Groundwater and surface water geochemical evolution : Liverpool area, UK



Abdelrahman. Mohamed, Essam
(2007) Groundwater and surface water geochemical evolution : Liverpool area, UK. PhD thesis, University of Liverpool.

[img] Text
439482.pdf - Unspecified

Download (29MB) | Preview

Abstract

The PhD thesis is focused on the hydrogeology and geochemistry of the surface and groundwater in Liverpool area. It provides a detailed understanding of the effect of the structural geology on the groundwater flow and the geographical variation in the groundwater geochemistry. Moreover, the studies have extended the research towards the geochemical evolution of the fresh and saline groundwaters and surface water. The main conclusions are that the major structural elements, especially the NNW-SSE major faults and a gentle NE-SW fold, have subdivided the aquifer into discreet six hydrogeological sub-basins. As a result of this, a single groundwater flow direction in the aquifer is not likely existed; multiple local flow directions are expected instead. The recharge of the aquifer sub-basins is mainly by vertical percolation while the lateral mixing between the different water types and the inland invasion of seawater are limited by the major faults. The aquifer has two major types of groundwaters. Fresh groundwater occupies one part, generally a few kilometres from the coast and saline groundwater in another part that has undergone seawater intrusion from the Mersey Estuary. The recharge of the fresh groundwater is mainly localised from surface waters (originally rainfall). The recent recharged groundwaters are expected in spatially restricted areas with low salinity and they broadly resemble surface waters except they are more acidic possibly due to C02 dissolution and dissociation, nitrification or sulphide oxidation. This immature groundwater evolved into the regionally dominant groundwaters through a combination of congruent dissolution of dolomite, cation exchange and sulphate mineral dissolution happening in the Sherwood Sandstone aquifer. Due to locally advanced stage of water rock interaction, the regionally dominant groundwater has evolved into higher salinity fresh groundwater at the southern end of a southward flowing compartment. Close to the urban heart of Liverpool the groundwater has undergone local pollution as reflected by the elevated salinity, Cl, S04 and N03 concentrations, The origin of the saline groundwater is mainly due to seawater intrusion based on the similarity in chemical composition between the saline groundwater and River Mersey water. This study has shown that highly saline groundwater has been expected in the Sherwood sandstone aquifer underneath Liverpool and close to the River Mersey. From the previous and present works the saline groundwater in this part of the aquifer mainly due to saline water intrusion from Mersey Estuary. This has been based on the geographic distribution and chemical affinity between the saline groundwater and Mersey Estuary water. The invaded Estuary water experienced a wide range of geochemical processes that deviates the composition of the water away from being a simple physical mixture between low salinity groundwater and seawater. During progressive invasion by seawater, it seems that cation exchange (Na-capture and Ca release) occurs first with a small amount of carbonate and even anhydrite cement dissolution. Next, cation exchange becomes relatively less important but bacterial sulphate reduction starts to occur. The final process during the later stages of saline invasion seems to be dolomitization of indigenous calcite accompanying more advanced bacterial sulphate reduction and with relatively minor cation exchange. The chemistry of the surface water has been studied in small river systems in the area (River Alt, Downholland Brook and River Alt). The main recharge of these surface waters is local rainfall. Dissolution of calcite and weathering of silicate minerals are the most common processes operating in a higher relief river basin floored by Sherwood Sandstone (Calder River regime), while the abundance of gypsum and calcite with silicate in the Downholland Brook and River Alt bed rocks explain the increase of the total dissolved salts and ionic composition of the former two streams waters. The continuous influx of atmospheric CO2 and H+ ions from the dissociation of H2C03 increases the ability of these waters dissolving minerals in contact especially carbonates and silicates. The concentration and lateral variation of the nitrate concentration in the surface and groundwaters have been studied trying to assess its possible source and fate. The results reveal that a significant part of nitrate in surface and groundwater is coming from the application of fertilizers in addition to urban waste water in the highly populated areas. Nitrification process in the soil zone transforms the N-compounds (eg. NH4) into nitrate. The direct drainage of soil water to the river course carries high nitrate to the river waters. The low nitrate concentration in the locally-recharged groundwater is mainly due to natural denitrification processes probably in the unsaturated and saturated zone however the high abstraction rate of the groundwater could be responsible for yielding water with high nitrate concentration.

Item Type: Thesis (PhD)
Depositing User: Symplectic Admin
Date Deposited: 20 Oct 2023 12:41
Last Modified: 20 Oct 2023 12:48
DOI: 10.17638/03174759
Copyright Statement: Copyright © and Moral Rights for this thesis and any accompanying data (where applicable) are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge.
URI: https://livrepository.liverpool.ac.uk/id/eprint/3174759