
The Monte Carlo Array

Processor as a Grid Resource

David Edward Laurence Jones

September 2005

University of Liverpool

Department of Physics

Thesis submitted to University of Liverpool for the degree of Doctor of
Philosophy

Dedication
Jamie Peter Wigley

14th February 2003 - 12th September 2003

Acknowledgements
I would like to acknowledge the help and support of many people during the

research and writing of this thesis. Undoubtedly I will forget somebody so I will

apologise in advance.
Department of Physics, Liverpool University:

Tony Moreton, Themis Bowcock, Mike Houlden, Tracey Berry, Barry King, the

late Paul Booth, Michael George, Andy Washbrook, Mark Tobin, Richard Sloane,

Girish Patel, Peter Rowlands, Brian Rae, Anant Gajjar, Adrian Bevan and
Katherine George, Carlos Chavez, Dave Payne, Martin Turner, Richard Parry,

Helen Hayward, Arwel Evans, Steve Maxfield.

Family and Friends:

Mum and dad (Hilary and Richard), brother (Christopher), sister (Heather),

Nicola, Natasha, Ben and Lisa. Robert and Maria Olga (my extra parents in

Geneva). Mercedes, Franscisco (including Ftansoir), Eric, Monica and family.

Grandma, Alan-John, Alan and Peggy Mister, Grandad Jones.

Neston County High School. `The Slac'. 'Chris Duncan, Simon Finnigan, Toby

Mercer, Neesha Arulnagagen.

CERN, Geneva:

Susan Cannon, Mary Elizabeth Shewry, Omar Sharif, Leo Jenner, Peter Kunszt,

Leanne Guy, Eric Grancher, George Shering.

OAC:

Christopher Weatherby (and his numerous adventures!) and everyone else.

i

Contents

1 Introduction 1

2 Grid Principles 3
2.1 Introduction

.....3
2.2 Applications

.................. 4

2.3 Virtual Organisations
.....5

2.4 Infrastructure 5

2.5 Layered Model 6
2.5.1 Fabric Layer

............... 9
2.5.2 Connectivity Layer

........... 11
2.5.3 Resource Layer

............. 15
2.5.4 Collective Layer

............. 16
2.5.5 Application Layer

...... 16

2.6 Summary
. 16

3 General Computation 17

3.1 Introduction 17
3.2 Hardware 17

3.3 Software 18

3.3.1 Assembly
. 19

3.3.2 Procedural 19

3.3.3 Object Oriented
........ 19

3.3.4 Namespaces
. 20

3.3.5 Threading
.... 21

3.3.6 Programming Platforms 22

ii

3.3.7 Build Systems 24

3.4 Summary
25

4 Data, Structure and Storage 26

4.1 Introduction 26

4.2 Data 26

4.3 Volatile Data 27

4.3.1 Variables, Memory Structures 27

4.4 Persistent Data Storage 28

4.4.1 Introduction 28

4.4.2 Files 29

4.5 Metadata 30

4.5.1 Types of Metadata 30

4.6 Markup Languages 32

4.6.1 Introduction 32

4.6.2 SGML 33

4.6.3 HTML 33

4.6.4 XML 34

4.6.5 Application Programming Interfaces 37

4.7 Databases 39

4.7.1 Introduction 39

4.7.2 Types of Database 40

4.7.3 Advanced Database features
43

4.7.4 Database Connectivity 43

4.7.5 XML and Databases 46

4.8 Summary 47

5 Cluster and Network Computing 48

5.1 Clusters
48

5.1.1 Characteristics of Clusters 48

5.1.2 Hardware 49

5.1.3 Cluster Interconnect
50

5.1.4 Storage
50

iii

5.1.5 Cluster Management 51

5.2 Principles of a Computer Network 53

5.2.1 Packet Switching 53
5.2.2 Sockets

...................... 54

5.3 Layered Model 54
5.3.1 Link Layer 55
5.3.2 Network Layer 55

5.3.3 Transport Layer 55

5.3.4 Application Layer 56

5.4 Tiered Models 56
5.4.1 Client-Server Model 56

5.4.2 3 Tier Model 57

5.4.3 Multi-tiered Model
..... 57

5.4.4 Web Application Model 58

5.5 Content and Service Delivery Mechanisms 58

5.5.1 Web Servers 58

5.5.2 CGI 59

5.5.3 Servlets
..................... 60

5.5.4 Web Services
.................. 62

5.6 Summary
........................ 67

6A Web based browser for Spitfire 68

6.1 Introduction 68

6.2 Spitfire Web 71

6.3 Implementation
72

6.4 Classes and Interfaces 76

6.4.1 HTMLLogic 77

6.4.2 HTMLTable 82

6.4.3 SpitfireConnectionLayerBasic 84

6.4.4 SpitfireConsoleClient
. 86

6.4.5 URLLabel 87

6.4.6 URLQueryStringDecoder 87

6.4.7 URLQueryStringMaker 89

iv

6.4.8 SimpleHTMLPage 90

6.4.9 JDBCSpitfirelmpl 91

6.4.10 SOAPSpitfirelmpl 92

6.5 Deployment 92

6.6 Summary
93

6.7 Possible Progression 94

7 Monte-Carlo Array Processor 95

7.1 Introduction 95

7.2 Hardware 98

7.2.1 General 98

7.2.2 MAP 1.................. 100

7.2.3 MAP 2... 101

7.3 Key Features 102

7.3.1 Scripted Boot 102

7.3.2 Transmitting Data 103

7.3.3 Fixed Disk Partitioning 105

7.4 Core Software Description 106

7.4.1 General 106

7.4.2 Job Control Block 107

7.4.3 Queue Daemon 107

7.4.4 Query Daemon 108

7.4.5 Local Control Daemon 108

7.4.6 MAP Run Job 108

7.4.7 MAP NCD 109

7.5 X-Windows Interface to MAP 110

7.6 Summary 110

8A Web based Job Submission Tool for MAP 111

8.1 Introduction
111

8.2 Requirements
112

8.3 Development Process
112

8.3.1 Overview
112

V

8.3.2 Communication to MAP 113
8.3.3 Initial Program

............... 114

8.3.4 Persistency
................. 114

8.3.5 Problem of handling files 118
8.3.6 Job Control Block Modelling 118
8.3.7 Job Validity Checking

..... 122

8.3.8 Classification of Feedback 122
8.3.9 Client

..... 123
8.3.10 Servlets 124

8.4 Completed Software Overview 124

8.4.1 Packages Structure 124

8.4.2 Software Structure 161

8.5 Deployment 167

8.5.1 Servlet Container Configuration
..... 168

8.5.2 Windows 168
8.5.3 Linux 169

8.6 Starting a Job using DUCK
. 169

8.7 DUCK as Grid Middleware 170
8.8 Summary 171

9 Conclusions 173

A Software used list 175

B Dublin Core Metadata Initiative 176

C XML Related Specifications 178
C. 1 Namespaces 178

C. 2 Schemas
.... 179

C. 3 Xpath
..... 181

C. 4 Minks 181
C. 5 Xpointers

... 181

C. 6 XLST and other Technologies 181

V1

D SQL 183
D. 1 Data Definition Commands

.... 184

D. 2 Query Commands
................ 184

D. 3 Data Modification Commands
......... 185

D. 4 Privilege Commands 186

E JDBC Driver Types 187

E. 1 Type I JDBC Drivers 187

E. 2 Type II JDBC Drivers 187

E. 3 Type III JDBC Drivers 188

E. 4 Type IV JDBC Drivers 188

F Hardware Elements 189

F. 1 Circuit boards 189

F. 2 Data Storage 190

F. 2.1 Hard Disks 190

F. 2.2 Tapes 191

F. 2.3 Optical 191

F. 3 Commodity 191

G Software 193

G. 1 Operating Systems 193

H Cluster Types 196

H. 1 Beowulf 196

H. 2 MPI 197

H. 3 PVM 198

I RPC 199
I. 1 DCE 199
1.2 CORBA

............... 200

I. 3 COM 201

1.4 DCOM 202

1.5 RMI 202

vii

1.6 SOAP 203

viii

List of Figures

2.1 Basic grid architecture 7

2.2 Grid Architecture, detailed
.....8

6.1 Screen shot of Spitfire Web login web page 73

6.2 Screen shot of Spitfire Web host web page 74

6.3 Screen shot of Spitfire Web database web page 75

6.4 Screen shot of Spitfire Web table web page 76
6.5 Overview of classes in Spitfire Web 77

7.1 An overview of MAP 99

8.1 The package structure for the DUCK Web Application
..... 125

8.2 Inheritance relationships between classes in the package duck. web. 136

8.3 Confirm Servlet interaction diagram
............. ... 137

8.4 Interaction diagram for DuckID servlet 139

8.5 Interaction diagram for the abstract Ducklet Servlet 141
8.6 JCBServlet interaction diagram

............... ... 147

8.7 Relationship between classes in the package duck. sockets 157
8.8 The web page for user login 163
8.9 Main Page 164
8.10 The web page that allows editing of Job Control Blocks. 165
8.11 The web page for editing the simulation parameters 166

8.12 The web page that allows users to check the job queue. 167

ix

Abstract

This thesis describes the implementation of a proof of concept web application
(web enabled software program) using Spitfire. Spitfire is a software product

of the EU-Datagrid. The system was designed to provide a web-based browser

and administration tool for the Spitfire system.

The Monte-Carlo Array Processor (MAP) at the University of Liverpool is a

commodity supercomputer. The large number of nodes provides massive par-

allel processing capabilities. Described in this thesis is a web application called
DUCK. This was designed to turn MAP into a resource that can be accessed
from the world wide web. The system uses servlet technologies provided by

the Java platform. Persistency is provided by relational databases. First steps

were made to turn MAP into a grid resource.

Chapter 1

Introduction

The Large Hadron Collider (LHC) is a particle accelerator located at CERN[1]

which is on the Franco-Swiss border near Geneva. It is due to become oper-

ational in 2007, when it will begin colliding beams of protons together at a

centre of mass energy of 14TeV. Each of the proton-proton collisions will, in

general, create a large number of secondaries that will need reconstructing.

Reconstruction is the process of taking the raw data and deducing what ac-

tually happened in the collision. Beams collide at each of the 4 interaction

points at 40 MHz. Detectors will record these collisions, with 15 million Gi-

gabytes of data being produced per year [2]. Scientists working on LHC are
from institutions in many countries and they will need access to these data

sets concurrently from geographically distributed locations. The computing

technologies that have been used for this task in the past are not sufficient.
Hence new forms of computing technology, such as grids which are discussed

in chapter 2, are needed.

This thesis is divided into two parts. In the first part I discuss and explore

why grids are required and the theory behind them. A more formal descrip-

tion of data, structure and storage is given. The hardware and software that

make modern computing possible are also briefly described. In the final chap-

ter of this first part I discuss `cluster and network computing', including the

underlying technologies and the higher level abstractions. The concepts and

1

technologies of web services are covered.

The original research is described in the second part of the thesis, starting

with the chapter entitled `Spitfire'. This covers my work for the EU-Datagrid

project. The product of this work was a web-based administration tool for

relational databases. The largest contribution to my research is my develop-

ment of `DUCK' and a description of how it can be made into a grid resource.
DUCK is a web-interface for the Monte-Carlo Array Processor(MAP) at the

University of Liverpool.

2

Chapter 2

Grid Principles

2.1 Introduction

The term grid or computing grids[3], [4] have been used to describe many con-

cepts and has been attached to the marketing of many products. Behind the

expectations, there is a set of technologies that can claim to be grid-like. These

are already being used in applications for biology, health, physics and many

other projects. Broadly there are three major concepts behind a grid.

Firstly, grids aim to change the way in which we share resources. The internet[5],

specifically the world wide web[6], has revolutionised the way we share and
distribute information. With the world wide web we have a collection of dis-

tributed documents (typically web pages). Whereas with the grid we aim to
have a distributed collection of computing resources.

Secondly, grids aim to eliminate the reliance on a single central resource and
they are largely viewable as decentralised. People and institutions need to

share computing resources because of the demands of modern science and
industry. Many problems require vast amounts of computing cycles, storage

space or specialised equipment. It can be difficult to provide these in one
location. Existing high performance computing (HPC) often works in a manner
that is highly centralised.

3

Thirdly, a unique aspect of the decentralised nature of grids is the inhomo-

geneity of the systems that they are composed of. It is almost impossible to
impose homogeneity over continents, countries and different institutions.

However, it should not be supposed that grid are completely new. Most grid
technologies are built upon existing standards and solutions. In addition, grids
must map onto existing resources and ways of working. It is useful to consider
how grids may be used in some applications.

2.2 Applications

The success of any computing innovation is dependent on it not being a stand

alone innovation without any applicability for use in the real world. Grids were

created with the requirements and demands of scientists in mind. Demands

for distributed computing vary widely between the different user groups[7], the
following examples illustrate this diversity.

One example is simulation or models of physical systems. These can be very

compute intensive as often the same simulation is run millions of times with
different input parameters. Alternatively a simulation may be repeated to

gain understanding of stochastic processes. Such simulations tend to be run in

parallel on batch systems'. In general the batch jobs do not communicate with

each other. Monte Carlo events in high energy physics are often generated in

this way.

Another use case is interactive applications. Here the ability to run extremely

powerful applications is linked with the visualisation and control of these ap-

plications in real time. Examples include image processing for satellites and

microscope or medical applications, such as computer aided surgery. Such

examples require a high quality of service.

Other computing applications require large amounts of processing power for

lA batch system is a computer system (usually multiple machines) intended to provide

a pool of computing power. Users typically submit jobs to a batch system. The system is

responsible for scheduling, staging and executing the jobs. For an example see [8]

4

short periods of time to meet a specific deadline; an examples of which is the

financial industry. In cases like this scheduling of compute cycles is critical.

Finally, there are problems, in astronomy and physics, where the analysis is

done over huge, distributed sets of data. These problems include bandwidth

over network connection, authorisation at multiple sites and multiple users

accessing data.

2.3 Virtual Organisations

More recently the concept of virtual organisations (VOs) has become central
to grid computing[9]. VOs consist of groups of people/institutions sharing

resources and using a set of defined rules for sharing. Different VOs will, in

general, tend to run different applications and have their own set of require-

ments.

VOs may be geographically distributed, use different computing hardware, be

members of different companies or institutes and have expertise in different

areas. They can also be rapidly created or reconfigured. Examples of VOs in

HEP are ALICE[10], ATLAS[11], CMS[12] and LHCb collaborations [13].

The dynamic sharing of resources differentiates a grid from the web or a tra-

ditional collaboration. Resources can be computing power, programs, sensors

and services. All of these resources are available, subject to rules, to members

of the VO.

2.4 Infrastructure

For economical reasons grids tend to re-use the `Internet' infrastructure or
fabric. For example there are not necessarily separate `grid wires' or `grid

backbones'. Existing high speed networks are used. In addition existing servers

make up part of the grid at local level. Grid has to co-exist with these servers

and, ideally, need minimal changes to their existing configuration.

5

In particular existing end user systems should not need to be replaced. This

provides maximum accessibility to grid technology. Thus grids will have to

work with heterogeneous commodity clients (see Appendix F. 3), Linux, Win-

dows and Mac OS ̀ boxes'. In terms of software infrastructure; there needs to
be a central core set of software components called middeware; which provides
the functionality for the grid and provides a common basis for the application

programming interface(API) to the developer. Middleware can be thought of

as the glue for putting grids together.

Middleware implementations include software in the Globus Toolkit [14], Con-

dor [15] and Legion[16]. These toolkits enable grid systems to be built and

applications to be grid enabled.

2.5 Layered Model

The ideas that have been discussed above have be formalised in what is known

as a'layer model'. The paper `Anatomy of the Grid'[17] splits grid architecture
into five layers, as illustrated in figure 2.1. The layers are built up on top of

the fabric layer finishing with the application layer at the top.

6

Application Layer

Collective Layer

Resource Layer

Connectivity Layer

Fabric Layer

Figure 2.1: Diagram depicting the 5 main layers in grid architecture.

A more detailed view of the layer architecture is shown in the figure 2.2.

Typically users will only concern themselves with the top layer, the application

layer. Below we discuss the function of the 5 layers.

7

End users
Grid-enabled Applications
Using services provided by
lower levels

Acts on resources as a collective

Resource Layer

Management
Information protocols Protocols

Acting on Single Resourc es

Connectivity Layer

Transport Protocols

Authentication Grid specific
transactions Integration with

Local security

Fabric Layer

Discovery of Resource In terms of (Structure, state and capabilities)
I Resource-spedtic

lev
at local

Local Network operations
el. Transactions

...................

" Database Detector
System

" Parallel
Server Computing

Cluster
Operating
System Examples of Resources

...................

Neck of
hourglass

Figure 2.2: Diagram depicting the 5 main layers in grid architecture, showing

some selected components..

8

2.5.1 Fabric Layer

The fabric layer can be thought of as presenting the local resources to the grid,

such as CPU farms or storage. The components of this layer are hardware and

reside locally at the site of the resource. Resources are to be presented to the

grid via the software this layer provides. If this software provides a rich set

of operations, deployment becomes increasingly difficult. Conversely, the less

functionality the software provides, the simpler the deployment.

The implementation of the components that build up the resource layer can
involve internal protocols which are not visible to the rest of the grid ar-

chitecture. Examples of such protocols are NFS access protocols, database

connectivity (ODBC and JDBC are examples, see 4.7.4) and batch processing

control protocols, LSF[18], PBS[19].

Enquiry mechanisms allow the grid to discover the services that are available

to it. It has been suggested[20] that a fabric enquiry mechanism should at
least provide the following information for a resource. This software should

allow the discovery of the resource structure and characteristics, additionally,

it should provide the current state of the resource. An example of this, for a

storage resource, would be the amount of space available and the amount of
bandwidth available to the resource. Finally, a method to provide discovery of

the capabilities of the resource should be provided. An example of this, for a

computing resource, would be the total amount of processing power available.

The following subsection gives examples of elements that are considered re-

sources on the grid. They are typically elements that would reside in the

fabric layer.

Storage Resources

Typically, storage resources fall into 3 categories, disk pools, tape repositories

and optical disk repositories.

Pools of hard disks offer fast access to large amounts of data. There are various

9

methods of ensuring data is not lost due to hardware failure; examples being
Redundant Array of Inexpensive Disks(RAID), see [21]) and ̀ geoplexing', which
is making a backup to a geographically separate location.

Tape repositories can be used for large datasets. Tape robots are used to

retrieve the required tapes from storage and mount the tape to be read. Access

times to data are slower due to, firstly, that the tape robot will need to retrieve
the tape on which the data is on and secondly tape read times tend to be slower.
Block positioning means the majority of the data on the tape need not be read
to retrieve a given portion.

Optical disk repositories consisting of optical media can be used to store large

datasets in a similar manner to tape systems.

For all systems, mechanisms are required that allow the reading and writing

of files. Replication of frequently used/heavily used data sets may also be

required.

Computational Resources

Examples of computational resources on the grid are computer clusters, groups

of machines and the computational resources behind batch systems.

Computer clusters consist of arrays of computers connected in private local

networks that allow problems to be solved using parallel processing techniques.

Groups of individual computers, for example desktop computers in offices, can

provide computational cycles when they are not being used (typically at night).

The computational resources behind batch systems are important resources.
Batch systems provide management of computing resources that allow batch

jobs to be run. Batch jobs are distinct from interactive jobs, where the user
directly controls the computation.

In all cases mechanisms are required to allow jobs to be prioritised, setup,

started, monitored, finished and the resulting output obtained.

10

Other Resources

Some additional examples of grid resources are: -

" Networks. Network transfers need managing depending on criteria such

as network load and capacity.

" Code Repositories. Repositories can hold programming source code for

large projects. Typically versioning and auditing are supported.

" Catalogs. Specialised forms of storage for structured data to support

update and query operations. Typically these resources are implemented

using a relational database.

2.5.2 Connectivity Layer

Communication and authentication protocols are defined by the connectivity
layer. This provides data exchange between grid resources, include transport,

routing and naming. Typical grid implementations use protocols from the

TCP/IP stack.

The requirements of the authentication part of the connectivity protocol are
heavily security related and include single sign on, delegation, using existing

security installations and trust relationships.

Single sign on means that once users are signed on to the grid, they should

not need to authenticate again to access different resources on the grid.

Delegation means the user can allow a program to run with the user's authenti-

cation. This means the program can access the resources the user is authorised

to use. Delegation allows a program to further delegate these rights to another

program.

The ability to use existing security systems at local sites is required. The

connectivity layer must inter-operate with existing security solutions and not

require new systems to be installed at the local site, therefore it must inter-

operate with a large range of potential security protocols.

11

Trust relationships build on user rights. If a user has the right to use resources
at two sites separately then the user should be able to use the resources of
both sites together without the sites needing to interact.

Most of the above issues are related to security; these security issues are de-

scribed in greater detail below. See the papers "A Security Architecture for

Computational Grids" [22] and "The Security Architecture for Open Grid Ser-

vices" [23] for more detailed discussions of potential grid security architectures.

Security

Sites on the world wide web typically have public pages, which are visible by

the public with little restriction. Some sites use user/password authorisation to

restrict content to privileged users. For example, a user may have to register

to access content that might be confidential or of monetary value (pay per

view).

With few exceptions security authorisations are restricted to one site; meaning

users need to login to each site they wish to use.

In contrast, the challenges faced to provide grid security are a lot more complex.
Typically the challenges fall into 3 areas, integration, interoperability and trust

relationships.

Integration

Integration means that a grid security solution must work with existing, non-

grid, security implementations. Resources and domains that are part of a grid

will have their own existing security solutions. It is not feasible or desirable

to replace these solutions, so grid implementations must be integrated to work

with them.

Certain firewall issues arise when sites and individual machines are fire-walled

from the network for security reasons. It needs to be ensured that services are

not blocked by the actions of firewalls behaving in this way.

12

Interoperability

Interoperability is an important aspect of security on the grid because using

the grid may involve using many domains and different environments, security

schemes need to interoperate. There must be ways for the environments to

exchange security information. Interoperability issues split up into ones of

protocol, policy and interoperability across domains.

At the protocol level, the actual process of exchanging information, we need

to consider the methods used to exchange the data. This means the transport

medium; examples of such are HTTP or SOAP (see 1.6). Confidentiality is an

issue here; users need to be able to rely on the underlying protocols to protect

the confidentially of the exchanged messages and documents. There are various

means of encrypting HTTP and SOAP traffic to achieve this. Integrity is

assured by detecting unauthorised changes to messages whilst they are being

transported. Such changes are often introduced in a so-called `man in the

middle attack' performed by a third party. Protection against such incidents

can be provided by using public-private keys and other similar mechanisms[24].

At policy level there must be ways to exchange and understand other entities

security policies. This is because security arrangements may involve multi-

ple parties and domains. Identities must be transferable between systems;

meaning there must be the ability to identify users across different domains.

This involves the mapping of user identity and user credentials across domain

boundaries. This falls under the issue of Authorization, which is whether a

user is allowed to perform a particular action on a resource.

Authentication is the mechanism with which the user can prove who he/she

claims they are. A system with a single sign-in (login) enables grid users

to enter their login details once. These details are used for all resources ac-

cessed by the user, instead of having to enter credentials for each resource

used separately. The lifespan of credentials becomes important when running

long-running jobs. There should be a mechanism to notify user if the job is

taking longer than the credentials lifespan; the user should then be given the

13

option of prolonging the life span of the credentials.

Grids should not be tied to one particular implementation of authentication
technology; there must be an ability to easily use different implementations.

One way of verifying a user is who he/she claims they are is to use X509

certificates (see [25] and [26]) The logging of user activity is required for audit

purposes; the implementation of this should be eased by single sign on.

Trust Relationships

Trust relationships are needed in grid services because they may operate across

multiple domains in the course of their work. Entities in these different do-

mains must be able to obtain authorisation information. This is made more
difficult by the dynamic nature of grids, meaning trust relationships may have

to be found at runtime. Users can also form transient grid services; these

services are responsible for completing the tasks set by the user. These tasks

may involve using many different resources.

The challenges fall into categories of identity and authorisation, enforcement,
deployment, policy and delegation. Identity, authorisation issues occur be-

cause services have an identity and various authorisations associated with

them. It must be possible to set these. The enforcement of policies for the

transient polices must be implemented.

Assuring the security of the deployment platform means having the ability to

discover the strength of the platform, for example the state of anti-virus and
fire-walling software. Then decisions can be made based on this information.

Third party verification of the information used to make these decisions is

desirable. The result is that grid users running jobs on remote machines using

confidential data can be satisfied that the confidentiality of the data will not
be breached.

Policies can be generated at runtime from both the user's transient service

and the resource owners. Delegation means the service must be able to act on

the user's behalf. A service running remotely might require access to another

14

resource. The service must be able to act, without direct intervention from

the user, using the user's credentials.

2.5.3 Resource Layer

The resource layer deals with individual resources, as opposed to the collec-
tive layer (see 2.5.4), which deals with groups of resources. Building on the

protocols defined in the connectivity layer, the resource layer defines APIs and

protocols for the following: -

Single Resource Negotiation is the process of negotiating use of the resource,

which is dependent on authorisation, in a secure manner. Initiating the re-

source is the task of doing whatever needs to be performed on the resource
before it can be used. Once the resource is in use monitoring allows the

monitoring of the resource and its activities. Control is the ability to control

a resource over the grid. Finally, accounting and payment is the process of

recording what has been done using a particular resource and charging any

charging model for the resource.

Resource layer protocols can be divided into two types: - firstly, information

protocols are used to retrieve information about the resources state, structure

and capabilities. Secondly, management protocols are used to control access
to the resource. The layer enables sharing of the resource consistent with a

pre-defined policy. The management must ensure usage of the resource is not
in breach of the policy under which the resource is usable.

It is deemed that the number of resource layer protocols should be kept minimal

and that they should be tightly focused. At the same time the ability for

higher-level layers to construct protocols using resources should not be limited.

The protocols must be general in nature allowing their re-use.

15

2.5.4 Collective Layer

The collective layer builds on the resource layer. Instead of dealing with indi-

vidual resources, the collective layer works with collections of resources.

It provides APIs (Application Programming Interfaces) and services that al-
low, by being more globally-orientated, interactions across the collections of re-

sources. The collection layer protocols can range from being general to domain

or application specific. Services can be implemented as persistent services or as
APIs designed to be used in applications. Examples of resource layer protocols

are Directory Services, which allow VO users to discover resources, Scheduling

Services which allow VO users to request resources for tasks, Monitoring Ser-

vices that allow the monitoring of resources and Replication Services which

provide replication of data to maximise the availability of the data. Having

multiple replicas reduces access times for frequently accessed data sets.

Typically the collective layers implementation would be in middleware.

2.5.5 Application Layer

The top layer, the application layer, consists of user applications that run in

the context of a VO environment. Applications are constructed by writing

user code and also calling upon the services provided by the lower layers of the

architecture to grid-enable the application.

2.6 Summary

In this chapter the need for grids, the architecture of grids, the technologies

used to implement them and how they work are all discussed briefly. The way

the grid architecture is split into five distinct layers is also introduced.

The chapter should give the reader some insight into why grids are becoming

increasing important in large-scale computing.

16

Chapter 3

General Computation

3.1 Introduction

Development of the Spitfire browser and the DUCK system relied on a prac-
tical instantiation of general computational techniques. Here we describe the

underpinnings of this development work.

The principles discussed here are more general than grid, in so far as many

applications could in principle, and are, developed and deployed outside a grid
framework. A description of them is needed to clarify them as they are used in

the research discussed in this thesis. For both projects commodity hardware

was used as a platform to develop and deploy. The Java programming language

was the programming language used with ANT as the build and deployment

tool.

3.2 Hardware

Hardware is a term to describe the physical components of a computer. The

modern personal computer (PC) is built around a Central Processor unit
(CPU), which is a silicon based semi-conductor microchip. This CPU is

mounted onto a circuit board known as the mainboard or motherboard. Plugged

17

into this mainboard are card based devices that provide interfaces to display

units, storage, networks, scanner, printers and many other items. All the above
items are considered as hardware and are described in Appendix F.

3.3 Software

Computers are incredibly powerful machines, but without a means of giving
them something to do, some instructions, they are useless. Instructions for

computers are generally grouped together as programs. These programs are

not unlike a recipe for a chef; there are a number of steps that need performing

to get a result.

Like a spoken language, programming languages have evolved and changed

through use. The major features added to programming languages have been

introduced to combat the problems that programmers have encounters whilst

programming. There has been a tendency to standardise languages, but as

with any standard, proprietary additions are often added. This can occur be-

cause a vendor wishes to introduce functionality not described in the standard,
for example. Modern programming languages have evolved to have english-like

syntax; making them easier to read for (English speaking) humans.

As programs have increased in terms of complexity, the ease of maintainability
has become a prime concern. Maintaining and updating programs is an im-

portant part of the software-lifecycle. Programming languages have moved to

ease this with concepts such as encapsulation, good documentation (or rather

the means for) and Object Orientation. The idea of breaking programs up into

to manageable chunks and being able to write down what each chunk does are

massive aids to maintaining programs.

There are a number of potentially challenging concepts introduced with Object

Orientated programming, but it should be remembered these are just ways

to ease maintainability and re-use of code. Both things that save work and

increase productivity. In the following section we look at the progression of

computing languages.

18

3.3.1 Assembly

To begin with programmers used machine code, programs were written in

terms of instructions to the Central Processor Unit (CPU). This method of

programming was very labour intensive, required detailed knowledge of the

computer hardwares architecture and meant programs were restricted the ar-

chitecture they were written for. Machine code evolved into assembly level

programming. This meant groups of machine code instructions were 'assem-

bled' into higher-level instructions leading to the ability to make abstractions.
The idea of abstractions leads us onto procedural languages.

3.3.2 Procedural

Procedural languages move away from assembly. Instead the abstractions of
functions and data-types mean programs can be written without knowledge of

the underlying hardware (CPU) instructions.

Here we encounter the concept of a `black-box' meaning the programmer can

call a function using the parameters and not have to worry about what the

functions is doing internally. Development for procedural languages is often

considered to be structured development; 100% of the programs function is

planned before any code is implemented.

3.3.3 Object Oriented

Object Oriented programming originates (like a number of computing inno-

vations) from the Xerox Parc labs. Object Oriented programming revolves

around encapsulating data and functions in a package typically called an

Object. The object tends to represent an entity, often a real world entity,

such as a person or car.

Data is encapsulated in the object, often in a form that means it is inaccessible

from outside the object directly. Instead methods or functions are provided to

access the encapsulated data. These methods or functions also allow the data

19

to be manipulated. Objects, therefore, combine function and state (the values
of the data encapsulated in the object).

Object Oriented programming also introduces the idea of inheritance. Objects

can be extended to create new objects that inherit the properties and function-

ality of their parents. Using this model a generic object, say a person, could
be programmed. It could have the attributes name, date of birth, address and

so on. Functionality is then provided to get the values of these attributes;
for example to calculate and return the person's age. The object could be

extended to create the object customer, which could have the additional at-
tributes of delivery address, the products they have ordered, etc. Functionality

to access these attributes and extra functionality to perform operations to this

data could also be added.

Object Oriented programming aims towards the programming holy grail of

reusability. Allowing programmers to engineer components that can be re-

used in many software projects.

So in a very rough summary code is contained in methods. Methods act on and

are contained in classes. These classes form the building blocks for programs.

3.3.4 Namespaces

Languages such as Java[27] and C++[28] have the concept of namespaces. In

Java namespaces are called packages; but the concept is the same.

They are a mechanism to resolve ambiguity with respect to naming in pro-

gramming. For example you might write a class called Mouse to decode the

movements of an input device, a mouse. Someone else could also write a class

called Mouse, perhaps to simulate the activity of a mammal mouse. If the two

classes are used in one program there needs to be a way to distinguish between

them. Using namespaces, we have a mechanism to distinguish between the

two classes. For the input device we could have the namespace `input' and

for the animal we could have the namespace ̀ biosim'. In Java we could then

use the prefix biosim. Mouse and input. Mouse; they would then reside in the

20

packages biosim and input. Of course to use the classes we would need to

import them into the Java program we were writing.

The names within a single namespace/package should be unique. A packag-
ing structure also allows different components (classes) of the software to be

arranged in logical groupings. For example, we might want to group all the

classes related to controlling the mouse in to one package.

3.3.5 Threading

Threads allow programs to do many tasks at once. Programs can be written to

only have one thread of execution, but this severely limits program performance
for some applications.

As an example a program might provide a User Interface to interact with the

user. If the user initiates a task that might take a long time to complete, the

display should still be updated (ideally with the current progress of the task).

To do this two threads of execution are needed; - i) To carry out the task ii)

To update the User Interface

Most modern programming languages have support for threads. The use

threads introduces some issues in programming that need to be addressed.

Synchronisation between threads is an important issue; threads need to be

able to interact with each other and share data. If a number of variables or

objects need updating by a thread, a lock is used to prevent another thread

either reading an incomplete set of data or writing data before the other thread

has finished.

In situations where a thread only does a limited amount of work periodically

(for example, checking for new email every 5 minutes) then the thread will

yield to other threads and sleep, allowing the compute cycles to be used by

other threads.

21

3.3.6 Programming Platforms

The Java[27] programming language started life as a language called Oak in the

early 1990's. Oak was just one part of Sun Microsystems Green Project (see

[29]), conducting blue sky research to investigate future consumer computing
devices.

After its release Java quickly gained developer popularity. The language is a

modern language, which borrows from modern Object-Oriented languages. It

discards some potentially confusing and troublesome features such as multiple

inheritance.

A core goal of Java is Machine Independence; the write once, run anywhere

concept. Java code is written for a Java Virtual Machine (JVM), a piece

of software that is responsible for executing a Java program. Hence, a Java

program should run on any machine that has a JVM written for it. Java

programs can take the following forms: -

" Applications, a Java program running as an application, interactively

with the user, possibly with a user interface and full access to resources

such as files, network sockets, printers etc.

" Applets, a Java program which runs in a sandbox and appears to be

part of the web page being browsed. Applets are seamlessly downloaded

from web sites and tend to have restricted security models to prevent the

problems of malicious code.

" Servlets, Java programs which run inside a servlet container, see section

5.5.3. They handle requests from clients. Quite often servlets are HTTP

servlets, meaning they are accessed over HTTP (like a web page) and

the response of the servlets actions is a web page.

" Java Server Pages (JSP) are snippets of Java code are embedded inside

HTML code (the code that builds up the web page). JSPs are looked at

in more detail further on in this section. ASP (Active Server Pages) are

an alternative technology from Microsoft.

22

" Java code can be embedded inside databases as stored procedures.

There a three flavours of Java; the Standard edition[27] - aimed at running
Java applications on desktop computers, the Enterprise edition, [30] - aimed at

running web applications on servers and the Micro edition- aimed at running

applications on small devices such as Personal Digital Assistants (PDA). The

standard edition (versions of 1.4. x) were used as the platform for developing

both Spitfire (see section 6) and DUCK (see section 8).

Java has always been a network-oriented language; providing easy access to

sockets (see 5.2.2) and web-orientated features. This lead to Java technology

being adopted by Netscape for their browsers. This lead to applets becoming

relatively widespread.

Java also has a wide variety of packages to provide the programmer access to

databases, Image and media processing, user interfaces, distributed computing,

native code, XML and many other features. Aside from the a few primitive

types, all objects in the Java language are rooted from the Object class. This

means every object has the functionality provided by this base class.

Instead of allowing multiple inheritance Java provides interfaces. Interfaces

are like having a class with no implementation; only the method signatures

are provided. In Java a class can only extend one class (inheritance) but can

implement many interfaces. For each interface the class has to provide an

implementation of the interface; filling out the methods signatures with an
implementation that does the work.

Java has the significant advantage of having automatic garbage collection. This

means when objects go out of scope (meaning they would not be used again)

they are garbage collected by the virtual machine. In comparison, in languages

like C++, the programmer is responsible for garbage collection; any memory

allocated by the programmer must be freed when the programmer is finished

using it. This requirement often leads to memory leaks and program errors.

23

3.3.7 Build Systems

The development process involves writing, compiling, running code. Often,

especially when debugging, this process may need doing many times. Manually

using a compiler and then performing various other actions may become labour

intensive. The program may need complex arguments to compile, or have many

source files, or sometimes only one file will need re-compiling.

The solution is to have the instructions for making or building the program in

a form such that they can be re-used easily.

This is the concept of Make[31] and more specifically a ̀ Makefile'. The makefile

contains instructions on how to build a program. Make can also perform

other actions by having instructions grouped into targets. Each target can
do a particular set of tasks; for example one target might build the program,

another might install the program and a third target could be used to build

the program with extra debugging information.

Of course shell scripts could do much of the above, but are platform dependent.

Secondly make systems `know' which source code has been modified. This

means the make system can selectively compile, compiling only the files which
have changed. For a large project this can save a huge amount of compile time.

Another Neat Tool (ANT), part of the Apache project, see [32]) is similar to

GNU Make in terms of its functionality.

The major difference with ANT is that the makefile is an XML file. It is also

Java based and, by Java's nature, platform independent. The build files ANT

uses disposes with the need for the pedantic syntax of the Makefile.

ANT is widely used in the Java community and is supported by many of the

IDE's (Netbeans [33] being one example)

24

3.4 Summary

In this chapter the nomenclature and concepts of general computing have been

introduced. These concepts are more general than grid computing which was

considered earlier in this thesis. Furthermore, these concepts provide the foun-

dation for the later chapters in this thesis, which consider the implementation

of the Spitfire (see chapter 6) and DUCK (see chapter 8) projects.

25

Chapter 4

Data, Structure and Storage

4.1 Introduction

In this chapter the concepts and ideas surrounding data; the structuring of
data and its storage are discussed. Persistent data storage is approached from

two angles; firstly, the structuring of data for storage and, secondly, the tech-

nologies used to store the data. The discussion of data and metadata provides
background for my Spitfire project-based work (see chapter 6). The structur-
ing of data, namely in the form of XML, and the storage of data, particularly
in relational databases gives some of the basics on which my MAP project

work is built.

4.2 Data

Data can take the form of text, numbers, characters, images and a large number

of other formats. The term tends to refer to entities that are stored, processed

or transmitted, often using computer systems.

Information is said to be created when data is processed. The process of

`spotting patterns' in data can be done by humans or by computer programs;

this is common form of processing.

26

4.3 Volatile Data

When a program finishes running the data stored in its memory space is usually

cleared out or lost. In addition, modern languages also have a feature that is

referred to as garbage collection; meaning that data is cleared when it is no
longer referred to by the program. Furthermore, the contents of Random

Access Memory (RAM) does not survive when a computer is powered off.

4.3.1 Variables, Memory Structures

Normally volatile data in computer programs is stored as variables. These

variables have types, for example, int or integer for storing whole numbers and

char or character for storing characters.

Areas of memory can be assigned in blocks to store larger amounts of data,

for example an image is represented by a series of bytes, describing the colour

value of each pixel. In cases where large blocks of memory are assigned two

methods can be employed. 'Traditionally, programmers had to allocate blocks

of memory, use them and finally signal to release them when he/she has fin-

ished using them. Failure to release memory blocks leads to memory leaks.

Secondly, there are modern programming languages, which garbage collect au-

tomatically; in this case the programmer need not worry about remembering
to release memory blocks.

Data can also be encapsulated in classes (see object orientation, page 19) en-

abling data fields to be accessed via `instance methods'. Methods are typically

small pieces of code that allow data in and out of a class; ideally there is no
direct access to the private class members. This allows the construction of com-

plex data structures; more commonly known as abstract data types. Classes

are similar to structures, however structures lack instance methods.

Given that classes can also have complex interactions with other classes, saving
them to disk can be a complicated procedure. This process is generally known

as serialisation and is discussed in section 4.4.1.

27

4.4 Persistent Data Storage

4.4.1 Introduction

As discussed in section 4.3, there is a need to maintain data between program

executions and indeed when data needs maintaining in stateless protocols. We

will discuss this aspect of persistency in DUCK, see section 8.3.4.

Therefore, data needs to be written to a persistent media. Examples of which

are magnetic media, such as hard disks, tapes and floppy disks or optical

media, for example, CD-ROMs, DVDs and laser disks.

Retaining Data

Persistent data can be user data (for example, documents; images, text, nu-

merical and data), or settings (for example the placement of a window in

a graphical environment). This data tends to be stored in either files or a
database system.

The process of storing the data is referred to as serialisation. This term is

used especially when talking about object instances being written to disk.

Serialising Data

Frequently in object orientated languages the language has facilities to serialise

objects to disk. This means the object is written as a stream of data into a file.

The object can then be `recreated' from the file at a later time. If the language

does not support serialisation; then object databases (see section 4.7.2) provide

this functionality.

Serialising instated objects can be a complex process; due to the need to store

not just the objects but to also map the inter-relations between these objects.

This problem is discussed at length in [34].

The use of serialisation in programming to provide persistency can lead to

28

problems, for example different versions of a platform can produce incompat-

ible ways of serialisation.

Programs can also, and more often do, provide persistency by writing out

a file to a particular format- which may not bear any relation to how the

data is stored in memory. These file formats are often proprietary, making it

difficult to write other programs to process them. This problem is addressed
by eXtensible markup language (XML), which is discussed in 4.6.1 onwards.

4.4.2 Files

Flat files are possibly the simplest form of storing data on a computer. They

can contain data such as the text of a word processed document, an image

or raw data. Frequently data is stored in proprietary formats, this makes the

exchange of data between programs difficult. Data stored on desktop com-

puters is mainly in the form of flat files, arranged in a hierarchical structure.
Whilst various operating system vendors have talked about using databases as
file systems, it has yet to happen.

For an application where there are many concurrent users (or processes) that

use a single flat file problems can occur; with a major one being corruption

of data. Often there is no locking mechanisms on flat files, which can lead to

the files being updated incorrectly if two or more users are making changes.

Even with locking mechanisms race conditions can occur, this is where two

processes fight for the lock on a file, the result of which being that the file can

be corrupted or even wiped.

The use of flat files leads to problems relating to access. If many users need to

access a single file on a desktop computer (perhaps over a work group network)

then bottlenecks will occur.

29

4.5 Metadata

Data on their own can lack meaning. Think of a photograph in a dusty photo

album; without a written caption or a few words of explanation, it could
become meaningless after the events it depicted have been forgotten. Similar

problems exist in computing; meaning, explanation and added data needs be

associated with data. Hence, we have a requirement for metadata.

Most definitions of metadata define it as ̀ data about data'. Therefore it could
be described as a subset of information that describes the data that the meta-
data is associated with.

Metadata is important in modern distributed systems; one use of metadata is

to describe resources in a way that allows systems to interact with each other

automatically.

Metadata also enables lineage data to be collected. Such data could, for ex-

ample, be used to keep track of users changes to a particular document. An

audit trail could then be done using the lineage metadata; this would detail all

the changes made to the document; what was changed, who made the changes

and when they were made.

Another use of metadata is to describe resources in terms of the information

that they contain. The Dublin Core Metadata Initiative (DCMI) [35] defines a

set of metadata elements that are commonly used to keyword web pages. As

a result humans and automated search engines can categorise pages.

The concept of ontologies is related to metadata. Ontologies provide a way of

specifying how knowledge and information of a particular domain of interest

are mapped into some structure. Typically this is done to aid automated

processing of the information.

4.5.1 Types of Metadata

Metadata can be classified into two types, immutable metadata and indepen-

dent metadata.

30

Immutable metadata means that the metadata cannot change without the

data itself changing. An example of this is the file size; the file size can only

change if the amount of data in that file changes, this in turn means the data

will have changed.

Independent metadata can change without the data changing. An example of
this is the filename; a file can be renamed without changing the data contained
in the file.

Metadata can also be classified into the following categories: -

" Technical metadata. Technical details, for example how the document

should be printed.

" Administrative metadata, an example of which is lineage metadata; this

can record the actions that have been performed on a document by its

editors. The metadata can be reconstructed to form an audit trail.

" Structural metadata describes how a resource is structured. It records
how the document is constructed from its compound elements. For ex-

ample a document may be structured into logical sections.

" Descriptive metadata provides a description of a resource; typically these

metadata elements are keywords. Associating keywords with a resource

allows the discovery and identification of resources. Elements in the

DCMI are a good example of descriptive metadata, see appendix B.

The Spitfire project (see section 6) dealt with most categories of metadata.
DUCK (see section 8) used technical metadata to describe details for jobs, ad-

ministrative metadata to log user sessions and descriptive metadata to provide
feedback for error situations.

31

4.6 Markup Languages

4.6.1 Introduction

Markup languages are a concept that allows data to be marked-up with extra

information. Such information can be the metadata discussed above.

The concept of markup languages in computing is a powerful yet simple con-

cept. Extra information is often required in written language and publishing;

this must be included somehow in the text. The marking up of texts allows

this information to be included in a written format. Elements such as bold

type face, footnotes, underline and section headings had to be `invented'; as

they simply do not exist in spoken language.

It would seem that the marking up of texts is something that has been done for

a long time; there is evidence of medieval texts having markup in the margins.

In modern times computing markup tends to be used to provide information

to the machine. Hence, it has to be specific and consistent; a computer re-

quires specific commands, it cannot guess what is meant by something that is

ambiguous.

There exists a great number of markup languages, examples of which include

SGML, HTML and XML all discussed below. SGML tends to be used in

publishing and pre-dates HMTL, which is widely used as the language of the

world wide web. HTML is mostly concerned with presentation; XML is a more

modern technology that aims to address issues in the field of semantics. From

an XML viewpoint the meaning of content is a more important issue than

the presentation of the content. The world wide web consortium (W3C) is

responsible for developing and over-seeing much of the technologies described

in this section.

XML was used in DUCK to provide a settings system and a method to de-

fine queries in the database system. SOAP, an XML based communications

protocol, was the intended transport medium for the Spitfire project.

32

4.6.2 SGML

The motivation for electronic markup languages initially came from typeset-

ting demands. With the 1960's came the first attempts to produce open and

standard markup forms, allowing the transfer of documents between platforms.
GenCode and General Markup Language (GML) were the first two attempts.
GML was conceived by Charles Goldfarb and his colleagues at IBM, as a for-

mat primarily used for legal documents. Under the auspices of the American

National Standards Institute (ANSI) Goldfarb and his team worked to create

a more general language, Standard Generalized Markup Language (SGML). It

was ratified as an International Standards Organisation (ISO) standard.

SGML is a meta language, meaning it can be used to define other markup
languages. To this ends, it is extremely flexible and has a very generic coding

scheme. Due to the complexity of SGML, the tools for processing it tend to be

complex and expensive. The software tools used to process markup documents

are known as parsers. These read the document from a disk and turns it into

a series of tokens. These tokens are typically used to create either a model of

the document in memory or generate a series of events that can be interpreted.

Parsers are discussed in greater in section 4.6.5.

SGML has attained a great deal of success in publishing and large industries,

where the expense and complexity of the software tools are affordable.

4.6.3 HTML

Developed at CERN by Tim Berners-Lee (and influenced by Anders Berglund)

as language for publishing content on their world wide web, HyperText Markup

Language (HTML) has proved to be a global success story, which has been

instrumental in the expansion of the world wide web. HTML is a language

defined using SGML. It defines a set of tags that are more concerned with the

presentation of content on the web than anything else.

One of the most fundamental elements in HTML is the anchor element with its

33

href attribute, allowing hyperlinks to be created. A hyperlink may be created
to another page, image or other such resource. When the page is rendered for

the user the hyperlink appears as an underlined piece of text. The user can

then click on the link and is taken to the corresponding resource or page.

Processing software for HTML tends to be reasonably forgiving about incon-

sistencies and mistakes in the markup, meaning that whilst it makes HTML

perhaps more accessible, the processing software is a good deal more complex.

This problem is compounded by the number of proprietary tags that have been

introduced in the `browser wars'1. HTML only defines one document type; an

HTML document.

4.6.4 XML

eXtensible Markup Language[36], [37], is the human-readable form of the

acronym XML. Like SGMU, XML is a meta-language, allowing it to define

other markup languages, development of the language was spurred by the

W3C consortium.

XML was partly created to address the short-comings of HTML. Due to it is

forgiving nature to markup errors, writing web pages is less demanding than,

say, programming; less `strictness' has made it `easier' to produce web pages.

This is turn, has led to HTML parsers having to be able to understand a whole

myriad of technically incorrect HTML.

XML was created to address this problem; by having stricter rules for the well-

formedness of markup. HTML markup predominately describes presentation,

meaning that the function of the markup is to describe how the content should

be displayed to the user. Increasingly, there is a need to describe the meaning

of the content; this is semantics2. A example of this is an address: -
'The `browser wars' were a succession of releases of versions of the Microsoft Internet

Explorer browser, the Netscape browser, the Mozilla browser and, at a later date, the Firefox

browser.
2Semantics refers to the meaning of some element in a language, as opposed to syntax;

which describes the combination of elements. The idea of semantics is important in com-

34

D Jones
Oliver Lodge Laboratory

The University of Liverpool

Oxford Street

Liverpool

L69 7ZE

United Kingdom

A human, with some experience of UK addresses, can make sense of the address

and attach meaning to the various elements of the address. A computer just

understands this as a block of text. One can use semantic markup to add some

meaning: -
(person) HerMa j estytheQueen

(address)

(dwelling) BuckinghamPalace (/dwelling) (street)TheMall (/street)

(city) London (/city)

(postcode) SW 1A1AA(/postcode)

(country) UnitedKingdom(/country)

(/address)

(/person)

This example is a valid piece of XML. Now, with the correct instructions, a

computer can extract some meaning from the fragment. The markup has been

used to introduce meaning into the information. Also inferred by the nesting

of elements is a hierarchical structure. This allows XML to store data in a
hierarchical fashion. XML also signifies a move towards a model in which data

is in an XML file and the presentation is handled separately.

There are also a large possible number of different ways to markup the address;
differing amounts information could be used, it could be structured differently

puting, as attaching meaning to data allows computing to have an `understanding' of data

and to perform meaningful operations on it.

35

or different element names could be used. This provides the motivation for hav-

ing schemas, which are covered in appendix C. 2. The motivation for moving

away from the `forgiving-ness' of HTML was to simplify the writing of process-
ing software. HTML parsers have to allow for many different `inconsistencies'

in markup; whereas XML is stricter with the well formedness of markup. This

leads to parsers being simpler to write, less complex and smaller. This is

important, as several dialects of XML are intended for portable devices with
less processing power and storage; Wireless Markup Language (WML) is one

example.

The web is not the only area to have problems that XML aims to solve; appli-

cations are also a potential beneficiary. Traditionally, applications have tended

towards the storage of documents in proprietary document formats. The doc-

uments are written in such a way and format that is only understood (and

often carefully guarded) by the company writing the software. There is a po-

tential to extend XML to create open and interchangeable document formats.

Another application of XML is the exchange of data between businesses and

over the network. Here a cross-platform and open approach is desired. Finally,

mundane issues such as persistent settings for programs (for example where

the application window is displayed on the screen) need to be stored, with

XML being another potential provider.

The web application DUCK (see section 8) uses XML to store settings infor-

mation such as addresses, database locations, custom queries and drivers, and

some application-specific configuration. In addition the servlet container (see

section 5.5.3) uses XML to store its configuration.

Several of the features of XML have been touched upon in section 4.6.4. A

basic, but important, feature of XML is that the standard character set is

unicode, it can, therefore, support characters from a huge number of interna-

tional character sets. Like HTML, XML uses tags to markup content, these

tags must be such that the resulting document is well formed. The tag names

can be defined by the creator of the document, meaning that new markup

languages can be created using XML; XML is a meta language.

36

The same markup tags can be nested to represent a hierarchical structure in a
document. XML start tags must have matching end tags, this is a departure

from HTML. The exception is if the start tag self-closes. This requirement is

due to the fact that the XML parser may not have knowledge of the intended

structure of the document and would run into trouble deciphering between

sibling elements and child elements. Forcing every tag to have a matching

closing tag means that the structure of the document is unambiguous.

Attributes can be added to elements. Again XML is strict with the well formed-

ness of these. Attributes must be correctly quoted with quotes at the start of
the value and at the end of the value.

It should be noted that XML does not replace HTML. In the short term the

technologies will sit side by side; XML for data with meaning and HTML for

presentation (perhaps generated from the XML). In the long term the HTML

reformulated using XML; XHTML will be increasingly used.

Many, or perhaps even most, projects that would normally use SGML are now

using XML instead.

4.6.5 Application Programming Interfaces

XML Application Programming Interfaces (APIs) allow programs to leverage

the data stored in XML documents. Typically parsers are used to process XML

documents; they are libraries of methods and mean that software developers

do not have to constantly write methods to process XML from scratch.

The concepts of a parser were introduced in section 4.6.2. An XML parser is a

markup processor that turns the XML located in a file into tokens or fragments

of text. These tokens can either be used to trigger events in the program or
to build up a memory representation of the data. Parsers also provide ways to

serialise the document, ready to go back into a file.

The two main ways of using XML; event based parsing (typically SAX) and
Document Object Model are described in more detail below. Here we will

37

consider the parser mainly from a Java point of view. Bear in mind that XML

is supported (via libraries) by many languages including C/C++, Perl, Python

and C sharp.

The Document Object Model (DOM) is a WV3C recommendation and is an al-
ternative to using SAXs event based API. Instead of generating events for each

element, a DONI parser creates a model of all the data in the file in memory.
This means the entire document is available to the program concurrently.

The DOM model itself is standardised. The set of interfaces to access the
document elements is a standardised API. The parsing can be accomplished
by a number of different parsers, providing the chosen parser is compatible

with JAXP (Java API for XNIL Processing, see [38]).

The interface to the DOM was designed to be as language neutral as possible.
It therefore, does not use Javas collections classes, for example vectors and
hashtables. Java programmers will be accustomed to being able to use these

objects.

Instead, the document hierarchy is transversed using the classes Node, NodeList

and NamedNodeMap. Most classes in the DOM are subclasses of the Node class.

NodeList encapsulates the child elements of a Node and NamedNodeMap pro-

vides the equivalent of hashtable functionality (value lookup by hash key) for

child nodes.

The programming model provided by DOM is easier to work with than SAX

for complex documents. The downside, due to the entire document needing to

be in memory, is high memory usage for large documents. DOM was chosen

as the XML interface to DUCK; it provided the system to read in application

specific settings and the custom SQL queries.

38

4.7 Databases

4.7.1 Introduction

In this section databases are discussed. They can be considered as collections of

related, structured data. This data can take many different forms, from names

and addresses of customers, to component listings for a particle detector or a

regional re-stocking list for a supermarket chain.

The relational database takes its name from the theories it is built on; relational

algebra and relational tables. It is the most successful type of database, partly
due to Structured Query Language (SQL), we will look briefly at this language

in this section, which is also a data definition language.

Typically, motivations for databases include: -

" Large data sets.

" Being able to handle concurrent user access, either many users reading

the database or managing many users updating the database.

9 Centralising data to simplify management, reduce duplication of data,

manpower and resources.

" Giving different views of the same data, either for analysis or to limit

the amount of data visible to users.

" Transactional processing; the ability to group operations into a trans-

action. If any one of the actions fail the transaction is failed and the

database is left unchanged. If all the actions in the transaction complete

successfully then the transaction is committed to the database.

Database Management Systems (DBMS) are a collection of programs used to

manage a database. The combination of the DBMS and databases is usually

referred to as a database system. Typically, DBMSs possess the following

functionality: -

39

. Restricts access to data. Users may (and often do) require varying levels

of access to data; some users may have read-write access whilst others

only read access. Read access to certain sensitive data may be restricted
to a subset of users.

" Provides data integrity checking via integrity constraints. The most

simple form of integrity constraint is to specify a data type; much like in

a programming language. More complex constraints tend to involve the

semantics of data; somewhat like the schemas described in section C. 2.

An example (in, perhaps, a product shipping database) of this would be

`every order must have a related shipping address'.

" Provides backup and recovery. In the event of hardware or software
failure, recovery of the database should be possible.

Databases and their use at CERN are described in detail in [39].

4.7.2 Types of Database

A description of a database type can be divided into 3 pieces; the data model,

how the data is stored, the Query/ Data Definition Language and the Compu-

tational Model, how data is accessed and processed. Databases can be divided

up into types by the model they use to store data; the data model. The

data model theory has been an important part of the evolution of databases,

examples of database models are hierarchical databases, network databases, re-

lational databases, object databases and object-relational databases. Up until

the 1980's the most common data models were hierarchical and network data

models, subsequently, the relational database model rapidly became the data

model of choice. The relational database is used to provide database services

for projects described in this thesis.

40

Hierarchical Databases

The concept of a hierarchy will be familiar to some computer users as the way
in which Windows Explorer displays directory structures. The hierarchical

model can also be described as an upside down tree. The database has a

root with children branching out from it. Children are linked to parents using

pointers or tree paths. Whilst the hierarchical model is more efficient than flat

files, there are a number of drawbacks: -

" Entities cannot be added to the system unless they fit into the hierarchy.

For example if you structured a database around products and then had

customers as children of these particular products, you could not add a

potential customer to the database as it stands.

" Duplication of data is undesirable; take the example of a customer buy-

ing two products, then the customers would be added twice under each

product.

" In short, hierarchical databases handle one to many relationships, but

not many to many relationships.

Network Databases

The network database attempts to address the limitations of hierarchical databases.

Instead of using hierarchies the network model uses sets to represent relation-

ships, therefore, children can have more than one parent, which somewhat

eases the problems of hierarchical models. The network model can still be

viewed as a tree or more specifically a set of trees that share branches. There

are also disadvantages to the network models, namely difficulties in implemen-

tation and maintenance, resulting in the network model being used more by

programmers than end users.

41

Relational Databases

Relational databases have dominated the database market since their arrival

on the database scene, these are discussed below. The Spitfire project (see

chapter 6) was conceived to allow metadata storage in relational databases.

DUCK (see chapter 8) uses relational databases for storing persistent data.

In relational database theory normal forms provide a set of guide lines, which

prevent data duplication in relational database tables. This helps to reduce
inconsistencies in data and anomalies when updates are made to the database

tables.

There are several normal forms or rules, which are numbered sequentially. The

first normal form deals with the number of fields in each record. It states that

there must be the same number of fields in each record; which is always the

case in relational tables.

The second and third normal forms deal with the relationships between key

fields and non-key fields. The second normal form deals with subsets; it elim-

inates functional dependencies (the definition of functional is quite close to

the mathematical definition). For example, say you had a table with data on

people renting houses. If this table contained the address of the house, as well

as the clients renting, the second normal form says this should be moved to a

separate table.

The fourth and fifth forms deal with multi-values, where there are many to

many relationships.

Object Databases

Whilst relational databases rule most of the database market they are not

ideal for certain niche areas of data storage. Applications such as engineering

computer aided design, software engineering, scientific experiments and mul-

timedia (for example, videos, audio and images), have demands that are not
best handled in a relational database.

42

These types of application tend to have demands for new data types (such as
images), more complex data structures (such as Objects), the requirement for

operations on data, which are demanding on the application and much longer

in durations of the transaction.

To fulfill some of these requirements the object database model is used. These

object databases can model the increased complexity of the above applications.

Object databases are closely linked to object orientated programming languages

(See section 3.3.3). The database can provide bindings, allowing access to

the database from an object orientated language seamlessly. This means the

database almost becomes an extension of the language, providing persistency

easily to the application. Such an ability is important when object databases

are used in software development projects.

Relational database vendors have responded to object databases by developing

extensions for their databases to provide some of the object functionality 'in

their databases. Such databases are known as object relational databases. A

discussion of object management is given in [40].

Object-Relational Databases

Object relational database systems are an attempt by the relational database

vendors to add object-like functionality to their existing relational database

systems. The SQL language has been extended to to provide object query

capabilities. The ISO standard ISO/IEC 9075-10: 2003, SQL Part 10: Object

Language Bindings (SQL/OLB) provides a standardised specification, see [41].

4.7.3 Advanced Database features

4.7.4 Database Connectivity

Database connectivity libraries/APIs provide programmers with a standard-
ised way to access databases, therefore, clients can programmatically access

43

databases using the provided libraries. The two packages commonly used are
Open DataBase Connectivity (ODBC) and JDBC (which is not actually an

acronym, but is commonly understood to mean Java DataBase Connectivity,

see [42]). JDBC is used to provide database connectivity in Spitfire (see section
6) and DUCK (see section 8).

Programming API bindings

ODBC is based on SQL Call Level Interface (SQL CLI). In turn JDBC borrows
heavily from ODBC and hence SQL CLI. ODBC interfaces provide consistent

programming interfaces for different data sources.

The data sources are usually SQL databases, which differ in implementation

between vendors. The client application will see just one interface (SQL CLI,

ODBC or JDBC) that provides access to the data source. All three systems

pass SQL queries to the data source, of course vendor implementations of SQL

differ, so often the libraries have to allow for this. In the core software there are

classes that allow queries to be sent, results to be manipulated and resultant

metadata to be inspected. Differences between the data sources are dealt with

using modules known as drivers or database drivers. Each vendor will release

a driver for their database product. As a whole (combined with the driver) the

libraries will deal with connections to the database, the submission of queries

and handle the results.

ODBC

ODBC was developed by Microsoft, but is an open standard. It is designed

to be language neutral, however in practice tends to be orientated towards the

C language. One criticism of the ODBC API is that it is fairly complex, even

when doing simple tasks with the API. Microsoft ships Windows with ODBC

support. ODBC has been ported to other operating systems including UNIX.

See [43] and [44])

44

JDBC

JDBC was developed by Sun Microsystems as part of Java and hence is Java

based. It was designed to address what Sun saw as the short-coming of ODBC.

The ODBC API was unsuitable for use with Java because it makes extensive

use of pointers (memory location variables), a concept that does not exist in

Java. Also, Sun wanted to provide an easy to use API, but also allowing more

complex tasks to be done.

JDBC has a driver called an JDBC-ODBC bridge; this allows ODBC data

sources to be used using JDBC and Java. The API for JDBC is given in the

package j ava. sql. The package j avax. sql provides an API for server side

processing of data sources. In the package j ava. sql the important parts of

the API are; -

" Connection. This interface represents a session with a specific database.

It enables statements to be created that allow SQL statements to be used

to query the database.

" Driver. This interface specifies the methods that must be implemented

in driver classes. The implementing classes provide a method to connect

to a specific database using a URL, returning a connection object.

" ResultSet Interface. This represents a table of results, in which the data

is constructed in rows, from a database query. The object maintains'a

cursor pointing at the current row. Using the method next() the next

row can be obtained, and getXXX() methods are used to provide access

to the fields (or columns) in the rows.

" ResultSetMetadata. This interface provides metadata on the result set
it was obtained from.

" Statement, an interface that provides methods to execute a static SQL

statement an return the results as ResultSets.

" DriverManager. This class provides services for managing JDBC drivers.

The class can either load drivers on initialization or load them on demand

45

using a classloader. When a connection to a database is requested it

is the driver managers job to find the most appropriate driver for the

connection.

" SQLException. A class providing exception information about any database

error or database connection error.

JDBC and ODBC borrow concepts from each other and are inter-related.

JDBC driver types fall into the following catergories of type I, type II, type

III and type IV (see appendix E).

4.7.5 XML and Databases

When it comes to storing XML in databases there are two main schools of

thought; the use of existing relational databases enabled for storing XML or na-

tive XML databases. Database vendors such as Oracle, IBM and Sybase have

developed extensions to allow XML data to be stored in relational database

tables.

A native XML database is designed from the ground up to store XML data.

This means there is no need to try and map the data from the XML into some

other format. XML databases can be considered as seamless XML storage

entities. XML native databases are ideal if your data is XML and you want to

store and retrieve it as XML.

There are a number of native XML databases available, many of them under

the open source license. The Apache group (authors of the Apache server and

Tomcat servlet engine) produce Xindice[45]; a native XNML database.

Xindices functionality is accessible via a number of methods. There is a com-

mand line tool set, a Java API and an XML RPC plug-in (making Xindice

available from languages other than Java). The query language for Xindice is

XPath and an update language is provided by XML: DB XUpdate. The Java

API is an implementation of the XML: DB API; which is a standardised API

for native XML databases. Another way of working with the Xindice database

46

is to retrieve data and XML documents as DOMs and work with them in that

form.

Xindice organises (or rather the user organises) the XML documents in its

database into collections. These can be nested within each other; hence a
hierarchical system not unlike a UNIX or Windows file system can be built

up. Xindice provides the CollectionManagerService to allow collections to

be added and removed. Version 1.1 has the useful feature of being a web

application, meaning it can easily be installed in a servlet engine.

4.8 Summary

In this chapter a number of key concepts that are used to implement, and relate

to, the Spitfire project (see section 6) and DUCK (see section 8) are introduced.

The importance of metadata is considered, along with the methods that can
be used to structure data. Finally, databases are considered with a particular

emphasis on relational databases.

47

Chapter 5

Cluster and Network

Computing

Clustered and remote computing are discussed below as an introduction to the

large scale fabric used for MAP and other computer clusters. The standard

techniques for controlling such clusters are described along with networking

and distributed application techniques which are also relevant in the descrip-

tion of Spitfire.

Again a distinction is made between the contents of this section and the de-

scription of grid. These techniques and technologies can be applied outside of

the grid environment.

5.1 Clusters

A computer cluster is a grouping of computers connected by a local network.
They operate together as a unit.

5.1.1 Characteristics of Clusters

Typical motivations for building computer clusters and their resulting charac-
teristics are; -

48

" To provide load balancing. In situations where systems have large loads,

such as a web server or database servers, additional machines can be

used to spread the load.

" To provide high availability. For situations where a system must always
be available, for example, if a machine running an e-commerce site fails

then customers will not be able to place orders. Having a cluster of

machines allows other machines to replace failed machine without inter-

ruption to the service.

" To provide parallel processing. A cluster of computers can be for running

computing jobs in parallel. Typically scientific applications benefit from

this approach and quite often clusters are built from commodity hard-

ware. The clusters for this type of application are built by networking a
large number of machines together. Computer clusters for computational

applications is the area this section looks at in more detail.

Some clusters will run many different kinds of software, for example high energy

physics clusters will run jobs with the executable supplied by the user. Some

clusters will spend all their time running the same software application, for

example aerodynamic simulations.

Many HPC applications required a fourth type of cluster, this is a low cost

cluster delivering huge numbers of CPUs often known as a `farm' or sometimes

as a `dumb' cluster. The individual elements of the cluster know nothing, or

very little, of each others existence. MAP is one such example.

5.1.2 Hardware

The fabric discussed here is distinct from that which was discussed in the grids

section; the elements here are operated as a cluster and could form a complete

grid resource in their own right. In terms of packaging, cluster nodes can be

housed in standard tower cases, ̀pizza' box style cases (horizontally mounted,

shallow boxes in racks) or `blades' (vertically mounted thin boxes in racks).

49

Most cluster hardware is commodity hardware. Companies like IIP and Linux

Networx build clusters for customers. They tend to integrate commodity hard-

ware to provide their solutions. Having sufficient cooling is an important con-

sideration for clusters; a large number of machines in a single location will

generate a large amount of heat. At high temperatures (greater than 40 de-

grees celsius) the lifespan of the machines (CPU especially) is reduced or for a
high enough temperature, failure will occur instantly. Therefore, in addition
to the system and processor fans, external methods of cooling are required.

Such methods include air conditioning systems and water cooling systems. In

water cooled systems the water is used to exchange the heat from the location

of the machines to the external environment.

5.1.3 Cluster Interconnect

Machines forming a cluster need some form of interconnection; this is provided
by a network. This network consists of wiring (or transceivers in the case of

wireless) and a switching mechanism to route traffic. When large numbers

of machines need to be interconnected with switches, the performance of the

switches is critical. Therefore, the network for a large cluster tends to be based

around high-performance switches with the capacity to handle the network
traffic. Companies such as ForcelO[46] provide high performance switches.
The network performance in some computing jobs is critical if there is a lot of
interprocess communication.

Many clusters are starting to use gigabit ethernet as the price continues to fall.

5.1.4 Storage

Often there is a requirement on clusters for centralised storage. Having shared

storage simplifies storage management. Some examples of storage schemas

are:

. NAS - Network Attached Storage

50

" SAN - Storage Area Network

" DAS - Direct Attached Storage, storage that is not networked, this terili
is to differentiate this type of storage from the two above.

SAN accesses data by using a lower level than files; it works at a block level.,

Many SANs implementations use the Small Computer System Interface (SCSI)

communication protocol to access data over the network.

There are various ways of implementing SANs; the most common is using SCSI

commands over a fibre channel network. A variation on this still uses the SCSI

command set but transmits over a TCP/IP network. This is known as iSCSI.

Finally, ATA Over Ethernet (AOE) uses the Advanced Technology Attachment

(ATA) protocol over a raw ethernet protocol.

NAS is a cheaper alternative to SAN. Instead of working with blocks NAS

works at the level of files. Examples of the protocols used by NAS are Network

File System (NFS) and Server Message Block (SMB). Microsoft reimplemented
SMB as Common Internet FileSystem (CIFS) see [47]. The respective merits

of NAS and SAN are discussed in this reference [48].

NAS works over a Local Area Network (LAN) instead of having a dedicated

network for storage. This reduces costs.

5.1.5 Cluster Management

Fabric management is an important aspect of clustered computing, involving

the installation of software and the monitoring of the cluster.

Installation of software on a cluster of many tens of machines requires an auto-

mated installation and management system. The man-power costs of installing

software on machines on a machine-by-machine basis would become prohibitive
for large clusters.

Software is required to manage the submission of jobs to a cluster. Such soft-

ware might take into account current load on the cluster, estimated job times

51

and priorities specified by policy. Such software is known as Job Scheduling

software.

For jobs that are executing the status needs to be monitored and feedback

given to either the person responsible for the cluster or the end user. Feedback
for why a job has failed is especially important.

When a job has finished running there must be software to manage the output
of the job. Such output can be substantial.

On a computing cluster or a batch system a job scheduler provides the following
functionality; -

9 The abilities to define work flows and dependencies via interfaces

9 An automated submission system

9 The ability to monitor submitted jobs

Queues for unrelated jobs submitted to the system that prioritise execu-
tion of the jobs

Portable Batch System (PBS) (see [19]) is one example of a job scheduling

system. Developed by NASA in the 1990's its function is to schedule jobs on

networked Unix and Lunix systems.

Open PBS offer two versions of PBS software; an open source version and a

commercially licensed 'professional' version. The professional version is pro-

moted as having better scalability with large numbers of CPU's (more than

100's) and coping with high usage. Support for Windows and Mac operat-
ing systems, better scheduling, fault tolerance, job accounting and support for

computation grids are features of the commercial version of PBS.

Probably the most important quantity that needs monitoring for a cluster is

the temperatures of both the CPU and system. The unwelcome consequences

of high temperatures are discussed in 5.1.2. Monitoring software should be

able to acquire temperature data from the machine chassis, aggregate values
from all the machines in the cluster and finally respond accordingly. In some

52

cases, mainly at high temperature, the response is to shut down the cluster to

prevent damage through over-heating.

Currently there is no one 'killer application' for cluster management. For

small clusters (40-80 machines) open-source software such as Oscar (see [491)

and Rocks (see [50]). Large clusters of machines can be trickier to run.

5.2 Principles of a Computer Network

Networks allow computers to communicate with each other. Connections be-

tween machines allow information to be exchanged between them. The con-

cepts covered in this section are relevant to Spitfire and DUCK. The interface

between MAP and DUCK is a socket-based connection protocol. Both projects

were structured as web applications and have multiple tiers.

5.2.1 Packet Switching

Most modern computer networks use packet switching. The description of

which is best given by quoting Paul Baxan's US air force study (see [51] for a
list of some of the author's publications); -

"Packet switching is the breaking down of data into datagrams or

packets that are labeled to indicate the origin and the destination

of the information and the forwarding of these packets from one

computer to another computer until the information arrives at its

final destination computer. This was crucial to the realization of

a computer network. If packets are lost at any given point, the

message can be resent by the originator. "

Packet switching networks were developed by the US Department of Defence

and are designed to be decentralised and have the ability to function if part

of the network was disrupted. The result was Transport Control Protocol over

53

Internet Protocol (TCP/IP). TCP/IP makes It possible to connect heteroge-

neous networks together to form internets. It acts as a common foundation on
top of which protocols such as TeInet, UDP and FTP are built.

5.2.2 Sockets

The abstract concept of sockets is taken from the UNIX operating system and
has appeared on the majority of modern operating systems. A socket is a

programming interface that isolates the developer from the low level imple-

mentation of TCP/IP stacks.

Sockets are 'handles' to links that allow communication over a network to a
remote application.

For TCP sockets (sockets that use the TCP/IP protocol) the following infor-

mation is usually required: -

. The IP address of the remote system

9 The port number on which the application is responding

" The IP address of the local system

* The port number the local application is bound to

There are two flavours of socket; client sockets and server sockets. Client

sockets form connections to server sockets, which are created to listen for

client connections. Once a client connects to the server socket another socket
is created to handle that clients request. In that way the server socket is left

free to listen for more client connections. Once connected, streams of data, for

example bytes and text, can be read and written to and from the connections.

5.3 Layered Model

The TCP/IP architectures divides, broadly, into 4 layers; the link layer, the

network layer, the transport layer and the application layer. Each layer has

54

a particular function. The link layer can be further expanded into the data

link layer and physical layer. The application layer can be expanded into the

session layer and presentation layer.

5.3.1 Link Layer

As stated the link layer can be sub-divided into 2 more layers; the physical layer

and data link layer. The physical layer is concerned with sending the bit stream

across the network; it provides the hardware for sending and receiving the

data; this includes cables, interface cards and other related issues. Examples

of such low level protocols are ethernet, token ring, ARCNET, FDDI and
Asynchronous Ransfer Mode (ATM).

The data link layer is concerned with the format of messages exchanged over
the network. In this layer bits are decoded and encoded into data packets, the

layer also handles physical errors that arise in the physical layer.

5.3.2 Network Layer

The network layer allows information to be transmitted to any machine on

a connected TCP/IP network, even if the physical properties of the two net-

works are different. Internet Protocol (IP) transmits data within the layer.

Switching and routing axe implemented in this layer, along with mechanisms

to control packet sequencing, congestion, error handling, addressing and ma ny

other functions.

5.3.3 Transport Layer

The transport layer provides network applications with a transparent means to

transport data over the network. To do this, clearly defined channels between

hosts are provided. Depending on the protocol end to end error recovery may
be provided. Examples of transport layer protocols, in the TCP/IP suite, are

55

the aansport Control Protocol (TCP) and User Datagram Protocols (UDP)

protocols.

5.3.4 Application Layer

This layer provides applications with the means to communicate. All function-

ality in this layer is application orientated. Architectures for tiered network

applications (see 5.4) are part of this layer. The layer can have session and

presentation (Syntax) layers introduced as the lower layers.

Examples of protocols in this layer are HTTP (Hyper Text Transfer Protocol),

FTP (File Ttansfer Protocol), and Telnet.

5.4 Tiered Models

Web applications and network applications tend to be split into tiers. A tiered

architecture means that the functionality of the application is spread across

multiple tiers, which could be running on separate machines. The most well-
known is the client server model.

There are other models of network computing, examples being; -

Mainframe. Centralised computing. All the computing power resides

on the mainframe. Clients are dumb terminals that display output and

capture input only.

o Peer to peer (file sharing). No machine has overall control and machines

can initial requests or service requests.

5.4.1 Client-Server Model

The client-server model is the most basic form of network application model.
It involves having a server that serves a number of clients. The client-server

model is a two-tiered architecture. During typical operation the client program

56

I
makes a request to the server program, which the server program responses b. ý

f
servicing the clients request. Although a client server program pair can be -set

up on a single computer, client server applications usually run across networks!
9

Server programs sit and listen for clients to connect. Software components'-

often referred to as daemons are used to listen constantly for connections.

5.4.2 3 Tier Model

The 3 tier model was devised to overcome several limitations of the 2 tier

model. In a two tier system heavy processing on the client may generate large

amounts of network traffic. Futhermore, the two tier solution has problems

when it comes to maintenance; even small changes require a re-deployment

right across the user base.

The advantage of the 3 tier model is that it uses well-defined interfaces' to

break the application up into a3 tier/layer architecture. The tiered structure

comprises of, -

* Presentation logic tier. Often a Graphical User Interface

9 Application logic tier. Also known as the business logic.

9 Data logic Tier. Contains the data source for the application which is

often a database.

5.4.3 Multi-tiered Model

Although the three tiered architecture solves many of the maintenance, per-
formance and network traffic problems. It results in 'stove pipe' solutions;

meaning that the different solutions do not communicate with each other.

The n-tier architecture aims to solve this problem. By defining multiple appli-

cation objects instead of the middle tier, we arrive at an n-tier architecture. '-

57

The application objects communicate with each other by using interfaces.
With the middle tier defined in this way, multiple applications can be built up
re-using the components in the middle tier.

5.4.4 Web Application Model

The architecture of a web application tends to follow the 3-tier architecture,
the tiers being as follows: -

* Presentation Layer, which includes the browser and web server. This is

because the web server is responsible for turning the data into a pre-

sentable format.

9 Application Layer. A program (or script) that provides the functionality

of the application.

9 Data Layer. This layer provides the second tier with the data it needs.

5.5 Content and Service Delivery Mechanisms

5.5.1 Web Servers

A web server, in the hardware definition, is a machine that handles web re-

quests. In software terms they are daemon programs (see section 7.4.3)

These requests are HTTP requests, which request for web pages (or indeed

many other documents as defined in the MINIE standard media types [52]).

A client (user using a web browser) is responsible for generating the request.
The response to the request is to return the document that has been asked for.

Clients make their requests in the form of a Uniform Resource Locator (URL),

which is better known as a web address; for example, http: //www - cern. ch/.

The most popular web server software is the Apache Httpd package, [531.

58

5.5.2 CGI

The Common Gateway Interface (CGI) addresses the issue of providing inter-
ýýIr

active or dynamic content. It provides a standard for allow web servers to pass
I

requests to executable programs running on the server. In this way requests
I

can be serviced with program executions and output and not just static HTML

pages.
11 The program executed in the process of a CGI call is run on the server in a

similar way to any other program. The CGI acts as a gateway to the programs

you wish to make available. CGI can take the form of programs, which need

compiling first and scripts which just need to reside in the CGI directory. The

programs/scripts can be written in any language that will run on the system[

Perl is a popular choice.

When a web server receives a request that requires a CGI call a number of

processes are started. Firstly, the web server creates a process in which the UU1

program/script can be run. Any runtime environment and the program/script

itself can then be started. The request is passed to the program/script ill

the form of an environment variables such as QUERY-STRING and PATH-INFO,

as opposed to command line argument. The program/script is then run with

these parameters and the response from stdout is returned to the user.

A big problem with CGI is scalability. Due to the fact a new process is created
for each request a large number of requests could easily swamp a system.
Solutions have been created to shared single instances of programs, which

eases the problem. Programs running on the server give rise to a number

of security issues. To resolve these issues, precautions such as running CGI

programs/scripts in a designated folder and not displaying them to the user

are taken.

59

5.5.3 Servlets

Servlets are Java programs. Java provides a number of ways to deploy code, the

reader may be familiar with some or all of them see section 3.3.6. Java servIcts
are just one of many ways to deploy Java code. Servlets provide advantages

over traditional means of providing interactive and dynamic content on the

web; -

9 efficiency, the threading model allows concurrent requests to handled

efficiently.

" Platform independent (like Java).

" have access to the Java API, providing a rich API of database access,

JavaBeans, XML, CORBA, etc.

9 Servlets don't just have to return HTML. They can return a whole num-
ber of formats including images, zip files, audio clips and binary files.

Servlets are made available to the outside world by deploying them in a servlet

container or servlet engine. The servIet container is responsible for initialising

the servlets, communicating requests and responses to the client and providing

a framework of infrastructure for the servlets. To that ends a servIet container
is built around a Java Virtual Machine (JVINI) and possesses the ability to

handle network requests from clients.

Typically services such as database connectivity and XML processing are avail-

able to servlets in a servlet container. Servlet containers can support Java

Server Pages (JSP) as well as servlets. JSPs are web pages with nuggets of
Java code embedded. The pages are processed and compiled the first time

they are requested. Tag Libraries can be used in conjunction with JSPs to

help their reuse.

The servlet API is a package of classes and interfaces for producing servlets.
The package provides interfaces and abstract implementations of servlets so

that the servlet programming is not concerned with such tasks as creating

60

I

network sockets etc. Amongst other things, the API provides two abstract
implementations of the interface servlet; one is a generic servlet which allowi

servlets that communicate with various protocols to be written and the other
is the HttpServlet, which allows more HTTP-specific servlets to be writtel

-I Indeed the whole API is divided between javax. servlet with classes''and
,I interfaces for more generic servlets and a javax. serviet. http for HTTP,,

servlets.
I A servlet has a life cycle, which is dependent on the servlet container ad

defined by the javax. Servlet-Servlet interface. The servlet container is-- I 'P
ultimately responsible for the creation and destruction of servlets.

The life cycle of a servlet is typically as follows; -

* The servlet container initialises.

If the web application configuration says the servlet should be loaded on

startup, an instance of the servlet is created.

Otherwise, the servlet engine waits until the first request before an in-
ýI

stance of the servlet is created.

The inito method is called on the newly created instance. Here the

servlet can perform any tasks it needs to do once to prepare itself for

handling requests. The tasks may include loading configuration infor-

mation, creating database connections etc.

When a request is made to the servlet, the serviceo method is called.
This allows the servlet, to service the request. The inito method is

guaranteed to have been called before any serviceo requests are made.

Before destroying an instance of a servlet, the destroyo method is called.

9 The servlet is then marked for gaxbage collection

In theory the life cycle could be performed for each request, although this

would be very inefficient. A better approach is to create an instance of a

61

servlet and reuse it to handle requests. ServIcts tend to be destroyed when the

servlet container is shutdown or the servlet has not been used for a while.

In the event of the serviceo method being called whilst the servicing of the

request is already in progress, the servlet container will create another thread

of execution. This means servlct code has to be what is known as thread safe.

In practice servlets do not create a new thread for each new concurrent request.
Instead a pool of servlet instances is created and requests allocated an instance

from the pool.

Servlets do not tend to be deployed on their own. Most applications are built

from a number of servlets, each servlet performing a particular task. Web

applications are groupings of servlets.

A web application consists of; -

"a root folder.

* the servlet classes and other non-servlet classes under the folder /WEB-INF/classes.

*a file web. xml under the folder /WEB-INF/. This file describes the servlets
in the web application and their mapping to URLs.

9 Other content, such as static web pages and images.

Web applications can be deployed as a collection of folders or as special -WAR
files. WAR files (or Web ARchives) are similar to jar and zip files and contain

the web application. The servlet container unpacks the war file when it deploys

the web application.

5.5.4 Web Services

Introduction

Often it is required that the concepts of component based computing are scaled

up to the network. On intranets and internets applications often access soft-

ware on remote machines. This technique is known as a Remote Procedure Call

62

(RPC), see section I. Being a popular method of implementing client-server
solutions, there are many implementations of RPC. The RPC model is com-
plicated because of the possibility of heterogeneous models of computing; the
RPC calls may be a computer of different hardware or even running a different

operating system. Web Services are to address many of the problems of the

existing RPC methods. They do this by, amongst other things, using exist-
ing technologies (XML for the encoding scheme, as visited earlier), decoupling

from programming languages, transport protocols and environments and most
importantly providing an open standard.

Motivation

The short-comings and lack of adoption of existing protocols provided the

motivation for web services. There have been a number of different RPC

style technologies, all possessing some failings to a certain degree. Some RPC

style technologies end up being tied to one particular platform or language,

limiting their use and up take. Other protocols are inherently connection
based and can not handle network disruption. Another major problem with
the transport protocols is connecting through networks. Often RPC protocols

use non-standard ports which tend to get blocked by firewalls in the increasing

security conscious corporate intranet environments. Such problems have often
lead to software vendors building their own infrastructure to support RPC.

This is obviously an undesirable situation.

We now have the motivation for a set of standards that try and solve the

problems above in a widely accepted fashion.

Architecture

The web services standards are considered to be composed from five technologies; -

* Discovery Mechanisms

63

* Description Mechanisms

9 Messaging structure

" Encoding

,p aansport Protocols.

The first three technologies provide the core architecture for web services.
They are XML based and hence, not tied to any one programming language.

A client needs to discover what services, offered by providers, are available to
it. Universal Description and Discovery Integration (UDDI) provides a central

mechanism for clients to match their requirements with web services. Devel-

oped by a consortium of large technology industry companies; UDDI uses a

centralised, hierarchical directory mode to implement its services. DISCOvery

of Web Services (DISCO), in contrast provides a less centralised model for the

discovery of web services. Both UDDI and DISCO use XML.

Web Services Discovery Architecture (WSDA)[54], provides an architecture to

perform the same functions in a grid environment.

Using discovery mechanisms an end point for a web services can be resolved.
The client then needs to work out how to interact with the web service. Put

basically once a web service is found, the client then needs to work out how

to use it. Web Services Description Language (WSDL) provides a means to

do this. Based on XML, WSDL documents are a layer on top of the schema
describing a web service. The provided web service is effectively documented

by the WSDL document. The syntax of a NVSDL document is as follows; -

the definitions element is the root element of the document and uses the

WSDL namespace, allowing entities to be defined.

4P types elements allows the types of the data used in the web service. The

default system to define types is XNIL schema.

the message elements associate the message with its definition in the

schema.

64

e port7ýpe describes which interfaces in the software the web service can
expose

binding links the portTypes to a particular protocol, for example the

SOAP protocol.

service defines the endpoints exposed by the web service, for a web service

using the SOAP protocol this would be a SOAP address.

Simple Object Access Protocol (SOAP) is fairly central to web services; it is

one of many RPC style communication protocols. This begs the question why
has another protocol been concocted for web services? There are a number of
reasons; -

SOAP is transport protocol agnostic, meaning it does not require any one

particular transport protocol to provide the mechanism to transfer SOAP

messages. Therefqre SOAP can use any number of common transport,

protocols. A popular choice is HTTP, but STMP and many others may
be used.

SOAP has no tight coupling to any programming languages. This is be-

cause the SOAP specification does not define an API. The API has to be

specified by the programming language or platform making and receiving

the SOAP messages. Being XML part of the functionality required to

specify and implement the APIs required is provided by modern program-

ming languages. Indeed, there are a number of SOAP implementations

for the popular modern programming languages.

SOAP is not trapped on any one particular platform. SOAP-based web

services can be deployed on Linux, Windows, UNIX, etc. boxes.

Web services use XML for encoding, which is character based as opposed to

being a binary format. XML provides a cross-platform format which supports

most (if not all) character sets. By not using a binary encoding schema binary

65

issues such as big and little endian data are avoidedl. Using XML means data

is processed by the wide range of parsers available on many platforms.

SOAP describes, in its specification, how SOAP messages should be trans-

ported over HTTP. However, SOAP is not limited to HTTP as a single trans-

port protocol; any way an XML document can be transmitted over the net-

work is available as a possible transport protocol. Another popular choice for

a transport protocol is Simple Mail Transfer Protocol (SMTP).

WSRF

Web Services Resource Pramework (WSRF) can be thought of as the conver-

gence of web services with grid computing. WSRF improves on web services by

introducing the standardised notation of stateful-ness; a concept not present
in web services. Web services often allow users to access resources which have

a state; meaning between requests to the resource values, variables and data

structures, persist. However the concept of state is not explicit in the defini-

tion of web services. WSRF is designed to address this issue. A WS-Resource

is defined as a stateful. resource accessed by a web service. So in WSRF each

service has a resource object to stored variables. The stateful. resource should
be: -

expressed in an XML document which gives the type which will have a

web services portType associated with it.

The resource should be accessed in a fashion consistent for the resource

pattern. This means using WS-Addressing for the end point references.

The WSRF framework is divided into 5 specifications, which are listed below; -

o- WS-ResourceLifetime

o- WS-ResourceProperties

'Big endian and little endian refer to the different ways numbers are stored in the ma-

chines

66

9- WS-RenewableReferences

9- WS-ServiceGroup

fo - WS-BaseFaults.

Globus (see [14]) provides a Java and C implementation of WSRF in its Globus
Toolkit, the aim being to express grid services in terms of WSRF. This makes
it easier to use mainstream technologies such as WSRF in grid and also makes
grid more attractive to mainstream computing.

Hence we have come full circle and arrived at grid from more mainstream
technologies as opposed to arriving from an almost theory based direction.

5.6 Summary

Has the grid superseded the cluster? No, clusters are still valuable resources
that complement the grid. They offer a concentrated pool of processing power
that can be seen as a 'grid resource'.

Clusters tend to be localised in one room, as opposed to being distributed, and
have homogeneous hardware and software. They also tend to be administered
by a single administration and have a (normally) fixed number of processors,

such as disk pools. This means that the middleware for running a cluster is

simplified compared to the middleware for running a grid.

Some schools of thought might classify clusters as a special case of grid. The

two should perhaps be seen as complimentary resources for providing comput-
ing power.

The concepts of computer networking and structuring of applications have been

introduced in this chapter. Socket based communications and the underlying
infrastructure provide a means for communication between computer systems.
The tiering and structuring of distributed software allows it to be more easily
developed and deployed and also helps the scalability of the finished solution.

67

Chapter 6

A Web based browser for

Spitfire

6.1 Introduction

This chapter discusses the writing of a -vveb-browser based element for the

Spitfire project; part of the EU-Datag7id project[55]. The EU-Datagrid is a
European Union funded project aimed at producing a grid (see chapter 2) and
hence, an E-Science infrastructure for the European science community. The

EU-Datagrid project was brought to completion in March 2004, 'with Enabling

Grids for E-Science (EGEE) [71 continuing where it left off.

The EU-Datagrid is divided into 12 work package groups; -

o WP1 Work Scheduling

o WP2 Data Management

9 WP7 Network

9 WP8 Particle Physics

9 WP3 Monitoring Services

9 WN Fabric Management

* WP5 Storage Management

* WP9 Earth Observation

* WP10 Biology

41 WPll Dissemination

e WP6 Integation Testbed and

support * WP12 Project Management.

68

Work Package 2(WP2) is associated with data management on the grid. This

involves information resources such as large databases. The aim of WP2 is to

provide grid-enabled access to large amounts of structured information. This

work package handles such issues as ease of use and transparency, along with
the heterogeneous nature of resources and the scalability of datasets of order

of peta-bytes.

The WP2 group has tackled these challenges by studying the above issues

and producing and deploying software solutions, typically in the form of grid

middleware(see 2.4). Areas tackled by the WP2 group include; replication,

metadata storage, security and optimisation. The software solutions produced

are, amongst others, the EDG Replica Manager, the RLS Replica Location

Service, the Replica Metadata Catalog, the Replica Optimisation Service, the
OptorSim and the Spitfire Client and Server software.

Spitfire needs to access relational databases in a scalable, secure, transparent

way that allows for heterogeneous resources.

The Spitfire middleware consists of client and server modules. On the server

side it takes advantage of the existing relational database connectivity provided
by JDBC (see 4.7.4). This means the Spitfire server component can, in theory,

talk to any JDBC enabled relational database.

The connection protocol from client to the server is provided by SOAP (see

appendix 1.6). The functionality provided by Spitfire is a set of definable

database operations. Which operations are available to a user depend on their

privileges.

The implementation of the Spitfire project uses existing software components

where possible and writes new components to provide the 'glue' to bind ev-

erything together. Existing packages used in Spitfire include Apache AXIS for

the SOAP Implementation (see appendix 1.6) and MySQL relational database

as a database back-end.

Java and C/C++ client APIs are provided by Spitfire to use the services it

provides. This means that clients can be programmed by developers in the

69

Java and C/C++ languages. Security is transparent, meaning the developer

only needs to worry about importing the correct packages or linking the correct
libraries and then using them. Typical Spitfire queries only involve a few lines

of code.

The Spitfire API for Java is split into 3 interfaces, Spitf ireCore which pro-

vides the core interface for Spitfire, Spitf ireInf o which is a database informa-

tion service interface and Spitf ireAdrain which is a database administration
interface. Applications axe able to use Spitfire by writing code that calls the

methods in these interfaces.

There are two main alternatives to Spitfire that I will discuss, these are SRB

and OGSA-DAL

The Storage Resource Broker (SRB)[56] has been developed by San Diego Su-

percomputing Centre and is often used in conjunction with Afetadata CATalog

(MCAT). It provides middlewaxe for accessing heterogeneous data sources over

networks. SRB has a wider scope than that of Spitfire, which is designed to

handle only relational databases. The storage systems SRB can access include

HPSS, UnirIYee, ADSM, Unix File System, NT files system, Mac OS X File

System and databases. SRB also supports a wide range of APIs for program-

ming languages including C, C++, Java and Python.

The Open Grid Services Architecture and Data Access Initiative (OGSA-

DAI)[571 is an open-source collaboration between industry and academia. It

allows access to structured data in both relational databases and XML data

sources. The middleware is based on the Globus Toolkit and is very much grid

services orientated.

OGSA-DAI reuses existing standards and technologies to provide a grid data

service. These standards include OGSA, Java along with existing transport

and query protocols. The abstractions behind the grid data service allow

different data sources to be used, such as Xindice an XML database by the

Apache Project[45], MySQL relational database[58], Oracle relational database

and DB2 relational database.

70

Over the two solutions discussed above, Spitfire has advantage is being rela-
tively lightweight; there are a minimal number of components that need in-

stalling to 'gridify' a relational database. It does, however, have the downside

of only supporting relational database; however, this may not be a problem
for some applications.

6.2 Spitfire Web

The result of my project to produce a proof of concept web (http/html, see
4.6.3) based interface for administration functions in Spitfire is Spitfire Web.

It is middleware allowing a web browser to be used as the client. The Spitfire

API is implemented in Java; therefore the most appropriate form for a solution
involves the Java programming language. Furthermore Java can be used to

produce web-enabled output in the form of servlets and JSP. My solution
initially involves servlets and the planning for the possible use of JSP later.

JDBC is the initial interface directly to the database, cutting out the SOAP

layer. Later, with the use of SOAP, the Spitfire API will be taken advantage

of. In its final form the web application can act as a tier in the Spitfire system.

In terms of functionality, this web application should provide 'drill down' views

of the database host, databases, tables, and examples of data contained in the

table. For correctly authorised users manipulation of the database structure

is possible, for example, the ability to create and drop columns, tables and
databases. Users should also be able to browse the database host using a series

of web page requests. This means the web application has a requirement for

persistency between these requests to keep track of information like which paxt

of the database is being browsed, which user is browsing and so forth.

In the finished system a servlet (see 5.5.3) is used to provide the user with

the ability to browse the system using a web browser. JDBC (see 4.7.4) is

used to provide direct connectivity to a relational database for testing. An

alternative implementation using SOAP (see 1.6) has been started. Details of
both connectivity solutions can be seen in the following section.

71

6.3 Implementation

In this section a number of specific problems that were encountered and their

solutions are described. The browser is written as a single Java servlet (see

5.5.3) and packaged as a web application for ease of deployment. Aside from

the servlet, the remainder of the source code for the solution is split into 9

classes and 1 interface.

The single interface Spitf ireConnectionLayerBasic defines the functionality

of the servlet. Beneath this interface two implementations are planned, the

test JDBC implementation and the SOAP implementation.

HTTP is a stateless protocol, meaning no information is retained between

requests from the client. The database browser has to maintain a certain

amount of information between page requests. This information includes the

user that is browsing, the host they are logged into, the database in the host

they are using and the table in the database.

In addition to this information, we need to be able to send information request-

ing certain actions be carried out. These actions might be requests to navigate

to views (databases, tables, details of tables etc) or requests to drop/creating

databases and tables.

There are a number of well-known ways that provide state or persistency for

HTTP which are cookies, server side session management, hidden forms and

URL rewriting.

The chosen solution is to encode the parameters into URLs; this is known as

URL re-writing. Each link in the web page has a set of parameters encoded

in the URL, these axe appended after aT symbol at the end of the URL.

The parameters are presented to the server when the user clicks the link. This

means the page sent to the client has to have all its URLs appended with

parameters for requesting actions. There are a number of classes to handle the

encoding and decoding of these parameters as they were exchanged with the

client.

72

flacrIffrrr 1flTh.
r.. * P. t$. k ms. �

�

- 'a. �a oAc .J �s, I »tI - MS. "J)t. Q

Login, Spitfire Admin

Parametors

Figure 6.1: The wel) page which allows users to log into Spitfire Web and

spccif. v the database to use.

73

ISIM-Mll

AI lk

I fto..

Figurc 6-2: A web page showing the databases ill the host the user is colmocted

to.

74

Lbr7rrrrrr! --nn-r-rrnr 'lrrr
r. . y- '

'I..

Tables in Database, Spitfire Admin

Uot., in- a, t ", IL Dmp Tablo

"M I of Jýbs CL4ajnjabs Drop Table

-1-tai I otj&g3 DoluorO5 Dp T&I.

I L". WýI Qf QI Data in al Omp Tab*

'ý "la I of q2 Datain Q DMp Tabl.

ýýAa I rt%jyj-Q L)O?
_Ln

queryinto Dp Tabl.

Data in smion Dp Tabl.

-r)etal of S'les Data in siles Dp T"

Dq(ed of sgMia Ugs in spytha Omp Table

-"t,) I , re, c Uat,, r,, ýwý Omp TbW

Cmaft TW.

l, ' SPAIýd-

Figure 6.3: Web page showing the tables in the selected database.

75

Fl*ld, CHAR

domain

lp

Name

Typo. NUR, Key, Defauk EtlL
CHM CHARCHARCHAR CHAR

ýwchd, 125ý) Nl' 1A

wchM255)YES nus

"ýhaql5j As

Create Table Cokamn

Figure 6-4: A web page showing (let ails of a scicci ed

6.4 Classes and Interfaces

This section I'(), " the classe's and ilitcIA'aces build 111) the Nvel) appili-

cation. The components of the web application are housed in a single package

which has the 'naniespace' org. edg. data. spitfire. WebBrowser. This fits

ilito the naiiiing sclicnic adopted bly the Spitfire project, and indecd the rest of

the EDG project.

Figure 6.5 illustrates the way in which classes withill the package relate to

each other. The SpitfireConsoleClient is a servIet that is the user in-

terface to the system. SpitfireConnectionLayerBasic is an interface that

Spitf ireConsoleClient uses. This interface is to make the package phig-

gable between implementations that act as the blisilless logic. HTMLLogic uses

SimpleHTMLPage and HTMLTable to create the HTNIL output that

Spitf ireConsoleClient out puts. URLStringDecoder and URLStringEncoder

are for reading and writing dita into the URI- ilcting as I persistelaw

anism.

76

SpitfireConsoloCilent I' <<Spftfir&ConnectfonLayerBaslc>>

HTMLLogic

I URLSbingDocoder I

I URLStringEnccWer I

JDBCSpifirelmpl

""-. FSC ýAýPS;
*flre mpl

SlmpleHTMLPage

HTMLTable

UiTLab7el

Figure 6.5: How the classes in the package relate to each other.

6.4.1 HTMLLogic

The HTMLLogic class provides a wide range of functionality. It encapsulates
the logic for producing HTML pages; the user interface for the web applica-
tion. There are methods for outputting web pages for various situations and

presenting different types of data. Examples include, presenting database ta-
ble data to the user, getting the user's input and providing feedback. Various

snippets of Javascript that provide functionality for the web pages are also

generated by the class.

There are a number of items need that need to be passed to the constructor
to create an instance of HTMLLogic. These items are stored using the keyword

'final' inside the class, rendering them immutable. This means they cannot
be replaced with new instances for the lifetime of the HTMLLogic instance,

therefore the values passed to the constructor are retained for the lifetime of
the instance of the class. This behaviour was considered appropriate for the

instances.

The items (instances of these classes) are

URLQueryStringMaker- an instance of the class which makes query strings,

see the section 6.4.7.

77

String (servletPathToSet) - the path of the servlet as a URL.

String (imagesPathToSet) - the path of the images to include in the

outputted web pages.

String (styleSheetPathToSet) The path to the CSS-compliant stylesliect
that is used to specify the appearance of the outputted web pages.

The constructor also makes a call to the System. getProperlyo method that

retrieves the line separator for the platform the web application is running

on. This is a more portable method than simply hard-coding newline char-

acterS into the program. The getPropertyo method uses the property key

line. separator to return the platform-specific line separator.

The doPageo method is private, meaning it can only be called by other meth-

ods within the class. It produces the HTML source for a web page using the

arguments supplied to it, resulting in web pages have a standardised look and

feel. The method returns the HTML source for a web page encapsulated in a

string.

The outputted page consists of various elements, see the figures 6.1,6.21 6.3

and 6.4. One of which is a corner icon; a small image placed top left of the

page, which can represent the database or the database table. Below this icon,

on the left 25% of the page is a pane, which contains contextual information

and help. In the remaining 75% width of the page to the right is a grey title

pane, a navigational bar and the actual content of the page. A page footer

runs across the bottom of the page. The title bar shows the same title as the

window title. Links to other pages are given in the navigational pane which

changes depending on the web page.

The method requires the following parameters; -

9 The page title as a string

e The HTML for the navigation line (as a string)

e The path inside the web application file system to the corner icon

78

" The HTML for the main contents of the page (as a string)

" The HTML for the help pane (as a string)

" Any Javascript that needs including (as a string).

The method make TablesDetailsPageo produces a detailed view of the re-
quested database table as a web page (see Figure 6.4). Embedded in the

page are links to navigate back up to the enclosing database and host. The

method doPageo helps put together the whole page in a standard format con-

sistent with other web pages produced by the web application. The resulting

page also has options to drop and create columns. Column details needed to

create a column in a database table are; the name of the column, the column
type and the column qualifier.

The method makeLoginPageo creates a login page, allowing the user to log into

the web application (see figure 6.1). The method uses doPageo to produce the

page in a standardised fashion. The output is a web page that contains a form

in which the user can enter their login details; the host, the user that is logging

in and their password. The form to enter the login details is displayed on the

majority of the page. Down one side of this is a pane displaying instructions

for logging in. This information is loaded from a static file using the method

readPageo.

These details are then passed back to the web application using the POST

method; which transmits data as plain text over the network. This method of
transmitting the details is not secure and would need changing for a production

system.

The method make Tables ViewPageo creates a page showing every table in a

given database (see Figure 6.3). It is also responsible for creating the links from

the page so the user can navigate to the tables contained in the database. The

page presents options to perform various actions on the database and the tables
located in it. The tables in a given database are listed on a table per row basis.

Each row has two links associated with it; one to show the detail of the table

and another to show a sample of the data in that table.

79

The outputted web page has a 'Drop Table' button on each row together with
the description of the table. The detail required to drop a database tablc is

simply the table name. A Javascript dialog will ask the user to confirm that

they wish to delete a given table. The confirmation that the action has been

performed is displayed in a new window, which the user can close.

A new database table can be created by clicking the 'Create Table' button

located at the bottom of the web page. A Javascript dialog prompts for a

name for the new table. Once the table has been created a confirmation

message appeaxs in a new window.

Above the table displaying the list of database tables is a navigation bar with

links to go back to the host (the list of databases in the host) and a link to

refresh the current data. Along the side of the web page is a panel giving the

user instructions and information, which is loaded from a static file using the

method readPageo.

The method makeDatabasesViewPageo creates a page that shows all the

databases in the host (see figure 6.2). A database is listed on each row, with a
link to navigate to it and a button ('Drop Database') to delete the database. If

the user decides to click the button to remove a database, a Javascript dialog

prompts for confirmation before the database is removed. There is also a but-

ton to create a database, this is situated at the bottom of the page. Clicking

on this button produces a Javascript prompt asking for a name for the new
database, with confirmation of its creation given in a new browser window.
Above the table row listing the databases in the host there is a navigational
link to refresh the page. The page may need to be refreshed after databases

have been created or deleted. Along the left side of the page is a pane provid-

ing help and instructions for the user. This information is loaded from a static
file using the method readPageo.

The final html is produced using the method doPageo.

A number of methods were produced to generate Javascript functions for place-

ment in the web page source code. Whilst having the Javascript in the source

code is a little inelegant, parts of the generated Javascript are needed to be

80

changed at runtime. The makeDropJavaSc7ipto method produces Javascript
for dropping databases, tables and columns.

The method makeNewCoUavaScripto makes the Javascript for the creation

of new columns.

The method make CreateJavaScHpto creates a generic Javascript from prompt-
ing for names for new items, for example tables, databases and columns. The

user sees a dialog box allowing them to give the new item a name.

The method makeDataSamplePageo provides the user with a sample of the
data in the database table. The method accepts the sample data and the

header, a set of column titles, in the form of an array of strings, as arguments.
Data is formatted into HTML table which displays the cells of sample data.

The method produces a header showing the titles of the various columns,

and outputs the rows in alternating colours to ease readability of the data.

doPageo is used to compile the final output; which is HTML encapsulated as

a string.

makeErrorPageo is a method for displaying a message warning of an error

situation occurring. Like the confirm page method this is a 'one liner' method

wrapping a call to the doPageo method. This method accepts a stack trace

object as one of its arguments and prints it as part of the web page returned

to the user.

An improvement would be an email contact link, so users could provide feed-

back or notify the web applications administrator about the error situation.

The make ConfirmPage 0 method is used to produce a confirmation page for

certain actions. This page confirms that the actions have taken place and/or
the user's request has been carried out. To produce the final output as a web

page the method doPageo is used. A null value is passed to doPageo for the
Javascript, as Javascript is not required in the confirmation page. Usually the

confirmation window opens in a new browser window, which can be closed by

the user. This behaviour is due to commands in the Javascript elements being

embedded into the page.

81

The private method readPageo is used to read in existing Nveb pages. A static
web page that exists inside the web application can be read. An inputstream
is provided using the method gefflesourceAsStreamo, as provided by Java. lang. Class).
After checking that the InputStream is non-null, an InputftreamReader (which

is buffered by a Buf f eredReader), is used to read the input stream. Using the

method readLineo in the Buff oredReader class, the page is read a line at a
time and each line is appended into a StringBuffer.

When the readLineo method returns 'null'the end of the file has been reached.
Building up the file in a StringBuffer is more efficient than simply concatenat-
ing strings as each line is read. This is widely regarded as inefficient because

strings are immutable objects and concatenating them involves the creation

and destruction of many objects.

The readPageo method returns the file in a string which is created by calling
toStringo on the StringBuf f er when the reading of the file is complete. Any

errors are handled in this method by returning a message of explanation in

the string. The method is mostly used to read the supplementary panes of
information for web pages in the web application.

6.4.2 HTMLTable

The class HTMLTable has three constructors and encapsulates logic for serial-

ising data to HTML tables. Displayed data is not passed to the constructor;

instead the constructor is more concerned with attributes that affect how the

data is displayed. The method toHTAILShingo produces the HTML table

and returns it ready for use in a web page. The method appendCeIIHTAfLO

is used to add each cell to the table. When a row has enough cells (columns)

the closeRowo method is called to finish the row and start a new row.

As stated previously HTMLTable has 3 constructors. The first of these accepts
just one string as a paxameter, this string should contain the attributes for

the table. The second constructor accepts the same table attributes and also

accepts an array of strings as an argument. The array contains different sets of

82

attributes for different columns. For each column in the table the class applies

a different set of attributes from the array. As tables are rendered in a cell by

cell fashion into rows and then rows into the completed table, the attributes

are alternated as the code for each cell is generated. The third constructor

allows attributes for the table to be set and attributes to be set on both a

column-wise and row-wise basis.

The method applyAtftibutesToEach Cello allows the attributes for each table

cell to be set as a string.

The firsfflowAtftibuteso method sets the attributes for the first row of cells
in a table, the attributes are then not used again in the table. The method is

useful for creating a title-like row, or if the HTML table header has been used,

a secondary description row.

Once the HTMLTable object has been constructed, HTML for each cell can

be appended using the appendCellHTMLo method. This method accepts the

HTML as a string, which is then stored internally in a vector. This vector is

used to store a row of cells. When the method closeRowo is called the vector

is processed, the cells turned into HTML and added to the table body HTML.,

An integer is returned for each cell added using appendCel1HTMLo method,

this indicates the position of the cell in the row.

Once a row of cells has been added to the table, the row can be finalised by

calling the closeRowo method. After this method is called the next row can be

started. Internally the method constructs the HTML for the row of cells that

have just been added, it then appends the HTML to an internal StringBuffer.

As a row is being constructed the cells are added to the row vector. When

the closeRowo method is called a sequence of processes occur. The vector

containing the cells is checked to ensures it is non-null and of non-zero size.
The HTML for the row is then generated, along with any attributes. The row

vector is read, element by element and the contents turned into table cells.
Each table cell may have attributes. The resulting HTML is appended to the

table HTML and the contents of the vector cleared so that the vector is empty
for the next row of cells. A variable that counts the number of rows is then

83

incremented.

The method makeAttributeso creates a StringBuffer for the attributes.

The method make Table CellHTMLO is called from within the closeRowo method
to construct the table cells that have been added bY calls to appendCell-
HTMLO. In the make Table CellHTML 0 method the attributes for the cell

are worked out and added. The method returns the HTML for the table cell
in the form of a string.

makeTableOpenHTMLO makes the HTML for the opening of a table. This

includes the opening table tag which may include attributes relating to the

entire table.

The make Table CloseHTMLO method makes the closing HTML for the table.

It is a lot simpler than make Table CloseHTML

The toHTMLShingo method constructs the HTML for the entire table. It

builds the HTML up into a StringBuffer, which is more efficient than string

concatenation, as discussed earlier. The process of building up the HTML

starts with opening HTML after which the table body is appended and finally

the closing HTML is added. The resulting HTML is returned encapsulated in

a string.

6.4.3 SpitfireConnectionLayerBasic

The Spitf ireConnectionLayerBasic interface and its methods, define the

functionality of the web application. The use of an interface means that dif-

ferent implementations of that interface can be produced. Hence, the same

interface can be satisfied by using different implementations. For a class to

implement an interface it must implement all methods that are defined in the

interface.

In the case of this interface, SOAP and JDBC implementations are provided.
The interface also acts to provide a clear separation between the presentation

and 'business' logic of the web application. The database host is assumed

84

to be set in the constructor; with no reference to the host in the method
calls and hence, the interface. The naming of the host is considered to be
implementation dependent.

The methods in the interface are declared to throw exceptions; when an error

condition occurs the implementation will inform the calling code using the

exception.

The methods defined in the interface; -

* public String[] getDBsO throws Exception;

9 public String[] get Tables (String database) throws Exception;

9 public St7ing[][I get Table TasteData(St7ing database, St7ing table) throws

Exception;

9 public String[] get Table TasteHeader(St7ing database, String table) throws

Exception;

e public St7ing[][] get TableDesc7iption (Shing database, St7ing table) throws

Exception;

* public String[] getDetailHeader(St7ing database, String table) throws Ex-

ception;

public String createDatabase(St7ing database To Create) throws Exception;,

public String create Table (String database, String tableToCreate) throws

Exception;

e public String dropDatabase(St7ing databaseToDrop) throws Exception;,

public String drop Table (String database, String tableToDrop) throws Ex-

ception;

public String create Column(St7ing database, String table, String column,
String type, String qualflers) throws Exception;

9 public String drop Column (String database, String table, String column)

throws Exception;

85

6.4.4 SpitfireConsoleClient

The Spitf ireConsoleClient class is a single servlet that acts as a user in-

terface. It responds to requests from the client and supplies the requested
information about the database host. The client is typically a web browser,

which communicates using the HTTP protocol, is stateless and supports the

use of URL rewriting. The single servlet performs a number of roles depend-

ing on the nature of the clients request. The requests can be divided into

two types. Firstly, ones with no details; where the user has simply called the

servlet without any URL paxameters. The servlet then responds by producing

a web page with a form, which the user can login with. Secondly, requests
by a user who is logged in i. e. a 'normal' request. The URL parameters are

available, so pages are returned, which allow the user to browse the database

host. This type of request is handled by the method handleNormalRequesto.

The servlet loads, on initialisation, the parameter for the database drivers

name. This parameter is stored in the web. xmi file and can be set by editing
this file. The parameter is a fully qualified Java class name, which means the

package it is in is specified.

The servlet is initialised when it is ready to be put into service. This is part

of the servlets life cycle. Code in this class currently has a hard-coded switch
for switching on the SOAP part of the software, this will be changed to a

parameter in the future.

The initO method is called when a servlet container initialises a servlet. In

the Spitf ireConsoleClient servlet the inito method gets the parameter
db-driver from the web. xml file. This parameter specifies which database

driver to use and is stored in the configuration of the application.

The doPosto method handles the user requests generated by the POST method.
This method is defined in HttpServlet, which is Part of the servlet API.

The doGeto method simply call the doPosto method to provide a doGeto

implementation. Hence, this servlet conforms to the servlet API.

The method debugParameterso is used for debugging the parameters that are

86

passed to the servlet. These parameters are printed in the form of an unordered
list in the web page that the servlet returns to the client.

The method handleNormalRequesto is called from the doPosto method if the

request from the client is valid and is not a login request.

6.4.5 URLLabel

The URLLabel class contains static string variable fields that define the URL

rewriting parameter names. When the web application is processing the pa-

rameters from a URL request the values are used as labels, which define the

parameter keys. These axe in the form of ACTION=parameter; URL rewrit-
ing. URLs are encoded in the web page as links to allow the user to make

requests. These requests to the server revolve around an action keyword and

various other parameters needed for the action. Each URL on the page must
have the values it needs for the request it will make, for example if a link is to

navigate to a database table the table name is required.

Information (depending on the view provided by the request) needs to be

maintained on the host, database, or table being viewed. The parameter names

for these variables are maintained in this class.

6.4.6 URLQueryStringDecoder

The function of the class URLQueryStringDe coder is to decode the URL query

string into URL parameters. The URL query string is accepted as an argument

in its constructor. The decoded parameters can then be obtained by using the

getXXXO methods on the instance of the class. Internally the class uses a

string tokeniser and inner class to pair parameters. The class is declared as
final, so that once constructed the values cannot be altered.

The constructor accepts the URL query string as its only argument, as stated

previously. It stores the query string internally in the class, in a final string

instance, so it is immutable for the lifetime of the classes instance. The con

87

structor then calls the method decodeo.

decodeo is a private method used in string decoding. It is responsible for

tokenising the query string, using the ampersand character as a delimiter. Re-

sulting from this tokenisation axe pairs of key with related values. The method
decodePairo is used to tokenise the resulting string containing the key, values
into separate keys and values. Finally, the method usePairToSet Values 0 is

used to store the values against the correct fields in the class.

The decodePairo method turns the key=value pairs into Pair instances (see

section 6.4.6). A string tokeniser is used to break the strings up using the
delimiter '='.

Pair is a private inner class that is only used internally by URLQueryStr ingDe coder

to encapsulate key, value pairs. It has a constructor and two methods; get-
Nameo and getValueo that are used to access the name (key) and the value

of the variable.

The usePairToSet Values 0 method takes an instance of Pair and works out
from the key (or name) which field the value should be stored under. The

stored value can be accessed by using one of the getXXXO methods in the

class.

getPasswordo returns the password as encoded in the URL query string and

sent as part of the clients request.

getUsero returns the user as encoded in the URL query string and sent as

part of the clients request.

getHosto returns the host as encoded in the URL query string and sent as

part of the clients request.

The getDatabaseo method returns the database as encoded in the URL query

string and is sent as part of the clients request.

getTableo returns the name of the table that is being browsed as encoded in

the URL query string. It is returned as part of the clients request. Depending

on the value of action, this field could also refer to a table that is to be added

88

or removed.

getActiono returns the action as encoded in the URL query string. This is

sent as part of the clients request; it is the action is that the client wishes to
do next.

getColumno returns the column as encoded in the URL query string and

returned as part of the clients request.

getColumnTypeo returns the column type as encoded in the URL query string

and is sent as part of the clients request.

get Column Qualifiero returns the column qualifier as encoded in the URL

query string and is sent as part of the clients request.

6.4.7 URLQueryStringMaker

The URLQueryStringMaker class encodes parameters in URL strings. These

parameters are written in the URL after the character T as 'name=value'

pairs. The constructor accepts various instances as arguments, these are stored

using the final keyword, and are therefore immutable. The constructor accepts

a base URL, the host, username and password. These are items which do not

change for the lifetime of the object. The instance methods in the class are

modelled around the form makeUrlString(X, X, X..). These methods all encode

the parameters in the URL as a query string. Methods with a differing number

of arguments allow for differing amounts of information to be encoded in the

URL string. The resulting URLs including their query strings are added to

the web pages as anchor-style links, using tag in the form;

(ahref =

The links in the outputted page give users all, possible next actions on the
database.

89

6.4.8 SimpleHTMLPage

The SimpleHTMLPage class encapsulates the production and merging of HTML

output. This class is used by the class HTMLLogic to help with the production

of the output.

The SimpleHTMLPage class has two constructors, each with differing argu-

ments. Both construct a buffer to hold the constructed HTML, construct the

headers and footers and set the page title. However, one constructor allows
just the page title to be set, while the other constructor provides the option of

setting a stylesheet path as well as the page title.

The mergeO method offers a way for the HTML from another SimpleHTML-

Page to be merged with the HTML contained in the instance the method it is

called from. The HTML for the body of the page is merged, this is done by

calling the getBodyHTMLO method from the other instance. A boolean vari-

able passed as a paxameter allows the inserted content from the other instance

to be flagged with text indicating the title of the page it has been merged from.

There are two ptintlno methods that are used to insert content to the

SimpleHMPage instance. One accepts a string as its argument, while the

other accepts an integer. However, they both use the add method contained

within the

simpleUMLPage class.

The method setJavaScriptInHeaderO allows any Javascript needed in the head

section of the HTML to be inserted. The passed parameter is stored as a string

field in this SimpleHTMLPage instance.

The method doHeaderso is used to construct the HTML for the head section

of the web page. It is a private method and is only used internally in the class.

The HTML for the head section is built up in a string buffer, a copy of which is

returned from this method using the toSt7ingo method on the StringBuf f er

stored internally. Appended to the StringBuf f er are the title of the page, the

stylesheet used by the page and any Javascript needed in the header.

The method getTitleo returns the title of the page as a string

90

The static method makeLinko constructs the HTML for a link using the URL

of the link and a string containing the text that is displayed by the link. A
HTML anchor element is produced, which is returned as a string.

The method doFooterso produces the HTML for closing the web page; namely

closing the body and HTML elements with closing tags.

The addo method appends a string of HTML to the buffer that builds up the
body of the web page.

The method getBodyHTMLO returns the HTML for the body of the page.
This method is used by the method mergeo.

The getHTMLO method returns the entire HTML page that is represented
by the instance of SimpleHTMLPage. This page is produced by concatenating
the HTML for the headers, the body and the footer together. The completed
HTML is returned as a string.

The method closeo was added to the SimpleHTMLPage class so that it could be

used in place of a PrintStream instance for debugging purposes. This facility

was used to assist in debugging the mcbrunel servlet, which is a software

component of the LHCb project. When called this method indicates in the

outputted web page that, if a PrintStream had been used, then it, would have

been closed.

6.4.9 JDBCSpitfireImpl

The JDBCSpitf ireImpl class implements the connection layer for JDBC con-

nections. It also provides an implementation of the

Spitf ireConnectionLayerBasic using the JDBC API and a JBDC driver.

MySQL provides the database and the actual driver used is MmMysql. Differ-

ent database drivers can be specified by editing the web. =1 file. The construc-

tor has a static createInstanceo method, which is used to create an instance

that points to the database host that is to be browsed. The rest of the class
deals with implementing the interface.

91

6.4.10 SOAPSpitfireImpl

The SOAPSpitfireImpl class is a work in progress and is, at present, not fully

implemented. The class should implement the connection layer using SOAP

connections for the web application. The class SOAPSpitf ireImpl implements

the interface Spitf ireConnectionBasic, meaning that it can be interchanged

with JDBCSpitf ireImpl. JDBCSpitf ireImpl provides a reference implemen-

tation of the functionality that is to be provided. The implementation of

the SOAPSpitf ireImpi relies on the functionality defined in the following 3

interfaces; -

9 org. edg. data. spitfire-service-SpitfireAdmin

9 org. edg. data. spitfire. service. SpitfireCore

9 org. edg. data. spitfire. service. SpitfireInfo.

Therefore, Spitfire SOAP system provides the same services as the JDBC im-

plementation.

6.5 Deployment

For ease of deployment the Spitfire Browser was packaged as a web application.

The build tool, ANT (see section 3.3.7), was used to build this web application.

This involved the following steps; -

9 Creating a destination directory structure for the iveb application

9 Compiling the Java code

e Copying all the required files into the web application file structure

9 Packaging the files and directory structure as a NVAR file.

In the ANT script, an XML file, the actions to be performed were placed as

XML elements.

92

An ANT script is an XML document which has, amongst other elements,,.
root element 'project', and property elements that define properties and

targets which contain the scripts which can be invoked.

The ANT script for SpitfireWeb defined these properties; -

build - the root of where the web application should be built (typically

in the webapps directory of the Tomcat (see [59]) installation for c6nve-

nience during the project).

9 webroot - the root of the web application, a directory in which the webapp
is contained. The webroot is itself contained in the webapps directory,

where the other web application deployed on Tomcat will be contained. -

e classfiles, a location defined relatively from webroot where the class files

should be copied. Something like .. /WEB-INF/classes.

* source, the location of the source code for the webapp.

The ANT script for SpitfireWeb defined two targets; -

9 init, for creating the directories where the web app will be build.

build, for compiling the webapp and copying the extra resource files to

the webapp folder.

6.6 Summary

The Spitfire Admin Browser was tested using MySQL database and mm MySQL
database driver. JDBC implementations of the connection layer were tested

and found fully functional; databases, database tables and columns were cre-
ated, dropped, modified, etc. The user interface was found to be relatively
simple to use and understand. Deployment was via the ANT scripts written
to compile the Web Application. The Spitfire Admin Browser was not used in

production.

93

6.7 Possible Progression

Spitfire Web as presented here represented a proof-of-concept web applica-

tion. One short coming was the lack of a finished SOAP implementation for

the web application to use. Completing the implementation of this would an

obvious progression. A SOAP server to test this implementation would be

required. Another possible progression to the system would be the addition of

user roles allowing for various privileges. For example, this would mean that

only correctly authorised users could drop database tables.

94

Chapter 7

Monte-Carlo Array Processor

0 7.1 Intro uction

General

The Monte-Carlo Array Processor (MAP) built in 1998 by the University

of Liverpool is a commodity supercomputer. The key concepts of MAP are
the use of Commodity Off The Shelf Hardware (COTS), having many nodesi

typically hundreds, and a custom software setup, written in house at Liverpool.

This software allows MAP to work in a unique fashion enabling simulations to

be made massively parallel.

Hardware

The MAP hardware consists of nodes on which the simulations are run. These

nodes are commodity PCs mounted in racks. Each of these nodes is connected
into MAPs private local area network (LAN). 'COMPASS' nodes (servers)

control MAP, provide a gateway to the outside world (the wide area network
or WAN) and act as staging for the data output by the nodes. The COMPASS

nodes are more highly specified than the other 'simulation' nodes.

95

Software

My work has involved developing software that provides web and grid interfaces

to the original MAP system by interfacing with the MAP core software. Tile

software MAP uses for controlling the array is custom written. As discussed

above, MAP consists of nodes, for running jobs and COMPASS nodes that act

as controllers and gateways to the system.

When running a job, MAP runs one simulation per node. To do this a system

of controlling and monitoring the nodes is required. This system has two main

parts; software that runs on the COMPASS systems and software that runs on

the nodes. For ease of maintenance and reliability the software on each MAP

node is kept minimal. The operating system is a RedHat flavour of Linux, on

top of this runs the custom MAP software.

The method used to run jobs on MAP is distinctly different to the method

used to run jobs on a PBS system (see PBS, page 52). A single node runs a
job by having an entire system (operating system, libraries, application and

required files) installed on it. This is repeated for each node in the cluster

simultaneously. Each time a job is run on the cluster this procedure is repeated.
Jobs tend to run for periods of many hours, so the time taken to set up the

jobs on all the nodes is small in comparison to the run time of the job.

When it is decided a simulation will be run on MAP a job is set up on a single

machine. This is usually the machine of the person setting up the simulation.

Once the job is working for this single machine, it is effectively cloned to the

MAP nodes, resulting in the job running in a embarrassingly parallel fashion.

Differences between the simulations axe achieved by giving different input files

to each machine or specifying starting parameters that are different for each

machine. Cloning of the job to all the nodes is achieved by the custom software.

Usage

Refining the LHCb[13] vertex detector design was one of the main incentives

for MAP, although its subsequent usage has been more generaL MAP can be

96

used to solve many physical, scientific and engineering problems.

Overview

Figure 7.1 illustrates the MAP system. On the far left is the user with a client.
The client is typically a web browser, a command line executable or an X-
Windows program. MAP consists of nodes in a private network, on which the

jobs are run (lower right of figure) and COMPASS nodes control the system.
On the COMPASS nodes is software to accept incoming communication (for

example the request to submit a job) and software that controls the nodes. The
DUCK system (centre of figure, see section 8) web-enables the MAP system.
More information about MAP is contained in the following paper [60].

97

7.2 Hardware

7.2.1 General

There are two generations of the MAP hardware at the University of Liverpool,
MAP 1 and MAP 2. Whilst MAP 2 uses more modern hardware than MAP

1 and also has a greater number of nodes, the concepts behind both MAP

systems are the same. The MAP hardware shares some concepts with the

computer clusters discussed in section 5.1.2 but also has some unique features

discussed here.

The nodes, as stated previously, are commodity PCs. Typically in the order

of hundreds of nodes axe used and they are all identical in terms of hard-

ware. Inside the rack-mountable box, a MAP node will have standard PC

components; -

9A motherboard

e central processor unit

eA local fixed disk

1/0 devices for removable media, usually floppy disk drive and CD-ROM
drive.

9 power supply with cooling

9A network card

A front mounted panel with various ATX sockets on it, usually keyboard,

mouse, VDU, serial ports and network sockets.

The nodes are mounted in racks, with each rack holding approximately 30

nodes, depending on the MAP generation. Sufficient cooling must be made

available to dissipate the combined heat output of the nodes. The racks must

also facilitate easy removal of the nodes for servicing and repair.

98

i

C.)

Alm om
Z e
Me cý

(0
m

. c2
0

fi (0
to. a
ee i - :2

(D

r0,2 4). 2 e

AD 0
u Cf

. 20 Ex 12. ng 31121 .9

Figure 7.1: An overview of the MAP system, also including the DUCK (De---

volved User Control Console).

te

0

Co ID C)
l 2

%
o

c

c 0 c 0

79
z O's

0) 0) M

ff
MIS
m 00)

m co
< VZ

0
Oz

CL :30

OCL
mm

50
g0

L) go

a 0 0 t I D
r
r_ H

.m
(s FL

i

L-

99

The nodes and COMPASS nodes are interconnected on a private network. The

network technology chosen for MAP was ethernet. Each nodc has an ethernet

adapter card, allowing it to be connected into ethernet switches. These in

turn are connected to the COMPASS nodes. MAP can be configured to form

separate disconnected networks, meaning it can be partitioned into groups of

nodes, each of which act like a complete, separate MAP system.

Nodes are numbered sequentially in the racks. The IP address of each node
is static and in the range allocated for private internets[61]. Hence, the IP

address for each node follows the form of 192.168. x. x, where xx represents the

IP subnet of each individual node. These IP addresses relate to the physical

position of nodes in the racks.

The COMPASS nodes act as a gateway to the outside world, the XVAN. Each

COMPASS node has two network cards, one for the connection to the MAP

private network and the other for connecting to the outside world. This ar-

rangement means the private network, and hence the nodes, are not visible to

the outside world (internet, LAN). Therefore, they are not exposed to same se-

curity issues as a machine directly connected to an internet or LAN would be.

However, they axe able to see the outside world via network address translation

(NAT). This allows the nodes to access remote resources such as databases.

The COMPASS nodes are perhaps better equipped to handle 1/0 operations;

they have more powerful processors and are equipped with a relatively large

amount of disk space.

7.2.2 MAP 1

MAP 1 is the first generation of MAP. It consists of 300 nodes and 6 COMPASS

nodes. The nodes have the following specification; -

* 40OMHz Intel Pentium II processors

100 BaseT ethernet caids

20Gb IDE fixed disk.

100

The nodes are grouped into racks of 30 machines, with each rack housing,

in addition to the nodes, twol6 port 100 baseT ethernet switches. Nodes are

wired into these switches, which in turn axe connected to the COMPASS nodes.

The COMPASS nodes have the following specification; -

* 70OMHz Intel Pentium III processor

o 10 SCSI disks, 50Gb each, giving 500 Gb of storage per COMPASS node

9 Two ethernet cards.

7.2.3 MAP 2

MAP 2 is the second generation of MAP with an increased number of nodes

and more up-to-date hardware. It is comprised of 940 nodes and multiple fr I ont

end nodes. MAP 2 tends to be used for more generalised cluster computing.

The nodes have the following specification; -

3Ghz Intel Pentium 4 processor, dual CPU core - two CPUs in one chip.

Gigabit BaseT ethernet, with a Force 10 E600 gigabit switch.

* 120Gb IDE fixed disk.
TIIý:

The nodes are grouped into racks of 38 machines, with each rack housing, -, in

addition to the nodes, two 24 port gigabit baseT ethernet switches. These

switches are then connected to the front ends, which vary in specification.

The nodes have a relatively large heat output that needs dissipating, with each

rack generating 6.5 KW of heat. Most of the racks have air conditioning for

cooling, whilst the remainder have their air circulation cooled by water cooled

air conditioners.

101

7.3 Key Features

Hardware is only one aspect of MAP. There are some key concepts and features

that are unique to MAP and allow it to perform its work. These features are
discussed in the following section.

7.3.1 Scripted Boot

The array uses a scripted boot system. This is essential to the way MAP

works; without it MAP would not function as intended. The scripted boot

provides a mechanism which falls back to a working system if an error occurs

in the boot process.

The common Linux boot loaders (including Grub[62] and LILO[63]) do not

perform a scripted boot in the fashion required for the array to work. MAP

employs LoadLIN[641 in combination with a DOS (Disk Operating System - the

precursor to Windows). The DOS system batch file autoexec. bat contains a

set of commands that are executed at startup time. This file is used to provide

the required scripting. For a machine with a working operating system on

which we wish to install a new system the following process is used.

The new system is installed on to a new partition and the boot sequence is

altered to boot into the new partition. As the machine is booted the con-

figuration is changed (hence a need for write access at startup time). The

old system (named newsys-linux) is renamed to oldsys. linux. Then the

oldsys. linux is booted (this is always booted). A new system is only booted

when a newsys - linux exists. The scripted boot is essential to the way in

which MAP works, allowing it to revert to a working default if the system fails

to boot.

In the future PXE boot system could be usedl. This is where the boot process

is driven over the network. The boot sequence is driven by a file on a centralised

server. One of the COMPASS nodes or front ends could be used for this.

'In fact in MAP2, PXE boot is currently used.

102

7.3.2 Transmitting Data

The nodes and COMPASS nodes in the array are connected by a private
ethernet network, over which jobs are set up.

To transmit files a protocol based on User Datagram Protocol (UDP) is used.
A potential alternative is TCP/IP (see 5.2.1), which is also a member of the
IP family of protocols. UDP is a connectionless protocol that runs on IP

networks, with very few error recovery services. The use of UDP means that

re-requesting lost packets of data is not handled by the transport software;
instead the application has to handled this. UDP was chosen as the basis for

the protocol used for communication inside MAP.

UDP was a prime choice for several reasons, firstly because it can transmit

in broadcast mode; TCP/IP cannot. Broadcast transmissions are needed. by

MAP so that nodes can simultaneously receive the same file, in contrast to

it needing to be transferred individually to each node. This approach would

produce a lot more network overhead.

Secondly UDP has a low overhead, meaning there is less load on the'net-

work. This low overhead is partly due to the lack of error checking. Whilst

the TCP/IP stack has sophisticated error checking and guaranteed deliver'y

of data, UDP has no such guarantees regarding to data reception. A UDP

packet can be lost, or packets can arrive in any order. This is very much in

contrast to TCP/IPs guaranteed delivery and ordering of packets. The private

network connecting the array is relatively reliable compared to the internet

or a public LAN; rendering the lack of error checking and correction mecha-

nisms acceptable and hence UDPs suitability as a protocol for MAP internal

communication.

Internal communication between COMPASS nodes and nodes in the MAP

system works as described below. This software was written for the MAP

system.

Data (usually files) is transmitted from COMPASS nodes to nodes via the

private network, in the form of UDP broadcast packets. As the transfer of data

103

proceeds each node keeps a record of which packets they have not received and

when asked by the COMPASS node, the nodes inform the COMPASS node

which packets, if any, they axe missing. The packets are then re-transmitted

to the machines that need them.

The number of packets broadcast in one communication is called the window

size. The window size is dependent on quality of line, which because we are

running on a private network, has a good degree of reliability.

After the correct number of packets have been broadcast, the COMPASS node

needs to send the packets that were not received by the nodes again. It trans-

mits the packets that were lost to the machines that need them. The func-

tionality described above is provided by the MAP software and not the UDP

system.

A crucial point of the MAP nodes network interaction is their network silence.
The nodes are silent on the network until information is requested from them.
Only if a request is made for the node to provide information does the node

transmit data on to the network.

If the nodes broadcast information by their 'own' accord the private network

would quickly become saturated with network traffic and break down. For a

small number of nodes, less than say 100 (usually modern network technology)

this is not a problem, but with large numbers of nodes generating network

traffic, it does become an issue.

A node inspecting a packet looks at the first 32 bit block in the packet. Using

this block the node can determine whether the packet is intended for it. If the

packet is not intended for the node, it is discarded.

The numbering scheme from MAP nodes was discussed in section 7.2.1. En-

coded in the 32 bit block is the address of the first machine that needs to

receive the data. The block then specifies the number of subsequent machines

after this block that need this data.

104

C: 7.3.3 Fixed Disk Partitioning

Central to the way in which the MAP software runs is the partitioning I of the
fixed disks (or hard disks) on each node.

The original procedure for installing the MAP software on to the nodes was
to clone a single fixed disk. One fixed disk was Partitioned into the required
partitions using a disk partitioning tool and then set up with the requ ired
files for the basic system. This fixed disk was cloned using a disk cloning
tool. Therefore all nodes start with an identical partition and file set. All of
the partitions on the fixed disks are primary partitions. The 4 partitions are;
the DOSIBoot partition, the run partition, the swap partition and the control
partition. -:
The DOS (Disk Operating System)lboot partition is used to boot the system.
It takes up a small amount of space on the nodes fixed disk, approximately
50MB.

The run partition is the partition where the job is run. It occupies the majority

of the disk space of the node's fixed disk (approximately 18.5GB).

Basic Linux is used for the running partition; meaning only core packages are
installed. Once a job runs on a single machine, the system and job are 'tarred

up' to a tar file. When a job is run on MAP this tar file' is un-tarred to this

partition on every node. The run partition operating system is a cut down

version of Linux.

The process for making the job tar file is described as follows, where 'desktop,

refers to the machine the job has been setup on. The OS (files, libraries, e, tc.)

from 'desktop' machine is 'tarred up' into a tar ball archive.
'Partitioning[65] is a mechanism used to divide up a hard disk into partitions. These

partitions appear to the software like physically separate hard disks. A hard disk can be
divided into a maximum of 4 primary partitions. Any further division is done by using
logical drives inside extended partitions.

3A Tar Ball is a collection of files compressed into a single file. The process of making a
tar ball is known as 'tarring up' files.

105

The kernel source code of the 'desktop' machines kernel is needed to build a
kernel that works for a MAP node. A kernel may work for a given desktop

machine, but it is highly probable that the MAP node hardware is different

and the kernel, therefore, needs to be altered and re-compiled to get it working

on MAP hardware. Typical differences are associated with network cards.

The swap partition provides swap space for the node needed by Linux. This

is a partition of 400MB size, which is a little more than the physical memory
in each node.

The control partition is a 1GB sized partition on each nodes fixed disk. Setting

up the run partition is the function of this partition. It contains the 'real'

operating system for the node. Currently RedHat Linux release 9 is used. This

version of RedHat is cut down and optimised for setting up jobs and running

the network for transferring files (broadcast file transfer). In addition, the

operating system kernel is re-written to be optimised for the MAP hardware.

The operating system is much simplified and specialised for peer to peer, file

transfer and control commands for the array. Files are transferred by broadcast

mode on setup. The MAP sender and receiver send and receive one megabyte

at a time. The system is very similar to File Transfer Protocol (FTP).

The operating system and software on this partition knows how to construct

the run partition. Using Linux means that there is control over which partitions

are mounted at run time. The control partition is not mounted when the job is

running, meaning it cannot be affected by the job or its actions. This protects

the partition as a fall-safe system to allow recovery of nodes when jobs fail.

7.4 Core Software Description

7.4.1 General

The software that runs MAP has been developed at The University of Liv-

erpool. The core software for operating the array consists of a number of C

106

programs and number of C daemons 4. There are a number of data structures
that are central to the system. These are encapsulated using C structures,

structs. One of particular importance is the Job Control Block, which encap-

sulates data relating to a computing job. This data tends to be related to the

computing side of the job and not to do with the simulation/run (for example
the Job Control Block does not encapsulate any physics or engineering data).

7.4.2 Job Control Block

The Job Control Block is modelled in MAP software as aC structure. In'the

core MAP software the Job Control Block is written to disk to allow it to

be retrieved by other invocations of the software. The parameters and their

functions are discussed further in the section .

7.4.3 Queue Daemon

The MAP Queue daemon is an entry point to the core MAP software., It

is a very short program that runs as a daemon. The Local Control Daemon

software (see section 7.4.5) performs various checks and tasks for MAP Queue

Daemon. The MAP Queue daemon sits listening on a network socket for, a

client to submit a job. The Queue daemon can be bound to any valid available

port. There are two versions of the MAP Queue daemon, an older daemon

designed to work with MAPXQS and a newer daemon designed to work with

the Java based DUCK system. The latter is known as the web queue daemon

to distinguish it from the previous version of the queue daemon.

Both queue daemons can check that the client connecting is on a list of allowed

clients. This list is in the file clients. The MAP function allowed-cliento

checks a client against this list.

"A daemon is a program that runs constantly. It is launched by a process and then

detaches itself from its parent process.

107

7.4.4 Query Daemon

The query daemon is for exchanging information between MAN core software,

mainly the queue, to outer tiers of the software; the DUCK system. This

daemon provides information that allows DUCK to display the status of jobs

submitted to MAP.

7.4.5 Local Control Daemon

The local control daemon is installed on every COMPASS node. It is invoked

by a queue daemon; when this occurs local control daemon runs MAP Run

Job or mrunjob. This is achieved by using a generic spawn or forko. The

fork or spawn is where a child process is launched from a parent. The parent

process then exits, leaving the child process still running.

The local control daemon also performs checks such as whether there is enough
disk space to run a job and various checks related to the MAP cluster.

7.4.6 MAP Run Job

MAP run job is spawned by the local control daemon and runs on the COM-

PASS nodes. The program queries each MAP node in turn. MAP run job talks

to instances of node control daemon when jobs are in the process of being set

up. A copy of the node control daemon resides on each node, with the task of

setting up the job on that node.

MAP run job is also responsible for concurrently copying back the output to

the COMPASS nodes when jobs axe running.

The following software structures and variables axe used by MAP Run Job

when communicating data. The node control block status block-, the query

status command, the node state, which is communicated through a structure,

the nd status (resides on the node; MAP NCD keeps this status up to date)

and the cnct structure.

108

The node control daemon also has a control function for the nodes. Valid

commands for this are; RESET, SHUTDOWN, BOUNCE - shutdowns and restarts
the node quickly, SHUTDOWNS - stops the node, SHUTDOWNR reboots the node,
SHUTDOWNRF (fast reboot of the node, no checks), SEND STATUS - sends status
of the node, WAKE - wakes the node and SLEEP - puts the node to sleep.

Errors occurring that stop program executing can cause problems for the I clus-
ter as a whole. The COMPASS node will continue to receive output from a
sender in an error state and just discard it. This solution is less problematic.
A segmentation fault in a program puts the node into sleep state. The EXEC

remote shell is available for the cluster. Also available is PP-FILE, which is

effectively File Ransfer Protocol (FTP).

There are 3 administrative commands for the cluster as a whole; startmap,

which starts MAP, stopmap, which stops MAP and resetmap, which resets
MAP.

7.4.7 MAP NCD

MAP Node Control Daemon (MAP NCD) is a piece of daemon software that

runs on every node in the array. The daemon listens on 3 network sockets'.
All jobs are run as child processes of MAP NCD. Hence MAP NCD, being

the parent of the job, knows when the job has finished on each node. This

information is available to MAP NCD because the operating system gives -a

parent process the status of its child processes.

MAP NCD controls the data output from jobs on each node. As a job runs

on each node output is built up on the nodes fixed disk. MAP NCD wakes

up approximately every minute and sends the differences in the output files to

the server. The server receives hundreds of versions of the same file generated
by each node, it needs to be told how to differentiate between versions of the

same files from different nodes. This is done by using the machine name of the

node.

The output provides a 'heartbeat' for each node; whilst output is being'pro-

109

duced on a given node the job is running on that node. When no more output
is being produced by the node the job is finished. Once the job has finished

output is available from the COMPASS nodes.

MAP NCD is installed on the run partition (see section 7.3.3). MAP NCD is

statically linked. '

MAP NCD is updated using the following process. MAP NCD listens for an

updated version of itself. When an updated version is available it receives the

new version. MAP NCD then renames itself and then shuts down. There is

a mechanism to keep MAP NCD running, which is inito, so this mechanism

automatically starts the new version of MAP NCD.

7.5 X-Windows Interface to MAP

The MAPXQS client is an X-Windows based client for the MAP array. It

allows users to use X-windows controls to set up and submit MAP jobs. The

program was retained as the method to set up MAP jobs for expert users.

7.6 Summary

This chapter introduces MAP, both in terms of the hardware of the cluster

and also its custom software setup. The setup of the hardware, in terms of
installation and network connects was discussed. Key software features of the

system were highlighted. This chapter provides the grounding for the next

chapter which discusses DUCK; a web interface to MAP.

5Static linking is where any libraries needed by the executable are compiled into the

executable, hence problems with different versions of libraries on different machines are

avoided. Dynamic linking is where libraries are found dynamically at runtime. By using

dynamic linking executables can share libraries and hence take up less space.

110

Chapter 8

A Web based Job Submission

Tool for MAP

8.1 Introduction
i

The Devolved User Control Konsole ('DUCK') was developed as an outer tier
to MAP. Central to the motivation for producing DUCK was to provide a
simple, non-MAP-expert method, for users to submit jobs. The system for

submitting MAP jobs discussed in section 7.5 is difficult for non-experts of
MAP to use.

A large amount of the work revolved around the development of an interface

between DUCK and the MAP core software. Once this was finalised, then
II work was done to develop the DUCK tier of the software further, with a web

interface and some steps toward a grid interface.

The technologies used in DUCK were Java (see section 3.3-6), SQL databases

(see 4.7.2)and socket-based networking (see 5.2.2). Like the Spitfire Admin,

Browser (see section 6) servlets were used. Unlike the Spitfire Admin Br owser,

multiple servlets were used instead of just a single servlet. Having a iyeb
interface means that the user only needs the correct authorisation and any

reasonably modern web browser to submit a job that has been set up on Mýp.

ill

The completed DUCK package sits as a tier in a tiered model. The MAP

array, its private network and COMPASS nodes form the first tier. DUCK

itself forms the second tier and the clients web browser forms the third tier.

Readers may wish to read "Staxting a Job using DUCK" (section 8.6) first and
use the cross-references contained in it to further read the relevant sections as
they read that section.

10 8.2 Requirements

The requirements for the system were; -

9 To have a system that enables non-experts can easily run jobs on MAP,

changing some parameters if required

9 To explore the concepts involved in turning MAP into a grid resource.

9 To provide a system allowing users can check the job queue for MAP.

8.3 Development Process

8.3.1 Overview

There were a large number of challenges in the development of the DUCK

system. Primarily, there was the problem of communication with IVIAP, effec-
tively the first tier. This came down to the method used to 'link' the second
tier to the first tier. The possible solutions, tested solutions and final solution

are discussed in this section.

Another problem was the formatting of the information exchange once the

connection system had been established.

The implementation of the client, the third tier, presented many options.
Again, these are described in this section along with the final solution which

was a web interface.

112

One of the constant considerations was 'perfection' versus getting a working
implementation in a realistic time scale. There were many times when pieces of
code were rewritten/refactored at a later date as the software and requirements

evolved.

8.3.2 Communication to MAP

The challenge of communication to MAP was the first problem tackled. The

COMPASS servers act as a gateway to the MAP array; thus this is the first

point of communication to MAP. In the tiered model we are effectively con-

necting the first and second tiers of the overall system (although it could be

argued that the axray is the first tier and MAP is the second; but I'm referring

to MAP as a complete entity).

One initial decision was where the software itself should sit, either on the

COMPASS node or on a separate server. The latter situation would sit well
in the tiered model system and devolves the system more.

JNI approach

The Java Native Interface (JNI) is a programming interface for accessing na-

tive code from Java and vice-versa. This means that platform-specific, code,

meaning non-Java code such as C, C++ and Fortran, can be utilitised by Java

and Java routines used by native code. So, for example, a Java program could

access portions of C code outside the Java virtual machine (JVM). Another

example would be a native C program accessing Java code running on a JVM

in an embedded fashion. Another potential solution was CORBA (see
, 1.2),

which was deemed to add too much complexity to the solution.

RMI approach

Remote Method Invocation (RMI) (see appendix 1.5) provides a simple way to

do remote computing with Java. This was considered as a potential solution.

113

It would have involved running an RMI server on a COMPASS node and
performing RMI transactions between MAP and DUCK.

Socket approach

The socket approach is the simplest and most basic way of communication

over a network. A server listens on a server socket for a client to connect.
Once a client has connected data can be passed backwards and forwards down

the socket. The socket abstraction dates from the 1970's and sits on top of
TCP/IP in the case of Java. A more detailed description of this technology is

given in section 5.2-2.

8.3.3 Initial Program

A very simple initial program was written to establish communication with

the MAP web query daemon. Writing this allowed problems in the socket

communications to be overcome. One particular problem was deciding on a

specific line terminator character; which needs to be the same at both ends of

the software.

8.3.4 Persistency

HTTP The Stateless Protocol

A web browser uses Hyper Text Transfer Protocol (HTTP), which is a stateless

protocol. This means that information between transactions is not retained

by HTTP. A client will typically request a webpage, which is returned by the

server. When the client requests another webpage, even if it is the next in a

series, the server sees this request as completely separate and unrelated. This

causes problems for applications that need to maintain information between

pages. A commonly used example is a shopping basket at an e-commerce site.

Here, products put into the basket need to be remembered as the user browses

round the rest of the website. The different ways to get round this limitation of

114

HTTP are discussed in the following section. Typically the task of maintaining
information between web page requests is called session tracking.

Client-side Cookies

Cookies are a persistency mechanism that is relatively well known; mainly
because of media attention to privacy issues involved with them.

Cookies are [key, value] pairs. For each key there is a corresponding value.
They are set by the server and stored on the client as a series of small text files
(for each cookie) or grouped together in a single text file. Cookies originate
from the server, which can request a browser to set a cookie. If the name of the

cookie (the key) already exists, it is over written with the new value. Cookies

are sent as instructions in the HTTP header section. Once a cookie is sent the

client sends it back with every request to the server that sent it. Using the

above method information can be made persistent between pages.

The privacy issues involving cookies mean that they can be used to track a

user)s movements on a web site. As a result some people may switch off cookies
in their browser program.

Although cookies are not used to store information on the client in the DUCK

system, a single cookie is used to store an ID that links the client to stored
information on the server. Hence, the client must be able to accept and return

cookies to use the DUCK web interface.

Hidden Forms

In HTML documents a section called a form can be used to get input ý from

users. Elements called controls are contained in the form to allow users to

complete the form. Forms can also be used to maintain information between

page requests. A form that is not rendered on the page is used; this is known

as a hidden form. When a form is submitted the information in it is sent to

the server. Using this technique persistency can be provided between requests.
This technique, although more secure than URL-rewriting (see below), is not

115

completely secure. The information is passed as plain text on a non-encrypted
connection; this leads to potential eavesdropping of the data. Furthermore,

the user can 'view source' and see the hidden form and its values in the source
code.

URL re-writing

URL re-writing involves storing parameters in the URL. The IITTP got re-
quest is made up of the location of the resource and an optional query string.
This query string can contain /key, value] pairs. It is a solution that can work

when cookies will not. It also moves the 'storage' to the client (like hidden

forms and cookies).

There are several disadvantages to this technique. Firstly, there can bc envi-

ronmental limitations on the length of the URL. This would be a problem if

moderate amounts of data were being stored. Secondly, there are significant
privacy issues; the data is visible in the browsers address bar. This means
the user himself/herself can see the data, not to mention people viewing the

screen over the users shoulder. Thirdly, the data can be seen easily in browser
history records and during transmission. Finally, from a technical point of
view, implementation becomes more difficult as writing links to other pages
is a longer process. It has to be done dynamically, as the parameters need
encoding in each link on the page. The resulting links do not bookmark well
in the users browser.

Server-side Session Management

HttpSessions are a solution provided by the Java servlet API. The

i avax. servlet. http. HttpSession interface provides a generalised means of

persistency. The web server provides the session management as defined in

the interface. Each web-server (for example Apache Tomcat[661, Oracle ap-

plication server[67]) may implement the interface in a different fashion using
different means. The most common implementations use cookies and/or URL

116

re-writing. URL re-writing tends to be used when cookies cannot be set be-

cause of client setting or firewalls that filter out cookie information. These

common implementations suffer from the same limitations discussed earlier in
URL re-writing and cookies (see sections 8.3.4 and 8.3.4). The advantage of
server-side session management is that the interface for the persistency is stan-
dardised and ensures the portability of the web application. One far-sighted

disadvantage of session-management is that techniques almost exclusively use

web-based means, making it less suitable for grid-like application.

Server-side Database

The solution decided upon was a client-server system with the persistent, in-

formation being stored on the server in a database. This means the server

takes the load of storing the information. A single cookie, stored on the client

machine used as an ID, was used on the client side to associate client requests

with the correct data. This cookie links the client to information stored on
the server, which is stored in the form of database tables. Connectivity to the

database is provided via Java DataBase Connectivity (JDBC), see 4.7.4.

There are numerous advantages of the client-server solution. Firstly, only
information relevant for the request is passed between client and server, this

means that all the data is not passed back and forwards constantly., This

protects sensitive information. Secondly, there is less limitation on the amount

of information that can be exchanged between the server and the client, which

was a problem with other methods. Thirdly, the systems on the server side

can be reused to build grid aware systems. Finally, the information stored in

the database can be used for other purposes aside from persistency between

HTTP requests. Such purposes include logging and diagnostics.

The disadvantages of such a system are that more work is required to imple-

ment the system and it is a more complex system, involving a database. ''

MySQL was used to provide the database. It is an open source relational
database. JDBC (see 4.7.4) was used to connect to the database from the web

117

application. The database driver used was a type 4 database driver (see 4.7.4),

meaning that it is implemented in pure Java and issues requests directly to
the database.

Another potential solution was to store persistent data as XNIL in a native
XML database such as Xindice[45). This would have added complexity, by

requiring persistent data to be in the form of XML, but would have perhaps

eased development of the web services prototypes.

8.3.5 Problem of handling files

The files needed to set up a MAP job axe large, in the order of gigabytes,
therefore it was deemed impractical to upload these files using a web browser.

If a Java application was used as the client, then files could be uploaded from

the client. Using an applet as the client leads to users having to make security

allowances to allow the applet to access their file system.

The solution decided upon used a web browser. It was decided that the MAP
Arn

,,,,,, zS system (see 7.5) would be retained for an expert in the MAP system to set

up jobs. Users could then easily run the setup jobs with different parameters
from the web browser based client. See 8.3.9 to read more about the client

choices.

8.3.6 Job Control Block Modelling

The Job Control Block paxameters deemed necessary for the DUCK side of
MAP were; -

account narne, the MAP account name. MAP accounts consist of group.
ings of users with valid sites and a disk space limit

e saved job name, the name of the job to be run. Previously known as the

executable name. This is a job that has been set up previously.

118

9 site, this is the site the user is submitting the job from. The site has

to be listed in the account data for it to be allowed. It is passed as a

numeric IP address.

* user, sets the user. The user has to be a member of the account it is

using.

9 disk space. How much disk space the user will be using locally on the
MAP cluster. If they are using a remote location this is of no concern to

the MAP system.

9 tar file. The name of the tar file used in the job.

* over write. Whether the output should overwrite a previous run of the
job. (true or false)

* random first. The first random number, an integer, used as a seed for

jobs. Values from 1 to 9 inclusive. Cannot be zero. This seed is used to

introduce differences between the jobs running on different nodes.

* registered days. The number of days the job is registered to run on MAP.

Cannot be a negative number.

9 end script The filenames of the endscripts to run when the job has

finished

9 job name. The name of the job.

* edit files. The filenames of the edit files

multi files. The filenames of the multifiles. There must be enough mul-
tifiles for each machine. Multifiles are used to introduce differences be-

tween nodes. Each node receives a different multifile, meaning different

output is produced by each node instead of having, for example, 300

identical sets of output.

split files. The filenames of the split files. This is a similar idea to the

multifile, except a single file is used and split up. Each node receives a

119

portion of the split file. The file can also contain common instructions

for every node in the cluster.

e return files. The filenames of the return files. These are the files that

contain the output from each node.

* exclude files. The filenames of the exclude files, files which shouldn't be

copied to the nodes.

* NFS mounts. Any NFS mounts that need to be available when the job
is running

e registry text. Text to be stored in the registry system on MAP

* job directory. The job directory. The directory path in which the entire
job resides, including the executable and related files.

e run time. The length of the runtime in hours, this is the time the job

will run for. It is allowed to be a decimal number.

* queue. The queue name, this is largely redundant as there is only one

queue on the core MAP software.

9 random seed The random seed, a whole number. This value is used a
the starting seed for the job. It is the same value for each node.

e Linux version. The Linux version to use for the job, a continuous string

specifying the version, i. e. "RH6.2"

kill Percentage. The number of nodes that have completed the job before

the job can be killed. This exists because a small number of jobs will

run for a much greater time than the other jobs. The need for this
functionality was discovered in testing the system.

9 kill time. The time in seconds after which a job can be killed.

* remote output. A remote directory for output. This can be left blank for

if the output is local (meaning it goes to a COMPASS node at Liverpool).

120

The remote directory would typically be a valid directory somewhere like

CERN. There needs to exist a valid listener for the directory.

fetch sync. Whether fetch sync is used (true or false). The fetch sync

setting refers to whether the output is moved to the COMPASS node as
it is created, as the job is running or it is only copied to the COMPASS

node when the job has completed. Fetch sync needs to be off if the

simulation uses its own output for some reason during the simulation.

* staggered start. The staggered start delay in seconds. This is required
if the simulation accesses databases or similar resources. The staggered

start stops a high number of concurrent requests that could cause prob-
lems.

9 number of processors. For supplying (to the web application) the number

of processors available on MAP.

ignore warnings. Relevant when a submitted job has warnings. Allows

the user to submit the job regardless of warnings existing. (true or false)

Session ID, used mainly by DUCK to link Job Control Blocks to a user

and session.

The software was arranged into packages. Using packages in Java is a similar

concept to namespaces in C++ and many other languages. The packaging

structure allows different components (classes) of the software to be arranged in

logical groupings. Packaging also prevents clashes in class and method naming.
At first the packaging started with only packaged defined, as development

proceeded the number of packages grew.

duck. JobControlImpl is an implementation of the JobControl interface. The

class implements all the get and set methods defined in the JobControl inter-

face. The parameters are stored internally as immutable strings (all strings

are immutable in Java). The JobControlImpl can be obtained as a JobCon-

trol interface by the method getStateo. This means that the JobControlImpl

can be used (with the stored values) in situations that require the use of the

121

interface JobContol. There are various static methods that return Job Control

Blocks filled with various sets of parameters; -

9 An example Job Control Block with typical values

oA blank Job Control Block with empty string for all the parameters

eA Job Control Block with parameters set as the names of the parameters.

eA Job Control Block with parameters set as randomised strings

The class implements methods that can perform basic checks on the data.

8.3.7 Job Validity Checking

The parameters in the Job Control Block are checked for their validity. Check-

ing occurs in the DUCK tier and on the MAP tier.

8.3.8 Classification of Feedback

The core MAP software provides feedback about MAP jobs classified in 3 levels

of severity. These levels were decided in the development of the software and

are described below.

9 An error is defined as a problem with a job that means the job cannot

run.

9A warning is defined as a problem with a job that does not stop it

running, but could cause problems. If this occurs the user is given the

option of running or cancelling the job.

e Information is a category of feedback that informs the user of the some-

thing. It does not stop the job running.

122

8.3.9 Client

The web browser was decided upon as the client for the DUCK system. This

provides a very flexible system because the web browser is a very common
piece of software.

A possible solution to providing a client for users was to write a Java applica-

tion. Having a Java application as a client gives more functionality than, for

example, a web browser. The Java platform is platform independent mean-
ing the application should be deployable on most modern computer platforms.
One disadvantage is that the application will need installing (along with Java if

this has not been previously installed). The application approach puts greater
demands on the resources of the host machine, but takes some of the load off

the server side. This could be a problem if the client side machine is relatively

under-specified.

Another solution is to provide a client in the form of an applet. An applet is a

small Java program that is embedded into a web page. The program runs on
the client side. Applets are programmed by extending the applet class and
implementing the methods that are required to be overridden. The non-java

equivalent are ActiveX controls, which are pieces of code that can be run using

a web browser. Having an applet as a solution provides more functionality

than say a web browser, but less, if no security requests are made, than an

application. The applet needs to gain security rights from the user to do many

things, including writing and reading to disc. Some users will have security
issues against letting applets do this. Applets require the correct Java plug-in

to run. Users may need to download and install this. Applets put greater
demands on the resources of the host machine but this moves the processing

away from the server.

Using a web browser as the client has many advantages. There are no installa-

tion tasks to perform (other than installing a working web browser, if required).
The demands on the client are less than an application and the client can run

on any platform that supports a web browser. The solution does put more

123

load on the server, but considering only a few people at any one time will be

submitting MAP jobs, this should not cause a performance or load problem.
There are problems with uploading large files using web browsers; HTTP was

not designed to provide for the upload of files in the order'of hundreds of

megabytes.

8.3.10 Servlets

In the DUCK system the web browser acts as the client. HTML web pages

are produced on the server and are displayed by the client. Servlet (see 5.5.3)

technology was used to provided this user interface.

The servIets produced (described in 8-4.1) were written against the servlet API

version 2.2.

Originally all the servlets inherited directly from j avax. servlet. HttpServlet.

The software was revised so that a base class duck. web. Ducklet was produced.
Most servlets in the DUCK system inherited from this class.

8.4 Completed Software Overview

8.4.1 Packages Structure

The software was arranged into packages, as discussed in 3.3.4. At the start

of the development process only one package was defined, as development

proceeded the number of packages grew.

This section describes the different classes that build up the DUCK web ap-

plication in detail.

124

duck

base

cmd

database

globus'*

Sockets

web

Figure 8.1: The package structure for the DUCK web application. * The

package labelled 'globus' was an experimental package I produced and is not
discussed in this section.

duck

The duck package. These are basic classes used many times in the project.

DUCKPropertles

The class DUCKProperties is used to load parameters from a text file and ,

make them available to the web application. The parameters or properties are
divided into three categories; -

* Database related properties

9 MAP Query system properties

e MAP Queue system properties.

125

getXXXO style methods make the properties available to the web application

via the class DUCKProperties. The properties themselves are stored in a simple

text file, which is read by servlets in the web application when the servlets
initialise. The file is located in the folder pointed to by the Java system

property 'user. home 1. This folder tends to be within the web server, although
its location can vary a little between operating systems. Hence sometimes the

file needs to be copied to the location specified in the exception, which is

thrown when the DUCK system cannot find the properties file.

The properties file can be edited on the server with a simple text editor. Com-

ments can be added to the file using'//' at the beginning of lines. The order of
the properties in the file is important and should be maintained. Any changes
to the file are not read until the DUCK web application is restaxted. The

database related properties include: -

The database driver used to connect to the database with. This is the
fully qualified Java class name of the JDBC driver. For example, this

could be 'org . gj t. mm. mysql. Driver 1. This information is returned as

a string by the method getDBDrivero.

e The database location. The location of the database, for example 'jdbc:

mysql: Hlocalhost/map 1. With the MySQL database the user has to

specify a database on the host. This information is returned as a string
by the method getDBLocationo.

The database username used to connect to the database. This should
be something reasonably generic like 'tomcatuser I. This information is

returned as a string by the method getDBUsero.

The password used to connect to the database with. Usual rules for

choosing a secure password apply. The password is stored as plain text

in the properties file, but the file is not publicly accessible on the web.

MAP Queue host properties include; -

126

The queue host, the location of the MAP Queue as a machine name with
network domain. For example pc178001. ph. Iiv. ac. uk. The informa-

tion is returned as a string by the method getMAPQHosto.

The number of the port to connect to on the queue host. This is the

port number on the queue host machine to connect to. It is returned as
an integer by the method getMAPQPorto.

MAP Query host properties include; -

The query host, this is the location of the MAP Query host. This infor-

mation, a machine name and network domain, is returned as a string by

the method getMAPQueryHosto. For the current core MAP software it

is usually the same host as the queue host.

9 The number of the port to connect to on the query host. This is an --
integer returned by the method getMAPQueryPosto. The port for the

queries must be different to the queuing port.

DuckLib

The duck. DuckLib class contains static methods and properties used through-

out the DUCK project. The field EOL (end of line) contains the end of line

terminator for the platform the program is running on. This obviously changes
between operating systems and is obtained by the call
System. getProperty ("line. separator"). The method makeDateStampeo

provides a standardised time and date stamp. An alternative to this solution

was to use the j ava. text. DateFormat class. The method produces time/date

stamps in the form of YYYY-MM-DD-HH: MM. SSTT, for example; 2003-12-05-17: 16.49pm.

These stamps are easily sortable and are stored directly in the database system.
The method makes a date stamp for the current time.

127

INetAddrParser

duck. INetAddrParser is a class that offers supplementary functionality to

the class java. net. InetAddress. This extra functionality allows additional

information about the address to be obtained, for example the network class

and the domain. The class was designed to work with the existing model of

MAP security, which checks the location of the connecting client. The class

has 3 constructors; -

o The first constructor accepts aj ava. net. InetAddress as a parameter.

* The second constructor accepts a hostname as string.

o The final constructor accepts the numerical IP address as a string.

A private method parse 0 tokenises a string containing the numerical IP (xxx. xxx. xxx. xxx)
into the 4 octets. This method is called by all three constructors. The following

methods return the octets as integers; -

9 getOctet0o 9 getOctet2o

o getOctetlo 9 getOctet3o

The method getNetwork Class 0 gets the class of network the IP address is lo-

cated in, returning it as a human readable string. Possible values axe 'Al, 'B',, C)j'D'j'E'

and 'local loopback'. The following methods return a boolean value indicating

whether the IP address is located in the following network classes; -

isClassLocalLoopBacko, returns true if the IP address represents a local

loopback, meaning octet zero has the value 127.

is ClassA Network 0, returns true if the the IP address is in a class A

network, meaning octet zero has a value between 1 and 126.

jsClassBNetworko, returns true if the the IP address is in a class B

network, meaning octet one has a value between 128 and 191.

128

* is Class CNetworko, returns true if the the IP address is in a class C

network, meaning octet two has a value between 192 and 223.

isClassDNetworko, returns true if the the IP address is in a class D

network, meaning octet three has a value between 224 and 239.

e isClassENetworko, returns true if the the IP address is in a class E

network, meaning octet four has a value between 240 and 255.

A static method isAddresslnDomaino is provided in the class to test whether
two addresses are in the same domain. The method geffebServerPatho re-
turns the real path to a web server. The port to connect on is needed as an

argument. The method geffostNameo returns the resolved hostname of the

host.

JobControlImpl

duck. JobControlImpl is an implementation of the JobControl interface. The

class implements all the get and set methods defined in the JobControl in-

terface. Parameters are stored internally as immutable strings. The JobCon-

trolImpI can be obtained as a JobControl interface by the method getStateo.

This means that the JobControlImpl can be used (with the stored values) in

situations that require the use of the interface JobContol.

The JobControlImpl provides some methods that can perform basic checks

on the data.

MAPJobStatelmpl

The class duck. MAPJobStateImpl implements the interface duck. base. MAPJobSt - ate.
The class implements all the methods that the interface requires and is used

for storing information relating to a single MAP job. It holds the following six

fields internally, the account, the user, the job status, the site, the estimated

start time and the job name.

129

The class provides getXXXO and setXXXO methods to access the fields and

a static method to get a blank instance of the class. There is a static method
to convert a JobStatus type into a human readable string. The toStringo

method is overridden to return a string that describes the state of an instance

of MAPJobState.

MAPQueryTask

MAPQueryTask is responsible for running a task that updates the locally stored

states of MAP jobs and the job queue they are in. This state is stored in the

MySQL database. The class uses the singleton model, so there is only ever one

instance of MAPQueryTask. There is a static method for creating the instance

of MAPQueryTask and another 'clean up' method for disposing of the timer

instance.

MAPQueryTask has an inner class, a timer task, which has the task of updating

the database by querying MAP periodically. The interval is constant and re-

trieval does not correspond to when users request the information from DUCK.

The reason for this being that many user requests for the job queue would not

lead the core MAP listener being saturated with requests.

Using QuerySocket the state of the MAP job queue is obtained and written

to one of two database tables. There axe two database tables, so that whilst

one is being updated the other is available to provide query information to

clients. After the updates on the inactive table are complete it is switched

to be the active table. This means queries are answered with data from the

recently updated table.

SingleResponse

The class duck. SingleResponse has two uses; to encapsulate error, information

and warning responses from MAP and to encapsulate name, value and de-

, scription triplets. The values for name, value and description are set when the

object is constructed, these values are final (immutable) for the lifetime of the

130

object.

The class has 3 constructors, two of which I depreciated because I wanted
the third to be the preferred choice. Differing amounts of information (the

constructors arguments) are passed to the constructors. The preferred versions

requires all the fields in the constructor.

Four methods return the values of the fields in the object, these are; -

9 getNameo returns the value of the name field as a string

9 getMessageo returns the value of the message field as a string

* getDescriptiono returns the value of the description field as a string

9 isErroro returns a value indicating whether the object represents a value

There are no corresponding setXXXO methods, because fields in the class are
immutable and unchangeable. Overriding of the method toStHngo provides a

human readable dump of the object as a string.

SingletonException

This class is an extremely simple class, used to provide an implementation of
the singleton model. Certain situations encountered in the programming of the

DUCK web application require that there is only ever one instance of a par-

ticular class. This is the singleton model. A SingletonException is thrown

when the creation of a second instance of a singleton class is attempted. The

SingletonException was created by extending java. lang. Runt imeExcept ion.

The resulting class has two constructors with differing parameters, the second'

parameter requiring a message of explanation, is the preferred.

duck. base

This sub-package defines interfaces that describe a few data structures on MAP

in an object orientated fashion.

131

Account

The interface duck. base. Account is an interface that models an account in the

MAP sense. On the MAP cluster an account is a grouping of users. Accounts

have a limit on the amount of disk space that they may use. Also associated

with accounts are sites. These axe a list of sites that can submit jobs using

the account. Implementing classes are required to use java. util. Vector's to

return some information fields, which have multiple values.

getAccountNameo, implementors of the interface should return the name

of the account as a string when this method is called.

getSiteso, implementors of the interface should return the list of value

sites as strings, encapsulated in a Vector.

getDiskLimito, implementors should return the current disk limit on

MAP for the account in gigabytes, as a double precision number.

get Userso, implementors should return the list of users (usernames) that

are valid users for the MAP account, as strings encapsulated by a vector.

JobControl

The JobControl interface is described in section 8.3.6.

MAPJobState

The duck. base. MAPJobState interface defines the information available about

a single MAP job that has previously been submitted to MAP. Type-safe

constants are used to classify the different job states. In Java a type-safe

constant can be created by creating an empty, static, final class. Final instances

of the class can be created to represent the vaxious constants that are needed.

The constants defined in the interface axe as follows; -

9 QUEUEING, the job has been queued on the MAP system.

132

* WAITING, the job is waiting on the MAP system.

LOADING, the job being loaded on the MAP cluster.

9 RUNNING, the job is running on the MAP cluster.

9 FINISHED, the job has finished running on the MAP cluster.

e UNDEFINED, does not describe a job state, but is used to catch errors at

runtime.

Methods in the interface define the information about a single MAP job. Cor-

responding get and set methods allow the information to be sent and obtained.
These methods are listed below: -

* get and set JobName refers to the job name of MAPJobState.

9 get and set User refers to the user the job belongs to.

e get and set Account refers to the account that the job belongs to.

* get and set Site refers to the site the job belongs to.

9 get and set Status refers to the status of the job, this is described by

type-safe constants discussed above.

e get and set EstStatTime refers to an estimated start time for the MAP

job. This estimated start time is calculated by MAP and depends on the

run times of the proceeding jobs.

duck. web

The front end to the DUCK application is provided by servlets, as discussed

in section 5.5.3. Figure 8.2 illustrates the relationships between classes in the
duck. web package.

All servlets are derived from the HttpServlet class, which is provided in the

j avax. servlet package. This HttpServlet is in turn derived from GenericServiet.

HttpServlet provides methods for writing HTTP-based servlets.

133

Many of the servIets are subclassed from the servlet duck. web. Ducklet. This

servlet provides functionality for checking whether the request is valid for each
transaction. Ducklet has methods to obtain the session cookie (see 8.3.4) from

the HTTP request and check it against the database system.

Many classes in the package are derived from Ducklet, taking advantage of its
functionality.

134

ConfirmServlet

The Conf irmServlet is a servlet allowing the user to confirm they want to

submit their job. By extending the servlet Ducklet the resulting servlet has

the various functionality provided for it, for example, by sub-classes calling

Ducklets inito method, various parameters are loaded on initialisation of the

servlet. On each client call to the servlet, the base class Ducklet can check

whether the request is valid and get the session ID of the client.

Conf irmServlet is called from the page produced by the servlet Submit JobServIet.

The user has two potential options; firstly, to run the job and secondly to cancel

the job and delete it from the core MAP system.

These two options are presented as links to the user. Each link has encoded,

as a URL parameter, a parameter confirm. The parameter true runs the job

and false means the user does not want to run the job.

Once that the Conf irmServlet has retrieved the parameter it then needs to

communicate it to the core MAP system. The servlet uses an instance of
JCBConf irmSocket do this. The session ID is passed to link the request to the

Job Control Block previously sent to the core system. After the information

is exchanged the user then receives a confirmation page that informs him/her

of the action taken.

135

GonericSorvfet

+ destroyo
t + getlnitParame ero

+ getlnitParameterNameso
+ getServletConfigo
+ getServietContexto
+ getServletlnfoo
+ getServletNameo
+ Inito
+1090
+ sery1ceo

T-
HttpServlet

doDeleteo
doGeto
doHeado
doOpfionso
doPosto
doPuto
doTraceo
getLastModifiedo

service

lavaLxýservletrjavax. servlethttp

DucklD

+ Inito
+ destroy lquesto
process
doPosto
doGeto
+ getServietinfoo
+ remoteTesto
+ checkIDInfoo
+ CheckUSerNameo

StartHere

..

Ducklet

+ Inito
+ destroyo
getSessiopID
getProperUes8
+ [sTransactionValidO
ýMcessRequesto
oGeto
doPost(
+ getSer9stInfoo

I JCBServlet I

" InItO
" destro 'Y'Lquesto
proceSS
doGei ()
doPost(
+ getServletinfo

I ConfirmServiet I

" Inito
" destrollquesto
proCeSS
doGeto
doPostO
+ getSeMetinfo

" Inito
" des
pro=equesto
doGeto
doPosto
+ getServeltlnfoo

I GenedcSsiectQueryServlet I

" Inito
" des
pm=equesto
doGeto
doPosto
getServletinfoo

I SubmitJobServlet I

+ inito
+ de=)Y(
pro

Sequesto

doGeto
doPosto
+ getServletlnfo

I UstSessionServiet I

" Inito
" destroyQ
ýroceSsRequesto
oGeto
doPosto
+ getServietinfo

I JobParaServlet I

+ Inito
+d=, faequesto

ýoGeto

doPosto
+ getServletlnfo

Figure 8.2: Inheritance relationships between classes in the package duck. web.

136

ci 0 Lo
R

Figure 8.3: Confirm Servlet interaction diagram.

CookieTest

This servlet can be used to determine whether cookies are enabled in the user's

browser.

DucklD

The servlet duck. web. DuckID is a servlet for controlling logging into the

web application. The servlet does not extend Ducklet but instead extends

HttpServlet. This is because the mechanisms to process users that have al-

ready logged in are not needed. Instead DuckID reads parameters from a web

137

page that is submitted to it to determine who is trying to log in. DuckID reads
the clients IP address, this is used to determine the location of the user. The

user volunteers his/her username and the account they are a member of, using
the web pages form. If these two details are null (meaning no parameters have

been passed from the webpage), the DuckID servlet has been called without a

web pages submit being used. The servlet will then not process the request.
After trimming the username and account, basics checks are made, such as

whether they are blank or excessively long. The servlet then checks whether
the user and account are valid by using the database (via the AccountDB class).

Once this has been done a session ID is generated. It is stored in the database

and set as a cookie. When all of the above has been completed successfully

a page is returned to the user giving them options of what to do next. The

options are in the form of navigateable URLS, which invoke other servlets.

138

-0

I
Figure 8.4: Interaction diagram for DuckID servlet.

Ducklet

The class duck. web. Ducklet is a servlet that acts as a base for many of the

servlets in the DUCK web application. Ducklet extends the class
j avax. servlet. http. HttpServlet, which is an abstract class designed to be

subclassed to create servlets that deliver HTTP.

139

The Ducklet servlet itself is abstract, only because there is no reason why

an instance of the class should be created. Creating an instance would just

authenticate the user for the request and then do nothing else. It provides
some basic functionality required by the majority of servlets that form the
DUCK web application.

Firstly, the settings required for the DUCK system axe loaded by this servlet
when it is initialised by the servIet container. This typically happens once in

the lifetime of the servlet. The code for this is in the inito method in the

servlet. The servlet will throw a ServletException if it cannot correctly load

the settings.

Secondly, methods in Ducklet process requests from the client. The cookies

sent by the client are obtained and processed, most important is the session
ID cookie. A look-up in the database using this session ID is done, providing
the system with the details associated with the session ID.

Thirdly, the servlet checks whether the user should use the system, this is done

on each request made by the client. Ducklet checks whether the transaction is

valid using the method is Transaction Valido. If the user's access to the system
is valid (they have supplied a session ID that exists in the database) then true

is returned, if there has been a problem logging in then false is returned by

is Transaction Valido. Access to the is Transaction Valido method is protected,

meaning that only classes that subclass Ducklet can use this method.

Fourthly is the availability of session ID. If a valid session ID is passed to the

servlet and this session ID exists in the database then Ducklet makes the ID

available via the getSessionffio method. This method returns the session ID

for the user. Access to the session ID is protected, meaning only subclasses of

Ducklet can access the session ID this way.

Finally, the method getPropertieso makes the properties the DUCK system

needs available to servlets that subclass this servlet.

140

personWlth

Figure 8.5: Interaction diagram for the abstract Ducklet servlet. A non-expert
MAP user is the actor. Classes derived from Ducklet perform cookie fetching

and ID checking, using the logic contained in Ducklet.

GenericSelect Query

The Generi cSele ct Query servlet is a servlet that allows sets of SQL queries
to be run against the DUCK database. The queries are defined in a XML file

which can be edited to add, enable/disable or remove the queries. Only SELECT

queries are supported, these are queries that are read-only to the database sys-
tem. The servlet, initially called without any parameters, lists all the available

queries to the user, allowing the user to select a query to run. The chosen query

can be selected by following a link which causes the servlet to call itself again

with a parameter identifying the query to execute. The query is then executed

and the results return in a table contained in an HTML page. The servlet is

a subclass of Ducklet, reusing the session management provided.

The servlet uses an XML file on the server called sq1. xmi, a file with queries

141

as its root element. The queries element can have any number of query ele-

ments as children. Each query element represents a set of SQL queries. The

query element can have a description, an XML attribute indicating whether
the queries should be made available (publish) and an XML attribute indicat-

ing which account the queries are associated with. These pieces of information

are stored as XML attributes in the query element.

Nested inside the query element are any number of SQL elements. These

contain SQL queries, which are executed in the order they are listed. When

the Servlet is initialised the SQL queries file is loaded. This means if the file is

changed the web application must be reloaded for changes to take effect. For

example added SQL queries will not be available until the web application is

restarted.

The file is loaded using the method gefflesourceAsStreamo which is in the

servlets ServletContext. If the resulting InputStream is null, indicating a

problem, then an Exception is thrown. Otherwise the InputStream is parsed
into a DOM(see section 4.6.5). Once this has completed the data from the

queries file exists in memory as a DOM that can be transversed to obtain the

data in it.

Data is obtained from the DOM by calling the methods in the interface

org. w3c. dom. Document. These methods allow navigation and retrieval of the

data in the DOM. The method queryNodeso returns a NodeList which con-

tains the nodes that contain the sets of SQL queries.

Internally the class uses a nested inner class, QueryNodeData, which encapsu-

lates the data from a query node. This class has the following fields; -

" name, a string giving the query a name

" desc7iption, a string describing the query, which should be human read-

able.

9 publish, a string indicating whether the query should be made available

to users

142

* account, a string indicating which account the query belongs to

* sql an array of strings containing the SQL statements

The method getNodeDatao takes a Node and extracts the data into an instance

of QueryNodeData. This data is then in such a form that it can be easily
digested by the methods that use this method. The method listQue7ieso lists

the queries available. It outputs them as a web page with hyperlinks to allow

each query to be run. The method executeViewo processes a request to run

a query set. It outputs the results of the query to a web page that is returned
to the user.

HTMLLib

This class is an exception in the package duck; it is the only class that is not

a servlet. Instead HTMLLib is a library of static methods for various common

tasks. The methods are frequently called in the servlets that make up the

DUCK web application. The methods that output IITML formatted output

tend to require an instance of java. io. PrintWriter to which output is di-

rectly printed, instead of returning strings full of IITML. In the class there are

methods for;

Making error pages relating to handling exceptions. This method ac-

cepts, as its arguments, an exception instance, a PrintWriter and a

string containing a human readable explanation. The exception can be

any sub class of the class Exception or an Exception itself. A web page

showing the error situation, stack trace and explanation is outputted to

the PrintWriter instance.

Making general error pages when an exception has not been thrown. This

method outputs an error explanation web page to a PrintWriter when

no exception has been thrown or in situations when it is prudent not to

show the stack trace. A typical reason is not to divulge technical details

of the system for security reasons.

143

Getting the session ID from an array of cookies. This is a convenience

method to get the session ID, as a string, from an array of cookies. If

no cookies are returned from the web browser an exception is thrown

explaining this.

Making the HTML for a table and printing it to an open PrintWriter

instance. The argument accepts table data as aj ava. util. Vector,

which has more vectors representing the rows. Vectors containing the

rows contain strings as their elements. The method loops through to

get the rows and the cells contained in the rows and outputs the data

marked up with HTML tags to the PrintWriter instance passed.

Making a page that automatically redirects the browser to another page

after a certain amount of time. The method produces a page with a

message on it (passed in arguments), that allows the user to either wait
4 seconds to be redirected or offers a link the user can click on, to go to

the page straight away. The automatic redirection is done using a meta
tag http-equiv refresh tag.

A method that makes the HTML for a displaying a SingleResponse

object in a form. The method takes the SingleResponse object and

obtains the 3 fields; name, message/value and description. All three of
the resulting pieces information axe written as a table row. The name

and description are written to one table cell, with the name in bold. The

message/value information is written another cell as an editable text

input form control. As with other HTML methods the finished markup
is written directly to the PrintWriter.

e method that makes the start of an HTML form. Allows the method of

submission to be set (POST/GET) and the action, which is the servlet

the form is submitted to.

A method that makes the end of a HTML form. The method finishes

144

the table off and adds a submit button that the user clicks to submit the
form.

* Two methods to print out Maps and Enumerations as HTML formatted

un-ordered lists. This allows data of these two types to be easily inserted

into HTML output.

JCBServlet

The servlet duck. web. JCBServlet extends Ducklet. It provides the function-

ality to read submitted web pages containing the data the user has entered for

a Job Control Block. See figure 8.10 for a screen shot of the web page and
form used to enter this data. This data, once read by JCBServlet, can be

used in the web application. Once the servlet has processed this data it then

redirects the user's browser to the next stage of the process.

When JCBServlet handles a request the superclass methods in Ducklet are

used to make sure the user's session is valid and obtain the session ID. If the

session is valid the properties are read (see 8.4.2) and a blank Job Control

Block object is created. This object is a class implementing the interface

JobControlBlock. The parameters entered by the user on the web page are

set as values in the Job Control Block.

It should be noted that Job Control Block parameters only relate to the setting,

up of the computing job, and not the simulation. The Job Control Block is

cast to a class with the method basicChecko, which is called to do a basic

check. Using the class JCBDBTalk and the session ID, the Job Control Block is

written into the database. A page is then returned to the user informing them

the Job Control Block has been entered into the database. This page redirects
to the next servlet after a pre-determined time.

145

JobParaServlet

JobParaServlet is a servlet that extends Ducklet. The resulting servlet al-

lows the user to edit the parameters for their MAP job and then submit the

values.

Once it has been checked that the user has a valid session, the jobname (the

name of the saved job) they are running is required so that the correct default

parameters for the job may be loaded. These parameters will relate to the

physics or engineering job (for examples) that is being setup.

The jobname is obtained by getting the user's Job Control Block from the

database (using the session ID). The jobname is found in the Job Control

Block. Once the saved job name is known, a SingleResponseDB object is used

to read the default job parameters back from the database. The parameters

are read back as a name, a description and a default value for each parameter.
This triplet of information is encapsulated in a SingleResponse object. Each

SingleResponse is represented as HTML form fields on the web page sent

back as a response to the request. The resulting page is shown in figure 8.11.

The user can then edit the values for the parameters and submit the form.

Completed forms are submitted via the POST ([68]) method to the Submit JobServlet.

List S essionServlet

The duck. web. ListSessionServlet is a servlet responsible for providing list-

ings, performing actions and showing the state of the MAP system to the user.

Its function is determined by the view parameter passed to it when a request

is made to the ListSessionServlet servlet.

The tasks performed by the servlet include: -

* showing the state of jobs in the MAP queue (for example thejobname,

the estimated time until a job completes and the state of a job).

* setting all session IDs as inactive, meaning all current and past users

146

Lo
a

Figure 8.6: JCBServlet interaction diagram
147

are logged out.

* describing the schema of the DUCK database system.

ListSessionServlet starts the MAPQueryTask when it is initialised using the

inito method. MAPQueryTask is a singleton class; meaning only one instance

of it can be created by the ListSessionServlet. This is to stop multiple

queries to the core MAP software being made. MAPQueryTask is a timer-based

system that queries the core MAP system via a network socket.

If a request to see the status of the MAP queue is made, the information is

obtained from the database, not directly from MAP. The database is updated

on regular basis (120 seconds typically) from MAP using WqueryTask. This

is to stop every user request generating a query to MAP. The information

returned to the user is from one of two database tables updated alternately,

so that one table is always available.

All the session IDs can be made inactive using ListSessionServlet. This

could be used to log off all users when the DUCK web application needs to be

restarted or shutdown. Sessions are made inactive by setting all the records in

the active field as inactive in the database table.

The final function of the servlet is to show the database schema in tables on a

web page.

StartHere

This is an extremely simple servlet written to redirect users to the login page.

SubmitJobServlet

The function of the servlet duck. web. Submit JobServlet is to obtain the simu-

lation parameters passed to it from the web page. The session ID and whether

the session is valid for the transaction are provided by sub-classing Ducklet.

Once a valid session ID is obtained the parameters are read from the web page

148

submitted to the servlet. Care is taken not to read the value of the submit
button, as we do not need the value and it would add an extra, unwanted,

value to the process. SingleResponse objects are created from the param-

eter name, value pairs. The related Job Control Block is obtained from the
database using the session ID. If all the above processes are successful then

the servlet tries to submit the job to the MAP cluster. This is done using an
instance of JCBSocket, which is a class derived from MAPSocket designed to

pass Job Control Block data and simulation data to a listener on MAP. The

class is used in the following manner

" getting an instance of it, which points to the MAP queue daemon host

" setting the Job Control Block and simulation data for the instance

" Calling the exchangeo method which opens communication, exchanges
the information and then closes the connection.

Obtaining the error/information/warning feedback from the instance.

Cleaning up the instance of the JCBSocket because it is a singleton and

the particular instance in question will not be used again.

After the information exchange to MAP, a web page is constructed with the

feedback from MAP. As stated earlier this feedback is split into three areas,
information, warnings and errors. The final action of the servlet is to provide
links on the output page to allow the user to continue. If the user has errors

they only have the option of cancelling the job. If the user has warnings, but

no errors then they are given the choice of running or cancelling the job.

duck. database

The classes described below provide a 'binding' between the database and

the DUCK application. They allow data to be stored persistently using the

database. See section 4.7.2 for a description of relational database systems,

a description of JDBC is given in section 4.7.4 and possible solutions to the

problem of persistency are discussed in section 8.3.4.

149

AccountsDB

The class duck. database. AccountsDB stores and retrieves information about

the MAP account system in the DUCK database. There is a reliance on

DBLib for the underlying database access. The static methods provided by

AccountDB allow various tasks to be performed without creating an instance

of AccountsDB.

is ValidAccounto, takes an account name as a string and checks whether
it is valid and whether the user is a member of the account. The result
is returned as a boolean.

is Valid UserName 0, takes a user name, as a string and checks whether
it is a valid user. Again the result is a boolean.

The class implements, as an inner class, duck base. Account. Instances of

this inner class can be returned to provide information on individual accounts.

The method getAccounto returns account information on an account specified

by an account name passed to the method. A list of account names on the

MAP system can be obtained by calling the method getAccountNameso, which

returns the names of the accounts as strings contained in a vector. The num-

ber of accounts is available, as an integer, via the method getNumAccountso.

Calling the method getDatao on an instance of AccountsDB populates the

instance with the latest user, site and group data.

The inner class implementation of the Account interface, as described earlier,

provides read only access to the data on an account. The following methods

make information about individual accounts available; -

" getAccountNameo gets the name of the account

" getDiskLimito gets the disk space limit for the account

" getSiteso gets a list of valid sites for the account

" getUserso gets a list of valid users for the account

150

DBLib

The duck. database. DBLib is a class full of static methods that perform com-

mon database tasks in the DUCK project. Some methods perform very generic
tasks, such as the method for getting a database connection object, other
methods do slightly more specialised tasks; for example the method to check
whether a session ID exists in the database.

The getDatabase Connection 0 is a method that is frequently used through-

out the web application to obtain a database connection. The method throws

all exceptions that may occur rather than handling them as it was considered
more appropriate to handle the exceptions elsewhere in the software. Specified

in the properties file is which database driver to use and also the database host

that is to be connected to. Aj ava. sql. Connection object is returned which
forms a connection to the SQL database defined in the properties file.

When using the method one must remember to close the connection object
when it is finished with.

Using the method getNewSessionffio a new session ID for a user that is log-

ging on can be obtained. A connection to the MAP database is made and a
random number generated. This number is written into the session table in the
database along with other information about the user and their current ses-
sion. The same random number that is stored in the database is also returned
by the method.

Using a sessions ID, the method setSessionInactiveo makes a session inactive.

This method is to allow a single user to log off or be logged off. The entry
for the session in the session database table is flagged as active='false'. This

means the user's session is now permanently inactive and they would need to
log in again to use the system.

The method seWlSessionsInactiveo works in a similar fashion to setSessionI-
nactiveo except it makes all currently active sessions inactive. All users would
then be required to log in again. The method is of potential use when the entire

151

MAP system is being shutdown for maintenance.

getRandomo returns a random number (as a long precision integer). This

number is used as a session ID and negative values can be returned. This

method is used internally by getNewSessionffio.

The method idExistso is used to check whether a session ID exists and is

active. The result of the check is returned as a boolean value. The method

requires the session ID to be checked in a database table. Typically this is the

session table. Also stored in this table is a field indicating whether the session
ID is marked as active. If the session ID is not marked as active, then false

is returned by this method. A false return value can also indicate that the

session ID does not exist in the table. A true return value is returned if the

session ID exists and is maxked as active.

The method idExistsSingleFieldChecko is similar to idExistso, but omits the

check on the session ID being active. This means it can be used with database

tables where the state of the session ID is not stored.

The method gefflesultsAsVecso is a useful method for getting the results of
SQL queries as a set of nested vectors. Using the method getDatabaseConnec-
tiono the SQL query passed as an argument is executed. The resultset is then

packaged into a set of nested vectors 1.

If the resultset returned by the SQL query contains no data then a vector

containing a row with the string "no dataP is returned. There are methods in

the duck. web package to turn the resulting vectors as HTML tables for display

in web pages.
'The nested vector is structured as follows, for each row a vector is used to store each

cell in the row as a string. The vector representing the row is stored in another vector that

is equivalent to the whole resultset. The column names for each row are stored in a vector

which inserted into the main vector before the first 'row' (vector) of data.

152

JCBDBTalk

The class JCBDBTalk is for storing and retrieving Job Control Blocks in the

database system; meaning it proves persistency for Job Control Blocks. In-

stances of JCBDBTalk are constructed using a single constructor, which accepts

the session ID which relates the Job Control Block to its session. This session
ID is stored internally as a final field, meaning that the instance of JCBDBTalk

is fixed to that particular session ID. The constructor also loads the properties

needed to communicate with the database system.

JCBDBTalk works by having an instance of a Job Control Block stored inter-

nally. This can be obtained by using the method getStateo or overwritten by

using the method setStateo which requires the new Job Control Block to be

passed as an argument. The Job Control Block stored internally can be written

to the database using the method writeo, or can be over-written by obtaining

a Job Control Block from the database using the method reado. Using the four

methods above, Job Control Blocks can be stored and retrieved in the database

for later use in the web application. Internally JCBDBTalk manages writes to

the database with two private methods; updateJCBO and insertXBO. If the

Job Control Block has not previously existed in the database table insertJCBO

is used to insert a Job Control Block with blank fields and the correct session

id. updateJCBO is used to write the values from a Job Control Block into

either blank fields in the database table or overwrite existing fields.

QueryDB

The QueryDB class is responsible for updating the MAP job status query infor-

mation in the database tables that provide the query information to the users.
This procedure is described in section 8.4.1

The static method get Current Table 0 returns which table should be accessed

to provide information to clients. Another static method, getTimeStampo, re-
turns the time stamp for the requested table, thus allowing the web application

to see which is the most up to date table.

153

There are two constructors for the class; one is a no-arguments constructor

that simply allows an instance of QueryDB to be created, the other accepts a

vector and a string. The vector should contain the data which describes the

state of the MAP job queue and the string is the time stamp of the data.

The constructor then updates the correct database table. The public instance

method updateo updates the correct table with the information supplied in the

vector passed to the method. The method also requires, as an argument, the

time stamp encapsulated as a string. Internally the class uses a private inner

class, which has three fields, to help with processing the result sets. There are

the following private methods in the class; -

clearo clears the database table requested, which is identified using the

integer passed in the arguments.

geffableNameo identifies the name of the database table from the integer

passed as an argument. Typically table 1 is called q1 and table 2 is called

q2.

populateTableo populates a table with MAP queue data. The vector

passed as a parameter has the data. The method also requires the num-
ber of the table to populate and an open database connection object.

setTableo This method is used to set the states of the tables (1 or 2).

The tables can be set to 'use'-boolean value true or 'not use' boolean

value false.

get Current TableIo. This method returns the number of the table that

should be read from. It can return 0 if it cannot determine which table

should be read from.

seffimeStampo. Sets the time stamp for a given table. The method

requires the table number, the time stamp and an open database con-

nection object.

test QueryInfo Table 0. This method is used to test the database table

that holds the query information. The table should have 2 rows, one

154

referring table 1 and one referring to table 2. If there are more than 2

rows then this method is used to detect this potential problem.

SingleResponseDB

The class duck. database. SingleResponseDB reads and writes SingleResponse

objects to the database system. Grouping of these objects make up the job

parameters for computing jobs. This class writes a group of parameters into

a single database table. Therefore, each separate set of job parameters has its

own database table.

An instance of SingleResponseDB can only be used for the set of parameters
it was constructed for; the jobname argument is stored as a final variable in
the constructor. A database table is used to link jobnames to the tables that
contain the parameters for the jobs. For operations that involve reading and
writing sets of parameters in the database; a set of vectors stores the param-
eters internally. The setStateo method can be used to set these parameters
and the getStateo method can be used to obtain the parameters (that have
typically been read back from the database). The method updateTableo is
used to write the parameters stored internally in the class to the database
table for that job. The method overwrites the previous set of parameters with
new parameters. Using the method readTableo parameters can be read back
from the database and made available to the program. A number of meth-
ods provide information about the grouping of parameters; getJo bDesclip tion 0,

getJobTableNameo, getJobNameo, getUsero and getGroupo.

There are a number of static methods in the class, these are; - createTableo,
addOneRowo, deleteTableo, findTableNameo and getAllJobso

duck. sockets

The classes that provide DUCK-MAP communication. Figure 8.7 illustrates

the inheritance relationships in these classes. A base class MAPSocket provides

code for the basics of socket communication and a framework for derived classes

155

(via abstract methods).

The derived classes, JCBSocket, QuerySocket and JCBConf irmSocket, extend

MAPSocket implementing the abstract methods and adding methods where

appropiate.

Typical usage of the derived classes follow the method call pattern of openOl

exchangeo (which does the work of exchanging data) and closeo.

Some derived classes have a getInstanceo method. This is usually so the class

can follow the singleton model of only one instance at a time. See [69] for

details of the singleton design pattern.

156

Figure 8.7: Relationship between classes in the package duck. sockets

JCBConfirmSocket

The class duck. sockets. JCBConf irmSocket is for confirming that ajob should
be run. When the details of a computing job have been submitted to the core

tier of MAP, MAP returns a list giving messages in 3 categories, errors, warn-

ings and information.

A job containing any errors cannot be run. A job that has warnings can

157

be run if the user decides they want to run the job. JCBConf irmSocket is
for communicating the user's decision to MAP. The decision will be a simple
true (run the job) or f alse (cancel and delete the job). The session ID is also

passed, to identify which job we are talking about. JCBConf irmSocket extends
MAPSocket, which provides a lot of the basic functionality. JCBConf i=Socket

performs the following tasks; -

e Read configuration, to find out where the MAP Queue daemon is hosted,

etc.

9 Open socket, opens a socket to the MAP Queue daemon

Send messages, sends the message (by overriding the exchangeo method

* Closes socket, closes the socket.

JCBConf irmSocket uses the singleton model, meaning only once instance of
the class can exist at a time.

JCBSocket

The class duck. sockets. JCBSocket extends the base class MAPSocket, which

provides a lot of the basic functionality. The class is designed to imple-

ment socket communication of Job Control Blocks and simulation parameters.
JCBSocket performs the following tasks; -

* Read configuration, to find out where the MAP Queue daemon is hosted,

etc.

9 Open socket, opens a socket to the MAP Queue daemon

Send: sends the Job Control Block (by overriding the exchangeo method

* Send: The class also sends the paxameters relating the simulation.

158

Receives the overall messages, which fall into three categories (Error,

Warning and Information)

e Closes socket, closes the socket.

JCBSocket uses the singleton model, meaning only once instance of the class

can exist at a time. The class stores an instance of Job Control Block internallY-

This can be retrieved using the getStateo method or set using the setStateo

method. Simulation data is set using the method setParameterDatao, which

accepts a vector full of SingleResponse objects.

The class provides three methods; getWarningso, getErrorso and getInfoso.
These methods return the feedback information from MAP as vectors full of

SingleResponse objects. The order of the first seven items is important when

the Job Control Block is sent using the overridden exchangeo method.

MAPSocket

The abstract class duck. sockets. MAPSocket acts a base class for the different

classes that implement socket communication in the DUCK web application,

see 8.7. The class was written late on into development of the software to

stream-line the socket code and make it more maintainable. Classes that ex-

tend MAPSocket have access to a variety of protected methods in the base

class, they also have to provide implementations for some abstract methods.

MAPSocket encapsulates the basics of communicating between the DUCK web

application and the core MAP cluster softwaxe. Communication is provided

by network sockets; Java has the j ava. net package which provides implemen-

tations of various network software elements. A large part of the development

process was spent designing a 'protocol' to allow the DUCK system to com-

municate with MAP. The principle of an exchange of data between MAP and

the web application involves the follow: -

41 The MAP softwaxe, on the host COMPASS node, has a listener on a

particular port waiting for a communication.

159

9 The web application initiates communication, by opening a socket to the
listener.

e Vaxiables are transmitted, with a possible response to each (a kind of

question and answer protocol)

* There is a possibility for the sending of information by MAP to the web

application after the variables have been communicated.

9 The web application signals it has finished transmitting information and
the socket is closed.

QuerySocket

The class duck. sockets. QuerySocket is designed to provide a means for

DUCK to get information from MAP about the state of the MAP job queue.
QuerySocket extends MAPSocket, which provides much of the base function-

ality.

duck. cmd

This package contains a single class DuckConf.

DuckConf

duck. cmf. DuckConf is a command line utility for configuring DUCK. It has

limited functionality for adding users, adding user groups and editing saved

jobs. The interface is a command line interface and the web application has

to be stopped to use it. Typically the program would be run on the same

machine as the web application, perhaps via Secure SHell(SSH).

160

8.4.2 Software Structure

Job Submission Queue interface

The Job Submission Interface consists of the following components; -

9 JobControl interface which defines the Job Control Block

9 JobControlImpi, an implementation of the Job Control Block

o JCBServlet, a servlet for reading a web page and getting the user's

entered Job Control Block

* JCBSocket, a class for communicating the Job Control Block to the core
MAP system.

Setup parameter loading

A recap of the parameters 2 needed from the system are; the database driver

class name, the database location, the database username string, the database

connect password, the MAP queue host, the MAP queue port, the MAP query
host and the MAP query port.

The text based parameter system was discussed in section 8.4.1.

A new XML based system was devised and written, although there was not

enough time to integrate it into the software. The underlying technology used,
XML, is discussed in section 4.6.1.

The property file is loaded from the location specified by the Java property

user. home. This can vary from operating system to operating system. When

the system was deployed on Linux, an exception was generated because the

properties file was not found in the location pointed to by user. home. The

solution was to copy the properties file to the location expected (which was

given by the exception message).
2A more detailed description of the parameters is provided in 8.4.1

161

Database System

MySQL is a relational database system. It was used to provide persistency for

the DUCK Web-Application. MySQL provides the majority of the ANSI-SQL

standard (see D).

The web applications was linked to the database using JDBC and the mm-
MySQL driver. Classes under duck. database act as the database bindings

and typically issue SQL statements, process the resultset and then provide the

data in the form of Java variables and class structures.

The database schema consists of a number of tables; -

9 Session for storing session data

* Accounts for defining accounts (groupings of users)

9 Users for storing the users

9 Sites for defining the valid sites that can have job submitted from them

Jcbs for storing Job Control Blocks

e parainf o for storing the information about the query tables and which

query table to use

q1 one of two tables for storing query information (MAP queue/job sta-

tus)

q2 one of two tables for storing query information (MAP queue/job sta-

tus)

*A table is created dynamically for each saved job defined. Each table is

listed in parainfo.

The XML loading system for SQL SELECT queries. This aspect of the software

was discussed in section 8.4.1, duck. web. Generi cSel e ct Query.

162

Eýe [dit Yiew go Dookmarks JOOIS tielp

http: lflocalho.,

I
iLogin into Duck
lAccountName

ýUser

You do not need to enter site because we can find out where you are,)I
Please do not use ' (apostopies)m any of the field. A bit of javascript should fix this
eventuallyl
Also you may need to disable prwdes to get a direct connection as you

Figure 8.8: The web page for user login.

163

FOO Ecbt Yew ýjo EooWwks Jools belp

hllp ýý$wmlkm 11111111117"-Ivl-ý-

BBC News Webmad Googla JaYa2SE OAC A) ServW API *I XMLAPI *1 Art man, 3&vminf

Login success

Your details have kindly been processed by DUCKID and you are now logged into the DUCK/MAII
system. On the production system you might see messages that tell you about the curTent status of MAP
(Monte-Carlo Array Processor)
rMe value of your session cookie is: -6813816382111865326, you do NOT need to remember thisl

" LIAP Itifoiniation, from the DUCK Genenc Query System
" Job Control Block Enny , Click here to enter parameters for a NW Job
" J-Y. q Rutan)ý,,, n MkYl, see the listof jobs runnuig NW
0 Elocs, Browse the DUCK's Documentation
* User Guide, A quick inti oduction to usuig DUCK to subrrut map jobs

Admin Functions

lylake aH use tvý- u,., vtivp, Logs aý actve us e-rs :. ff DUý- I'
.

Test, basic cookie retrieval test

Figure 8.9: The web page displayed after the user has 1()gg(, (l ill. 'I'llis 1), Ig(,

allows various actions.

164

IT, MA. 1 +* eD jest Page - r-owma eirevou 1111 X1

Eila Edt Ylew Cfa Qookmarks 10015 U*

Lcg oLA

DUCK Job Control Block Entry page
MAP Job parameters

Saved job rwm - replaces Executable

*Manditory (cannot be blank)

! Helpi

Disk Space

'Mariditory (canwt be blaA)
I ! Le-1 ILI

Over Write, ifoutput exists forajob will Abe owrwnttenl Helpl

Random Fast Help'

Registered Days Helpl

Endscnpt Helpf

Job Name

*Manchfory (cw=t be blank)

NFS Mounts HeIL

Registry Tart Helpi

runtmie
*Marditory (cannot be blank)

randomseed H11RI
ir

Lanux Version Helpl

killperc Help'

output HLIP,

Fetch sync Helpi IFtiu-e

KJl Tune ! ISýIpl

Return Files ULI ll'
ýfstdcKA

fl, sWerF N

Ignore Warrungs - means any wumngg gryenby MAP we gwred and the job is submitted
TE ýrfalse

Click only once pleasel SubrnittPalarnetert

Figure 8.10: The web page that allows editing of Job Control Blocks.

165

Eje Ldt Ylew go Qookrnarks Jools belp

iamdX Vanable in spylhia)ob Fl--

keycot V&nable in spythia)ob 112
keyevenk Vaiiable in spythia job

keyhad, V&riable m spythm job 114
keypra, Vwiable in spylhm job 15

keystr, Vwiable in spythia job 16

niritrk Vanable in spythia)ob 17

Chck button once to subnut SubmitPaiamalais

Figure 8.11: The web page for editing the siniulatioll parameters

166

Ege Ecit Ylow & QDokmarks lools tielp

http: i/localhost: eoao/duckAistSessionSer%

Status of Jobs in Queue on MAP

List and states of mp jobs at 2004-0"5_1434,54PM(frorti table ql),

It rrdybe worth clicking refresh to update this page on first load,

You can chck refresh to reload the page ard see the current status, although the data is refreshed with a periodicity ofimnutes.

accouRt lite status otu-ttim

cff Ivpool loachng 200,4-01-19_1 5 01 26PM

cdf IvP001 Waiting 200401-19_15 01 26PM

cff llvpool waiting 2004-01-19_15 01 26PM

adnun
Ilocal

waiting 2004-01-210101 26AM

admin
Ilocal

waiting 2004-01-2200 01 26AM

adr=
'I.

Cal waiting 2004-01-220101 26AM

cdf jlocal Waiting 2004-01-23_00 0 1.26AM

Figure 8.12: The web page that allows users to check the job queue.

8.5 Deployment

The DUCK wet) application was deployed on the Apache Tonicat Server. The

Apache software foundation is a non-for-profit corporation which produces

open source software. The Torneat server is part of the Jakarta project and is

a scmlet contai'ner. It is the official reference implementation for Java servlets

and JSP. There are three generations of Tomcat server, these are; -

e5 The latest version of Tomcat, supporting Servlet Specification 2.4

94 Ail older version of Tonicat, supporting Servlet Specification 2.3. This

version implemented a new servlet container called Catalina.

:3 The oldest currently supported version of Tomcat, supporting Servlet

Specification 2.2. This version of Tomcat has roots back to the original

release of Apache Tomcat.

167

The Apache Tomcat version (4.1.29) was used; this version was the latest

version of the Tomcat 4.1. xx series available at the time. The web application
was deployed on Windows and Linux systems.

8.5.1 Servlet Container Configuration

The web application is configured as such using the standard web. =1 file. This

file is an XML document that is described by the document type definition with
the namespace http: //j ava. sun. com/dtd/web-app-2-3. dtd. The document

contains the following information; -

" The fully qualified classname of every servlet in the web application

"A name for each servlet

9A URL pattem for each servlet, that defines the location of the servlet
in terms of a relative URL

A display name for the web application

A description of the web application, a human-readable description of
the web-application.

The web. xml file has the root element web-app. Servlet and servlet-mapping

are two possible tags that can be contained in the root element.

The name and qualified classname for a servlet are contained in Servlet ele-

ments, whilst the URL pattern is contained a serviet-mapping element. The

order of the elements tends to be important; all the Serviet elements should
be grouped together and all the servlet-mapping should be grouped together.
The two types of elements should not be intermixed.

8.5.2 Windows

Deployment on Windows involved copying the completed web application

archive (WAR) or the files in the correct paths to the correct folder in the

168

Tomcat Installation and restarting Tomcat. If not previously installed, the
MySQL database system would need to be installed and configured.

8.5.3 Linux

Installing the Web-application under Linux followed a similar procedure to
Windows, although due to differences in where the Java property user. home

points to, the properties. txt file needs to be placed in a different location.

8.6 Starting a Job using DUCK

The initial step for a user would be to point his/her browser to the URL,

http: //1oca1host: 8080/duck/ (in the case of the test version).

The browser is supplied with a static page which is not generated by a servlet.
This contains a form to allow the user to provide the login details (see 8.8).

The user fills in his/her login details, which consist of the account name and
the user name. MAP has the concept of accounts, which are groupings of

users corresponding to the experimental groups, for example LHCb, CDF and
ATLAS. The username is individual to the user. When the user clicks 'Login',

the browser dispatches the details, via the POST method, to the DuckID servlet
(see 8.4.1).

The functionality of DuckID is also covered in 8.4.1. In the response DuckID

sends a cookie for the browser to store. This cookie contains a unique ID

(session ID) that links the user with the data held in the DUCK database. This

ID is simply a random number of type long. The HTML response contains a

web page with links that allow the user to do a number of tasks (see 8.9).

To submit a MAP job the user should click Job Control Block Entry. This

returns a page illustrated in 8.10. The user will then fill out the Job Control

Block parameters, these are parameters that relate to the computing side of
the job (see 8.3.6). When the user clicks 'SubmitParameters', the form data

is POSTed to the JCBServlet (see 8.4.1).

169

JCBServlet retrieves the session ID from the cookie in the browser request.
This allows DUCK to store the Job Control Block parameters the user has

entered referenced against to the session ID in the database.

JCBServiet also checks the values entered into the submitted page, mainly

to check the values of the right type. Once the values are stored the servlet

returns a web page with a link to the next servlet.

This webpage automatically redirects to the JobParaServlet (see 8.4.1). This

servlet reads a set of parameters describing the physics of the computing job

(for a monte-carlo simulation). More specifically the parameters allow differ-

ences to be introduced to the jobs running on the nodes. Otherwise there

would be, for example, 300 identical jobs running. The parameters and their

default values are stored in a database table. Each setup job has its own

database table holding the parameters for it.

The parameters and their default values axe returned as a form in a webpage
(see 8.11). This gives the user a chance to edit the values. The 'Submit

Parameters' button sends the values to the Submit JobServlet (see 8.4.1).

The Submit JobServlet retrieves the Job Control Block and submits it along

with the job parameters to the MAP core system using a network socket.

The MAP system returns, as a response, a possible series of ervors, warnings

and information. See section 8.3.8 for a description of the meanings of these

categories.

If there are no errors the Submit JobServlet includes a link allowing the user to

submit the job. The users response is handled by Conf irmServlet (see 8.4.1)

which opens a socket to the core MAP system and signals the job should be

submitted to the job queue.

8.7 DUCK as Grid Middleware

A number of solutions to 'gridifying' MAP were considered. One solution in-

volved using a system that was developed to maintain the GridPP website (see

170

[70)). Using GridSite allows grid security to a web-based system is described

and offer in [71].

Another more mainstream solution is to use the Globus toolkit (see [20]). This

was the solution decided on.

Some work to implement a grid service was done using Globus OGSA (Open

Grid Services Architecture) 3.2. The Globus Toolkit 3 has bindings to allow

grid services to be implemented in Java. This was a major factor in the choice

of Globus; existing Java code from DUCK could be used to implement a grid

service.

The code implemented amounted to the implementation of the session ID

system (see 8.4.1) as a grid service. The toolkit's Java API's were used, so that

the existing DUCK was useable in a grid solution. Client-server communication
is provided by a web service like system in Globus Toolkit 3. By using the

tools provided XML schemas and Java bindings for the services were easily

generated. In this test software the client and server were both command line

software. This Work was not continued due to time constraints.

One problem, which would be solved by using a grid solution, was the uploading

a large files and even data sets. Replica managers and grid-enabled FTP

services offer ways to provide this functionality.

8.8 Summary

This chapter covered, in detail, the software that made up the web-interface to

MAP, this software consists of a web application written in Java. The many
design decisions, interfacing to the core MAP system and deployment were all
discussed. A relational database system provided persistency and data storage
for the web application. In addition an XML based system provided a settings

mechanism.

DUCK was deployed on the original MAP 1 system and used to submit com-

puting jobs. The system was found to function correctly and greatly eased the

171

submission of jobs to the MAP system.

172

Chapter 9

Conclusions

Spitfire Web was a proof-of-concept web application, its implementation taught

me a great deal about technologies such as the Java platform, servlets, JDBC,

relational databases and web services.

A number of design decisions were made for me, due to having to interface

pre-existing code. A major design decision, already made, was the use of Java

which provided platform independence. The use of SOAP as the language

of the messaging system had already been decided on. JDBC was a natural

choice for the proof-of-concept messaging system. A final major choice was

the use of servlets, and hence a web-interface.

I had more choice deciding the following; the use of a single servlet (I followed

a different direction when writing DUCK) and multiple support classes. URL

re-writing was chosen as the persistency solution. The use of Javascript allowed

certain pages in the interface to be interactive. Finally, ANT was chosen as a
build tool to compile and deploy the web application The completed solution

worked effectively using the JDBC interface and showed how a future version

could work.

DUCK was developed to allow users that were not experts in the MAP system

to submit jobs. To do this a web-interface was selected as the user interface.

This simplified the matter of providing a client; a standard web browser is

sufficient.

173

Java was chosen as the language in which to implement the project in. This

was a departure from the core MAP system, which is written in C. Again,

servlets provided the web interface but this time the web application consisted

of multiple servlets.

The interface between the DUCK system and MAP was jointly designed around

network sockets. Sockets were chosen because they represented a simple way
to interface between the C code of the MAP system and the Java of the DUCK

system.

Again the build tool ANT was used to compile, document and deploy the web

application.

Persistency for the web application was provided by a database system which

used cookies to identify users. XML was used to provide a generic query system

to allow various views of MAP data to be produced. The use of such widely

used technologies allows the system to be easy expanded at a later date. This

expansion could be interfacing with different types of computer cluster or using

the DUCK web interface to MAP to provide a solid base for turning MAP into

a grid resource.

The completed system was used to start Monte-carlo generation runs for the

CDF detector group.

174

Appendix A

Software used list

Here is a list of the packages used to develop the software described in this

thesis. Usually the latest stable version of any given package was used.

Netbeans Integrated Development Environment (see [33]). This package

was used to edit Java source code. Version 3.6 was used.

JEdit (see [72]) and Crimson Editor (see [73]) were two text editors I

used extensively.

9 Standard Edition Java Development Kit (see [74]), compiler, JVM and
tools. I used a number of 1.4. xx releases.

o ANT was used for builds (see [32]).

* The Mozilla Firefox, Netscape and Microsoft Internet Explorer browsers

were all used for testing.

MySQL 3. x Database servers and clients (see [58]) were used to provide
Relational Database services. The MM MySQL driver was used as a
JDBC driver (see [75]).

* Apache Tomcat Server, [66], (version 4.1. xx, typically 4.1.29) was used
to deploy the software for testing and use. Tomcat is an example of a
Servlet Container.

175

Appendix B

Dublin Core Metadata Initiative

The Dublin Core Metadata Initiative (DCMI) [35] promotes the adoption of

common and interoperable metadata standards. The DCMI has defined a set

of metadata standards, these were devised by consulting with representatives
from a large number of fields. One such principle is to promote interoper-

ability between knowledge domains (metadata sets), via frameworks, specially

designed for this purpose. The DCMI encourages communities to develop

metadata themselves to describe their own knowledge domains.

The DCMI has defined a minimal metadata set or schema to be used in the

context of the world wide web environment. It consists of 15 fields and resides
in an XSD schema (see C. 2), these fields/elements, divided into 3 categories: -
Content

9 Title * Source

o Subject
o Relation

9 Description

9 Type 9 Coverage

Intellectual Property

176

9 Publisher 9 Rights

e Contributor * Creator

Instantiational

o Date

e Format

o Identifier

o Language

These fields are provided so that document creators, or those who catalogue
documents, can provide a set of information allowing items to be 'discovered'

over a network in an automated fashion.

177

Appendix C

XML Related Specifications

Namespaces

Namespaces are a mechanism to solve the problem of ambiguity between sym-
bols (elements) with the same names. These problems also prominent in pro-

gramming languages; C++ makes use of namespaces, whilst Java has an equiv-

alent feature, package names, which provides a solution to the problems arising

from ambiguity.

For example; one person could define an element called

(address)

with the intention of it storing the postal address of an individual or company.

Whereas someone else could mean it to define a web address, a URL.

Namespaces solve the ambiguity by using identifier elements that define dif-

ferent namespaces. Hence, the two address elements could become; -

(web: address)

(postal : address)

Which would imply one element belonged to a namespace being identified

as web and the other one in a namespace identified as postal. The above

178

syntax is known as qualified name syntax. The postal namespace could have

other elements and attributes and the existence of the namespace would help

distinguish these from elements in the namespace postal, even if there were no

ambiguities.

To use a namespace in a document it must be declared first. The declara-

tion takes the form of an element with attributes, any child attributes of this

element are in the namespace declared. Such an element could be the root

element, for example. The attribute takes the form of. -

0 xmlns: namespaceprefix=url.

Where: -

* xmlns is a keyword to show the attribute is a namespace declaration.

namespaceprefix is the name space prefix, used to prefix the elements in

the namespace.

url is a URL belonging to the maintainer of the namespace. XML pro-

cessors are not required to do anything with this URL, although the

maintainer could provide information about the namespace at this URL.

XML schemas depend heavily on namespaces.

C. 2 Schemas

Document Type Definitions (DTD) are used to define the document structure
in HTML and are related to SGML. HTML is another user of DTD, which

act like a blue print for a document; it defines a list of legal elements for the

document. They can also be used to verify existing documents, checking they

conform to what the DTD expects.

179

Despite the wide spread use of DTDs they have a number of limitations, es-

pecially for use with XML. Firstly, DTDs are not XML, therefore the tools

used for parsing XML cannot be used to parse DTDs. Secondly, whilst DTDs

define the structure of documents, they don't have any real means of defining

types. Typically in XML applications, you have quantities such as integers

and types such a strings and dates. Also, there is a requirement to define your

own data types; this is done using XML schemas; these act as a blueprint for a
document. The schema can specify whether a types expected or required and

whereabouts in the document it is needed.

To overcome the limitations of DTDs the W3C proposed XML schemas. The

standard is composed of two specifications; the first XML Schema Part 1, deals

with structure and the second, XML Schema Part 2, deals with data types.

Both parts are now W3C recommendations.

As XML schemas axe valid XML documents the same tools that axe used to

process other XML documents can be used to process them. XML schemas

also provide a rich set of datatypes, to which custom complex types can be

added.

Using XML schemas we can define a documents form, in terms of structure

and the data it should contain. XML parsers can check instances of documents

against their schemas, validating them in the process. Validated documents

are those that conform to their schemas. XM4 schemas act as specification
for documents; using a schema one can work out how to read or write an in-

stance of a document or even how to convert it into a different form. Hence,

different forms can be used to represent data. These forms can be data that

of a more distilled form (for example more relevance, filtering or process-

ing) or simply different presentational forms (for example portable document

format, Microsoft Word, HTML). This allows the interchange of information.

Information interchange is an issue especially in large corporations.

There are other schema languages aside from XML schemas, an example of

which is Relax NG Schema[76].

180

C. 3 Xpath

XPath is a standard that allows parts of XML documents to be referred to.
Paths are defined to locate elements in the hierarchical structure of XML.

CA Minks

This specification allows XML documents to refer to other XML documents

and external resources. Xlinks are somewhat analogous to hyper links in

HTML, although complex relationships can be defined.

C. 5 Xpointers

XPointers allow specific portions of XML documents to be referred to from

external documents; a combination of Xpaths and Minks.

C. 6 XLST and other Technologies

eXtensible Style Language Transformations (XSLT) are instances of the eX-
tensible Stylesheet Language (XSL). Both languages are recommendations of
the world wide web consortium. XSL allows stylesheets to be defined in XML.

In HTML stylesheets are used to format the appearance of documents; the aim

of this is to separate the document content from the presentation information.

The motivation behind this is to allow a single document to be presented in a

number of different forms using different stylesheets. For example, a document

could be processed to form a web page, a printer friendly web page, a WML

document, a Portable Document Format file and many more formats, all using

stylesheets.

In HTML stylesheets are defined by the Cascading Style Sheet (CSS) language.

CSS has been relatively successful as a means of defining document appearance

181

in HTML (despite patchy support from Browser Vendors).

Whilst CSS was extended for XML a more extensive solution was required

in the form of XSL. XSL is an XML language so some of the arguments in

the DTD versus XML schemas debate are applicable to the CSS versus XSL

argument. XSL goes further than CSS to provide scripting allowing XML

documents to be manipulated as well as defining styles. Being a relatively

large language, XSL is split into 3 parts; -

9 XSL-FO (XSL Formatting Objects), a markup language, purely dealing

with presentational details.

o XSLT (XSL 'Iýansformations), a markup language. This is for trans-

forming an ML-based markup language into other markup or text.

9 XPath (XML Path Language). This is used in conjunction with XSLT

to point to information with XML documents.

Using these three languages we can take an XML document and related stylesheet

and create a new document using an XSLT processor.

Typical applications of this process are listed below: -

o Convert an XML document into HTML. This allows information to be

viewed easily in a browser The process can be done server side or client

side, although support for this is limited

* Convert XML documents into other Markup languages such as WML

(Wireless Markup Language)

* Extract information from existing XML documents

* Convert XML documents to different vocabulaxies.

An XSLT processor is a software component that can perform the requirements

of the XSLT standard. Examples of XSLT processors are Xalan (Apache Soft-

ware Foundation), Microsofts XLST Processor, Oracles XLST Processor and

James Clarks XSLT Processor.

182

Appendix D

SQL

Structured Query Language (SQL) is not just a query language; it is also a data
definition language (DDL) and a data manipulation language (DML). SQL is

cited as one of the major reasons for the success of relational database systems
because it provides a common standard for relational database systems. For

example, if a user were to become dissatisfied with the DBMS that they are
using they could migrate to another DBMS with little difficulty.

The SQL language is designed so that users without programming knowledge

can use it to formulate queries.

SQL was originally known as SEQUEL when it was developed at IBM Research

as an interface to their System R relational database system. ANSI (American

National Standards Insitute) standardised SQL in 1986, producing something
known as ANSI 1986 or SQI, 86 or SQL1. A revised standard was published
in 1992 (SQI, 92 or SQL2). The latest standard, SQL3, has iterated through
2 versions (at time of writing). The various ISO standards can be found on
the ISO website[41].

Like most successful IT standards, the functionality of the SQL implementa-

tions can be divided into two areas, one being the SQL functionality imple-

mented by all vendors, and the other being the functionality that vendors tack

onto the standard, potentially making their implementation not-interoperable

with other vendors.

183

D. 1 Data Definition Commands

SQL provides commands for data definition; Create, Alter and Drop. These

three commands tend to be used with the keywords table or schema, allowing
the operations to be carried out on tables or schemas. To create a table,

information that defines the names and data types of the fields is needed for

each field (or column) of the database table. To use the drop command the

table name needs supplying, this then results in the table being dropped. The

alter command is used to alter database tables. This is usually to add or drop

columns, change the data type of a column or to change a constraint.

D. 2 Query Commands

SQL has one query command; the select statement. The basic form of this

statement is as follows; -
SELECT [attribute list]FROM (table-list] WHERE [condition 1;

where: -
[attribute-list] - is the attributes or fields that are to be retrieved, some-
times the field names need to be qualified with a table name as the same field

name can exist in different tables. The use of * instead of the attribute list

means all attributes are retrieved. Using the keyword DISTINCT means dupli-

cate results in the result set are deleted. The use of the keyword ALL means
these duplicates are not deleted.

[table-list] - is a list of relational tables that are needed in the processing

of the query

[condition] - is an expression that evaluates to a boolean value. Two con-

ditions can be specified by using the AND keyword. Appending ORDER BY

[attribute list] - allows the results of the query to be sorted into an order

using the specified attributes.

184

D. 3 Data Modification Commands

Databases in SQL can be modified using 3 commands; Insert, Delete and
Update. The insert command takes the following form: -

9 INSERT INTO Etablename]VALUES (values]

where: -

4p [tablenamel - is the table to insert records into

* [values] - axe sets of values to insert as records.

Multiple records can be inserted in one statement.

The delete command has the form-

9 DELETE FROM [tablename]WHERE [condition]

where- -

* [tablenamel - is the table to delete the records from

9 [condition] - selects which records to delete.

The update command has the form: -

o UPDATE [tablename]SET (field, value pairs]WHERE (condition]

where-. -

* [tablenamel - is the table in which records are to be updated

[f ield, value pairs] - are the fields to update with new values

e [condition] - condition selects which records to update.

185

D. 4 Privilege Commands

The SQL privileges system controls access to databases; the commands Grant

and Revoke axe central to this privileges system. To use the database system

a person must be first given a user account on the system. One example of

an account would be the web-user account that a database system running
behind a web server would have. In this case all users accessing the database

over the web might use one user account.

Different user accounts will have different amounts of privilege. The web-

user account described above would probably have limited privileges, with for

example, no ability to modify or add data and the ability to only view a subset

of the data.

The ability to define the access permissions for databases is especially impor-

tant in situations where sensitive information is stored, for example banking

and medical records.

Whilst the user is using the database, the system records what the user does

in a log. This log can then be used to provide an audit trail; allowing their

actions to be reviewed.

Privileges can be assigned to users (at the account level) or to tables (at the

relation level) -

186

Appendix E

JDBC Driver Types

E. 1 Type I JDBC Drivers

Type I category drivers use ODBC to access databases. In some cases this may
be the only available solution if there is no JDBC driver for the database. A

ODBC-JDBC bridge driver comes with Java. The servlet (or program) will use

this to communicate with the ODBC API, which in turn uses an ODBC driver

to make calls to the database. With all these layers, this is not an efficient

solution. Functionality is also limited to what the ODBC driver provides.

E. 2 Type II JDBC Drivers

A type II driver will use part Java, part native code driver to communicate,

via a vendor specific protocol (using a library), to the database. The driver

and library are on the client. The response (the results) will be formatted to
JDBC standards by the driver and returned to the program.

187

E. 3 Type III JDBC Drivers

This category of driver is also known as a net-protocol driver and has three
tiers. The client sends JDBC calls to a piece of middleware on a server. This

is done using pure Java. The server then converts the calls to the vendor
dependent access calls and communicates with the database server. These

types of drivers have better performance than type I or II and allow for extra
functionality, such as encryption, to be used. The downside is the middle
server, which creates extra installation work, can degrade performance and

must be running for access to the database to be possible.

E. 4 Type IV JDBC Drivers

This is the preferred solution to connect to a database. There is a pure Java

JDBC driver, which uses a vendor protocol to connect directly to the database.

There are no native libraries to worry about, hence, the drivers are usually jar
files

1, which are easily installed. The client communicates to the database server
using a native protocol from the pure Java driver.

1 Jar files are compressed archives containing Java class files (programs), their name is
derived from Java ARchives. The format is similar to a zip file and indeed a Jar file can
be created in the same way, although this compatibility is not guaranteed in the future. In

addition a Java Archive has a manifest describing what it contains.

188

Appendix F

Hardware Elements

Some elements of hardware are briefly described below. The site [77] provides

a good starting point for detailed descriptions of how hardware works.

F. 1 Circuit boards

The motherboard or mainboard is a central component of a PC. It consists of

a multi-layer circuit board that has the following items on it; -

9A system Basic Input Output System (BIOS), the basic control program

for the system

9A socket or slot to hold the CPU

Slots for memory modules

e Expansion slots for connecting expansion cards, such as network cards

and video cards.

* Connectors for the low voltage power supply to the motherboard

o An 1/0 panel for keyboard, mouse and other connectors.

e Some modern boards have drive controllers, video, sound adapters and

various other functions integrated on to the board.

189

Data buses on the motherboard are responsible for transferring data between

the different devices connected to it. Timing and other problems associated

with fast buses over long distances, there are two different speed buses on

motherboards. One is a high speed bus that connects the CPU, cache memory

and main memory and the other is a slower speed bus is used to connect other
devices such as expansion cards.

F. 2 Data Storage

F. 2.1 Hard Disks

Hard disks store data using magnetic flux on a spinning media. Data is written

to a magnetic substrate on a spinning platter by heads. Virtually all hard disks

have multiple platter and head sets contained in them. These platters spin at

rates of around 3000 to 100OOrpm on the fastest drives. The gap between the

heads and the platters is extremely small; dust particles are massive compared
to the tolerance. This means the drives have to have extremely clean interiors.

The precision of the drives allow them to store orders of magnitudes more data

than floppy disks and access the data at much faster rates.

There are two common interfaces to allow computers to access haxd disk; -

* Integrated Drive Electronics (IDE). Most of the electronics are integrated

onto the drive assembly in the form of a circuit board. IDE drives have

the larger market share and can be considered commodity hardware.

Small Computer System Interface (SCSI). This interface standaxd was
designed to allow many different devices to be connected using it. SCSI

devices tend to run at higher data transfer rates and are more expensive.
The interface tends to be used on high end machines and servers.

technology known as Redundant Array of Inexpensive Disks (RAID) is used
to create arrays of multiple hard disks. RAID can be used to either increase

190

redundancy or increase performance. By duplicating amounts of data to mul-

tiple disks in the area, data can be recovered if a disk fails. Other techniques

can be used to increase performance, in addition RAID offers at least 9 levels,

all used for different purposes.

F. 2.2 Tapes

Tapes provide high capacity data storage; information is written onto a tape

coated with a magnetic substrate. Tapes can be written many times and read
many times. The access time tends to be a lot slower than hard disk and quite
often a large proportion of the tape needs to be read to retrieve small amounts

of data.

Tape robots can be used to allow a large number of tapes to be accessed
automatically.

F. 2.3 Optical

Data can be stored on optical media. Optical disks have the data stored on a
continuous spiral track. The information is written and read using a laser. For

high capacities it is possible to build CD-robot that have large capacities of
data online, in the same way in which tape systems work. Of course this type

of system is slower than having arrays of hard disk constantly online. There

are also question marks over the lifetime of the media, this has repercussions
in terms of data loss.

F. 3 Commodity

The term commodity is synonymous with items that are readily available,

cheap, compatible with other systems and not proprietary.

Long before IBM-compatible PCs emerged, nearly all systems were proprietary.

The hardware, the software and operating system were produced by the same

191

company; incompatible with other manufacturers systems.

Control Program for Microcomputers (CP/M) was a turn in this trend. CP/M

was an operating system used in the 1980's, which ran on most micro computers

that had disk drives. At the higher end of the market (servers and work

stations) UNIX appeared.

When IBM created the PC they decided to publish the hardware specifications

and use an operating system provided by another company (Microsoft). These

two decisions started the formation of a commodity market for PC hardware

and, to some degree, a commodity maxket for software.

By publishing the hardware specifications for their PC, IBM intended to make

to easy for vendors to create expansion cards for the system. They did not

foresee that the entire PC system, from main boaxd to basic system would

be cloned. Intel were the producers of the CPU, so soon it was possible to

buy an IBM-compatible PC with no IBM parts in it. This situation has led

to the commoditised PC market; with a choice of vendors for almost all the

components that build up a PC.

192

Appendix G

Software

G. 1 Operating Systems

The operating system is software on a computer that manages the operation

of the computer system. It does this by interacting with hardware, manag-
ing interaction with such systems as memory, disks and application software.
Additionally, operating systems are responsible for task scheduling and inter-

acting with the user.

By providing this functionality in the operating system application program-

mers do not need to worry about providing it. Instead they use libraries of
functions to access the services provided by the operating system.

The major operating systems currently are the UNIX/Linux based family
(which includes Apples operating system) and the Microsoft Windows fam-

ily.

Unix

UNIX was originally developed by employees from ATand T and Bell Labo-

ratories and is a POSIX compliant operating system. The UNIX operating

system supports multi-tasking, multiple users and is implemented in the C

programming language.

193

UNIX and its fore-runners have a long and complex history dating from the
late 1960's. It has traditional been a populax operating system in academic

and industry environments.

By introducing many innovations UNIX has had a large impact on the com-

puting community. UNIX has provided a hieraxchical file system into which
devices and services fit neatly. The operating system also gave developers early

access to the TCP/IP networking standard (see 5.2.2); cermenting its use for

network applications.

Linux

Linux is a UNIX clone written by Linus Torvalds in the early 1990's. He then

invited the global community of developers to contribute to it. It is subject to

the licensing of the GNU (GNU is Not UNIX) project, which ensures users have

certain rights with respect to the software it licenses. Originally developed for

the Intel 80386 CPU, Linux has been ported to many other operating systems.

Like UNIX, Linux is written entirely in the C programming language. Linux

tends to be distributed as a distribution, which consists of the core linux soft-

waxe (the kernel etc), libraries and end user-applications.

The title [78] covers some of the technical issues involved with programming
Linux.

Windows

Microsoft Windows (see [79]) is a proprietary operating system with nearly all

the market share for operating system software. The system is based around a

Graphical User Interface (GUI) and was developed for IBM-compatible PCs.

Windows has evolved from a GUI layer, which ran on top of Microsoft Disk

Operating System (MS-DOS). MS-DOS in turn was bought from a vendor who

wrote it borrowing many ideas from CP/M.

The MS-DOS/Windows line of operating system has been developed to create

194

Windows 1,2 and 3, all of which were layers on top of MS-DOS. Starting

with Windows 95 the presence of MS-DOS became less obvious in the line

of products. Windows 95 moved the product line from 16 bit to 32 bit and

offered a more complete user interface. Windows 95 was replaced by Windows

98 and finally Windows ME, neither product offering any major innovations

over Windows 95.

Based on its work with IBM, Microsoft developed the Windows NT line of op-

erating system. Until the advent of Windows XP, this line of operating system

was sold along side the MS-DOS based version of Windows. The Windows

NT line, also marketed as Windows 2000, offered much greater reliability and

more UNIX like features. With the release of Windows XP, based on the NT

code base, the NT based line of products replaced the MS-DOS based line of

products.

Windows NT has been ported to other some architectures than the Intel/IBM

compatible PC platform. The Windows platform has been the target for many

security exploits, partly due to flaws in the system and partly due to its pop-

ularity.

Mac OS

The current Apple operating system, OS X, is based on UNIX. This makes OS

X one of the most widely deployed UNIX-variants around. Before the arrival

of OS X, Apples operating system was a proprietary system.

195

Appendix H

Cluster Types

The following paragraphs provide a brief look at a few different cluster-based

systems, it is not exhaustive. Beowulf tends to refer to the haxdware to build a

cluster, Message Passing Interface (MPI) and Parallel Virtual Machine (PVM)

refer to software and software standards.

H. 1 Beowulf

Beowulf Cluster is a term used to describe computer clusters built from com-

modity hardware and which use Linux based software to control the clusters

and run applications. The clusters run on private networks and are used to

solve high performance/parallel computing tasks. The concept of Beowulf clus-
ters dates from the early 1990's at NASA, spreading through academic circles

rapidly.

It is argued by some that to give the designation Beowulf to a cluster it has to

use entirely commodity hardwaxe. This would apply to class I clusters. Class

II clusters use specialised hardware to gain greater performance.

Typically the software for Beowulfs is written in C or Fortran. There is no one

piece of software that is known as 'Beowulf'; there are many Linux components
that can be used to provided the required software for running a cluster. The

196

Scyld Beowulf distribution is designed for the purpose of running Beowulf

clusters. See [80] for more information on this type of cluster.

H. 2 MPI

MPI is a user community developed standard. It is a protocol designed for

parallel machines and work station clusters. MPI defines a format for the

passing of messages between machines in a cluster. Typically applications

using MPI run in the following way; -

The machines are set up with the executable applications; usually iden-

tical on each machine

Each machine uses the same program, typically, to solve a small part

of the problem. A good example is an aerodynamic simulation of a

surface moving through a volume. The volume is split into cubes and

each machine does calculations on a cube.

e Initial conditions are set to each machine

* Calculations are done on each machine; this is the processing phase

All the machines stop calculating and exchange boundary conditions on
their cube, this is the messaging phase

* Calculation resumes

e The process continues until the simulation is complete.

The MPI standard consists of the older MPI 1,1.1 and the newer MPI 2. MPI

specifies processes for message passing, which includes, point to point com-

munication, language bindings, methods for process creation and management

and management and discovery of the operating environment. See [81], [82]

for more details.

197

H. 3 PVM

PVM is a package to create a large parallel computer from heterogeneous

nodes. These nodes can be running either Unix or Windows based operating

systems and are connected over a network. PVM supports different types of

networks. The package supports heterogeneous node hardware in two ways for

applications; -

o Differences can be masked from applications

* Differences (such as some machines having dual processors) can be pro-

vided so that applications can exploit them.

The pool of nodes can have machines added and deleted to it during the

running of a job. This provides fault tolerance.

The PVM package is divided into two parts; -

o pvmd, the PVM daemon which resides on all nodes

e PVM library, a library of interface code for PVM.

See [83] for more details.

198

Appendix I

RPC

Remote Procedure Call (RPC) is a protocol allowing remote procedure calls,

meaning a program running on one host can invoke code on another host (using

the network). RPC allows the programmer to code remote calls in a fashion

that is similar to local calls. RPC uses the client-server model is used by RPC

with the client initiating the RPC by sending a request the remote machine.

IYansport independence is achieved by using RPC and it is a popular method
for constructing distributed application software.

A number of RPC implementations have been produced. A successful RPC

was written by Sun Microsystems. It provides the basis of many network

services including Network File System (NFS). Portmapper is another RPC

based tool.

Other technologies provide alternative protocols to RPC for distributed com-

puting. A current trend is the use XMIRPC as a transport media for RPC.

I. 1 DCE

Distributed Computing Environment (DCE) is the packaging of various com-

ponents, including RPC, to provide an environment for distributed computing.
The components are: -

199

9 Remote Procedure Call (RPC)

9 Cell Directory Services (CDS)

9 Global Directory Services (GDS)

* Security Service

9 DCE Threads

o Distributed Time Service (DTS)

9 Distributed File Service (DFS)

The following are known as secure core components and are required on any
installation; DCE Threads, RPC, CDS, Security Service and DTS.

There are varying amounts of supports for DCE on differing platforms. Some

platforms only support the secure core (the minimum required for DCE), some

support only clients and other platforms support the entire environment.

DCE is aimed at procedural programmers and is not fully Object Orientated.

See [84] for more information about DCE.

1.2 CORBA

Common Object Request Broker Architecture (CORBA) [85] is a framework

produced and maintained by the Object Management Group OMG). CORBA

allows distributed applications to be written that are platform independent.

CORBA is useful for the following reasons; -

9 It can broker between many different machines running different plat-
forms. Examples of the diversity of these platforms range from main-

frames, to desktops to hand held PCs.

* It can be used to construct servers that are about to handle a large

number of clients, with high rates of request.

200

* It possesses reliability and scalability.

CORBA allows programming languages to access objects written in different

languages. For example a Java program could access a C++ object in another

program, even on another machine.

Interface Definition Language (OMG IDL) is completely language indepen-

dent and has to be mapped to a language. It has been mapped to many

programming languages including; C, C++, Java, COBOL, SmallTalk, Ada,

Lisp, Python and IDLScript.

Like Java RMI (see section 1.5) CORBA uses a client-server pattern with stubs

and skeletons. The stub is found on the client and is the point from which

methods are invoked. These method calls are wired across the network to the

server, where they are matched up with the methods in the skeleton and the

correct method calls performed on the server. CORBA uses Internet Inter-Orb

Protocol (IIOP) to transmit its requests across the network. HOP can be used

to transmit RMI (see section 1.5) calls as well.

To allow the system to work with different programming languages CORBA

uses IDL to define the stubs and skeletons; the programmer must write the

bindings in terms of IDL. Applications in CORBA consist of objects; usu-

ally many instances of these objects exist to represent entities, for example a

shopping cart on an e-commerce website.

Legacy applications, for example, an accounts system, can be wrapped with a

single instance. This is generally the most typical approach.

1.3 COM

Component Object Model (COM) technology is a Microsoft architecture de-

signed to allow applications to be constructed from binary components. This

means basic components can be written in a COM-compliant fashion and used

to construct higher level software services. ActiveX and OLE (Object Linking

and Embedding) are technologies that are implemented using COM.

201

1.4 DCOM

DCOM (Distributed Component Object Model) is an extension of COM, al-
lowing technology to work over a network. It exists on the Windows platform
but has thus far failed to move to other platforms. For an architectural view

of DCOM see [86].

1.5 RMI

Remote Method Invocation (RMI) is a Java-specific way to do distributed com-

puting; meaning whilst it is not language independent it is platform indepen-

dent.. RMI allows class methods to be called on a remote Java Virtual Ma-

chine. The system works in such a way that once the reference to the remote

object is obtained, working with the remote class is the same as working with

an (normal' local class.

To make a class a remote class it has to implement the interface j avax. rmi. Remote.
Implementing the class implies that the object can be invoked remotely. Once

this remote object has been written and compiled a tool is used to generate a

skeleton and stub from it.

The client uses the stub to provide a local interface locally. The client calls
the stubs local methods; these method calls are passed over the network to

the server. On the server the methods calls are reconstructed by the skeleton

as local method calls on the server. The client sees the method calls as local

method calls. Any exceptions occurring on the server are passed back to the

client via the stub.

In order for the whole system to work an RMI registry must be running on the

server. This allows clients to obtain references to the remote objects running

on the server. Typically port 1099 is used for the network port. Over the wire
RMI uses the protocol Java Remote Method Protocol (JRMP), which is also
known as an RMI wire protocol. Although this is the main protocol used it is

possible to use other wire protocols with RMI.

202

Often restrictions are encountered with firewalls that stop RMI working, mak-
ing its usage in an Internet environment difficult. For a more detailed discus-

sion of this topic see [87]. For a comparison between CORBA, DCOM and
RMI see [88].

1.6 SOAP

Simple Object Access Protocol (see section 5.5.4) is an example of XMIRPC,

which allows remote procedure calls to be exchanged using XML as the mes-

saging media. Using SOAP allows loose coupling; meaning it is not tightly

bound to any one language or platform.

203

Bibliography

[1] Various, "The CERN Website", CERN, http., -//www. cern. ch/` 2005.

[2] Various, %CG - LHC Computing Grid Project", CERN,
http: //lcg. web. cern. ch/LCG/` 2005.

[3] Ian Foster, Carl Kesselman, "The Grid: Blueprint for a New Computing

Infrastructure", Morgan Kaufmann, San Francisco, USA, 1999.

[4] Rosy Mondardini, "Grid Cafe", CERN, http.. -Ilg7idcafe. web. cern. ch/` 2005

[5] Christos J. P. Moschovitis, Hilary Poole, Twni Schuyler and Teresa A

Senft., "History of the Internet, 1843 to the present", Moschovitis Group,

http: //www. historyoftheinternet. com/, 1999 .

(6] WKI "About the World Wide World" w3c,

http., -11www. w3. org. org1WWW1,1992.

[7] Various, "Enabling Grids for E-Science", http: //public. eu-egee. eu/, 2005.

[8] Various, "CERN Batch Services", CERN, http. -Ilbatch. web. cem. ch/batch/`
2005.

[9] 1. Foster, C. Kesselman, S. Miecke., "The Anatomy of
the Grid: enabling Scalable Virtual Organisations", Globus,
http.. -Ilwww. globus. orglalliancelpublicationslpapers. php, 2001 .

[10] Various, "ALICE A Large Ion Collider Experiment at CERN LHC",
CERN, http., -//aliceinfo. cern. ch/` 2005.

204

[111 Various, "Atlas CollaboratioiP, CERN,

http: //ýtlas. web. cem. ch/Atlaslindex. html, 2005 .

[12] Various, 11CMS Compact Muon Solenoid"
, CERN,

http., -//cmsinfo. cern. ch/Welcome. html, 2005 -

[13] Various, %HCb Home Page", CERN, http: //lhcb. web. cern. ch/lhcb/` 2005

[14] Various, "The Globus Alliance Website", The Globus Alliance

http: //ýww. globus. orgl, 2005.

[15] Various, "Condor Websitell, University of Wisconsin Madison,

http., -Ilwww. cs-wisc. edulcondorl, 2005.

[16] Various, "Legion Website", University of Virginia,

http: //ýww. cs. virginia. edullegionl, 2005.

[17) Ian Foster, Carl Kesselman, S. Tuecke, "The Anatomy of the Grid",

Globus Alliance, http: //ýww. globus. orglalliancelpublications, 2001 .

[18] Vaxious, "Platform Computing LSF Platform Computing,

http., -//www. platform. com/, 2005 .

[19] Various, "Open PBS711 Altair Grid Technologies,

http: //ýww. openpbs. orgl, 2003.

[20] Various, "Globus Website", Globus, http.. -Ilwww. globus. orgl, 2005.

[21] Mike Neuffer, "Linux High Performance SCSI and RAID",

http., -Ilwww. staff. uni-mainz. delneufferlscsil, 2005 .

[22] Ian Foster, Carl Kesselman, Gene Tsudik, Steven Tuecke,

"A Security Architecture for Computational Grids", Globus,

http., -//www. princeton. edu/ rbleelELE572Paperslp83-foster. pdf, 1998

[23] Nataraj Nagaratnam, Philippe Janson, John Dayka, Anthony

Nadalin, Rank Siebenlist, Von Welch, Ian Foster, Steve 'Riecke,

205

"The Security Architecture for Open Grid Services", Globus,
http., -llwww. cs. virginia. edu/ humphrey/ogsa-sec-wg/, 2002 .

[24] Joel Weise, "Public Key Infrastructure Overview", Sun Microsystems,

http., -Ilwww. sun. com/bluep'nnts/0801/Publickey. pdf, August 2001 .

[25] Various, "x509"
,

Open SSL Project

http., -Ilwww. openssl. orgldocslappslx5O9. html, 2005.

[26] Various, "Security and Authentication", National Centre for e-Social Sci-

ence , http: //www. ncess. ac. uk/grid/ýecurity/, 2004 .

[27] Chuck Cavaness, Geoff Friesen and Brian Keeton, "Using Java 2 Standard

Edition", Que, Indiana, USA, 2001 .

[28] Brian Bramer and Susan Bramer, "C++ for Engineers ", Arnold, New

York - Toronto, 1996.

[29] "A Brief History of the Green Project", Sun Microsystems,

http. loday. java. net/Jýaglold/ýreenl, 1997
.

[30] Mark Wutka, "Using Java 2 Enterprise Edition", Que, Indiana, USA,

2001 -

[3 11 Vaxious, "GNU Make" , Free Software Foundation,

http., -//www. gnu. orgls oftware/make/, 2004 .

[32] Various, "Apache ANT Website", Apache Foundation,

http: //`nt-apache. orgl, 2005 .

[33] Various, "The NetBeans IDE Website", NetBeans / Sun Microsystems,

http., -//www. netbeans. org/, 2005 .

[34] Ramez Elmasri, "Fundamentals of Database Systems", Cummings, USA,

1994.

[35] Various, "Dublin Core Metadata Initiative (DCMI)", DCMI,

http: //www. dublincore. org/, 2005 -

206

[36] Erik T. Ray, "Learning XMU, O'Reilly, Sebastopol, USA, 2001 .

[37] Various, "M Schools", Refines Data, http: //ýww. w3schools. coml, 1999-
2005.

[38] Various, "Java API for XML Processing (JAXP)", Sun Microsystems,

http: //Jýava. sun. com/xml/Jýaxp/, 2005 -

[39] Various, "Databases at CERN", CERN, http., -Ilwwwinfo. cern. ch/db/`
2002.

[40] R. G. G. Cattell, "Object Data Management ", Addison-Wesley, Reading,

MA, 1991 .

[41] "International Organization for

http., -Ilwww. iso. orgl, 2006 -

[42] Various, "JDBC Technology",

http., -Iljava. sun. comlproductsljdbcl, 2005 .

Standardization"
, ISO,

Sun Microsystems,

[43] Various, "Data Access and Storage Developer Center", Microsoft,

http., -Ilwww. microsoft. comldatal, 2005 .

[44] Vaxious, "unixODBC", Easysoft, http., 11www. unixodbc. org1,2005.

[45] Various, "Apache Xindice" , Apache Foundation,

http: //ýml. apache. orglxindicel, 2005.

(46] Various, "Building Scalable, High Performance Cluster and Grid Net-

works", Force 10 Networks Inc., CA, USA , 2005.

[47] Christopher R. Hertel, "Implementing CIFS (The Common Internet File

SYstem)", Prentice-Hall PTR, http., -Ilubiqx. orglcifsl, 1999-2004 .

[48] "NAS and SAN Technology overview", Zerowait corp., http. -11www. nas-

san. com, 2000-2003 -

[49] Various, "The Oscar Project", http., -Iloscar. sourceforge. net, 2005.

207

[50] Various, "Rocks Cluster Distribution", http., -Ilwww. rocksclusters. orgl,
July 2005.

[51] Paul Baran, "Publications in the 'On Distributed Communications' Series

7), RAND, http: //ýww. rand. org/publications/RM/baran. list. html, 1964.

[52] N Freed, N Borenstein, "Multipurpose Internet Mail Extensions, Part

One: Format of Internet Message Bodies", IETF, Network Working Group,

http.. -Ilwww. ietf. orglrfclrfc2O45. txt, 1996 .

[53] Various, "Apache HTTP Server Project", Apache Software Foundation,

http: //httpd-apache. orgl, 2005 -

[54] Wolfgang Hoschek, "The Web Service Discovery Architecture", IEEE

Computer Society Press, 2002.

[551 Various, "EU Datagrid Project", CERN, http: //eu-

datagTid. web. cem. ch/eu-datagrid/` 2004 .

[56] Various, "SDSC Storage Resource Broker", San Diego Supercomputer

Center, http., -11www. sdsc. edu1srb1,2005 .

[571 Various, "OGSA-DAI Website", National E-Science centre,
http: //ýww. ogsadai. org. uk/` 2005.

[581 "MySQL website", MySQL AB, http.: //www. mysql. com/, 1995-2005.

[59] Various, "Apache Jakarta Tomcat Webpage", Apache Foundation,

http: //J*akarta. apache. orgltomcat, 1999-2005.

[60] A. Moreton, G. D Patel, T. J. V Bowcock, "GMAP - Grid Aware Monte-

Carlo Array Processor", University of Liverpool, Liverpool, 2000.

[611 Y. Rekhter et al., "RFC 1597 Address Allocation for Private Internets",

Network Working Group, http: //ýww. faqs. orglrfcslrfcl597. html, March

1994.

[62] Various, "GNU GRUB, GRand Unified Bootlander", GNU,

http., -Ilwww. gnu. orgIsoftware/grubl, 2005 -

208

[63] K Garner, "LILO - The LInux LOader", University of Illinois,
http., -//www. acm. uiuc. edu/workshops/linux-install/lilo. html, 2005.

[64] Chris Fischer, "The LoadLin+Win95/98/ME mini-HOWTO", The Linux
Documentation Project, http.. -Ilwww. tldp. orglHOWTOILoadlin+Win95-98-
ME. html, February 2001 .

[65] Anthony Lissot, "Linux Partition HOWTO", The Linux Documentation
Project, http., -Ilwww. tldp. orglHOWTOlpartitionl, 2004.

[66] Various, "Apache Tomcat Webpages, Jakarta Project", Apache Founda-
tion, http: //3*akarta. apache. org/tomcat/, 2005 .

[67] Various, "Oracle Application Server", Oracle Corporation,

http. -Ilwww. oracle. com/appserver/index. html, 2005 .

[68] Jukka "Yucca" Korpela, "Methods GET and POST in HTML forms -
what's the difference? ", Jukka "Yucca" Korpela, http. -11www. cs. tut. fi1jkor-

pelalformslmethods. html, 2003-09-28.

[69] James W Cooper, "The Design Patterns Java Companion", Addison-

Wesley, 1998.

[70] Various, "GridPP UK Computing for Particle Physics", GridPP,

http: //ýww. g7idpp. ac. uk/` 2005.

[71] Various, "GridSite", GridPPIPPARC, http., -Ilwww. g7idpp. ac. uk/ýridsitel,
2005.

[72] Slava Pestov, "JEdit Website", http: //ýww. jedit. orgl, 2005.

[73] Ingyu Kang, "Crimson Editor Website", http., -//www. crimsoneditor. com,
1993-2003.

[74] Various, "Java 2 Platform, Standard Edition", Sun Microsystems,

http: //Jýava. sun. comlj2sel, 1994-2005.

[75] Mark Matthews, "MM MySQL Drivers", SourceForge,

http., -Ilmmmysql. sourceforge. net, 2002 .

209

[76] James Clark, "Relax NG Website" , James Clark,

http: //ýww. relaxng. orgl, September 2003.

[77] Vaxious, "How Stuff Works HowStuff Works, inc.,
http. -Ilwww. howstuffworks. com, 1998-2005.

[78] Kurt Wall, Mark Watson and Mark Whitis et al., "Linux Programming",

SAMS, Indiana USA, 1999.

[79] Various, "Microsoft Windows Family", Microsoft,

http: //ýww. micros oft. com/windows/, 2005.

[80] Various, "Beowulf Website", http., -11www. beowuIf. org1,2005.

[81] Various, "MPI: A Message-Passing Interface Standard (Version 1.1)",

University of Tennessee, Knoxville, http., -1/mpi-fo rum. o7yldocslmpi- 11 -
html/mpi- report. html, 1995.

[82] Various, "MPI-2: Extensions to the Message-Passing Interface",

University of Tennessee, Knoxville, http., -//mpi-forum. org/docs/mpi-20-
html/mpi2-report. html, 1997.

[83] Various, "Parallel Virtual Machine ", Oak Ridge National Laboratory,
http., -//www. csm. ornl. gov/pvm/pvm-home. html/` 2005.

[84] Various, "DCE Portal", The Open Group, http: //ýww. opengroup. orgldce,
199512005.

[85] Various, "CORBA FAQl) I Object Management Group,
http: //ýww. omg. orglgettingstartedlcorbafaq. htm, 1997-2005.

[86] Markus Horstmann and Mary Kirtland, "DCOM Archictecture",

Microsoft Developers Network, http., -//msdn. microsoft. com/library/en-
uq/dndcom/htmI/msdn-dcomarch. asp, 1997.

[87] William Grosso, "Java RMI ", O'Reilly, Sebastopol, 2002.

[88] Gopalan Suresh Raj, "A Detailed Comparison of CORBA, DCOM and
RMF, http., -//my. execpc. com/gopalan/misc/compare. html, 1998.

210

[89] Various, "WikipediaP, Online encyclopedia, http: //ýww. wikipedia. orgl,

2005.

[90] Danny Ayers, Hans Bergsten, Michael Bogovich, Jason Diamond,

Matthew Ferris, Marc Fleury, Ari Halberstadt, Paul Houle, Piroz Mohseni,

Andrew Patzer, Ron Phillips, Sing Li, Krishna Vedati, Mark Wilcox and
Stefen Zeiger, "Professional Java Server Programming", Wrox, Birming-

ham, UK, 1999.

[91] Various, "W3C's pages on Markup Languages", w3c,

http., -11www. w3c. org1MarkUp1,2005.

[92] Jeffrey Richter, "Applied Microsoft YET Framework Programming", Mi-

crosoft Press, Redmond, USA, 2002 -

[93] Scott Short, "Building XML Web Services for the Microsoft NET Plat-

form", Microsoft Press, Redmond, USA, 2002.

[94] "Jini Network Technology", Sun Microsystems,

http: //ýww. sun. com/software/jini, 2005.

[95] "Jini Community CollabNet Inc, Sun Microsystems,

http: //ýww. jini. orgl, 2005 -

[96] Perdita Stevens, Rob Pooley, "Using UML. Software Engineering with
Objects and Components", Addison-Wesley, Harlow, Essex, England, 2000

[97] Various, "Proceedings of the Third IEEE META-DATA Conference",

IEEE, http: //ýww. computer. orglproceedinglmetall9991, April 1999 .

[98] Various, "DocBook ", O'Reilly, http., -Ilwww. docbook. orgl, 2005.

[99] Various, "Oasis Open Website", Oasis Open, http., -11www. oasisopen. org1,

2005.

[100] Various, "Scalable Vector Graphics (SVG) 1.1 Specification", W3C,

http: //ýww. w3. orgITRISVGI, January 2003.

211

[101] Various, "WAP/WML Tutorial", W3 Schools,

http.. -Ilwww. w3schools. orgl, -

1102) Jason Hunter, "JDOM Website", JDOM Project, http., -//www. jdom. org/,
2005.

212

