
Social Laws for Multi-Agent Systems

Thesis submitted in accordance with the requirements of the

University of Liverpool for the degree of Doctor in Philosophy

by

Mark lonathan Roberts

Defended March 28, 2007

ii

Abstract

The aim of this thesis is to investigate formal frameworks for social laws in multi-agent sys
tems. These frameworks are used for describing, reasoning about and ultimately verifying the
properties of such systems. In this thesis we show how Alternating-time Temporal Logic (ATL)

provides an elegant and powerful framework within which to express and understand social
laws for multiagent systems. We show that the effectiveness, feasibility, and synthesis prob
lems for social laws may naturally be framed as ATL model checking problems, and that as a
consequence, existing ATL model checkers may be applied to these problems. We also show
that the complexity of the feasibility problem in our framework is no more complex in the gen
eral case than that of the corresponding problem in the Shoham-Tennenholtz framework (it is
NP-complete). We show how our basic framework can easily be extended to permit social laws
in which constraints on the legality or otherwise of some action may be explicitly required.
Next, we introduce the notion of knowledge. The result is a framework in which we can, for
example, express that a desirable property (objective) of a social law is that one agent has the
ability to bring about a certain type of knowledge in another agent, or that if one agent knows
something, then it should behave in a certain way. Next, we reason about agents being able to
choose whether to act socially or not. We construct a logical language, based on Alternating
Temporal Epistemic Logic (ATEL), in order to reason about whether or not agents are acting
in a social manner. We introduce Social Belief, which is belief based on what should be true
according to the social laws. We also introduce the notion of a socially necessary fact, which
is a fact that will inevitably be true if all the agents in the system act in a social manner. Fi
nally, we try to capture similar properties in an alternative approach and try to relate these two
approaches.

iii

iv ABSTRACT

Acknowledgements

This thesis would not have been possible without the help and support I have received from

numerous people ...

First, I am extremely grateful for all the academic support provided to me by my supervi

sors, Mike Wooldridge and Wiebe van der Hoek. They have given me lots of help and guidance

along the way, without which, my thesis would not have been possible. I would also like to

thank Clare Dixon, who as my advisor, has helped greatly with my PhD. I would like to thank

Clare Dixon and Tim Norman for acting as examiners in my Viva Voce.

Second, thanks to the Department of Computer Science at the University of Liverpool for

funding my PhD. Also, thanks to AgentLink for supporting my attendance at the AAMAS

conference in Utrecht.

Third, I would like to thank all my colleagues in the Department of Computer Science.

Special_thanks to Justin Wang who has been a great friend here at Liverpool and provided me

with lots of help and support.

Finally, I would like to thank my girlfriend Jyoti, and my parents for all their encourage

ment and support.

This thesis was submitted to the Faculty of Science in the University of Liverpool on Jan

uary 29, 2007, and was successfully defended on March 28, 2007. It was typeset using INPC.

v

vi ACKNOWLEDGEMENTS

Contents

Abstract

Acknowledgements

I Introduction

1 Introduction

1.1 Motivation.

1.2 Background

1.3 Our Approach to Social Laws for MAS

1.4 Structure of Thesis

iii

v

1

1.5 Publications in this Thesis

3

3

5

6

7

7

11 Background 9

2 Logics for Multi-Agent Systems 11

2.1 Alternating-time Temporal Logic (ATL) · 11

2.2 Epistemic Logic .. 18

2.2.1 Knowledge of individual agents in a group 18

2.2.2 Group Knowledge .. 21

2.3 Alternating-time Temporal Epistemic Logic 25

2.4 BDI · 27

2.5 Deontic Logic . . . · 31

2.6 Summary 34

3 Social Laws for Multi-Agent Systems 37

3.1 Emergence at Run-time 38

vii

viii

3.2 Offiine Design.

3.2.1 Moses & Tennenholtz .

3.2.2 Shoham & Tennenholtz .

3.2.3 Minimality & Simplicity

3.3 Summary -.

III A Framework for Social Laws in MAS

4 Action Based ATSs and ATL

4.1 Action Based ATSs . . .

4.2 ATL over AATSs

4.2.1 Some Properties of ATL .

CONTENTS

42

43

54

58

64

67

69
69

72

75

4.3 Summary 76

5 Social Laws in Alternating Time 77

5.1 Social Laws .. 77

5.1.1 Objectives with Explicit Action Constraints " 88

5.2 Summary " 94

6 Knowledge and Social Laws

6.1 Semantic Structures . . .

6.2 Some Properties of ATEL. . . . '. . . .

95

..... 96

96

6.3 Knowledge and Social Laws 97

6.4 A Case Study . " 98

6.4.1 Knowledge Properties 100

6.4.2 Epistemic Social Laws

6.4.3 Model Checking Some Properties

6.5 Summary .

7 Social Laws, Social Belief, and Anti-Social Behaviour

7.1 Semantic Structures (SAAETS)

7.2 Social ATEL.

7.3 Case Study

7.3.1 Properties of the Model.

7.3.2 Informational Properties

7.4 Summary

.. 102

· 103

· 106

107
. .. 108

. 110

. ... 113

· 117

. ... 120

. 123

CONTENTS

8 Reducing Social ATEL to ATL *
8.1 Modifying SAAETSs

ix

125

· 126
8.2 Reducing Some Formulae. 128

8.3 Reducing Social ATEL to ATL * 133

8.3.1 Bisimulations between computations 133

8.3.2 Proving some Reductions 138

8.4 Summary 145

IV Conclusions
I

9 Conclusions

9.1 Review ..

9.2 Evaluation.

9.3 Future Work . .

V Bibliography and Index

147

149
· 149

· 151

· 152

155

x CONTENTS

'" h

Part I

Introduction

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

, I'

Chapter 1

Introduction

Multi-agent systems has become a very prominent area of Computer Science research in re

cent years [63]. The area of multi-agent systems was originally a part of Distributed Artificial

Intelligence (OAI) [8, 18,36], which is a subfield of Artificial Intelligence (AI) [6,20,21,44].

An agent is defined to be a software entity capable of flexible, autonomous behaviour in some

environment, to act on behalf of its owner to achieve specified goals (adapted from [63]). A

multi-agent system is a system comprising two or more interacting agents. Coordination is one

of the fundamental problems in multi-agent systems. The coordination problem is that of man

aging the inter-dependencies between the activities of agents [63]. One approach to solving

this problem is that of "Social Laws" [47,46,48,35,49,50]. A social law is a restriction on

the behaviour of agents in such a way that some overall societal goal is achieved. The aim of

this thesis is to investigate formal frameworks for social laws in multi-agent systems. These

frameworks are used for describing, reasoning about and ultimately verifying the properties of

such systems.

This chapter discusses the motivations for developing formal frameworks for social laws,

and existing social laws frameworks that we can base our work on. We then outline our own

approach to social laws in multi-agent systems. Finally, the structure of the remainder of the

thesis is outlined.

1.1 Motivation

The area of coordination is very important in multi-agent systems. Given the possibility of dif

ferent agents' activities interacting, some form of coordination mechanism will be essential for

the agents to coexist. The coordination mechanism itself can vary in design from the one ex

treme of having a centralised control entity to the other extreme of having each individual agent

3

4 CHAPTER 1. llITRODUCTION

negotiate with each other every time there is a potential conflict. We call these two extremes

tightly coupled and loosely coupled, respectively. The former case has a large number of in

terdependencies across the agents and there is a high risk that changes in one agent will create

unanticipated changes within others. The latter case is far more flexible, but this flexibility

comes at a cost - a more complex problem at run-time.

Various types of coordination mechanisms have been researched. These include Partial

Global Planning [13], a coordination technique that allows separate AI systems to reason about

their roles and responsibilities as part of group problem solving, coordination through joint

intentions [26], an explicit model of joint problem solving, and coordination by mutual mod

elling [19], a coordination technique where agents build a model of the other agents (beliefs,

intentions etc) and coordinate their activites around predictions made from this model. Also,

in [41], Pretschner et al. describe the fundamentals of distributed usage control of data. Due

to the amount of personal data collected and enhanced network capabilities, the distribution

of data could be potentially uncontrolled. To rectify this, they introduce usage control re

quirements which are classed as either provisions or obligations. Provisions represent access

control requirements, while obligations are concerned with requirements on the future that the

data consumer must adhere to. A requirement is said to be enforceable if mechanisms can be

employed such that all executions of the system satisfy the requirement. Finally, and most im

portant to this thesis, is the area of coordination by social laws [48]. The area of social laws has

proved to be a popular approach in trying to solve the coordination problem. A social law con

strains the behaviour of agents in a society in such a way that some societal goal is achieved.

The approach is said to be an intermediate approach between the two extremes outlined above.

Social laws originate from social sciences [11]. The social laws paradigm in Multi-Agent

systems was first introduced by Moses, Shoham and Tennenholtz [47, 35, 50]. Shoham et al

investigated a number of issues surrounding the development and use of social laws, including

the computational complexity of their synthesis (the problem of finding and implementing an

effective social law), and the possibility of the development of social laws or conventions by

the agents within the system themselves. So, as such, existing frameworks for social laws

have been investigated. However, we can see scope for much more research to be carried

out in the area. Firstly, there exists no explicit notion of what the social laws are in place to

achieve. Social laws are implemented to achieve some objective, and the way this objective is

achieved is by the restriction on the behaviour of the agents. Secondly, existing frameworks

have used logics primarily to derive axioms in order to capture static properties of systems and

social laws. This leaves scope for logics to be used in order to express dynamic properties.

The notion of cooperation lends itself well to coordination scenarios, as in a group of agents

cooperating to achieve some coordination objective. So a cooperation logic would be ideally

1.2. BACKGROUND 5

suited. Temporal aspects of coordination could also be considered. Also, a very important

notion is that of knowledge. Agents use knowledge about their states and the states of other

agents in order to follow social laws. Furthermore, knowledge of laws themselves could be

used, e.g., only a certain group of agents may know a certain law. Finally, most existing

frameworks have made the assumption that all agents in the system will follow the social laws

in place. The possibility of agents violating social laws is interesting and could be investigated

within the setting of a formal framework.

1.2 Background

The first stage in researching social laws in multi-agent systems is to look at any existing work

in the field. There are two main approaches to the design of social laws. These are:

• Offline design, whereby social laws are designed offtine and hardwired into the agents.

Examples of this approach are [48, 35] .

• Emergence at run-time, whereby social laws evolve within a society of agents. Examples

of this approach include [62,50,27].

The first approach will generally be simpler to implement and the system designer will have a

greater degree of direct control over the system functionality. However, not all characteristics

of a system are necessarily known at the time of design; for example, open systems such as the

Internet where interacting software entities interact through publicly available interfaces. Also,

the goals of agents might be constantly changing, requiring the agents to be re-programmed,

which would be costly and inefficient.

Existing work in the emergence of social laws at run-time is largely empirical. Most of

the work in this area is experimental work to find out the best strategy update function to

use, where the goal is for all the agents in the system to converge on the same strategy. The

strategy update function uses feedback from interactions with other agents in the environment

and updates the agent's strategy accordingly, based on pre-defined rules. Findings from these

experiments have been analysed and presented in works by Shoham and Tennenholtz [50],

Walker and Wooldridge [62] and Kittock [27].

The offtine design of social laws has received far more attention. The main idea behind this

approach is that a social law is a set of constraints. These constraints forbid the agents from

performing a specified action in one or more specified environment states. This is seen as a

restriction on the behaviour of agents. Formal frameworks for social laws have been created

and computational problems which arise have been addressed. Researchers have also looked

at the design problem of social laws, which involves striking the right balance between being

6 CHAPTER 1. INTRODUCTION

overly restrictive and overly liberal. This has led to work into the notion of minimality, which

is essentially a social law which constrains the agents just enough to achieve their goals, while

leaving them with maximal individual freedom.

1.3 Our Approach to Social Laws for MAS

In this thesis we will only look at the offline design of social laws. The work consists of three

parts. The first part is a formal model of social laws. Here we model a system as an Alternating

Transition System, which is essentially a concurrent game structure. In this model, a social law

consists of two parts:

1. An objective.

2. A behavioural constraint.

The notion of an objective is first made explicit in our framework of social laws. The objective

of a social law is what the society aims to achieve by adopting the social law. An effective

social law is one which achieves its objective. The behavioural constraint is the means by

which the objective is achieved. In our framework we can express objectives that refer to time

and cooperation in a rich logic known as Alternating-time Temporal Logic (ATL). Also, in this

framework we can automatically verify objectives of social laws, in other words, see if certain

laws are indeed effective. We also investigate the computational problems which arise as a

result of our framework.

The second part of the work involves incorporating the notion of knowledge into the frame

work. We claim that knowledge is important in any non-trivial multi-agent system. Coordina

tion scenarios will require agents to use knowledge of their states and other agents' states in

order to follow laws. Also we can imagine situations when information must become known to

a group of agents, or conversely the information must remain private to a group of agents. So

here the knowledge itself is under the control of the social laws, and, as such, the social laws

can ensure certain desirable knowledge properties ensue. We extend the framework in a natu

ral way using Alternating Temporal Epistemic Logic, which is essentially ATL with knowledge

operators.

The third and final piece of work involves reasoning about agents acting in an anti-social

manner. We give agents the choice of whether to follow the social laws or not. We are able to

specify whether agents are forced to follow the social laws or not in the object language itself.

This gives rise to a new notion of belief, which we call Social Belief and is a belief based

on the assumption of correct social behaviour. Finally, we look at an alternative approach for

expressing similar properties and try to relate the two.

1.4. STRUCTURE OF THESIS 7

1.4 Structure of Thesis

The structure of the rest of the thesis is in three parts. The first part, consisting of chapters 2 and

3, is a literature survey. Chapter 2 is a survey of logics used in multi-agent systems. We look

at Alternating-time Temporal Logic (ATL), Epistemic Logic, Alternating Temporal Epistemic

Logic (ATEL), BD! Logic, and Deontic Logic. Some of these logics will then be used later in

the thesis. Chapter 3 is a survey of the social laws literature. It looks briefly at the emergence

of social laws at run-time and goes on to cover three approaches to the offiine design of social

laws.

Chapters 5, 6 and 7 are the main body of research as they describe in detail our formal

framework of social laws in multi-agent systems. Chapter 4 introduces the semantic structures

on which our formal framework is based and defines ATL over these structures. In Chapter 5

our notion of a social law is introduced along with three computational problems which arise

from it. Chapter 6 adds in the notion of knowledge to our framework by naturally extending

the semantic structures and the logic used to express objectives of social laws. Different types

of knowledge properties are identified and many properties of knowledge are investigated in an

example. Chapter 7 extends the framework further by adding in the possibility of agents acting

in an anti-social manner. Many properties are investigated in this framework, including infor

mational properties. Finally, in Chapter 8 we try to capture similar properties in an alternative

framework and find direct equivalences between the two.

The final part of the thesis (Chapter 9) presents some conclusions.

1.5 Publications in this Thesis

Portions of this thesis include previously published work. Chapters 4 and 5 include material

from [52] and Chapter 6 includes material from [51].

8 CHAPTER 1. INTRODUCTION

Part 11

Background

9

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Chapter 2

Logics for Multi-Agent Systems

Logics are widely used in multi-agent systems for formally specifying, reasoning about and

verifying properties of such systems. Logics consist of a well-defined syntax, which specifies

what the well-formed formulae of the logic are, a well-defined semantics, used to give a formal

meaning to the operators of the logic, and a well-defined proof theory, consisting of axioms

and rules of inference, which determine some mechanical procedure to derive formulae. Using

logics for reasoning about multi-agent systems allows properties of systems to be expressed in

a rigorous, mathematical way, and at the same time removes ambiguity.

In this chapter we first introduce Alternating-time Temporal Logic (ATL), a popular tem

poral logic of cooperation [2]. We then go on to introduce epistemic logic, which is the logic

of knowledge [16]. Then we show how ATL can be extended to include knowledge operators

to form Alternating Temporal Epistemic Logic (ATEL) [57]. Then we introduce BDI logic, the

logic for expressing an agent's beliefs, desires and intentions [42]. Finally, we look at denontic

logic, the field of logic concerned with permissions and obligations [60].

2.1 Alternating-time Temporal Logic (ATL)

Temporal logic formulae are usually evaluated in either linear-time or branching-time. The

former assumes that there is only one path of the system, so at each moment there is only one

possible future. The latter assumes that time has a branching, tree-like nature, so each moment

in time may split into alternate courses representing different possible futures. Branching

time logics allow explicit existential or universal quantification over all paths. Alternating

time Temporal Logic (ATL), however, allows a more subtle quantification over the possible

outcomes of the system. As such, ATL can be understood as a generalisation of the well-known

branching time temporal logic CTL [14], in which path quantifiers are replaced by cooperation

11

12 CHAPTER 2. LOGICS FOR MULTI-AGENT SYSTEMS

modalities. A cooperation modality ((G))<p, where G is a coalition of agents, expresses the fact

that the coalition G can cooperate to ensure that <p; more precisely, that there exists a strategy

profile for G such that by following this strategy profile, G can ensure <p, no matter what the

other agents in the system do. ATL formulae comprise of a cooperation modality proceeded

with a temporal logic formula using the following temporal operators: "0" means "now and

forever more", "0" means "either now or at some point in the future", "U" means "until", and

"0" means "in the next state". SO ATL allows the powers of agents and coalitions of agents to

be expressed in a temporal manner. Formally, the set of ATL formulae, formed with respect to

a set of agents Ag, and a set of primitive propositions <I>, is given by the following grammar:

<p ::= p I -'<p I <p V <p I ((G))O<p I ((G)) O<p I ((G))<pU <p

where p E <I> is a propositional variable and G ~ Ag is a set of agents. We identify two

fragments of ATL: the O-fragment is the class of ATL-formulae containing only the 0 tem

poral operator and propositional variables; propositional logic formulae are those containing

no cooperation modalities. Consider the following informal examples in order to illustrate the

logic:

((1,2)) 0--1ail

This ATL formula says that agents 1 and 2 have a strategy to cooperate in such a way to ensure

the system never enters a fail state, no matter what the other agents in the system do. Next,

consider:

((G)) 0 goal

This formula expresses the fact that there exists a strategy profile for the coalition G, such that

if G follow this profile, then the system is guaranteed to reach a state where goal holds. Finally,

consider:

((l))-,enterU permission

This says that agent 1 has a strategy so that enter will remain false until permission becomes

true. This could capture a scenario where an agent is not allowed to enter some resource until

permission has been granted.

Now that we have seen the logical language itself, we introduce the semantic structures

that ATL is based upon. These structures are called Alternating Transition Systems (ATSS) and

are essentially' concurrent game structures. These systems may be in any of a finite set Q of

possible states. Systems are populated by a set Ag of agents; a coalition of agents is simply a

set G ~ Ag, and the set of all agents is known as the grand coalition.

Definition 1 An ATS is a tuple S = (Q,Ag, T, <I> , 7r) with the following components:

2.1. ALTERNATING-TIME TEMPORAL LOGIC (ATL) 13

• Q is afinite, non-empty set of states;

• Ag = {I, ... , n} is a finite, non-empty set of agents;

• r : Q x Ag - 22Q is the choice function, which maps states and agents to the choices

available to these agents. So r(q, i) is a set of choices available to agent i when the

system is in state q. The choice function yields a unique result when applied to the set of

all agents, so for every state q E Q and every set Ql, ... ,Qn of choices Qj E r(q, i), the

intersection Ql n ... n Qn is a singleton. This imposes a transition function that yields,

in every q E Q, a unique outcome r(q, 1) n ... n r(q, n);

• ~ is afinite, non-empty set of atomic propositions,· and

• 7r : Q - 2<1> is an interpretation function, which gives the set of primitive propositions

satisfied in each state: ifp E 7r(q), then this means that the propositional variable pis

satisfied (equivalently, true) in state q.

We denote the set of sequences over Q by Q*, and the set of non-empty sequences over Q by

Q+.

We now give some further definitions before we can precisely define the semantics of ATL.

For two states q, q' E Q and an agent i E Ag, q' is an i-successor of q if there exists a set

Q' E r(q, i) such that q' E Q'. SO here, q' is said to be an i-successor of q, if q' is a possible

outcome of one of the choices available to i in state q. If succ(q, i) denotes the set of i successors

to state q, then q' is simply a successor to q if for all agents i E Ag, we have q' E succ(q, i).
A computation is an infinite sequence of states>' = qo, ql, ... such that for all u > 0, the

state qu is a successor of qu-l. A computation>. E Q+ starting in state q is referred to as a

q-computation; if u E N, then we denote by >.[u] the component indexed by u in >. (thus >'[0]

denotes the first element, >'[1] the second, and so on).

We define a sequence of states, -;, as follows: if q is a state, then q is a sequence; if -; is

a sequence and q is a state, then -; j q is a sequence. We define a function to return the length

of a sequence of states as follows: length(q) = 1, length(-; j q) = length(-;) + 1.

A strategy O"j for an agent i E Ag is a total function: O"j : Q+ - 2Q which must satisfy the

constraint that O"j("tj q) E r(q, i) for all "t E Q* and q E Q. SO a strategy for an agent i takes

a non-empty sequence of states and maps this to a set of choices for agent i. The constraint

ensures that the strategy leads to choices that are consistent with the choice function r(q, i) for

agent i in state q. We also define a special type of strategy, called a memoryless strategy, where

agents only consider the current state as a basis of their choices. A strategy is memory less if

it satisfies the following property: If O"j("t j q) = O"j("t' j q) for all q E Q and "t,"t' E Q*,

14 CHAPTER 2. LOGICS FOR MULTI-AGENT SYSTEMS

then we simply write CJj (q). A strategy profile for a coalition G = {I, ... , k} ~ Ag is a tuple

of strategies (ab ... ,ak), one for each agent i E G. We denote by EG the set of all strategy

profiles for coalition G ~ Ag; if aG E EG and i E G, then we denote i's component of aG by

ah. Given a strategy profile aG E EG and state q E Q, let out(aG, q) denote the set of possible

states that may result by the members of the coalition G acting as defined by their components

of aG for one step from q:

out(aG, q) = {q' I Vh E Ag \ G, :JQh E r(q, h) : q' E n ag(q) n n Qh}
gEG hEAg\G

Notice that, for any grand coalition strategy profile a Ag and state q, the set of possible states

out(aAg, q) will be singleton.

Given a strategy profile aG E EG and state q E Q, let comp(aG, q) denote the set of

possible computations that may result by the members of the coalition G acting as defined

by their components of aG starting from q. The set comp(aG, q) will contain all the possible

q-computations that G can enforce by following strategies in aG:

comp(aG, q) = {,X I 'x[O] = q and Vu EN: ,X[u + 1] E out(aG, 'x[u])}.

Again, notice that for any grand coalition strategy profile a Ag and state q, the set comp(a Ag, q)

will be singleton.

We can now give the rules defining the satisfaction relation "F" for ATL, which holds

between pairs of the form S, q (where S is an ATS and q is a state in S), and formulae of ATL:

S,q Fpiffp E 7r(q) (where pE <J?);

S, q F '<p iff S, q ~ <p;

S, q F <p V 'I/J iff S, q F <p or S, q F 'I/J;

S, q F ((G))Ocp iff :JaG EEG, such that V,X E comp(aG, q), we have S, 'x[1] F cp;

S, q F ((G)) Dcp iff :JaG EEG, such that V,X E comp(aG, q), we have S, ,X[u] F <p for

all U E N;

S, q F ((G))<pU'I/J iff :JaG EEG, such that V,X E comp(aG, q), there exists some u E N

such that S, 'x[u] F 'I/J, and for all 0 ~ v < u, we have S, 'x[v] F cp.

We say that cp is valid in S, denoted S F cp, if S, q F <p for all q E Q. cp is simply valid,

denoted F cp, if it is valid in S for all ATSs S. The remaining classical logic connectives ("1\",

2.1. ALTERNATING-TIME TEMPORAL LOGIC (ATL) 15

"-t", "~") are assumed to be defined as abbreviations in tenns of -', V, in the conventional

manner. Also, ((G)) <>cp is shorthand for ((G)) T U cp. For readability, we omit set brackets in

cooperation modalities, for example writing ((1)) instead of (({I})).

Two cooperation modalities play a special role and are worth singling out for special atten

tion. The cooperation modality (()) ("the empty set of agents can cooperate to ... ") asserts that

its argument is true on all computations, and thus acts like CTL'S universal path quantifier "A".

Similarly, the cooperation modality ((Ag)) asserts that its argument is satisfied on at least one

computation, and thus acts like the CTL path quantifier "E".

In order to illustrate ATL-fonnulae, we give a simple example adapted from [1], page 50.

Example 1 (The train example) We refer to this system as SI. There are two trains, one of

which (E) is Eastbound, the other of which (W) is Westbound, each occupy their own circular

track. At one point, both tracks pass through a narrow tunnel - a crash will occur if both trains

are in the tunnel at the same time.

We model each train i E Ag = {E, W} as an automaton that can be in one of three states:

"awaYj" (the initial state of the train); "waitingj" (waiting to enter the tunnel); and "inj" (the

train is in the tunnel). Each train i E {E, W} has two actions available. They can either move

or idle. Idling causes no change in the train's state. If a train i moves while it is awan then it

goes to a waitingj state; moving while waitingj causes a transition to an ini state; and finally,

moving while inj causes a transition to awaYi as long as the other train was not in the tunnel,

while if both trains are in the tunnel, then they have crashed, and are forced to idle indefinitely.

Initially, both trains are away. Figure 2.1 illustrates the overall structure and transitions of the

train system.

eastbound
train

(a) Overall structure of the train sytem

westbound
train

(b) Train states and transitions

Figure 2.1: The train system.

idle

The overall state of the system at any given time can be characterised by the propositional

variables {awaYE, awayw, waitingE, waitingw, inE, inw}, where these variables have the obvi-

16 CHAPTER 2. LOGICS FOR MULTI-AGENT SYSTEMS

ous interpretation. The system can be in one of nine possible states at anyone time. These

states along with their interpretations and the choices available to each agent are given in

Figure 2.2.

I q I 7r(q) r(q,E) r(q, W)

qo {awaYE, awayw} {{qO,ql},{q3,q5}} {{qO,q3},{ql,q5}}
ql {awaYE, waitingw} {{ql,q2},{q5,q6}} {{ql,q5},{q2,q6}}
q2 {awaYE, inw} {{q2,qO},{q6,q3}} {{q2,q6},{qO,q3}}
q3 {waitingE, awayw} {{Q3, q5}, {Q4,q7}} {{q3,q4},{q5,q7}}
q4 {inE, awayw} {{q4,q7},{qO,ql}} {{Q4,QO},{Q7,ql}}
Q5 { waiting E, waitingw } {{Q5,Q6},{Q7,Q8}} {{Q5,Q7},{Q6,Q8}}
Q6 {waitingE, inw} {{Q6,Q3},{Q8,Q4}} {{Q6,Q8},{Q3,Q4}}
Q7 {inE, waitingw} {{Q7,Q8},{Ql,Q2}} {{Q7,Ql},{Q8,Q2}}
Q8 {inE, inw} {Q8} {Q8}

Figure 2.2: States and choices in the train example.

In order to demonstrate how strategies work in ATSS, we will consider the following exam

ple strategy. Firstly, for the eastbound train (E), imagine the strategy O"E is as follows: move,

idle, idle, move, idle, idle, etc. So E is always going to move, then idle for two time steps,

then move again and so on. So every state where the index is a multiple of 3, E will move (e.g.

Q3, Q6, Qg, etc).

So now, given the strategy for the eastbound train outlined above, O"EC1j Q) is defined as

follows:

If length (7 ; Q) mod 3 = 1

Else

1: Q = Qo, then, O"E(7;Q) = {Q3,Q5}

2: Q = Q3, then, O"E(7;Q) = {Q4,Q7}

3: and so on, for all remaining states.

1: Q = Qo, then, O"E(7;Q) = {QO,Qt}

2: Q = Q3, then, O"E(7jQ) = {Q3,Q5}

3: and so on, for all remaining states.

Secondly, we give an example strategy for the westbound train (W). The strategy, o"w, is as

follows: idle, move, idle, move, etc. So W is always going to alternate between moving and

idling, starting off by idling. So, given this strategy, O"w(7 j Q) is defined as follows:

2.1. ALTERNATING-TIME TEMPORAL LOGIC (ATL)

If length (7 j q) mod 2 = 1

Else

1: q=qo,then,aw(7jq) = {qO,q3}

2: q = qlo then, aw(7jq) = {ql,q5}

3: and so on, for all remaining states.

1: q = qo, then, aw(7jq) = {ql,q5}

2: q = qlo then, aw(7jq) = {q2,q6}

3: and so on, for all remaining states.

17

If we take the intersection aw(7 j q) n aE(7 j q), we get the next state from q that the strategy

would lead to.

Now we are able to express some desirable properties that we would like to hold in the

train system. We will look at liveness and safety properties [32]. Liveness properties are those

properties where something good should eventually happen, while safety properties ensure that

something bad will be prevented from happening. First we can express the following liveness

property:

This property expresses the fact that if the eastbound train is waiting to enter the tunnel, then

no matter what the agents in the system do, at some point in the future it will be in the tunnel.

This is a desirable liveness property, however, there is nothing to guarantee that this property

holds, since the eastbound train could idle indefinitely in the waiting state. Finally, we express

the following safety property:

This property expresses that no matter what the agents do, it will always be the case that they

are never in the tunnel at the same time. Again, this is only a desirable property and it does not

hold in the system Sl, as both trains can always move in the waiting state.

Now we introduce the model checking problem for ATL [9]. Model checking is used to

verify formal systems, such as ATSs. Model checking tools take a system, called the model,

programmed in some specific language for that model checker and a specification usually writ

ten in a temporal logic. The model checker then checks to see if the specification is true in

the model, in which case the specification passes, otherwise a counter example is given to

show why the specification failed. We make use of an ATL model checker called MOCHA [1].

18 CHAPTER 2. LOGICS FOR MULTI-AGENT SYSTEMS

MOCHA takes as input a system programmed in the REACTIVE MODULES language and a spec

ification written in ATL. More precisely, the model checking problem for ATL is the problem of

determining, for any given ATL formula cp, ATS S, and state q in S, whether or not S, q F cp. If

S is an ATS and cp is a formula then we say that cp is initially satisfied in S if S, qo F cp, where

qo is a pre-defined initial state. A formula cp is satisfiable if there is some ATS S and state q

in S such that S, q F cp. The satisfiability problem for ATL is the problem of determining, for

any given ATL formula, whether this formula is satisfiable or not. The results for satisfiablity

in ATL are given by the following theorem:

Theorem 1 ([2,40, 12]) The satisfiability problem for ATL is EXPTIME-Complete [12J, while

the satisfiability problem for the 01ragment of ATL is proven to be PS PACE-complete [40 J.
The model checking problem for "full" ATL can be solved in time O(jQI·lcpl), where IQI is the

number of states, 'and Icpl is the size of the formula to be checked [2J.

Finally, we briefly mention ATL *, as we refer to it later in this thesis. ATL * is a more expres

sive variant of ATL, in which temporal operators and cooperation modalities are allowed to be

intermingled in formulae. ATL requires cooperation modalities to be immediately proceeded

by a temporal operator. This requirement is not present in ATL *. For example, the formula

((i)) 0 Dcp is perfectly acceptable in ATL *. For more details, consult [2].

2.2 Epistemic Logic

Epistemic logic is the logic of knowledge. It was originally studied in philosophy [25], but has

grown to applications in computer science for reasoning about communication protocols and

more recently in AI in order to reason about the knowledge and belief of software agents. The

main operator, K, means "it is known that ... ". Epistemic logic is used to model what agents

know. Several different types of knowledge exist, such as the knowledge of individual agents

in a group, and group knowledge, such as common knowledge and distributed knowledge. We

will first look at knowledge of individual agents in a group. Throughout this section we make

use of the following references [16,53].

2.2.1 Knowledge of individual agents in a group

We will now define the language of knowledge of individual agents in a group of k agents.

Formally, the set of knowledge formulae, formed with respect to a set of agents Ag, and a

set of primitive propositions <P, is the language L, given by the following grammar:

cp ::= p I -,cp I cp V cp I KiCP

2.2. EPISTEMIC LOGIC 19

where p E <P is a propositional variable and 1 ::; i ::; k is an agent.

The propositional variables in the language are used to express facts about the state of the

world. The formula Kj<p means that agent i knows <p, where <p will be some fact. For example,

if we use <p to denote the fact that "it is raining in Liverpool", by Kj<p, we are expressing that

agent i knows that it is raining in Liverpool.

We will now define the semantics of knowledge of individual agents in a group. If we look

at the formula Kj<p, this asserts that agent i knows cp. But how is the notion of knowledge

captured in the model? To capture knowledge, possible worlds semantics [24] are used. Given

an agent, i, and a situation s, i has doubt about the true nature of the real world in s. So agent

i considers several worlds possible, known as epistemic alternatives to s. If <p is true in all

epistemic alternatives t that i considers possible, then I knows <p in s. For example, let <p denote

"it is raining in Liverpool", as before, but now let 1/J denote "it is raining in New York". If the

current state I'm in is where I am in Liverpool and it is raining in Liverpool then there are two

possible worlds for me: Wl in which (<p 1\ 1/J) is true and W2 in which (<p 1\ -,1/J) is true. In all

possible worlds <p holds true, therefore I know cp. See Figure 2.3 for an illustration.

cp 'I/J

o

s

Figure 2.3: Kripke model

We will now define the semantics in a formal manner. As explained above, the semantics

of knowledge use the idea of possible worlds. To define the semantics of our modal language

L in a formal manner we introduce a Kripke structure: A Kripke structure (model) is a tuple

S = (Q, 7r, "'1, ... , f'Vk) where:

• Q is a non-empty set of states,

• 7r: Q ~ 2<P is a truth assignment to the propositional atoms in each state,

• "'j<; Q x Q is an epistemic accessibility relation for 1 ::; i ::; k.

We now define the satisfaction relation "1=" between pairs of the form S, q (where S is a Kripke

model and q is a state in S) and formulae in our modal language L:

20 CHAPTER 2. LOGICS FOR MULTI-AGENT SYSTEMS

S,q 1= p iffp E 7r(q)

S,q 1= cp V 1/J iff S,q 1= cp or S,q 1= 1/J

S, q 1= --,cp iff S, q ~ cp

S, q 1= KiCP iff for all q' such that q ('Vi q', S, q' 1= cP

Validity and satisfiabiIity are defined as before. The accessibility relations, ('Vi, are often equiv

alence relations.

We now look at properties of this logic that are valid in every Kripke model. For a property

cP, this is denoted by 1= cp.

Definition 2 Let cP, 1/J beformulae in L, and let Ki be an epistemic operator for I :::; i :::; k. The

following properties hold:

• 1= (KiCP 1\ Ki1/J) -+ Ki (cp 1\ 1/J)

• 1= cP => 1= Kjcp

So, these are a few example properties that are valid in every Kripke model. The first property

says that knowledge is closed under consequences. The second property says that knowing

cP and knowing 1/J implies that you know the conjunction of the two. The third property says

that agents know all validities. Finally, the last property says that if cP implies 1/J is valid, then

knowing cP implies you know 1/J is also a validity.

The full axiom system S5 is often regarded as the standard epistemic logic. It establishes

the exact properties of the notion Ki. In the system S5, the accessibility relations, ('Vi, are

equivalence relations. The S5 system is defined as follows:

Definition 3 The standard epistemic logic S5, where we have an operator Kj for every I :::;

i :::; k, is comprised of axioms AI, A2, A3, A4, and A5 below, and the derivation rules RI and

R2. The corresponding axioms and rules are given as:

Al any axiomatisationfor propositionallogic

2.2. EPISTEMIC LOGIC 21

R2 I- cp => I- Kicp,for aliI ~ i ~ k

The basic epistemic logic /C, consists of axioms AI, A2, and the derivation rules RI and

R2. In addition to the basic system /C, S5 has axioms A3, A4 and A5. A3 says that knowledge

is assumed to be veridical, meaning that agents do not know falsities. A4 is known as positive

introspection, which means if agents know something, they know that they know it. Finally,

A5 is known as negative introspection, meaning if agents do not know something, they know

that they do not know it.

2.2.2 Group Knowledge

In this subsection we introduce group knowledge - the knowledge of multiple agents in a group.

We have a group of k agents {I, ... , k}. First we introduce the notion of "Everybody knows ... ".

This is written as Ecp, meaning everybody in the group knows cp and isdefined informally as

follows:

Next, we introduce the notion of common knowledge. Common knowledge is said to be

the knowledge that "any fool" knows. It is knowledge that everybody knows, that everybody

knows that everybody knows, and so on. This would intuitively be defined as:

Ccp = cp /\ Ecp /\EEcp /\ EEEcp /\ ..•

As infinite conjunctions are not allowed in the language of epistemic logic, this is not a formal

definition.

Finally, we introduce distributed knowledge (or implicit knowledge). Distributed knowl

edge is knowledge that is implicit within a group of agents. No one particular agent may have

know ledge of a fact cp, but together the know ledge of the fact cp may be present within the group

of agents. If the agents could communicate, the fact cp could become explicit. For example, say

no one in the group actually knows 1/;. However, agent I knows cp (K1CP) and agent 2 knows

that cp implies1/; (K2(cp ~ 1/;». This leads to distributed knowledge of1/; being present in the

group of agents (D1/;).

We will now give formal semantics of group knowledge. First we must extend our language

L with all the group notions.

22 CHAPTER 2. LOGICS FOR MULTI-AGENT SYSTEMS

Formally, the set of knowledge formulae, formed with respect to a set of agents, and a set

of primitive propositions <I>, is the language L', given by the following grammar:

<p ::= p I -'<p I <p V <p I Ki<P I E<p I C<p I D<p

where p E <I> is a propositional variable and 1 :::; i :::; k is an agent.

Now we can give formal semantics of L'. As before, we have a Kripke structure S =

(Q, 11', ""1. ... , ""k)' Now we need to give the semantics of the new operators. For a group of k

agents, we denote the union of their accessibility relations by ""E, so ""E= (Ul::;i::;k ""i)' The

transitive closure of ""E is denoted by ""c.

The semantics of the E operator (everyone knows) are given as follows:

S, q 1= E<p iff for all q' such that q ""E q' : S, q' 1= <p

So, in a state q everyone knows <p (E<p), if and only if in all epistemic alternatives, <p is true.

Here, the epistemic alternatives are not just for one agent, but for all the agents combined.

The common knowledge operator, C, is defined as follows:

S, q 1= C<p iff for all q' such that q ""c q' : S, q' 1= <p

This is defined in a similar way to "everyone knows" above, but here the relation that defines

the epistemic alternatives is the transitive closure of ""E.

Finally, for distributed knowledge; D, we have:

S, q 1= D<p iff S, q' 1= <p for all q' such that (q, q') E""l n ... n ""k

In a state q, there is distributed knowledge of <p (D<p), if and only if for all epistemic alternatives,

<p is true. The epistemic alternatives here are defined under the relation which is the intersection

of all the agents' accessibility relations. So the worlds that the agents would consider possible

are those which every agent has as an epistemic alternative in isolation.

In order to illustrate knowledge formulae we will introduce a simple example called The

Muddy Children Problem, taken from [16]:

Example 2 A number, say n, of children are standing in a circle around their father. There

are k(l :::; k :::; n) children with mud on their heads. The children can see each other but they

cannot see themselves. In particular they do not know if they themselves have mud on their

heads. There is no communication between the children. The children all attended a course on

epistemic logic and they can reason with this in a perfect way. Furthermore, they are perfectly

2.2. EPISTEMIC LOGIC 23

honest and do not cheat. Now Father says aloud: "There is at least one child with mud on its

head. Will all the children who know they have mud on their heads please step forward?" In

case k > 1, no child steps forward. Father repeats his question. If k > 2, again the children

show no response. This procedure is repeated until, after the k-th time Father has asked the

same question, all muddy children miraculously step forward.

In order to understand why all the children with mud on their heads suddenly step forward

after the k-th announcement, we will look at the cases where k = 1 and k = 2. Firstly, when

k = 1 (only one muddy child), after the father makes the announcement, it becomes common

knowledge that at least one of the children has mud on their forehead. So, since each muddy

child can only see k - 1 muddy children, the child who is muddy will see no muddy children

and will thus deduce that he/she must be the muddy child and step forward. In the case where

k = 2, call the two muddy children ml and m2. After the first announcement has been made

by the father, m2 doesn't know whether he/she is muddy, as only one muddy child can be seen

by m2, namely ml. But if ml couldn't see any other muddy children, ml would have stepped

forward. After the father has made the second announcement, m2 deduces that he/she must

have a muddy forehead from the fact that ml didn't step forward after the first announcement

was made. ml also reasons in exactly the same way as m2, and hence both children now step

forward.

Now we will analyse how the knowledge in the group changes after each announcement

the father makes. We will take the case where we have three children, named 1,2 and 3. S is

the Kripke model representing the puzzle where n = 3. A state is a tuple (x, y, z) made up of

proposition atoms mi(i = 1,2,3), with the interpretation that child i has a muddy forehead.

For example, consider the state (0,1, O), here the proposition m2 holds, meaning child 2 has a

muddy forehead. We use 'ljJ(j) to denote the fact that there are at least j muddy children. We

are going to analyse the situation in (S, q) where q = (0,1, 1). Before the first announcement

is made, we have the following knowledge properties present:

1. S, q 1= -.(Klml V Kl-.ml)

child 1 does not know whether it is muddy;

2. S, q 1= K1m2 /\ Klm3

child 1 knows that 2 and 3 are both muddy;

3. S,q 1= K2(m3/\ -.K3m3) /\ K2(-.ml/\ -.Kl-.ml)

child 2 knows that 3 is muddy without knowing it and 1 is not muddy without knowing

it;

24 CHAPTER 2. LOGICS FOR MULTI-AGENT SYSTEMS

4. S, q F E'ljJ(1) A -,Eml A -,Em2 A -,Em3

Everyone knows that there is at least one muddy child, but not who the child is;

5. S, q F -,C'ljJ(1)

It is not common knowledge that at least one child is muddy.

These properties can be verified by consulting Figure 2.4. The solid lines represent epistemic

alternatives of child 1, the fine dotted lines represent epistemic alternatives of child 2, and

finally, child 3's are represented by the coarse dotted lines. There are also reflexive arrows at

each state in the diagram which we omit for clarity.

q=(O,l,l) (1,1,1)

(0,0,1)

.• , -------------------,j .. ', .',
...... : (1,0, 1~ I

(0,1,0)
(1,1,0)

.,_ .. --------------------!, ..
(0,0,0) (1,0,0)

figure 2.4: Kripke structure S showing 2 out of 3 children muddy, before the first announce
ment

After the first announcement from the father is made, we encounter an updated model S'

(see Figure 2.5), where the children's knowledge is altered:

1. Items: 1,2,3 and 4 from before are not altered;

2. S',q' F C'ljJ(1)

It is now common knowledge that at least one of the children is muddy.

So now Figure 2.4 is truncated as none of the agents consider (0,0,0) to be a possible world.

The new structure we get is depicted by Figure 2.5.

After the second announcement, again we encounter an updated model S" (see Figure 2.6),

where the following knowledge properties hold:

2.3. ALTERNATING-TIME TEMPORAL EPISTEMIC LOGIC 25

q' = (0,1,1) (1,1,1)
)

(0,0,1)····
(1,0,1)

(0,1,0)
~--___ ----;c-----:"I (1, 1, 0)

I"

(1,0,0)

Figure 2.5: Kripke structure S' showing 2 out of 3 children muddy, after the first announcement

1. S", q" 1= K2m2 /\ K3m3
child 2 knows he/she is muddy, as does 3;

2. S", q" 1= E(m2 /\ m3)

everyone knows that children 2 and 3 are muddy;

3. S", q" 1= C'ljJ(2)

it is common knowledge that at least two children are muddy.

Now Figure 2.5 is truncated. The only epistemic alternative is of child 1 who still does not

know if he/she is muddy. The epistemic alternatives of the other two children would be shown

by drawing a reflexive arc at q".

2.3 Alternating-time Temporal Epistemic Logic

Alternating-time Temporal Epistemic Logic (ATEL) is an extension of ATL by van der Hoek

and Wooldridge [57] in which knowledge modalities, such as those described in the previous

chapter, are combined with ATL. The resultant logic is a very powerful and succinct language

for expressing properties of multiagent systems. ATEL has exactly the same cooperation modal

ities and temporal operators as ATL, but additionally, has the following knowledge operators:

26 CHAPTER 2. LOGICS FOR MULTI-AGENT SYSTEMS

q" = (0,1,1) (1,1,1)
l

(1,0,1) .. ""

(1,1,0)

Figure 2.6: Kripke structure S" showing 2 out of 3 children muddy, after the final announce
ment

KiCP ("agent i knows cp"), EGCP ("everyone in coalition G knows cp"), and CGCP ("it is common

knowledge to everyone in the coalition G that cp").

Formally, the set of ATEL formulae, formed with respect to a set of agents Ag, and a set of

primitive propositions cl>, is given by the following grammar:

cP p I -'cP I cp V cp I KiCP I EGCP I CGCP I
((G))Ocp I ((G)) Dcp I ((G))cpU cP

where p E cl> is a propositional variable, G ~ Ag is a set of agents, and i E Ag is an agent.

We will now give some informal examples to illustrate the language and the type of for

.mulae that can be expressed. By cs = x we denote the value of the code to the safe is x. So

Kl (cs = x) means that agent 1 knows the code to the safe is x. The following formula expresses

that if agent 1 knows the code to the safe, he can communicate this to agent 2, thus making

agent 2 know the code to the safe:

If we take 'ljJ to be the situation where the safe door is open, then we can express the

following:

This formula says that knowing the code to the safe is x, is a necessary requirement for being

able to open the safe door at some point in the future.

2.4. BD! 27

We can also have formulae which contain group knowledge. For example:

EGCP -t ((G)) 01/J

This expresses the fact that if everyone in coalition G knows cP, then G have a strategy to

achieve 1/J at some point in the future. We can imagine a scenario where a group of people all

have to go to the same meeting. If everyone knows the meeting is at a specific time, then the

group has a strategy to arrive at the meeting on time.

We will now introduce the semantic structures that ATEL is based upon. These structures

are very similar to the Alternating Transition Systems introduced earlier, but now we have

an epistemic accessibility relation for each agent in the system. These structures are called

Alternating Epistemic Transition Systems (AETSS) and are defined as follows.

Definition 4 An AETS is a tuple S = (Q,Ag, ""1, ••• , ""n, T, <1>,11") with all components as be

fore in the ATSs, with the addition of·

• ""i~ Q x Q is an epistemic accessibility relation for each agent i E Ag. Each ""i must

be an equivalence relation.

The truth definition of ATEL formulae is the same as for ATL and the epistemic operators

are defined in the same way as in Epistemic Logic in the previous section.

So now, not only can we refer to the powers of agents and coalitions of agents over time, but

we can also refer to epistemic properties. With ATEL we can formulate properties where agents

have the ability to communicate information which alters the knowledge of the agents, also

we can formulate properties where certain knowledge is a necessary requirement in order to

achieve some goal. Also, we can formulate properties where certain information must remain

private to an agent or group of agents. This logic is very expressive and we will make use of it

later in the thesis.

2.4 BDI

A common approach to talking about the behaviours of agents is the intentional stance. Rather

than being concerned with the internal structure and operation of agents, the intentional stance

abstracts away from such level of detail and attributes agents with human-like attitudes, such

as believing, wanting (desiring) etc [58]. Such attitudes are used in folk psychology [64] to

make predictions about human behaviour. The philosopher Daniel Dennett coined the phrase

intentional system to describe entities whose behaviour can be predicted by attributing such

attitudes [10].

28 CHAPTER 2. LOGICS FOR MULTI-AGENT SYSTEMS

The beliefdesire-intention model of Rao and Georgeff [42] is a well-known approach to

reasoning about rational agents from the intentional stance. The BDI model uses the three

important attitudes of belief, desire and intention in order to reason about agents. An agent's

beliefs are what the agent believes to be true in the current state based on the (possibly) limited

information available. An agent's desires (or goals) correspond to what the agent wants to

achieve. In general these desires can be inconsistent with one another, but implemented BDI

systems require desires to be consistent with one another and these consistent desires are often

called goals. Also, an agent would not be expected to achieve all of its desires, given resource

limitations. This is where the agent's intentions come into play. The intentions are formed

from a filtering process of the agent's desires. Only a sub-set of the agent's desires are chosen

to become intentions. Once intentions are formed, the agent need not deliberate about what to

do, its resources can simply be allocated to realising its intentions.

We will now introduce BDllogic itself. Our presentation is based on [58]. The formalism is

similar to Computational Tree Logic (CTL *) [14], but there are additional modal operators for

representing the beliefs, desires and intentions of the agents. These are Bel, Des and Intend,

respectively. For example (Bel i cp) means agent i believes cp. Worlds in this logic are modelled

using a temporal structure (called a time tree) with a branching time future and a single past.

A time point in a world is called a situation. Events transform one situation (time point) to

another. As shown below in Figure 2.7, an agent can choose to execute e2 or e3 in time point

t1, causing the associated transition to a different situation, t2 or t3 respectively. To summarise

e

t3

Figure 2.7: A BDI world

the key semantic structures in the logic, T is a set of time points, and all evolutions of the

system possible are given by the binary relation R ~ T x T. A world (over T and R) is then a

pair (T', R'), where T' ~ T is a non-empty set of time points, and R' ~ R is a branching time

structure on T'. W is the set of all worlds over T. A situation is a world, w, at a specific time, t,

and is given by the pair (w, t) where w E Wand t E Tw (Tw is the set of time points in the world

w). For a given world w E W, the set of all situations in w is denoted by Sw' The relationship

of one world being a sub-world of another is defined as follows: w' is a sub-world of w if both

worlds have the same structure and truth assignment of formulae, but w' has fewer paths than

2.4. BDI 29

w (Le. w' is a sub-tree of world w).

As with CTL, a distinction is made between state and path formulae. State formulae are

evaluated at a specific time point in a time tree, whereas path formulae are evaluated over a

specific path in a time tree. We have the same path quantifiers as with CTL: E (called optional)

where a formula is true in at least one path branching from the current time point, and A (called

inevitable) where a formula is true on all paths branching from the current time point. We have

the standard temporal operators which are used in both state and path formulae. In order to

model the beliefs, desires and intentions we have belief accessibility relations B, 'D, and I.
These are modelled as functions that assign to every agent a relation over situations and are

defined as follows:

• Bni) = {w' I (w, t, w') E B(i)}

• D~(i) = {w' I (w, t, w') E V(i)}

• 1;V(i) = {w' I (w, t, w') E I(i)}

where Bni) denotes the set of worlds accessible to agent i from situation (w, t), and likewise

for D~(i), 1;V(i). The semantics of the belief, desire and intention modalities are given below:

• (w, t) 1= (Bel i <p) iff (w', t) 1= <p for all w' E B~(i);

• (w, t) 1= (Des i <p) iff (w', t) 1= <p for all w' E D~(i);

• (w, t) 1= (Intend i <p) iff (w', t) 1= <p for all w' E 1;V(i).
,

The logic requires that desires are compatible with beliefs so that the agents do not have

desires which are believed to be unachievable. This property is known as strong realism [42]

and requires that the agent should believe it can optionally achieve its desires. To this end, for

every belief-accessible world w at time t, there must exist a desire-accessible sub-world of w at

time t. Desire-intention compatibility is achieved in a similar way.

The different belief, desire and intention accessible worlds represent different possible sce

narios for the agent. The agent has doubt about the state of the actual world. The agent believes

one of its belief-accessible worlds to be the actual world. If the actual world was h1, then the

agent's desires would be the corresponding desire-accessible world, db and the agent's inten

tions would be the corresponding intention-accessible world, i 1.

In order to illustrate the belief, desire and intention relations we have formulated an exam

ple in Figure 2.8. Here the agent is faced with the choice of going swimming, going running

or going to McDonalds, where the agent's goal is to keep fit. First we look at the belief worlds

accessible to the agent. As h1 is the only accessible belief world, the agent believes that going

30 CHAPTER 2. LOGICS FOR MULTI-AGENT SYSTEMS

swimming will make him happy and fit, going to McDonalds will make him happy but unfit,

and finally going running will make him unhappy but fit. Next we look at the agent's desire

worlds. Notice in d1 and d2, f is true inevitably in both worlds, therefore the agent's desire

is to be fit. Finally, looking at the intention worlds we see that the agent has fixed upon one

option, both outcomes of which will make the agent fit, thus achieving his goal. Therefore, the

intention the agent has fixed upon is to be fit, and in order to do this the agent has chosen to go

swimming, so now the agent will focus his attention to achieving this and will not consider any

of the previous options which have been ruled out. Now we can formally define the situation

Belief worlds Desire worlds Intention worlds
hi dl .-- - ___ -_ oo... ,. ... _______________ .. , .. __ .. _______ .. ____ .. _,

h:: h:: h :

/
?2i i /J'2i l /?2'

I I I I
I I I t

...,h h: :-.h : :-.h
I!D. m Ora: V : ~1Q : I ~!1()

.~51 _______________ , B 'r'-1~1J_----r -1~---~----: -1 .
: h : ,,/ : r : : ... --p........ : :
: Ot2-~':.... :: .. -......... ::
: ~r: : _----- ----t--:· :: : ,,': i.. -.h: :' ...,h : :
IS,' I.. 4, I 4, I

: h ", ' :.. t ______________ '-_: l ____ .. ______ '-_: Loo ______ _____ _
: -, ",' ,- h :

i '~~<;~:::::~~.: .. :::............ (~./_ ... --------~:j (-/---- -- ---- -~: i
: h : I I : I

I -, I ~_.. S : IS:

: 4: : -.. _......... : : :
If....... I -,h I I,h ---_ _----_ .. -----, : : ~

V ,"1'E) , I ,"-0

1-1~1 1-1 , , , , , , , , ,
: ...,h : : , , ,
I 4, I L ______________ ~_: L ________________ _

Key:
Events:s: go swimming, m: go to McDonalds, r: go running
Facts: h: happy.!: fi t

Figure 2.8: BDI relations

(wo, t1) using BDI logic. If we call the agent 1, we can formulate the following:

(wo, t1) F (Des 1 AOf) A (Intend 1 AOf)

This says that agent 1 desires that it is inevitable for him to eventually become fit and that he

2.5. DEONTIC LOGIC 31

also intends that it is inevitable for him to eventually become fit.

BDI logic has recently been extended to take into account the capabilities of individual

agents [37]. Padgham and Lambrix define capability as the ability to react rationally towards

achieving a particular goal. A capability to achieve X is understood as the agent having at

least one plan to achieve X. Using such capabilities could be advantageous for finding plans

that are a possibility for responding to a specific event. Not all plans need be looked at, only

those plans with the capability relevant to responding to the particular event. It is suggested

that capabilities could also be used in defining agents' roles. If agents dynamically change

their roles, it is expected that their behvaiour will also change. A capability could specify

and implement the things that an agent could do within a particular role. Then in the case

of agents dynamically changing roles, it would simply be a case of appropriate capabilities

being activated or de-activated. It is important to note that these capabilities do not come

about because the agents have certain roles, rather the capabilities are inherent to the agents

physical competence and pursuing a role may lead to expectations regarding the use of such

capabilities. Capabilities may also help agents in cooperating. If an agent observes an event

that itself does not have the capability to respond to, it could pass on the event to another agent

who is believed to have the capability for dealing with the event. The semantics of capabilities

are constructed using capability-accessible worlds. An agent is capable of achieving cp, if cp is

true in all capability-accessible worlds. Goals and intentions are limited by capabilities.

2.5 Deontic Logic
I

Deontic logic is the branch of modal logics used for formally specifying normative behaviour.

It originates from philosophy [60], but has more recently become an area of interest amongst

Computer Scientists and AI researchers [34]. Deontic norms are sentences which create obli

gations and permissions. Norms do not describe how the world is, but they prescribe how

the world should be. Deontic logic has modal operators for normative specification such as

prohibition, permission and obligation.

Many systems of deontic logic have been formalised since Ernst Mally first tried to capture

deontic notions in 1926 [31]. However, it can be argued that the first "real" system of deontic

logic was proposed by von Wright in 1951 [60]. This system is known as the standard system

of deontic logic or KD. In this section we will only be concerned with the KD system.

First we must introduce the deontic logic operators. There are three of these operators:

o means obligated, P means permitted and F means forbidden. So, for example, Pcp means

that cp is permitted. Formally, deontic logic formulae are formed with respect to the following

32 CHAPTER 2. LOGICS FOR MULTI-AGENT SYSTEMS

grammar given in BNF:

ep ::= P I -'ep I ep V ep I Oep I Pep I Fep

where P is a propositional variable.

Now we present the KO system as a normal modal logic consisting of the following rules

and axioms:

(KDO) All (or enough) tautologies of Propositional Calculus

(KDl) O(ep -. 'IjJ) -. (Oep -. 0'IjJ)

(KD2) Oep --t Pep

(KD3) Pep == -.O-.ep

(KD4) Fep == -.Pep

(KDS) Modus Ponens: ep, ep -. 'IjJ then 'IjJ

(KD6) O-necessitation: ep then Oep

(KDl) is known as the K-axiom and holds for any modal necessity operator. It states that

obligations are closed under logical implication. (KD2) is the D-axiom and says that if some

thing is obliged then it is permitted. (KD3) shows how permission is the dual of obligation.

(KD4) says that if something is forbidden that is the same as not permitted. (KDS) is modus

ponens and finally (KD6) is O-necessitation where if ep is an established theorem then Oep can

be derived.

There are many theorems of the KO system, a few of which are considered as paradoxes.

For example, consider Ross's paradox [43]:

Oep -. O(ep V 'IjJ)

To understand why this is a paradox, consider the case where ep denotes "return the library

book" and 'IjJ denotes "keep the library book". The theorem then reads, "If one is obliged to

return the library book, then one is obliged to either return the library book or keep the library

book". Intuitively this does not seem to make sense. If one is obliged to do something, then

they are obliged to do it. This is saying, if one is obliged to do something, they are either

obliged to do it or they are obliged to do something that is contrary to the first action. Another

paradox present in the system is:

-'ep --t (ep -. 0'ljJ)

2.5. DEONTIC LOGIC 33

If we use the same interpretation of ep and 'IjJ then this theorem says, "If I do not return the

library book, then returning the library book commits me to keeping the book".

The semantics of the standard system of deontic logic are based on possible worlds seman

tics [28], as with epistemic logic and BDI logic in the previous sections. Again, we have a

set of worlds, Q, and a truth assignment function, 11", assigning truth to primitive propositions

in each world. We have a relation R C;;; Q x Q representing the possible worlds accessible in

each state. Here the possible worlds are the "perfect alternative worlds"; worlds in which all

norms are fulfilled. There are modal operators 0, F and P, meaning "obliged", "forbidden"

and "permitted", respectively.

Formally, we have a Kripke structure S = (Q, 11", R) where:

• Q is a non-empty set of states,

• 11" is the interpretation function which assigns truth to primitive propositions in each

world,

• R C;;; Q x Q is an accessibility relation, where R is taken to be serial in every state.

In a system S and a state q we define the semantics of the modal operators as follows:

S, q 1= Oep iff for all q' such that qRq', S, q' 1= ep

S, q 1= Pep iff there exists q' such that qRq' , S, q' 1= ep

S,q 1= Fep iff for all q' such that qRq', S, q' ~ ep

The formula Oep means that ep is obligated. If Oep is true in state q, then ep is true in all

states related to q. The states related to q represent perfect alternatives to q. So if ep holds in

all perfect alternatives to the current world, it is obligated. There is no way ep could be false

by adhering to the norms, therefore it has to be true. The operator P is the dual of O. Pep

means that ep is permitted. If Pep is true in state q, then there exists some perfect alternative to q

Where ep holds. Finally, Fep means ep is forbidden. If Fep is true in q then there exist no perfect

alternatives where ep holds.

Now we are in a position to give an example to illustrate the deontic modal operators.

Using the library example we introduced earlier, let ep denote "borrow library book", 'IjJ denote

"return library book by return date" and 'Y denote "keep library book indefinitely". Now we

can formulate the following:

34 CHAPTER 2. LOGICS FOR MULTI-AGENT SYSTEMS

this says, "If you borrow a library book, you are obliged to return the library book by the return

date". This means the following will also be true:

this says, "if you are obliged to return the library book by the return date then you are forbidden

from not returning the library book by the return date". Finally we can also formulate the

following:

this says, "if you borrow a library book, you are forbidden from keeping the book indefinitely".

Many systems of deontic logic have been constructed since the standard system of deontic

logic (KO system). For examples of such systems, see the following references: [61,4,59,33].

Also, in [45], Sergot presents a generalisation of the Kanger-Lindahl theory of normative po

sitions, where a combination of deontic logic and a logic of action/agency are used to give a

formal account of obligations, duties, rights and other complex normative concepts. A norma

tive 'position' is a mapping of the complete space of all logically possible relations between

two agents with respect to some act-type (type of action). The language is propositional logic

augmented with modal operators 0 (obligation), P (permission), and relativised modal oper

ators Ej, Ej, . .. for act expressions, where i,j, ... are the names of individual agents. So, for

example, OEjF says 'i ought to bring it about that F'. Given the truth of OEjF in some state, the

obligations and permissions of the other agents with respect to bringing about F are analysed.

Say the only other agent is j, some possibilities might be OEjF, PEjF /\ -,OEjF and -,PEjF.

All of these possibilities are examined systematically using 'simple types of rights relations'.

There are the normative 'positions' which express the normative rights of one agent in relation

tp the rights of another agent.

2.6 Summary

This chapter has introduced a number of modal logics which are widely used for reasoning

about multi-agent systems. The first logic introduced was Alternating-time Temporal Logic

(ATL) and the systems the semantics are based upon, alternating transition systems (ATSS).

A full formal semantics for the logic were given and the logic was illustrated by way of an

example. We explained model checking and precisely 'defined the model checking problem in

ATL. We then went on to introduce epistemic logic, the logic of knowledge. We started off

by only looking at the knowledge of individual agents in a group and then went on to look

at group knowledge. We demonstrated epistemic logic using the well known muddy children

2.6. SUMMARY 35

problem. Next we introduced Alternating-time Temporal Epistemic Logic, an extension to ATL,

in which ATL is enriched with epistemic operators. We gave some simple examples to illustrate

the expressiveness of the logic. We then went on to introduce BDI logic and demonstrated it

using an example. Finally, deontic logic was introduced. The KO system was presented along

with the semantics, some theorems and some example formulae.

All of the logics we have looked at in this chapter have been modal logics. ATL and ATEL

naturally have lots in common, as ATEL is just an extension of ATL. Both of these logics can

be used to express the powers of agents and coalitions of agents using cooperation modalities.

Also, they are both temporal logics with identical temporal operators. The difference between

the two is that ATEL has epistemic operators to refer to the knowledge of agents and groups of

agents. ATL is very important in this thesis as it provides a logical basis for our frameworks of

social laws. ATEL and epistemic logic also have something in common; they both use epistemic

operators and can refer to the knowledge of agents and groups of agents. However, epistemic

logic cannot refer to time or to the powers of agents and coalitions of agents. Epistemic logic,

ATEL, BDI logic and deontic logic all use the idea of possible worlds to give semantics to

their modal operators. Finally, we note that epistemic logic and BDI both have something in

common. BDI has a modal operator for specifying the beliefs of an agent. This can be seen

as similar to the knowledge operator, Ki, of epistemic logic. However, the distinction between

these is that in epistemic logic, agents can only believe things which are actually true, whereas

in BDI, the beliefs of agents are not necessarily true.

36 CHAPTER 2. LOGICS FOR MULTI-AGENT SYSTEMS

Chapter 3

Social Laws for Multi-Agent Systems

A social law is a restriction on the behaviour of agents, to ensure they can work individually

in a mutually compatible manner in order to fulfil their individual goals. Social laws work by

prohibiting the performance of certain actions in certain situations (states). For example, if

two mobile robot agents wish to pass through a door from opposite directions only big enough

to allow one of the robots to pass at a time, the robots will need to coordinate their activities.

Without coordination, the two robots will likely collide, or at best a deadlock situation will

Occur, in which both robots wait indefinitely for the other robot to use the door. This type of

situation could easily be avoided with the use of social laws. An example social law for this

situation would be to always give priority to robots leaving the building. Assuming all agents

abide by the social laws in place, the robot leaving the building need not consider waiting for

the other 'robot to use the door first, as this would not be a legal configuration of the system.

The robot leaving the building would simply pass through the door first, leaving the other robot

free to pass through the door.

The social laws paradigm is an intermediate approach to the design of multi-agent systems,

between the two extremes of having totally centralised control and a purely decentralised ap

proach, where agents need to negotiate each time there is a potential conflict. It is suggested in

[35] that agents should be designed to act individually, but their actions should be restricted so

that their behaviour is mutually compatible. This involves striking the right balance between

being overly liberal and overly restrictive. This trade-off is known as the Golden Mean Problem
[35].

The effect of a social law is twofold. Firstly, it restricts the freedom of agents by reducing

the number of actions available to them. This may reduce the number of goals the agent is

able to attain, but crucially, it also reduces the on-line decision making burden on agents. For

.' example, in the social law described above, the robot entering the room knows that it must

37

38 CHAPTER 3. SOCIAL LAWS FOR MULTI-AGENT SYSTEMS

wait for the robot leaving the room to use the door first. Knowing this means that the robot

entering the room need not consider situations in which it uses the door first. Secondly, due to

the fact that the social law also restricts the freedom of all the other agents in the environment,

each agent might actually be able to achieve more goals, due to the social laws removing the

possibility of conflicting actions.

There are two ways in which social laws can come to exist in a system. These are: offiine

design, whereby social laws are designed offiine and hardwired into the agents [48, 35], and

emergence at run-time, whereby social laws evolve within a society of agents [62,50,27]. The

latter approach has been investigated because of the disadvantages associated with the offiine

design of social laws. Not all characteristics of a system are necessarily known at the time of

design; for example, open systems. Also, the goals of agents might be constantly changing,

requiring the agents to be re-programmed, which would be costly and inefficient. Instead, it

would be beneficial if the society of agents could exhibit flexible behaviour, and converge on

new social laws dynamically, as and when they are required.

Now we have introduced the social laws paradigm as a solution to the coordination prob

lem, the rest of this chapter is structured as follows: In Section 3.1, we discuss the approach of

"emergence of social laws at run-time" and present various strategy update functions. We also

survey experimental results obtained by using these functions and explain their significance. In

Section 3.2, we give details of the offiine design of social laws and present various frameworks.

Firstly, we introduce Artificial Social Systems, which define a multi-agent system as a set of

non-deterministic automata. Secondly, we introduce the social laws framework, as proposed by

Shoham and Tennenholtz. We then look at ways to choose between different useful social laws:

minimality and simplicity are the suggested criteria. We finish by summarising the chapter in

Section 3.3.

3.1 Emergence at Run-time

In this approach, the possibility of conventions (social laws) emerging from within a group

of agents is investigated. The study of social laws emerging from within a system of agents

can be thought of as first beginning with the study of Social Conventions in social philosophy.

In [23], social conventions are said to have the following two characteristics, (i) they result

somehow from the interdependency of actions, and (ii) they appear to come about by chance

within the bounds of some functional description. For example, in the UK we drive on the left,

but in terms of the functional description of avoiding collisions, we could equally just as well

drive on the right, as in the USA. A central issue in social philosophy has been to explain what

causes conventions to, and how conventions do, emerge, stabilise, and in some cases change or

3.1. EMERGENCE AT RUN-TIME 39

deteriorate [23]. In [29], Lewis employed game theory as means of studying social conventions

in a formal manner. Lewis defines a convention as follows: A regularity R in the behaviour of

members of a population P when they are agents in a recurrent situation S is a convention if

and only if it is true that, and it is common knowledge in P that, in almost any instance of S

among members of P,

(1) almost everyone conforms to R;

(2) almost everyone expects almost everyone else to conform to R;

(3) almost everyone has approximately the same preferences regarding all possible combi

nations of actions;

(4) almost everyone prefers that anyone more conform to R, on condition that almost every

one conforms to R;

(5) almost everyone would prefer that anyone more conforms to R', on condition that almost

everyone conforms to R',

where R' is some possible regularity in the behaviour of members of P in S, such that almost no

one in almost any instance of S among members of P could conform to both R' and to R [29].

It is difficult to see if this definition is consistent with the two characteristics (i) and (ii) above.

With R described in a game theoretic setting, conventions can be characterised by the same

behaviour as proper coordination equilibrium. The notion of proper coordination equilibrium

is best illustrated in a pure-coordination game such as the one illustrated in Figure 3.1 below.

In this game, player 1 and player .~ repeatedly face the symmetric and simultaneous strategy

player 2

it b

player 1 a 1,1 0,0

b 0,0 1,1
~--~--~--~--~

Figure 3.1: a pure-coordination game

choice between a and b. The Nash Equilibria of the game are marked in bold. A strategy profile

is a proper coordination equilibrium, if: (a) each agent likes this profile better than any other

strategy profile he could have reached, given the choice of the other player (Nash Equilibria),

and (b) if more than one Nash Equilibria exists in the game [29].

Lewis' definition of convention leads to a fundamental question: How do specific regulari

. ties like these emerge rather than the others which could have possibly emerged? This question

40 CHAPTER 3. SOCIAL LAWS FOR MULTI-AGENT SYSTEMS

is addressed by adopting a non-cooperative contest approach to the game-theoretic models used

in analysing social conventions. This means games are interpreted such that players do not have

the possibility of making binding commitments or engage in pre-play communication [5]. Now,

analysing why specific regularities emerge rather than others is a case of analysing how strate

gic rational players may come to coordinate their choices repeatedly on particular outcomes of

the multiple available proper coordination equilibria in a non-contest game.

Unfortunately, game theory does not provide us with any specific answers to the analysis of

the question above. Any proper coordination equilibrium in a non-cooperative contest game,

such as above, is by definition, just one out of multiple Nash Equilibria in the game. This means

the general Nash Equilibrium selection problem applies. To deal with this, Lewis devised his

own theory. He argued that salience could be used to explain the emergence and stability of

social conventions. According to Lewis, agents "will tend to pick the salient as the last resort,

when they have no stronger grounds for choice", and that this tendency is a matter of common

knowledge up to some level [29]. Furthermore, once a salient strategy has been chosen, this will

set a precedent for future strategies, and as everyone expects almost everyone else to conform

to R, stability is ensured.

Lewis argues that conventions are norms, by definition. To quote Lewis,

Any convention is, by definition, a norm for which there is some presumption that

one ought to conform to... one is expected to conform, and failure to conform

tends to evoke unfavourable responses from others ... These are bad consequences,

and my interest in avoiding them strengthens my conditional preference for con

forming [29], page 99.

More recently, work in the area of the emergence of social laws has investigated various

mechanisms by which a society of agents can reach a global agreement, using only locally

available information, in an experimental setting. An agent must decide which convention

(social law) to adopt based solely on its interaction with other agents (e.g. feedback from

games). So, how do agents decide which conventions to adopt? They make use of a strategy

update function. Such a function uses feedback from the interactions with other agents in the

environment, and based on certain rules, updates the strategy accordingly. So the key problem

in the design of a strategy update function is to bring the society to a global convergence, and

to do this as efficiently as possible, when all agents in the society make use of this function.

In order to have a better understanding of the problem, consider the following scenario

taken from [46], called the tee shirt game, where here the tee shirts represent strategies:

Consider a group of agents, each of which has two tee shirts: one red and one blue.

The agents - who have never met previously, and who have no prior knowledge of

3.1. EMERGENCE AT RUN-TIME

each other - play a game, the goal of which is for all the agents to end up wearing

the same coloured tee shirt. Initially, each agent wears a red or blue tee shirt

selected randomly. The game is played in a series of rounds. On each round, every

agent is paired up with exactly one other agent; pairs are selected at random. Each

pair gets to see the colour of the tee shirt the other is wearing - no other information

or communication between the agents is allowed. After a round is complete, every

agent is allowed to either stay wearing the same coloured tee shirt, or to swap to

the other colour.

41

The above scenario is a very simplified example where there are only two strategies present.

The idea is the same, that all agents should reach a global agreement on which strategy to

adopt. In this scenario, this corresponds to all the agents wearing the same colour tee shirt.

There are some important points to note about this scenario: No global view is possible here.

Agents base their decision of whether to change strategy (tee shirt) purely on their memory of

past interactions with other agents.

The possibility of social laws emerging at run-time is investigated in [62, 50, 27], where a

number of strategy update functions have been experimented with. These are general strategy

update functions, not designed specifically for a particular scenario. For example, two of the

strategy update functions experimented with are as follows:
A

Simple majority: In this strategy update function, agents will change to another strategy if

they have observed it being adopted by more agents than their current strategy. If there

are multiple strategies being adopted more than the current strategy, the strategy that is

being adopted by the most agents is chosen.

Highest cumulative reward: In this function, an agent will change to a new strategy if the

total payoff obtained by adopting this new strategy is greater than the payoff obtained

with the current strategy, in the same finite period of time. For this function to work,

an agent must be able to see the payoff resulting from performing each of the strategies.

Payoff in this sense would be obtained as in a game setting such as the well known

coordination and cooperation games, where the choice of whether to cooperate or defect

results in different payoffs, depending on the choice of the other agent.

Many other strategy update functions have been evaluated, but all strategy update functions

take the same form, whereby the agent's current strategy is changed to another strategy based

on some rule.

In [62], three different performance measures were used in order to compare the strat

egy' update functions. The performance measures are average convergence at time n, aver

age number of strategy changes per interaction, and maximum number of strategy changes.

42 CHAPTER 3. SOCIAL LAWS FOR MULTI-AGENT SYSTEMS

Convergence here is the fraction of agents using the most popular strategy at time n. If the

convergence is 1.0 at a given time in a given run, this means every agent has chosen the same

strategy. An optimal strategy update function would reach a convergence in the shortest pos

sible time. The average number of strategy changes per interaction indicates how frequently

the agents changed strategy. As changing from one strategy to another generally incurs a cost,

lower values for this performance measure are preferable. Finally, the maximum number of

strategy changes is simply the maximum number of strategy changes that any agent incurs.

Again, lower values of this performance measure would be better.

In [50], the efficiency of convergence was tested with the Highest Cumulative Reward strat

egy update function under various conditions. The conditions tested are the effects of: update

frequency, memory restarts, co-varying memory size and update frequency, and finally, limited

memory windows. Update frequency refers to how often the update function is used. Here, by

update, this does not mean that agents necessarily change their strategies, just that the strategy

update function is used. It is suggested that updating their strategies at every possible point

may cause "thrashing" in the system. However, if the updating of strategies is delayed too

much, agents may be prevented from updating their strategies, even when it is appropriate to

do so. Memory restarts have the effect of wiping the previous history of the agents. However,

the current strategies are not forgotten, as these are the strategies the agents will now start with.

The effects of memory size and update frequency have been investigated together to see if these

two parameters interact. Finally, limited memory windows is where each agent will only keep

a limited window into its past experiences and base the HeR rule on that window alone.

It is apparent that most of the work to date in this area is purely experimental. Many

different strategy update functions have been tested, and these have been tested under various

conditions. Experimental results have been given and analysed by researchers. These results

are arguably not very significant, and the fact that some of the results were unexpected, shows

that there is still a lot more research to be done in this area.

3.2 Offline Design

There has been a lot more research into the offline design of social laws, and hence this

paradigm will receive more coverage in this chapter. This approach looks at the possibility

of social laws being designed offiine and hard wired into the agents for use at run-time. This

approach is often favoured due to its simplicity to implement and the fact that it gives the sys

tem designer a greater degree of direct control over the functionality of the system. Also, from

a computational point of view, it shifts the computationally hard problem of finding a social

law from run-time to design time. It is preferable to spend longer at the design stage for more

3.2. OFFLINE DESIGN 43

efficient results at run-time.

It will be useful to introduce an example that can be referred to in each of the approaches.

This example is an adaptation of the train example introduced earlier:

Example 3 In this scenario, there is a train on a circular track, which at one point crosses a

road. The place where the track crosses the road (level crossing) is controlled by gates operated

by a gate controller agent. If the train moves on to the level crossing while the gates are closed,

the train will be in a crash situation, in which it has crashed into a car on the crossing. Also,

if the gates close while the train is on the crossing, a crash will occur. We are interested in

social laws that can prevent such situations from arising, at the same time as ensuring that the

liveness goal that the train will eventually enter the crossing is achieved.

This system consists of two agents called t and g, where t is the agent representing the train

and g is the gate controller agent. The train can be in one of three states: "away" (the initial

state of the train), "waiting" (waiting to use the crossing) and "oncrossing" (the train is on

the crossing). The gates can only be in two states, either "open" (gates are open to the train)

or "closed" (gates are closed to the train). The train has two actions available to it: move,

and idle,. The idle, action is the identity, which causes no change in the train's state. If the

train executes a move, action while it is away, then it goes to a waiting state,· executing a move,

while waiting causes a transition to the oncrossing state; and finally, executing a move, while

oncrossing causes a transition to away, as long as the gates were not in the closed state at the

same time as the train was in the oncrossing state, as, if this is the case, the train is said to have

crashed and is forced to idle, indefinitely. The gates controller also has two actions available

to it: gatesg and idleg. As with the train, this idleg action causes no change in the state of the

gates. The gatesg action causes the position of the gates to be toggled, i.e., performing gatesg

when the gates are closed will result in the gates being open and vice versa. Initially, the train

is away and the gates are closed.

The system can be in one of six different states and the overall state of the system at

any given time can be characterised in terms of the following five propositional variables:

{away" waiting" oncrossing" closedg, openg }. The overall structure of the level crossing sys

tem is illustrated in Figure 3.2; the models o/the t and g agents are illustrated in Figure 3.3.

3.2.1 Moses & Tennenholtz

An artificial social system, as proposed by Moses and Tennenholtz in [35], is defined as a

set of restrictions on agents' behaviours in a multi-agent environment. Its purpose is to allow

agC?nts to act individually, while at the same time ensuring that their behaviour is mutually

compatible. It is suggested as an intermediate approach between the two extremes of having

44 CHAPTER 3. SOCIAL LAWS FOR MULTI-AGENT SYSTEMS

Figure 3.2: The Level Crossing system.

a centralised control entity, and having a purely decentralised approach. In the former case,

as the number of agents and tasks grows, the costs in communication, synchronisation, and

processing grow dramatically. More importantly, the system depends crucially on one central

element. In the latter case, if the cost of conflict is high, or if conflict resolution is difficult, a

purely decentralised approach is arguably less desirable. In this section, we will first present

the idea of artificial social systems in the simple automata theoretic framework. This will allow

th~ idea to be presented in a simple setting and for the computational problem of finding a

social law to be addressed. We go on to present the computational problem of designing a

social law, known as the Golden Mean Problem. Finally, we present the deontic modal logic

and how it can be used for reasoning about artificial social systems.

Social Automata

The first task in the study of artificial social systems is to introduce the model of multi-agent ac

tivity. The model proposed by Moses and Tennenholtz [35] is a system of dependent automata

(OA system). Such a system consists of n agents, where n > 1. Each agent can be in one of a

finite set of local states Lj at any time. The overall configuration of the system is denoted by a

tuple of each of the agent's local states (SI, ... , Sn); Co ~ LI X ••• x Ln is a set of initial config

urations. The possible actions agent i is able to perform in any state s, is denoted by Aj(s). The

3.2. OFFLINE DESIGN 45

idle
Oidle

B gates
closed

gates

idle

a.) Train states and transitions b.) Gates states and transitions

Figure 3.3: States and Transitions.

tuple (al, ... , an) of actions denotes the actions the different agents perform at a given point,

and is known as their joint action. The set of joint actions is denoted ACl x ... x ACn and

Ac : UiEA8 ACi is the set of actions of the system. A plan for agent i is a function p(s) which for

every state s of agent i, returns a particular action a which i will perform in s, where a E Ai(S).

A plan is said to guarantee a particular goal if, no matter what the other agents in the system

do, by following this plan the goal will be achieved. Goal states are defined as sets Gi ~ Li,

for i = 1, ... , n and intuitively each goal state s8 E Gi corresponds to the state of affairs where

agent i has achieved some goal denoted by g. A local state s of agent i is called an initial state

(denoted by si) if s is in one of the configurations in Co. Thus, a DA system is a (2n + 3)-tuple

(Ll, ... ,Ln; Co,Ac,Al, ... ,An, T) where:

• Li is a set of local states for agent i;

• Co ~ Ll X ••. X Ln is a set of initial configurations;

• Ac is a set of actions;

• Ai : Li -t 2Ac is a function which for each local state of agent i, defines the set of actions

that agent i can perform in this state; and

• T : (Ll x '" x Ln) x (ACl X ..• x Acn) -t (Ll X ••• x Ln) is a transition function

mapping configurations and joint actions into configurations.

A DA system is said to be social if, for every initial state si and goal state s8, it is computation

ally feasible for an agent to devise, on-line, an efficient plan that guarantees to attain the goal s8

'state when starting in the initial state si [35]. That is to say that no matter what the initial state

46 CHAPTER 3. SOCIAL LAWS FOR MULTI-AGENT SYSTEMS

of the agent is, an agent should be able to reach its goal state regardless of the actions of the

other agents and the initial states of the other agents. A standard DA system will be modified

by a social law. A social law restricts the set of actions that each agent can perform, so a social

law, sl, for a DA system S, is a tuple (A1,A2, ... ,A~) consisting of functions A~ : Li --t 2Ac

satisfying A:(s) ~ Ai(S) for every agent i and state s E Lj. To implement the social law sl, we

replace the functions Ai by the restricted functions A~, and obtain a new system, Ss!.

Example 4 Recall the level crossing scenario introduced earlier. A social law we wish to

formulate is, if the train is on the level crossing, it will not idle there. This is done by forbidding

the train from idling, when it is on the crossing. If SI is the local state where oncrossingt is

true, then in the system S:

In the constrained system Ss!, the function At is replaced by:

Secondly, the computational issues associated with the design of social laws in such a

setting need to be addressed. The main computational problem relates to finding a social law,

if one exists, so that agents can devise plans from an initial state, that will eventually reach

some goal state. Given a DA system S = (Ll. ... ,Ln,Co,Ac,Al. ... ,An,r), with the standard

interpretation as defined above, the size of such a system is defined to be IAcl + maxilLil1. The

problem is to find a social law sI, such that in the new system Ss!, given any agent i and any

initial state So E L; and goal sf E Gj, there exists a plan pg : Li --t Ac that is guaranteed to

reach sf starting from so.
lt is shown that:

Theorem 2 ([35]) Let n ~ 2 be a constant. Given a DA system S with n agents, the problem

of finding a social law sl, such that in Ss! each agent can devise plans for reaching each goal

state from each initial state, if such a law sl exists, is NP-complete.

The authors of [35] argue that this result should not be interpreted as a highly negative one.

Although a problem that is proved to be NP-complete is usually evidence that the problem is

hard to solve, and that no efficient algorithms exist for solvi~g it, in this setting there are also

positive implications of the result. Firstly, the fact that the problem is NP-complete means that

the verification of the design process can be done efficiently. This is because the process of

designing a social law corresponds to guessing a social law and associated plans, all of which

lmaJ(ilLII denotes the maximum size out of all the sets of local states for each agent.

3.2. OFFLINE DESIGN 47

can be encoded in polynomial space and verified in polynomial time. Secondly, it is suggested

that, the designer's ability to solve NP-hard problems in an offiine setting is far greater than the

agent's ability to solve such problems online. This means that a trial and error procedure might

be feasible in the design stage.

Designing Social Laws

Social laws have the effect of restricting each agent's strategies (actions). By doing so, it may

seem that, as individual agents have fewer strategies they can adopt, they will be able to attain

fewer goals. However, to an individual agent, his strategies may well be limited, but so are

the strategies of the other agents in the system. As a result, agents might actually be able to

attain more goals than without the social laws in place. In designing social laws, it is important

to strike just the right balance between being overly restrictive and overly liberal. On the one

hand, if you restrict the strategies of agents too much, they will be able to attain fewer goals

due to a lack of options; whereas on the other hand, if the laws are not restrictive enough, many

conflicting strategies may be able to be performed, again resulting in the attainment of fewer

goals. It is suggested in [35] that a social system should strike the right balance: It should

restrict the allowable behaviours of the various agents enough to serve the different agents in

a good manner. This problem is referred to as the golden mean problem.

In [35], a variant of the basic golden mean problem is considered in another basic model

called a one-shot social game. This model consists of a set S of possible physical strategies

identical for all agents and a set Gsoc of socially acceptable goals (goals which the social system

allows the agents to attain). With each goal g E G soc and agent i we associate a payoff function

ug (i) that assigns to each joint strategy in sn a value between 0 and 1. It is assumed that social

restrictions on the strategies are similar for all agents. It is also assumed that the value of

the payoff function for an agent depends only on its current goal and the strategies executed.

Hence, the authors claim it is possible to refer to only the payoff functions of the first agent and

drop the agent's number from the notation of the payoff function, without loss of generality.

Finally, an "efficiency parameter", 0 ~ f ~ I, is given. Now the basic golden mean problem is

defined formally as:

Definition 5 (Basic Golden Mean) Let n :::: 2 be a constant. Given a set of n agents, a set S
of possible physical strategies, a set G soc of socially acceptable goals, an efficiency parameter

f, and for each g E Gsoc a payoff function ug : sn [0,1], find a set S ~ S of "socially

acceptable" strategies such that for all g E Gsoc there exists s E S such that ug{s, 0-) :::: ffor

all 0- E Sn-l.

The above definition illustrates the main issues involved in solving a golden mean problem in a

48 CHAPTER 3. SOCIAL LAWS FOR MULTI-AGENT SYSTEMS

game-theoretic sense. The designer of the system will have to disallow some of the physically

possible strategies in order to allow certain goals to be efficiently achieved, while at the same

time leaving enough strategies available to the agents so that they can achieve their goals in a

reasonably efficient manner. This is done by finding a set of socially acceptable strategies such

that for all socially acceptable goals, there exists a socially acceptable strategy which together

with all combinations of socially acceptable strategies for all other agents in the system, returns

a payoff greater than or equal to a given efficiency parameter. The computational complexity

of such a problem is given by the following theorem:

Theorem 3 ([35]) The decision problem corresponding to a basic golden mean problem is

NP-complete (in the number of strategies and goals). If the number of goals is bounded by a

constant, then the problem is polynomial.

Again, as with Theorem 1, it is argued that this result can be interpreted as a positive one. This

result indicates that an off-line trial and error procedure for determining the social laws should

be adopted. The second part of the theorem, where we say the number of goals is bounded by

a constant, is less important here, as we are mainly concerned with the design stage. However,

instances of this problem need to be solved repeatedly in an online setting, to resolve conflicts

between the intended actions of the agents.

Logical Reasoning about Social Systems

Now that we have defined exactly what an artificial social system is, in terms of the automata

theoretic approach outlined above, it is time to introduce the logic for reasoning about such

systems. This will enable general semantics of artificial social systems to be given and will

enable .formal logical reasoning about the elements of social systems.

The first stage in presenting the semantics of an artificial social system is to define a general

multi-agent system:

Definition 6 A multi-agent system is a tuple

where:

• Ag = {I, ... , n} is a set of agents,'

• Q is a set of possible worlds (states);

• "'i~ Q x Q are accessibility relations (we assume that "'i is an equivalence relation for

all i E Ag);

3.2. OFFLINE DESIGN 49

• Ac is a set of primitive individual actions;

• Ablei : Q --+ z4c is a function that determines the possible physical actions for agent i

(in any given world). Ablei is required to satisfy the condition: Ablei(q) i= 0for all i and

q;

• I is a set of possible external inputs for the agents, and;

• r : Q x (Ac x I)n --+ Q U {.1} is a state transition function. This function determines

what the next state of the world will be as a function of the actions performed and the

inputs received in the current world. This function is not defined, r(q, (a, I)) = .1, if!
there exists an action ai in (a,/) such that ai f/. Ablei(q)

'Ipe set of possible worlds, Q, represents all the possible configurations the system can be

in. The ""i relations are used to capture the agents' knowledge about the possible worlds, as

described in Section 2.2. Thus, (q, q') E""i indicates that the agent i cannot distinguish between

the two possible worlds q and q' [16]. The external inputs I are used to represent messages

the agent can receive; for example, an agent could receive goals from some master agent that

it wishes the agent to pursue. An agent's goal g is identified with a sub-set Qg ~ Q of worlds.

Intuitively, all the worlds in the set Qg, are worlds where the goal, g, has been achieved. The

Ablei function specifies what the agent i is physically able to perform in a given world. The

authors suggest that a good way of thinking of this function, is to think of it as the "physical

law". Finally, notice that the transition function r depends on the joint action of all the agents

and the joint inputs. This makes it possible for several different worlds to result from one

particular agent performing the same action.

Definition 7 A plan for agent i is afunction StrategYI : Q --+ Ac that satisfies the/ollowing:

I. If(q,q') E""i, thenStrategYi(q) =Strategyi(q')

2. StrategYi(q) E Ablei (q) for all q E Q.

The StrategYi function is used to represent the planning process of the agent. Given a world,

the StrategYi function will determine which action the agent should perform next in accordance

with the two conditions. The first condition requires that the action chosen will depend only

on agent i's knowledge. In two states that are indistinguishable to i, the same action will be

chosen. The second condition requires that the agents are physically capable of performing the

actions chosen by the Strategyi function.

~o far, the agents in the system are constrained only by the Ablei functions which specify

which actions agent i is physically capable of performing in a given state. The authors suggest

50 CHAPTER 3. SOCIAL LAWS FOR MULTI-AGENT SYSTEMS

that this corresponds to a "physical law". The intended meaning of this is what the agents are

physically capable of doing. For example, given the limitations on the strength of a human, it

would not be "physically" possible for me to lift a car. The agents need to be restricted further

by social laws. To understand the difference, consider an example where a car does not stop at

a red light. The person driving the car is "physically" capable of driving through the red light,

but however, the person is not "socially" allowed to drive through the red light. This brings us

on to introduce a normative system, which restricts the agents based on social laws (or norms):

Definition 8 A normative system extending a multi-agent system S is defined to be the pair

N = (S, {Legal;};~n)' where Legal; : Q ~ 2Ac. Moreover, the functions Legal; are required

to satisfy the following three conditions:

1. (epistemological adequacy): Legal;(q) = Legal; (q') for all (q,q') E"';;

2. (physical adequacy): Legali(q) t;;, Able;(q) for all i and q;

3. (non-triviality): Legali (q) f. 0 for all i and q.

The function Legali(q) returns a set of actions that agent i is allowed to perform in state q.

The epistemological adequacy condition states that the agents will always know what actions

they are allowed to perform. The physical adequacy condition requires that agents should

be physically capable of performing all actions that are allowed. Finally, the non-triviality

condition requires that the agents always have at least one action that they are allowed to

. perform at anyone time. This does not mean that the agents are required to do something in

each world, as there is assumed to be an explicit null action, corresponding to "doing nothing".

Example 5 As an example, referring back to the level crossing scenario introduced earlier, if
we ~sume the state ql to be where the train is on the crossing, the Legal;function would be as

follows:

Legalt(ql) = {movet}

So, the only legal action the train can perform in state til, is the move action. This is to prevent

the train from idling on the crossing causing delays for cars ..

Given a normative system N = (S, {Legal;} i~n)' a strategy is said to be legal with respect

to N. if in addition to it being a valid strategy in S, all actions chosen by the Strategy; function

will always be legal actions. So now, rather than a strategy having to choose actions which the

agent is physically capable of performing in the current state, the actions have to be legal ones.

This means that condition (2) from the definition of the Strategy; function is strengthened to:

StrategYi(q) E Legali(q) for all q E Q.

3.2. OFFLINE DESIGN 51

A social system is a specific type of normative system. However, a normative system has

nothing in-built to guarantee that nothing bad ever happens. Furthermore, there is nothing

in-built to guarantee that something good will always happen. A social system is required to

ensure that this is the case. This corresponds loosely to achieving liveness and safety goals. We

define a set of "socially acceptable" worlds, Qsoc, and these are given by the system designer.

We also define a set of "socially acceptable" goals, Gsoc , which an agent should always be able

to attain. The safety goal corresponds to never leaving a set of socially acceptable worlds, Q soc,

as long as all agents abide by the rules in place. The liveness goal corresponds to agents always

being able to attain a socially acceptable goal from the set Gsoc. Qo is the set of initial worlds

that the agents can start from. If we assume Qo ~ Qsoc, legally reachable is defined to be: a

world is reachable from a world in Qo by following a sequence of steps where all agents abide

by the rules in place.

Definition 9 A social system S consistent with Qsoc and Gsoc will be a normative system ex

tending S that satisfies:

1. A world q E Q is legally reachable only if q E Qsoc;

2. For every legally reachable world q, if the goal of agent i in q is g E G soc, then there is a

legal plan for i that, starting in q, will attain g so long as the other agents act according

to the normative (social) system.

Now that a semantic definition of artificial social systems has been given we are at a stage

where we want to be able reason about such systems. In order to do this a propositional modal

logic will be used. Basic formulae will be a set q> of primitive propositions, including distin

guished atoms social and legal, meaning the world is social and the world is legally reachable,

respectively. There are also formulae relating to the ability of agents to perform actions in a

given world: For every agent i E Ag and action a E Ac, Posp(i, a), Necp(i, a), Poss(i, a), and

Necs(i, a) (read respectively as: a is physically possible for agent i, a is physically necessary

for agent i, a is socially possible for agent i, and a is socially necessary for agent i). The

knowledge operators Ki are used to model the agents knowledge about the state of the physical

world. However, if the agents are assumed to be acting in accordance with the social laws, a

new type of knowledge arises. This is knowledge under the assumption of correct normative

behaviour. This is denoted by Bicp, which says that agent i believes cp under the assumption

that the current world is legally reachable.

Formally, the language formed with respect to a set of agents Ag, and a set of primitive

52 CHAPTER 3. SOCIAL LAWS FOR MULTI-AGENT SYSTEMS

propositions <I>, is given by the following grammar:

'P .. - pi -''P I 'P V 'P I Ki'P I Bj'P I Posp(i, a)
Necp(i, a) I Poss(i, a) I Necs(i, a)

where p E <I> is a propositional variable, a E Ac is an action, and i E Ag is an agent.

A model for this language is a pair M = (S, 11'), where S is a social system, and 11' : <I> -? 2Q
is a function associating with every primitive proposition the set of worlds in which it holds.

The fact that a formula 'P is satisfied in a world q of M, is denoted by (M, q) F 'P. The

definition of this is given by induction on the structure of 'P:

(a) (M,q) F 'P (for 'P E <I» iff q E 1I'('P)'

(b) (M, q) F social iff q E Qsoc.

(c) (M, q) F legal iff q is legally reachable.

(d) (M, q) F Posp(i, a) iff a E Ablej(q).

(e) (M,q) FNecp(i,a) iffAblej(q) = {a}.

(t) (M, q) F Poss(i, a) iff a E Legal;(q).

(g) (M,q) F Ness(i,a) iff Legalj(q) = {a}.

(h) (M, q) F -''P iff (M, q) ~ 'P.

(i) (M, q) F 'P A 1/1 iff (M, q) F 'P and (M, q) F 1/1.

(i) (M, q) F Kj'P iff (M, q') F 'P for every q' satisfying (q, q') E"'j.

(k) (M,q) F Bi'P iff (M,q) F Kj(legal =? 'P) A -,Kj-,legal.

The clause (k) defines the social belief operator Bj as "belief as defeasible knowledge". That

is to say that if a proposition 'P is believed to be true,it can actually be the case that 'P is false.

Bj'P can be true, when 'P is actually false.

A formula 'P is said to be valid in M. denoted by M F 'P. if (M, q) F 'P for all worlds

q E Q. The formula 'P is valid, denoted F 'P, if it is valid in M for all models M. The

following two key facts in this framework show the relationship between knowledge and social

actions: F Necs(i, a) =? KiNecs(i, a) and F Poss(i, a) =? KjPoss(i, a). The authors give the

following example formulae to demonstrate the power of their framework and claim that these

are valid formulae in their language (they are validities):

3.2. OFFLINE DESIGN 53

1. F Bf(cp V Necs(i, a)) :=} (Bicp V BfNecs(i, a))

2. F .Bi·Necs(i, a) :=} BiNecs(i, a) V Ki(.legal)

3. FBi [(cp:=} Necs(i,a)) 1\ (.cp:=} ,Poss(i,a))] :=} [Bicp V Bi·cp]

These are given to show the relationship between social necessity and social belief. The first

formula says that if an agent believes that either cp holds or it must perform the action a, then

the agent must explicitly believe one of these facts: It either believes cp or it believes that it must

perform the action a. This formula is valid since any state where i believes cp or Necs(i, a), i

must either believe cp or believe Necs(i, a), since if this is not the case, then i does not believe

cp and i does not believe Necs(i, a), which contradicts the assumption we made about the state.

The second formula says that if an agent believes that it might have to perform an action a,

then the agent believes that either it must perform action a or it knows that the current state

is not legal. To understand why this formula is valid, consider the state where .Bi.Necs(i, a)

holds. It must either be the case that i believes Necs(i, a) or i knows the current state is not

legal. These are the only two ways that .Bi.Necs(i, a) could hold. Finally, the third formula

says that if a fact cp determines whether or not the agent is allowed to perform the action a in

\ the current world, then the agent must either explicitly believe cp or it must explicitly believe its

negation. Consider a state where F Bi [(cp:=} Necs(i,a)) 1\ (.cp:=} .Poss(i,a))] holds. For

Item 3. to be false, it would mean i not believing cp and i not believing .cp. This means agent

,i considers cp and .cp to be possible. However, this cannot be, as Necs(i, a) and ,Poss(i, a)

cannot be true at the same time.

So far, the logical reasoning has not covered any issues related to agents' goals. As goals

are a very important aspect of an artificial social system (and indeed, any multi-agent system),

the language is now extended to allow for reasoning about goals. It is assumed that in any given

world an agent will only have one distinguished current goal. Propositional formulae of the

form current-goal(i, g) are added to the language for every agent i and goal g. This formula

will hold when agent i has the current goal of g.

Earlier on, a goal g of an agent was equated with a set Qg of worlds where the goal g is

satisfied. The authors suggest that a goal, in this sense, can be thought of as a proposition.

When the proposition is satisfied, so is the goal. This enables us to reason about satisfaction of

goals by talking about when a set T of agents can cause a fact cp to be satisfied. But, it is not

enough just to reason about goals being satisfied, as it matters how the goals are achieved. The

authors introduce an operator for reasoning about goals being achieved in a socially acceptable

manner. They call this social reachability and this is defined to be: the agents in T have a joint

plan consisting of solely socially acceptable actions that is guaranteed to attain cp, so long as

alf the other agents follow the rules of the social system. This is denoted by s-reachable(T, cp).

54 CHAPTER 3. SOCIAL LAWS FOR MULTI-AGENT SYSTEMS

They also introduce physical reachability, where all physically possible actions and plans are

considered. This is denoted by p-reachable(T, <p). It is also possible to reason about what will

happen if a certain action will actually be executed. To do this, appropriate parameters have

to be added to the reachability operators. p-reachable(T,<p,doi(a)) will denote the fact that

p-reachable(T, <p) holds in cases where agent i executes action a in the current world. This

extra parameter to the p-reachable operator can be any element in the closure of dOi(a)'s under

conjunction and negation (e.g. p-reachable(T,<p,doi(a) /\ dOj(a'))). Similar parameters can

be used in the s-reachable operator.

The authors now formulate the two conditions in the definition of a social system in terms

of s-reachable:

1. 1= legal:::} ,s-reachable(T, ,social) for all sets T ~ {l, ... , n} of agents.

2. 1= legal/\ current-goal(i, g) :::} s-reachable(i, g) for every agenti and goal g E Gsoc .

The first condition states that in all worlds that are legally reachable, it is not socially reachable

to achieve an asocial goal. The second condition states that if the world is legally reachable

and the current goal of agent i is g, then g should be socially reachable to i, providing g is a

socially acceptable goal. With these operators in place, the designer of the system and its users

can reason about actions, goals and their achievement.

Finally, the authors introduce a high-level language for expressing social laws. So far,

social laws have been given in terms of a restriction on the Ablei functions, or on the actions

that the agents can perform in a given world. Social laws can now be expressed as high-level

rules in terms of the language defined above. Consider the following example of a high-level

social law:

Example 6 Imagine that we want to have a rule that states that whenever the circumstances

satisfy a fact <p (say, i's house is on fire), then all members of set A must help i to attain 'l/J
(say, put out the fire). We say that M enforces the rule should-helpA,i(<p, 'l/J) if! M 1= <p /\ s

reachableAU{i} 'l/J /\ ,s-reachablei'l/J.

This framework thus allows high-level rules to be expressed in a rigorous and concise manner.

3.2.2 Shoham & Tennenholtz

In [48], Shoham and Tennenholtz introduce a general model of social laws in a computational

system. Firstly, they define an agent to be in one of a finite number of global states, and to

engage in actions which change the state. A synchronous model is adopted, in which agents

repeatedly and simultaneously take action, which leads them from their previous state to a new

3.2. OFFLINE DESIGN 55

one. The agents have a repertoire of actions to choose from. A problem arises when trying to

define the transition functions for agents. This is due to the fact that the change in an agent's

state is not a direct result of the action the agent chose in its previous state. The change in

an agent's state is also determined by the performance of actions by the other agents in the

system. One approach would be to define the transition function as a mapping from the states

and actions of all the agents in the system to the new states of all agents. Another approach

would be to define the transition function for each of the agents, but make the function non

deterministic to account for the effects of the other agents in the system. In this framework, the

idea of a social law is introduced as an intermediate approach between the two. In the former

case, the transition function produces the most specific prediction, whilst in the latter case it

produces the most general prediction. With social laws present, the transition function also

takes the set of constraints as an argument and produces a prediction of the possible next states

of the agent. The constraints specify which states a given action is prohibited in. Finally, an

assumption of homogeneity is made. It is assumed that the set of states and actions are common

to all agents. However, it is not assumed that the agents will necessarily be in the same state

at the same time, nor that they will take the same action when in the same state. Also, it is

assumed that the same constraints apply to all agents.

The Formal Model

First. we will formally define a social law:

Definition 10 Given a set of states Q, afirst order language C (with an entailment relation F),

and a set of actions Ac, a constraint is a pair (a, <p) where a E Ac and <P E C is a sentence. A

social law is a set of constraints (ai, <Pi)' at most one for each ai E Ac.

The language C will be used to describe what is true and false in different states. Given a state

q E Q and a sentence <P E C. q might satisfy or not satisfy <p. We denote the fact that q satisfies

<P by q F <p. Given a constraint pair (a, <p). intuitively <p will correspond to every situation in

which the action a should be prohibited.

Given a pair of social laws. si! and s12. we denote by sl2 < si! the fact that for every

(ai, <Pi) E sl2 there exists (ai, <pj) E sh such that <Pi F <pj. Intuitively, it will mean that si! is

more restrictive than s12. So everything that sl2 restricts, sh will restrict, and possibly more.

Next, we formally define a social agent:

Definition 11 A social agent is a tuple (Q, C, Ac, SL, T) where Q, C, Ac are as above, SL a set

of social laws, and T is a total transition function T : Q x Ac x SL -+ 2 Q such that:

• For every q E Q, a E Ac, si E SL, if q F <P holds and (a, <p) E si then T(q, a, si) = 0,
the empty set.

56 CHAPTER 3. SOCIAL LAWS FOR MULTI-AGENT SYSTEMS

• For every q E Q, a E Ac, SII E SL, sl2 E SL, if sl2 < sh then r(q, a, sh) ~ r(q, a, sI2).

So in this framework, the transition function takes the set of social laws as an argument and

uses them along with the state and action of the agents to form the set of possible next states.

There are two conditions on the transition function. The first says that if the situation described

by <P is satisfied in the current state and the action, a, is forbidden in the current situation by

one of the constraints in si, then the transition function will return the empty set, thus it is not

defined for forbidden actions. The second condition says that for two social laws, SII and s12,

if sh is more restrictive than s12, then the states resulting from transitions with SII will be a

sub-set of the states resulting from transitions with s12' for all states and actions.

Finally, a social multi-agent system is defined as follows:

Definition 12 A social multi-agent system is a collection of social agents which share the sets

of states, the language for describing states, the set of potential actions, the set of potential

social laws, and the transition function.

In order to illustrate how social laws are formulated in this framework, we give the following

example:

Example 7 Recall the level crossing scenario introduced earlier. We wish to formulate that, if
the gates are closed, the train will not cross the level crossing. In this framework, this could be

expressed as follows:

<PI = waitingt 1\ closedg

The above social law will be as follows:

sh = {(move" <pI}}

So this social law forbids the agents from performing the move t action when the train is waiting

to use the crossing and the gates are closed. This is clearly to stop the train from crashing

through the gates and onto the crossing, possibly colliding with cars using the crossing.

We also wish to ensure that the train will eventually enter the crossing. To ensure this

liveness goal, we could implement the following social law:

This prevents the gates from idling when the train is waiting to use the crossing. So in the next

state, the gates will open to allow the train to enter the crossing.

After looking at this example, we can see similarities between the Moses and Tennenholtz

framework outlined in the previous section. In their social systems the restrictions are imposed

3.2. OFFLINE DESIGN 57

via the Legal; (q) functions, where Legali (q) returns the set of actions i is allowed to perform in

state q. So they specify which actions are allowed, whereas here the social laws specify which

actions are forbidden. However, the notion of a social law is the same in both instances.

The Computational Problem

Once we have chosen the social law to use and implemented it, the system reduces to a standard

one with all transitions that are incompatible with the law removed. So, the computational

problem is to select a social law that, given the social multi-agent system, will induce a 'good'

standard system. To define a 'good' system, a subset of the set of states, called focal states, is

introduced. The social law should ensure that for each agent, given two focal states, it is able

to construct a plan guaranteed to move it from one state to the other - no matter what the other

agents do. Intuitively, this corresponds to the agent being able to achieve its goals.

An agent's legal plan is a set of decisions about which action to perform in each state, such

that the agent abides by the laws in place. It is defined as follows:

Definition 13 Given a social agent (Q, .c, Ac, SL, r) and a social law si E SI." a legal plan is

a total function DO : Q Ac such that if (Cl'., 'P) E si and q F 'P holds, then DO(q) i- CI'..

\ An execution of the plan from a state qo is a sequence of states qo, qlo q2, ... such that qi+l E

r(qi' DO(qi), si).

The above definition of a plan requires the agent to perform an action at every step. How

ever, there is an explicit null action, corresponding to doing nothing, thus leaving the states

unchanged. I~ some circumstances this null action may be prohibited by the social law, mean

ing that "something" has to be done in this state. For example, if someone's house was on fire,

doing nothing would be prohibited!

We now give the definition for a useful social law:

Definition 14 Given a social multi-agent system and a subset F of the set of states (the focal

states), a useful law is a law for which, given any ql, q2 E F, there exists a legal plan such that

every execution of that plan in ql reaches q2.

A precise computational problem can now be phrased:

Definition 15 (The Useful Social Law Problem (USLP» Given a social multi-agent system

and a set of focal states, find a useful law if one exists, or, if no such law exists, announce that
this is the case.

The computational complexity of the above problem can now be analysed. First, it is

necessary to define some precise details of the model it will be tested under. The number

58 CHAPTER 3. SOCIAL LAWS FOR MULTI-AGENT SYSTEMS

of states in the representation of an agent is assumed to be finite and is denoted by n, and

we will measure the computational complexity as a function of n. The total size of an agent's

representation is polynomial in n. It will also be assumed that each property of the form q 1= lP,

and of the form sit < sl2 can be efficiently verified.

The result is shown in the following theorem:

Theorem 4 The USLP is NP-complete.

The theorem shows that the USLP is intractable. However, as the USLP is computed

offline, this result is not entirely negative, and a lower complexity could be achieved by intro

ducing several restrictions on the structure of agents.

The first restriction made is on the number of actions that can be performed in each state.

For each state q, the number of transitions which might change q is bounded by o (log (n)). This

restriction says that the number of actions an agent might perform at any given state is small

relative to the total number of states, while the quality of the information about constraints

which might be relevant to the effects of a particular action in a particular state is still relatively

high [48].

Definition 16 (The Bounded Useful Social Law Problem (BUSLP» Given a social multi

agent system where the number of transitions which might change a particular state is bounded

by O(log (n)), and a set of focal states, find a useful law if one exists, or, if no such law exists,

announce that this is the case.

With this restriction alone, the BUSLP is NP-complete, as was the USLP. So there are

further restrictions needed to reduce the complexity of the BUSLP. The conditions under which

the BUSLP becomes tractable are roughly as follows:

1: The number of focal states is bounded by a constant.

2. Plans must be deterministic.

3. The plan must be short.

Theorem 5 The BUSLP is polynomial if restrictions 1,2, and 3 hold; ifwe drop any of these

restrictions (and do not add additional ones) then the BUSLP is NP-complete.

3.2.3 Minimality & Simplicity

In Fitoussi and Tennenholtz [17], two basic criteria for selecting among alternative useful social

laws are presented.· Here, the informal definition of a useful social law is given in much the

3.2. OFFLINE DESIGN 59

same way as in the previous section. A useful social law is one which by following the social

laws will lead to the agent's goals being achieved. The suggested criteria for selecting amongst

useful social laws are minimality and simplicity.

The basic idea behind minimality is to reduce the set of constraints that the social laws

impose on the system as much as possible so that following the social law still guarantees

the goal state. In order to do this, we need to determine whether this is the minimal set of

constraints needed to be obeyed by the agents in order to guarantee the goal specification. The

idea behind this is that by constraining the agents just enough to reach their goal specification,

we provide the agents with maximal individual flexibility.

Before giving any formal definitions, it is necessary to understand how two different laws

will be compared. Given two useful social laws Sll and s/2, we say that sl2 is smaller than

sh if the set of behaviours induced by strategies consistent with Sll is included in the set of

behaviours induced by strategies consistent with s/2. So the set of behaviours induced by

strategies consistent with sl2 includes those induced by strategies consistent with Silo and more.

This is due to sl2 being less restrictive; Sl2 rules out less behaviours than S/l. If we think of a

social law si as a set of constraints, as defined in [48], then Sl2 has fewer constraints than S/l.

Informally, the authors of [17] define a minimal social law as the following: a useful social law

. sl* is minimal (and optimal) for some system specification, if and only if, for any other useful

social law si, si is not smaller than s[*. So this is basically saying that given a useful social law,

this useful social law is minimal if no other useful social law exists that is smaller.

We will now give some formal definitions to formulate the notions of social laws and min

imality in the framework of a general strategic model. The following definitions are presented

for an environment with two agents.

Definition 17 An environment E is a tuple (Ag, El> E2)' where Ag = {1,2} is a setaf agents

and Ei is a set of strategies available to agent i.

So, the above definition says that an environment consists of a set of agents and a set of strate

gies for each agent. The agents are assigned goals which they must try to attain using the

strategies available to them. As well as these goals, there are also system-level goals that

should always be guaranteed. These are defined as follows:

Definition 18 In an environment E = (Ag, El. E2) a goal g is a subset of the Cartesian prod

uct over the agents' strategy spaces, i.e., g ~ El X E2.

The above definition presents the idea that a system-level goal is achieved as a result of the

joint action of all the agents in the environment. As such, a goal in this sense is defined to be a

sub-set of the Cartesian product over the agents' strategy spaces.

60 CHAPTER 3. SOCIAL LAWS FOR MULTI-AGENT SYSTEMS

A formal definition of a useful social law is now given. But, first we need to introduce

two different types of goals. These are the well known Iiveness and safety goals, used in many

areas of Computer Science [32]. Liveness corresponds to ensuring that something "good" will

eventually happen, while safety corresponds to ensuring that "nothing bad" will ever happen.

Let G; denote the set of liveness goals for agent i. These are the goals we wish agent i to attain.

Let Gsaje be a set of safety goals. These are the goals that should always be attained. Not

attaining one or more goals in the set Gsaje intuitively corresponds to a bad state of affairs. A

useful social law is a social law that ensures safety and always enables the agents to achieve

their Iiveness goals. This is given more formally as:

Definition 19 Given an environment (Ag, El, E2), and given the sets of goals G1, G2, and

Gsaje, a sodallaw is a set of forbidden strategies, SL = (El> E2), such that El ~ El and

E2 ~ E2. SL is useful if:

1. for every goal g l l E G1 there exists 0"11 E El \ El such that for all 0"2 E E2 \ E2 we

have (O"lp 0"2) E glj'

2. for every goal g21 E G2 there exists 0"2j E E2 \ E2 such that for all 0"1 E El \ El we

have (0"1,0"2;) E g2j'

3. for every goal gj E Gsaje and for all 0"1 E El \ El, 0"2 E E2 \ E2, we have that

(0"1,0"2) E gj.

So, a useful social law should allow the agents to achieve their Iiveness goals, while at the same

.time all safety goals should be maintained. This is defined formally in the above definition of a

useful social law. A social law is a set of restrictions. These are given as a subset of the agent's

strategies, that are disallowed. The first condition says that for every Iiveness goal of agent

1 there is a strategy from the set of restricted strategies, such that for all restricted strategies

of agent 2, when these strategies are executed, this corresponds to one of agent 1 's Iiveness

goals being achieved. The second condition is as condition 1, but for Iiveness goals of agent 2.

Finally, the third condition states that for all safety goals and for all the restricted strategies of

agents 1 and 2 a safety goal will always be achieved.

Now we are at a stage where we can formally define a (useful) minimal social law:

Definition 20 Consider an environment with a specification of liveness and safety goals. A

useful sodal law SL = (El> E2) is minimal if there is no other us'eJul sodal law SL' =
(Ei, E~) that satisfies E~ ~ E;Jor all i.

It is now important to look at some of the computational aspects relating to the synthesis

of minimal social laws. In order to do this, we first need to present the computational model in

which the complexity issues can be investigated.

3.2. OFFLINE DESIGN 61

First a multi-agent system will be defined as follows:

Definition 21 A (two-agent) system is a tuple

where

• Lj is afinite set time-stamped states for agent i (i.e., a combination (s, t) of a state and a

positive integer);

• Co ~ Li=o x L~=o is a set of initial configurations drawn from the agents' states with

time-stamp t = O. We refer to Ll x L2 as the set of possible system configurations.

• Ac is afinite set of actions;

• Aj is a function from Lj to 2Ac that determines the actions that are physically possible for

agent i (as afunction of its state);

• T is a (partial) transition function T : Ll x L2 X Ac x Ac - Ll X ~ such that if a

state I in a configuration c is mapped to I' in configuration c' under the function T then

the time-stamp associated with I and the time-stamp associated with [' are consecutive

integers (i.e., a joint action will lead an agent from a state with time-stamp t to a state

with time-stamp t + 1).

Definition 22 A planfor agent i is a totalfunctionfrom Lj to Ac, such that the action prescribed

to agent i by the plan at any state sE Lj is in Aj(s).

The above definition says that a plan is a function from states to actions, but also, the

actions chosen must be physically possible. An execution of a plan P by agent i is a sequence

so, SI, ••• ,Sk of states in Lj.

Definition 23 A liveness goal for agent i is associated with a subset of Lj.

A liveness goal is said to be achieved, if one of the states in the set of liveness goals is

reached.

Definition 24 A safety goal is associated with a subset of Ll x L2.

A safety goal gsa/e is said to be achieved if the system only reaches configurations in the

set of safety goals, gsafe.

As we have seen throughout this chapter, a social law is a set of constraints that restrict the

pI ails available to the agents. In this model, this is formally defined as follows:

62 CHAPTER 3. SOCIAL LAWS FOR MULTI-AGENT SYSTEMS

Definition 25 Given a system S, a social law sl in S consists offunctions (A~,A~), for agents

1 and 2 respectively, where A: is a function from Lj to 2Ac that defines the subset of actions

prohibited for agent i in each state (A:(s) ~ A;(s) for every agent i and state s EL;).

This definition is very similar to the definition given earlier in [35]. In much the same way.

with the social law sl in place. a new social system is formed Ssl. where the A; functions are

replaced with the restricted functions A;(s) \ A:(s). Thus A;(s) functions correspond to the set

of actions forbidden in state s.

Definition 26 A social law sl in S is useful if the system guarantees each safety goal (regardless

of the law-abiding strategies chosen by the agents), and if, for every liveness goal s goal of agent

i, there exists a plan Pin Ssl that guarantees Sgoal.

SLs is defined to be the set of useful social laws for the system S. A partial order -(is

defined on SLs: given two social laws sh = (Afl, A~l) and Sl2 = (A~12, A~2) in SLs. we say

that sh -(Sl2 if AiIJ (s) ~ Ail2 (s) for all i and all s EL;. with at least one strict inclusion for

one sand i.

The notion of a minimal useful social law can now be formally defined:

Definition 27 A minimal social law sl; is a useful social law such that there is no useful social

law slj in SLs, slj -# slj, that satisfies slj -(sl;.

Consider the following example. in order to illustrate the idea of a minimal social law in

the level crossing scenario defined earlier:

Example 8 Here we have a system

where the agent t represents the train and the agent g represents the gate controller agent. We

wish to ensure that the train never idles on the level crossing. Ifwe assume SI to be the local

state of the train where it is on the crossing, then the set of prohibited actions needed in order

to achieve this is given by:

This is a minimal social law, as there does not exist a less restrictive social law that achieves

the goal of ensuring that the train does not idle on the crossing.

3.2. OFFLINE DESIGN 63

Finally, the authors consider the automatic synthesis of minimal social laws. This is

achieved by implementing an algorithm which roughly starts from a useful social law and

decrements the set of constraints. The question posed for each constraint is something like

this: Given a system, an appropriate useful social law, and a pair (s, a) of a state s and an

action a, where a is prohibited in state s for agent i, can we allow i to take the action a in sand

still remain with a useful social law? The complexity of this question is given by the following

theorem:

Theorem 6 Given a system S, and a useful social law si that prohibits action a in state s of an

agent i, deciding whether by allowing a in s we get a useful social law, is NP-hard.

This result led the authors to consider a special class of systems in which an agent's basic goal

is to follow a predefined plan Pi. The authors go on to show that an efficient incremental algo

rithm exists for this class of systems in which minimal social laws are computed in polynomial

time.

Simplicity is an alternative approach to minimality for choosing between different useful

social laws. Simplicity is a different concept, where the need for agents to rely heavily on

their sensoring capabilities in order to comply with the laws is relaxed. The idea behind this

approach is that some agents may only be able to follow simple laws due to their sensoring or

other capabilities. Simplicity also reduces the sensitivity of the system to changes in the agent's

capabilities. Also, it is likely to be faster for agents to learn simple laws, and the representation

of simple laws is likely to be more succinct.

Now we formally introduce the notion of simplicity. The computational model is the same

as defined for minimality. For convenience, the authors require that the set of actions prescribed

by a law at state Si of agent i includes at least one action (this could be a null action). The aim

is to measure the complexity of useful social laws in order to compare them. First we give the

definition for how a social law defines a partition over the state space:

Definition 28 Consider a two-agent system S = (L1. L2,Ac,AbA2, 7') and a useful law slfor S
such that si = {Ai, A~}. The partition Pi of the state space Si of agent i is the set of equivalence

classes over Si under the following equivalence relation R: for two states SI, S2 in Sit R(SI' S2)

if! Ai(SI) \ Ai(SI) = Ai(S2) \ Ai(S2).

The above definition partitions the state space into equivalence classes under an equivalence

relation R. This relation will place two states SI and S2 in the same element of the partition P if

and only if the set of actions allowed by si in SI is exactly the same as the set of actions allowed

at ~2. Intuitively, this means that SI and S2 are indistinguishable. Now we show how the social

laws are compared:

64 CHAPTER 3. SOCIAL LAWS FOR MULTI-AGENT SYSTEMS

Definition 29 Given two useful social laws si and si' for a (two-agent) system S, each one with

corresponding partitions (for each agent respectively) (P, IT) and (P', IT'), si' is simpler than

si iffor every element Pk E P and ITr E IT, there exist k' and r' such that Pk ~ p~, (respectively

ITr ~ IT~), with strict inclusion for at least one k (or r).

The above definition shows how we can compare two social laws in terms of how simple

they are. Now that the social laws are viewed as defining a partition over the state space, the

measure of complexity of a social law is related to the complexity of the partition it defines.

Finally, we note that finding a simple social law is not a simple task, illustrated by the

following theorem:

Theorem 7 Given a (two-agent) system S with a single initial configuration Co and where each

agent has a single (liveness) goal gj, deciding whether there exists in S a useful social law with

single-element partitions in the agents' state space is NP-hard.

3.3 Summary

Existing research in the area of social laws has been presented in this chapter. As it stands, not

a lot of research has been carried out in the online design of social laws. Research in this sub

field of social laws has mainly addressed the design of strategy update functions. As explained

previously, the strategy update function is used to bring the society to a global agreement on

-which conventions to adopt. In this way, social laws emerge from within the society of agents.

Such strategy update functions have been designed and tested by researchers such as Shoham,

Tennenholtz, Wooldridge etc. Various experiments have been carried out in order to test which

functions are the most efficient in making the society converge on a strategy. At this stage

in the research, the only findings that have been made are experimental results, and these are

arguably not very significant.

Our area of research is primarily concerned with the offtine design of social laws. There has

been far more research in this area, hence why it has received more coverage in this chapter. We

have covered the two main frameworks of social laws and an approach for choosing between

useful social laws. There is also a body of work related to the social laws paradigm, known as

mechanism design [65]. It has similar aims to the work on social laws, in that it is a method to

avoid costly coordination techniques such as planning or negotiation. As with the offtine design

of social laws, the need for run-time coordination will be reduced. Most similar is the way a

set of constraints is designed such that a rational agent will comply with the norms. However,

mechanism design is also concerned with giving agents incentives to comply with the norms,

rather than the system designer having full control over the agents.

3.3. SUMMARY 65

The concept of a social law is very similar in all of the frameworks, in that a social law

imposes a restriction on the actions an agent can perform in a specific state. In the Moses

and Tennenholtz framework this restriction is imposed upon the Ai functions. The Ai func

tions return a set of actions which an agent can perform in a given state. When a social law

is implemented these functions are replaced with the restricted functions, A:, which satisfy

A:(s) ~ Ai(S) for every agent i and every state s. In the Shoham and Tennenholtz framework,

this restriction is imposed on the transition function. The transition function T is defined to be

T : Q x Ac x SL _ 2Q, where Q is a set of global states, Ac is a set of actions and SL is a set

of social laws. The function has a condition that if the current state matches the state described

by the social law and the action specified matches that in the social law, then the action cannot

be performed and the resulting set of states will be the empty set. So in this sense, both of the

frameworks have the same basic underlying principles. However, each of the frameworks use

different logics in order to reason about social laws. In the Moses and Tennenholtz framework

a high-level language (modal logic) is constructed in order to reason about these laws, which

includes knowledge and belief operators, and distinguished atoms and formulae for reasoning

about various normative properties. The Shoham and Tennenholtz framework does not em

ploy any high-level logic to reason about such laws, just first-order logic to describe a certain

i situation.

In terms of computational complexity, both of the frameworks are very similar. The com-

\ putation problem that is addressed in both of the frameworks is (loosely), given a multi-agent

system, find a social law such that, implementing this social law allows each of the agents to

reach their goal state from their initial state, if such a law exists. This problem is NP-complete

in both of the frameworks.

Finally, we have looked at minimality and simplicity; two alternative approaches for choos

ing between useful social laws. Minimality aims to give the agents the maximum freedom

possible, by reducing the set of constraints imposed as much as possible, so that the social

laws still guarantee the goals are attained. So, as such, a minimal social law is a law which

constrains the agents just enough to still achieve their goals. Simplicity is a different concept,

where the aim is to reduce the need for agents to rely heavily on their sensoring (or other) capa

bilities in order to follow the laws. Social laws for both minimality and simplicity are given in

a very similar way to the Artificial Social Systems framework, whereby restrictions are placed

on the Ai functions, which return the set of actions agent i is allowed to perform in a given state.

The complexity of finding a minimal social law is NP-complete, as is the problem of finding a

simple social law.

66 CHAPTER 3. SOCIAL LAWS FOR MULTI-AGENT SYSTEMS

Part III

A Framework for Social Laws in MAS

67

1

1

I

I

I

I

Chapter 4

Action Based ATSs and ATL

In this chapter we introduce the semantic structures that our framework for social laws is based

upon and define ATL over these structures. We extend these structures in Chapter 6 and then

further extend them in Chapter 7.

4.1 Action Based AT Ss

In Section 2.1 we introduced Alternating Transition Systems (ATSS), as these are the structures

that underpin ATL. As the notions of action and action pre-condition play such a key role in our

framework, we find it convenient to work with another version of ATSs, in which actions and

pre-conditions are first-class citizens. We refer to these structures as Action-based Alternating

Transition Systems (AATSS). We first assume that the systems of interest to us may be in any

of a finite set Q of possible states, with some qo E Q designated as the initial state. Systems

are populated by a set Ag of agents; a coalition of agents is simply a set G ~ Ag, and the set of

all agents is known as the grand coalition. Now, each agent i E Ag is associated with a set ACi

of possible actions, and we assume that these sets of actions are pairwise disjoint (Le., actions

are unique to agents). We denote the set of actions associated with a coalition G ~ Ag by ACG,

so ACG = UiEGAci. A joint action for a coalition G is a tuple (al, ... , ak), where ai E Aq,

for each i E G. We denote the set of all joint actions for coalition G by J G, so JG = I1iEG Aq.

Given an elementj of JG and agent i E G, we denote i's component ofj by j;.

An Action-based Alternating Transition System - hereafter referred to simply as an AATS

- is an (n + 7)-tuple

S = (Q, qo,Ag,Ac}, ... ,Acn , P, T, <1>, IT)

where Q, Ag, <1> and IT are defined as before by Definition 1 in Section 2.1 and the following

69

70 CHAPTER 4. ACTION BASED ATSS AND ATL

components are either new or modified:

• qo E Q is the designated initial state of the system;

• ACj is a finite, non-empty set of actions, for each i E Ag, where ACj n ACj = 0 for all

i #j E Ag;

• p : ACAg - 2Q is an action precondition junction, which for each action a E ACAg

defines the set of states p(a) from which a may be executed;

• r: Q x JAg - Q is a partial system transition junction, which defines the state r(q ,j) that

would result by the performance of j from state q - note that, as this function is partial,

not all joint actions are possible in all states (cf. the pre-condition function above).

We require that AATSs satisfy the following two coherence constraints:

1. Non-triviality [35J. Agents always have at least one action:

Vq E Q, Vi E Ag,::la E ACj s.t. q E p(a)

2. Consistency. The p and r functions agree on actions that may be performed:

Vq E Q, Vj E JAg, (q,j) E dom T iff Vi E Ag, q E pUj)

We de~ote the set of sequences over Q by Q*, the set of non-empty sequences over Q by Q+,
and the set of infinite sequences over Q by QW

• Note how the transition function r(q,j) is

defined differently here to how it was defined in ATSS in Section 2.1. As we have actions here,

the transition function takes a state and a joint action of all the agents and returns the resultant

state the system will reach after the joint action has been performed. The transition function in

ATSs is defined as a choice function whereby given an agent and a state, the function returns

the set of possible choices available.

Given an agent i E Ag and a state q E Q, we denote the options available to i in q - the

actions that i may perform in q - by options(i, q):

options(i, q) = {a I a E ACj and q E p(a)}.

We define a strategy in a different way from how it was defined for ATSs in Section 2.1. Now

that we have actions, we can explicitly refer to these and say that a strategy maps sequences of

4.1. ACTION BASED ATSS 71

states to actions. Formally, a strategy for an agent i E Ag is a function:

0'; : Q+ --t Ac;

which must satisfy the legality constraint that 0';(7; q) E options(i, q) for all 7 E Q* and

q E Q. We also have memoryless strategies here, defined in exactly the same way as in

Section 2.1: If 0';(7; q) = 0';(7'; q) for all q E Q and 7,7' E Q*, we simply write O'i(q).

For simplicity, we only refer to memoryless strategies in the remainder of this thesis.

A strategy profile for a coalition G = {I, ... , k} ~ Ag is a tuple of strategies (0'11 ... ,O'k),

one for each agent i E G. We denote by EG the set of all strategy profiles for coalition G ~ Ag;

if O'G E EG and i E G, then we denote i's component of O'G by O'~. Given a strategy profile

O'G E EG and state q E Q, let out(O'G, q) denote the set of possible states that may result by the

members of the coalition G acting as defined by their components of O'G for one step from q.

This function is similar to out(O'G, q) defined in Section 2.1, but defined differently, as now we

refer to actions:

out(O'G,q) = {q' I r(q,j) = q' where (q,j) E dom r and O'~(q) =j; for i E G}

Notice that, for any grand coalition strategy profile 0' Ag and state q, the set of possible states

out(0' Ag, q) will be singleton.

Given a strategy profile O'G for some coalition G, and a state q E Q, we define comp(O'G, q)

to be the set of possible runs that may occur if every agent i E G follows the corresponding

strategy 0';, starting when the system is in state q E Q. That is, the set comp(O'G, q) will contain

all possible q-computations that the coalition G can "enforce" by cooperating and following

the strategies in O'G. This function is defined exactly as in Section 2.1, but here we refer to a
different version of out(O'G, q):

comp(O'G, q) = {>.I >'[0] = q and Vu EN: >.[u + 1] E out(O'G, >.[u])}.

Again, note that for any state q E Q and any grand coalition strategy 0' Ag, the set comp(0' Ag, q)

will be a singleton, consisting of exactly one infinite computation.

Now we revisit the train example, introduced earlier in Section 2.1. This example is iden

tical to before, but now we refer explicitly to the actions available to the agents.

Example 9 The scenario is exactly as described earlier. But now, each train i E {E, W} has

two actions available: Ac; = {move;, idle;}. The idle; action is the identity, which causes no

change in the train's state (i.e., it stays where it is). If a train i executes a move; action while it

is away;, then it goes to a waiting; state; executing a move; while waiting; causes a transition

72

e ... tbound
train

(a) Overall structure of the train sytem

CHAPTER 4. ACTION BASED ATSS AND ATL

westbound
train

(b) Train states and transitions

idle

. Figure 4.1: The train system.

to an inj state; and finally, executing a movej while inj causes a transition to awaYj as long

as the other train was not in the tunnel, while if both trains are in the tunnel, then they have

crashed, and are forced to idle indefinitely. Initially, both trains are away.

The overall structure of the train system, and the model of trains is illustrated in Figure 4.1,

a formal definition of the train system AATS is given in Figure 4.3, and Figure 4.2 shows in

detail the states and transitions of the agents, where A, Wand I stand for away, waiting and

in, respectively, and i and m stand for idle and move, respectively. To prevent the diagram

getting too cluttered, we omit the joint action (idle E, idlew), which would result in transitions

represented by a reflexive arc at each state.

. Of course, not all combinations of the propositional variables correspond to reachable

system states (i.e., states that the system could possibly enter). For example, an agent i cannot

be both waitingj and inj simultaneously. There are in fact just nine reachable states of the

system; see Figure 4.3.

Using AATSs, we are able to refer to strategies in a much more intuitive manner. Now we

can refer to the actions an agent will choose in a given situation. Consider the same strategies

for E and W introduced in Section 2.1. Now, given O'EC1jq), if length(7jq) mod 3 = 1

then O'EC1j q) = moveE. So rather thad O'EC1 j q) defining a choice for the eastbound train, it

explicitly defines the action which E should perform if following that strategy.

4.2 ATL over AATSs

In this section we define the logical language that we use to reason about social laws over

AATSS. The logical language is ATL as defined in Section 2.1. The grammar exactly as before,

but now we give the truth definition of ATL formulae on an AATS S and a state q:

. I!

4.2. AIL OVER AATSS

Figure 4.2: All states and transitions.

S,q FP iffp E 7r(q)

S,q F -'1{) iff S,q ~ I{);

(where pE 4»;

S, q F I{) V1/; iff S, q F I{) or S, q F 1/;;

S, q F ((G)) 0 I{) iff ::JaG EEG, such that V)" E comp(aG, q), we have S,)..[1] F I{);

73

S, q F ((G)) DI{) iff ::JaG EEG, such that V)" E comp(aG, q), we have S,)..[u] F I{) for

all U E N;

S, q F ((G))I{)U 1/; iff ::JaG EEG, such that V)" E comp(ao, q), there exists some u E N
such that S,)..[u] F 1/;, and for all 0 ~ v < u, we have S,)..[v] F I{).

Now that we have formally defined ATL over AATSS, it is interesting to note that AATSs and

ATSs are equivalent:

For further details, the reader should consult [22].

74 CHAPTER 4. ACTION BASED ATSS AND ATL

States and Initial States:
Q= {qO,ql,q2,q3,q4,q5,q6,q7,qS} Initial state qo

Agents, Actions, and Joint Actions:
Ag = {E, W} ACE = {idleE,moved Acw = {idlew,movew}
JAg = {(idleE, idlew), (idleE, movew), (moveE, idlew), (moveE, movew)} '-,,-' __________________ '----v-'"

jo it h h
TransitionslPre-conditions:

qo ifj =jo q4 ifj =jo

ql ifj=h T(q4,j) =
q7 ifj=h

T(qo,j) qo ifj=h
q3 ifj=h

ql ifj =h
q5 ifj=h

q5 ifj =jo
ql ifj =jo
q2 ifj=h T(q5,j) q6 ifj=h

T(ql,j)
q5 ifj=h q7 ifj=h

q6 ifj=h qs ifj=h
q6 ifj =jo q2 ifj =jo
q3 ifj=h

qo ifj=h T(q6,j) = T(q2,j) qs ifj=h
q6 ifj=h

q4 ifj=h
q3 ifj=h

q7 ifj =jo
q3 ifj =jo qs ifj=h

T(q3,j) =
q5 ifj=h T(q7,j) ql ifj=h
q4 ifj=h q2 ifj=h
q7 ifj=h T(qs,jO) = qs

Propositional Variables:
cl> = {awaYE, awayw, waitingE, waitingw, inE, inw}

Interpretation Function:

7r(qo) {awaYE, awayw}
7r(q4) = {inE,awayw}

7r(ql) = {awaYE, waitingw}
7r(q5) {waitingE, waitingw}
7r(q6) = {waitingE, inw}

7r(q2) {awaYE, inw} 7r(q7) = {inE, waitingw}
7r(q3) {waitinu, awayw} 7r(qs) = {inE,inW}

Figure 4.3: The AATS for the trains scenario.

4.2. ATL OVER AATSS 75

4.2.1 Some Properties of ATL

Now we prove some properties of ATL that we use in subsequent proofs. For any AATS,

S = (Q, qo,Ag,Acl,'" ,Acn, p, T, <1>, rr), let the relation RAg between states in Q be defined as:

qlRAgq2 ifffor somej E JAg,T(ql,j) = q2. In other words, qlRAgq2 is true if the grand coali

tion can enforce a transition from ql to q2. Now, let S = (Q, qo,Ag,Acl,'" ,Acn, p, T, <1>, rr)

and S' = (Q', q'o,Ag,Ac'I, ... , Ac~,p', T', <1>, rr') be two AATSs. We say that S' is a subsystem

of S (notation S' !: S), or that S is a supersystem of S' (notation S ;;;) S'), if there exists a relation

~ ~ Q X Q' such that:

2. Vq E Q, q' E Q' : q~q' =? (rr(q) = rr'(q'»

3. Vql E Q, th,ch E Q': ((q1Rqi & qiR~gq2) =? (3q2 E Q: qlRAgq2 & q2Rq'2»

A special case is obtained when S' = (Q,qo,Ag,Acl, ... ,Acn,p',T',<I>,rr), in which case

we write S' « S. The relation ~ is essentially half of a bisimulation between two Kripke

models [7, p.64]: the final clause represents the "backward clause" for such relations, with the

"forward clause" not being present in the conditions on~. We are interested in which formulae .

are preserved when going from S to S', where S' !: s. To this end, we define a universal and an

existential sublanguage of ATL, denoted £u and £e, respectively. These languages are defined

by the following grammars:

£U v ::= pi -.p I v 1\ v I v V v I (()}Ov I ((}}<:)v I (()) Dv I ((}}vU v

£e f ::= p I -.p I f 1\ f I f V f I ((Ag}}Of I ((Ag}}<:)f I ((Ag}) Of I ((Ag}}fU f

where p E <I>.

Lemma 1 Suppose we have S' !: S and v E £u, f E Le. Then:

1. Vq E Q, q' E Q' withq~q': S,q F v =? S',q' F v.

2. Vq E Q, q' E Q' with q~q': S',q' F f =? S,q F f.

Proof: We only prove the first item; the second follows from it and the observation that every

f E £e is equivalent to the negation of some v E £u. The proof is by structural induction. For

the case v is p or ""p where p E <1>, the claim follows immediately from the second condition

in the definition of subsystems. The cases of conjunction and disjunction follow directly, so

assume that v equals (()}<:)v', and that the claim is proven for v'. Assume that S, q F ((}}<:)v',

76 CHAPTER 4. ACTION BASED ATSS AND ATL

and qiRq'. The former implies that for all strategy profiles a E L:Ag, for the unique 'xa- E

comp(a, q), we have that for some ia-, S, ,x [ia-] 1= v'. In order to derive a contradiction, suppose

that S', q' ~ (O)Ov'. It would mean S', q' 1= ((Ag)) D....,v', i.e., for some strategy profile a' E

L:Ag, and the computation ,x' E comp(a',"q') and all i E N, we have S', N[i] 1=,v'. Consider

the run N[O]RAgN[l] . .. N[i] . .. that is induced by N, with 'x'[O] = q. By the backward

condition on iR, we hence also find qo = q, ql,'" % ... with qiRAgqi+1 and qiiRN[i]. By the

inductive assumption, we have S, qi 1=,v' for all i. But then, the agents Ag have a strategy to

always ensure,v' from q: they just choose the actions that induce this path. This then means

that S, q 1= ((Ag)) D....,v', which contradicts the fact that S, q 1= (O)Ov'. The remaining cases

are similar. o

4.3 Summary

This chapter has introduced the semantic structures which are the basis for o~ framework

of social laws for multi-agent systems. These structures are equivalent to ATSS introduced in

Section 2.1. We extended ATSs into what we call Action-based ATSs (AATSS), as actions and

action pre-conditions play an important role in our framework of social laws. We also re

visited the train example, but gave explicit actions to the agents, and showed how strategies in

these systems are more intuitive and correspond more closely to how humans would think of

strategies. We make use of these systems, and more specifically, the train example, in the next

chapter. We build-upon these structures in subsequent chapters. Finally, we defined ATL over

these AATSs and went on to prove some properties of ATL that we use in subsequent proofs.

Chapter 5

Social Laws in Alternating Time

In this chapter, we make four key contributions to the literature on social laws. First, we

demonstrate that Alternating-time Temporal Logic (ATL), the temporal logic of cooperation,

introduced earlier in Section 2.1, provides a rich and natural technical framework within which

to investigate social laws and their properties. Second, we show that the effectiveness,feasibil

ity, and synthesis problems for social laws in the ATL framework can be posed as ATL model

checking problems [9], and that existing model checkers for ATL can hence be directly applied

to these problems. Third, we show that, despite its apparent expressive power, the complexity

of the feasibility problem in our framework is no greater than the corresponding problem in the

Shoham-Tennenholtz framework: it is NP-complete. We also identify cases where the problem

becomes tractable. FinalJy, we show how our basic framework can easily be extended to permit

social laws in which constraints on the legality or otherwise of some action may be explicitly

required: for example, we show how the feasibility a~d synthesis problems for dictatorship

social laws can be formulated.

We begin by introducing and formalJy defining our social laws framework with respect to

AATSS and ATL. Next, we present the effectiveness, feasibility, and synthesis problems, and

show how these can be understood as ATL model checking problems. We then show how we

can extend the basic social laws framework to reason about laws which have explicit action

constraints. FinalJy, a summary is presented in Section 5.2.

5.1 Social Laws

We now introduce the formal framework of social laws, which we build upon throughout the

remainder of the chapter. Intuitively, a social law consists of two parts:

• An objective, which represents what the society aims to achieve by the introduction, or

77

78 CHAPTER 5. SOCIAL LAWS IN ALTERNATING TIME

adoption of the law. In human societies, for example, the objective of a law might be to

eliminate alcohol-related road accidents .

• A behavioural constraint, which corresponds to the requirements that a law places on

the members of a society. A behavioural constraint corresponding to the objective of

eliminating alcohol-related road accidents might be to forbid the action of driving a car

after drinking alcohol.

We represent an objective for a social law as a formula of ATL, the intuition being that a

social law is effective if it ensures that the objective is satisfied. (We give the formal definition

shortly.) ATL provides a natural and powerful language for expressing the objectives of social

laws, not least because such laws frequently refer to the powers or rights (or, conversely, the

limits to powers) that agents have. The original social laws framework of Shoham and Tennen

holtz illustrates this [47]. In this framework, each agent i E Ag is associated with ~ set Fj ~ Q
of focal states, the idea being that a successful social law would be one which ensured that if

ever an agent i E Ag found the environment was in a state q E Fj, then i should have the power

to ensure that the environment eventually entered state q' E Fj. This objective can naturally be

expressed within our framework. Assume that, for each q E Q, we have a proposition q that is

satisfied iff the system is currently in state q. Then, given focal state sets F 1, ... ,Fn, we can

express the Shoham-Tennenholtz objective as follows:

1\ (1\ [q -t 1\ ((i))Oq'])
jEAg qEFj q'EFj

(5.1)

The ATL f~amework allows us to express much richer objectives, however. For example, from

CTL it inherits the ability to express Iiveness and safety properties, and moreover we can reason

about what certain coalitions can bring about.

Example 10 Recall the trains scenario introduced earlier in Chapter 4. The most obvious

requirement for a social law is that the trains do not crash. The objective for this social law,

01, is thus:

01 = -.(inE /\ inw)

The basic system SI does not ensure that (Od is satisfied - there are initial computations of

the basic system on which both trains enter the tunnel simultaneously:

// ".

5.1. SOCIAL LAWS 79

We model a behavioural constraint, /3, as a function

/3: ACAg ~ 2Q

with the intended interpretation that if q E /3(a), then action a may not be performed when the

system is in state q - that is, a is "forbidden" in state q. (As an aside, notice the duality between

the pre-condition function p, and behavioural constraints /3: if q E p(a), then a is permitted

in q, whereas if q E /3(a), then a is forbidden in q.) We will require that any behavioural

constraint is "reasonable", in that it always permits an agent to have at least one action left that

can be performed in any state:

Vi EAg,Vq E Q,3a E options(i,q) S.t. q (j /3(a).

We can now see what it means for a behavioural constraint /3 to be implemented in an AATS

S: it simply means eliminating from S all transitions that are forbidden by /3. The operation of

implementing a behavioural constraint is thus an update on AATSs, in the sense that it results

in a new AATS, which potentially satisfies different formulae. We denote the AATS obtained

from S by implementing /3 by S t /3. Formally, if S = (Q, qQ,Ag,Acl,." ,Acn , p, r, cI>, 7l") is an

AATS, and /3 is a behavioural constraint on S, then

S t /3 = (Q, qQ,Ag,Aclo'" ,Acn , p', r', cI>, 7l"),

where:

1. "la E Ac,

p'(a) = p(a) \ /3(a)

2. "Iq E Q,Vj E JAg,

'(.) {r(q,j) r q,J =
undefined

if (q,j) E dom r and Vi E Ag, q (j /3Vi)
otherwise

3. All other components of S t /3 are as in S.

It is natural to ask what properties the implementation operator "t" has. First, notice that AATSS

are closed under the implementation of behavioural constraints. That is, if S is an AATS and

/3 is a behavioural constraint over S, then S t /3 is an AATS - it satisfies the non-triviality and

consistency coherence constraints given earlier. Second, notice that (S t /3) t /3 = S t /3. Third,

consider what properties of AATSS might be preserved through by the implementation of social

laws. To answer this question, first recall the notion of a subsystem as defined in Section 4.2.1;

we have the following result.

80 CHAPTER 5. SOCIAL LAWS IN ALTERNATING TIME

Lemma 2 Let S be an AATS, and let /3 be a behavioural constraint over S. Then S t /3 is a

subsystem of S, i.e., S t /3 G; S. (In fact, S t /3 « S.)

From Lemma 1, we immediately obtain the following.

Lemma 3 Suppose we have an AATS S, a behavioural constraint /3 over S, a state q in S, and

formulae v E £u, € E £e. Then:

1. If S, q 1= v then S t /3, q 1= v.

2. If S t /3, q 1= € then S, q 1= €.

The first of these two results tells us that implementing a behavioural constraint guarantees to

preserve the universal properties of a system. However, it is easy to see that implementing a

behavioural constraint does not guarantee to preserve existential properties. The second result,
I

in contrast, tells us that if an existential property holds of a system in which some behavioural

constraint has been implemented, then it must have held of the original system, before the

constraint was imposed. Thus, implementing a behavioural constraint cannot create existential

properties in a system.

Now, a sodallaw over an AATS S is a pair:

(<p,/3)

where:

• <p is an ATL formula called the objective of the law; and

• /3: ACAg - 2Q is a behavioural constraint on S.

A social law (<p, /3) is effective in AATS S if, after implementing /3 in S, we know that (()} D<p
will be initially satisfied in S, i.e., if S t /3, qo 1= (()} D<p.

There are three key computational questions with respect to social laws, which we shall

investigate throughout the remainder of this chapter:

1. Effectiveness. Given an AATS S and a social law (<p, /3) over S, determine whether (<p, /3)
is effective in S.

2. Feasibility. Given an AATS S and a formula <p of ATL representing an objective, does

there exist a behavioural constraint /3 such that (<p, /3) is an effective social law in S.

/! .

5.1. SOCIAL LAWS 81

3. Synthesis. Given an AATS S and a formula cp of ATL representing an objective, exhibit a

behavioural constraint (3 such that (cp, (3) is an effective social law in S if such a constraint

exists, otherwise answer "no".

Our first result, with respect to the effectiveness problem, is now immediate.

Lemma 4 The effectiveness problem for social laws may be solved in time polynomial in the

size of S and cp.

Proof: Generate S' = S t (3, and check that S', qo 1= (()) D cp. The first step can obviously be

done in polynomial time: it simply requires eliminating every forbidden transition from T, and

- modify p similarly. From Theorem 1, so can the second step. 0

With respect to the trains example, is there a behavioural constraint (310 such that (01,(31)

is an effective social law? Clearly there is. The constraint (31 must ensure that the system never

enters state qs: from examination of the state transition function T (see Figure 4.3), we can see

that T(q5,h) = T(q6,h) = T(q7,h) = Qs, and there are no other transitions leading to Qs

(apart from when the trains have already crashed, which we need not consider!) Consider the

behavioural constraint (31 as follows.

0 if a: = idleE

(31 (a:) = 0 if a: = idlew

{Q5,Q6} if a: = moveE

{Q7} if a: = movew

The constraint ensures that:

• when both agents are waiting to enter the tunnel, the eastbound train is prevented from

moving;

• when the westbound train is already in the tunnel and the eastbound train is waiting to

enter the tunnel, then the eastbound train is prevented from moving; and

• when the eastbound train is already in the tunnel and the westbound train is waiting to

enter the tunnel, then the westbound train is prevented from moving.

Notice that this constraint is, in a sense, asymmetric, as it constrains the eastbound train rather

than the westbound train: we could equally well replace the first constraint with the requirement

that if both trains are waiting to enter the tunnel, then the westbound train is prevented from

moving, thus enabling the eastbound train to enter. Now, let S2 = SI t (31. We claim that

S2,QO 1= (()) D-,(inE" inw). Thus:

82 CHAPTER 5. SOCIAL LAWS IN ALTERNATING TIME

Proposition 1 (01,,81) is an effective social law in SI.

Proposition 1 can be proved in the following way:

Proof: We wish to prove Proposition 1: that (01,,81) is an effective social law in SI. This

means showing that S2, qo 1= (0) D,(inE /\ inw). To show that this holds, there should be

no path in S2 where (inE /\ inw) is true. In order to check whether this is the case, consult

Figure 5.1. In this figure, the dotted lines represent transitions that have been removed by ,81.

We can see that the only way to enter state q8 (inE /\ inw) is from q5, where both trains are

waiting, q6, where E is waiting and W is in, or q7, where E is in and W is waiting. Assume the

system is in state q5. Referring to ,81 we can see that E is forbidden from moving in this state.

So the only possible transitions are to q5 or q6. If we now assume the system is in state q6, E

is again prevented from moving. The only possible transitions are to q6 or q3. Finally, if the

system is in state q7, W is prevented from moving, thus the only possible transitions are to q7

or to q1. Therefore, we have shown there exists no path in S2 where (inE /\ inw) holds, hence

S2, qo 1= (0) D....,(inE /\ inw) is true, meaning Proposition 1 is also true. 0

Of course, there are other, less "sensible" behavioural constraints that are effective in SI

for 01. Consider ,82:

f32(a) = {Q if a = ~oveE or a = movew
o otherwise

This behavioural constraint prevents both trains from moving, and yet:

Proposition 2 (01,,82) is an effective social law in SI.

Clearly, our original objective needs some refinement. Consider objective 02:

02 = 01 /\ /\ (waitingi - ((i))~ini)
iE{E,W}

This objective ensures that, not only do the trains never crash, but that both trains can eventually

safely enter the tunnel if they are waiting. Consider ,83, which works by forbidding trains

from lingering in the tunnel and prevents the westbound train from idling when both trains are

waiting to enter the tunnel, but is otherwise the same as ,81:

{q4,q7} if a = idleE

,83(a) = {Q2,Q6,Q5} if a = idlew

{Q5,Q6} if a = moveE

{Q?} if a = movew

/t

5.1. SOCIAL LAWS 83

Key: - - - - denotes illegal transitions

Figure 5.1: All stites and transitions of S2.

Proposition 3 (02, (33) is an effective social law in SI.

We wish to prove Proposition 3:

Proof: We wish to prove that (02, (33) is an effective social law in SI. Let S3 = SI t (33.

So, S3, qo 1= (()) 0 (01/\ /\;E{E,W} (waitingj -+ ((i)) o (inj /\ 01))) is what we wish to prove.

First, to show that 01 holds, this means there exists no path in S3 where (inE /\ inw) is true. The

only way to enter state qs (inE/\inw) is from q5, q6 or q7. First assume the system is in state q5.

In this state, E is forbidden from moving and W is forbidden from idling, so the only transition

is to q6. Now assume the system is in Q6. In this state, E is forbidden from moving and W is

forbidden from idling. The only possible transition is to Q3. Finally, in state Q7, E is forbidden

from idling while W is forbidden from moving. Thus, the only transition is to state Ql. There is

no transition leading to Qs, hence 01 holds. Now, we must show that for all waitingj states that

agent i has a strategy so that at some point in the future he is in the tunnel and 01 still holds.

Firstly we will look at states where waitingE is true. These are states Q3, Q5, and Q6. Starting

84 CHAPTER 5. SOCIAL LAWS IN ALTERNATING TIME

with q3, E could move here, causing a transition to q7 or q4, where in both states he is in the

tunnel and 01 holds. From q5, E would have to idle, while W would have to move, causing a

transition to q6. Here, E would have to idle again, but W has to move, causing a transition to

q3, where finally E could move into the tunnel. Finally, we look at states where waitingw is

true. These are states q1, q5 and q7. Starting in state Q1, W could move, causing a transition

to Q6 or Q2, where in both states he is in the tunnel and 01 holds. From Q5, E is forced to idle,

so W could move, causing a transition to Q6 again. Finally, from Q7, E is forbidden from idling

here and W is forbidden from moving, so the only transition would be to Qlo where as before

W could move causing a transition to Q6 or Q2. Therefore, we have proved that (02, [33) is an

effective social law in S 1.

o

However, objective 02 may still need further refinement, as less sensible behavioural con

straints can still be effective in S 1:

Proposition 4 (02, rh) is an effective sodallaw in S 1.

So, consider objective 03:

03 = 01 1\ . 1\ (waitingi - ((i))Oini) 1\
(

(awaYi - ((i))Owaitingi) 1\)

iE{E,W} (ini _ ((i))OawaYi)

This objective ensures that, not only do the trains never crash, but both trains may at some

point enter the waitingi state. The objective also ensures that, once in the waitingi state, the

train does e~entually enter the state where it has safely entered the tunnel. Once the train is in

the tunnel, it will not linger there, but its next state will be where it has safely left the tunnel

and gone into the awaYi state.

Proposition 5 (03, rh) is not an effective sodallaw in S 1. but (03, [33) is.

We have also verified all of the above propositions by model checking. As introduced

in Section 2.1, the model checker we used is called MOCHA. Model checking the above

propositions involved programming the various systems in the REACTIVE MODULES language.

We began by programming the system S 1, and then created updated versions of this sys

tem to represent the systems updated with the behavioural constraints given above. Then

each objective was written as an ATL specification and checked with the appropriate sys

tem. To see the implementations, specifications and results from our model checking, visit

http://www.csc.liv.ac.uk/~ark/model_checking/.·

5.1. SOCIAL LAWS 85

The first issue to which we address ourselves is the computational complexity of the fea

sibility problem. As it turns out, the feasibility problem in our framework is no harder, for

objectives expressed as arbitrary ATL formulae, than the corresponding problem studied by

Shoham and Tennenholtz, where objectives were expressed as sets of focal states (see above);

and for objectives expressed in propositional logic, it is easier.

Theorem 8 Thefeasibility problem for objectives expressed as arbitrary ATLformulae is NP

complete, and remains NP-completefor the CTLfragment of ATL, and also the universal (C")

fragment. However, for objectives expressed as propositional formulae, the feasibility problem

is decidable in polynomial time.

Proof: With respect to the NP-completeness results, membership in NP may be seen by the

following non-deterministic algorithm:

1. guess a behavioural constraint {3;

2. verify that {3 is effective.

Since dom (3 = ACAg, step (1) can be done in (non-deterministic) polynomial time O(IAcAg x

QI), while from Lemma 4, step (2) requires only polynomial time.

That the feasibility problem for ATL objectives is NP-hard follows immediately from the

fact that the Useful Social Law problem of Shoham-Tennenholtz, (proven to be NP-complete

in [49, p.612]), can be directly reduced to our feasibility problem, by encoding focal state sets

as shown in equation (5.l): the reduction is clearly possible in polynomial time. However,

to see that the effectiveness problem for the C" fragment is NP-complete, we need to work

a little harder. We reduce the directed Hamiltonian cycle problem (OHC) [38, p.209] to the

effectiveness problem for C" objectives.

An instance of DHC is given by a directed graph H = (V, E ~ V x V, Vo E V), where Vo

is a distinguished "start" node. The aim is to determine whether or not H contains a directed

Hamiltonian cycle starting from vo, i.e., a cycle containing every vertex v E V, in which no

vertices are repeated l . The idea of the reduction is to encode the graph H directly in the state

transformer function r: actions correspond to edges of the graph. Formally, given a directed

graph H = (V, E), we define a single-agent AATS SH = (QH, qff,AgH,Ac!{, pH, rH, q,H, rrH)

as follows:

• for each vertex v E V, we create a state qv E QH, and in addition we create a "sink" state

I Of course, we strictly speaking do not need the start node, since if the graph contains a Hamiltonian cycle then
we can start from any state - but it simplifi es the exposition.

86 CHAPTER 5. SOCIAL LAWS IN ALTERNATING TIME

• we set qo = vo;

• we create a single agent, AgH = {al};

• for each edge (v, v') E E where v' i vo, we define an action O!(V,V')' define the transition

rH (qv, O!(V,VI» = qv/, and define pH accordingly;

• for each edge (v, v') E E where v' = vo, we define an action O!(v,sink), define the transition

rH (qv, O!(v,sink» = qsink, and define pH accordingly;

• we create an action O!/oop, which may be performed only in state qsink, such that the

transition rH (qsinko O!loop) = qsink, and define pH accordingly;

• for each vertex v E V, we create a proposition Pv E <pH; and finally,

We then define the objective OH by

where:

<pr - /\VEV (O)Opv

<p~ - /\VEVPV --t (0)0(0) D-pv

We now claim that there exists a DHC in graph H starting from Vo iffthe objective OH is feasible

in AATS sI!. To see this, note that 'constraint <pr ensures that every vertex is visited, while <p~
ensures that no vertex is visited more than once. Thus, the paths through any transition system

resulting fro~ the imposition of a behavioural constraint that is effective for OH will be DHCS

in H, with the agent ending up in Vsink and repeating the action O!loop infinitely often. Since OH

is a formula of C", we are done.

The final result - that the feasibility problem for objectives expressed as propositional

logic formulae may be decided in polynomial time - is an immediate corollary of the follow

ing result, which shows that, for objectives expressed as formulae of propositional logic, the

feasibility problem reduces directly to model checking in ATL. ' 0

Theorem 9 Suppose <P is a propositionallogic formula (representing an objective), and S is

an AATS. Then S, qo F ((Ag)) D<p if! <P isfeasible in S.

Proof:

5.1. SOCIAL LAWS 87

(-t) Assume S,qo 1= ((Ag)) Dcp. By the semantics of ATL, we know that 30"Ag E EAg such

that "lA E comp(O"Ag, qo), we have S, A[U] 1= cp for all u E N. In fact, since O"Ag is a

grand coalition strategy, comp(0" Ag, qo) will be a singleton; let A * denote its member;

so Vu E N: S, A * [u] 1= cp. We must show that this implies there exists a behavioural

constraint (3 such that S t (3, qo 1= (()) Dcp; we construct (3 as follows:

for each i E Ag,

for each a E Ac;,

set (3(a) = {q I O"i(q) of: a}.

We claim that, for any qO-computation A of S t (3, we have S t (3, A[U] 1= cp for all

u E N. To see this, observe that there will in fact be a single qo computation of S t (3,

namely A *, and we know that Vu E N, S, A * [u] 1= cp. We appeal to the fact that cp is a

propositional formula, and that 71' is the same in Sand S t (3, and conclude that for all

u E N: S t (3, A*[ull= cp.

(-) Assume cp is feasible in S. Then there exists a behavioural constraint (3 such that S t
(3, qo 1= (()) Dcp. Let A denote the set of qo-computations of st (3. Then by the semantics

of ATL, for all A E A and for all u E N, we have S t (3, A[U] 1= cp. We need to show

that this implies S, qo 1= ((Ag)) Dcp. By the semantics of ATL, S, qo 1= ((Ag)) Dcp iff

30"Ag E EAg such that "lA E comp(qO,O"Ag), and Vu E N, we have S, A[U] 1= cp. We

show how to construct such a 0" Ag. We start by constructing from (3 a non-deterministic

strategy O"r : Q -t 2Ac; for each agent i E Ag, as follows:

for each i E Ag,

for each q E Q,

set O"r(q) = {a Iq tj (3(a)}.

Now, say a (conventional deterministic) strategy 0"; is consistent with O"r if O";(q) E O"r(q),

for all q E Q. Now, let O"Ag = (0"1. ... , O"n) be any grand coalition strategy profile such

that each 0"; is consistent with the corresponding non-deterministic strategy O"r. We claim

that, thus defined, "lA E comp(O"Ag, qo) we have S, A[U] 1= cp for all u E N. To see this,

observe that by construction we have comp(0" Ag, qo) ~ A, as defined above. We know

that "lA E A, and for all u E N, we have S t (3, A[U] 1= cp. Since cp is propositional, its

valuation depends only upon the state in which it is interpreted. Since 71' is unchanged in

Sand S t (3, it must be that "lA E A, Vu EN: S, A[U] 1= cp.

o

88 CHAPTER 5. SOCIAL LAWS IN ALTERNATING TIME

Notice that, as a direct corollary to Theorem 9, the synthesis problem for propositional

logic objectives may also be solved in polynomial time: for if the answer to the model checking

problem is "yes", then the witness to this will be the strategy for the grand coalition from which,

as the proof of the theorem illustrates, we can extract a behavioural constraint implementing

the objective.

To appreciate that Theorem 9 does not hold for arbitrary formulae, consider the following

simple one agent ATS (one may also assume this agent to be a grand coalition Ag). Suppose we

have two states, qa and qt. in the first, the atom p is false, in the second it is true. Moreover,

we have four actions, aa, ab ba and bl. Both aj actions are possible in qa, both bj actions

in ql. Also, any action Xj (x E {a,b} takes the system to qj). More formally: r(qa,aa) =

r(qb ba) = qa, and r(qa, al) = r(ql' bI) = ql. Thus, our agent i can always take the system

to a p-state, but also he can ensure the system's next state will be one in which 'P is true.

Let cp = -,p 1\ ({i)) OP. In this system S we have S, qa F ({Ag)) D cp which expresses that

the agent has a strategy to ensure that always 'P is true, at the same time always having the

opportunity to make p true. However, if we want any behavioural constraint /3 to be such that

S t /3, qa F ({)) Dcp, we see that this is impossible: to ensure that cp is always true in all runs, p

has to be always false, so /3 has to forbid any transition to the state ql, in which case the second

conjunct of cp, i.e., {{i))Op can never be made true anymore.

Theorem 9 illustrates a close relationship between the feasibility problem and model check

ing, which begs the question as to what extent the result can be extended for objectives beyond

propositional logic. We have the following.

Theorem 10 Suppose v E £u is a universal ATLformula (representing an objective), and S is

an AATS. Then S, qo F ({Ag)) Dv implies v isfeasible in S.

Proof: (Sketch.) The basic structure of the proof is as Theorem 9, but as v is no longer

a propositional formula, but a universal ATL formula, we make use of Lemma 3. As we are

only proving in one direction, and universal ATL properties are preserved after implementing a

behavioural constraint, 7r is the same for Sand S t /3. D

5.1.1 Objectives with Explicit Action Constraints

We now consider objectives for laws that explicitly refer to the legality or otherwise of actions.

The following example illustrates the idea.

Example 11 Ifa is an action, then let the proposition £(0'.) mean "action a is legal". Consider

the following three objectives in the context of the trains system, as discussed earlier.

5.1. SOCIAL LAWS

05 = -,(inE 1\ inw) 1\ i(moveE) 1\ i(movew)

06 = -'(inE 1\ inw) 1\ i(moveE)

07 = -,(inE 1\ inw) 1\ i(movew)

89

Objective 05 requires that not only do the trains never crash, but that both trains are always

able to move. Any behavioural constraint for this objective must not prevent the trains from

moving if they choose to do so. Objective 06 is similar, but only requires that the Eastbound

train is always able to move; and 07 only requires that the Westbound train is always able to

move.

In our basic social laws framework, we have no way of expressing or reasoning about

social laws with such objectives. We now show how the basic framework can be extended

to include such constraints. In particular, we show how this can be done in the context of

the MOCHA model checking system [3]. MOCHA takes as input a specification of an AATS,

expressed in the REACTIVE MODULES language, and a formula of ATL, and is capable of

either checking whether this formula is true in the AATS, or else giving a counter example.

The actual syntax of the REACTIVE MODULES language used in MOCHA is rather complex,

and so we adopt the following simplified syntax in the interests of easy comprehension. A

REACTIVE MODULES agent (they are called "atoms" in the REACTIVE MODULES literature)

has the following structure:

agent name reads in writes out

PI t-+ al"j

P2 t-+ a2j

, ..
Pk t-+ ak.

(5.2)

where name is the name of the agent, in ~ cl> is a list of boolean variables that the agent

observes, out ~ cl> is a list of boolean variables that it controls, and provides to the rest of the

system, and the Pj t-+ aj structures are guarded commands, where Pj is a predicate over the

variables the agent observes and controls (i.e., a boolean expression over variables in U out),

and aj E ACname is an action. Actions can be understood as functions that take as input the

variables visible to the agent (in U out), and produce as output an assignment for the variables

controlled by the agent (out). The idea is that at each time step, each agent generates the set of

rules whose pre-conditions are satisfied by the current state of the system. One of these rules is

non-deterministic ally chosen for execution - this involves simply executing the corresponding

action, which produces an assignment for the variables under its control (out), which is the

value they take in the next state of the system. Of course, a guarded command may have T as

90 CHAPTER 5. SOCIAL LAWS IN ALTERNATING TIME

a pre-condition, in which case it is always enabled for execution.

It should be clear how a collection of such agents maps to an AATS, as defined in Chapter 4.

The most important point is that the pre~conditions to guarded commands correspond to the

pre-condition function p: given a state of the system q and guarded command P ~ a, then

q E p(a) iff q 1= P.

We now show how an AATS, expressed in such a framework, can be extended to permit

objectives referring to the legality or otherwise of actions. The idea is to define a transformation

on AATSS:

.0: AATS ~ AATS

such that the transformed system So of S includes the f(a) propositions as before, but otherwise

has the same properties.

Given an AATS S = (Q, qo,Ag,Acl,'" ,Acn , p, 7', cl>, 11'), defined using the REACTIVE

MODULES language as above, the system So is created as follows.

First, for each action a E Ac, we create:

• A new propositional variable f(a), with the intended interpretation that f(a) will be

true in a state if the action a is legal according to the behavioural constraint that we are

looking for.

• A new agent, which controls the variable f(a), as follows.

agent a-controller reads cl> writes f(a)

T ~ f(a):= Tj

T ~ f(a):=.1.

Thus,in every possible state, the agent a-controller has two actions available: make f(a)

true, or make f(a) false. Note that because the condition on the guard of each of these

actions is T, the a-controller agent can always perform these actions. We will denote by

controllers the set of all controller agents introduced in this way.

We then take each of the original agents i in the system, and transform them as follows.

• We replace each guarded command P ~ a for agent i with a rule as follows.

f(a)' I\P ~ a

Notice that the first conjunct of the guard is "primed"; this notation in REACTIVE MOD

ULES means the value that f(a) has been assigned in the current round, i.e., the value

5.1. SOCIALLAWS 91

of this variable after it has been assigned by the a-controller agent. Thus agent i may

perform the action a iff the original guard condition P is true in the current state, and the
new agent controlling f(a) has assigned this variable the value T in the current state.

In this way, the a-controller agent can determine whether or not a is performed .

• Next, if in is the set of variables thati reads, then we replace in by inU{ f(a) I a E Ac;}.

In other words, the agent i reads those f-variables that determine whether its actions

are legal.

Notice that agent i is not dependent on the f-variables of any other agent's actions, and

hence any strategy computed for i by MOCHA will not be dependent on the f-variables

of other agents.

Now, we can prove:

Theorem 11 Suppose cp is a propositional logic formula (representing an objective) and S is

an AATS. Then

if! cp is feasible in S.

Proof:

SO,qo F ((controllers)) 0 (cp 1\ [.A V f(a)])
IEAgQEACj

(-+) Assume So, qo F ((controllers)) 0 (cp 1\ [AiEAg V QEACj f(a)]). By the semantics of

ATL, we know that 30'controllers E 'Econtrollers such that for all A E comp(O'controllers, qo),

we have So, A[U) F cp 1\ (AEAg V QEAq f(a)) for all u E N. We must show that this

implies there exists a behavioural constraint (3 such that S t (3, qo F (()) Dcp. The con

dition, AiEAg V QEAq f(a), corresponds to the non-triviality property of the behavioural

constraint: all agents should have at least one legal action at each state. We construct (3

as follows:

for each i E Ag,

for each a E AC;,

set (3(a) = {q I O'Q-controller(q) = f(a) := J..}.

We claim that, for any qo-computation A of S t (3, we have S t (3, A[U) F cp for all u E N.

We know that \:lA E comp(O'controllers, qo), we have So, A[U) F cp 1\ (AEAg V QEAc; f(a))
for all U E N. We appeal to the fact that cp is a propositional formula, and that 71' is the

same in So and S t (3, and conclude that for all qo-computations, A, and for all u E N:

S t (3, A[U) F cp.

92 CHAPTER 5. SOCIAL LAWS IN ALTERNATING TIME

(t-) Assume <p is feasible in S. Then there exists a behavioural constraint (3 such that S t
(3, qo F (()) O<p. Let A denote the set of qo-computations of S t (3. Then by the se

mantics of ATL, for all >. E A and for all u E N, we have S t (3, >.[u] F <po We need

to show that this implies So, qo F ((controllers)) 0 (<p /\ [AEAg VaEAq .e(a)]). By the

semantics of ATL, we have So, qo F ((controllers)) 0 (<p /\ [/\iEAg VaEAC/(a)]) iff

30"controllers E ~controllers such that V>' E comp(O"controllers, qo), and Vu E N, So, >.[u] F
<p /\ (/\iEAg VaEAc/ f(a)). We show how to construct such a O"controllers. We construct

from (3 a strategy O"a-controller : Q --+ ACi for each agent i E controllers, as follows:

for each i E controllers,

for each q E Q,

() {
f(a) := T if q ~ (3(a) }.

set 0" a-controller q =
.e(a) := ..l if q E (3(a)

Now, let 0" controllers be the strategy profile for controllers such that the strategy for each i E

controllers, O"a-controller, is defined as above. We claim that, V>' E comp(O"controllers,qO)

we have So, >.[u] F <p /\ (AEAg VaEAC/(a)) for all u E N. The extra condition,

AEAg VaEAc/ f(a), comes from the definition of (3(a), which requires it to be reason

able, in that it should always permit an agent to have at least one action left that can be

performed in any state. Observe that by construction we have comp(0" controllers, qo) ~ A,

as defined above. We know that V>' E A, and for all u E N, we have S t (3, >.[u] F <po

Since <p is propositional, its valuation depends only upon the state in which it is in

terpreted. Since 11" is unchanged in So and S t (3, it must be that V>' E A, Vu E N:

So, >.[u] F <p /\ (/\iEAg VaEAq f(a)).

o

Notice that the obvious analogue of Theorem 10 also holds. To show this, we formulate the

following:

Theorem 12 Suppose v E £,u is a universal ATLformula (representing an objective), and S is

an AATS. Then So, qo F ((controllers)) 0 (v /\ [AEAg VaEAc; f(a)]) implies v is feasible in

S.

Proof: (Sketch.) The basic structure of the proof is as Theorem 11, but as v is no longer a

propositional formula, but a universal ATL formula, we make use of Lemma 3. Again, as we are

only proving in one direction, and universal ATL properties are preserved after implementing a

behavioural constraint, 11" is the same for Sand S t (3. 0

If"

5.1. SOCIAL LAWS 93

Proposition 6 Objective Os is not feasible in SI. while both objectives 06 and 07 are feasible.

We wish to prove that objective 06 is feasible:

Proof: To prove that objective 06 is feasible in system SI means showing that So, qo F=
((controllers}) 0 ((-,(inE 1\ inw) 1\ £(moveE)) 1\ [AEAg V ctEAC; £(0:)]) holds. By the seman

tics of ATL, this says that there exists a strategy for controllers such that it is always the case

that (-,(inE 1\ inw) 1\ £(moveE)) 1\ [AiEAg V ctEAq £(0:)] is true. It is not difficult to see that

such a strategy exists. If the controllers always allow E to move and always allow W to idle,

-,(inE 1\ inw) 1\ £(moveE) will always be true and the extra condition AiEAg V ctEACj £(0:), which

says all agents in Ag will always have at least one legal action, will be true, as E can always

move and W can always idle. o

Using this framework, we can also investigate more general properties of social laws. Con

sider behavioural constraints that act as dictatorships (cf. [39, p.17]). A behavioural constraint

is a dictatorship if, once it is implemented, it never presents an agent with more than one possi

ble action at any given time; that is, if an agent has no choice about what action it may perform.

Let A denote the set of qO-computations of S t /3. Formally, a behavioural constraint /3 with

respect to an AATS S is a dictatorship if

V>' E A, Vi E Ag, Vu E N, loptions(i, >'[uDI = 1

Example 12 The following is a dictatorship behavioural constraint for the trains scenario:

{qO,q4,q6} if 0: = idleE

{QO,qS,q6} if 0: = idlew

{Qs} if 0: = moveE

{Q4} if 0: = movew

Theorem 13 Suppose cp is a propositional logic formula (representing an objective), and S is

an AATS. Then cp is feasible in S by a dictatorship behavioural constraint if!

Proof: (Sketch.) As before, except that we have an additional constraint, which ensures that

no more than one action from an agent's action set is enabled at any given time. o

94 CHAPTER 5. SOCIAL LAWS IN ALTERNATING TIME

Proposition 7 (02,134) and (03,134) are effective social laws in SI.

5.2 Summary

In this chapter, we have demonstrated how the Alternating-time Temporal Logic of Alur, Hen

zinger, and Kupferman provides a natural and powerful framework within which to express

and reason about social laws. Following a formulation of social laws within ATL, we demon

strated how the effectiveness, feasibility, and synthesis problems could be understood as model

checking problems for ATL, and also demonstrated how our basic framework could naturally

be extended to include social laws that require explicit constraints on actions.

The next chapter builds upon the framework of social laws introduced here. We incorpo

rate knowledge into the framework and investigate various epistemic properties in an example

scenario.

/' .

Chapter 6

Knowledge and Social Laws

We have just shown that ATL provides a rich and natural technical framework within which to

investigate social laws and their properties. However, the framework is based on quite a strong

and unrealistic assumption that agents know everything about the state of the system. This

is modelled with a global state space which all agents have access to. In this chapter we do

away with the need for this assumption by extending the framework further by incorporating

the notion of knowledge. Knowledge is important in any non-trivial multi-agent system, and

as knowledge will come to play in almost any coordination scenario, we can clearly see a need

to extend our framework. Not only will the agents' knowledge of the system be used in order

to follow certain laws, but we can have laws in which certain information must become known

(or remain private) to an agent or a coalition of agents. So, by imposing certain social laws, we

can force desirable knowledge properties to hold.

Furthermore, we can have laws which are only known to a certain agent or group of agents,

and only these agents need follow the law. In this chapter, we demonstrate how to 'transform'

the objective of a social law into several, individual objectives, which have the following for

mat: only if an agent knows certain information, can we require him to achieve some situation

that is under his control. We say such an objective is feasible for the agent.

This chapter is structured as follows: We begin by introducing Action-based Alternating

Epistemic Transition Systems (AAETSS), based on an essentially equivalent version of AATSS

introduced in Chapter 4, but extended in order to represent the knowledge of the agents, in much

the same way as Alternating Epistemic Transition Systems (AETS) introduced in Section 2.3.

Next, we give some properties of ATEL in Section 6.2, and in Section 6.3 we formally define

this new extended framework of social laws with respect to AAETS and ATEL. Then, in Section

6.4 we present a case study to illustrate the power of our framework and to show how, in

some cases, model checking can be performed using standard ATL model checkers. Finally, we

95

96 CHAPTER 6. KNOWLEDGE AND SOCIAL LAWS

summarise in Section 6.5.

6.1 Semantic Structures

In Chapter 4 we introduced semantic structures known as AATSs. In this section we extend

AATSs into what we call Action-based Alternating Epistemic Transition Systems (AAETSS).

The main difference is that we introduce an epistemic accessibility relation for each agent in

the system, which is used to capture each agent's knowledge. The approach is standard in the

literature of epistemic logic, as seen in Section 2.2.

These structures are identical to AATSS introduced in Chapter 4, but now, for each agent

i E Ag, we also have an epistemic accessibility relation "'i, which represents indistinguishable

states to agent i, used to capture i's knowledge. Thus, an AAETS is an (2n + 7}-tuple

i
where (Q, qo,Ag,Acl!. " ,Acn , p, 'T, cf?, 71') is an AATS, as defined in Chapter 4, and we have the

following additional component for each agent:

• "'j~ Q x Q is an epistemic accessibility relation for each agent i E Ag. Each "'j must be

an equivalence relation.

The truth definition is defined in exactly the same way as for ATL in Section 2.1 for the non

epistemic ATEL formulae. The epistemic formulae, Kjtp, EGtp and CGtp are defined in the same

way as in Section 2.2. We also define the operator Mjtp, which means i considers tp possible

and is defined as an abbreviation of ,Kj'tp.

6.2 Some Properties of ATEL

The same properties for ATL presented in Section 4.2.1 also hold for ATEL, the cooperation

logic introduced in Section 2.3, where now the universal and existential sublanguages of ATEL,

denoted q and .q, respectively are defined by the following grammars (p E cf?):

q v ::= p I 'p I v /\ v I v V v I Kjv I EGv I CGv I
(O)Ov I (O)Ov I (0) Dv I (O)vU v

.q e::= p I,p I E/\EI EVEI MjEI ((Ag))OEI

((Ag))OE I ((Ag)) DE I ((Ag))EU E

6.3. KNOWLEDGE AND SOCIAL LAWS 97

We now get the following result, analogous to Lemma 1 for ATL, which basically says

that existential formulae are preserved when moving to a larger structure, whereas universal

formulae are preserved when restricting the structure.
I

Lemma 5 Let S' [;;;; S, v E .q, € E .q. Then:

S',q 1= € =} S,q 1= € and S,q 1= v =} S',q 1= v

6.3 Knowledge and Social Laws

We now present our formal framework of social laws and demonstrate how knowledge is incor

porated into the framework by investigating various knowledge properties. We now represent

an objective for a social law as a formula of ATEL, with the same intuition that a social law

is effective if it ensures that the objective is satisfied. ATEL inherits all the properties of ATL,

allowing us to reason about what certain coalitions can bring about, as well as the ability to

express liveness and safety properties from CTL, but now we can also express knowledge prop

erties in order to reason about what agents and coalitions of agents should and shouldn't know.

Implementing a behavioural constraint on an AAETS is exactly the same as implementing

a behavioural constraint on an AATS, as outlined in Section 5.1. This is because implementing

a behavioural constraint causes no update on the accessibility relations, f'Vi, for each agent.

A social law over an AAETS is defined exactly as in Section 5.1 over an AATS, but now, the

objective <p is an ATEL formula.

In Chapter 5, we proved that, for objectives expressed in ATL, the feasibility problem is

NP-complete. We now show that, for ATEL objectives, the problem is no worse.

Theorem 14 The feasibility problem for objectives expressed as arbitrary ATEL formulae is

NP-complete.

Proof: Since feasibility for ATEL objectives subsumes feasibility for ATL objectives, we only

need to prove the upper bound. This follows from the fact that we can guess a behavioural

constraint (3, which will be polynomial in the size of S = (Q, qo,Ag,Acl,'" ,Acn , f'VI, ••• , f'Vn

, p, T, lP, 7r), and then verify that st (3, qo 1= (()) O<p. The process of generating st (3 can easily

be done in time polynomial in the size of S (we simply delete from S all transitions forbidden

by (3), and since model checking for ATEL is in P [55], the result follows. 0

98 CHAPTER 6. KNOWLEDGE AND SOCIAL LAWS

-

Station A Station B

Level Crossing

Figure 6.1: The Level Crossing system.

6.4 A Case Study

In this scenario!, there is a train on a circular track, which at one point crosses a road (see

Figure 6.1). The place where the track crosses the road (level crossing) is controlled by gates

operated by a gate controller agent. If the train moves on to the level crossing while the gates

are closed, the train will be in a crash situation, in which it has crashed into a car on the

crossing. Also, if the gates close while the train is on the crossing, a crash will occur. We are

interested in social laws that can prevent such situations from arising.

This system consists of two agents called t and g, where t is the agent representing the

train and g is the gate controller agent. The train can be in one of four states, "staA" (train is

at station A, which is the initial state of the train), "staB" (train stopped at station B), "wait"

(waiting to use the crossing) and "oncr" (the train is on the crossing). The gates can only be in

two states, either "open" (gates are open to the train) or "closed" (gates are closed to the train).

There is a communication medium by which the train and gate controller agent can ex

change messages about their local states. The communication works by signals sent and re

ceived via an aerial on each of the agents. Signals received from the gates controller agent are

stored in a local variable of the train called Flagg• Similarly, signals received from the train are

stored in a local variable of the gate controller agent called Flag t •

. IThis case study is based on the example introduced earlier in Section 3.2, but now we introduce a communica
tion medium through which the agents can exchange information.

6.4. A CASE STUDY 99

The train has six actions available to it: move" moveann" tell-away,. tell-wait" tell-oncrt>

and idlet. The idlet action is the identity which causes no change in the train's state. If the train

executes a movet action while it is at staA, then it goes to staBt; executing movet while at staBt
I

causes a transition to the waitt state; and, executing movet while waitt causes a transition to

the oncrt state. Finally, executing movet while oncrt causes a transition to staA,. as long as the

gates were not in the closedg state at the same time as the train was in the ancrt state, as, if this

is the case, the train is said to have crashed and is forced to idlet indefinitely.

The moveannt action causes the same state transitions as the movet action, but additionally

the train sends its new location information to g. The moveannt action is always truthful about

the new location of the train. The actions prefixed with tell have the effect of telling the gates

that the location of the train is away, waiting, and on the crossing respectively. Note that,

without any social law in place, it is not guaranteed that the train tells his location truthfully

(e.g., performing tell-waitt when actually in state oncrt)!

The gates controller has five actions available to it: gates g, gatesanng, tell-openg, tell

closedg, and idleg. As with the train, this idleg action causes no change in the state of the gates.

The gatesg action causes the position of the gates to be toggled, i.e., performing gatesg when

the gates are closedg will result in the gates being openg and vice versa. The gatesanng action

causes the same transitions as the gates g action, but the gate controller agent sends its new

status to the train agent. The gatesanng is always truthful about the new status of the gates.

The actions prefixed with tell have the effect of telling the train that the new status of the gates

is openg and closedg respectively.

A state in our system is defined to be a tuple
I .

(LoCt, Flagg, Statusg, Flagt)

where:

• Loct E {staAr,staBr, waitt, oncrt}

• Flagg E {true,false}

• Statusg E {openg, closedg}

• Flagt E {a, w,o}

We assume that we have atoms in the object language (like Flagt = w) corresponding to

these states. We will refer to this tuple generally as (W,X, Y,Z). We let qj denote the ith

cO,mponent of q. Now, (ql, q2, q4) is the local state of agent t and (q2, q3, q4) is the local state

of agent g. The initial state (or root) of our system is p = (staAt,false, closedg, a).

100 CHAPTER~ KNOWLEDGEANDSOCMLLAWS

Given two states q, r E Q, then the epistemic accessibility relation for agent t is given as:

q ""'t r, iff ql = rI, q2 = r2 and q4 = r4. The epistemic accessibility relation for agent g is

given as: q ""'g r, iff q2 = r2, q3 = r3 and q4 = r4. Let us call this overall system S. The

transitions are given in Figure 6.2, where the first line for instance represents that a move t in

any state (staAt, X, Y, Z), when done jointly with any action aCg of the gates, results in any of

(staBt,X', Y',Z) states, where the precise X' and y' values (denoting the state of the gates),

depend on X, Y, and aCg, the location of the train changes from station A to station B, and the

value of Flagr. stored in the variable Z, remains the same.

Current State Actions Resulting States

staA" X, Y,Z movet,acg staB"X', Y',Z
staB" X, Y,Z move"acg waitt, X', Y',Z
waitt, X, Y,Z movet,acg oncrt, X', Y',Z

oncrt, X, openg, Z movet,acg staAt,X', Y',Z
oncrt, X, closedg, Z move"acg -

W,X,closedg,Z aCt,gates)? W', X, openg, Z'
W,X,openg,Z aCt, gatesg W', X, closedg, Z'

W,X,Y,Z idlet,acg W,K',Y',Z
W,X,Y,Z aCt, idle)? W',X,Y,Z'

staAt,X, Y,Z moveannt, ac g staB"X', Y',a
staB"X, Y,Z moveann" ac g waitt, X', Y', w
wait" X, Y,Z moveann" ac g oncr"X', Y',o

oncrt, X, openg, Z moveannt, ac)? staA" X', Y', a
oncr" K, closedg, Z moveannt, ac g -

W, X, closedg, Z aCt, gatesanng W', true, openg,Z'
W,X,openg,Z aCt, gatesanng W' ,false, closedg, Z'

W,X,Y,Z tell-awaYt, aCg W,X',Y',a
W,X,Y,Z tell-wait" aCg W,X',Y',w
W,X,Y,Z tell-oncrt, aCg . W,X',Y',o
W,X,Y,Z ac" tell-closedg W',false, Y, Z'

W,X,Y,Z ac" tell-openg W',true, Y,Z'

Figure 6.2: State Transitions

6.4.1 Knowledge Properties

There are certain knowledge properties that are of interest to us. The first property we look at

is called a knowledge pre-condition. In [57], a knowledge pre-condition for a particular plan

is said to be: the information an agent must have in order to be able to successfully carry

6.4. A CASE STUDY 101

this plan out. Their first attempt to formulate a knowledge pre-condition in ATEL is of the

form ((a))O'P -+ Ka'l/J, which specifies the requirement that, in order for agent a to be able to

eventually bring about state of affairs 'P, it must know 'l/J. This requirement is too strong. It says
I

that knowing 'l/J is a necessary requirement to bring about 'P. But bringing about 'P in the future

does not mean I have to know 'l/J right now. We use a slightly different definition for knowledge

pre-conditions. We say that a knowledge pre-condition for an action or plan is the information

that is sufficient for an agent to be able to successfully carry out the action or plan. Knowledge

pre-condition formulae take the form K;'P -+ 'l/J. This formula states that agent i knowing the

fact 'P implies that the fact (state of affairs) 'l/J should hold. These knowledge pre-condition

formulae can be used as ATEL objectives in our social laws. Let us define [i]'P as the dual of

((i))'P. Remember that ((i))'P means that there exists a strategy for agent i, such that he can

achieve 'P, no matter what the other agents do. So, [i]'P means that no matter what i does, there

exists a strategy for the other agents in the system to make 'P true (whichever strategy i choses,

the others can complement it in such a way that 'P).

Then, a property like

K;'P -+ [i](O'l/J V OO'l/J V OOO'l/J) (6.1)

expresses in ATEL* (cf. ATL * [2]) that, if the gate-controller (i) on a crossing knows that the

train is waiting to cross ('P), then, whatever the gates do, the train should be able to safely cross

('l/J) in the 'near future' (Le., within the next three time steps). We can extend this example

immediately to cases where 'l/J is itself epistemic: if the train V) knows that the constraint (6.1)

applies, and he wants to safely cross, he should be able to notify the the gate-controller of this:

(6.2)

Implied knowledge is knowledge that comes about as a result of the performance of actions,

which lead to a change in the current state of affairs: this type of knowledge property takes the

form 'P -+ K;'l/J. This formula states that the state of affairs 'P should bring about the knowledge

of the fact 'l/J to agent i.
This type of formula can also be used in the objectives to our social laws. For example,

the following could express that every time that train i is able to pass a crossing, the gate at that

crossing should know it.

((i))O'P -+ Kj'P (6.3)

_ Finally, nested knowledge is information that the agents have about what other agents know.

For instance, [i]O'l/J -+ K;EG'P expresses that if i cannot ensure that 'l/J will ever become true,

102 CHAPTER~ KNOWLEDGEANDSOCMLLAWS

he should make sure (know) that everybody in G knows this. Nested knowledge can also play

the role of a pre-condition (I should know that you know we have a meeting at the station,

before 1 go there, for instance).

6.4.2 Epistemic Social Laws

Now we can formulate some objectives for social laws. We will begin by constructing objec

tives which have the general format Kj<p -+ 'ljJ, where 'ljJ is some property under control of

agent i. This format makes perfect sense: (only) if an agent knows certain preconditions, can

we require him to take appropriate action. Let us hence say that such an objective is feasible

for agent i.

(6.4)

The objective 01 is equivalent to o~ = wait/ -+ (Flag/ = w) (if this is not immediately

clear, it should become clear once we have discussed the notion of a local proposition). Prop

erty (6.4) denotes that the train is accurate with respect to recording his waiting state. We give

a 'weakest' constraint (31 that implements this social law, which can be verified by checking

S t (31,P 1= (()) DO~. The constraint (31 works as follows: in (staB"X, Y,Z), if Z ¥- w, the

action for t forbidden by (31 is move (since this would inaccurately leave the Flag/ as a or o);

moreover, in any state (wait" X, Y, Z), constraint (31 forbids t to perform any tell action, except

when it is tell-wait. Loosely speaking: the train is accurate about his waiting, if he announces

it when he starts to wait, and, once waiting, never tells anything otherwise. We claim that

moreo~er (31 is a weakest constraint for its aims: any constraint (3 that forbids less than (31 has

the property that S t (3, p 1= (({t, g})) 0-,01.

The con'.'erse of (6.4) would mean that the train is truthful with respect to the waiting state:

(6.5)

Again, this property is equal to O~ = (Flag/ = w) -+ wait,. The behavioural constraint,

(32, that makes this social law effective, forbids t to falsely suggest that it is waiting: t is only

allowed to perform tell-wait/ in any (wait" X, Y, Z), moreover, (32 forbids t to perform a move/

in (wait" Y,Z, w), since otherwise it would falsely suggest that it is still waiting (of course,

the train can still leave this state truthfully, by performing a moveann/-action). The fact that

indeed (32 implements O~ is verified by showing S t (32, P 1= (0) DO~. As an aside, note that

the constraint (33 which never allows the train to do a move/ action and only allows t to perform

tell-wait when wait/ is true, is a way to implement the objective O~ = ((Flag/ = w) -+ wait,).

Now we observe the following: S t (31 t (32,Q 1= wait/ -+ Kgwait/. This is interesting,

6.4. A CASE STUDY 103

since to make the gates know that the train is waiting, has become a train-feasible objective in

S t /31 t /32: he just has to accurately and truthfulIy set Flagt to w!

Now consider the folIowing objective:
I

o = (()) 0 (-,(oncrt 1\ closedg) 1\ ((g, t)) Oonctt) (6.6)

This objective combines a safety property (the train is never on the crossing while the gates

are closed) with a liveness property (the train can eventually pass the crossing). The question

is whether we can 'break' this objective 'down' into a number of constraints that are feasible

for t or g. Here is a high level description: Let 0' be the conjunction of:

(Ktwaitt -+ Kgwaitt)

(Kgopeng -+ Ktopeng)

(Kgclosedg -+ Ktclosedg)

(Kgwaitt -+ [g]Oopeng)

(Ktopeng -+ ((t))Ooncrt)

(Ktclosedg -+ [t] D-,oncrt)

Objective 0' states that t should inform g about waiting, and g should inform t about the

states of the gates. Recall that [i]Ocp means that the other agents can ensure Ocp, and, if cp is

'under the control' of i, then [iD Ocp means that i cannot avoid that cp will eventually be true.

Keeping this in mind, 0' then also requires that if g knows that t is waiting, it cannot but avoid

that eventually the gates will be open; if t knows the gates to be open, it will eventualIy pass

the crossing, and, finally, if t knows the gates are closed, it will never attempt to cross. We

claim that 0' can be indeed turned into a set of feasible laws for g and t, and also that the

implemented law for 0' guarantees O.
I

We demonstrated how to make the first implication feasible for t by imposing suitable

constraints; the same can be done for the other implications. We will now demonstrate how to

actually model-check such knowledge properties. '

6.4.3 Model Checking Some Properties

There are certain knowledge properties that need to be satisfied in the level crossing example.

We obtain them using social laws. In order to test knowledge properties, we used the model

checker, MOCHA, as introduced earlier in Section 2.1. We programmed the system in the RE

ACTIVE MODULES language and also have modified versions of the system, which incorporate

social laws. It is important to note that we are not adding to the theory of model checking,

simply making use of it.

The first knowledge property that we wish to investigate is that the gates always know

w~en the train is waiting, in the system updated with the behavourial constraint /32, described

earlier. More formally, we want to verify that, given a state q in which q 1= wait" we also have

104 CHAPTER~ KNOWLEDGEANDSOCMLLAWS

q F Kgwaitt. The intuition behind this knowledge property is that if the train is waiting at the

gates for them to be opened, this can only happen if the gate controller agent knows that the

train is waiting.

Now we wish to verify properties involving knowledge by using a standard model checker

that does not deal with epistemic operators, in our case MOCHA ([1]). To do this, we employ the

machinery of local propositions, as introduced in [15] and applied to model checking epistemic

properties in the context of linear temporal logic in [54]. We give an informal explanation; for

details the reader should consult [54].

A proposition tp is i-local in a system S if

Vq,q' E Q: «q ""i q') ~ (S,q F tp {:} S,q' Ftp))

that is, an i-local proposition never changes truth value within an i-equivalence class of states.

This formalises the idea that such propositions depend on what the agent can observe. We

immediately see that in the train and gates example, every proposition about the location of the

train and the flag of the gates is t-Iocal, likewise are assertions about the status of the gates and

the flag of the train local for the gates. Now, generalising the linear temporal logic analysis

from [54] to the branching time context of this chapter, we have the following:

Theorem 15 Suppose that tp is i-local. Then S, q Ftp and S, qo F (O)O(tp -t 'IjJ) are sufficient

to prove both S, q F Ki'IjJ and SF tp -t Ki'IjJ. In such a case, tp is called i-local for 'IjJ.

The above definition of a proposition being i-local shows that the laws 02 and O~ are

equivalent. To show that q F Kgwaitt in any waiting state q, we must first find a g-local

proposition for waitt. We can take (Flagt = w): To show that (Flagt = w) is g-local in S t rh.
we need to verify that Vq, r«q ""g r) ~ (q F Flagt = w {:} r F Flagt = w)), which is

obvious, since Flagt is part of g's local state. Now, to apply Theorem 15, we must show that

S t f32,P F (0) D(Flagt = w) -t waitt holds. We do this by model checking the following

MOCHA ATL specification in S t f32:

«» G ((tFlag = w) => (tState = wait))

Since the answer to this is positive, we have verified the desired property in S t f32. Note that

this is relative to a state q. We now show how we can check this property across all states of the

system. The only thing we required in q is that q F wait,. So now we can check the following

property across all states, in S t f32:

waitt -t Kgwaitt (6.7)

6.4. A CASE STUDY 105

Now we model check the following:

«» G ((tState = wait) => (tFlag = w))
I

When this formula is model checked in the original system S it fails: This is as expected, as

there is nothing in-built in S to guarantee that the train is truthful. However, model checking

the above formula in S t (32 passes, which shows that this social law is effective.

Now we look at a nested knowledge formula:

waitt - KtKgwaitt (6.8)

We briefly sketch how to do this in the system that is constrained with (33. By Theorem 15, it

is sufficient to show that waitt is t-Iocal for Kgwaitt. That is, waitt is t-Iocal (which is obviously

the case) and S t (33,P F (())D(waitt - Kgwaitt). This can be either model checked or

established from (6.7), the fact that st (33 !;;;;; st (32 and Lemma 5. We can now apply Theorem 15

(take'P = waitt and 1jJ = Kgwaitt), to conclude that S t (33 F waitt - KtKgwaitt.

The social laws imposed on oUr system are quite restrictive in that agent t knows everything

about the state of agent g, and agent g knows a lot about the state of agent t. The knowledge

that each of the agents have is necessary to ensure the system runs efficiently and that no crash

situations occur. However, when the train is at staAt or staB" it is not beneficial to the system

that agent g should know which of the two states the train is at, only that the train is away, in

order to close the gates. We show this by investigating the following property in S:

(6.9)

This property states that if the train is at station A, agent g considers it possible that in fact,

the train is not at station A. To check whether (6.9) holds across all states of our system S, we

model check the following formula:

1\ ((()) 0 [(staAt 1\ x 1\ y 1\ z) - ((t, g)) 0 (,staAt 1\ x 1\ y 1\ z)j) (6.10)
X,Y

where the conjunction is taken over all

x E {openg, closedg },

yE {Flagt = a, Flagt = w,Flagt = o},

and z is either Flagg or 'Flagg.

106 CHAPTER 6. KNOWLEDGE AND SOCIAL LAWS

This requires performing twelve different model checking problems, for each of the differ

ent values of x, y and z.
To understand that (6.10) is indeed sufficient to show (6.9), we first strengthen (6.9) to:

(6.11)

Now, suppose (6.11) is false. This means

S, P F ((t, g)) o (staAt 1\ KgstaAt)

So for some q, S, q F staAt 1\ KgstaAt • Suppose q is (W, true, openg, a), so S, q F x 1\ Y 1\ z.

Applying (6.10) we also find a q' with S, q' F -,staAt 1\ x 1\ Y 1\ z. For g, q and q' are similar:

q "'g q'. Since S, q F KgstaAr. we have S, q' F KgstaAr. and S, q' F staAr. which is absurd.

Hence, (6.11) holds.

After performing this model checking, as the formula passed each time, we have shown that

(6.9) holds. Finally notice that even if the constraints concerning accuracy and truthfulness of

both agents are implemented, (6.9) holds, since the most specific information that t will give

when being at station A or B will be that he is 'away'.

6.5 Summary

In this chapter we have shown how our social laws framework presented in Chapter 5 can nat

urally be extended to incorporate the notion of knowledge. In order to express such social laws

we use the language of ATEL, essentially ATL with epistemic extensions. We demonstrated the

power of such a framework with the use of a case study, in which many interesting knowledge

properties were investigated. In particular, we showed how overall objectives of the system can

be broken down into feasible properties for the agents, involving laws for each agent i of type

KjC{) -t 1/J, where 1/J is under the control of i.

We also demonstrated how several different types of knowledge, including knowledge pre

conditions, implied knowledge, and nested knowledge can be verified using an ATL model

checker (MOCHA). We showed how ATEL formulae can be reduced to ATL formulae with the

use of local propositions substituted for knOWledge. This allowed us to verify such properties

with a standard model checker that does not deal with epistemic operators.

Chapter 7

Social Laws, Social Belief, and

Anti-Social Behaviour

In this chapter we extend our social laws framework further. So far, in our framework, it is

assumed that once social laws are imposed on the system, all the agents will abide by these

laws. However, this does not seem to be the most realistic way of modelling social laws.

Certainly in human societies, just because laws are imposed does not mean that all members of

the society will follow these laws. In this chapter we do away with the need for this assumption

and give agents the choice of whether to follow these laws or not. We make a distinction

between agents acting physically and agents acting socially. Acting physically -we use this

in lack of a better term we know- corresponds to performing any action that is physically

possible to be performed, in the sense of possible by the system description. Acting socially

then corresponds to performing any action from a subset of these physical actions, known as

the social actions. Social actions are those that are consistent with the social laws imposed

on the system. An example scenario is in the case of traffic laws. Traffic lights are used to

coordinate the flow of traffic on our roads to ensure no collisions occur when cars cross each

other's paths. Cars are only allowed to move from the traffic lights when the light is green.

Acting socially (and physically) would correspond to only moving when the lights are green.

However, acting physically (but not socially) could correspond to moving when the lights are

red. This would be an illegal action, but still a physically possible action. It is important to

note that all social actions are also physically possible actions.

Agents now have both physical and social strategies, where the set of social strategies is

always a subset of the physical strategies. So after giving the agents these extra possibilities,

w7 need to extend the logic to be able to reason about whether an agent or coalition of agents

is able to act socially or physically (of course if an agent is able to act physically, this agent can

107

108 CHAPTER 7. SOCIAL LAWS, SOCIAL BELIEF, AND ANTI-SOCIAL BEHAVIOUR

choose to only perform social strategies if it desires). We introduce a new logical language,

Social ATEL (SATEL), which allows us to express properties like the following: "Even if the

coalition abides by the laws, and all the other agents neglect them, our coalition can achieve

a particular temporal property", or "the server knows that, where all the clients are acting

socially, then eventually each granted write-permission will terminate".

We make another extension to the framework by adding the notion of social belief. Now

that agents have the possibility of not following these social laws, a new type of belief arises.

This is belief based on the assumption that all the agents in the system are acting according to

the social laws imposed. We call this type of belief "social belief". Using social belief and

knowledge together seems more realistic, but may also have other advantages. If an agent has

to act in a timely fashion, it may be preferable for the agent to act sooner on its social beliefs

rather than waiting longer to acquire the knowledge that is important for the agent to act. Of

course, in situations with drastic consequences the agent may be required to act on knowledge

rather than social belief. We incorporate the notion of social belief and show how it can play

an important role in coordinating the activities of agents.

This chapter is structured as follows: We first introduce the semantic structures that our

model is based on. We call these Social Action-based Alternating Epistemic Transition Sys

tems (SAAETS). These are similar to AAETSS introduced in the previous chapter (Chapter 6)

with a few extensions. We then introduce our logical language, Social AT EL (SATEL), which

is an extension of ATEL (introduced in Section 2.3), and give the semantics of this language.

In Section 7.3 we introduce a case study known as the Alternating Bit Protocol and go on to

investigate various interesting properties of this model. Finally, we conclude in Section 7.4.

7.1 Semantic Structures (SAAETS)

In this section we introduce the semantic structures our model is based upon. The structures we

use are known as Social Action-Based Alternating Epistemic Transition Systems (SAAETSS).

Our structures are most similar to the AAETSs we introduced in the previous chapter. However,

our structures differ from those in several ways. Instead of having one action pre-condition

function, p, we now have both a physical action precondition function, p, and a legal action

precondition function, i. Also, where the emphasis in Chapter 5 is on implementing a social

law on a system, we do not consider such updates: rather, we assume the i function is given,

constraining the set of possible transitions, and we are not concerned about which social goal

such constraints are supposed to achieve. This could prove to be a limitation of our framework.

In making decisions about whether to follow the law or not, agents will need to know what

the law is in place to achieve. As there is no notion of an objective for a social law in this

7.1. SEMANTIC STRUCTURES (SAAETS) 109

extension to the framework, such reasoning is not possible. However, this framework is used

to investigate social laws at the system level. Hence the system designer is able to see which

properties hold depending on who follows the social laws. Future work could incorporate

objectives of social laws into this framework.

Formally, an SAAETS is a (2n + 8)-tuple

(Q, qQ,Ag,Acl, . .. ,Acn. "'11 ... , "'n, p, f, T, <P, rr)

where (Q, qQ,Ag,Acl, ... ,Acn, "'11 ... , "'n, p, T, <P, rr) is an AAETS, as defined in Chapter 6,

but now the following components are either new or altered:

• p : ACAg - 2Q is a physical action precondition junction, which for each action a E

ACAg defines the set of states p(a) from which a may be physically performed; and,

• f : ACAg - 2Q is a legal action precondition function, which for each action a E ACAg

defines the set of states f(a) from which a may be physically and legally performed (for

all a E ACAg, f(a) ~ p(a».

As with AATSs, SAAETSs must satisfy two coherence constraints. These constraints differ

slightly from those outlined in Chapter 4: Firstly, non-triviality [35J: Agents always have at

least one legal action: Vq E Q, Vi E Ag, 3a E Ac; s.t. q E f(a). Secondly, consistency: The p

and T functions agree on actions that may be performed: Vq, Vj E JAg, (q,j) E dom T iffVi E

Ag, q E PV;).
Given an agent i E Ag and a state q E Q, we denote the physical options available to i in q

by

p-options(i,q) = {a I a E Ac; and q E p(a)}

and we denote the legal options available to i in q by

f-options(i,q) = {a I a E Ac; and q E f(a)}

Now we can define a physical strategy and a legal strategy for an agent. A physical strategy

for an agent i E Ag is a function: 'Y; : Q - Ac; which must satisfy the constraint that 'Y;(q) E p

options(i, q) for all q E Q. A legal strategy for an agent i E Ag is a function: 8; : Q - Ac;

which must satisfy the legality constraint that 8;(q) E f-options(i, q) for all q E Q.
A physical strategy profile for a coalition G = {I, ... ,k} ~ Ag is a tuple of physical

strategies ("(1, ... , 'Yk), one for each agent i E G. Similarly, a legal strategy profile for a

coal.ition G = {I, ... , k} ~ Ag is a tuple of legal strategies (811 .•. , 8k), one for each agent

i E G. By AG we denote the set of all legal strategy profiles for coalition G and by r G, we

110 CHAPTER 7. SOCIAL LAWS, SOCIAL BELIEF, AND ANTI-SOCIAL BEHAVIOUR

denote the set of all physical strategy profiles for coalition G. By aG, we denote a strategy

profile for coalition G where we are not concerned about whether the strategy profile is legal or

physical; if aG E rAg and i E Ag, then we denote i's component of aG by ai. A grand coalition

strategy profile is defined as a tuple (aG, ah), VaG, ah, where aG represents the choices made

by agents in G and ah represents the choices made by all other agents in the system.

Given a strategy profile a Ag and state q E Q, let out(a Ag, q) denote the next state that

will result by the members of Ag acting as defined by their components of a Ag for one step

from q. Formally, out(aAg,q) = r(q,j) = q', where a~iq) = ji for i E Ag. This function

is different from out(aG, q) defined in Chapter 4, as now we are only concerned with grand

coalition strategy profiles, hence the outcome is a state rather than a set of states.

Given a strategy profile a Ag for the grand coalition Ag, and a state q E Q, we define

comp(a Ag, q) to be the run that will occur if every agent i E Ag follows the corresponding

strategy ai, starting when the system is in state q E Q. Formally, comp(a Ag, q) = A where

A[O] = q and Vu EN: A[U + 1] = out(aAg, A[U]). This function also differs from the

comp(aG, q) function defined in Chapter 4 for the same reasons outlined above.

Given an SAAETS, S, and the initial state of the system, qo, we define a set of socially

reachable states as follows:

sreach(S) = {q I 38Ag E ~Ag and 3u EN s.t. q = comp(8Ag,qO)[u]}

This function, sreach(S), defines the set of socially reachable states in a system S, starting from

the initial state, qo. The socially reachable states are all the states which are reachable when

every agent in the system performs only social strategies.

The following is immediate by construction.

Lemma 6 For any coalition of agents, G, it is always the case that ~G ~ r G.

7.2 Social ATEL

In this section we define the logical language used to express social laws in our framework.

Our language is essentially an extension of ATEL, introduced in Section 2.3. In SATEL, we

reason about physical and about social strategies. Our modalities are of the form ((G))i, where

x and y denote which kind of strategies G and Ag \ G, respectively, are allowed to use: only

social strategies (denoted by s), or all their available ones (denoted by p). For example, the

formula ((G));Ogoal expresses that there exists a strategy for the coalition G, such that, no

matter what the other agents do, providing they only follow social strategies, at some point in

the future G can achieve some goal state. We can also require all the agents to act socially, e.g.,

7.2. SOCIAL ATEL 111

((G))! D:fail, which expresses that G has a social strategy, such that, no matter what the other

agents do, providing they act socially, the system will never enter afail state. Finally, consider

the nested formula, ((G))~O ((G))~ Dcp, which reads: "G can ensure, by using a social strategy,

and assuming that all the others also act socially, that in the next state, G can ensure, again by

acting socially, that even if the others from now on act non-socially, cp will always hold". Or,

a bit more informally: "if we require G to act socially, and the others socially for at least one

step, but unconstrained thereafter, then G can guarantee that always cp".

ATEL adds know ledge operators on top of ATL. However, on top of that we add operators to

express more enhanced informational attitudes. First of all, now that the possibility of violating

social laws exists, we define a notion of social belief, i.e., belief under the assumption that all

agents in the system are acting as they should do according to the social laws imposed. We

introduce a belief operator SBj, where SBjcp expresses that, if i assumes that everybody acts

socially, he believes cp to be the case. For example, if we use cp to denote the fact that a car

is stopped at a red traffic light, SBjcp means that agent i believes that a car is stopped at a red

traffic light, under the assumption that all agents in the system are acting socially. So in all

indistinguishable social states to agent i, a car is stopped at a red traffic light. An obvious

difference with the standard notion of knowledge is that social belief is not veridical: it is

perfectly well possible that agent i socially believes cp (SB jCP) and -'Cp at the same time.

Formally, the set of formulae, formed with respect to a set of agents Ag, and a set of

primitive propositions 11>, is given by the following grammar:

pi -'Cp I cp V cp I Kjcp I SBjcp I ((G))~Ocp
((G))~ Dcp I ((G))~cpU cp

where p E 11> is a propositional variable, G ~ Ag is a set of agents, i E Ag is an agent, and x

and y can be either p or s.

We now give the truth definition of Social ATEL formulae on an SAAETS S and a state q:

S,q FP iffp E 7r(q)

S,q F -,cp iff S,q ~ cp;

(where pE 11»;

S, q F cp V 'lj; iff S, q F cp or S, q F 'lj;;

S,q F ((G))~Ocp iff 3aG E rG s.t. VaC E rC, if,\ = comp((aG,ac) ,q), we have

S,'\ [1] F cp;

S, q F ((G))~Ocp iff 3aG E tl.G s.t. Vac E rC, if,\ = comp((aG, ac) ,q), we have

S,'\ [1] F cp;

112 CHAPTER 7. SOCIAL LAWS, SOCIAL BELIEF, AND ANTI-SOCIAL BEHAVIOUR

S, q F ((G));O<p iff :JaG ErG s.t. VaC; E !:J.c;, if .x = comp((aG, ac;) ,q), we have

S,.x [1] F <p;

S,q F ((G))~O<p iff :JaG E !:J.G S.t. VaC; E !:J.c;, if .x = comp«(aG,ac;) ,q), we have

S,.x [1] F <p;

S, q F Kj<p iff for all cl such that q "'i cl : S, cl F <p;

S, q F SBj<p iff for all q' E sreach(S) such that q "'j q', we have S, q' F <po

We omit the definitions of ((G))~ 0 and ((G))~<pU 'I/J, as once you understand the pattern

between p and s and the type of strategy used, these definitions easily follow from the truth

definition of ATL, given before in Section 2.1. The other connectives ("1\", "--+", "~") are

assumed to be defined as abbreviations in terms of.." V. ((G)) ~ O<P is shorthand for ((G))~T U <po
We write ((i)) rather than (({i})).

In ATL, the cooperation modality (0) T denotes a special case: it means that the empty set

of agents has a strategy, such that, no matter what the other (Le., all) agents do, T holds. In

other words, no matter what the agents in Ag do, T. This resembles the CTL operator AT: on

every future path, T. Similarly, ((Ag)) T means that the grand coalition has a strategy such that,

no matter what the empty coalition does, T. In CTL terminology: ET, or, for some path, T. For

SATEL this gives us the following. Since in (O)~, the constraint to play an x-type of strategy is

a constraint for nobody, it does not really matter whether x is s or p. Similarly, in ((Ag))~T the

constraint to play a y-type of strategy is a void restriction for Ag \ Ag, i.e., the empty set, so it

does not matter whether x equals s or equals p. Summarising, we have

(O)~T == (());T and ((Ag))~T == ((Ag))~T

As a convention, when having an empty coalition, we will only write (O)~ and (0);, which

is no restriction, given the equivalence above. Similarly, for the full coalition, we will only

write ((Ag))~ and ((Ag));.

Multiple ((G))~O operators are used as an abbreviation in the following way:

y n ~ { ((G))~O<p ifn = 1
«((G))xO) <p- «((G))~O)(((G))~O)n-l<potherwise

From Lemma 6 we immediately derive:

((G))~T --+ ((G));T and ((G))~T --+ ((G))~T (7.1)

7.3. CASE STUDY 113

where T here is an arbitrary temporal formula and x and Y are variables over p and s. These

properties express the following. The first, ((G))~T --+ ((G))~T says that if a coalition G are

able to enforce a property cp by adopting social strategies, then they can also enforce this same

property when adopting physical strategies ('if you can enforce it nicely, you can enforce it

anyhow'); and ((G))~T --+ ((G))~T can be interpreted as saying that if a coalition G are able to

enforce a property cp when playing against an adversary who is able to use physical strategies,

then they can also enforce this property when playing against the same adversary when this

adversary is constrained to use only social strategies ('if you can beat an opponent when he

can cheat, you can beat him when he plays by the rules').

7.3 Case Study

We now present a case study in order to demonstrate Social ATEL. The case study is known as

''The Alternating Bit Protocol" and is adapted from [56].

In this scenario there are two agents, a sender S and a receiver R, who wish to communicate

through a communication environment. S wants to send the value of a bit to R, but the commu

nication environment is not reliable. The environment can delete messages, but messages that

are received are always correct. Although the environment is unreliable, it satisfies the fairness

property that messages sent arbitrarily often will eventually arrive. The sender has a sequence

of bits X = (XO,XI •.. ,) that it wishes to communicate to the receiver. When the receiver

receives the bits, it prints them to a tape Y, which after receiving k bits is Y = (YO,YI ••• ,Yk).

The alphabet for the tape, X, over which symbols may be chosen is Alph = {O, I}. We wish

to design a protocol that satisfies the safety requirement that the receiver never prints incorrect

bits, and the Iiveness requirement that every bit will eventually be printed by the receiver.

The obvious solution to this problem is to use acknowledgements to let the sender know a

bit has been received. So the sender would repeatedly send the bit until eventually it receives

an acknowledgement back from the receiver, at which point it would go on to send the next

bit. The problem arises when the value of the next bit is the same as the previous bit. The

receiver does not know whether its acknowledgement has been received, so the receiver does

not know whether this bit is the same bit, or if this bit is supposed to be the next bit on the

tape. To overcome this problem, the sender can put more information on which bit he sends by

adding a "colour" to it: a 0 to every Xi for even i, and a 1 for every odd i. So now the alphabet

is updated as follows: Alph' becomes {x.O I x E Alph} U {x.l I x E Alph}. We now also need

two acknowledgements: ackO and ackI. So the protocol works as follows: S first sends xo.O.

Wh,en it receives ackO, it goes on to the next state on the tape and sends XI.I. R can see that this

is a new message (since it has a different colour), and sends ackl to acknowledge the receipt

114 CHAPTER 7. SOCIAL LAWS, SOCIAL BELIEF, AND ANTI-SOCIAL BEHAVIOUR

of it. S can also see that this is a different acknowledgement and starts to send X2'0, and so

on. In the interests of clarity, we are going to abstract away some of the unnecessary details of

this system. This will also reduce the state space and make it easier to understand. We are not

actually concerned with the value of the bits so we abstract from the value of x. Also, we do

not want to reason about the behaviour of the environment. We only wish to reason about the

behaviour of the sender and the receiver. So we assume that the environment always behaves

as it should do, but the agents do not know this, hence the reason for the protocol. This also

has the effect of reducing the number of state transitions.

We model the scenario with an SAAETS called AltBit. We introduce atoms with the fol

lowing interpretation: ssx means that the last bit S sent was of type x.1; sra indicates the last

message received by S was ack1; rrx means the last bit R received was of type x.1; and rsa

indicates the last message R sent was ackl. Rather than having two atoms ssx.O and ssx.1, we

use the fact that ssx.O +-+ -,ssx.1 to reduce the number of states. The same applies to the other

atoms.

A state in our system is defined to be a tuple

qi = (ssx, sra I rrx, rsa)

where:

• ssx, sra, rrx, rsa E {O, I} = lB; and

• q;, where 1 ~ i ~ 16, is the name of the state. This is just a decimal representation of

the binary number the state corresponds to (e.g. q3 = (0,011,1».

In every state of the system, the sender has two physical actions available to it: send.O and

send. 1, corresponding to sending a bit with colour 0 and sending a bit with colour 1, respec

tively. The receiver also has two physical actions available to it in every state of the system:

sendack.O and sendack.1, corresponding to sending an acknowledgement of a bit with colour

o and colour 1, respectively. Figure 7.1 shows physical runs of the alternating bit protocol.

As the system is unconstrained by any social laws, the agents can perform any action in every

state. Note also that in fact we should have drawn a reflexive arrow from every state to itself,

denoting the possibility that the system can decide not to deliver a message that was sent. How

ever, both in the diagram and in the verification of properties we assume that the system does

not show such adverse behaviour. In the properties that we will discuss, this means that often

when we write a 0 (under the idealisation that no messages are lost) they should in general be

replaced with occurrences of <:) (resembling the assumptions that messages eventually will be

delivered).

7.3. CASE STUDY 115

~j c---,.. -c-- ~.1 .11 -
r+ <0.110.0> -- <1'lIO 0> -I-- r-r-- <0.0110> ---i---'j11•OIO.0>-

-- ---qSl,---II..--
l

---_-------7-'--:- ------ ~- --.-----+---+-H-~-+_-+--iij,l- ---r-----ll-L ------- ----
__ -.;:-+_ ql3 ':"" ,:I~ , 1--'" t

~ <0.110.1> 1'-- ':n 10.1> .:.. ____ ~?!:.r.=I>= __ =_= __ #_=_~:!J __ =~rJ~=--=-=--=-I=-f:_I=_f:_'ll

--~~---l[T;---~---:::t T1+t-+-~; _'--_ q2 : qlO ~
<0.111.0> i <1.\11'11 Lf--<o.OII.o> -: <1.011.0> -

- ______________ L-__ ~H-t:--+-__ -o_-L ---- - --:---:;~j------~ ---(-----!:.H--------- ---,
q7 , qlS

, <0.011.1> -: <1.011.1>-

: : I 11
L==. <0. Ill. I> <I. Ill. I> --,

~i~!mte
,

t ' : , , , j i '------'
I !

Syslem S. Key: statcs are of the (onn <SIX, Ira I ITX, na>

Figure 7.1: State transitions resulting from physical strategies.

116 CHAPTER 7. SOCIAL LA WS, SOCIAL BELIEF, AND ANTI-SOCIAL BEHAVIOUR

Of course, the idea is that S should alternate x.O's, once known to be received, with x.1's,

and R is expected not to acknowledge receipt of a bit he did not receive. This is the idea of the

social actions, which are given in Figure 7.2 below. The columns show the states where the

action can be performed and the rows show which agent is carrying out the specified action. To

understand the first column in the figure, note that in, for instance, q8 = (1, ° I 0,0), in which

ssx 1\ -.sra 1\ -.rrx 1\ -.rsa is true, the Sender should re-send his bit x.1, since he has not received

an acknowledgement for it (-.sra). At the same time, since R has not received this x.1 yet (we

have -.rrx), R cannot acknowledge with ack1, but should repeat sending ackO. Clearly, when S

and R are acting in a social manner they have much fewer choices available to them than when

they are able to act physicaIly.

i\q (0,0 I 0,0) (0,1 11,0) (0,1 10,0) (0, ° 11,0)
(0,0 I 0,1) (0,1 11,1) (0,1 I 0,1) (0, ° 11,1)
(1,0 I 0,0) (1,1 11,0) (1,1 I 0,0) (1,0 11,0)
(1,0 I 0,1) (1,1 11,1) (1,1 I 0,1) (1, ° 11,1)

S send. 1 send. ° send.O send. 1
R sendack.O sendack.1 sendack.O sendack.1

Figure 7.2: Social strategies for Sand R.

Where Figure 7.1 takes into account the worst possible behaviour by the agents, Figure 7.3

shows the other extreme: here, not only do we assume that all agents act sociaIly, but also

that this is common knowledge: nobody finds it epistemicaIly possible that somebody finds it

possible that ... somebody acts anti-sociaIly. In this model, we can interpret formulae of type

SBjcp, but not if cp contains an occurrence of Kj'ljJ: since SBj only takes into account the social

states (defined by sreach(AltBit)) as epistemic alternatives of agent i, due to the assumption that

all agents actsociaIly, while Kj takes into account all states as epistemic alternatives ofj. In this

chapter, we will not look at such nested occurrences. Summarising: the runs in Figure 7.3 are

runs that are generated by only performing social strategies. Arrows indicate successor states,

and some states are not reachable when only performing such social strategies. The states

in this diagram are exactly those defined bysreach(AltBit). The Sender cannot distinguish

states that are placed on top of each other and the Receiver cannot distinguish those placed

horizontaIly. So, columns represent equivalence classes of S-indistinguishable states and rows

represent equivalence classes ofR-indistinguishable states. These equivalence classes represent

social belief for the agents, due to the fact that we are only looking at states in sreach(AltBit)

(i.e., social states).

One can introduce the notion of a socially necessary fact (SNF). A sociaIly necessary fact

is a fact which should be true no matter what, providing all the agents in the system act in a

7.3. CASE STUDY 117

q4 qO q8

<0.110.0> : , • <0.010.0> , • <1.010.0>

................ -1-----------i- ----------------------j- ----------------------j----------------------------_.
, , ,

qS ' , , , , , , , , , , , , , , <0.110.1> , , , , , , , , , , , ,
..................J_ __ _I .. _L __ .. ~ ,

qlO

<1.011.0>

-- --- --,;- --- ----- j- ----- --;,-,-- --- -- -- ---t- -- -- ------- ---- ---+ --- ---;,;-1--- ------- -- ---.
<0. Ill. 1>': <I. Ill. 1>' 1 : <1.011. I>

initial state

Key: states arc of the fonn <lIX, 11'81 m, raa>

, ,

Figure 7.3: The model if it is common knowledge that only social strategies are played.

social manner. A SNF cp is defined as follows:

SNF(cp) == (0); Dcp

If an SNF does not involve epistemic properties, one can verify them on Figure 7.3. A

sociaIIy necessary fact is different from a social belief. For example, in state qo the social

belief SBs(-.rrx /\ -.rsa) holds. However, SNF(-.rrx /\ -.rsa) does not, as it is not something

that is true across all socially reachable states.

7.3.1 Properties of the Model

Now we investigate some interesting properties in the Alternating Bit Protocol, in order to show

the effects of different agents following social strategies while others follow physical ones, etc.

The properties we have investigated are listed in Figure 7.4 along with a J (showing that the

property holds) or a x (showing that the property does not hold).

Many of the properties in the table are of type (())~ D cp. Such a formula expresses that cp is

an !nvariant that is true in every reachable state. Since in the model of the physical system, all

states are reachable from each other, this means that cp must be true everywhere. We will begin

118 CHAffER 7. SOCIAL LA WS, SOCIAL BELIEF, AND ANTI-SOCIAL BEHAVIOUR

I No. I Property I Result I
1 (())~ 0 (rrx ~ (((Ag))~O):lsra) vi

2 (())~ o (rrx ~ (((S))~O):lsra) x

3 (())~ o (rrx ~ (((S));O):lsra) vi

4 (())~ o (rrx ~ ((())~O?sra) vi

5 (())~ o (ssx ~ (((Ag))~O)3sra) vi

6 (())~ 0 (ssx ~ (((S))~O)3sra) x

7 (())~ 0 (ssx ~ (((R))~O)3sra) vi

8 (())~ 0 (ssx ~ ((())~O).5sra) vi

9 (())~ o (ssx ~ ((Ag))~Orrx) vi

10 (())~ 0 (ssx ~ (())~ Orrx) vi

11 (())~D((ssxl\sra) ~ rrx) x

12 ((R))~D((ssxl\sra) ~ rrx) x

13 ((S))~ 0 ((ssx 1\ sra) ~ rrx) x

14 (())~D((ssxl\sra) ~ rrx) vi

15 (())~ 0 ((rrx 1\ rsa 1\ sra) ~ (())~O-'ssx) x

16 (())~ 0 ((rrx 1\ rsa 1\ sra) ~ ((R))~ 0 -,ssx) x

17 (())~ o ((rrx 1\ rsa 1\ sra) ~ ((R));O-,ssx) vi

18 (())~ o ((rrx 1\ rsa 1\ sra) ~ (())!O-,ssx) vi

Figure 7.4: General properties and results

7.3. CASE STUDY 119

by looking at properties 1 - 4. Let us first look at property 1. Here, the invariant cp says that

if the receiver has received a bit x.I, then there should exist a physical strategy for the grand

coalition of agents so that in two time steps, the sender has received an acknowledgment ack.l.

If we look at Figure 7.1, this corresponds to finding every state where rrx is true and checking

that the agents can choose a physical strategy there such that in two steps, sra is true. This holds

(as expected, since if the grand coalition can't make it happen, it won't be possible for any sub

sets of agents). In fact, it is not difficult to see that we even have (((Ag))~O)2sra: no matter

where we are in the system AltBit, the receiver can always (if no constraints are imposed)

send an ack.I acknowledgement, which leads us to a state in which sra holds. Property 2

is similar, but expresses that if the receiver has received a bit x.I, then the sender S should

have a social strategy while all other agents can act physically, so that in two time steps, the

sender has received an acknowledgement ack.l. This fails as the receiver has the possibility

of acting physically, thus sending an erroneous acknowledgment. Of course, it is only R who

can guarantee, using a social strategy, that S receives the acknowledgement that it should (i.e.,

ack.I). It even allows the Sender to behave in an arbitrary physical way. Property 4, expresses

that if the last bit received was of a form x.I, then all socially allowed computations will

guarantee that in two steps, S has the corresponding acknowledgement (recall that in all these

examples, we assume that the environment behaves optimal in the sense that messages don't

get lost; otherwise we should weaken the consequent in property 4 to (())~Osra).

We now discuss properties 11 - 14. Property 11 expresses that, globally, if S recently sent

x.I and received its acknowledgment ack.I, then R should have received the x.I (the 'matching

pair' of x.I and ack.I should not have come about 'by coincidence', so to speak). This fails, as

there is nothing in place to ensure that the receiver will send the correct acknowledgment back

(it might have sent ack.I to fool S), or to ensure that the sender will alternate the colour of bits

it sends. What if we demand R to act socially (property 12)?, The desired property still fails:

Since S is not required to act socially, he could enforce a transition from (0,1 I 0,1) (where he

is sending x.O but still receiving ack.I, and R received x.O) to (1,1 I 0,1) (S changes the colour

of his bit, without having received an acknowledgment). When only S is required to act socially

(property 13), our property still fails as the receiver may send an erroneous acknowledgement

to the sender. When all agents act socially (14), however, this formula passes. This is as

expected as the social laws guarantee the agents adhere to the protocol.

Finally we look at properties 15 - 18. Property 15 looks at whether the sender is alternating

his bits correctly. Specifically, this property says, if the receiver has received a bit (colour 1),

the receiver has sent an acknowledgment (colour I), and the sender has received an acknowl

edg~ent (colour I), if everyone acts physically, on all paths in the next state the sender will

send a bit with colour 0. This fails as expected as there is nothing to ensure that the agents

120 CHAPTER 7. SOCIAL LAWS, SOCIAL BELIEF, AND ANTI-SOCIAL BEHAVIOUR

follow the protocol if they are allowed to act physically. Here we require the sender to alternate

the colour of the bit it sends. The next variation (property 16) is when R is acting socially and

everyone else is capable of acting physically. This fails as it is only up to the sender whether to

send a colour 0 or 1 bit. Then we look at property 17 where R is capable of acting physically

and everyone else is acting socially. This passes as expected, as it only requires the sender

to act socially to ensure the colour of bits is alternated. Finally, when all agents act socially

(property 18) this passes, as the sender is still acting socially. This property might be over

constraining, as the objective is still achieved with property 17.

7.3.2 Informational Properties

Now we look at some informational properties in the alternating bit protocol. Some of such

properties are given in Figure 7.5. We are going to investigate knowledge and social belief.

For the standard notion of knowledge, we refer to Figure 7.1. Here columns represent indistin

guishable states to S and rows represent indistinguishable states to R. For the social belief, we

refer to Figure 7.3, where rows and columns have the same interpretation of indistinguishable

states. We notice in Figure 7.1, where the agents are totally unconstrained, the agents actually

have no knowledge whatsoever about the other agent's state. In other words, if agents can act

arbitrarily, then very little knowledge ensues. For instance, in q15, S knows of course its own

state, but has no clue of R's: q15 F -Ksrrx A -,Ks-,rrx A -,Ksrsa A -,Ks-,rsa.

However, this is not the case in Figure 7.3, where the agents are constrained by the social

laws. In this diagram, there are states where agents have social belief about the state of the

other agent. For example, if we find a state where both sxx and sra are true (e.g., Q15), we can

see that in all S-indistinguishable worlds, rrx and rsa both hold. This means the sender knows

these variables in state Q15: he in fact has perfect information of what the global state is. This

shows us the importance of social laws, in that they can totally change the epistemic properties

of the system. We now investigate some specific knowledge properties in order to illustrate our

point further.

First we look at property 19. This property is an invariant p~operty and it says, if the

sender has sent a bit and the sender has received an acknowledgement back, then the sender

should know that the receiver has received the bit. So the first thing we need to do is look at

all states in Figure 7.1 where both sra and ssx are true. Now we must check that in all these

S-indistinguishable states, rrx is also true. This, however, is not the case. This property does

not hold. This is due to the fact that the receiver may send an erroneous acknowledgement to

the sender, and so the sender won't know that the bit has been received. Now we consider a

variation where the sender is acting socially but everyone else is able to act physically (property

20). This formula does not hold, as the receiver is still able to send erroneous acknowledge-

7.3. CASE STUDY 121

I No. I Property I Result I
19 (())~ o ((sra 1\ ssx) -t Ksrrx) x

20 ((S))~ 0 (sra 1\ ssx) -t Ksrrx x

21 ((S))~ 0 (sra 1\ ssx) -t Ksrrx x

22 (()); 0 (sra 1\ ssx) -t B§rrx vi

23 (())~ 0 (ssx 1\ rrx) -t (())~02 Ksrrx x

24 (())~ 0 (ssx 1\ rrx) -t ((S))~O'l. Ksrrx x

25 (())~ 0 ((ssx 1\ rrx) -t ((R))~O'l.Ksrrx) x

26 (());D((ssx 1\ rrx) -t (());O'l.B§rrx) vi

27 (())~ o (ssx -t (())~OKsrrx) x

28 (())~ o (ssx -t ((R))~OKsrrx) x

29 (()); 0 (ssx -t (());OB§rrx) vi

Figure 7.5: Knowledge properties and results

122 CHAPTER 7. SOCIAL LAWS, SOCIAL BELIEF, AND ANTI-SOCIAL BEHAVIOUR

ments due to the fact that it is capable of acting physically. Now we look at property 21, where

now the sender is following physical strategies, but everyone else (i.e., the receiver) is follow

ing social strategies. Intuitively one might expect this property to hold, as now the receiver

is behaving as it should do. However, this property does not hold. Even though the receiver

acts socially and sends the sender the correct acknowledgement, the sender does not know that

the receiver is acting socially, so it does not hold. Finally we consider a variation where all

agents are assumed to act socially (property 22). Now we must look at Figure 7.3 and again

find states where both sra and ssx are true. As one can see, this is only state q15. Now in all

S-indistinguishable states, we need to see whether rrx is also true. This is the case as q15 is

the only state. When all agents are assumed acting socially, this formula holds as expected. So

now the sender assumes the receiver is acting socially, and under this assumption, he believes

rrx.

The next property we look at is property 23. This property is again an invariant property.

This says if the sender has sent a bit and the receiver has received a bit, no matter what happens

if the agents follow physical strategies, then in two time steps, the sender should know that the

receiver has received the bit. Now we need to find all the states in Figure 7.1 where both ssx and

rrx are true and see if it is the case that all paths from these states lead to states in two time steps

where the sender knows rrx (i.e., in all S-indistinguishable worlds where sra and ssx is true, rrx

is also true). This property fails when all the agents are capable of acting physically. This can

only be expected for the same reasons as above. Now we look at a variation where the sender

acts socially but the other agents can act physically (property 24). Naturally, this property does

not hold as the receiver can choose to follow strategies where he does not send the correct

acknowledgement. Now, looking at property 25, again we might expect this property to hold

as it is only the receiver who is responsible for sending the correct acknowledgements to the

sender. However, the sender does not know that the receiver is acting in a social manner, thus

making this property false. The final variation we look at is property 26, where everyone is

acting socially. To see if this holds we need to look at Figure 7.3. We find a state where both

ssx and rrx are true. Here. QlO is the only such state. Now we need to look at all social state

transitions and see if they lead to a state where the sender knows rrx. The only transition is to

state Q15. where indeed the sender does know rrx. So this property holds under the assumption

that the receiver is acting socially.

Finally we look at property 27. which says if the sender has sent a bit then no matter what

the agents do. if they are capable of acting physically then at some point in the future. the sender

knows that the receiver has received the bit. This is similar to the previous property (23). but

more general. Again. this property should only require the receiver to act socially and send the

acknowledgement to the sender. This property does not hold when all the agents are capable of

7.4. SUMMARY 123

acting physically. This is again due to the receiver not sending the correct acknowledgement.

So if we just consider a variation where the receiver is acting socially (property 28), this should

hold. However, as previously explained, the sender won't know rrx as he doesn't know if

the receiver is acting socially or not. Finally, when we consider the case where all agents are

assumed to be acting socially (property 29), this does indeed hold.

7.4 Summary

In this chapter we have extended our social laws framework further. In the previous chapter, the

basic framework was extended to incorporate epistemic notions, but here, we have extended

this by removing the assumption that all agents in the system will adhere to the social laws.

Firstly, we extended the semantic structures to allow us to model physical action pre-conditions

and legal action pre-conditions, in turn, allowing us to construct both physical and legal strate

gies for the agents. With the semantic constructs in place, we introduced our logical language

for reasoning about such systems - Social ATEL - based on ATEL but extended to allow us to

refer to the type of strategies being followed by the coalition of agents and the other agents in

the system. With the possibility of violating social laws came a new type of epistemic property,

, known as Social Belief, which is belief under the assumption that all agents in the system are

adhering to the social laws. We also introduced the notion of a Socially Necessary Fact, which

is a fact which should be true no matter what, providing all agents in the system act in a social

manner.

We presented a case study, knownas the Alternating Bit Protocol, in order to demonstrate

Social ATEL. We were able to investigate various interesting properties in the case study, to

see the affects of agents following social laws while other agents did not. We also investigated

informational properties, to see the affects social laws have on the knowledge of the agents.

After investigating informational properties, we have shown the important roles social laws

play in our systems. When the agents are following strategies that are not restricted in any

way, we see that the only thing they do know is their local states. Also, it is not enough for

simply one agent to act socially, even if this is the only agent who can affect the outcome of

a knowledge property, as if the other agent does not know he is acting socially, it can not gain

knowledge from him. This is where the notion of social belief comes into play. When all the

agents in the system act socially, we only need consider those states defined by sreach(AltBit).

Comparing Figure 7.1 to Figure 7.3, one can immediately see that much more social belief

exists than simply standard knowledge. The crucial point about this social belief is that it is

belief under the assumption that all the agents in the system are conforming to the norms (social

laws).

124 CHAPTER 7. SOCIAL LAWS, SOCIAL BELIEF, AND ANTI-SOCIAL BEHAVIOUR

Chapter 8

Reducing Social ATEL to ATL *

In this chapter we introduce an alternative approach for expressing properties of systems that

refer to whether the agents are acting socially or physically. Rather than using our logical

language, Social ATEL, introduced in the previous chapter, we see to what extent we can capture

the same notions using only ATL and ATL*. To this end, we introduce the notion of "good" and

"bad" states, similar to the "Red" and "Green" states of Lomuscio and Sergot in [30]. We

, modify our Social Action-Based Alternating Epistemic Transition Systems by introducing an

atomic proposition for each agent, which is only true in the current state if the agent arrived

here from the previous state using a legal action. So essentially, we are labeling the states based

on how the agents arrived at each state. This gives rise to a larger state space in the modified

systems, as now we have copies of each state, representing all the combinations of the agents

acting socially or physically to reach it. Ideally we would like to be able to reduce properties

expressed in Social ATEL into ATL, expressed using these "good" atomic propositions, in order

to automatically verify Social ATEL properties using existing ATL model checkers, such as

MOCHA. However, due to the fact that Social ATEL appears to be more expressive than ATL, it

is not feasible to find direct equivalences between the two. We can, however, express interesting

properties using ATL and ATL *.

Using the approach outlined above, we look at several types of Social ATEL properties and

see how closely we can express these in ATL *. We investigate the relationship between the two

using three special cases of G, where G is the coalition of agents cooperating to achieve some

objective. We look at the case where G is the grand coalition (Ag), the empty coalition (0), and

finally, an arbitrary coalition (G). We show that there is a general pattern between Social ATEL

properties and properties expressed in this approach, which holds regardless of the coalition

type;: and the temporal operators being used. Finally, we prove equivalences between general

formulae expressed in Social ATEL and formulae expressed using this approach, for each com-

125

126 CHAPTER 8. REDUCING SOCIAL ATEL TO ATL *

bination of the coalition acting socially or physically, while the other agents act socially or

physically.

This chapter is structured as follows: We start by introducing the atomic propositions and

their interpretation and then show how we modify SAAETSs to take into account these new

atomic propositions. We then go on to see how closely we can express formulae of Social

ATEL in this approach. In Section 8.3, we prove some reductions between formulae expressed

in the two approaches and finally in Section 8.4 we summarise.

8.1 Modifying SAAETSs

In this section we introduce the atomic propositions used to give a labeling to each state based

on how each agent arrived there. This can either be by performing a legal action or by simply

performing any physically possible action. We introduce an atomic proposition, g j, one for

each agent i E Ag, with the interpretation that gj is true in the current state if agent i's last

action was a legal one. This corresponds to agent i acting in a social manner (for one time

step). GP = {gl. ... , gn} is a set of good propositions where GP ~ cJ>. In order to reason

about coalitions of agents, we introduce a proposition good (G) which holds if all the agents in

G acted socially to reach the current state. good(G) is defined as follows:

good(G) = /\ gj
jEG

We do not define any explicit propositions to express that an agent i got to the current state via

an illegal action, as obviously -'gj would simply hold.

Now we must modify SAAETSS with these gi propositions. It is important to note that the

definition of the gj propositions comes from the £(a) function in the given SAAETS. We are

not concerned with implementation of a social law on a system, as defined in Section 7.1, the

£(a) function is assumed to be given. Now, given a Social Action-Based Alternating Epistemic

Transition System (SAAETS),

Sys = (Q, qo,Ag,Aq, ... ,Acn, IV!! ••• , IVn, p, £, T, cJ>, 7r)

in order to express properties of systems in this way, we need to convert the system into a

modified system as below:

where the modified components have the following interpretation:

8.1. MODIFYINGSAAETSS 127

• QO: For each state q E Q, we now have at worst 2 iAgi copies of q to represent all the

combinations of agents being "good" and "bad". We encode this extra information as

qXlo ... ,xn' where Xj E {D, I}. Xj being 1 means agent i's last action was a social one,

whereas a D means it was anti-social. The new set of states formed, QO, in the worst

case, is of size 1 Q x 2Ag I. See Figures 8.1 and 8.2 for an example of how the train system

is transformed;

• qg: qo becomes qg, which is an abbreviation of qg , where Vi E Ag,xj = 1. This is
Xl,""Xn

the initial state of the system, which is the same as before, except gj is true for all agents;

• ~o: ~ is updated with the new gj propositions: ~o = ~ U GP;

Vi E Ag, Vp E ~,Vq E Q, VXj E {D, I} : pE 7r(q) <==> pE 7r°(qxl, ... ,xn)

Vi E Ag, Vgj E GP: gj E 7r°(qXl,. .. ,xn) <==> Xj = 1.

• TO: Vi E Ag, Vq, q' E Q, Vaj E ACj, VXj E {D, I} : [T(q, (ab ... , ak}) = q' <==>
TO(qXl, ... ,xn' (al,'" ,ak}) = qfi(Xl), ... Jn(Xn)' whereJ;(xj) = 1 <==> q E £(aj)].

So now we have modified SAAETSS to work with these gj propositions. Firstly, the set of states

has been modified. We have a new copy of each state for all combinations of gj, for all agents.

The initial state is the same as before, but gj is true for all agents, hence the system starts in a

good state. The new action precondition function, pO, is directly equivalent to p for all states

and actions, regardless of the gi propositions. In other words, if an agent can perform a in q,

then the agent can perform a in qXl , ... ,xn' no matter what the values of Xj are. The set of atomic

propositions, ~,is updated with the set of good propositions, GP. The truth definition function,

7r, is the same as before for atomic propositions in ~. It is updated for the propositions in GP,

where a gi proposition is true in a state where Xi = 1. Finally, the transition function, T, is

updated in the following way: transitions are the same as before, but now, if agent i performs

a legal action, in the resultant state, gi will be true and the Xj subscript of the state will be 1.

Performing an illegal action results in the gj proposition being false and the Xj subscript of the

state being D.

Remark In this chapter we do not look at properties that refer to knowledge. We briefly con

sid~r how we would modify the epistemic accessibility relations from SAAETSs to account for

these good propositions. We propose the following modification to the epistemic accessibility

128 CHAPTER 8. REDUCING SOCIAL ATEL TO ATL*

relations:

So if two states, q and q' are indistinguishable in Sys, qXl,.",xo and ix1, ... ,xo will be indistinguish

able in Syso. This will now mean that agents will know if they have acted socially, and also

if other agents have acted socially. This would allow us to formulate informational properties

about systems where agents can reason about the behaviour of the other agents in the system.

An alternative way to modify the epistemic accessibility relations would be as follows:

""I: 'Vi E Ag, 'Vq, q' E Q, 'Vxj,xi E {D, I} : q ""j cl <==> qXl,""Xo ""I q~,x:.

where Xj = xi,
This is the same as above, but now agents only know if they have acted socially and nothing

about how other agents have acted. This would mean agents would only be able to reason about

their own behaviour.

8.2 Reducing Some Formulae

There are various interesting types of properties we can form with these good(G) propositions.

We will now look at several types of Social ATEL properties and see how closely we can express

such properties with these good (G) propositions. We will investigate this using special cases

of G, namely the grand coalition (Ag), the empty coalition (0), and an arbitrary coalition (G).

We will construct example properties using the train scenario that we introduced in Chapter 4.

We introduce the systems Train and Traino. Train = S1 t /31, where S1 t /31 is the system

constrained with /31 introduced in Chapter 5 and Traino is the AATS after modifying Train. We

can see the affect modifying the systems has by comparing Figure 8.1, showing the states and

transitions of the standard train system implemented with /310 with Figure 8.2, which shows the

same system after being modified. States which do not have an edge labelled 'i, i' leaving them

are assumed to have a reflexive arc labelled 'i, t', which we omit for clarity.

We start by looking at the following Social AT EL formula:

Sys, q 1= ((G))~ D<p (8.1)

where <p is assumed to be a propositional logic formula. This Social ATEL formula says that G

has a social strategy, such that, no matter what the other agents do, providing they follow social

strategies, <p will always be true. We will now try to capture the above using these good(G)

B.2. REDUCING SOME FORMULAE 129

Key: * denotes an illegal action

Figure 8.1: State transitions in Train.

propositions where we take G to be the grand coalition, Ag:

SysO, qXl , ••• ~. 1= ((Ag)) 0 (good(Ag) 1\ cp) (8.2)

where Vi E Ag : Xj = 1 and cp is assumed to be a propositional logic formula. This formula

states that the grand coalition of agents has a strategy such that it will always be the case that

good(Ag) is true and cp is true at the same time. This appears to express the same as (8.1)

above. If we refer to the train scenario we can formulate the following example property:

SysO, qOll 1= ((Ag)) 0 (good(Ag) 1\ -, (inE 1\ inw)) (8.3)

So this property states that the grand coalition should have a strategy so that it is always the

case, that the agents follow only social strategies and that both of the trains are not in the tunnel

at the same time. Since the primary goal of the trains scenario is to avoid a crash situation, it

130 CHAPTER 8. REDUCING SOCIAL ATEL TO ATL *

Figure 8.2: State transitions in Train ° .

seems obvious that the grand coalition could act in such a way, to only follow social strategies

and still achieve the goal of both agents not entering the tunnel at the same time. This seems

obvious, as always acting in a social manner should lead to the goal being achieved. Property

(8.3) passes when model checking in the system Traino.

Following on from what we said about acting socially leading to the goal, we can formulate

the following, where now we take G to be the empty set, 0:

(8.4)

where Vi E Ag : Xj = 1 and r.p is assumed to be a propositional logic formula. The above

8.2. REDUCING SOME FORMULAE 131

ATL* formula reads that on all paths, no matter what any of the agents do, good(Ag) always

being true implies that cp will always be true. In other words, if the agents always follow social

strategies, the goal, cp, is achieved. Referring back to the train scenario, we look at this example

property:

SysO, qOll 1= (()) (Dgood(Ag) -+ D...., (inE 1\ inw» (S.5)

So this reads, no matter what the agents do, on all paths, if the agents always follow social

strategies, this implies that the trains will never enter the tunnel at the same time. This sounds

intuitively correct based on what we said earlier about social strategies leading to the objective

of the social law being satisfied. Looking at Figure S.2, we can verify by inspection that this

property (S.5) is satisfied. In order to do this, we start in state qOll and look at all paths of the

system. On paths where good(Ag) is always true we need to check that,(inE 1\ inw) is also

true. This corresponds to choosing a path where gE and gw are both true in each state and then

checking that,(inE 1\ inw) also holds in all states across this path. Paths where good(Ag) is

not always true require us to do nothing, as once the left hand side of the implication is made

false, the whole implication becomes true regardless of the right-hand side.

We can see similarities between (S.4) and (S.I). However, they are not directly equivalent.

. When verifying (S.4), we look at all possible paths through the system, whether they are social

. or not. Therefore, we are going to encounter instances of good(G) which are false, while (S.4)

will still hold. However, (S.1) only considers social paths in the system. So therefore, they

are not directly equivalent, they just have a similar interpretation. Another thing that separates

the two formulae is that (S.4) is referring to what the agents have done in the past, i.e. if they

have always acted socially then cp will always hold. However, (S.I) is saying that on all paths,

no matter what the agents do providing they act socially, cp will always hold. Hence (S.1) is

talking about the future.

This leads us to consider this formula:

SysO, qXl, ... ,xn 1= (()) (Dgood(Ag) -+ Dcp) 1\ ((A g)) Ogood(Ag) (S.6)

where Vi E Ag : Xi = 1 and cp is assumed to be a propositionallogic formula. So, as before in

(S.4), this formula says that the agents always acting socially implies that the goal will always

be achieved, but now also the grand coalition should have a strategy such that they will always

act in accordance with the social laws. However, if we refer back to the definition of SAAETSS

we see that there is a condition which states that agents should always have at least one legal

action available to them in every state of the system. As Syso is a modified version of Sys, this

con<;lition still holds in Syso, thus guaranteeing that there is at least one social path, hence Ag

will always have a strategy to ensure good(Ag) is true. This makes this property redundant, as

132 CHAPTER 8. REDUCING SOCIAL ATEL TO ATL *

it is directly equivalent to (8.4).

Finally we consider the case where we have an arbitrary coalition, G:

SysO,qXlo ... ,Xn 1= ((G)) (Ogood(G) A (Ogood(G) -+ O<p)) (8.7)

where Vi E Ag : Xi = 1 and <p is assumed to be a propositional logic formula. So this formula

reads that coalition G has a strategy so that agents in G are always good and that if the other

agents in the system are always good then <p will always hold. We needed to separate out the

good(Ag) proposition into good(G) and good(G), as G has no control over what the agents in

G do. Therefore, we can precisely capture (8.1) in this way. If we refer to the trains example,

we can formulate a property such as the following:

SysO, qou 1= ((E))(Ogood(E) A (Ogood(W) -+ 0.., (inE A inw))) (8.8)

This property states that the Eastbound train has a strategy so that it is always social, and if the

Westbound train is always social, then the two trains will never be in the tunnel at the same

time. This property holds and can be verified by inspection of Figure 8.2.

Now we consider another type of Social ATEL formula:

Sys, q 1= ((G))~O<p (8.9)

where cp is assumed to be a propositional logic formula. This formula says that G has a social

strategy, such that, no matter what the other agents do, as long as they all only follow social

strategies, then cp will be true either now or at some point in the future. We will now try to

express a similar property using good(G) propositions, where we take G to be the empty set,

0:

(8.10)

where Vi E Ag : Xi = 1 and <p is assumed to be it propositionallogic formula. This formula says

that no matter what the agents do, on all paths, good(Ag) always being true means that <p will

either be true now or at some point in the future. That is to say that if all the agents always act

socially, the goal cp will eventually be achieved. Here we can see similarities between the above

and (8.9). They are similar, but not directly equivalent, for similar reasons that we discussed

earlier regarding (8.4).

We can also consider situations in which the other agents are constrained to social strategies

8.3. REDUCING SOCIAL ATEL TO A1L* 133

and the coalition of interest can act in an unconstrained manner:

Sys, q F ((G)); Dcp (8.11)

where cp is assumed to be a propositional logic formula. This formula states that G has a

strategy to ensure cp is always true, providing the other agents always act in a social manner.

We can express something similar to this in the good states approach in the following way:

(8.12)

where 'Vi E Ag : Xj = 1 and cp is assumed to be a propositional logic formula. So, here we

are saying that G has a strategy such that no matter what the other agents in the system do,

providing the other agents follow only social strategies, G can always achieve cp. We can look

at an example property of the same type as (8.12):

Syso, qOll F ((W)) (Dgood(E) -+ D.., (inE 1\ inw)) (8.13)

This property states that the westbound train has a strategy so that if the eastbound train always

. acts socially, then the trains will never enter the tunnel at the same time. This property holds

and can be verified by inspection of Figure 8.2.

8.3 Reducing Social ATEL to ATL*

After investigating the above formulae, we have noticed a general pattern between formulae

of Social ATEL and formulae expressed in this good states approach, which seems to follow

regardless of the coalition type (grand, empty or arbitrary coalition) and the temporal operator

being used.

8.3.1 Bisimulations between computations

Thinking in terms of strategies, there are in general more strategies at for an agent i in So than

there are strategies O'j for him in S. To see this consider the following example.

Example 13 Suppose we have two agents, called 1 and 2. Suppose agent 1 can perfonn three

actions in q: actions a and b (which we assume are legal) and action c (an illegal action).

Suppose agent 2 has two actions to his disposal in q: action d (legal) and e (illegal), and no

othe,r action to choose there. Suppose furthennore that the transition function r is such that

r(q, (a, d)) = r(q, (c, d)) = q. In So, this gives rise to transitions r(qn (a, d)) = qu, while

134 CHAPTER 8. REDUCING SOCIAL ATEL TO ATL *

r(qll, (c,d)) = qQ1. This enables agent 2 in So to allow for strategies that depend on how

lawful agent 1 behaved in the past in So. For instance, agent 2 might play a kind of 'tit for tat'

by using strategy 0' with O'(qllqll) = d, but at the same time O'(qllqOt} = e: a legal action

of agent 1 is replied to by a legal action of agent 2, but after an illegal move of agent 1, agent

2 responds by an illegal action. Notice that such a strategy cannot be implemented in S, since

both sequences qllqOl and qllqQ1 only correspond to the single sequence qq in S.

However, as we will see, there is a way to connect computations in both systems directly to

each other.

Definition 30 We say that a computation). = QOqlq2 ... is compliant with strategy profile

O'Ag, if comp(O'Ag,QO) = {).}. That is, the computation can be seen as the effect of applying

the strategy profile 0' Ag to Qo. If such a strategy profile exists for). we also say that). is an

enforceable computation in the given system.

For any state QX1 .. .x. E QO, let projQ(Qxl .. .x.) be its corresponding state q E Q. Similarly,

for a sequence of states; in QO, the sequence projQ+ (5) denotes the point-wise projection of

every state in the sequence to the corresponding state in Q.

Given a system S and its associated system with good states So, let). = qOql . .. be a

computation in S, and).0 = SOSl ... a computation in So. We say that). and).0 bisimulate if
there are two strategy profiles, 0' Ag in Sand O',4g in So such that

1.). is compliant with O'Ag and)'o is compliant with O',4g

2. for every u E N, and every i E Ag, O'i(qO ...).[u]) = O'i(so, . ..).O[u])

3. for every u E N,).[u] = projQ().O[u])

We say in such a case also that). and), ° bisimulate with strategy profiles 0' Ag and O',4g. Nota

tion: ().,O'Ag) ~ ().o,O',4g).

Note that a computation need not be compliant with any strategy, and, moreover, if it is

compliant with one, it will in general be compliant with several others as well. The latter is

so because of two reasons: first of all, a computation only specifies what the transitions are

within a particular sequence of states, and says nothing about choices on states that do not

occur in that computation. Secondly, even within a computation, it is well possible that a

transition from qi to qi+1 can be the effect of different choices by the grand coalition Ag. For

two computations to be bisimilar, Definition 30 demands however that there are two strategies,

one for each computation, in which exactly the same actions are taken, at every state in the

computation. Moreover, item 3 guarantees that the computations also only visit corresponding

states.

8.3. REDUCING SOCIAL ATEL TO ATL * 135

Let an objective temporal formula 'Ij; be defined as follows:

Such formulae can be interpreted on infinite paths of states A = qOql ... in a straightfor-

ward way:

S,qOql ... FP iff S,qO FP
S, qoql ... F 'lj;l /\ 'lj;2 iff S, qOql ... F 'lj;l and S, qOql ... F 'lj;2

S,qOql'" F O'lj; iff S,ql". F 'Ij;
S,qOql'" F D'Ij; iff Vi,S,qiqi+l .. ' F 'Ij;
S, qOql ... F 'lj;l U 'lj;2 iff 3i S.t. S, qiqi+l ... F 'lj;2 and VD ~ j < i, S, qjqj+1 ... F 'lj;l

Note that, in particular, since the propositions gi are atomic propositions in So, we can

interpret them on an infinite path in So.

Lemma 7 Let A = qOql q2 . .. and A ° = SOSlS2.... Suppose furthermore that (A, OAg) ~

(A ° , (JAg)' Then:

1. for every u E N and every objective temporal formula 'Ij;:

2. for every u E N, i E Ag,

Proof:

1. Let A and A ° be as specified. Recall that, by item 3 of Definition 30, for all u E N,

A[U] = projQ(AO[U]) (*). We now prove by induction 'Ij; that for all u E N, S, A[U] F 'Ij; iff
So, AO[U] F 'Ij;. For atomic propositions p, this follows immediately from the equivalence

(*) and the definition of 71"0. Now suppose the property is proven for 'Ij;: we only do the

O-case. Let u E N be arbitrary.

S, A[U] F O'lj; iff (definition of 0)
s, A[U + 1] F'Ij; iff (induction hypothesis)

SO, AO[U + 1] F'Ij; iff (definition of 0)
SO,AO[U] F O'lj;

2,. Let A[u+1] = q, for some q E Q. Note that, by item 3 of Definition 30 projQ(AO[u+1]) =
q. So, AO[U + 1] is qxl ... Xi-l,xi,xi+lx. for some sequence Xl" .Xi-l,Xi,Xi+l, .. 'Xn E

136 CHAPTER 8. REDUCING SOCIAL ATEL TO ATL *

{a, l}n. By definition of 1'0, we have

Xi = 1 iff A[U] E £((ji(qO ... A[U])) (8.14)

Moreover, by the truth definition of gi, we have

(8.15)

The result now immediately follows from (8.14) and (8.15) together.

o

So, if we have two computations that bisimulate, then according to item 1 of Lemma 7, they

verify the same objective temporal formulae, and, by item 2, a choice for an agent i in the

original system is legal, if and only if in the associated system, in the state that results the

proposition gi is true.

Definition 31 Let a computation A be compatible with strategy profile (jAg' We say that coali

tion G behaves social according to this profile along the computation A, if'Vu E N, 'Vi E

G, (A[U] E £((ji(qO'" A[U]))).

So, G behaves social along A, if it has a contribution to generate the computation A that

consists only of social actions.

Corollary 1 Suppose that A and A ° are bisimilar computations, with strategy profiles (jAg and

(jAg' respectively. Let G be an arbitrary coalition. Then

1. G behaves social according to (jAg along A if! So, A ° 1= Ogood(G)

2. Ifforalli E G, (ji E D..i, thenSo,Ao 1= Ogood(G).

Proof:

1. Note that item 2 of Lemma 7 implies

This, in turn, implies

('Vu E N, 'Vi E G A[U] E £((ji(qO'" A[U]))) iff'Vu EN, 'Vi E G(SO, AO[U + 1]1= gi)

The left-hand side of the above 'iff' states that G behaves social according to (jAg along

A, and the right-hand side is equivalent to So, A ° F Ogood(G).

8.3. REDUCING SOCIAL ATEL TO ATL * 137

2. This follows immediately from the above: note that if for all i E G, aj E fl j, then

Vu E N, Vi E G A[U] E i(aj(qo ... A[UJ)).

o

The converse of item 2 of Corollary 1 is in general not true: if So, Aa 1= good(G), then we

only know that along the computation A, all members of G behave well, but outside A, they

may not and hence their strategy need not be social.

Definition 32 Let A be a computation. We say that strategies aj and a; for i coincide along

A, written, aj =>. ai, if for all u E N, aj(A[O] ... A[UJ) = aHA[O] ... A[UJ). For a coalition,

aG = aa' if for every i E G, aj =>. ai. Moreover, for any strategy profile aAg, and Tj a

strategy for i, we write arT;! aj] for the strategy profile that is like a Ag, except that for agent i,

the component aj is replaced by Tj. Similarly for a[TG/aG]'

It is easy to see that if aAg is compliant with A, and aj =>. a;, then a[ai/aj]Ag is also

compliant with A.

Lemma 8 Suppose A is a computation, and strategy profile a is compliant with it. Suppose

furthermore that G behaves social according to this profile along A. Then there exist a set of

. strategies TG, such that TG E flG and aG =>. TG.

Proof: For every finite prefix qOql ... qn of A, and every i E G, we take Tj(qOql ... qn) =
aj(qOql •.. qn). For this choice, we obviously have aj =>. Tj. Also, note that every action

Tj(qOql ... qn) is a legal choice, because i behaves social according to the profile a along A.

Since by definition of a system S every agent can always perform a social action, we can extend

Tj for any other sequence s of states in such a way that the choice Tj(S) is a legal action. It is

clear that TG satisfies the conditions of the lemma. \ o

We noted above that in general there are more strategies for a coalition in So than there are

in S. Our main result connecting a system S with So now says that all enforceable computations

in one of the systems have a computation that is bisimilar in the other.

Theorem 16 Let S and So be as defined before. Suppose A is compliant with profile a Ag. Then:

there is a computation Aa in So and a strategy profile aAg, such that (A, aAg) ~ (Aa, aAg). The

converse is also true: for every computation Aa in So that is compliant with a strategy AAg we

can find a strategy profile aAg and computation A in S such that (A, aAg) ~ (Aa, aAg)'

Proof: From S to So: let A = qOql'" be an enforceable computation in S and let it be

compliant with a Ag. Let a O be a strategy in So for agent i satisfying:

138 CHAPTER 8. REDUCING SOCIAL ATEL TO ATL*

The strategy profile O"Ag generates a computation >.0 = SOSl ... for any So withprojQ(so) = qo.

Hence, by definition, O",4g is compliant with >.0. This shows item 1 of Definition 30. By defi

nition of this >.° and 0"" also item 2 of Definition 30 is satisfied. We now demonstrate item 3

using induction on the length of the computations, u. If u = 0, >'[0] = qo = projQ(so) = >.°[0]

(note that qo = projQ(so) by our choice of so). Now suppose the following induction hypothe

sis (ih) holds: "In ~ u : >.[n] = >.O[n]. Then

>.[u + 1] = by definition of computation

r(>'[u], O"Ag(qO ... >.[u])) = definition ofr° and ih
rO(>. O[u], O",4g(so ... >. O[u])) = by definition of computation

>.O[u + 1]
From So to S: Let>. ° = SOSl Since>. ° is enforceable, we know that>. ° is generated by

some strategy profile O",4g. Let>. = projQ+ (>.0) = projQ(so)projQ(Sl)' ..• It is easy to see that

>. is generated by any strategy profile 0" Ag that satisfies, for any i E Ag:

Hence, 0" Ag is compliant with >.. Item 2 of Definition 30 follows directly, as doe,s,item 3 of that

definition. 0

Going briefly back to Example 13, although the strategy r in So for agent 2 that simulates

'tit for tat' has not immediately a counterpart in S, in a computation>. 0, agent 1 must have made

up his mind between behaving 'good' and 'bad', and hence we either have the computation

qllqll .:. or qllq01 And those do have a counterpart qq ... in S, and they are generated

by different strategy profiles: in the first, 1 plays initially a, in the second, it would be c.

8.3.2 Proving some Reductions

We propose that the following reduction is true where G acts socially and the other agents also

act socially:

Sys,q 1= ((G))~Tcp <=> SysO,qX\,xn 1= ((G)) (Ogood(G) 1\ (Ogood(G) - Tcp))

where T is an arbitrary temporal operator, cp is a propositional logic formula and "Ix : x = 1.

To illustrate this general pattern, consider the following variations of (8.1):

1. G is an arbitrary coalition:

SysO,qX\,xnl= ((G}) (Ogood(G) 1\ (Ogood(G) - Ocp))

8.3. REDUCING SOCIAL ATEL TO ATL * 139

2. G=0:

3. G=Ag:

SysO,qX), ... ,xn 1= ((Ag)) (Ogood(Ag) 1\ (OT -+ Ocp))

Notice how 2. reduces down to be similar to (8.10) and 3. reduces to be (8.2). Now we will

prove the following:

Proposition 8 Let 'l/J be an objective path formula, and T a temporal operator. Let qO be such

that projQ(qO) = q.

Sys,q 1= ((G));T'l/J ~ SysO,qO 1= ((G)) (Ogood(G) 1\ (Ogood(G) -+ T'l/J))

Proof: Let'l/J be an objective path formula. Suppose Sys, q 1= ((G));T'l/J. This means that

there is a social strategy CTG E D.G for G, such that for any social strategy CTO E D.o for G, if

). = comp«(CTG,CTt;),q), thenSys,).1= T'l/J. (*).

Now consider an arbitrary state qO in Syso for which projQ(qO) = q. Let, for every

i E G, the strategy CTt for agent i be fixed: it is exactly like CTj on every projected sequence,

that is, let CTI(S'; s) be CTj(projQ+ (S);projQ(s)). Now consider an arbitrary strategy CT~ for G,
and let).o = comp«(CTo,CT't),qO). If we can show that for any such).0, we have SO,).o 1=
(Ogood(G) 1\ (Ogood(G) -+ O'l/J)) , we are done.

To show that Syso,).o 1= Ogood(G), recall that CTG is a social strategy for G, and then

apply Corollary 1, item 2. To show that also Syso,).o 1= Ogood(G) -+ O'l/J, assume that

Syso,).o F Ogood(G). Recall that).o is a computation).o = comp«(CTo,CT'l),qO), where CTo

is fixed. To stress that the computation depends on the strategy CTo' we will also write). ° (CTO)

for).0. Obviously, each such).O(CT~) is compliant with (CTO,CT~). For each such CT~, let the

strategy CTO in Sys be obtained from CT~ in the standard way: it has to satisfy, for every agent g
in the coalition G, that CTg(projQ().O[OJ) ... projQ().O[n])) = CTg().O[Oj, ...).0 [nJ). Let).(CTO) =

comp«(CTG,CTo),q), one computation for each CTO' It is clear that, for each CTC').(CTO) and

).O(CT~) are bisimilar computations, with strategy profiles (CTG, CTt;) and (CTo, CT~), respectively.

Since we assumed Syso,).O(CT~) 1= Ogood(G), by Corollary 1, item 1, we have that G behaves

social according to (CTG, CTt;) along).. By Lemma 8, there is a strategy T~ for G such that

TG =.x CTG, and TG E AG. That is, TG is a social strategy. By (*), we then have for all u E N,

that Sys,).[uj F 'l/J, i.e., Sys,). 1= O'l/J. Since). and), ° are bisimulating computations, we also

have Syso,).0 1= T'l/J, which had to be proven.

ror the converse, suppose SysO,qO 1= «G)) (Ogood(G) 1\ (Ogood(G) -+ T'l/J)). By the

semantics of ATL, this means that there is a strategy CTo for G, such that for aIJ strategies CT~,

140 CHAPTER 8. REDUCING SOCIAL ATEL TO ATL*

if >..0 = comp((aa, at), qO), then Syso, >..0 1= (Ogood(G) 1\ (Ogood(G) --t T'l/J». Note that

aa is fixed. For any q E Q, let qi be the a corresponding state in So with all indices being a l.

Now we define a strategy ai, for each i E G, as follows:

That is, ai 'copies' the behaviour as prescribed in ai on 'good paths'. We are going to show

that aG has the property that, if we combine it with any a(; E l:!.(;, every computation >.. ~

comp((aG, a(;), q) has the property that S, >.. 1= T'l/J. This would complete the proof that S, q 1=
((G}};T'l/J.

So, take any social strategy a(; for G. Take the strategy profile aAg = (aG, a(;). Obviously,

this is in l:!.Ag, since both coalitions act socially. Let>.. be the computation comp((aG, a(;), q).

We know from Theorem 16 that there is a computation >... and a strategy profile aAg such

that (>.., a Ag) ~ (>..., aAg). Note that we use fresh symbols for this compuation and strategy

profile, since>.. ° and aO already have a meaning. Now we argue that>..· can be conceived as

a computation comp((aa' at), qO). First of all, recall that both G and G are acting socially in

S. Hence, the computation>..· is of the form qO q1i q2i In other words, apart from possibly

the first state, all states have indices Xi that are all equal to 1! But then, on this computation,

we can just assume that the strategy of G is the earlier aa: on sequences with only 1 's, we

have copied the choices of aa to aG and now back to >.. •. Formally: for all u E Nand i E G:

aj(qOqliq2i ... qUi) = ai(qqlq2 ... qu) = ai(qOqliq2i ... qUi)· Moreover, since aAg E l:!.Ag,
we have So, >... 1= 0 (good(G) 1\ good(G». But we know that on such paths, when they

are generated by aG, that T'l/J holds. Now we use Lemma 7, to conclude that S, >.. 1= T'l/J, as

required. o

So far we ~ave only looked at the reduction for cases where G is acting socially and the

other agents are also acting socially. When we alter the type of strategies that the agents must

follow, we conjecture the following reductions:

Conjecture 1 Let'l/J be an objective path formula, and T a temporal operator. Let qO be such

that projQ(qO) = q.

1. Sys,q 1= ((G}}~T'l/J <=> SysO,qO 1= ((G}) (Ogood(G) 1\ T'l/J)

2. Sys,q 1= ((G}};T'l/J <=> SysO,qO 1= ((G}) (Ogood(G) --t T'l/J)

3. Sys,q 1= ((G}}~T'l/J <=> SysO,qO 1= ((G}}T'l/J

Now we consider a more complex Social ATEL formula and see whether we can express a

B.3. REDUCING SOCIAL ATEL TO ATL * 141

similar property in the good states approach:

Sys, q F ((G));O ((G))~Orp (8.16)

where rp is assumed to be a propositional logic formula. This formula states that G has a

strategy, providing all the other agents only follow social strategies, such that in the next state

G will have a social strategy to achieve rp in the next state, no matter how the other agents act.

We can express a similar formula in the good states approach:

SysO,qXl, ... ,xn F ((G)) ((Ogood(G)) -+ 0 (((G)) (Ogood(G)) -+ Orp)) (8.17)

where Vi E Ag : Xi = 1 and rp is assumed to be a propositionallogic formula.

There are also properties we can express with the good states approach that we can't express

with Social ATEL. For example, the following formula:

SysO, qXl, ... ,xn F (()) (good(Ag) U rp) (8.18)

Now this formula is indeed similar to (8.9), however there is a difference. Both are generally

saying that if Ag act in a social manner then rp will eventually be true, however, (8.18) only

requires Ag to follow social strategies until rp is satisfied whereas (8.9) requires Ag to always

act in a social manner.

x

zl
.... -----... jI.t;

z2
-.-----....... t;

S'

x'

zl'
.... -----... jlH;

z2'
-.-------ltt;

1 is forbidden in x'

Figure 8.3: Systems S and S'

We now prove that (8.18) can not be expressed in Social ATEL. Firstly, we introduce two

systems, S and S', illustrated in Figure 8.3. Both of these systems consist of only one agent.

which in each state is faced with the choice of two actions: lor r (for left or right, respectively).

There is only one atomic proposition, p, which holds in states Zl and Z2 (~ and z2 in S'). Both

the ~ystems are the same apart from in S' the action l is forbidden in x'. It does not matter if the

agent chooses l or r as both of these actions lead to a state where the same propositions hold.

142 CHAPTER 8. REDUCING SOCIAL ATEL TO ATL *

This is given formally by the following lemma:

Lemma 9 For the two systems S and S', and the set of all Social ATEL formulae, <P, the fol

lowing holds:

a. V<p E <P : S,YI 1= <P {:::=::> S,Y21= <P andV<p E <P : S,ZI 1= <P {:::=::> S,Z2 1= <P;

h. V <P E <P : S',.it 1= <P {:::=::> S', ~ 1= <P and V <P E <P : S', it 1= <P {:::=::> S', z~ 1= <po

Proof: We only prove part a., as the proof of part b. follows exactly the same reasoning.

Firstly, we want to prove:

V<p E <P : S, Zl 1= <P {:::=::> S, Z2 1= <P

by induction on <po

1. For atomic propositions p, this can easily be verified by inspection.

2. For the -,<p case suppose the following induction hypothesis holds: S, Zl 1= <P {:::=::>

S,Z2 1= <po

S,Zll=-,<p iff (definitionof-,<p)

not S, Zl 1= <p iff (induction hypothesis)

not S, Z2 1= <p iff (definition of-,<p)

S, Z2 1= -,<p

3. For the case of <PI /\ <P2, suppose the following induction hypothesis holds: S, Zl 1=
<PI {:::=::> S, Z2 1= <PI and S, Zl 1= <P2 {:::=::> S, Z2 1= <P2·

S, Zl 1=. <PI /\ <P2 iff (definition of <PI /\ <P2)

S, Zl 1= <PI and S, Zl 1= <P2 iff (induction hypothesis)

S, Z2 1= <PI and S, Z2 1= <P2 iff (definition of <PI /\ <P2)

S, Z2 1= <PI /\ <P2

4. For the ((G))~T<p case, where T is an arbitrary temporal operator, suppose the following

induction hypothesis holds: S,ZI 1= <P {:::=::> S,Z2 1= <po S,ZI 1= ((G))~T<p gives rise

to computations which only visit Zl. S, Z2 1= ((G))~T<p gives rise to computations which

only visit Z2. If S, Zl 1= <P, then by the induction hypothesis S, Z2 1= <P, hence S, Zl 1=
((G))~T<p {:::=::> S, Z2 1= ((G))~T<p. To illustrate this, consider the example case of

((G))~O<p. S,ZI 1= ((G))~O<p iff3aG E rG S.t. Vae; E re; if -X = comp((aG,ae;) ,Zl)

then Vu EN: S, -X[u] 1= <po Notice that Vu EN: -X[u] = Zl. S, Z2 1= ((G))~ O<p iff

3a~ E rG S.t. VaC E re; if N = comp((a~,ac) ,Z2) then Vu EN: S,N[u] F= <po

8.3. REDUCING SOCIAL ATEL TO AlL * 143

Also, notice that Vu EN: .x'[u] = Z2. If S, ZI F cp, then by the induction hypothesis,

S,Z2 F cp,hence,S,ZI F ((G))~Dcp ~ S,Z2 F ((G))~Dcp. The ((G))!Tcpcase

follows the same reasoning.

Finally, we want to prove:

by induction on cp.

1. The cases of p, -,cp and CPI /\ CP2 are trivial and follow the same reasoning as above.

2. For the ((G))~Tcp case, notice how r(yb I) = ZI and r(Y2, l) = ZI. and also r(yb r) = Z2

and r(Y2, r) = Z2. SO I and r lead to the same states no matter whether they are performed

in YI or Y2. As we have already proven Vcp E <1> : S, ZI F cp ~ S, Z2 F cp, it

follows that S,YI F ((G))~Tcp ~ S,Y2 F ((G))~Tcp. To illustrate this, consider the

example case of ((G))~Ocp. S,YI F ((G))~Ocp iff 3aa E ra S.t. VaG E rG if .x =

comp((aa, aG) ,YI) then S, .x[l] F cp. As .x[l] = ZI or .x[l] = Z2 and we have already

proven Vcp E <1> : S,ZI F cp ~ S,Z2 F cp, it follows that S,YI F ((G}}~Ocp ~

S,Y2 F ((G))~Ocp. The ((G}}!Tcp case follows the same reasoning.

o

The following theorem illustrates the fact that (8.18) can not be expressed in Social ATEL:

Theorem 17 Given the two systems, Sand S', shown in Figure 8.3, we claim that Vcp E <1>,

where <1> is the set of all Social ATELformulae: S,x F cp ~ S',x' F cp, but in the system

with good states, S,x F (())(good(Ag)U p) while S';x' ~ (())(good(Ag)U p).

Proof: We prove

by induction on cp.

1. For atomic propositions p, this can easily be verified by inspection.

2. For the -'Cp case, let q E Q be arbitrary and suppose the following induction hypothesis

holds: "Iq E Q: S,q F cp ~ S',q' F cp.

S,q F-'CP

notS,q FCP

not S' ,q' F cp

S', q' F -'Cp

iff (definition of -,cp)

iff (induction hypothesis)

iff (definition of-,cp)

144 CHAPTER 8. REDUCING SOCIAL ATEL TO ATL*

3. For the case of CP1 /\ CP2, let q E Q be arbitrary and suppose the following induction

hypothesis holds: "Iq E Q: S,q F CP1 {:=:} S',e! F CP1 and "Iq E Q: S,q F CP2 {:=:}

S',e! F CP2·

S, q F CP1 /\ CP2

S,q F CP1 and S,q F CP2

iff (definition of CP1/\ CP2)

iff (induction hypothesis)

(definition of CP1 /\ CP2) S', q' F CP1 and S', e! F CP2 iff

S', e! F CP1/\ CP2

4. For the (())~Ocp case, we suppose the following induction hypothesis holds: "Iq E Q :
S, q F cP {:=:} S', q' F cp. We begin by taking the state x E Q:

(=» S,x F (())~Ocp iffVaAg E L\Ag S.t. if>. = comp(aAg,x) we have S,>'[l] F cp.
>'[1] is either Y1 or Y2, but by lemma 9a, we can take Y2. So, S,Y2 F cP and by the

induction hypothesis S',~ F cp. Then, using lemma 9b, we see that Va~g E L\~g

if >.' = comp(a~g,x') we have S', >"[1] F cp. Hence, S',x' F (())~Ocp.
(<=) S',x' F (())~Ocp iffVa~g E L\~g S.t. if>.' = comp(a~g,x') we have S',>.'[l] F cp.

>.'[1] is y~, as aAg(x') = r because I is forbidden in x'. So, S',~ F cP and by the

induction hypothesis S,Y2 F cp. Then, using lemma 9a, we see that VaAg E L\Ag if

>. = comp(aAg,x) we have S, >'[1] F cp. Hence, S,x F (())~Ocp.

Now we take the state Y1 E Q:

(=» S,Y1 F (())~Ocp iff VaAg E L\Ag S.t. if>. = comp(aAg,yd we have S, >'[1] F
cp. >'[1] is either Zl or Z2. In the case where >'[1] = Zl: S,Zl F cP and by the

induction hypothesis S', it F cp. In the case where >'[1] = Z2: S, Z2 F cP and by the

induction hypothesis S',~ F cp. Then Va~g E L\~g if>.' = comp(a~g,iJJ we have

S', >"[1] F cp. Hence, S',y~ F (())~Ocp.

(<=) S',II F (())~Ocp iffVa~g E L\~g S.t. if>.' = comp(a~g,lI) we have S', >.'[1] F cp.
>.'[1] is either it or~. In the case where >.'[1] = it: s',t1 F cP and by the

induction hypothesis S, Zl F cp. In the case where >.'[1] = ~: S', ~ F cP and by

the induction hypothesis S,Z2 F cp. Then VaAg E L\Ag if>. = comp(aAg,yd we

have S, >'[1) F cp. Hence, S,Y1 F (())~Ocp.

The cases for the remaining states all follow the same reasoning as fromYl. The ((i))~Ocp

case is very similar and the ((Ag))~Ocp is identical to ((i))~Ocp as we only have one agent.

5. For the (())~Ocp case, we suppose the following induction hypothesis holds: "Iq E Q :
S, q F cP {:=:} S', e! F cp. We begin by taking the state x E Q:

B.4. SUMMARY 145

(=» S,x 1= (())~O<p iff'v'O'Ag E rAg s.t. if,\ = comp(O'Ag,X) we have S,'\[l] 1= <p.
,\[1] is either Yl or Y2. In the case where ,\[1] = Yl: S,Yl 1= <p and by the induction

hypothesis S',~ 1= <p. In the case where ,\[1] = Y2: S,Y2 1= <p and by the induction

hypothesis S',~ 1= <p. Then 'v'O'~g E r~g if X = comp(O'~g,x') we have S', X[l] 1=

<p. Hence, S',x' 1= (())~O<p.

(~) S',x' 1= (())~O<p iff'v'O'~g E r~g S.t. if,\' = comp(O'~g,x') wehaveS',X[l]1= <p.
X[lJ is either Y~ or~. In the case where X[l] = Y~: S',~ 1= <p and by the

induction hypothesis S,Yl 1= <p. In the case where ,\'[lJ =~: S',~ 1= <p and by

the induction hypothesis S,Y2 1= <p. Then'v'O'Ag E rAg if,\ = comp(O'Ag,X) we

have S, ,\[1]1= <p. Hence, S,X 1= (())~O<p.

The cases for the remaining states all follow the same reasoning as from x. The ((i))~O<p

case is very similar and the ((Ag))~O<p is identical to ((i))~O<p as we only have one

agent.

6. The cases for the remaining temporal operators follow the same reasoning.

D

8.4 Summary

In this chapter we have illustrated an alternative approach for expressing properties of systems

which refer to whether agents are forced to abide by the social laws or not. We are able to

express properties in this approach which are similar to those that we are able to express in

Social ATEL. We discovered a general reduction which holds between properties expressed in

both approaches, which holds for all extremes of coalitions (empty, arbitrary, and grand) and all

temporal operators, but this reduction changes when we alter the requirement of the coalition

of agents to follow the social laws and the requirement of the other agents. As a result, we have

four reductions between formulae in the two approaches, for each combination of G acting

socially or physically while G acts socially or physically. We were unable to find reductions

between properties expressed in Social ATEL and properties expressed in ATL using this good

states approach. This is due to the fact that Social ATEL appears to be more expressive than

ATL, and as a result, we had to use ATL*. After investigating this alternative approach, it can

be seen that Social ATEL allows us to express these properties in a much more succinct and

elegant manner, but also, we have proved that certain properties can be expressed in the good

states approach that cannot be expressed using Social ATEL.

146 CHAPTER 8. REDUCING SOCIAL ATEL TO ATL*

Part IV

Conclusions

147

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 9

Conclusions

This chapter concludes the thesis by first giving a review of the work, then by giving an evalu

ation, and final1y providing some avenues for possible future work.

9.1 Review

The first part of the thesis presented the necessary background information. Firstly, in Chap

ter 2, we gave a survey of some popular modal logics, which were either used in, or are some

how related to the rest of the thesis. The first logic we presented, Alternating-time Temporal

Logic (ATL), is very important for the thesis, as it provides a basis for our formal framework

of social laws. ATL is a temporal logic of cooperation, which al10ws us to express properties of

multi-agent systems that agents and coalitions of agents can achieve over time. We then sur

veyed Epistemic Logic, the logic of knowledge, and explained the possible worlds semantics.

Next, we presented Alternating-time Temporal Epistemic Logic (ATEL), an extended version

of ATL enriched with epistemic operators. ATEL was also used in our framework of social laws

in Chapter 6. Next, we presented BDI logic, used for expressing the beliefs, desires and in

tentions of agents, and final1y presented deontic logic, the logic used for expressing normative

behaviour.

In Chapter 3, we gave a survey of social laws for multi-agent systems. We began by in

troducing social laws in detail and defined a social law as a restriction on the behaviour of the

agents to ensure they can work individual1y in a mutual1y compatible manner in order to fulfil

their individual goals. We then explained the effects that social laws have on such systems and

outlined the two approaches by which social laws can come to exist in a multi-agent system:

they,can emerge from within the system itself or they can be designed offiine and hardwired

into the system. We then surveyed some approaches to the emergence of social laws at run-

149

150 CHAPTER 9. CONCLUSIONS

time. As more research has been carried out into the offline design of social laws, the main

body of this chapter focussed on such approaches. We introduced the Artificial Social Systems

approach of Moses and Tennenholtz, in which they model an artificial social system as a set

of dependent automata in order to address some of the computational problems, and go on to

construct a rich modal language for expressing social laws. We also surveyed the Shoham and

Tennenholtz framework of social laws, in which a computational model of social laws is con

structed to address issues such as the "Useful Social Law problem". Finally, we looked at two

different ways of choosing between social laws: minimality and simplicity.

The main contribution of the thesis was presented in Chapters 4 through 8. In Chapter 4,

we introduced the semantic structures that our framework of social laws is based upon. These

structures are known as Action-Based Alternating Transition Systems (AATS), and are very

similar to the Alternating Transition Systems that underpin ATL. The main difference is that in

AATSS we have an explicit set of actions for each agent, and action pre-condition function which

determines for each action, where this action may be executed from. We outlined an example

scenario, known as "The Train Scenario", which we refer to in the subsequent chapters. Finally,

we defined ATL over AATSs and proved some properties of ATL that we used in subsequent

proofs.

In Chapter 5, we presented our framework of social laws in ATL. We introduced a social

law as consisting of two parts, an objective and a behavioural constraint. The former specifies

what the social law is in place to achieve, while the latter corresponds to the requirements the

law places on the agents. We outlined the three problems associated with social laws, namely,

the effectiveness, feasibility and synthesis problems and showed how, in many cases, these

can be framed directly as ATL model checking problems. The feasibility problem was proved

to be NP-complete, which is no harder than the corresponding problem in the Shoham and

Tennenholtz framework. Finally, we showed how we could extend our framework to allow us

to express objectives of social laws that explicitly refer to the legality of actions.

In Chapter 6, we extended our framework by incorporating the notion of knowledge. We

introduced various types of knowledge properties along with the general format taken by each

of them. We looked at some epistemic social laws in the context of a case study and showed

how an objective can be broken down into several individual objectives which have a certain

format that we call feasibility. Finally, we showed how we can perform model checking of

ATEL using only standard ATL model checkers. To do this, we gave an informal description

of local propositions and gave a theorem allowing us to substitute these local propositions for

epistemic properties.

In Chapter 7, we extended our framework further. We removed the assumption that the

agents will follow the social laws just because they are in place. With the possibility of agents

9.2. EVALUATION 151

not following the social laws, we made a distinction between agents acting socially (where

they abide by the social laws) and the agents acting physically (where they can act in any way

possible). We constructed a language called Social ATEL, which is an extension of ATEL, to

allow us to express how the agents in the system are acting. We investigated various properties

in a case study and found in the absence of social laws, very little knowledge ensues.

Finally, in Chapter 8, we investigated an alternative approach for expressing properties of

systems that refer to whether the agents are acting socially or physically. We tried to find

equivalences between properties expressed in Social ATEL and properties expressed in ATL

using an approach which labels states based on whether the agent reached the state through

social action. As Social ATEL appears to be more expressive than ATL, we were only able to

reduce Social ATEL down to ATL *.

9.2 Evaluation

The work in this thesis has contributed to the area of Social Laws in Multi-Agent Systems in

numerous ways. We have shown how ATL provides a natural and somewhat elegant framework

for expressing social laws. Unique to our framework is the way we explicitly define a social

law as consisting of an objective and a behavioural constraint. No previous frameworks have

this explicit logically expressed objective, the societal goal which the behavioural constraint is

in place to achieve. In the Shoham and Tennenholtz framework, the notion of an objective is

captured through the set of focal states, which given any two focal states, the social law should

guarantee that there exists a legal plan, which starting in one of the states, reaches the other

state, no matter what the other agents do. In our framework, expressing the objective logically

in ATL, not only allows us to refer to the powers of agents and what they can achieve over time,

but we can talk about social laws being effective if the objective is satisfied.

In our framework of social laws, we have identified three computational problems, namely,

the effectiveness, feasibility and synthesis problems. Expressing social laws in ATL allows us

to reduce these problems directly to ATL model checking problems, which can be checked us

ing existing ATL model checkers, such as MOCHA. Despite the apparent expressive power of

our framework, the feasibility problem is no more complex than the corresponding problem in

the Shoham and Tennenholtz framework; it is NP-complete. Although NP-completeness is nor

mally interpreted as a negative result, as we have a more expressive and arguably more elegant

framework for expressing social laws, but have not added to the complexity, we consider this

to be a positive result.

Not only can we express objectives of social laws in ATL, we have extended our framework

to allow us to express objectives of social laws in ATEL and properties of systems in SATEL.

152 CHAPTER 9. CONCLUSIONS

The former allows us to express objectives of social laws that refer to the knowledge of indi

vidual agents and of coalitions of agents, while the latter adds on to this the ability to express

properties that refer to whether or not the cooperating coalition are following social strategies

and whether or not the other agents in the system are following social strategies. In the Moses

and Tennenholtz framework of Artificial Social Systems, introduced in Chapter 3, the logical

language that they construct has the ability to refer to similar notions to Social ATEL. Firstly,

they can refer to knowledge, in much the same way as in our framework. They also have a no

tion of social belief, defined in a different way. Secondly, operators such as s-reachable{T, cp),
state that the agents in T have a joint plan consisting of only socially acceptable actions in order

to attain cp, as long as all the other agents follow the rules of the social system. This could be

deemed similar to the Social ATEL formula, ((G))!Ocp. However, we can express much more in

our framework. We can refer to the powers of agents and the type of strategies they are using

and specify what they can achieve over time. Moreover, we can do this in a concise and elegant

manner.

Overall, we have constructed a very expressive, natural and concise language for reasoning

about social laws. Social laws consist of both an objective and a behavioural constraint, a very ,
natural way of modeling social laws, and the three associated problems, in many cases, can be

posed as ATL model checking problems. Taking all of this into consideration and the fact that

we have not added to the complexity, clearly shows how this thesis has contributed to the area

of Social Laws.

9.3 Future Work

There are several possible avenues for future work. One possible avenue would be to de

velop a tool for the automatic verification of Social ATEL. The major paradigm in verification

of Multi-Agent Systems is model-checking, at this moment. Although there exists a model

checker MOCHA for standard ATL, it can not directly deal with notions like knowledge, belief

or discriminate between legal and illegal transitions. The paper [54] uses a standard model

checker (SPIN) to verify knowledge properties in a linear time model, using the notion of lo

cal propositions. Such an approach seems also promising for epistemic extensions of ATL.

However, as our framework at the same time assumes that certain transitions can be blocked in

certain states, our challenge is greater than this. In the long run, what is needed is a tool that

can take social laws as an additional parameter, and preferably hypothetically reason about the

effects of them.

Another possible route could be to incorporate the notion of minimality into the framework.

Minimality, as introduced in Chapter 3, is essentially a social law that constrains the agents just

9.3. FUTURE WORK 153

enough to make the social law effective, thus giving the agents maximal individual flexibility.

This would involve asking the question: Is the system not over-constrained, i.e., do the agents

still have reasonable choices, and could the desired behaviour have been achieved with fewer

constraints?

Finally, an interesting avenue would be to extend the framework further by giving a priority

ordering to social laws. When designing a multi-agent system, the designer is faced with the

task of deciding what the design objectives of the system should be. This includes deciding on

social law objectives that should hold in the system. There may be many objectives that would

ideally be achieved, but in reality, some of these objectives may conflict with one another.

Naturally, some objectives of social laws are more important than others. For example, making

sure that two trains do not collide in a tunnel could be deemed more important than making

sure none of the trains linger in the tunnel, thus making the system as efficient as possible. We

would like to extend our framework to make it possible to reason about the importance of laws.

We could classify laws as safety laws, which always guarantee to satisfy the safety properties

of the system, and liveness laws which guarantee liveness properties. Safety laws would be in

place to prevent drastic consequences from occurring and should always be achieved no matter

what. Liveness laws themselves could be given a priority ordering, so one liveness law might

be more important than another liveness law, and thus would take priority.

154 CHAPTER 9. CONCLUSIONS

hrtV

Bibliography and Index

155

1

1

1

1

1

1

1

1

1

1

1

1

: 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Bibliography

[1] R. Alur, L. de Alfaro, T. A Henzinger, S. C. Krishnan, F. Y. C. Mang, S. Qadeer, S. K.

Rajamani, and S. Ta§iran. MOCHA user manual. University of Berkeley Report, 2000.

[2] R. Alur, T. A Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal

of the ACM, 49(5):672-713, September 2002.

[3] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and S. Ta§iran.

Mocha: Modularity in model checking. In CAV 1998: Tenth International Conference

on Computer-aided Verification, (LNCS Volume 1427), pages 521-525. Springer-VerIag:

Berlin, Germany, 1998.

[4] AR. Anderson. A reduction of deontic logic to alethic modal logic. Mind, 67(265): 100-

103,1958.

[5] K. Binmore. Essays on the Foundations of Game Theory. Basil BIackweII, Cambridge,

Massachusetts, 1990.

[6] L. Birnbaum. Rigor mortis. In D. Kirsh, editor, Foundations of Artificial Intelligence,

pages 57-78. The MIT Press: Cambridge, MA, 1992.

[7] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press:

Cambridge, England, 2001.

[8] A. H. Bond and L. Gasser, editors. Readings in Distributed Artificial Intelligence. Morgan

Kaufmann Publishers: San Mateo, CA, 1988.

[9] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press: Cam

bridge, MA, 2000.

[10] D. C. Dennett. The Intentional Stance. The MIT Press: Cambridge, MA, 1987.

[11] M. Deutch and H. B. Gerard. A study of normative and informational social influence

upon judgment. Journal of Abnormal and Social Psychology, 51 :629-636, 1955.

157

158 BIBLIOGRAPHY

[12] G. van Drimmelen. Satisfiability in alternating-time temporal logic. In Eighteenth Annual

IEEE Symposium on Logic in Computer Science (UCS 2003), pages 208-217, Ottawa,

Canada, 2003.

[13] E. H. Durfee. Coordination of Distributed Problem Solvers. Kluwer Academic Publish

ers: Dordrecht, The Netherlands, 1988.

[14] E. A. Emerson. Temporal and modal logic. In 1. van Leeuwen, editor, Handbook ofThe

oretical Computer Science Volume B: Formal Models and Semantics, pages 996-1072.

Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1990.

[15] K. Engelhardt, R. van der Meyden, and Y. Moses. Knowledge and the logic of local

propositions. In Proceedings of the 1998 Conference on Theoretical Aspects of Reasoning

about Knowledge (TARK98), pages 29~1, Evanston, n.., July 1998.

[16] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge. The

MIT Press: Cambridge, MA, 1995.

[17] D. Fitoussi and M. Tennenholtz. Choosing social laws for multi-agent systems: Minimal

ity and simplicity. Artificial Intelligence, 119(1-2):61-101, 2000.

[18] L. Gasser and M. Huhns, editors. Distributed Artificial Intelligence Volume Il. Pit

manJM:organ Kaufman, 1989.

[19] M. R. Genesereth, M. Ginsberg, and J. S. Rosenschein. Cooperation without communica

tion. In Proceedings of the Fifth National Conference on Artificial Intelligence (AAAI-86),

pages 51-57, Philadelphia, PA, 1986.

[20] M. R. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence. Morgan

Kaufmann Publishers: San Mateo, CA, 1987.

[21] M. Ginsberg. Essentials of Artificial Intelligence. Morgan Kaufmann Publishers: San

Mateo, CA, 1993.

[22] V. Goranko and W. Jamroga. Comparing semantics for logics of multi-agent systems.

Synthese, 139(2):241-280, 2004.

[23] P. G. Hansen. Towards a theory of convention. ~NEWS, 9:30-62, 2006.

[24] J. Hintikka. Knowledge and Belief Cornell University Press: Ithaca, NY, 1962.

BIBLIOGRAPHY 159

[25] J. Hintikka. Reasoning about knowledge in philosophy. In J. Y. Halpem, editor, Pro

ceedings of the 1986 Conference on Theoretical Aspects of Reasoning About Knowledge,

pages 63-80. Morgan Kaufmann Publishers: San Mateo, CA, 1986.

[26] N. R. Jennings. Joint Intentions as a Model of Multi-Agent Cooperation. PhD thesis,

Department of Electronic Engineering, Queen Mary & Westfield College, 1992.

[27] J. E. Kittock. Emergent conventions and the structure of multi-agent systems. In Pro

ceedings of the 1993 Santa Fe Institute Complex Systems Summer School, 1993.

[28] S. Kripke. Semantical analysis of modal logic. Zeitschrift fur Mathematische Logik und

Grundlagen der Mathematik, 9:67-96, 1963.

[29] D. Lewis. Convention - A Philosophical Study. Harvard University Press: Cambridge,

MA,1969.

[30] A. Lomuscio and M. Sergot. Deontic interpreted systems. Studia Logica, 75(1):63-92,

2003.

[31] E. Mally. Grundgesetze des Sol/ens, Elemente der Logik des Willens. Leuschner and

Lubensky, Graz, 1926.

[32] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems - Safety. Springer

Verlag: Berlin, Germany, 1995.

[33] J.-J. Ch. Meyer. A different approach to deontic logic: Deontic logic viewed as a variant

of dynamic logic. Notre Dame Journal of Formal Logic, 29(1):109-136, 1988.

[34] J.-J. Ch. Meyer and R. J. Wieringa, editors. Deontic Logic in Computer Science - Nor

mative System Specification. John Wiley & Sons, 1993.

[35] Y. Moses and M. Tennenholtz. Artificial social systems. Computers and AI, 14(6):533-

562,1995.

[36] G. M. P O'Hare and N. R. Jennings, editors. Foundations of Distributed Artificial Intelli

gence. John Wiley & Sons, 1996.

[37] L. Padgham and P. Lambrix. Agent capabilities: Extending BDI theory. In Proceedings of

the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on

Innovative Applications of Artificial Intelligence (AAAIIlAAI-OO), pages 68-73, Austin,

TX,2000.

160 BIBLIOGRAPHY

[38] C. H. Papadimitriou. Computational Complexity. Addison-Wesley: Reading, MA, 1994.

[39] M. Pauly. Logic for Social Software. PhD thesis, University of Amsterdam, 2001. ILLC

Dissertation Series 2001-10.

[40] M. Pauly. A modal logic for coalitional power in games. Journal of Logic and Computa

tion, 12(1):149-166, 2002.

[41] A. Pretschner, M. Hilty, and D. Basin. Distributed usage control. Commun. ACM,

49(9):39-44, 2006.

[42] A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. In

R. Fikes and E. Sandewall, editors, Proceedings of Knowledge Representation and Rea

soning (KR&R-9J), pages 473-484. Morgan Kaufmann Publishers: San Mateo, CA, April

1991.

[43] A. Ross. Imperatives and logic. Theoria, 7:53-71, 1941.

[44] S. Russell and P. Norvig. Artificial Intelligence: A Modem Approach. Prentice-Hall,

1995.

[45] M. Sergot. Normative positions. In Henry Prakken and Paul McNamara, editors, Norms,

Logics and Information Systems. New Studies in Deontic Logic and Computer Science,

pages 289-310. IOS Press, Amsterdam, 1998.

[46] Y. Shoham and M. Tennenholtz. Emergent conventions in multi-agent systems. In

C. Rich, W. Swartout, and B. Nebel, editors, Proceedings of Knowledge Representation

and Reasoning (KR&R-92), pages 225-231, 1992.

[47] Y. Shoham and M. Tennenholtz. On the synthesis of useful social laws for artificial

agent societies~ In Proceedings of the Tenth National Conference on Artificial Intelligence

(AAAI-92), San Diego, CA, 1992.

[48] Y. Shoham and M. Tennenholtz. On social laws for artificial agent societies: Off-line

design. Artificial Intelligence, 73(1-2):231-252, 1995.

[49] Y. Shoham and M. Tennenholtz. On social laws for artificial agent societies: Off-line de

sign. In P. E. Agre and S. 1. Rosenschein, editors, Computational Theories of Interaction

and Agency, pages 597-618. The MIT Press: Cambridge, MA, 1996.

[50] Y. Shoham and M. Tennenholtz. On the emergence of social conventions: Modelling,

analysis, and simulations. Artificial Intelligence, 94(1-2):139-166, July 1997.

BIBLIOGRAPHY 161

[51] W. van der Hoek, M. Roberts, and M. Wooldridge. Knowledge and social laws. In Pro

ceedings of the Fourth International Conference on Autonomous Agents and Multiagent

Systems (AAMAS-05), Utrecht, The Netherlands, July 2005.

[52] W. van der Hoek, M. Roberts, and M. Wooldridge. Social laws in alternating time: Effec

tiveness, feasibility, and synthesis. Synthese, 156(1): 1-19,2007.

[53] W. van der Hoek and R. Verbrugge. Epistemic logic: A survey. In L. Petrosjan and V.

Mazalov, editors, Game Theory and Applications, 8:53-94, 2002.

[54] W. van der Hoek and M. Wooldridge. Model checking knowledge and time. In

D. Bo~nacki and S. Leue, editors, Model Checking Software, Proceedings of SPIN 2002

(LNCS Volume 2318), pages 95-111. Springer-Verlag: Berlin, Germany, 2002.

[55] W. van der Hoek and M. Wooldridge. Tractable multi agent planning for epistemic goals.

In Proceedings of the First International Joint Conference on Autonomous Agents and

Multiagent Systems (AAMAS-2002), pages 1167-1174, Bologna, Italy, 2002.

[56] W. van der Hoek and M. Wooldridge. Model checking cooperation, knowledge, and time

- a case study. Research in Economics, 57(3), September 2003.

[57] W. van der Hoek and M. Wooldridge. Time, knowledge, and cooperation: Alternating

time temporal epistemic logic and its applications. Studia Logica, 75(1):125-157,2003.

[58] W. van der Hoek and W. Wooldridge. Towards a logic of rational agency, 2003.

[59] lA. van Eck. A system of temporally relative modal and deontic predicate logic and its

philosophical applications. Logique et Analyse, 100:249-381, 1982.

[60] G.H. von Wright. Deontic logic. Mind, 60:1-15, 1951.

[61] O.H. von Wright. A new system of de on tic logic. Danish Yearbook of Philosophy, 1:173-

182, 1964.

[62] A. Walker and M. Wooldridge. Understanding the emergence of conventions in multi

agent systems. In Proceedings of the First International Conference on Multi-Agent Sys

tems (ICMAS-95), pages 384-390, San Francisco, CA, June 1995.

[63] M. Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons, 2002.

[64] E. N. Zalta. Stanford encyclopedia of philosophy. See http://plato . stanford.

edu/.

162 BIBLIOGRAPHY

[65] G. Zlotkin and J. S. Rosenschein. Mechanism design for automated negotiation, and its

application to task oriented domains. Artificial Intelligence, 86(2): 195-244, 1996.

Index

(<p,(3),80

f.-options{i, q), 109

p-options{i, q), 109

comp{aG, q), 14, 71

options{i,q),70

out{aG, q), 14, 71

q-computation, 13

action precondition function, 70

legal,109

physical, 109

agent, 3

Alternating Bit Protocol, 113

Alternating Transition Systems, 12, 69

Action-based, 69

Action-based Epistemic, 96

Social Action-based Epistemic, 108

Alternating-time Temporal Logic, see ATL

artificial social system, 43

ATEL,25

existential sublanguage, 96

universal sublanguage, 96

ATL,II

existential sublanguage, 75

model checking, 17

satisfiabiIity problem, 18

universal sublanguage, 75

behavioural constraint, see social law

belief-des ire-intention model, 28

bisimulation between computations, 134

coherence constraints, 70

coinciding strategies, 137

comp function, see comp{aG, q)

computation, 13, 134

compliant, 134

enforceable, 134

consistency, 70

convention, 39

cooperation modality, 12

coordination, 3

mechanisms, 4

joint intentions, 4

mutual modelling, 4

Partial Global Planning, 4

social laws, 4

deontic logic, 31

dependent automata, 44

dictatorship constraints, 93

effective social law, see social law, effective

effectiveness problem, 80

epistemic logic, 18

epistemological adequacy, 50

explicit action constraints, 88

feasibility problem, 80, 85, 97

focal states, 57, 78

Golden Mean Problem, 37, 47

complexity, 48

163

164

good states, 125

implied knowledge, 101

intentional stance, 27

knowledge, 6, 18, 95

group, 21

individual, 18

knowledge pre-condition, 100

Kripke structure, 19, 33

legal strategy, see strategy, legal

level crossing example, 43, 46, 56, 62, 98

Iiveness goals, 60, 61

Iiveness properties, 17,60

local propositions, 104

logics, 11

minimal social law, 59

minimal useful social law, 62

minimality, 59

model checking, 17,77,84,86, 103

Muddy Children Problem, 22

multi-agent system, 3

nested knowledge, 101

non-triviality, 50; 70

normative system, 50

norms, 31

objective, see social law, objective

objective temporal formula, 135

options function, see options(i, q)

legal, see f-options(i, q)

physical, see p-options(i, q)
out function, see out(aG, q)

physical adequacy, 50

physical reachability, 54

possible worlds semantics, 19

proof theory, 11

safety goals, 60, 61

. safety properties, 17, 60

semantics, 11

sequence of states, 13

sequences, 70

simplicity, 63

social agent, 55

Social ATEL, 110

social belief, 51, 108, 111

social conventions, 38

INDEX

social law, 3, 4-6, 37-38, 46, 55, 59, 62, 77-

81

behavioural constraint, 6, 78, 97

implementing, 79

effective, 6, 78, 80

emergence at run-time, 5, 38~2

objective, 6, 77, 97

offline design,S, 38, 42-64

social multi-agent system, 56

social reachability, 53

socially necessary fact, 116

strategy, 13, 16,48,49,71, 133

legal, 50, 57,109

memoryless, 13, 71

physical, 109

profile, 14, 71

strategy update function, 40

syntax, 11

synthesis problem, 81

tee shirt game, 40

Train System, 15,71,78

transition function, 13,45,49,55,61,70

useful social law, 57, 58, 62

INDEX

bounded problem, 58

problem, 57

165

	437526_0001
	437526_0002
	437526_0003
	437526_0004
	437526_0005
	437526_0006
	437526_0007
	437526_0008
	437526_0009
	437526_0010
	437526_0011
	437526_0012
	437526_0013
	437526_0014
	437526_0015
	437526_0016
	437526_0017
	437526_0018
	437526_0019
	437526_0020
	437526_0021
	437526_0022
	437526_0023
	437526_0024
	437526_0025
	437526_0026
	437526_0027
	437526_0028
	437526_0029
	437526_0030
	437526_0031
	437526_0032
	437526_0033
	437526_0034
	437526_0035
	437526_0036
	437526_0037
	437526_0038
	437526_0039
	437526_0040
	437526_0041
	437526_0042
	437526_0043
	437526_0044
	437526_0045
	437526_0046
	437526_0047
	437526_0048
	437526_0049
	437526_0050
	437526_0051
	437526_0052
	437526_0053
	437526_0054
	437526_0055
	437526_0056
	437526_0057
	437526_0058
	437526_0059
	437526_0060
	437526_0061
	437526_0062
	437526_0063
	437526_0064
	437526_0065
	437526_0066
	437526_0067
	437526_0068
	437526_0069
	437526_0070
	437526_0071
	437526_0072
	437526_0073
	437526_0074
	437526_0075
	437526_0076
	437526_0077
	437526_0078
	437526_0079
	437526_0080
	437526_0081
	437526_0082
	437526_0083
	437526_0084
	437526_0085
	437526_0086
	437526_0087
	437526_0088
	437526_0089
	437526_0090
	437526_0091
	437526_0092
	437526_0093
	437526_0094
	437526_0095
	437526_0096
	437526_0097
	437526_0098
	437526_0099
	437526_0100
	437526_0101
	437526_0102
	437526_0103
	437526_0104
	437526_0105
	437526_0106
	437526_0107
	437526_0108
	437526_0109
	437526_0110
	437526_0111
	437526_0112
	437526_0113
	437526_0114
	437526_0115
	437526_0116
	437526_0117
	437526_0118
	437526_0119
	437526_0120
	437526_0121
	437526_0122
	437526_0123
	437526_0124
	437526_0125
	437526_0126
	437526_0127
	437526_0128
	437526_0129
	437526_0130
	437526_0131
	437526_0132
	437526_0133
	437526_0134
	437526_0135
	437526_0136
	437526_0137
	437526_0138
	437526_0139
	437526_0140
	437526_0141
	437526_0142
	437526_0143
	437526_0144
	437526_0145
	437526_0146
	437526_0147
	437526_0148
	437526_0149
	437526_0150
	437526_0151
	437526_0152
	437526_0153
	437526_0154
	437526_0155
	437526_0156
	437526_0157
	437526_0158
	437526_0159
	437526_0160
	437526_0161
	437526_0162
	437526_0163
	437526_0164
	437526_0165
	437526_0166
	437526_0167
	437526_0168
	437526_0169
	437526_0170
	437526_0171
	437526_0172
	437526_0173
	437526_0174
	437526_0175

