is shown that -,7f;' E t(,X[i]) for some i ~ O. 

Then (T2) yields 7f;' ~ t(,X[i]) and the induction hypothesis S, ,X[i] ~ 7f;'. Hence, 

S, q ~ «A}}07f;' by the semantics as desired. 

Suppose by contradiction that -,7f;' rf. t(,X[i]) for all i ~ O. By (T2), 7f;' E 

t(,X[i]) for all i ~ O. We show by induction on i that, for i ~ 0, the following 

holds as well: 

(1) -,«A}}07f;' E t(,X[i]); 
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(2) ..,((A)}O((A}}OlP' E t(~[i]) 

For the base case, (1) has already been shown. Since 11" E t(>'[Oj), (T3) and (1) 

imply ((A}}O((A})OlP' fI. t(~[O]). Thus, (2) follows by (T2). For the induction 

step, the induction hypothesis gives us -.«(A}}O(A})OlP' E t(>.[i - 1]). By 

definition of >., >.[i] = 8r<~[i - I)) for some -.(A))O«A)}OlP'-vector t. By 

Claim 3.13 and the matching condition (M2) in Definition 3.7 of O-matching, 

we thus have -.((A)}OlP' E t(~[i)). To establish (2), we may argue as in the 

base case. 

By the matrix construction of S, there is a position i ~ 0 such that ~[i] 

is the root of the cp-tree T(-D,w) where D = -.(A)}OlP' and q, = t(>.[i)). Since 

..,((A))OlP' E q, by (1), T(-D,w) is a witness tree for the eventuality -.«A})OlP' 

rooted at q, in r. The finiteness of T(-D,w) implies that there is a position j ~ i 

such that the type t(>.[j)) labels one of its leaf nodes >.[j]. Hence, -.11" E t(>.[j]) 
by definition of the witness tree T({},w); a contradiction . 

• 11' = «A)}lP' U D. This case is similar to the previous one and left to the reader . 

.... 

Since cp E \If for some type \If Er, there is a state q E Q such that 11' E t (q). Then 

it follows from Claim 3.14 that S,q 1= cp. 

"*," (Completeness): Suppose cp is satisfiable in an ATS S = (Il, I:: , Q, 7l", o) in a 

state qcp E Q. For each state q E Q, let t(q) be the type {1P E ecl(cp) IS, q 1= 1P}. Denote 

with types(Q) the set of all types associated with some state in Q. We first establish 

the following claim: 

CLAIM 3.15. Let q E Q and t E [kin]. Then there is a state q' E Q such that 
St(q)(t) ~ t(q'). Moreover, the following holds: if «A}}OlP E t(q) and OA is a strategy 
such that, for all computations ~ E out(q,OA), we have S, >'[1] 1= 11', we can choose q' 
such that q' E OA(q). 

PROOF OF CLAIM Let q and tbe as in the claim. Also, select a formula «A})OlP and 

a strategy O"A as in the "moreover" part of the claim. Note first that, by Property 3 of 

the function f used in the definition of vectors for negative next-formulas, tis a vector 

for at most a single formula -.«A'}}OlP' with A' C I::cp. Let 

• «A1))01/J}'· .. , «At))01/Ji be all positive next-formulas from t(q) for which tis 

a vector; this includes the selected formula «A))OlP; 
• ..,«A'))01/J' be the single negative next-formula from t(q) with A' C I::cp for 

which t is a vector, if such a formula exists; 

• -.«Ecp))01/Jr, ... , -.«Ecp))01/J'/n be all negative next-formulas from t(q) quanti-

fying over the set of all agents Ecp. 

Observe that, by definition, tis a vector for all negative next-formulas quantifying over 

E<p, so that -.1/Jr,···, ..,1/J'/n E St(q)(t). Next note that, by definition of vectors for positive 

next-formulas, we have Ai n Aj = 0 for 1 ~ i < j ~ t. 
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For 1 ~ i ~ f, let O"Ai be a strategy such that for all computations A E out(q,O"A;), 
S, A[I] F 1/Ji. Such a strategy exists since ({Ai ))01/Ji E t(q). For the selected formula 
({A))01/J from the "moreover" part of the claim, choose the selected strategy O"A. Let 

B = U1 <i<t Ai and set 0" B = Ul$i$l 0" Ai which is well-defined since Ai n Aj = 0 for 
1 ~ i < j ~ f. Thus for all A E out(q, O"B), we have S, A[I] F 1/Ji for 1 ~ i ~ f. 

Next, select a computation A E out(q,O"B). If there is no negative next-formula in 
t(q), for which fis a vector, then choose an arbitrary element A E out(q, O"B) (out(q,O"B) 
is non-empty since &(q, A) is non-empty for all q and A). Otherwise, choose a A E 

out(q,O"B) such that S, A[I] F -.1/J'. Such an element exists since, first, -.«A'))01/J' is 
in t(q) and, second, f being a vector for this formula implies (by property 2 of the 
refutation function f used in the definition of such vectors) that Ai ~ A' for 1 ~ i ~ f. 

Finally, we have S, A[I] F -.1/J:' for 1 ~ i ~ m since -.((E",))01/Jt E t(q) implies that 
S, N[I] F -.1/J;' for any computation N rooted at q. 

Summing up, we have shown that St(q)(i) ~ t(A[I]) E types(Q). Thus, A[I] is the 
state whose existence is stated in the claim. 

In the following, it is shown that all types in types(Q) are ATL-realizable in types(Q). 

Let q E Q be a state. We have to check that each type t(q) in types(Q) satisfies 
conditions 1 to 3 of Definition 3.9. 

1. Let f E [kin]. We have to show that St(q)(i) s;; lIt for some lIt E types(Q). 
Clearly, this is an immediate consequence of Claim 3.15 (the ''moreover'' part 
is not needed). 

2. Suppose ({A))1/JU{) E t(q). It is our aim to construct a «A))1/JU{)-witness tree 
rooted at the type t(q) in types(Q). Since S, q F «A))1/JU{), there is a strategy 
0" A such that for all computations A E out(q, O" A), there is a position i ~ 0 such 
that S, A[i] F {) and S, A[j] F 1/J for j < i. 

Using the semantics, it is not difficult to prove that 0" A satisfies the following 
property: if A E out(q,O"A) and i E 1N is smallest such that S,A[i] F {), then 
(a) S, A[j] F «A))1/JU{) for j ~ ij 

(b) S, A[j] F «A)) o «A)) 1/J U {) for j < ij 
(c) S, A[j] F 1/J for j < i. 

We use O"A to define a (Q,k,n)-tree T. This tree can then easily be converted 
into the required witness-tree. For a member a of [kin]"', denote by a[O, i] the 

initial segment of a of length i + 1. In particular, a coincides with a[O, lal-I], 
where lal denotes the length of a. Now, the construction proceeds by induction 
as follows: In the induction start, set T(c) := q. In the induction step, let 
a E dom(T) be such such that T(a) is already defined. If S, T(a) F= {), then 

a is a leaf and we do not further extend this branch. Otherwise, for each 
«A))O«A))1/JU{)-vector ~ set T(a· i) := q' for some q' E Q such that 
(i) St(T(cr»(i) ~ t(q'), and 

(ii) q' E O"A(A) where A = T(a[O, 0]) T(a[O, 1]) ... T(a[O, lal- 1]). 
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The existence of such a q is a consequence of Claim 3.15: since>. = >.' . T(o:) 
for some >.', there exists a strategy O'A such that O'A (T ( 0:)) = 0' A (>.). Take any 
such strategy. Now apply Claim 3.15 including the ''moreover'' part, using the 

next-formula ((A»O((A»'l/JU'19 and the strategy O'A' to get the desired state q'. 
Note that the prerequisites of the "moreover" part are satisfied: 

- S, T(a) F ((A»)O((A})'l/JU'19 holds by (b)j 

- for all computations >. E out(T( 0:), O'A), we have S, >'[1] F ((A))'I/J U '19 since 

O'A is based on O'A and by (a). 

We now show that T is finite. Suppose by contradiction that there is an infinite 

path l' E [k/n]W in T. Let>. E QW be the infinite sequence defined by setting 

>.[iJ := T(1'[O,i]). By (ii), >. E out(q,O'A). Then there is a position i ~ 0 such 

that S,>.[i] F'I9. Thus '19 E t(>.[iJ) = t(T(1'[O,iJ)) and the node 1'[O,i + 1] is a 

leafj a contradiction. 

Since the nodes in T are labelled by states, the composition t(T(.)) yields a 

finite 1p-tree. To show that t(T(·)) is a ((A»'l/JU'I9-witness tree rooted at t(q) in 

types(Q), it remains to show that T satisfies properties 1 to 7 in the definition 

of a ((A»'I/J U 'I9-witness tree: properties 1, 3, 6 and 7 are immediate by definition 

of Tj property 2 is a consequence of (i), property (4) a consequence of (a) and 

property 5 a consequence of (c). 

3. This case is similar to the previous one and left to the reader. 

From S,q'fl F tp it follows that tp E t(q'fl)' Then types(Q) is a set of types that are 

each ATL-realizable in types(Q) and t(q'fl) is a type in types(Q) such that <p E t(q'fl)' 
Let A be the set of types for <p computed by the type elimination algorithm. It is easy 

to see that types(Q) ~ A. Hence, the algorithm returns ''Yes, the input formula <p is 

satisfiable". 0 

LEMMA 3.12. The described elimination procedure runs in exponential time. 

PROOF. Suppose <p is given and let n = 1<p1. Recall that the size of the extended 

closure ecl(tp) is linear in the length of <p, i.e., lecl(tp)I = c· n for some constant c ~ 1. 

The algorithm computes a sequence Ao,···, Am of sets of types such that Ao ;;2 Al ;;2 
... ;;2 Am· Since Ao = r 'fl ~ 2ecl('fl), this sequence is finite with rn ~ 2c·n . For each i 

with 0 ~ i < rn, it holds that IAil < IAol ~ 2c·n . Thus, to compute the set Ai+1 at 

most 2c·n types in Ai need to be checked whether they are ATL-realizable in Ai' In the 

following, it is shown that for a type W E Ai at most 20(n
2

) steps are needed to check 

for W's realizability in Ai. Consider the 3 points in Definition 3.9: 

1. For at most for nn vectors (as k ~ n), inclusion tests for maximal2c·n types in 

Ai have to be performed. Hence, this takes not more than nn .2c·n = 20(n
2

) 

steps. 

2.,3. By Lemma 3.10, to decide the existence of witness trees takes not more than 

20(n
2

) steps. This has to be done for at most n formulas of the form ((A»'I/J U '19 

or ...,((A»O'I/J in W. Thus, altogether maximal 20(n
2

) steps are needed. 
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Note that checking whether there is a type in Am that contains cp takes not more than 
20 (n) steps. We conclude that our decision procedure runs in time exponential in the 

size of the input. 0 

3.2. Complexity of ATEL 

In what follows, we consider ATEL, the extension of ATL by epistemic operators for 
individual knowledge, common and distributed knowledge as defined in Section 2.5.1 in 

Chapter 2. 
In 2004, Goranko, Jamroga and van Drimmelen [97J axiomatised the fragment of 

ATEL without operators for distributed knowledge. From this axiomatisation, it be

comes clear that the extension of ATL by operators for individual and common knowl

edge is the independent fusion ATL®S5c in the sense of [88J of the logics ATL and 

S5c . Although both logics, ATL [252, 265J and S5c [103J, are ExpTIME-complete, 

it does not follow from general results on fusions of modal logics that the fusion is 
ExpTIME-complete as well. For instance, an increase in computational complexity 

when taking fusions can be observed with the fusion of S5 with itself: while S5 is in 

NP [103J, the fusion is PS PAcE-hard [88J. From general results on complexity transfer 

for fusions [27, 25, 26], it only follows that ATL®S5c is in 2-ExpTIME. In the next 

section, we show that the satisfiability problem for ATEL is ExpTIME-complete using 

a type elimination construction that extends the construction for ATL presented in the 

previous section with a technique of Halpern and Moses [1031 to handle the additional 

knowledge operators. This complexity result for ATEL was presented in [264J. 

As for ATL, when formulating satisfiability problems for ATEL some care is needed 

as it was analyzed in Section 3.1.1. In particular, the range of semantic structures, 

over which a formula is to be interpreted, needs to be specified. Three variants of 
the satisfiability problem for ATL were suggested depending on the possibilities for the 
number of agents to occur in semantic structures. For ATEL, however, we concentrate 
only on one of these problems; the other two satisfiability problems can be reduced to 

this: 

Satisfiability over formula-defined sets of agents: Given a formula cp, is cp sat
isfiable in a structure for exactly the agents which occur in cp? 

In the next section, we show that this satisfiability problem for ATEL is ExpTIME

complete. 

3.2.1. AT EL Decision Procedure. In this section, we show that ATEL satisfi

ability is ExpTIME-COmplete by extending the ExpTIME-COmpleteness result for ATL 

in Section 3.1.2 to ATEL, which shows that adding epistemic operators for common 

knowledge and distributed knowledge to ATL does not yield an increase in computa

tional complexity. 

THEOREM 3.13. The satisfiability problem for ATEL is ExpTIME-complete. 
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The lower complexity bound carries over from the fragment ATL, which was shown 

to be ExpTIME-hard at the end of Section 3.1.2. For the upper bound, we now show 

that ATEL satisfiability is in ExpTIME. Correctness of the decision procedure follows 

from Lemma 3.19 while Lemma 3.20 proves its exponential running time. 

The decision procedure implements an extended version of the type elimination con

struction for ATL from Section 3.1.2 that additionally accounts for ATEL's epistemic 

operators K a , EA, CA and DA for each agent a and coalition A of agents where the 

epistemic operators are dealt with similarly to [1031· We start with refining the defini

tion of an extended closure with knowledge operators. The closure for an input formula 

cp contains all formulas that are relevant for deciding cp. 

DEFINITION 3.14 (Extended Closure with Epistemic Operators). Let cp be an ATEL

formula and n the number of agents occurring in cp. The extended closure ecl(cp) of cp 

is the smallest set which is closed under the following conditions: 

• cp E ecl(cp)j 
• ecl(cp) is closed under subformulasj 

• ecl(cp) is closed under single negationj 

• if «A}}o'l/1 E ecl(cp), then ((A}) 0 ((A}) 0'1/1 E ecl(cp); 

• if ((A}}'I/1U'19 E ecl(cp), then ((A}}O((A))'I/1U19 E ecl(cp)j 

• if EA'I/1 E ecl(cp) with A = {at, ... , ad, then -{-,Kat '1/1 V ... V -.Kat 'l/1) E ecl(<.p)j 

• if CA'I/1 E ecl(cp), then EACA'I/1 E ecl(<.p)j 
• if Ka'l/1 E ecl(<.p) and DA19 E ecl(cp) with a E A, then DA'I/1 E ecl(<.p); 

• if DA'I/1 E ecl(cp) and DB19 E ecl(cp) with A ~ B, then DB'I/1 E ecl(<.p). 

Note that the cardinality of ecl(<.p) is linear in the length of <.p. 
Now the notion of types is adapted to additionally account for epistemic operators. 

DEFINITION 3.15 (ATEL Type). Let <.p be an ATEL-formula. The set 'It ~ ecl(<.p) 
is a type for cp if the following conditions are satisfied: 

(T1) '1/11 V 1/12 E 'It iff'l/11 E 'It or '1/12 E 'It, for all '1/11 V 1/12 E ecl(<.p)j 

(T2) '1/1 E 'It iff -.'1/1 ~ \11, for all-.'I/1 E ecl(<.p)j 

(T3) ((A}}O'l/1 E \11 iff {'1/1, ((A)}O((A}}o'l/1} ~ 'It, for all (A}}O'l/1 E ecl(cp)j 

(T4) (A}}'I/1U'19 E \11 iff 19 E \11 or {'1/1, ((A}}O((A}}'I/1U19} ~ \11, for all «A}}'I/1U19 E 

ecl(cp)j 

(T5) if Ko'l/1 E \11, then '1/1 E \IIj 

(T6) EA'I/1 E \{I iff -.(-.Kot 'l/1 V ... V -.Kat 'l/1) E \11, for all EA'I/1 E ecl(<.p) with A = 
{all ... ,at}j 

(T7) CA'I/1 E w iff {'1/1, EACA'I/1} ~ \11, for all CA'I/1 E ecl(<.p)j 

(TB) if DA'I/1 E \11, then '1/1 E \IIj 

(T9) if Ko'l/1 E \11, then DA'I/1 E \11, for all DA19 E ecl(cp) with a E Aj 

(TlO) if DA'I/1 E \11, then DB'I/1 E 'It, for all DB19 E ecl(cp) with A ~ B. 
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The set of all types for r.p is designated by r 'P' 
Note that the cardinality of r'P is exponential in the length of r.p. 
Intuitively, an ATEL type describes a state q of a transition system by means of 

formulas from ecl(r.p) which are true at q. The decision procedure will use all types 

for an input formula to determine its decidability. The conditions (T1) to (TlO) state 
restrictions on the formulas in a type: (T1) to (T4) deal with Boolean and temporal 
formulas; the conditions (T5) to (TlO) were added to handle epistemic formulas. In 
particular, the relation between formulas with epistemic operators K and D are taken 

care of by (T9) and (TlO). 
As for ATL, we assume that all next formulas in the extended closure ecl(r.p) are 

linearly ordered such that no negative next formula occurs before a positive one. We de

note with ~1/i the number of the next formula 1/J E ecl( r.p) in this ordering; the numbering 
starts with O. Since there are as many positive next formulas in ecl(r.p) as negative ones, 

obtain the following enumeration 1/Jl," .1/Jk with 1/Jl, .. " 1/Jk/2-1 positive next formulas 

and 1/Jk/2' ... ,1/Jk negative next formulas. 
Intuitively, the presented type elimination algorithm eliminates those types that 

cannot be used for building an AETS S that is a model for an input formula r.p. Every 

state q of S corresponds to some type that was not eliminated and the construction of 

S is aiming at satisfying every formula of this type at q. In particular, q will have to 

satisfy a number of positive and negative next formulas, negated box formulas and until 
formulas. These formulas are dealt with as for ATL: satisfying a positive next formula 

corresponds to a coalition voting for it (cf. explanation (ii) in Section 3.1.2); for satisfying 

negative next formulas, we use the notion of a refutation function (cf. Definition 3.6); 

and for negated box formulas and until formulas, we use so-called witness trees that 

witness the satisfaction of these formulas at some states in the model (cf. Definition 3.7 
and 3.8). The construction of a model, however, is more involved due to the presence of 
formulas of the form ....,C A 1/J. This is because the satisfaction of such formulas needs to be 
witnessed by some state in a model. Intuitively, since epistemic and temporal operators 
do not interact in ATEL, formulas of the form "",CA1/J can be treated separately with a 
notion of witness paths, which are defined as follows. 

DEFINITION 3.16 (Witness Path). Let r.p be an ATEL-formula, r a set of types for 
r.p and IJI E r. A sequence lJIo .. ·lJIm E r*, rn ~ 1, is a witness path rooted at IJI in r for 
a formula ....,C A 1/J if the following three conditions are satisfied: 

(1) lJIo = IJI; 
(2) for all i < rn, there is an agent a E A such that for all Ka1/J' E ecl(r.p), Ka1/J' E lJIi 

iff Ka1/J' E lJIi+l; 
(3) ...,1/J E IJIm· 

As for ATL, the decision procedure for ATEL employs a type elimination algorithm 

which in turn relies essentially on the notion of realizability. Realizability for ATL 
(cf. Definition 3.9) is extended with three additional conditions to account for epistemic 
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operators Ko, CA and DA· Intuitively, a type \II is ATEL-realizable in a set of types r 
if it is possible to (a) satisfy all next-formulas in \II and all formulas of the form ...,Ko'IjJ 
or ...,D A 'IjJ in \II using only types from r, (b) construct witness trees for all negated box 
formulas and until formulas in \II, and (c) construct witness paths for all formulas of 
the form ..... C A 'IjJ in \II using only types from r. 

DEFINITION 3.17 (ATEL Realizability). Let cp be an ATEL-formula and r a set 
of types for cp. A type \II E r is ATEL-realizable in r if the following conditions are 

satisfied: 

1. for all f E [kin], there is a \Il' Er such that S",(i) ~ \Il'; 
2. for all ((A}}'IjJ U {J E \II, there is a ((A}}'IjJ U {J-witness tree rooted at \II in r; 
3. for all ..... ((A}}O'IjJ E \II, there is a ..... ((A}}O'IjJ-witness tree rooted at \II in r; 
4. for all ..... Ka'IjJ E \II, there is a \Il' E r such that 

(a) ..... 'IjJ E \Il', and 
(b) Ka'IjJ' E \II iff Ka'IjJ' E \II', for all Ka'IjJ' E ecl{cp); 

5. for all "",CA'IjJ E \11, there is ""CA'IjJ-witness path rooted at \II in r; 
6. for all ..,D A 'IjJ E \II, there is a \II' E r such that 

(a) ..... 'IjJ E \II', and 

(b) DA'I/J' E 1lt iff DA'I/J' E 1lt', for all DA'I/J' E ecl(cp). 

Finally, we describe the decision procedure for ATEL using type elimination. The 

algorithm is presented as function ATEL-sat(cp) in Figure 3.3. For the input formula cp, 

1. function ATEIr-8at(4') returns 'Yes, .. : or 'No, .. : 
2. m:=O 
3. Am :=r<p 
4. do 
5. m :=m+l 
6. Am := {w E Am- I I W is ATEL-realizable in Am-I} 
7. until Am = Am- I 
8. if 4' E W, for some WE Am, 
9. then return 'Yes, 4' is satisfiable in an AETS for E<p.' 
10. else return 'No, 4' is not satisfiable.' 
11. end-function 

FIGURE 3.3. A type-elimination algorithm for ATEL. 

the algorithm starts with the set of all types r <p for cp (line 2 and 3) and repeatedly 

eliminates the types that are not AT EL-realizable (lines 4-7). Since there are only 

finitely many types to start with, the algorithm eventually leaves the loop with a set 

Am of types for some m ;:::: 0 (line 7). Notice that, at this point, Am is a set of types for 

'I/J that are all ATEL-realizable in Am. The algorithm returns 'Yes, cp is satisfiable in 

an AETS for E<p' if the input formula cp is contained in some type of Am (line 8 and 9); 

otherwise it returns 'No, cp is not satisfiable.' (line 8 and 10). 
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As for the ATL decision procedure, we state three lemmas to establish that the de

.scribed decision procedure for ATEL is correct and can be computed within exponential 

running time in the length of the input formula. 

LEMMA 3.18. Let r be a set of types for an ATEL-formula cp. Then the existence 

of witness trees and paths in r can be decided in time exponential in the length of cp. 

LEMMA 3.19. Let cp be an ATEL-formula. Then the procedure returns 'Yes, the 

input formula cp is satisfiable in an AETS for E<p , if! it is indeed the case. 

LEMMA 3.20. The described type elimination procedure runs in exponential time. 

The proofs are presented in the following section. The lemmas 3.18 and 3.20 can 

be shown in a fairly similar way to the corresponding lemmas for the ATL decision 

procedure: Lemma 3.10 and Lemma 3.12, respectively. The proof of Lemma 3.19, 

however, needs to be extended compared to Lemma 3.11 in order to account for the 

additional epistemic operators. 
We now give a brief outline of the proof of Lemma 3.19. For showing soundness, i.e., 

the direction from left to right, we assume that the elimination procedure was started 

on input cp and returns 'Yes, the input formula cp is satisfiable'. Then all types of the 

computed set, r say, are ATEL-realizable in r and there is a type W E r with cp E W. 
We construct an AETS S of cp where states correspond to types in r. This is done 

by constructing witness trees, for all until formulas and negated box formulas in the 

closure ecl(cp), and, for each type in r, arranging them in a matrix form such that the 

rows range over the eventualities and the columns over the types. Then we replace 

all leaf nodes by an edge from the leaf node's predecessor to the root of some other 

witness tree in the next row of the matrix such that this root is labelled by the same 
type as the replaced leaf. This construction is similar to the one for CTL; cf. 169J. 
SO far, the proof is similar to the proof of the Lemma 3.11 for ATL. Initially, the 
epistemic operator DAis interpreted over an epistemic accessibility relation "'~ in S 
that is explicitly defined, i.e., the equation "'~= naEA "'a, for all coalitions A, does 
not necessarily hold. However, a proper AETS S' can be constructed in terms of S by 
introducing epistemic witness trees on each state in S and rearranging, for each agent a, 
its epistemic accessibility relation "'a such that temporal and epistemic transitions are 
kept separate. For completeness, i.e., the right-to-Ieft direetion, we suppose that cp is 

satisfiable in an AETS S. Take Q to be the set of states in S and denote with types(Q) 
the set of all ATEL types associated with some state in Q. Then, it can be shown that 

all ATEL types in types(Q) are ATEL-realizablein types(Q). The formulas where the 

outermost operator is an ATL path quantifier can be dealt with as in Lemma 3.11; the 
other formulas with epistemic operators as outermost operators are treated explicitly. 

3.2.2. Proofs for ATEL Decision Procedure. 

LEMMA 3.23. Let r be a set of types for an ATEL-formula cp. Then the existence 

of witness trees and paths in r can be decided in time exponential in the length of cp. 
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PROOF. The proof for until formulas and negated box formulas is as the proof of 
Lemma 3.10. In the following, we only concentrate on checking for the existence of 
a witness path for formulas of the form ....,CA1/J, which works in a similar fashion as 
for witness trees. Suppose we have to check for the existence of a witness path for 
"",CA1/J E q,o rooted at q,o in r. Start with marking all types in r which contain "",CA1/J 
and ....,1/J. For all unmarked types q, E r with "",CA1/J E W, mark W if there is a type 
W' E r such that for some agent a E A it holds that 

(i) for each Ka1/J' E ecl(cp), Ka1/J' E W iff Ka1/J' E w', and 

(ii) W' is marked. 

Repeat this procedure until no more types in r get marked. The required witness path 

exists if q,o was marked; otherwise not. This can be shown similarly to the argument 

above. 
Again, it is not hard to verify that a witness path for ....,C A 1/J exists iff Wo was marked. 

This can be done in a similar way as for witness trees. 
In the following, the complexity of the algorithm that checks for witness paths is 

discussed. Initially, at most 2c·n types containing ....,C A 1/J and ....,1/J will be marked. Then 

in each marking round, at least one type gets marked, i.e., there are not more that 

2c·n marking rounds. In each such round, maximal 2c·n yet unmarked types have to be 

checked. In order to find out whether to mark such a type, not more than 2c'n types 

have to be considered. Then for maximal n agents, each such type is to be checked 
whether it satisfies conditions (i) and (ii). Altogether this yields an upper bound of 
2c·n + 2c·n • 2c·n . 2c·n . n = 20 (n) steps. Consequently, checking for existence of witness 

paths is time exponential in the length of cp. 0 

LEMMA 3.24. Let cp be an ATEL-formula. Then the procedure returns 'Yes, the 

input formula cp is satisfiable in an AETS for ~'" ' iff it is indeed the case. 

PROOF. Suppose cp is given. Let ~ = ~"" n = I~",I and k be the number of 
next-formulas in the extended closure ecl(cp). 

"::;." (Soundness) Assume that the elimination procedure was started on input cp 

and returns "Yes, the input formula cp is satisfiable". Let r = {Wo, ... , wm-tl be the 

computed set of types. Then all types of r are ATEL-realizable in r and there is a type 

q, E r with cp E 'l1. Our aim is to construct an AETS that is a model of cp. 

To this end, enumerate all eventualities in ecl(cp) by 1/Jo, ... , 1/Ji-l. For each i with 

i < f. and each j with j < rn, fix a cp-tree T('l/Ji,lJlj) as follows: 

• If 1/Ji E 'l1 j, then fix a 1/Ji-witness tree T rooted at 'l1 j in r. Supplement all 
inner nodes of T with missing successors: for each inner node a E dom(T) and 

each f E [kin], if a· f ~ dom(T), then add a· f to dom(T) and set T(a· t) = W 
for some q, E r such that ST(Q) (t) ~ 'l1. Note that such a W must exist by 

Condition 1 in Definition 3.17 of ATEL realizability. Let T('l/Ji,lJlj) be the result 

of augmenting T in this way. 
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• If 1/1i <t W j, then let T(1/Ji,Wj) be the tree comprised of the nodes {c} U [kin] such 

that T(1/Ji,Wj)(c) = Wj and, for each £ E [kin], T(1/J;,wj)(i) = W for some W Er 

with SWj(£) ~ w. 

Verify that all trees T(1/Ji,Wj) are O-matching. To construct a model of <p, intuitively 
we do the following: we arrange the selected witness trees in an .e x m-matrix such 
that the rows range over the eventualities 1/10, ... ,1/11-1 and the columns over the types 
Wo, ... , Wm -l, and then replace all leaf nodes by an edge from the leaf node's predecessor 
to the root of some other witness tree such that this root is labelled by the same type 

as the replaced leaf. 
Now define an AETS S = (Il,~, Q, ""'1,'''' ""'n, 7T, 8) that will be shown to satisfy 

<po Il and ~ are the sets of those atomic propositions and agents that occur in the input 

formula <po For defining the set of states Q, fix symbols Ci,j with i :$ f and j :$ m. Then 

set: 
Q := {Ci,jW I W E dom(T(1/Ji,Wj» is an inner node of T(1Pi,Wj)}' 

Next, the valuation 7T is easily defined: for q = Ci,jW E Q, set 

To define the transition function 8, first define a successor function on Q: for each 

q = Ci,jW E Q and each £ E [kin], set 

{ 

cs,p if w· fis a leaf node of T(1Pi,llfj) , 

s£<q) := s = i:- 1 mod f and T{1/J"wj)(w, i) = Wp 

q. t if W . t is an inner node of T(1/J;,wj) 

Now the definition of 8 is straightforward: for each q E Q and a E ~, set 

8(q, a) := {{sr(q) 1£= (to, ... , tn-d E [kin] and ta = p} I P < kI2}. 

The epistemic accessibility relations ""'a are defined as follows. Denote with t(q) the 

intended type T(1/J;,llfj)(W) of a state q = Ci,jW E Q. For each q,q' E Q and a E~, set 

q ""'a q' iff for all Ka1/1' E ecl(<p), Ka1/1' E t(q) iff Ka1/1' E t(q'). 

In the following, each DA'IJ E ecl(<p) is interpreted by the rela.tion "'~' explicitly defined 
by setting: for all q, q' E Q, 

(3.2) q "'~ q' iff for all DA1/1' E ecl(<p), DA1/1' E t(q) iff DA1/1' E t(q'). 

Note that the condition ""'~= naEA ""'a does not necessarily hold. Thus S plus all ""'~ 
is in general not a proper AETS. Nevertheless, for the time being S will be used to 

interpret ATEL-formulas with distributed knowledge operator D. To show that S is 
indeed a model of <p, we introduce some auxiliary notions: 

For each strategy 0' A = {O' a I a EA} for a set of agents A ~ ~ and each sequence 

of states A E Q+, we write 0' A(A) to denote the set of states naEA O'a(A). Observe that, 
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by definition of strategies for single agents, we have o"A('x . q) E 8(q, A) for all ,X E Q* 
and q E Q. 

For each positive next-formula «A»01/J, the «A»01/J-strategy is the strategy OA = 
{O"a I a E A} for the set of agents A that is defined by setting, for each a E A, ,X E Q* 
and q E Q. 

O"a('x . q) := {sr(q) I t = (to, ... ,tn-l) and ta = ~«A»O"'}' 

It is readily checked that we have 

O"A('x· q) = {sr(q) I tis a «A»01/J-vector}. 

For each negative next-formula -, «A» 01/J , a -,«A»01/J-computation for a strategy 0" A 
rooted at a state q E Q is a computation ,X E out( q, 0" A) such that, for all positions i 2: 0, 

,X[i + 1] = sr(,X[i]) for some -,«A»01/J-vector f E [kin]. 

CLAIM 3.25. Let -,«A»01/J be a next-formula, O"A a strategy and q E Q. Then there 
exists a -,«A»01/J-computation for 0" A rooted at q. 

This claim is equivalent to Claim 3.12 in the proof of Lemma 3.11. 

Using the construction of S and Property 2 of witness trees, it is straightforward to 

prove the following claim, which, intuitively, states that S is O-matching: 

CLAIM 3.26. For all q E Q and f E [kin], St(q)(i) ~ t(sr(q)). 

This claim is as Claim 3.13 in the proof of Lemma 3.11. 

The next claim establishes the property of S that is crucial for showing that S is a 

model of 'P. 

CLAIM 3.27. For any state q E Q and any formula 1/J E ecl('P), 1/J E t(q) iff S, q F 1/J. 

PROOF OF CLAIM Let q and 1jJ be as in the claim. The proof is by induction on the 

structure of 1jJ. The base case and the Boolean cases are straightforward. The cases for 

1jJ = «A» 011 , 1jJ = ({A»01jJ' and 1/J = «A»1/J' U -0 were already proved in a similar claim 
for ATL (Claim 3.14) in the proof of Lemma 3.11. Therefore, we only concentrate on 

the epistemic operators Ka , CA and D A: 

• 1/J = Ka1/J'. "",*": Suppose Ka1/J' E t(q). Let q' be a state such that q "'a q'. By 

definition of "'a, it holds that for all Ka-o E ecl('P), Ka-o E t(q) iff Ka-o E t(q'). 
Thus Ka1jJ' E t(q'}. Then (T5) yields 1/J' E t(q') and the induction hypothesis 

S, q' F 1jJ'. Hence, S, q F Ka1/J' by the semantics. 

"<=:"; Suppose Ka1/J' fj. t(q). Then -,Ka1/J' E t(q) by (T2). Since the type t(q) 
of r is ATEL-realizable in r, from Condition 4 in Definition 3.17 of ATEL 

realizability and the construction of S, it follows that there is a state q' E Q 
such that (a) -.1jJ' E t(q') and (b) q "'a q'. Then (T2) yields 1/J' fj. t(q') and the 

induction hypothesis S,q' f!= 1/J'. Hence, S,q f!= Ka1/J' by the semantics. 



3.2. COMPLEXITY OF ATEL 93 

.'I/J = EA'I/J'. "=?": Suppose EA'I/J' E t(q) where A = {ab ... ,ad· Then 
-,(-,Ka\'I/J'V .. , V -,Kat'I/J') E t(q) by (T6). The conditions (T1) and (T2) 
yield Ka'I/J' E t(q) for all a E A. Let a E A and q' E Q such that q "'a q'. By 
definition of "'a, it holds that for all Kat} E ecl(cp), Kat} E t(q) iff Kat} E t(q'). 
Thus Ka'I/J' E t(q'). Then (T5) yields 'I/J' E t(q') and the induction hypothesis 

S, q' F 'I/J'. From the fact "'f= UaEA "'a, it follows that S, q' F 'I/J' for all 
states q' E Q with q "'f q'. Hence, S, q F EA'I/J' by the semantics. 

"-<=:": Suppose EA'I/J' fj. t(q) where A = {al,"" ad· Then (T6) and (T2) yield 
-,Ka\'I/J'V··· V -,Kat'I/J' E t(q). By (T1), -,Ka'I/J' E t(q) for some a E A. Since 
the type t(q) of r is ATEL-realizable in r, from Condition 4 in Definition 3.17 
of ATEL realizability and the construction of S, it follows that there is a 

state q' E Q such that (a) -,'I/J' E t(q') and (b) q "'a q'. Then (T2) yields 

'I/J' fj. t(q') and the induction hypothesis S, q' ~ 'I/J'. Note that q "'f q' since 

"'f= UaEA "'a· Hence, S, q ~ EA'I/J' by the semantics . 
• 'I/J = CA'I/J'· "=?": Suppose CA'I/J' E t(q) where A = {al,"" ad. Let q' be 

a state such that q "'~ q'. Then by definition of "'~' there is a sequence 

qo'" qj E Q*, j 2: 0, of states and a sequence bo'" bj - l E A* of agents such 

that q = qo "'bo ql "'bl ... "'bj-l qj = q'. It is shown by a subinduction that 

CA'I/J' E t(qi) for all i ~ j. The induction base is clear since CA'I/J' E t(q) = t(qo). 
For the induction step, suppose CA'I/J' E t(qd. Then (T7) yields EACA'I/J' E t(qi) 
and (T6) -,(-,Ka\ CA'I/J' V ... V -,KatCA'I/J') E t(qi). Thus KaCA'I/J' E t(qi) for 

all a E A by (T1) and (T2). By definition of "'bi' it holds that Kb;CA'I/J' E 
t(qi+d. Then CA'I/J' E t(qi+d by (T5). Hence, the above subinduction yields 
CA'I/J' E t(qj) = t(q'). Then 'I/J' E t(q') by (T7) and S, q' F 'I/J' by the induction 
hypothesis. Hence, S,q F CA'I/J' by the semantics. 

"-<=:": Suppose CA'I/J' fj. t(q) where A = {ab ... , ad. Then -,CA'I/J' E t(q) by 
(T2). Since the type t(q) of r is ATEL-realizable in r, from Condition 5 in 
Definition 3.17 of ATEL realizability and the construction of S, it follows that 
there is a sequence qo'" qj E Q* of states such that the sequence t(qo)'" t(qj) 
of types is a -,CA'I/J'-witness path rooted at t(q) in r. Since t(q) = t(qo) by 
Point 1 in Definition 3.16 of witness paths, set qO_= q. For all i < j, Point 2 
together with the definition of "'aj yields that qi "'aj qi+1 for some ~ E A. 
Thus q "'~ qj. Point 3 yields -,'I/J' E t(qj). Then 'I/J' fj. t(qj) by (T2) and 

S,qj ~ 'I/J' by the induction hypothesis. Hence, S,q ~ CA'I/J' by the semantics . 
• 'I/J = D A'I/J'. "=?": Suppose D A'I/J' E t(q). Let q' be a state such that q "'~ q'. By 

definition of "'~' it holds that for all DAt} E ed(cp), DAt} E t(q) iff DAt} E t(q'). 
Thus DA'I/J' E t(q'). Then (T8) yields 'I/J' E t(q') and the induction hypothesis 
S, q' F 'I/J'. Hence, S, q F D A 'I/J' by the semantics. 

"-<=:": Suppose DA'I/J' fj. t(q). Then -,DA'I/J' E t(q) by (T2). Since the type t(q) 
of r is ATEL-realizable in r, from Condition 6 in Definition 3.17 of ATEL 
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realizability and the construction of S, it follows that there is a state q' E Q 
such that (a) -.'I/J' E t(q') and (b) q "'~ q'. Then (T2) yields 'I/J' rt t(q') and the 
induction hypothesis S,q' ~ 'I/J'. Hence, S,q ~ DA'I/J' by the semantics. 

Notice that, in general, the epistemic accessibility relations in S together with all 

explicitly defined epistemic accessibility relations "'~ for distributed knowledge do not 
satisfy property (3.2). More precisely, it holds that, for every DA'I/J E ecl(cp), "'~~"'a 

for all agents a E A by (T9), but naEA "'a~"'~ does not necessarily hold. 
In order to show that cp is satisfiable, it remains to show that there is a proper 

AETS satisfying property (3.2) in which also cp is satisfied at some state. 

First, consider some auxiliary notions. Enumerate the ecl(cp)-formulas 'I/J of the form 

-.Ka-D or -.DA-D and denote the number of'I/J with #,p (the numbering starts with 1). 
Let ke be the total number of ecl(cp)-formulas of this form. Let -< be some linear order 

on Q* such that 

(i) a -< a' if lal < la'l, and 
(ii) aa' -< aa" if a' -< cl' 

where lal denotes the length of sequence a E Q*. 
A sequence qo' .. qn E Q*, n ;::: 0, of states accomplishes the ATEL-formula -.C A 1/1 

at a state q E Q if there is a sequence ao··· an-l E A* of agents such that q = qo ""ao 

ql "'al'" "'an-l qn and S, qn P= -.1/1. An ATEL-formula -.Ka'I/J is relevant for satisfying 
the ATEL-formula -,CA1/1' at a state q E Q if 

• -.Ka'I/J, -,CA'I/J' E t(q) and -'1/1' rt t(q), 

• 1/1 = CA1/1', and 
• qo "'a ql where qOql ... qn E Q*, n ;::: 1, is, among the sequences that accomplish 

-,CA'I/J' at q, minimal wrt. -<. 

Verify that -,CA'I/J' E t(q) iff S,q P= -,CA1/1' iff there is a sequence that accomplishes 
-,CA'I/J' at q, where the first equivalence follows from Claim 3.27. 

For each state q E Q, define a partial mapping Tq : {I, ... , k e } * x {q} -+ 2E X Q 
where {a 1 (a, q) E dom(Tq)} is a finite prefix-closed subset of {I, ... , ke}*. Intuitively, 

Tq is an epistemic witness tree with q as its root. Each successor node in Tq corresponds 

to a formula of the form ....,Ka'I/J or ....,DA'I/J and is mapped to a witnessing state of the 

previous ATES S. In particular, for each formula "",CA'I/J at q, there is a path in Tq that 

corresponds to a witness path for "",CA'I/J in Q. Formally, Tq is defined inductively as fol

lows. For each (a, q) E {I, ... , ke}* x {q}, refer to the first and second component of the 

tuples (a,q) and Tq((a,q)) with (a,q)l, (a,q)2, Tq((a,q))l and Tq((a,q))2, respectively. 

For the induction base, set 
Tq((e,q)) := (!:,q). 
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For the induction step, let a E {I, ... , key be such that Tq«a, q)) is already defined. 
Let q' = Tq«a, q))2 be a state in Q. For each i E {I, ... , ke

} with i = ~1/>' if'I/J E t(q'), 
then depending on 'I/J distinguish the following three cases: 

(1) 'I/J = ~Ka'I/J' and ~Ka'I/J' is relevant for satisfying some ~CA{} at q'. Among 
the sequences that accomplish ~C A {} at q', let qOql ... qn E Q*, n ~ 0, be the 

minimal one wrt. -<. Set Tq«a· i, q)) := ({a}, ql). 
(2) 'I/J = ~Ka'I/J' and ~Ka'I/J' is not relevant for satisfying any ~CA{} at q'. Arbi

trarily choose a state q" E Q such that the type t( q") fulfills Condition 4 of 
Definition 3.17 of ATEL realizability. Set Tq«a . i, q)) := ({a}, q"). 

(3) 'I/J = ~DA'I/J'. Arbitrarily choose a state q" E Q such that the type t(q") fulfills 
Condition 6 of Definition 3.17 of ATEL realizability. Set Tq«a·i, q)) := (A, q"). 

For an illustration of an epistemic witness tree Tq at a state q in Q, see Figure 3.4. Note 

that Q is the state set of S and the dotted line and the dashed line respectively corre

spond to the (possibly different) epistemic accessibility relations "'a and "'b (omitting 

reflexive edges). 

FIGURE 3.4. An epistemic witness tree Tq at state q. 

In order to see that Tq is well-defined, consider the following. For Case (1), note 
that, since ~Ka'I/J' is relevant for satisfying some ~CA{} at q', there is such a sequence 
accomplishing ~CA{} at q'. In both remaining cases such a state q" exists since respec
tively ~Ka{}' E t(q) implies S, q F ~Ka{}' and ~DA{}' E t(q) implies S, q F ~DA{}' by 

Claim 3.27. 

Notice that a tree Tq , as it is defined above, is. not finite in general. However, it can 

be made finite as follows: For all nodes a and a· a' on the same path in Tq, if Tq maps 

a and a . a' to the same state q' of S, then identify the successors of a . a' with the 

successors of a. In order not to introduce more notation, assume that, in each Tq , the 
relevant successors are reconnected such that Tq is finite. 

For notational convenience, consider the following abbreviations: For all states q E 

Q, denote the set dom(Tq) \ {(e, q)} of pairs with dom(Tq)-l, identify q with (e, q) and 
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let Tq(q) = (E, q). Moreover, (;t . i denotes (q,l . i, q) for each q' E dom(Tq) and each 

i E {l, ... , ke}. 
In the following, the ATES S is extended with the nodes of the above defined trees 

Tq , one tree for each state q of S. Moreover, in the resulting ATES S' the formula 
defined epistemic accessibility relations "'a of S are redefined to include the additional 
states corresponding to the nodes of the trees Tq. Formally, define S' = (il, E, Q', "'~ 

, ... , "'~' 7r', 8') where 

• Q' = Q U {dom(Tq)-l Iq E Q}j 
• for each a E E, "'~~ Q' X Q' is smallest equivalence relation such that for any 

q, q' E Q', q "'~ q' iff there is a qe E Q, 0 E {I, ... , ke} * and i E {l, ... , ke} 
with either q = (0, qe) and q' = (0' i, qe), or q = qe and q' = (i, qe) such that 
Tqe(q') is defined and a E Tqc(q')lj 

• for each q E Q', 

if q E Q, or 
7r'(q) = {7r(q) 

{p E il I p E t(Tql(q)2)} if q E dom(Tq,)-l for some q' E Q; 

• for each q E Q' and a E E, 

S:'( )_{8(q,a) u q,a -
8(Tq,(q)2,a) 

if q E Q, or 

if q E dom(Tq' )-1 for some q' E Q. 

For an illustration of the transition relation 8' in the ATES S', see Figure 3.5: the 
choices in 8'(q, a) for an agent a at a node q of an epistemic witness tree Tql, where 
q = (o,q'), are the choices in 8(q",a) for a at the state q" E Q with q" = Tq'«0,q'))2. 
The choices are depicted by the boxes with round corners. Note that the set Q' of states 
in S' contains the nodes of all witness trees (except their roots) and the states in Q. 

FIGURE 3.5. The transition relation 8' in the ATES S'. 
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From now on, we interpret the epistemic operator D A by the epistemic accessibility 

relation "",p, which is implicitly defined in terms of ""'a, for all agents a E A, as "",p= 
naEA "",~. 

Notation: For each state q E Q'\ Q, there is a state qe E Q such that q E dom(Tq.)-1 
by definition of S'. Denote with t(q) the type t(Tq.(q)2). 

It remains to show that S' is a model for cp. To this end, consider the following two 

claims. 

CLAIM 3.28. For all states q, q' E Q' and agents a E I:, q f'V~ q' implies Ka1/1 E t(q) 

iff Ka1/1 E t(q') for all Ka1/1 E ecl(cp). 

PROOF OF CLAIM Let q, q' and a be as in the claim. Suppose q ""'~ q'. By definition 

of S', q E dom(Tq.) for some qe E Q. Then q' E dom(Tq.) by definition of f'V~. The 

transitivity of ""~ together with the definition of ""~ and the tree-like structure of Tq. 

yield that there is a sequence qo'" ql in dom(Tq.)* with q = qo ""~ ql "'~ ... "'~ qi = q' 
such that, for all j < f, either q]+1 = q] . i or qJ = q]+1 . i for some i E {1, ... , ke}. Let 

qo' .. ql be the shortest such sequence. In the following, it is shown that Tq. (qj)2 "'a 

Tq.(qj+d2 for all j < f. Then 'Tq.(q)2 "'a Tq,,(q')2 by transitivity of "'a. From the 

definition of "'a, it follows that Ka1/J E t('Tq.(q)2) = t(q) iff Ka1/J E t('Tq.(q')2) = t(q') for 

all Ka1/J E ecl( cp) which shows the claim. 

Now it is shown that Tq.(qj)2 ""a Tq.(qj+d2 for all j < f. Let j < f. Consider only 

the former case where q]+1 = qJ . i for some i E {1, ... , ke}; the latter one is similar. 

By definition of "'~' it holds that a E Tq.(qj+1)I. Let '19 E t(qj) be such that Uti = i. 

According to the induction step in the definition of Tq., distinguish three cases: In the 
cases (1) and (2) where '19 = -.Ka'l9' E t(qj), it follows that Tq.(qj)2 "'a Tq.(qj+1)2. In 
Case (3) where '19 = -.DA'I9' E t(qj), Tq.(qj+l) is defined such that Tq.(qj+l)1 = A and 
Tq.(qj)2 f'V~ Tq.(qj+1)2. Observe that (T9) together with the definition of ""~ implies 
""~~"'b for all b E A. Then it follows from a E Tq.(qj+1)1 = A that "'~~"'a. Thus 
Tq.(qj)2 "'a Tq.(qj+d2. .... 

CLAIM 3.29. For any state q E Q' and any formula 1/1 E ecl(cp), 1/1 E t(q) iJJS', q F 1/1. 

PROOF OF CLAIM Let q and 1/1 be as in the claim. The proof is by induction on the 

structure of 1/1. 

• 1/J = p for p E IT or 1/1 = -.1/J' or 1/1 = 1/11 V 1/12. These cases are similar to those 
ones in the proof of Claim 3.27 . 

• 1/J = ((A))01/1', 1/J = ((A))01/1', or 1/1 = ((A))1/JU'I9. 
Then: 1/J E t(q) iff 1/1 E t(Tqc(q)2) for some qe E Q with q E dom('Tq.) 

iff S, Tq. (q)2 F 1/J by Claim 3.27 

iff S', q 1= 1/1 since for all a E ~, cS' (q, a) = cS( Tq. (q)2, a). 
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• 1/1 = Ka1/1'· "::}": Suppose Ka1/1' E t(q). Let q' E Q' be a state such that 
q "'~ q'. Then Ka1/1' E t(q') by Claim 3.28 and 1/1' E t(q') by (T5). The 
induction hypothesis yields S', q' 1= 1/1'. Hence, S', q 1= Ka1/1' by the semantics. 

"<=": Suppose Ka1/1' rI. t(q). Then -.Ka1/1' E t(q) by (T2). By definition of 
S', q E dom(rqe) for some qe E Q. It follows from the induction step in 
the definition of rqe that rqe(q') is defined for q' = ql . ~17 where {) = -.Ka1/1'. 
Moreover, a E rqe(q')l and -.1/1' E t(rqe(q')2) = t(q'). Then q "'~ q' by definition 
of "'~. The induction hypothesis yields S',q' 1= -.1/1'. Hence, S',q ~ Ka1/1' by 

the semantics . 
• 1/1 = EA1/1'· "::}": Suppose EA 1/1' E t(q) where A = {at, ... , ad. Then 

-.(-.Ka1 1/1' V ... V -.Kat1/1') E t(q) by (T6). The conditions (Tt) and (T2) 

yield Ka1/1' E t(q) for all a E A. Let a E A and q' E Q' such that q "'~ q'. Then 
Ka1/1' E t(q') by Claim 3.28 and 1/1' E t(q') by (T5). The induction hypothesis 

yields S, q' 1= 1/1'. From the fact -~' = UaeA -~, it follows that S, q' 1= 1/1' for 
all states q' E Q' with q",~'q'. Hence, S,q 1= EA1/1' by the semantics. 

"<=": Suppose EA1/1' rI. t(q) where A = {ab ... ,ad· By definition of S', 
q E dom(rqe) for some qe E Q. Then (T6) and (T2) yield -.Ka1 1/1' V ... V 
-.Kat 1/1' E t(q). By (Tt), -.Ka'I/J' E t(q) for some a E A. It follows from the 
induction step in the definition of rqe that rqe (q') is defined for q' = ql . "17 

where {) = -.Ka1/1'. Moreover, a E rq.(q')l and -.1/1' E t(rqe (q')2) = t(q'). Then 

q "'~ q' by definition of "'~' and q",~' q' since "'~~ -f by definition of "'f. 
The induction hypothesis yields S', q' 1= -.1/1'. Hence, S', q ~ EA 1/1' by the 

semantics . 
• 1/1 = CA1/1'. "::}": Suppose CA1/1' E t(q) where A = {al, ... , ad. Let q' be a 

state such that q"'~' q'. Then by definition of ",~', there is a sequence qo ... qj E 

Q'., j 2:: 0, of states and a sequence bo··· bj-l E A· of agents such that 

q = qo "'ho ql "'h1 ... "'hj-l qj = q'. It is shown by a subinduction that 
CA1/1' E t(qi) for all i :::; j. The induction base is clear since CA1/1' E t(q) = t(qo). 
For the induction step, suppose CA1/1' E t(qi). Then (T7) yields EACA1/1' E t(qi) 
and (T6) -.(-.Ka1 CA1/1' V ... V -.KatCA1/1') E t(qi). Thus KaCA1/1' E t(qi) for 
all a E A by (Tt) and (T2). Since qi "'hi qi+l, it follows by Claim 3.28 
that Kbj CA1/1' E t(qi+l). Then CA1/1' E t(qi+t} by (T5). Hence, the above 
subinduction yields OA'I/J' E t(qj) = t(q'). Then 1/1' E t(q') by (T7) and S,q' F 
1/1' by the induction hypothesis. Hence, S, q 1= 0 A 1/1' by the semantics. 

"<=": Suppose OA1/1' rI. t(q) where A = {al, ... ,ad· Then -,CA1/1' E t(q) by 
(T2). By definition ofS', q E dom(rq.) for some qe E Q. Sincet(q) = t(rq.(q)2), 
-.OA1/1' E t(rq. (q)2). Among the sequences that accomplish -.0 A1/1 at rqe (q)2, let 
qo ... qn E Q., n 2:: 0, be the minimal one wrt. -<. Note that such a sequence 
exists since S,rq.(q)2 F -.OA1/1' by Claim 3.27. Thus there is a sequence 

ao ... an-l E A· of agents such that rq. (q)2 = qo "'ao ql "'a1 ... "'an-1 qn· 
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By Condition (i) in the definition of -<, there is no shorter such accomplishing 
sequence, i.e., for all j < n, S, qj ~ -,1/;' and thus -,1/;' f/. t(qj) by Claim 3.27. 
Inductively define a sequence qb··· q~ E dom(Tqe)*: set qb := q and for all 

i < n, set th+1 := q~l . ~1? with 'IJ = -,K an CA1/;'· 
In the following, it is shown that Tq. maps each state of the sequence 

qb ... q~ in dom(Tq.)* to the corresponding states of the sequence qo'" qn in 
Q*. Formally, it is shown by a subinduction that Tq.(qj) = ({aj-d,qj) and 
qj-l "'aj-l qj for all j :$ n. In the induction base, it holds that Tq. (qb) = 

({ a}, qo) for some a E A. For the induction step, suppose Tq. (qj) = ({ aj-l}, qj). 
It follows by qo'" qn being a sequence that accomplishes -,CA1/; that CA1/;' E 

t(qj). Then (T7) yields ...,EA CA 1/;' E t(qj) and (T6) ...,(-,Ka1 CA1/;' V '" V 
-,KatCA1/;') E t(qj). Thus KaCA1/;' E t(qj) for all a E A by (T1) and (T2). In 

particular, it holds for agent aj that -,Kaj CA1/;' E t(qj). Together with the facts 
qj "'aj qj+1 and ...,1/;' f/. t(qj), it follows that -,Kaj CA1/;' is relevant for satisfying 
-,CA1/;' at qj. By Condition (ii) in the definition of -<, qjqj+1 ... qn is, among 
the sequences that accomplish -,CA1/; at qj, the minimal one wrt. -<. Then, by 

Case (1) in the induction step of the definition of Tq., Tq. (qj1 . i) = ({ aj }, qj+l) 

where i = #1? and 'IJ = ...,Kaj CA1/;'. Since q.1+1 = qj1 . i by definition of qb ... q~, 
it holds that Tq.(q.1+1) = ({aj},qj+l). By definition of "'~j' it holds that 
qj "'~j qj+l which finishes the induction step. Since rv~ = (UaEA rv~)*, it 
holds that q = qbrv~q~. From S,qn 1= -'1/;', it follows by Claim 3.27 that 
...,1/;' E t(qn). Then -,1/;' E t(cIn) since t(q~) = t(qn). The induction hypothesis 
yields S', cIn 1= -,1/;'. Hence, S', q ~ CA1/;' by the semantics . 

• 1/; = DA1/;'. ":::}": Suppose DA1/;' E t(q). By definition of S', q E dom(Tq.) 
for some qe E Q. Let q' E Q' be a state such that qrv'f q'. Since q rv~ q' for 
each a E A by definition of rv'f, it follows that q' E dom(Tq.) by definition of 
rv~. The transitivity of -'f together with the definition of rv~, a E A, and 
the tree-like structure of Tq. yield that there is a sequence qo'" qi in dom(Tq.)* 
with q = qO"''f ql rv'f ... rv'f qi = q' such that, for all j < t, either qJ+l = qJ . i 
or qJ = qJ+l . i for some i E {I, ... , ke}. Let qo··· qi be the shortest such 
sequence. In the following, it is shown that Tq.(qj)2 rv~ Tq.(qj+l)2 for all 
j < t. Then Tq.(q)2 -~ Tq.(q,)2 by transitivity of ",~. From DA1/;' E t(q), it 

follows by definition of rv~ that D A1/;' E t( q'). The~ (TB) yields 1/;' E t( q') and 

the induction hypothesis S', q' F= 1/;'. Hence, S', q F= D A 1/;' by the semantics. 

Now it is shown that Tq.(qj)2 -~ Tq.(qj+1)2 for all j < t. Let j < .e. 
Consider only the former case where q]+1 = q] . i for some i E {I, ... , ke}; the 

latter one is similar. By definition of "''f, it holds that qj rv~ qj+1 for each a E 

A. Then a E Tq.(qj+1)l bydefinitionof""~. Thus A S; Tq.(qj+t)l. Let'!? E t(qj) 
be such that #1? = i. According to the induction step in the definition of Tq., 

distinguish three cases: In cases (1) and (2) where'IJ = -,Ka'IJ' E t(qj), it easily 

follows that Tq.(qj)2 ""a Tq.(qj+1)2. Note that A = {a} since Tq.(qj+t)l = {a}. 



100 3. COMPLEXITY OF REASONING IN ATL/ATEL 

Thus Tq.(qj)2 "'~ Tq.(qj+l)2. In Case (3) where f} = -,DBf}' E t(qj), Tq.(qj+t} 
is defined such that Tq.(IJ.j+l)l = B and Tq.(qj)2 "'i? Tq.(qj+1)2. Observe that 
(TlO) together with the definition of "'i? implies "'i?~"'i?, for all B' ~ B. Then 
it follows from A ~ Tq. (qj+1)1 = B that "'~~"'i? Thus Tq. (qj)2 "'~ Tq. (qj+1)2. 

"<=:": Suppose DA1/J' ~ t(q). Then -,DA1/J' E t(q) by (T2). By definition of 
S', q E dom(Tq.) for some qe E Q. It follows from the induction step in the 
definition of Tq. that Tq. (q') is defined where q' = q1 . ~17 and f} = -,D A 1/J' . 
Moreover, Tq.(q,)l = A and -,1/J' E t(Tq.(q')2) = t(q'). Then q "'~ q' for each 
a E A by definition of ",~. Thus q",~' q'. The induction hypothesis yields 
S' ,q' F -,1/J'. Hence, S', q ~ D A 1/J' by the semantics. 

.... 

Since 11' E "Ill for some type "Ill Er, there is a state q E Q such that 1/J E t(q). Then 

it follows from Claim 3.29 that S', q F 11'. 

"<=:" (Completeness): Suppose 11' is satisfiable in an AETS S = (IT,:E, Q, "'1, ... , "'n 

,71",6) in a state q", E Q. For each state q E Q, let t(q) be the type {1/J E ecl(tp) I S,q F 
'I/I}. Denote with types(Q) the set of all types associated with some state in Q. 

In the following, it is shown that all types in types(Q) are ATEL-realizable in 

types(Q). Let q E Q be a state. It is to check that each type t(q) in types(Q) sat
isfies conditions 1 to 6 of Definition 3.17 of ATEL realizability. Conditions 1 to 3 are 
can be shown as in Lemma 3.11. We now show the remaining conditions 4 to 6: 

4. Suppose -,Ka1/J E t(q). Then S, q F -,Ka1/J, i.e., there is a state q' E Q 
with q ""a q' such that S,q' F -,1/J. Thus t(q') is a type in types(Q) such 
that -,1/J E t(q') which satisfies Condition 4(a). For 4(b), it is to show that 
Ka1/J' E t(q) iff Ka1/J' E t(q') for each Ka1/J' E ecl(tp). For the direction from 
left to right, suppose Ka1/J' E t(q). Then S, q F Ka1/J', i.e., S, q" F 1/J' for all 
states q" E Q with q ""a q". The symmetry of "'a implies q' "'a q, and by 
transitivity of ""a, it holds that q' "'a q" for all states q" E Q with q "'a q". 
Thus S, q" F 1/J' for all states q" E Q with q' "'a q". Then the semantics yields 
S, q' F Ka1/J'. Hence Ka1/J' E t(q'). The right-to-Ieft direction is similar. 

5. Suppose -,CA1/J E t(q). Then S, q F -,CA1/J, i.e., there is a state q' E Q with 
q ""~ q' such that S, q' F -,1/J. Since ""~ = (UaEA "'a)*, there is a sequence 
qo'" qt E Q*, l ~ 0, of states and a sequence ao'" al-1 E A* of agents such 
that q = qo ""ao ql ""al' .. "'a,-l qt = q'. In the following, it is shown that the 
sequence t(qo)'" t(qt) of types fulfills the conditions of a -,CA1/J-witness path 
rooted at t(q) in types(Q). Condition 1 is fulfilled by q = qo and Condition 3 
since -,'1/1 E t(q') = t(qt). For Condition 2, it suffices to show that Ka,1/J' E t(qi) 

iff Ka,'I/I' E t(qi+l) for all i < t and each Ka,1/J' E ecl(tp). For the direction 
from left to right, let i < l and suppose Ka.1/J' E t(qi). Then S,qi F Ka,1/J', 
Le., S, q" F 1/J' for all states q" E Q with qi "'a, q". The symmetry of "'a. 
implies qi+l "'a. Qi, and by transitivity of "'a., it holds that qi+l "'a, q" for all 
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states q" E Q with qi "'ai q". Thus S, qi+1 F 'I/J' for all states q" E Q with 

q' "'a q". Then the semantics yields S,qi+l F Kai'I/J'· Hence Ka;'I/J' E t(qi+1)' 

The right-to-left direction is similar. 

6. This case is similar to 4. 

From S,q", F cp it follows that cp E t(q",). Then types(Q) is a set of types that are 

each ATEL-realizable in types(Q) and t(q",) is a type in types(Q) such that cp E t(q",). 

Let ~ be the set of types for cp computed by the type elimination algorithm. It is easy 

to see that types(Q) ~~. Hence, the algorithm returns ''Yes, the input formula cp is 

satisfiable". 0 

LEMMA 3.25. The described type elimination procedure runs in exponential time. 

PROOF. This proof is similar to the proof of Lemma 3.12. Suppose cp is given and 

let n = Icpl. Recall that the size of the extended closure ecl( cp) is linear in the length 

of cp, i.e., lecl(cp)I = c· n for some constant c;::: 1. The algorithm computes a sequence 

~o, ... , ~m of sets of types such that ~o ;;2 ~1 ;;2 ... ;;2 ~m. Since ~o = r '" ~ 2ecl(",), 

this sequence is finite with rn ~ 2c·n . For each i with 0 < i ~ rn, it holds that 

I~il < I~ol ~ 2c·n . Thus, to compute the set ~i+l at most 2c·n types in ~i need to be 

checked whether they are ATEL-realizable in ~i. In the following, it is shown that for 

a type W E ~i at most 20(n
2

) steps are needed to check for W's ATEL realizability in 

~i. Consider the six points in Definition 3.17: 

1. For at most n n vectors (as k ~ n), inclusion tests for maximal 2c'n types in ~i 

have to be performed. Hence, this takes not more than nn ·2c·n = 20(n
2

) steps. 

2.,3. By Lemma 3.18, to decide the existence of witness trees takes not more than 

20(n
2

) steps. This has to be done for at most n formulas of the form ((A))'I/J U {} 
or ...,((A))O'I/J in W. Thus, altogether maximal 20(n

2
) steps are needed. 

4.,6. For maximal n formulas of the form ...,Ka'I/J (...,DA'I/J) in '11, conditions 4(a) and 
4(b) (6(a) and 6(b)) have to be checked for at most 2c·n types in ~i. Checking 
for these conditions takes only polynomially many steps wrt. n. Consequently, 
at most 20 (n) steps are needed. 

5. To check for the existence of witness paths takes not more than 20 (n) many 

steps by Lemma 3.1S. This has to be done for at most n formulas of the form 
...,C A 'I/J in w. Hence, entirely at most 20 (n) steps are needed. 

Note that checking whether there is a type in ~m that contains cp takes not more than 
20 (n) steps. We conclude that our decision procedure runs in time exponential in the 

size of the input. 0 

3.3. Conclusion 

In this chapter, we have revisited the satisfiability problem for ATL, which was 

settled at ExpTIME-complete in a result of van Drimmelen [252J for cases where the 

set of agents was fixed externally in advance. We pointed out that if the set of agents 

is not fixed externally, then van Drimmelen's construction yielded only a 2-ExpTIME 
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upper bound. This motivated the statement of three variations of the ATL satisfiability 
problem, where the set of agents was not fixed externally in advance. We have shown 
that each of these variations is ExpTIME-COmplete. 

Moreover, we combined the decision procedure for ATL with the technique of [1031 
to show that the epistemic extension ATEL of ATL with common. and distributed 
knowledge is ExpTIME-COmplete as well. This result shows that adding epistemic op
erators for common and distributed knowledge to ATL does not yield an increase in 

computational complexity. 
ATEL, as it is defined in Section 2.5.1, does not allow for any interaction between 

knowledge and time. For instance, it is possible for an agent a that at two for a epis
temically indistinguishable states a makes different choices. For future work, it would 

be interesting to investigate the complexity of variants of ATEL that capture various 
desired and reasonable interactions between knowledge and time; cf. the discussion in 
Section 2.5.6. Another significant issue to address is the precise complexity of ATL*'s 
satisfiability problem which lies between 2-ExpTIME and 3-ExpTIME; cf. Section 2.4.4 

in the previous chapter. 



CHAPTER 4 

ATL with Explicit Strategies 

4.1. Preliminaries 

In this chapter, we introduce ATLES, a variant of ATL with explicit names for 

strategies in the object language. ATLES makes it possible to refer to the same strategy 
in different occurrences of path quantifiers, and as a consequence it becomes possible to 

express some properties in ATLES that cannot even be expressed in ATL"'. We present 

a complete axiomatic system for ATLES. Moreover, we show that the satisfiability 
problem for ATLES is no more complex than for ATL: it is ExpTIME-complete. We 
identify two variants of the model checking problem for ATLES and investigate their 

computational complexity. 
ATL 115J is a logic in which one can represent and reason about the strategic 

abilities of agents in game-like, multi-agent systems. The key-construct in ATL is 

((A))«p, expressing that coalition A has a strategy so as to ensure that the temporal 
property «P holds. As it was pointed out in the literature 1242, 38J, the semantics of 
ATL is "richer" than its language: strategies are present in the semantics but in the 
language one can only quantify over strategies without explicitly referring to them. 

As a consequence, ATL does not facilitate explicit reasoning about strategies. In this 
chapter, we aim to narrow the gap between semantics and language by introducing 
Alternating-time Logic with Explicit Strategies (ATLES). This logic is quite general 
and extends many existing logics for reasoning about strategic capabilities of agents 
such as "Commitment ATL" (CATL) by van der Hoek, Jamroga and Wooldridge 1242], 
Coalition Logic by Pauly [194], "Action Logic" (AL) by Borgo [38J, ATLI: with fixing 
the set I; of agents as considered by Goranko and van Drimmelen [98J, and ATL without 
fixing the set of agents as defined by Walther, Lutz, Wolter and Wooldridge [265]. 

The key difference in the syntax with CATL [242J is that CATL's commitment 
operators Ca(g, cp), where g is a commitment for agent a, are dropped and, instead, each 
path quantifier ((A)) p is additionally parameterized with a commitment function denoted 
by p. A commitment function, p, is a partial function mapping agents to strategy terms. 
That is, each agent b for which p is defined (i.e., bE dom(p» commits to the strategy 

p(b). Then ((A))pcp means that 'while the agents in dom(p) act according to their 
commitments, the coalition A can cooperate to ensure cp as an outcome'. Originally, the 

CATL commitment operators Ca(g, cp) were interpreted using an update semantics 1242] 
which had the effect that, once an agent committed to a strategy, she could not change or 
even undo that commitment. For ATLES, however, we use a different approach for the 
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semantics with which we overcome that restriction: instead of changing (updating) the 
model, we define a notion of strategies for coalitions that accounts for the individual 
commitment of agents to strategies. Moreover, in the strategies we allow for agents 
with perfect information, i.e., making a choice depends on the full history of previously 
traversed states. In 1242], CATL was defined for a fixed set of agents and a fixed set 
of strategy terms. ATLES is defined without fixing the number of agents and strategy 
terms in advance as it was done for ATL in Section 2.4.1 of Chapter 2. 

Pauly's Coalition Logic can be conceived as the next fragment of ATL; see [98]. 
Recently, Borgo [38} presented Action Logic which, interestingly, can be seen as the 
next fragment of ATLES. The basic construct in AL is v<.p, where v is a vector with for 
every agent i a place that can be filled with either a constant action term ai, (meaning 
that agent i has committed to ~) a quantifier 3Xi (agent i has a choice to make) or 
\:fYi (for all actions of i). The interpretation of v<.p is that under the "assignment" v, the 
formula <.p will hold in the next state. But this corresponds to the ATLES expression 

((A)) p<.p, where A is the set of agents with an 3Xi in v, and the function p collects all 

the pairs (i, ai) with ai in V. 
Recently, Agotnes, Goranko and Jamroga 17] introduced the ATL-variants IATL and 

MIATL. These variants extend ATL with irrevocable strategies, i.e., an agent choosing 

a strategy means that she commits to that strategy without ever changing it. This 
is achieved with an update semantics, where, whenever an agent chooses a strategy, 
the model is truncated in a way to make it impossible for the agent to choose another 
strategy later. In ATLES, we can "simulate" irrevocable strategies without altering 
the model by assigning agents to the same strategy terms in the path quantifiers of 

subformulas. 
This chapter is organized as follows. After introducing ATLES in this section, in 

Section 4.2, we investigate its expressivity, in Section 4.3, we formulate two variants of 
the model checking problem for ATLES and establish their computational complexities, 
while, in Section 4.4 we settle the complexity of ATLES's satisfiability problem and, 
finally, in Section 4.5 we show completeness with respect to ATLES semantics. 

4.1.1. ATLES. We now introduce ATLES, which provides explicit names for strate

gies. 

DEFINITION 4.1. (ATLES SYNTAX). Let n be a countable infinite set of atomic 
propositions, E a countable infinite set of agents and T a set of strategy terms with 
T = UaEE Ta, where Ta is a countable infinite set of strategy terms for agent a. A 

coalition is a finite set ACE of agents. A commitment function is a partial function 
p : E -+ T mapping finitely many agents a E E to a strategy term p( a) ETa for a. 

The set of ATLES-formulas is generated by the following grammar, where pEn, A 
ranges over coalitions, p over commitment functions and <.p over ATLES-formulas: 

'P ::= p I -'<.p I 'P V <.p I ((A}) pO<.p I ((A)) pO<.p I ((A)) p<.p U <.p. 
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Logical truth (T), the Boolean connectives (/\, - and ~) and 0 are defined as 
usual. Observe that in ATLES the operators ((A)) pO are explicitly defined in the syntax, 
since ((A)) pO cannot be expressed in terms of ((A)) p and U within ATLES. ATL is the 
fragment of ATLES only allowing for commitment functions that are undefined for all 

agents. 
As semantic structures, an extension of alternating transition systems were sug

gested in [242] that explicitly account for actions and action pre-conditions, so-called 
action-based alternating transition systems. In this work, however, we confine ourselves 
to a variant of the alternating transition systems introduced in [15] extended with 
strategy terms and a denotation function mapping strategy terms to strategies. These 

transition systems can easily be seen to be equivalent to the action-based structures 

of [242]. 

DEFINITION 4.2. (ATSN). Let ~ = {I, ... ,n} C :E, with n ~ 1, be a finite 

set of agents and, for each agent a E ~, Ta C Ta a finite set of a-strategy terms. 
An alternating transition system with strategy names (ATSN) for ~ is a tuple S = 

(IT,~, Q, {Ta}aEE, 11", 8, /1./1) where 

• IT ~ IT is a finite, non-empty set of atomic propositions, 

• Q is a finite, non-empty set of states, 

• 11" : Q - 2TI is a valuation function which assigns to every state a set of atomic 
propositions that are true there, 

• 8 : Q x ~ - 22Q is a transition function which maps a state q E Q and an 
agent a E ~ to a non-empty set of choices 8(q, a) available to a at q such 

that the following condition is satisfied: for every state q E Q and every set 

Ql, . .. ,Qn, where n is the number of agents, of choices Qi E c5(q, i), 1 $ i $ n, 
the intersection Ql n·· . n Qn is a singleton set, and 

• /I . 11 : T - (Q+ - 2Q) is a denotation function, where T = UaEE Ta, which, 
for each agent a E ~, maps an a-strategy term to an a-strategy (to be defined 
below). 

Notice that an ATSN contains finitely many strategy terms, although there can 
be infinitely many different strategies. This is sufficient since an ATLES-formula is 
evaluated over ATSNs that contain at least the strategy terms occurring in the formula 
rather than a strategy term for each possible strategy. 

Intuitively, 8(q, a) describes the a-choices available in q: when in state q, agent a 

chooses a set from 8(q, a) to ensure that the ''next state" will be among those in the 

chosen set. This notion of a-choices is generalised to A-choices for coalitions A of agents 

as follows: Given an ATSN S = (IT,~,Q,{Ta}aEE,1I",8,/I.I/), for each state q E Q and 

each coalition A ~ ~, set 

8(q, A) := {{QA ~ Q I QA = naEA Qa where Qa E 8(q, a)} if A t= 0 . 
{U8(q,~)} if A = 0 
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When in state q, the agents in coalition A collectively choose a set from t5(q, A) to 
ensure that the "next state" is from this set. Note that t5(q, A) is non-empty for each 
state q and coalition A, and t5(q, E) is a set of singletons. The states in the singleton 
sets of t5(q, E) are the successors of q, i.e., the system is completely determined when 
all the agents have made their choice. Since the empty coalition cannot influence the 
behaviour of the system, t5(q,0) is set to U t5(q, E), the set of all possible successors of 

q. 
An infinite sequence A = qOqlq2'" E er of states is a computation if, for all 

positions i 2': 0, there is a choice {qi+l} E t5(qi' E). Denote with A[i] the i-th component 
qi in A, and with A[O, i] the initial sequence qo ... qi of A. 

A strategy for an agent a E E is a function O'a : Q+ -+ 2Q that maps all finite 

sequences A' q E Q+ of states to a choice O'a(A . q) E t5(q, a) available to agent a at q. 

Note that A . q denotes the concatenation of the finite sequence A with the state q. A 

strategy for a coalition A is a set of strategies 0' A = {O' a I a EA}, one for each agent in 
A. Given a commitment function p, we augment the notion of strategies for A to that 
of a p-strategy for A. This is a set of strategies containing for each committed agent 

in dom(p), the strategy she committed to and, for each free agent in A \ dom(p), an 

arbitrary strategy for this agent. Formally, a p-strategy for A is a strategy 0' AUdom(p) 

for the agents in A U dom(p) such that for all agents a E dom(p), the strategy O'a for a 

in 0' AUdom(p) is such that O'a = IIp(a)ll· 
The set out( q, 0' A) of outcomes of a strategy 0' A for the agents in A starting at 

a state q is the set of all computations A = qOql q2 . .. E er such that qo = q and 

qi+l E nUaEUA O'a(A[O, iD for all i 2': O. 
Now we can be more precise about the meaning of ((A)) ptp: 

((A)) ptp means that, given the commitments of the agents b E dom(p) 
to use strategy p(b), the agents a E A \ dom(p) have a strategy such 
that, no matter what the agents C E E \ (dom(p) U A) will do, tp will 

result. 

DEFINITION 4.3. (ATLES SEMANTICS). Given an ATSN S = (IT, E, Q, {Ta}aEE, 

7r,8, 11 . ID, the satisfaction relation F is inductively defined as follows: 

• S, q FP iff pE 7r(q), for all atomic propositions p E IT; 

• S,q F .... 1/1 iff S,q ~ 1/1; 
• S, q F 1/1 V tp iff S, q F 1/1 or S, q F tpj 

• S, q F ((A)) pOCP iff there is a p-strategy 0' AUdom(p) for the agents in AUdom(p) 
such that for all computations A E out(q,O'Audom(p», it holds that S,A[l] F tpj 

• S, q F ((A)) p0tp iff there is a p-strategy 0' AUdom(p) for the agents in A U dom (p) 
such that for all computations A E out( q, 0' AUdom(p»' it holds that S, A[i] F tp 

for all positions i 2': Oj 
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• S, q F ((A)) p"pU cp iff there is a p-strategy 0' AUdom(p) for the agents in AUdom(p) 
such that for all computations A E out(q, 0' AUdom(p»), there is a position i 2: 0 
such that S, A[i] F cp and S, A[j] F"p for all positions j with 0 ~ j < i. 

If for some state q of some ATSN S it holds that S, q F "p, then the ATLES-formula "p 

is true at q, and S is called a model of"p. An ATLES-formula is satisfiable if it has a 

model. 

ATLES contains ATL as a fragment in which formulas exclusively use commitment 

functions that are undefined for all agents. For expressing properties in ATL, see Exam

ple 2.23 in Chapter 2. To better understand the additional expressive power of ATLES 

compared to ATL and the difference of ATLES to ATL*, consider the following example. 

EXAMPLE 4.4. (EXPLICIT STRATEGIES). First, we illustrate how to state properties 

with ATLES that cannot be expressed in ATL. Figure 4.1 depicts parts of two structures 

each modelling a continuous process that grants a privilege after requests. The left 

structure is modelled by a cycle containing states at which a request is made and grants 

are given. In the right structure, however, the process has to leave the cycle to grant a 

privilege. The arrows depict system transitions. Using ATL *, we can specify the liveness 

(\ 
· . · . · . 

V V 
request request 

FIGURE 4.1. Two ATSNs for one agent. 

property that the coalition A has a collective strategy to guarantee computations along 
which grants are not infinitely often postponed, and, thus, infinitely many grants are 

given. Thus, we have x F ((A))DOgrant. Notice that ((A))DOgrant does not hold at 

state y since, in the structure on the righthand side, only one grant can be given. 

In ATL, however, this property is not expressible. For instance, the similar ATL

formula ((A)) 0 ((A)) Ogrant states something different. The coalition A in the outer path 

quantifier allows computations along which no grant is given, and the agents in the 

nested path quantifier can select computations along which only one grant is given. 

This formula is true at both states x and y, i.e., this ATL-formula cannot detect the 

difference between x and y in the two structures. Notice that this does not mean that 

ATL cannot distinguish between x and y. However, using ATLES, we can express this 
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liveness property. Using explicit names for strategies in the object language, we can fix 
the behaviour of agents by referring to the same strategy in different path quantifiers. In 
this case, we denote the collective strategy of the coalition A by the strategy term, say, 
{JA and let the agents in A use the same strategy at both path quantifiers. We make sure 
that the strategy term {J A corresponds to some appropriate strategy 0' A for the agents in 
A such that the system never leaves the cycles in Figure 4.1. Then the liveness property 

can be expressed with the ATLES-formula ((A)) {A ...... "A} 0 ((A)) {A ...... "A} Ogrant. Notice that 
this formula holds at x but not at V, which means that ATLES can differentiate between 
the two structures in Figure 4.1 and overcomes a lack of expressivity in ATL. 

The second example illustrates how we can state properties with ATLES that cannot 
be expressed even in ATL*. Such properties involve non-uniform choices, which can 
be described with ATLES using coalitions with committed and uncommitted agents. 
Figure 4.2 shows two structures for two agents each. The arrows denote the system 
transitions and the round boxes labelled with a or b denote the choices of agents a and 
b, respectively, at the states x and v. As illustrated in Figure 4.2, some successor states 
of x and y satisfy the proposition p and others not. Suppose we want to distinguish the 

'--+--++-_...j..-\_-I--../ b 

'--+-_+-_-+-_-1--' b 

a a 

FIGURE 4.2. Overlapping choices in two ATSNs for two agents. 

states x and V. Observe that all a-choices at V are uniform in the sense that all states 
of an a-choice either satisfy p or falsify p. At x, however, the a-choices are not uniform, 
because the left-most a-choice contains a state satisfying p and another state falsifying 
p. Using ATLES, the situation at x can be described as follows: Using an explicit name, 
we can denote the left-most a-choice at x with a strategy term for a, say, {Ja: 

x 1= {{a, b)) {a ...... ",,} Op /\ ((a, b)) {a ...... ",,} O-'p· 

Notice that, using the name {Ja, we can refer to the same a-choice in different path 

quantifiers, where agent b selects different subsets of a's choice. In other words, in 
each path quantifier, agent b refines a's strategy {Ja in a different way. At the state V, 

however, we have that 
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since no a-choice at y contains a p-state and a non-p-state. Consequently, ATLES can 
distinguish between the states x and y. On the other hand, ATL or even ATL* cannot 
describe the situations at x and y so closely as to distinguish the two states. For instance, 
consider the similar ATL-formula ((a, b))Op 1\ ((a, b))Oq. It is readily checked that this 
formula is true at both states x and y. In fact, no ATL*-formula can distinguish x and 

y. To see this, notice that x and y are A-bisimilar for all A E {a,b}; cf. Definition 2.25 

of alternating bisimulation in Section 2.4.5 of Chapter 2. But then, x and y satisfy the 
same ATL*-formulas according to Theorem 2.26. 

The final example exhibits some ATL* -formulas with Boolean combination of tem
poral expressions inside a path quantifier that cannot be expressed in ATLES. Figure 4.3 

shows two structures for an agent a and some other agent, say, b. The round boxes de

note the choices for a at the respective previous state, whereas the choices for agent b 

are not illustrated. Notice that any strategy that a selects at the states x and y will 

x 

FIGURE 4.3. Computations in two ATSNs for two agents. 

give rise to two computation paths since the a-choices at x and y contain two states. 
Consider the two computations determined by a at x. Using ATL*, we can express that 
they satisfy 'always p' or 'always q'. We have x F ((a))(Op V Oq). The situation is 
different at state y: The computation on the right starting at y does not satisfy 'always 
q'. Therefore, we have y ~ ((a))(OpVOq). In ATLES, we cannot express ((a))(OpVOq) 
since Boolean combinations of temporal expressions inside a path quantifier are not 

available. The similar ATLES-formula ((a)){a ..... ",,}Op V ((a)){a ..... ",,}Oq does not express 
the same property: It requires that both computations satisfy 'always p' or 'always 

q'. Clearly, this is not the case at the states x and y. Anyway, observe that the two 

path quantifiers each select the same two computations since agent a uses both times 

her strategy (}a' Let us consider another, similar formula: ((a)){}O(p V q). Note that 

this formula belongs to the ATL-fragment of ATLES. It requires that the states of the 
computations selected by a satisfy p or q. It is readily checked that ((a)){}O(p V q) 



110 4. ATL WITH EXPLICIT STRATEGIES 

is true at x and y. Consequently, both ATLES-formulas similar to the ATL*-formula 
((a)}(Op V Oq) are not suited to differentiate between the states x and y. 

-l 

4.1.2. Axiomatic system for ATLES. In this section, we present the axiomatic 

system for ATLES: Table 4.1 contains the axioms and inference rules. The notions 

of ATLES-provability and consistency are defined as usual. The axioms and the 

(TAUT) 

(1.) 

(T) 

(8) 

(Cl) 

(C2) 

(C3) 

(FPo) 

(GFPo) 

(FPu) 

(LFPu ) 

Propositional tautologies 

-.«A}) pOl. 

«A}}pOT 

«A}} pOcp 1\ «B}} pO'I/J --+ «A U B}} pO( cp 1\ 'I/J) where A n B £; dom(p) 

«A}}pOcp --+ «A}}p'Ocp where p' = pU {a ~ Ua}, a ~ A, Ua E Ya 

«A}}p'Ocp --+ «A}} pOCP where p' = p U {a ~ Ua}, a E A, Ua E Y" 

«A U {a}}} pOCP --+ «A}} pOCP where a E dom(p) 

{(A}) pOcp +-+ cp 1\ «A)} pO «A)} pOcp 

«0)} pO(fJ ...... (cp 1\ «A)) pOfJ)) --+ «0}) pO(O ...... «A)} pOcp) 

«A)} p'I/J U cp +-+ cp V ('I/J 1\ «A)} pO «A)) p'I/J U cp) 

«0)} pO( (cp V ('I/J 1\ «A}} pOO» --+ 0) --+ «0)} pO( «A}) p'I/J U cp --+ 0) 

(Modus Ponens) «(0}) pO-Necessitation) «0»:OCP 

cp--+'I/J 
«(A)} pO-Monotonicity) «A» pOCP ...... «A» pO'I/J 

TABLE 4.1. An axiom system for ATLES. 

inference rules were inspired by the axiomatisation of Coalition Logic in [195] and of 

ATL in (98] and extended to ATLES. Essentially, this involved adapting every ATL 

axiom by additionally parameterising each path quantifier with a commitment function. 

For the ATL axiom (8), we also needed to adapt its condition. Moreover, we added 

three new axioms (Cl) to (C3) that characterise the expressivity of the commitment 

function. Intuitively, these three axioms express the following: 

(Cl): given a commitment p, a coalition A can still ensure <p at the next state 

after an agent outside of A commits to a strategy; 

(C2): given a commitment pi, a coalition A can still ensure <p at the next state 

after a member of A dismisses her commitment; 

(C3): given a commitment P, after a committed agent a has left the coalition 

A U { a}, the remaining agents in A are still able to ensure <p at the next state. 

In Section 4.5, we show completeness of the axiomatic system for ATLES in Ta

ble 4.1. In particular, we determine in Lemma 4.23 under which conditions the power 
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of one coalition A, given some commitments p, can be ''transferred'' to the power of 
B, by assuming commitments~. That is, we characterise when a formula of the form 

«A)) p01/J -t ((B))e0 1/J can be derived. Intuitively, the implication in Lemma 4.23 can 
be seen as a course of action where agents join or leave the coalition and agents take or 

dismiss commitments. 

4.2. Expressivity 

As demonstrated in Example 4.4, we have that ATLES and ATL* are incomparable 
with respect to expressivity: some formulas of ATL* cannot be expressed in ATLES, 
while some formulas of ATLES cannot be expressed in ATL*. But how exactly does 

ATLES's expressivity compare to that of ATL*? In the following, we aim to give an 

answer to that question. 
Recall that ATL'" allows for Boolean combinations and nesting of temporal operators 

inside a path quantifier; cf. Section 2.4.1 in Chapter 2. Some of these formulas can be 
translated into ATLES in a satisfiability preserving way. For instance, the ATL '" -formula 

with nesting of the temporal operator next-time (0) can be translated into ATLES as 

follows: for n ~ 0, 

«a, b))onrp = «a, b)) {a ..... ea'bt-+eb} 0 ... ((a, b)) {a ..... Ua'b ..... Ub} 0 rp 
, "" rI 

n-times 

where {la, {lb are fresh strategy terms for the agents a, b, respectively. Note that with 

the translation, we have an exponential blow-up in the formula size if n is coded in 

binary. 

Here are some more ATL"'-formulas with nesting of temporal operators that can be 
translated into ATLES: 

((a, b)) {a ..... (la'b ..... Ub} [rp U( ((a, b)) {a ...... "a'bt-+Ub} (1/J u '!9))] ((a,b))[rpU(1/JU'!9)] = 

((a, b))[rpU(01/J)] = ((a, b)) {a ...... "a,b ...... Ub} [rp U( ((a, b)) {a ...... Ua'b>-+"b} 01/J)] 
((a, b))O(rpU 1/J) = ((a, b)) {a ...... ea'bt-+"b} O((a, b)) {a ...... "a'b ...... "b} (rpU 1/J). 

To pinpoint the relationship between ATLES and ATL* more precisely, we now 
define a translation function 0* mapping some ATL*-formulas rp to formulas of ATLES 
in a satisfiability preserving way. To this end, recall Definition 2.20 of the ATL* syntax 
in Chapter 2. Observe that, other than in ATLES, in ATL* we can express Boolean 
combinations and nesting of temporal operators inside a path q~antifier. We restrict the 

translation function to formulas in negation normal form, where negation only occurs 

in front of propositional variables or path quantifiers. To understand the following 

definition of the translation function, the distinction between ATL* state formulas and 

path formulas is important. 

DEFINITION 4.5. (TRANSLATION FUNCTION). We define a partial function O(B,e} 
on ATL'" state and path formulas in negation normal form as follows, where B ranges 

over coalitions and ~ over commitment functions. For all state formulas p, rp, rp' and all 
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path formulas 1/1, 1/1' in negation normal form: 

(P)(B,{) .-

(-'<p )(B,{) .-
(<p V <P')(B,{) .-
( «A)) 1/1) (B,{) .-

( 1/1 /\ 1/1') (B ,e) .-
(01/1)(B,{) .-
(-,01/1)(B,{) .-
(1/1 u 1/1')(B,e) .-

p, for atomic propositions p E D; 

-,( <p ) (B,{) ; 

(<P)(B,{) V (<P')(B,{); 
(1/1)(A,p)' for commitment function p with dom(p) = A and 
the range of p containing only fresh strategy terms; 

(1/J ) (B,{) /\ (1/J')(B,{); 
«B)) {O( 1/1 )(B,{>; 

(O-,1/1)(B,e>; 
«B)) e( (1/1 ) (B,{) U( 1/J')(B,{»' 

The following lemma establishes that the translation function is satisfiability pre
serving. The lemma can easily be shown by induction on the structure of ATL * -formulas 
for which O· is defined; we leave the details to the reader. 

LEMMA 4.6. Let B be the empty coalition and ~o the empty commitment function. 

For all ATL*-formulas <p in negation normal form such that the translation function 

o (B,{o) is defined for <P, the following are equivalent: 

(a) <p is satisfiable wrt. ATL*; 

(b) (<P)(B,eo) is satisfiable wrt. ATLES. 

The translation function (-)* determines only a fragment of ATV that can be trans
lated into ATLES in a satisfiability preserving way. This is not surprising since ATLES 
is not expressive enough to subsume full ATL* as we have already seen in Example 4.4. 
In the following, we exhibit two more examples of ATL*-formulas that cannot be trans
lated. The first example deals with negated path quantifiers. Consider the ATV-

formula 
-, «A)) oO<p 

that expresses the negation of the liveness property from Example 4.4, i.e., the coalition 
A cannot guarantee that along all computations grants are not infinitely often post
poned. At first sight, there seem to be two possibilities to translate that formula into 

ATLES: 

(i) -,«A)) pO «A)} pO<P, where the commitment function p maps each agent a E A 

to some a-strategy term p( a) = Ua j and 
(ii) ""t«A)} p,o«A}} p,O<P, where the commitment function p' maps each agent b E 

I.: \ A to some b-strategy term p(b) = Ub· 

It is readily checked that the ATLES-formulas in (i) and (ii) both express something 
different than the ATL*-formula above. The formula in (i) avoids quantification over 
all A-strategies by fixing the A-strategy in p. The problem with the formula in (ii) is 
the kind of strategy that is assigned to the agents outside of coalition A. The assigned 
strategies for the agents in I.: \ A select a choice at each state instead of responding to 
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the choice made by coalition A. Goranko and van Drimmelen [98J called such strategies 
for the agents in ~ \ A that respond to given A-choices co-strategies. Another issue 
in (ii) is that the grand coalition ~ of all agents needs to be known. 

The second example exhibits ATL*-formulas with disjunction of temporal expres
sions inside a path quantifier that cannot be translated into ATLES. For instance, 

ATLES cannot express the ATL * -formula 

((A})( 1/J V 1/J') 

stating that coalition A has a strategy to ensure computations on which 1/J or 1/J' holds. 
Notice that this formula is already expressible in the ATL-extension ATL +, that allows 
for Boolean combinations of temporal operators inside path quantifiers. ATL + relates 

to ATL as CTL + to CTLj cf. Definition 2.11 of CTL + and Definition 2.20 of ATL in 

Chapter 2. However, we can translate ATL*-formulas of the form ((~})(1/J V 1/J') into 

ATLES provided that the grand coalition ~ of all possible agents is known. Note that, 
since ~ is the set of all agents, the path quantifier ((~)} selects exactly one computation 

path. We have that ((~})( 1/J V 1/J') +-+ ((~)1/J V ((~)}1/J' is valid. By knowing ~, we can 

select a single computation in ATLES as well by fixing the strategies for all agents in 

~ with a commitment function, say, p (Le., dom(p) = E). Then ((E»(1/J V 1/J') can be 

translated as 

((A» p1/J V ((A}) p1/J' 

where A is any coalition. Notice that the path quantifiers in both disjuncts select the 

same single computation path since every agent in E uses the same strategy specified 

in p. 

We finish the discussion on ATLES's expressivity by showing that ATLES can de

scribe important game-theoretical concepts which make this logic more suitable for 
modelling rational behaviour of agents. In [242], it was argued that CATL is suited 
to express properties of games such as Nash equilibrium and Pareto efficiency. Where 
CATL seems to provide for reasoning about strategic games, ATLES extends this to 
extensive games. Extensive games can be represented by a tree structure whose leave 
nodes indicate the payoff for the players. Such game trees can be associated with AT
SNs. Using explicit names for strategies, we can fix a strategy for each player. ATLES 
allows now to explicitly reason about properties of strategies. In particular, ATLES can 
describe weakly dominated and dominated strategies. Moreover, we can characterise 

Nash Equilibria, backward induction and Pareto optimal strategies using ATLES. For 

more details, we refer to Walther, van der Hoek and Wooldridge 1266J. 

4.3. ATLES Model Checking 

In this section, we discuss two model checking algorithms for ATLES. Generally, 

the model checking problem is, given a formula cp and a model S, to determine whether 
a state of S that satisfies cp, or to compute the set of states in S that satisfy cp. When 

model checking an ATLES-formula, we have to take the strategies into account that 
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come with an ATSN. However, it appears to be also an interesting problem to consider 
the possibility that strategies are not given as part of the input; cf. the 'model checking 
as planning' paradigm [92J. With this in mind, we now formulate two variations of the 
model checking problem for ATLES: 

(a) Model checking with given strategies 

Given an ATLES-formula cp, an ATSN 5 = (IT, E, Q, {i a}aEE, 71", 8, 11·11) where 
the set E = {I, ... , n} contains n agents, and a state q E Q, is cp satisfied at q 

in 5? 
(b) Model checking along with generating strategies 

Given an ATLES-formula cp, an ATS 5 = (IT, E, Q, 71", 8), and a state q E Q, 
are there strategies, one for each strategy term that occurs in cp, such that cp 
is satisfied at q in 5 augmented with these strategies? 

For deciding variant (a) of the problem, we use a modified version of the symbolic 
model checking algorithm for ATL from [15J; see Figure 4.4. Consider an ATSN 

1. function ATLE8-eVal(t/J, S = (II, E, Q, {i alaE!;' 71", 8, 11· 11)) returns the extension [t/J] in S 
2. case t/J = p: return 7I"(p) 
3. case t/J = -,f): return Q \ ATLES - eval ('19, S) 
4. case t/J = '191 V '192: return ATLEs-eval(t9b S) U ATLEs-eval(t92 ,S) 
5. case t/J = ((A))~Ot9: return Pre/(A,~,ATLEs-eval(O,S)) 
6. case t/J = ((A))~Ot9: ~l := Q; ~2 = ATLEs-eval(O,S) 
7. while ~1 ~ ~2 do ~l := ~2 
8. ~2 := Pre'(A,~, ~l) n ATLEs-eval(t9,S) od 
9. return ~l 
10. case t/J = ((A))Et91 U '192: ~1 := 0; ~2 = ATLEs-eval(t92 ,S) 
11. 
12. 
13. 
14. end-function 

while ~2 ~ ~1 do ~1 := ~1 U ~2 
~2 := Pre'(A,~, ~1) n ATLEs-eval(Ol,S) od 

return ~1 

FIGURE 4.4. ATLES symbolic model checking (variant (a)). 

5 = (IT,E,Q,{ia}aEE,7I",8,1I·1I), a state q in 5, and an ATLES-formula cp as input. 
Take E to be the set containing all agents occurring in cp, and, for each agent a E E, let 
i a be the set containing all a-strategy terms of cp. Notice that, for any agent a of cp, if 
a ~ E or Ua ~ i a for some a-strategy term Ua of cp, the ATSN 5 cannot be a model for 
cp. We denote with SIP the set of all commitment functions occurring in cp. 

The algorithm computes, using a bottom-up approach, for each subformula 'Ij; of 
cp, its extension ('Ij;) in 5, a set of states from 5 that all satisfy 'Ij;. For computing 

the extension of formulas of the form ((A)) (O/J I ((A))(O'lj; or ((A))('Ij;UiJ , we employ 
a modified pre-image operator Pre' that additionally accounts for the commitments 

of agents to strategies as specified in e· The function Pre'(··· ) maps a coalition A, 
a commitment function e I and a set Q' of states to the set Pre' (A, e I Q') containing 
states q at which the coalition A U dom(e) has an A-choice wrt. e (i.e., a collective 
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choice of the agents in A U dom(~) where the agents in dom(~) choose according to the 

strategy specified in ~) to ensure the next state to lie in Q'. That is, at q, the agents a 

in A \ dom(~) can select a choice in c5(q, a), and the agents b in dom(~) select the choice 

O"b(q) E c5(q, b) according to the b-strategy O"b = 11~(b)1I such that, for all possible choices 
made by the other agents in E \ (A U dom(~)), the resulting successor state is in Q'. 
Formally, for all A ~ E, all ~ E 3.., and all Q' ~ Q: 

Pre'(A,~,Q') .- {q E Q I there is a choice Qc E c5(q,AUdom(~) 

such that Qc ~ Q' 

and Qc ~ naEdom(~) 11~(a)II(q)}. 

This modification of the operator Pre does not affect the complexity of the model 

checking algorithm. Hence, the variant (a) of ATLES model checking is no more complex 

than model checking ATL. 

THEOREM 4.7. The variant (a) of the model checking problem for ATLES is PTIME

complete, and can be solved in time O(m· f) for an ATSN with m transitions and an 

ATLES-formula of length f. 

An algorithm deciding variant (b) of the ATLES model checking problem needs to 

generate the strategies for the strategy terms occurring in the input formula. However, 

we can make use of the algorithm for variant (a) as follows: we first non-deterministically 

guess the required strategies with which we augment the model. In the second step, 

we use the polynomial time algorithm from (a) to model-check the input formula on 

the augmented model. For ATLES with historyless strategies, we obtain the following 

complexity result. 

THEOREM 4.8. The variant (b) of the model checking problem for ATLES with 

historyless strategies is NP -complete in the number of transitions of the given A TS and 

in the length of the input formula. 

PROOF. The upper bound can easily be seen. Let cp be an ATLES-formula of 
length f and S an ATS for the agents occurring in cp. In the first step, we guess a 

historyless strategy for at most i strategy terms occurring in cp. Notice that strategies 

without history are of polynomial size in the number of transitions in S: such a strategy 
specifies one choice at every state of S. Thus, guessing a historyless strategy can be 

done in polynomial time in the number of transitions in S. The second step is in PTIME 

according to Theorem 4.7. Consequently, we obtain an NP algorithm. 

In order to show the lower complexity bound, we reduce the well-known NP-hard 

satisfiability problem for propositionallogic to variant (b) of the model checking problem 

for ATLES. For NP-hardness, it is sufficient to consider propositionallogic formulas cp 

in conjunctive normal form only [60J. That is, cp is a conjunction of the form "p11\·· .I\"pm 

where each "pi (for i = l..m) is a disjunction of the form t9i V ... V t9~,. Each t9; (for 

i = l..m and j = l..mi) is a literal, i.e. a propositional variable or its negation. Let 

PI, ... ,Pn be an enumeration of the propositional variables occurring in cp. Reserve, for 
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each t9~ with 1 ~ i ~ m and 1 ~ j ~ mi, a fresh propositional variable p(i,j). We now 
define the ATS S", = (I1, E, Q, 7T, 8) with 

• II = {p(i,j) 11 ~ i ~ m and 1 ~ j ~ mi}j 

• E = {a}j 
• Q = {qO, q}, qL ... qn, ~}j 

• for all p(i,j) E I1, 7T(P(i,j)) = {qk I t9~ = pd u {~ I t9~ = -'Pk}j 

• 8(% a) = 8(th, a) = {{qi+l}, {th+l}}' for all i with 0 ~ i < n, 8(qn, a) = {{qn}} 
and 8(q~, a) = {{q~}}. 

For an illustration of S"" see Figure 4.5. The number of transitions in S", is polynomial 

in the length of cp. To see that, notice that S", contains not more than twice times 

the length of cp many states with, for each state, at most two a-choices. We define the 

FIGURE 4.5. The ATS S", for one agent. 

formula 

CPATLES = A ( V ((a)){a .... "a}OP(i,j)). 
i=l..m j=l..mj 

Notice that the length of CPATLES is polynomial in the length of cp. Moreover, observe 

that every path quantifier in cP ATLES selects the same paths since agent a always chooses 

the strategy that corresponds to the strategy term {la. 

The reduction works as follows: cP is satisfiable if, and only if, there is a strategy 

for agent a such that CPATLES is satisfied at qo in S", augmented with that strategy. To 
show the correctness of the reduction, we first show how to translate interpretations of 

propositionallogic into strategies for a in S", and vice versa. If cP is satisfiable, there 

is an interpretation" that assigns propositional variables Pi (1 ~ i ~ n) in cP to truth 

values t(p,) E {a, I}. The notion of an interpretation can be lifted to formulas such 

that t(cp) = 1 if, and only if, cP is evaluated to true if its propositional variables are 

interpreted as specified in t. Given an interpretation t, we define an a-strategy O'a(t) in 

S", as follows: O'a(t)(qn) = {qn}, O'a(")(~) = {~}, and for all i with 1 ~ i < n, 

{
{qi} if t(Pi) = 1 

O'a(t)(qi-l) = O'a(t)(th_l) = {qa if t(p,) = 0 . 
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For the reverse direction, we define, given an a-strategy O"a in Scp, an interpretation 
t,(O"a) as follows. We say a state q E Q is O"a-rooted if there is a path So,···, Sk E Q* 
such that So = qo, Sk = q and {Si} = O"a(Si-l) for all i with 1 Si S k. Then define, for 

all i with 1 S i S n, 

{

I if qi is O"a-rooted 
t,(O"a)(Pi) = . 

o otherwise 

We now show the correctness of the reduction. For the left-to-right direction, suppose 
cP is satisfiable. That is, there is an interpretation t, such that t,( cp) = 1. This means 
that in all of cp's conjuncts 1/Ji (1 Si S m), there is a disjunct '19; (1 S j S mi) such that 
t,('I9;) = 1. It is readily verified that, by definition of Scp and O"a(t), we have qo satisfies 

((a)) {a ...... Pa} Op(i,j) in the ATSN consisting of Scp augmented with the strategy O"a(t) such 

that the denotation function" ·11 maps the strategy term fla to Ilflall = O"a(t). Hence, qo 

satisfies CPATLES' For the other direction from right to left, suppose there is an a-strategy 

O"a such that CPATLES is satisfied at qo in the ATSN consisting of Scp augmented with O"a 
by setting 11 fla I I = O"a. That is, for all i with 1 S ism, there is a j with 1 s j S mi 
such that qo satisfies ((a)){a ...... ua}Op(i,j). Then, by definition of t(O"a) , we can easily see 

that t(O"a)('I9;) = 1. This implies t(O"a)(CP) = 1. Hence cP is satisfiable. 0 

4.4. Complexity of Reasoning in ATLES 

This section investigates the computational complexity of the satisfiability problem 

for ATLES and completeness of the axiomatic system in Table 4.1. The complexity is 

settled at ExpTIME-complete and thus ATLES is no more complex than ATL. This is 
done by adapting the type elimination algorithm for ATL in Section 3.1.2 of Chapter 3; 

see also 1265J. 
Since, in the definition of ATLES, we do not fix the number of agents in advance, 

some care is needed when formulating a satisfiability problem for ATLES. A similar 
consideration for ATL was done in Section 3.1.1 of Chapter 3. In particular, the range 
of semantic structures, over which a formula is to be interpreted, needs to be specified. 
Such a range can be determined by allowing for a certain number of agents to be present 
in the semantic structures. To see that allowing for different sets of agents to be present 
can influence satisfiability, take the following ATL-formula (adapted from [195, p.47J): 

-. ((a)) Op 1\ -.((a))Oq 1\ ((a))O(p V q). This formula expresses the fact that, in the next 

state, agent a cannot make p true, and cannot make q true; but it can make either p or 

q true. Now the question is whether this formula is satisfiable. The answer is that it 

is only satisfiable in a semantic structure for more than one agent, and not satisfiable 

with merely one available agent. Thus the number of agents present in a structure 

is important for determining satisfiability of a formula in this structure. With these 
concerns in mind, three variants of the satisfiability problem for ATL were suggested in 

Section 3.1.1 depending on the possibilities for the number of agents to occur in semantic 
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structures. In this chapter, however, we concentrate only on one of these problemsj the 
other two satisfiability problems can be reduced to it: 

Satisfiability over formula-defined sets of agents: Given an ATLES-formula 'P, 
is 'P satisfiable in a structure for exactly the agents which occur in 'P? 

The following theorem settles the complexity of the satisfiability problem for ATLES. 

THEOREM 4.9. The satisfiability problem for ATLES is ExpTIME-complete. 

The lower complexity bound carries over from the ExpTIME-hard fragment ATLj 

cf. Table 2.9 in Chapter 2 or see 1252, 2651· For the upper bound, it is sufficient 

to show that ATLES satisfiability is in ExpTIME. The remainder of this section is 

devoted to presenting a decision procedure for ATLES that runs in exponential time 

and thus shows containment of ATLES satisfiability in ExpTIME. Correctness of the 

decision procedure follows from Lemma 4.17 below, while Lemma 4.18 establishes its 

exponential running time. The decision procedure implements an extended version of 

the type elimination construction for ATL from Section 3.1.2 in Chapter 3. The main 

issue that needs to be accounted for is that ATLES allows for commitment of agents to 

strategies explicitly in its syntax. 

We begin our presentation of the type elimination decision procedure for ATLES 

with the definition of an extended closure that contains all formulas that are relevant 
for deciding the input formula. This and the following notion of types as specific su~ 

sets of the extended closure are adapted from Section 3.1.2 to additionally account for 

commitment functions. 

DEFINITION 4.10 (Extended Closure for ATLES). Let 1/J be an ATLES-formula and 

n the number of agents occurring in 1/J. The extended closure eel( 1/J) of 1/J is the smallest 
set which is closed under the following conditions: 

.1/JEecl(1/J)j 
• ecl(1/J) is closed under subformulasj 

• ecl(1/J) is closed under single negationj 

• if ((A}}pO'P E ecl(1/J), then ((A}}pO((A}}pO'P E ecl(1/J)j 

• if ((A}}p'PUiJ E ecl(1/J), then ((A}}pO((A}}p'PUiJ E ecl(1/J). 

Note that the cardinality of ecl(1/J) is linear in the length of 1/J. 

DEFINITION 4.11 (ATLES Type). Let 1/J be an ATLES-formula. The set W ~ ecl(1/J) 

is a type for 1/J if the following conditions are satisfied: 

(T1) 'P V iJ E W iff 'P E W or iJ E W, for all 'P V iJ E ecl(1/J)j 

(T2) 'P E W iff..,'P ~ W, for all "''P E ecJ(1/J); 
(T3) ((A}}pO'P E W iff {'P, ((A)}pO((A)}pO'P} ~ W, for all ((A}}pO'P E ecl(1/J)j 

(T4) ((A}}p'PUiJ E W iffiJ E W or {'P, ((A}}pO((A}}p'PUiJ} ~ W, for all ((A}}p'PUiJ E 

ecJ(1/J). 
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The set of all ATLES types for "p is designated by r t/!. 

Note that the cardinality of r t/! is exponential in the length of "p. 
Intuitively, an ATLES type describes a possible state q of a transition system using 

formulas from ecl("p) which are true at q. The decision procedure will use all ATLES 
types for an input formula to determine its decidability. The conditions (T1) to (T4) 

state restrictions on the formulas in a type. 
Before proceeding with the construction, we introduce some auxiliary notions. As 

for ATL in Section 3.1.2, we use :Et/! to denote the set of all agents that occur in the 
formula"p. Moreover, we distinguish between positive and negative next formulas of 
ATLES and assume that all next formulas in the extended closure ecl('I/1) are linearly 

ordered in a way that no negative next formula occurs before a positive one. We denote 
with ~'f' the number of the next formula "P E ecl("p) in this ordering; the numbering 
starts with O. Since there are as many positive next formulas in ecl("p) as negative ones, 

we obtain the following enumeration "Po,· .. , "Pk-l with "Po,···, "Pk/2-1 being positive 
next formulas and "Pk/2,"" "Pk-l negative nextformulas. Additionally, we assume that 
all strategy terms occurring in "p are linearly ordered as well. Let £ be the number of 

strategy terms in"p. Enumerate the strategy terms by el,"" et and denote with ~Ui 
the number -i, Le., the negated number of ei'S position in this ordering. 

Intuitively, the type elimination algorithm eliminates those types that are not rel
evant for building an ATSN S in which the input formula "p is satisfied at some state. 
The states of such an S are thought of as consisting of sequences of n-tuples where 

n = 1:Et/!I. Each component of such an n-tuple corresponds to an agent and takes values 
from -£ to k - 1 which in turn refer to one of the £ strategy terms or one of the k next 

formulas in ecl("p): 
k k 

-£, ... ,-1, 0""'2- 1, .2+ 1, ... ,k-1 
~ , ,- ~ 

strategy terms . . .. t ~ 1 t' " ~ posItIve nex ,ormu as nega Ive next ,ormulas 

The set of all such n-tuples is denoted with [( -£, k)/nJ, and the states of S will be 
sequences of n-tuples from [(-£, k)/nJ*. Supposing q E [( -£, k)/nJ* is a state of S, then 
the set {q . fI f E [( -f, k)/nJ} contains its potential successor states, thus the choices 
in cS(q, a) are subsets of this set. Each state q of S corresponds to some type that was 
not eliminated and the construction of S is aiming at satisfying every formula from 
this type at q. In particular, q will have to satisfy a number of next formulas, Le., the 

definition of cS that specifies the choices available at q is crucial. The transition function 

cS is defined as follows: For all agents a (ranging from 0 to n - 1), define 0 ( q, a) to be 

the set of the choices 

{q. rE [(-l,k}/nJ* I r= (to, ... ,tn-d and ta = p} 

where p ranges over {O, ... , k/2 - I} or p = ~u for some a-strategy term e that occurs 

in '1/1. The idea here is that agent a makes an a-choice by ''voting'' for a positive next 
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formula that she wants to be satisfied or for one of her strategies she may be committed 
to follow. Such votes are done via a's position ta in tuples i' = (to, ... , tn-l). Notice 
that this is implemented by the condition on the range of p: agent a can vote for one 
of the k /2 many positive next formulas by choosing a value from 0 to k /2 - 1, or a 

can vote for one of her strategies, say ea, by selecting the value #l1a' For a coalition 
A and a commitment function p, an A-choice wrt. p is made by a collective vote of 
the entire set of agents A U dom(p) while accounting for the commitments of agents 
in dom{p) to certain strategies. We characterise A-choices wrt. p as follows: A subset 
S(A,p) S; [{ -.e, k)/nJ of vectors is called an A-voting set under commitment p if there 
exists a mapping 'rp : A - {-.e, ... , k/2 - I} with 

• 'rp(a) = #p(a), for all a E dom(p), and 
• 'rp(a) E {O, ... , k/2 - 1}, for all a E A \ dom(p) 

such that 

S(A,p) = {i' = (to, ... , tn-d I ta = 'rp(a), for all a EA}. 

Then we have that the choices in 6(q, A) are exactly the sets {q. i'I i' E S(A,p)} where 
S(A,p} ranges over the A-voting sets under any commitment p. 

In order for q to satisfy a positive next formula ((A)) pO<P, the construction of S 
ensures that <p is satisfied at all states of an A-choice wrt. p. This A-choice corre
sponds to an A-voting set under commitment p where the agents in A \ dom(p) without 
commitment vote solely for the next formula ((A))pO<p and the other agents in dom{p) 
respectively vote for the strategies they committed to as described in p. Note that, if 
all agents in A have committed to a strategy in p, then there is exactly one A-voting 
set under commitment p. Moreover, any A-voting set under commitment p is also a 
B-voting set under p and vice versa, for any B with (A \ dom(p)) S; B S; (AUdom(p». 

Satisfying negative next formulas -,((A)) pO<p at a state q is straightforward if A U 
dom(p) = I::1/J: such next formulas merely state that all successors of q that can be 
reached when every committed agent a in dom{p) follows her strategy p(a) and every 
other agent in A \ dom(p) freely makes a choice, satisfy -'<p. For satisfying -,(A))pO<p 
with A U dom(p) C I::1/J at q, the subformula <p needs to be refuted at a state in every 
A-choice wrt. p. To this end, we pick a state from every such A-choice at which we 
falsify <po Note that, by picking a state from every A-choice wrt. p, a state from every 
A'-choice wrt. p' is picked as well, where A' and p' satisfy 

• A' U dom(p') S; A U dom(p), and 
• p'(a) = p(a), for all a E dom(p'). 

But this is fine as -,((A)) pO<P implies -,((A')} p'O<P under those restrictions. However, 
-,((A}) pOIfJ does not imply any formula -,((B}}(O<p, where B and { are such that B U 
dom({) ~ A U dom(p) or {(a) 1= p(a) for some a E dom({). Thus, in order not to 
automatically satisfy another negative next formula of the form -,((B}) (O<p when picking 
elements in A-choices wrt. p, some care is needed such that the picked elements from 
such A-choices are not also elements of B-choices wrt. {, for any such Band {. Picking 
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the right states that refute cp is implemented by a ''refutation function". The following 

definition refines the refutation function in Definition 3.6 that was used for the ATL 

decision procedure in Section 3.1.2. 

DEFINITION 4.12 (ATLES Refutation Function). Let 1/J be an ATLES-formula, n = 

I~t/JI, k the number of next formulas in ecl(1/J), and i the number of strategy terms in 

1/J. Define a partial function 

I: [( -i, k)/nj x 2!:'" ~ {k/2, ... , k - I} 

mapping vectors and coalitions of agents to numbers of negative next formulas: for each 

set of agents B C ~t/J, fix an agent aB E ~t/J \ B. Then set, for all t = (to, ... , tn-1) E 

[( -i, k)/nj and B ~ ~t/J, 

{ 

U..,«A))pO'P if taB = U..,«A))pO'P with A U dom{p) = Band 

1{t,B) := for all a E ~t/J, -i $ ta < k/2 iff a E B 

undefined if there is no such -,((A)) pOCP. 

Intuitively, the role of the refutation function is explained as follows: Consider a 

commitment function p and a vector t = (to, ... , tn-d in which the agents comply with 

their commitment in p, i.e., ta = Up(a) for all a E dom(p). Then f(t, B) = U..,«(A))pO'P 

with B = A U dom{p) means that, for every state q satisfying -,((A)) pO<P, the successor 

q . t has to refute cp. Note that there may be more than one successor of q refuting 

cp: at least one element of each A-choice wrt. p. Formally, we need the following three 

properties of the refutation function: 

(I) For all negative next formulas -'((A))pOcp E ecl{1/J) with AUdom{p) C ~t/J and 

all A-voting sets S(A,p) under commitment p, there is a vector t E S(A,p) such 

that I(t, A U dom{p» = U..,«A))pO'P' Recall that such A-voting sets correspond 

to A-choices wrt. p. 

(2) For all vectors t = (to, ... , tn -1) E [( -i, k)/nj, we have that I(t, AUdom(p» = 

U..,«A))pO'P implies ta ~ k/2 for all a E ~t/J \ (A U dom{p». 
(3) For all vectors t E [( -i, k)/nj, there is at most a single set B ~ ~t/J with I(t, B) 

defined. 

It is readily verified that the refutation function I from Definition 4.12 indeed satisfies 

these properties. 

The construction of a model for the input formula is more involved due to the 

presence of negated box formulas and until formulas which we call eventualities. This is 

because the satisfaction of eventualities needs to be witnessed by some state in a model 

and such witnesses can be ''far away". We deal with eventualities as in the decision 

procedure for ATL in Section 3.1.2 with the help of so-called witness trees. For defining 

witness trees, the following three auxiliary notions are needed. 

DEFINITION 4.13 (19-vector, cp-tree, O-matching). Let 1/J be an ATLES-formula, 

n = I~t/JI, k the number of next-formulas in ecl{1/J), and i the number of strategy terms 
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in"p. For all next-formulas f) E ecl("p) with commitment function p parameterizing 
the outermost path quantifier of f) and all vectors f = (to, ... , tn -1) E [( -f, k)/n] with 
ta = ttp(a) for each a E dom(p), 

• if f) = ((A» pOep and ta = tt'l? for each a E A \ dom(p), then fis called a f)-vector; 
• if f) = -.((A» pO"p and A U dom(p) c EtP , then fis called a f)-vector if f(t: A U 

dom(p) = tt'l?; 
• if f) = -.((A» pO"p and A U dom(p) = E"" then fis called a f)-vector. 

For all types '11 E r tP and all vectors f = (to, ... , tn-1) E [( -f, k)/n], let S\lt(t) ~ ecl("p) 
be the smallest set such that 

(M1) if ((A»pOep E '11 and fis a ((A»pOcp-vector, then ep E S\lt(i'), and 
(M2) if -.((A»pOcp E '11 and fis a -.((A»pOcp-vector, then -'ep E S\lt(i). 

Given a set M of labels, a (M, [( -f, k), n])-tree T is a mapping T from a finite prefix
closed subset of [(-£,k)/n]* to M. A "p-tree is a (r"" [(-f,k)/n])-tree in which every 
node is labelled with a type for "p. A "p-tree T is called O-matching if, for all nodes a 
of T and all vectors f E [( -£, k)/n], a . f E dom(T) implies ST(a)(i) ~ T(a. i). 

Intuitively, a vector f is a ((A» pOcp-vector if, for all nodes q satisfying ((A» pOep, 
the successor q . f has to satisfy cp. The -.((A» pOcp-vectors can be understood in an 
analogous way. This intuition is reflected in the conditions (M1) and (M2) and in the 
notion of Q-matching. 

Equipped with the notions f)-vector, cp-tree, and O-matching, we can now define 
witness trees and witness paths in order to testify the satisfaction of eventualities. 

DEFINITION 4.14 (ATLES Witness Tree). Let "p be an ATLES-formula, r a set of 
types for "p, and '11 E r. A "p-tree T is called a witness-tree rooted at '11 in r for a 
formula ((A» pep U f) if it satisfies the following properties: 

(1) T(a) Er, for all nodes a E dom(T); 

(2) T is O-matching; 
(3) T(e) = '11; 
(4) ({A»pcpU-D E T(a), for all nodes a E dom(T); 

(5) ep E T(a), for all inner nodes a E dom(T); 
(6) f) E T(a), for all leaf nodes a E dom(T)j 
(7) if a E dom(T), ((A» pO ((A» pepU f) E T(a), f) r;. T(a), and 

fis a ((A»pO((A»pcpU-D-vector, then a· f E dom(T). 

T is called a witness-tree rooted at '11 in r for a formula -.((A» pOep if it satisfies the 

following properties: 

(1) T(a) Er, for all nodes a E dom(T)j 
(2) T is Q-matchingj 

(3) T(e) = Ut; 
(4) -.«(A})pOcp E T(a), for all nodes a E dom(T); 
(5) -'Cp e T(a), for all leaf nodes a Edom(T)j 
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(6) if a E dom(T), -,((A))pO((A))pDcp E T(a), -'Cp fj. T(a), and 
fis a -,((A)) pO ((A)) pOp-vector, then a . f E dom(T). 
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The presented decision procedure for ATLES employs a type elimination algorithm 
which relies essentially on the notion of realizability. Intuitively, a type W is realizable 
in a set of types r if it is possible to satisfy all next-formulas in wand to construct 

witness trees for all eventualities using only types from r. 
DEFINITION 4.15 (ATLES Realizability). Let 1/J be an ATLES-formula and r a set 

of types for 1/J. A type W E r is ATLES realizable in r if the following conditions are 

satisfied: 
1. for all f E [( -t, k)/n], there is a W' E r such that SI{I(i) ~ w'; 
2. for all ((A)) pcpU f) E W, there is a ((A)) pcpU f)-witness tree rooted at W in r; 
3. for all-,((A))pDcp E W, there is a -'((A))pDcp-witness tree rooted at W in r. 

1. function ATLE5-sat(cp) returns 'Yes, .. .' or 'No, .. .' 
2. m:=O 
3. D.m:= rep 
4. do 
5. m:=m+l 
6. D.m := {w E D.m- 1 I w is ATlES realizable in D.m- 1} 

7. until ~m = ~m-l 
8. if cp E W, for some W E ~m' 
9. then return 'Yes, cp is satisfiable in an ATSN for Eep.' 
10. else return 'No, cp is not satisfiable.' 
11. end-function 

FIGURE 4.6. A type-elimination algorithm for ATLES. 

The decision procedure for ATLES is presented as function ATLEs-sat(cp) in Fig
ure 4.6. The type-elimination algorithm starts with the set of all types r cp for an input 
formula cp (line 2 and 3) and then repeatedly eliminates in a do-until loop the types 
that are not ATLES realizable (lines 4-7). Since there are only finitely many types to 
start with, the algorithm eventually leaves the loop with a set ~m of types, for some 
m 2:: 0 (line 7). Notice that, at this point, ~m is a set of types for cp that are all ATLES 

realizable in ~m' The algorithm returns 'Yes, cp is satisfiable in an ATSN for I:V if the 
input formula cp is contained in some type of ~m (line 8 and, 9); otherwise it returns 

'No, cp is not satisfiable.' (line 8 and 10). 
As for the decision procedure of ATL in Section 3.1.2, we use three lemmas to 

state that the described decision procedure for ATLES is correct and can be computed 

within exponential time in the length of the input formula. First, we ascertain that the 

procedure is effective by showing that the existence of the witness trees is decidable in 

exponential time. 

LEMMA 4.16. Let r be a set of types for an ATLES-formula 1/J. Then the existence 

of witness trees in r can be decided in time exponential in the length of 1/J. 
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This Lemma corresponds to Lemma 3.10 about deciding the existence of witness 
trees for ATL in Section 3.1.2, and it can be proved in the same way. 

Second, we determine soundness and completeness of the procedure. 

LEMMA 4.17. Let.,p be an ATLES-formula. Then the procedure returns 'Yes, the 

input formula .,p is satisfiable in an ATSN for E1/>. , iff this is indeed the case. 

The proof of Lemma 4.17 is presented in the following section. It extends the proof of 
the corresponding Lemma 3.11 for ATL to ATLES. The difference between ATLES and 
ATL is the explicit commitment of agents to strategy terms in the syntax. To account 
for such commitments, every agent must be able to vote for her preferred strategy or 
for the strategy she has committed to. When showing soundness of the procedure, 
we construct a tree-model for the input formula.,p from the types that survived the 
elimination procedure. To enable agents to vote for the strategies they committed to, 
we appropriately extend the out-degree of this tree-model according to the number of 
strategy terms that occur in.,p. For showing completeness, we take an arbitrary model 
for .,p and prove that each type that corresponds to some states of this model survives 
the elimination procedure. In particular, we show that we can construct witness trees 
for the eventualities in the types by unraveling the model. 

Finally, we establish exponential running time of the procedure. 

LEMMA 4.18. The described type elimination procedure for ATLES runs in exponen
tial time. 

This lemma can be proved in the same way as Lemma 3.12, which shows that the 
decision procedure for ATL runs in exponential time. 

4.4.1. Proof for ATLES Decision Procedure. 

LEMMA 4.16. Let cp be an ATLES-formula. Then the procedure returns 'Yes, the 

input formula cp is satisfiable in an ATSN for E<p.' iff this is indeed the case. 

PROOF. Suppose cp is given. Let E = E<p and n = IE<pI. Let k be the number of 
next formulas in ecl(cp), and l the number of strategy terms in cp. 

":::>" (Soundness) Assume that the elimination procedure was started on input cp 

and returns 'Yes, the input formula cp is satisfiable'. Let r = {q,Q, ... , q,m-l} be the 
computed set of types. Then all types of r are ATLES realizable in r and there is a 
type '11 E r with cp E '11. Our aim is to construct an ATSN that is a model of cp. 

To this end, enumerate all eventualities in ecl(cp) by 1/Jo, ... , .,pz-l' For each i with 

i < x and each j with j < rn, fix a c,o-tree T{1/>,.illj) as follows: 

• If.,pi E q,j, then fix a .,pi-witness tree T rooted at q,j in r. Supplement all inner 
nodes of T with missing successors: for each inner node 0: E dom(T) and each 
t E [( -i, k)/n] , if 0: • t;. dom(T), then add it and set T(o: . t) = '11 for some 
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W E r such that ST(a)(i) S; W. Note that such a W must exist by condition 1 

of Definition 4.15. Let T(1/Ji,Wj) be the result of augmenting T in this way . 
• If 1/Ji rJ. Wj, then let T(1/Ji,Wj) be the tree comprised of the nodes {c} U [( -l, k)/n] 

such that T(1/Ji,Wj)(c) = Wj and, for each t E [(-l,k)/n], T(1/Ji,Wj)(i) = W for 

some W E r with SWj(i) S; w. 
It is easy to see that all trees T(1/Ji,Wj) are O-matching. To construct a model of <p, 

intuitively we do the following: we arrange the selected witness trees T(1/Ji,Wj) in an 
x x m-matrix such that the rows range over the eventualities 1/Jo, ... , 1/Jx-1 and the 
columns over the types Wo, ... , Wm -1, and then we replace all leaf nodes by an 'arrow' 

from the leaf node's predecessor to the root of some other witness tree. 

We now define the ATSN S = (Il,~, Q, T 1, ... , T n,7I", 8, 11 . 11) that we then prove 

to be a model of <po The sets Il and ~ contain exactly those propositions and agents 

that occur in the input formula <po Moreover, T 1, ... , T n are the sets of strategy terms 

occurring in <p such that Ta contains the strategy terms for agent a, for all a E ~. For 

defining the set of states Q, fix symbols Ci,j with i < x and j < m. Then set: 

Q := {ci,jW 1 W E dom(T(1/Ji,Wj») is inner node}. 

Next, the valuation 1l' is easily defined: for q = Ci,jW E Q, set 

To define the transition function 8, we first define a successor function on Q: for all 

q = Ci,jW E Q and tE [(-l,k)/nJ, set 

{ 

cu,v if W· tis a leaf node of T(1/J"Wj) , 

st<,q) := u = i ~ 1 mod x and T(1/Ji,Wj)(W' i) = Wv ; 

q. t if W· t is an inner node of T(1/J"wj)' 

Now the definition of 8 is straightforward: for all q E Q and a E ~, set 8(q, a) to be the 

set of the sets 

{st<,q) 1 t= (to, ... ,tn -1) E [(-l,k)jnJ and ta = p} 

where p E {O, ... , k /2 - I} or p = nuo' for some strategy term Ua ETa. To finish the 
definition of S, it remains to define the denotation function 11·11. To this end, we first 

define, for all a E ~ and U E Ta, a strategy O'u: for all A E Q* and q E Q, 

O'U(A' q) = {st<,q) 1 t= (to, ... ,tn-t) and ta = nu}' 

Then 11·11 is defined as follows: for all a E ~ and U ETa, 

lIulI := 0' U· 

To show that S is indeed a model of <p, we introduce some auxiliary notions: 

For each strategy 0' A = {O' a 1 a EA} for a set of agents A ~ ~ and each sequence 

of states A E Q+, we write 0' A(A) to denote the set of states naEA O'a(A). Observe that, 
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by definition of strategies for single agents, we have OA(A' q) E 8(q,A) for all A E Q+ 
and q E Q. 

For every positive next-formula ((A}) pO'I/J E eel ( cp), the ((A}) pO'I/J-stmtegy is the ~ 

strategy OAUdom(p) = {O"a I a E AUdom(p)} for the agents in AUdom(p) that is defined 

by setting, for all a EAu dom(p), all A E Q* and q E Q, 

{ 
IIp(a)II(A' q) 

O"a(A . q) := .... 
{s;(q) It = (to, ... , tn-1) and ta = ~«A»pO"'} 

if a E dom(p) 

if a E A \ dom(p). 

It is readily checked that we have 

O"AUdom(p) (A . q) = O"AUdom(p)(q) = n O"a(q) 
UaEUAUdom(p) 

and that 

(*) O"AUdom(p){q) = {s;(q) I fE [{-l,k)jn] is a ((A}}pO'I/J-vector}. 

For every negative next-formula -'((A})p01/J E ecl{cp), a -,((A)}p01/J-computationfor 

a p-stmtegy 0" AUdom(p) rooted at a state q E Q is a computation A E out(q, 0" AUdom(p») 

such that, for all positions i ;::: 0, we have A[i + 1] = sr(A[i]) for some -,((A)) p01/J-vector 

rE [(-l,k)jn]. 

CLAIM 4.17. Let -,((A}}p01/J be a next-formula in ecl(cp), O"AUdom(p) a p-stmtegy, and 
q E Q. Then there exists a -,((A)) p01/J-computation for 0" AUdom(p) rooted at q. 

PROOF OF CLAIM Let -,((A)) pO'I/J, 0" AUdom(p) and q be as in the claim. Inductively 

define a -,((A)) pO'I/J-computation A E er for 0" AUdom(p) rooted at q as follows: 

• A[O] := q, and 
• for each i 2: 0, A[i + 1J := s;(A[i]) for some -,((A)) pO'I/J-vector f E [( -l, k)/nJ 

such that s;(A[iJ) E O"AUdom(p)(A[ij). 

In order to show that ,x is well-defined, it remains to show that for each i ;::: 0, there 

is a state s;(A[i]) E O"Audom(p)(,x[iJ) such that fis a -,((A))p01/J-vector. Distinguish two 

cases: 

• AUdom(p) = E. By Definition 4.13, all vectors fE [(-l,k)jn] with ta = ~p(a), 
for each a E dom{p), are -,((A}) pO'I/J-vectors. Since 0" AUdom(p) (A[i]) E 8(,x[i], A), 
the set O"AUdom(p){,x[i)) is non-empty. Thus, by the fact that O"AUdom(p) is a ~ 

strategy, any vector from 0' AUdom(p) (,x[i]) is suitable. 

• A U dom(p) =F E. By definition of 8 and since 0" AUdom(p) (,x[ij) E 8{,x[i], A), 
we have that O"AUdom(p)(A[i]) = {sr(,x[i]) I f E SCA,P)} for some A-voting 

set SCA,P) under commitment p. By property 1 of the refutation function 

used in Definition 4.13 for ..... ((A)) p01/J-vectors, the voting set SCA,P) contains a 

.... ((A}) pOt/J-vector. Thus, there is a state s;(,x[i]) E O'Audom(p)(A[i)) such that f 

is a -,((A}) p01/J-vector. 
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To denote the intended type of a state q = Ci,jW E Q, we set t(q) := T(!/.>;,w;) (w). 
Using the construction of S and property 2 in Definition 4.14 for witness trees, it is 
straightforward to prove the following claim, which, intuitively, states that our ATSN 

is O-matching: 

CLAIM 4.18. For all q E Q and f E [( -f, k)/n], St(q)(i) ~ t(s;(q)). 

The next claim establishes the property of S that is crucial for showing that it is a 

model of <po 

CLAIM 4.19. For any state q E Q and any formula"p E ec/(<p), "p E t(q) iff S, q I="p. 

The proof of this claim is as the proof for Claim 3.14 in the proof of Lemma 3.11 

about the correctness of the ATL decision procedure in Section 3.1.2. 
Since we have that <p E III for some type III Er, there is a state q E Q such that 

t/J E t(q). Then it follows from Claim 4.19 that S, q 1= <po 

"<=" (Completeness): Suppose the formula <p is satisfiable in an ATSN S = (IT, E, Q, 
{T a}aEl:, 1T, 8) in a state q", E Q. For each state q E Q, let t(q) be the type {"p E ecl( <p) I 
S,q 1= "p}. Denote with types(Q) the set of all types associated with some state in Q. 
We first establish the following claim: 

CLAIM 4.20. Let q E Q and f E [( -f, k)/nJ. Then there is a state q' E Q such that 

St(q)(i) ~ t(q'). Moreover, the following holds: if ((A)) pOt/J E t(q) and eT AUdom(p) is a p
strategy for the agents in AUdom(p) such that for all computations >. E out(q, eT AUdom(p»), 

we have S,>'[lJ 1= t/J, then we can choose a state q' such that q' E eTAUdom(p)(q)· 

PROOF OF CLAIM Let q and f be as in the claim. Also, select a formula ((A)) pOt/J 
and a p-strategy eT AUdom(p) as in the 'moreover' part of the claim. Note first that, by 
Definition 4.13 of vectors for negative next-formulas and by property 3 of the refutation 
function used in Definition 4.13, the vector f is a vector for at most a single formula 

-,((B))pOt/J' with B U dom(p) c E",. Let 

• ((AI)) Pi Ot/Jl, ... , ((Ax)) pz Ot/Jx be all positive next-formulas from t(q) for which 
fis a vector; this includes the selected formula ((A)) pOt/J; 

• -,((B))e0"p' be the single negative next-formula from t(q) with BUdom(~) c E", 
for which fis a vector, if such a formula exists; 

• -,((Cl))(i Ot/J~,·· ., -, ((Cm)) 'm Ot/J'/n be all negative next-formulas from t(q) with 
Ci U dom((i) = E"" for all i with 1 $ i $ m. 

Observe that, by Definition 4.13, the vector fis a vector for all negative next-formulas 

-,((Ci))(; t/J:' (with 1 $ i $ m), so that -,t/Jr, .. ·, -,t/J'/n E St(q) (i). Next note that, 
by Definition 4.13 of vectors for positive next-formulas, we have the following three 

properties: for all i -:f: j with 1 $ i, j $ x, 

(i) Pi(a) = pj(a), for all a E dom(Pi) n dom(pj); 

(ii) (Ai \ dom(Pi)) n dom(pj) = 0; 
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(Hi) (Ai \ dOm(Pi» n (Aj \ dom(pj» = 0. 

For all i with 1 :::; i :::; x, let U Aiudom(Pi) be a pi-strategy for the agents in AiUdom(Pi) 
such that for all computations ,X E out(q, U A;Udom(p;», we have that S, 'x[l] F 'ljJi. Such 

a strategy exists since «Ai)) Pi O'IjJi E t( q). For the selected formula «A)) pO'IjJ from the 
'moreover' part of the claim, choose the selected ,o-strategy U AUdom(p) for the agents in 

A U dom(p). Let A' = Ui=l..x Ai U dom(Pi) and set U AI = Ui=l..x U AiUdom(Pi) which is 
well-defined by properties (i) to (iii). Thus for all,X E out(q,UAI), we have S,,X[l]1= 'ljJi 

for all i with 1 :::; i :::; x. 

Next, we select a computation ,X E out(q, U AI): If there is no negative next-formula 

-,«B))eOt/J' with B U dom(e) c ~<p in t(q), for which t is a vector, then choose an 
arbitrary element ,X E out(q, U A')' Note that out(q, U AI) is non-empty since 8(q, A) is 
non-empty, for all states q and all coalitions A. Otherwise, choose a ,X E out(q, U AI) 
such that S, 'x[l] 1= -,t/J'. Such an element exists since, first, -,«B))eO'IjJ' is in t(q) and, 

second, tbeing a vector for this formula implies (by Definition 4.13 of vectors for negative 

next-formulas and by property 2 of the refutation function used in Definition 4.13) that: 

• Ai U dom(Pi) ~ B U dom(e), for all i with 1 :::; i :::; x, and 

• for all a E dom(e), there is a Pi (with 1 :::; i :::; x) such that Pi(a) = e(a). 

Finally, we have S, 'x[l] F -,'IjJ~', for all i with 1 :::; i ::; rn, since -,«Ci))(,iOt/J? E t(q) 
implies that S, N[l] 1= -,'IjJ~' for any computation N rooted at q. 

Summing up, we have shown that St(q)(i) ~ t('x[l]) E types(Q). Thus, 'x[l] is the 
state whose existence is stated in the claim. • 

In the following, it is shown that all types in types(Q) are ATLES realizable in types(Q). 
Let q E Q be a state. We have to check that the type t(q) in types(Q) satisfies condi
tions 1 to 3 of Definition 4.15. 

1. Let tE [(-i,k)jn]. We have to show that St(q)(i) ~ 'l1 for some 'l1 E types(Q). 
Clearly, this is an immediate consequence of Claim 4.20 (the 'moreover' part 

is not needed). 

2. Suppose «A))pt/JUiJ E t(q). It is our aim to construct a «A))pt/JUiJ-witness 
tree rooted at the type t(q) in types(Q). Since S,q 1= «A))pt/JUiJ, there is a,o
strategy uAUdom(p) for the agents in AUdom(p) such that for all computations 

,X E out(q,O' AUdom(p», there is a position i ~ 0 such that S, ,X[i] 1= iJ and 
S, 'xli] F t/J for all positions j < i. Similar to item (2) in the completeness 

direction of the proof of Lemma 3.11 about the correctness of the ATL decision 

procedure, we use 0' AUdom(p) to define a finite (Q, [( -i, k), n])-tree T. Since the 
nodes in T are labelled by states, the composition t(T(·» yields a finite cp-tree. 

Then it can easily be shown that t(T(·» is indeed the required «A))pt/JUiJ
witness tree rooted at t(q) in types(Q) by showing that T satisfies properties 

1 to 7 in Definition 4.14. 
3. This case is similar to the previous one and left to the reader. 
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From S, qcp 1= <p, it follows that <p E t(qcp). Then types(Q) is a set of types that are 
each ATLES realizable in types(Q) and t(qcp) is a type in types(Q) such that <p E t(qcp). 
Let ~ be the set of types for <p computed by the type elimination algorithm. It is easy 
to see that types(Q) ~~. Hence, the algorithm returns 'Yes, the input formula <p is 

satisfiable' . 0 

4.5. Completeness of the axiom system for ATLES 

In this section, we show that the axiomatic system for ATLES as presented in Sec
tion 4.1.2 is sound and complete. For proving completeness we use the type elimination 
algorithm for ATLES from Section 4.4. The basic structure of the proof is similar to 
the completeness proof of the axiomatic system for Computation Tree Logic that can 

be found in [69]. 
The following three schemes generate valid and provable implications which state 

properties of ATLES that we later use to show completeness: for all commitment func

tions p, we have 

Regularity: f- ((A» pO<P -+ -,((B» pO-,<p, for An B ~ dom(p); 
Coalition-monotonicity: f- ((A» pO<P -+ ((B» pO<P, for A ~ B; 

Property (P): ((A»pO<p 1\ -'((A»pO-''IjJ -+ -,((0»)pO-'(<P 1\ 'IjJ). 

Instances of Regularity are provable using axioms (8) and (1.), and instances of Coalition

monotonicity by using (S) and (T). Property (P) can be derived using (S) and the 

inference rule ((A» pO-Monotonicity as follows: 

(1) f- <p 1\ 1jJ -+ <p 1\ 'IjJ (instance of (TAUT» 

(2) f- <p 1\ -,( <p 1\ 'IjJ) -+ -,'IjJ (using (1» 

(3) f- ((A»pO(<p 1\ -'(<p 1\ 'IjJ» -+ ((A»pO-,1jJ (using (2) and ((A»pOMonotonicity) 

(4) f- ((A» pO<p 1\ ((0» pO-'( <p 1\ 1jJ) -+ ((A» pO( <p 1\ -,( <p 1\ 1jJ» (instance of (S» 

(5) f- ((A»pO<p1\ ((0»pO-'(<P1\ 1jJ) -+ ((A»pO-''IjJ (using (3) and (4» 

(6) f- ((A»pO<p1\ -'((A»pO-''IjJ -+ -,((0»pO-'(<P 1\ 1jJ)(using (5» 

The axiomatic system for ATL (see Table 2.8 in Chapter 2) contains the axiom 
(E): -,((0» pO-'<p -+ ((E» pO<P. Notice that (E) is not used in the axiomatic system for 
ATLES since the grand coalition E of all agents is not available in ATLES. 

THEOREM 4.21. The deductive system for ATLES is sound and complete. 

The proof works as follows. For soundness; the validity of the axioms and the 
inference rules is readily checked. We now explain how completeness of the deduction 

system for ATLES can be shown. This is done along the lines of the completeness proof 

of an axiomatic system for CTL that is based on a tableau algorithm for CTL; cf. 169]. 
Let {) be an ATLES-formula and suppose {) is valid. It is to show that {) is provable. We 
have that -,{) is unsatisfiable. Run the type elimination algorithm for ATLES on the 
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input formula ...,{j. The algorithm starts with all types for ...,{j and repeatedly eliminates 

those types that are not ATLES realizable. Then it returns 'Yes, ..,{j is satisfiable in 

an ATSN for E....o iff there is a type that survived the elimination containing the input 
formula. By Lemma 4.17, the input formula is satisfiable iff the algorithm says so. But 
then, since ...,{j is unsatisfiable, all types containing ..,{j will be eliminated. Now we need 
the following lemma whose proof we sketch below. 

LEMMA 4.22. If a type W is eliminated, then W is inconsistent. 

Then, by Lemma 4.22, it follows, for all types W with ..,{j E W, that W is inconsistent. 
Using propositional reasoning, we establish the following Validity: 

I- ...,{j ~ V {/\ w' I w' E r with -.{) E w'} 

where r is a set of consistent types for ...,{j remaining after the execution of the type 

elimination algorithm. Since there is no consistent type containing ..,{j, we have I- ..,{j -+ 

J... But then I- ...,...,{j and thus I- {j which finishes the proof of Theorem 4.21. 

We now sketch the proof of Lemma 4.22; the full proof can be found in Section 4.5.1. 

The proof is by induction on the number of elimination rounds. In the induction base, 

the type elimination algorithm is initialized with the set of all types for ..,{j. No type 

has been eliminated yet. In the induction step, we denote the current set of types with 

A.. A type W in A. is eliminated if it is not ATLES realizable in A.. The type W is not 

ATLES realizable in A. if, for instance, there is a formula «A)) p'I/J U cp in W but there is 
no «A)) p'W U cp-witness tree rooted at W in A.. Given this situation, we need to show 
that W is inconsistent. To this end, we define a set V to be the set of types W' from A. 
such that either W' contains «A)) p'I/J U cp but there is no «A)) p'I/J U r.p-witness tree rooted 
at W' in A., or ({A)) p'I/JU cp is not contained in W'. Obviously, we have W to be in V. 
Given the set V, we define the formula () describing V as: 

() = V{/\ w' lw' E V}. 

By the induction hypothesis, we know that all types not in A. are inconsistent. Then 

we can describe the complement set A. \ V of V as follows: 

...,() = V{A w, lw' E A. \ V}. 

Notice that a type w' in A. \ V contains «A)) p'I/J U cp and that there is a «A)) p'I/J U cp
witness tree rooted at W' in A.. Now we show 

I- (J -+ -''P /\ (...,'I/J V -.«A)) pO..,(J) 

from which we can derive W'S inconsistency using the axioms (LFPu ) and (FPo) and 

the inference rule «0)) pO-Necessitation. To this end, we show that 

I- A w -+ -''P /\ (...,'I/J V ..,«A)) pO A w') 
by constructing a «A)) p'I/JU r.p-witness tree rooted at W in A. using the «A)) p'I/JU r.p-witness 

tree rooted at W, in A.. 
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For showing that the constructed tree is indeed the desired ((A}) p'l/J U lP-witness tree, 
we need the following lemma that formalises the relationship between next formulas 
with different coalitions and commitment functions by combining the axioms (Cl), (C2) 

and (C3). 

LEMMA 4.23. Let A, B be two coalitions of agents and p, ~ two commitment func

tions. Then the following are equivalent: 

(a) f- ((A)}pO'l/J -t ((B}}eO'l/J, for all ATLES-formulas 'l/J,
(b) the following four conditions are satisfied: 

(PO) p(a) = ~(a), for all a E dom(p) n dom(~),-
(Pl) (dom(~) \ dom(p» n A = 0,-
(P2) dom(p) \ dom(~) ~ B,-
(P3) A \ B ~ dom(p) n dom(~). 

Intuitively, the implication in Lemma 4.23 can be seen as a course of action where 
agents join or leave the coalition and agents take or dismiss commitments. Changing a 
commitment involves two steps: first, dismissing an old commitment and, second, taking 
a new commitment. Clearly, such actions might cause some changes in the formation 

of the coalition and in the state of the agents' commitments. However, the coalition 

will still be able to bring about 'l/J at the next state if the following four policies are 

obeyed: (PO) no committed agent changes her commitment; (Pl) no member of the 
former coalition can take a commitment; (P2) all agents dismissing their commitments 
already are or have to become members of the coalition; and (P3) all agents leaving 
the coalition have got to be and to stay committed. For a set theoretic illustration of 
the coalitions A, B and the domains of p, ~ satisfying the conditions (Pl) to (P3) see 
Figure 4.7. Notice that (Pl) to (P3) correspond to the axioms (Cl) to (C3), respectively. 

- - - -- , B 
I 

-----~-----, 
I I 

( A 

I dom(p) : : 
I ,------- ------~-----
I dom(~) : 
,--------------~-----

FIGURE 4.7. Venn diagram of coalitionS A, B and domains of p, ~. 

We now present a detailed proof for Lemma 4.23. 

PROOF. Let A, B, p, ~ and 'l/J be as in Lemma 4.23. For the direction from (b) 
to (a), suppose that conditions (PO) to (P3) are satisfied. In the following, we present 
a derivation of the implication ((A»pO'l/J -t ((B)}eO'l/J and thus show its provability. 
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We start in (1) with an instance of Coalition-monotonicity using the property A ~ 
Bu (dom(p) ndom(e» obtained from (P3). Notice that we use the operator 1 to restrict 
the domain of a commitment function. For instance, the expression e 1 C stands for 
the commitment function e whose domain is restricted to the agents in C. 

(1) I- ((A)) '0 01/1 - ((B U (dom(p) n dom (e)))) '0 01/1 

(where (0 = p U (~1 B» 

(2) I- ((A)) '1 01/1 - ((A))'o01/1 
(where (1 = (0 1 dom(p), 

using (Cl) since (dom(e) \ dom(p» n A = 0 by (PI» 

(3) I- ((B U (dom(p) n dom(~»))'o01/1 - ((B))'o01/1 

(using (C3) since dom(p) n dom(~) ~ dom«o» 

(4) I- (B)) '0 01/1 - «B)) '2 01/1 

(where (2 = (0 U (~ 1 C) with C = dom(~) \ B, 
using (Cl) since (dom(e) \ B) n B = 0) 

(5) I- «B))'20 1/1- «B))'s01/1 

(where (3 = (2 1 dom(~), 
using (C2) since dom(p) \ dom(e) ~ B by (P2» 

(6) I- ((A))'lOW - «(B))'s01/1 (using (1) to (5» 

Notice that, by (PO), the commitment functions (0, ... , (3 are well-defined. To see that 
in (6) we indeed derived the desired implication, we now show that (1 = p and (3 = e. 

(1 = (01 dom(p) 

= (p U (e 1 B» 1 dom{p) 

= pU (e 1 B) 1 dom(p) 

= p 

(3 = (21 dom{e) 

= «0 U (e 1 C» 1 dom(e) 

= (0 1 dom(e) U (e 1 C) 1 dom(e) 

= (p U (e 1 B» 1 dom(e) U e 1 C 
= p 1 dom(e) u (e 1 B) 1 dom(e) u e 1 (dom(e) \ B) 
= p 1 dom(e) u e 1 (B n dom(e) U (dom(e) \ B» 
= p 1 dom(e) u e 1 dom(e) 
= e 

Consider the other direction from (a) to (b). Let cp = «A})p01/1 - {{B}}~01/1. 
Suppose I- cp. Since the axiomatic system for ATLES is readily checked to be sound, 
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we have that cp is valid. We reason by contradiction that each of the conditions (PO) 

to (P3) are satisfied. For (PO), assume pea) =I ~(a), for some agent a E dom(p)ndom(~). 
We describe a countermodel for cp as follows. Take an ATSN S satisfying ((A)) pO'I/J at 

a state q. Let agent a have exactly two choices Ql and Q2 at q, where Ql = {qd and 
Q2 = {q2} such that S, ql 1= 'I/J and S, q2 ~ 'I/J. When following strategy p( a) at state 

q, agent a chooses Qb and Q2 when following ~(a). Clearly, we have S, q ~ ((B))eO'I/J· 
For the other conditions (PI) to (P3), we can describe similar countermodels. 0 

4.5.1. Proofs for ATLES Completeness. 

LEMMA 4.18. If a type \lI is eliminated, then \lI is inconsistent. 

PROOF. Before proving the lemma, we recall and introduce some notation. Let -,iJ 

be the unsatisfiable ATLES-formula, on which we run the type elimination algorithm. 

Let E19 the set of all agents that occur in iJ, n = IE191 the number of those agents, k the 

number of next-formulas in ecl( -.iJ) and l the number of strategy terms in iJ. Given a 

type \lI' for -,iJ and a vector {E [( -l, k) j n], let 

• ((Al)) PI OCP1,' .. , ((Ax)) p= OCPx be all positive next-formulas from \lI' for which 
fis a vector (cf. Definition 4.13); 

• -,((Bl))el Ocpi, ... ,-,((By))ell O<,dy be all negative next-formulas from \lI' for which 

{is a vector (cf. Definition 4.13). 

The considered type \lI' and vector {will be clear from the context, so we can avoid 

laborious notation. Note that, by property 3 of the refutation function used in Defini

tion 4.13 vectors for negative next formulas, there is at most one formula -'((Bi))eiOCP~ 
(where 1 ~ i ~ y) in \lI' with Bi U dom(~i) C E19, for which {is a vector. All the other 

formulas -.((Bj))ejOcpj (with j =I i and 1 ~ j ~ y) are such that Bj U dom(~j) = E19 • 

Still considering \lI' and r, the coalitions Al, ... ,Ax and Bl, ... ,By and the com
mitment functions Pl, ... ,Px and ~l, ... ,~y in the formulas from \lI' as selected above 
will be used to abbreviate the following two conjunctions of positive next formulas: 

~(II1/,i}('I/J) = 1\ ((E19 \ Ai))p;O'I/J, 
i=1..x 

~;/,i}('I/J) = 1\ ((Bi))eiO'I/J. 
i=1..y 

For proving the lemma, we will frequently make use of the following claim. 

CLAIM 4.19. Let {E [( -l, k)jnJ be a vector, and wand \lI' two types from r ... 19. 
Then it holds that: 

(a) If ((A)) pOCP E \lI, cp rt w', and { is a ((A)) pOcp-vector, then 
/\ w /\ ((E19 \ A)) pO /\ w' is inconsistent; 

(b) If -.((B))eOcp' E w, -.cp'rt W', and {is a -.((B))eOcp'-vector, then 
/\ \lI /\ ((B))eO /\ \lI' is inconsistent. 
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PROOF OF CLAIM Let t, 1]! and 1]!' be as in the claim. For Case (a), suppose ((A))pOcp E 

1]!, cp ft. 1]!', and that r is a ((A)) pOcp-vector. Consider the following abbreviated deriva
tion: 

(1) I- A 1]! ~ (A)) pOcp (since (A)) pOcp E 1]!) 

(2) I- A 1]!' ~ ""cp (since ...,cp E 1]!' by (T2» 

(3) I- «(I:" \ A)) pO A 1]!' ~ «I:11 \ A)) pO...,cp (using (2) and «(A)) pO-Monotonicity) 

(4) I- /\ 1]! /\ «I:11 \A))pOA 1]!' ~ «A))pOcp/\ «I:" \A))pO-'cp (using (1) and (3» 

(5) I- A 1]! /\ «I:" \ A)) pO A 1]!' ~ «I:,,)) pO( cp /\ ...,cp) (using (4) and (S» 

(6) I- A 1]! /\ «I:" \A))pOA 1]!' ~ «I:,,))pOol (using (5» 

(7) I- ""(A 1]! /\ «I:" \ A)) pO /\ 1]!') (using (6) and (ol)) 

For Case (b), suppose ...,«B))eOcp' E 1]!, ...,cp' ~ 1]!' and that fis a -,«B))eOcp'-vector. 
Then we derive: 

(8) I- A 1]! ~ ...,«B))eOcp' (since ...,«B))eOcp' E \IT) 

(9) I- A \IT' ~ cp' (since cp' E \IT' by (T2» 

(10) I- «B))eO A \IT' ~ «B))eOcp' (using (9) and «A))pO-Monotonicity) 

(11) I- A 1]! /\ {(B))f.O A \IT' ~ ...,«B))eOcp' /\ «B))eOcp' (using (8) and (10» 

(12) I- A 1]! /\ «B))eO /\ 1]!' ~ ...,({0))eO ""(""Cp' /\ cp') (using (11) and (P» 

(13) I- A 1]! /\ (B}}eO A 1]!' ~ ...,«0})eOT (using (12» 

(14) I- ""(A 1]! /\ «B))eOA 1]!') (using (13» 

Now we are ready to prove Lemma 4.22. The proof is by induction on the number of 
elimination rounds. In the induction base, the type elimination algorithm is initialized 
with the set of all types for ...,'19. No type has been eliminated yet. Consider the induction 
step. Let i.\ be the current set of types. A type \IT E i.\ gets eliminated if it is not ATLES 
realizable in A. By Definition 4.15 of realizability, the type \IT is not ATLES realizable 

in i.\ if one of the following three conditions are satisfied: 

(i) there is a vector rE [( -I, k)/n) such that for all types \IT' E i.\, it holds that 

Bill(£) ~ \IT'i 
(H) «A))p'I/JUcp E \IT and there is no «A))p'I/JUcp-witness tree rooted at \IT in i.\; 

(Ui) ...,«A)) pOcp E \IT and there is no ...,«A)) p0cp-witness tree rooted at \IT in i.\. 

First, consider Case (i). Suppose, for some vector rE !(-i,k)/n), we have that BiII(t) ~ 
\IT' for all types \IT' E i.\. We have to show that \IT is inconsistent. We can derive the 
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following. 
(1) r- T +-+ V { /\ w' I w' E L,t1 } 

(2) r- T +-+ V { /\ w, I w' E A is consistent} 

Notice that we can establish (1) by propositional reasoning. By the induction hypothe

sis we have that all types in r -,{} \A are inconsistent. Thus, from (1) we can derive (2). , 
Next, we show that /\ w /\ip ("'l1,t) (/\ w')/\ip~,t) (/\ w') is inconsistent, forall types W' E A. 

From S\p(i) ~ w', we have by Definition 4.13 that (a) <Pi E S\p(i) and <Pi ~ W' for some i 
with 1 ~ i ~ x, or (b) -.<p~ E S\p(i) and -.<p~ ~ W' for some i with 1 ~ i ~ y. Notice that 

we have (a) ((Ai))p;O<Pi E wand (b) -.((Bi))e;O<P~ E W. Then we obtain by Claim 4.19 
that (a) /\ w /\ ((~t1 \ Aj))p;O /\ w', or (b) /\ w /\ ((Bi))e;O /\ W, is inconsistent. Thus we 

can derive (3). 

(3) r- -.( /\ w /\ ip(\P,t}(/\ W') /\ ip(.-p,t} (/\ w'»), for every W' E A (by Claim 4.19) 

We need (2) and (3) in the following derivation, where we show that W is inconsistent. 

(4) r- /\ {-.( /\ w /\ ip(\P,t}(/\ w') /\ ip~,t} (/\ w')) I w' E A is consistent} (using (3)) 

(5) r- -. ( V { /\ w /\ ip (\P ,t) (/\ w') /\ ip (.-p ,t) (/\ w') I w' E A is consistent}) (using (4)) 

(6) r- -.(/\ w /\ V {ip(IfI,t}(/\ w') /\ ip(.-p,t}(/\ w') I w, E A is consistent}) (using (5)) 

(7) r- -.( /\ w /\ ip (\P,t) (V { /\ w' I w' E A is consistent})/\ 

ip~,t} (V {/\ w' I w' E A is consistent})) (using (6)) 

(8) r- -.(/\ w /\ ip(\p,t}(T) /\ ip(.-p,t} (T)) (using (2) and (7)) 

(9) r- -.( /\ w) (using (8) and (T» 

By (9), we have that W is inconsistent. 

Second, suppose Case (ii) is satisfied. It is to show that W is inconsistent. Let V be 

the set of types IJI' E A such that either ((A» p"P U <P E W' but there is no ((A» 1/J U <P-
, p 

witness tree rooted at W in A, or ((A» p1/JU <P ~ w'. Note that w E V. Let 

0= V{/\ w' I w' E V}. 

By the induction hypothesis, all types in r -,{} \ A are inconsistent. Thus we have that 

-.0 = V{/\ w, I w' E A \ V}. 

In the following, it is shown that 

r- 0 -+ -'<P /\ (-.1/J V -.((A»pO-'O). 

Notice that -.<p E W' for all W' E V. To see that, suppose the contrary, i.e., -.<p ~ IJI' 
for some W' E V. By (T2), we have <P E w'. But then, if ((A)}p1/JU<P E w', a ...,{)
tree containing only a root labelled with W, would be a ((A» p1/J U <p-witness tree rooted 
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at '11' in ~; contradicting '11' E V. Otherwise, if ((A)) p'I/JU cP fj. '11', (T4) yields that 
cp fj. '11'; again a contradiction. Consequently, we have f- A '11' -+ ""cp for all '11' E V, 

and thus f- 0 -+ ""cp. In order to show f- 0 -+ ...,'I/J V ...,((A)) pO...,O, it suffices to show 
f- Aw -+ ...,'l/JV...,((A))pO""O. Suppose by contradiction that If A '11 -+ ""'l/JV...,((A))pO...,O, 
Le., If ""(A '11 /\ 'I/J /\ ((A)) pO""O). Then we have, for some '11' E ~ \ V, that 

If ""(A '11 /\ 'I/J /\ ((A)) pO A '11'). 

Fix such a '11'. Since '11' E ~ \ V, there is a ((A)) p'I/J U cp-witness tree T rooted at '11' in 
~. Using T, we construct a ((A)) p'I/JU cp-witness tree T' rooted at '11 in ~ as follows: 

• T'(e) := '11; 
• T'(ra) := T(a), for all ((A)) pO((A)) p1/JU cp-vectors tand all nodes a E dom(T). 

It can readily be checked that T' satisfies conditions 1 and 3 to 7 in Definition 4.14 
of ((A))p1/JUcp-witness trees. For conditions 4 and 5, notice that ((A))p1/JUcp E '11 by 
assumption and 1/J E '11 follows from (T4) by the fact that cp fj. w. Consider condition 2, 
which requires that T' is Q-matching. Let tbe a ((A)) pO ((A)) p1/JU cp-vector. Given '11 

and f, let j (~,f) be the number ranging over 1 to x such that ((A)) pO((A)) p 1/J U cp is the 

j(~,f)-th formula in the enumeration of positive next formulas from '11 for which tis a 
vector. Let X(~,f) abbreviate the following negated conjunction: 

X('lt,i} = ...,(Aw /\ A (('£tJ \ Ai)) p,O A '11' /\ il!'(-v,i} (A '11'». 
i=l..x 

i:f:i(-i',l} 

In the following, we show that 

(t) If A '11 /\ 1/J /\ ((A)) pO A w') implies If X('lt,i}' 

Then, since If ""(A w /\ 1/J /\ ((A))pO A w'), we obtain from (t) that If X('lt,i}' Together 
with Claim 4.19 and the fact that ((A))pO((A))p1/JUcp E wand ((A))p1/JUcp E w', we 
have S~(t) £; w', for every ((A))pO((A))p1/Jucp-vector t. By Definition 4.13 and the 
fact that the tree T is already O-matching, we have that T' is O-matching. Hence 
condition 2 is satisfied. 

We now show, for every ((A)) pO ((A)) p1/J U cp-vector t, the contrapositive of the im
plication (t). Suppose f- X('lt,iJ' Distinguish the following three cases: 

(a) Suppose f- -'Aw. Obviously, this implies f- -'(Aw /\1/J/\ ((A))pOAw'). 
(b) Suppose f- -, A i=.1..x ((r.tJ \ Ai)) p, 0 A W'. That is f- -, ((r.tJ \ Ai)) p; 0 " W' for 

~:f:3(.,l} 

some i =F j(~,i} with 1 $; i $; x. Note that fis a ((A))pO((A))p'I/JUcp-vectorand 
a ((Ai))p,Ocpi-vector, and that ((Ai})p;OCPi =F ((A))pO((A))p1/JUcp. We show 
that the conditions (PO) to (P3) in Lemma 4.23 are satisfied: 

- By Definition 4.13 of fbeing a vector for both ((A))pO((A))p1/JUcp and 
((~))pjOCPi' we have that p(a) = Pi(a), for all agents a E dom(p)ndom(Pi). 
This corresponds to (PO). 
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_ By Definition 4.13 of tbeing both a ((A))pO((A))p'I/Juc.p-vector and a 

((Ai))PiOcpi-vector, it holds that (A \ dom(p)) n dom(Pi) = 0. We can 
convert this into its equivalent (dom(Pi) \ dom(p)) n A = 0 which corre

sponds to (PI). 
_ Similarly to the property (PI) above, we can show dom(p) \ dom(Pi) ~ 

En \ Ai which corresponds to (P2). 

_ Since ((Ai))Pi OCPi ~ ((A))pO((A))p'I/JUcp, it follows by Definition 4.13 of 
t being a vector for both of these formulas that (A \ dom(p)) n (Ai \ 
dom(Pi)) = 0. This implies A n Ai ~ dom(p) n dom(pi). By the fact that 
A n Ai = A \ (En \ Ai), we have A \ (En \ Ai) ~ dom(p) n dom(Pi) which 
corresponds to (P3). 

By Lemma 4.23, we obtain f- (A)) pO /\ w' -+ «En \ Ai)) Pi 0/\ w'. Together 
with the fact f- -,«(En \ Ai)) Pi 0 /\ w', it follows that f- -,«A)) pO /\ w'. Thus 

f- -.U\ w 1\ 'I/J 1\ ((A)) pO 1\ w'). 
(c) Suppose f- -.4!~,r, (/\ w'). This is equivalent to f-Vi=1..y-'((Bi))ei0 /\ w', i.e., we 

have f- -.«(Bi))e,O /\ w' for some i with 1 :5 i :5 y. Note that r = (to, ... , tn-l) 
is a ((A)) pO«(A)) p'I/J U c.p-vector and a -,«Bi))ei Ocp~-vector. We show that the 
conditions (PO) to (P3) in Lemma 4.23 are satisfied: 

- By Definition 4.13 of t being a vector for both «A)) pO «A)) p'I/JU cP and 

-.(Bi))f..OCP~, we have that p(a) = {i(a), for all agents a E dom(p) n 
dom{{i). This corresponds to (PO). 

- We show (dom{{i) \ dom(p)) n A = 0 which corresponds to (PI). To this 

end, let a E dom({i) \ dom(p). By Definition 4.13 of -.«Bi))e.Ocp~-vector 
i', we have -£ :5 ta < O. Then a rt A by Definition 4.13 of t also being a 

((A))pO((A))p'I/JU cp-vector. Thus (dom({i) \ dom(p)) n A = 0. 
- Since t is a -.((Bi))f.,Ocp~-vector, we have, by property 2 of the refuta

tion function used in Definition 4.13, that dom(p) ~ Bi U dom{~i). Then 
dom(p) \ dom(~i) ~ Bi which corresponds to (P2). 

- Since t is a -.((Bi))f.. Ocp~-vector, property 2 of the refutation function 
used in Definition 4.13 yields that A ~ Bi U dom({i). Clearly, we have 
A \ Bi ~ dom(~i). We now show that A \ Bi ~ dom(p). Thus A \ Bi ~ 
dom{p) n dom(~i) which corresponds to (P3). To this end, let a E A \ Bi. 
Then a E dom(~i). By Definition 4.13 oftbeing a. -.((Bi))f..Ocp~-vector, it 
holds that -£ :5 ta < o. But then a rt A \ dom(p) by Definition 4.13 of t 
also being a (A))pO«A))p'I/Juc.p-vector. Thus a E dom(p). 

By Lemma 4.23, we get f- «A))pO /\ w' -'-+ (Bi))ei O 1\ w'. Together with the 

fact f- -.«Bi)) ei 0/\ w', it follows that f- -,«A)) pO 1\ w'. Thus f- -,(/\ w 1\ 'I/J 1\ 

«A)) pO /\ w'). 

We have established the implication (t)· Consequently, T' is a «A)) p'I/JU c.p-witness tree 
rooted at W in ~, which is in contradiction to w E V. Thus we have shown that 
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I- 0 ~ ..... cp 1\ ( ..... 'I/J V ..... ((A)} pO ..... O) (0). In the following derivation, we show that \11 is 
inconsistent. 

(1) I- cp V ('I/J 1\ ((A}}pO ..... O) ~ ..... 0 (using (0)) 

(2) I- «0}}pO«cp V ('I/J 1\ «A))pO ..... O)) ~ ..... 0) (using (1) and «0))pO-Necessitation) 

(3) I- «0))pO«(A))p'I/JUcp ~ ..... 0) (using (2) and (LFPu )) 

(4) I-

(5) I-

(6) I-

(7) I-

«A)) p'I/JU cp ~ ..... 0 (using (3) and (FPo)) 

o ~ ..... «A)}p'I/JUcp (using (4)) 

A \11 ~ 0 (by definition of 0) 

A \11 ~ -'«A}}p'I/JUcp (using (5) and (6» 

(8) I- A \11 ~ «A)) p'I/J U cp (since «A)) p'I/J U cp E \11) 

(9) I- A \11 ~ 1. (using (7) and (8)) 

Hence lJI is inconsistent. 

Finally, consider Case (Hi). This case is shown similarly to Case (ii). Supposing 

Case (Hi), we have ..... «A)} pOcp E \11 and that there is no ..... «A)} pOc.p-witness tree rooted 
at lJI in A. It is to show that \11 is inconsistent. Let V be the set of types \11' E A such 
that either ..... «A)) pOcp E lJIl but there is no ..... «A}) p0c.p-witness tree rooted at \11' in A, 
or ..... «A)) pOcp ~ lJIt. Note that W E V. Let 

0= V{A \11' I \11' E V}. 

By the induction hypothesis, all types in r...,-6 \ A are inconsistent. Thus we have 

-,0 = V{A lJI' IlJI' E A \ V}. 

In the following, we show that 

I- 0 ~ cp 1\ «(A)} pOO. 

Notice that cp E lJI', for all lJI' E V. To see that, suppose the contrary, i.e., cp f!. 
lJIt for some \lit E V. By (T2), we have .....,cp E \lit (or cp' E \lit if cp = -,cp'). But 

then, if ""«A}) pOcp E lJIt, a ..... d-tree containing only a root labelled with lJI' would 

be a ..,«A}}p0c.p-witness tree rooted at lJt' in aj contradicting lJt' E V. Otherwise, if 

..... «A)} pOIp f!. lJt', (T2) yields «A)} pO<p E lJt', and (T3) that <p E lJt' j again a contradiction. 
Consequently, we have 1-/\ lJt' ~ <p for alllJt' E V, and thus I- 0 ~ <p. In order to show 

I- 0 ~ «A)}pOO, it suffices to show I- A lJt ~ «A}}pOO. Suppose by contradiction that 

17 /\ lJt ~ «A)) pOO. Together with Regularity, it follows that 17 ..... (A lJt 1\ «E17 \A)} pO ..... O). 
Note that ..... 0 = V{A W, IlJt' E a \ V}. Then we have, for some lJt' E A \ V, that 

17 ..,(/\ lJt 1\ «E17 \ A)} pO A W'). 
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Fix such a \11'. Since \11' E A \ V, there is a -.«A)) pD<p-witness tree T rooted at \11' in 
A. Using T, we construct a -,«A)) pD<p-witness tree T' rooted at \11 in A as follows: 

• T'(c) := \11; 
• T'(t. a) := T(a), for all -,«A))pO«A))pDcp-vectors t and all a E dom(T). 

It can readily be checked that T' satisfies conditions 1 and 3 to 6 in Definition 4.14 

of -,«A)) pDcp-witness trees. For condition 4, notice that -,«A)) pDcp E \11. Consider 
condition 2 that requires that T' is O-matching. Let tbe a -,«A)) pO «A)) pDcp-vector. 
Given \11 and i', let j(W,F) be the number ranging from 1 to y such that -,«A)) pO «A)) pDcp 
is the k(w,F)-th formula in the enumeration of positive next formulas from \11 for which 

t is a vector. Let x(w,F) abbreviate the following negated conjunction: 

X(W,F) = -.( /\ \11 A if!(W,F)(/\ '11') A A «Bi))~,O A '11'). 
i=l..y 

i#(IJI,i} 

In the following, we show that 

(:j:) If -,(/\ '11 A «EfJ \ A)) pO /\ '11') implies If X(W,F)' 

Then, since If -,(/\ '11 A «EfJ \ A)) pO /\ '11'), we obtain from (:J:) that If X(W,F)' Together 

with Claim 4.19 and the fact that -,«A))pO«A))pOcp E '11 and «A))pOcp E (I', we have 

Sw(i) t; '11', for every -'«A))pO«A))pD<p-vector f. By Definition 4.13 and the fact that 
the tree T is already O-matching, we have that T' is O-matching. Hence condition 2 

is satisfied. 
We now show, for every -,«A)) pO «A)) pDcp-vector i', the contrapositive of the impli-

cation (:j:). Suppose I- X(W,F)' Distinguish the following three cases: 

(a) Suppose I- -, /\ '11. Obviously, this implies I- -,(/\ \11 A «EfJ \ A)) pO /\ '11'). 
(b) Suppose I- -,if!(W,F)(/\ \11'). This is equivalent to I-Vi=l..x-,«EfJ \ Ai))p,O /\ \11', 

Le., I- -,«EfJ \ Ai))p,O/\ \11' for some i with 1 $ i $ x. Note that t = 

(to, ... , tn-1) is a -,«A)) pO «A)) pD<p-vector and a «Ai)) p,Ocpi-vector. We show 
that the conditions (PO) to (P3) in Lemma 4.23 are satisfied: 

- By Definition 4.13 of tbeing a vector for both -.«A))pO«A))pDcp and 
«Ai)) Pi OCPi, we have that p(a) = Pi(a), for all agents a E dom(p)ndom(pi)' 
This corresponds to (PO). 

- Since tis a -,«A))pO«A))pDcp-vector, it holds, by property 2 of the refu

tation function used in Definition 4.13, that dom(Pi) t; A U dom(p). Thus 

(dom(pi) \ dom(p)) n (Et? \ A) = 0 which corresponds to (PI). 
- We show dom(p) \ dom(Pi) t; EfJ \ Ai which corresponds to (P2). To this 

end, let a E dom(p) \ dom{pi). By Definition 4.13 of -,«A)) O«A)) D<p-.... p p 
vector t, we have -l $ ta < O. But then a ~ Ai by Definition 4.13 of 

«Ai))p,Ocpi-vector f. That is, a E Et? \ Ai. Thus dom(p) \ dom(Pi) t; 

Et? \Ai . 
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- Since fis a .((A))pO((A))p0<p-vector, we have Ai ~ AUdom(p) by prop

erty 2 of the refutation function used in Definition 4.13. Clearly, we have 

Ai \ A ~ dom(p). We now show that Ai \ A ~ dom(pi). Then Ai \ A ~ 
dom(p)ndom(Pi) and, equivalently, (1:t?\A)\(1:t?\Ai) ~ dom(p)ndom(Pi) 

which corresponds to (P3). To this end, let a E Ai \ A. Then a E dom(p). 
By Definition 4.13 of .(A))pO«A))p0c,o-vector f, we have -l :::; ta < O. 

But then a fi. Ai \dom(Pi) by Definition 4.13 ofi'also being a ((Ai))PiOc,oi
vector. Thus a E dom(pi)' 

By Lemma 4.23, we obtain I- ((1:t? \A)) pO" q,' --t ((1:t? \Ai)) Pi 0 /\ q,'. Together 

with the fact I- • «1:t? \Ai))Pi0 /\ q,', it follows that I- .«(1:t?\A))pO /\ q,'. Thus 

I- .(/\ q, /\ «1:t? \ A) pO /\ W'). 
(c) Suppose I- ." i=l..y «Bi){.O" W'. That is, we have I- .«(Bi»e.O /\ W' 

i~k(q,.t) , , 

for some i ¥= k{lJt,i) with 1 :::; i :::; y. Note that i' = (to, ... , tn-d is a 

• «(A)) pO (A» p0c,o-vector and a • «(Bi){; Oc,o~-vector, and that • ((Bi))ei Oc,o~ ¥= 
• «A» pO «(A» p0c,o. Distinguish four subcases: 

(cl) Bi U dom(ei) = 1:17 and A U dom(p) = 1:17; 

(c2) Bi U dom(ei) = 1:t? and A U dom(p) c 1:t?; 

(c3) Bi U dom(ei) C Et? and A U dom(p) = Et?; 

(c4) Bi U dom(ei) C E17 and A U dom(p) C Et? 
We now show that, for Case (c2), the conditions (PO) to (P3) in Lemma 4.23 

are satisfied. For cases (cl) and (c3), this can be done similarly. 

- By Definition 4.13 of i' being a vector for both • (A)) pO ((A)) p0c,o and 

.«(Bi»){iOc,o~, we have that p(a) = ei(a), for all agents a E dom(p) n 

dom(ei). This corresponds to (PO). 

- Since i' is a • «A)) pO ((A) p0c,o-vector, it holds dom(ei) ~ A U dom(p) 
by property 2 of the refutation function used in Definition 4.13. Thus 

(dom(ei) \ dom(p» n (Et? \ A) = 0 which corresponds to (PI). 

- Since dom(p) ~ Et? = Bi Udom(ei), we have dom(p) \ dom(ei) ~ Bi which 

corresponds to (P2). 

- By Et? = Bi U dom(ei), we have Et? \ Bi ~ dom(ei). Clearly, this implies 

(Et? \A) \Bi ~ dom(ei). We now show that (1:17 \A) \Bi ~ dom(p). Then 
we have (1:19 \ A) \ Bi ~ dom(p) n dom(ei) which corresponds to (P3). To 

this end, let a E (Et? \ A) \ Bi . Then a E dom(ei). By Definition 4.13 of 

""«Bi){iOc,o~-vector i', it holds that -l :5 ta < O. But then a E AUdom(p) 

by property 2 of the refutation function used in Definition 4.13 of i' also 

being a ...,«A)) pO «A)) p0c,o-vector. Finally, since a rt A, we have a E 

dom(p). 

Lemma 4.23 yields I- «Et? \ A»)pO" w' --t «Bi))e;O" w'. Together with 

the fact I- ...,«Bi)) et 0 " w', it follows that I- ..., «Et? \ A)) pO" w'. Thus I

...,(/\ w /\ ({Et? \ A)} pO" w'). 
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Consider Case (c4). By property 3 of the refutation function J used in 

Definition 4.13 of vectors of negative next formulas, we have that there is 

at most a single coalition B C E19 with J(t, B) defined. Thus we have that 

A U dom(p) = Bi U dom(~i) and, since J is a function, that J(t, A U dom(p)) = 

J(t, Bi U dom(~i))' But then -'((Bi»eiO<p~ = -,((A» pO ((A» p0<Pj a contradic

tion. Thus we can exclude (c4). 

We have established the implication et)· Consequently, T' is a -,((A» p0<p-witness tree 
rooted at W in ~, which is in contradiction to W E V. Thus we have shown that 
~ () _ <p /\ ((A» pO() (0). With the following derivation we show that W is inconsistent: 

(1) ~ ((0»pO(() - <p /\ ((A»pO()) (using (0) and ((0»pO-Necessitation) 

(2) ~ ((0»pO(()- ((A»pO<p) (using (1) and (GFPo» 

(3) ~ ()- ((A»p0<p (using (2) and (FPo» 

(4) ~ 1\ W - () (by definition of ()) 

(5) ~ 1\ w - ((A»p0<p (using (3) and (4» 

(6) ~ 1\ W - -,((A» pOll' (since -,((A» pOll' E w) 

(7) ~ 1\ W - 1.. (using (5) and (6» 

Hence W is inconsistent. 

4.6. Conclusion 

° 

In this chapter, we introduced ATLES as an extension of ATL with explicit names 
for strategies. ATLES makes it possible to refer to the same strategy in different occur
rences of path quantifiers, and, as a consequence, it possible to express in ATLES some 

properties that cannot be expressed even in ATL*. We argued that the expressivity of 
ATLES makes it suitable for reasoning about extensive games. 

We showed that ATLES satisfiability is ExpTIME-complete by extending the type 

elimination construction for ATL from Chapter 3. We presented a sound and com
plete axiomatisation for ATLES, the completeness proof of which is based on that type 

elimination construction. Moreover, we identified two variants of the model checking 

problem for ATLES and settled their computational complexities. 

ATLES does neither fix the number of agents nor the available strategy terms in ad

vance and thus contains the logics CATL !2421, Coalition Logic !1951, Action Logic !38], 

ATL !265], ATLE !98] and ATLES E,T as fragments, where the parameter E is a fixed 

set of agents and the parameter i a fixed set of strategy terms. Thus the upper com

plexity bound for ATLES carries over to these fragments whose validities can, moreover, 

be derived using the axiomatic system for ATLES. 



142 4. ATL WITH EXPLICIT STRATEGIES 

For future work, it is generally interesting to enrich the expressivity of ATLES 
while keeping its complexity low. We can model, e.g., non-deterministic strategies with 
"disjunction" of strategies: The formula (()) {a ...... Ul VU2} q, states that agent a uses the 
non-deterministic strategy III V ll2, where, at each state, a chooses either according to 
strategy III or to strategy ll2 to bring about the temporal expression q,. Other interesting 
operators for composing strategies are thinkable. In the context of strategy composition, 
it seems relevant to mention the possibility of partial strategies that determine choices 
only at some states. Composed partial strategies can complement each other and we 
can model, e.g., agents who switch strategies after some system transitions. It would be 
intriguing to have an operator for dynamic strategies that evolve over time that can be 
used to model games more closely. Extending ATLES with "disjunction" of strategies 
and other operators for composing strategies enables us to succinctly express complex 
properties about strategic ability of agents. 

A further suggestion for an ATL-variant with strategies in the object language is 
to allow for strategy variables and their quantification; cf. Borgo [38]. One idea is to 

introduce explicit strategy quantifiers and allow for formulas of the form 3Xa.'v'Xb.3xc.CP. 

In this way, we break the fixed quantification pattern of the ATL path quantifiers which, 

on the other hand, might easily render the resulting logic undecidable. An implicit way 

of quantifying strategy variables is by employing the quantification hidden in the ATL 

path quantifiers. For instance, in a formula of the form ((a)) {a:x .. ,b:Xb} O( (()) {a ...... x .. } q, 1\ 

((a)){bt-+xb}q,'), the strategy variable Xa for agent a is existentially quantified since a is a 
member of the coalition in the path quantifier and, since agent b is not in that coalition, 
Xb is universally quantified. Notice that this quantification corresponds to the semantics 
of path quantifier ((a)). In the second and third path quantifier of this formula, it is 
demonstrated how a and b commit to Xa and Xb, respectively. Of course, this setting 
can be more refined, e.g., by specifying a range of strategies over which it is quantified. 



CHAPTER 5 

Cooperation and Transfer of Control 

As we saw in Chapter 2, many logics for reasoning about the strategic abilities of 
agents and coalitions of agents in game-like multi-agent systems have been developed. 
However, these logics do not discuss the origins of an agent's abilities. 

One exception is the MOCHA system for model checking coalitional power proper

ties, in which powers are specified by defining, for every variable in a system, a unique 

agent that controls this variable [17J. Control, in this sense, means the unique ability 
to choose a value for this variable. Motivated by this observation, van der Hoek and 
Wooldridge [249] developed Coalition Logic of Propositional Control (CL-PC), a coop
eration logic in which powers are specified by allocating every propositional variable to 
a unique agent in the system: the choices (and hence powers) available to a coalition 

then correspond to the possible assignments of truth or falsity that may be made to the 

variables under their control. The CL-PC modal expression Oct.p means that coalition 

C can assign values to the variables under its control in such a way as to make t.p true. 
Van der Hoek and Wooldridge gave a complete axiomatisation of CL-PC, and showed 
that the model checking and satisfiability problems for the logic are both PSPACE

complete. However, one drawback of CL-PC is that the power structures underpinning 
the logic - that is, the allocation of variables to agents - is fixed. Hence, ultimately, 

coalitional powers remain static in CL-PC. 
In this chapter, we study a variant of CL-PC which allows us to reason about 

dynamic power structures. Dynamic Coalition Logic of Propositional Control (DCL-PC) 
extends CL-PC with dynamic logic operators as used by Harel, Tiuryn and Kozen [107], 
in which atomic actions are of the form al -p a2, which is read as 'agent al gives variable 
p to agent a2'. The pre-condition of such an action is that variable p is in agent al's 
allocation of variables, and executing the program has the effect of transferring control 

of variable p from agent al to agent a2· Thus the dynamic component of DCL-PC 
is concerned with delegating control in systems, and by using the logic, we can reason 
about how the abilities of agents are affected by the transfer of control of variables in the 

system. Note that, as in conventional dynamic logic, atomic programs may be combined 
in DCL-PC with the usual sequential composition ('j'), non-deterministic choice ('U'), 

test ('1') and iteration ('.') operations, to construct complex delegation programs. For 

example, the following DCL-PC-formula asserts that, if agent i gives either p or q to j, 

then j will be able to achieve t.p: 

[(i -p j) U (i -q j)]Ojt.p. 

143 
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The remainder of the chapter, is organized as follows. In Section 5.1, we give two 
alternative semantics for the logic: a "direct" semantics, in which models directly repre
sent the allocation of propositional variables to the agents that control them, and a more 
conventional Kripke semantics. We prove that these two semantics are equivalent. The 
rationale for introducing two semantics is that, while the "direct" semantics is closer to 
the intended interpretation of the logic, the Kripke semantics is simpler for the purposes 
of, e.g., proving completeness. We give an axiomatisation of DCL-PC in Section 5.2, and 
show that this axiomatisation is complete (with respect to both semantics). Although 
one might expect that the additional dynamic logic operators in DCL-PC lead to higher 
a complexity than CL-PC wrt. model checking and satisfiability, we show in Section 5.3 
that this is not the case. The satisfiability and model checking problems for DCL-PC 

are no more complex than the corresponding problems for CL-PC (249): they are both 

PSPAcE-complete. This result is, perhaps, of some technical interest in its own right, 
since ExpTIME-COmpleteness seems to be the characteristic complexity of dynamic-like 
logics [107, pp.277-279). Here, with "dynamic-like" logics we mean logics in which there 
is a modal operator and another operator representing the transitive closure of this oper

ator [33, p.401). Finally, we investigate the characterisation of control in DCL-PC. We 

distinguish between first-order control and second-order control in Section 5.4. While 

first-order control (as introduced by van der Hoek and Wooldridge (2491) is the ability 
to control some state of affairs by assigning values to variables, second-order control is 
the ability of an agent to exert control over the ability of other agents to control states 
of affairs. Agents and coalitions can exercise second-order control by transferring vari
ables under their control to other agents. After informally discussing and introducing 
second-order control, we develop a logical characterisation of it, in the sense that we 
characterise the formulas over which an agent has second-order control. We conclude 
this chapter with some brief comments on related work. 

5.1. The Logic DCL-PC 

The language of DCL-PC is formed with respect to a set E of agents, and a set IT of 
propositional variables. DCL-PC extends classical propositionallogic with "cooperation 
modalities" of the form Oc<P, where C ~ E is a set of agents. These modalities are used 
to express contingent ability 1249}: Oc<P means that, under the assumption that the 
world remains otherwise unchanged, the set of agents C have the ability to achieve 
<po As shown in [249} , (and as defined below), stronger ability operators, roughly 

corresponding to Pauly's (194) Coalition Logic cooperation modality may be derived 

from these: we express the fact that the agents in coalition C have a choice such that, no 

matter what the agents outside C do, <p will become true, as ((C))a <p (the 'a' is for 'a
effectivity' [194, p.20]). Additionally, DOL-PC provides dynamic delegation modalities, 
of the form [<5]<p, which means 'after the delegation program <5 is executed, then <p will 
hold'. Delegation programs express the transfer of control between agents, and are built 

from a set of atomic delegation expressions of the form i -p j, meaning 'agent i gives 
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the control over propositional variable p to agent j'. Such a program can be executed 

if, and only if, agent i "owns" this variable, and the effect is to transfer ownership to j. 

These atomic programs may then be combined with the usual program constructs (;, 

?, u, *) of regular dynamic logic [107), and of course, conventional program constructs 

such as while and if may be defined in terms of these. Executing such a program changes 

the distribution of ownership of propositional variables among the agents and, thus, the 

abilities of agents and coalitions. We can reason about the effect that such dynamic 

power allocation programs have on the abilities of agents and coalitions. For instance, 

the following formula states that it is possible for agent a to give away the control over 

its propositional variables in ITa to agent b, non-deterministically choosing one variable 

at a time, until agent b is able to make <P true: 

(while -,Ob<P do U a -p b) T. 
pEna 

5.1.1. DeL-PC Syntax. The syntax of DeL-PC is defined as follows. 

DEFINITION 5.1. (DeL-PC SYNTAX). Let IT be a finite set of atomic propositions 

and E a finite set of agents. The set of DeL-Pe-formulas <P and DeL-Pe-delegation 

programs is simultaneously defined as given by the following BNF specification: 

p I -,<p I <P V <P I Oc<p I (8)<p 

a -p b I 8; 8 I 8 u 8 I 8* I <p? 

where p ranges over atomic propositions in n, a, b range over the agents in E and C 

over finite subsets of E. 

Logical truth (T), falsehood (.1-) and the Boolean connectives (A, - and +-+) are 

defined as usual. We use Dc<p := -,Oc-'<P and [8]<p := -,(8)-,<p. Moreover, we use 

exclusive disjunction CV), which is defined as follows: for any set <Jl of DeL-Pe-formulas, 

'V := V <P A A -'(<pl A «2). 
ell cpEell CP1 ~cp2Eell 

We will also write <PI \j <P2 \/ ... \j <Pn for \j cpEell with <Jl = {<PI, <P2, ... ,<Pn}. With respect 
to delegation programs, while and if constructs are defined as follows [107, p.167J: 

if <P then 81 else 82 

while <P do 8 

((<p?; 8d U (-'<p?; 82)) 
((<p?j8)*j-'<p?) , 

A DeL-Pe-formula containing no modalities is said to be an objective formula. 

Let ITcp denote the set of propositional variables occurring in DeL-Pe-formula <p, 

and let Ecp denote the set of all agents that occur in <p. 

5.1.2. Direct Semantics for DCL-PC. We now introduce the first of two se

mantics for DeL-PC. Given a fixed, finite and non-empty set E = {l, ... ,n} of agents, 

and a fixed, finite and non-empty set IT of propositional variables, we say an allocation 
of IT to E is an indexed tuple ~ = (ITb ... , ITn), where there is an indexed element ITa 
for each agent a E E, such that ITI,.'" ITn forms a partition of IT (i.e., IT = UaEE ITa 
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and Ila n Ilb = 0 for all a i: bEE). The intended interpretation of an allocation 
~ = (TIl,"" TIn) is that Ila ~ TI is the set of propositional variables under agent a's 
control. That is, agent a has freedom to allocate whatever Boolean values it sees fit to 

the members of Ila· 

DEFINITION 5.2. (DIRECT DCL-PC STRUCTURE). A direct DCL-PC structure is 
a tuple M = (Il, E, eo, 9) where 

• TI is a finite, non-empty set of propositional variables; 

• E = {al,'" ,an} is a finite, non-empty set of agents; 

• eo = (Ilap'''' Ilan ) is the initial allocation of TI to E, with the intended 
interpretation that TIa is the subset of TI representing those variables under 
the control of agent a E E; and 

• 9 : Il -+ {tt, if} is a propositional valuation junction, which determines the 
initial truth value of every propositional variable. 

Some additional notation is convenient in what follows. For any coalition C ~ E, 

we denote the complement of C, (Le., E \ C) by C. We will write Ile for UiEe Ili. For 
two valuations 9 and Of, and a set of propositional variables llt ~ Il, we write 0 = Of 

(mod llt) if 0 and Of differ at most in the propositional variables in llt, and we then say 
that 0 and 0' are the same modulo llt. Given a direct structure M = (Il, E, eo, 9) and a 
coalition C in M, a C-valuation is a function: 

ge : TIe -+ {tt, if}. 

Thus a C-valuation is a partial propositional valuation function that assigns truth values 
to just the propositional variables controlled by the members of the coalition C. If 
M = (Il,E,eo,9) with eo = (TII'" ,TIn) is a direct structure, C a coalition in M, and 
ge a C-valuation, then by M $ ge we mean the structure (E, Il, eo, (J'), where (J' is the 
valuation function defined as follows 

9'(P) := {ge (P) 
9(p) 

ifpETIe 

otherwise 

and all other elements of the structure are as in M. Thus M $ (Je denotes the direct 
structure that is identical to M except that the values assigned by its valuation function 
to propositional variables controlled by members of C are determined by (Je. 

We define the size of a direct structure M = (TI, E, eo, 9) to be IIlI + IEI; we denote 
the size of M by size(M). 

To give a modal semantics to the dynamic logic constructs of DCL-PC, we must 
define, for every delegation program 0 a binary relation R6 over direct structures such 
that (M l, M2) E R6 iif M2 is a direct structure that may result from one possible 
execution of program 0 at Ml. We start by defining the relation Ra ..... pb, for atomic 
delegation programs of the form a """p b, i.e., agent a gives control of propositional 
variable p to agent b. Let M = (Il,E,eo,9) and M' = (Il',E',el>,9') be two models 
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with ~o = (IT1, ... , ITn) and ~b = (ITi, ... , IT~). Then 

(M, M') E Ra<v-+pb 

iff 

(1) pE ITa (agent a controls p to begin with) 

(2) in case a = b: 

(a) M = M' (agent a gives p to herself, with no change in the structure) 
(3) in case a =I b: 

(a) IT~ = ITa \ {p} (agent a no longer controls p afterwards); 
(b) IT~ = ITb U {p} (agent b controls p afterwards); and 

(c) all other components of M' are as in M. 

In order to define M ~d tp, which means that tp is true in M under the direct semantics, 

we need to be able to determine what the interpretation of an arbitrary program is, on 

M; we define this below. Notice that executing an atomic delegation program has no 
effect on the valuation function of a direct structure. Delegation programs only affect 

the distribution of propositional variables to agents. 

For the remaining constructs of delegation programs, we define the program relations 

inductively, in terms of the relations for atomic delegation programs, as defined above. 

Let the composition of relations RI and R2 be denoted by RI 0 R2, and the reflexive 
transitive closure (ancestral) of relation R by R*. Then the accessibility relations for 

complex programs are defined as follows 1107, p.168]: 

R61;62 .- R610 R62; 

R61U62 .- R61 U~2; 

R6· .- (R6)*; 

Rp? .- {{M,M) I M ~d tp}. 

We interpret formulas of DCL-PC with respect to direct structures, as introduced 
in Definition 5.2. 

DEFINITION 5.3. (DCL-PC DIRECT SEMANTICS). Given a direct DCL-PC struc
ture M = (IT, E, eo, B), the satisfaction relation ~d is inductively defined as follows, 
where 8 ranges over delegation programs, C <;;; E ranges over coalitions of agents, p over 

propositional variables in IT, and tp,1/J range over DCL-PC-fo~mulas: 

• M ~d p iff B(p) = ttj 

• M ~d -,tp iff M ~d tpj 

• M ~d tp V 1/J iff M ~d tp or M ~d 1/Jj 
• M ~d Octp iff there is a C-valuation Bc such that M EB Bc ~d tpj 

• M pd (8)tp iff there is a direct structure M' such that (M, M') E R6 and 

M' ~d tp. 

A DCL-PC-formula tp is d-satisfiable iff there is a direct DCL-PC structure M such 

that M pd tp, and tp is d-valid if, and only if, for all direct DCL-PC structures M, we 
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have M pd 'P. We write pd 'P to indicate that 'P is d-valid. A valid formula is also 

called tautology. 

Where C is a coalition and 'P is a formula of DCL-PC, we write controls(C, 'P) to 
mean that C can choose 'P to be either true or false: 

(5.1) controls(C, 'P) := OC'P 1\ OC""'P 

By using the controls(.,.) construct, we can capture the distribution of propositional 
variables among the agents in a structure. 

LEMMA 5.4. Let M = (11, E, eo, 0) be a direct DCL-PC structure, a E E an agent, 

C ~ E a set of agents, and p E 11 a propositional variable in M. Then 

(1) (12491) M pd controls(a,p) iff pE 11a; 
(2) M pd controls(C,p) iff pE 11c. 

Can we characterise the formulas under control of a coalition C? We have that: 

(5.2) If 'P is objective, then !=d ( 1\ controls(C,p)) -+ controls(C, 'P) 
peTIt; 

Recall that 'P is said to be objective if it does not contain any modalities. Prop

erty (5.2) is not true for arbitrary 'P, for which (i -p j) T is a counterexample, no 
matter whether we define 11i to be {p} or 0, which can be seen as follows. In fact, 
we have pd ...,controls(i, (i -p j)T): independent of i owning p, exactly one of the two 

formulas (i -p j)T and ...,(i -p j)T is true. That is, p E 11i in M if, and only if, 
M pd (i _p j}T. Also we have that the reverse direction of the implication in the 
right hand side of (5.2) is not valid for objective 'P: suppose M = (11, E, eo, O) such that 
O(q) = tt, P E 11i and q r:j. 11i. Then, we have M pd controls(i,pl\q) 1\ -'(controls(i,p) 1\ 

controls{i, q)): because q "happens" to be true in M, i controls the conjunction p 1\ q, 
but not each of its conjuncts. 

5.1.3. Kripke-style Semantics for DCL-PC. For some purposes, it is more nat
ural to formulate the semantics for DCL-PC using conventional Kripke structures [51, 
331. Intuitively, given a set E of agents and a set 11 of propositional variables, there 

will be a possible world for every possible allocation of the variables in 11 to the agents 

in E and every possible propositional valuation function over IT. Between those worlds, 

there are basically two "orthogonal" accessibility relations (cf. Figure 5.1): a "horizon

tal" and a "vertical" one. First of all, we have, for each agent a, a "horizontal" relation 

Ra between two worlds u and v if agent a is able, given the valuation Ou in U, to turn 

it into the valuation Ov as described by v, just by choosing appropriate values for her 

variables. In what follows, we drop the symbolic distinction between worlds and valua

tions, Le., we use 0 for denoting a world and a valuation interchangeably. Notice that 

the "horizontal" relation does not affect the allocation e. 
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DEFINITION 5.5. (KRIPKE STRUCTURE FOR DCL-PC). A Kripke structure for 

DCL-PC is a tuple 9Jt = (IT,~, e, {Ra}aEE,~) where 

• IT is a finite, non-empty set of propositional variablesj 

• ~ = {al, ... ,an} is a finite, non-empty set of agentsj 

• 8 = {O I 0 is a valuation over IT} is a finite set of statesj 

• Ra ~ e X e is the horizontal relation for agent a E ~ such that (0, 0') E Ra iff 
o = 0' (mod ITa), Le., Ra is an equivalence relationj 

• ~ = (ITal' ... , ITan) is an allocation of IT to ~ such that, for every agent a E ~, 
ITa ~ IT contains the propositional variables under the control of a. 

The set of all Kripke models for DCL-PC over ~ and IT is denoted by K(~, IT). 

It is important to realize that the sets ~ of agents and IT of variables are fixed, but 
the allocations of variables to agents may vary. 

Secondly, the ''vertical'' accessibility relation is between pointed Kripke structures 

(9Jt,0) and (9Jt',0'), where 9Jt = (IT,~, e, RaEE,~) and 9Jt' = (IT,~, 8, RaEE, e'), which 
indicate a change of the allocation e to e'. Since such a change of allocation does not 

affect the current world, we have for such pairs that 0 = 0'. Slightly abusing notation, 

we define (9Jt, 8)(a -p b)(9Jt', 0') exactly when pE ITa, and either a = band 9Jt = 9Jt', 

or else II~ = IIb \ {p} and IIb = IIb U {p}, and all the other sets IIe remain the same. 

The semantics over Kripke structures for DCL-PC is defined as followsj cf. [2481. 

DEFINITION 5.6. (DCL-PC SEMANTICS). Given a DCL-PC structure 9Jt = (IT,~, 
e, {Ra}aEE,e), the satisfaction relation pK is inductively defined as follows, where 0,8' 
range over valuations, C ~ ~ ranges over coalitions of agents, a, b over agents in ~, p 
over propositional variables, and cp, 'I/; range over DCL-PC-formulas: 

• 9Jt,0 FK p iff O(p) = tt, for all propositions p E ITj 
• 9Jt,O FK -,cp iff 9Jt, 8 [#:K cpj 
• 9Jt,O FK cp V 'I/; iff 9Jt, 0 pK cp or 9Jt,8 FK 'l/;j 

• 9Jt, 0 F (Jecp iff there is a valuation 8' such that (8, 0') E Ra for all agents 
a E C, and 9Jt,8' FK cpj 

• 9Jt,8 F (a -p b)cp iff there is a Kripke structure 9Jt' for DCL-PC such that 
(9Jt,O)(a -p b)(9Jt',O) and 9Jt',O FK cpj 

• 9Jt,8 F (81 j 82)cp iff 9Jt, 0 F (81) (82)cpj 
• 9Jt,8 F (81 U 82)cp iff 9Jt, 0 F (81)cp or 9Jt,8 F (82)cpj 

• 9Jt,8 F (8*)cp iff 9Jt, 0 F (8)ncp for some n ~ OJ 

• 9Jt,8 F ('I/;?)cp iff 9Jt, 8 F 'I/; and 9Jt,8 F cp. 

If, for some valuation 8 and some Kripke structure 9Jt for DCL-PC, it holds that 9Jt, 8 P 
cp, then the DCL-PC-formula cp is true or satisfied at 8, and 9Jt is called a model of cp. 

Note that in fact, in the Kripke semantics, formulas are not interpreted in a structure 

together with a valuation only, but in the context of other structures (which are reached 

by the atomic program i -p j). There are finitely many such Kripke structures for 
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DOL-PO, one for each e. Oall this collection of models K.. In fact, this K. is the structure 
with respect to which formulas are interpreted. In that sense, there is only one Kripke 
structure for the language, it is K.. We will prove completeness with respect to this 

unique structure, in Section 5.2. 
To better understand the Kripke-style semantics, consider the following example. 

EXAMPLE 5.7. (LAYERS). This example demonstrates the Kripke semantics. Fig
ure 5.1 depicts three Kripke structures rot, rot' and rot", one in each of the three boxes. 
The structures only differ in the allocation of the propositional variables to the agents. 
The vertical arrows between states of different structures correspond to the vertical rela

tion and the slightly thinner horizontal arrows between states within a structure corre

spond to the horizontal relations. The labelling of states and arrows is self-explanatory. 

In rot, we have that at state u agent i has only control over the propositional variable 

p,q,r 

~
. 

~p,q,r v 
- - - - _ _ _ _ _ ~p, ~q, r 

u --------_ I R· -----.0 
I 3 W 

U 
I 

p,q,r 

____ ~p,~q,r 

---- --------.0 
w 

e" = (IT 1, ... , IT~, ITj \ {q}, ITk U {q}, ... , ITn) 

p,q,r 

u 
_____ ~p,~q,r 

---Rk -------.0 
W 

FIGURE 5.1. Some Kripke models for DOL-PO. 
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p but not q and r: i can make p true and false, but i cannot change the truth value of 

q and r. That is, we have pE ITi and {q,r} g ITi . Using DCL-PC, we can express this 

with 
rot, u p controls{i,p) A -,controls{i, q) A -,controls(i, r). 

The situation for agent j at state u is different since she can control q but not p and r. 

That is, we have 

rot,u p -,controls(j,p) A controls(j,q) A -,controls(j,r). 

Now, using the delegation program (i -p j), agent i can pass the control over p on to 

agent j such that, after the execution of this program, i no longer controls p. This can 

be expressed as 

rot, up (i -p j)(-,controls{i,p) A controls(j,p». 

As Figure 5.1 illustrates, executing this program corresponds to travelling along the 

vertical relation to the same state u in the next structure rot'. Notice the different 

allocation e' in rot' in which the variable p belongs to j but not i. Suppose that at 

this point agent j passes the control over q on to agent k. Again, executing (j -p k) 
corresponds to travelling to the next structure rot", where q belongs to k but no longer 

belongs to j. We have that 

rot',u p controls(j,q) A (j -q k)controls{k,q). 

Note that for the sets IT~ and ITj in the allocation ~" in rot" we have IT~ = ITi \ {p} and 
ITj = ITj U {p} (cf. Figure 5.1). -j 

The following lemma is easily established by induction on rp: 

LEMMA 5.8. For any fixed sets of agents!:: and propositional variables IT, the direct 

semantics and the Kripke semantics are equivalent, i.e., for any rp, any Kripke structure 

rot E K{!::, IT) for DCL-PC with rot = (8, ~EE,~), and any direct structure M = 
(!::, IT,~, 9): 

M pd rp iff rot,9 pK rp. 

As usual, we define rot pK rp as 'r/9 : rot,9 pK rp, and pK rp as 'r/VJ1 : rot FK rp. 

5.1.4. Relationship to Strategic Logics. Although we will not use them in this 

chapter, we note that the basic modal operators of ATL (cf. Section 2.4.1) and Pauly's 

Coalition Logic 1194] can be interpreted within the framework of DCL-PC. In fact, 

these operators can be defined in the fragment CL-PC 1249] of DCL-PC, which does 

not allow for any dynamic operators such as (i -p j). Notice that DCL-PC subsumes 

neither Coalition Logic nor ATL. We give a DCL-PC semantics to the modal operators 

of these logics by interpreting ability as in DCL-PC, namely, as having control over the 

truth values of propositional variables. 

We start with formulas of Coalition Logic of the form ((C))o rp, where '0' stands for 

'a-effectivity' 1194, p.20]. In CL-PC, we can express such formulas as follows {where C 
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denotes the complement of C): 

That is, ((C))a cp means that the agents in C can bring about a state at which cp is true, 
no matter what the agents outside C do. For more details, see 1249J. ATL-formulas of 
the form ((C))Ocp can be defined in the same way: 

((C))Ocp := OcDc cp. 

Different to ATL, the logic DCL-PC does not provide explicit temporal operators, 
other than the implicit 'next'. However, the temporal operators of ATL 'always' ('0') 
and 'until' ('U') can be reduced to the operator 'next-time' ('0'), as follows. First, 
recall the following fixed-point schemes for the ATL 'always' and 'until' operators: 

((C))Dcp +-+ cp 1\ ((C))O((C))Dcp 
((C))cpU1/1 +-+ 1/1 V (cp 1\ ((C))O((C))cpU1/1) 

Now we can use the fact that the "horizontal" accessibility relation in Kripke models for 

DCL-PC is transitive to establish the equivalence: 

Intuitively, what this equivalence tells us is that if a coalition in DCL-PC can achieve 
something in two steps, then they can also achieve it in one step. 

With this equivalence, we can avoid repeated unfolding of the inductive schemes for 
the ATL operators 'always' and 'until'. That is, the remaining ATL operators can be 
defined in DCL-PC as follows: 

((C))Dcp 
((C))cp U 1/1 

.- cp 1\ OcDc cp 

.- 1/1 V (cp 1\ OcDc 1/1) 

Giving ATL-formulas a DCL-PC semantics corresponds to viewing ability as having 
control over the truth values of propositional variables. In this setting, it appears that 
ATL reduces to a much simpler logic, as we have just demonstrated. Clearly, this does 
not mean that ATL can be reduced to DCL-PC as AT Ss - the structures for ATL
cannot be translated into Kripke structures for DCL-PC. 

5.2. A Complete Axiomatisation 

A complete axiomatisation for the logic DCL-PC is given in Table 5.1. For the 

ease of exposition, we divide the axiomatisation into five categories as follows. While 
the 'Propositional Component' and the 'Rules of Inference' are straightforward, the 
'Dynamic Component' is an immediate adaptation of Propositional Dynamic Logic 
(see [107]). The 'Control Axioms' are inherited from 1249J. (The occurrence of l(p) 
refers to a literal with atomic proposition p: it is either p or ....,p, with the obvious 
meaning for ....,l(p).) Note that axiom (Allocation) specifies that every propositional 
variable is assigned to exactly one agent (i.e., we have an allocation), while in contrast, 
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for the fixed allocation ~ that was assumed in [249], one could explicitly state that 
controls(i,p), for every pE Ik 

For the 'Delegation & Control Axioms', (--Permanence(atomic)) states that no 
program 8 changes the valuation. From this, one easily extends this to arbitrary objec

tive formulas (obtaining (Objective Permanence), see Theorem 5.9 below). The axiom 

(Persistence1(control)) says that i's control over p is not affected when we move to an

other valuation, and axiom (Persistence2(control)) specifies how i remains in control 
of p, even when a delegation program is executed: either the variable passed in that 

program is not p, or the delegating agent is not i. The axiom (Precondition(delegation)) 
expresses that agents can only give variables away that they possess, and, finally fune 

says that the transition relation associated with an atomic delegation program is func

tional: at most one resulting world emerges. 

The following theorem lists some properties of DCL-PC, where controls(C,p) is as 

defined in equation (5.1) above. 

THEOREM 5.9. 

(1) The schemes in Table 5.2 are derivable in DCL-PC. 

(2) Moreover, from [2491 we know that the axioms (Ka), (Ta), (Ba) and (Effecta) 

have the coalitional counterparts (Kc), (Te), (Bc) and (Effectc) that are 

derivable for any coalition C. 

(3) I- controls(C,p) +-+ ViEC controls(i,p). 

(4) I- eontrols(C,p) ~ Djcontrols(C,p), i.e., the property (Persistencedeontrol)) 

is also derivable when we replace agent i by an arbitrary coalition C. 

PROOF. The four properties in Theorem 5.9 can be shown as follows: 

(1) This will follow after we have proven completeness: all the properties are valid. 

(Of course, this means that we cannot use this item in the completeness proof 
itself. ) 

(2) We refer to [2491. 
(3) The definition of eontrols(C,p) is OcP" OC-op. Let C = {al,a2,. ",ac}. By 

axiom (Controla ), we have ViEC controls(i,p) ~ ViEC(OiP" Oi-op). By the 
contrapositive of axiom (Ta), we have 'P ~ Oi'P. We can apply this repeatedly 

for all agents in C, giving 'P ~ Oa1 0a2 ... Oac'P. This is, according to (Compu), 

the same as 'P ~ Oe'P. (Note that we have now proven the contrapositive of 

(To).) This gives us ViEO controls(i,p) ~ ViEC<OOOiP" OOOi-op). Using 
(Compu) again, we see that the consequent of this implication is equivalent 

to OoP" Oo-op. For the other direction, we first show (At-most(control)) of 

Table 5.2. From £(p) we get, using axiom (Ta) and contraposition, Oi£(P). 
Assuming moreover Oi-o£(p), with axiom (Controla ), gives controls(i,p). From 

axiom (Allocation) we then obtain -ocontrols(j,p), for any agent j =F i. Using 
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Propositional Component 

(TAUT) 

Dynamic Component 

(K.s) 

(Union.s) 

(Comp.s) 

(Test.s) 

(MiXes) 

(Indo) 

Control Axioms 

(Empty) 

(Controla) 

(Allocation) 

Propositional tautologies 

[15) (cp -+ 1/J) -+ ([c5)cp -+ [c5)1/J) 

[15 u c5')cp - ([c5)cp /\ [c5')cp) 

[15; c5')cp - [c5)[c5')cp 

[cp?)1/J - (cp -+ 1/J) 

(cp /\ [c5)W)cp) - W]cp 

(cp /\ W)(cp -+ [c5)cp») -+ W)cp 

oa{CP -+ 1/J) -+ (oaCP -+ oa1/J) 

oaCP -+ cp 

cp -+ oaOaCP 

o0CP - cP 

controls{a,p) - (OaP/\ Oa-'P) 

I\pen (controls{abP) 'V'" 'V controls{an,p») 
where ~ = {ab"" an} 

(1/J /\ l(p) /\ controls{a,p») -+ Oa(1/J /\ -,l(p») 
where p f/. IT"" and 1/J is objective 

(ComPu) oCIoC~CP - oCIUC2CP 

Delegation & Control Axioms 
( ....... -Permanence(atomic)) (a ....... p b)T -+ (la ....... p b]q - q) 

(Persistence} ( control)) controls ( a, p) -+ Ob controls (a, p) 

(Persistence2 (control) ) 

(Precondition( delegation» 

(Delegation) 

(Func) 

Rules of Inference 

(Modus Ponens) 

(N ecessitation) 

controls(a,p) -+ [b ....... q cJcontrols(a,p) 
where a :/: b or p :/: q 

(a ....... p b)T -+ controls(a,p) 

controls(a,p) -+ (a ....... p b)controls(b,p) 

controls{a,p) -+ (a ....... p b)cp - [a ....... p b)cp) 

cP, cP -+ 1/J 

1/J 
cP 

ocp where 0 = [15], [a ....... p b], oa 

TABLE 5.1. An axiom system for DCL-PC. 

(Controlj), we get -.OjP V -.Or'p, i.e., -.Oji(p) V -'OJ-.f(p). Since (Tj) gives 

us Oji(p), we obtain -.OJ-.f(p), i.e., Dji(p). 
Now suppose -. ViEC controls{i,p). By axiom (Allocation), we have that 

V xEE\C controls(x,p). This means that for one such x, we have OxP /\ Ox-'p. 
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Now we do a case distinction based on p V -'p. In the first case, we assume p, 

and derive, for all i E C, that DiP, and thus Dcp. Hence -,Oc-'P, from which 
we get -,controls(C,p). In the case of -'p, we similarly have, for all i E C, that 
Di-'p, which gives -,Oc-'-'P, and again -,controls(C,p). All in all, no matter 
whether p or -'p, we get -,controls(C,p). 

(4) This is easy: in the previous item, we showed that controls(C,p) means that 
ViEC controls(i,p). Applying the axiom (Persistence1(control)), we obtain 
ViEC Djcontrols(i,p). But since controls(i,p) -+ controls(C,p) if i E C, we 
also have, for any i E C, that Djcontrols(i,p) -+ Djcontrols(C,p) (use the rule 
(Necessitation) and (Kj)). This proves Djcontrols(C,p). 

(At-Ieast(control)) (l(p) 1\ controls(a,p)) -+ Oa-,l(p) 

(At-most(control)) l(p) -+ (Oa-,l(p) -+ Dbl(P)) 
where (a =f. b) 

(Non-Effecta) (Oal(p) 1\ -,controls(a,p)) -+ Dal(p) 

(Inverse) controls(a,p) -+ ('P ~ [a..,...p bj b..,...p aJ'P) 

(Reverse) [a """p bJ[c"""q dj'P ~ [e """q dj[a """p bJ'P 
where (b =f. e and d =f. a) or p =f. q 

(Persistence( non-control)) -, controls (a, p) ~ Db -, controls (a, p) 

(..,...-Objective Permanence) (a..,...p b}T -+ ('P ~ [a..,...p bJ'P) 
where 'P is objective 

(Objective Permanence) (8}T -+ ('P ~ [8J'P) 
where tp is objective 

TABLE 5.2. Some Theorems of DCL-PC. 

o 

Consider the language without dynamic delegation operators, in which we only 
have propositional logic with cooperation modalities Oc. Models for these are rot, 
rot' E K(E, IT). In [249] it was shown that in that program-free language, every formula 
tp is equivalent to one without any occurrences of coalition operators. For instance, 
suppose that ITi = {p, q}. Then a formula Oi (-,p 1\ r) is equivalent to (p 1\ r) V (-,p 1\ r) 
(we ''read off" the current value of variable r outside i's control). 

We now establish a similar result for the language including programs. Any world 

(rot,8) is completely characterised when we know which variables are true in it, and 

what the allocation of variables to agents is. In such a case, the truth of all objective 

formulas, formulas involving abilities and delegation programs is completely determined. 

LEMMA 5.10. Let 'P be an arbitrary DGL-PG-formula and ( be a conjunction of 

assertions of the form eontrols(j,p) or-,controls(j,p). Then, in DGL-PG, we can derive 

f- Oc(tp 1\ () ~ (( 1\ OC'P). 
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PROOF. Since by (Compu), for C = {ab a2, ... ,an}, we have Oc1/J ~ Oal ... Oan 1/J, 
it is sufficient to prove the claim for an individual agent i. Moreover, we can move all 
conjuncts of ( out one by one, once we know that 

I- Oi(t.p 1\ ± controls (j,p)) ~ (±controls(j,p) 1\ Oit.p), 

where ±controls(j,p) is either controls(j,p) or -,controls(j,p). We do the reasoning for 

the non-negated case (the other one is similar): Oi(t.p 1\ controls(j,p)) is equivalent to 

(controls(j, p) 1\ Oi( t.p 1\ controls(j, p))) 
V ( -, controls (j, p) 1\ Oi ( t.p 1\ controls (j, p) ) . 

However, by using the theorem (Persistence(non-control)) from Table 5.2 (which we de

rive below), we have for the second disjunct that (-,controls(j,p)I\Oi( t.pl\controls(j,p))) ~ 
.1. That concludes the proof. 

For (Persistence(non-control», the right-to-Ieft direction follows immediately from 

(Tj). For the other direction, assume that -,controls(i,p). From (Allocation) we derive 

that 

controls(l,p) \j ... \j controls(i - 1,p) \j controls(i + 1,p) \j ... \j controls(n,p), 

and from this, by (Persistence1(control)), we get Vk¥i Ojcontrols(k,p). For every k # i, 
we have controls(k,p) -+ -,controls(i,p), which follows from (Allocation). Hence, using 

(Necessitation), we have OJ(controls(k,p) -+ -,controls(i,p)). Axiom (Kj) now yields 

Ojcontrols(k,p) -+ OJ-,controls(i,p). Combining this with V k¥i Ojcontrols(k,p), we 
obtain the desired conclusion OJ-,controls(i,p). 0 

Soundness of the axiom schemes in Figure 5.1 is readily checked. We now proceed 
to prove that the axiomatic system for DCL-PC in Figure 5.1 is complete. First, we 
introduce some notation. 

DEFINITION 5.11. (VALUATION DESCRIPTION). Given the set ofpropositional vari

ables n, a valuation description 11' is a conjunction of literals (p or -,p) over them such 

that every propositional variable in n occurs in one literal. That is, for each proposi

tional variable pEn, it holds that either 11' -+ p, or 11' -+ -'p. 

We denote the set of all valuation descriptions over n with IP. Notice that, for each 

valuation 0, there is a 11'0 E IP such that 

11'0 = !\{P I pEn and O(p) = tt} 

1\ !\ { -,p I pEn and O(P) = if}. 

DEFINITION 5.12. (ALLOCATION DESCRIPTION). Given the set of propositional 

variables n and the set of agents E, an allocation description v is a conjunction of 

formulas of the form controls(i,p) such that, for each propositional variable pEn, 

there is exactly one agent i E E such that v -+ controls(i,p). 
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We denote the set of all allocation descriptions with A. Notice that allocations ~ 

and conjunction v correspond to each other: For each allocation ~ = (ITI,.'" ITn) of 
the variables in IT over the agents in ~, there is a ve E A such that 

ve = A controls(i,p). 
iEE,pElP, 

Therefore, we refer to formulas v as allocation descriptions. 

Given two allocation descriptions v, v' E A, we say v(i -p j)v' if the following three 

conditions are satisfied: v - controls(i,p), v' - controls(j,p), and v and v' agree on 
all other control expressions. 

DEFINITION 5.13. (PROPOSITION DESCRIPTION). Let, for any allocation descrip

tion v, JPv ~ JP be a set of valuation descriptions. Then, a formula of the form 

(5.3) V (VJPv Av) 
vEA 

will be called a proposition description. 

Let us, for two valuation descriptions 1r and 1r', a coalition C, and an allocation 

description v, write 1r == 1rt (mod C, v) if the two conjunctions of literals 1r and 1r' only 

differ in the variables under control of C, which is determined by v. For instance, when 

C = {1, 2} and v = controls (1 , PI) A controls (2, P2)A controls(3,P3), then (""'PIAP2AP3) == 
(PI A ""'P2 A P3) (mod C, v). 

We now first collect some facts about valuation descriptions, allocation descriptions, 
and proposition descriptions. Recall that, for any set (> of DCL-PC-formulas, 'V !pE~ is 

used as shorthand for V !pE~ <P A I\!pFF!P2E~ ....,( <PI A <P2). 

LEMMA 5.14. Given the set JP of valuation descriptions 1r, and the set A of allocation 
descriptions v, the following six items are satisfied: 

(1) I- 'V 1fElP 1r 
(2) I- 'V VEA v 
(3) 1-<P-VVEA(<pAv) 
(4) For all v E A and all1r E JP: I- v - (OC1r +-+ V1f''E.1f (mod C,v) 1r'). 
(5) I- v(i -p j)v' implies I- (v A 1r) +-+ (i -p j)(v' A 1r). 
(6) Let n be the number of agents, and k the number of propositional variables. 

Then there are not more than N(n, k) = 22nk provably non-equivalent proposi
tion descriptions. 

PROOF. (1) This follows from (TAUT) and the definition of JP: the 1r'S are 

mutually exclusive and cannot all be false. 

(2) Item (2) is easily seen to be equivalent to the axiom (Allocation): (Allocation) 

implies V vEA v, and, for every allocation description v E A, we have that v 
implies (Allocation). 

(3) Item (3) is immediate from item (2) and axiom (TAUT). In particular, using 

(TAUT) we derive from I- A V B that C - (C A A) V (C A B). 
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(4) Assume I- v. For the right-to-Ieft direction, also assume that I- 7r', for some 
valuation description 7r' with 7r' == 7r (mod C, v). This means that 7r' and 7r 
only differ in some variables PI,··· ,Pm for which controls(C,pj) is implied by 
v (for j = l...m). Note that 7r' is an objective formula. We can write 7r' 

as 1/Ji /\ f{Pi) (for i = l...m), where 1/Ji is as 7r' but with the literal f{Pi) left 
out. Apparently, we have 1/J1 /\ f{p1) /\ controls{C,P1). Since 1/J1 is objective, 
we can apply (Effectc) to conclude 0c(1/J1 /\ -,f(pt}). Using Lemma 5.10, 
we derive Oc{v /\ 1/J1 /\ -,f(pt}). We can now rewrite 1/J1 to 1/J2 /\ f{P2), and 
obtain 0c(1/J2 /\ fW2) /\ -,f(p1) /\ v). We use (Effectc) and Lemma 5.10 again 
and get OCOc(1/J2 /\ -,fW2) /\ -,f(Pl) /\ v). By (Compu), this is the same as 
0c(1/J2/\ -,f(P2) /\ -,i(pl) /\ v). We can repeat this process until we get Oc( 1/Jj /\ 
-,f(Pj) /\ ... /\ -,i(p2) /\ -,i(Pl) /\ v). But, by definition of 7r', this implies OC7r. 

We show the other direction from left to right by contrapositive: fix 7r and v 

and assume I- -, V 11"'=11" (mod C,v) 7r'. We have to show that -,OC7r. Let Q{7r, v) = 

{i(p) 11-7r -... f(p) and ¥ v -... controls(C,p)} be the set of the literals overvari
abIes that are not under control of the agents in C at the allocation v. Notice 

that all valuations 7r' == 7r (mod C,v) agree with 7r on the literals in Q(7r,v). 

We can use propositional reasoning to derive from ..., V 11"'=11" (mod C,v) 7r' that 

I- ..., Al(P)EQ(1I",v) i(P). Using (Tc) and (Kc), we get I- Vl(P)EQ(1I",v) Oc-,f(p). 
From I- v, it follows, for each literal f(p) E Q(7r,v), that I- -'controls(C,f(p»), 

which, by equation (5.1), equals Oc-,f(p) -... ""Oci(p). But then, we can derive 

V l(P)EQ(1I",v) -'Oci(p). Using (Kc), we obtain I- -'Oc Al(P)EQ(1I",v) f(p). Hence, 
I- -,OC7r. 

(5) First of all, since v(i -p j)v', we know that v -... controls(i,p). Hence, given 
v, we have that all formulas (i -p j)1/J and [i -p jJ1/J are equivalent by ax
iom (Func). In particular, we have (i -p j)T. Let us first show for literals f(q) 

that i(q) +-+ (i -p j)f(q). For negative literals ""q, -,q +-+ (i -p j)-,q equals 
q +-+ [i -p jJq, which follows from axiom (--Permanence(atomic». For pos
itive literals q, we use (Func) to obtain q +-+ [i -p jJq, which again holds by 
(--Permanence(atomic». Now, given v, we have q +-+ (i -p j)q and ...,q +-+ 

(i -p j)...,q. Then, for any valuation description 7r, we also have 7r +-+ (i -p j)7r. 
It remains to show that v +-+ (i -p j)v'. From left to right, note that we have 
controls(i,p) -... (i -p j)controls(j,p) by axiom (Delegation). For any other 
controls expression implied by v, this follows from (Persistence2(control) and 

(Func). Finally, consider the direction from right to left: (i -p j)v' -... v. 

We have to show that, first, (i -p j)controls(j,p) -... controls(i,p), and, sec

ond, that (i -p j)controls(h, q) -... controls(h, q), for each controls(h, q) (with 

q :/: p) implied by v'. The first part follows immediately from (Precondi
tion(delegation». For the second part, let h be an agent and q :/: P a variable 
such that v' implies controls(h, q). Suppose (i -p j)controls(h, q). By (Alloca

tion), we have that (i -p j) Ak~h ...,controls(k, q). But then the contrapositive 
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of (Persistence2(control)) yields /\kf.h -,controls(k,q). It follows by (Alloca
tion) that controls(h, q). 

(6) Item 6 follows from a straightforward counting argument of proposition de

scription formulas. The number of proposition descriptions depends on the 

cardinalities of the sets lP and Pt... Given the number n = IEI of agents, and 

the number k = IIlI of propositional variables, it is easy to see that there are 

2k valuation descriptions in lP, and nk allocation descriptions in A (i.e., the 

number of ways we can distribute k variables over n agents). Observe that 
any proposition description formula is obtained by assigning a set of valuation 
descriptions 1f' to each allocation description v. Hence, there are 22kxnk propo

sition descriptions. Since 2210 
xn

k 
::; 22nk

, we obtain with N (n, k) = 22nk an 

upper bound for the number of different proposition description formulas. 

o 
We now present the main result of this section. We first formulate it, reflect briefly 

on it, and then give its proof. 

THEOREM 5.15. For every DGL-PG-formula 'P, there are sets lPv('P) ~ lP of valua
tion descriptions, one for each v E A, such that 

I- 'P ~ V (VlPv('P) AV). 
vEA 

Thus, according to Theorem 5.15, we can find for each DeL-Pe-formula an equiva

lent formula without dynamic operators such as (i -p j). To show that our derivation 

system is good enough to establish that, is the main task of its proof. But let us first 

convince ourselves semantically that such a normal form makes sense. Remember that 

every Kripke structure VR for DeL-PC comes with its own allocation~. A formula 
(i -p j)1/1 is true at VR, e, if 1/1 is true in a structure that is the same as VR, but in which 
control over p is transferred from i to j. But this means that some formula 1/1' must 

already be true at VR, e, where i takes the role of j for as far as p is concerned. For 

instance, (i -p j)(q A OJ(p A r)) is true at VR, e, if q A Oi(P A r) A controls(i,p) is true 

under the current allocation~. This formula has no reference to other ''layers'' anymore. 
Moreover, the resulting formula q A Oi(p A r) A controls(i,p) is equivalent to 

(q A ((p A r) V (-,p A r)) A controls(i,p) A -, controls (i, r)) 

V 

(q A ((p A r) V (-,p A r) V (p A -,r) V (-,p A -,r)) A controls{i,p) A controls{i, r)) 

PROOF. The proof is by induction on the norm 11 . 11 which counts the number of 

operators in an unfolded form of a formula. Formally, the norm 11 . 11 is defined on 

DeL-Pe-formulas as follows: 

IITII = IIpll 
11-,1/111 

111/11 V 1/1211 

0, for any p E Il; 
1 + 111/111; 

1 + 111/1111 + 111/1211; 
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I I Oc'l/l 11 
11 [i -p jJ'I/I1I 

11[<p?J'I/I1I 
11 [61 U 62J'I/III 

11[61; 62J'I/III 
IIWJ'I/III 

1 + 11'1/111, for any C £;;; I::; 
1 + 11'1/111; 
1 + II-,<p V '1/111; 
1 + 11[61J'I/I V [62J'I/I 11; 
1 + I 1[61][62J '1/1 11 ; 

1 + 11 A=0 .. N[6Ji 'l/lll; 
where N = N{n, k) is the number defined in Lemma 5.14, item (6). 

Let <p be a DCL-PC-formula. The induction base for the proof of Theorem 5.15 has 
two cases: 

• <p = T. We take IPv{T) = lP, for every v E A. By item (I) of Lemma 5.14, 

we have that V IP is an objective tautology. Hence, V VEA (V IP v (T) /\ v) is 
equivalent to V vEA v, which in turn is equivalent to T by (2) of Lemma 5.14. 

• <p = p, for pEn. We take IPv{p) = {71' E IP If- 71' -+ p}, for every v E A. Clearly, 

p is equivalent to V IPv (p) , and, using (2) of Lemma 5.14, to V vEA (V IPv{p)/\v). 

Consider the induction step. 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

• <p = ...,'1/1. We set IPv{-''I/I) = IP \ IPv('I/I), for every v E A. This works, because of 
the following: 

""'1/1 +-+ ..., V (VIPv('I/I) /\v) 
vEA 

+-+ A ((..., VPv('I/I)) V ...,v) 
vEA 

+-+ V ((-, V Pv{'I/I)) /\ v) 
vEA 

+-+ V (V P v (""'1/1) /\ v) 
vEA 

All steps are purely propositional, except for the equivalence between (5.5) and 

(5.6) which we explain now. Let us abbreviate (5.5) to Vi$.k(Ai V -,Bi), then 

(5.6) is Vi$.k{Ai /\ Bi). Note that by Lemma 5.14, item (2), we derive Vi$.k Bi. 

Call the latter X. By propositional reasoning again, we have that {5.5)/\X-+ 
(5.6). For the other direction, note that Lemma 5.14, item (2) even guarantees 

~i$.kBi' Call this Y. Now again we argue propositionally: by Y, at most one 
Bi can be true. Say it is Bj: all the others are false. Then, by (5.6), the only 

conjunction that is true is (Aj /\Bj ). But then, the disjunction Vi$.k(Ai V-,Bi) 
must hold as well: for i = j this is because of Aj , for all the other indices it 

is because of Bj. Notice that, strictly speaking, we should not talk about true 

and false formulas here, only about derivable equivalences, but we know that 

for the propositional reasoning part, we may freely vary between derivability 

and validity. 



(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 
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• cP = 'l/Jl V'l/J2. We set JPv('l/Jl V'l/J2) = JPv('l/Jl) UJPv('l/J2), for every v E A. For the 
following equivalences, we only need propositional reasoning: 

vEA vEA 

VEA 

vEA 

• cP = Oc'I/J· For every v E A, we set JPv(Oc'I/J) = 

{7r E JP 17r == 7r' (mod C,v) for some 7r' E JPv('I/J)} 

We can derive the following equivalences: 

Oc'I/J f-t Oc V (V JPv('I/J) A v) 
vEA 

f-t V Oc(VJPv('I/J) Av) 
vEA 

f-t V [Oc ( V JP v ('I/J)) Av] 
vEA 

f-t V (V JP v ( Oc'I/J) Av) 
vEA 

The equivalence in (5.11) holds by the induction hypothesis. Using (Ka), this 

is equivalent to (5.12) (for any diamond we have Oc(cpV'I/J) f-t (OcCPVOc'I/J)). 
The equivalence of the latter and (5.13) is by Lemma 5.10. 

It remains to show the equivalence of (5.13) and (5.14). We have that 

OcVJPv('I/J) = OCV7TEIJ>v 7r. By (Kc) and (Compu), this formula is equivalent 
to V7TEIJ>v OC7r· Using item (4) in Lemma 5.14, we see that this is equivalent 

to V7TEIJ>v V7T'I7T'=7T (mod C,v) 7r'. But this equals VJPv(Oc'I/J) by definition of 
JPv(Oc'I/J). 

• cP = [i -p jj'I/J. We define JPv([i -p jj'I/J) as follows: for every v E A, 

if v ~ controls(i,p) 

where v( i -p j)v' 

otherwise 

To see that this yields a formula of the right form that is equivalent to [i -p jj'I/J, 
let us first partition A in A+(i,p) = {v E A I I- v ~ controls(i,p)} and 

A-(i,p) = {v E A I I- v ~ -,controls(i,p)}. Now consider the following 
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derivable equivalences: 

(5.15) [i-pjJ'I/J f-+ [i-pjJV(VPv,('I/J)AV') 

(5.16) 

(5.17) 

(5.18) 

v'EA 

f-+ -,controls( i, p) 

V(controls(i,p) A (i -pj) V (VPvo('I/J) Avo)) 
voEA 

f-+ V (V P Av) V 
vEA-(i,p) 

V (v /\ (i -p j) V (VPvo('I/J) A vo)) 
vEA+(i,p) voEA 

vEA 

The equation in (5.15) holds by the induction hypothesis. It is equivalent 

to (5.16) by propositional reasoning, and changing from [i -p j] to (i -p j) 
is allowed by (Func). The equivalence of (5.16) and (5.17) follows from the 

definition of A + (i, p) and A - (i, p) and the fact that V P f-+ T. In order to prove 

the equivalence between (5.17) and (5.18), it is sufficient to show that, for any 

fixed v E A+(i,p), the formula v A (i -p j) V voEA(VPvO('I/J) A vo) is equivalent 

to vA V Pv,('I/J), where v(i -p j)v'. But this follows from Lemma 5.14, item (5), 

as follows. First of all, we can write v A (i -p j) VVOEA(VPvo('I/J) A vo) as 

v A V voEA (i "Mp j) (V P Vo ('I/J) A vo). By the mentioned lemma, we know exactly 

which Vo we need: it is v' for which v(i -p j)v' giving v A (i "Mp j)(V Pv,('I/J) A 

v'). We can rewrite this into v A (i "Mp j) V{1r A v' 11r E Pv,('I/J)}, and then 

push the diamond (i -p j) inside the disjunction to get vA V {(i "Mp j)(1r Av') I 
1r E Pv,('I/J)}. But then Lemma 5.14, item (5) yields v A VPv,('I/J). The other 

direction is similar: if v A VPv,('I/J) and v(i "Mp j)v', then, by Lemma 5.14, 

item (5), we get v A (i -p j)(VPv'('I/J) A v'), from which the desired result 

follows directly. 

• <p = ['I/J'?J'I/J. By axiom (TesteS), ['I/J'?J'I/J is equivalent to -,'I/J' V 'I/J, which has an 

equivalent formula of the right form by the induction hypothesis. 

• <P = [61; 62J'I/J. By axiom (CompeS), [61; 62J'I/J is equivalent to [61][62J'I/J, which has 

an equivalent formula of the right form by the induction hypothesis. 

• <P = [61 U 62J'I/J. By axiom (Union.s), [61 U ~J'I/J is equivalent to [61J'I/J V [62J'I/J, 
which has an equivalent formula of the right form by the induction hypothesis. 

• <P = WJ'I/J· Recall the number N = N(n, k) as given in Lemma 5.14, item (6). 

Using axiom (MixeS) and (KeS), we know that [6"'J'I/J is equivalent to 'I/J A [6J W'J'I/J· 
Doing this N times, we obtain 
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By the induction hypothesis, we know that all except the last conjunct 

have an equivalent normal form. But since there are only N different such 
forms, the conjunct [8jN'ljJ must be equivalent to one of the earlier conjuncts 

[8ji'ljJ (i < N). Now define A = Ai=0 .. N[8ji'ljJ. We claim that 

A +-t Wj'ljJ. 

Then, this case follows since A has an equivalent formula of the right form by 
the induction hypothesis. 

The right-to-left direction of (5.19) is obvious since A "is just the first 
part" of the "unraveling" 'ljJ 1\ [8J'ljJ 1\ [8][8j'ljJ ... of [8*j'ljJ using axioms (Mixo) 

and (Ko). To show the other direction from left to right, it is sufficient to 

derive A ---+ [8*]A, because, by the fact that 'ljJ is just one of the conjuncts in 

A, this immediately gives A ---+ [8*]'ljJ. To show the derivability of A ---+ [8*]A, 
we will use (lndo). First of all, we show A ---+ [8]A. To see this, note that 
[8jA +-t [8][8]°'ljJ 1\ [8][8j1'ljJ 1\ ... 1\ [d][djN'ljJ. By the induction hypothesis, each 

conjunct [dji'ljJ (i ::::; N) has a normal form, say, Bi . Then we obtain from A a 

sequence Bo, Bb.' ., BN of N plus 1 formulas in normal form. But since there 

are at most N provably non-equivalent formulas by Lemma 5.14, item (6), we 

know that there is a Bj that equals a previous Ba with a < j ::::; N. Let 

Bj be the first such repetition in this sequence. Notice that we have now 

[8ji'ljJ == Bj = Ba == [dja'ljJ, and thus [d]k[dji'ljJ == [d]k[dja'ljJ, for any k ~ O. But 
then, it follows that the last conjunct [d][d]N'ljJ in [d]A is equivalent to [d]k[d]a'ljJ 

(with k = N - j), which already appears in A. Now that we have derived 

A ---+ [djA, we apply (Necessitation) for [8*], and obtain I- [8*](A ---+ [d]A). 
Finally, by applying (lndo), we get A ---+ [8*jA. 

o 

We know from Lemma 5.14 that there are only finitely many different normal forms: 
since every formula has such a normal form, there can be only finitely many non
equivalent formulas. We also know from the proof of Theorem 5.15 above that, for 
[8*] 'ljJ , we only have to consider a finite number of conjuncts [d]i'ljJ in its unraveling. 

COROLLARY 5.16. There are only finitely many pairwise non-equivalent formulas of 

DCL-PC. In fact, given the number n of agents, and k of propositional variables, we 

have: 

(1) I- l\i",j~M('ljJi +.1+ 'ljJj) ---+ Vi~M 'ljJi, and 

(2) I- [d*J'ljJ +-t A~N[d]i'ljJ, 

where M = 2nk and N = 22nlc (as defined in Lemma 5.14, item (6)). 

Completeness of a derivation system with inference relation I- with respect to a 

semantics means that every semantically valid formula is also provable: F cP ::;. I- cp. 

In order to prove completeness, often the contrapositive of this is shown: 1/ cp ::;. ~ cp. 
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That is, every consistent formula -.cp has a model. A popular technique in modal logic is 
to construct a dedicated model (the canonical model, cf. [331) for any consistent formula 
1/J. That canonical model is a ''bridge'' between syntax and semantics: it consists of all 
maximal consistent sets <P (as worlds), and is constructed in such a way that membership 
of a formula in <P and truth at the world corresponding to <P coincide. 

We can use Theorem 5.15 directly to generate a canonical model for a consistent 
formula 1/J, as follows. First, determine its equivalent VVEA(VPv 1\ v). Pick any al
location description v for which P v is not empty. Such a v exists by the fact that 1/J 
is consistent. But now we have all the information needed to satisfy 1/J: let the allo
cation ~ be such that is corresponds with v, i.e., such that v = ve. Moreover, take 
any 7r E Pv , and take the valuation e corresponding with 7r, i.e., for which 7re = 7r. 

It is immediate that we have, when we define rot as having this allocation function ~, 

that rot, e I=K V vEA (V P v 1\ v). Note that rot looks underspecified: we did not define 
what the accessibility relations look like. But indeed, our normal form theorem (Le., 
Theorem 5.15) tells us that any reference to the programs for which these relations are 

the interpretation can be eliminated. Also note that as we constructed rot, although 

V VEA (V P v /\ v) is satisfied at e, the equivalent formula 1/J is strictly speaking not sat

isfied, since we have not specified what the models look like in ''the other horizontal 
layers". 

Alternatively, we can, given a set ~ of agents and a set IT of variables, conceive 
of the collection K:(~, IT) of all Kripke models rot = (8, ~E~'~) over ~ and IT as the 
context to show completeness. Take an arbitrary consistent formula 1/J. Build a maximal 
consistent set r "around it". This r contains several (i -p j)cp and Occp formulas, but 
it also contains one of the disjuncts of its normal form, say V Pv 1\ v. One property of a 
maximal consistent set is that it then must contain, for exactly one 7r E P v, the formula 
7r I\v. Now, it is easy to see that within JC(~, IT), the Kripke structure rot with allocation 

~ such that v = ve and with valuation (J = (J1r satisfies the normal form V vEA (V P v 1\ v), 
but also 1/J itself, due to the soundness of the proof system, and hence of the way we 
obtained the normal form. As a result, we can directly interpret all subformulas of the 
form (i -p j}cp and OcCP in the proper way, in rot, (J. We conclude: 

THEOREM 5.17. The axiomatic system DCL-PC is sound and complete with respect 

to both the Kripke and the direct semantics. 

5.3. Expressive Power and Complexity 

We know from the results of van der Hoek and Wooldridge [249] that the model 
checking and satisfiability problems for CL-PC are PS PAcE-complete, and since DCL-PC 
subsumes CL-PC, this implies a PSPACE-hardness lower bound on the corresponding 
problems for DCL-PC. The obvious question is then whether the dynamic constructs 
introduced in DCL-PC lead to a more complex decision problem - and in particular, 
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whether DCL-PC satisfiability matches the ExpTIME-completeness of PDL satisfiabil

ity [107, pp.216-220). In this section, we show that the complexity of the model check

ing and satisfiability problems are no worse than for CL-PC: they are both PSPACE

complete. (Notice that when we consider the model checking problem in this section, 

we consider the problem with respect to direct models, not Kripke models. Of course, 

with respect to satisfiability, it makes no difference: a formula is satisfiable with respect 

to direct models iff it is satisfiable wrt. Kripke models.) 

1. function program-eval(8, M = (E, IT,~, 0), d) returns 'fail' or a structure over E, IT 
2. if 8 = rp? then 
3. return M if DCL-PC-eval(rp,M) 
4. or 'fail' otherwise 
5. elsif 8 = (i OV-+p j) then 
6. return (E, IT, ~', 0) if pE ITi 
7. where e' = ~ if i = j 
8. otherwise ~ = (IT}, ... ,ITn) and ~' = (ITi, ... , IT~) 
9. with ITi = ITi \ {p}, 
10. ITj = ITj U {p}, and 
11. IT~ = ITl for all f. ~ n, f. 1= i,j 
12. or 'fail' otherwise 
13. elsif 8 = (8} j 82) then 
14. return program-eval(lh,program-eval(8}, M, d), d) 
15. elsif 8 = (8} U 82) then non-deterministically choose to either 
16. return program-eval(81 ,M,d) 
17. or program-eval(82 , M, d) 
18. elsif 8 = 8'* then 
19. return 'fail' if d = 0 
20. or otherwise (if d > 0) non-deterministically choose to either 
21. return M 
22. or program-eval«8'j 8'*), M, d - 1) 
23. end-function 

FIGURE 5.2. An algorithm for deciding (M,M') E R6. 

Before proving PS PAcE-completeness for DCL-PC model checking, consider some 

auxiliary notions first. A program sequence is a delegation program that is composed 

of atomic delegation programs, tests, and sequential composition only. A program 8 

admits a program sequence (3 if 6 can be unfolded into (3 by recursively applying the 

following rules: For any atomic delegation program (i -p j), test t.p?, and delegation 

programs 61 (i ~ 0): . 

(i -p j) - (i -p j); 
t.p? - t.p? ., 

61; 82 - 61;62; 
61 U62 - 61 or 82; 

6* - 61; 82; ... ; 6n , for some n ~ 0, 

where 61 = 6, for all i ::; n. 
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The following two lemmas establish that membership in the accessibility relation 
R6 for a delegation program 8 can be decided in polynomial space. 

LEMMA 5.18. For all delegation programs 8' and all (direct) models M and M', 

(M, M') E Ro, implies that 8' admits a program sequence /3 of length at most exponential 

in the length of 8' such that (M, M') E R{3. In fact, the length of /3 can be limited to 
216'1 3

• 

PROOF. Let 8', M and M' be as in the lemma. The proof is by induction on 
the structure of 8'. The only interesting case is where 8' = 8*; the other cases are 

straightforward. Suppose (M, M') E R6-· Since Ro- = (R6)*, there is a sequence 
Mo, ... ,Mn, n > 0, of models such that Mo = M, Mn = M' and (Mi- 1,Mi) E R6, 
for each i with 1 :S i :S n. By the transitivity of R6-, we can assume that the sequence 

Mo, ... ,Mn is such that Mi =1= Mj, for all i,j with 1 :S i < j :S n, i.e., the sequence 
of models contains no loops. The induction hypothesis yields that 8 admits program 

sequences /31,"" /3n such that /3i is oflength at most 21613 and (M i - 1 , M i) E R{3; for 
each i with 1 :S i :S n. But then /3 = /31; /32; ... ; /3n is a program sequence admitted 

by 8* such that (M, M') E R6*. In the following, it is shown that /3 has the required 

length. Note that all models reachable from M = (E, n, e, 0) via R6. only differ in the 
allocation e of propositional variables in n to the agents in E. More precisely, they 
differ in the allocation of propositional variables to agents that occur in 8. Thus there 
are at most F such reachable models, where l is the number of propositional variables 
occurring in 8 and m the number of agents occurring in 8. Notice that n does not exceed 
F; otherwise the sequence Mo, ... ,Mn contains loops contradicting the assumption. 
Together with the fact that F :S 181'61 :S 21612 , an upper bound for the length of /3 can 
be given as follows: 

1/31 = Ifh;/32;'" ;/3nl :S n x sup{l/3il : 1 :S i:S n} + n 
:S 21612 x 21613 + 21612 

= 21612+1613 + 21612 

:S 2(161+1)3 

:S 216"13
• 

o 

LEMMA 5.19. For all programs 8 and all (direct) models M and M', the membership 

problem (M, M') E R6 can be decided in PSPACE. 

PROOF. Let 8 be a program and let M, M' be two (direct) models. Consider 
the following algorithm that decides (M,M') E R6 by using the function program

eval(· .. ) in Figure 5.2: 

1. Set d = 2161
3
. 

2. If program-eval(8,M,d) = M/, then return '(M,M') E R6', and 'No' oth

erwise. 
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To see that this algorithm is correct, it is shown that program-eval(6, M, d) = M' if! 

(M, M') E R8. For the direction from left to right, it is readily checked that program

eval (6, M, d) = M' implies the existence of a program sequence {3 admitted by 6 of 

length at most 161 x d such that (M, M') E R{3. Clearly, R{3 ~ R8 and thus (M, M') E 

R8. Consider the direction from right to left. From (M, M') E R8, it follows by 

Lemma 5.18 that there is a program sequence {3 admitted by 6 of length at most 21813 

such that (M, M') E R{3. Step 1 ensures that the value of d is such that 21813 ::; 161 x d. 

Then it is obvious by construction of the algorithm that the non-deterministic choices 

in the lines 15 and 20 of Figure 5.2 yield that program-eval(6,M,d) = M'. Notice 

that the algorithm terminates since the recursive calls in the lines 14, 16 and 17 are 

applied on strict subprograms only and the recursive call in Line 22 is followed by the 

one in Line 14 while the parameter d limits the recursion depth. 

The above algorithm can be run in polynomial space. To see that, notice that the 

function DCL-PC-eval(··· ), which is called in Line 3, can be computed in polynomial 

space and that the parameter d is encoded in binary. Moreover, the stack of an algorithm 

computing the function program-eval(·.· ) can be limited to a size polynomial in the 

length of 6. Note that the stack only needs to store the currently evaluated program and 

the programs at the backtracking points, which are introduced at the nested function 

call in Line 14. But since this nested function call is applied on strict subprograms, there 

are only linearly many backtracking points needed at a time. Although the algorithm is 

non-deterministic, it follows from the well-known fact NPSPACE equals PSPACE 1217J 

that it runs in PSPACE. 0 

REMARK 5.20. The fact that NPSPACE equals PSPACE 1217J tells us that the non

deterministic algorithm from Lemma 5.19 can be turned into a deterministic one. Such 
transformations are well-known. -I 

Using the previous two lemmas, we can now prove the following. 

THEOREM 5.21. The model checking problem DCL-PC (wrt. direct structures) is 

PSPAcE-complete. 

PROOF. Given that DCL-PC subsumes the PSPAcE-hard logic CL-PC, we only need 
to prove the upper bound. Consider the function DCL-PC-eval(···) in Figure 5.3. 

Soundness is obvious by construction. First note that the algorithm is strictly analytic: 

recursion is always on a sub-formula of the input. That the algorithm is in PSPACE 

follows from the fact that the loops at lines 10-12 and 15-18 involve, in the first case 

simply binary counting with the variables ITe, and in the second simply looping through 

all direct models over ~ and IT: we do not need to store these models once they are 

checked, and so this can be done in polynomial space. Finally, Lemma 5.19 yields that 

the check (M, M') E R8 on Line 16 can be done in polynomial space. 0 

Now, we make use of the following result (the proof of which is identical to the 

equivalent result proved in 12491). 
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1. function DCL-PC-eval(cp, M = (Il, E, eo, B)) returns tt or ff 
2. if cp E Il then 
3. return B(cp) 
4. elsif cp = -,'1/; then 
5. return not DCL-PC-eval('I/;, M) 
6. elsif cp = '1/;1 V '1/;2 then 
7. return DCL-PC-eval('I/;1, (Il,E,eo,B)) 
8. or DCL-PC-eval('I/;2,{Il,E,eo,B)) 
9. elsif cp = Oc'l/; then 
10. for each C-valuation Bc 
11. if DCL-PC-eval('I/;, (Il, E, eo, B) EB Bc) then return tt 
12. end-for 
13. return ff 
14. elsif cp = {~)'I/; then 
15. for each structure M' over E. Il 
16. if (M, M') E R6 then 
17. if DCL-PC-eval(cp,M') then return tt 
18. end-for 
19. return ff 
20. end-function 

FIGURE 5.3. A model checking algorithm for DCL-PC. 

LEMMA 5.22. If a DGL-PG-formula cp is satisfiable, then it is satisfied in a (direct) 

structure M such that size(M) = lIT"" I + lE"" I + 1. 

We can now prove the following. 

THEOREM 5.23. The satisfiability problem for DGL-PG is PSPACE-complete. 

PROOF. Given a formula cp, loop through each direct structure M containing IT"" 
and E"" such that size(M) = IIT""I + IE""I + 1, and if M I=d c.p then return 'Yes'. If we 
have considered all such models, return 'No'. By Theorem 5.21, we can check whether 

M I=d c.p in polynomial space. 0 

Notice that the PSPACE complexity for checking satisfiability depends upon the fact 

that models for DCL-PC are concise, and that hence we can loop through them all in 

polynomial space (we do not need to keep track of the models after they have been 

considered) . 

REMARK 5.24. In Section 5.1.4, we gave interpreted formulas of ATL under the se

mantics of DCL-PC. Notice that, by interpreting ATL-formulas in models for DCL-PC, 

we can reduce the satisfiability problem for ATL from ExpTIME-complete [265J to 

PS PAcE-complete. Of course, this is not a general result, in the sense that we are 

assuming a specific interpretation for ability in terms of propositional variables dis

tributed to agents in the system. But, for this special case, it seems ATL has a simpler 

satisfiability problem. -j 
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5.4. Characterising Control 

One of the main concerns in the original study of CL-PC 1249] was to investigate 

the logical characterisation of control: the extent to which we could characterise, in the 
logic, what states of affairs agents could reliably control. Control was distinguished from 

ability in the sense that, for example, no agent could be said to control a tautology, even 
if one might be prepared to concede that an agent would have the ability to bring about 
a tautology. The starting point for the study of control in [249] was the controls(i,p) 
construct: as we have already seen, such an expression will be true if, and only if, the 
variable p is under the control of agent i. This led to an analysis and characterisation of 
the types of formulas that an agent could be said to control. The type of control studied 

in 1249] derives from the ability of agents to choose values for the propositional variables 

under their control. Let us refer to this type of control, where an agent is directly able 

to exert some influence over some state of affairs by assigning values to its variables, as 

first-order control. In this section, we undertake a similar study of control in the richer 
setting of DCL-PC. Here, however, we have a second type of control, which derives 

from the ability to transfer control of variables to other agents. Thus, for example, if 

i controls p, she also "has the power" to ensure for instance controls(j,p), where j is 

an agent different from i. This control is expressed through the delegation modality: 

(i -p j) controls(j, p). We refer to this type of control as second-order control. We will 

see that these types of "control" are indeed rather orthogonal. For instance, (i -p j)Ojl{) 
(i can give pto j, who then can achieve I{)) and Oi,jl{) (i and j can cooperate, to achieve 

I{)) are logically incomparable. For example, taking I{) = (j -p i) T gives 

Fd controls{i,p) --+ {(i -pj)I{)"--.Oi.jl{)) 

while for I{) = (i -p j)T and assuming i i= j, we have 

Fd controls(i,p) --+ (--.(i -p j)I{)" Oi,jl{)). 

However, if the goal is an objective formula, we can relate atomic control and dele
gation, as we will shortly see. 

To begin our study, consider the delegation program 

(5.20) give i := U (controls{i,p)?j U i -p j). 
pEn jEE 

Then (givei)I{) would express that i has a way to give one of her propositional 

variables to one of the agents (possibly herself) in such a way that consequently I{) 

holds. Thus, (givei)'P means that i can distribute her variables among the agents 

in such a way that afterwards I{) holds. Hence, when reasoning about i's power, the 

strongest that she can achieve is any I{) for which Oil{) V (givei)'P, expressing that i can 

achieve I{) by either choosing an appropriate value for her variables, or by distributing 

her variables over E in an appropriate way. Note that both Oi'P and (givei)I{) imply 
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(givet)OiCP, and hence any cP for which (givet)OiCP holds can be seen as what i can 
achieve on her own. We will come back to the program givei below. 

The program give can be generalised to incorporate coalitions that can give away 
variables, and those that can receive: let 

(5.21) giveC ..... D := U U (controls(i,p)?; U (i-pj)). 
iECpEfl iEDu{i} 

This program giveC ..... D lets an arbitrary agent i from the coalition C either give 
any of her variables p to an arbitrary member of the coalition D, or do nothing (Le., 
give them to herself). Now, for objective formulas cP, we have the following, where i is 
a dedicated agent from C: 

OCCP +-+ (giveC ..... {i})Oicp. 

In words: the agents in the coalition C can choose values for their variables such that 
cP, if and only if they have a way to give all their variables to the dedicated agent i, who 

then can achieve cp. Note that we are in general not able to eliminate all occurrences 
of O's, since this is the only way to express first-order control, Le., to reason about a 

"different valuation". 

For some examples in the language without delegation, we refer to [249], especially 

to the example 'Bach or Stravinsky' (Example 2.4 in [2491). Before looking at two 

examples of control in a dynamic setting, note that Or: allows the following equation, 
for any objective formula cP: 

(5.22) cP is consistent <=> pd O'£cP 

This equation states that the grand coalition E can achieve any satisfiable objective 
formula and vice versa. 

EXAMPLE 5.25. (FAIRNESS). Suppose we have n agents: 1, ... , n. Each controls a 
flag ri (i = l...n) to indicate that they desire control over a particular resource, modelled 
with a variable p. It is not that they want p to be true or false every now and then, 
(which could be taken care of by a central agent), but rather, they want to control p 
eventually. Let +n denote addition modulo n, and, similarly, -n subtraction modulo 
n. Let Skip denote T?, Le., a test on a tautology. Consider the following program: 

if ...,controls(i,p) then 
if ri+n 1 then 

skip else 
(i -p i +n 1) else 

if Ti+n(n-l) then (i -p i +n (n - 1)) else skip 

The program grant_req(i) makes agent i pass on the resource p whenever she has it 

and somebody else needs it, where the need is checked in the order starting with the 
agent with the next +n index. Note that the "use" of this variable p, Le., making it true 
or false, is not encoded in our program constructs. Now consider the program: 

pass_on(i,j) := grant_req(i)j ... j grant_req(j -n 1). 
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The program pass_on(i,j) will pass control over the variable P to agent j, provided 
that initially r j is set and one of the agents in the sequence i, i +n 1, ... ,j -n 1 owns it. 
This can be expressed as follows: 

rj 1\ controls({i,i +n 1, ... ,j -n l},p) -t [pass_on(i,j)]controls(j,p). 

Now we have: 
ri -t ((pass_on(i +n 1,i))controls(i,p) 

1\ [pass _ on(i +n 1, i)] controls(i,p)). 

That is, if agent i flags a request ri for source p, then, after the program pass _ on(i +n 
1, i) has been executed, i will be under control of p. -l 

Notice that the previous example ''freely'' passes on a variable along chains of agents, 

thereby taking for granted that they can control that variable on the fly, and making 

it true or false at will. In the following example, control over a variable is not only 

important, but also the truth of some side conditions involving them. 

EXAMPLE 5.26. (CLIENT-SERVER-SCENARIO). We have a scenario with three 

agents: two clients Cl and C2, and a server s. The server always has control over 

one of the propositional variables PI and P2, in particular s wants to guarantee that 

those variables are never true simultaneously. At the same time, Cl and C2 want to 

ensure that at least one of the variables Pi (i = 1,2) is true, where variable Pi belongs 

to client Ci. We can describe the invariant of the system with the formula Inv: 

Inv:= V controls(s,Pi) 1\ V controls(Ci,pi) 
i=l,2 i=l,2 

Consider the following delegation program 13: 

13:= ((controls(s,PI)?; s -Pl Cl ; C2 -P2 s) 
U(controls(s,P2)? ; s -P2 C2 ; Cl -Pl s))*. 

This says that an arbitrary number of times one variable Pi is passed from the server 
to the client Ci, and another variable Pj (i =I j) from the client Cj to the server. 

Using Inv and 13, we can describe the whole scenario as follows: 

Inv -t [f3]Inv 

Inv -t [f3](Os""(PII\P2) 1\ O{CloC2}(PI V P2)) 

In [2481, van der Hoek and Wooldridge gave a general characterisation of the types 

of formulas that agents and coalitions could control, and our aim is now to undertake 

the same study for DCL-PC. It will appear that this can be done on a local and a 

global level, but we will also see that the notion of control that we inherited from [2491, 
has a natural generalisation in our context. 

The next corollary establishes a result concerning the characterisation of control. If 
follows easily from the truth definition of the Kripke semantics defined in Section 5.1.3, 

and from Theorem 5.15 and Theorem 5.17. 
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COROLLARY 5.27. Let rot be a Kripke structure, C any coalition C ~ ~ with C '::f: ~, 
and let r.p be ranging over DCL-PC formulas. Then it follows that: 

(1) For no r.p, do we have I=K controls(C, r.p); and 

(2) I=K controls(~, r.p) iff the formula V vE"f(V TIv(r.p) Av), to which r.p is equivalent 
according to Theorem 5.15, is such that for no allocation description v, P v ( r.p) = 

P or Pv(r.p) = 0. 

PROOF. (1) In order for controls(C, r.p) to be valid under the Kripke semantics, 
it has to be true at all worlds in all Kripke structures. Take any Kripke 

structure rot = (9, RiEE, e) for which the allocation e = (TI1' TI2, ... ,TIn) is 
such that TIj = 0, for all j E C. We then have rot,O I=K Ocr.p iff for some world 

0' E e with 0' = 0 (mod TIc), it holds that rot,O' I=K r.p. But, since TIc = 0, 
the only such 0' is 0 itself, so that we cannot have rot,O I=K Ocr.p A Oc-,r.p. 
Hence, rot,O ~K controls(C,r.p). 

(2) First we prove the left-to-right direction by contraposition. Let r.p be equivalent 

to V vET (V TIv (r.p) A v), which we have by Theorem 5.15. Suppose, for some al

location description v, that IPv(r.p) = IP. This means, for every Kripke structure 

rot = (9, ~EE, ev) and for every valuation 0, that rot,O I=K r.p. Consequently, 

rot,O I=K OEr.p. However, the agents in E can only change 0, but not the current 

allocation ev. Since IPv(r.p) = lP, ~ cannot choose a valuation that falsifies r.p, 
i.e., rot,O I=K -,OE-'r.p. Similarly, if Pv(r.p) = 0, we have rot,O I=K Oc-.r.p, for 
each O. But, given v, ~ cannot choose a valuation satisfying r.p on the current 
allocation described by v, i.e., rot,O I=K -.OEr.p. Hence, in either case we have 
~K controls{~, r.p). 
Consider the other direction from right to left. Suppose r.p is equivalent to 

VVE"f(VTIV{r.p) A v) while, for no v, the set IPv(r.p) is either IP or 0. Let 

rot = (9, ~EE, e) be a Kripke structure. Remember that v{ is the alloca

tion description corresponding to the allocation e. By the fact that IPV( '::f: 0, 
there is a valuation description 7r E IPV( such that the corresponding valuation 

01r satisfies r.p at (rot, 01r)' But then, ~ can choose 07r in order to satisfy r.p, and 
thus we have rot,O I=K OEr.p, for any O. Similarly, we have rot,O I=K OE-'r.p 
which follows by the fact that lP'V( i= P. Hence, we have I=K controls(~, r.p). 

o 
One may ask for a more local characterisation of what a coalition controls: for which 

Kripke models rot and valuations 0 do we have rot, 0 I=K controls(C, r.p)? For this notion 

of control, the answer can be immediately read off from Theorem 5.28, to be given 

shortly. That theorem is about a more general notion: to recover a characterisation 

result for the current notion controls{i, r.p), we would only need the items (lb) and (2b) 

of Theorem 5.28. 
The notion of control discussed so far is that taken from [249], where we here have 

lifted the characterisation results to our richer language. However, as is clear from our 
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discussion earlier in this section, a more appropriate notion of control of an individual 

i in our language might be obtained using the program gi vei', where gi vei is defined 

in (5.20). Note that OiCP -+ (give;)OiCP is valid, and hence that (give;) seems a more 
general way to reason about i's control: it is about what i can achieve both by toggling 

its propositional variables and delegating some of them. One can easily discuss this at 

the coalitional level, by lifting Definition (5.20) to the case of coalitions C as it was 

suggested in (5.21) with giveC---+D. However, we stick to the individual case here for 

simplicity. Let us therefore define 

(5.23) CONTROLS(i, cp) := ((givei'}OiCP 1\ (give;}Oi-'cp) 

This definition says that agent i controls a formula cP iff there is a way to distribute 

her propositional variables over the agents such that after i makes appropriate choices 

for her remaining variables, cP holds, but there is also a way of distributing her variables 

that enables her to enforce -'cp. From the validity of OiCP -+ (givei'}OiCP, we infer that 
controls(i, cp) implies CONTROLS{i, cp). Notice that the implication the other way 

around is not valid since controls{i,·) can never be true for control of other agents over 

variables. For example, CONTROLS(i, controls(j,p)) holds iff p E ITi . From this, we 

know that controls(i,p) -+ CONTROLS(i, controls(j,p)) is a theorem, which basically 

says that when having control over a variable, you can freely choose to keep it or pass 

it on. However, controls(i,p) -+ controls(i, controls(j,p)) is not valid, we even have 

controls{i,p) -+ -,controls{i, controls(j,p)): once agent i owns p, she cannot choose to 

keep p or to pass it on by only toggling her propositional variables. 

Before we state our characterisation result, we introduce some more notation. For 

any two Kripke models rot = (8, ~EE,~) and rot' = (8, ~EE, ~') in K(E, IT) and for 
any agent i, we say that rot ;:::i rot' if the allocations ~ = (ITl, ... , ITi , ... , ITn) and 

e = (ITi,···, IT~, ... ,IT~) are such that IT~ ~ ITi and, for all j =I i, ITj ~ ITj. That is, 
rot' is obtained from rot by executing givei'. In such a case, we also say ~ ;:::i e. 

For each valuation description 7r E lP, let ()7r be the valuation that is described by 7r, 

and, for each allocation description v E A, let ~v be the allocation described by v, and 

let ITY be the set of propositional variables controlled by agent i in ~v. 

THEOREM 5.28. Let cP be a DGL-PG-formula with cP == VVEA (VIPv(CP) 1\ v), as 

given by Theorem 5.15. Let rot = (8, ~EE,~) be a Kripke structure of K(E, IT), and () 

a world in rot. Then, for each agent i E E, 

rot, () F=K CONTROLS(i, cp) 

i.IJ the following two conditions are satisfied: 

(1) There is a v E A and a 7r E IPv(cp) such that 

(a) ~ ;:::i ~V' and 
(b) ()7r = () (mod ITY). 

(2) There is a v E A and a 7r E IP \ IPv{cp) such that 
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give: 

() 

• () 

FIGURE 5.4. Illustration of'P == VVEA (VPv('P) A v). 

(a) e 2:i ev. and 

(b) e7r = e (mod rry). 

IIV2 (<p) =10 
IIV3 ( <p) =I 0 

We first demonstrate the requirements (1) and (2) of Theorem (5.28). Suppose that 
e satisfies (p A -.q A r), agent i = 1 owns p in rot, agent 2 owns q and r, and agent 3 
has no propositional variables in rot. First of all, to see why item (lb) is needed, we 
have to guarantee that for some rot', 8', it holds that rot',e' F=K 01'P. That means that, 

even after 1 has given away some of her atoms (resulting in some allocation e'), she still 

should be able to make 'P true. This is possible for 'P = (-.p A -.q A r): agent 1 could 
simply stay within the current allocation e and just make p false. However, this is not 
possible for <p = (-'P A -.q A r A controls(3,p)) since, once 1 has delegated control of p 
to 3, agent 1 cannot make p false anymore. Moreover, an agent i can only give atoms 
away, so any structure with allocation ev that makes it possible for her to satisfy 'P 

should be one for which e 2:i ev, which explains item (la). Item (2a) has exactly the 
same motivation, and requirement (2b) is easily understood to be similar to (lb), once 
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one realizes that the normal form of -.<p can be expressed in terms of the normal form 

of <p as follows: 

-'<P == V (V (JP \ JP v ( cp» /\ v) . 
vEA 

For a simple illustrating example, suppose there are only two allocations 6 and 6, and 

<p is equivalent to 
((p /\ q) V (p /\ -.q» /\ 6 

V ( ( -.p /\ q) V (p /\ -.q)) /\ 6. 
Note that <p's normal form describes the valuations on 6 and 6 where <p is satisfied. 
The normal form of -'<P is complementary to the one of <p in the sense that it describes 

the valuations on 6 and 6 where cp is falsified: 

( ( --,p /\ -.q) V (-.p /\ q)) /\ 6 
V (( -,p /\ -,q) V (p /\ q)) /\ 6. 

PROOF. We illustrate our proof with a pictorial story that shows why the require

ments 1 and 2 of the theorem are both sufficient and necessary. Given that <p is 

equivalent to V VET(V IIv(<p) /\ v) by Theorem 5.15, semantically this means that <p 

corresponds to a collection of the "shaded areas", as depicted in Figure 5.4. Now, for 

CONTROLS(i, <p) to be true at a world () in a Kripke structure rot = (8, ~EE, ~), agent 

i has to be able to move inside such a shaded area, and to move outside it as well. But 

moving inside a shaded area, means being able to first go to a structure with allocation 
~v, and then to a world ()1r within that structure such that the valuation description 7r 

is in JPv . Notice that i can move to allocation ~v only by delegating control over her 

variables to other agents (hence the requirement ~ ~i ~v), and i can move to valuation 
01r only by toggling her remaining variables in IIy at ~v (hence the condition 01r = () 
(mod IIy)). This shows that Condition 1 is equivalent to rot,O pK (give;)Oi<p. Ac
cordingly, Condition 2 corresponds to being able to move outside of a shaded area in 
Figure 5.4. Semantically, this means being able to first go to a structure with allocation 
~v" and then to a world 01r' within that structure such that the valuation description 7r' 

is not in JPv '. Consequently, Condition 2 is equivalent to rot,() pK (give;)Oi-'<p, which 
finishes the proof. 0 

5.5. Conclusion 

In this chapter, we have built upon the logic CL-PC of strategic cooperative ability, 

in which the control that agents have over their environment is represented by assigning 

them specific propositional variables, for which the agents that "own" them can deter

mine their truth value. We extended the syntax of this logic with dynamic operators to 

this logic, thus obtaining the language DCL-PC in which one can directly reason about 

what agents and coalitions of agents can achieve by setting their assigned variables, 

or by giving the control over them to others. We gave two different but equivalent 

semantics for this language - a direct and a more conventional Kripke semantics - and 
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provided a complete axiomatisation for them. The key property that establishes the 
proof of completeness for DCL-PC's axiomatic system is the fact that every formula 
in the language is provably equivalent to a normal form: a disjunction of conjunctions 
of literals over propositional variables p and assertions of the form controls(i,p}. We 
also investigated the complexity of the model checking and satisfiability problems for 
DCL-PC, and showed that these problems are no worse than for the program-free frag
ment CL-PC: they are both PS PAcE-complete. We demonstrated that we can interpret 
ability in ATL as in CL-PC or DCL-PC - as having control over the truth values 
of propositional variables - by expressing ATL-formulas in DCL-PC, which implies a 
simpler satisfiability problem for ATL in this setting. 

We demonstrated that, for the special case where ability in ATL is interpreted as in 
CL-PC or DCL-PC- as having control over the truth values of propositional variables 
- this implies a simpler satisfiability problem for ATL. 

Although other researchers have begun to develop formal systems for reasoning 

about delegation (e.g., [163]), to the best of our knowledge DCL-PC is the first such 
system to have a rigorous semantics, and a complete axiomatisation. Also, the emphasis 

in 1163J is on decentralized ''trust management", in which roles like that of a requester, 

credentials and an authorizer are distinguished. In the work presented here, the em

phasis is more on what coalitions can achieve, if they are allowed to hand over control 
over propositional variables. 

There are several avenues for further development of this work. First of all, it is inter
esting to add the assignments that the agents can perform to the dynamic actions they 
can perform, so that the two dimensions of what agents can achieve become projected in 
one dimension. Secondly, in many realistic systems, property (5.22) may be too general: 
often, we want to specify that the overall system satisfies some constraints. For this, 
it seems appropriate, however, not only to reason about what agents can achieve, but 
also about what they should guarantee. The framework of Social Laws [225, 187, 244] 
could be set to work in order to express that under certain conditions, an agent will 
not set a certain propositional variable to 'true', or that she will not pass on control 
over a certain variable to a specific agent, or that the overall system behaves in such a 
way that every agent gets a fair chance to trigger a specific variable (i.e., use a specific 

resource) infinitely often. 



CHAPTER 6 

Conclusion 

We conclude this work by summarizing the contributions, stating open problems 
and showing possible directions for further research. 

Chapter 2 contains two contributions. First, we investigated a quantitative exten

sion of CTL: Real-Time Computational Tree Logic (RTCTL) [68). In addition to the 

CTL-operators, RTCTL provides for qualitative temporal assertions, quantitative oper

ators for expressing real-time constraints. We proposed a new method for polynomially 

reducing satisfiability in RTCTL (whose numerical parameters are coded in binary) to 
satisfiability in the same logic with numbers coded in unary. The reduction uses new 

propositional variables that serve as the bits of a binary counter measuring distances. 

We reproved the original result of Emerson et al. [68J that RTCTL is in ExpTIME. 

As second contribution in this chapter, we suggested a framework for reasoning about 

strategic ability in MASs of resource-bounded agents: We introduced Alternating-time 

Temporal Logic with Bounded Memory (ATLBM), a family of ATL-variants that account 
for agents with limited amount of memory for storing strategies. We argued that the 
setting of agents with limited memory is closer to real-world applications. Compared to 
ATL, each path quantifier ((C))n in ATLBM is additionally parameterised with a natu

ral number n, which determines the amount of memory available to the coalition C. We 
defined and illustrated the variant ATLBMrr for agents under incomplete information 
and imperfect recall and started to characterise its expressive power by presenting some 
axioms. 

In Chapter 3, we defined three variations of the satisfiability problem for ATL, where 
the set of agents that can occur formulas is not fixed externally in advance. We showed 
that all three variants of the satisfiability problem for ATL are ExpTIME-complete 
by means of an type elimination construction. Moreover, we showed that this result 
can be extended to ATEL with epistemic operators for individual knowledge, common 
and distributed knowledge. In this way, we proved that ATEL is ExpTIME-complete 

as well, which means that adding these epistemic operators to ATL does not yield 

an increase in computational complexity. For future work, it would be interesting to 

investigate the complexity of ATEL-variants that capture various desired and reasonable 

interactions between knowledge and time. Another interesting issue to address is the 

precise complexity of ATU satisfiability which, as yet, lies between 2-ExpTIME and 

3-ExpTIME. 

In Chapter 4, we introduced Alternating-time Temporal Logic with Explicit Strategies 

(ATLES), an extension of ATL with explicit names for strategies in the object language. 
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The ATL path quantifiers are extended with the possibility to bind agents to strategy 
names. ATLES makes it possible to refer to the same strategy in different occurrences of 
path quantifiers, and, as a consequence, it becomes possible to express some properties in 
ATLES that cannot even be expressed in ATL*. We showed that ATLES satisfiability 
is ExpTIME-complete by extending the type elimination construction for ATL. We 
presented a sound and complete axiomatisation for ATLES, the completeness proof 
of which is based on that type elimination construction. Moreover, we identified two 
variants of the model-checking problem for ATLES depending on whether strategies 
are given as part of the input or strategies have to be generated. We settled the 
computational complexities of the model checking problems at PTIME-complete and 
NP-complete, respectively. For future work, we presented various suggestions of how to 
extend ATLES and thus enrich its expressivity. By introducing appropriate operators 

for composing strategies, we can model, e.g., non-deterministic strategies or dynamic 

strategies. Another idea is to introduce strategy variables that can be quantified. 
In Chapter 5, we introduced Dynamic Coalition Logic of Propositional Control 

(DCL-PC), as an extension of CL-PC 1249J with dynamic logic operators. In DCL-PC, 

every propositional variable is allocated to a unique agent in the system. For an agent 

having control over her propositional variable means the unique ability to determine 

the truth value for this variable. The dynamic component in DCL-PC allows agents to 
delegate control of variables to other agents. By using DCL-PC, we can reason about 
how the abilities of agents are affected by the transfer of control in the system. We pre
sented a complete axiomatisation of DCL-PC and showed that the satisfiability problem 
and the model checking problem for DCL-PC are both PS PAcE-complete and, thus, no 
more complex than the corresponding problems for CL-PC. A possible further devel
opment of DCL-PC is to additionally account for reasoning about agent's obligations. 
The framework of Social Laws 1225, 187, 244] could be set to work in order to express 
that under certain conditions, an agent will not set a certain propositional variable to 
'true', or that she will not pass on control over a certain variable to a specific agent, 
or that the overall system behaves in such a way that every agent gets a fair chance to 
trigger a specific variable (i.e., use a specific resource) infinitely often. 
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