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Abstract

This Ph.D thesis is divided into two parts which deal with two self-contained

studies in the field of financial econometrics and time series analysis.

Part I is concerned with estimating option implied risk-neutral probability den-

sity functions (RNDs), where we examine the ability of two recent methods - the

smoothed implied volatility smile method (SML) and the density functionals based

on confluent hypergeometric functions (DFCH) - for estimating RNDs from Euro-

pean options. Two complementary Monte Carlo experiments are conducted and the

performance of the two methods is evaluated by the Root Mean Integrated Squared

Error (RMISE) criterion. Results from both experiments indicate that the DFCH

method dominates the SML method for the overall quality of the estimated RNDs

concerning both accuracy and stability. In our application to real option data, the

DFCH performs consistently well, whereas the SML has problems with the choice of

the smoothing parameter.

Part II of the thesis considers maximum likelihood (ML) estimation of higher-

order integer-valued autoregressive (INAR(p)) processes. A recursive representation

of the transition probability function is proposed, based on which we derive the score

and Fisher information in terms of conditional expectations. These new expressions

enhance the interpretation of these quantities and lead to new definitions of residuals.

Using the INAR(2) specification with Poisson innovations, we investigate both the

asymptotic efficiency and the finite sample performance of the ML estimator (MLE).
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Our results confirm that the MLE is asymptotically more efficient than the Yule-

Walker estimator (YWE) and the conditional least squares estimator (eLSE), and

that there is also a potential gain in implementing the MLE in small samples in

terms of bias and mean squared error (MSE). A computationally efficient approach

based on Markov chain techniques for producing probability forecasts for INAR(p)

models is also proposed. In our empirical analysis of the Westgren (1916) data,

likelihood based inferences reveal new evidence for improving model specification and

forecasts produced by the new approach suggest substantial benefit from the enriched

information and improved efficiency.
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Chapter 1

General Introduction

This Ph.D thesis consists of two major parts that address two self-contained stud-

ies in financial econometrics and time series analysis which can be unified in the

common field of econometrics.

Part I is concerned with estimating option implied risk-neutral probability density

functions (RNDs), which is a topic that sits in the financial econometrics literature.

We examine the ability of two recent methods for estimating RNDs from European-

style options. One is the smoothed implied volatility smile method (SML) developed

by Bliss and Panigirtzoglou (2002) and the other is the density functionals based

on confluent hypergeometric functions (DFCH) proposed by Abadir and Rockinger

(2003). To compare the two methods, we carry out two complementary Monte Carlo

experiments based on the pseudo-prices methodology. The performance of alterna-

tive methods is evaluated by the criterion of Root Mean Integrated Squared Error
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(RMISE). Results from both experiments indicate that the DFCH method outper-

forms the SMLmethod in terms of the overall quality of the RND estimates concerning

both accuracy and stability.

As an illustration of the two methods in real settings, we apply both methods to

OTC currency option data. We find that the DFCH method behaves uniformly well

in terms of good fitting as well as maintaining proper shapes of the estimated RNDs.

For the SML method, however, the choice of the smoothing parameter remains an

arbitrary factor.

Part I of the thesis is organized as follows: Chapter 2 is the introduction. Chapter

3 sets out the technical details of the two estimation methods. In Chapter 4, we

present the two Monte Carlo experiments and discuss the results. The application is

presented in Chapter 5. Chapter 6 concludes. Bu and Hadri (2005) is based on the

main results of this study.

In Part II of the thesis, we consider a special type of time series models of count

data, the integer-valued autoregressive (INAR) models. Our attention is focused

on the maximum likelihood (ML) estimation of higher-order integer-valued autore-

gressive (INAR(p)) models. We propose a recursive representation of the transition

probability function for the INAR(p) model, which not only simplifies the computa-

tion of the likelihood but also streamlines the derivation of the score functions and the

Fisher information matrix for the INAR(p) model. We show that if the density func-

tions of unobserved model components belong to a special class, the score functions
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and the Fisher information matrix can be neatly expressed in terms of conditional

expectations. These new expressions not only enhance the interpretation of these

quantities but also lead to new definitions of the residuals of the model.

Using the INAR(2) specification with Poisson innovations, we investigate both the

asymptotic efficiency and the finite sample performance of the ML estimator (MLE) in

comparison with the widely used Yule-Walker estimator (YWE) and the conditional

least squares estimator (CLSE). Our results confirm that the MLE is asymptotically

more efficient than the YWE and the CLSE, and that there is also a potential gain

in implementing the MLE in small samples in terms of bias and mean squared error

(MSE). In particular, we find that the magnitude of efficiency gain in implementing

MLE is positively related to the degree of persistence of the underlying process.

An efficient approach built on Markov chain theory for producing probability fore-

casts for INAR(p) models is also proposed. Since this approach is based on the tran-

sition matrix method, it is computationally attractive. A method for incorporating

parameter uncertainties into the probability forecasts is also suggested.

We carry out an empirical analysis of the Westgren (1916) gold particle data

under the ML framework developed in this study. The emphasis is on the issue

of model adequacy. Both residual analysis and specification testing are discussed.

We show that in the light of likelihood estimation it is possible to unveil previously

hidden evidence suggesting possible improvements of model specification. Also in this

application, we illustrate the effectiveness of the newly developed forecasting tools by
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producing distribution forecasts for the Westgren data based on the fitted model. We

find that in terms of the enriched information and the advanced efficiency the benefit

of implementing the approach is considerable.

The structure of Part II of the thesis is as follows: Chapter 7 gives an introduction.

In Chapter 8, we review the INAR(p) model and existing estimation methods. Chap-

ter 9 looks at the maximum likelihood estimation of a generalized INAR(p) model.

In Chapter 10, we investigate the relative performance of the three estimators. Chap-

ter 11 considers forecasting with INAR(p) models. The application is presented in

Chapter 12. In Chapter 13, we conclude. Bu et al. (2006a,b,c) are based on the main

results of this part of the thesis.
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Part I

Estimating Option Implied

Risk-Neutral Densities using Spline

and Hypergeometric Functions
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Chapter 2

Introduction

Cross sections of observed option prices have long been used to estimate implied

risk-neutral probability density functions (RNDs). These RNDs represent forward-

looking forecast of the distributions of the prices of the underlying asset. They have

proved to be particularly useful for various applications. They are used for pricing

complex derivatives; estimating parameters of the underlying stochastic processes

- Bates (1996); testing market rationality - Bondarenko (1997); estimating risk

preferences - Ait-Sahalia and Lo (2000), Jackwerth (2000), Rosenberg and Engle

(2002). In particular, option implied RNDs have found an extensive use for mone-

tary policy purposes by an increasing number of Central Banks. These applications

include, Soderlind and Svensson (1997) who discuss the extraction of interest rate

expectations for monetary purposes; Bahra (1997) illustrates how RNDs are used by

policy-makers for assessingmonetary conditions, monetary credibility, the timing and
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effectiveness of monetary operations and identifying anomalous market prices; Mc-

Manus (1999) uses Eurodollar options to examine the evolution of market sentiment

over the possible future values of Eurodollar rates; Jondeau and Rockinger (2000)

apply the method to exchange rate options for two dates (calm and agitated mar-

ket) to find out how the market participants expectation is affected; Soderlind (2000)

employs daily option prices to estimate how the market's probability distribution of

the future mark-pound exchange rate and UK and German interest rates changed

before and after the ERM crisis. Other applications of the method include Melick

and Thomas (1997), who use American options to estimate the market participants'

expected distribution of oil prices during the Gulf crisis.

A large number of methods have been developed for recovering the implied RNDs.

Generally, these methods can be divided into parametric and nonparametric ones.

Parametric methods rely on specific assumptions on the data generating process.

Examples that have been used include: generalized distribution methods of Aparicio

and Hodges (1998), Rosenberg (1998) and Lim et al. (2005); expansion methods

of Jarrow and Rudd (1982) and Rubinstein (1998); the lognormal mixture model of

Bahra (1997) and Melick and Thomas (1997); and models for stochastic process of

Heston (1993), Bates (1996) and Wu and Huang (2004). Nonparametric methods are

flexible, data-driven methods. Examples of nonparametric methods include: implied

trees of Rubinstein (1994); kernel estimation methods of Ait-Sahalia and Lo (1998,

2000) and Ait-Sahalia et al. (2001); smoothing techniques of Campa et al. (1998)
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and Bliss and Panigirtzoglou (2002); maximum entropy methods of Buchen and Kelly

(1996) and Stutzer (1996); and neural network approach of Garcia and Gencay (2000)

and Gottschling et al. (2000). For surveys of existing methods, see Jackwerth (1999),

Jondeau and Rockinger (2000) and Bliss and Panigirtzoglou (2002) among others.

While many papers have estimated and interpreted the option implied RNDs,

relatively few have considered the reliability of these methods for estimating implied

RNDs. Among the latter are Soderlind and Svensson (1997), Melick and Thomas

(1998), Cooper (1999), Soderlind (2000), Bliss and Panigirtzoglou (2002), and Bon-

darenko (2003). Soderlind and Svensson (1997) and Melick and Thomas (1998) both

worked with the parameter variance-covariance matrix. Relying on the assumption of

the distribution of the estimated parameters, the confidence intervals of the estimated

RN"Dswere examined. Cooper (1999), Soderlind (2000) and Bondarenko (2003), on

the other hand, used the pseudo-prices method. The pseudo-prices method begins

with known RNDs which are used to generate fitted prices. These fitted prices are

then randomly perturbed to generate pseudo-prices. These pseudo-prices are finally

used to estimate the implied RNDs, based on which the performance of an estima-

tion method is assessed. Bliss and Panigirtzoglou (2002), however, focused only on

the stability of the estimated implied RNDs. Therefore, they chose to perturb real

option prices. Both Cooper (1999) and Bliss and Panigirtzoglou (2002) examined

the two most commonly used methods: the double lognormal approximating func-

tion method (DLN) and the smoothed implied volatility smile method (SML). Both
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concluded that the SML method dominates the DLN method as a technique for es-

timating option implied RNDs. Many authors have since used the SML method in

various studies. Bliss and Panigirtzoglou (2004) and Panigirtzoglou and Skiadopoulos

(2004) are among the examples.

Abadir and Rockinger (2003) recently proposed an alternative method for estimat-

ing option implied RNDs. We call it the density functionals based on the confluent

hypergeometric functions (DFCH). This method is solidly founded in the theory of

statistical density functionals and is particularly appealing for its semi-nonparametric

nature. It is more efficient than fully nonparametric estimation and more flexible than

purely parametric methods. It encompasses a large class of traditional densities, such

as normal, gamma, inverse gamma, Weibull, Pareto and mixtures thereof. Thus, the

possibility of misspecification is believed to be small. They showed that their method

performed uniformly well in their two applications. Although the DFCH method

appears to be an appealing alternative, surprisingly it did not attract any noticeable

follow-up, at least to our best knowledge. The main contribution of this part of the

thesis the comparison of the SML method and the DFCH method for estimating

option implied RNDs.

To compare the two methods, we conduct two Monte Carlo experiments. Both

experiments are based on the pseudo-prices methodology. In the first experiment,

the true RNDs are generated by implementing the Heston (1993) stochastic volatility

model. Different sets of parameters are selected for this model so that our true RNDs
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incorporate various market conditions. In the second experiment, the true RND is

specified as a mixture of three lognormals. In order to generate the true RND that

is representative to the observed world, we calibrate the model using observed prices

of a typical cross section of S&P 500 Index options traded at Chicago Board Option

Exchange (CBOE). The two experiments can be regarded as complementary to each

other in the sense that when combined they represent a broader setting for making

comparison. In both experiments, we examine the ability of the two methods for

recovering the true RNDs in the presence of small pricing errors. We evaluate the

performance of the two RND estimators by focusing on the criterion of Root Mean

Integrated Squared Error (RMISE). Results from both experiments indicate that the

DFCH method dominates the SML method for the overall quality of the estimated

RNDs concerning both the accuracy and the stability defined in this study.

The remainder of Part I of the thesis is organized as follows. Chapter 3 sets

out the technical details of the two estimation methods. In particular, we improve

the SML method by providing an analytic expression for the RND estimator, which

constitutes another contribution of this study. In Chapter 4, we present the two

Monte Carlo simulation experiments and discuss the results. As an illustration of the

two methods, we present an application to OTC currency option data in Chapter 5.

Some concluding remarks are given in Chapter 6. The main results of this part of the

thesis appear in Bu and Hadri (2005).
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Chapter 3

Methods for Estimating Implied

RNDs

We begin this chapter by a brief review of the economics underlying the methods

for estimating option implied RNDs in Section 3.1. Technical details of the SML

method is presented in Section 3.2. In particular, we refine the SML method by

providing an analytic expression for the RND estimator, which improves the compu-

tational efficiencyof this method. An introduction to the hypergeometric functions

and details of the DFCH method are discussed in Section 3.3.

3.1 Option Prices and Risk-Neutral Densities

Prices of European call options at time zero on the underlying asset S with ex-

piration at T and strike price K are related to the risk-neutral probability density
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function (RND), f 0, through the following expression:

CXJ

C (K) = e-rT J (ST - K) f (8T) dST
K

where r is the continuously compounded risk-free interest rate. As noticed by Breeden

and Litzenberger (1978), differentiating the integral with respect to strike price K

gives
CXJ

BC (K) = _e-rT J f (ST) dST = _e-rT [1 - F (K)]
BK

K

where F (.) is the cumulative distribution function (CDF) corresponding to the prob-

(3.1 )

ability density function (PDF), f (.). The second derivative is given by

B
2
C (K) I = -rTf (8 )BK2 e T

K=ST
(3.2)

which reveals the required RND, f (ST). It follows that the implied RND can be

recovered by calculating the compounded second partial derivative of the call pricing

function with respect to the strike price. In practice, however, some approximating

or smoothing method has to be used to construct such a function due to the limited

number of observed call prices in a cross section.

3.2 Smoothed Implied Volatility Smile

3.2.1 General Procedure

The smoothed implied volatility smile (SML) method was originally developed

by Shimko (1993). It is an approximating function method applied to the implied
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volatility smile. Option prices are first converted to implied volatilities using Black-

Scholes option pricing formula. A continuous smoothing function is then fitted to

the implied volatilities and the associated strike prices. The reason for smoothing

the volatility smile instead of interpolating the call pricing function directly is that it

is technically difficult to fit accurately the shape of the latter and small fitted price

errors tend to have large affects on the resulting RNDs, particularly in the tails. It

is important to note that the use of the Black-Scholes formula is solely to convert

data from one space to another, where smoothing can be done more efficaciously.

It does not assume that the underlying price process is lognormal. Shimko (1993)

used a quadratic functional form to interpolate across the implied volatilities. The

continuum of fitted implied volatilities were then converted back to a continuum of

fitted option prices. The implied RNDs can be obtained by applying equation (3.2).

Malz (1997a,b) also used a low-order polynomial as the smoothing function, but fitted

the implied volatility against the Black-Scholes option delta (8 = oC/ oS). Campa

et al. (1998) introduced the use of a smoothing spline for fitting implied volatility

curves. They also applied this to smoothing the implied volatility/strike function.

The SML estimation method used in this study was developed by Bliss and Pani-

girtzoglou (2002). It follows Malz (1997a,b) in smoothing in implied volatility/delta

space and Campa et al. (1998) in using a natural spline to smooth the function. The

natural spline minimizes the following objective function:
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(3.3)

where 8 is the matrix of polynomial parameters of the cubic spline; 9 (8) is the cubic

spline function; and IV; (5;,8) is the fitted implied volatility at 5i given the spline

parameters 8. Relative weights! to each observation are determined by the values of

uu. The smoothness of the spline is controlled by the smoothing parameter, .x, which

multiplies a measure of the degree of curvature in the function - the integral of the

squared second derivative of the function over its range. It should be recalled that

o ~ 5; ~ «<", where -: is the dividend rate of the underlying asset.

A natural spline is superior to a low-order polynomial because it allows for more

flexibility in the shape of the fitted volatility smile and it also permits the user to

control the smoothness of the fitted function. Using the option delta rather than the

strike price as the function argument groups away-from-the-money implied volatili-

ties more closely together than near-the-money implied volatilities, permitting greater

flexibility in the shape of the approximating function near the center of the distri-

but ion (where data is more reliable) without having to use a variable smoothing

parameter", In addition, since possible values in the delta space always range from 0

to e-r'T, the extrapolation area becomes relatively smaller.

Once the natural spline is constructed, the fitted volatility smile is then converted

1Bliss and Panigirtzoglou (2002) discussed different types of weighting schemes and how the
weighting can account for different sources of pricing error.

2See Waggoner (1997) for more discussions on variable smoothness penalties in spline regression.
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back to the fitted call pricing function. As before, the implied RNDs are obtained by

applying equation (3.2).

30202 Smile Conversion vs Point Conversion

The construction of the SMLmethod proposed by Bliss and Panigirtzoglou (2002)

requires that the implied volatility smile be smoothed in delta space. Two different

ways of converting a strike into its delta have been suggested in the literature, differing

in their choice of the volatility in the delta function. The original one, proposed by

Malz (1997a,b), is to use the implied volatility that corresponds to the strike price.

This is achieved by converting strike prices into deltas using the Black-Scholesdelta

given by the followingequation:

(
In So -In K + (r - -: + *") T)

8K = e-roT4> vT
OK T

The subscript ofOK emphasizes that a particular strike price K in a given cross section

is converted into 8K through its corresponding implied volatility OK on the volatility

smile. We call it "smile conversion". Bliss and Panigirtzoglou (2004) suggested an

alternative way. That is to use a single at-the-money implied volatility to convert all

strike prices in a given cross section. We define it as "point conversion". This is in

fact accomplished through the followingequation:

(
lnSo -lnK + (r - r" +~) T)

8K = e-roT 4>
oAvT (3.4)
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where (J"A is the at-the-money volatility. Note that transforming each strike into a

delta using the at-the-money implied volatility has the advantage that the ordering

of deltas is always the same as that of the strikes. Panigirtzoglou and Skiadopoulos

(2004) pointed out that using the implied volatilities that correspond to each strike

could change the ordering in the delta space, in cases where steep volatility skews are

observed. This would result in generating volatility smiles with artificially created

kinks. As a result, they applied equation (3.4) to convert strikes in their study. In

this study, we do the same.

3.2.3 Analytic CDF and PDF

In previous studies, once the natural spline function is fitted, a large number of

equally 5-spaced points on the function are computed. These are then converted

to equally K-spaced values in price/strike space. These in turn are used to com-

pute the implied CDF or PDF numerically. See Bliss and Panigirtzoglou (2004) and

Panigirtzoglou and Skiadopoulos (2004) for more details.

However, we note that in the case of "point conversion" the implied CDF and

PDF can be evaluated analytically. Therefore, in what followswe improve the com-

putational efficiencyof the SML method by providing the analytic expression of the

estimated option implied CDF and PDF for "point conversion". This constitutes

another contribution of this study to the literature of RND estimation.

Let 9(5, 8) denote the fitted natural spline function in the implied volatility/delta
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space. Note that by the construction of the natural spline, 9 (0,8) is a piecewise

function of the following form:

90 (0) if 0<01

91 (0) if 01 ~ 0 < 02

92 (6) if 62 ~ 0 < 03
9(0,8) = (3.5)

where 9i (6) is a third degree polynomial defined by

for i = 0,1,2, ... n, where n is the number of strikes in a particular cross section. The

first and second derivatives of these n equations are

~ (0) = 3ai (0 - Oi)2 + 2bi (0 - 6i) + c,

~' (0) = 6ai (0 - 0;) + 2b;

For any terminal asset price ST = K, at which the option implied CDF or PDF is

to be evaluated, the corresponding delta point, OK, in the delta space can be directly

calculated through equation (3.4). The fitted implied volatility O"K is then evaluated

at OK by the spline function 9i (0) in (3.5) for Oi ~ OK < 0i+I. Finally, the fitted

European call option price, C (K), can be calculated by substituting both K and O"K

into the Black-Scholes call option pricing formula. Under this framework, the fitted
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European call option pricing function implied by "point conversion" can be written

as

where

In So -InK + (r - r* + 4-) T
d1 = ----------~~~----~-

aKvT

In So - In K + (r - r" - 4-) T
d2 = ----------~--=~------'--

aKvT

o« = gi (15K)

15K = e-r'T<I> (dA)

InSo -In K + (r - r: + 9-) T
dA = --------'-=---------'-

aAvT

The cumulative distribution function (CDF) is obtained by differentiating C (K)

once with respect to K, which gives

oC (K) = -rr {S (r-r')T vr<I>' (d ) OaK 08K _ <I> (d )}oK e oe 1 08
K

oK 2 (3.6)

where

OaK -"/(6)08
K
= gi K

o8K e-r'T<I>/(dA)

o« KaAvT

with <1>' (.) being the standard normal probability density function. It follows from

equation (3.1) that the implied CDF is given by
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which can be directly evaluated at any terminal asset price ST.

The probability density function (PDF) is obtained as follows. To simplify the

notations, we first let

A <p' (dd

B
a(J'K
aOK

C
aOK
aK

and rewrite equation (3.6) as

(3.7)

Note that A, B, e and <p (d2) are all functions of K. Differentiating (3.7) once more

gives

a
2c (K) = e-rT {s e(r-r')T Vr (A' BC + AB'C + ABC') _ <p' (d ) ad2}
aK2 0 2 etc

It can be easily verified that

A' = -Ad! ad!
aK

B' =?h' (OK)e

c = -r'T<p' (d ) (J'An - dA
e A K2(J'~T

ad! = _ 1 + (Vr _ :!2_) BCetc K(J'KJT (J'K

ad2 = ad! _ VrBe
etc e«
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It follows from equation (3.2) that the implied PDF, f (ST), is given by

We apply this analytic formula in our study.

3.3 Density Functionals Based on Confluent Hy-

pergeometric Functions

3.3.1 The Hypergeometric Functions

Abadir and Rockinger (2003) proposed a semi-nonparametric approach for est i-

mating density related functionals without prior knowledge of the density's functional

form. It is based on a special class of transcendental functions, known as hypergeo-

metric functions. Let N denote a set of natural numbers and lR. a set of real numbers.

The indicator function is written as lx;, returning 1 if condition J( is satisfied and

o otherwise. The (complete) gamma function is denoted by r (II) for II E JR, and

defining

. r(a+j)
(a). == (a) (a + 1) ... (a + J - 1) = ()

J r a

leads to the generalized hypergeometric function

(3.9)
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where - (3 ~ Nu {o}. A special case of particular interest is obtained when p = q = 1

in (3.9). It is called Kummer's function,

_ ~ (a)) zj _ a a (a + 1) Z2

IFI = ~ ((3)) j! = 1+ -gz + (3 ((3 + 1) 2 + ... ,

also known as a confluent hypergeometric function. The IFI can be used to represent

a variety of density-related functions", Special cases of interest are

-lJ ~ NU {O}

where '"Y (', .) is the incomplete-gamma function, If> (z) is the standard normal cumu-

lativc distribution function, and sgn(z) is the sign function.

3.3.2 Density F'unctionalsfor Option Pricing

The functionals in the context of option pricing are based on a couple of confluent

hypergeometric functions. We call it the density functionals based on the confluent

hypergeometric functions (DFCH). In contrast to the SML technique, the DFCH

method is an approximating function method applied to the option prices. It specifies

the European call pricing function as a mixture of two confluent hypergeometric

functions:

(3.10)

3The usefulness of the Kummer's function in econometrics and dynamic economics is elaborated
in Abadir (1999).
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where -a3, -a6 ~ NU{O}, b2, b4 E IlL. The indicator function is required to represent

a component of the density with bounded support. It is also sufficient for keeping the

function real-valued for general b, and b3. It can be shown that the first IFI function

in C (.) covers the double integrals of the gamma and other asymmetric generaliza-

tions and the second covers the double integrals of a family of symmetric quadratic

exponential densities such as the normal. Thus, the DFCH approach encompasses

many known distributions in statistics and their mixtures. Examples of special cases

giving integrals of known density functions include

Normal:

Gamma:

Inverse gamma:

Weibull:

where standardization (e.g., centering around zero) is not imposed and the constants

of integration Cl and C2 are to be determined by the problem at hand.

Differentiating (3.10) once! gives the implied cumulative distribution function:

F(ST)

4An important feature of the IFI function is that iterated integrals and derivatives of IFI gives
mixtures of IFl, which makes it a natural tool to model option prices and, more generally, functionals
of densities.
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x [(bl) IFI (a2; a3; b2 (K - mdb3)

+ a2 b2b3 (K - ml)b3
a3

x IFI (a2 + 1;a3 + 1;b2 (K - ml)b3)]

a5
+2a4-b4 (K - m2)

a6

x,Fdas+I;a,;+I;b4(K-m,J')} K=ST +1

and the implied risk neutral probability density function is given by

f(ST) == erT a2~i~)IK=ST
ecT { IK>m, a, (K - mIl"-'[ b, (b, - 1!IF, (a,; a3; b, (K - mIl")

+ a2b2b3 (2bl + b3 - 1) (K - mdb3
a3

x IFI (a2 + 1; a3 + 1; b2 (K - mdba
)

x a2 (a2 + 1) b2b2 (K _ md2b3
a3 (a3 + 1) 2 3

X IFI (a2 + 2; a3 + 2; b2 (K - ml)b3) ]

+2a4 a5 b4 [IFl (a5 + 1; a6 + 1;b4 (K - m2)2)
a6

+2a5 + 1b(K _ m2)2
a6 + 1

x ,F, (as + 2; a, + 2; b4 (K - m,J') 1 } K=ST

Abadir and Rockinger (2003) showed that subject to these functions being nonde-

generate (i.e., the existence condition for the moments), the explicit characterization
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of the moments of the implied RND is given by

which can be obtained by integrating by parts two times.

Given observations of call and put prices, the parameters of the implied PDF

can be estimated using several different methods which include maximum likelihood

(ML), generalized least squares (GLS), generalized methods of moments (GMM), and

so on. In this study, we use non-linear optimization methods' to minimize the sum

of squared fitted pricing errors.

(3.11)

where as before Wi represents the relative weights placed on each observation.

It is important to note that not all the parameters in (3.10) are free to vary

unrelatedly. For the function to be the integral of a CDF, at least three restrictions

in general and possibly seven in the problem at hand can be imposed on the parameter

space". The restrictions imposed by Abadir and Rockinger (2003) are given by (3.12)-

(3.16) which include the martingale condition in (3.16). As a result, the actual number

5Abadir and Rockinger (2003) proved that the nonlinear LS estimators arc consistent and as-
ymptotically normal for any of the parameters that have a nonzero impact on the function.

6Sec Abadir and Rockinger (2003) for derivations.
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of parameters to be estimated is reduced to seven.

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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Chapter 4

Monte Carlo Experiments

In this chapter, we conduct two complementary Monte Carlo experiments based on

pseudo-prices method to examine the ability of the two methods for recovering option

implied RNDs. In the first experiment, the true RNDs are generated by the Heston

(1993) stochastic volatility model and in the second experiment we specify the true

RND as a mixture of three lognormals. Details of the two experiments including the

simulation results are presented in Section 4.1 and Section 4.2, respectively. Section

4.3 gives a summary of this chapter.
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4.1 Monte Carlo Experiment Based on the Heston

Model

4.1.1 The Heston Stochastic Volatility Model

As pointed out previously, a good RND estimation technique should be able to

recover the true RNDs whatever the complexity of their shapes. Therefore, for com-

parison purposes the choice of the true RNDs in a simulation should itself be able to

take on a wide range of different shapes reflecting various empirical features of asset

distributions": high or low volatility, positive or negative skewness, excess kurtosis;

and cater for the full range of maturities that are encountered in practice. To gen-

erate risk-neutral densities that incorporate these features, we followCooper (1999)

and use Heston (1993) stochastic volatility model to generate true RNDs and fitted

option prices. These fitted prices are to be used by alternative methods to recover

the true RNDs. Under the Heston model, the underlying asset price dynamics are

described by the followingstochastic differential equations:

(4.1)

Here the volatility of the underlying asset .jVi is also stochastic. The conditional

variance Vt followsa mean reverting process such that the volatility mean-reverts to a

7Note that option implied RNDs are risk-neutral and thus different from the empirical asset
distributions. But one can justifiably suppose a rough similarity between the risk-neutral and the
objective distributions. See Rubinstein (1994).
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long run of .;g at a rate dictated by 1\,. The term (J v sets the volatility of the volatility.

The two Wiener process dz, and dZ2 have a correlation given by p. By changing the

correlation parameter we can generate skewness in asset returns". Heston shows that

the European call option price on an asset that behaves according to (4.1) has a closed

form solution, which is given by

(4.2)

where for j = 1,2

00

r, (In (So) ,va, T; In (K)) = ~+ ~J Re r=fj (l~~So) ,va, T; ¢)] d¢
o

fi (In (So) ,va, T; ¢) = eC(T;¢)+D(T;¢)vo+i<l>ln(So)

C (T; ¢) = (r - r*) ¢iT + :~ {(bj - pO"v¢i + d) T _ 2ln [1; !:dT]}
D (T; ¢) = bj - pO"v¢i + d [ 1 - edT]

a~ 1 - gedT
bj - pav¢i + d

9 = -=----'----
bj - pav¢i - d

d = J(pav¢i - bj)2 - a~ (2Uj¢i - ¢2)

1 1
Ul = -, U2 = --, a = 1\,0, b1 = I\, + ,\ - pav, b2 = I\, + ,\

2 2

As in Cooper (1999), we test performance across a range of six scenarios, which

correspond to combinations of low and high volatility and three levels of skewness.

We then generate European-style call and put option prices with 4 different contract

maturities from 2 weeks up to 6 months. Thus, a total of 24 different pairs of scenario

8See Cooper (1999) for an illustration of the effect of p on the implied RNDs.
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Table 4.1: Model Parameters under Each Scenario

Strong Negative Skew Strong Positive Skew
Scenario 1 Scenario 2 Scenario 3

Low Volatility K, = 2,~= 0.1 K, = 2,~= 0.1 K, = 2,~= 0.1
(Jv= 0.1, P = -0.9 (Jv= 0.1, P = 0 (Jv= 0.1, P = 0.9

Scenario 4 Scenario 5 Scenario 6
High Volatility K, = 2,~= 0.3 K, = 2,~= 0.3 K, = 2,~= 0.3

(Jv= 0.4,p = -0.9 (Jv= 0.4, p = 0 (Jv= 0.4, p = 0.9

and maturity are generated. The Heston model parameters used for each scenario

are set out in Table 4.1. These are chosen to generate true RNDs that correspond to

situations of negative skewness, and weak and strong positive skewness in the terminal

asset price and also conditions of low and high volatility. To generate these levels of

skewness in the terminal asset price distributions, we use three different values for the

correlation parameter -0.9, 0 and 0.9. The long run volatilities for the high volatility

scenarios are chosen on the basis of the levels of implied volatility typically observed

within equity markets. The lowvolatility scenarios are used to mimic data from Stock

Index, FX and interest rate markets.

It is important to note that the Heston model is used here simply as a convenient

tool to generate underlying RNDs that incorporate the empirical features discussed

above, namely, different levels of spread, skewness and excess kurtosis of the implied

RNDs. Doing so does not presume that equation (4.1) correctly describes the asset

price dynamics in the real world. For this reason, it is innocuous to assume for

simplicity that the market price of volatility risk is zero and that the time zero
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conditional volatility is equal to the long run volatility, as long as the resulting RNDs

serve our purpose.

To obtain the true RND for each scenario and maturity pair, we generate a large

number of theoretical prices of Heston call options using the pricing formula in equa-

tion (4.2) and calculate the RND numerically by applying equation (3.2). Table 4.2

presents some descriptive statistics for the true RNDs used in this experiment. For

simplicity, the mean of the true RNDs are set equal to 100. As can be seen from

the table, our true RNDs take on a wide range of different shapes, with the standard

deviations ranging from 2.038 (small spread) to 23.060 (large spread), skewness from

-0.474 (large negative skew) to 1.964 (large positive skew), and kurtosis from 2.770

(thin tails) to 10.847 (fat tails). Specifically, scenario 1, 2, and 3 are low volatility

cases and scenario 4, 5, and 6 are high volatility cases; Scenario 1 and 4 represent

strong negative skewness, while others are positive cases. As we would expect, all the

three measures including the kurtosis increase with time-to-expiry.

For each of the 24 cases generated above, we compute theoretical option prices

at a number of different strikes. We assume that we observe enough strikes which

span a sufficient range of the true RND9. We construct strike interval equal to 1

for low volatility scenarios and 5 for high volatility scenarios, respectively. The final

number of strikes for each cross section is set out in Table 4.3. It can be seen that the

numbers of strikes used in this study reflect the real world situation in the following

9Specifically, the strike range is constructed to just cover the area between the 1st percentile and
the 99th percentile.



Table 4.2: Descriptive Statistics of the True RNDs

Scenario 2 weeks 1 month 3 months 6 months
1 100.000 100.000 100.000 100.000
2 100.000 100.000 100.000 100.000

Mean 3 100.000 100.000 100.000 100.000
4 100.000 100.000 100.000 100.000
5 100.000 100.000 100.000 100.000
6 100.000 100.000 100.000 100.000

Scenario 2 weeks 1 month 3 months 6 months
1 2.038 2.877 4.956 6.965
2 2.041 2.887 5.003 7.081

Std Dev 3 2.045 2.898 5.052 7.200
4 6.085 8.555 14.529 20.127
5 6.130 8.677 15.094 21.491
6 6.175 8.802 15.702 23.060

Scenario 2 weeks 1 month 3 months 6 months
1 -0.206 -0.281 -0.418 -0.474
2 0.062 0.089 0.159 0.231

Skewness 3 0.331 0.459 0.743 0.956
4 -0.172 -0.229 -0.304 -0.275
5 0.188 0.273 0.505 0.762
6 0.551 0.781 1.362 1.964

Scenario 2 weeks 1 month 3 months 6 months
1 3.045 3.082 3.180 3.222
2 3.046 3.088 3.223 3.356

Kurtosis 3 3.178 3.346 3.931 4.602
4 2.983 2.966 2.888 2.770
5 3.135 3.270 3.821 4.678
6 3.532 4.081 6.487 10.847

Table 4.3: Number of Strikes under Each Scenario

Scenario 2 Weeks 1 Month 3 Months 6 Months
1 12 16 24 34
2 11 15 26 36
3 12 15 26 36
4 7 10 15 20
5 8 10 17 23
6 8 11 17 25

31
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two respects. Firstly, they are increasing in time-to-expiry. Secondly, they are close to

the actual numbers of strikes one may observe in reality for corresponding maturities.

4.1.2 Error Specification

As discussed earlier, accuracy and stability are both desirable properties of a good

RND estimator. To test the robustness of alternative methods to small errors em-

bedded in option prices, we add noise e, to the theoretical prices computed above.

Noise e, is introduced to model observational errors that arise from market imperfec-

tions such as nonsynchronicity, bid-ask spread, and discreteness, etc. See Bliss and

Panigirtzoglou (2002) for a discussion on potential sources of errors in option prices.

The error specification used in this study was first introduced by Bondarenko

(2003). It focuses on pricing errors resulting from the bid-ask spread and is con-

structed based on the following reasoning. An empiricist observes both bid and ask

quotes, qf and qi, for put options with strikes {Ki}. This empiricist uses the midpoint

quote Pi = 0.5(qf + qf) as an approximation to the true price. As a result, the intro-

duced measurement error Ci is assumed to be uniformly distributed on [-0.5si, 0.5si],

where Si is the bid-ask spread, i.e., Si = qf - qf. The value Si depends on the strike

Ki, which is larger for in-the-money options and smaller for out-of-the-money options.

For example, the CBOE rules state that the maximum bid-ask spread is ~ for options

with bid quote qb below than $2, ~ for bid quotes between $2 and $5, ~ for bid quotes

between $5 and $10, ~ for bid quotes between $10 and $20, and 1 for bid quotes
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above $20. Such information can be used to construct a function M(q) to represent

the maximum spread for the quote q. Specifically,let

11313
M(O) = 8' M(2) = 4' M(5) = 8' M(10) = 2' M(20) = 4' M(q) = 1, q 2: 50

and M(q) is linearly interpolated for all other q E [0,50].

On the other hand, the empiricist also observes quotes for call options. Since in

practice out-of-the-money options are more liquid, they have smaller spreads than in-

the-money options. It is assumed that the empiricist would use more accurate options

for estimating RNDs. In particular, for large strikes the put-call parity relation is

used to convert more accurate out-of-the-money call prices into the corresponding

put prices. In other words, for the strike Ki, the relevant spread is the minimum of

the spreads for put Pi and call C, = S; + ~ - K: In addition, if we assume that the

actual spread Si is proportional to the maximum spread permitted by the exchange,

we can eventually write

with constant c E [0,1].

The advantages of such specification for e, are that noise is smaller in the absolute

terms but larger in the relative terms for far-from-the-money strikes. The presence

of the scale constant c allows us to proportionally increase or decrease the level of

noise across all strikes. This is particularly important in the present study. Note that

such error specification does not guarantee nonnegative option prices after perturba-
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tion for some deep out-of-the-money options. Recall that the SML method requires

option prices to be first converted to the implied volatilities, which are not defined

for negative option prices. Therefore, failure in monitoring the nonnegativity of the

option prices will lead to failure of the SML method. Since the scale parameter c

allows us to control the size of the noises across strikes, an obvious solution to this

problem is to chose an arbitrarily small value of c. Nevertheless, too small noises may

invalidate the test for the robustness. In order to reconcile these two, we select the

maximum possible value of c that still guarantees nonnegativity of the option prices

after perturbation.

4.1.3 The Root Mean Integrated SquaredError

It is difficult to present and compare more than a few RNDs in the same graph.

Therefore, we analyze the perturbed-price RNDs by examining certain summary sta-

tistics. Note that both the accuracy and the stability are important properties of a

good estimator. To compare these two different RND estimators under both accu-

racy and stability considerations, we focus on the criterion of root mean integrated

squared error (RMISE). If1(ST) is the RND estimator of the true RND f (ST ), then

the RMISE is defined as

J1 (1) := RMISE (1) = E [1: (1 (ST) - f (ST) r dST] (4.3)
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It is convenient to represent RMISE as

fi2 (1) = fi~ (1) + fi~ (1)

fil (1) := RISB (1) = 1:(E [1(ST)] - f(ST)r dST (4.4)

fi2 (1) := RIV (1) = 1:E [(1(ST) - E [1(ST)]f] dST (4.5)

where RISB is the root integrated squared bias and RIV is the root integrated vari-

ance. We define the RMISE as our measure of the overall quality of the estimator,

RISB as our measure of the accuracy, and RIVas our measure of the stability. The

representation allows us to study the relative contributions of the bias fil and the

variability fi2 to the RMISE of different methods. For each cross section, we repeat

the procedure of shocking the prices and then fitting the RND for 100 times. The

RMISE, RISB and RIV are then obtained by applying equation (4.3) to (4.5).

4.1.4 Results

To examine the impact of the choice of weighting schemes on the relative per-

formance of the two methods, we apply three weighting schemes in the estimation.

With decreasing relative weights on near-the-money options, these three weighting

schemes are option vega weighting, equal weighing, and inverse variance weighting.

The RMISE, RISB and RIV results for both methods under the three weighting

schemes are presented in Table 4.4, 4.5 and 4.6, respectively. The results for the SML

method are displayed on the left panel. Recall from (3.3) that for the SML method
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the smoothing parameter A is a free parameter which allows the user to control the

trade-off between the smoothness and the goodness of fit. In this study, we search for

the optimal parameter A that minimizes the RMISE. It is important to note that this

is only possible in simulation studies where the true RND is known. In real world

where the true RND is unknown the smoothing parameter has to be selected by the

user. Different values of A will result in different RNDs. In the following comparison,

we use the minimum RMISE for the SMLlO. For the DFCH method, however, the

RMISE result is unique for each cross section.

Examining the results in Table 4.4, which corresponds to option vega weighting,

we find that in 18 out of 24 cases the DFCH provides lower RMISE than that of the

SML, indicating better overall quality of the DFCH as an RND estimator. Specifically,

for scenario 1 and 4, which represent those important negative skewness cases!", the

DFCH dominates the SML method across all maturities by a substantial margin: The

RMISE for SML are from 138% to 453% larger than that for DFCH.

For the 6 cases where the DFCH underperforms the SML, the differences in RMISE

are relatively small with the largest being 74% for the scenario 6 - 6 month maturity

case. As far as the shape of the true RND is concerned, scenario 2 and 5 represent

very small skewness, especially for short maturities. On the other hand, for the two

long maturity cases in scenario 6, it may not be too unrealistic to assume that such

large positive skewness in asset prices distribution are not as often observed as the

lOWebelieve this is biased in favour of the SML method, because the RMISE's would have been
larger if we chose the oX as if we did not know the actual RNDs.

11Negative skewness is an important empirical feature in financial asset return distributions.
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rest.

Investigation of the RISB reveals that the DFCH is often less biased than the

SML, suggesting the flexibility of the confluent hypergeometric functions. The RIV

show that the SML is relatively stable for cases where the true RND is not strongly

skewed.

Figure 4.1 gives an example of the differences between the two methods. For each

method, the 100 RND estimates are plotted against the true RND. It can be seen

that the SML is significantly biased, particularly on the left tail of the distribution.

It also shows relatively larger variations in the center of the distribution. In contrast,

the DFCH fits the true RND fairly well and exhibits relatively smaller variations.

Table 4.5 and 4.6 provide the simulation results from the other two weighting

schemes. As expected, because the fitted price errors are generally small, the weights

used to multiply them have little impact on the estimation.

4.2 Monte Carlo Experiment Based on Mixture of

Lognormals

4.2.1 The Mixture of Three Lognormals

A criticism over such simulation approaches as above is that the performance of

a particular RND estimating method may be related to the choice of the true RNDs.
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Figure 4.1: True RND and Estimated RNDs Based on the Heston Model
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Results obtained from estimating RNDs of some particular functional form may not

be generalized to RNDs outside the set examined. Such concern would be eased to

a large extent if one method could perform consistently well in different settings. As

a cautionary step, we conduct a further Monte Carlo experiment in which the true

RND f (ST) is specified as a mixture of three lognormals.

and LN(ST; TJ, a) is a lognormal density:

LN(S. ).=_1_ _2_ {_[lnST-(lnTJ+!a2)]2}
T, TJ, a. rr>= S cxp 2 2 .

v27ra T a

It should be noted that the current experiment may be regarded as complementary

to the previous one in the sense that when combined they represent a broader setting

for making comparison.

Moreover, in order to reflect real world conditions as closely as possible, the para-

meters of this specification, given in Table 4.7, are chosen to describe a typical cross

section of the S&P 500 Index options traded at the Chicago Board Options Exchange

(CBOE). They are calibrated from the closing prices on March 21, 1995 of the S&P

500 options with the maturity date on April 21, 199512.

4.2.2 Results

In this experiment, we apply the same methodology, including the error specifi-

cation, as in the first experiment. The RMISE, RISB, and RIV for the two methods

12The same data was used by Bondarenko (2003).
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Figure 4.2: True RND and Estimated RNDs Based on Three Lognormals
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Table 4.7: The Fitted Parameters

11"1 = 0.1194 11"2 = 0.8505 11"3 = 0.0301
rh = 475.59 'T/2 = 498.17 'T/3 = 524.91
0'1 = 0.0550 0'2 = 0.0206 0'3 = 0.0146

Table 4.8: RMISE, RISB and RIV Results Based on Three Lognormals

Vega Equal Inverse Variance
Weighting Weighting Weighting

SML DFCH SML DFCH SML DFCH
RMISE 0.0181 0.0038 0.0200 0.0043 0.0221 0.0049
RISB 0.0180 0.0036 0.0199 0.0042 0.0221 0.0048
RIV 0.0015 0.0013 0.0011 0.0009 0.0009 0.0006
Optimal )., 0.0135 N/A 0.0236 N/A 0.0336 N/A

under three different weighting schemes are presented in Table 4.8. As before, for

the SML method the RMISE reported here are the theoretical minimum obtained by

searching for the optimal parameter ).,. These optimal values are also provided in the

table. Our results once again suggest remarkable dominance of the DFCH over the

SML. As shown in this table, the SML provides more than 300% higher RMISE than

that for the DFCH across all three weighting schemes. Examining the RISB and the

RIV reveals that large bias from the true RND is the main cause of the relatively poor

performance of the SML method, not its variability, as the RIV are pretty close. This

is evidence that results from pure stability test, as in Bliss and Panigirtzoglou (2002),

without concern for accuracy can be very misleading. These findings are invariant

across all weighing schemes. To visualize such differences we plot the estimated RNDs

together with the true RND for both methods in Figure 4.2. As suggested by the RIV,



45

both methods show similar level of variability. But whereas the SML is significantly

biased, the DFCH recovers the true RND with superior precision, further evidence of

the flexibility of the confluent hypergeometric functions.

4.3 Conclusion

In this chapter, we examined the ability of two methods for estimating option

implied RNDs. Two complementary Monte Carlo experiments based on the pseudo-

prices methodology have been conducted. In the first experiment, the Heston's sto-

chastic volatility model were used as the benchmark model to generate true RNDs

that represent various empirical features of asset distributions. The second exper-

iment considered a mixture of three lognormals fitted from a typical cross section

of S&P 500 Index option data as an alternative specification of the true RND. We

compared the two methods by focusing on the RMISE criterion. Results from both

experiments suggest strong evidence of the superiority of the DFCH method over

the SML method under both accuracy and stability considerations. In particular, we

found that the DFCH almost always more closely recovers the implied RNDs.
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Chapter 5

Application to OTC Option Data

This chapter presents an application of the two RND estimation methods to a set

of real option data. Section 5.1 gives some description of the data. In Section 5.2,

we consider three optimization criteria for selecting the smoothing parameter for the

SMLmethod. Estimation results are discussed in Section 5.3. Section 5.4 summarizes

this chapter.

5.1 The data

As an illustration of the two RND estimating methods in real settings, we apply

both methods to OTe data!" of European French franc/Deutsche mark (FF /DM)

rate options of the two dates: 17 May 1996, a day when the exchange rate markets

were known to be calm, and on 25 April 1997, a few days after the French President

13Wethank Professor Karim Abadir and Professor Michael Rockinger for this data.



47

Chirac announced dissolution of the National Assembly, which implied nation-wide

elections. This type of option is quoted in terms of delta. For both dates, we have

at least information for options with delta taking the values 10, 15, 20, 30, 40, 50

(corresponding to the at the money option), 60, 70, 80, 85, 90. For the first date, we

also have information for the 5 and 95 delta options. In this study we use data for

all possible deltas. By using a numerical procedure we extracted for each option of a

given maturity the corresponding strike price. The difference between the actual delta

and the delta obtained for the optimal strike price is in all cases negligible. We have

bid and ask prices for in-the-money put and call options. Following the literature,

we decide to work with the average between the bid and ask prices. Even though we

obtained all results for options with 1, 2, 3, 6, 9, and 12 month to maturity, we report

the results for 1, 3 and 12 month maturity, representing short, medium and long

horizons, respectively. The domestic (French) and foreign (German) Eurocurrency

interest rates are chosen to match the expiration of the options. We transform these

rates into their continuously compound equivalents. The spot exchange rate is easily

available.

5.2 Selecting the Smoothing Parameter

As discussed earlier, for the SML method the presence of the smoothing parameter

A allows the user to control the trade-off between the goodness of fit and smoothness of

the estimated RNDs. In the two Monte Carlo experiments conducted in the previous
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chapter, because the true RND is known wewere able to search for the optimal A that

minimizes the RMISE for each case. When dealing with real option data, the choice

of A has to be decided in some ad-hoc ways. A suitable smoothing parameter can be

obtained by simply plotting the distribution for different smoothing parameters and

choose the onewhich yields the "best" result. The main disadvantage of this method is

that the shape of the estimated RND relies on one's subjective judgement. Therefore,

two researchers may come up with different RNDs for the same data. Besides, this is

a cumbersome method for studies where a large number of distributions need to be

estimated.

Several procedures for automatically choosing an optimal smoothing parameter

have been proposed in the spline regression literature. The most popular class of

these methods is based on cross validation (CV) proposed by Craven and Wahba

(1979). The basic principle of cross validation is to leave out the data points one at

a time and to choose the smoothing parameter for which the missing data points are

best predicted by the remainder of the data. More precisely, for a given smoothing

parameter the observations are deleted one by one and a spline function is estimated

in each case from the remaining observations. The sum of the squared errors between

the deleted observations and the values generated by the spline functions is then

calculated. The "optimal" smoothing parameter is the one that yields the smallest

sum of squared errors. The simple CV criterion has been generalized so that it allows

the user to reweight the contribution of deletion residuals to the total score. The
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generalized cross validation method (GCV) can be written as:

N

mlnL Wi [ai - g>.i (6i' 8)]2
i

where g-i (.) is the fitted spline for a given .x with data point i omitted. Hence, this

method finds an optimal .x by lowering the influence of outlying data points on the

curve.

Another criterion of interest was suggested by Bliss and Panigirtzoglou (2002). It

is to select the .x such that the maximum fitted price error is approximately equal to

one half of a tick size!". They argued that by doing this one can effectively fit the

data within the precision of option price measurement.

In addition, since the SML method is always capable of providing a perfect fit to

the data, for comparison purposes, it is useful to see whether or not the SMLmethod

can lead to reasonable RNDs and at the same time gives as good a fit as the DFCH

method does. Because the residual sum of squares is a monotonically decreasing

function of the smoothing parameter .x, we are able to find the value of .x such that

the two goodness of fit from the two methods are exactly equal.

We apply both RND estimating methods to the OTC currency data and the

performance of the SML method is examined under all three smoothing parameter

selection criteria discussed above.
14Sincethe OTe currency options used in this study are quoted in volatilities, such criterion is

implemented on volatility quotes. Accordingly, we use equal weighting to account for measurement
errors in volatility quotes.
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5.3 Results

Our results suggest that all three criteria provide too loose smoothing parameters

and the resulting RNDs exhibit unreasonably large fluctuations across all maturities

for both dates. As an example, Figure 5.1 shows the RNDs estimated from the

DFCH method and the SMLmethod with three different choices of A for the 1month

maturity options on date 17 May 1996. The values of the A selected by the three

criteria are 1.0696x 10-4, 2.2451 X 10-5, and 3.3606 x 10-4, respectively.

The inconsistency of the GCV criterion indicates that even if the spline function

is optimal according to the GCV procedure in the implied volatility/delta space, it is

not necessary "optimal" after the transformation required to obtain the RND. The

fact that the second criterion failed to provide reasonable result suggests that the

real size of the pricing errors, at least in this market is far greater than that of those

imposed by the discreteness of option quotes. In fact, implementing such criterion

relies on the assumption on the size of the pricing error. As the real size of pricing

errors is unknown, this criterion is arbitrary. Moreover, the smoothing parameter that

provides the same goodness of fit is still too loose to generate reasonable RNDs. A

much tighter A is required to generate a plausible RND. This indicates that the SML

method could not provide as good fit as the DFCH. In contrast, the nonparametric

nature of the DFCH method enables it to give a high goodness of fit and at the same

time the parametric property ensures that the estimated RNDs are proper density

functions.
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The above results show that at least within the samples examined, we have found

no objective ways for the choice of the smoothing parameter. In the end, we decide

to select the value of A relying on our visual inspection so that the RNDs estimated

by the SML method are smooth enough'! but with the best possible fit. The plot of

estimated RNDs for the two dates and three maturities is reported in Figure 5.2 and

Figure 5.3.

The implied RNDs can be described by computing a range of summary statistics.

These measures are useful when analyzing changes in the shape of the implied RNDs.

They are also used for comparing different estimation techniques!". To study the

15A tighter choice of >. will provide smoother RNDs, but this is at the cost of the goodness of fit.
16Exampies are Cooper (1999) and Bliss and Panigirtzogiou (2002).
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Figure 5.2: Estimated RNDs for the First Date
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Figure 5.3: Estimated RNDs for the Second Date

April 28th 1997. 1 Month Maturity

~r-------------~------------~------------~----~----------------------------------'-,, ,, \

=L_ __~~~~ __~~ ~ ~ ~~~ ~ __~~~c=~~ __ ~ __ ~
3.30 3.32 3.34 3.36 3.38 3.40 3.42 3.44 3.46 3.48 3.50 3.52

ST

,,

~
'';;
c::
Q)
Cl

,,

April 28th 1997. 3 Months Maturity

3.22 .3.26 :3.30 3.34 3.3B 3.42 ::3.46 3.50 3.54 ::3.5B 3.62 .3.66

ST

Aprll 28th 1997. 12 Months Maturity

OF"CI-I
S ..ALI~

3.14 3.22 3.30 3.38 3.46 3.62 3.70 3.78 3.86



54

Table 5.1: RND Summary Statistics for OTC Currency Option Data

17.05.96 28.04.97
1M 3M 12 M 1M 3M 12 M

~ SML 3.3896 3.3929 3.4121 3.3743 3.3761 3.3852/-l
DFCH 3.3896 3.3929 3.4121 3.3743 3.3761 3.3852

~ SML 0.0222 0.0437 0.1012 0.0291 0.0507 0.1012(Y

DFCH 0.0193 0.0393 0.0951 0.0250 0.0444 0.0843
Skew SML 0.8335 1.2072 1.1710 1.5190 1.7126 1.8315

DFCH 0.6502 1.1511 1.1468 1.6009 1.4277 1.4264
Kurt SML 5.2820 5.6405 5.3788 5.9971 6.1997 6.3860

DFCH 4.2705 5.6707 5.5896 7.0460 8.1539 8.2997
R2 SML 0.9967 0.9842 0.9365 0.9972 0.9883 0.9479

DFCH 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
A SML 0.0035 0.0045 0.0045 0.0035 0.0150 0.0250

implied RNDs estimated by the two methods. We examine the following distribution

summary statistics:

1. /1: The Mean.

2. er: The Standard Deviation.

3. Skew: The skewness coefficient defined as the third central moment normalized

by the cube of the standard deviation.

4. Kurt: The kurtosis coefficient defined as the fourth central moment normalized

by the square of the variance.

The estimated distribution summary statistics, R2 and the values of A chosen in

SML estimation are all presented in Table 5.1. The DFCH method provides very

high values of R2 across all estimations, indicating great flexibility of the confluent
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hypergeometric functions. As shown earlier, a A that provides the same goodness of

fit is too loose to generate non-oscillating RNDs. Thus, the value of A is manually

selected to provide the best possible fit while ensuring minimum acceptable smooth-

ness in the resulting RND. It turned out that the R2 for the SML method under such

a A are lower by a sizable magnitude than that of the DFCH. Figure 5.4 displays

the plot of the original volatility quotes and the fitted volatility function for the two

methods, which is representative of the fit across all estimations we tried. We notice

an excellent fit from the DFCH method as compared to the SML method, particularly

for away-from-the-money options.

By construction the SML method will always fit the mean of the implied RND to

the forward price. Thus, calculating the mean of the implied RND does not provide

additional information. To make other distribution statistics more comparable, we

impose the mean-forward equality as a constraint in the DFCH procedure. Therefore,

for a particular date and maturity we obtain the same values of the mean from

both methods. We notice that the differences in the standard deviations between

the two methods are less remarkable than those of the two higher moments. The

reason is that higher moments such as skewness and kurtosis are fairly sensitive to

the tails of the distribution where observed option data provide little information.

As discussed in Melick and Thomas (1998), there is an infinite variety of probability

masses outside the strike range that can be consistent with the observed option prices.

The allocation of tail probability mass is specific to each estimating technique. In this
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Figure 5.4: Original Volatility Quotes and Fitted Volatility FUnctions
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respect, previous results of stability test based on higher moments are questionable.

Nevertheless, it is still worth mentioning that the DFCH provides much better fit for

away-from-the-moneyoptions than that of the SML, as has been shown in Figure 5.4.

Interesting conclusion can be drawn from these estimated summary statistics. We

find these statistics reflect the influenceof major events upon this market. Comparing

the mean for the two dates reveals an overall shift to the left for all maturities. This

has come from the fact that the FF had appreciated against the DM. When we com-

pare the standard deviations for the two dates, there is a larger spread for the implied

RNDs at all maturities for the second date. It is an indication that for the second

date there is a greater uncertainty among the markets participants about how the

exchange rate will evolve towards maturity, followingPresident Chirac's announce-

ment of the dissolution of the National Assembly. Specifically,across all maturities

the right tail of the RND decays more slowly for the second date, suggesting that

the market is contemplating a nonnegligible probability of subsequent depreciation

of the FF. Market participants' uncertainty about the exchange rate movement and

fear of large price changes are also reflected by the large values of Kurtosis from both

methods on both dates, as they are willing to pay a high premium for protection

against such large price changes.
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5.4 Conclusion

In this chapter, we carried out an application of the two methods to a set of

OTe currency option data. For the SML method, we found that in the absence

of the knowledge of the true RND, all three objective optimal A selection criteria

do not lead to reasonable RND estimates. Arbitrary choices of A have to be used.

In contrast, the DFCH method not only produced proper RND estimates but also

provided remarkable goodness of fit. Based on the RNDs estimated from two different

dates, we show how RNDs can be used to analyze the effects of major events on the

market's expectations of future exchange rate movements.
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Chapter 6

Conclusion

In this study, we compared the widely known SML method with a new semi-

nonparametric DFCH method to estimate option implied RNDs. We conducted two

Monte Carlo experiments based on the pseudo-prices methodology. This methodology

consists of re-estimating implied RNDs from randomly perturbed cross sections of

fitted theoretical option data based on presumed true RNDs. In the first experiment,

the true RNDs were generated by the Heston (1993) stochastic volatility model. These

RNDs were selected to represent various empirical features of asset distributions. In

the second experiment, an alternative specification of the true RND was considered.

It was based on a mixture of three lognormals, and the parameters of this specification

were calibrated from a typical cross section of S&P 500 Index option data.

To compare the two RND estimating methods, we focused on the RMISE criterion,

which is a measure of average distance between the true RND and the estimated ones.
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Results from both experiments provide strong evidence of the superiority of the DFCH

method over the SML method under both accuracy and stability considerations. In

particular, the DFCH almost always more closely recovers the implied RNDs. We

also found that these results are insensitive to the weighting schemes applied in the

estimation.

We also applied the two methods to OTC currency option data. The statistical

analysis conducted in our Monte Carlo experiments ignores the problem relative to

the choice of the smoothing parameter in the SML method and assumes that the

theoretically optimal A is applied. In this empirical study, as the true RND is un-

known, we tried three different objective choicesof A. We found that all three criteria

failed to generate RNDs with reasonable shape. In particular, we found that in our

examples the SML could not provide as good fit to the data as the DFCH while still

generating non-oscillating RNDs. An arbitrary choice of A was then used. The main

disadvantage of this is that two researchers may come up with different RNDs for the

same data! Based on the fitted RNDs for two distinctive dates, we showedhow RNDs

can be used to analyze the effects of major events on the market's expectations of

future exchange rate movements.

The SMLmethod is attractive as it is a practically very efficientway of extracting

implied RNDs from option data, particularly with its analytic form of the PDF and

CDF provided in this study. Moreover, previous research also suggested that it is

both absolutely and relatively more robust to errors embedded in option prices than
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the widely used mixture of lognormals technique. However, our study shows that the

SML is outperformed by the semi-nonparametric DFCH method. The DFCH is a

theoretically well-founded statistical density functional model. Because of its semi-

nonparametric nature, the DFCH technique is less data-intensive than those fully

nonparametric methods, and more flexible than purely parametric methods in gener-

ating abundant potential probability density shapes. Another potential advantage of

the DFCH over the SML method is that we can test to which known distribution or

mixture of distributions the estimated RND is not significantly different from.
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Chapter 7

Introduction

Recently there has been growing interest in modelling time series of small counts

that arise in various fields of statistics. Examples include the number of customers

waiting to be served at a counter recorded at discrete points in time; the monthly

cases of rare infectious diseases in a specified area; the monthly number of claimants

collecting wage loss benefit for injuries in the workplace, and so on. Typically, such

time series take on only small non-negative integer values and exhibit short-range

dependence. Traditional continuous variable models are apparently inappropriate in

that they would invariably produce non-integer forecast values. As a result, some

specific class of time series models has to be entertained to explicitly account for the

discreteness. This part of the thesis is concerned with a special class of observation-

driven models called integer-valued autoregressive (INAR(p)) models introduced in-

dependently by AI-Osh and Alzaid (1987) and McKenzie (1988). The INAR(p) model



70

not only specifies the dependence structure of the observations but also allows for a

wide class of discrete marginal distributions, which are jointly determined by the

distributions of the innovation sequence and the thinning operators.

Estimation of the INAR(p) process can be carried out in a variety of ways. These

include the moments based Yule-Walker (YW) estimation method and the conditional

least squares (CLS) estimation method of Klimko and Nelson (1978). The implemen-

tation of both approaches is relatively simple and they are asymptotically equivalent.

A recent study which involves the estimation of the INAR model is provided by Jung

and Tremayne (2006), where they considered the estimation of an INAR(2) model

using the method of moments. AI-Osh and Alzaid (1987) showed that maximum

likelihood (ML) can be implemented for estimating the parameters of the INAR(l)

model when Binomial thinning is used and the innovation sequence is assumed to be

Poisson. They compared the finite sample properties of the three estimation meth-

ods and concluded that the ML is worth the extra calculation because of the gain in

terms of the bias and the mean squared error (MSE). Freeland and McCabe (2004a)

considered the conditional maximum likelihood (CML) estimation of the INAR(l)

model and derived new expressions for the score and information matrix. A general

test for model specification based on information matrix equality was also proposed.

However, both works of AI-Osh and Alzaid (1987) and Freeland and McCabe (2004a)

are confined to the first-order model and assume only Binomial thinning operator and

poisson innovations. The main objective of this study is to extend previous works
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and develop a general framework for ML estimation of higher-order INAR models

with general thinning operators and innovation distributions.

On the other hand, one of the main objectives of modelling time series data is to

produce forecasts for various purposes. Freeland and McCabe (2004b) suggested that

for count data models forecasts be provided for each point mass of the distribution,

using the median as coherent point forecast, and that the probabilities associated with

each point mass be modified to reflect the variation in parameter estimation. The

reason for doing this is that the estimated point mass forecasts are more informative

than those supplied by single statistics, such as mean, median and mode, of the fore-

cast distributions. Following the same ideas, McCabe and Martin (2005) explored the

issue of coherent forecasting for a class of INAR models under the Bayesian frame-

work. The disadvantage is that only first-order INAR models are concerned and their

method is based on computer intensive numerical evaluation. Jung and Tremayne

(2006) recently considered coherent forecasting for higher-order INAR models, but

their method is based on Monte Carlo experiments which also requires considerable

computational work. The second objective of this study is to extend the ideas of Free-

land and McCabe (2004b) and develop an efficient procedure for producing coherent

forecasts with higher-order INAR models.

The main contributions of this study can be summarized as follows:

A generalized version of the INAR(p) model is suggested, which encompasses

the widely used Binomial (thinning)-Poisson (Innovations) specification. A recursive
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representation of the conditional (transition) probability function (which serves as the

basis of ~IL estimation) of the generalized INAR(p) model is also proposed, which

greatly improves the efficiency of computation of these probabilities and substantially

facilitates the derivation of the score functions and the Fisher information matrix

of the model. We show that when certain conditions on the distributions of the

thinning process and innovation sequence are satisfied, all elements of the score and

Fisher information matrix can be represented in terms of conditional expectations,

which enhance the interpretation of these quantities and lead to new definitions for

the residuals of the INAR(p) model. More specific details on ML estimation of the

Binomial-Poisson INAR(p) model are provided, including the asymptotic distribution

of the ML estimator.

The second contribution of this study is the comparison of alternative estimation

methods. Asymptotic relative efficiency (ARE) of the ML estimator (MLE) in relation

to the YW estimator (YWE) and the CLS estimator (CLSE) are examined. Our

results confirm that the newly proposed MLE is asymptotically more efficient than

the YWE and the CLSE. We also find that the magnitude of efficiency gain is most

substantial when the values of the thinning coefficients are large. Finite sample

performance of the three estimators are also investigated. Results from our Monte

Carlo experiments indicate that there is also a potential gain in implementing the ML

in small samples in terms of bias and mean squared error (MSE), especially when the

processes considered have high degrees of persistence.
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Another contribution of this study is to the field of forecasting count data. Built

on the theory of stationary higher-order Markov Chain processes, a new approach

for producing distribution forecasts for higher-order INAR models is developed and a

procedure based on the 8-method for calculating confidence intervals for these forecast

probabilities is also suggested. Since the new method is based on the transition matrix

method. no restrictions on the innovation distributions are needed. Most importantly,

it is computationally efficient.

Also in this study, we carry out an empirical analysis of the Westgren (1916) gold

particle data under the ML framework developed in this study. We show that in

the light of the likelihood method, new weapons of statistical inferences can be used,

and as a result new evidence has emerged regarding the suitability of the Binomial

assumption of the thinning process in the fitted model. Forecasts are also produced for

the Westgren data based on the new method. We find that the benefit of implementing

the method, in terms of the enriched information and the improved efficiency, is

substantial.

The rest of Part II of the thesis is organized as follows: Chapter 8 reviews the

INAR(p) model and estimation methods. Chapter 9 looks at the likelihood estimation

of a generalized INAR(p) model. In Chapter 10, we examine the relative performance

of alternative estimators. Chapter 11 is concerned with forecasting with INAR(p)

models. The empirical study is presented in Chapter 12. Chapter 13 concludes.

Proofs and other details are contained in a set of appendices.
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Chapter 8

Review of the INAR(p) Model and

Estimation Methods

In this chapter, we present a brief review of the INAR(p) model of Du and Li

(1991) and revisit three estimation methods that have been used in the literature.

Section 8.1 sets out the details of the Du and Li (1991) type INAR(p) model and

briefly discusses its main statistical properties. In Section 8.2, we review the three

methods for estimating INAR models. The first is the moments based Yule-Walker

estimation method and the second is the conditional least squares estimation method

of Klimko and Nelson (1978). Both methods can be used for estimating higher-order

INAR models. The maximum likelihood method proposed by AI-Osh and Alzaid

(1987) for estimating the first-order INAR model is also discussed.
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8.1 The INAR(p) Model

Du and Li (1991) define the INAR(p) model to be

(8.1)

where the innovation process {Et} is an LLd process which is assumed to be inde-

pendent of all thinning operations (}:k 0 Xt-k for k = 1,2, ... ,p, which are in turn

conditionally independent. The "0" is the thinning operator. Conditional on Xt-k it

is defined as
xc.,

('(k 0 Xt-k =L n.,
i=l

where each collection {Bu...i = 1. 2, ... ,Xt-d consists of independently distributed

random variables (taken here to be Bernoulli) with parameter Q:k and the collections

are mutually independent for k = 1,2, ... ,p. Intuitively, (}:k 0 Xt-k is the number

of individuals that would independently survive a Binomial experiment in a given

period, where each of the Xt-k individuals has identical surviving probability ai:

The case where p = 1, {Ed is Poisson and Bi,! is Bernoulli is known as Poisson

autoregression, henceforth denoted as PoINAR(l), since in this case the marginal

distribution of X, is also Poisson. When p > 1 and {cd is Poisson, it can be shown

that the unconditional mean of X, and the unconditional variance of X, are generally

not equal and so that the marginal distribution of Xt is no longer Poisson even though

the innovations are. Dion et al. (1995) are able to show that the INAR(p) process

may be generally viewed as a special multitype branching process with immigration.
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Du and Li (1991) show that. for O:k E [0,1), the INAR{p) process is asymptotically

stationary as long as L~=) ak < 1 and that the correlation properties of this process

are identical to the linear Gaussian AR(p) process.

The Alzaid and AI-Osh (1990) specification of the INAR{p) process differs from

that of Du and Li (1991) in that it employs the alternative assumption that the con-

ditional distribution of (G) oXt_p, 0:2 oXt_p,"" O'poXt_p)' given Xt-p is multinomial

with parameters (G). 0:2,"" O:p. Xt-p)' The statistical properties of the Alzaid and

Al-Osh (1990) model are very different from that of Du and Li (1991) and the model is

much less tractable. In this study, we confine ourselves to the case where the thinning

operators are conditionally independent.

8.2 Estimation Methods

It is clearly the case that the estimation problem connected with the INAR process

is more complicated than that of the Gaussian AR process. The complication arises

from the fact that the process is nonlinear due to the thinning operator and the

conditional distribution of Xt given its lags is the convolution of the distribution of

e, and the distributions of p Binomials determined by O'k 0 Xt-k for k = 1,2, ... ,p.

Several estimation methods have been proposed in the literature. These include

the moments based Yule-Walker estimation method and the conditional least squares

estimation method. AI-Osh and Alzaid (1987), assuming Poisson arrivals, presented a

maximum likelihood procedure for estimating the PoINAR(1) process. The objective
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of this section is to provide a brief review of the three estimation methods.

8.2.1 Yule-WalkerEstimation

As discussed earlier, the autocorrelation structure of the INAR(p) process is iden-

tical to the linear Gaussian AR(p) process. If we define

it can be easily verified that for the process in (8.1)

or

(8.2)

It follows that a simple way to get an estimator for the model parameters is to

replace the autocorrelation coefficient Pk with the sample autocorrelation coefficient

"A in the Yule-Walker equations. For k = 1,2, ... ,p in (8.2), we have the Yule-Walker

equations

ra=p (8.3)

where
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Replacing p with its sample estimate p in (8.3) yields the Yule-Walker estimate a of

a, which satisfies

(S.4)

Let>. denote the mean of Ch then the estimate of >.for the INAR(p) model is given

by

(S.5)

- - I Twhere X is the sample mean given by X = T Lt=l Xt.

Let 0 denote the parameter vector for the INAR(p) process (aI, a2, ... , ap, >').

Du and Li (1991) show that the Yule-Walker estimator OYW is strongly consistent.

8.2.2 Conditional Least Squares Estimation

For the INAR(p) process in (S.l), the conditional expectation of X, is given by

where ~t is the standard filtration, that is ~t = O"(XI, X2, .•. , Xd. The conditional

least squares (CLS) minimizes the following function over the parameter space

T

Q(O) = L [Xt - gt(O, ~t_I)]2
t=p+1
T

L [Xt - alXt-1 - a2Xt-2 - ... - apXt_p - >.]2 (S.6)
t=p+l

i.e.

Q(OCLS) = min Q( 0)
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where OeLs can be solved from the first order condition

aQ(O) = 0
ao

which admits

r~*~* ~*a =p (8.7)

(8.8)
j=1

where
T

X(j) = _1_ " XT _ p L- t-j
t=p+l

T
~* 1" ( -(j)) ( -(k))'Yk-j = T _ L- Xt-j - X Xt-k - X

P t=p+l ~.
"'* _ "Ik-j
Pk-j - ~

'Yo

r* = [pji-jdpxp

It is easily seen that when T is large enough, r* - r, p* - p, and X(j) - X are nearly

zero. Therefore, one would expect that the CLS estimator in (8.7) and (8.8)17 are

17Alternatively, note that the objective function in (8.6) has exactly the same expression as in the
Gaussian AR(p) case. It follows that we could simply apply the ordinary least squares estimator to
the INAR(p) case. Thus we can rewrite the CLS estimator in the following matrix form.

8CLS = (X'X)-l x'v

where

y

X
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very close to those in (8.4) and (8.5). In fact, it can be shown that the two methods

are asymptotically equivalent.

It can easily be verified that gt, {)gt/{)(J and {)2gt/{)(J{)(J1 satisfy all the regularity

conditions proposed by Klimko and Nelson (1978). It follows that the CLS estimator

8eLs is strongly consistent and has the following asymptotic distribution

where j is the Godambe information matrix given by

j = SV-1S

where

(8.9)

(8.10)

with

8.2.3 Maximum Likelihood Estimation of the INAR(l) Model

Assuming Poisson innovations, AI-Osh and Alzaid (1987) proposed that the first-

order INAR process be estimated by maximum likelihood. For the PoINAR(l)

process, the likelihood function of a sample of T observations can be written as

T

u«, A) = P(Xd ITP(XtIXt-1)
t=2
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where P(XtiXt-l) is the conditional probability ofX, given Xt-i, which is also known

as the transition probability for the Markov chain implied by the process. It is well

known that this transition probability is given by

Since the marginal distribution of the PoINAR(I) process is also Poisson with

mean equal to A/(1 - a), the unconditional likelihood function can be written as

In the case of conditional maximum likelihood (CML) estimation, Xl is treated as

given and the conditional likelihood function is of the form:

(8.12)

The ML estimator and the CML estimator can be obtained by maximizing the

log of the likelihood function in (8.11) and (8.12), respectively. AI-Gsh and Alzaid

(1987) showed that the procedure of Sprott (1983) can be used in the current case to

eliminate one of the parameters in the derivatives of the log-likelihood function, and

that the ML estimates a and X have the following asymptotic distribution:

where the matrix i is the Fisher information, Le. the expectation of the negative

second derivatives of the log-likelihood function.
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Chapter 9

Maximum Likelihood Estimation

of the INAR(p) Model

This chapter looks at likelihood based estimation of a generalized INAR(p) process.

Section 9.1 sets out the specification of the generalized model and Section 9.2 con-

siders the maximum likelihood estimation of the model. A recursive representation

of the transition probability function for the INAR(p) model is proposed, based on

which we derive the expressions for the score function and the Fisher information

matrix with respect to the conditional likelihood. We show that under certain con-

ditions these quantities can be neatly represented as conditional expectations. The

unconditional likelihood, however, is slightly complicated by the lack of knowledge of

the analytic expression for the joint distribution of the first p observations. Neverthe-

less, we overcome this by proposing a simple numerical procedure for transforming
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the conditional probability into the joint probability. This joint probability, when

added to the results from the conditional case, produces the exact likelihood as well

as the corresponding score and information quantities. In Section 9.3, we consider the

special case of INAR(p) model with Binomial thinning and Poisson Innovations, for

which more specific details on ML estimation are provided, including the asymptotic

distribution of the ML estimator. The main results of this chapter appear in Bu et

al. (2006a).

9.1 The Generalized INAR(p) Model

We consider a generalization of the model in (8.1), i.e.

(9.1)

where ak . Xt-k is, conditional on Xt-k, a real-valued random variable (operator)

with parameter ea: The "." is denoted as a general thinning operator. The variables

ak . Xt-k for k = 1,2, ... ,P are conditionally mutually independent. The operator

thus delivers a random value and the dependence in {Xt} is induced via the condi-

tioning variables Xt· For a general treatment of such operators, see Joe (1996). The

probability (density) function of ak . Xt-k conditioned on Xt-k, with respect to some

measure v, is written as

(9.2)
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while that of et is

g(c) = g(c; A). (9.3)

for some parameter vector A.

In integer models of principal concern here, v is regarded as a counting measure

and the model in (9.1) is henceforth referred to as the generalized INAR(p) model.

Therefore, in many occasions (9.2) and (9.3) are treated as probability functions,

e.g. !(skIXt-k; Ok) and g(Ct; oX). Obvious special cases include distributions such as

Binomial and Poisson.

The main task of this chapter is to develop a framework for maximum likelihood

estimation of the generalized INAR(p) model. For notation convenience, the para-

meters Ok and the vector oX are often suppressed in the followingexposition.

9.2 Likelihood Calculations

In this section we consider the maximum likelihood estimation of the generalized

INAR(p) model. As mentioned earlier, the exact likelihood of the INAR(p) model

is complicated by the joint distribution of the first p observations. For ease of ex-

position, we begin our exploration with the conditional likelihood estimation and

derive the corresponding score functions and Fisher information matrix. We then

show how these results for the conditional case can be extended to the unconditional

case with the aid of a numerical procedure for computing the joint distribution of
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9.2.1 The Conditional Likelihood

Conditioning on the first p observations leads to a simple form of the likelihood,

viz.
T

L(o.l, ... , o.p, >.) = IIP(Xt!Xt-1, ... , Xt-p)'

t=p+l

(9.4)

Obviously, the knowledge of the transition probability function P(Xt!Xt-1, ... , Xt_p)

is sufficient for the construction of the conditional likelihood.

9.2.1.1 The Transition Probability Function

The primary difficulty of implementing ML estimation lies in the fact that the

transition probability of the INAR(p) model is a (p + 1)-fold convolution and thus

difficult to calculate efficiently. Theorem 9.1 below shows how these transition proba-

bilities may be calculated by a simple recursive mechanism. Notice that the recursion

is defined on the set of conditioning arguments.

Theorem 9.1 For the generalized INAR(p) model in (9.1), the transition probability

function can be expressed in the recursive form as

(9.5)
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where the starling value is given by

p (X, - ~ s, X,_p) ~ L,/ (spIX,_p) 9 (X, - t Sk) . (9.6)

Proof. Given in Appendix 1. •

The recursive representation in (9.5) has several advantages. Firstly, since it is

derived from a general specification of thinning operator and innovation sequence,

it is valid for any probability distribution functions that satisfy the conditions set

out in Section 9.l. Secondly, the recursive mechanism substantially enhances the

computation of the required transition probability by sequentially lowering the order

of the convolution. The main advantage of this representation, however, is that it

provides a succinct expression for the conditional probability function of higher-order

INAR models, which greatly facilitates the derivation of the score and information

quantities. See Appendix 3 for an example of its effectiveness.

Using this transition probability function, the conditional likelihood of the INAR{p)

model can be easily evaluated via (9.4).

9.2.1.2 The Score and Information Matrix

As in Freeland and McCabe (2004a), it proves convenient to express the score

function in terms of certain conditional expectations. The following theorems extend

the INAR(l) results of Freeland (1998) to the vector parameter case.

Theorem 9.2 Let eOk denote the score with respect to D:k for k E [l,p] and i, the

score with respect to the vector A. Denote by Ed,] the conditional expectation with
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respect to the sigma field, ~t = (1 (Xt) Xt-i) ... )Xt-p). Assume the density functions

f and 9 in {9.2} and {9.3} satisfy

of(skIXt-k; ak)
oak
og(c; >..)

0>..
')'(c )g(c; >..)

for some scalar function TO and vector function ')'0. Then for the model {9.1}

T

i., = L Et [T (ak . Xt-k)]
t=p+i

and
T

i, = LEd')' (Ct)].
t=p+i

Proof. Given in Appendix 1. •

The information matrix can also be expressed in a similar way in terms of condi-

tional expectations.

Theorem 9.3 Let lab denote the second derivatives of the log-likelihood with respect

to a and b and let TQk denote the derivative of the function T with respect to ak.

The matrix ')').. is defined as the derivative of the vector function')' with respect to

the vector >... Under the conditions of Theorem 9.2 the following results hold for the

model {9.1}:

T

eQkQk = L {Et [T Qk (ak . Xt-k)] + Vart [T (ak . Xt-k)]} )
t=p+l

T

P~man = L COVt [T (am' Xt-m), T (an' Xt-n)] ,
t=p+l
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T

lOkA = L COVt [7 (O:k . Xt-k) " (Et)]
t=p+l

and
T

lAA' = L {Et [TA (Et)] + Vart [, (Et)]}.
t=p+l

where k, m and nE [1, p] and m i- n.

Proof. Given in Appendix 1. •

It is worth mentioning that to represent the score functions and information ma-

trix in terms of conditional expectation is not just a matter of convenience. It also

provides new interpretations to these quantities. For example, it can be seen that

lOkok and lAA' reflect the mean-variance relations of each individual component of the

model, and loman and lOkA reflect the conditional independence assumption between

model components. The conditions on derivatives of the densities of the unobserved

components will be satisfied by members of the exponential family which includes, of

course, the Poisson and Binomial distributions. It will be shown in Section 9.3 that

in the Binomial-Poisson case these new expressions also lead to new definitions of the

residuals of the model.

9.2.2 The Unconditional Likelihood

Let P (Xl,' .. ,Xp) denote the joint probability distribution of the first p obser-

vations. Then the unconditional likelihood function of the INAR(p) model can be
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written as

T

L(cq, ... ,O:p,"\) = P (XI, ... ,Xp) II P(XtiXt-l, ... ,Xt-p).
t=p+l

It can be seen that under the conditions of Theorem 9.2 and 9.3 the score functions

can be written as

and the information matrix are given by

and

In the relatively simple case addressed by AI-Osh and Alzaid (1987), it can be

shown that the marginal distribution of X, is also Poisson. As a result, both P (Xl)

and its derivatives can be evaluated analytically. However, in the case of higher-order

INAR processes, analytic expressions for the joint probability function P (Xl, ... ,Xp)

and its derivatives are usually not available.
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Nevertheless, it can be noted that the joint probability P (Xt-1, •.. , Xt-p) can be

uniquely determined by the conditional probability function P (XtlXt-1, ... , Xt-p)

providing that the process is strictly stationary'". This intrinsic connection be-

tween these two quantities can be exploited for calculating the exact likelihood. To

this end, we propose a simple procedure for transforming the conditional probabil-

ity P (XtIXt-I, ... ,Xt-p) into the joint probability P (Xt-I, ... , Xt-p) for stationary

processes. The details of the procedure are given in Appendix 2.

Based on this procedure, we are able to evaluate both P (Xl, ... , Xp) and its

derivatives numerically. It follows that the unconditional maximum likelihood esti-

mates of the INAR(p) model can be obtained by setting £~k = 0 and £1 = O. The

asymptotic covariance matrix can be obtained by calculating the Fisher information

given above.

9.3 The Binomial-Poisson Specification

For the theorems proposed in the Section (9.2) to be useful in practice, both the

conditional probability distribution of Qk' Xt-k IXt-k and the distribution of Ct need to

be explicitly specified. The most widely adopted assumption in the literature is that

Qk . Xt-kIXt-k follows a Binomial distributionl" and the innovations are Poisson. In

this section, we provide precise details on the ML estimation for the Binomial-Poisson

18In fact, for a stationary process the joint distribution of any set of observations is uniquely
determined by the conditional probability function.
19For this reason, all INAR processes considered hereafter assume Binomial thinning operations.
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specification. The asymptotic distribution of the ML estimator is also presented.

9.3.1 Maximum Likelihood Estimation

Under the Binomial thinning assumption, the conditional probability distribution

function of ():k • Xt-k IXt-k is given by

(9.7)

for k = 1,2, ... ,p. For Poisson innovations, the probability function of Et is given by

(9.8)

The following corollary gives the conditional probability function for the INAR(p)

model with Poisson arrivals

Corollary 9.1 For the INAR(p) model with Poisson innovations, the recursive rep-

resentation of the conditional probability function can be written as

(9.9)

where the starting value is given by
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and the complete expression of the conditional probability can be obtained by repeated

substitution and is given by

(9.10)

Proof. Given in Appendix 1. •

Clearly, the expression in (9.10) is very cumbersome and therefore of little use.

The recursions of Theorem 9.1 not only facilitate the computation of the likelihood

but they are also extremely useful in computing derivatives and hence the score

and information quantities. The effectiveness of the recursions is exemplified in the

derivation of the conditional expectations in Appendix 3.

It can be easily verified that the conditions on the derivatives of the densities of the

unobserved components set out in Theorem 9.2 and 9.3 are satisfied by the Poisson

and Binomial distributions. It followsthat the score functions and Fisher information

matrix of the process can be represented in terms of conditional expectations. In

particular, it can be shown that for the Binomial-Poisson case

(9.11)

and

(9.12)
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The following two corollaries give explicit forms for the score and information matrix.

Corollary 9.2 Under the conditions of Theorem 9.2 the following results hold for

the INAR(p) model with Poisson innovations:

and

Proof. Given in Appendix 1. •

Corollary 9.3 Under the conditions of Theorem 9.2 the following results hold for

the INAR(p) model with Poisson innovations:

1 T
2 ( 2 L {(20k- 1)Edok 0 Xt-k]

ok 1- Ok) t=p+l

+VardOk 0 Xt-k] - OkEt-dOk 0 Xt-k]} )

and

Proof. Given in Appendix 1. •
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These representations clearly show that the scores and information implied by the

INAR(p) model with Poisson innovations can be decomposed into quantities asso-

ciated with each component of the model. This is analogous to the results for the

PoINAR(l) case given in Freeland and McCabe (2004a). Specifically, the terms in

the score functions measure the incremental contribution of the information arriv-

ing at time t for each process and the second derivatives characterize the properties

of the component processes. For example, the expression £AA reflects the Poisson

mean-variance relationship given the additional information available at time t.

In addition to enhancing the interpretation of the model, these conditional expec-

tations are also an important computational tool. We show in Appendix 3 that all of

the conditional expectations required can be expressed as functions of the transition

probability. For example,

QkXt-kP(Xt - 1IXt-1, , Xt-k - 1,... ,Xt-p)
P(Xt!Xt-1, , Xt-p)

)"P(Xt -1IXt-1, •.. ,Xt-p)
P(Xt!Xt-1, ... , Xt-p)

(9.13)

(9.14)

and the conditional probabilities required may be computed either by (9.10) or, more

efficiently, by the recursive representation of (9.9). It should be mentioned that the

conditional probability would be zero if negative values appear in the probability

function, e.g.

P(-ll0,O) = P(OI-l,O) = P(OIO, -1) = 0.

where the conditional probabilities are written in an obvious short notatiorr". It is

2oFor example, P(Xt = 0IXt-1 = 0, Xt-2 = 0) is given by P(OIO, 0).
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also important to note that the time t expectations are different from those calculated

at time t - 1. For instance, we have Et-1 [akOXt-k] = akXt-k and Et-1 [cd = A.

As in Freeland and McCabe (2004a) the new representation of the score func-

tions leads to new definitions of the residuals in the model (9.1). In particular for

the INAR(p) model with Poisson innovations, there are residuals for the thinning

components

for k = 1,2, ... .p, and for the arrival component

It can be easily verified that adding the new sets of residuals together gives the usual

definition of residuals, i.e.
p

Et = X, - LO:kXt-k.
k=1

These residuals may be used in the usual ways to assess the adequacy of the model and

may suggest improved specifications. A discussion on testing for model specification

under this new framework is presented in Chapter 12.

9.3.2 Asymptotic Distribution of the Maximum Likelihood

Estimator

AI-Osh and Alzaid (1987) show that for the PoINAR(l) model the ML estimator

is consistent and asymptotically normal. It can be verified that the likelihood function
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for the INAR(p) with Poisson innovations satisfies all the regularity conditions for the

consistency and asymptotic normality of ML estimators. We thus have the following

result.

Theorem 9.4 Let (J denote the parameter vector for the INAR(p) model with Poisson

innovations. The maximum likelihood estimator (J M L has the following asymptotic

distribution:

where the matrix i is the Fisher information per observation, i.e. the expectation of

the negative second derivatives as given in Corollary 9.3.

Proof. Given in Appendix 4.•

The parameter estimates for the model can be found using Newton-Raphson type

iterative procedures. Standard errors of the estimates are readily available from the

observed Fisher information matrix. Alternatively, if the time series is comprised of

low counts, the expected Fisher Information can also be calculated numerically using

the results in Corollary 9.3. See Section 10.1.1 for more details.

9.4 Conclusion

In this chapter, we extended earlier work of Freeland and McCabe (2004a) and

proposed a framework for ML estimation of a general INAR(p) process. The likelihood

function as well as the score and information matrix are derived based on a recursive
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representation of the transition probability function for the INAR(p) model. These

quantities form the basis for maximum likelihood estimation and inferences. We

show that under certain conditions the score function and the Fisher information

matrix can be neatly represented as conditional expectations. These new expressions

enhance the interpretation of these quantities and lead naturally to new definitions of

the residuals of the INAR(p) model. Our expositions are elaborated on the Binomial-

Poisson specification, for which the asymptotic distribution of the ML estimator is

also provided.
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Chapter 10

Comparison of Methods

This chapter investigates the performance of the ML estimator (MLE) in compar-

ison with the Yule-Walker estimator (YWE) and the CLS estimator (CLSE). Both

asymptotic and finite sample properties are examined. Section 10.1 examines the

asymptotic relative efficiency(ARE) of the MLE in relation to the CLSE. Our results

confirm that the proposed MLE is asymptotically more efficient than the CLSE. In

Section 10.2 we compare the performance of alternative estimators in small samples.

Monte Carlo experiments are conducted and our results suggest that there is a po-

tential gain in using the MLE over the YWE and the CLSE in terms of bias and

mean squared error (MSE). In both studies, we found that the efficiencygain of im-

plementing ML is most substantial for persistent processes. The main results of this

chapter appear in Bu et al. (2006b).
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10.1 Asymptotic Relative Efficiency

In this section, we examine the asymptotic efficiency of the MLE in relation to the

CLSE and the y\vE. That is, we consider what happens as the sample size goes to

infinity. Since the CLSE and the y\vE are asymptotically equivalent, it is sufficient

to focus on MLE and CLSE only. We compare the two estimators by evaluating the

asymptotic relative efficiency (ARE) between the two estimators. The ARE between

estimators is defined as the ratio of their asymptotic variances (see Cox and Hinkley

(1974)). Let 9 be estimate of () and denote by i"k1 the (k, k) element ofr',the inverse

of the Fisher information matrix. Similarly, let j"kk1 be the (k, k) element ofr'.which
is the inverse of the Godambe information matrix. The ARE for the kth component

of 9 is then defined as
'-1

ARE(O ) = Zkkkk .-1
Jkk

(10.1)

Clearly, in this setup, an ARE less than unity would suggest better efficiency for

the MLE. Notice that there are no simulations involved in this comparison and the

sample size is infinitely large. Furthermore, the comparison is between ML and CLS,

i.e. conditioning on the initial observations has a negligible asymptotic effect.

10.1.1 The INAR(2) Specification and Information Matrix

In our comparison, we entertain the INAR(2) specification
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where et has a Poisson distribution with mean equal to A. For the MLE, the expected

Fisher information matrix can be written as

(10.2)

Xt-1 and Xt-2. Following Corollary 9.1, this conditional probability is given by

By Corollary 9.3

iolol iol02 iol>.

821n P(XtIXt-1, Xt-2)
iol02 i0202 i02>.888(J'

iol>. i02>. e>.>.

where each element in this information matrix can be calculated as specified in Ap-

pendix 3. The expectation in (10.2) is calculated numerically. Specifically, we select

a large enough positive integer value M such that the probability of a count larger

than M is zero. Then, for the INAR(2) model, there are (M + 1)3 possible out-

comes of the joint observation of {Xl> Xt-I. Xt-2} to sum over for each element of

the Fisher informatiorr". For example, summing over all (M + 1)3 possible values of

21 If AI = 6, for instance, there are 343 possible outcomes of joint observation of {XI, Xt-1, Xt-2}.

They arc {O,0, O}, {O,0, 1},... , and {6, 6, 6}.
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where P(Xt, Xt-I, Xt-2) is the joint probability of {Xt, Xt-I, Xt-2}, which is also

calculated numerically based on the conditional probability function in (10.3). Details

of transforming the conditional probability into the required joint probability for

stationary processes are given in Appendix 2.

For the eLSE, the Godambe information matrix is defined in Section 8.2.2. Specif-

ically, for the INAR(2) model with Poisson innovations we have

The expectations in (8.9) and (8.10) are also evaluated numerically in the same way

as in the MLE case.

10.1.2 Results

We calculate and examine the ARE of the two estimators for a range of different

parameter values. To ensure that the processes examined are stationary and nonde-

generate, the sum of the two thinning parameters, al and a2, is confined within the

range of [0.1,0.9] and for each of the two thinning parameters, a sequence of differ-

ent values on a grid of 0.05, ranging from 0.05 to 0.85, are entertained. All possible
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combinations of lXl and lX2, a total of 153 cases, are examined. In addition, in order

to reflect varied arrival rates we also consider a sequence of different values of A.

Since our conclusions are not to be affected by the choice of A, we select to discuss

the results for the typical case where A = 1. Tables 10.1, 10.2, and 10.3 show the ARE

ratios for the three parameters, ai, a2, and :X, respectively. As expected, our results

confirm that the MLE is asymptotically more efficient than the eLSE for all three

parameters, since all the ARE ratios are less than unity. It is generally true that more

substantial efficiency gains can be obtained from using the ML as the process becomes

more persistent (higher values of lX1 or a2, or both). Specifically, it can be seen from

Table 10.1 that for a given value of lX2 the ARE of a1 decreases as the value of lX1

increases. In particular, when lX2 is low it approaches zero very quickly, indicating

substantial advantage of the MLE in these situations; Moreover, for a given lX1 the

ARE of al decreases as a2 increases. But we can see that such decrease is not as fast

as in the previous case, suggesting that the efficiency gain on al is most substantial,

particularly when the value of lXl itself is high. Similarly, Table 10.2 shows that for

a fixed a1 the ARE of a2 decreases rapidly as the a2 itself increases. However, it is

also observed that the ARE of a2 decreases at as high a rate as al increases when

lX2 is fixed. This is in contrast to the ARE of a1 which decreases at a much slower

pace as lX2 grows than as a1 itself increases. These observations reflect the dominant

role of a1 in the INAR(2) process in terms of efficient estimation. Table 10.3 once

again confirms that more substantial gains are obtained from persistent processes on
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estimating .x, especially if either al or a2 approaches unity. But it is interesting to

note that, unlike the previous two cases, the ARE of X is slightly more sensitive to

the scale of 0:2·

Our results show that the observations discussed above are invariant to the mag-

nitude of the arrival rate. However, it is generally the case that for fixed values of

thinning coefficientsthe ARE ratios for all three parameters increase monotonically as

a function of A and approach a limit. These observations are graphically exemplified

in Figure 10.1, which shows the ARE of (il, (il and X as a function of A for the case

where 0:2 = 0.3 and 0:2 = 0.2. It can be seen that the ARE for all three parameters

increase monotonically as .x increases and reach a limit at about 0.88, 0.98 and 0.83,

respectively.

10.2 Finite Sample Performance

In the previous section, we investigated the asymptotic gain of implementing the

ML method over the commonly used eLS method by calculating the ARE ratio

between the two estimators. Our results confirmed that the proposed MLE is as-

ymptotically more efficient than the eLSE. In particular, we noted that in general

the magnitude of the efficiencygain increases as the process becomes persistent. In

this section, we take our research into the small sample performance of the MLE in

comparison to the YWE and the eLSE.
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Figure 10.1: ARE of ah a2 and X as a Function of A
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10.2.1 Estimating the INAR(2) Model

As in the previous section, we still entertain the INAR(2) specification with Pois-

son innovations for its relative simplicity. General procedures of the three methods

for estimating the INAR(p) model have been discussed in previous chapters. In order

to give the readers a better feel for the three estimation methods, in what follows we

outline the specific details of the alternative estimators for the INAR(2) process.
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10.2.1.1 Yule-Walker Estimator for INAR(2)

It follows from Section 8.2.1 that the autocorrelation functions (ACFs) of the

INAR(2) model satisfy the second order difference equation

for k ~ 2. The fundamental idea of the YW estimation is to replace the autocorrela-

tion coefficient Pk with the sample autocorrelation coefficient7\ in the Yule-Walker

equations. For the INAR(2) process, the first and second order sample autocorrela-

tions can be estimated by

T
(T _1)-1 L:(Xt - X)(Xt-1 - X)

t=2PI = --------~~T~-------------
t-: L:(Xt - X)2

t=1

and
T

(T - 2)-1 l:(Xt - X)(Xt-2 - X)
t=3P2= ----------~T~-------------

t-v l:(Xt - X)2
t=1

where X is the sample mean given by X = ~l:;=1 Xt. The corresponding YWE for

al and a2 are obtained by recalling that the autocorrelation structure of this process

mimics that of a Gaussian AR(2) process. They are thus given by

and
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The associated YWE for the parameter A can be obtained from the unconditional

mean of the INAR(2) process and takes the familiar form

(10.4)

10.2.1.2 Conditional Least Squares Estimator for INAR(2)

For the INAR(2) specification, the conditional expectation is given by

where ~t is the standard filtration, ~t = a(X1,X2, ... ,Xt). The CLS minimizes the

followingobjective function over the parameter space

T

Q(lJ) = L [Xt - E(Xtl~t_l)]2
t=3
T

= L [Xt - 0lXt-1 - a2Xt-2 - ,\]2
t=3

with respect to 01, a2, and A. The first order conditions are

T

L Xt-1 [Xt - 01Xt-1 - a2Xt-2 - A] 0
t=3
T

L Xt-2 [Xt - a1Xt-1 - a2Xt-2 - A] 0
t=3

T

L [Xt - 01Xt-1 - 02Xt-2 - ,\] o.
t=3
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It can be easily verified that the solutions to the above conditions can be written as

B2C1 - B1C2

AIB2 - A2Bl
A1C2 - A2C1

AIB2 - A2Bl
1 T

A = (T _ 2) 8 [Xt - D:IXt-l - D:2Xt-2] (10.5)

where

T 1 T T

Al = 8Xt-2Xt-1 - (T - 2) 8Xt-1 8Xt-2

B, t,xL' - (T ~ 2)(t,X,-,r
T 1 T T

{; Xt-2Xt - (T _ 2) {; x, {; Xt-2

t,X~_'- (T ~ 2) (t,X,_,)'
T 1 T T

B2 LXt-1Xt-2 - (T _ 2) LXt-2 LXt-1
t=3 t=3 t=3
T 1 T T

C2 = 8Xt-lXt- (T_2)8Xt8Xt-l.

10.2.1.3 Maximum Likelihood Estimator for INAR(2)

We have shown in Chapter 9 that the INAR(p) model can be estimated by either

conditional or unconditional likelihood. Nevertheless, the unconditional likelihood

estimation is complicated by the joint distribution of the first p observations, so

that numerical methods have to be used. Since our simulation experiments require

repeated estimation of a large number of replications, for computational simplicity
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we focus on the conditional maximum likelihood estimation.

It follows from Section 10.1.1 that the conditional probability ofX, for the INAR(2)

process is given by (1O.3). Thus, conditioned on the first two observations, the likeli-

hood function can be written as

T

£(0:1,0:2, A) = IT P(XtIXt-1, Xt-2)
t=3

Using the results in Appendix 3, the score functions with respect to 0:1, 0:2 and A can

be written as

T
f>.. =L P(Xt - 1lXt-b Xt-2) - P(XtIXt-b Xt-2)

t=3 P(XtlXt-1, Xt-2)

respectively. The conditional maximum likelihood estimator (CMLE) for the three

parameters are obtained by setting fail t.; and i, equal to zero.

10.2.2 Results

In order to compare the relative performance of the three estimators in small

samples, we carry out Monte Carlo experiments to examine the finite sample bias

and mean squared error (MSE) of alternative estimators. To achieve this, we gener-

ate artificial time series of counts based on the INAR(2) model. As in the previous
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section, 153 cases are considered, each of which represents a particular set of thin-

ning coefficients. As mentioned earlier, values of 0:1 and 0:2 as well as their sum,

(0:, + 0:2)' are constrained so that each case under study is ensured to be stationary

and nondegenerate. For each of the 153 cases, 1000 replications are generated. For

each replication, we estimate the model parameters using alternative estimators and

calculate the bias and MSE of parameter estimates. Our simulation experiments are

performed for samples size T = 100, 200, and 500.

To reflect different arrival rates, three rounds of experiments are conducted. Three

different values of A, 0.5, 1 and 2, are used. Not surprisingly, since A is in general a

factor that affects only the magnitude of the variable, our conclusions do not seem

to be affected by the choice of it. We thus select to discuss the simulation results

for the case .\ = 1, which are typical. The bias results for the three different sample

sizes are reported in Table 10.4, 10.5 and 10.6, respectively. Each table contains the

results obtained from the three estimators. To save more space, we have selected to

report the results for 10 typical cases from the total 153 cases. It can be noted that

these presented cases represent combinations of parameter values of typical scales.

It can be seen that except for only a few cases of the CML where &1 is biased up,

in all the remaining cases Q, and Q2 are both biased down and :\ is biased up. This

inverse relationship is to be expected because for a fixed marginal mean of the series

Xt, decreasing 0:, and 0:2 corresponds to increasing X. For the CLS and the YW,

this can be explicitly noticed from equations defining the two estimators (equation
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(10.4) and (10.5)). The relationship between the bias in al and a2, however, is less

evident from the tables. But a closer examination among all cases studied, including

those unreported, also reveals a negative correlation, despite the fact that both are

biased down. This inverse relationship is also expected for similar reason. That is,

for a fixed marginal mean of X, and A,a large al corresponds to a small a2, and vice

versa. For the CLS and the YW, this can also be noted from equation (lOA) and

(10.5).

It can be seen from the tables that for all three parameters the biases in the CML

estimates are in general smaller than those in the CLS and YW estimates. Consider

for example when T = 100, only 2 cases of the YW and 3 cases of the CLS have

smaller biases than the CML; when T = 200, the numbers of such cases are 3 and 3,

respectively. For T = 500, each has only 2 such cases. In particular, the CML seems

to dominate the YW and CLS in terms of the bias of>:' These results suggest that

there is a gain in using the CML over the YW and the CLS in terms of the bias in

estimates.

It is clear that for both the CLS and the YW the magnitude of the bias of al

increases with the increase in al and the magnitude of the bias of a2 increases with

the increase in a2, ceteris paribus. In contrast, the bias of al and a2 in CML estimates

do not show such a tendency for increase in bias. These observations are graphically

illustrated by Figure 10.2 and 10.3, which show, respectively, the bias of al as a

function of al (with a2 = 0.3 and ..\= 1) and the bias of a2 as a function of a2 (with
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Figure 10.2: Bias of (il as a Function of 0:1 for the INAR(2) Model
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Figure 10.3: Bias of (i2 as a Function of 0:2 for the INAR(2) Model
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al = 0.3 and A = 1) for the three estimators based on the sample size T = 200. In

terms of the bias of A, we found that for all three methods the magnitude increases

with the increase in 0:) and a2. However, in the CML estimates the increase in the

magnitude is much slower than in the YW and CLS estimates. This observation is

illustrated by Figure 10.4 and 10.5, which show the biases of >;as a function of al

(with a2 = 0.3 and A = 1) and a2 (with al = 0.3 and A = 1), respectively.

Considering the magnitude of the biases in relation to the sample size, we found

that in both the YW and the CLS estimates, and to a lesser extent, in the CML

estimates, the size of bias is reciprocally related to the sample size. It can be seen

that as the sample size increases from 100 to 200 and to 500 the size of bias of each

of ab a2, and >;would be reduced by roughly the same proportion. For example,

consider the case al = 0.7 and a2 = 0.1. When T = 100 the bias of>; for the YW,

CLS and CML estimates are 0.1602, 0.2080 and 0.1068, respectively. As the sample

size increases to 200, these biases reduce by approximately one-half to 0.0983, 0.1142,

and 0.0732, respectively. As T increases further to 500, they reduce to 0.0419, 0.0428,

and 0.0275, respectively, roughly one fifth of the initial size.

The corresponding MSE results for the three different sample sizes are given in

Table 10.7, 10.8 and 10.9, respectively. Similar to the bias results, the MSE's in the

CML estimates are in general smaller than their counterparts in the CLS and YW

estimates for all three parameters. The dominance of the CML becomes extremely

clear as the sample size increases. It can be seen from the tables that for T = 100,
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Figure 10.4: Bias of ,\ as a Function of (Xl for the INAR(2) Model
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there are only 8 cases, respectively, for the YW and the CLS, which appear to be

(very marginally) smaller than their CML counterparts. But as T increases to 200,

the number of such cases reduces to only 3; For T = 500, the YW and the CLS are

completely dominated by the CML. There is clearly a gain in implementing the CML

in terms of the MSE, especially when one has a reasonably large sample size.

In contrast to the bias results above, for all three estimation methods the mag-

nitude of t-.ISE of al does not increase with the increase in al' Neither does the

magnitude of MSE of a2 arises in a2. However, the magnitude of the MSE of:\ still

increases with the increase in both al and a2' These observations for :\ are graphi-

cally illustrated in Figure 10.6 and 10.7. It can be seen that as in the bias results the

pace of increase in MSE for the CML is clearly lower than the CLS and the YW.

Similar to the bias results, for all three methods of estimation, the MSE of each

parameter is reciprocally related to the sample size. The pace of decrease in the MSE

as the result of increase in the sample size is also similar to the bias results.

In comparing the three methods of estimation in the light of the results of the

simulation experiment, it seems that the CML method is worth the effort. Not only

does the benefit from implementing the CML, in terms of bias and MSE, become sub-

stantial as sample size increases, but there is also a considerable gain when estimating

relatively persistent processes. Consider only the T = 100 case. When al = a2 = 0.1,

for instance, the bias of al in the CML estimate is approximately 95% of the corre-

sponding YW bias and 60% of the CLS bias. For fixed value of a2, this percentage
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Figure 10.6: MSE of ). as a Function of 01 for the INAR(2) Model
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decreases monotonically with the increase in the value of a!, reaching only about 9%

and 6%. respectively, when aj = 0.7. Similarly, the bias of a2 in the CML estimate

is about two thirds of the YW and CLS bias when al = a2 = 0.1. This percentage

drops to around one fifth when a2 = 0.7. However, it should be noted that such

relative gain in terms of bias of ,\ is less sensitive to the value of al and a2.

In terms of the MSE, it can be seen that at a! = a2 = 0.1, the MSE of ai, a2, and
:i: in the Cl\lL estimate are even slightly greater than (or very close to) their YW and

CLS counterparts. But the relative efficiency gain of using the CML starts to emerge

and continues to grow as the process approaches to high degree of persistency, in the

direction of either at or a2 or both.

It should be mentioned in passing that for very small (close to zero) values of a!

or a2 there are actually some noticeable but not substantial gain, in terms of bias

and MSE, of the YW and CLS estimates over the CML method. But it diminishes

very rapidly with the increase in the sample size.

10.3 Conclusion

In this chapter, we examined both asymptotic and finite sample performance of

the MLE. Using the INAR(2) specification with Poisson innovations, we investigated

the asymptotic gain of implementing the ML method over the commonly used CLS

method by calculating the ARE between the two estimators. Our results confirm that

the proposed MLE is asymptotically more efficient than the CLSE and the efficiency
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gain is most substantial for persistent processes. According to the results from our

finite sample simulation experiments, we feel that given the potential gain, in terms of

the bias and MSE, in the CML estimates compared with the YW and CLS methods,

it is worth the effort to implement the CML method. This is particularly true if the

size of the sample is reasonably large. The gain of implementing the CML could be

substantial. Moreover, extra benefit may be achieved if the processes under study

show certain degrees of persistence.
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Chapter 11

Coherent Forecasting with the

INAR(p) Model

One of the objectives of modelling time series data is to forecast the future values

of the variables of interest. This chapter is concerned with forecasting time series

of count data based on the INAR(p) model. Freeland and McCabe (2004b) suggest

that for count data model forecasts be provided for each point mass of the distri-

bution and using median as coherent point forecast. They also suggest that the

probabilities associated with each point mass be modified to reflect the variation in

parameter estimation. However, Freeland and McCabe (2004b) is concerned only

with the PoI:'JAR( 1) model. The main contribution of this chapter is to extend their

ideas to a general INAR(p) model. We begin this chapter by a brief discussion of

alternative predictors based on single summary statistic of forecast distribution and
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their limitations. In Section 11.2, we present a method for producing h-step ahead

forecasts of the conditional probability distribution of the INAR(p) process. Mean-

while, we also consider how the model parameter uncertainty can be reflected in the

confidence intervals for the probability forecasts. Section 11.3 summarizes. The main

results of this chapter appear in Bu et a1. (2006c).

11.1 Forecasting using Conditional Mean, Median

and Mode

The most common procedure for constructing forecasts in time series models is

to use conditional expectations. The reason is that this technique will yield forecasts

with minimum mean squared forecast error. Consider a realization {Xt};=l from a

discrete time stochastic process. Then it can be shown that the forecast, XT+h• of

XT+h that minimizes the expected mean squared forecast error

is the mean of the h-step ahead conditional distribution. But this method lacks data

coherency when the time series under consideration has restrictions on its support.

In the count data context, the process consists of only integer values and therefore

in order to generate data coherent forecasts we seek a method of forecasting that

produccs only integer values.

For this reason, Freeland and McCabe (2004b) suggest that the h-step ahead
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conditional distribution itself be used to produce coherent forecasts. One obvious

idea is to use the median of the forecast distribution. The coherence of the median is

given by the fact that it almost always lies in the support of the distribution when the

variable is discrete and the cardinality of support is small. It can also be shown that

the median has the optimality property of minimizing the expected absolute forecast

error. That is, the forecast, XT+h, of XT+h that minimizes the expected absolute

error

is the median of the h-step ahead conditional distribution.

Freeland and McCabe (2004b)also pointed out that despite being data coherent it

can be quite misleading to summarize an entire distribution by a single point. They

exemplified the problem by the following two situations: in the first case, P(X =

0) = 1 - P(X = 1) = 0.5 while in the second P(X = 0) = 1 - P(X = 5) = 0.9. In

both cases the median of X is 0 (the mean is 0.5), but in the second case, there is

almost twice the probability of observing a zero. Since there are only 2 outcomes in

these examples it would be more informative to give the probability distribution for

both values in the support.

Another data coherent distribution statistic is the mode, which is the value of a

random variable that occurs with the greatest probability. The mode of the forecast

distribution may serve as an alternative data coherent predictor, but as in the case

of the median, it also ignores the probability distribution for values other than the
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mode.

11.2 Forecasting Conditional Distribution with the

INAR(p) Model

To generate data coherent predictions, Freeland and McCabe (2004b) suggest us-

ing the h-step ahead conditional distribution and its median as a point forecast. For

the PoINAR(1) model, Freeland and McCabe (2004b) presented a method of comput-

ing the conditional forecast distribution on the basis of estimated parameters and they

discussed its statistical properties. Followingtheir ideas, McCabe and Martin (2005)

explored the issue of coherent forecasting with count data models under the Bayesian

framework. But they are concerned only with first-order INAR models and their

method is based on computer intensive numerical evaluation. More recently, Jung

and Tremayne (2006) proposed a simulation based method for producing coherent

forecasts for higher-order INAR models, which also requires considerable computa-

tional work. The principal intention of this section is to extend the ideas of Freeland

and McCabe (2004b) and develop an efficient procedure for producing coherent fore-

casts with higher-order INAR models.

Coherent forecasting requires the information about the conditional forecast dis-

tribution of the count variable at subsequent periods. It can be easily noticed that

the one-step ahead conditional probability is simply the transition probability of the
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process. For a count series X, which followsan INAR(p) process defined in (9.1), it

follows that the probability mass function of XT+l conditioned on {Xd;=l is given

by P(XT+J IXT.·· .. XT-p+d, which by definition is the probability of the value X,

occurring at T + 1, according to the one-step ahead conditional distribution. Efficient

procedure for computing the transition probability has been discussed in Chapter 9.

In principle, multiple-step ahead forecasting requires the information about the

conditional forecast distribution of the count variable at multiple periods ahead. In

the relatively simple case of PoINAR(l) model, the required distribution is a convo-

lution of a Poisson and a Binomial random variable. Freeland and McCabe (2004b)

derived the conditional probability mass function of XT+h given XT for any non-

negative integer value h in an analytic form. However, for the higher-order models of

principal concern here, the analytic expression for the required conditional probability

function is not easily available. In what follows,we present an efficient procedure for

producing distribution forecasts based on the INAR(p) model. It will become clear

soon that the transition probability function forms the basis of this procedure.

11.2.1 Forecasting Count Data: A Markov Chain Approach

The Markov chain is a probabilistic model used to represent dependence between

successive observations of a random variable. It is widely used in many disciplines.

Comprehensive treatments of Markov chains and their applications can be found in,

for example, Kemeny and Snell (1976), Kemeny et al. (1976), Karlin and Taylor
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(1981) and Bremaud (1999). It is easily seen that the INAR model is a special type

Markov chain and the process generated by an INAR model can be regarded as a

special case of Markov system, which is by definition a system that can be in one

of several (numbered) states, and can pass from one state to another at each time

step according to fixed probabilities, the transition probabilities. In this section,

we present a method for producing conditional probability forecasts for higher-order

INAR models using Markov chain techniques.

In theory, since the support for an INAR(p) variable is from zero to infinity,

there are infinite possible states in the system. But in practice, for any stationary

INAR processes (at least for most of the count processes one might encounter in

reality), there exists a sufficiently large positive integer M such that the probability

of observing a count larger than M is negligible. Therefore, for a count series X,

which follows an INAR(p) process, we can assume that X, takes values in the finite

set n = {O,... ,M}. Therefore, it can be easily verified that at any given period

t there are (M + It different states, determined by {Xt-p, Xt-pH, ... , Xtl, in the

system generated by an INAR(p) model.

For a Markov system with finite states, the forecast distribution of each state at

any time t can be obtained by means of the transition matrix method. Let Qp,M

denote the transition matrix of an INAR(p) model with the maximum possible count

M. It can be noted that Qp,M is a (M + It x (M + I)Pprobability matrix. Consider

for example an INAR(2) process where M = 1. The corresponding transition matrix
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Q2.1 can be written as

x, 0 0 1 1
Xt-2 Xt-I 0 1 0 1
0 0 [ P(OIO, 0) 0 P(1/0,0) 0

] (11.1)Q2.1
1 0 P(OIO,l) ° P(110,1) 0
0 1 0 P(Oll,O) 0 P(111,0)
1 1 0 P(Oll,l) 0 P(111,1)

Since this is a 2nd-order Markov system, the state of the system at time t is jointly

determined by the values of Xt-1 and Xt, and can be denoted by (Xt-1, Xt). As shown

in (11.1), there are 4 different possible states for the system. They are (0,0), (1,0),

(0,1), and (1,1). Each element in Q2,1 represents the probability of the system going

from one state into another. For instance, if the system is currently in state (0,0),

then the probability of the system going from state (0,0) to state (0,1) in the next

period is given by P(110, 0) and the probability of the system remaining in (0,0) in

the next period is given by P(OIO, 0), etc. A Markov system is said to be homogenous

if the transition matrix, Qp.M, is time-invariant. Note that for a process with order

greater than 1, as in the example, the transition matrix would generally contain

several elements corresponding to transitions that cannot occur. The probability of

these transitions are then 0, sometimes called "structural zero" .

Recall that coherent forecasting aims to produce forecasts of the probability of each

value occurring at the forecast horizon, which is in turn determined by the probability

of each state occurring at the forecast horizon. To get probability forecasts for each

state, we define for a system with (M + l)P states a 1 x (M + l )" probability vector,



134

1f't, which represents the probabilities of finding a system in each of the (M + l)P

different states at a given period t. In the above example, the probability vector is

a 1 x 4 vector which can be written as 1f't = (p2'O, p/'o, p2,l , p/,l). The elements

in tt, represent the probability of the system in state (0,0), (1,0), (0,1), and (1,1),

respectively. It can be noted that at time t the probability of X, = ° occurring is

equal to PtO,o+ p/'o, the sum of the probabilities of the system in state (0,0) and

(1. 0). Similarly, the probability of X, = 1 occurring is given by ptO,l + p/,l, the sum

of the probabilities of the system in state (0, 1) and (1,1). To formalize this principle,

we define, corresponding to 1f't, a iM + l )" x 1 selection vector Vi, i = 0,1, ... ,M,

which has AI+ 1 entries equal to one and all others equal to zero. Each of the M + 1

entries corresponds to one of the AI + 1 states that involveX, = i. In our example,

vd = (1,1,0,0)' and Vl = (0,0,1, I)'. Thus, the probabilities of X, = ° and X, = 1

can be written as 1f'tVOand 1f'tVl, respectively.

It follows from the above reasoning that for a general INAR(p) process the con-

ditional probability forecasts for XT+h can be obtained from the forecasts of the

probability vector 1f'T+h' That is

P (XT+h = iIXT, ... ,XT-p+d = 1f'T+hVi.

The following theorem thus forms the basis of forecasting conditional probability

distributions for the INAR(p) process.

Theorem 11.1 Let Qp and Q~h) denote, respectively, the one-step transition matrix

and h-step transition matrix for a homogeneous pih-order Markov system. It can be
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shoum that

Q(h) = Q(h-I)Q = Qh
p P P p : (11.2)

Let 1fT and 1fT +b. denote the probability vector at time T and T + h, respectively, we

have

(11.3)

Equation (11.2) says that the h-step transition matrix is equal to the hth power

of the one-step transition matrix and Equation (11.3) says that the h-step ahead

forecast of the probability vector 1fT+h is equal to the current probability vector 1fT

times the h-step transition matrix.

It should be mentioned that 1fT is also known as the current state vector. Consider

the system in the above example. If we observe that the last two observations of the

series XI are XT-1 = XT = 0, for instance, it implies that the system is currently in

state (0.0) with probability 1. Therefore, we have p~,o = 1 and p~,o = p~,1 = p~,l =

O. The probability vector at time T is thus given by 1fT = (1,0,0,0), which may be

regarded as an indexing vector of the current status of the system.

To formalize the idea of forecasting conditional probability for the INAR(p) model,

we have the following theorem.

Theorem 11.2 For a geneml INAR(p) process with maximum possible count as-

sumed to be AI, the h-step ahead forecast of the conditional probability of XT+hIT = i

is given by
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If we define a vector P (XT+hIXT, ... , XT-p+d such that

P (XT+h = 0IXT, ,XT-p+d

P (XT+h = IIXT, , XT-p+l)

P (XT+h = MIXT, ... , XT-p+d

then

where v is a selection matrix given by v = (va, VI, ... , VM)'

Consider the example in (11.1). The conditional probability forecasts of XT+h

given {XI }:=l are given by

P (XT+h = 0IXT, XT-d

P (XT+h = IIXT, XT-1)

or

7rTQ~,lVa

7rTQ~,lVl

where

1 0

1 0

o 1

o 1
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11.2.2 Forecasting Count Data When Parameters are Esti-

mated

If the parameters of the model were known it would be easy to calculate the

conditional probability forecasts P (XT+hIXT, ... ,XT-p+1) directly using the results

from Theorem 11.2. However, in almost all practical applications these parameters

are unknown and have to be estimated. Therefore, it is important that this source

of variation be accounted for when producing forecasts. Since forecasts are integers,

Freeland and McCabe (2004b) suggest that the 6-method be used to modify the

probabilities associated with each point mass to reflect the variation in parameter

estimation.

As before, we denote 8 as the parameter vector of the INAR(p) model. The

h-step ahead forecast of the conditional probability mass function can be written

as P(XT+hIXT, ... ,XT-p+I; 8). Under standard regularity conditions, the maximum

likelihood estimate 8 is asymptotically normally distributed around the true para-

meter value, Le. 1T(8 - 80) ~ N(O, i-I) where i is the Fisher information matrix.

Let g( 8) denote a continuous and differentiable function of the parameter estimates

8. The 6-method is a technique for finding the asymptotic distribution of 9(8) given

that the distribution of ..,ft(8 - 80) is asymptotically normal. The idea in the present

context is to apply the 6-method to 9(8) = P(XT+hIXT, ... ,XT-p+1; 8).

Let 8ML be the ML estimators of 8 in the INAR(p) model based on a sample

of size T; Assuming that standard regularity conditions are satisfied, 8ML ~ N[80,
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T-1 r'].According to Theorem 11.2, the ML estimate of the h-step ahead probability

mass is given by P(XT+hIXT, ... , XT-p+l; BML)' An application of the o-method gives

the asymptotic distribution of this quantity for values of XT+h. From this we may

compute a confidence interval for the probability associated with each value of XT+h

in the forecast distribution. Obviously these intervals may be truncated outside [0,1].

Theorem 11.3 For the INAR(p) model, ML estimates of the h-step ahead forecast,

P(XT+hIXT .... , XT-p+l; BAn), has an asymptotically normal distribution with mean

vector

and variance matrix

( )
_ -I (8P(XT+hIXT,"" XT-p+l; 0) ._18P(XT+hIXT, ... , XT-p+l; 0)) I

V 00 - T 80' 1 80
(J=90

where i is the Fisher information matrix and P(XT+lIXT, ... ,XT-p+l; 0) is given by

Theorem 11.2.

Note that since Q~ M is only a matrix of transition probabilities, the partial deriv-

ative

8P(XT+lIXT, ... , XT-p+l; 0) _ 8 [(1rTQ~.MV)']
ao' ao' (11.4)

may be obtained analytically by applying the chain rule of differentiation if analytic

derivatives of the transition probability function are available. The INAR(p) model

with Binomial thinning and Poisson innovations is one of such cases.
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According to Theorem 11.3, the 95% confidence intervals for the conditional prob-

ability forecast P(XT+h = iIXT, ... , XT-p+1; 80) for i = 0,1, ... ,M, can be computed

based on its asymptotic distribution by means of

where (Ji+l(9AIL) is the (i + 1,i + 1) element of V(9ML). Moreover, it is even possi-

ble to get the joint confidence interval over the support of the forecast distribution.

But what should be noted here is that in contrast to the treatment of continuous

variables, it is the probability of the values that is modified to reflect the uncertainty

in parameter estimation.

11.3 Conclusion

In this chapter we extended the ideas of Freeland and McCabe (2004b) and devel-

oped a method for producing data coherent forecasts for higher-order INAR models.

We showed that the INAR(p) process can be regarded as a special type of Markov

system and the distribution forecasts for a count series can be obtained by means of

transition matrix method. A procedure based on the cS-method for calculating con-

fidence intervals for these forecast probabilities is also suggested. Since our method

is based on explicit formulation, not simulations, it is computationally efficient. An

application of this procedure to the Westgren data is presented in Section 12.4 of the

following chapter.
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Chapter 12

Application to Westgren Data

In this chapter, we analyze the Westgren (1916) gold particle data under the

maximum likelihood framework developed in Chapter 9. Some description of the

Westgren data is presented in Section 12.1, where we show the presence of serial

dependence. We estimate an INAR model using conditional maximum likelihood.

Results are discussed in Section 12.2. Section 12.3 assesses the adequacy of the fitted

model by both residual analysis and specification testing. We find that new evidence

has emerged in the light of the new framework. In Section 12.4 we apply the method

introduced in Chapter 11 for producing forecasts for the Westgren data. A brief

summary is given in the concluding section.
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12.1 The Data

The data used in this study consists of 380 counts of gold particles in a well-

defined colloidal solution at equidistant points in time. The set of data was originally

published in Westgren (1916). Although not a data set of economic content, it is

something of a classic in the history of time series and serves admirably for the

purpose at hand. The values used constitute part of a data set that has been used

in both the branching process and time series literatures and analyzed by Guttorp

(1991) and Grunwald et al. (2000). The most recent work of analyzing this data set is

provided by Jung and Tremayne (2006), in which they propose a computer intensive

method for generating coherent predictions for INAR models and the Westgren data

is used as a testbed.

In the first instance weconduct some preliminary analysis to get an overall picture

of the data at hand. Figure 12.1 provides the time series plot of the first T = 370

data points (the last 10 are used in forecasting), which shows no discernible trend or

seasonal patterns. A summary of simple descriptive statistics for the data is given in

Table 12.1. It can be seen that the observed counts vary from 0 to 7 with the sample

mean and variance equal to 1.55 and 1.65, respectively. This suggests that there is

very little or no overdispersion in the data. The marginal distribution of these data

is depicted in Figure 12.2.

As a natural first step of modelling time series data, we plot the sample autocor-

relation functions (ACFs) and partial autocorrelation functions (PACFs) in Figure



142

Figure 12.1: Time Series Plot of 370 Observations of the Westgren Data
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Table 12.1: Descriptive Statistics of the Westgren Data

o 7 1 1.55 1.65
Minimum Maximum Median MeanMode

1
Variance

12.3. The sample ACFs confirm the presence of serial correlations, but little or no

seasonal patterns are found. The sample PACFs suggest that an autoregressive model

with dependence of order 2 is appropriate. Various tests have been proposed in the

literature for detecting presence of serial dependence in time series of counts. Exam-

ples include the simple run test of Wald and Wolfowitz (1940), the modified score test

of Freeland (1998) and the adapted portmanteau tests of Venkataraman (1982) and

Mills and Seneta (1989). Jung and Tremayne (2003) provided an excellent survey of
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Figure 12.2: Marginal Distribution of the Westgren Data

0.25
'>,
v
C
<1> 0.20::;)

0-
<1>
.....

0.15

0.10

0.05

0.00
2 3 4 5 6 7

Counts

these tests. The data at hand has also been examined by Jung and Tremayne (2006)

for the presence of serial dependence by means of different tests. Their results also

confirmed that there is significant serial dependence in the series. Using the method

of moments, they estimated both the INAR(1) model and the INAR(2) model. By

means of residual analysis, they also suggested that the INAR(2) model be used.

12.2 Estimation by Maximum Likelihood

For reasons discussed above, we proceed by estimating a second order INAR

model using conditional maximum likelihood. This requires the arrival process to



Figure 12.3: Correlograms of the Westgren Data
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be fully specified. The Poisson distribution is a common assumption. The CML

estimate of the parameters are a1 = 0.4716(0.0472), a2 = 0.1798(0.0535), and

:\ = 0.5450(0.0724). The estimated asymptotic standard errors, which are obtained

from the observed Hessian, are given in the parenthesis adjacent to each estimate. It

is clear that all the three estimates are significantly different from zero at all conven-

tional significance levels. In particular, the significance of the two thinning coefficients

confirms that there is indeed dependence in the data.

The model that we have estimated above implies that each count at a given time

period t is thinned twice: Once at time t + 1 with an estimated probability of around

47%; and once at period t + 2 with an estimated probability of about 18%. Note

that the sum of the two thinning coefficients is relatively large, over 0.65, indicating

that the series shows a relative high degree of persistence. On the other hand, the
~

estimated arrival rate, .x, is around 0.5, indicating that on average in approximately

every two periods there will be a new particle entering the observation area. Note

that the unconditional mean of the process, the average number of particles observed

in each period, implied by the parameter estimates is 1.56.

12.3 Testing for Model Adequacy

In modelling time series data, it is important to assess the adequacy of the fit.

Generally, this is accomplished by means of residual analysis and specification testing.

By checking the serial dependence of the residuals from the fitted models, Jung and
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Tremayne (2006) suggest that the INAR(2) model is appropriate. In this section, we

examine the issue of adequacy of the INAR(2) model estimated by ML. As shown

in Chapter 9, the ML method enables new tools for statistical inferences to be used.

As a result, new evidence emerges from the following two sections in the light of the

newly developed ML framework.

12.3.1 Residual Analysis

The estimated residuals of the fitted INAR(2) model are defined as

(12.1)

where DI,ML and D2,ML are ML estimates of the thinning coefficients. In principle,

the existence of any dependence structure in the residuals would suggest that a more

general specification is called for. For this reason, we plot the SACFs and SPACFs

of the residuals from the estimated INAR(2) model in Figure 12.4. In an informal

manner, the figure indicates that there is no obvious dependence structure left in the

residuals.

As we discussed earlier, the new representation of the score functions leads to

new definitions of the residuals of the model. According to Section 9.3.1, there are

residuals for each random component of the model. In the current case, there are

residuals for three random components, i.e. for the two thinning components
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Figure 12.4: Correlograms of the Residuals Et from the INAR(2) Model
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and for the arrival component

It can be easily verified that adding the new sets of residuals together gives the usual

definition of residuals in (12.1). These component residuals may be used to assess the

adequacy of each component of the fitted model and may suggest improved specifica-

tions. However, similar to the results from the residuals in (12.1), the correlograms for

none of the three component residual series suggest significant remaining dependence

structure. These observations are confirmed by the results from both the Venkatara-

man (1982) test and Mills and Seneta (1989) tests with various degrees of freedom

applied to these residuals. Table 12.2 shows all the statistics for the tests we used, to-

gether with their corresponding p-values given in the parenthesis. Therefore, in terms

of results from the residual analysis, the INAR(2) model with Poisson innovations

seems to be adequate.

12.3.2 The Information Matrix Test

Nevertheless, neither the graphical method based on correlograms nor the residual

serial dependence tests represent rigorous investigations of the fitted model. Serial

dependence tests are only intended to provide an indication of model misspecification

to motivate the application of a higher order specification. Graphical methods often
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Table 12.2: Results of Tests for Serial Dependence in INAR(2) Residuals

Residual Series
Tests €t rit r2t r;t

Qac! (1)
0.0007 1.1878 0.2140 0.1838
(0.9787) (0.2758) (0.6437) (0.6681)

Qac! (5)
1.2045 4.1936 1.0649 6.6946
(0.9444) (0.5219) (0.9572) (0.2444)

Qae! (10)
6.7416 10.2911 6.4794 14.4748
(0.7496) (0.4153) (0.7735) (0.1524)

Qpac! (1)
0.0002 1.1086 0.2027 0.2265
(0.9900) (0.2924) (0.6525) (0.6342)

Qpae! (5)
1.3097 4.0125 1.1488 8.0657
(0.9339) (0.5476) (0.9497) (0.1526)

Qpac! (10)
7.3144 8.9945 6.1304 14.7222
(0.6955) (0.5326) (0.8042) (0.1425)

suggest how the model may be constructively modified, e.g. the lack of a seasonal

component is usually indicated by a cyclical pattern in a residual plot. However, by

comparison with graphical procedures for continuous data, those for counts are more

difficult to interpret because of their discrete nature. In particular, when individual

component residuals are concerned, not only are they correlated with one another

within any given set but different sets of residuals from the same model are themselves

correlated. In the current case, for instance, the calculated sample correlation is

0.5832 between Tit and r;t; 0.6498 between T2t and r;t; and 0.7173 between rit and

T2t. For these reasons graphical analysis often needs to be supplemented by formal

statistical tests to confirm whether the specification of the components of the model

is adequate.

Freeland and McCabe (2004a) suggested that for the INAR model, where ML
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methods are used, the specification test based on information matrix (1M) equality

can be used. They showed that the 1M test could be interpreted as a test that the

parameters of the model were constants against the alternative that they were random

variables. They applied the 1M specification test to the PoINAR(1) model and showed

that the test can be decomposed into sub-tests: one for each component of the model.

Thus, there is a formal test which checks the adequacy of the arrival process and one

which assesses the Binomial thinning process. There is also an additional component

of the overall test which checks whether these component processes are independent.

The details of this specification test are elaborated in their paper.

The 1M test of Freeland and McCabe (2004a) can be easily extended to higher-

order INAR models. In the current situation, the test statistic for the overall adequacy

of the model can be written as

n n n

u; I)e~lt + e~lt} +I)e!2' + fn2J +L)e~,+ fA,)}
t=1 t=1 t=1

n n

-22: {inltiA, + e~ltA'} - 22: {in2.iA• + fnuA'}
t=1 t=1
n

-22: {inl/~2' + fnltn2t}
t=1

(12.2)

where

aak

. aln?t (XtIXt-l,Xt-2)
eA, = aA
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and

o2lnPt (Xt!Xt-1, Xt-2)
oa2

k

o2lnPt (XdXt-1, Xt-2)
OA_2

a2lnPt (Xt!Xt-1, Xt-2)
OakOA_

for k = 1 and 2. Freeland and McCabe (2004a) showed that under the null hypothesis

that the model is correctly specified, U'; is a zero mean martingale and

[Ul~~ u; .s; N(O, 1)

where [U]n is the quadratic variation of the martingale. Or equivalently,

Although the results from the residual analysis suggest that the 1NAR(2) model

is adequate, since the residual analysis based on graphical method and dependence

tests has its limitations, we take one step further by applying the 1M test to the

fitted 1NAR(2) model. The p-value of the overall test is computed to be 0.2659,

which indicates that we cannot reject the hypothesis that the INAR(2) process with

Poisson arrivals sufficiently describes the variation in the data. This is consistent

with the previous conclusion based on residual analysis. It is worth mentioning that

although the overall test suggests that the model as a whole may be regarded as

satisfactory, it does not necessarily mean that each component is satisfactory. This

is because the effect of misspecification in each component may cancel each other so
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that when considered together they appear to be satisfactory. It is also possible to

have the opposite situation. Since the 1Mtest can be decomposed into sub-tests. We

are able to assess the adequacy of each component and the independence assumptions

among them.

For the INAR(2) model at hand, it is evident from (12.2) that there can be up

to 6 sub-tests. There are three components corresponding to the first and second

binomial thinning operations and the Poisson arrivals. The p-values for the three

sub-tests on the three components are 0.0343, 0.8259, and 0.5108, respectively. These

results suggest that while we may conclude that the second Binomial operation and

the Poisson arrivals are correctly specified, the first binomial thinning seems to be

problematic due to the low p-value of the test. It should be noted that Binomial

thinning assumes that from one period to the next the departure of individual par-

ticles from the observation area is independent and all individual particles have the

same probability of staying in the area. Although to get more specific and sensible

interpretations, one might have to trace back the source of the data, the result of

the 1M test provides statistical evidence that either of the two assumptions for the

Binomial distribution or both of them are not supported by the data. One possibility

to correct for such misspecification is to consider over-dispersed models such as in

McKenzie (1986), AI-Osh and Aly (1992) and Joe (1996). Since this is beyond the

scope of this study, we do not pursue further discussion.

The remaining three sub-tests investigate the conditional independence assump-
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tions among the three components. The corresponding p-values are found to be 0.2756

for the test for independence between the two Binomial thinning operations; 0.1240

for the test between the first Binomial and the Poisson arrivals; and 0.1571 for the

test between the second Binomial and Poisson arrivals. These results suggest that

the assumption of conditional independence is satisfactory.

12.4 Forecasting the Westgren Data

This section aims to apply the method developed in Chapter 11 to produce fore-

casts for the Westgren data. Despite the evidence against the first Binomial thinning

component, the result from the 1M test on overall adequacy does not allow us to

reject the hypothesis that the INAR(2) model with Poisson innovations is correctly

specified. Therefore, we proceed to evaluate forecasts based on the fitted INAR(2)

model. ML estimates for the model parameters are already given in Section 12.2.

For the INAR(2) model, the conditional probability depends on two lags and can be

denoted as P(XtIXt-l, Xt-2). It is observed that the last two observations of the

series are XT = 3 and XT-I = 3.

12.4.1 One-step and h-step Forecasts

Table 12.3 gives the multiple-period ahead conditional mean, median and mode

forecasts, as well as conditional probability forecasts for each value ofX, at subsequent
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periods. As expected the conditional mean forecasts are no longer integer values.

It can be seen that these conditional mean forecasts converge to the mean of the

marginal distribution. This is equal to the unconditional mean of the process implied

by the parameter estimates. Similarly, the conditional median and mode forecasts

converge to their marginal counterparts. It can be noted that the pace of convergence

is relatively slow, happening after more than 30 periods. It is not surprising since as

mentioned previously the data at hand exhibit relatively long distance dependence,

with al + a2 = 0.6514. This observation is also consistent with what we have seen in

Figure 12.3 where the SACFs remain significant even after 20 lags.

To account for parameter uncertainty in model estimation. We apply the theorem

proposed in Section 11.2.2 and compute the confidence intervals for the probabilities

associated with each value of the forecast distribution. These interval forecasts are

presented in Table 12.4. It can be seen that, for instance, in the next period we are

95% confident that the probability of the value 0 occurring lies between 0.0295 and

0.0649; the point estimate of the probability is 0.0472. The point estimates for the

values from 0 to 10sum almost to unity and the model deems that an observation of 11

or more has zero probability of occurring in the forecast periods. In contrast, forecasts

based a single summary statistic of the forecast distribution is much less informative

than what we can infer from Table 12.4. The conditional mean (if rounded to the

nearest integer) all indicate that 2 particles are to be expected in the followingperiods;

The conditional median suggest 2 particles to be expected in the following 5 periods
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and 1 to be expected from the 6th period onwards; and the conditional mode predict

2 particles in the next 3 periods and 1 thereafter. Clearly, the amount of information

that would have been lost as a result of using only single statistics is considerable.

12.4.2 Rolling Forecasts

The forecast distributions described above are of interest in their own right, but

the forecasting scenario envisaged is somewhat different from what would likely be

done in real life. This is because all the forecasts are ex post, since the actual data

for t = 371, ... ,380 are available to the investigators. Moreover, in reality, as each

new observation becomes available, a forecaster is likely to incorporate it into any

prediction exercise. To mimic this situation, we used the idea of rolling forecasting

suggested by West (1996). That is, we forecast observation 371 as before, and then

forecast observation 372 based on a model fitted using a new sample consisting of

observations 2 to 371, and forecast observation 373 using observations 3 to 372, and

so on up to forecasting observation 380. A rolling sample with fixed size (370 obser-

vations) is used throughout in model fitting. This generates a sequence of one-step

ahead rolling forecasts. The results for point and interval forecasts are reported in

Table 12.5and 12.6, respectively. West (1996) also mentions recursive forecasts based

on an increasing sample size as new observations become available. We also tried this

and the results are given in Table 12.7 and 12.8. But as expected these results are

very close to those in Table 12.5 and 12.6. One difference to be expected from what
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is reported in Section 12.4.1 is that no forecast distribution should tend towards the

marginal distribution of the data used in the fitting.

12.5 Conclusion

In this chapter, we carried out an empirical analysis of the Westgren gold particle

data under the framework of Maximum likelihood developed in Chapter 9. Esti-

mates of parameters of the INAR(2) model were obtained by conditional maximum

likelihood estimation. Issues of model adequacy were examined. Although various

tests for serial dependence in the model residuals do not reject the INAR(2) model

as adequate, new evidence has been found from the likelihood based 1M test: While

the overall test failed to reject the INAR(2) model, sub-tests on model components

indicate that the first Binomial thinning operator is not supported by the data, sug-

gesting less restricted models, i.e. overdispersed models, be used to correct for the

partial misspecification.

Also in this chapter, we applied the method developed in Chapter 11 to produce

distribution forecasts for the Westgren data. Our results showed that the estimated

point mass forecasts are much more informative than those supplied by either the

mean, median or mode of the forecast distributions. Therefore, the benefit of im-

plementing the new method is substantial. Moreover, compared to simulation based

approaches our method is computationally efficient.
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Chapter 13

Conclusion

In this part of the thesis, we considered the estimation of higher-order INAR

processes with general specifications for thinning operators and innovation distribu-

tions. A maximum likelihood framework for estimating the INAR(p) model has been

developed. Specifically, we proposed a recursive form for the transition probability

function of the INAR(p) model to facilitate the likelihood computation and the deriv-

ative calculations. Also based on this recursion, we derived the corresponding score

functions and the Fisher information matrix for the INAR(p) model. In particular,

we provided the conditions on the distributions of the thinning process and innovation

sequence, under which the elements of both the score and Fisher information can be

represented in terms of conditional expectations. We showed that these new repre-

sentations not only enhance the interpretation of these quantities but also lead to new

definitions for residuals of the model. For the Binomial-Poisson special case, specific
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details on ML estimation have been explored, including the asymptotic distribution

of the ~IL estimator.

\Ve also studied the performance of the MLE in comparison to the YWE and

the CLSE. Using the INAR(2) model with Poisson innovations, we investigated the

asymptotic gain of implementing the ML method over the widely used CLS method

by calculating the ARE between the two estimators. Our results confirm that the

proposed MLE is asymptotically more efficient than the CLSE especially for high-

persistence processes. The finite sample properties of the alternative estimators have

been examined by means of Monte Carlo experiments. While the results from the

CLSE and YWE are similar, we found that the MLE is preferable and worth the

extra calculation due to potential gain in terms of bias and MSE. In particular, we

found that both asymptotically and in small samples the magnitude of efficiency gain

is positively related to the degree of persistence of the underlying processes.

A new approach for producing conditional probability forecasts for time series of

count data based on the INAR(p) model has been proposed. We suggested that the

INAR(p) process be regarded as a special type Markov system and the new method is

based the transition matrix for stationary INAR processes. A procedure based on the

6-method for calculating confidence intervals has also been suggested. Compared with

the simulation based method proposed by Jung and Tremayne (2006), the method

developed here is computationally efficient.

An application to the Westgren Gold particle data has also been presented. We
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showed that under the Ml, framework new tools can be used for testing model ad-

equacy. As a result, new evidence has come out, regarding the validity of assuming

Binomial distributions for the thinning processes for the Westgren data. We also ap-

plied our forecasting tools for generating distribution forecasts for the fitted model.

Given the enriched information and the advanced efficiency, the benefit from the new

approach is found to be substantial.
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Appendices

We present now the appendices that correspond to the previous chapters of the

thesis.
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Appendix 1: Proofs of Theorems and Corollaries in

Chapter 9

In this appendix we set out the proofs of the theorems and corollaries given in

Chapter 9.

Proof. of Theorem 9.1. We regard XI as the convolution of Gl . Xt-1 and

}' = (l2 . '\,-2 + ... + ll'p . Xt-p + Eh which are by definition mutually indepen-

dent given the p observed lags. Thus, the transition probability density function of

the I='1AH(p)process, namely the probability density function of X, conditioned on

(X,-I ..... X,_p), can be written as

h(xtiXt-I.·· .• Xt-p; 01.· .. , Gp, A)

J !(St!Xt-l: o.)hY(Xt - sllxl-2, ... , Xt-p; 02"", Gp, A)dv(SI)

where h}· (yIXt-2. '" , Xt-p; 02.· .. ,Gp, A) is the conditional probability density func-

tion of }' given observations (Xt-2, ... , Xt-p) and parameters (02, ... ,Gp, A). It is

important to note that this quantity hy (yIXt-2, ... , Xt-p; G2, ... , op, A) can be evalu-

ated using the expression of transition probability density function for an INAR(p-1)

process with parameters (02 •... ,Gp, A). This is purely a computational device. We

thus have the following recursive representation.

h(p)(Xt!Xt-l, ...• Xt-p; 01, ... , Gp, A)

J !(StiXt-l: odh(p-l)(Xt - sllxt-2,"" Xt-p; G2,···, Gp, A)dv{s.)
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The superscript denotes that the conditional probability density function has the

same expression as the transition probability density function of an INAR process

with corresponding order. The recursion is initialized by

which is just the convolution of the INAR(l) model with arguments as specified.

Since t' is a counting measure, the recursion for the transition probability function is

given by

with starting value

•
The proofs of Theorem 9.2 and 9.3 are based on the following straightforward

lemma.

Lemma 1 Let XI, ... , Xp, Y be independent random variables and denote their

densities as [x, (Xi) for i = 1, 2, ... ,p and fy (y). The densities are with respect

to the measure v which may be Lebesgue measure or counting measure. Let Z =

Xl + X2 + ... + Xp + Y be the convolution of Xl, ... , Xp, and Y. The joint distrib-

ution of Z and XI, .... Xp is given by TIf=lfx.(xi)fy(z - L:f=IXi) and the density



174

for Z can be found by integrating out Xl, ... , Xp,

The conditional joint probability density for Xl, ... , Xp given Z is

Let 9 (XlI ... ' XP1 Y) denote an arbitrary function of Xl, ... , Xp, and Y. The con-

ditional moments for ¢ (Xl, ... , Xp, Y) given Z are then

E [¢ (Xl, ... , Xp, Y)I Z]

=

For notation convenience, we also use the following additional notation. The

transition probability density function is denoted by

where x_p = (Xt-l, ... , Xt-p), 8 = (01, ... , 0P' ~)' and ~ may be a vector. To

simplify the notation for a p-fold integration, we set s = (SI, ... , sp) and du, =
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Proof. of Theorem 9.2. The conditional log-likelihood function can be written

as
T

In L(8) = L In h(Xtlx_p; 8)
t=p+l

where

We denote
p p

! (8, Xt; 8) =n!(skIXt-k; ak)g(Xt - L Sk; A).
k=l

Hence

It follows that the corresponding the score functions are given by

Under the conditions of Theorem 9.2

o!(skIXt-k; ak)
oak
og(c; A)

OA
= ,(c; A) g(c; A)



and so

!c;;h{Xt Ix-p; 9)
h(xtlx_p; 9)
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!c;; [J f (s, Xt; 9) dvs]
h(Xtlx_p; 9)

f !c;; [f (s, Xt; 9)] dvs
h(Xtlx_p; 9)

f 7 (Sk; ak) f (S, Xt; 9) dvs
=

h(Xtlx_p; 9)

Et [7 (ak . Xt-k)].

Note that the last equality follows from the Lemma 1 on conditional expectations.

Similarly,

~h(Xtlx_p; 9)
h{Xtlx_p; 9)

~ [J f (s, Xt; 9) dvs]
h{Xtlx_p; 9)

f ~ [f (s, Xt; 9)] dvs
= h{Xtlx_p; 9)

I, (Xt - tlSk;A) f(s,Xt;9)dvs

h(xtlx_p; 9)
=

where, again, the last line follows from the Lemma 1. Finally, we have

T

iOk = L Et [7 (ak . Xt-k)]
t=p+l

T

f>. L Et [, (Ct)].
t=p+l

•
Proof. of Theorem 9.3. Define scalar function 7Ok (Sk; ak) and matrix function
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8T (Sk; CXk)
8CXk

8, (E; ~)
8~' .

Under the conditions of Theorem 9.2:

82 !(skIXt-k; CXk)
8Q~

It then follows that

8 [T (Sk; CXk) !(sklxt-k; CXk)]
8CXk

8T(Sk;CXk) 2
8 !(skIXt-k; CXk) + [T (Sk; CXk)] !(skIXt-k; CXk)
CXk

{T Ok (Sk; CXk) + [T (Sk; CXk)]2} !(skIXt-k; CXk)

8b (E;~) g(c; A)]
8A'

= 8,(c;A) (.A) (.A)8g(c;A)
8A' 9 E, +, E, 8A'

8,(c;A) ( [( (']= 8A' 9 E; A) + , E; A), E; A) g(E; A)

= {,>. (E; A) + [T (E; A), (E; A)'] } g(E; A).

=

£r [J !(s, Xt; 9) dvs]
=

h(xtlx_p; 9)

J pa2 [J (8, Xt; 9)] du;
Ok

=
h(xdx-p; 9)

J {T Ok (Sk; CXk) + [T (Sk; CXk)]2} !(s, Xt; 9) do,
= h(xtlx_p; 9)
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~ [J !(s,xt;O)dvs]
h(xdx-p; 0)

I 82
&>J»:' [J (S, Xt; 0)] dvs

h(XtIX_p; 0)

I I>. (Xt - i;1 Sk;..\. ) ! (S, Xt;()) dvs

h(XtIX_p; 0)

II (Xt - i: Sk;"\') I (Xt - i: Sk;"\')' !(s,Xt;O)dvs
+ ~1 ~l

h(xdx-p; 0)

= Et b>. (Ed + "'((Ed "'( (Et)']

=

~h(Itlx_p; 0)
uamOn

-& [J!(s, Xt; 0) dVs]
h(xdx-p; 0)

1-& [J (s, Xt; 0)] dvs
h{xdx-p; 0)

f 7 (Sk; ak) I (Et;..\.)! (S, Xt; 8) du,
=

h(Xtlx_p; 0)

= Et [7 (ak . Xt-k) "'( (Et)]

8oa:on (J f (S, Xt; 0) dVs]
=

h(XtIX_p; 0)

f aoa:On [J (S, Xt; 0)] du,
=

h(Xtlx_p; 8)
f 7 (Srn; am) 7 (Sn; an)! (s, Xt; 0) du,

=
h(Xtlx_p; 0)

= Et [7 (am' Xt-m) 7 (an' Xt-n)].

Finally, the Fisher information can then be written as follows:
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TL {Et [T Ok (o , . Xt-k) + [T (Ok' Xt-k)f] - (Et [T (Ok' Xt_k)])2}
t=p+l
TL {Et [TOk (Qk' Xt-k)] + VaTt [T (Ok' Xt-k)]}

t=p+l

821n L((J)
8>'8>"t {~h(XtIX_p; (J) _ ~h(xtlx_p; (J) kh(Xtlx-p; (J)}

h(xdx-p; (J) h(xtIX-p; (J) h(xtIX-p; (J)t=p+!
T

= L {Et [,.dcd + , (Ct), (cd] - Ed, (Ct)] Et [r (Ct)'])
t=p+!

T

= L {Et [,.x (Ct)] + VaTt b (Ct)]}
t=p+!

8ok8>'t {&h(XtIX_p; (J) _ ~h(xtlx_p; (J) ~h(xtlx_p; (J)}
h( x, Ix-p; (J) h( Xt Ix-p; (J) h( xdx-p; (J)t=p+l

T

= L {Et [T (Ok' Xt-k), (Ct)]- Et [T (Ok' Xt-k)] Et [, (Ct)]}
t=p+!

T

= L COVdT (Ok' Xt-k)" (Ct)].
t=p+l

•
Proof. of Corollary 9.1. Substituting (9.7) and (9.8) into (9.5) and adjusting

the summation range yields
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By repeated substitution we see that

P(XtIXt-I •... ,XI_p)

min(X'_I.X,) (X ) .
~ I-I 'I (1 )X'-I-tJP(X . IX X)L..;. . 0'1 - 0'1 t - Zl t-2, ... , t-p

11
11=0

{

minIX,_(p_J)'Xt-(il+ ..+iP_~)l ( ) .
~ Xt-(p-l) ",'P-l(l _ rv )Xt_(p_l}-ip-1. . • L..; . '-<p-I <-<p-l
. lp-lIp_I=O

The starting value is given in the bottom line which involves the probability function

of the Poisson distribution. •

Proof. of Corollary 9.2. Using (9.11) and (9.12) we see that
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By the same method,

T

RA = L Et [~ - 1]
t=p+l

1 T~L {EdEt]- Et-dEtl}·
t=p+l

•
Proof. of Corollary 9.3. By differentiating (9.11) and (9.12), we can verify that

and

Thus, the Fisher information can be written as



(OmUra

and

•
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TL COVI [ am 0 Xt-m _ Xt-m , an 0 Xt-n _ Xt-n ]
I~p+l am(1 - am) (1 - am) an(1 - an) (1 - an)

TL COV [ am 0 Xt-m an 0 Xt-n ]
I=p+! t am(1- am)' an(1 - an)

1 T

a",an(I _ Qm)(l _ an) L COVt [am 0 Xt-m, an 0 Xt-n] ,
t=p+l
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Appendix 2: A Numerical Procedure for Calculat-
,

ing Joint Probabilities for the INAR(p) Model

In this appendix we present a numerical procedure that transforms the conditional

probability P(XtjXt-I, ... ,Xt-p) of a stationary INAR process into the joint proba-

bility P(Xt-I, ... , Xt-p) and P(Xt, Xt-l, ... , Xt-p)' P(Xt-I, ... , Xt-p) can be used

for calculating the unconditional likelihood of the model and P(Xt, Xt-1, •.. ,Xt-p)

is necessary for evaluating the expected Fisher information.

Without any real loss of generality, we consider a simple INAR(2) process, whose

conditional probability function is given by P(XtiXt-b Xt-2). We assume that the

probability of observing a count larger than M = 1 is negligible. Thus, for this

particular Markov Chain process, the transition matrix can be written as follows:

x, 0 0 1 1
Xt-2 Xt-1 0 1 0 1
0 0 [ P(OIO,O) 0 P(1jO,0)

P(l~l' 0) ]
1 0 P(OjO,1) 0 P(1jO,1)
0 1 0 P(Oj1,0) 0
1 1 0 P(Oj1,1) 0 P(1j1,1)

According to Bayes's rule, the joint probability

P(Xt = 0, Xt-1 = 0)

P(Xt = OjXt-1 = 0, Xt-2 = 0)P(Xt-1 = 0, Xt-2 = 0)

+ P(Xt = OjXt-1 = 0, Xt-2 = 1)P(Xt-1 = 0, Xt-2 = 1).

Stationarity implies that

P(Xt = 0, Xt-1 = 0) = P(Xt-1 = 0, Xt-2 = 0)
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and thus

P(Xt-1 = 0, Xt-2 = 0)

P(Xt = 0IXt-1 = 0, Xt-2 = 0)P(Xt-1 = 0, Xt-2 = 0)

+ P(Xt = 0IXt-1 = 0, Xt-2 = 1)P(Xt-1 = 0, Xt-2 = 1). (A2.1)

Rearranging (A2.1) yields

[P(OIO,O) - l]P(O, 0) + P(OIO, l)P(O, 1) = 0

and a similar argument gives another two equalities

P(110, O)P(O, 0) - P(l, 0) + P(ll0, l)P(O, 1) 0

P(Oll, O)P(l, 0) - P(O, 1) + P(Oll, l)P(l, 1) O. (A2.2)

The unknown quantities in the above three equations are P(O,O), P(l,O), P(O, I),

and P(l, 1). Since the probability of observing a count other than 0 and 1 is assumed

to be zero

P(l, 1) = 1 - [P(O, 0) + P(l, 0) + P(O, 1)]. (A2.3)

Substituting (A2.3) into (A2.2) yields a system of three simultaneous equations with

three unknown quantities/". Thus, P(O,O), P(l,O), and P(O, I) are uniquely de-

termined and so is P(l, 1). The joint probability P(Xt-1, Xt-2) thus obtained can

then be used along with the conditional probability P(XtIXt-1, Xt-2) to get the joint

22For a general INAR(p) process, there will be a system of (M + l)P - 1 simultaneous equations
with the same number of unknown quantities that are the joint probabilities P(Xt, ... Xt-p)'
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FUrthermore, one could also easily get the marginal probability P(Xt) from the

joint probability P(Xt, Xt-i) by summing over all possible values of Xt-i-
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Appendix 3: Time t Conditional Expectations for

the INAR(p) Model with Poisson Innovations

In this appendix we provide specific formulae for the time t conditional expec-

tat ions required for the score functions and the Fisher information matrix for the

INAR(p) model with Poisson innovations. It turns out that all these conditional ex-

pectations can be expressed as functions of the transition probability, and that the

recursive representation and mechanism effectively facilitate the derivation of these

results. Proofs of the results in (9.13) and (9.14) are given in details. The remaining

can be obtained by similar reasoning.

Proof. of Equation (9.13). Using the recursive representation of the transition

probability, it followsfrom the Lemma 1 that

Et [a} 0 Xt-d
min(X'-I,Xtl

L i}(x:;I)a~l(l- aI)Xt-I-iIP(Xt - iIIXt-2, ... ,Xt-p)

=

min(X'_I,X,)

~ X (X,_1-1) il(l )X'-I-iIP(X . IX X)~ t-I il-I 0'1 -0'1 t-2I t-2,···, t-p
=

P(XtiXt-I, ... , Xt-p)
min(X'_I,X,J {(X )

X L t-I - 1 il -1 (1 )(X'_I -1)-(il -1)
0'1 t-l . 1 0'1 - 0'1

21 -
il=O

XP(Xt-iIIXt-2, ... ,Xt-p)}P(XIX 1 X)
t t-I,···, t-p
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x P(Xt - 1- iIIXt-2, ... , Xt-p)} (I 1 X)
P X, Xt-l, ... , t-p

Q1Xt-1P(Xt - 11Xt-1 - 1, ... , Xt-p)
P(XdXt-l, ... , Xt-p)

Note that the order of components is irrelevant to the result of a convolution. Thus,

the above result also implies that

Et [Qk 0 Xt-k]

QkXt-kP(Xt - 1lXt-k - 1, Xt-l, ... , Xt-k+l, Xt-k-l, ... ,Xt-p)
=

P(Xt!Xt-l, ... ,Xt-p)
QkXt-kP(Xt - 1IXt-I, ,Xt-k - 1, ... ,Xt-p)

P(XdXt-l> ,Xt-p)

•
Proof. of Equation (9.14). Denote Et

Cp) [ctl as the time t conditional expectation

of e. for the INAR(p) model. Then for the INAR(1) model

(A3.1)



•..
188

For the INAR(2) model, we have

(A3.2)

Note that the second equality used the result in (A3.1). Similarly, the result in (A3.2)

can be used to obtain

and so on up to any given order p with the general result as

min(X'_I,X,-1) (X ) . .
= L :;1 a~l(1 - adXt-1-'I.,\P (Xt - 1 - i1IXt-2, ••• , Xt-p)

'1=0

= ,,\P(Xt-lIXt-1, .. ·,Xt-p)

or
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•
Similar reasoning based on Lemma 1 and the recursive representation of the tran-

sition probability also yields the following results:

Et [(O:k 0x; f] - Et [O:k0 Xt-kl

O:kXt-k(Xt-k - l)P(Xt - 2IXt-1, ... , Xt-k - 2, ... ,Xt-p)
P(XtIXt-1, ..• ,Xt-p)

Et [Ezl - Et [ctl

)..2 P(Xt - 2IXt-1, ... ,Xt-p)
P(XtIXt-b ... ,Xt-p)

Ed(O:k 0 Xt-k) Etl

O:k)..Xt-kP(Xt - 2IXt-1, ••• ,Xt-k - 1, ... ,Xt-p)
P(XtIXt-b ... ,Xt-p)
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Appendix 4: Asymptotic Distribution of the Maxi-

mum Likelihood Estimator for the INAR(p) Model

with Poisson Innovations

In this appendix we set out the proof of the asymptotic distribution of the Maxi-

mum likelihood estimator for the INAR(p) model with Poisson innovations. Freeland

(1998) provided a detailed discussion of the regularity conditions needed for the ML

estimates of the INAR(p) model to be consistent and asymptotically normal. Ac-

cording to Freeland (1998), for ergodic processes if the Fisher information is finite

and positive definite then the regularity conditions hold. Since the INAR(p) process

is ergodic according to Du and Li (1991), our main task in this appendix is to show

that the Fisher information is finite and positive definite.

The following theorem shows that the Fisher information is finite.

Theorem A4.1 Let Uok,t = Uokot - UOkot-1' for k E [1,p], U>.,t= U>.,t- U>.,t-l

and Ut = (UOl,t" .. , uop,t, u>.,t)" where Uokot and U>.,t are the score functions for

the INAR(p) model with Poisson innovations with respect to CXk and A, respectively.

Further, let Ut denote the matrix of partial derivatives of Ut with respect to CXk and

A, and let Ut = L~Ut. For any p + 1 dimensional vector l and any positive integer

Z, E [(iT Ut)Z] < 00 and E [(iT Uti)] < 00.

The proof of Theorem A4.1 is based on the following lemma.
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Lemma 2 Let Z and iI, ... , ip be any non-negative integers, which satisfy iI, ... ,ip E

[0, Z] and (il + ... + ip) :S Z. Then, for the INAR(p) model in (8.1), the following

inequality holds:

Proof. of Lemma 2. For the INAR(p) model in (8.1), we can write

and

is therefore a polynomial in Et [Qk 0 Xt-k] and Et [Et] of degree Z. That is

z z
X; = L'" L {aij ...ipEt{O:l 0 Xt_dZ-(i1+ ...+ip) Et{Q2 0 Xt_2]'1

iJ=O ip=O
(iJ +··.+ip)~Z

... EdQp 0 Xt_p]ip-J EtlEt]ip } (A4.1)

for some non-negative constants aiJ ...ip' It should be noted that the p-fold summation

in (A4.1) is restricted to sets of values of il, ... ,ip which satisfy (il + ... + ip) :S Z.

Since all time t conditional expectations are non-negative, all summands in (A4.1)

are non-negative. It follows that

for any non-negative integers Z and il, ... ,ip which satisfy il,· .. ,ip E [0,Zl and

(i1+ ...+ ip) :S Z •
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Proof. of Theorem A4.1. Recall from Corollary 9.2 that for the INAR(p) model

with Poisson innovations

for k E [1,pl. Thus, for any p + 1 dimensional vector I = (ll, ... , lp, lp+l)',

is a polynomial in Edak 0 Xt-k] and Et[Et] of degree Z, which can be written as

= {itUOj,t + ... + ipuo",t + ip+t u>.,t} Z
Z Z

= L'" L {ajj ...j"Edat 0 Xt_t]Z-(h+···+jp) Eda2 0 Xt-2]jl
h=O jp=O

(jl+··+jp):-:::Z
... Edap 0 Xt-pPP-1 EdetPp}

for some constants ajl"-)p' The expected value of {iT ut} Z is

E [{ iT Ut} Z]

E [t ... taJI ..-jpEt[at 0 Xt_l]Z-(jl+···+jp) Et[a2 0 Xt_2]h
}I=O }p=o

(jl+···+jp)::;z

... Ed", 0 X._,F'-'E.fe.F']
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Z Z
L'" Lajl ...jpE [Edal 0 Xt_dZ-(h+··+jp) Et[a2 0 Xt-2]11
h=O jp=o
(h+···+jp)$Z
... Etfap 0 xt-pjiP-I EtfEtJip]
Z Z

< L'" L laj)··-jpl E [Edal 0 Xt_1]Z-(jl+··+jp)Eda2 0 Xt-2]11
h=o jp=o
(jl +··+jp)$Z
... Etfap 0 Xt-p]1P-I EtfEt]1p]
Z Z

< L'" L lail···jpl E [XtZ]
iI=o jp=o
(il +···+jp)$Z

< 00

Note that the second inequality follows from Lemma 2. The proof for the second part

is automatic since E [(lTUt)2] = E [lTUtufl] = E [lTUtl] .•

The next theorem shows that the Fisher information is positive definite.

Theorem A4.2 In the parameter space satisfying ak E (0,1), for k E [l,p], and

,\ E (0,00), E [{lTUt)2] = ° if and only if II = l2 = .. , = lp+l = 0, where l =

(h, ... , lp, lpH)'.

Proof. of Theorem A4.2. It is sufficient to show that

(A4.2)

Since for the INAR(p) model with Poisson innovations

akXt-kP(Xt - 1IXt-1, ... ,Xt-k - 1, ... ,Xt-p)
=

P(XtlXt-1, ... , Xt-p)
,\P(Xt - 1lXt-b ... ,Xt-p)

P(XtIXt-b ... ,Xt-p)
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for k E [1,p], (A4.2) is equivalent to

Var { [~z,,,,x,_,P( X, - lIX,-" ... ,X,_, - 1, ... ,X,_p)]

+ I"., AP(X, - lIX,-" ... ,X,_p) } i' 0

(A4.3)

when l is non-zero. Note that it is assumed that the parameter space satisfies ak i=

o for k E [1,p] and>' i= O. This is because ak = 0 and>' = 0 are boundary

values. Moreover, this assumption ensures that the model being considered does not

degenerate. Otherwise, it can be seen that, for instance, if 0::1 = 0, there exists a

non-zero vector l = (I, 0, ... ,0)' such that the variance in (A4.3) is always zero.

We now prove (A4.3) by contradiction. Suppose there exists a non-zero p + 1

dimension vector l such that

VaT { [~I''''X,_,P( X, - lIX,_" ... ,X,_, - 1, ... ,X,_p)]

+ Ip+1AP(X, -IIX,-l, ... ,X,_p) } ~ 0

This implies that

[tlkO::kXt-kP(Xt - 1lXt-b ... ,xc; - 1, ... ,Xt-p)]
k=1

(A4.4)

almost everywhere for some constant c.
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In particular, (A4.4) should hold when X, = 1 and Xt-I = Xt-2• •• = Xt-p = O.

Thus, (A4.4) becomes

c == Ip+lAP(OIO, ... , 0)

Because A # 0, we can write

I \ -I x
p+1 = CA e

Note that for any finite value of A, C = 0 only if Ip+1 = O.

(A4.4) should also hold when X, = Xt-I = 1 and Xt-2 = Xt-3•·· = Xt-p = o.
Thus

C = IIQIP(OIO, ... , 0) + lp+IAP(011, 0, ... ,0)

which leads to

Since Ql # 0, we get

Note again that c = 0 only if II = 0.
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It can be shown that in general by setting X, = Xt-k = 1 for any k E [1,p] and all

other lags of X, equal to zero, we can verify that lk = ce'>' must hold for all k E [1,p],

and c = 0 only if il = i2 = ... = ip = O.

Finally, we consider when X, = 1, Xt-1 = 2 and Xt-2 = Xt-3 = ... = Xt-p = o.

(A4.4) then becomes

C = 2LlalP(011, 0, ,0) + Lp+lAP(012, 0, ... ,0)

2ce\l:lP(011, 0, ,0) + CA-le'>'AP(012, 0, ... ,0)

2ce\:tl (1 - (1) e-'>' + CA-le'>'A (1 - at}2 e-'>'

2cal (1 - ad + c(1 - ad2

2c (01 - aD + c (1 - 2al + aD

which leads to

CQ~ = 0

This implies that either 01 = 0 or c = o. In fact, by setting X, = 1, Xt-k = 2 for

any k E [1,p] and all other lags of Xt equal to zero, (A4.4) requires CQ~ = 0, which

implies that either ak = 0 or c = O. Since ak = 0 is outside the parameter space, it

must be the case that c = 0, which requires that L1 = ... = Lp = Ip+1 = o. Thus, for

any non-zero l, the condition in (A4.2) hold and therefore the Fisher information is

positive definite. _

Theorem A4.1 and A4.2 show that for the INAR(p) model with Poisson innova-

tions the Fisher information matrix is positive definite. Since the process is ergodic,
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all the regularity conditions for the asymptotics of the maximum likelihood estimator

are satisfied. There for jj M L = (0:1"", O:p, X) has the following asymptotic distrib-

ution:

where the matrix i is the Fisher information.


