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ABSTRACT

Entropy has been suggested to be a good surrogate measure for the reliability of 
water distribution networks. The problem of entropy-based design optimization of 
water distribution networks has also been formulated. This thesis presents further 
investigations into the above issues in order to substantiate the suitability of entropy 
as a surrogate reliability measure. Aspects of design that may have influence on the 
relationship between entropy and reliability are examined and the characteristics of 
the maximum entropy designs are studied. Finally, the applicability of the entropy- 
based design optimization method is brought one step closer to the real water 
distribution networks.

The novelty and originality of the present research are presented next.

A comprehensive study on the entropy-reliability relationship is carried out in this 
thesis. The possible influence of layouts, flow directions, cost functions and 
modelling errors on the relationship is investigated. The results support: the previous 
conviction that entropy is a good surrogate measure for the reliability and that the 
influence of the above-mentioned aspects of design on the relationship is negligible. 
The maximum entropy designs are shown to be highly reliable and their behaviour is 
more hydraulically predictable than other designs. The hydraulic predictability 
examination is carried out under two critical network conditions, i.e. link failure and 
fire loading. Under these conditions, the locations of the critical links and nodes in 
the maximum entropy designs are more intuitively predictable than in other designs. 
This beneficial characteristic can assist in the decision making during the design 
process and operation of the distribution network.

Head Dependent Analysis method is used in the present research. The analysis shows 
that in general the results are better compared to the previous Demand Driven Analysis 
results. The entropy-reliability relationship appears stronger, making it easier to evaluate 
designs with different entropy values. The locations of the critical links and nodes in the 
maximum entropy designs are more intuitively consistent when the Head Dependent 
Analysis method is used. Finally, the method also compliments the maximum entropy 
approach to the layout optimization of water distribution networks. The set of designs 
that represent the trade off between the cost and reliability can be identified accurately.

Previous entropy-based designs have all been generated using continuous pipe 
diameters. In this research, the entropy-based design optimization method is applied to 
generate more realistic designs with discrete pipe diameters. Genetic Algorithms are 
used in the optimization procedures. The results indicate that the Genetic Algorithms 
parameters are quite sensitive to the size of the problem and the cost penalty functions 
also affect the accuracy of the method. However, the results also show that once the 
sensitivity problem has been solved, the method is efficient and the optimization by 
Genetic Algorithms always leads to designs with optimum flow directions. This 
feature may help the search towards finding the global optimum solutions.
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CHAPTER 1 INTRODUCTION

1.1 COMPLEXITY IN THE DESIGN OF OPTIMUM WATER 

DISTRIBUTION NETWORKS

Water distribution networks form major parts of water supply systems. They are 

required to deliver water at specific pressure and quantity every day and, therefore, 

any disruptions that may affect the service should be kept to a minimum. The design 

problem of water distribution networks is often viewed as an optimization problem 

with the capital cost of the network to be minimised. This approach, which is usually 

a trial-and-error process, puts emphasis on short term savings gained from the 

reduction of the construction cost. It does not take much consideration of the 

performance of the network under many different normal and critical operating 

conditions, which will have considerable influence on the operation, maintenance 

and repair costs of the network. Furthermore, there is no guarantee that the resulting 

design is a minimum cost solution (Mays, 1989).

During its design lifetime, a water distribution network is overshadowed by many 

uncertainties associated with its operation which often have adverse effects on its 

performance. Although the advancement in technology has provided means for 

engineers to deal with the operational and maintenance problems much more easily, 

the solutions to the problems could nonetheless be expensive and do not justify the 

savings gained from the reduction of the design cost. As a result, many researchers 

and engineers alike try to incorporate some kind of performance measure in the 

design optimization procedure to gauge how well the network would behave under 

abnormal conditions. The problem of designing optimum water distribution 

networks is, in itself, a very complex problem due to the large number of design 

components and their interactions that have to be accounted for. The introduction of 

performance measure in the optimization process only adds to the complexity of the 

problem. It turns the design problem into a multi-objective optimization problem 

with the objective functions usually in conflict with one another.
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Other issue is the choice of which performance measure is best to use in the 

optimization procedures. Many researchers agree that reliability is a good 

performance measure for water distribution systems. However, many researchers 

also agree that accurate computation of the reliability values is highly expensive 

(Provan and Ball, 1983; Mays, 1989). On top of that, there is no comprehensive 

and generally acceptable measure of reliability of water distribution systems 

currently available either in the industry or in the research community (Mays, 1989, 

2000; Tanyimboh, 2003). These issues complicate the design problem even 

further. Consequently, although some researchers have tried to incorporate the 

reliability measure explicitly into the optimization models (Fujiwara and De Silva, 

1990; Su et al., 1987), there is no such model with general application has been 

developed at present.

In the attempt to overcome the above issues, several researchers have proposed 

indirect or surrogate measures of reliability. Entropy is one such measure. The 

strength of entropy stems from its ease of computation and incorporation into the 

design optimization procedure and early research shows that there is apparent 

correlation between entropy and reliability. The idea of using entropy in obtaining 

reliable water distribution systems was introduced by Awumah et al. (1989) who 

proposed the first entropy function for water distribution systems. The function was 

later refined by Tanyimboh (1993) and Tanyimboh and Templeman (1993a) who 

also have shown that highly reliable design can be obtained by maximizing the 

entropy value of the system (Tanyimboh and Templeman, 1993b). Tanyimboh 

(1993) and Tanyimboh and Templeman (1993c) also proposed a simple algorithm to 

obtain maximum entropy flows in distribution systems with one source supply 

without the need for complicated mathematical computations. Their algorithm was 

later generalised for multi-source multi-demand networks by Yassin-Kassab et al. 

(1999). The use of entropy in the design of optimum (in terms of cost and reliability) 

water distribution systems has also been explored further by Tanyimboh and 

Templeman (2000) and Tanyimboh and Sheahan (2002).

The present research looks into the suitability of entropy as a surrogate measure of 

water distribution system reliability at a deeper level. Details of the research scope 

are presented in the next section.

1-2



1.2 SCOPE OF THE PRESENT RESEARCH

The outcomes of the design optimization of water distribution systems are influenced 

by many factors. These factors will in turn influence the entropy and reliability 

values as well as their apparent relationship. The present research examines the 

strength of this apparent relationship between entropy and reliability and investigates 

issues that may have influence on the relationship. Although the study in the present 

research does not address all the issues that may affect the relationship, it is by far the 

most comprehensive study that has been carried out to date. The issues investigated 

in this study are: possible influence of layouts, flow directions, cost functions and 

modelling errors.

Another aspect of the research is the use of head dependent analysis method in the 

analysis of networks under normal and abnormal conditions in order to obtain the 

reliability values. This method has been suggested to be superior to the demand 

driven analysis, especially for analysing networks in critical conditions (Ackley et 

al., 2001; Tanyimboh et al., 2003). The analysis of entropy-based designs of water 

distribution networks has been carried out using the demand driven analysis in the 

past (Tanyimboh, 1993; Tanyimboh and Templeman, 1993b, 2000; Tanyimboh and 

Sheahan , 2002; Tanyimboh et al., 2002). The use of the head dependent analysis in 

the present study is intended to provide more evidence that the apparent relationship 

between entropy and reliability is not attributed to the method of analysis used and 

that the relationship holds true in general.

Finally, the issue of the design of water distribution networks using discrete pipe 

diameters is addressed. This design approach produces more realistic results since 

the pipe diameters can be selected from the set of discrete pipe diameters available in 

practice. However, in a discussion of Quindry et al. (1981), Templeman (1982) has 

pointed out that the problem of obtaining optimum designs of water distribution 

network using members selected from a discrete set is NP-hard. He stated further 

that the NP-hardness of the problem means that finding an optimum design using a 

rigorous algorithm is practically impossible. Recently, stochastic search methods 

have been applied to water distribution systems optimization with discrete pipe
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diameters with satisfactory results (Simpson et al., 1994; Loganathan et al., 1995; 

Savic and Walters, 1997; Maier et al., 2003). In the present study, the entropy-based 

design optimization using Genetic Algorithms, which is one of the stochastic 

methods, is investigated.

The analyses in the present research are carried out on hypothetical networks 

obtained from the literature. The study is also limited to gravity networks with 

pipes as the only component. Therefore, the words link(s) and pipe(s) are 

interchangeable throughout this thesis, unless stated otherwise. Some 

information regarding pumps, valves and storage tanks is given only very briefly. 

The analysis of the networks is also limited to steady state analysis, in which it is 

carried out in a very short period of time with constant demand values. The 

extended period analysis, which is done over a longer period, is not covered in 

this thesis. Also, only one reliability function proposed by Tanyimboh (1993) is 

used in establishing the correlation between entropy and reliability. The function 

is chosen mainly due to its simplicity and ease of interpretation and it is 

considered sufficient for the present research.

1.3 OBJECTIVES OF THE PRESENT RESEARCH

The objectives of the present research are as follows.

1. To show that the correlation between entropy and reliability of water distribution 

systems is strong and is not sensitive to the changes in factors that may influence 

the values of entropy and reliability individually.

2. To use the head dependent analysis method in the analysis of the entropy- 

reliability relationship.

3. To illustrate beneficial properties of the maximum-entropy-based designs of 

water distribution networks.

4. To demonstrate the maximum entropy-based design optimization of water 

distribution networks with discrete pipe diameters using the revolutionary 

Genetic Algorithms.
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1.4 LAYOUT OF THESIS

The main literature review and background study in this thesis are arranged in the 

next four chapters. Chapter 2 provides introduction to Shannon’s entropy function 

(Shannon, 1948), on which the entropy of water distribution network is based. Brief 

description of the maximum entropy formalism of Jaynes (1957) is also given in 

Chapter 2 together with some examples of its applications in Civil Engineering. The 

entropy function for water distribution networks is presented in Chapter 3. Methods 

for calculating maximum entropy flows in single and multiple source networks are 

also detailed in Chapter 3. In Chapter 4, the problem of analysis of water distribution 

networks is reviewed. Chapter 5 gives brief review on the performance measure and 

the problem of obtaining minimum cost design of water distribution networks.

The main studies carried out in the present research are presented in the remainder of 

the chapters as follows. In Chapter 6, results of the sensitivity studies on the 

relationship between entropy and reliability are presented and discussed. Chapter 7 

looks at the beneficial properties of maximum entropy designs of water distribution 

network in which the network’s behaviour is more hydraulically predictable when 

subjected to critical conditions, such as link failures and fire loadings, in comparison 

to other designs. The possibility of maximum entropy-based design approach for 

layout optimization is also explored in Chapter 7. Throughout Chapters 6 and 7, 

head dependent analysis method is used and the results are analysed in comparison to 

the previous demand driven analysis results. In Chapter 8, the design of optimum 

water distribution networks with maximum entropy constraint and discrete pipe 

diameters is investigated. Finally, the summary and conclusions of the present 

research are presented in Chapter 9 together with some suggestions for future studies.
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CHAPTER 2 THE MAXIMUM ENTROPY FORMALISM

2.1 INTRODUCTION

In this chapter Shannon’s entropy and the maximum entropy formalism of Jaynes 

(1957) are presented. Some of the materials are summarised from Templeman and 

Li (1985), Li (1987), Tanyimboh (1993) and Yassin-Kassab (1998).

The concept of entropy was first introduced by Clausius in classical 

thermodynamics. It is concerned with the macroscopic states of matter, which can be 

observed experimentally. Clausius’ entropy is non-probabilistic in nature and is 

known as the classical entropy.

Entropy evolved further in statistical mechanics, in which it was used in a probabilistic 

sense. Boltzmann was the first to emphasize the probabilistic meaning of the entropy. 

He noticed that the entropy of a physical system can be considered as a measure of 

‘disorder’ in the system and that in a system with many degrees of freedom, the number 

measuring the disorder of the system also measures the ‘uncertainty’ about individual 

micro-states. Boltzmann’s entropy is known as the statistical entropy.

Shannon (1948) presented entropy in a different context other than thermodynamics. 

His entropy is related to information theory, which is therefore referred to as the 

informational entropy. It measures the amount of information or uncertainty in a 

probability distribution quantitatively. This measure has wider applicability than the 

statistical entropy. Due to its direct relevance to the present research, Shannon’s 

entropy will be described shortly in more detail.

Jaynes (1957) proposed a groundbreaking use of Shannon’s measure in generating a 

probability distribution that would have the greatest amount of information or 

entropy. Before Jaynes’ work, Shannon’s entropy was merely a measure of 

uncertainty or information in a probability distribution in which all the probabilities
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are known. In the case of insufficient information, some assumptions must be made 

which may lead to biased results. Jaynes’ groundbreaking work is termed the 

maximum entropy formalism and ensures that no arbitrary assumptions are 

introduced in obtaining the probability distribution to fit the available data.

The entropy in water distribution systems is based on Shannon’s entropy measure. It 

is therefore necessary to present Shannon’s entropy before concentrating on the 

application of the maximum entropy formalism in water distribution systems. 

Shannon’s informational entropy is described next along with its properties. Jaynes’ 

maximum entropy formalism is then presented along with its applications with 

emphasis on the applications in civil engineering.

2.2 SHANNON’S INFORMATIONAL ENTROPY

Uncertainty in a probabilistic scheme cannot be avoided. The degree of uncertainty 

often differs greatly between one scheme to another. Consider, for example, the 

probabilistic experiment of tossing a fair-faced coin. The probability of obtaining a head 

is equal to the probability of obtaining a tail, which is 0.5. Now, suppose for the second 

trial the coin is transformed in such a way that the probability of obtaining a tail is equal 

to 0.99, and the probability of obtaining a head is 0.01. Obviously the uncertainty in the 

second experiment is very much reduced. If the experiment is then carried out using a 

fair-faced dice (cube), the probability of obtaining any face of a dice is 1/6, which means 

that the uncertainty of the outcome is even greater than the first experiment.

In the field of information theory, Shannon tried to measure quantitatively the degree 

of uncertainty in any finite probability scheme. Before Shannon’s measure is 

presented in this section, a finite probability scheme is first defined.

2.2.1 FINITE PROBABILITY SCHEME

In probability theory, a complete system is obtained when the set of events or outcomes 

is exhaustive, which mean that one and only one of the outcomes must occur at each 

trial. The events or outcomes are said to be mutually exclusive since only one of them
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can occur at each trial. The events of such a complete system together with their 

corresponding probabilities form a finite scheme (Khinchin, 1953).

Let us denote the events or outcomes of a finite scheme by o, and the corresponding 

probability by /?,, i = 1 where N  is the number of events or outcomes. The 

resulting finite scheme O is given by:

0  = (oi,p i) i = l,...,N  (2.1)

The probabilities of a finite scheme are non-negative and satisfy the normality 

condition, i.e.,

p i > 0, Vi (2.2)

and,

5 > = i (2.3)

2.2.2 ENTROPY OF FINITE SCHEMES

From the experiments of tossing a fair-faced coin and a fair-faced dice, it was 

found that the corresponding probabilities are (t >!) and ( I , i >1>i>i>i)>

respectively. It is clear that there is more uncertainty associated with the latter 

experiment. In his attempt to measure how much information or uncertainty is 

conveyed by different finite probability schemes, Shannon put forward the 

following function

S = ~ K j^ p i log p, (2.4)
/=1

in which S is the entropy or the amount of uncertainty in the probability distribution; K  is 

an arbitrary positive constant; and the logarithms can take any suitable fixed base. Also,
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it is defined that OlogO = 0 to ensure continuity for all the probabilities (see, for example 

Jones, 1979, and Khinchin, 1953). In this thesis, the value of K  is set to unity and the 

natural logarithms are used throughout. It is axiomatic that the probabilities i = 

1,...^V, which represent a finite scheme are non-negative, exhaustive, mutually exclusive 

and satisfy the normality condition of Equation (2.3). Shannon’s entropy, Equation 

(2.4), is a measure of uncertainty, or conversely, a measure of information depending on 

the measurement being taken. Once an experiment has been done, the actual outcomes 

are known and the uncertainty about the results of the experiment is removed. 

Therefore, the information gained from the experiment is equal to the amount of 

uncertainty removed. See, for example, Guiasu (1977) and Kapur (1989).

2.2.3 SOME PROPERTIES OF SHANNON’S ENTROPY

Presented below are some properties of Shannon’s entropy. These properties are to 

be expected from a reasonable measure of uncertainty and are presented here without 

proof. For more details and other properties, which are mostly mathematical 

derivations, the interested reader may consult Khinchin (1953), Guiasu (1977), 

Kapur and Kesavan (1987) and Kapur (1989).

1. SN(pl,...,pN)> 0

The function takes the value of zero if, and only if, one of the probabilities is 

unity and the rest is zero. Such a scheme obviously contains no uncertainty.

2. SN(pl,...,pN) = SN+l(pl,...,pN,0)

This property is to be expected since an impossible outcome does not affect the 

amount of uncertainty in any scheme.

3. Sw( /v - ,P w )^ S w(-L,...,^)

The equality holds if, and only if, all the probabilities are equal, which will produce 

the maximum value of the function S. This agrees with one’s expectation.

4. The entropy function S is continuous and is invariant with respect to the 

positional changes in the V /, i.e. S is a symmetric function of its arguments.

5. When all the probabilities are equal, i.e./>, =-^, Vi, then S  is a monotonic

increasing function of the number of outcomes N. If these probabilities are 

substituted in Equation (2.4), the maximum value of S/K is ln/V.
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6. 5 is a concave function and, therefore, its maximum value of \nN is a global 

maximum.

7. The joint entropy of two mutually dependent schemes is the entropy of one 

scheme plus the conditional entropy of the other, i.e.

S{Ox0 2) = 5(0,) + 5(O21 O,) (2.5)

Also,

5(<9,) + S(0210,) = S(02) + 5 (0 ,102) (2.6)

in which 5 (0 /0 2 ) is the joint entropy of two mutually dependent schemes, 0 / 

and O2 , whose entropies are 5(0/) and S(02) respectively. 5(02|0/) and 

5(0/|02) are, respectively, the conditional entropy of scheme O2 provided 

that O] has occurred and vice versa. The proof of Equation (2.5) can be 

derived using a chain rule (see, for example, Cover and Thomas, 1991). The 

general form of Equation (2.5) for any number of finite schemes is 

(Tanyimboh, 1993)

5(0 ,02...0m) = 5(0,) + 5 (02 IO,) + ... + 5(Om 10,02...0m_,) + ...

+ 5 ( 0 J 0 ,0 2...0w_,), M = 2,3,...; 2 < m e Z +< M  (2.7)

in which S(0 iC>2...0m) is the joint entropy of M  finite schemes; Z* represents the 

set {0,1,2,3,...}.

In the special case where 0 / and O2 are mutually independent, the outcomes in 

one scheme have no effect on the occurrence of the other. Therefore, the joint 

entropy of two mutually independent schemes is the sum of their separate 

entropies, i.e.

S(0{0 2) = S(020,) = 5(0,) + 5 (02) (2.8)
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It was found that the only measure of uncertainty that satisfies all the above 

properties is in the form of Equation (2.4) (see, for example, Khinchin, 1953). This 

uniqueness of Shannon’s entropy is stated next as a theorem.

2.2.3.1 THE UNIQUENESS THEOREM

Let S' be a function defined for any integer N  and for all values of p„ i = 1,...,jV, such 

that pi satisfies the non-negativity and the normality conditions of Equations (2.2) 

and (2.3) respectively. Suppose that S is a continuous function with respect to all its 

arguments and this function satisfies the following three of the basic properties for 

the measure of uncertainty (Kinchin, 1953), i.e.
N

1. For a given N  and for ^ p .  = 1, the function takes its maximum value for
i=i

Pi = l/N, Vi.

2. S(0 ,0 2) = S(O/) + S(02\0i)

3- — ^ N + \ (.Pi? ***5 Pw ?

The only possible function that satisfies the above properties is equal to Shannon’s 

entropy function, which is

S = - K f ip,lnp,  (2.4)
/=!

This well-established theorem shows that Shannon’s entropy for a finite scheme is 

the only measure that has general properties necessary for a measure of uncertainty 

or information. The proof of this theorem is outside the scope of the present 

research. The interested reader could refer to Khinchin (1953), Jones (1979), etc.

2.3 THE MAXIMUM ENTROPY FORMALISM

Laplace’s principle o f insufficient reason states that all outcomes of a finite 

probability scheme should be considered to be equally likely if there is no reason to
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think otherwise. Therefore, the uniform distribution should be adopted whenever 

there is no information based on which a different distribution may be selected. This 

uniform distribution will in turn produce the maximum value of Shannon’s entropy 

as explained in Section 2.2.

However, some information about the probability scheme is often available. In these 

situations, the principle of insufficient reason has no means of dealing with the 

available information and the uniform distribution does not fit due to the presence of 

the additional information. For example, consider an observable probabilistic 

process in which a discrete random variable x can take any discrete value x„ i = 

1,...,jV, with the corresponding probabilities p(x,) = Pi, Vz. Suppose also that some 

information is available in the form of

i t PiFJi(x)= <Fj >, j  = \,...,NJ (2.9)
/=1

in which Fj,{x) and < Fj >, V/ and Vz, are known. If the number of equations NJ 

together with the normality condition of Equation (2.3), is less than the number of 

possible x values, i.e. NJ+ 1 <N, clearly an infinite number of distributions can satisfy 

Equations (2.3) and (2.9). It is therefore virtually impossible to find the unique 

distribution that best represents the above scheme by using the principle of 

insufficient reason alone.

Jaynes (1957) recognized that every probability distribution that fits the available 

information has different value of Shannon’s entropy measure of uncertainty. He 

postulated that the distribution that has the maximum value of entropy within the 

limitation of the available information must correspond to the maximum uncertainty 

and is, therefore, noncommittal to the missing information, unbiased and best 

describes the finite scheme subject to the information available. Jaynes stated:

In making inference on the basis of partial information we must use that 

probability distribution which has maximum entropy subject to whatever is known. 

This is the only unbiased assignment we can make; to use any other would amount 

to arbitrary assumption of information which by hypothesis we do not have.
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The above method of inference is known as the maximum entropy formalism and can 

be mathematically represented as a maximization of Shannon’s entropy function as 

detailed below.

Problem 1

N
Maximize S /K  = -  V p j Inp i 

\/Pi w
(2.4)

Subject to:

p,. >0, V/ (2.2)

N
2 >  = 1/=1

(2.3)

£ /V y /(* )=  <Fj>  • V7 
/=!

(2.9)

The analytical solution to Problem 1 can be found by examining the stationary of its 

Lagrangean. Templeman and Li (1985) showed that Problem 1 is a convex 

programming problem and, as such, there is a unique solution that corresponds to the 

global maximum probability distribution which is called the maximum entropy 

distribution. The solution to Problem 1 is (see e.g. Li, 1987)

exp
” NJ
i l v A i

.7=1
N " NJ

Z exp I > / 7/=! L 7=1

i = l,...,N (2 . 10)

in which P j , V/ are the Lagrangean multipliers. Rather than solving the above

problem directly, Templeman and Li (1985) have shown that the Lagrangean 

multipliers may be calculated conveniently using its dual form, which is an 

unconstrained optimisation problem. Problem 1 is the classical maximum entropy 

problem. It may not always be possible or easy to formulate the problem of inferring 

the least biased probabilities in the form of Problem 1 (Tanyimboh, 1993).
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If the entropy is maximized subject to the normality condition only, the result is /?, -

UN, Vz. This may be seen by examining the stationary of the Lagrangean of this 

special case. This result concurs with Laplace’s principle of insufficient reason, 

which can therefore be seen as a special case of the maximum entropy formalism. 

Thus, it can be deduced that the maximum entropy distribution has the property of 

being the most uniform distribution that satisfies the constraints of the system. Any 

gain in information about the system leads to an extra constraint in the maximum 

entropy formalism and consequently reduces the entropy value of the system. 

Conversely, any gain in entropy means loss of information.

2.4 THE CONTINUOUS CASE OF THE MAXIMUM ENTROPY 

FORMALISM

Problem 1 and its solution are written in terms of discrete random variables. In 

a situation where a random process is continuous, the maximum entropy 

formalism still applies (Li, 1987; Tanyimboh, 1993). In general, the theory and 

the process of obtaining the solution remain unaltered. However, in the 

continuous case, integrations are used in place of the summations and 

probability density functions must be used instead of the discrete probabilities. 

The continuous case of the maximum entropy formalism may therefore be stated 

as follows (Tanyimboh, 1993).

b
Maximize -S / AT = — J/(x ) In ( / (x)) dx

Y/lx)
(2.11)

Subject to

h
(2.12)

a

b
\Fj(x)f(x)dx= <Fj> , j  = (2.13)
a
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in which x is a continuous random variable; Fj is a function of x; < Fj > is the 

expected value of the function Ff, NJ is the number of expectation constraints; and 

fix) is the probability density function. The range of the integrals [a, b] may be 

extended to [-co, +aoJ.

Tanyimboh (1993) has pointed out that the above integrals may not exist, and the 

entropy can be negative because the probability density function fix) can be greater 

than unity. Also, because the entropy is defined in terms of a probability density 

rather than a probability, the entropy may not be invariant to a change of variable. 

Moreover, the limits of negative and positive infinity are strictly not the limits of the 

discrete entropy whose properties therefore cannot be extended to the continuous 

case. This research, however, focuses only on discrete probabilities where the 

random processes are discrete and yield distinct probabilities with finite limits.

2.5 THE MAXIMUM ENTROPY FORMALISM IN CIVIL 

ENGINEERING

The maximum entropy formalism has been widely used in the areas of science and 

engineering due to its simplicity and efficiency in generating solutions to a wide range 

of problems where the available information is incomplete. In this section, however, 

only applications in the civil engineering area are presented. For other applications in 

different fields, the interested readers could refer to Jones (1979), Guiasu (1977), 

Levine and Tribus (1979), Kapur and Kesavan (1987), Templeman and Li (1987, 

1989), Kapur (1989). The use of entropy in optimization processes, however, is 

mentioned in this section due to its close relevance to the present research.

Basu and Templeman (1984) used the maximum entropy formalism in their search to 

find the most suitable probability distribution to fit the available data. They argued 

that in most engineering problems, the problems of selecting the probability 

distributions are based on ad hoc selection criteria, which are not always justifiable 

and may introduce bias into the calculations. They showed that from the 

investigation using a wide range of different distributions the maximum entropy 

distribution was the nearest to the actual distribution of the data being examined.
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Also, Li (1987) and Templeman and Li (1987, 1989) have used the maximum 

entropy formalism in optimization processes in an attempt to develop a different 

method for solving constrained nonlinear programming problems. They looked at 

the problem in a probabilistic context and incorporated the principle of maximum 

entropy into the process to improve the convergence towards the optimum solution. 

This new entropy-based approach was applied by Li and Templeman (1988) to an 

optimum truss sizing problem and the method was found to be very effective and 

encouraging to use in more difficult structural optimization problems.

Basu and Templeman (1985) have also used the maximum entropy formalism to 

estimate the failure probability of a structure, in which they used the maximum 

entropy probability distribution to represent random loads and strengths in structural 

reliability analysis. They demonstrated that the entropy-based approach produced a 

more logical and rigorous method to generate accurate failure probabilities, and 

therefore, the use of some known analytical distribution to represent such random 

data is inappropriate. In another application, Munro and Jowitt (1978) used the 

maximum entropy formalism in decision-making analysis in the ready-mixed 

concrete production industry. The problem is concerned with making optimal 

decisions under uncertainty about future orders. They stated that the estimated 

probability distribution associated with the orders for each mix should take into 

account all prior knowledge but this knowledge must not affect the decision in 

obtaining the probability distribution. Their findings indicate that the entropy-based 

method can produce good decisions in difficult decision-making situations.

In the field of traffic engineering, there has been a considerable amount of 

applications of entropy in which the primary concern is in the estimation of the 

origin-destination matrices or the so-called trip matrices from limited data. A typical 

transportation problem is to minimize the total travelling cost between origins and 

destinations subject to the available information about the total flows leaving each 

origin and entering each destination. Erlander (1977) added an entropy constraint to 

the problem in order to preserve the level of accessibility between all origins and 

destinations. He stated that a network with a high value of entropy has a high level 

of accessibility, and vice versa. Van Zuylen and Willumsen (1980) and Bell (1983) 

have used entropy to estimate the origin-destination trip matrix from traffic counts.
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The methods are based on information minimisation and entropy maximisation 

principles (Van Zuylen and Willumsen, 1980). The interested reader may refer to 

their papers for more details. Recently, a procedure to enhance the estimation of 

multi-class trip matrices by means of entropy maximization is proposed (Wong et al., 

2005). Solving multi-class rather than single-class problem has the advantage of 

eliminating any inconsistency in the estimation of different vehicle classes. The case 

study on the Hong Kong highway network demonstrates the effectiveness of the 

proposed entropy-based method. The results show that the error in the estimation is 

much reduced compared to the previously obtained non-entropy-based model. Also, 

in a series of papers Mountain et al. (1983a, 1983b, 1986a, 1986b) used entropy 

inference to estimate traffic turning flows at road junctions. It was shown that the 

entropy-based approach leads directly to the gravity model which is well known in 

roundabout turning flow problems.

In open channel flow studies, Chiu (1987, 1988, 1989, 1991) applied the entropy 

approach in the modelling of the velocity and shear stress distribution and suspended 

sediment concentration across the channel. He claimed that the uncertainty associated 

with the distributions due to the inherent randomness and insufficient information can 

be overcome by maximizing the entropy of the probability density function of the 

distributions subject to the constitutive laws for flows in open channels.

2.6 SUMMARY AND CONCLUSIONS

Shannon’s entropy function and its properties have been presented in this chapter. 

The function has been shown to be the only measure that has general properties 

necessary for a measure of uncertainty. The maximum entropy formalism of Jaynes’ 

has also been described in this chapter. It is capable of producing the most unbiased 

probability distribution by maximising the entropy function of Shannon’s subject to 

the available information. Finally, some applications of entropy in Civil Engineering 

were presented. Although the list of applications is clearly incomplete, it serves to 

highlight the use of entropy in generating solutions to a wide range of problems 

where the available information is not complete or where probability distribution is 

required but cannot be determined by analysis.
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CHAPTER 3 ENTROPY FUNCTION FOR WATER 

DISTRIBUTION NETWORKS AND ITS APPLICATIONS

3.1 INTRODUCTION

In recent years, some research has been carried out to study the use of entropy in 

water distribution networks. There are several areas in which entropy has been 

applied; first, as a possible surrogate measure for the reliability of water 

networks; second, in estimating the most likely pipe flow rates in looped water 

networks in which the available data is insufficient to uniquely determine the pipe 

flow distribution; third, in calibrating water distribution systems to find the most 

likely pipe characteristics in the system, where the roughness coefficients of the 

pipes have been lost or have changed with time; and fourth, in the design 

optimization of water distribution networks. The first application usually goes 

hand in hand with the last.

In the case where there is not enough information to determine the pipe flow rates in 

a looped water network, for example in a buried old distribution network where the 

pipe characteristics have been lost or have changed over time, physical 

measurements are possible but they would be very expensive and time consuming. 

Faced with these difficulties, a simple method to quickly estimate the pipe flow rates 

in such situation would be very useful. Some researchers have proposed an entropy- 

based method as an answer to this problem. The approach uses the maximum 

entropy formalism to estimate the most likely flow distribution in the network. The 

strength of this approach stems from the ease of computation and minimal data 

requirement. Due to its direct relevance to the present research, this entropy-based 

approach will be described fully in this chapter.

The present research involves mainly the first and the last of the above mentioned 

applications of entropy in which it is used as a surrogate measure of reliability in 

the design optimization of water networks. The main issue that drives the use of
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surrogate performance measures for water distribution networks lies in the 

difficulty of determining the reliability itself. Although it has been accepted that 

reliability is an important issue to consider in design and management of water 

distribution systems, to date there is no comprehensive and generally acceptable 

method to calculate the reliability values. Some researchers have proposed several 

models for calculating the reliability. However, problems arise due to the 

complexity of each model in dealing with the uncertainties surrounding the 

network. Such uncertainties are component failures, time between failures, 

duration of repairs or replacements, sufficiency of pressure, variations in demands 

and supplies, etc. Water distribution networks are usually designed to cope with 

these uncertainties to a certain extent, and thus their reliability values reflect how 

well the networks perform under such a situation. The problem of obtaining the 

reliability values for water networks is also computationally very expensive and 

therefore it is often impractical for large networks. A surrogate measure, such as 

the entropy measure, which is relatively easy to compute and can be easily 

incorporated directly into the network-optimization design model is very desirable. 

This application of entropy, as well as the other applications mentioned earlier, will 

be described briefly later in this chapter. First, the entropy function for water 

distribution networks is presented.

3.2 WATER DISTRIBUTION NETWORK ENTROPY

The drive that initiates the use of entropy in water distribution networks is its 

ability to measure flexibility in a system. Yao (1985) and Kumar (1987), for 

example, used entropy as a measure of flexibility within manufacturing systems in 

which flexibility is referred to as the ability of the whole production system to 

overcome the failure of one of the units in the system without significantly 

affecting the production capacity of the whole system. By looking at the similarity 

between the manufacturing systems and water distribution networks, Awumah et 

al. (1989) pioneered the use of entropy as a measure of flexibility or redundancy in 

looped water networks. Using the flow rates in a probabilistic way as required by 

Shannon’s entropy to obtain the network entropy values, they showed that the 

performance of water distribution networks can be measured comparatively. Their
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entropy-based function, however, violates two of the basic properties of Shannon’s 

entropy (Tanyimboh, 1993).

Tanyimboh (1993) and Tanyimboh and Templeman (1993a) were the first to propose 

the correct function of entropy for water distribution networks. Their entropy 

functions are rigorous and form the basis of the network entropy analysis throughout 

this thesis. In a series of papers, Tanyimboh and Templeman (1993a, 1993b, 1993c) 

explored the feasibility of using network entropy to estimate the most likely flows in 

distribution networks where the required data to uniquely determine the pipe flow 

rates is unavailable. Their algorithm for maximizing the entropy of single-source 

networks was generalised for multi-source multi-demand networks by Yassin-Kassab 

et al. (1999). The possibility of using the entropy to design water distribution 

networks has also been explored by Tanyimboh and Templeman (1993b, 2000), 

Tanyimboh and Sheahan (2002) and Kalungi (2003).

In this section, the flow entropy functions for water distribution networks by Awumah et 

al. (1989, 1990, 1991) are presented next. The flow entropy functions developed by 

Tanyimboh and Templeman (1993a, 1993b, 1993c) then follow together with their detail 

derivations due to their direct relevance to the present research. Also, the path entropy 

functions of Yassin-Kassab et al. (1999) will be presented as alternative but equivalent 

approach to the flow entropy functions of Tanyimboh and Templeman. The maximum 

entropy flows in a network calculated by Tanyimboh and Templeman (1993a) are then 

described followed by the path-based approach for calculating maximum entropy flows 

in single (Tanyimboh and Templeman, 1993c) and multiple (Yassin-Kassab et al., 1999) 

source networks in the next section. Finally, brief outline of the previous applications of 

entropy in water distribution networks is presented.

3.2.1 FLOW ENTROPY FUNCTION OF AWUMAH,
GOULTER AND BHATT

In trying to cast pipe flow rates in a water distribution network in a probabilistic form 

as required by Shannon’s entropy, Awumah et al. (1989, 1990, 1991) started 

investigating the flows in links incident at node n. They argued that the probability
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quantities in Shannon’s entropy of Equation (2.4) may be regarded as the fraction of 

total flows into node n carried by each link incident at that node. Therefore the 

following function could be used as an entropy measure of node n in a network after 

setting K in Equation (2.4) to unity.

S. =-  V  liL \n liL  , v«
je N U „ Q n Q n

(3.1)

in which S„ is the entropy of node n, Vn; NU„, Vn represents the set of nodes on the 

upstream ends of links incident on node n; qj„ is the flow in link jn, VjeNUn; and Q„ 

is the sum of link flows entering node n, i.e.,

Q n  =  £  <ljn »
je N U n

(3.2)

Since there is no real need to assign a value to K  in the formal expression (Equation 

2.4), it is therefore assumed to be unity in the rest of this thesis and, as such, does not 

appear in most of the equations which follow.

It has been mentioned previously that Awumah et al. (1989, 1990, 1991) looked at 

the entropy measure from redundancy view point. They used Equation (3.1) to 

measure the redundancy of node n and they expanded the equation to the whole 

network (see Awumah et al., 1990, 1991, and Awumah and Goulter, 1992). They 

argued that in assessing the overall network performance, the relative importance of 

a link to the total flow is the important parameter instead of the relative importance 

of a link to the local flow. Therefore, they suggested that qj„/Qn in Equation (3.1) be 

replaced by qjn!Qo and the resulting equation is

AW

s = - y y
n=1 je N U „ Qo Qo

(3.3)

in which S  is the entropy or redundancy of the whole network; NN is the number of 

nodes in the network; and Qo is the sum of all link flows in the network, i.e.,
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(3.4)Qo = X  q,j
ije/J

in which IJ  is the set of all the links in the network.

Since the value of Qo is the sum of all the link flows in the network, as such there is 

double counting of some of the link flows when the pipes are connected in series and 

therefore the sum of all the ratio qjJQo, 'Vj&NUn, \/n will not add up to unity. 

Hence, Equation (3.3) violates one of the fundamental requirements of Shannon’s 

entropy.

Despite the above violation, Awumah et al. (1990, 1991) and Awumah and Goulter 

(1992) transformed Equation (3.3) by substituting the following equation.

Q jn  _  Q jn  Q n  
Qo Q n  Qo

The transformed equation for the entropy or redundancy of the network is therefore

AW

S  = V — S - V — In —  
ttQ o  ZtQo Qo

NN
Q n  Q n (3.5)

in which S„ is the entropy of node n and is given by Equation (3.1).

Awumah et al. (1990) realised that the node entropy measure given by Equation (3.1) 

treats the node in isolation without considering the connectivity of the node to the 

rest of the network. Water from the source to a demand node may travel through 

several paths and these paths may have some links in common. To account for these 

alternate paths, Awumah et al. (1990) introduced the following function for nodal 

entropy.

S„ = -  Y  ^ l n - ^  , V«
jeNUn Q n a j„ Q n

(3.6)
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in which cijn, VjeNU„, Vw, is the effective number of independent paths to node n 

through link jn, and its value is given by

ajn=npJn 1 - , Vh, V/ e NUn (3.7)

k =1

in which npjn, Vn, \fjeNUn, is the number of dependent or independent paths to node 

n through link jn; nljn, Vn, \/jeNU„, is the number of links in the npjn paths; ¿4 is the 

number of paths in which link k is used. Awumah et al. (1990) provides more details 

on Equations (3.6) and (3.7). Tanyimboh (1993) has pointed out that the calculation 

of the path parameter ajn can be computationally expensive for large networks since 

it relies on path enumeration.

In an attempt to account for the interaction between adjacent nodes in a network, 

Awumah et al. (1991) used the following equation.

in which S \  is the modified entropy for node n; S ' . is the entropy of node j,

\ZjeNUn- Therefore, to calculate the modified entropy of any node, the modified 

entropy of its upstream nodes must all be calculated first. Also, t„j is termed the 

transmissivity of entropy or redundancy from node j  to node n, which is 

approximated by the ratio of the flow entering node n from j  to the total flow 

entering node j ,  i.e.,

If S 'n is used in Equation (3.5) instead of S„, the modified network entropy therefore 

becomes

(3.8)
jeNU„

(3.9)
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(3.10)

Awumah et al. (1991) observed that S \ , \fn, give higher values of entropy for the

network than S„ , \/n. However, there is little evidence that the former relate better to 

the conditions in water distribution networks.

Finally, it may be noted that all nodal entropy functions presented so far have been 

defined in terms of link inflows only. No consideration was given to the outflow 

links which may become inflow links to the node being considered in the event of a 

link failure. Obviously, this may only happen to outflow links which are part of a 

loop since flow reversal cannot occur in a link which does not belong to a loop. To 

allow for such situation, Awumah et al. (1990) proposed the following equation for 

node entropy in which all the links incident at the node are included rather than 

simply those which supply the node under normal condition.

in which S ' i s  the entropy of node n, V«; ND~ is the set of nodes immediately 

downstream of node n, \/n, which belong to a loop containing node n\ Q~ is the total 

flow entering and leaving node n from the set of nodes contained in NUn and to the 

set of nodes contained in ND~ respectively, i.e.,

Equation (3.11) also can be substituted for Sn in Equation (3.5) to obtain the 

entropy of the network. It has been mentioned earlier that Equation (3.3) and 

hence Equation (3.5) are incorrect theoretically from the entropy viewpoint since 

there is double counting in the quantity of Qo and thus the probability-like terms 

in the equation are not mutually exclusive. Moreover, the entropy functions of

s; = - y  ^ -In -^ -- Y ^-In-ist (3.11)

Qn = X  4» + X  ^ (3.12)
je N U „ keND~
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Awumah, Goulter and Bhatt do not directly account for the external inflows and 

outflows in the network. Although the external inflows and outflows may be 

known, they have to be considered in the entropy functions because there is 

uncertainty surrounding the contributions of the source supply at each node to the 

total flow reaching that node. Tanyimboh and Templeman (1993a) recognised 

the above weaknesses and proposed alternative and more rigorous flow entropy 

function which is presented next.

3.2.2 FLOW ENTROPY FUNCTION OF TANYIMBOH AND 

TEMPLEMAN

In general looped water distribution networks, the flow entering or leaving node n, 

V«, depends on whether the flow has reached the node n. In other words, the 

probability of the flow entering and leaving node n, \/n, are both conditional upon 

the probability that the flow has reached the node n. Tanyimboh (1993) and 

Tanyimboh and Templeman (1993a) recognised this fact and used the conditional 

entropy formula of Khinchin (1953) and the multiple probability space model to 

formulate a rigorous entropy function for general looped water distribution networks 

in which the directions of the flow in the network are known and each node in the 

network may have either an external inflow or outflow. They introduced two 

conditional finite probability schemes for each node; the first represents the flow 

entering (inflow) and the other for the flow leaving (outflow) the node n, Vn.

Based on the outflows, the conditional flow probability is given by

V n ,\/k e N D n (3.13)
1 n

in which p„k is the conditional probability that flow leaving node n, uses link nk; T„ 

represents the total flow leaving node n, i.e.,

Tn = Z  > V«
k&ND„

(3.14)
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It should be noted that NDn in Equations (3.13) and (3.14) not only represents the set 

of immediate nodes downstream of node n but also include any external outflows or 

demands. Defining q„o as the demand at node n, Equation (3.13) includes the 

following probabilities.

P.0 = ^ .  (3.15)

where D is the set of demand nodes in the network and p „o is the fraction of the total 

demand consumed at node n.

The way in which Equation (3.13) defines the probability set ensures that it satisfies 

the normality condition without the need for separate normality constraints. Non

negativity of the probabilities is also ensured provided that link flows are always in 

the direction defined and never become negative. The nodal entropy can therefore be 

formulated as follows.

Sn = -Y *  P*k^P«k > Vn (3-16)
keND„

Tanyimboh (1993) and Tanyimboh and Templeman (1993a) have stated that the finite 

probability scheme represented by Equation (3.13) is conditional upon the probability 

that flow reaches node n. Therefore, by applying the conditional entropy function of 

Khinchin (1953), Tanyimboh and Templeman (1993a) were able to define the nodal 

entropy for a general network as the sum of the nodal entropy multiplied by the 

probability of flow arriving at the node through all possible paths, i.e.

s  '> - r ,  Z  P.t In V» (3.17)
keND„

in which S is the entropy of node n associated with the outflows from that node; the

apostrophe is used to indicate that the above equation represents the overall 

contribution of node n. NDn is the set of all nodes immediately downstream of, and 

including any external outflows at, node n\ P„ is the probability of flow arriving at
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node n. In Tanyimboh and Templeman (1993a) the nodal probability P„, Vrc, is found 

by adding the probability of flow arriving at the node by each path. However, the 

probability of flow reaching node n can be seen as the probability of an event in a 

repeated experiment and can be interpreted in terms of the relative frequency as the 

frequency or the number of occurrences of that event divided by the sum of the 

frequencies of all the events in the experiment. Therefore, the following probability 

may be defined.

\/n (3.18)

in which

L  = £  qJn, V«
jeNUn

(3.19)

and To is the total supply or demand, i.e.,

= (3-20)
ne l neD

Having defined the conditional entropy of node n, \/n, the conditional entropy for 

any number of nodes in a water distribution network can then be defined by 

following the general form of conditional entropy of Equation (2.7). The first term 

of Equation (2.7) represents the entropy of an absolute rather a conditional finite 

scheme. Such an absolute scheme in a water distribution network is a scheme 

representing the fraction of the total supply provided by source node n, V«e/, i.e.,

P0n = \/ne  I (3.21)

Therefore, in accordance with Equation (2.7), Tanyimboh and Templeman (1993a, 

1993b, 1993c) introduced the following entropy function for general water 

distribution networks.
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(3.22)
NN

in which S° is the network entropy based on the outflows; S° is the conditional 

entropy of outflows, including any demand, at node n, \/n, as given by Equation 

(3.16);

is the entropy of the distribution of To amongst the sources and Pon is given by 

Equation (3.21).

The above network entropy function of Equation (3.22) is based on the conditional 

finite probability scheme of Equation (3.13), which represents the outflows from 

node n, Vrc. Tanyimboh (1993) produced a similar network entropy function based 

on the inflows at node n, V«, which uses the following conditional flow probability 

function.

The above equation also includes the probabilities for the supplies at source nodes, 

i.e.

in which /  is the set of supply nodes in the network; p0n, \fnel, is the probability 

representing the fraction of the total supply provided by source node n, Vnel.

The network entropy based on the inflows is therefore

(3.23)

(3.24)

(3.25)

NN

(3.26)
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in which S' is the network entropy; S'n is the conditional entropy of inflows, 

including any source supply, at node n, V«, and is given by

K = - Pn X  Pj>Pjn  > (327)
je N U „

where P„ is given by Equation (3.18) and pj„ is given by Equation (3.24). Also, in 

Equation (3.26), is the entropy of the distribution of To amongst the demand 

nodes, i.e.,

(3-28)
neD

in which Pno is the fraction of the total demand consumed at node n, MneD, and is 

given by

-'o
(3.29)

It follows from Equations (2.5) and (2.6) that the entropy of the outflows must equal 

the entropy of the inflows, i.e.,

S‘ =S° (3.30)

However, it may be noted that in general S'n * S ° , V«, just as S(02 \ O,) * S(Ot \ 0 2)

(Tanyimboh, 1993). The network entropy of the outflows, S°, is used throughout this 

thesis, and the superscript o is therefore dropped hereafter.

3.2.3 PATH ENTROPY FUNCTION OF YASSIN-KASSAB, 
TEMPLEMAN AND TANYIMBOH

In their attempts to formulate a procedure to calculate the maximum entropy flows in 

multi-source multi-demand networks, which will be discussed later in this chapter,
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Yassin-Kassab et al. (1999) formulated a slightly different method to determine the 

entropy of water distribution networks. Instead of using the link flows as in the 

method used by Tanyimboh and Templeman (1993a), Yassin-Kassab et al. (1999) 

used the path flows from the source node(s) to each demand node. Considering any 

demand node in the network of Figure 3.1 served by more than one path from a 

source, in accordance with the maximum entropy formalism of Problem 1, the flow 

supplied by a source to a demand node should be distributed equally amongst all the 

paths supplying that node from that source. Therefore, all the paths from the source 

to the demand node should have the same flow probability if there is no further 

information about those paths. However, the proportion of the flow for a demand 

node supplied by each source is unknown, and the relationship between path flows 

for each demand node supplied by different sources is consequently unknown. 

Defining qPtij to be the path flow from source node i to demand node j , Figure 3.2 

shows the unknown equal path flows from each source to each demand node 

reachable from that source. For demand node 6 , there are three paths from each 

source in the network, these being 1-3-5-6, 1-3-4-6 and 1-4-6 from source node 1 

(Figure 3.2a), each carrying the path flow qPt 16, and 2-3-5-6, 2-3-4-6 and 2-4-6 from 

source node 2 (Figure 3.2b), each carrying the path flow qPi26- Demand node 5 

receives two paths, one from each source node. The flow from source node 1 (Figure 

3.2c) is equal to qPt 15, and from source node 2 (Figure 3.2d) equal to qp,2s- Demand 

node 4 receives two paths from source node 1 (Figure 3.2e), each carrying a flow 

equal to qPt 14, and two paths from source node 2 (Figure 3.2f), with each path 

carrying a flow equal to qPi24. Finally, there are two paths supplying demand node 3, 

one path from each source (Figure 3.2g and Figure 3.2h, respectively), where the 

path from source node 1 carries a flow equal to qPi 13 and the path from source node 2  

carries qp, 23.

Consequently, there are eight unknown path flows for the network of Figure 3.1, two 

for each demand node. However, four node equilibrium or nodal continuity 

equations, which states that the inflows to a node must balance the outflows from 

that node, i.e.,

Z  9j„- E  Vnk =<ln> Vn (3.31)
j& N U „ keND„
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in which q„ is the external inflow or outflow at node n, can be constructed, one for 

each demand node. The above nodal equilibrium equations can be expressed in 

terms of the path flows by equating the path flows supplying each demand node to 

the demand of that node. The expressions can be generally written as

in which NPy is the number of paths from source i to demand node j\ Ij and D are the 

set of all source nodes supplying node j  and the set of all demand nodes in the 

network respectively; and qjo is the demand at node j.

Also, two source equilibrium equations can be set up, one for each source node. 

These equations can be generally expressed as

in which A  is the set of all demand nodes supplied by source node i; qo, is the supply 

at source node i.

Following this relative frequency interpretation, Yassin-Kassab (1998) and Yassin- 

Kassab et al. (1999) obtained the probabilities of path flows by normalizing each 

path flow by its individual source flow, i.e.,

in which ppjj is the probability that path flow qp iJ, which is supplied by source node i, 

reaches demand node j. Substituting Equation (3.34) into Equation (3.33) gives the 

following normality condition at the source nodes.

Y/e D
ie l ,

(3.32)

X  Nf y PjJ = 4o, , V / e / (3.33)

(3.34)

(3.35)
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Equation (3.34) represents NS sets of path probabilities, where NS is the number of 

sources in the network, each set corresponding to a source. For each set, the path 

probabilities are mutually exclusive and they sum to unity [Equation (3.35)]. 

Therefore, each set of path probabilities represents a finite scheme. However, each 

scheme is dependent upon the condition at the corresponding source, i.e. each set of 

the path probabilities is dependent upon the probability representing the fraction of the 

total supply in the network provided by that source. There are NS such probabilities in 

the network and their expressions have been given in Equations (3.21). Following 

Khinchin (1953), the conditional entropy of the path flows for each demand node can 

be written as

s i  = ~Po, £  NPjPP,ulnPPjj , Vi e l  (3.36)
jeD,

where S p is the conditional entropy of path flows for source node i.

By using the concept of compound scheme presented in Chapter 2, the network 

entropy in the context of path flows can be formulated. This is done by summing the 

entropy of the source supplies to the conditional entropy of the path flows from each 

source to each demand node, i.e.

S p = Ss0+ Y JS,p (3.37)

in which S p is the network entropy based on path flows; SJ is the entropy of the 

distribution of the total supply amongst all sources and is given by Equation (3.23); 

S p is given by Equation (3.36).

3.3 CALCULATING MAXIMUM ENTROPY FLOWS IN 

NETWORKS

Consider a case of a buried water network in which the available information is not 

sufficient to uniquely determine the pipe flow rates in the network. Information on
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pipe lengths, diameters and roughness is assumed to be unavailable. However, 

source flow rates, demand flow rates and the topology of the network with the flow 

directions are assumed to be known. Under such circumstances, how can the most 

likely pipe flow rates in the network be estimated?

It has been suggested that the flow distribution that has the maximum entropy and 

satisfies the available information must be used in accordance with Jaynes’ 

Maximum Entropy Formalism. Having defined the appropriate entropy function for 

network flows, Tanyimboh and Templeman (1993a) calculated the maximum 

entropy flows in a looped network by maximizing the network entropy of Equation 

(3.22) subject to non-negativity of all the link flows and flow equilibrium at each 

node in the network. The optimization problem can therefore be presented as in 

Problem 2 below.

Problem 2

AW

Maximize S = S'l + y* Sn 
\fqnk "='

(3.38)

Subject to:

1 ^  = 1. V*
keND„ Ln

(3.39)

Y  4jn~ Y  Vnk=<ln » n = \,...,NN~\
je N U „ k&ND„

(3.34)

S>o'A
I

E"ic| (3.40)

^  > 0, Vn, \/k e ND„rp ? 7 n 1 n
(3.41)

Problem 2 is a convex programming problem because the objective function of 

Equation (3.38) is concave since it is the sum of a set of concave functions of the 

form p: In p i , and also the linear constraints in Problem 2 represent a convex
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set. Therefore, Problem 2 has a unique global maximum point which can be 

obtained using any standard constrained non-linear programming algorithm. 

Tanyimboh and Templeman (1993a), however, solved Problem 2 as an 

unconstrained optimization problem after eliminating the non-negativity constraints 

of Equations (3.40) and (3.41) by arguing that the maximum entropy flows are 

expected to be as uniform as possible without any being equal to zero. Moreover, the 

network entropy of Equation (3.38) will be undefined in the infeasible region, thus 

satisfying the non-negativity constraints implicitly in the objective function.

3.4 PATH-BASED ALGORITHM FOR CALCULATING 

MAXIMUM ENTROPY FLOWS IN PIPE NETWORKS

3.4.1 SINGLE SOURCE NETWORKS

The proposed method by Tanyimboh and Templeman (1993a) to calculate the 

maximum entropy flows, and presented earlier as Problem 2, involves non-linear 

programming. In their subsequent paper, Tanyimboh and Templeman (1993c) 

proposed a simpler non-iterative path-based approach to calculate the maximum 

entropy flows in single source networks.

Following the maximum entropy formalism, Tanyimboh and Templeman (1993c) 

argued that when a demand node is served by more than one path from the source, 

the demand of that node should be divided equally amongst all paths supplying it if 

there is no further information about those paths. This approach is demonstrated in 

Appendix Al. Tanyimboh and Templeman (1993c) presented several algorithms for 

this method. They are node numbering algorithm, node weighting algorithm and 

flow distribution algorithm.

A single source network shown in Figure 3.3 is used to demonstrate the above 

algorithms. First, all the nodes in the network are numbered according to the node 

numbering algorithm. The source node is given the number 1, and then the rest of 

the nodes are numbered in an ascending sequence starting with any node whose
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upstream nodes have all been numbered. The numbering of nodes 4 and 5 is 

arbitrary and may be interchanged.

Once all the nodes in the network have been numbered, the number of paths from the 

source to each demand node can be calculated using the node weighting algorithm as 

shown in Figure 3.4. This is done by assigning a weight of 1 to the source node and, 

in ascending node numbering sequence, the weight of each demand node is equal to 

the sum of the weights assigned to all nodes immediately upstream of it. 

Consequently, the node numbering algorithm ensures that all nodes immediately 

upstream of the node being considered have been weighted. For the network in 

Figure 3.3, the weight of node 2 is equal to the weight of node 1 since node 1 is the 

only node upstream of node 2. The weight of node 3 is the sum of the two upstream 

nodes, which are node 1 and node 2, and is therefore equal to 2. Similarly, the 

weight of node 4 is equal to 3, which is the sum of the weights of nodes 1 and 3, and 

the weight of node 5 is also equal to 3 resulting from the weights of node 2 and 3.

Finally, the flow distribution algorithm is used to determine the maximum entropy 

flows in the network. It operates in descending node number order starting from the 

terminal node, i.e. the most downstream node in the network. Therefore, for the 

network in Figure 3.3, the algorithm can start from either node 5 or node 4. The flow 

distribution algorithm ensures that the total outflow at a node is shared among the 

inflow links incident at the node in proportion to the upstream nodal weights. Hence, 

starting with node 5, the flow in link 2-5 is obtained by multiplying the total outflow 

at node 5, which is 24 units, by the ratio between the weights of nodes 2 and 5, which 

is 1/3. Similarly, the flow in link 3-5 is equal to 24 multiplied by the ration 2/3, 

which is the ratio between the weights of nodes 3 and 5. The next step is to choose 

any node immediately upstream of node 5, whose link outflows have all been 

calculated. However, both nodes 2 and 3 have outflow links whose flows have not 

been calculated. In consequence, they cannot be treated yet. At this point, the 

procedures stops, and re-starts at any terminal node that has not been dealt with. For 

the network considered, it is node 4. If the same procedures as explained for node 5 

are applied to node 4, the flow in links 1-4 and 3-4 are 5 units and 10 units, 

respectively. At this stage, the flow for the links incident at node 3 can be calculated. 

The total outflows leaving node 3 is 36 units. Consequently, the links 1-3 and 2-3
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share the total outflows at node 3 equally since the nodes immediately upstream of 

these links have equal weights. The flow in link 1-2 can then be obtained as the sum 

of the outflows from node 2, including the demand at node 2. The resulting 

maximum entropy flows are shown in Figure 3.5.

The above algorithms are rigorous for single source networks. They produce 

identical results to those given by solving Problem 2 in a much simpler and quicker 

method since it does not involve linear or non-linear programming and the 

procedures are non-iterative. Tanyimboh and Templeman (1993c) attempted to 

extend the above algorithms to multiple source networks by means of a super-source 

concept. However, Walters (1995) pointed out that the concept was actually 

incorrect. As an answer to this problem, Yassin-Kassab et al. (1999) proposed 

relatively simple algorithms for calculating maximum entropy flows for general 

multi-source networks based on the path concept. These simple algorithms, which 

also do not involve linear nor non-linear programming, will be presented next.

3.4.2 GENERAL MULTIPLE SOURCE NETWORKS

In a single source network the demand at any node is numerically known and can be 

supplied only from one source. It is therefore easy to allocate the path flows equally 

among all paths from the source to the demand node. In the case where there are 

several sources in the network, although the total demand at a node is numerically 

known, the proportion of the flow received from each source may not be known and 

cannot be allocated numerically among the available paths. Yassin-Kassab et al. 

(1999) concluded that the key to solving the problem is in determining the 

proportions of the flow received by a demand node from each of the sources.

To demonstrate the path-based method on multiple source networks, Yassin-Kassab 

et al. (1999) used the two-source network, shown here as Figure 3.6, whose 

maximum entropy flows had first been determined by solving Problem 2 for the 

network. The resulting flows from the optimization are shown in Figure 3.7 with a 

maximum entropy value of 2.3885315. As for the single source networks, the 

multiple paths from each source to a demand node in multiple source networks must
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carry the same flow. Figure 3.8 shows the unknown equal path flows from each 

source to each demand node. By equating the total flow in each link of Figure 3.7 to 

the sum of all path flows passing through that link in Figure 3.8, the following 

equations can be obtained.

29P,15 + ^ . i4+ ^ , i3 = 2 °.061912,

^ p .,5 + ^ p.i4 = 9.938088,

29p,25 "*" 9/7,24 "*‘ 9/7,23 =  16.268405,

^ ,25 = 3.731595,

9/7,25 "*" 9/7,15 "*" 9/7,24 "*" 9/7,14 — 17.996982, 

9̂ ,25 + 9/,,,5 = 8.333335,

9P,25 + 29/7,i 5 = 12.935070,

for link 1-3 (3.42a)

for link 1-4 (3.42b)

for link 2-3 (3.42c)

for link 2-5 (3.42d)

for link 3-4 (3.42e)

for link 3-5 (3.42f)

for link 4-5 (3.42g)

Solving the above equations, all the path flows can be obtained. Also, by 

normalizing each path flow by its individual source flow, the path flow probabilities 

ppjj can be obtained as given by Equation (3.34). By investigating the path flow 

probabilities further, Yassin-Kassab et al. (1999) noticed that for each demand node 

the ratio of the path flow probabilities from each pair of sources are identical, i.e., for 

the network of Figure 3.6,

= = = (3.43)
Pp, 2 3  P p, 2 4 Pp, 25

Hence, it appears that all demand nodes receive their flows from the two sources 

with the same proportion. Based on this finding, Yassin-Kassab et al. (1999) 

presented the following principle:

The maximum entropy flows in multiple source networks are such that the ratio 
of the probabilities of path flows from any pair of sources to a demand node 
reachable from those sources is the same for every demand node supplied by 
those sources in the network.

Following the above principle, Yassin-Kassab et al. (1999) formulated the solution 

for finding the maximum entropy flows in multiple source networks starting from the

3-20



equilibrium equations at each demand node in the network. For the network in 

Figure 3.6, the following nodal continuity equations based on the path flows in

Figure 3.8 can be obtained.

3#/»,15 + 3#/>,25 = 25 (3.44a)

+<lp, 24 = (3.44b)

#/>,13 + #¿>,23 = 1® (3.44c)

By normalizing the path flows by their individual source flows to obtain the path 

flow probabilities and substituting them in the above nodal continuity equations, the 

following equations are obtained.

90/7,15 + 60/7,25 =25 (3.45a)

6 0^ ,4  + 20^24 =15 (3.45b)

30/7,13 + 20/7, 23 = 10 (3.45c)

Substituting the path flow probability 

equations gives

ratios of Equation (3.43) into the above

PpM =25ae/(60 + 90ore) (3.46a)

PpM =15ae/(20 + 60are) (3.46b)

P p,n =10ae/(20 + 30ae) (3.46c)

Ppa5 =25/(60 + 90ae) (3.46d)

Pp,2a =15/(20 + 60ore) (3.46e)

Pp,22 =1'0/(20 + 30a.) (3.46f)

Using the normality condition of Equation (3.35) for source node 1, the following 

equation is obtained.

NPvPp.\S + NPuPp,\A + NPuPp.\3 = 1 (3.47)
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Substituting the probabilities of the path flow of Equations (3.46) into Equation 

(3.47) yields the following equation

15ae /(60 + 90ae) + 30ae /(20 + 60ae) +10ae I{20 + 30ae) = 1 (3.48)

which can be solved to give the value of ae. Note that the normality condition at source 

node 2 can be used to check the value of ae. Back-substituting ae into Equations (3.46) 

gives the path flow probabilities and hence path flows. Finally, the link flows can be 

obtained by summing all the path flows passing each link in turn, which turn out to be 

the same as those obtained earlier by solving Problem 2 for the network. It should be 

noted that for a network with NS sources, there will be NS normality condition equations 

available for the network, one for each source. Any (MS-1) of these equations can be 

used to determine the value of ae, and hence the path flow probabilities in the network. 

The remaining normality condition can be used for checking purposes.

Yassin-Kassab et al. (1999) presented several algorithms for the above procedures. 

These algorithms are a global node numbering algorithm, a source reachability 

algorithm, a demand node reachability algorithm, a local node numbering algorithm, 

a node weighting algorithm, an Alpha algorithm and a flow distribution algorithm.

The global node numbering algorithm allocates a number to each node in the 

network starting from the source nodes in ascending order followed by any demand 

node also in ascending order until all the nodes in the network have been numbered. 

The global node numbering for the network in Figure 3.6 is given here in Figure 

3.9a. The source reachability algorithm and the demand node reachability algorithm 

are then applied to construct sub-networks by identifying which demand nodes are 

supplied by which sources. Therefore, for networks with NS sources, there will be 

NS sub-networks that have to be constructed, one for each source. Once the sub

networks have been constructed, each of the nodes in the sub-network should be 

renumbered according to the local node numbering algorithm. Therefore, working 

on each of the sub-networks in turn, the source node in a sub-network should first be 

allocated the number 1. The demand nodes can then be numbered starting from the 

node whose upstream nodes have all been numbered.
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Once all the nodes in all sub-networks have been numbered, the number of paths 

from the source to each demand node in the sub-network can be calculated using the 

node weighting algorithm. The node weighting algorithm is applied in the same way 

as that for single source networks. The only difference is that in multiple source 

networks, it is applied to each of the sub-networks in turn instead of the whole 

network.

Yassin-Kassab et al. (1999) used the Alpha algorithm to calculate the path flows in 

network. The algorithm defines the path flow probability as follows.

*7 jO a ei
P,’J V i e / ,

;CC„
i e l ,

(3.49)

in which ae, is the ratio of the path flow probabilities related to node i. The above 

equation is obtained by substituting Equation (3.34) into Equation (3.32) and adding 

the aei terms. The values of ae are obtained by constructing (NS-1) normality 

conditions of Equation (3.35) and solving the equations. However, due to the way 

the path flow probabilities are defined, there are consequently NS values of ae. Since 

only (NS-1) are needed, the value of ae\ can be set to unity. At this stage, the 

network entropy can be calculated by using the path entropy function of Equation 

(3.37). Also, using Equation (3.34) the path flows in the network can be obtained.

To calculate the maximum entropy flows in the network, the flow distribution 

algorithm first calculates the link flows in each of the sub-networks. It operates in 

descending local node number order starting from the terminal node and continuing 

to the node whose link outflows have all been calculated. The algorithm ensures that 

the total outflow at a node in a sub-network is shared among the inflow links incident 

at the node in proportion to the upstream nodal weights. However, the total outflow 

at each demand node must first be expressed in terms of the path flow instead of the 

actual outflow, i.e.,

X  y /, Vi (3.50)
keNDjdSNKj >
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in which Tji is the total outflow at local node j; (.NPyqpjj) is the local demand at node/ 

supplied by source node i; SNK, indicate the sub-network related to source node z; 

NDjczSNKj represents the set of immediate downstream nodes of node j , provided 

that these downstream nodes are in the sub-network SNK,; and qjkj is the flow in link 

jk  in the sub-network SNK,. Note that the actual demand at the node whose local 

node number in the sub-network SNKj is j  is not included in TJS.

Once all the outflows in the sub-networks have been expressed as in Equation (3.50), 

the link flows in a sub-network are calculated by multiplying the total outflows at the 

local demand node by the ratio between the weight at the node to the weight at the 

immediate upstream node of the link considered. The final maximum entropy flows 

in each link in the network are obtained by summing the flows from the 

corresponding link in the sub-networks.

The above procedures are rigorous and have been applied to the network of Figure 

3.6 by Yassin-Kassab et al (1999). The results of this application are shown in 

Figures 3.9b and 3.9c.

3.5 BRIEF OUTLINE OF THE PREVIOUS WATER
DISTRIBUTION NETWORK ENTROPY APPLICATIONS

The difficulties faced in direct quantification of the performance of water distribution 

networks have motivated researchers to find a suitable surrogate performance 

measure. This is the early motivation of using the entropy in water distribution 

networks (Awumah et al., 1989, 1990, 1991; Tanyimboh, 1993; Tanyimboh and 

Templeman, 1993a, 1993b, 1993c). Investigations by Tanyimboh and Templeman 

(1993a, 1993b, 1993c) have shown that there is a correlation between entropy and 

reliability in which the increase in the entropy value is followed by the increase in 

the reliability of the network. Recently, Ang and Jowitt (2003) have explored the 

relationship between entropy and energy loss in water distribution network to help 

gain a deeper understanding of the properties of entropy. Their results support the 

previous conclusion by Tanyimboh and Templeman (1993b) that the importance of a
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pipe in a water distribution network can be related to the amount of energy that the 

network dissipates following the removal or closure of that pipe.

The ease of calculating the entropy value of water distribution networks and its 

minimal data requirements have also been exploited by Tanyimboh and Templeman 

(1993b, 2000) by incorporating the entropy directly into the optimization process. 

Details of the way in which entropy is integrated into the optimization procedures are 

presented in Chapter 5. Recently, Tanyimboh and Sheahan (2002) have proposed a 

maximum entropy-based approach to the layout optimization of water distribution 

networks. The problem of optimizing the layout and pipe sizes of water distribution 

networks is extremely difficult as will be explained later in Chapter 5. Tanyimboh 

and Sheahan (2002) have demonstrated that their maximum entropy-based approach 

is quite robust and efficient. This approach is studied in more detail later in Chapter 

7 of this thesis.

Finally, Templeman and Yassin-Kassab (2002) have proposed an entropy-based 

approach to the calibration of computer models of loop water networks with limited 

data. The approach has been successfully applied to hypothetical networks to predict 

the most likely pipe characteristic in the network. Nevertheless, problem with the 

accuracy of the calibration was noticed. More studies are therefore required to deal 

with this issue. The problem of selecting the type of information required in the 

calibration to make the results more accurate needs to be addressed.

3.6 SUMMARY AND CONCLUSIONS

The entropy function for water distribution networks has been detailed in this 

chapter. The problem of obtaining the network flows that correspond to the 

maximum entropy of the network was also presented in this chapter. Simple 

algorithms for calculating the maximum entropy flows were described and the 

example of their application to a hypothetical network was given. Finally, several 

previous entropy applications in water distribution networks were presented.
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(a) (b)

Figure 3.1 Water Supply network adapted from 

Tanyimboh and Templeman (1993a).

(a) . Supply, demand and pipe flow definitions.

(b) . Flow probability definitions.
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Figure 3.2 Equal path flows from each source to each reachable demand node 

(Tanyimboh and Templeman, 1993a).
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10 59

Figure 3.3 Single source network taken from Tanyimboh and Templeman (1993c).

10 59

24 15

Figure 3.4 Number of paths to each node for the network of Figure 3.3 

(Tanyimboh and Templeman, 1993c).
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10 59

Figure 3.5 Maximum entropy flows for the network of Figure 3.3 

(Tanyimboh and Templeman, 1993c).



Figure 3.6 Two source network adapted from Yassin-Kassab et al. (1999).

20 30

Figure 3.7 Maximum entropy flows for the network of Figure 3.6, obtained by 

solving Problem 2 for the network (Yassin-Kassab et al., 1999).



1 2

1 2

Figure 3.8 Equal path flows from each source to each demand node for the network 

of Figure 3.6 (Yassin-Kassab et al., 1999).
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Figure 3.9 Maximum entropy flows for the network of Figure 2.6 

(Yassin-Kassab et al., 1999)

(a) Global node numbering, (b) Sub-network 1, (c) Sub-network 2.
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CHAPTER 4 HYDRAULIC ANALYSIS OF WATER 

DISTRIBUTION NETWORKS

4.1 INTRODUCTION

Water distribution networks are required to distribute water to customers at the 

desired quantity and pressure head. These requirements are normally satisfied 

amidst the constant change in the network flows which is often gradual as a result of 

the fluctuation of water consumptions, which usually follows a certain pattern. 

However, sudden drop in pressure or increase in consumption also occurs 

occasionally as a result of component failure or fire fighting requirements. In these 

situations, the network may be over-stressed and unable to deliver enough water at 

enough pressure to some parts of the network.

In order to maintain service, Engineers must be able to analyse the network under 

normal and abnormal conditions so that necessary measures can be taken to minimise 

the negative impact that may be experienced by the network in emergency situations. 

Nowadays, many network analysis softwares are available in the market. The basic 

principles behind these softwares are the same, which consist of the constitutive 

equations or the governing laws for flow of water in pipe networks. Details of the 

constitutive equations are given next. Three possible formulations of these equations are 

then presented followed by several methods for flow analysis in looped water networks.

4.2 CONSTITUTIVE EQUATIONS

Pipe flows in water distribution networks are subject to a loss in energy. The energy 

loss per unit weight is called a head loss. This energy loss is caused by frictional 

resistance along the pipe wall, which acts in the opposite direction to the flow. Energy 

loss also occurs when there is a change in the flow momentum, for example at a bend 

or at sections with fittings, such as flow measuring devices, valves, etc. Head losses
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other than that caused by the pipe friction are called minor losses. Although the loss of 

energy in pipe flows is unavoidable, the quantity of the flow, however, must remain 

the same unless there is an abstraction somewhere along the line. This is in 

accordance with the flow equilibrium or the conservation of mass requirement. The 

constitutive equations for flow in pipe networks, therefore, consist of the flow 

equilibrium equations, also often called the continuity equations, head loss equations, 

and the conservation of energy equations, which consist of loop and path equations 

(Bhave, 1991; Walski et al., 2003).

4.2.1 CONTINUITY EQUATIONS

The continuity equations are usually applied at each node in the network. The 

equations have been presented earlier in Chapter 3 as Equation (3.31) and restated 

below as Equation (4.1) for completeness.

Z  Vjn- Z  Ink =<ln ’ n = l,...,N N ~l (4.1)
j^N U „ k&ND„

in which qjn and q„k are the flows in link jn  and nk respectively; q„ is the external 

inflow or outflow at node n; the set NU„ consists of all the immediate upstream nodes 

of node n\ and the set NDn consists of all the immediate downstream nodes of node n.

4.2.2 HEAD LOSS EQUATIONS

Head loss equations consist of the pipe head loss and minor head loss as mentioned 

earlier. However, friction is usually the predominant cause of head loss and 

therefore minor losses are not considered explicitly throughout this thesis as explain 

later in this sub-section.

4.2.2.1 PIPE HEAD LOSS

There are several pipe head loss equations available. The foremost of these 

equations is the Darcy-Weisbach equation given below.
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L v2h = 4 f  -a— !L V ÿe IJ 
J J Dy 2 g ’

(4.2)

in which Ly and Dy are the length and internal diameter of pipe ij respectively; hy is 

the head loss, which is positive in the direction of flow; vy is the mean velocity of the 

flow in the pipe; g is the acceleration due to gravity; fy  is the friction factor, which is 

dimensionless and depends on the flow rate and the roughness of the pipe; IJ  is the 

set of all the links in the network. In general,^ cannot be written explicitly in terms 

of the flow rate and the roughness of the pipe. Consequently, some iterative scheme 

is usually needed for its determination. Jeppson (1976, pp. 30) has tabulated several 

equations for fy for various flow conditions.

Empirical approximate equations, which are easier to use than the Darcy- 

Weisbach equation, are available. One of these equations is Manning’s equation 

stated below.

ho =
a L y i j l y q y )

D.5.333
\fij € IJ (4.3)

in which ny is Manning’s coefficient; qy is the flow rate, which is positive in the 

direction of flow; and or is a dimensionless conversion factor, which is equal to 10.29 

in S.I. units.

Another empirical approximate head loss equation, which is frequently used, is the 

Hazen-Williams equation.

h y = a L >j

f  V-852 

1 %L
\ C'J J

a 4.87
Vÿ € IJ (4.4)

in which Cy is the Hazen-Williams coefficient and «here equals to 10.67 in S.I. units. 

The Hazen-Williams equation is used throughout this thesis. However, other head 

loss equations may be used if it is considered appropriate.
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4.2.2.2 MINOR LOSSES

Since minor losses do not contribute much to the energy loss, the concept of 

equivalent length is used to account for their effect in the analysis of the pipe 

networks in this thesis. The equivalent length is the length of pipe of the same 

diameter as the pipe with the fitting, which would cause the same head loss as 

the fitting. In general, the head loss across any fitting depends on the flow rate 

in the pipe with the fitting. Using equivalent length, Equation (4.2) can be 

written as

hf= 4 fv
L v2 v2U u _ g  u
4 ,  2« '  2g

(4.5)

where hj is the head loss across the fitting; Le is the equivalent length of the fitting; Kj 

is a coefficient of the fitting. From Equation (4.5)

, _ K A
'■  4 f„

(4.6)

Some typical values of Kf can be found in many hydraulic text books, for example 

Walski et al., (2003, pp.41).

The effective length of a pipe for the head loss calculations is the sum if its physical 

length and the equivalent length of all its fittings. It is assumed that all pipe lengths 

are effective lengths throughout this thesis.

4.2.3 CONSERVATION OF ENERGY EQUATIONS

4.2.3.1 LOOP EQUATIONS

Conservation of energy requires the net loss of energy around a loop to be zero. 

Therefore, the loop equations can be written as
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(4.7)5 > y =  0 , 1 = 1,...,NLP
ijeU ,

in which IJi is the set of all links in loop / and NLP is the number of loops in the 

network, which must satisfy the following equation.

NL = NN + N L P -\ (4-8)

where NL and NN are the number of links and nodes in the network respectively.

4.2.3.2 PATH EQUATIONS

The total head loss along any path must equal the difference in head between the end 

points of that path. An equation may therefore be written for each path along which 

the head loss is known.

iZ hu = hP > P = l - N P  (4-9)
ijeUp

in which IJp is the set of all links in path p\ hp is the known head loss for path p; NP 

is the number of paths whose head losses are known. In general, NP will be, at most, 

one less than the number of constant path head losses in the network. It may also be 

noted that a path may contain only one link. Furthermore, to ensure linear 

independence of the path equations, the NP paths must be specified such that none of 

the paths duplicates information contained in any other path.

Finally, head loss in a link may also be obtained from the difference in head at the 

nodes at each end of that link, i.e.

h0 = Hj -  Hj , \ / i je IJ  (4.10)

in which Hi and Hj are the total heads at nodes i and j  respectively. The total 

head at a node is the sum of the elevation and the pressure head at that node.
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For simplicity, the velocity head is considered negligible throughout the present 

study.

4.2.4 STORAGE TANKS AND MULTIPLE DEMAND 

PATTERNS

A storage tank is a boundary node in a distribution network that can supply and 

accept water in large quantity. In designing a storage tank, the decision variables 

could be the elevation, volume of the tank in terms of the water level or combination 

of these. The location of the storage tank is usually pre-specified by the designer, 

although, it can also be incorporated into the optimization procedure as another 

variable. To make sure that the proposed storage tank operates in a satisfactory 

manner, more than one demand pattern, i.e. multiple loading conditions, need to be 

considered in the design. This is important since by definition a storage tank has to 

act as a buffer for the sources, i.e. to fill at times of low demands and empty when 

demands are at their peak. The capital cost of the tank has to be included in the 

objective function in the optimization process for each tank added. This thesis, 

however, is not particularly concerned with the design of storage tanks. Hence, 

details of the design procedures are not presented here. Interested readers may 

consult, for example, Alperovits and Shamir (1977).

In the absence of a storage tank in a network, many different loadings or demand 

patterns can still occur in 24-hour period, for example, peak hour demand, daily 

average demand, daily maximum demand, fire demand, periods of low demand 

(usually at night), etc. For problems with multiple demand patterns there will be a 

set of corresponding nodal heads, pipe flow rates and head losses. The design 

procedure involving multiple demand patterns will be described later in this chapter.

4.2.5 VALVES AND PUMPS

The locations of line valves in a network are usually pre-specified at strategic places, for 

example, at junctions so that sections of pipes may be isolated when necessary, near
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washouts for flushing purposes, etc. These valves are not usually included in a design 

model. Their existence can be accounted for as minor losses. However, flow control 

valves are often required in water distribution networks and they are often included 

mathematically in the design optimization model, for example, a non-return valve which 

is usually fitted at the downstream end of a pump to prevent back water effect that can 

damage the pump. The expression for this type of valve is as follows (Bhave, 1991).

\ h , . Hj Hj < Hi
<hi=' K.y* \h î - Hj |°46 (4.11)

0 Hj > Hi

Another type of flow control valve is Pressure Reducing/Regulating Valve (PRY). It

can be mathematically presented as (Bhave, 1991)

Hj <Hprv< H,

i F K - » r
H ,-H ,

(4.12)H ij
Kf* \Hr H f Hj < Hi < Hprv

0 Hj > Hprv

in which Hprv is the PRY setting.

A network may also need additional energy to satisfy the minimum head requirement 

at the downstream end of the network. For this purpose, a pump may be included in 

the design optimization model and the following Power equation may be used to 

represent the pump in the model (Walski et al., 2003).

H  P- H 0-  cpQepp (4.13)

in which Hp is the pump head or the head difference across the pump; H0 is the 

shutoff head or the pump head at zero flow; Qp is the pump flow; cp and ep are 

coefficients, which are usually specified by the pump manufacturer to describe the
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shape of the pump curve, i.e. the relationship between the pump head and pump 

flow. The location of the pump may be pre-specified by the designer or incorporated 

into the optimization procedure.

When considering flow control valves and pumps in the design optimization model, 

the problem becomes one of the design-operation types. Multiple loadings need to 

be considered since the designer has to decide the status of the valves and pumps at 

each of the loading conditions. The above expressions for valves and pumps are 

presented in this thesis for completeness. However, the present research is not 

particularly concerned with these components.

4.3 NETWORK ANALYSIS

In the analysis of water distribution networks, the constitutive equations can be 

formulated in several ways. The analysis problem typically has three kinds of 

variables, which are the pipe flow rates q,j, the nodal heads H, and the pipe head 

losses hy. The constitutive equations, therefore, can be set up and solved in terms of 

one kind of variable, i.e. the pipe flow rates, the nodal heads, or the corrective loop 

flow rates, which may then be used to express the other variables.

4.3.1 SYSTEMS OF EQUATIONS

4.3.1.1 PIPE FLOW RATES AS UNKNOWNS

The continuity and head loss equations in Equations (4.1) and (4.4), respectively, are 

expressed with the flow rates, qtj, as the independent variables or unknowns. It 

follows that the unknowns in the loop and path equations in Equations (4.7) and 

(4.9), respectively, are the qy. Following Jeppson (1976) and Bhave (1991), these 

equations will be called q-equations or the q-system of equations.

4.3.1.2 NODAL HEADS AS UNKNOWNS

The Hazen-Williams equation can be expressed in terms of the pipe head loss.
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Substituting hy with the nodal heads from Equation (4.10), Equation (4.4) may be 

written as

< h i = -

0.54

0.54 V/y e IJ (4.14)

in which, here, a  = 0.2785 in S.I. units. However, it is perhaps better to determine 

the sign of q,j according to whether //, is greater or less than Hj, in which case 

Equation (4.15) below may be used instead.

aCiiD lasign{Hi - H j) \H l - H J
9j=-

| 0.54

7-0.54
\fij e IJ (4.15)

Using Equation (4.15), the continuity equation, Equation (4.1), may be written in 

terms of the nodal heads.

« Z
j<=(NU„\iND„)

CnjD2„?sign(Hn ■ H j l H ' - H . r
7-0.54

= qn , n = \,...,(N N -l) (4.16)

These equations, which are based on the nodal heads, will be called H-equations. 

Since the head loss in every pipe is considered explicitly, the H-equations describe 

the flow in a pipe network completely, hence the loop or path equations are no longer 

needed. Also, there will be as many continuity equations as unknown nodal heads; 

usually at least one nodal head will be constant and known.

4.3.1.3 CORRECTIVE LOOP FLOW RATES AS UNKNOWNS

To express the pipe flow rates in terms of a corrective flow rate around each loop in 

any iterative scheme, the following equations are used.

# = ^ r ) + Z A^ n)’ v i / e z / (4.17)



in which q\” 0 in an estimated flow rate; Aq\p is a correction to be applied,

taking into account the direction of the flow, to all flows in loop /; q)p is the

corrected flow rate. The bracketed superscripts indicate the number of iteration. 

Finally, ly consists of all loops sharing link ij. The unknowns in Equations (4.17) 

are therefore Aq/. Equations (4.17) may be inserted in the head loss equation to 

give a complete set of equations based on the Aqi, which are called Aq-system of 

equations.

HP =

1.852

aL0

^ - .1.852 t-v4.87 
L 'y  U ij

Vij 6 IJ (4.18)

This system contains NLP equations, one for each loop, and each A qi corresponds to 

a loop. Also, like the q-system, this system requires the loop and path equations but 

does not directly involve the continuity equations. To set up the Aq equations, the 

initial flow estimates, q\p must satisfy continuity. Thereafter, successive iterates in 

the analysis will also satisfy continuity.

4.3.2 ANALYSIS METHODS

There are several analysis methods for water distribution networks. Based on the 

relationship between outflows and pressure in the system, analysis methods are 

divided into two main groups namely Demand Driven Analysis and pressure or Head 

Dependent Analysis. These methods are presented next.

4.3.2.1 DEMAND DRIVEN ANALYSIS

The Demand Driven Analysis (DDA) method has been widely used in the water 

industry for many years. The method assumes that the demands in the system are fully 

satisfied regardless of the pressure in the system. Three main numerical approaches to 

the network analysis problem based on the DDA method are presented next.
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HARDY-CROSS METHOD

The Hardy-Cross method is the oldest method for systematic solution of water 

distribution networks (Jeppson, 1976, pp.145-150). It is the most commonly used for 

hand computations due to its simplicity, although many computer programs exist for 

its execution by digital computers. This method solves the constitutive equations 

sequentially in each iteration. Also, each equation is solved for a single variable 

only, while keeping the other variables fixed. The method is demonstrated here for 

the Ag-equations.

Equation (4.17) can be written for each loop.

When considering the links in loop /, the corrections due to other loops sharing the 

same links are neglected. The resulting head loss equations are therefore

Using the first order Taylor’s series expansion of the head loss equation, the 

corrective loop flow rates are therefore

(4.19)

(4.20)

and the loop equations are

2 > r = ° .  v/ (4.21)

V/ (4.22)

in which
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(4.23)r ,)=
a L i j i q ^ r 52

q \ .i5 2 jy H .il

The resulting values of Aq\n) of Equation (4.22) are then used in Equation (4.19) to

obtain the new flow estimates. Thus completes one iterative cycle. A new cycle can 

be started by setting up and solving Equations (4.21) again. This iterative cycle is 

repeated until the loop correction values become insignificant and the loop and path 

equations are satisfied. See, for example, Jeppson (1976, pp.147) for a step-by-step 

implementation of the Hardy-Cross method.

NEWTON-RAPHSON METHOD

Martin and Peters (1963) were the first to propose the application of the Newton- 

Raphson method for the analysis of water distribution network. The Newton- 

Raphson method is an iteration procedure for finding the root(s) of a function, F. For 

example, for a single variable function F(x) = 0, the value of x can be found by using 

an additive correction, Ax, in the iteration so that the function can be written as

F(x) = F(x + Ax) = 0 (4.24)

Using the first order Taylor’s series expansion, Equation (4.24) becomes

F(x(n)) + F \ x (n)) Ax(n) =0 (4.25)

in which the superscript indicates the nth iteration. The higher order of the 

expansion is neglected assuming that the Ax correction is relatively small compare to 

x and therefore its higher order will be smaller still, hence insignificant. Equation 

(4.25) can be rearranged to solve for Ax as shown below.

Ax(n) = F(x(n))
F \x (n))

(4.26)
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The value of x for the next iteration is obtained from

x ^ '^ x ^  + Ax^ (4.27)

For functions with more than one variable, Equation (4.25) can be extended for a 

system of equation in the form of

F(x(n)) + J (n)Ax(") =0 (4.28)

in which F  is the vector of the function values for the system of simultaneous 

equations at the point x; x is the vector of the variables; J  is the Jacobian matrix, 

which is the matrix of the first partial derivatives of each F  with respect to each of 

the x’s; Ax is the vector of the x correction. By rearranging Equation (4.28), the 

corrections for each of the x’s are therefore

Ax (H) = - ( J (n)y lF(x(a)) (4.29)

Usually, inversion of J  is computationally expensive and is avoided by pre

multiplying both sides of Equation (4.29) by which gives

(J(n))Ax(n) = -F( xM) (4.30)

Equation (4.30) is solved for Axw using, for example, the Gaussian elimination technique, 

whose values are then used to find the values of each x for the next iteration, i.e.

x(M+l) = x(n) + Ax(n) (4.31)

The symmetry of J  may be exploited for greater computational efficiency. The 

Newton-Raphson method described above may be used to solve the H-, q-, Aq or 

H-q equations in which the heads at demand nodes and the link flows are 

calculated at the same time. The convergence rate of the Newton-Raphson 

method is much faster compare to the Hardy-Cross method since calculations are 

done simultaneously rather than sequentially. Also, it can be shown that in the
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(/i+l)th iteration, the error is proportional to the square of the error in the rath 

iteration. Each subsequent reduction in error in the Newton-Raphson method is 

proportional to the square of the previous error, and hence the convergence 

property is quadratic (Bhave, 1991, pp. 233).

The method described by Martin and Peters (1963) was applied to networks having 

pipes and reservoirs only. Shamir and Howard (1968) have described a generalised 

formulation of the Newton-Raphson method to include other elements like pumps 

and valves. Interested readers can refer to their paper for further details on the 

Newton-Raphson method.

LINEAR THEORY METHOD

The linear theory method was developed by Wood and Charles (1972). They 

suggested the Hazen-Williams equation [Equation (4.4)] can be approximated 

linearly as follows.

c = k a < t 12a(”) _ a(n) 
“ i j iV  i j  “ ]

(4.32)

in which (n) is the iteration number; q,p is the approximate discharge in pipe ij; Ky 

and KtJ are the actual and the modified pipe resistance for pipe ij, respectively.

When the value of qyo approaches the actual discharge, Equation (4.32) is the exact 

expression of the head loss. Ky is given by

a L .
IS  ____________V

i j  q \.852^4.57
Vy (4.33)

Once all the loop equations have been set up using the above approximate 

equations together with the nodal continuity equations, the iteration begins by 

setting the value of qyo to unity so that K '¡J} = K {p  and solving the nodal continuity 

and loop equations simultaneously to find the values of the initial approximate 

discharge, q ^ . The values of K'™ are calculated from
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(4.34)

The results are substituted back into the nodal continuity and loop equations to obtain 

the value of pipe flow rates for the next iteration. Wood and Charles (1972) found 

that the average of two successive trials gave a result very close to the final value of 

flow rate. They, therefore, suggested that the value of the discharge and the modified 

pipe resistance, K]., for the subsequent iterations are computed using the average 

value of the previous two sets of flow rates, i.e.

Wood and Charles (1972) concluded that the above method has a better 

convergence rate than the Newton-Raphson method. Also, they found that 

iteration always converge to a solution. Their Linear Theory method described 

above is based on q-equations. Isaacs and Mills (1980) applied the method using 

the H-equations, but concluded that the H-equations are better suited for networks 

with some known heads, whereas the q-equations applies better to networks with 

known external flows.

The DDA method does not take into consideration the relationship between the 

nodal outflows and the pressure within the system. It is perhaps necessary to 

differentiate between outflow and demand at this point. Outflow is the actual

water to be extracted from the network. The DDA method is satisfactory when 

the network is under normal condition, i.e. when the pressure in the network is 

sufficient. However, when the pressure drops below the required level, network 

analysts would have no reliable information to determine how much outflow 

would be delivered by the system under the available pressure regime. In this 

situation some customers would receive reduced supplies and, in the worst

(4.35)

4.3.2.2 HEAD DEPENDENT ANALYSIS

amount of water yielded by the network, while demand is the required amount of
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scenario, they might not receive any supply at all (Ackley et al., 2001; 

Tanyimboh et al., 2003). The drop in pressure in the distribution network can be 

triggered by many factors. Excessive abstraction at one demand node, for 

example, in a fire fighting situation, may cause the pressure in the neighbouring 

abstraction points to drop below the required level.

Head Dependent Analysis (HDA) has been suggested to be superior to the DDA 

method, particularly for networks under subnormal operating conditions. It is well 

known that outflows from a water distribution network are dependent upon the 

pressure within that system and, therefore, the DDA assumption that demands are 

always satisfied regardless of the pressure in the system is often inappropriate. HDA 

takes into consideration the pressure dependency of nodal outflows, and in 

consequence, the results are more realistic. Nevertheless, this method is not yet 

commonly used in the water industry since more research and verification of the true 

relationship between network pressure and nodal outflows are still necessary.

Bhave (1981) was probably the first to consider the nodal heads and flows 

simultaneously in the analysis of deficient water distribution network. In his study, 

however, no head-outflow relationship is given and the analysis is carried out using 

the DDA analysis iteratively. The demand nodes are given a set of criteria based on 

the result of the DDA analysis and the outflows are updated based on these criteria 

before they are used as input data for the next iteration. Once certain criteria have 

been satisfied, the iteration is stopped and the result of this approach, termed as Node 

Flow Analysis (NFA) method, is reached. Ackley et al. (2001), on the other hand, 

used a mathematical programming formulation based on the maximization of the 

nodal outflows.

Other researchers have proposed several assumed head-outflow relationships for the 

HDA analysis. For example, Wagner et al. (1988b) and Chandapillai (1991) 

suggested the following parabolic function

<ln
avl

<h
req

j_T r/irn

H dr  -  h :

i

H r  < H  < H ,des (4.36)
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in which is the demand satisfaction ratio (DSR) of node n, q™' and q„req are the
<C

actual outflow that can be delivered by the system and the required outflow or 

demand, respectively. H„ is the actual head at node n, Hnmm is the nodal head at node 

n below which there would be no outflow and Hndes is the desired head at node n, 

above which the outflow would be equal to the demand. The DSR is set to zero if Hn 

is less than H„mm or 1.0 if Hn reaches H„des. Values of the exponent parameter, n„, are 

thought to lie between 1.5 and 2 (Gupta and Bhave, 1996).

Another example of the head-outflow relationship is the following function proposed 

by Fujiwara and Ganesharajah (1993).

<ln
Qvl

<ln
req .udes

[ L ( H ~ H r ) ( n T

H)dH
H T  < H < H des

H]dH
(4.37)

Another HDA approach termed the source head method was proposed by Tanyimboh 

and Templeman (1998). Instead of considering each demand node individually, the 

method approximates the total outflow delivered by the entire system. Hence, the 

following head-outflow relationship is used in this method.

<L
avl

req

Hs -H™
j j d e s  _  j _ j m

H r  < h , < h :des (4.38)

In the above expression, qaj ‘ and q[eq are the total available flows supplied by the 

network and the required flows that must be provided by the source, respectively; 

H 'r  is the head at the source above which outflow just begins at any node in the 

network or can be set to the minimum ground level elevation for demand nodes 

while H des is the head at the source above which all the demands would be fully 

satisfied. Hs is the actual head at the source.

The method is capable of simulating the behaviour of networks under deficient 

conditions. However, the approximation tends to underestimate the total
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outflow delivered by the reduced network. This is probably caused by the 

negative heads from the DDA analysis that are used in the approximation 

producing a high value of Hsdes which in turn underestimate the value of the 

total flow delivered.

Recently, Tanyimboh and Templeman (2004) suggested the following nodal outflow 

function.

< v/ _ exp(arn+P„Hn) 
€ q l + exp (an + finHn)

(4.39)

The values of the parameters an and /?„ are determined by relevant field data for the 

node under consideration. In the absence of field data, Tanyimboh and Templeman 

(2004) suggested default values for the DSR as 0.01 and 0.999 for situations when 

the H„ is less than H„mm and when H„ reaches H„des, respectively. These DSR values 

give two simultaneous equations whose solution gives the following expressions for 

the parameters a„ and /?„.

-4 .5 9 5 //f '-6 .9 0 7 //; ,n
T jd cs  r rm in

(4.40)

A = -
11.502

H d: s - h :
(4.41)

Unlike the previous head-outflow relationships, Equation (4.39) does not need 

additional conditions for the case when the nodal head, H„, is less than or equal to 

H„min or when H„ reaches or exceeds Hndes.

The HDA method requires the constitutive equations to be expressed in terms of the 

heads at the nodes, i.e. H-systems of equations. The nodal continuity equations are 

modified to include the head-outflow relationship as depicted by Equations (4.42) 

below and the set of equations can then be solved using one of the numerical 

approaches mentioned above, e.g. the Newton-Raphson method.
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In the above equations, qanvl is the head-dependent outflow.

In this thesis, the HDA analysis is carried out using a Fortran program called 

PRAAWDS (Program for the Realistic Analysis of the Availability of Water in 

Distribution Systems) (Tahar et al., 2002; Tanyimboh et al., 2003), which calculates 

the actual flow delivered under normal and subnormal pressure conditions. The 

program allows the user to choose which head-outflow relationship to be used in the 

analysis and, apart from the Source Head method head-outflow relationship, all of 

the above mentioned relationships are available to choose. PRAAWDS can also 

perform a DDA analysis. The DDA analysis in this thesis, however, is carried out 

using EPANET (Rossman, 2000).

4.3.3 STEADY STATE ANALYSIS AND EXTENDED PERIOD 

SIMULATION

Based on the period or duration, analysis methods are divided into two categories, i.e. 

steady state analysis, which is carried out in a very short period of time with constant 

demand values, and extended period analysis, which is done over a longer period, 

usually over 24 or 48 hours under varying demand conditions. In extended period 

analysis the analysis is divided into several time intervals (typically with duration of 15 

minutes to 1 hour) and a sequence of steady state analysis are performed at these 

intervals. Extended period analysis is important for most real water distribution 

systems, for example in analysing networks with storage tank(s). A storage tank in a 

network discharges water during peak time and acts as a demand node when the 

demands in the network are low and the tank is filling up. Therefore, the water level in 

the tank needs to be checked to make sure that it is back to its original level at the end 

of the 24- or 48-hour, ready for the next period. Also, pump and valve settings are 

likely to change within the 24-hour period. This thesis, however, is concerned only 

with steady state analysis. Interested readers may consult, for example, Bhave (1991) 

for a methodology of performing extended period analysis.
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4.4 SUMMARY AND CONCLUSIONS

The equations that govern the flow in pipe networks have been detailed in this 

chapter. Several ways in which these equations can be formulated have also been 

presented in this chapter. Two network analysis methods have been discussed briefly 

and the limitation of the commonly used DDA method is highlighted. Although the 

HDA seems to provide a better alternative to the DDA method, more research are 

required to further validate its applicability to the real water networks. A more 

general expression of the actual head-outflow relationship is required. Nevertheless, 

the available head-outflow relationships proposed by several researchers are 

considered appropriate for use in the present study.
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CHAPTER 5 PERFORMANCE MEASURES AND 

LEAST COST DESIGN OF PIPE NETWORKS

5.1 INTRODUCTION

The design of water distribution networks is often viewed as a least-cost optimization 

problem with pipe diameters being the decision variables. Most traditional design 

methods put the emphasis on economy and hence the resulting designs are tree-type 

or branch networks. Suppose that an upstream pipe in such network fails and has to 

be taken out of service for repair or replacement. It is obvious that tree-type 

networks do not have the capabilities to sustain supply in such an event. The supply 

to the nodes downstream of the pipe will therefore cease completely since there are 

no alternative routes for the water to go through to reach these nodes.

In recent years, interest in the optimum design of water distribution networks has 

increased. Most of the studies are concern with the optimization of looped water 

networks. These networks are highly desired in urban water supply systems since 

the addition of redundant links in the network increases its flexibility and helps 

maintain the network performance in emergency situations such as pipe failure and 

fire fighting. However, the redundant links in a loop network also contribute to the 

high cost of the network. Therefore, several researchers have proposed that the 

requirements for the optimum design of water distribution networks are not only the 

economical aspect of the design but also the high level of performance of the 

distribution network. The optimization of this problem is highly complex. This is 

partly due to the difficulty in quantifying the performance of water distribution 

networks.

In this chapter, several measures for water distribution network performance 

proposed by several researchers are presented and discussed. Several methods for 

optimizing the network performance are also examined in this chapter. From the 

discussion of these methods, it will become clear that the inclusion of performance
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measure in the optimization of water distribution networks create complications and 

make the design problem extremely difficult to solve. Finally, problem formulation 

for the least cost design of pipe networks is presented followed by several of its 

solution methods.

5.2 PERFORMANCE MEASURES FOR WATER 

DISTRIBUTION NETWORKS

Adding loops to a distribution network is one way of increasing the flexibility of the 

network as mentioned earlier. These loops reduce the possibility of some demand 

nodes being completely cut off from the rest of the network, hence improving the 

performance of the network. Following a failure in a looped network, the behaviour 

of the reduced network is, in general, not predictable without hydraulic simulation of 

the reduced network. This problem contributes to the difficulty in quantifying the 

performance of water distribution networks. Also, Mays (1989) and Fujiwara and 

Ganesharajah (1993) have shown that the nodal heads and flows should be 

considered simultaneously for more accurate assessment of deficient-network 

performance. However, thanks to the development of the HD A method, this 

objective is now achievable.

Unavailability of components may be due to maintenance or failure. Failures in 

water distribution systems, according to Mays (2000), may be classified into two 

major categories, i.e. performance (hydraulic) failure and component (mechanical) 

failure. Performance failures occur when there is a shortage in pressure or flow at 

one or more demand nodes. This type of failure may arise due to component failure. 

Excessive abstraction somewhere in the network, for example, for fire fighting, may 

also lead to a reduction in pressure throughout the network. External factors such as 

power supply and availability of water at the source are also involved in wider 

performance assessment (Tanyimboh, 1993). This thesis, however, is concerned 

only with failures due to excessive demands or pipe failures.

Reliability is probably the most commonly used parameter in quantifying the 

performance of water distribution networks. Due to the nature of failures discussed
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above, the reliability can also be differentiated into mechanical and hydraulic 

reliability. Mechanical reliability measures the probability that the components in 

the system are operational at any time. It is not a true measure of the performance of 

water distribution networks since it does not take into account the effect of failure in 

terms of the amount of water delivered by the network. Hydraulic reliability, on the 

other hand, quantifies the performance of water distribution network by considering 

the probability that the system can deliver the right amount of water at the right 

pressure. Also, since the hydraulic performance of a network is influenced by the 

performance of its individual components, the hydraulic reliability should include a 

measure of mechanical reliability in the system too (Mays, 1989).

Unfortunately, there are no universally accepted definitions for reliability of water 

distribution systems (Mays, 2000). Many researchers have proposed several 

measures of reliability. Some of these measures are discussed next followed by 

some ways of optimizing their values.

5.2.1 SOME RELIABILITY MEASURES

Fujiwara and De Silva (1990) used the minimum total shortfall in the flow delivered 

to measure water distribution system reliability. Following Carey and Hendrickson 

(1984), they defined the system reliability, R, as follows

Expected minimum total shortfall in flow . _ .K = 1-----------------------------------------------------(j . 1)
Total demand

They limited their study to gravity networks in which the network consists only of 

pipes. The Linear Programming Gradient (LPG) method of Alperovits and Shamir 

(1977) was employed in the design optimization process (this design method is 

discussed in brief later in this chapter) and, as a result, the links in the resulting 

designs may consist of more than one segment with different pipe sizes. The 

expected minimum total shortfall in flow for the evaluation of reliability was 

obtained by considering single link (including all its segmental pipes) failure events. 

Fujiwara and De Silva (1990) argued that since the probability that any link in the 

network available at any one time was very high, the probability of more than one 

link failed simultaneously was therefore very small.
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The value of the expected minimum total shortfall in flow was calculated as the 

complement of the expected maximum total outflow, which was obtained using an 

optimization procedure with nodal continuity constraint. This procedure was 

favoured over network simulation due to its capability to produce results in a shorter 

period of time. However, this advantage was achieved at the expense of the 

hydraulic consistency of the network, i.e. violation of the conservation of energy 

around each loop in the network and violation of the pressure requirements at each 

demand node. As a solution, Fujiwara and De Silva (1990) introduced flow capacity, 

whose value was equal to the optimal link flow obtained from the LPG method in the 

design process, as the maximum flow that could be carried by each link. The 

definition of the flow capacity constraint, however, is not clear. The justification for 

its use is therefore questionable. Although, its application ensures that the pressure 

requirements at all demand nodes are satisfied, the energy constraint around each 

loop is still not accounted for.

Details of Fujiwara and De Silva (1990) reliability function are as follows. For each 

link, they assumed that the probability of that link is available is given by the 

following function.

°m =  n  0mk> V m  (5 -2)
k:Lmt >0

In the above expression, am is the availability or the probability that link m is 

available; amk is the availability of segment k in link m; Lmk is the length of segment h 

in link m. The probability that segment k is available is given by the following 

function

a *  = r " ‘ (5-3)
T mk + Mmk

in which Tmk and ¡umk are the expected rate of repair and failure of segment k,

respectively. However, it is not clear how Fujiwara and De Silva (1990) obtained the 

values of these expected rates. From Equation (5.2), it follows that the availability of 

all pipes in the network, p(0), is given by
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(5.4)
M

p(0) = Y \a m
m-\

and the probability that only link m is unavailable, p(m), is

p(rn) = ( l - a m) ^  (5.5)

in which 1 - am = um is the unavailability of link m. Therefore

(5-6)

Let T*(m) be the maximum total outflow when link m is unavailable as obtained by 

the optimization procedure. The ratio of the minimum total shortfall in flow to the 

total demand when link m is unavailable is given by

x T*(m)  
T( 0)

(5.7)

in which T(0) is the total demand. Therefore, the ratio of the expected minimum 

total shortfall in flow to the total demand over the entire failure scenarios is

M (
Y ,p ( m) 1
m=0 V

r*(m)" 
T(0) ,

(5.8)

Finally, the reliability of the network is given by

M
R = l ~ Y JP(m)

f
1-

m = o  v

T*(m)"
T(0) , (5.9)

Bao and Mays (1990) defined nodal reliability as a function of the probabilities of 

the heads at demand nodes being equal or above the minimum required level. Their 

work was based on the DDA method and therefore the demands in the network are 

always considered satisfied. They take into account the uncertainties of pipe roughness
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coefficient, nodal demand and the required nodal head at demand nodes and their

type of probability distribution for each of them. The interested readers may refer to 

Bao and Mays (1990) for the type of probability distributions used. The value of the 

available nodal head, on the other hand, was obtained using network simulation. The 

effects of mechanical failures were not considered in the hydraulic reliability 

calculations of Bao and Mays (1990). This may cause overestimation of the 

reliability values. Three nodal reliability functions were proposed and one of these is 

reproduced below as Equation (5.10).

H„, Hmm n and f[H„) are the pressure head, the minimum required head and the 

probability density function of the pressure head at node n, respectively. R„ is the 

nodal reliability. In order to establish the distribution of the nodal pressure head, the 

iterative process of random sampling of demand, required pressure head and pipe 

roughness and the subsequent hydraulic simulation must be repeated a large number 

of times to ensure a reasonable accuracy of the results. The computational 

requirements could therefore be very large even for simple networks. There is also a 

difficulty in selecting the type of probability distribution to be used in generating the 

random values since reliability data for water distribution networks are usually very 

limited. On top of that, it is difficult to estimate the parameters, e.g. coefficient of 

variation, etc, for the distribution regardless of the type of distribution used. Bao and 

Mays (1990) proposed an alternative approach by setting the values of the nodal 

demand, required pressure head and pipe roughness as constants and set the nodal 

reliabilities to one if the result of the hydraulic simulation satisfied the required 

pressure head requirements and zero if not. This approach, however, may 

underestimate the nodal reliability since the situation in which the demand is partly 

satisfied due to a reduced nodal head is not accounted for.

For the system reliability, Bao and Mays (1990) proposed three heuristic definitions, 

i.e. system reliability as: the minimum nodal reliability in the system, the arithmetic

random values were generated using Monte Carlo simulation by first specifying the

(5.10)
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average of all the nodal reliabilities, or the weighted average of all nodal reliabilities 

weighted by the demand at the node. The latter of these definitions is presented 

below.

R (5.11)

in which Run is the system reliability as the weighted mean of all nodal reliabilities; 

Rni is the nodal reliability of node i; and qi0 is the average demand at node i. The

definition of system reliability as the minimum nodal reliability may prove too 

conservative since deterioration in a network can occur locally with insignificant 

effect to the rest of the network. Bao and Mays (1990) have stated that the value of 

the system reliability obtained as the arithmetic average of the nodal reliabilities may 

be significantly different than the system reliability as the weighted average of nodal 

reliabilities in real networks. However, they did not offer any suggestion as to which 

is more appropriate to use.

Throughout this thesis the reliability measure proposed by Tanyimboh (1993) is 

used. It is defined as the time-averaged value of the ratio of the flow delivered to the 

flow required (Tanyimboh and Templeman, 2000, Tanyimboh and Sheahan, 2002). 

By assuming a constant demand value, the reliability function can be written as

i? = -  
T

(' U M-1 M
p(0)T(0) + Yp(m)T(m)+Y. Y  p(m,n)T(m,n) + ■

v m=\ m-1 n=m+1

1
+  — 

2

f  M M-1 M \
1" P(Q) -  Y  ~ ¿L £  p(m ,n)- —

V m=1 m-1 n=m+1

(5.12)

in which R is the reliability; p{0) is the probability that no links is unavailable; p(m) 

is the probability that only link m is unavailable and p(m, n) is the probability that 

only links m and n are unavailable./>(0) andp(m) are calculated from Equations (5.4) 

and (5.6), respectively, whilep(m, n) =p(0)(um / am) (u„ / a„). T(0), T(m) and T(m, n)
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are the respective total flows supplied with no links unavailable, only link m 

unavailable, and only links m and n unavailable. Finally, M  is the number of links 

while T represents the total demand. Equation (5.12) can be used to calculate nodal 

or system reliability. For nodal reliability, T{0), T(m) and T(m, n) becomes the nodal 

outflow with no links unavailable, only link m unavailable, and only links m and n 

unavailable, while T represents the demand at the node in question. It may be noted 

that T is not always equal to 7(0), especially for old distribution networks where the 

increasing demands exceeds the network capacity. This condition is also found in a 

fire fighting situation where the large abstraction often cause the actual outflows to 

be lower than the demand.

There are two main terms in Equation (5.12), which correspond to the two pairs of 

large parentheses. The first term of the equation corresponds to the basic definition 

of hydraulic reliability as stated above. The second term is a correction function 

whose value approaches zero as more and more multiple-component failure 

simulations are included in the first part. The derivation of this Equation is provided 

in Tanyimboh and Sheahan (2002) and reproduced in this thesis in Appendix A2.

It also needs to be mentioned that Equation (5.12) is applicable to pipes, pumps and 

valves in general. In this thesis, however, only pipes are considered and throughout 

this thesis the Cullinane et al. (1992) function for estimating the availability of a pipe 

is used. The function is an approximation based on the data presented by Mays 

(1989) and Walski and Pelliccia (1982) and is in the form of

MTBFm _ 0.21218£f 462,31
a'” ~ MTTRm +MTBFm ~ 0.00074Z)6 285 +0.21218Z)’,462131

\fm (5.13)

in which MTBFm and MTTRm are the mean time between failures and the mean time 

to repair of pipe m, respectively; Dm is the diameter of pipe m. It needs to be 

emphasized that the above availability function is an approximation based on limited 

data. Its use in this thesis is for easier comparison between results generated in this 

thesis and available results in literature. Other availability functions, e.g. Fujiwara 

and De Silva (1990), may be used if considered appropriate. Tabesh (1998) also has 

listed several pipe availability functions.
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To simplify the reliability calculations, only single-pipe failure situations are 

considered in this thesis. The justification for this approach is that for a 

repairable component such as pipe, the probability of having two or more pipes 

fail at the same time is very small (Fujiwara and De Silva, 1990). In reality, 

several pipes may need to be taken out of service depending on the availability 

and arrangement of valves in the vicinity of the broken pipe. The reliability of 

Equation (5.12) allows any number of pipes to be isolated simultaneously if 

necessary.

Equation (5.12) also requires the outflows in the reduced networks to be 

calculated. These outflows can be obtained using the HDA method. However, if 

the DDA method was used for analysing the reduced networks, the calculation 

could be approximated using the source head method as described in the previous 

chapter. Appraisal and comparison of the source head method for calculating 

reliability has been carried out by Tanyimboh et al. (2001). Although a slight 

underestimation is present in the source head method, the appraisal shows that the 

method is comparable to other reliability methods in the sense that it is capable of 

distinguishing networks with various levels of reliability.

In this thesis the reliability of water distribution networks is calculated using a 

constant demand value. This approach is considered sufficient for the present 

research since steady state analysis is used in the hydraulic simulations in this 

study. The inclusion of variations in demands in reliability assessment is 

currently an area of active research. Some researchers, e.g. Bao and Mays 

(1990), Gargano and Pianese (2000), have tried to incorporate the random nature 

of demands in the reliability analysis by using the Monte Carlo simulation to 

generate the random demand data based on some given probability distribution. 

The shortcomings of this method have been explained earlier in this section. 

Surendran et al (2005) used the peaking factor, which is the ratio of the peak 

demand to the average demand, to account for the variation in demands in the 

reliability calculation. They also used statistical modelling of demands to assess 

the confidence levels of the reliability value by predicting the probability for 

which the critical demands used in the reliability assessment will be exceeded. 

More studies, however, are required to determine the appropriate probability
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distribution of demands to be used in the statistical model. Interested readers 

may refer to their original paper for further details.

In addition to the variation in demands, the random nature of failure of the 

components in the network and the random occurrence of fire demands and their 

locations all affect the reliability of the water distribution networks. All of these 

issues need to be considered in order to obtain accurate reliability values. The 

process is therefore very complicated and tedious for large networks. The use of the 

Monte Carlo simulation to generate the random data is intended to help reduce the 

complexity of the calculations. The Minimum Cut Set method (e.g. Su et al., 1987) 

is another technique to help simplify the reliability calculation. The minimum cut set 

is a set of components in the system which causes the system to fail only when all of 

the components within the set fail. To obtain an accurate reliability value, all the 

minimum cut sets in the system must be identified. This could be very tedious for 

large networks. The failure probability of each set is then obtained as the product of 

the failure probability of each component in the set. While the failure probability of 

the system is obtained by adding the failure probability of all the minimum cut sets in 

the system. The reliability of the system is then obtained as the complement of the 

system probability of failure. This technique, as such, does not take into account the 

random nature of normal and fire demands in the distribution system.

Many other performance measures are available in addition to those described above. 

Interested readers may refer to Goulter (1995), Mays (1989, 2000) and the references 

therein for a list and details of other measures.

5.2.2 RELIABILITY OPTIMIZATION

Due to the above mentioned problems in calculating the reliability value, optimizing 

the value of the reliability is an even more difficult challenge. Yet, obtaining the 

optimum value of reliability for water distribution networks remains highly desirable. 

Many researchers have tried to optimize the value of reliability indirectly because of 

calculational effort involved in determining the reliability value. Morgan and Goulter 

(1985), Loganathan et al. (1990) and Afshar et al. (2005), for example, tried to 

optimize the reliability by optimizing the layout of the distribution network. Other
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researchers, e.g. Fujiwara and De Silva (1990) and Fujiwara and Tung (1991), 

optimized the pipe diameters in the network to get the optimum value of the reliability. 

However, their proposed methods are somewhat unsatisfactory as discussed next.

Morgan and Goulter (1985) optimized the layout of water distribution networks by first 

considering all the candidate links in the network. They used linear programming to 

obtain the optimum set of pipe diameters and linked the optimization program to Hardy- 

Cross network solver to obtain the heads and the corresponding link flows in the 

network. Within the linkages between the optimization and the network analysis phase, 

they introduce an algorithm to remove uneconomical links from the network. Each link 

is assigned a weight, which is proportionate to the ratio between the flow in the link and 

the total flow at the downstream node of that link. The weight is calculated prior to the 

development of the pressure constraint in the optimization phase. At the end of each 

optimization phase, the minimum diameter pipe with the lowest weighting is removed 

from the network and the resulting layout is reanalysed to obtain the new sets of nodal 

pressure heads and link flows. If the layout resulting from the removal of this pipe is 

more economical than the previous solution then it becomes the new best result and the 

procedure continues as before. If the new layout is more expensive then the pipe is 

retained and the old best layout is used instead. This process of removing pipes 

continues until the lowest weighting is greater than a specified value. Once this 

condition is reached, the pipe optimization and flow distribution phases based on the 

new layout continue as before. Final optimum solution is considered to have been 

reached when the linear program cannot reduce the size of any pipe in the network and 

the minimum weighting in any link in the network is greater than the specified value. 

Several demand patterns corresponding to several critical operating conditions may be 

considered to increase the performance of the resulting design. However, the 

performance of the resulting design depends largely on the value of the minimum 

weighting specified by the designer since no actual measure of performance is used in 

the model. Also, the true optimum layout and the corresponding pipe sizes may not be 

achieved since the minimum weighting that corresponds to this layout is not known.

Afshar et al. (2005) proposed a different method of optimizing the layout of water 

distribution networks. The approach, however, is the same as that of Morgan and 

Goulter (1985) in the sense that both methods start by considering the whole set of
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the candidate links in the network. Continuous pipe diameters are used in the design 

optimization phase. Once a design based on the full set of links is obtained, one link 

in the network is “floated” so that the configuration would yield a cheaper layout. A 

link is floated by relaxing the minimum pipe diameter constraint, i.e. by setting the 

minimum pipe diameter value of zero, so that in the design optimization phase in the 

next iteration the link can be eliminated. The criteria used in choosing which link to 

be floated are based on the assumption that the link is the most hydraulically 

unimportant but economically important link in the network. This assumption, as 

Afshar et al. (2005) admitted, cannot be proved and justified. Once a link has been 

floated, the method continues with the linear programming phase to design the 

network. Only this time the linear program can decide whether or not to eliminate 

the floated link by choosing a zero or nonzero value for the diameter. Convergence 

of the iteration is assumed to have been reached when there are no more links in the 

network to be floated, i.e. floating one or more of the remaining link(s) would lead to 

violation of the design constraints or the specified reliability criteria. Afshar et al. 

(2005) used the concept of reliability as a measure of independent paths from the 

source node(s) to each of the demand nodes. As such, no quantified measure of the 

reliability was actually used. The performance of the resulting design is therefore 

difficult to quantify and questionable since multiple connections between a demand 

node and the source node(s) do not guarantee that the node would have sufficient 

supply when one or more of these connections fail (Wagner et al., 1988a).

Loganathan et al. (1990) used an inverse strategy to Morgan and Goulter (1985) and 

Afshar et al. (2005). Instead of starting the algorithm by considering all the candidate 

links in the network, their approach starts by obtaining an optimum tree-type design 

and proceeds by adding loop-forming redundant links to increase flexibility and 

performance of the network while keeping the rise in cost to a minimum. The addition 

of the redundant links is done in such a way that all the demand nodes are connected to 

the source by at least two independent paths. All the redundant links are first assumed 

to have a minimum available diameter. Network analysis is then carried out on the 

augmented design and the pipe diameters are adjusted accordingly to satisfy the 

pressure requirements. Changes on the core tree links are kept to a minimum. The 

performance of the resulting design is, however, questionable since the cost of the 

design is kept down by using mostly minimum diameter pipes for the redundant links.
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Therefore, the bulk of the flow is carried by the initial core tree links. This raises 

question of how useful the redundant links are. When a redundant link fails, the 

network may be able to cope well with the situation, but when a core-tree link fails, the 

reduced network may struggle to meet the demands in some areas.

Fujiwara and De Silva (1990) tried to improve the reliability of a water distribution 

network by increasing the size of some pipes in the network. The algorithms start 

with initial link flows and a least cost design of a pipe network is obtained based on 

these flows. Each link is then assigned a length, which is defined as a function of 

marginal reliability and marginal cost with respect to the flow increment. The 

reliability of the network is improved by increasing the link flows, hence the pipe 

sizes, along the longest path from the source to a demand node in such a way that 

higher reliability is achieved with only minimal cost increment.

Fujiwara and Tung (1991) have listed several weaknesses of the Fujiwara and De 

Silva (1990) approach. These weaknesses are:

1. The model used for the assessment of network reliability does not consider 

hydraulic consistency along loops or the head requirements at demand nodes.

2. The increase of flow along the selected longest path does not represent an 

improvement in the reliability.

3. The proposed method does not necessarily produce a symmetric design when the 

network is symmetric.

Fujiwara and Tung (1991), therefore, proposed an improved method for optimizing 

the reliability of a water network by increasing the diameter of the pipes in the 

network. Their algorithms begin by obtaining an arbitrary initial design that satisfies 

the constitutive equations, i.e. continuity equations, conservation of energy, etc. 

They used continuous pipe diameter and each link consists of a single pipe diameter. 

The reliability of the network is then increased by increasing the diameter of a pipe 

by a fixed quantity called a step size in such a way that the ratio of the total increase 

in reliability to the total increase in cost with respect to pipe size change is 

maximized. If the reliability of the new design is still below the previously obtained 

upper bound, the process is repeated until this value is exceeded. Once it is 

exceeded, the pipe size is decreased by half the size. This process of increasing and
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decreasing a pipe diameter to achieve the best local improvement is called the greedy 

algorithm (see e.g. Cormen et al., 2001) and may be repeated until a satisfactory 

level of network reliability is achieved, i.e. roughly equal to the upper bound. For 

the next iteration, a new pipe diameter that maximizes the increase in reliability 

relative to the increase in cost is obtained. A new upper bound of the reliability 

value is then calculated for that particular iteration and the greedy algorithm is 

repeated. The above process is repeated until the pre-specified value of network 

reliability is reached.

The reliability measure adopted by Fujiwara and Tung (1991) is similar to that of 

Fujiwara and De Silva (1990) and is defined as the ratio of the expected 

maximum total water supplied to the total demand. Similar to Fujiwara and De 

Silva (1990), the maximum total outflow in critical operating conditions, i.e. 

single and multiple pipe failures, must first be obtained. However, unlike 

Fujiwara and De Silva (1990), Fujiwara and Tung (1991) used a nonlinear 

maximum flow model to obtain the maximum total water supplied under critical 

conditions, therefore, the hydraulic consistency as well as the pressure 

requirements are accounted for. Also, in obtaining the maximum total outflow, 

pipe flow capacity was used. The value was specified for each pipe based on 

practical considerations and was defined as the flow that occurs when a hydraulic 

gradient is of maximum allowable value (Wagner et al., 1988a). However, from 

their sensitivity study it was found that the calculated maximum total outflow, 

hence the reliability value, was shown to be quite sensitive to the value of the 

pipe flow capacities specified. The method also required high computational 

times even for a moderate sized network (4-loop network with 12 links in their 

study) since all possible link failure conditions were considered for reliability 

assessment each time pipe diameter(s) was changed.

5.3 HYDRAULIC REDUNDANCY

Redundancy is another measure used to assess the robustness of water distribution 

networks. Redundancy means having extra components or having large components 

in order to sustain the flow of water in the event of failure. This concept of failure
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tolerance is exploited by Tanyimboh and Templeman (1998) who suggested that it 

can be used to quantify the redundancy of water distribution networks. Tanyimboh 

et al. (2001) recognised that under normal condition, the distribution networks are 

expected to perform satisfactorily. Therefore, the network performance under 

deficient conditions is probably more important to analyse.

The redundancy measure proposed by Tanyimboh and Templeman (1998) is used in 

this thesis and it can be written as

PT R -D SR (0)p (0 )  (514)
i - p (o)

in which FT is the failure tolerance of water distribution networks as a measure of 

redundancy; R is the system reliability; DSR(0) is the demand satisfaction ratio when 

all the pipes are available; and p(0) is the probability that all the pipes in the network 

are available. Assessment by Kalungi and Tanyimboh (2003) has shown water 

distribution networks that have similar performance under normal conditions may 

behave differently when they are subjected to critical conditions. They therefore 

suggested that the above function may be used for quantifying the redundancy or the 

failure tolerance of the distribution networks.

Equation (5.15) defines failure tolerance as the expectation of the proportion of the 

demand in the network that is satisfied during periods in which some components are 

out of service (Tanyimboh and Templeman, 1998). Its calculation is very straight 

forward once the value of R, DSR(0) and p(0) have been obtained in the process of 

determining the reliability value. As such, it does not add unnecessary burden in the 

assessment of the performance of water distribution systems. However, the ease of 

obtaining its value depends largely on the ease of computation of the reliability.

5.4 SURROGATE PERFORMANCE MEASURE

Several surrogate performance measures for water distribution networks are also 

available. Entropy is one such measure. Its use as a surrogate measure for the
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reliability has been outlined in Chapter 3. Another surrogate measure used in this 

thesis is the total energy dissipated by the pipe network. Following Rowell and 

Barnes (1982) who suggested that the efficiency of a pipe can be measured from the 

rate at which it dissipates energy, Tanyimboh and Templeman (1993b) have used this 

approach to assess and compare alternative designs for water distribution networks. 

For a given set of flows, the total energy dissipated by a pipe network, E, can be 

calculated using the following function

E = p g 'Z q IJhu
ije lJ

(5.15)

in which p is the density of water; g is the acceleration due to gravity; qtj and hu 

are the flow rate and head loss in link ij, respectively; IJ  represents the set of 

links in the full or reduced network as appropriate. For the same rate of outflows, 

the more energy dissipated by the network indicates higher stress levels 

experienced by the network. Hence, the use of the above expression as a 

surrogate measure of performance of water distribution networks seems 

justifiable.

5.5 LEAST COST DESIGN OF PIPE NETWORKS

In this section, the optimum design of water distribution networks with pre

specified layout is described. Also, external flows, i.e. supplies and demands, are 

assumed known together with the length of each pipe. The problem is presented 

for a single demand pattern and then extended for multiple demand patterns. The 

problem with multiple demand patterns is important especially in designing 

networks with storage tanks or service reservoirs since the demand patterns when 

the tank is filling up will obviously be different to the one when the tank is 

discharging. The formulation of the problem consists of minimizing the capital 

cost of the pipes, which means determining the cheapest set of pipe diameters 

subject to the constitutive equations presented earlier in Chapter 4 and to other 

constraints due to practical considerations, which will be described later in this 

section.
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5.5.1 OBJECTIVE FUNCTIONS

The cost per unit length of a pipeline is usually given by the following function. 

F(Dll) = rD-l (5.16)

in which D,j is the diameter of pipe ij; y and e are user specified coefficients whose 

values depend on the units of Dy. For problems considering continuous pipe 

diameters, the value of e typically lies between 1.0 and 2.5 (Fujiwara and Khang, 

1990). In practice, however, the available pipe diameters are discrete and 

standardised and, therefore, the value of the cost per unit length of the diameters are 

empirically known and specified.

The total cost of pipes for problem with continuous diameter is therefore

c ^ r ' Z W  (517)
ije U

in which Ly is the length of pipe ij. Whereas, for discrete-pipe-diameter problem the 

total cost of the pipes is given by

c  = Y . r A  <5-18>
ijeU

where the script d is the discrete pipe diameter index; yd and are the cost per unit 

length of pipe and the length of pipe ij whose diameter size d.

For a design problem involving other components, e.g. pumps and valves, the 

objective function must also include the capital costs of the components. These 

components are usually modelled as links in the network and their corresponding 

head gains or losses must be included in the constraint set. In addition, energy cost 

required to drive water through the network also needs to be considered when 

designing a network with pump(s). Awumah and Goulter (1992), for example, have 

used the following function to calculate the energy cost for water distribution 

networks.
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Ce= ^  H ^ / A + Z ^ O  {H J ~ Z j ) (5.19)
i je U  7=1

s in the above equation is the price per unit cost of energy; q,j and hy are the flow and 

head loss in link ij, respectively; IJ  and D are, respectively, the sets of all the links 

and nodes in the network; qjo is the demand at node j; Hj and Zj are the total head at 

and elevation of demand node j.

Kalungi and Tanyimboh (2002) have looked into the optimization of design and 

upgrading of water distribution networks. The objective of their optimization model is 

to minimise the present value of the total future costs subject to some projected 

constraints. The cost function in the optimization problem comprises the pipeline life- 

cycle costs (i.e. including the cost for installing, paralleling, maintaining and 

replacing the pipes), the cost for setting up the plants and machinery at the start of 

each construction phase and the cost that varies in association with the network 

capacity, e.g. treatment, transmission, etc.

The primary concern of the present research, however, is on designing new gravity 

networks and, therefore, only the capital cost of pipes is considered. The interested 

readers could refer to the original publications mentioned above for details of other 

cost functions.

The constitutive equation constraints have been presented in detail in the previous 

chapter and therefore will not be reproduced here. The constraints due to practical 

requirements, which include flow velocity constraints, nodal pressure constraints, 

pipe diameter constraints and non-negativity of flow constraints, are presented next.

5.5.2 CONSTRAINTS

FLOW VELOCITY CONSTRAINTS

(5.20)
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in which Vij is the velocity of flow in pipe ij; and vmm and vmax are the lower and upper 

bounds on the velocity respectively. Rearranging Equation (5.18) becomes

V Qh 7TVm in  <  l l J <  m a x

4 4
\/ij e IJ (5.21)

NODAL PRESSURE CONSTRAINTS

H  <H =H  -  V  h <H \/n (5.22)I I mii\,n ~ l l n 1 1 s n i j  “  J J m ax,n ’  v  n  v  J

in which timing and Hmax n are the lower and upper bounds on the nodal head Hn, 

respectively; IJn consists of all links along a specified path from a selected source to 

node n.

Rearranging Equation (4.44) becomes

H  - H  < Y  h <H - H  , V« (5.23)s m a x ,«  /  . y  s m in ,n ’  v  '
ijeU „

PIPE DIAMETER CONSTRAINTS

D - < D, < D , Mij g IJ (5.24)
m in  ij m a x  5 J  v y

where Dmin and Dmax are, respectively, the lower and upper bounds on the pipe 

diameters. The above constraints are for continuous pipe diameters. If discrete pipe 

diameters are used then the pipe must be selected from the set of the available 

discrete pipe sizes. Hence, the pipe diameter constraint becomes

DiJ g Dd (5.25)

in which Do is the set of the available pipe diameters.

5-19



NON-NEGATIVITY OF FLOWS

qv > 0 , Vzy e IJ (5.26)

This equation is required on designing water networks using entropy as explained later. 

Having defined all the necessary equations, the problem formulation of minimizing the 

cost of pipe networks are now brought together as Problem 3. However, objective 

functions that include costs other than pipes can be used if considered appropriate.

Problem 3

Minimize C = y  V  L̂ DJ,
VA, ,jeU

(5.17)

(for continuous pipe diameters)

Or

Minimize C = ^  ydL̂
\/DijeDD ¡je]j

(5.18)

(for standardised discrete pipe diameters)

Subject to:

(a  V 852
hu = aL —  , Vzy e IJ y y 1̂4.8/ 7 J

v S ' y 'j
(4.4)

X <Ijn- X 9nk=Q„ > n = l,...,N N -l
jeNU„ keND„

(4.1)

X ^ = 0 »  1 = 1 - , NLP
ijeU,

(4.7)

£ \ = a„ ,  p = i.-JW’
ijeIJp

(4.9)

nVmm < q\  < , Vzy e IJ 
4 ^  4

(5.21)

(5.23)
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(5.24)Dmin < Du < £> , V/7 e IJ
(if continuous pipe diameters are used)

D ^ D d (5.25)
(if discrete pipe diameters are used)

Problem 3 is for a single demand pattern only. In reality, however, water distribution 

networks are subject to many different demand patterns. To obtain more rigorous 

designs, more than one demand pattern may be considered in the design optimization 

problem. For each of the demand patterns there will be a set of constitutive equation, 

velocity and nodal pressure constraints. The pipe diameter constraints are included only 

once since they are not a function of the flows. For each demand pattern, an additional 

subscript r is introduced in this thesis to identify the corresponding variables. The 

problem formulation of Problem 3 for multiple demand patterns is stated below as 

Problem 4.

Problem 4

Minimize C =
V£),y i je l j

(5.17)

(for continuous pipe diameters)

Or

Minimize C = ^  ydIIlIJ
V D ije D o  i j e l j

(5.18)

(for standardised discrete pipe diameters)

Subject to:

( V 852
K  =aLj r  n4.87 ’ Vzye/J,Vr

v W y U'i
(5.27)

2  <ljnr- 2  n = l ,. ..,N N -l,V r
je N U nr keND,,,.

(5.28)

^ ^ = 0 ,  / = \,...,NLP, Vr
ye/./,

(5.29)

Z  V = V .  P  = l,~ N P ,V r
•j£U pr

(5.30)
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7tv q„r 71V
m m  < 'Ijr < m a x  y y  £  j j  y r

4 Dfj 4
(5.31)

H . -  < X  V  s  H , -  , Vk, Vr (5.32)

Dmin < DIJ < DmaK , V ije U (5.24)

(if continuous pipe diameters are used) 
Dy ^  Dd (5.25)
(if discrete pipe diameters are used)

q,jr and hyr in the above problem are, respectively, the pipe flow rate and the head 

loss in link ij associated with the rth demand pattern, \/ij e IJ,r=  1 ,...,NR, where NR 

is the number of demand patterns; hpr, p  -  \,...,NP, Vr, is the head loss in path p  for 

the rth demand pattern; qnr is the external inflow at supply node and outflow at 

demand node n for the rth pattern. Finally, the sets NU„r and NDnr consist of the 

nodes upstream and downstream of node n, respectively, for the appropriate flow 

regime.

5.5.3 LEAST COST DESIGN OF PIPES USING ENTROPY 

CONSTRAINT

To obtain a more reliable design of water distribution network, entropy can be 

incorporated directly into the optimization problem. The maximum value of the entropy 

must first be calculated. The algorithm described in Chapter 3 can be used to obtain the 

maximum entropy value provided that the external inflows and outflows in the network, 

layout of the network as well as the flow directions are known. Once the value is found, 

it can then be incorporated into the optimization procedure as described next.

To illustrate the entropy-based optimum design problem, Problem 3 is restated below 

as Problem 5 with the entropy constraint added. The problem then becomes an 

entropy-constrained cost minimization (Tanyimboh, 1993).

Problem 5

Minimize C = y  ̂  (5-17)
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Subject to:

( V'852
h  =  a L  q,J *  ,  V i j  e  I J

J u D 4'87 J
v S v  >j

(4.4)

Z Q jn  ~ Z < ln k = < In  » n  = \ , . . . , N N ~ \
je N U „ keND„

(4.1)

Z ^ = 0 ,  1 =  1, . . . , N L P

ije lJ ,

(4.7)

P ^ - N P
ije U p

(4.9)

n V 'mn <  9 y  <  7 r v ” m  , V i j  e  I J  
4 D ] j  4

(5.21)

ijeU,,

(5.23)

D  < D  < D  , V /7 e  I Jm in  —  ij —  m a x  * v t /  w (5.24)

S  >  s .m in
(5.33)

q u ^  o ,  \ / i j  g  i j (5.26)

in which S' is the entropy and Smm is the minimum desired entropy value. Equation (5.33) 

will ensure that the entropy of the network does not fall below the specified value of S'min, 

which can take any value between zero and the maximum entropy value for the network 

under consideration. Equation (5.26) is necessary to ensure that the flow directions in 

the resulting design do not change since entropy cannot be defined when the flows have 

negative values. This is a major limitation of the current entropy-based design approach 

since the optimum set of flow directions is not generally known in advance. A possible 

solution to this problem is presented in Chapter 8 of this thesis. All other symbols have 

previously been defined and those definitions are unchanged. The above problem 

formulation is consistent with the current studies on entropy-based design of water 

distribution networks in which continuous pipe diameters are used. The problem is non

linear and may have many local minima. It is therefore difficult to obtain the global 

optimum to the above problem and even more so when discrete pipe diameters are used.

Problem 5 (and Problem 3) may be reduced in size using the following procedures 

(Tanyimboh, 1993). When continuous pipe diameters are used, it is logical to assume
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that the lower bound of the pipe diameter constraint is more significant than the upper 

bound since the optimization procedure tends to reduce the size of the diameters in the 

network. Also, the minimum nodal pressure constraint is more important than the 

maximum since the reduction in the pipe sizes tend to eliminate the residual head at 

demand nodes. Furthermore, the minimum nodal pressure constraint is more likely to be 

critical at the terminal node(s), i.e. the node(s) furthest from the source with no other 

nodes downstream of it. The optimization procedure also makes the maximum velocity 

constraint more likely to be binding than the minimum constraint. Due to these 

considerations, some of the constraints can therefore be eliminated from the optimization 

process to reduce the size of the calculations. Hence, the maximum diameter constraints 

and minimum velocity constraints can be excluded. Also, the minimum nodal pressure 

constraint can be applied only at the terminal node(s).

At the end of the optimization, however, verification must be carried out to 

ensure that the constraints that have been excluded are not violated. Any omitted 

constraints that have been violated must be reinstated into the optimization 

procedure and the problem is re-solved. This process is repeated as many times 

as necessary.

5.6 SOLUTION METHODS

Several solution methods to the above problems are described next. The most widely 

used method is probably the Non-linear Programming, which uses continuous pipe 

diameters in the calculations. In practice, however, the pipe diameters are discrete 

and standardised. Another method is the Linear Programming Gradient method. 

The resulting designs of this method have discrete pipe diameters, which are selected 

from the set of standardised diameters available. However, several links in the 

resulting design may consist of more than one segment with different pipe sizes, 

which in practice is undesirable due to construction consideration.

Both of the above methods are deterministic in nature. As such, a single solution is 

obtained at the end of the process. Alternatively, stochastic search methods are now 

used in the optimization of water distribution networks. They are capable of
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producing optimum and near optimum results from a single run. These methods, 

amongst others, are the Genetic Algorithms and Ant Colony Optimization 

Algorithms. Another advantage of using the stochastic methods in water network 

optimization is that they work well with discrete variables and therefore the pipe 

diameters for the networks can be selected directly from the set of discrete standard 

pipe sizes available in practice. Although, this makes the design problem more 

difficult to solve, several studies have demonstrated that these methods can produce 

optimum design fairly quickly and effectively

The Ant Colony Optimization Algorithms (ACOA) is a relatively new search 

method formulated by Dorigo et al. (1996). Its application in water distribution 

systems was introduced by Maier et al. (2003). The method is based on the 

behaviour exhibited by ant colonies in their search for food and using pheromone 

trails to generate better solutions at each succeeding iteration. Genetic 

Algorithms (GA) search methods, on the other hand, are based on the natural 

selection of the survival of the fittest in which the process of generating trial 

solutions is governed by crossover probabilities and mutation. Its use in the 

optimization of pipe networks has been studied quite comprehensively in the past 

few decades e.g. Goldberg and Kuo, 1987; Simpson et al., 1994; Halhal et al., 

1997; Savic and Walters, 1997; Vairavamoorthy and Ali, 2000). This method has 

also been recognised as the most capable optimization procedure for design and 

rehabilitation of water distribution networks (Walski et al., 2003). More details 

of these stochastic methods are presented next following the brief descriptions of 

the deterministic search methods mentioned above.

5.6.1 NON-LINEAR PROGRAMMING METHODS

Problems 3, 4 and 5 are formulated as non-linear constrained optimization. Yates et 

al. (1984) have shown that the requirement for discrete pipe diameters makes the 

problem extremely difficult to solve. Simplification can be achieved, however, by 

using continuous, as opposed to discrete pipe diameters, in the optimization and 

solving the problem by any suitable algorithm for constrained non-linear 

programming, e.g. sequential quadratic programming method.
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The pipe diameters obtained from the continuous problem are often not available 

in practice. This problem can be solved by replacing the pipe in the real network 

by two commercially available pipes in series so that the total head loss in the 

replacement pipes is the same as that in the pipe (with continuous diameter) being 

replaced. This is to ensure that the head requirements at the critical node(s) 

remain satisfied. Also, in order for the actual network to remain close to optimal, 

the replacement pipes are selected from Do, such that, they are the closest 

diameter above and below the computed (continuous) value. Furthermore, the 

total length of the replacement pipes must equal the length of the. pipe being 

replaced.

To determine the length of the replacement pipes, the following simultaneous 

equations can be set up and solved (Tanyimboh, 1993).

£«=£».+•£» <5-34>

in which Lij\ and LtJ2 are the lengths of the first and second replacement pipes, 

respectively, for link ij.

hu = hu i + hij2 =a
■11.852

i/1
£>4,87yi

+ ^'j 2
D4-87u n C„

(5.35)

in which the superscript * is used to indicate the optimum value of the variable; 

hjj\ and Dy\ are the head loss and diameter for the first replacement pipe for link 

ij and similarly for hy2 and Dy2, which correspond to the second replacement 

pipe for link ij. The diameters DiJm, m=  1, 2, are selected and therefore known. 

Also, the values of all the variables in Equation (5.35) are known except Lyi and 

Ly2 . The above equations are linear in the unknown lengths and can be solve to 

give

L _ hi j - k2Lij
kx - k 2

(5.36)
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(5.37)

in which the coefficients k\ and ki are

(5.38)

(5.39)

In Equations (5.35) to (5.39), the roughness coefficient is assumed constant, i.e. Cy\ 

= Cjfi = Cj. However, different values may be used if necessary without any 

difficulty.

The above split-pipe solution to the continuous pipe diameter problem is nevertheless 

not favoured by practicing engineers since some of the pipe segments may be too 

short for their construction to be justified. As an alternative, the continuous pipe 

diameters may be rounded up or down to the nearest discrete pipe sizes available in 

practice. This exercise, however, may lead to some constraint violations or make the 

end result a sub optimal design.

The Linear Programming Gradient (LPG) method was developed by Alperovits and 

Shamir (1977). The method is iterative and is divided into two sub problems. The 

first solves a linear programming problem to find the sizes of the network 

components which correspond to the minimum cost of the network based on some 

specified initial flow rates. The second sub problem uses the dual variables obtained 

from the solution of the linear programming to adjust the flow rates in the network in 

such a way that the cost of the network is reduced. Another linear programming 

problem is then solved based on the new set of flow rates producing another set of 

dual variables which is then used to further modify the flow rates. This cycle

5.6.2 LINEAR PROGRAMMING GRADIENT METHOD
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continues until the reduction in cost becomes insignificantly small and therefore 

negligible.

It has been shown earlier that the problem of designing water distribution networks, 

i.e. Problem 3 or 4, is non linear. For a given flow rate, the head loss equation, 

Equation (4.4), is non linear in the diameters only. It follows that for a set of 

specified flow rates, Problem 3 (or 4) is non linear in the diameters only. However, 

the problem can be linearised by selecting the lengths as the decision variables 

instead. Since the length of each link is fixed, the pipe in a link has to be divided 

into segments with different diameters, which must be selected from a set of discrete 

pipe sizes. The total length of the pipe segments in a link must equal the length of 

the link, i.e.

in which Lijm is the length of segment m in link ij; Ny is the number of segments 

specified for link ij. Alperovits and Shamir (1977) have stated that at the optimum 

solution, each link will contain two segments at most. The list of candidate 

diameters for each link may be different and it is obtained by setting the allowable 

minimum and maximum value of the hydraulic gradient. For a set of flow rates, 

these limiting gradients will yield a maximum and a minimum diameter admissible 

for each link, which can be chosen from the standardised discrete pipe diameters 

available in practice. It should be noted that the specified minimum and maximum 

values of the hydraulic gradient introduces an implicit constraint into the 

optimization problem since the gradient reduces the candidate diameters for each link 

and hence reduces the number of variables in the optimization.

The objective function in LPG is given by

V i j t U (5.40)

LUm*°> ViJm (5.41)

ijm ijm (5.42)
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where Dym is the diameter of segment m of link ij. Hence, C is linear in the 

segmental lengths, given the segmental diameters.

For the continuity equation to hold, the flow rate in each segment of link ij must 

equal the pipe flow rate qtJ of that link. Finally, the head loss in link ij is the sum of 

the head loss in each segment of that link, i.e.

( 5 -4 3 )/M=l

in which hijm is the head loss in segment m of link ij. The head loss in a segment is 

given by the head loss equation below.

tyjm ^  Ljm
f  V'852
Sl

c « j
,4.87z rijm

\fijm (5.44)

The velocity constraints of Equations (5.20) are not affected by the process of 

link segmentation described above. Hence, all the segments in a link will have 

the same minimum and maximum velocity constraints. These equations can be 

used to determine the lower and upper bound of the segmental pipe diameters in 

each link.

Once the variable transformation has been completed as explained above, the 

problem is then linear in the Lijm and is stated below as Problem 6 for a single 

flow regime. The LP formulation for multiple loadings is not done in this thesis. 

The derivation follows from Problem 6 in the same way that Problem 4 is derived 

from Problem 3. The continuity equations, Equations (4.1), are omitted from 

Problem 6 since they are used for specifying the initial pipe flow rates for the 

linear program.

Problem 6

Minimize C = 7 £  £ Lu A
VLijm ijel.1 m =1

(4.63)
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Subject to:
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(5.45)

(5.46)

(5.47)

(5.48)

(4.61)

(4.62)

The decision variables for the above problem, i.e. the segmental lengths, are 

continuous and the problem can be solved by any suitable linear programming 

algorithms. The solution to the problem will yield the minimum cost of the network 

for the given flow rates, C*, the length of all the segmental pipes, t ijm, and the dual

variables that correspond to each loop, path and maximum and minimum head 

constraints. These dual variables are used in the gradient phase of the LPG method 

to find the gradient of the cost, C, with respect to the change in the link flow rates, Aqi. 

Knowing the gradient, it is then possible to alter the flow rates in each link in such a 

way that the solution of the next linear program will have a lower network cost, i.e.

c '( q  + hq)< c '(q }  (5.49)

where g_ is the vector of the link flow rates. The details of the gradient phase are not 

given in this thesis. The interested readers can refer to Alperovits and Shamir 

(1977). Tanyimboh (1993) also has described this method in minute detail.

Qundry, Brill and Liebman (1981) presented an alternative but similar approach to 

the LPG method described above. The main difference between their method and
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that of Alperovits and Shamir (1977) is in the way the linearization is brought about. 

Quindry, Brill and Liebman (1981) method is base on the H-equations and they used 

continuous variables for the diameters with the assumption that each link consist 

only of a single pipe of uniform diameter. Details of the method, however, is not 

presented here, interested readers may refer to the original publication for further 

information or Templeman (1982) for a comprehensive discussion of the method.

The LPG method is complex. It involves the solution to two optimization problems 

since finding the value of the change in the link flows in the gradient phase also 

requires an optimization process. Although Kessler and Shamir (1989) have shown 

that the above LPG technique will converge to an optimum solution, the segmental 

pipes in the resulting design or the alternative continuous pipe solution may cause 

problems in the construction phase as mentioned earlier.

5.6.3 ANT COLONY OPTIMIZATION ALGORITHMS

The optimization problem formulation using ACOA starts by representing the 

problem in terms of a graph G = (A, B, C), in which A = (a/, <22,..., am) is the set of 

points at which decisions have to be made, B -  (bm(i), bm(2),..., bm(„)) is the set of 

options j  available at each decision point i and C = (cm(/), cm(2),..., cm(n)) is the set of 

costs, each associated with each option in B (Maier et al., 2003). For a water 

distribution network, each decision point in A is associated with each link in the 

network. Assuming that the network consists only of pipes, the set of the available 

pipe diameters corresponds to the set of options in B. C represents the set of the 

capital costs associated with each link m for which the chosen pipe diameter is n, i.e. 

cm(n) is a function of link diameter and its length.

Once the problem has been formulated, a number of ants are set out on the journey to 

construct trial solutions and find the one with the minimum cost. The number of ants 

specified for the problem, NA, corresponds to the number of trial solutions to be 

generated. These trial solutions are constructed one at a time in a cycle as follows. 

As an artificial ant arrives at a decision point, i.e. at a link in a water distribution 

network, a diameter for the link is chosen from B based on the concentration of
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pheromone for that option left by the previous ants. At the start of the search, this 

pheromone concentration is set to a very small positive value (Dorigo et al., 1996). 

Once all the decision points have been covered, the cost of the trial solution is 

calculated as in Equation (5.17). The generation of a trial solution with its associated 

cost corresponds to a cycle, k, and the above process is repeated until k = NA. A 

completion of NA cycles is referred to as one iteration, t. At the end this iteration the 

pheromone trails are updated so that the artificial ants can choose better options for 

the trial solutions in the next iteration. The above procedures are repeated until a 

certain stopping criteria are met, e.g. the completion of a specified number of 

iterations.

The process of choosing the option m at a decision point n based on the pheromone 

intensities associated with that option rm(„) is now explained followed by the 

procedure for updating the pheromone trails. At each decision point, the option for the 

trial solution is chosen stochastically using the following formula (Dorigo et al., 

1996).

In the above equation pm{n)(k,t) is the probability that option bm(„) is chosen at cycle k 

and iteration t; rm(„)(/) is the concentration of pheromone for option bm(n) at iteration 

t; T]m(n) is a guiding factor for the search towards options with smaller “local” costs 

and also referred to as “visibility” (Dorigo et al., 1996). Its value is calculated from 

rim(n) = 1/ cm(n)\ ap and /? are parameters that control the importance of the pheromone 

and the visibility.

At the end of each iteration, the pheromone trails can be updated as follows (Dorigo 

et al., 1996)

(5.50)

*»(»)(' + 1) = V » (» )(0  + Ar»(B) (5.51)
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in which Tm{n){t+1) is the concentration of pheromone for option bm(n) at iteration t+1; ppe, 

whose value is less than one, represents the pheromone persistence to evaporation; Arm(„) 

is the change in pheromone associated with option bm(n) at iteration t.

The value of the change in pheromone can be calculated by (Dorigo et al., 1996)

AM

Ar , = > ATk, ,m(nj m\n)
k=1

(5.52)

or by (Stutzle and Hoos, 2000)

Ar , , = Ar , ,m(n)  m (n )
(5.53)

in which Ar*^ is the change in pheromone concentration for option bm(n) at cycle k

and iteration t; and k* represents the cycle number with best result during iteration t, 

i.e. corresponds to the ant with the best solution. The function of Stutzle and Hoos 

(2000) has an advantage that it reduces the number of evaluations needed at each 

iteration, hence reducing the computer time.

Dorigo et al. (1996) proposed the following function to calculate the value of Ar*^

PR
Ck
0

if option bm(„) is chosen at cycle k 

otherwise
(5.54)

in which PR is the pheromone reward factor and Ck is the cost of the trial solution at 

cycle k. The above functions ensure that the trial solutions with lower costs are 

awarded with larger concentration of pheromone so that the probabilities of them to 

be chosen in future cycles are greater.

Equation (5.54) is a general formulation for an unconstrained optimization problem. 

In the optimization of water distribution networks, however, many constraints, 

including loop, path and nodal pressure constraints, have to be satisfied in the final
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outcome. Most of these constraints are a function of the pressure head. Therefore, 

Maier et al. (2003) proposed the following modifications to Equation (5.54) to 

include the head constraint violations in the pheromone updating process.

A t  , -, =  •m (n )

PR p
~̂ ~k ■* pher ^

0

if option bm(n) is chosen at cycle k 

otherwise
(5.55)

in which Ppher is the pheromone penalty factor and AHmax is the maximum shortage in 

pressure in the distribution network obtained from the hydraulic analysis of the network. 

Each trial solution corresponds to a trial network. Hence, the hydraulic analysis has to 

be carried out as many times as the number of the trial solutions. This is the main cause 

of the high computer time in any stochastic search methods such as the ACOA.

To accommodate for the violation of the head constraints in the calculation of the 

network costs, a penalty cost is introduced in the cost function whenever violation 

occurs. Thus, Equation (5.17) is modified as follows

C = Y .r A * P C x A H „ „  (5.56)
meKi

in which Ldm is the length of link m whose diameter is deDp', yd is the cost per unit

length of pipe with diameter d\ M  is the set of all the links in the network; PC is the 

penalty cost multiplier (unit cost/m head violated). When there is no violation of the 

constraints, the value of AHmax is set to zero.

The optimization of water distribution networks using ACOA can therefore be 

formulated as Problem 7 below.

Problem 7

Minimize C = ^  ydLdm+PC x AHmax (5.56)
V Dye D0 meM
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Subject to:

K  = aLm
r „ \

\ C,„ j

1 .8 5 2

d ■,4 .87
, Vm e M

x Qn -  x q* =9 ,, i =i. n n -1
j eNU,  keNDj

X > m= 0 ,  1 = 1,...,NLP
meM,

Y . K  = K .  p =1~ n p
t<=Mp

H, -  i  £  K  S H, -  HmmJ , Vi e W

mzM

meM:

Dm e D0

(4.4)

(4.1)

(4.7)

(4.9)

(5.23)

(5.25)

In the above problem, the flow velocity constraints have been excluded. However, 

they can be incorporated in the optimization quite easily and a new set of pheromone 

and cost penalty multipliers are needed to account for their violations.

The above problem has been solved successfully by Maier et al. (2003). However, 

some research is still needed to improve the application of the method in water 

distribution systems. For example, there seem to be no clear guidance as to what 

value should be used for the parameters ap, (5 and ppe in Equation (5.50). Dorigo et 

al. (1996) have tested several values for these parameters and they found that the 

optimum value for ppe is 0.5 while several combinations for the values of ap and /? 

can be used to obtain good performance of the ACOA. Maier et al. (2003), on the 

other hand, used two completely different sets of values for the above parameters 

obtained by generating trial solutions to the two problems they studied. The 

interested readers can refer to the original publications for the values of the parameters 

used and their combinations.

Other issues are the determination of the number of ants, the pheromone reward value 

and the problem specific pheromone and cost penalty factors. Large number of ant 

population means a large search space for the optimization. However, it also contributes 

to a large computing time as mentioned earlier. Maier et al. (2003) used the value of 100 

for the number of ants in their studies. They also have shown that the values of PR, Ppher 

and PC seem to be proportional to the scale of the problem. However, trial solutions
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were also required in determining their values. Finally, better stopping criteria are 

needed to increase efficiency. This would constitute the identification of an optimum 

solution which would lead to the termination of the search process even before the 

specified maximum number of iteration is reached. Despite the above weaknesses, the 

use of ACOA in water distribution networks seems promising.

5.6.4 GENETIC ALGORITHMS

The theory behind GA was first proposed by Holland (1975) and developed further 

by Goldberg (1989). Several researchers have successfully applied the search 

algorithms to water distribution network optimization problems (e.g. Simpson et al., 

1994; Halhal et al., 1997; Savic and Walters, 1997; Vairavamoorthy and Ali, 2000). 

To implement GA, the set of decision variables must first be represented by a set of 

chromosomes where each decision variable corresponds to a single chromosome. 

Binary alphabets, i.e. 1 and 0, are usually used to represent a decision variable in a 

chromosome. Therefore, a chromosome may consist of a string of binary bits in 

which a single bit is referred to as a gene. A trial solution in GA consists of a string 

of chromosomes and a set of trial solutions is referred to as a population, which is 

equivalent to the number of ants in the ACOA. Also, the full conception of all the 

individual trials with their corresponding costs represents one generation (i.e. one 

iteration in ACOA).

The search process in GA is similar to that in the ACOA in the sense that both 

methods generate a population of trial solutions. However, the modification of the 

trial solutions in GA is carried out by modifying the binary bits inside the 

chromosome strings. Therefore, the decision variables are not used directly in the 

search process once they have been coded. There are three main operators in GA for 

generating and modifying each trial solution; these are selection, cross-over and 

mutation. These operators use a pseudo-random number generator to operate. It 

needs to be pointed out that GA uses a random number generator extensively in its 

operation (see e.g. Gentle, 2003, for methods for generating pseudo-random 

numbers). The search process is therefore stochastic and random but, to a great 

extent, directed towards good solution.
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The process involved in the optimization of water distribution networks using GA is 

described next. Assume that a pipe network is to be optimized and there are 8 

candidate diameters available. Each candidate diameter can be represented by a 3-bit 

binary chromosome and since 23 = 8, each candidate of the 3-bit binary string 

corresponds to a single decision variable, i.e. a candidate pipe diameter. A slight 

problem may occur when there are 6 candidate diameters for example. These 

diameters cannot be represented by 2-bit binary string (since 22 = 4) and there will be 

2 redundant binary strings when 3-bit binary representation is used. This problem 

may be overcome by using a fixed remapping (Savic and Walters, 1997) in which a 

particular redundant binary string is associated with a specific value of the available 

diameter. Alternatively, real coding can be used in which the decision variables are 

represented by real number 0,1,2 and so on.

Once all the decision variables have been coded, e.g. using 3-bit binary strings, the 

initial population can be generated. The size of the population to be generated is 

specified by the designer. The random number generator generates each individual 

gene in the chromosome string, i.e. 1 or 0. Assuming that there are 4 links in the 

network, 12 genes have to be generated for one trial solution requiring 12 runs of the 

random number generator. The minimum total number of runs is therefore 12 times 

the number of population. The cost for each individual trial solution can then be 

obtained. To account for the constraint violations, a cost penalty factor is introduced 

as explained in the ACOA method. The total cost of each individual trial solution 

therefore signifies the fitness of the corresponding solution and can be calculated 

using Equation (5.56). The complete set of initial trial solutions with their 

corresponding fitness represents the first generation in GA.

To generate trial solutions for the second generation, a selection process is carried 

out on the population from the first generation. A number of selection procedures 

are available (see e.g. Mitchell, 1999). All of these procedures utilise the fitness of 

each individual trial so that individuals with higher fitness are more likely to be 

selected as parents. This is to ensure that the new individuals in the next generation 

as a result of reproduction from these parents will have a higher fitness level on 

average. In a tournament selection, for example, two individuals are chosen at
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random from the population. A random number between 0 and 1 is then obtained. If 

this number is less than a pre-specified parameter, the individual with higher fitness 

is selected for reproduction; otherwise the less fit individual is selected. The two are 

then returned to the population and can be selected again (Mitchell, 1999).

For every two selected individuals, a cross-over can be carried out to produce two 

offspring as follows. A random number is generated between 0 and 1. If this 

number is less than a pre-specified parameter, a cross-over is carried out; otherwise it 

is not. For every cross-over process, a position in the chromosome string is chosen at 

random. The parts of the strings of the two parents after the cross-over position are 

exchanged to produce two new individuals. For example, if there are two individuals 

with strings of chromosome 110111 and 101001 and the cross-over point is at 

position 3, the result of the cross-over would be two individuals with chromosome 

strings 110001 and 101111. This process is repeated until a certain number of 

offspring has been produced.

Following the cross-over procedure, mutation can be done on the new individuals 

with very low probability of occurrence. If the probability of mutation is set too 

large, the search will then become a random process and convergence to the optimal 

solution will never take place. For every mutation, a random number between 0 and 

1 is first generated. If this number is less than the specified parameter, a mutation is 

carried out by selecting a single gene in the chromosome string at random and 

flipping its value form 0 to 1 or vice versa; otherwise no mutation occurs. This 

process is also repeated for every new trial solution in the current generation. The 

above selection, cross-over and mutation procedures are repeated until a specified 

number of maximum generation has been reached. Alternative convergence criteria 

may also be used, for example, by comparing the best solution at the current 

generation to the best solutions in the last several generations.

To determine the value of the parameters used in GA, i.e. the probability of selection, 

cross-over and mutation, as well as the number of population and the penalty factors, 

generation of trial solutions is required. Several researchers have proposed different 

combinations of the parameter values but none seems generally applicable (Mitchell, 

1999). The value of the penalty factors are also case specific. Nevertheless, all the
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GA studies on water distribution networks have shown that optimum solutions are 

always found despite the above slight shortcomings. Finally, the problem formulation 

for the optimization of water distribution networks using GA has the same form as that 

in Problem 7.

5.7 SUMMARY AND CONCLUSIONS

In this chapter, several performance measures of water distribution networks have been 

presented. The chapter has also discussed several methods for optimizing the 

performance of water networks and highlighted the difficulties related to this issue. 

These difficulties are partly due to the fact that the problem of quantifying the 

performance of water distribution networks is extremely complex. The problem of 

obtaining the optimum design of water distribution networks using entropy constraint 

has also been formulated in this chapter. The entropy-based design problem presented in 

Section 5.5 does not seem to increase the complexity of the optimization problem 

significantly. Therefore, provided that the relationship between entropy and reliability 

holds true in general, designing a network using entropy constraint may reduce the 

difficulty in obtaining inexpensive yet reliable designs. Finally, several methods for 

solving the design optimization problem were presented and their strengths and 

weaknesses are highlighted.
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CHAPTER 6 SENSITIVITY ANALYSIS OF THE 

RELATIONSHIP BETWEEN ENTROPY AND 

RELIABILITY

6.1 INTRODUCTION

Early studies have shown that, in general, as the entropy of a water distribution 

network increases, the network becomes more and more reliable. This 

relationship between entropy and reliability has been shown to be quite strong 

(Tanyimboh, 1993; Tanyimboh and Templeman, 1993a, b, c; Tanyimboh and 

Templeman, 2000; Tanyimboh et al., 2002; Tanyimboh and Sheahan, 2002). 

Considering the ease of computation of entropy and its ability to lend itself 

directly into the optimization problem, the use of entropy as a surrogate 

measure of reliability is highly advantageous. However, the determination of 

the reliability of a network using its entropy value is not a straight forward 

process since each entropy value does not correspond exclusively to only one 

value of reliability. In water distribution networks, entropy is a function of 

flows in the network. There are many factors affecting the design of water 

distribution networks, which in turn affects the flow of water in the network. 

These factors will therefore influence the value of the entropy as well as the 

reliability of the network and the relationship between the two may also be 

affected.

As described earlier in Chapter 2, entropy is a measure of uncertainty. For 

water distribution networks, it measures the uncertainty of the distribution of 

flows in the network. Hence, it applies more to looped water networks since 

there is no uncertainty regarding the distribution of flows in tree-type branch 

networks. It follows therefore that all analyses in this thesis are carried out on 

networks with the links connected to form closed loops. However, looped 

networks with several branching pipes can still be analysed by omitting the
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branching pipes and adding the demands along these pipes to the nearest 

upstream demand node located within a loop.

In this chapter, the suitability of entropy as a surrogate measure for the 

performance of water distribution system is examined further. Factors that may 

affect the correlation between entropy and the performance of the distribution 

systems, i.e. the reliability, are investigated critically in a sensitivity study. These 

factors are: choice of layouts, the sets of flow directions chosen for the designs, 

different cost functions used in the design process and the slight modelling errors 

produced by the rounding of values, especially in the diameters when continuous 

diameters are used in the design. Although attempts have been made to 

investigate the sensitivity in the entropy-reliability relationship (e.g. Tanyimboh 

and Sheahan, 2000; Tanyimboh et al., 2002), no study has ever been carried out 

to examine the sensitivity of the relationship comprehensively. For this reason, a 

more thorough investigation is deemed necessary. In addition, all the previous 

studies were based on the DDA method. In this study and for most of this thesis 

the HDA analysis method is used and the results are compared to the previous 

DDA results.

The investigations were carried out on a hypothetical network shown in Figure 

6.1, which was taken from Tanyimboh and Sheahan (2002). The source in the 

network has a piezometric head of 100 m while all demand nodes have elevations 

of 0 m. The desired nodal service head for fully satisfactory performance, I f1**, is 

30 m and the nodal head corresponding to zero nodal outflow is 0 m, this being 

the elevation of the nodes. All pipes are 1000 m long with a Hazen-Williams 

coefficient of 130 (Equation 4.4). To simplify the optimization, continuous pipe 

diameters are used in the design with the lower and upper bounds taken as 100 

mm and 600 mm, respectively. The design optimisation was carried out using a 

Fortran program called PEDOWDS (Program for Entropy-constrained Design 

Optimization of Water Distribution Systems; Tanyimboh, 1993), with the cost as 

the objective function to be minimized. The program is based on the NAG library 

routine E04UCF (NAG Ltd., 1995), which is a routine for constrained non-linear 

programming. It uses sequential quadratic programming and requires gradients of 

the objective and constraint functions. For every design, the design optimization
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program PEDOWDS was run several times with different starting points, i.e. 

different initial diameters. This was to ensure that the same optimum design with 

the lowest cost was achieved several times from different starting points to 

increase the chances of finding a global minimum. A hydraulic analysis of the 

network was then carried out using EPANET to validate the result of the 

optimisation by verifying that no constraints were violated. A simple function in 

Microsoft Excel known as coefficient of determination (R2) with linear regression 

is used to examine the entropy-reliability correlation in the various investigations.

6.2 POSSIBLE INFLUENCE OF LAYOUTS

The choice of layout in the design of a water distribution network will have an 

effect the performance of the network. Networks with different layouts can have 

the same value of entropy. The performance of these networks, however, may not 

necessarily be the same when they are subjected to abnormal conditions like fire 

fighting and link failure. It is therefore interesting to learn the possible effect of 

different layouts on the correlation between entropy and hydraulic reliability of the 

network.

Tanyimboh and Sheahan (2002) have tried to investigate this very issue. They 

generated 65 different layouts, which correspond to 65 different maximum 

entropy designs, based on the network in Figure 6.1 (see Figure A3.1). The flow 

directions for each layout were selected based on the shortest path from the 

source to the demand nodes. The optimum designs were generated using values 

of y of 800 and e of 1.5 in Equation (5.16). A summary of the outcomes from the 

analysis by Tanyimboh and Sheahan (2002), which was based on the DDA 

method, is given in Appendix 3. In this thesis, the HD A analysis method is 

performed on the same designs and comparison is made to the results from the 

previous DDA-based study. The parabolic function of Wagner et al. (1988b) 

given in Chapter 4 as Equation (4.36) was used in the analysis.

Figure 6.2 shows the results of the HDA analysis performed in the present study. 

The graph shows that the correlation between the entropy and reliability is very
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strong with its R2 value of 0.89. This is very encouraging since a high 

performance can be expected from a network that has a high maximum entropy 

value irrespective of its layout configuration. It can also be deduced that the 

influence of layout on the relationship between entropy and reliability is 

negligible. Comparing the HD A results with their DDA counterparts in Figure 

A3.2, it seems that the use of the HDA method in the analysis can produce a 

better result, i.e. stronger relationship between entropy and reliability, which 

leads to a more definite interpretation of the outcomes.

6.3 POSSIBLE INFLUENCE OF FLOW DIRECTIONS

The value of the entropy of a network is very much influenced by the flow 

directions in the network. Designs with the same layout but different flow 

directions may have different entropy values. On the other hand, considering the 

complex way in which the flow direction changes following the change in the 

network conditions, e.g. change in demands or in emergency situations, the set of 

flow directions chosen in the design process dictates the performance of the 

resulting design. In this section, analysis is carried out to investigate whether the 

change in the performance of the network due to the different sets of flow 

directions chosen for the design is followed by the change in the value of the 

network entropy with the same tendency.

The network in Figure 6.1 is again used in this study. Three different layouts 

were chosen for the designs, each corresponding to different number of loops in 

the network, i.e. 2-, 3- and 6-loop configurations. The 2- and 6-loop layouts 

were selected to represent the groups of designs with the least and the most 

possible combinations of flow directions, respectively, while the 3-loop layout 

represents the middle range the two extremes. Figures 6.3(a) and 6.3(b) 

respectively show the 2- and 3-loop layouts used in this study, while the 6-loop 

layout is based on the full set of links shown in Figure 6.1. The details of the 

network and the process of obtaining and analysing the designs have been 

described in the previous sections. It needs to be pointed out that the chosen 

flow directions for the three layouts are all hydraulically feasible in the sense that
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for a given network configuration the flow directions in the network may follow 

one of these arrangements. However, some of the directions are not sensible. 

Water always travels in the path with the least resistance. In the present study, 

when the length of each pipe and their roughness coefficient are the same, the 

path with the least resistance is the shortest path from the source to each demand 

node. However, some of the chosen flow directions are forcing the flows in the 

network to travel in longer paths. In this study, both DDA and HDA methods 

are used in the analysis. However, for consistency and to improve readability, 

the results of the DDA method are shown in Appendix A4 and this section 

concentrates on the HDA results only. The results from each layout are given 

separately first before they are combined together for a more general 

interpretation.

For the 2-layout, 31 different sets of flow directions were generated (Figure 

A4.1). Because of the way in which the flow directions were specified, two out 

of the 31 designs were excluded from the subsequent analyses on the grounds that 

their terminal nodes are too close to the source, i.e. one at node 2 and the other at 

node 4 (see Figure A4.1 numbers 30 and 31). Due to the minimum diameter 

requirement, the pressure head constraints at the terminal node for these two 

designs are not binding; hence the resulting designs are sub-optimal. The 

diameters for all the remaining 29 optimum designs are shown in Table A4.1.

24 maximum-entropy designs were generated based on the 3-loop layout and 

their flow directions are shown in Figure A4.2. Two of the designs, however, 

were excluded since their terminal nodes are very close to the source and 

therefore, as explained above, the resulting designs are sub-optimal (Figure 

A4.2 numbers 22 and 23). One other design is excluded since after several runs 

of the program PEDOWDS, the optimality criteria for the routine E04UCF 

(NAG Ltd., 1995) are not met even after slight relaxation of the entropy 

constraint (Figure A4.2 number 24). The entropy constraint was relaxed by 

0.0015 at the most. This is to ensure that the entropy value of the resulting 

design is as close as possible to the maximum since comparing maximum- 

entropy designs against designs with lower entropy may give a misleading result 

considering the increase in the entropy value is followed by an increase in the
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performance of the network. The diameters of the 21 designs analysed in this 

study are given in Table A4.2.

35 different sets of flow directions were generated based on the six-loop layout in 

Figure 6.1. Only 25 maximum entropy designs, however, were analysed in detail 

and the results are presented in Figure 6.6. The rest of the designs were excluded 

from further analysis since the optimality criteria of the routine E04UCF for the 

resulting designs were not met even after relaxing the entropy constraint as 

explain above. The flow directions for all the 6-loop designs are shown in Figure 

A4.3 and the diameters of the 25 analysed designs are given in Table A4.3.

Figures 6.4, 6.5 and 6.6 show the relationships between entropy, cost and the HDA- 

reliability for the 2-, 3- and 6-loop designs, respectively. When analysed separately, 

some of the results seemed somewhat inconclusive. One possible explanation for 

the weak relationship between entropy and reliability is due to the specified flow 

directions that lead to larger pipe diameters in some part of the network in order to 

satisfy the head requirement at the terminal node(s) under normal condition, which 

make the designs more expensive than necessary. Under pipe failure situation, 

however, the flow directions change in accordance with the nature of the flow, i.e. 

following the path with the least resistance. In this situation, the available large 

diameters help improve the network performance by preventing large increase in 

head loss in the network.

On the other hand, the network entropy does not seem to follow the network 

reliability value since, under normal condition, the specified flow directions lead to a 

non-uniformity of flows in the network. Optimum value of entropy leads to uniform 

pipe flows and hence pipe diameters as will be seen later in this chapter. The 

specified flow directions, therefore, prevent the optimum value of the network 

entropy to be obtained hence affecting its relationship with the network reliability. 

On top of that the narrow ranges in the entropy and reliability values seemed to 

illuminate the scatter in the plots and weaken the relationship between them. There 

is, however, still a hint that an increase in the entropy is followed by an increase in 

the reliability value. This would suggest that the different sets of flow directions 

chosen for the designs do not affect the entropy-reliability relationship in a
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considerable way. Also, considering that many of the sets of flow directions would 

not naturally occur in practice, the investigation shows that the entropy-reliability 

relationship still holds under unlikely conditions. This idea is reinforced by the 

strong relationships between entropy and reliability of the combined plots of all the 

designs shown in Figure 6.7. Also, it is quite conclusive from the analyses in this 

section that the results of the HDA analysis give a stronger correlation between 

entropy and reliability compared to the DDA results shown in Figure A4.7.

6.4 POSSIBLE INFLUENCE OF COST FUNCTIONS

The analysis in this section was also carried out using the network in Figure 6.1 

whose details have been given in the previous section. Continuous values of the 

diameter were used in the design and the analysis was done by varying the values 

of the coefficients /and  e in the cost function of Equation (5.16). Nine groups of 

designs, each corresponding to different values of /  and e, were generated and in 

each group the entropy values of the designs range from the smallest to the 

maximum. The first group consists of 24 designs and were produced using values 

of /  and e of 400 and 1.0, respectively. The second group has 22 designs and 

were generated with / =  800 and e -  1.5 while the third group with 21 designs 

used /  value of 1600 and e value of 2.0. There are 20 designs in the fourth group 

corresponding to /=  3200 and e = 2.5. The fifth group consist of 19 designs with 

/ =  3840 and e = 2.6. 10 designs form the sixth group with / =  4480 and e = 2.7 

while 8 designs form the seventh group with /an d  e values equal to 5120 and 2.8, 

respectively. The next group has 6 designs with /  = 5760 and e = 2.9 and the 

final group consists of 14 designs with / =  6400 and e = 3.0. The user specified 

coefficient /  can be considered as a scaling factor. It does not have any real 

effect on the relationship between entropy and reliability as will be seen later. It 

may be noticed that between the fourth and the final group, the value of e was 

increased in smaller increment to show the reduction in the range of the entropy 

value. Also, there is a larger increment within the sixth group between the 

second and third designs due to the inability of the design optimization program 

to find the optimum solutions with the specified entropy values.
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The minimum entropy designs were obtained by using the design program 

PEDOWDS but without the entropy constraint. The program optimized the cost 

of the design, which guides the search towards a tree-type network. However, 

due to the requirement of the minimum pipe diameter, no links may be eliminated 

from the design and some of the links are therefore merely loop completing links 

which have minimum pipe diameter size. The entropy of the resulting design is 

therefore at its minimum. The maximum value of the entropy, on the other hand, 

was calculated using the algorithm described in Chapter 3. Once the minimum 

and maximum entropy values for the network had been obtained for each group, a 

range of designs with varying entropy values from the minimum to the maximum 

were produced. The difference in the number of designs in each group is 

influenced by the minimum entropy value as will be seen later in this section.

The results of the analysis are presented next. Both DDA and HDA methods were 

used in the analysis but only the HDA results are presented in this chapter. The 

results of the DDA analysis can be found in Appendix A5. The head-outflow 

relationship of Wagner et al (1988b) of Equation (4.36) was used in the HDA 

analysis. The complete results of the analysis are shown in Figure 6.8. In general, 

the strength of the relationship between entropy and reliability is much stronger than 

the analyses in preceding sections. All of the designs in the previous analyses are 

maximum entropy designs while, in this section, the entropy of the designs ranges 

from the minimum to the maximum with more or less equal intervals. The fact that 

the increase of entropy is followed by an increase in the reliability of the network 

clearly suggests that entropy is a good surrogate measure of reliability.

The plots of entropy against the HDA-reliability from the 9 groups of designs in 

Figure 6.8 almost overlap on top of each other, which suggest that the influence 

of the cost function on the entropy-reliability relationship is negligible. 

Meanwhile, the cost plots show a flatter slope as the value of the exponent e 

increases. This detail can be seen more clearly in Figure 6.9 in which the value 

of y is set to be equal to 1 for all the designs, which indicate that higher e value 

results in lower increase in the network cost as the entropy and reliability of the 

network increase. The fact that the trend of the relationship between cost and 

reliability does not change when the same or different values of y are used
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indicates that the coefficient does not seem to have any effect on the relationship 

at all. Therefore, it follows that the correlation between entropy and reliability is 

not affected by the value of y.

Figure 6.10 shows that the average size of the pipe diameters increases as the 

entropy value of the network becomes higher. This may contribute to the strength 

of the relationship between entropy and reliability since larger pipe diameters are in 

general more reliable. The average value of the pipe diameters also seems to 

increase with the rise of the e value. Meanwhile, higher entropy value also 

corresponds to designs with more uniform pipe diameters as shown in Figure 6.11. 

This assessment is considered appropriate in the present study because all the pipes 

in the network have equal length. Figure 6.11 also shows that the pipe diameters 

become more uniform as the e value increases. One possible explanation for this 

phenomenon is that the high value of the exponent e prohibits the search towards 

tree-type solutions since, for example, having four smaller pipes in a loop may be 

cheaper than having three larger pipes with a minimum diameter loop-completing 

pipe. As a result, the optimization process tries to reduce the size of the large 

diameter pipes and increase the size of the smaller ones producing more uniform 

pipe sizes in the resulting designs. This explains the increase in the minimum 

values of entropy and reliability as the value of e increases since more uniform pipe 

diameters means more uniform flow distributions, which corresponds to higher 

entropy and reliability values as depicted in Figure 6.11 and 6.12, respectively. 

Also, the increase in the minimum entropy value leads to a narrow range of the 

entropy values since the maximum entropy of the network remains constant. 

Therefore, when the range of the entropy values in each group was divided into 

equal intervals, the number of designs that can be generated is reduced as the range 

of the entropy values decreases.

6.5 POSSIBLE INFLUENCE OF MODELLING ERRORS

In this section the possible influence of modelling errors on the relationship 

between entropy and reliability is assessed. These modelling errors, which were 

brought about by several factors, produced redundancy or insufficient capacity in
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the resulting designs in the form of small surpluses or deficits in head at the 

critical nodes. The errors are seemingly small and at first glance would appear to 

be insignificant. However, any impact they may have on the relationship between 

the entropy and reliability has never been studied. The importance of this issue 

lies in the fact that reliability values for alternative designs of water distribution 

systems are generally high which means that the differences in the values tend to 

be very small. This very small range of variation in reliability leaves open the 

possibility that seemingly small design and modelling errors may have a 

significant or disproportionate impact on the calculated relationship between the 

entropy and reliability.

The analysis was carried out on 74 designs based on the network in Figure 6.1. 43 

designs analysed in this section were generated in the present study and have been 

used previously in the analysis of the possible influence of the cost function on the 

entropy-reliability relationship. 19 designs were taken from Tanyimboh and 

Templeman (2000) while the rest of the designs were taken from Tanyimboh and 

Sheahan (2002). All of the designs use continuous pipe diameters whose rounded- 

off values produced “small” surpluses or deficits in head at the critical nodes with 

the largest being -0.4m. The programs used in the design optimisation process 

(PEDOWDS) and the subsequent hydraulic simulations (PRAAWDS) also have 

slight differences in some of their coefficients. These differences contributed to the 

discrepancies in the resulting designs. It may be worth noting that the difference in 

the HDA-reliability values between the most and the least reliable designs in this 

section is only 0.000180. The head-outflow relationship of Tanyimboh and 

Templeman (2004) given in Equation (4.38) was used for the HDA analysis in this 

section. Its use was intended to show that the strong correlation between entropy 

and reliability seen in the previous sections was not attributable to the head-outflow 

relationship used.

Figures 6.13 and 6.14 show the total outflows delivered by the full network and the 

distribution of the demand satisfaction ratio, respectively. From these two graphs it 

seems that, under normal operating conditions, the total outflow delivered by most of 

the designs is approximately equal to the total demand required. This would appear 

to suggest that the accuracy of the results is acceptable and that the small surpluses or
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deficits in heads and outflows are insignificant. The plots of reliability and entropy 

against surplus head for all the designs in this section are shown in Figures 6.15 and 

6.16, respectively. The plots suggest that there is no correlation between reliability 

or entropy and surplus head and thus it may be deduced that any influence of the 

small surpluses or deficits in heads at the critical nodes upon the entropy-reliability 

relationship is insignificant. The same conclusions can be drawn from the DDA- 

based analysis, which can be seen in Appendix A6.

6.6 PERFORMANCE OF DESIGNS WITH EQUAL 

MAXIMUM ENTROPY VALUES

It has been mentioned at the beginning of this chapter that one of the issues 

concerning the use of entropy as a surrogate measure for the reliability is that one 

entropy value does not correspond to a single value of reliability. For entropy to be a 

good surrogate measure for reliability of water distribution networks, different 

designs with equal maximum entropy value should have equal or at least similar 

level of performance compared to other designs with different maximum entropy 

values so that valid comparisons can be justified. Tanyimboh and Sheahan (2002) 

have carried out some preliminary investigation on this issue. They carried out the 

study on the 65 designs with different layouts based on the network in Figure 6.1. 

The DDA network analysis method was used to perform the hydraulic simulations in 

their study. The result of their investigation is very promising in the sense that the 

variations in the reliability between designs with equal maximum entropy values are 

very low in comparison to designs with different entropy.

In this study, the same approach to that used by Tanyimboh and Sheahan (2002) 

was employed. However, in addition to the 65 designs used in the layout analysis 

study (Tanyimboh and Sheahan, 2002), 72 designs that were previously used in 

the flow directions study (Section 6.3) were used in this section making a total of 

137 designs analysed. The DDA and HDA methods were used in this 

investigation. However, only the results from the HDA analysis are presented in 

this chapter. The DDA results can be found in Appendix A7. The designs with 

equal maximum entropy values are grouped together and there are 29 equal
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maximum entropy groups (EMEGs) in total as depicted in Figure 6.17. The 

figure also shows the values of coefficient of variation of the reliability (CVR) 

within the EMEGs together with four possible comparators. These comparators 

are (Tanyimboh and Sheahan, 2002):

1. The potential range of CVR of all the 137 designs, which is the CVR of the 

most and least reliable designs. The reliability values of these designs form 

the upper and lower bounds of the reliability for all the 137 designs and the 

two reliability values indicate the extent to which the reliability values in this 

particular study could differ.

2. The CVR of all the 137 designs.

3. The CVR of all the designs outside the EMEGs. There are 60 designs in total.

4. The CVR of all the designs within EMEGs. There are 77 designs in this category. 

The weighted average of the CVR of all the EMEGs is also presented in Figure 

6.17 to show that the variations in the reliability values of the designs in the 

EMEGs are on average very low compared to other designs.

The set of results in Figure 6.17 seems to confirm the finding of Tanyimboh and 

Sheahan (2002) in which the level of performance of designs with equal maximum 

entropy values are similar. This can be seen in the CVR values of the 29 EMEGs 

which, in general, are much lower than the CVR of the potential range of the 

reliabilities and the CVR of the full set of 137 designs. Also, the value of the 

weighted average of the CVR from all the EMEGs is very much lower than the four 

possible comparators, which substantiate the above conclusion.

6.7 SUMMARY AND CONCLUSIONS

Sensitivity analysis on the relationship between entropy and hydraulic reliability 

of water distribution networks has been carried out in this chapter. The study 

critically assessed several aspects of water distribution networks that may have 

effects on the entropy-reliability relationship. These aspects are: the chosen 

layouts and flow directions in the design of the distribution networks, cost 

functions used in designing the network and minor errors produced in the design 

and modelling process. The other issue investigated is the similarity in
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performance of designs with equal maximum entropy values. The study 

employed the HDA network analysis methods, which been suggested to be 

superior to the DDA method, particularly for analysing networks under 

subnormal operating conditions. As a result, the outcome of the analysis should 

be more realistic. However, the method is relatively new and requires more 

research and development. Hence, the use of the HDA method in this study is for 

comparison purposes and to show that the entropy-reliability relationship still 

holds true when different methods are used in the analysis.

The general conclusions drawn from this chapter are as follows. The results of 

the assessment reveal that the correlation between entropy and reliability is strong 

and higher value of entropy corresponds to better network performance. The 

increase in the network costs with increasing entropy values seems quite modest 

relative to the increase in the reliability values. The influence of the above- 

mentioned aspects of water distribution networks on the entropy-reliability 

correlation is insignificant. The increase in the entropy value of a network leads 

to a larger average pipe diameters. Higher network entropy also corresponds to 

more uniform pipe diameters, which contributes towards the increase in the 

reliability level of the network. Also, the level of similarity in the performance of 

designs with equal maximum entropy values is very high. Finally, the use of the 

HDA network analysis method leads to a stronger correlation between entropy 

and reliability in general.

Further deductions may be drawn from the investigations in this chapter 

regarding the reason why entropy is a good surrogate measure for the reliability 

of water distribution networks and how the entropy value of a network under 

normal condition is related to the performance of the network under 

abnormal/deficient conditions. It has been shown that by designing a network 

with maximum/high entropy value, the distribution of flows hence the pipe 

diameters in the network are as uniform as possible subject to constraints. This 

condition enables the network to have high degree of flexibility to cope with 

failure conditions compare to other designs. As a result, the extra head loss due 

to pipe failure may be kept to a minimum since the flow may be rerouted to other 

path with no great difficulty. The strong relationship between entropy and
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reliability in the investigation of the impact of layout demonstrates the ability of 

entropy to represent the range of flexibility of networks with different failure 

conditions since each layout is in fact a failure mode of the fully connected 

network. Also, the similarity in the performance of designs with equal maximum 

entropy values justifies the use of entropy as a surrogate performance measure.
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CHAPTER 7 HYDRAULIC PREDICTABILITY AND 

LAYOUT OPTIMIZATION OF WATER DISTRIBUTION 

NETWORKS

7.1 INTRODUCTION

It is recognised that the layout of a water distribution network has a significant 

influence on the level of performance of the network (Morgan and Goulter, 1985; 

Loganathan et ah, 1990; Awumah and Goulter, 1992; Afshar et ah, 2005). However, 

layout optimization of water distribution networks is highly complex, especially for 

large highly-looped networks. This is because there are more than one closely 

interrelated objectives involved in the process, i.e. selecting the optimum layout, which 

may involve a large number of potential candidate layouts for looped networks, and 

selecting the sizes of the components which correspond to an economical design without 

compromising the level of network performance. On top of that, there is the difficulty 

of quantifying the performance of water distribution networks. As such, most design 

optimization algorithms do not consider layout and performance optimization 

simultaneously. Although the above mentioned researchers have proposed several 

procedures to overcome this very problem, their approaches are somewhat 

unsatisfactory since most of the procedures do not actually quantify the reliability of the 

layout, while others use only connectivity as a measure of the reliability, which has been 

shown to be misleading (Wagner et ah, 1988a).

Another important aspect in the design of water distribution systems is the 

identification of the probable failure points. Several design optimization models 

require the critical nodes and links in the network to be identified prior to the 

formulation of the design problem (Xu and Goulter, 1999; Tolson et ah, 2004). 

This, however, is a very complex issue since the behaviour of water distribution 

networks, especially those with loops, is in general very difficult to predict. The 

flow directions in the network can change constantly due to the continuous spatial
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and temporal variations in the nodal demands. Also in a critical operating 

condition such as pipe failure or fire fighting situation, the flows in the network are 

rerouted in complex ways and therefore it is impossible to determine with complete 

certainty which areas are worst affected without modelling and simulating the 

deficient network. In the design process, the preliminary designs are usually 

checked to see whether they can cope with the many emergency situations that may 

occur during their design life. Depending on the size and complexity of the 

network, however, it is often impractical to consider all the potential critical 

operating conditions during the design phase. Hence, it is highly desirable to 

consider optimum design techniques which can produce designs with less complex 

and more predictable hydraulic behaviour.

Entropy has been shown to be a suitable surrogate measure for the reliability of water 

distribution networks. Also, incorporating entropy in the design optimization 

problem is relatively simple and uncomplicated. In this chapter, the potency of 

entropy-based designs of water distribution networks in the optimum layout selection 

and in predicting the critical components in the network are investigated. 

Preliminary investigations on the two issues have been carried out by Tanyimboh and 

Sheahan (2002) and Tanyimboh (1993) using the DDA method. The results of their 

investigations were very encouraging. The present studies are intended to provide more 

evidence and strengthen the previous contentions on the issues. On top of that, the 

more realistic HDA method is employed in the present studies.

7.2 HYDRAULIC PREDICTABILITY OF ENTROPY 

CONSTRAINED DESIGNS

The hydraulic predictability of a network in this study is assessed in terms of the 

location of the critical links and critical nodes in the network. These critical links 

and nodes are identified by analysing the performance of the network under a range 

of normal and abnormal operating conditions. The following three critical operating 

conditions are considered.

1. The unavailability of individual pipes. As explained in Chapter 5, the isolation of 

a pipe or group of pipes depends on the number and location of valves in the
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network. In this study it is assumed that each pipe can be isolated individually, 

which in practice may not be the case.

2. A large demand of 0.25 m3/s at each node in turn, in place of the normal demand 

at that node, with all other nodal demands at their normal design values. This 

situation would be akin to a fire occurring under a locally ideal (i.e. zero) 

background demand condition.

3. A large demand of 0.25 m3/s at each node in turn, in addition to the normal 

demand at that node, with all other nodal demands at their normal design values. 

This situation represents a fire-fighting demand occurring under a more adverse 

background demand condition. This scenario is also more realistic since the 

nodal demands in real water networks will not be zero whenever there is a fire 

occurring.

In a link failure situation, the critical pipe is identified as the pipe the removal of 

which causes the greatest deterioration in the network performance, while the worst 

affected node as a result of the removal of the critical pipe. In a fire fighting 

scenario, the critical node is the node at which the occurrence of fire-fighting 

demand would generate the most adverse effect on the network. The way in which 

the deterioration in the network performance is measured is explained shortly.

The criteria used to measure the performance of water distribution networks in the 

HDA analysis are slightly different from those in the DDA. In the HDA analysis, the 

network performance is measured by using the outflow and the DSR value of the 

whole network as well as at each demand node individually. The hydraulic reliability 

and hydraulic redundancy for each demand node and for the entire network are also 

calculated using Equations (5.12) and (5.14), respectively. Another measure used to 

assess the performance is the total amount of energy dissipated by the network given in 

Equation (5.15). Although the ‘head loss’, ‘flow delivered’ and ‘energy dissipated’ 

are not unrelated, the properties they measure appear to differ in subtle ways and 

sometimes they lead to different results as will be seen later in this section. To 

improve readability and for consistency with the previous chapter the DDA results are 

presented in Appendix A8.

In the HDA analysis the outflows change following the change in pressure in the 

network. Also, the change in link flows leads to the variation in the energy dissipated
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by the network. Consistency in the comparisons between the HDA-based results is 

achieved using a re-defined measure for the HDA method, i.e. the energy dissipation 

rate per unit flow delivered by the network is used in the HDA analysis as opposed to 

the total dissipated energy alone. For the same rate of water supply, the amount of 

energy dissipated would increase as the head loss or stress on the network increases. 

Therefore, the rate of energy dissipation per unit flow, taken over the entire water 

distribution network, would appear to represent a measure of hydraulic performance.

Experienced engineers, however, often use rules of thumb to identify critical pipes in 

water distribution networks. These criteria may include the following:

1. The location of the pipe relative to the source: Pipes which are far from the 

source are likely to be less critical.

2. The location of the pipe relative to the major demand nodes: Pipes which are not 

in the vicinity of major demand nodes are likely to be less critical.

3. The number of alternative supply pipes incident on the major demand nodes: A 

single pipe supplying a major demand node is likely to be more critical than each 

pipe in a group of pipes supplying another node with a similar demand. This also 

holds true for pipes connected to the sources.

Also, the criteria for critical demand nodes may include:

1. The distance of the node from the source: Nodes which are far from the source 

are likely to be more critical.

2. The number of paths supplying the node: Nodes with multiple supply paths are 

likely to be less critical.

3. The normal demand at the node: Nodes with large demands are likely to be more 

critical.

4. The increase in demand at the node during a fire-fighting situation: Nodes with 

relatively large increases in demand can be more critical.

Due to the complexity of water distribution networks, their behaviour is not always 

in tune with these hydro-spatial expectations. Therefore, water distribution networks 

may be classified as hydraulically predictable if their characteristic behaviour 

follows the above criteria.

Also, thanks to the ability to calculate the actual amount of water delivered at each 

demand node using head-dependent modelling, the hydraulic reliability and
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redundancy of these nodes can now be assessed and compared. Tanyimboh et al. 

(2001) have provided evidence which suggests that, if other factors are equal, the 

hydraulic reliability and redundancy of a demand node decrease as its distance from 

the source increases. The unavailability of a pipe has an adverse effect on downstream 

rather than upstream nodes. Also, in general, the pipes in a water distribution network 

reduce in size progressively from the source towards the more remote parts of the 

network. Another relevant issue is that, under both normal and critical conditions, the 

nodal pressures tend to decrease as the distance from the source increases. Based on 

these considerations, it seems reasonable to expect the nodal hydraulic reliability and 

redundancy to decrease as the distance from the source increases. However, in 

general, the scale and complexity of water networks are such that there is no guarantee 

that this property will hold true in any given situation. Consequently, a distribution 

network in which the nodal reliability and redundancy values decrease with the 

distance from the source may be said to be spatially predictable with respect to the 

hydraulic performance of its nodes. Conversely a distribution network may be said to 

be less spatially predictable with respect to its nodal hydraulic performance, if the 

correlation between the proximity to the source and the nodal reliability and 

redundancy is not high.

Preliminary studies based on the DDA analysis by Tanyimboh (1993) indicate that 

designs carrying maximum entropy flows are more hydraulically predictable than the 

conventional optimum designs. The analysis was carried out on two simple networks 

reproduced here in Figure 7.1. All links in both networks have a length of 1000 m 

and Hazen-Williams coefficient of 130. The designs based on these networks were 

generated using continuous pipe diameters and the value of y  and e for the cost 

function in Equation (5.16) were 900 and 2.4, respectively (Tanyimboh, 1993). The 

minimum and maximum pipe diameters were taken as 0.1 m and 0.6 m, respectively. 

The minimum required residual head at demand nodes was 30 m for both networks 

and the piezometric head corresponding to zero flow was 0 m, which was the 

elevation of the demand nodes. The two-loop network was taken from Alperovits 

and Shamir (1977) with the pipe between the reservoir and the first demand node 

eliminated for simplicity (Tanyimboh, 1993). The supply at node 1 was therefore the 

net flow and the piezometric head at this node was assumed to be 50 m to achieve 

residual head of 30 m at the terminal nodes under normal operating conditions. The
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four-loop network, which was taken from Fujiwara and de Silva (1990), on the other 

hand, has a piezometric source head of 53.5 m. For each network, the design 

optimization program PEDOWDS was used to produce alternative designs. For each 

of the designs, the program was run several times with different starting points to 

ensure the global and not local optimum solution was achieved. The entropy value 

of the designs ranges from the minimum to the maximum. While the designs for the 

2-loop network were generated to achieve a uniform coverage of the entropy range, 

the entropy values for the 4-loop designs were selected to achieve a greater coverage 

of the upper end of the entropy range to provide a comparison of near-maximum- 

entropy designs (Tanyimboh, 1993). To facilitate the comparison between DDA and 

HDA results, the HDA analysis was performed on the same networks and the results 

are presented and discussed next.

7.2.1 TWO-LOOP NETWORK

For the two-loop network, six designs with a range of entropy values were 

generated and their pipe diameters are shown in Table 7.1. The table also shows 

the average, standard deviation and coefficient of variation of the diameters as well 

as the total cost of the pipe networks in million pounds for all the designs 

(Tanyimboh, 1993). Looking at the standard deviations and the coefficient of 

variations in the table, it is quite clear that the higher the entropy value of a 

network, the more uniform the pipe diameters are. This apparent relationship 

strengthens the conclusion drawn earlier in the previous chapter. The average of 

the diameters, however, seems to increase with the increase of the entropy value, 

which causes the rise in the total cost of the pipes. This rise in cost is compensated 

by the increase in the network performance as will be seen and discussed later in 

this section. The nodal demands under normal condition are given in Figure 7.1a 

while the fire-fighting demands in place of and in addition to the normal demands 

are listed in Table 7.2. It is worth stating that the analysis of the two networks 

(Figure 7.1) under fire-fighting load in which the fire demand is added to the 

normal demand was not carried out by Tanyimboh (1993). However, the DDA 

results of this analysis, generated in the present study, are presented in the appendix 

alongside other DDA results of Tanyimboh (1993) for ease of reference.
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In the HDA analysis, the critical link is the link which, when fails, will cause the 

highest reduction in the total network outflow. The determination of the critical node 

in the HDA analysis is somewhat context dependent. In the case of the failure of a 

pipe, the critical node could be considered as the node with the smallest post-failure 

demand satisfaction ratio or the largest post-failure absolute reduction in the flow 

delivered. The use of the nodal demand satisfaction ratio together with the actual 

shortfall might help ensure that due consideration is given to all demand nodes. For 

example, a demand satisfaction ratio of zero is unlikely to be missed, even if the 

normal demand at the node in question is small. Similarly, a large shortfall in the flow 

delivered would not be overlooked, even if the node in question has a high DSR.

The results from the HDA analysis in Table 7.3 are in line with the expectation that 

pipe 1-3 is the critical pipe in the network for all the designs. Pipe 1-3 is connected to 

the source and, under normal operation condition, the pipe lies in the only path 

supplying the node with the largest demand in the network, i.e. node 5. Table 7.3 also 

shows that the flow and energy performance indicators select pipes 3-5 and 1-2, 

respectively, as the next critical link. The reason for the discrepancy is not 

immediately obvious. However, each result seems reasonable since pipe 3-5 is 

connected to Node 5 which has the largest demand in the network while pipe 1-2 is 

connected to the source. Based on the DSR value at each demand node (Table 7.4), 

only two designs with the highest entropy values agree with the expectation in which 

the corresponding critical node due to the critical link failure in the network is node 5. 

However, when the nodes are assessed using their actual shortfall in flow delivered, 

node 5 is shown to be the critical node for all the designs. There is also a disagreement 

in the determination of the next critical node. Based on the nodal DSR, the next 

critical node is node 3 while the assessment using actual shortfall at each demand node 

shows that the next critical node is node 4. Both results are justifiable given that node 

3 is supplied by a single path under normal conditions and node 4 has the second 

largest design demand after the critical node. This reinforces the idea that it may be 

necessary to use both measures for a more thorough assessment.

For the 2-loop network in Figure 7.1a, node 6 should intuitively be the worst location 

for the fire-fighting load to occur. Node 6 is the terminal node and therefore should 

have the lowest residual head in the network. In the case of fire-fighting situation
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with a zero background demand, node 6 experiences high increase in demand since 

its design demand is relatively low. Although nodes 2 and 3 experience larger 

absolute increase in their demands in a similar situation, their distances from the 

source node are shorter, hence they should have much higher residual heads under 

normal circumstances which should help reduce the effect of fire-fighting demands 

occuring at those nodes. When fire load is superimposed to the design demand, the 

critical node can be either node 6 or node 5. Node 5 has the largest design demand in 

the network. Hence, large additional load occurring at the node may stress the 

network considerably. The reason that node 6 may be critical when fire demand 

occurs at the node is as has explained above.

The determination of the critical node in the HDA analysis for networks under fire 

fighting conditions could be either in absolute terms (i.e. the actual shortfall at the 

node) or in terms of the nodal demand satisfaction ratio. Another interpretation of 

the term ‘critical node’ might also be the node at which a very large increase in 

demand results in the smallest system DSR or the largest absolute shortfall in the 

flow delivered by the entire network. In assessing the critical nodes as a result of the 

fire-fighting demand replacing the design demand, the assessment based on the 

system DSR and the total flow delivered yielded different outcomes since the total 

demand changes as a result of fire demand occurring at different nodes. This, 

however, does not occur when fire demand was superimposed on the design demand. 

Tables 7.5 to 7.7 show broad agreement between the assessment criteria and the 

results are more or less as expected with the high entropy designs being more 

predictable in terms of their response than the low entropy designs. For example, for 

the designs with smaller entropy values, node 2 is the critical node in the network. 

However, for the designs with higher entropy values, the critical node is node 6. 

This suggests that the designs with the highest entropy values are more hydraulically 

predictable than the designs with the smallest entropy values.

The results of the analysis in Figure 7.2 indicate that as the entropy of the network 

increases, the average and the minimum network outflows also increase. From the 

assessment of the designs under three different critical conditions, the design with the 

maximum entropy value of 1.915 in Figure 7.2seems to have a better performance than 

the others. Figure 7.3 tells a similar story. Looking at the figure in conjunction with
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Figure 7.2, it seems that high entropy designs are able to deliver more water without a 

high increase in energy compared to designs with smaller entropy. This condition is 

more apparent when the designs are subject to the two fire fighting conditions. From the 

link failure analysis, however, the average and the maximum values of the total 

dissipated energy seem to increase with the increase of the entropy value of the network. 

A possible explanation is that, in link failure situation, since the network seems to be 

able to deliver more water as its entropy value increases, the head losses in the network 

also escalate despite the slight increase in the average size of the diameters. It is well 

known that the relationship between flow and head loss in a pipe is h&kq1, in which k 

is the pipe coefficient. Hence, the increase in pipe head losses as a result of an increase 

in pipe flow rates follows the exponential relationship. Also, by considering the way the 

dissipated energy in a pipe network is calculated, i.e. Equation (5.15), the increase in the 

average and maximum values of the total dissipated energy in Figure 7.3 is therefore 

justifiable. Thus, it can be seen that, even after normalising the energy dissipated by 

dividing by the total flow to obtain the energy dissipated per unit flow, the energy per 

unit flow increases at a faster rate than the flow rate.

Figure 7.4 shows clear improvements in the hydraulic reliability as the entropy 

increases, for each node and the entire network. Figure 7.5 shows that, from the 

smallest to the maximum entropy value, the hydraulic redundancy is maintained at 

more or less the same level, except for node 2 where a large improvement is 

observed. With regard to the spatial hydraulic predictability explained earlier, Figure

7.4 shows that the reliability of node 2 is low compared to node 5 for the design with 

the smallest entropy value. This would appear to be counterintuitive given that node 

2, which has a smaller demand, is closer to the source than node 5 (see Figure 7.1a). 

By contrast, the reliability of node 2 for the designs with higher entropy values is 

higher than the rest of the nodes. This would appear to suggest that, with respect to 

space, the entropy-constrained designs are hydraulically more predictable when 

compared to the traditional minimum-cost design whose entropy value is 1.578.

Figure 7.4 also shows that node 4 has smaller reliability values than node 5 for the 

two designs with the smallest entropy values while node 4 has higher reliability 

values than node 5 for the rest of the designs. Node 4 has two supply paths and a 

demand of 75 1/s while node 5 has only one supply path and a larger demand of 92
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1/s (Figure 7.1a). In general, the head loss associated with a small demand is less 

than a large demand. These two factors, i.e. more supply paths and a smaller 

demand for node 4, suggest that it would not be unreasonable to expect node 4 to 

have a higher reliability than node 5. The four designs with the highest entropy 

values reflect these considerations while the two designs with smaller entropy 

values do not, suggesting that the spatial hydraulic predictability increases as the 

entropy value increases.

Comparing nodes 2 and 3, which are equidistant from the source, node 2 has a 

smaller demand, so its redundancy could be expected to be higher than node 3. 

Figure 7.5 shows that node 2 has a smaller redundancy than node 3 in the two 

designs with the smallest entropy values. By contrast, the redundancy of node 2 is 

higher than node 3 in the four designs with the highest entropy values. Similar 

arguments apply to the corresponding reliability values in Figure 7.4. These results 

would appear to reinforce the idea that high entropy values bring about higher levels 

of spatial hydraulic predictability.

It may be recalled that the hydraulic redundancy parameter used herein is a measure 

of the fraction of the demand satisfied on average during operating conditions with a 

partial system failure (Equation 5.14). Figure 7.5 shows that, for the two designs 

with the smallest entropy values, node 5 is more ‘failure tolerant’ than node 4. This 

seems counterintuitive as node 4 has two supply paths and a smaller demand than 

node 5, which has only one supply path. For the four designs with the highest 

entropy values, node 4 has a higher hydraulic redundancy than node 5 unlike the two 

designs with the smallest entropy values. This would appear to support the idea that 

higher entropy values correspond to higher levels of spatial hydraulic predictability 

under abnormal operating conditions.

7.2.2 FOUR-LOOP NETWORK

The discussion for the four-loop designs is much shorter than that for the two-loop 

designs since the results are broadly similar. The findings are intended to provide 

evidence that the conclusions drawn based on the two-loop network are not network
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specific. The pipe diameters for the four-loop designs are shown in Table 7.8 

together with their statistics and total costs (Tanyimboh, 1993). Similar to the 

designs of the two-loop network, Table 7.8 shows that as the entropy value of the 

network increases the pipe diameters in the network become more uniform in size. 

Also, it is clear from the table that maximum entropy designs distribute the flows in 

the network as equal as possible. For the symmetrical network of Figure 7.1b, the 

distribution of flows and hence the diameters in the network are also symmetrical 

Table 7.8 column 6). Fire-fighting demands for the four-loop designs are shown in 

Tables 7.9 and 7.10 while the normal demands are shown in Figure 7.1b.

For a symmetrical network such as that in Figure 7.1b, it is logical to expect that 

the critical link should be either link 1-2 or 1-4 since they are the closest to the 

source and therefore carry the largest flows. The results of the F1DA analysis in 

Table 7.11 show that designs with higher entropy values comply with this 

assumption. Also, when either of the two pipes fails, node 9 was found to be the 

critical node as would be expected since it is the farthest from the source (Table 

7.12). The selection of nodes 6 and 8 as the critical nodes when fire-fighting 

demand replaces the normal demand in the HDA analysis (Tables 7.13 and 7.14) 

might seem odd at first glance. It seems that the critical node for the maximum- 

entropy design based on the HDA analysis should be at the farthest node from the 

source in terms of its reachability, which is node 9 (the terminal node). But since 

the increase from normal to the fire-fighting demand at that node is less that at 

any other nodes, the critical node is therefore shifted to the next farthest node, 

which is node 6 or 8. Again, when the fire demand is superimposed to the design 

demand the intuitive idea that the critical node is located at node 9 is confirmed 

by the performance criteria (Table 7.15).

The results of the four-loop network in Figures 7.6 and 7.7 confirm the deduction 

drawn from the two-loop network that as the entropy value of the network 

increases the performance of the network under critical conditions also improves. 

Figure 7.8 shows that the reliability of node 3 for the design with the smallest 

entropy value is low relative to its location with respect to the source. For the 

three designs with the highest entropy values, the rank order of the nodal 

reliabilities (largest to smallest) is as follows: nodes 2 and 4; node 5; nodes 3 and
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7; nodes 6 and 8; node 9. This order mirrors the respective distances of the nodes 

from the source exactly, except that node 5 has twice as many supply paths as 

nodes 3 and 7 and so node 5 has a higher reliability than nodes 3 and 7. It may be 

noted that node 9 has twice as many supply paths as nodes 6 and 8. However, in 

addition to its greater distance from the source, the demand at node 9 is three 

times larger. Figure 7.8 also shows that the three designs with the highest 

entropy values are symmetrical while the two designs with the smallest entropy 

values are not. Also, a clear overall improvement in reliability as the network 

entropy value increases can be observed.

Figure 7.9 shows that the three designs with the highest entropy values have nodal 

redundancy values which reflect the symmetry of the network, the respective 

distances from the source, the number of paths supplying each node and the 

magnitudes of the demands. On the other hand, the two designs with the smallest 

entropy values lack symmetry and the relative magnitudes of some of their 

redundancy values are not easy to explain. The figure also shows a small overall 

improvement in the hydraulic redundancy as the entropy increases. The above 

analysis would appear to suggest that designs with high entropy values are 

hydraulically more predictable in a spatial sense.

7.2.3 CONCLUSIONS

It may be noticed that, at first glance, all the graphs in the above investigations do 

not show strong apparent relationships for definite conclusions to be drawn. 

However, closer observation shows that each graph provides small evidence 

which indicates that higher entropy corresponds to a network with better 

performance. On top of that, all the evidence from the various assessments from 

the two networks supports one another with no contradiction. Based on this 

premise, several conclusions can therefore be drawn from the above analyses. 

Firstly, the performance level of maximum entropy designs seems higher in 

comparison to other designs. This high level of performance is closely related to 

the high level of uniformity in the pipe diameters. Secondly, the HDA analysis 

method is superior to the DDA method in the sense that it is able to measure the
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performance of individual nodes in a water distribution network more accurately 

by using the nodal DSR and the actual amount of water delivered. Finally, with 

regard to the hydraulic predictability of water distribution networks, maximum 

entropy designs appear to be more spatially predictable than other designs.

7.3 LAYOUT OPTIMIZATION USING MAXIMUM ENTROPY 

APPROACH

Tanyimboh and Sheahan (2002) have demonstrated the method for finding the 

optimum layout of water distribution networks using the maximum entropy approach. 

Their investigation was based on the DDA method and the analysis was carried out on 

the six-loop network shown earlier in Chapter 6 (Figure 6.1). The approach starts by 

identifying all the layout candidates, which have a close-looped configuration, and 

calculating their maximum entropy values. Also, the flow directions need to be 

specified prior to the calculation of the maximum entropy values. 65 layouts were 

identified and are shown here in Appendix A3. For these layouts, Tanyimboh and 

Sheahan (2002) specified the flow directions intuitively based on the shortest path 

from the source to each demand node to give minimum network costs. Branch layouts 

are excluded on the grounds of flexibility, hence reliability. This process may at first 

seem tedious and time consuming, especially for large networks. However, the 

procedure may be automated on a digital computer without too much difficulty. Once 

all the layout candidates with the corresponding maximum entropy values have been 

obtained, maximum entropy designs and their associated costs based on these layouts 

can be generated. The process of generating the designs has been explained in Chapter 

6. The next step is to identify the designs that belong to the set of cost-entropy Pareto 

optimal designs. To improve readability, the definition of a Pareto optimality 

condition is given below within this section.

A Pareto optimality condition is usually used in the process of finding the trade-off 

curve in a multi-objective optimization problem where the objectives are usually in 

conflict with one another. A Pareto optimal solution is a solution of a vector of multi

objective optimization problem in which each individual outcome in the solution 

vector is optimum in at least one of its objectives and there must be at least one
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optimum solution with its objective better than the other. It is perhaps easier to explain 

this definition by means of a mathematical illustration (Marti, 2005) and with reference 

to a graph (Figure 7.10). Assume that F(x, y) is a vector of multi-objective 

optimization problem to be minimized whose decision variables are contained in the 

set Dx and Dy. The vector optimization problem is therefore

Minimise F[x,y)  =
V xe£>, '

F2(x,y)

V y e D y

(7.1)

The above equation may be translated into a graph such as that in Figure 7.10. Each 

point in the figure represents the solution of one of the optimization problems in the 

above vector. The vector (x, _g)* is a Pareto optimal solution to the problem (represented 

by the star points in Figure 7.10) which should satisfy the following conditions

F,{x,y) <Fi (x,y), i = \,2,...,m  (7.2)

and

Fj (x, y) <Fi (x, y ) for at least one j ,  l < j * i < m  (7.3)

Equation (7.2) ensures that each component in the Pareto Optimal solution is an 

optimum solution while Equation (7.3) provides a condition that at least one of the 

objectives in one of the optimum solutions is better than the objective in the rest of 

the optimums so that the Pareto optimal curve can be plotted. The cost-entropy 

Pareto optimal designs are therefore the maximum entropy designs and their 

corresponding costs, which satisfy the above conditions.

Once all the designs in the cost-entropy Pareto optimal set have been identified, in which 

each design corresponds to a single layout configuration, the reliability values of these 

designs are calculated. This approach has the advantage over other layout optimization 

methods in the sense that the reliability of the candidate layouts are quantified and the 

reliability calculations are carried out only for the layouts included in the cost-entropy
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Pareto optimal set. Tanyimboh and Sheahan (2002) have shown that only a small 

fraction of the candidate layouts would be cost-entropy Pareto optimal. Therefore, the 

reliability calculations would not affect the efficiency of the approach significantly.

Once all the reliability values of the cost-entropy Pareto optimal layouts have been 

calculated, a set of cost-reliability Pareto optimal layouts can be identified from the 

cost-entropy Pareto optimal set. These cost-reliability Pareto optimal layouts represent 

the trade off between the cost and reliability of the network in question and the 

optimum layout can therefore be selected by considering the budget constraint. To 

check the effectiveness of the approach, Tanyimboh and Sheahan (2002) also 

calculated the reliability values for the full set of the 65 layout candidates so that the 

true cost-reliability Pareto optimal layouts can be identified. Their results are presented 

in Appendix 9 (Figure A9.1).

The above approach is applied in the present study to the same network. However, 

the HDA method is used in analysing the proposed designs and in obtaining the 

corresponding reliability values instead of the DDA. The algorithm used for 

selecting the cost-entropy Pareto optimal layouts and the corresponding cost- 

reliability Pareto optimal is summarised below. Once all the designs based on the 

candidate layouts have been generated, the cost-entropy Pareto optimal set is obtain 

as follows. Let n be a counter, CEPO and CRPO the sets of cost-entropy and cost- 

reliability Pareto optimal designs, respectively.

1. Set n to 0.

2. Increase n by 1.

3. Rank the available designs according to their costs in ascending order.

4. Select the cheapest design from the list. If there is more than one design with the 

same smallest cost, choose the one with the highest entropy value. Add the 

design to the set CEPO. Note that designs that have been selected are no longer 

included in the subsequent selections.

5. Rank the designs (excluding the selected designs) according to their entropy values.

6. Select all the designs that have entropy value higher than that of the CEPO(n) 

and discard the rest of the designs from subsequent selections.

7. If there are no designs that have higher entropy than CEPO(n), exit. Otherwise, 

go to step 2.
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After the reliability values for all the designs contained in CEPO have been obtained, 

the above algorithm can also be used in selecting the members of CRPO but with the 

reliability in place of the entropy. The HD A based results generated in the present 

study are presented in Figure 7.10. From the figure, it seems that the use of the HDA 

method in the current approach to layout optimization results in a better outcome 

compared to the previous DDA-based approach (Figure A9.1 -  Tanyimboh and 

Sheahan, 2002). For the cost-entropy Pareto optimal, the set of layouts obtained by 

using the HDA method seems to be more concentrated towards the true cost- 

reliability Pareto front while the DDA set is not. Also, the superiority of HDA can 

be observed by looking at the two sets of cost-reliability Pareto optimal, which were 

obtained from the cost-entropy Pareto optimal layouts, from the two network 

analysis methods. The HDA analysis was able to identify 9 out of 18 true cost- 

reliability Pareto optimal layouts, i.e. 9 out of 10 cost-reliability Pareto optimal 

layouts in the HDA analysis are true Pareto optimal. While the DDA analysis only 

managed to identify 4 out of 13 layouts.

The above maximum entropy approach to layout optimization is easy to implement 

and seems quite robust, especially when the HDA method is used in the analysis. A 

wider application of the approach was then investigated by looking at different flow 

directions. Flow directions in water distribution networks are generally not predictable 

without a simulation of the ‘existing’ network. However, many design methods, 

including the one used in this study, require the flow directions in the network to be 

specified prior to the design formulation. These specified flow directions would affect 

the resulting design in terms of cost, performance and, of course, entropy value. The 

identification of optimum design under a wide range of layouts and flow directions is 

therefore highly desirable. To investigate this issue, all the designs generated in the 

flow directions study in Chapter 6 were used together with the 65 original designs 

mentioned above. It needs to be pointed out that the designs in the flow directions 

study in Chapter 6 were generated based on three different layouts. However, their 

flow directions are not based on the shortest path principle. Therefore, their inclusion 

would assess the robustness of the above layout optimization method. The DDA and 

HDA methods were used in this investigation and, for consistency, the results of the 

DDA analysis are shown in the appendix (Figure A9.2) while the HDA results are 

summarised in Figure 7.11.
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The result of the analysis seems to confirm the above conclusion that the method is 

robust and the HDA method yields a better performance than DDA. Figure 7.11 

shows that there are 20 designs that belong to the true cost-reliability Pareto optimal 

set as identified by the HDA method. The layout optimization approach was able to 

identify 10 out of the 20 designs and 7 of these had identified earlier before the 

inclusion of the designs from the flow directions study. It would therefore suggest 

that the Pareto optimal front provided by the HDA approach is more or less identical 

to the true cost-reliability Pareto front.

7.3.1 CONCLUSIONS

The maximum entropy approach to layout optimization described above seems to perform 

well and efficiently. The method required the reliability of the layouts to be quantified 

explicitly; therefore, the optimum layout can be selected with confidence. The selection of 

designs that belong to the cost-entropy Pareto optimal set prior to the calculation of the 

reliability values acts as a filter in the approach and contributes greatly to the efficiency of 

the method. Also, a better performance in terms of the accuracy of the method was 

observed when the analysis was carried out using HDA in comparison to the DDA.

7.4 SUMMARY AND GENERAL CONCLUSIONS

In this chapter, the entropy-constrained approach to the design optimization of water 

distribution networks has been shown to have the potential to generate designs with 

much higher levels of spatial hydraulic predictability than conventional minimum-cost 

designs. In particular, maximum-entropy designs appear to have the highest levels of 

spatial hydraulic predictability. Two simple networks taken from the literature have 

been used to demonstrate the study. The results of the HDA analysis would appear to 

support the preliminary DDA-based study by Tanyimboh (1993). Issues considered in 

the assessment of the spatial hydraulic predictability included the locations of the 

critical nodes and pipes, based on individual critical operating conditions and the more 

holistic hydraulic redundancy and reliability measures. The results also support the 

conclusion drawn in Chapter 6 that the pipe diameters in a water distribution network 

become more uniform and the overall network hydraulic performance improves as its
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design entropy value increases. Therefore, the analyses in this chapter support the 

recommendation by Tanyimboh (1993) and Tanyimboh and Templeman (1993c) that 

water distribution networks should be designed to carry maximum-entropy flows.

The fact that entropy can be used to influence the hydraulic properties of a water 

network may have profound design and reliability implications. For example, in the 

discussion of Quindry et al. (1981), Templeman (1982b) stressed that the use of 

optimization techniques in the design of water distribution networks tends to remove 

redundancy by optimizing out any capacity that is not required for the particular 

loading being considered. Therefore, to ensure network reliability, resilience and 

flexibility, Templeman (1982b) suggested that the design procedure should consider 

explicitly the ability of the network to serve fire fighting demands at several nodes 

simultaneously. Morgan and Goulter (1985) have pointed out that the occurrence of 

simultaneous fires at all or even some demand nodes is not considered probable. 

However, they mentioned that a wide range of fire fighting demand patterns still need 

to be considered in the design process, i.e. demand patterns related to a fire at each 

node. By designing the network to carry maximum entropy flows, the above problem 

can be simplified considerably. Maximum entropy designs have been shown to have 

high reliability. Also, if the location of the critical link(s) and critical node(s) in the 

network can be pre-determined with high degree of certainty as seen in this chapter, 

assessment can be concentrated on these critical areas, which may reduce the amount 

of calculations required in the design process and network assessment.

In addition, the layout optimization technique for maximum entropy designs 

demonstrates another advantage of designing water distribution networks to carry 

maximum entropy flows. The method compares favourably with other approaches 

(Morgan and Goulter, 1985; Loganathan et al., 1990; Awumah and Goulter, 1992; 

Afshar et al., 2005) in terms of accuracy and efficiency since the reliability of the layouts 

are quantified and the calculations are carried out on the selected layouts (i.e. cost- 

entropy Pareto optimal) only. As has been shown in the previous chapter, different 

designs that have the same entropy values are likely to have similar performance. 

Therefore, the use of entropy as a preliminary filter for the reliability seems justifiable. 

The present study also shows that the maximum entropy approach to layout optimization 

is robust and the use of the HDA method complements the technique quite considerably.
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Table 7.1. Pipe diameters for all the designs of the two-loop network.
Pipe diameters for network with entropy value indicated (m)

Link 1.578 1.600 1.700 1.800 1.900 1.915

0 ) (2) (3) (4) (5) (6) (7)

1 -2 0.157 0.165 0.203 0.224 0.263 0.261

1 -3 0.401 0.401 0.390 0.384 0.365 0.367

2 -4 0.100 0.100 0.165 0.191 0.238 0.235

3 -5 0.338 0.337 0.337 0.329 0.281 0.294

4 -6 0.100 0.100 0.100 0.151 0.250 0.234

3 -4 0.237 0.237 0.213 0.215 0.247 0.234

5 -6 0.263 0.262 0.262 0.249 0.152 0.185

Mean 0.228 0.229 0.239 0.249 0.257 0.259

0.116 0.115 0.100 0.081 0.063 0.058

0.510 0.504 0.418 0.325 0.246 0.224
mean

Cost

(£106)
0.250 0.251 0.254 0.259 0.261 0.263

Taken from Tanyimboh (1993).

Table 7.2. Fire-fighting loads for the two-loop designs.

Node

(1)

Fire Fighting Loads (m3/s)

In place of the normal demands In addition to the normal demands

Case 1 

(2)

Case 2

(3)

Case 3 

(4)

Case 4

(5)

Case 5 

(6)

Case 1 

(7)

Case 2 

(8)

Case 3 

(9)

Case 4 

(10)

Case 5

(ID
1 -0.506 -0.501 -0.459 -0.442 -0.478 -0.506 -0.501 -0.459 -0.442 -0.478

2 0.250 0.028 0.028 0.028 0.028 0.250 0.028 0.028 0.028 0.028

3 0.033 0.250 0.033 0.033 0.033 0.033 0.250 0.033 0.033 0.033

4 0.075 0.075 0.250 0.075 0.075 0.075 0.075 0.250 0.075 0.075

5 0.092 0.092 0.092 0.250 0.092 0.092 0.092 0.092 0.250 0.092

6 0.056 0.056 0.056 0.056 0.250 0.056 0.056 0.056 0.056 0.250

Column 1 to 6 taken from Tanyimboh (1993).
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Table 7.3. Critical links for single-link failures for the two-loop network based on
the HD A analysis.

Assessment criteria

Total flow supplied (system DSR) Total dissipated energy per unit flow

Network Critical Next critical Critical Next critical

entropy link link link link

0 ) (2) (3) (4) (5)

1.578 1-3 3 -5 1 -3 1 -2

1.600 1-3 3 -5 1-3 1 -2

1.700 1-3 3 -5 1-3 1 -2

1.800 1-3 3 -5 1-3 1 -2

1.900 1-3 3 -5 1-3 1 -2

1.915 1-3 3 -5 1-3 1 -2

Table 7.4. Critical nodes for single-link failures for the two-loop network based on

Assessment criteria

Nodal DSR Actual shortfall at individual node
Network Critical Next critical Critical Next critical
entropy node node node node

(1) (2) (3) (4) (5)

1.578 6 5 5 4

1.600 6 5 5 4

1.700 6 5 5 4

1.800 6 5 5 4

1.900 5 3 5 4

1.915 5 3 5 4

Note: All the critical and next critical nodes in the above table are associated with 

critical link 1-3 for all the designs.
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Table 7.5. Critical nodes for nodal fire-fighting demands replacing design demands 
for the two-loop network based on the HDA analysis. Assessment is done at 
individual node. ________

Network

entropy

(1)

Assessment criteria

Nodal DSR Actual shortfall at individual node

Critical

node

(2)

Next critical 

node

(3)

Critical

node

(4)

Next critical 

node

(5)

1.578 2 4 2 4

1.600 2 4 2 4

1.700 6 5 6 5

1.800 6 5 6 5

1.900 6 4 6 4

1.915 6 4 6 4

Table 7.6. Critical nodes for nodal fire-fighting demands replacing design demands 
for the two-loop network based on the HDA analysis. Assessment is done on the 
entire network.

Assessment criteria

Total dissipated energy

System DSR Total flow supplied per unit flow
Network Critical Next critical Critical Next critical Critical Next critical
entropy node node node node node node

(1) (2) (3) (4) (5) (6) (7)

1.578 2 6 2 6 6 4

1.600 2 6 2 6 6 4

1.700 6 2 6 4 6 2

1.800 6 2 6 4 2 6

1.900 6 5 6 5 6 2

1.915 6 4 6 5 6 2
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Table 7.7. Critical nodes for superimposed nodal fire-fighting demands for the two-
loop network based on the HDA analysis.

Assessment criteria

Total flow Total dissipated

Actual shortfall at supplied energy per unit

Nodal DSR individual node (system DSR) flow

Next Next Next Next

Network Critical critical Critical critical Critical critical Critical critical

entropy node node node node node node node node

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1.578 2 4 2 4 2 6 5 6

1.600 2 4 2 4 2 6 5 6

1.700 6 5 6 5 6 4 5 6

1.800 6 5 6 5 6 4 5 4

1.900 6 4 6 4 6 5 5 4

1.915 6 4 6 4 6 5 4 5
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Table 7.8. Pipe diameters for all the designs of the four-loop network.
Pipe diameters for network with entropy value indicated (m)

Link 2.170 2.500 2.750 2.775 2.800

(1) (2) (3) (4) (5) (6)

1 -2 0.201 0.309 0.293 0.294 0.294

2 -3 0.156 0.161 0.175 0.183 0.201

1 -4 0.349 0.273 0.293 0.294 0.294

2 -5 0.100 0.267 0.239 0.234 0.221

3 -6 0.100 0.100 0.124 0.137 0.164

4 -7 0.156 0.155 0.175 0.183 0.201

5 -8 0.286 0.152 0.227 0.222 0.207

6 -9 0.100 0.272 0.216 0.216 0.216

4 -5 0.317 0.222 0.239 0.234 0.221

5 -6 0.151 0.286 0.227 0.222 0.207

<1 00 0.100 0.100 0.124 0.137 0.164

8 -9 0.271 0.100 0.216 0.216 0.216

Mean 0.191 0.200 0.212 0.214 0.217

0.092 0.080 0.055 0.050 0.041

<Vi 0.484 0.401 0.259 0.233 0.187
mean

Cost

(£106)
0.277 0.282 0.289 0.290 0.292

Taken from Tanyimboh (1993).



Table 7.9. Nodal fire-fighting loads replacing design demands for the four-loop 
designs.______________________________________________________________

■ ----- — " ■ — —  “

Fire Fighting Loads (m /s)

Node Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 -0.4373 -0.4373 -0.4373 -0.4373 -0.4373 -0.4373 -0.4373 -0.3956

2 0.2500 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208

3 0.0208 0.2500 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208

4 0.0208 0.0208 0.2500 0.0208 0.0208 0.0208 0.0208 0.0208

5 0.0208 0.0208 0.0208 0.2500 0.0208 0.0208 0.0208 0.0208

6 0.0208 0.0208 0.0208 0.0208 0.2500 0.0208 0.0208 0.0208

7 0.0208 0.0208 0.0208 0.0208 0.0208 0.2500 0.0208 0.0208

8 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.2500 0.0208

9 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.2500

Taken 'rom Tanyimboh (1993).

Table 7.10. Superimposed nodal fire-fighting loads for the four-loop designs.
Fire Fighting Loads (m3/s)

Node Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

(1) (2) (3) (4) (5) (6) (7) (8) (9)
1 -0.4581 -0.4581 -0.4581 -0.4581 -0.4581 -0.4581 -0.4581 -0.4581

2 0.2708 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208

3 0.0208 0.2708 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208

4 0.0208 0.0208 0.2708 0.0208 0.0208 0.0208 0.0208 0.0208

5 0.0208 0.0208 0.0208 0.2708 0.0208 0.0208 0.0208 0.0208

6 0.0208 0.0208 0.0208 0.0208 0.2708 0.0208 0.0208 0.0208

7 0.0208 0.0208 0.0208 0.0208 0.0208 0.2708 0.0208 0.0208

8 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.2708 0.0208

9 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.3125
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Table 7.11. Critical links for single-link failures for the four-loop network based on 
the HD A analysis.______________________________ ______________________ _

Assessment criteria

Total flow supplied (system DSR) Total dissipated energy per unit flow

Network Critical Next critical Critical Next critical

entropy link link link link

(1) (2) (3) (4) (5)

2.170 1 -4 4 -5 1 -4 4 -5

2.500 1 -2 5 -6 1 -2 1 -4

2.750 1 -2, 1 - 4 2 - 5, 4 - 5 1 - 2, 1 - 4 2 - 5 , 4 - 5

2.775 1 - 2, 1 - 4 2 - 5 , 4 - 5 1 - 2, 1 - 4 2 - 5, 4 - 5

2.800 1 - 2, 1 - 4 2 - 3 , 4 - 7 1 - 2, 1 - 4 2 - 3, 4 - 7

Table 7.12. Critical nodes for single-link failures for the four-loop network based on 
the HDA analysis.______________________________________________________

Assessment criteria

Nodal DSR Actual shortfall at individual node

Network Critical Next critical Critical Next critical
entropy node node node node

(1) (2) (3) (4) (5)

2.170 9 (1-4)7 9 (1 - 4)7

2.500 9 (1-2)3 9 (1 - 2)3

2.750 9 (1-2)3, (1-4)7 9 (1-2)3, (1-4)7

2.775 9 (1-2)3, (1-4)7 9 (1-2)3, (1-4)7

2.800 9 (1-2)3, (1-4)7 9 (1-2)3, (1-4)7

Note: In Columns (3) and (5) in the above table, the next critical nodes are as a result 

of the failure of the links indicated in the brackets.
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Table 7.13. Critical nodes for nodal fire-fighting demands replacing design demands 
for the four-loop network based on the HDA analysis. Assessment is done at 
individual node. ______________

Network

entropy

(1)

Assessment criteria

Nodal DSR Actual shortfall at individual node

Critical

node

(2)

Next critical 

node

(3)

Critical

node

(4)

Next critical 

node

(5)

2.170 3 6 3 9

2.500 7 8 7 9

2.750 3,7 9 3,7 9

2.775 3,7 9 3,7 9

2.800 6,8 9 6,8 9

Table 7.14. Critical nodes for nodal fire-fighting demands replacing design demands 
for the four-loop network based on the HDA analysis. Assessment is done on the 
entire network.

Assessment criteria

System DSR Total flow supplied

Total dissipated energy 

per unit flow
Network Critical Next critical Critical Next critical Critical Next critical
entropy node node node node node node

(1) (6) (7) (6) (7) (8) (9)

2.170 3 6 3 6 8 5

2.500 7 8 7 3 6 5

2.750 3,7 6,8 9 3,7 6,8 5

2.775 3,7 6,8 9 3,7 6,8 5

2.800 6,8 3,7 9 6,8 6,8 5
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Table 7.15. Critical nodes for superimposed nodal fire-fighting demands for the 
four-loop network based on the HDA analysis.______________________________

Assessment criteria

Total flow Total dissipated

Actual shortfall at supplied energy per unit

Nodal DSR individual node (system DSR) flow

Next Next Next Next

Network Critical critical Critical critical Critical critical Critical critical

entropy node node node node node node node node

(1) (2) (3 ) (4) (5 ) (6) (7) (8) (9)

2.170 3 6 3 9 3 6 8 5

2.500 7 8 7 9 7 8 6 5

2.750 3,7 9 3,7 9 3,7 9 6,8 5

2.775 9 6, 8 9 6,8 9 3,7 6,8 5

2.800 9 6,8 9 6,8 9 6,8 6, 8 5
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Figure 7.1. Networks under normal operating condition with all flows in litre per

second.
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A  Average (link failure) - Minimum (link failure)
□ Average (replacement fire flow) + Minimum (replacement fire flow) 
o Average (superimposed fire flow) x Minimum (superimposed fire flow)

1.50 1.60 1.70 1.80 1.90 2.00
Entropy

Figure 7.2. Flow supplied vs. entropy for the two-loop network under critical

operating conditions.

a  Average (link failure)
□ Average (replacement fire flow) 
o Average (superimposed fire flow)

- Maximum (link failure)
+ Maximum (replacement fire flow) 
x Maximum (superimposed fire flow)
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Figure 7.3. Total dissipated energy per unit flow vs. entropy for the two-loop

network under critical operating conditions.
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a Average (link flow) - Minimum (link flow)
□ Average (replacement fire flow) + Minimum (replacement fire flow) 
o Average (superimposed fire flow) x Minimum (superimposed fire flow)
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Figure 7.6. Flow supplied vs. entropy for the four-loop network under critical

operating conditions.

Average (link failure) - Maximum (link failure)
Average (replacement fire flow) + Maximum (replacement fire flow) 
Average (superimposed fire flow) x Maximum (superimposed fire flow)

Entropy

Figure 7.7. Total dissipated energy per unit flow vs. entropy for the four-loop

network under critical operating conditions.
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Figure 7.9. Hydraulic redundancy vs. entropy for the four-loop network.
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Figure 7.10. Example of Pareto Optimal solution.

□ All designs in this study 
H Cost-entropy Pareto optimal designs
x Cost-reliability Pareto front from the set of cost-entropy Pareto optimal designs only 
OTrue cost-reliability Pareto front________________________________________ ____
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Figure 7.11. Plots of cost against HDA-reliability showing the cost-entropy and the

cost-reliability Pareto optimal layouts.
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Figure 7.12. Plots of cost against HDA-reliability showing the cost-entropy and the 

cost-reliability Pareto optimal layouts considering alternative flow directions.
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CHAPTER 8 THE MAXIMUM ENTROPY APPROACH 

TO THE OPTIMUM DESIGN OF WATER DISTRIBUTION 

NETWORKS USING GENETIC ALGORITHMS AND 

DISCRETE PIPE DIAMETERS

8.1 INTRODUCTION

The problem of designing optimum water distribution networks has been reviewed in 

Chapter 5. The design optimization is complex especially when the aspect of 

reliability is considered in the design process. Several design optimization methods 

proposed by several researchers, which attempt to simplify the process of the 

optimization, have also been discussed briefly in the same chapter. The strengths 

and weaknesses of theses methods were highlighted. The following study looks into 

the application of the entropy constrained approach to the design optimization of 

water distribution networks using a stochastic search method. As in the previous 

chapters, the investigation is limited to gravity networks only. However, each link in 

the resulting designs in the present study would have a single discrete, instead of 

continuous, pipe diameter size. Genetic Algorithms were chosen among other 

stochastic optimization methods available. These algorithms have been used quite 

extensively by several researchers in the past few decades in obtaining new designs 

of water distribution networks and extension to the existing networks, e.g. Simpson 

et al. (1994), Halhal et al. (1997), Savic and Walters (1997), Vairavamoorthy and Ali 

(2000). The results of their investigations show that GA can perform satisfactorily 

despite the complexity of the problem due to the discrete nature of the decision 

variables and the non-linearity of the constraint functions. Also, Walski et al. (2003) 

have stated that the superiority of the Genetic Algorithms in comparison to other 

design optimization methods for water distribution networks has been acknowledged. 

The process of adding the maximum entropy constraint to the design optimization 

procedures has been explained in Chapter 5. The entropy-constrained design
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problem for cases with continuous pipe diameters has also been summarised in that 

chapter. For the case in which discrete pipe diameters are used, the optimization 

problem can be formulated as follows.

Problem 8
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(5.18)

(4.4)

(4.1)

(4.7)

(4.9)

(5.21)

(5.23)

(5.25)

(5.34)

All symbols in the above problem have been previously defined and those definitions 

are unchanged. No links may be eliminated from the network by the above 

procedures since the link sizes must be selected from the set of the available discrete 

pipe diameters, Do- Unlike Problem 5, the requirement for the non-negativity of flow 

in the above problem formulation is no longer required. The flow directions in the 

network are allowed to change in the resulting designs and the value of 5min is 

calculated for each set of flow directions using Yassin-Kassab (1998) algorithm as 

explained later. Next, the GA-based design optimization program for water
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distribution networks is described. A sensitivity study on the GA parameters is then 

carried out to determine their appropriate values for solving the above problem. The 

strengths and weaknesses of the GA-based procedures in the design optimization of 

water distribution networks with the maximum entropy constraint are examined.

8.2 OVERVIEW OF THE GA-BASED DESIGN OPTIMIZATION 

PROGRAM

The steps involved in the design optimization of water distribution networks using 

Genetic Algorithms are summarised in Figure 8.1. A design optimization program 

was developed and written in FORTRAN95. It consists of several routines including 

the GA and the maximum entropy routines. The standard GA routine used in the 

program was developed by Anderson (1995). Binary alphabet was used to represent 

the decision variables and modification to the binary strings was carried out using 

three basic GA operators, i.e. tournament selection, cross-over and mutation. Knuth 

subtractive method for pseudo random numbers generation (WH Press et al., 1992, 

pp. 273-274) was used in the program. Other methods for random number 

generation may be used if considered more appropriate, for example Simpson et al. 

(1994) used a linear congruential generator (Gentle, 2003). The maximum entropy 

routine, on the other hand, was developed by Yassin-Kassab (1998). It is capable of 

calculating the maximum entropy flows for water distribution networks with single 

and multiple sources. At each generation, hydraulic analyses were carried out as 

many times as the number of population using Newton-Raphson method based on 

the head system of equations. More details of the program components are described 

next following the brief description of the scope of the program.

8.2.1 SCOPE OF THE PROGRAM

The strong points of the program and the search procedures can be summarised as 

follows:

1. Given that a high entropy value of a water distribution network corresponds to a 

high level of hydraulic reliability of the network, as has been shown in the earlier 

chapters, the GA-based design program is capable of producing inexpensive yet
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highly reliable designs since it incorporates the maximum entropy constraint in 

the optimization procedures. The advantage of quantifying the reliability level of 

the network by means of the entropy measure is attained without adding 

unnecessary burden in the computations since the network reliability value is not 

actually calculated at this stage.

2. The program can handle discrete values of design variables, i.e. discrete pipe 

diameters. This feature is favoured by practicing engineers since the design 

model resembles the real network more closely and there is no need for rounding 

off the diameters to find the final solution.

3. The program requires a set of initial flow directions as input. However, 

depending on the sizes of the chosen diameters in the trial solutions, the 

outcomes of the Newton-Raphson analysis may give a new set of different flow 

directions for each of the trial solutions. Considering that networks whose link- 

flows travel through the shortest paths from the source to each demand node 

should intuitively have low network costs, the GA optimization procedures 

therefore would guide the search towards optimum flow directions, i.e. the 

shortest paths, while the maximum entropy constraint would ensure that high 

level of network reliability is maintained regardless of the flow directions in the 

network. This facility is particularly useful when designing multi-looped 

networks that have more than one source of supply.

4. The entropy of a water distribution network is a function of the pipe flow rates. Its 

value changes with the change of the flow directions in the network. Therefore, in 

the optimization procedure (Problem 8), the value of the maximum entropy 

constraint may vary and must be calculated for every new set of flow directions.

5. The potential for finding the optimum set of flow directions is an advantage that 

stochastic optimization approaches have over deterministic methods. In 

deterministic search procedures a starting point has to be specified, which 

includes specifying the flow directions in the network. The procedures then 

search towards a minimum cost solution based on this set of flow directions. 

However, the problem of specifying optimum flow directions on which the 

design is based is not a straight forward task, especially for large networks with 

many loops and/or when multiple flow patterns are considered.

6. The search process in the GA optimization procedures is carried out over a 

population of trial solutions and spreading throughout the solution space. This
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technique increases the chances of finding the global optimum solution 

significantly. Also, the ability of the GA search method in finding the optimum 

set of flow directions contributes greatly towards the identification of the 

optimum solution as will be seen later in this chapter.

Apart from the above advantages, there are also some limitations to the program and 

the GA method. These shortcomings are as follows:

1. The program can only design gravity networks. Pumps, valves and service 

reservoirs are not considered in the present study. The optimization procedures 

also take into account the cost and the level of network hydraulic reliability only. 

Other aspects of design, such as water quality and the sensitive customers in the 

network, which should be considered in a wider context of design, are not 

included in this study.

2. Only one flow pattern can be handled by the program. However, multiple 

patterns can be incorporated by specifying a different set of constraints for every 

flow pattern considered.

3. In Genetic Algorithms, constraint functions cannot be handled directly in the 

process of updating the trial solutions. In the design optimization of a water 

distribution network, once all the new trial solutions have been generated, a 

hydraulic analysis is required to check if any constraints were violated by each 

trial solution and to obtain the corresponding amount of the violations. This 

contributes to the high computing time of the GA search procedures, in 

particular, and the stochastic optimization methods in general. However, this 

slight limitation is compensated by the apparent ability of the stochastic methods 

in finding the global optimum solution.

8.2.2 INPUT AND OUTPUT OF THE PROGRAM

It has been mentioned earlier that the GA-based design optimization program 

requires an initial set of flow directions to start with. Other required data are the 

network topography, available source heads, minimum head requirement and 

candidate diameters and their corresponding costs per unit length. In the present 

study, the binary codes that represent the candidate diameters are also required in the
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input file. However, this process can be easily automated by including a routine to 

generate binary numbers within the program.

The output of the program consists of an optimum and several near optimum 

solutions. Provided that all the constraints are satisfied, the near optimum solutions 

may have higher costs due to different sets of flow directions, which correspond to 

different maximum entropy values. If any of these values were found to be higher 

than the entropy of the optimum solution, reliability calculations can be carried out 

on these candidate designs to obtain a more definite comparison of their reliability 

levels. Finally, if the high level of reliability is verified, the design may be selected 

as the final design. For every candidate solution, the data provided in the output file 

are the nodal heads, nodal outflows, link flows and their directions, pipe diameters 

and their total cost, constraint violations, maximum entropy and the actual entropy 

value of the resulting design.

8.2.3 PENALTY FUNCTIONS

The way in which violations of constraints are accounted for in Genetic Algorithms 

is by means of cost penalty functions outside the search procedures. A cost penalty 

is assigned to each of the violated constraints in proportion to the magnitude of the 

violations. The role of the hydraulic solver in the GA-based optimization of water 

distribution networks in identifying these violations is therefore crucial.

In the present study, different cost penalty functions are used for different sets of 

constraints depending upon their accuracy requirements. However, all the functions 

take the following form

Cost Penalty = Unit o f constraint violated x PC (8.1)

in which PC is the penalty cost multiplier. For loop and path constraints, i.e. 

Equations (4.7) and (4.9), the value of PC was set to 10,000 unit cost/metre of head. 

Nevertheless, the iteration in the Newton-Raphson analysis would converge towards 

a solution that satisfies these two constraints. In the case where convergence in the 

Newton-Raphson iteration was not achieved, a very high value of the cost penalty
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(equal to 109 unit cost in the present study) was assigned to the trial solution to 

ensure its exclusion from the subsequent tournament selection. For the nodal head 

and the entropy constraints, a higher constraint violation corresponds to higher cost 

penalty. This was intended to increase the chances of the trial solutions with higher 

constraint violations being excluded from the selection process, hence increasing the 

rate of convergence. Three values of PC for the nodal head constraints were 

specified, i.e. 100,000 unit cost/metre of head when the head at a demand node is 

violated by 0.01 metres or more, 90,000 unit cost/metre of head when there is a 

violation of equal to or greater than 0.005 metres and 80,000 unit cost/metre of head 

when the violation is less than 0.005 metres. Meanwhile, the values of PC for the 

entropy constraint were 106 unit cost when 1.0’5 or higher units of entropy were 

violated, 500,000 unit cost when the violation is between 1.0'6 to 1.0'5 and 10,000 

unit cost if the entropy violation is less than 1 .O'6. The values of PC for the entropy 

constraint are higher than the PC values for the other constraints since slight 

difference in the entropy value of a network may lead to a difference in the reliability 

level of the design.

The above procedure is a crude way of guiding the search towards solutions that 

satisfy all the constraints. Heuristic analysis shows that the value of PC affects the 

accuracy of the resulting designs in terms of satisfying the constraint functions and 

the above method appears to be quite effective. For simplicity, the flow velocity 

constraints were excluded from the present study. Another set of cost penalty 

functions are required when these constraints are included in the optimization 

procedures. Once all the cost penalties have been obtained, the total cost of each trial 

solution is the sum of the design cost of the network and its cost penalties. The 

solution fitness is then obtained as the inverse of the total cost, i.e.

Total Cost = Network Cost + Cost Penalty (8.2)
NC

in which NC is the number of constraints, and

Fitness = ------ ------- (8.3)
Total Cost
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8.2.4 TERMINATION CRITERIA

The termination requirement in GA iteration is usually the completion of a certain 

number of generations (Simpson et al., 1994; Savic and Walters, 1997; 

Vairavamoorthy and Ali, 2000). In the present study, three termination criteria 

are used in the program (Anderson, 1995) including the specified maximum 

number of generations of 500. The second stopping criterion refers to the 

condition in which there are no trial solutions in the current generation better than 

the best solutions from the previous several generations. Several best and near 

best results are saved at the end of each generation. This collection is then 

updated at each successive generation. When several generations (15 generations 

in this study) have elapsed with no updates to the collection, the optimum 

solution is considered to have been reached and the search process is terminated. 

The third condition is when the standard deviation of the fitness of the population 

in the current generation is very small (i.e. less or equal to a pre-specified value; 

10'15 was used in the present study to account for the double precision values 

used in the program). This condition is usually an indication that the optimum 

solution is either found or almost found since an improvement in the population 

fitness in the next generation would be very small or insignificant. A minimum 

number of generations, e.g. 100 in this study, is specified before the second and 

third stopping criteria are applied. This is to ensure a wide enough search space 

has been explored before the program may be terminated.

8.3 PARAMETER SENSITIVITY AND SEARCH EFFICIENCY 

ANALYSES

Three layouts were selected from the previous chapters to be used in the parameter 

sensitivity and search efficiency studies. These layouts are the 2-loop 6-node and 4- 

loop 9-node layouts in Figure 7.1, and the 3-loop 12-node layout in Figure 6.5b. It 

may be noted that maximum entropy designs based on these layouts have been 

generated in the previous chapters using continuous pipe diameters. In this chapter, 

the maximum entropy designs based on these layouts were re-generated using 

Genetic Algorithms and discrete pipe diameters. The same set of constraints as that
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for the previously generated designs were used and the resulting discrete pipe 

diameter designs were compared to the previous designs. Since all of the previous 

designs were generated using continuous pipe diameters, for comparison to be valid, 

the discrete candidate diameters used in the GA-based design optimization must 

include the set of diameters obtained previously for the maximum entropy designs 

based on continuous pipe diameters. The GA-based program was then run with the 

aim to obtain the same combination of pipe diameters. For example, 8 discrete 

candidate diameters were specified for designing the 2-loop 6-node layout using 

Genetic Algorithms. 6 of these candidate diameters were obtained from the previous 

maximum entropy design with continuous pipe diameters (Chapter 7, Table 7.1) and 

the other two were chosen from the continuous diameters of the design with the 

smallest entropy value. The flow directions of the designs from which the diameters 

were selected were the same as those in Figure 7.1a, which represent the shortest 

paths from the source to each demand node. The maximum entropy value for this set 

of flow directions is 1.915 and the corresponding cost of the design is £0.263 million, 

which is based on the y and e values of 900 and 2.4, respectively (Equation 5.17). 

Since the layout comprises of 7 links, with 8 candidate diameters for each link, there 

are 87 = 2,097,152 possible pipe combinations for feasible and infeasible solutions. 

The GA-based design procedures were able to obtain the same combinations of pipe 

diameters and flow directions as the previous maximum entropy design in a relatively 

short period of time, i.e. 38 seconds of CPU time at the most on a Pentium 4, 1.4GHz 

PC with 256 MB RAM.

The above 2-loop 6-node layout is small and simple. Also, it may be argued that the 

6 candidate diameters, which were selected from the previous maximum entropy 

design with continuous pipe diameters, helped the search in the GA procedures 

towards finding the same set of pipe diameters. To disprove this notion, 16 

candidate diameters were specified for designing the symmetrical 4-loop 9-node 

layout. This set of candidate diameters comprises the diameters from the previous 

maximum as well as minimum entropy designs whose flow directions are as 

indicated in Figure 7.1b. The GA search procedures may therefore produce a design 

with the smallest or the highest entropy value based on the specified sets of candidate 

diameters and flow directions or a completely different design should the flow 

directions in the resulting design change. The maximum entropy value for the
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shortest-path flow directions is 2.799 and this time the search space has 1612 = 2.815 

x 1014 of possible pipe combinations. The GA search method was capable of finding 

the maximum entropy solution with the same sets of diameters and flow directions as 

the previously generated design without any difficulty.

The third layout comprises of 14 links. 16 candidate diameters were specified for 

this layout in the same way as that for the previous two layouts, i.e. the candidate 

diameters include the diameters of the maximum entropy design from the 

continuous diameter case whose flow directions represent the shortest paths (Figure 

A4.2 option 1). This layout was a little more complicated to design since the 

search space is larger, i.e. 7.206 x 1016 pipe diameter combinations. However, the 

GA-based design program managed to obtain the maximum entropy design with 

the shortest-path flow directions. The maximum entropy value for the shortest-path 

flow directions is 2.671. However, the actual entropy value of the optimum 

solution found using GA was only 2.669. This discrepancy is small and may be 

attributed to the set of discrete candidate diameters used as well as the cost penalty 

function for the entropy constraint as follows. Firstly, the maximum entropy value 

of the network may not be achievable exactly with discrete pipe sizes. Secondly, 

although the specified candidate diameters are discrete, some of their values are 

almost the same, e.g. 388mm and 390mm, 194mm and 197mm, 230mm and 

234mm. Therefore, the selection of certain combination of pipe diameters results 

in a lower total cost (design cost + cost penalties) at the expense of the accuracy of 

the entropy constraint. Comparison between the GA-based discrete-diameter 

designs and the previously generated continuous-diameter designs for all three 

layouts can be observed in Table 8.1.

For the sensitivity study, three basic GA parameters, i.e. population size and cross

over and mutation probabilities, were examined and the effects of different 

combinations of population size and cross-over probability were analysed. For each 

combination, the GA-based design program was run five times with different starting 

points for the random number generator, which would give five different sequences 

of pseudo random numbers and five different initial populations. This was done to 

increase the chances of finding the global optimum solution. Population size and 

cross-over probability are the dominant parameters that drive the search in GA
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towards the optimum solution. The probability of mutation, on the other hand, is 

very low. It contributes towards ensuring that the search process is not trapped in a 

local optimum point. Many researchers have proposed several different 

combinations of the GA parameters (see e.g. Mitchell, 1999, pp. 175-177, for the list 

of combinations). However, no conclusive results on what is the best combination of 

the parameters have been achieved to date. The typical value of the population size 

lies between 50-1000 populations (Mitchell, 1999). It is logical to expect the 

required number of population to increase with the increase of the solution search 

space in order to maintain the breadth of the exploration, hence maintaining the 

chances of finding the global optimum solution. The recommended range for the 

cross-over probability is between 0.6-1.0 (Goldberg, 1989) and the probability of 

mutation is usually between 0.01-0.1 (Savic and Walters, 1997). In the present 

study, the mutation probability is function of the number of bits in the chromosome 

string, i.e. the number of bits that represent one trial solution. For example, there are 

7 links and 8 candidate diameters in the 2-loop 6-node layout design problem. 

Therefore one candidate diameter can be represented by a three-bit binary number 

and one trial solution comprises of 3 x 7 = 21 binary bits. The probability of 

mutation used in the GA operation for this layout was 1/21 = 0.05.

In the above analysis, the flow directions of the resulting GA-based maximum 

entropy designs may be different than the previously generated designs from which 

the candidate diameters were selected. This may cause the comparison between 

those designs to be invalid. However, for each set of flow directions, there is only 

one combination of link flows, hence pipe diameters, which corresponds to the 

maximum entropy value. Therefore, although the resulting designs may not be 

comparable to the previous designs, the addition of the maximum entropy 

constraint in the GA-based design optimization of water distribution networks 

provides an unambiguous condition of optimality and a definite target to achieve 

regardless of the resulting flow directions in the network. Also, for the first two 

layouts, the GA-based design program was able to reach convergence in less than 

100 generations for some combinations of population size and cross-over 

probability. In order to see exactly at which generation the convergence was 

achieved, the minimum required generation was eliminated and all three stopping
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criteria were applied from the very first generation. The results of the analysis are 

shown in Tables 8.2 -  8.4.

From the tables, it is clear that as the size of the problem increases, the size of 

population required in the GA search procedures also increases. The increase in the 

CPU time as the number of population becomes larger seems to be compensated by 

the reduction in the number of generations required by the Genetic Algorithms to 

reach the optimum solution. Also, the efficiency of the GA-based design 

optimization of water distribution networks does not seem to be affected by the 

introduction of the maximum entropy constraint. However, it is rather difficult to 

obtain a definite comparison since different researchers used different combinations 

of population size, cross-over and mutation probabilities as well as different cost 

penalty functions. For example, the GA-based design procedures of Savic and 

Walters (1997), which does not include the entropy constraint, required more than 

130 generations to obtain the optimum solution to a problem with 1.48 x 109 possible 

pipe combinations based on a population size of 50. Their cost penalty equations are 

non-linear functions of the generation number, whose values gradually increase with 

the increase of the generation number. Meanwhile in the present study, less than 130 

generations were required to obtain the optimum solution to a problem with 2.815 x 

1014 possible pipe combinations based on a population size of 100. It should also be 

noted that the efficiency of the hydraulic solver used in the search procedures 

contributes towards the overall efficiency of the method.

8.4 FLOW DIRECTION ANALYSIS

The potential of the GA-based design procedures in finding the optimum design of 

water distribution networks with optimum flow directions is now examined. The 

designs based on the three layouts used in the sensitivity analysis were re-generated 

using various initial flow directions. The aim is to obtain the same combinations of 

pipe diameters as the previous GA-based designs and the flow directions that 

represent the shortest paths from the source to each demand node. Seven sets of 

initial flow directions shown in Figure 8.2 were used for designing the 2-loop 6-node 

layout and the GA-based design program was run using a combination of population
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size of 500 individuals and a cross-over probability of 0.9. These values were 

obtained from the sensitivity analysis. For the 4-loop 9-node layout, nine sets of 

initial flow directions shown in Figure 8.3 were specified and the values of the 

population size and cross-over probability used were 500 and 1.0, respectively. 

Finally, 23 different sets of initial flow directions as shown in Figure A4.2 (options 

2-24) were specified for designing the 3-loop 12-node layout. A population size of 

1000 and a cross-over probability of 0.7 were used for this layout.

For each set of the initial flow directions, the GA-based design optimization 

program was run five times with five different sequences of pseudo random 

numbers. The typical plots of the cost of the best solution in each generation for 

the three layouts studied in this chapter are shown in Figures 8.4, 8.5 and 8.6, 

which corresponds to the 2-loop 6-node, 4-loop 9-node and 3-loop 12-node layout, 

respectively. In each run, the optimum solutions shown in the above figures, which 

correspond to the shortest-path flow directions and the set of pipe diameters shown 

in Table 8.1 were always identified. This result is very encouraging considering 

the huge numbers of possible pipe combinations and flow directions especially for 

the larger 3-loop 12-node layout. The ability of the GA-based design optimization 

in identifying the optimum set of flow directions may have a significant 

contribution towards its ability in obtaining the global optimum solution to the 

design problem of water distribution networks. Although in the above analysis 

only networks with one source supply were considered, the facility should, at least 

in theory, be transferable to multiple source networks in which identification of the 

optimum flow directions is a lot more complicated especially when multiple loops 

are present.

8.5 SUMMARY AND CONCLUSIONS

Problem formulation for the maximum-entropy design optimization of water 

distribution networks with discrete pipe diameters has been presented in this chapter. 

This problem has never been attempted before due to the limitation of the available 

optimization methods in dealing with discrete non-linear problems. The application of 

stochastic optimization method seems to hold the key to this issue. Genetic
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Algorithms were used in this chapter and a design optimization program utilising the 

algorithms and the maximum entropy constraint was developed. Brief descriptions of 

the strengths and weaknesses of the program as well as the search procedures in 

obtaining the optimum solution have also been presented in this chapter.

Several hypothetical layouts whose maximum entropy designs have been identified 

were used to validate the design program and to analyse sensitivity of the GA 

parameters as well as the efficiency of the search procedures. Only the dominant 

parameters, i.e. the population size and cross-over probability, were analysed in this 

chapter and it was found that these parameters are quite sensitive to the type and size 

of the problem and they affect the efficiency of the optimization procedures. On top 

of that, the form of the cost penalty function has a noticeable influence on the 

accuracy of the outcome, hence on the effectiveness of the method. This is a slight 

drawback to the Genetic Algorithms since the appropriate combinations of the 

parameters are problem specific and they are not known in advance. More studies 

are also required to determine the suitable cost penalty function.

On the other hand, the above slight limitation of the GA search method is overcome 

by its apparent ability to obtain the global optimum point. In the optimization of the 

hypothetical layouts used in the sensitivity analysis, the maximum entropy designs 

were always identified. The GA search procedures were also capable of finding the 

optimum flow directions in the network regardless of the initial flow directions 

specified. This facility seems to contribute towards the ability of the method in 

identifying the global optimum solution.
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Table 8.1. Comparison of diameters (mm) between the GA-based designs and the 
previously generated designs with continuous diameters________________ _______

2-loop 6-node layout 4-loop 9-node layout 3-loop 12-node layout

GA

Candidate

Diam.

Previous

Design*

GA-

based

Design

GA

Candidate

Diam.

Previous

Design*

GA-

based

Design

GA

Candidate

Diam.

Previous

Design**

GA-based

Design

100 261 261 100 294 294 100 253 253

165 367 367 151 201 201 109 388 390

185 235 234 156 294 294 158 234 230

234 294 294 164 221 221 176 197 197

235 234 234 201 164 164 187 230 230

261 234 234 207 201 201 194 310 310

294 185 185 216 207 207 197 194 194

367 221 216 216 211 158 158

271 221 221 221 221 221

286 207 207 230 176 176

294 164 164 234 194 194

317 216 216 253 187 194

349 310 211 211

610 388 109 100

615 390

620 400

Costs (£106)

0.263 0.263 0.292 0.292 1.183 1.182

* Tanyimboh (1993)

** Tanyimboh and Sheahan (2002)
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Table 8.2. The number of optimum solutions achieved in every 5 runs of the GA-
jased design program.

Population

size

Cross-over

probability

Number of convergence per 5 runs

2-loop 

6-node 

(Layout 1)

4-loop 

9-node 

(Layout 2)

3-loop 

12-node 

(Layout 3)

100 0.7 4 0 0

0.9 2 1 0

1.0 2 1 0

500 0.7 5 5 2

0.9 5 5 3

1.0 5 5 2

1000 0.7 5 5 5

0.9 5 5 4

1.0 5 5 4

Note: For every layout, the GA-based design optimization program was run 5 times 
with different starting points. The numbers in the above table indicate how many 
times the optimum solution was identified from different starting points.

Table 8.3. The average number of generations required by the GA-based design
program to reach the optimum solution (out of 5 runs).

Population

size

Cross-over

probability

Average number of generations

2-loop 

6-node 

(Layout 1)

4-loop 

9-node 

(Layout 2)

3-loop 

12-node 

(Layout 3)

100 0.7 67 n/a n/a

0.9 63 110 n/a

1.0 71 183 n/a

500 0.7 40 83 158

0.9 38 88 160

1.0 39 78 144

1000 0.7 34 72 130

0.9 34 69 135

1.0 31 73 120
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Table 8.4. The average CPU time required by the GA-based design program to reach
the optimum solution (out of 5 runs).

Population

size

Cross-over

probability

Average CPU time (seconds)

2-loop 

6-node 

(Layout 1)

4-loop 

9-node 

(Layout 2)

3-loop 

12-node 

(Layout 3)

100 0.7 5.2 n/a n/a

0.9 5.5 87.9 n/a

1.0 6.2 102.0 n/a

500 0.7 19.9 326.0 896.5

0.9 19.7 348.8 487.3

1.0 20.3 335.8 460.0

1000 0.7 37.1 639.6 860.2

0.9 38.3 626.6 908.0

1.0 36.6 683.8 845.0
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Figure 8.1. Schematic of the GA-based design optimization procedures.
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Figure 8.2. Different sets of initial flow directions for the GA-based design of the 2-

loop layout.
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Figure 8.3. Different sets of initial flow directions for the GA-based design of the 4-

loop layout.
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Figure 8.4. Typical progress of the optimization of the 2-loop 6-node layout.

Figure 8.5. Typical progress of the optimization of the 4-loop 9-node layout.

8-21



To
ta

l C
os

t (
in

cl
ud

in
g 

Pe
na

lty
)

Figure 8.6. Typical progress of the optimization of the 3-loop 12-node layout.
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CHAPTER 9 SUMMARY, CONCLUSIONS AND 

SUGGESTIONS FOR FUTURE RESEARCH

9.1 INTRODUCTION

The problem of obtaining optimum design of reliable water distribution networks 

is extremely difficult to solve. Research into this issue has been going on for 

several decades and many different methods have been proposed by many 

researchers, each with its own advantages and disadvantages. Most of the 

traditional design methods minimize the capital cost of the network without 

putting much emphasis on its performance. Templeman (1982) has pointed out 

that these methods would inevitably try to eliminate all the redundancy in the 

network and result in a tree-type branch network with each demand node supplied 

by a single path.

To increase flexibility and reliability, some methods suggested that the existence 

of loops in the network should be maintained by means of a minimum pipe 

diameter constraint so that no links may be eliminated in the optimization 

process. However, the flexibility of the resulting designs of these methods is 

questionable. Although no links are eliminated from the network, the 

optimization process would try to reduce the diameter of the loop completing 

links into the minimum size possible. The usefulness of these links as alternative 

flow paths in the event of failure of larger pipes is very low. Wagner et al. 

(1988a) have pointed out that the performance of a water distribution network 

cannot be determined based on connectivity alone.

Other methods tried to incorporate some kind of reliability measure directly into 

the optimization procedures. Two main problems are immediately apparent from 

this approach. Firstly, there is no comprehensive and widely applicable method 

for quantifying the reliability of water distribution networks. Many researchers
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have proposed many different methods, each having its own strengths and 

weaknesses. Also, the definition of the reliability is different from one researcher 

to another. Secondly, in most of the reliability models, the process of obtaining 

the reliability value involves simulation of failure modes in the network to gauge 

the network performance under such situations. This process can be tedious and 

impractical for real water networks since there will be so many failure conditions 

and their combinations that have to be considered. Also, there are uncertainties 

associated with the failure rates and the duration of failure in the network. 

Furthermore, factors like the age of the network and soil conditions, which will 

affect the failure rates in the network, need to be accounted for in a wider context 

of reliability. All of these issues add to the difficulties in obtaining an accurate 

value of reliability even for a relatively small network.

Some researchers therefore suggested the use of entropy as a surrogate measure 

of the reliability of water distribution networks. This approach was pioneered by 

Awumah et al. (1989) who proposed the first entropy function for water networks 

based on Shannon’s informational entropy (Shannon, 1948). However, their 

entropy function violates two of the fundamental properties of Shannon’s 

entropy. Tanyimboh and Templeman (1993a) were the first who proposed a 

rigorous entropy function for water distribution networks and their entropy has 

been used in the present study. The advantages of entropy as a surrogate measure 

for water network reliability stems from its ease of computation and incorporation 

into the design optimization procedures. Also, it has been shown that the 

reliability of a distribution network improves as the entropy value of the network 

increases (Tanyimboh and Templeman, 1993b). This idea forms the basis for the 

investigations carried out in this research.

9.2 SUMMARY AND CONCLUSIONS OF THE PRESENT 

RESEARCH

Entropy is a measure of uncertainty. Therefore, in water distribution systems it is 

mainly applicable to looped water networks in which there is uncertainty 

associated with the distribution of flows in the network. In this research, the
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investigations were carried out on simple gravity-driven looped networks. Head 

dependent analysis method was used in the present study and the results were 

compared to the previous demand driven analysis results. Previous studies have 

shown that the relationship between entropy and reliability of water distribution 

networks appears to be quite strong. However, there are many aspects of the 

design that can affect the reliability level as well as the entropy value of the 

network. A comprehensive study into the possible influence of some of these 

aspects on the relationship between entropy and reliability has been carried out in 

the present research. The issues investigated were the possible influence of 

layouts, flow directions, cost functions and modelling errors.

It has been demonstrated that the influence of the above issues on the entropy- 

reliability relationship is negligible. The results of the investigations also support 

the previous conviction that higher value of entropy corresponds to a better 

network performance. An important aspect of the entropy-based design is the 

increase of the average size and uniformity of the pipe diameters in the network 

as the value of the entropy increases; with the maximum entropy designs having 

the largest average size and the most uniform pipe diameters. These 

characteristics lead to the high reliability level of the maximum entropy design 

since larger diameters generally generate lower head losses and uniform pipe 

diameters produces equal flow paths. Failure of a pipe in the network would not 

cause too much stress to the network since alternative paths are able to carry the 

redirected flows. It has also been shown that the increase in the network cost due 

to the increase in the entropy value seems to be quite modest in comparison to the 

improved performance level. Another important issue is the fact that the level of 

similarity in the performance of designs with equal maximum entropy values is 

much higher compared to other designs with different entropy. This quality is 

important for any surrogate performance measure in order to be able to 

distinguish between networks with different levels of performance.

The above analyses provide more evidence of the effectiveness of the maximum 

entropy approach in generating optimum designs of water distribution networks. 

It leads to a further study of the characteristics of the maximum entropy designs. 

Hydraulic predictability in terms of the locations of the critical links and nodes in
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the network was investigated. It was found that in maximum entropy designs 

these locations were more intuitively predictable than in other designs. For 

example, in the maximum entropy designs, the critical nodes could be found 

either at the terminal nodes or at the nodes with high demands while the critical 

links were often located near the source or connected to a node with large 

demand. The selection of these intuitive locations as the critical points in the 

network can assist designers in the analysis of the network performance during 

the design process by reducing the amount of calculations required since analysis 

can be concentrated on the critical areas. By contrast, the locations of the critical 

links and nodes in other designs were not easily predictable and could be 

anywhere in the network.

The maximum entropy approach to the layout optimization of water distribution 

networks has also been demonstrated in this thesis. The method is efficient since 

the entropy was used as a preliminary filter to identify the optimum layouts and 

the reliability values were calculated for these candidate layouts only. The 

method is also robust in the sense that it is capable of identifying the layouts that 

belong to the true Pareto optimal set, which is the set that represents the trade-off 

between cost and reliability of the network.

In all the above studies, the use of the HDA method in the analysis generally 

produced better results than the DDA method. This can be seen from the 

correlation between entropy and reliability, which appeared stronger when the 

HDA method was used. The locations of the critical links and nodes in the 

maximum entropy designs were also more consistent with one’s intuitive 

expectation when the analysis was carried out using the HDA. Finally, the set of 

true Pareto optimal layouts could be identified more accurately using the HDA 

method.

The present research has also studied the application of the maximum entropy 

approach to the optimum designs of water distribution networks with discrete 

pipe diameters. Genetic Algorithms were employed in the optimization 

procedures. The study showed that different combinations of the GA parameters 

influence the efficiency of the search procedures quite considerably. Sensitivity
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study was required to determine the appropriate combinations of these parameters 

for solving different design optimization problems. The form of the cost penalty 

function was also found to have an effect on the efficiency of the search method. 

Despite all the above limitations, the method was capable of identifying the 

maximum entropy designs with optimum set of flow directions. Also, the 

introduction of the maximum entropy constraint does not affect the efficiency of 

the GA method.

The general conclusions drawn from the present research are as follows:

1. Entropy is a suitable performance measure for water distribution networks. The 

maximum entropy designs are not only highly reliable but also hydro-spatially 

predictable. As such, designing a network to carry maximum entropy flows 

could help designers in the process of obtaining the optimum solution.

2. The maximum entropy approach to the layout optimization of water networks 

is robust and the use of the HDA method complements the approach 

considerably.

3. Genetic Algorithms are capable of producing designs with optimum set of 

flow directions. This faculty contributes towards the ability of GA in finding 

the global optimum solution to the design problem.

4. The introduction of the maximum entropy constraint does not seem to reduce 

the efficiency of the GA search method. On the contrary, it provides a 

definite objective for the optimization procedures, which may improve the 

efficiency of the method in finding the global optimum solution. On average, 

the optimum solution was found in 4 out of 5 runs in this study provided that 

the right combination of parameters has been identified.

5. GAs can produce minimum-cost maximum-entropy designs with discrete pipe 

diameters

9.3 SUGGESTIONS FOR FUTURE RESEARCH

The advantages of the maximum entropy approach to the design optimization of 

water distribution networks have been highlighted in the present study. The 

approach has also been successfully applied to hypothetical networks to obtain
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the optimum designs with discrete pipe diameters. However, it is by no means 

the absolute decision making tool in the design optimization of water networks. 

Many issues still need to be explored to further substantiate the applicability of 

the approach to a more general water distribution system design problem. Some 

of these issues are discussed next.

It has been said earlier that the maximum entropy design approach applies to 

looped water distribution networks only. Many looped water networks, however, 

are prone to water quality problems, e.g. water age. This is triggered by the 

uneven distribution of flow and velocity in the network, which causes some parts 

of the network experiencing flow congestion while in other parts water can flow 

freely to supply the demands. It is often difficult to pin point in advance the areas 

in the network sensitive to this problem. Designers have to rely on simulations to 

asses the ability of the preliminary designs to cope with this issue. The maximum 

entropy approach, on the other hand, ensures that the distribution of flow in the 

network is as uniform as possible. It follows that the velocity distribution in the 

network is also highly uniform. In theory, the uniform velocity distribution 

should reduce the chances of the flow in the network from being congested, hence 

reducing the water quality problem. However, investigations are needed to 

clarify this issue since, in practice, the distribution of flow in the network is often 

highly non uniform due to the uneven distribution of demands. Also, the velocity 

constraints, with minimum velocity as the limiting constraint, have to be 

explicitly considered in tackling the above issue.

Another possible area of research is the consideration of the sensitive customers 

in the network in the design optimization process. Some customers like hospitals, 

schools, factories, etc. may need constant supplies of water. The nodes at which 

these sensitive customers are located need to be more reliable than other nodes in 

the network. This issue may be approached using the nodal entropy values in 

addition to the network entropy. However, the framework in which these values 

are used in the design optimization procedures remains to be addressed. Also, the 

correlation between the nodal entropy and reliability of water distribution 

networks has never been previously analysed in an explicit way.
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A robust method for layout and cost optimization of pipe networks based on the 

maximum entropy approach has been presented in Chapter 7. The problem of 

determining the optimum flow directions for the design is no longer an issue 

when Genetic Algorithms are used in the optimization process. However, a more 

efficient method in which a direct search towards the optimum solution without 

having to obtain the preliminary designs of all the possible layout configurations 

is desired. This method can then be extended to include other aspects of designs 

such as multiple demand patterns, location of sensitive customers and other 

network components like pumps valves and storage tanks. Finally, studies into 

the application of the maximum entropy approach to obtain the optimum designs 

- in terms of layout, pipe sizes and the network performance - of water 

distribution networks need to be extended further to include large real-life 

networks. These studies are very important since many aspects of design 

encountered in real water networks may not be accounted for in the study of 

hypothetical networks. Hence, the context in which entropy is used in this more 

general design problem needs to be explored.
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APPENDIX A. IN F O R M A T IO N  R E G A R D IN G  E N T R O P Y ,

R E L IA B IL IT Y

A N D  T H E  S U M M A R Y  O F  T H E  D E M A N D  D R IV E N  

A N A L Y S IS  R E S U L T S



APPENDIX A1 -  THE PATH-BASED APPROACH FOR 

CALCULATING THE MAXIMUM ENTROPY FLOWS IN SINGLE 

SOURCE NETWORK

To demonstrate the path-based approach for calculating the maximum entropy flows in 

single source networks, Tanyimboh and Templeman (1993c) used a single source 

network presented in Figure 3.3 and re-presented below as Figure A1.1. The equal path 

flows from the source to each demand node are shown in Figure A 1.2 below. For 

example, node 4 is served by three paths 1-2-3-4, 1-3-4 and 1-4, each of which must 

carry 5 unit of flow, which is one-third of the demand at node 4. Also, node 5 is served 

by three paths 1-2-5, 1-2-3-5 and 1-3-5 and each path must carry 8 unit of flow, which is 

the demand at node 5 divided equally amongst the path supplying the node. Finally, the 

maximum entropy flow for each link is obtained by adding the flow for all paths through 

that link. The resulting maximum entropy link flows are identical as those shown in 

Figure 3.5.
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Figure ALI. Single source network (Tanyimboh and Templeman, 1993c).
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Figure A 1.2. Equal path flows from the source to each demand node for network shown 

in Figure A l.l (Tanyimboh and Templeman, 1993c).
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APPENDIX A2 -  DERIVATION OF TANYIMBOH’S RELIABILITY

It was mentioned in Chapter 5 that the first part of the Equation (5.12) is the basic definition 

of hydraulic reliability, which is defined as the time-averaged value of the ratio of the flow 

delivered to the flow required, i.e.

R = — 
T

M  M -1 M

p (0 )r (0 )  +  ]£ ^ (/M )r(» i)  +  ^  £  P ( m , n ) T ( m , n ) + •
m=l m-1 n=m+\

(A2.1)

in which R is the lower bound to the reliability since terms corresponding to the network 

configuration with more than two pipes simultaneously unavailable are missing. The 

motivation for Equation (5.12) originated from an observation (Tanyimboh et al., 2001) that 

if, instead of the flow delivered, the shortfall in supply is used in Equation (A2.1) then the

resulting expression gives the system unreliability U as

U = -  
T

M M -1 M

Pm T -T (0 )]  + ̂ p(m )[T-T{m )] + Y j £  p(m,n)[T-T(m,n)] + ■
\

f

V

M-1 M
p(0)+Zp(w)+Z Z p (m’n) + - -R

m=1 m=\ n=m+\
(A2.2)

Equation (A2.2), like (A2.1), gives a lower bound because, in practice, it is unlikely to 

include all possible combinations of unavailable links. Therefore, the complement, 1 -U , 

is an upper bound to the reliability of the system. It has been demonstrated that by 

averaging the lower and upper bound estimates of reliability, an improved estimate of 

the reliability can be obtained (Tanyimboh et al., 2001). Hence

R =
i? +  ( l - f / )

2 R - \  = R -U

Substituting for U from equation (A2.2) and rearranging gives

( M M-1 M N\
R = R + -  

2 V m=1 m=\ n=m+ 1

(A2.3)

(A2.4)

And after substituting for R , Equation (A2.4) is identical to Equation (5.12).
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APPENDIX A3 -  SUMMARY OF THE PREVIOUS DDA-BASED 

STUDY ON THE POSSIBLE INFLUENCE OF LAYOUT ON THE 

RELATIONSHIP BETWEEN ENTROPY AND RELIABILITY 

(TANYIMBOH AND SHEAHAN, 2002)

For the analysis, Tanyimboh and Sheahan (2002) generated 65 different layout 

configurations based on the network in Figure 6.1. These layouts are shown in 

Figure A3.1. The results of the DDA analysis are shown in Figure A3.2. The plots 
of entropy against reliability show that there is an increase in the reliability value as 

the entropy of the network increases. There is also a gradual increase in cost as the 

reliability value increases, which is expected, but this increase seems to be 

outweighed by the increase in the performance of the network. Figure A3.2 also 

shows that there is some scatter in the plot of the entropy against reliability, which 

gives an R2 value of 0.5. Although the relationship does not seem very strong, the 

fact that there is a correlation between the increase of entropy and reliability seems 

to indicate that the influence of different layouts chosen in the design process is quite 

small. Therefore, the choice of layout in a design process can be determined by 

other factors, for example distribution of demands or topological requirements. So 

long as the maximum entropy value of the network is high, the reliability of the 

network can also be expected to be high.
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Figure A3.1. Alternate layouts based on the network of Figure 6.1 

(Tanyimboh and Sheahan, 2002).
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Figure A3.1. (Continued).
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Figure A3.1. (Continued).
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Figure A3.1. (Continued).
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Figure A3.1. (Continued).

o Entropy + Cost
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Figure A3.2. Effect of layout on the entropy-reliability relationship analysed by the

DDA method.
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APPENDIX A4 -  RESULTS OF THE DDA-BASED STUDY OF 

THE POSSIBLE INFLUENCE OF FLOW DIRECTIONS ON THE 

RELATIONSHIP BETWEEN ENTROPY AND RELIABILITY

Figures A4.1, A4.2 and A4.3 show the complete sets of flow directions 

for the respective 2-loop, 3-loop and 6-loop layouts used in the present 

study. The optimum designs generated based on these flow directions 

are presented in Tables A4.1 to A4.3. Meanwhile, the results of the DDA 

analysis are shown in Figures A4.4 to A4.7. The same conclusions can 

be drawn from the DDA-based study to those obtained from the HDA 

method in which the narrow ranges in the entropy and reliability values 

lead to inconclusive results when the three layouts were analyzed 

separately. A more apparent relationship was obtained when the results 

were combined together. However, the DDA results seem to show a 

weaker relationship between entropy and reliability compared to the 

HDA results.
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Figure A4.1. Alternate flow directions based on the layout of Figure 6.3a.
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Figure A4.1. (Continued).
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Figure A4.2. Alternate flow directions based on the layout of Figure 6.3b.
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Notes:

<—  = flow direction. 

#  = terminal node.

Figure A4.2. (Continued).
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Figure A4.3. Alternate flow directions based on the layout of Figure 6.1.
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Figure A4.3. (Continued).
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Figure A4.3. (Continued).

o Entropy + Cost

Figure A4.4. Effect of flow direction on the relationship between entropy and DDA-

reliability for the 2-loop designs.
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re A4.5. Effect of flow direction on the relationship between entropy and DDA-
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reliability for the 6-loop designs.

Figure A4.6. Flow direction effect on the relationship between entropy and DDA-
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Figure A4.7. Analysis of the possible effect of flow direction on the relationship 

between entropy and cost against DDA-reliability for the 2-, 3- and 6-loop designs.
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Table A4. Pipe diameters for the two-loop designs in the flow direction analysis
Pipe diameters (mm) for the design number indicated

1 2 3 4 5 6 7 8 9 10

1 - 2 373 383 407 362 377 439 354 332 317 430

2 - 3 270 302 320 222 328 343 165 367 100 170

1 - 4 274 258 222 300 284 170 319 304 336 180

2 - 5 262 239 257 287 178 280 308 100 343 393

3 - 6 242 278 296 186 305 321 105 345 208 116

4 - 7 250 233 192 277 261 124 298 282 315 140

5 - 8 234 209 229 261 130 255 284 208 318 375

6 - 9 218 258 277 146 287 304 174 327 258 147

7 - 10 204 183 113 238 220 218 261 245 282 163

8 - 11 176 134 170 212 214 208 240 291 277 348

9 - 12 124 199 226 208 239 260 268 284 318 242

1 0 -1 1 166 134 171 209 189 259 237 220 260 202

1 1 - 1 2 166 140 185 247 203 228 294 255 340 268

Table A4. . (Continued).

Pipe
Pipe diameters (mm) for the design number indicated

11 12 13 14 15 16 17 18 19 20

1 - 2 270 406 437 426 423 308 410 338 402 398

2 - 3 179 171 394 228 272 236 362 276 231 273

1 - 4 384 226 181 181 181 353 227 320 226 227

2 - 5 195 367 186 363 332 193 188 193 332 295

3 - 6 123 117 375 194 245 202 342 249 197 246

4 - 7 367 197 141 141 141 334 198 299 197 199

5 - 8 151 347 144 344 311 150 147 150 311 271

6 - 9 148 149 362 160 222 167 327 226 164 223

7 - 10 341 124 187 166 173 304 127 266 125 128

8 -  11 142 317 160 313 275 147 175 158 275 228

9 -  12 246 247 330 170 138 174 289 140 174 139

1 0 -1 1 326 110 233 207 216 287 135 244 114 122

1 1 - 1 2 272 273 310 210 118 216 265 129 217 131
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Table A4. . (Continued)._________________________________
Pipe diameters (mm) for the design number indicated

Pipe
21 22 23 24 25 26 27 28 29

1 - 2 272 420 307 445 227 439 238 416 186

2 - 3 236 398 277 425 181 106 113 109 118

1 - 4 385 226 358 180 413 178 412 225 438

2 - 5 114 109 113 108 116 420 197 394 117

3 - 6 201 380 249 408 123 180 181 177 179

4 - 7 369 197 339 140 397 137 396 197 423

5 - 8 154 175 161 168 151 404 151 376 150

6 - 9 165 367 226 396 148 231 233 231 231

7 -  10 343 125 311 181 374 163 372 123 401

8 -  11 232 262 242 250 225 379 138 349 220

9 -  12 171 336 141 368 243 289 291 290 289

1 0 -1 1 328 124 294 225 361 199 358 106 389

1 1 - 1 2 211 317 118 353 268 310 312 311 310



Table A4.2. Pipe diameters for the three-loop designs in the flow direction analysis

Pipe
Pipe diameters (mm) for the design number indicated

1 2 3 4 5 6 7 8 9 10

1 - 2 253 270 374 283 387 301 277 239 410 268

1 - 4 388 385 302 380 281 371 356 397 252 387

2 - 3 234 252 362 266 375 285 260 219 398 252

3 - 6 197 218 341 235 356 257 229 179 380 220

4 - 5 230 247 249 332 234 332 252 212 180 170

4 - 7 310 292 146 167 123 139 244 331 152 339

5 - 8 194 214 216 310 198 310 222 174 121 114

6 - 9 158 185 325 207 342 232 201 130 366 189

7 -  10 221 162 252 211 176 136 100 266 223 299

9 -  12 176 246 173 220 242 272 325 140 322 208

1 0 -  11 194 114 209 166 118 155 207 244 262 280

7 - 8 187 212 266 204 223 162 296 161 203 100

8 - 9 211 248 239 196 208 232 325 169 104 196

1 1 - 1 2 109 204 119 170 212 241 291 199 301 243

Table A4.2. (Continued).

Pipe
Pipe diameters (mm) for the design number indicated

11 12 13 14 15 16 17 18 19 20 21

1 - 2 322 463 195 412 141 199 308 330 336 198 356
1 - 4 346 130 420 247 447 414 348 322 323 418 295
2 - 3 307 454 171 400 100 175 294 316 323 175 344

3 - 6 281 439 100 382 210 109 268 293 300 108 323
4 - 5 344 197 228 113 244 253 178 100 180 273 100

4 - 7 100 192 351 200 374 327 290 312 258 317 283

5 - 8 321 251 193 195 212 222 127 179 129 244 176
6 - 9 259 428 181 368 254 144 248 274 282 133 307

7 -  10 203 149 282 187 299 222 236 239 191 169 190
9 -  12 323 281 175 309 204 149 130 119 207 223 203

1 0 -  11 253 210 261 239 279 195 209 213 152 127 149
7 - 8 103 114 178 239 197 216 115 162 119 243 170

8 - 9 269 311 206 144 239 261 139 196 126 299 187

1 1 - 1 2 300 258 220 286 241 116 139 142 158 180 158
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Table A4.3. Pipe diameters for the six-loop designs in the flow direction analysis.
Pipe Pipe diameters (mm) for the design number indicated

1 2 3 4 5 6 7 8 9 10

1 - 2 302 172 273 257 275 282 296 414 342 344
1 - 4 361 435 374 395 363 366 370 232 332 334
2 - 3 192 252 100 195 152 191 179 197 289 195
2 - 5 228 214 262 153 221 199 227 363 172 281
4 - 7 275 290 278 358 289 303 290 345 270 150
3 - 6 138 209 144 143 100 138 121 151 259 143
5 - 8 239 190 244 180 298 176 251 161 291 334
6 - 9 182 208 159 239 135 182 140 161 105 190

7 -  10 169 175 171 184 174 248 189 198 169 233
8 - 1 1 184 169 184 137 196 231 236 177 202 133
9 -  12 162 167 153 176 131 233 173 153 151 147
4 - 5 226 324 245 146 211 195 222 284 177 284
5 - 6 175 127 234 235 100 176 146 135 212 175
7 - 8 179 200 182 287 198 128 183 255 171 244

00 1 \o
!

178 157 188 114 257 279 125 193 221 145

10 -1 1 119 132 123 147 127 225 148 155 116 193
11 - 12 135 131 140 115 156 100 225 152 151 154

Table A4.3. (Continued).

Pipe
Pipe diameters (mm) for the design number indicated

11 12 13 14 15 16 17 18 19 20

1 - 2 331 308 313 310 207 226 268 303 282 337
1 - 4 346 342 357 326 414 372 342 347 363 289
2 - 3 234 194 204 205 100 100 100 181 152 184
2 - 5 231 235 232 229 198 340 278 238 228 280
4 - 7 243 236 263 208 372 296 212 242 284 100
3 - 6 194 141 155 159 160 244 162 124 100 129
5 - 8 155 254 231 223 210 368 232 274 299 388
6 - 9 294 187 215 229 227 246 198 144 126 157

7 - 1 0 164 100 143 100 185 175 100 100 148 176
8 -1 1 238 257 112 201 137 194 199 319 127 325
9 -  12 100 169 238 388 168 116 364 163 218 147
4 - 5 236 238 232 237 166 217 258 239 219 335
5 - 6 259 178 197 209 293 158 271 148 100 156
7 - 8 123 238 180 347 305 209 339 259 209 133
8 - 9 226 285 217 373 120 338 371 127 299 114

1 0 -  11 108 167 100 287 149 128 271 180 100 226
11 - 12 181 114 189 336 119 155 312 213 165 198
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Table A 4.3. (Continued).

Pipe
Pipe diameters (mm) for the design number indicated

21 22 23 24 25

1 - 2 306 228 273 304 308
1 - 4 297 345 358 294 344
2 - 3 100 100 100 100 223
2 - 5 317 366 275 314 207
4 - 7 100 253 243 100 259
3 - 6 165 256 160 163 182
5 - 8 404 401 279 389 106
6 - 9 126 258 114 178 273

7 -  10 188 100 100 189 259
8 -1 1 338 295 325 299 113
9 - 1 2 153 130 169 158 156
4 - 5 363 230 256 365 213
5 - 6 231 165 221 259 242
7 - 8 140 297 265 141 100
8 - 9 120 356 133 169 158

10- 11 239 196 184 241 230
11 - 12 200 133 217 100 112
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APPENDIX A5 -  SUMMARY OF THE DDA-BASED RESULTS 

FROM THE INVESTIGATION OF THE POSSIBLE INFLUENCE 

OF COST FUNCTION ON THE ENTROPY-RELIABILITY 

RELATIONSHIP

Figures A5.1 and A5.2 show the DDA analysis results of the possible 

influence of cost function on the relationship between entropy and 

reliability o f water distribution network. The results seem to indicate 

that the entropy-reliability relationship remains strong despite the 

difference in the cost function used. Hence the influence of the cost 

function is negligible. Figure A5.2 also shows that more uniform pipe 

diameters leads to higher value of network reliability, which is as 

expected.
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Figure A5.1. Influence of cost function on the correlation between entropy and

DDA-reliability.

□ DDA, e = 1.0 
o DDA, e = 2.5

o DDA, e = 1.5 
x DDA, e = 3.0
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Figure A5.2. Relationship between coefficient of variation of diameters and DDA- 

reliability for designs generated using different cost functions.
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APPENDIX A6 -  SUMMARY OF THE DDA-BASED RESULTS 

FROM THE STUDY OF THE POSSIBLE INFLUENCE OF 

MODELING ERRORS ON THE ENTROPY-RELIABILITY 

RELATIONSHIP

To investigate the possible influence of modeling errors on the entropy-reliability 

relationship using the DDA method, the designs were first validated by checking the 

surplus or deficit in head at the critical node(s). Figure A6.1 shows the distribution 

of the surplus heads, which seems to follow the normal distribution with the heads at 

the critical nodes for most of the designs being equal or very close to zero. This 

suggests that the accuracy of the resulting designs is acceptable. To check the effect 

of the small differences in head at the critical nodes on the reliability values, the 

performance of designs with an excess or shortfall in capacity was compared to 

slightly adjusted designs, which satisfied the demands exactly. To achieve this, the 

head at the source, for designs with a surplus or deficit in head at the critical node 

was artificially altered so that, at the critical node, the head was precisely equal to 

the desired service head of 30 m. These designs were then re-analysed and their 

reliability values obtained. The results of this analysis are shown in Figure A6.2 in 

which the reliability values before and after the head modification for all the designs 

in this study are plotted against each other. It shows that all the designs have 

virtually identical pairs of reliability values, which indicates that the small 

discrepancies in head are insignificant. Figure A6.3 shows that there is no 

correlation between the DDA-reliability and surplus head, which further suggests 

that the influence of the slight modeling errors on the entropy-reliability relationship 

is insignificant.
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Figure A6.2. DDA-reliability verification.
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APPENDIX A7 -  PERFORMANCE OF DESIGNS WITH EQUAL 

MAXIMUM ENTROPY VALUES -  SUMMARY OF THE DDA- 

BASED STUDY

Figure A7.1 shows the coefficient of variation of the DDA-reliability (CVR) for the 

designs within the Equal Maximum Entropy Groups (EMEGs) compared to four 

possible comparators (Tanyimboh and Sheahan, 2002) -  see Chapter 6. A total of 

137 designs were analysed - 65 designs were taken from Tanyimboh and Sheahan 

(2002) and the rest were generated in the present study and have been previously 

used in the flow directions analysis in Chapter 6. There are 29 EMEGs in total as 

shown in Figure A7.1. The CVR values of the designs within the EMEGs seem to be 

lower than other designs. The weighted average of the CVRs of all the EMEGs is 

also much lower than those of the four comparators. This indicates that the 

similarity in the reliability level of the designs with equal maximum entropy value is 

very high.
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APPENDIX A8 -  SUMMARY OF THE DDA RESULTS OF THE 

HYDRAULIC PREDICTABILITY ANALYSIS OF ENTROPY 

CONSTRAINED DESIGNS OF WATER DISTRIBUTION 

NETWORKS

In the DDA analysis, the notional usable source head was used to measure the network 

performance (Tanyimboh, 1993), i.e. the head at the source that was required to satisfy 
the minimum head requirements at all demand nodes, especially the critical ones. It is 

termed the notional source head since the value is sometimes extremely large and not 

feasible in practice. Another performance measure used in DDA analysis was the total 

dissipated energy by the pipe network given in Equation (5.15).

In pipe failure analysis based on the DDA method, the critical pipe is the pipe which, 

when fails, will give the highest useable source head or cause the network to dissipate the 

highest total energy and the corresponding critical node is the node which has the lowest 

pressure head in the case of the failure of the critical pipe (Tanyimboh, 1993). In fire 

fighting situation, the critical node is the node at which the occurance of a fire fighting 

demand would lead to the highest usable source head or total dissipated energy.

For the two-loop network in Figure 7.1a, the results shown in Tables A8.1 to A8.3 are 

more or less as expected. Pipe 1-3 is the critical pipe in the network since it is connected 

to the source and it lies in the only path supplying the largest demand in the network at 

node 5. At the failure of the critical pipe, it is quite obvious that node 5 is the critical 

node due to its large demand. In fire fighting situation, node 6 is the critical node in the 

network. Under normal condition, node 6 is the terminal node in the network; hence it 

has the lowest residual head. Large increase in demand therefore leads to a huge 

reduction in the pressure head causing the network to suffer greatly. For the network in 

Figure 7.1b, the critical pipe in the network can be either pipe 1-2 or 1-4 due to the 

network symmetry. The results in Table A8.4 support this contention. Also, when the 

critical pipe in the network fails, the critical node is located at node 9, which is as 

expected. In a fire-fighting situation, it seems that the critical node should be at node 9,
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i.e. the terminal node. However, for a replacement fire flow, the increase from the 

normal demand of 62.5 1/s to the fire-fighting demand of 250 1/s at node 9 is less 
compared to the increase from the normal to the fire-fighting demand at any other nodes, 

which is from 20.8 1/s to 250 1/s. This seems to be the reason that the results of the DDA 

analysis in Table A8.5 show that nodes 3 and 7 are more critical than node 9 

(Tanyimboh, 1993). The selection of nodes 3 and 7 as the critical nodes is due to the 

fact that, under normal operating condition, both nodes are the most downstream nodes 

supplied only by a single path. Therefore, the large increase in demand at those nodes 

increases the head losses in the network significantly. When the fire demand is 

superimposed onto the design demand (Table A8.6), the results yielded by the DDA 

analysis are in accordance with the expectation that the critical node is located at node 9. 

The results in all the Tables show that the maximum entropy designs are in general more 

predictable that other designs. Figures A5.1 to A5.6 also show the improvement in the 

network performance of the two networks analysed in this study as their entropy values 
increase.
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Table A8.1. Critical links and nodes for single-link failures for the two-loop network.

Network

entropy

(1)

Assessment criteria

Total usable source head Total dissipated energy

Critical

link

(2)

Next critical 

link

(3)

Critical

node

(4)

Critical

link

(5)

Next critical 

link 

(6)

1.578 1 -3 3 -5 6 1 -3 3 -5

1.600 1-3 3 -5 6 1-3 3 -5

1.700 3 -5 1 -3 5 3 -5 1-3

1.800 1-3 3 -5 6 1-3 3 -5

1.900 1-3 3 -5 5 1-3 3 -5

1.915 1-3 3 -5 5 1 -3 3 -5

From Tanyimboh (1993).

Table A8.2. Critical nodes for nodal fire-fighting demands replacing design demands for
the two-loop network.

Network

entropy

(1)

Assessment criteria

Total usable source head Total dissipated energy

Critical

node

(2)

Next critical 

node 

(3)

Critical

node

(4)

Next critical 

node 

(5)
1.578 2 6 2 6

1.600 2 6 2 6

1.700 2 6 2 6
1.800 6 2 6 2

1.900 6 5 6 2

1.915 6 4 6 2

From Tanyimboh (1993).
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Table A8.3. Critical nodes for superimposed nodal fire-fighting demands for the two-loop
network.

Network

entropy

(1)

Assessment criteria

Total usable source head Total dissipated energy

Critical

node

(2)

Next critical 

node 

(3)

Critical

node

(4)

Next critical 

node

(5)

1.578 2 4 2 4

1.600 2 4 2 4

1.700 4 6 4 6

1.800 6 4 6 4

1.900 6 5 6 5

1.915 6 5 6 5

Table A8.4. Critical links and nodes for single-link failures for the four-loop network.

Network

entropy

(1)

Assessment criteria

Total usable source head Total dissipated energy

Critical

link

(2)

Next critical 

link 

(3)

Critical

node

(4)

Critical

link

(5)

Next critical 

link 

(6)
2.170 1 -4 8 -9 7 1 -4 4 -5

2.500 6 -9 5 -6 9 6 -9 5 -6

2.750 1 - 2, 1 - 4 2 - 3 , 4 - 7 9 1 - 2, 1 - 4 2 - 5 , 4 - 5

2.775 1 - 2, 1 - 4 2 - 3 , 4 - 7 9 1 - 2, 1 - 4 2 - 5 , 4 - 5

2.800 1 - 2, 1 - 4 6 - 9, 8 - 9 9 1 - 2, 1 - 4 2 - 3 , 4 - 7

From Tanyimboh (1993).
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Table A8.5. Critical nodes for nodal fire-fighting demands replacing design demands for
the four-loop network.

Network

entropy

(1)

Assessment criteria

Total usable source head Total dissipated energy

Critical

node

(2)

Next critical 

node

(3)

Critical

node

(4)

r Next critical 

node 

(5)

2.170 3 7 3 7

2.500 7 3 7 3

2.750 3,7 9 3,7 6,8

2.775 3,7 9 3,7 6,8

2.800 3,7 9 3,7 6,8

From Tanyimboh (1993).

Table A8.6. Critical nodes for superimposed nodal fire-fighting demands for the four-
loop network.

Network

entropy

(1)

Assessment criteria

Total usable source head Total dissipated energy

Critical

node

(2)

Next critical 

node

(3)

Critical

node

(4)

Next critical 

node

(5)
2.170 3 7 3 7

2.500 7 3 7 3

2.750 3,7 9 3,7 9

2.775 3,7 9 3,7 9

2.800 9 3,7 9 3,7
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APPENDIX A9 -  SUMMARY OF THE DDA-BASED RESULTS OF 

THE MAXIMUM ENTROPY APPROACH TO THE LAYOUT 

OPTIMIZATION OF WATER DISTRIBUTION NETWORKS

Figures A91 and A9.2 show that the maximum entropy approach manage to identify the 

designs close to the true Pareto optimal set. Although the message depicted by the DDA 

method is not as strong as that by the HDA, the potential of this method in layout 

optimization study is noticeable, which was the basis of the investigations carried out in 

Chapter 7.
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ABSTRACT

Reliability-based optimal design of water distribution systems is computationally a very difficult problem to solve. 
However, it has been known for some time that entropy-based design optimisation approaches offer several 
computational advantages. There is a body of evidence which suggests that entropy is a possible general reliability 
surrogate. The aim of this study was to assess the strength of the relationship between entropy and reliability under 
more general and tightly defined conditions including the influence of pipe flow directions. Minimum cost designs 
were obtained using non-linear programming for a progression o f entropy values and the designs assessed by 
calculating their reliabilities. The results would appear to reinforce the idea that the association between entropy and 
reliability is strong.

Keywords: Information-theoretic entropy, reliability, water distribution systems, statistical correlation, design 
optimisation

INTRODUCTION

Urban water distribution networks are designed to supply water every day and the effects of any interruptions to the 
supply should be minimised. Reliability based performance assessment provides a means of checking that the 
network will have sufficient capacity to at least satisfy the minimum standards following hydraulic and/or 
mechanical failure events or other instances involving the unavailability of components. Obviously, the need to 
safeguard the reliability of supply has to be balanced against the advantages of using available funds economically.

Thus optimal designs of water distribution systems are generally obtained by minimising a cost objective function 
whilst satisfying a range of constraints including the constitutive equations and nodal service pressure constraints. 
Other issues considered may include bounds on velocities and diameters. It is well known that the conventional 
optimum design process inherently reduces the redundancy of the system to the extent that the reliability is probably 
compromised (Templeman, 1982). Several techniques have been used in an attempt to reconcile the conflicting 
goals o f reliability/redundancy and cost minimisation including the specification of minimum pipe flow rates or 
diameters (e.g. Alperovits and Shamir, 1977).

- 1 -



Tanyimboh, Setiadi, Mavrokoukoulaki and Storer DMinUCE London 2002

Unfortunately, accurate and meaningful reliability measures are difficult to calculate (Wagner et al., 1988). The 
difficulties associated with the determination of reliability have led researchers to investigate the possibility of using 
entropy as a surrogate measure for reliability (Awumah et al., 1991; Coelho, 1997). A recent approach that would 
appear to be very promising consists of the addition of an entropy constraint to the basic constraints set, which 
therefore produces entropy-constrained minimum-cost designs (Tanyimboh, 1993). Furthermore, it has recently 
been suggested that minimum-cost maximum-entropy designs of water distribution systems can be used to identify 
good layouts in that designs based on these layouts have the potential to achieve a reasonable compromise between 
reliability and cost (Tanyimboh and Sheahan, in press). Recent studies have addressed issues related to potential 
difficulties arising from the absence of a one-to-one mapping between entropy and reliability due to the invariance 
of the entropy function (Tanyimboh and Sheahan, in press). The reason for this is that, for a given probability 
scheme, the entropy function can distinguish between combinations, but not permutations, of the probabilities 
(Tanyimboh and Sheahan, in press).

Given pipe flow rates the entropy of a water distribution system can be easily calculated (Tanyimboh and 
Templeman, 1993a; Yassin-Kassab et al., 1998). There is a body of evidence which suggests that, for water 
distribution networks, the association between entropy and reliability is strong (Tanyimboh and Templeman, 2000). 
It should, however, be borne in mind that for a given network configuration the entropy value along with the 
reliability and cost depend on the set of pipe flow directions assumed for the design of the network. Due to the 
multiplicity of feasible sets of flow directions associated with any non-dendritic layout, the potential influence of 
flow directions on the relationship between entropy and reliability cannot be ignored. All previous studies involving 
entropy have, however, used a single set of pipe flow directions based implicitly on the shortest path concept. 
Secondly, much of the work on the reliability-related properties of entropy-constrained designs has relied on a range 
of intuitively sensible considerations (Tanyimboh, 1993; Tanyimboh and Templeman, 1993b) to demonstrate that 
reliability generally increases as entropy increases. However, the influence of the entropy level on the reliability of 
designs derived from a single layout has not been investigated using quantified reliability measures.

The aim o f this paper is to demonstrate that, for a specified layout of a water distribution network, the correlation 
between entropy and reliability would appear to be extremely strong. The effects of the choice of flow directions 
have also been investigated and the results would appear to suggest that the correlation seems fairly strong 
irrespective of the choice of flow directions.

INFORMATIONAL ENTROPY CALCULATION

Shannon’s entropy function (Shannon, 1948), which is a measure of the amount of uncertainty in a finite probability 
distribution, is

S /K  = - £ , P j\nPl (1)
(=1

in which S is the entropy; K is an arbitrary positive constant often taken as 1; pi is the probability associated with the 
z'th outcome, i = 1, 2, 3, ..., I; I represents the number of outcomes. For a single probability space the normality 
condition is satisfied automatically, i.e.

Z * - i (2)
/=!

The entropy function for water distribution networks is (Tanyimboh, 1993)

s \ J ( }
—  - £ ( 6 ,  /rtln<e, / ? ■ ) - - £ r, (Qj I T j ) ln(gy /T-)+ £ ( i# I T ,) (3)
A  je l N  1  j =1 ^  ie N j J

in which the subscript j represents all nodes including source nodes while J denotes the number of nodes and IN the 
set consisting of source or input nodes. Also, T is the total supply; Tj is the total flow reaching node j, including any 
external inflow; is the flow rate in pipe ij while Nj represents all nodes immediately upstream of and connected to 
node j; Qj is the demand at demand nodes or supply at source nodes. The first term in the large parentheses is zero 
for demand nodes because, for those nodes, the external inflow is zero. Because desired nodal demands and supplies 
are usually specified, network entropy is basically a function of internal pipe flow rates only and can be quickly 
calculated from Eq. (3).

-2-



Tanyimboh, Setiadi, Mavrokoukoulaki and Storer DMinUCE London 2002

OPTIMAL DESIGN OF WATER DISTRIBUTION SYSTEMS USING ENTROPY

This can be summarised in general terms as follows.
Minimise cost:
Cost = / Z W  (4)

ij

Subject to:
h ^ a L ,  ( q , !  C ,,)'■*” / D**’ Vÿ (5)

Y ,h.j= °  v / m
ijel

Y jhu = hp yp  (7)
i jep

Vr (8)

I > ,  = f t  Y/ (9)
i j e U j

A™, > D tJ >  D V i j  (10)
S I K > S „ (11)
In the above problem e = constant. This user-specified cost exponent is thought to have a range of 1.0 to 2.5 
(Fujiwara and Khang, 1990). The cost coefficient y, whose value depends on a range of factors, is specified by the 
user. The parameters C,j, Dy, hy, Ly and q :j are the roughness coefficient, diameter, headloss, length and flow rate,

respectively, for pipe ij; Qj = inflow or outflow at node j; IJj represents pipes incident on node j; p (p = 1, 2, ...) 
represents the pth path having a known value of headloss, hp; 1 (1 = 1, 2, ...) represents the /th loop; t (t = 1,2, ...) 
represents a path from a specified source to a terminal node t, i.e. a node with no other nodes downstream of it; Hs = 
head at a specified source; Hmint= minimum allowable head at terminal node t; K = arbitrary constant; S = entropy; 
Sm = desired entropy value; Dmjn = minimum allowable pipe diameter; Dmax = maximum pipe diameter. Equations (5- 
7, 9) are the constitutive equations while Eq. (8) guarantees the nodal minimum service pressures. Equation (11) 
ensures the entropy of the network is equal to the specified value, Sm.

RELIABILITY CALCULATION

Assuming a constant demand value, the reliability of a water distribution system can be taken as

R = -
T

f  \M M-1
p(0)T  (0) + ^  p(m)T (m) + ^  p(m, ri)T (m, ri)-1—

V
m=1 m=1

i
1+ -
2

M U-1
1 -  p(0) -  Y^pim) -  Y^pim, n) -  •

A

m=1 m=1
(12)

V Vwwn J
where R is the system reliability; p(0) is the probability that no pipe is unavailable; p(m) is the probability that only 
pipe m is unavailable; p(m, n) is the probability that only pipes m and n are unavailable. Similarly, T(0), T(m) and 
T(m, n) are the respective total flows supplied with no pipes unavailable, only pipe m unavailable, and only pipes m 
and n unavailable. The range of the summations involving two simultaneously unavailable pipes emphasises that all 
permutations o f any given combination of pipes represent a single operating condition. Finally, M stands for the 
number o f pipes while T represents the total demand. A derivation of the foregoing reliability formula, which 
corresponds to the time-averaged value of the ratio of the flow delivered to the flow required, is contained in 
Tanyimboh and Sheahan (in press).
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STRENGTH OF THE ENTROPY-RELIABILITY RELATIONSHIP

This aspect was studied using the network of Figure 1. The water level at the source is 100m while demand nodes 
have elevations of 0m and required service heads of 30m. All pipes are 1000m long with a Hazen-Williams 
coefficient o f 130. Pipe breakage rates were calculated using a formula from Cullinane et al. (1992). The 
performance of the WDS with the broken pipes isolated was simulated using EPANET as described in Tanyimboh 
et al. (2001). Figure 2 shows that the relationship is very strong. The influence of the cost function exponent e is also 
shown in Figure 2. The y and e values used were 800 and 1.5; 1600 and 2.0, respectively. For e = 1.5 the rank 
correlation coefficient is 0.992 and for e = 2.0 the value is 0.991. The diameters of the individual designs were 
compared as shown in Figure 3 using the standard deviation. This is considered reasonable for the present study 
because the pipes have the same length. It is clear from Figure 3 that the pipe diameters become more uniform as the 
entropy value increases. It can also be seen that higher values of the cost function exponent e are associated with 
more uniform pipe sizes.

9 P
4 1 . 7

2 7 . 8

5 5 . 5

2 7 . 8

2 7 . 8

4 4 4 . 5

[Source)

4 1 . 7

9 P

4 1 . 7

5 5 . 5 5 5 . 5

4 1 . 7 2 7 . 8

Figure 1. Network of supply and demand 
nodes with all demands in litres per 

second

o
S3
oU

Q.Ohc

¿A  *9*

1.5 <

HLJ * .......... •’.........*••••
o ')9v>w o 01*986

Cost ft’ «> 2) 
lirnsrpy ie "• 2)

k <5o$i ( e 1.5)
► l-nftopy (c  ) .5 )

i i .w  o t > 9 9 9 . :

Reliability

Figure 2. Plots of entropy & cost vs reliability

95 

90  •
O
Co
cQ t_•r « so
il) 2a b 75 '

T 3  - S  70 ■

•Ij Q «5 ■
§  60  ■ 

5 5  55 ■

■ s • i
■ ■ * •

•  e =  1.5 

■  e = 2

1 a • • _■ ■ l •
■ a •  

a •

2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2

Entropy

Figure 3. Plots of standard deviation of 
diameters vs entropy

INFLUENCE OF FLOW DIRECTIONS

The entropy of a WDS depends on the pipe flow rates which, in turn, obviously depend on the flow directions. To 
assess the influence of flow directions on the relationship between entropy and reliability, maximum entropy designs 
were generated for the flow directions shown in Figure 4 using a cost function exponent e of 1.5 (as in Tanyimboh 
and Sheahan, in press). The results were assessed by combining the designs obtained with maximum entropy 
designs for the full range of layouts for the network of Figure 1 from Tanyimboh and Sheahan (in press). The flow 
directions in Tanyimboh and Sheahan (in press) were based on the shortest path concept whereas those in Figure 4 
are more arbitrary. Figure 5 shows that the new designs generally lie in the expected region o f the graph. Tanyimboh 
and Sheahan (in press) obtained a rank correlation coefficient of 0.7. Adding the new designs (based on Figure 4)
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Figure 4. Diagram of design flow directions for the six-loop layout
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leads to a correlation coefficient of 0.791. Therefore, it would appear that pipe flow directions do not impact the 
relationship between entropy and reliability in a dramatic way. This is a particularly reassuring result. It is self- 
evident from Figure 5 that the most reliable design is relatively very expensive. Referring to Figure 4, this design 
has a single terminal node at Node 8 and the least direct flow directions. It has much larger pipe diameters than the 
rest of the designs, which would account for the large increase in cost. Taking all the costs together, finally, there 
appears to be a strong diminishing returns effect (cost vs reliability) associated with the most reliable and costly 
design.

CONCLUSIONS

On a realistic scale, the calculation of reliability remains formidable for water distribution systems. By contrast, 
flow entropy is easy to compute. While the entropy function is not a direct substitute for reliability, it seems 
somehow to capture its essential properties. In this paper, examples have been used to test the strength of the 
relationship between entropy and reliability for a range of conditions. For the network in this study, the main 
conclusions are as follows: 1. With an entropy constraint, the higher the marginal cost of larger diameter pipes, the 
more uniform the pipe diameters. 2. The higher the entropy value, the more uniform the pipe diameters. 3. In 
general, reliability increases as entropy increases, the correlation being generally strong.
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Abstract

This paper concerns an investigation of the possible influence of apparent network 
redundancy or insufficient capacity on the relationship between the entropy and 
reliability of water distribution systems. Pressure-driven simulation was used to 
analyse entropy-constrained minimum-cost designs and the results are compared 
with those obtained previously using demand-driven analysis. The study shows that 
the entropy-reliability relationship is much stronger when pressure-dependent 
analysis is used. Apparent network redundancy also appears not to have a 
significant effect on the entropy-reliability relationship. The redundancy 
investigated consists of a slight over- or under-capacity due to minor differences 
between the design optimisation model and subsequent simulation models.

Keywords: entropy, reliability, water distribution systems, pressure-dependent 
analysis, demand-driven analysis.

1 Introduction

Entropy as a surrogate measure for the reliability of water distribution systems 
(WDS) has been investigated for some time. It has the computational advantages of 
being easy to calculate, minimal data requirements and ease of incorporation into 
optimisation procedures. Reliability, on the other hand, is very computationally 
demanding. Based on this argument, the possible use of entropy as an indicator of 
reliability is very desirable.

To analyse the hydraulic behaviour of water distribution systems, most of the 
previous studies used demand-driven simulation models. The simulation assumes 
that demands in the network are fully satisfied regardless of the pressure in the 
system. The models give acceptable results when the systems are subject to normal 
operating conditions. However, WDSs are subject to component failures or very 
large demands, which may result in a reduction of the pressure in the system. When
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this happens, demand-driven analysis often gives results that indicate that the system 
is still supplying the full demand at lower, and sometimes, negative pressures. The 
validity of such results is obviously questionable. This study, however, uses head- 
dependent analysis (HDA) as well as demand-driven analysis (DDA). The pressure- 
dependent simulation approach has been suggested to provide more realistic results 
when WDSs operate under subnormal pressure conditions [1].

In addition to the use of pressure-dependent modelling, this is the biggest study 
of the relationship between entropy and reliability. The analyses involved the 
possible influence of redundancy or insufficient capacity, in the form of a small 
surplus or deficit in head at the critical node, on the relationship between entropy 
and reliability. This was done by comparing the performance of network designs 
with a small excess or shortfall in capacity with the same designs adjusted to satisfy 
the demands exactly. The possible effect of the cost objective function was also 
investigated. Different cost functions will produce different designs. These 
differences may have an effect on the entropy-reliability relationship. Another 
aspect was the influence of layouts on the relationship between entropy and 
reliability. Since the entropy of a WDS is a function of pipe flow rates, different 
layouts of the distribution system may have a significant impact on the relationship 
between entropy and reliability.

Overall, the results from the present study appear to strengthen the notion that 
the relationship between entropy and reliability is strong, with HDA generally 
yielding much better correlation than DDA.

2 Informational Entropy

Entropy, in the context of information theory, was first introduced by Shannon [2]. 
He developed a way of measuring the levels of information or uncertainty in 
different probability distributions. His entropy function can be written as

S//C = -2>,ln/>, (1)

in which S is the entropy, K is an arbitrary positive constant often taken as 1, pi is 
the probability associated with the zth outcome.

The values of entropy in this paper were calculated using the entropy function 
for WDS developed by Tanyimboh [3]

^  = - Y J {QjlT)\n{QjlT) - \ : f j TJ\ ( Q j l Tj )\n{QjlTj ) + Yj (qijITj )\n{qj lTJ)
je/N * j - 1 l /€/*/; j

(2)

in which the subscript j represents all nodes including source nodes while J denotes 
the number of nodes and I N  the set consisting of source or input nodes. Also, T  is 
the total supply, Tj is the total flow reaching node j, including any external inflow 
while N j  represents all nodes immediately upstream of and connected to node j. Q j is
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the demand at demand nodes or supply at source nodes and qy is the flow rate in pipe 
ij. The first term in the large parentheses is zero for demand nodes since there is no 
external inflow at these nodes. The entropy of a WDS is basically a function of 
internal pipe flow rates only since the desired nodal demands and supplies are 
usually specified.

3 Optimal Design of Water Distribution Systems

The design optimisation was carried out using a Fortran program [3] with the cost as 
the objective function to be minimized. The cost function used in this study is

Cost = y^LjD-j (3)
•j

in which e is the cost exponent that is specified by the user and thought to have a 
range of 1.0 to 2.5 [4]. The cost coefficient y, whose value depends on a range of 
factors, is also specified by the user. Ly and Dy are the length and diameter of pipe 
ij, respectively.

In the optimisation process, the program minimized the cost subject to several 
sets of constraints. These constraints consist of pipe head loss, continuity, 
conservation of energy and entropy equations. Lower and upper limits of the pipe 
diameter and pipe flow non-negativity constraints were also used.

3.1 Pipe Head Loss Equation

When water flows through pipes it experiences loss of energy due to friction at the 
pipe walls. This loss of energy is often called head loss, which is the energy loss per 
unit weight. Head loss is also caused by pipe bends, fittings and changes in cross- 
sectional area. The pipe head loss in this study was calculated using the Hazen- 
Williams empirical formula given below.

h ^ a L ^ I C ^ I D ^  Vij (4)

For the above equation hy is the head loss along pipe ij and a is a constant, equal to 
10.67 in S.I. units. The parameters Ly, qy, Cy and Dy are the length, flow rate, 
roughness coefficient and diameter, respectively, for pipe ij. Minor losses of energy, 
for example due to fittings, were considered negligible in this study.

3.2 Continuity Equation

Continuity states that all the flows coming into a point must be equal to all the flows 
going out of that point. Therefore, the continuity equation can be written as

Vy (5)
jelJj
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in which the summation includes all the flows upstream and downstream of the 
node considered, indicated by IJj, and Q j represents the external inflow or outflow at 
node j.

3.3 Conservation of Energy Equations

Two sets of equations for conservation of energy were considered in this study. 
They are the loop and path equations. The loop equation requires the net head loss 
around each loop in a pipe network to be zero. Therefore, the equation can be 
written as

J > i ,=  0 V/ (6)
ijel

in which 1 (1 = 1, 2,.. .) represents the /th loop.
The path equation ensures that the total head loss along any path is equal to the 

difference in head between the end points of that path. The equation may therefore 
be written as

Y j hu = hP y p  (7)
ije p

where p (p = 1,2, ...) represents the pth path having a known value of head loss, hp.
Another equation is used to ensure that nodal service pressures are satisfactory. 

This equation is given below.

2 > , , < V i  (8)
ijet

In this equation t (t = 1,2, ...) represents a path from a specified source to a terminal 
node t, i.e. a node with no other nodes downstream of it, Hs is the head at a specified 
source and Hmjnj, is the minimum allowable head at terminal node t.

3.4 Entropy Constraint

As mentioned earlier, one of the advantages of entropy is that it can be incorporated 
into the optimisation procedure as one of the constraints. This entropy constraint 
takes the form of

S / K > S min (9)

in which K is an arbitrary constant, S is the entropy and Smin is the minimum desired 
entropy value. This equation will ensure that the entropy of the network does not 
fall below the specified value.

Apart from the constraints mentioned above, the diameter of the pipes should not 
lie outside the predetermined range. Within this range the value of the diameter is

4



considered continuous to simplify the optimisation. This diameter restriction takes 
the following form

D > D > D  V/7 (10)• ^ m a x  *“  j  m in J v 7

in which Dy is the diameter of pipe ij while Dmax and Dmjn are the maximum and 
minimum allowable pipe diameters, respectively.

4 Network Analysis

Two methods of network analysis were used in this study for comparison purposes, 
the first being Demand Driven Analysis (DDA) and the other Head Dependent 
Analysis (HDA).

4.1 Demand Driven Analysis (DDA)
This method of network analysis has been widely used in the water industry for 
many years. Unfortunately, there are a few disadvantages arising from the use of 
this method. DDA does not take into consideration the relationship between the 
nodal outflows and the pressure within the system. It assumes that the demands of 
the system are fully satisfied regardless of the pressure in the system. In 
consequence, when the pressure drops below the required level, network analysts 
would have no information on how much water would be delivered by the system 
under the available pressure regime. In this situation some customers would receive 
reduced supplies and, in the worst scenario, they might not receive any supply at all.

The drop in pressure in the distribution system can be triggered by many factors. 
Excessive abstraction at one demand node, for example in a fire fighting situation, 
may cause the pressure in the neighbouring abstraction points to drop below the 
required level. The analysis using this method was carried out using a computer 
software called EPANET, which is freely available on the World Wide Web and is 
provided by the American Environmental Protection Agency.

4.2 Head Dependent Analysis (HDA)

Pressure dependent analysis has long been suggested to surpass demand driven 
analysis, particularly for networks under subnormal operating conditions. It is well 
known that outflows from a WDS are dependent upon the pressure within that 
system and therefore the DDA assumption that demands are always satisfied 
regardless of the pressure in the system is flawed. HDA takes into consideration the 
pressure dependency of outflows, and in consequence, the results are more realistic. 
Nevertheless, this method is not yet commonly used in the water industry since more 
research and verification of the true relationship between network pressure and 
nodal outflows are still necessary.

Some researchers, however, have proposed several assumed head-outflow 
relationships. For example, Wagner et al. [5] suggested the following function
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in which Qjavl and Q/eq are the actual outflow that can be delivered by the system 
and the required outflow or demand, respectively. Hj is the actual head at node j, 
Hjmm is the minimum nodal head at node j, below which there would be no outflow 
and Hjdes is the desired head at node j, above which the outflow would be equal to 
the demand. Values of the exponent parameter, nj, are thought to lie between 1.5 
and 2 [6]. With regard to Equation (lib), Qjavl is set to zero if Hj is less than Hjmm or 
equal to Qjreq if Hj reaches Hjdes, as shown in Equations (11a) and (11c), respectively.

The HDA in this study was carried out using a computer program called 
PRAAWDS, which stands for Program for the Realistic Analysis of the Availability 
of Water in Distribution Systems [1]. This program calculates the actual flow 
delivered under normal and subnormal pressure conditions.

5 Reliability

In this paper the reliability is defined as the time-averaged value of the ratio of the 
flow delivered to the flow required [3]. By assuming a constant demand value, the 
reliability of a water distribution system can be written as

R= — 
T

1
+ -  

2

M M-1
p(0)T (0) + ^  p(m)T (m) + ^  p(m, n)T (m, n)

f

r i
v

f
■ 1
V

+ •
m=1 m=1

M M-\

m=\ m=\Vn>m
(12)

in which R is the system reliability, p(0) is the probability that no pipe is 
unavailable, p(m) is the probability that only pipe m is unavailable and p(m, n) is the 
probability that only pipes m and n are unavailable. Similarly, T(0), T(m) and T(m, 
n) are the respective total flows supplied with no pipes unavailable, only pipe m 
unavailable, and only pipes m and n unavailable. Finally, M stands for the number
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of pipes while T represents the total demand. A derivation of the above reliability 
formula is contained in Tanyimboh and Sheahan [7]. For DDA, T(m) and T(m,n) 
were calculated using the source head method [8].

6 Results and Discussion

The investigation was carried out using the network of Figure 1. The source has 
piezometric level of 100m while demand nodes have elevations of 0m. The desired 
nodal service head for fully satisfactory performance is 30m and the nodal head 
corresponding to zero nodal outflow is 0m. All pipes are 1000m long with a Hazen- 
Williams coefficient of 130. The value of nj used in Equation (11) is 2.

4 4 4 . 5  

j  (Source)

4 1 . 7

2 7 . 8

5 5 . 5

n>-------- 00

2 7 . 8  4 1 . 7 2 7 . 8

Figure 1: Network of supply and demand nodes with all demands in litre per second

Different programs were used in the optimisation procedure in the design 
process and in the subsequent hydraulic simulations of the designs. Round-off 
errors, especially in the diameters, produced small surpluses or deficits in head at the 
critical nodes. Hayuti [11] suggested that redundancy or insufficient capacity in the 
WDS, in the form of the surplus or deficit in head at the critical node, might have a 
bearing on the observed relationship between entropy and reliability given the very 
small differences between the reliability values.

In this study, the performance of designs with an excess or shortfall in capacity 
was compared to slightly adjusted designs which satisfied the demands exactly. The 
head at the source, for all designs with a surplus or deficit in head at the critical node 
was altered so that, at the critical node, the head was precisely equal to the desired 
service head. These designs were then re-analysed and their reliability values 
obtained. The results of this analysis are shown in Figure 2 in which the reliability
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values before and after the head modification for all the designs in this study are 
plotted against each other. It shows that all the designs have virtually identical pairs 
of reliability values.
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Reliability before head modification

Figure 2: DDA-reliability verification for all the designs in the present study

Figures 3 and 4 show plots of reliability against surplus head for DDA and 
F1DA, respectively, for all the designs. They confirm that the correlation between 
reliability and the surplus head is insignificant. Figure 5 also shows that any 
correlation between entropy and the surplus head is negligible. The results in 
Figures 2 to 5 suggest that the influence of the small surplus or deficit in head at the 
critical node upon the entropy-reliability relationship is negligible.
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Figure 3: DDA-reliability vs surplus head at the critical node
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Figure 4: HDA-reliability vs surplus head at the critical node
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Figure 5: Entropy vs surplus head at the critical node

The effects of different layouts have also been investigated in this study. The 
entropy of a WDS is a function of the pipe flow rates and the pipe flow rates are 
affected by the layout of the network. While the effects of layouts on the 
relationship between entropy and reliability have been investigated using DDA [7, 
9], the present study investigated this issue using pressure dependent analysis. 
Figure 6 shows plots of entropy and cost against reliability for the maximum- 
entropy minimum-cost designs from Reference [9]. It appears that the relationship 
between entropy and reliability is a great deal stronger when analysed by the HDA 
method.
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Figure 6: The effect of layout on the relationship between entropy and reliability
with values of y = 800 and e = 1.5

Another issue investigated in this study concerns the influence of the cost 
objective function of Equation (3) on entropy-reliability relationship. The 43 
entropy-constrained minimum-cost designs were taken from Reference [10]. These 
designs, all of which are based on the six-loop 17-pipe layout in Figure 1, range 
from the smallest to the largest possible entropy values. Based on Equation (3), the 
first twenty-two designs were generated using values of y and e of 800 and 1.5, 
respectively. The results of these designs can be seen in Figure 7 below. The 
remaining designs, the results of which are shown in Figure 8, were generated using 
y = 1600 and e = 2.0.

Looking at the two graphs of entropy against reliability, it is evident that the 
relationship between entropy and reliability remains strong despite the differences in 
the values of y and e. The two plots of entropy against reliability follow a very 
similar pattern and, again, HDA shows a stronger relationship than DDA. It should 
be noted that the costs have been plotted twice in Figures 6 to 9, even though the 
two cost data sets are identical in each case, for completeness and ease of reference.
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Figure 7: Plots of entropy vs reliability for y = 800 and e = 1.5
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Figure 8: Plots of entropy vs reliability for y = 1600 and e = 2.0

Overall, the comparison between HDA and DDA can be clearly observed in 
Figure 9, in which the results for all the designs are shown. It confirms that the 
correlation between entropy and reliability is much stronger when the analysis is 
done using HDA.

wOu
•a
a.okH
"3w

Reliability

Figure 9: Plots of entropy vs reliability for all the entropy-constrained minimum-cost
designs in the present study

7 Conclusions

For the network investigated, there seems to be a strong relationship between 
entropy and reliability. This relationship is stronger when the analysis is carried out 
using HDA in comparison to DDA. Redundancy or insufficient capacity in the form 
of small surpluses or deficits in head at the critical nodes have no real influence on 
the entropy-reliability relationship.
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Abstract

It would appear that the entropy-constrained approach to the design optimization of 
water distribution systems has the potential to generate designs which have a high 
degree of hydraulic predictability in the sense that, in general, the higher the entropy 
value, the greater the likelihood that the hydraulic properties of the design achieved 
will be intuitively obvious. This point is illustrated in this paper using results for two 
networks. Using pressure-dependent modelling to simulate critical operating 
conditions including fire-fighting and pipe failure, the key nodes and distribution 
mains are identified. The criteria used include the nodal hydraulic reliability and 
pressure-dependent rate of flow delivery; and the deterioration in the hydraulic 
performance of the network. A new hydraulic performance indicator has been 
introduced, based on the rate at which a water distribution network dissipates energy 
relative to the amount of water supplied.

Keywords: water distribution networks, uncertainty, informational entropy, design 
optimisation, hydraulic reliability, fire-fighting, pressure-dependent modelling, 
energy dissipation.

1 Introduction

There is a considerable amount of uncertainty associated with the design and 
operation of water distribution systems. These include: long-term projections of the 
growth in demand; the spatial distribution of the nodal demands coupled with 
diurnal and seasonal consumption patterns; variations in electricity/energy tariffs; 
bursts and component failures; possible changes in pipe diameters and roughness 
with age. In view of the operational uncertainties, evidence is provided herein 
which shows that informational entropy, which is a measure of uncertainty, can be 
used to help control the location of critical pipes and nodes in a water distribution 
system. Following a pipe failure/removal or large localised increase in demand,
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flows in pipe networks are rerouted in complex ways which are generally difficult to 
predict prior to a full simulation of the network concerned.

Results are presented in this paper which suggest that if the entropy is sufficiently 
large, the hydraulic characteristics of the network with regard to flow rerouting due 
to link failures or increased network flows may be less unpredictable. It appears, 
also, that entropy can be used to force the critical nodes for fire fighting flows to be 
near the design terminal nodes of a network or other intuitively more obvious 
locations and, in consequence, to reduce the need to explicitly consider fire fighting 
flows at all nodes of a network at the design stage. The ability to predetermine the 
most likely critical nodes and links of a water distribution system may find 
applications in certain reliability analysis and optimal design formulations [1]. The 
determination of the critical links and nodes is based on several measures including 
the actual amount of water supplied under critical operating conditions, hydraulic 
reliability and energy dissipation rate. The hydraulic simulations of the sample 
networks used were carried out using pressure-dependent modelling.

2 Performance Assessment

2.1 Energy Dissipation

Based on a suggestion that the efficiency of a pipe can be gauged from the rate at 
which the pipe dissipates energy [2], Tanyimboh and Templeman [3] compared 
alternative designs for a pipe network using the respective energy dissipation rates 
of the designs. Tanyimboh and Templeman [3] stressed the need for caution when 
assessing water distribution systems using the rate of energy dissipation. Their 
approach was based on demand-driven simulation with a stipulation that all 
demands be fully satisfied.

Herein, consistency in the comparisons is achieved using a new measure, the rate 
of energy dissipation per unit flow delivered by the network under stressed 
conditions. It is worth recalling that in a head-dependent modelling environment [4, 
5], alternative designs which deliver the same amount of water under normal 
operating conditions may supply different quantities of water under pressure- 
deficient conditions. The energy dissipation rate per unit flow rate of the water, 
taken over the entire water distribution network, would appear to represent a 
measure of hydraulic performance. Thus, for the same rate of water supply, the 
amount of energy dissipated would increase as the stress on the network increases. 
The equation for the rate of energy dissipation, E, is

E = pgY.Q,K  0 )
je lJ

in which p is the density of water; g is the acceleration due to gravity; Qy and hy are 
flow rate and head loss in pipe ij, respectively; IJ represents the links of the 
network.
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2.2 Reliability and Pressure Dependent Analysis

The hydraulic performance of water distribution networks is assessed herein based 
on the amount of water supplied or the demand satisfaction ratio for the network or 
node as appropriate. The amount of water that the network can actually supply as 
opposed to the demand was obtained by modelling the relevant operating conditions 
using the head-dependent analysis approach [4, 5]. Essentially, the system of 
equations for the network can be set up using the flow continuity equations for each 
node, i, as follows

jeN,

(2)

where Qj is the flow in link ij (i.e. pipe, pump or valve), Qt is the head-dependent 
outflow at node i and N, represents all the nodes connected to node i. Hi and Hj are 
the piezometric heads at nodes i and j , respectively. Thus Q, is the actual amount of 
water that the network can supply at node i, which may be less than or equal to the 
demand. Herein the pressure-dependent nodal outflow function proposed by Wagner 
et al. [6] was used. The head-dependent network analysis was carried out using the 
PRAAWDS computer program [4, 5].

The reliability measure used in this research is the time-averaged value of the 
ratio of the flow supplied to the flow required. This reliability measure requires 
head-dependent modelling of the distribution system as described above and pipe 
failure/availability rates for the network. The details of the procedure and relevant 
equations can be found in Tanyimboh [7] and the references therein.

2.3 Informational Entropy

Entropy is a measure of the amount of uncertainty associated with a probability 
scheme. The values of entropy in this paper were calculated as follows [8].

in which the subscript j  represents all nodes including source nodes while J  denotes 
the number of nodes and IN  the set consisting of source or input nodes. Also, T is 
the total supply, 7} is the total flow reaching node j , including any external inflow 
while Nj represents all nodes immediately upstream of and connected to node j . Qj 
is the outflow at demand nodes or supply at source nodes and QtJ is the flow rate in 
pipe ij. The first term in the large parentheses is zero for demand nodes since there 
is no external inflow at these nodes.
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3 Examples, Results and Discussion

3.1 Sample Networks

The demonstration of some of the predictable properties of maximum entropy 
designs of water distribution networks is based on the two sample networks 
considered below. The assessments herein are based on designs which were obtained 
using an entropy-constrained cost minimisation approach which uses the usual 
design constraints for water distribution networks along with a specified minimum 
entropy value for each design. The entropy value of each design is thus equal to the 
specified minimum value. Further details including the pipe diameters can be found 
in Tanyimboh [9]. All pipes are 1000 m long with a Hazen-Williams coefficient of 
130.

PRAAWDS [4, 5] was used to determine the hydraulic performance of the 
designs and the cases corresponding to the unavailability of individual pipes, based 
on pressure-dependent modelling as summarised in Subsection 2.2. All the demand 
nodes of the two samples networks have an elevation of zero. The nodal piezometric 
head below which outflow is zero was taken as zero, this being the elevation of the 
nodes, while the demand is satisfied in full when the residual head reaches 30 m. 
The value of 30 m for the desired residual head was chosen to ensure that the results 
of the present study, which uses pressure-dependent modelling, are comparable to 
Tanyimboh [9]. The comparison, however, is not included in this paper. The 
reliability and other performance indicators used were obtained as described in 
Section 2.

3.2 Critical Operating Conditions

The three critical operating conditions described shortly were used to assess the 
predictability of the hydraulic performance of the designs, on the basis of the 
locations of the critical pipes and nodes. The critical pipe is the pipe the removal of 
which causes the greatest deterioration in the performance of the distribution 
network, as determined by the increase in the energy dissipated (i.e. the greatest 
increase) or the reduction in the amount of water supplied (i.e. the greatest 
reduction). The determination of the critical node is somewhat context dependent. 
For example, for the pipe failure/removal simulations, the critical node is the node 
with the smallest post-failure demand satisfaction ratio. For the fire-fighting 
simulations, the critical node is the node which is least able to cope with the fire
fighting demand.

The critical operating conditions include:

1. The unavailability of each pipe in turn.

2. A large demand of 0.25 m3/s at each node in turn, in place of the normal demand 
at that node, with all other nodal demands at their normal design values. This
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situation would be akin to a fire occurring under a locally ideal (i.e. zero) 
background demand condition.

3. A large demand of 0.25 m3/s at each node in turn, in addition to the normal 
demand at that node, with all other nodal demands at their normal design values. 
This situation would be akin to a fire occurring under a more adverse 
background demand condition.

3.3 Network 1

The layout of the network, with nodal demands, is shown in Figure 1. The 
piezometric head at the source was taken as 50 m to achieve a residual head of 30 m 
at node 6  under normal operating conditions which, therefore, means that the 
demand at each node is fhlly satisfied. Performance indices for the respective 
designs have been summarised graphically in Figures 2 and 3. The difference in cost 
between the least and most expensive designs is 5.2% [9]. The critical nodes and 
links are shown in Tables 1 to 3, with each table corresponding to one of the three 
critical operating conditions mentioned earlier. The performance of the designs 
under the two simulated fire-fighting situations is shown in Figures 4 and 5.

3.3.1 Discussion
Previous research has established that, in general, the hydraulic performance or 
reliability of water distribution systems increases as the entropy increases (e.g. [1 0 ]). 
Tanyimboh and Templeman [3] observed that, as the entropy increased, overall 
system-wide improvements in performance did not in general occur at the expense 
of deteriorations at the micro level. Figure 3 illustrates this property very clearly, 
thanks to the ability to calculate the actual amount of water delivered at each node 
using head-dependent modelling. This paper, however, is primarily concerned with 
the hydraulic predictability of maximum-entropy designs. Figure 3 shows that the 
reliability of Node 2 is low, compared to Node 5, for the design with the smallest 
entropy value. This would appear to be counterintuitive given that Node 2 is close to 
the source. On the other hand, the reliability of Node 2 for the design with the 
maximum entropy value is higher than then rest of the nodes. This would appear to 
suggest that maximum entropy designs are hydraulically more predictable.

The system-wide performance indicators in Figure 2a (average value and worst 
case) are consistent with Figure 3 in that they also show an overall improvement in 
performance. Figure 2a suggests that the marginal increase in the amount of energy 
dissipated for the extra flow delivered is not disproportionate. Turning once more to 
hydraulic predictability and focussing on individual nodes and pipes, the 
reasonableness of the results in Tables 1 to 3 can be explained in general in terms of 
the following considerations.

The criteria for critical nodes include:
1. The distance of the node from the source;
2. The number of paths supplying the node;
3. The normal demand at the node;
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4. The increase in demand at the node during a simulated fire-fighting situation.

The criteria for critical pipes include:
1. The location of the pipe relative to the source;
2. The location of the pipe relative to the major demand nodes;
3. The number of alternative supply pipes incident on the major demand nodes. 

For example, a single pipe supplying a major demand node is likely to be 
more critical than two pipes supplying another node with a similar demand.

It is worth observing that the above-mentioned criteria for the pipes and nodes can 
apply individually or in concert, often in complex ways. In a similar vein, although

'  Source

Figure 1 : Network 1 under normal operating conditions with demands in 1/s
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Figure 2: Total flow supplied and total dissipated energy per unit flow supplied for
single-pipe failures for Network 1
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Figure 3: Hydraulic reliability for Network 1

Assessment
Criteria

Network
Elements

Network Entropy
1.578 1.600 1.700 1.800 1.900 1.915

Total flow 
supplied

Critical link 1-3 1-3 1 -3 1-3 1-3 1-3

Next critical 
link 3 -5 3 -5 3 -5 3 -5 3 -5 3 -5

Critical node 6 6 6 6 5 5

Total energy 
dissipated 

per unit flow 
supplied

Critical link 1 -3 1-3 1-3 1-3 1-3 1-3

Next critical 
link 1 - 2 1 - 2 1 - 2 1 - 2 1 - 2 1 - 2

Critical node 6 6 6 6 5 5

Table 1: Critical links and nodes for Network 1 for single-link failures

the ‘flow delivered’ and ‘energy dissipated’ parameters are not unrelated, the 
properties they measure differ in a subtle way. For example, Table 1 shows that 
there is broad agreement between the two parameters. Where they lead to different 
results, each outcome is in general justifiable. Taking an example from Table 1 and 
looking at Figure 1, it can be seen that Node 5 has the largest demand and is 
supplied by a single path. Node 6 , on the other hand is supplied by three paths. Thus, 
bearing in mind the respective distances from the source, it seems reasonable to 
expect that Node 5 would be a critical node. It can be seen in Table 1 that the
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Assessment
Criteria

Network
Elements

Network Entropy
1.578 1.600 1.700 1.800 1.900 1.915

Total flow 
supplied

Critical
node 2 2 6 6 6 6

Next critical 
node 6 6 2 2 5 4

Total energy 
dissipated per 

unit flow 
supplied

Critical
node 6 6 6 2 6 6

Next critical 
node 4 4 2 6 2 2

Table 2: Critical nodes for Network 1 for nodal fire-fighting demands replacing
normal demands
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o
è
«*■»o
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-o ■ minimum value
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(a)

1.50 1.60 1.70 1.80 1.90 2.00
Entropy

(b)

Figure 4: Total flow supplied and total dissipated energy per unit flow supplied for 
nodal fire-fighting demands replacing normal demands for Network 1

Assessment
Criteria

Network
Elements

Networ c Entropy
1.578 1.600 1.700 1.800 1.900 1.915

Total flow 
supplied

Critical node 2 2 6 6 6 6

Next critical 
node 6 6 4 4 5 5

Total energy 
dissipated per 

unit flow 
supplied

Critical node 5 5 5 5 5 4

Next critical 
node 6 6 6 4 4 5

Table 3: Critical nodes for superimposed nodal fire-fighting demands for Network 1
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Figure 5: Total flow supplied and total dissipated energy per unit flow supplied for 
superimposed fire-fighting demands for Network 1

designs with the highest entropy values have Node 5 as the critical node while the 
rest of the designs do not. This would appear to suggest that maximum entropy 
designs are somewhat more predictable. Unfortunately, for reasons of brevity, a 
comprehensive discussion of each of the tables and graphs of the results is not 
included herein. However, in general they follow a similar pattern and have been 
included for completeness.

3.4 Network 2

The layout of the network is shown in Figure 6 . The piezometric head at the source 
was taken as 53.5 m to achieve a residual head of 30 m at node 9 under normal 
operating conditions which, therefore, means that the demand at each node is fully
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Figure 6 : Network 2 under normal operating conditions with demands in 1/s
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satisfied. Performance indices for the respective designs have been summarised 
graphically in Figures 7 and 8 . The difference in cost between the least and most 
expensive designs is 5.4% [9]. The critical nodes and links are shown in Tables 4 to 
6 , with each table corresponding to one of the three critical operating conditions 
mentioned previously in Subsection 3.2. The performance of the designs under the 
two simulated fire-fighting situations is shown in Figures 9 and 10. Whereas the 
designs for Network 1 were generated in a manner such that a more or less uniform 
coverage of the entropy range was achieved, the entropy values used for the designs 
of Network 2 were selected to achieve a greater coverage of the upper end of the 
entropy range so as to provide a comparison of near-maximum entropy designs [9].
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Figure 7: Total flow supplied and total dissipated energy per unit flow supplied for
single-link failures for Network 2
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Assessment
Criteria

Network
Elements

Network Entropy
2.170 2.500 2.750 2.775 2.800

Total flow 
supplied

Critical link 1 -4 1 - 2
1 - 2  

& 1 -4
1 - 2  

& 1 -4
1 - 2  

& 1 -4
Next critical 

link 4 -5 5 -6 2 -3  
& 4 - 7

2 -5  
& 4 - 5

2 -3  
& 4 - 7

Critical node 7 9 9 9 9

Total energy 
dissipated 

per unit flow 
supplied

Critical link 1 -4 1 - 2
1 - 2  

& 1 -4
1 - 2  1 

& 1 -4
1 - 2  

& 1 -4
Next critical 

link 4 -5 1 -4 2 -3  
& 4 - 7

2 -5  
& 4 - 5

2 -3  
& 4 - 7

Critical node 7 9 9 9 9

Table 4: Critical links and nodes for single-link failures for Network 2

Entropy Entropy

(a) (b)

Figure 9: Total flow supplied and total dissipated energy per unit flow supplied for 
fire-fighting demands replacing normal demands for Network 2

3.4.1 Discussion
Network 2 has been included herein to show that the hydraulic predictability 
properties observed in Network 1 are not the result of some peculiarities of Network 
1. This discussion of Network 2 is short as the findings are generally similar to 
Network 1. For example, with reference to Figure 8 , it can be seen that the reliability 
of Node 3 for the design with the smallest entropy value is low relative to its 
location with respect to the source. On the other hand, for the maximum entropy 
design, the rank order of the nodal reliabilities (largest to smallest) is as follows: 
Nodes 2 and 4; Node 5; Nodes 7 and 3; Nodes 6  and 8 ; Node 9. This order mirrors 
the respective distances of the nodes from the source exactly, except that Node 5 has 
twice as many supply paths as Nodes 3 and 7 and so Node 5 has a higher reliability
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Assessment
Criteria

Network
Element

Network Entropy
2.170 2.500 2.750 2.775 2.800

Total flow 
supplied

Critical node 3 7 6 , 8 3,7 6 , 8

Next critical 
node 6 8 9 6 , 8 3,7

Total energy 
dissipated 

per unit flow 
supplied

Critical node 8 6 5 6 , 8 6 , 8

Next critical 
node 5 5 6 , 8 5 5

Table 5: Critical nodes for fire-fighting demands replacing normal demands for
Network 2

Assessment
Criteria

Network
Element

Network Entropy
2.170 2.500 2.750 2.775 2.800

Total flow 
supplied

Critical node 3 7 9 9 9

Next critical 
node 6 8 6 , 8 3,7 6 , 8

Total energy 
dissipated 

per unit flow 
supplied

Critical node 8 6 5 6 , 8 6 , 8

Next critical 
node 5 5 6 , 8 5 5

Table 6 : Critical nodes for superimposed fire-fighting demands for Network 2
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Figure 10: Total flow supplied and total dissipated energy per unit flow supplied for 
superimposed fire-fighting demands for Network 2
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than Nodes 3 and 7. It may be noted that Node 9 has twice as many supply paths as 
Nodes 6  and 8 . However, in addition to the greater distance of Node 9 from the 
source, its demand is three times larger. Once again these results, i.e. Figure 8 , 
would appear to suggest that maximum entropy designs are hydraulically more 
predictable.

4 Conclusions

It has been shown that the entropy-constrained approach to the design optimization 
of water distribution systems has the potential to generate designs which have a high 
degree of hydraulic predictability. In general, the higher the entropy value, the 
greater the likelihood that the hydraulic properties of the design achieved will be 
intuitively obvious.

Results have been presented for two simple networks. Using pressure-dependent 
modelling and three simulated critical operating conditions including fire-fighting 
and pipe failure, the key nodes and distribution mains were identified. The criteria 
used included the nodal hydraulic reliability and pressure-dependent rate of flow 
delivery, and the deterioration in the hydraulic performance of the network as 
determined by the energy dissipation rate. A new hydraulic performance indicator 
has been introduced, based on the rate at which a water distribution network 
dissipates energy relative to the amount of water supplied.

The results presented would appear to be encouraging enough to warrant 
verification on more complex networks.
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Abstract

This paper reports on an investigation of the possible influence of modelling errors on the relationship between the entropy and hydraulic 
reliability of water distribution systems. The errors are due to minor differences between the design optimisation and subsequent simulation 
models, which lead to small discrepancies between the capacity of the network and the required supply. Pressure-dependent analysis was 
used for the hydraulic simulations. It is shown that any correlation between the redundancy or undercapacity due to the modelling errors and 
the hydraulic reliability is insignificant. The results, therefore, provide yet more evidence that the entropy-reliability relationship is strong. 
© 2005 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

K e y w o r d s :  Entropy; Hydraulic reliability; Water distribution systems; Pressure-dependent analysis; Demand-driven analysis; Network analysis; Design 
optimisation

1. Introduction

Reliability analysis is an important component in the 
design, operation and maintenance of water distribution 
systems (WDS). Many researchers have tried to incorporate 
reliability in the design of WDS as one of the objectives to 
be optimised without unduly increasing the cost of the 
system. It has been shown, however, that the problem of 
calculating reliability exactly for a WDS is extremely 
difficult to solve [1], As an answer to this problem, several 
researchers have proposed an alternative approach using a 
surrogate measure, e.g. entropy [2-5], Entropy as a 
surrogate measure for the reliability of WDS has the 
computational advantages of being easy to calculate, 
minimal data requirements and ease of incorporation into 
optimisation procedures [6],

To analyse the hydraulic behaviour of water distribution 
systems, most previous studies used demand-driven 
simulation models, which assume that demands in 
the network are fully satisfied regardless of the pressure in

* Corresponding author. Tel.: +  44 151 794 5229; fax: + 4 4  151 794 
5218.

E - m a i l  a d d r e s s :  ttanyi@liv.ac.uk (T.T. Tanyimboh).

the system. The models give acceptable results when the 
systems are subject to normal operating conditions. 
However, WDSs are subject to component failures or very 
large demands, which may result in a reduction of the 
pressure in the system. When this happens, demand-driven 
analysis (DDA) often gives results that indicate that the 
system is still supplying the full demand at lower, and 
sometimes, negative pressures. The validity of such results 
is obviously questionable. This study uses the head- 
dependent analysis (HDA) approach, which has been 
suggested to provide more realistic results when WDSs 
operate under subnormal pressure conditions [7-9]. How
ever, due to the relative unfamiliarity of HDA in industry 
and the research community, DDA results have also been 
included for comparison and cross-checking purposes.

The main objective of this study was to assess critically 
the possible influence of modelling errors, namely 
redundancy or insufficient capacity, in the form of a small 
surplus or deficit in head at the critical node(s), on the 
relationship between the entropy and hydraulic reliability of 
water distribution systems. The small surpluses or shortfalls 
in the heads at the critical nodes are actually modelling 
errors, which are brought about by several factors as 
explained subsequently in this paper. The errors are

0965-9978/$ - see front matter © 2005 Civil-Com p Ltd and Elsevier Ltd. All rights reserved, 
doi: 10.1016/j.advengsoft.2005.03.028
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seemingly small and at first glance would appear to be 
insignificant. However, any impact they may have on the 
relationship between the entropy and hydraulic reliability 
has never been studied. The importance of this issue lies in 
the fact that hydraulic reliability values for alternative 
designs of water distribution systems are generally high 
which means that the differences in the reliability values 
tend to be very small. The very small range of variation in 
hydraulic reliability leaves open the possibility that 
seemingly small design and modelling errors may have a 
significant or disproportionate impact on the calculated 
relationship between the entropy and reliability. Due to the 
overall computational demands, a small network was used 
as the basis of the study. A range of minimum-cost designs 
with different entropy values were generated using non
linear programming. The hydraulic reliability and other 
properties of the designs were then evaluated to yield the 
data that were used subsequently for the various analyses 
herein.

A secondary objective of this paper is to strengthen the 
evidence in the literature that a relationship exists between 
the entropy and hydraulic reliability of water distribution 
systems using a combination of sensitivity analysis and 
head-dependent modelling as described next. The possible 
effects of different cost objective functions are being studied 
also in the present research, which is continuing. Different 
cost objective functions will produce different designs. 
These differences may have an effect on the entropy- 
reliability relationship and early results from this study 
based on the DDA approach have been reported [10]. The 
above-mentioned results on the cost function effects are 
verified herein using the more realistic HDA modelling 
approach, so as to validate and strengthen the background 
evidence that a strong relationship exists between the 
entropy and hydraulic reliability of water distribution 
systems.

Tanyimboh and Templeman [11] investigated the 
influence of the layouts of WDS on the relationship between 
entropy and reliability. Since the entropy of a WDS is a 
function of the pipe flow rates, different arrangements of the 
pipes in the distribution system may have a significant 
impact on the relationship between entropy and reliability. 
The HDA method has been used in this study to verify their 
results on the influence of the layout of the system on the 
relationship between entropy and hydraulic reliability [11], 
thereby producing yet more background evidence of a 
strong entropy-reliability relationship.

Thus, this paper has two inter-related aims. First, the 
results of an analysis of the possible influence of the 
modelling errors mentioned above on the correlation 
between entropy and hydraulic reliability are presented. 
The correlation between the hydraulic reliability and 
apparent over-/under-capacity and between the entropy 
and over-/under-capacity were assessed along with the 
relationship between entropy and hydraulic reliability. 
Second, background evidence of a strong relationship

between entropy and hydraulic reliability is provided 
based on a re-evaluation of the layout and cost objective 
function effects using HDA. The main conclusion from this 
study is that the results appear to strengthen the notion that 
the relationship between entropy and reliability is strong, 
with HDA generally yielding much better correlation than 
DDA.

2. Literature review

Reliability is a good measure to assess the merit of a 
WDS. There is, however, no general agreement about the 
definition of reliability. Bao and Mays [12], for example, 
define reliability as a function of the probabilities of the 
heads at demand nodes being above the minimum required 
level. Fujiwara and De Silva [13], on the other hand, used 
the shortfalls in the flow delivered to measure WDS 
reliability. In this paper, reliability is defined as the time- 
averaged value of the ratio of the flow delivered to the flow 
required [6,14].

To evaluate the exact value of reliability, all possible 
failure scenarios have to be considered. This can be very 
complicated and tedious for large networks. Researchers 
have proposed the use of Monte Carlo simulation [12] and 
minimum cut set techniques [15] to help reduce the 
complexity of the calculations. The difficulties faced in 
calculating the reliability motivated researchers to find 
surrogate measures of reliability for WDS. One of the 
surrogate measures is entropy, which is based on Shannon’s 
informational entropy [16]. Awumah et al. [2,3], who 
proposed several WDS entropy functions, first suggested the 
use of Shannon’s entropy in WDS analysis as a surrogate 
measure for the reliability. Awumah and Goulter [4] also 
proposed that entropy could be incorporated in the 
optimisation formulation as a means of quantifying the 
reliability in the design of WDSs. Further work by 
Tanyimboh and Templeman [5,6,17] led to the entropy 
function used herein, which is well established. Tanyimboh 
and Templeman [5] suggested that higher flexibility of a 
distribution network could be achieved by maximising the 
entropy of the network. They also showed that the 
methodology could produce resilient designs without a 
substantial increase in cost.

Methods for calculating the most likely values of link 
flows in a WDS for which the available data are insufficient 
for a full hydraulic analysis have also been developed by 
Tanyimboh and Templeman [17,18]. Their algorithm for 
maximizing the entropy of single-source networks was 
generalised for multi-source multi-demand networks by 
Yassin-Kassab et al. [19]. The above works led to further 
investigation of the apparent relationship between the 
entropy and hydraulic reliability of WDS [II], which 
showed that high network reliability can be expected when 
the network carries maximum entropy flows. The possible 
use of entropy to find the optimum layout of a WDS has also
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been investigated by Tanyimboh and Sheahan [14], 
Templeman and Yassin-Kassab [20] have suggested that 
entropy could be used in calibrating WDSs to find the most 
likely pipe characteristics in WDSs in which the roughness 
coefficients of the pipes have been lost or have changed with 
time. Recently, Ang and Jowitt [21] have explored the 
relationship between WDS energy loss and entropy to help 
gain a deeper understanding of the properties of entropy. As 
in an earlier study by Tanyimboh and Templeman [5], they 
concluded that the importance of a pipe in a water 
distribution network can be related to the amount of energy 
that the network dissipates following the removal or closure 
of that pipe.

3. Informational entropy

Shannon’s entropy function [16] enables the levels of 
information or uncertainty of different probability distri
butions to be compared quantitatively and can be written as

S/K = ~ Y ^ p i In pi ( 1)
1

in which S is the entropy, K  is an arbitrary positive constant 
often taken as 1, p, is the probability associated with the ith 
outcome.

The values of entropy in this paper were calculated using 
the entropy function for WDS [5,17], i.e.

J  = -X>/T)ln(e/r)-i Y r Tj[(Qj/Tj)\n(Qj/Tj)
yelN  j = l

+  Y ^ ^ i j l T j m q i j l T j ) )  (2)
ieNj

in which the subscript j  represents all nodes including 
source nodes, while J denotes the number of nodes and IN 
the set consisting of source or input nodes. Also, T is the 
total supply, Tj is the total flow reaching node j , including 
any external inflow while Nj represents all nodes immedi
ately upstream of and connected to node j .  Qj is the demand 
at demand nodes or supply at source nodes and qtj is the flow 
rate in pipe ij. Thus the entropy of a WDS is basically a 
function of internal pipe flow rates only since the desired 
nodal demands and supplies are usually specified.

4. Optimal design of water distribution systems

The design optimisation was carried out using a Fortran 
program called PEDOWDS (Program for Entropy-based 
Design Optimization of Water Distribution Systems) [6], 
with the cost as the objective function to be minimized. The 
program is based on the NAG library routine E04UCF [22], 
which is a routine for constrained non-linear programming. 
E04UCF uses sequential quadratic programming and

requires gradients of the objective and constraint functions. 
For every design, the design optimization program 
PEDOWDS was run using six different starting points. 
This was to ensure that the same optimum design was 
achieved several times, from different starting points in 
order to verify its optimality. The design that has the lowest 
cost with no violation of the constraints was then selected. 
A hydraulic analysis of the network was then carried out to 
further validate the result of the optimisation by verifying 
that no constraints were violated.

The cost function used in this study is

Cost =  y ^ V ^  (3)
y

in which e is the cost exponent that is specified by the user 
and thought to have a range of 1.0-2.5 [23]. The cost 
coefficient y, whose value depends on a range of factors 
[24], is also specified by the user. LtJ and D tj  are the length 
and diameter of pipe ij, respectively. For the present study, it 
may be assumed that the costs are calculated in pounds 
sterling.

The constraints used in the optimisation consist of the 
pipe head loss, continuity, conservation of energy and 
entropy equations. Lower and upper limits of the pipe 
diameter and pipe flow non-negativity constraints were also 
used. The pipe head loss due to friction was calculated using 
the Hazen-Williams empirical formula, given as

htJ =  uLijiqtjlC^ ^ I D f 1 V ij (4)

For the above equation, htj  is the head loss along pipe ij 
and a is a constant, equal to 10.67 in SI units. The 
parameters Li}, qtj, Cjj and Dt] are the length, flow rate, 
roughness coefficient and diameter, respectively, for pipe ij. 
The continuity equation can be written as

£  q v = Q j v ; (5)
i j& J j

in which the summation includes all the flows upstream and 
downstream of the node considered, indicated by IJy, and Q} 
represents the external inflow or outflow at node j . Two sets 
of equations for conservation of energy were used, namely 
the loop and path equations. The loop equation requires the 
net head loss around each loop in a pipe network to be zero,
i.e.

J 2 hti= °  (6>

in which l (1=1,2,...) represents the Zth loop. The path 
equation ensures that the total head loss along any path is 
equal to the difference in head between the end points of that 
path. The equation may be written as

Y , hU = h p Vp (7)
ijSp
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wherep (p =  1,2,...) represents thepth path having a known 
value of head loss, hp.

Similarly, the equation used to ensure that nodal service 
pressures are satisfactory is

J 2 hi j ^ Hs~ H ? es V i (8)
y®

where t ( t=  1,2,...) represents a path from a specified source 
to a terminal node f, i.e. a node with no other nodes 
downstream of it, Hs is the head at a specified source and 
H?es is the desired head at terminal node t. The value of H?es 
may vary from one region to another. OFWAT (Office of 
Water Services for England and Wales), for example, 
specifies the value of H?es as 10 m on the customer’s side of 
the main stop tap at the property boundary for a flow of 
9 1/min. In practice, however, the pressure is difficult to 
measure at this point and water companies usually adopt a 
surrogate pressure head of 15 m in the adjacent water main 
serving the property [25]. OFWAT also stipulates that if the 
pressure drops below 7 m for more than once in a 28-day 
period and each occasion lasts for more than 1 h, then the 
customers affected are entitled to compensation.

As mentioned earlier, one of the advantages of entropy is 
that it can be incorporated into the optimisation procedure as 
one of the constraints. This entropy constraint may take the 
form

S /K > S min (9)

in which K is an arbitrary constant which is set to unity in 
this work, S is the entropy and 5min is the minimum desired 
entropy value. This equation will ensure that the entropy of 
the network does not fall below the specified value of Smin. 
Smin can take any value between zero and the maximum 
entropy value for the network under consideration, which 
depends on the chosen layout. The maximum entropy value 
is thus calculated in advance using special-purpose 
algorithms for calculating maximum entropy flows in 
networks [T9], These algorithms enable the maximum 
entropy value to be evaluated quickly without the need for 
any mathematical programming.

Apart from the constraints mentioned above, the 
diameters of the pipes should not lie outside 
the predetermined range. Within this range the value of 
the diameter is considered continuous to simplify the 
optimisation. However, an equivalent two-phase approach 
which yields segmental pipes based on commercial pipe 
sizes could be used instead [14]. The above-mentioned 
diameter restriction takes the following form

Dmm >  DtJ >  Dmin Vy (10)

in which Djj is the diameter of pipe ij, while Dmax and Dmin 
are the maximum and minimum allowable pipe diameters, 
respectively.

5. Network analysis

Two methods of network analysis were used in this study 
for verification and cross-correlation purposes, the first 
being Demand Driven Analysis (DDA) and the other Head 
Dependent Analysis (HDA).

5.1. Demand driven analysis

This method of network analysis has been widely used in 
the water industry for many years. Unfortunately, there are a 
few disadvantages arising from the use of this method. DDA 
does not take into consideration the relationship between the 
nodal outflows and the pressure within the system. It 
assumes that the demands of the system are fully satisfied 
regardless of the pressure in the system. In consequence, 
when the pressure drops below the required level, network 
analysts would have no information on how much water 
would be delivered by the system under the available 
pressure regime. In this situation some customers would 
receive reduced supplies and, in the worst scenario, they 
might not receive any supply at all [7,8],

The drop in pressure in the distribution system can be 
triggered by many factors. Excessive abstraction at one 
demand node, for example, in a fire fighting situation, may 
cause the pressure in the neighbouring abstraction points to 
drop below the required level. The analysis using this 
method was carried out using a computer software called 
EPANET [26], which is freely available on the Internet and 
is provided by the US Environmental Protection Agency.

5.2. Head dependent analysis

Pressure dependent analysis has long been suggested to 
surpass demand driven analysis, particularly for networks 
under subnormal operating conditions. It is well known that 
outflows from a WDS are dependent upon the pressure 
within that system and, therefore, the DDA assumption that 
demands are always satisfied regardless of the pressure in 
the system is often inappropriate. HDA takes into 
consideration the pressure dependency of nodal outflows, 
and in consequence, the results are more realistic. Never
theless, this method is not yet commonly used in the water 
industry since more research and verification of the true 
relationship between network pressure and nodal outflows 
are still necessary.

Some researchers have proposed several assumed head- 
outflow relationships. For example, Wagner et al. [27] 
suggested the following functions

Q f—1— =  (); Hj <  H f nß req

Q f  _ (  H j - n r  '
greq \Hf™ - H ] aia/

Ufi:

H f n <  Hj <  Hfe:

(11a)

(lib )
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(He)
navl
| k = i ;

in which QjV] and gjeq are the actual outflow that can be 
delivered by the system and the required outflow or demand, 
respectively. Hj is the actual head at node j ,  Hjnm is the nodal 
head at node j  below which there would be no outflow and 
Hfes is the desired head at node j , above which the outflow 
would be equal to the demand. Values of the exponent 
parameter, rip are thought to lie between 1.5 and 2 (28]. 
Another example of the head-outflow relationship is the 
following function proposed by Fujiwara and Ganesharajah 
[29]

Qj,avl J (tfr
ŷmin

-vreq

- H f n)(Hfes —Hj'in)dH

J (Hj -  -H f" n)dH
min

( 12)

H f n <  Hj <  Hfes

The HDA in this study was carried out using a similar 
head-outflow curve [30] in a FORTRAN computer program 
called PRAAWDS (Program for the Realistic Analysis of 
the Availability of Water in Distribution Systems) [8,9], 
which calculates the actual flow delivered under normal and 
subnormal pressure conditions.

6. Reliability calculation

In this paper, the reliability of a water distribution system 
is calculated by assuming a constant demand value. The 
reliability function can be written as [14]

M
p(0)T(0) +  ^p(m )T (m )

m= l
M- 1

+  ^  p(m, n)T{m,ri)-\—
 ̂ lvn>/n

M M-1

l -p (0 ) -^ p (m )-  ^2  P(m’n)----
m=l m= lv„>„,

(13)

in which R is the system reliability, p(0) is the probability that 
no pipe is unavailable, p(m) is the probability that only pipe m 
is unavailable and p(m,n) is the probability that only pipes m 
and n are unavailable. Similarly, 7T0), T(m) and T(m,n) are 
the respective total flows supplied with no pipes unavailable, 
only pipe m unavailable, and only pipes m and rt unavailable. 
Finally, M is the number of pipes, while T represents the total 
demand. For DDA, T(m) and T(m,n) were calculated using 
the basic source head method [6,31,32]. Eq. (13) measures 
the reliability as the time-averaged value of the ratio of the

flow delivered to the flow required [6]. This equation has two 
main components, shown using two pairs of square brackets. 
The first part of the equation corresponds to the basic 
definition of hydraulic reliability as stated above. The second 
part is a correction function whose value approaches zero as 
more and more multiple-component failure simulations are 
included in the first part [14],

7. Case study, results and discussion

The study was based on the network of Fig. 1. The source 
has a piezometric level of 100 m, while demand nodes have 
elevations of 0 m. The desired nodal service head for fully 
satisfactory performance is 30 m and the nodal head 
corresponding to zero nodal outflow is 0 m, this being the 
elevation of the nodes. All pipes are 1000 m long with a 
Hazen-Williams coefficient of 130. The above-mentioned 
desired head value Hdes of 30 m was chosen to facilitate 
comparisons with previous DDA-based studies [11]. It is 
common to specify the value of the head corresponding to 
zero outflow as zero or the elevation of the node. However, 
any appropriate site-specific values may be used.

The maximum entropy value of the network was 
calculated using the special-purpose algorithms mentioned 
in Section 4. The optimisation program PEDOWDS was 
then used to generate the maximum entropy design as 
explained in Section 4. A traditional minimum-cost design, 
obtained using PEDOWDS without the entropy constraint,

444.5

Fig. 1. Network of supply and demand nodes with demands in litres per 
second.
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yielded the minimum entropy design. A range of designs 
with different entropy values between the maximum and 
minimum values were then produced. A total of 43 designs 
were generated in this way [10]. For each design, three to six 
different starting points were used, with a stipulation that the 
same cheapest design be obtained several times, to increase 
the chances of finding a global minimum. The rest of the 
designs in this study, taken from Refs. [11,14], were 
generated in a slightly different way. Instead of using the 
full set of pipes shown in Fig. 1, different combinations of 
those pipes were chosen. The maximum entropy design for 
each of the layouts obtained in this way was produced as in 
Section 4.Thus, a total of 31 maximum entropy designs 
were obtained from Refs. [11,14].

The programs used in the design optimisation process 
(PEDOWDS) and subsequent hydraulic simulations 
(EPANET and PRAAWDS) have slight differences in 
some of their coefficients and units. These differences, 
including the rounding off of the pipe diameters, which are 
continuous herein, produced ‘small’ surpluses or deficits in 
head at the critical nodes with the largest being —0.4 m. 
The critical node is the node with the lowest pressure-head 
in the system, whose value is specified as 30 m in this study 
for networks under normal operating conditions. The 
distribution of the surplus heads, which seems to follow 
the normal distribution, is illustrated in Fig. 2a. It shows that 
the heads at the critical nodes for most of the designs are 
equal or very close to zero. Fig. 2b and c, obtained from the 
HDA analysis, show the total outflows delivered by the full 
network and the distribution of the ratio of the actual to the 
required nodal outflow (i.e. demand satisfaction ratio), 
respectively. From the latter two graphs, it seems that, under 
normal operating conditions, the total outflow delivered by 
most of the designs is approximately equal to the total 
demand required. This would appear to suggest that the 
accuracy of the results is acceptable and that the small 
surpluses or deficits in heads and outflows are negligible.

EPANET and PRAAWDS were also used to carry out 
pipe failure simulations on each of the designs in order 
to obtain its hydraulic reliability value, as explained in 
Section 6. The possibility that redundancy or insufficient 
capacity in the WDS, in the form of the surplus or deficit in 
head at the critical node, might have a bearing on the 
observed relationship between entropy and reliability given 
the very small differences between the reliability values has 
not been addressed in previous studies.

First of all, however, to check the effect of the small 
differences in head at the critical nodes on the reliability 
values, the performance of designs with an excess or 
shortfall in capacity was compared to slightly adjusted 
designs, which satisfied the demands exactly. To achieve 
this, the head at the source, for all designs with a surplus or 
deficit in head at the critical node was artificially altered so 
that, at the critical node, the head was precisely equal to 
the desired service head of 30 m. These designs were then 
re-analysed and their reliability values obtained. The results

0 10 20 30 40 50 60 70 80

Design number

0.99970 0.99975 0.99980 0.99985 0.99990

Demand satisfaction ratio

Fig. 2. (a) Distribution of surplus heads, (b) Total outflows delivered by the 
networks with all pipes available, (c) Distribution of demand satisfaction 
ratios.

of this analysis are shown in Fig. 3 in which the reliability 
values before and after the head modification for all the 
designs in this study are plotted against each other. It shows 
that all the designs have virtually identical pairs of

g  0.99920 

eS

S  0.99900
T3 O
E

•g 0.99880 
Sj=

<g 0.99860
CQ

]= 0.99840 

0.99820
0.99820 0.99840 0.99860 0.99880 0.99900 0.99920

R e liab ility  b e fo re  h ead  m odifica tion

Fig. 3. DDA-reliability verification.

y=  l .0002* -  0.0002
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Surplus head (m)

Surplus head (m)

Fig. 4. (a) HDA-reliability against surplus head, (b) DDA-reliability against 
surplus head, (c) Entropy against surplus head.

reliability values, which suggests that the small discrepan
cies in head are insignificant.

Fig. 4 shows plots of reliability and entropy against 
surplus head for all the designs. The plots suggest that there 
is no correlation between hydraulic reliability or entropy 
and surplus head and thus any influence of the small surplus 
or deficit in head at the critical node upon the entropy- 
reliability relationship is insignificant. It may nevertheless 
be noted that the difference between the most reliable design 
and the least reliable design is only 0.000726 and 0.000180, 
for DDA and HDA, respectively.

Having demonstrated that the perceived relationship 
between entropy and hydraulic reliability is not attributable 
to modelling errors or WDS redundancy/overcapacity, the 
remainder of this section compares the entropy-reliability 
relationship as assessed on one hand by DDA and on the 
other hand by HDA. One reason for this is that it is vital to 
demonstrate that the conclusions reached are not purely the 
outcome of the HDA modelling approach.

Fig. 5. Effect of layout on the entropy-reliability relationship for y  =  800 
and e =  1.5.

The entropy of a WDS is a function of its pipe flow rates 
and the pipe flow rates are affected by the layout of the 
network, i.e. the configuration of the pipes. The effects of 
layouts on the relationship between entropy and reliability 
have been investigated previously using only DDA [11,14], 
Pressure dependent analysis has been used herein to verify 
those results so as to provide more background evidence of 
the entropy-reliability relationship. More importantly, it is 
essential to demonstrate that the present assessments based 
on HDA give results which are consistent with previous 
investigations. Indeed it turns out, based on the evidence 
herein, that HDA not only confirms but also strengthens 
previous conclusions relating to the relationship between 
entropy and hydraulic reliability. Fig. 5 shows plots of 
entropy and cost against reliability for the maximum- 
entropy minimum-cost designs from Refs. [11,14].

To further ascertain that the conclusions reached herein 
are not merely the outcome of the HDA modelling 
approach, the 43 17-pipe 6-loop designs based on the full 
set of links shown in Fig. 1 [10] were re-analysed using 
HDA. Based on Eq. (3), 22 of the designs were generated 
using values of y  and e of 800 and 1.5, respectively. The 
entropy-reliability results for these designs can be seen in 
Fig. 6. The remaining 21 designs, for which the results are 
shown in Fig. 7, were generated using y  =  1600 and e =  2.0. 
It is worth emphasizing that the preliminary results reported 
in Ref. [10] did not involve HDA. Looking at the graphs of
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Reliability

Fig. 7. Plots of entropy vs. reliability for y =  1600 and e =  2.0.

entropy against reliability in Figs. 6 and 7, it is evident that 
the relationship between entropy and reliability remains 
strong despite the differences in the values of y  and e. The 
two plots of entropy against reliability follow a very similar 
pattern and, again, HDA shows a stronger relationship than 
DDA. This would appear to suggest that the observed 
entropy-reliability relationship is not unduly sensitive to the 
coefficient, e, of the cost objective function used herein, 
Eq. (3). It should be noted that the costs have been plotted 
twice in Figs. 5-7, even though the two cost data sets are 
identical, for completeness and ease of reference.

Overall, the relationship between entropy and reliability 
and the difference between HDA and DDA can be observed 
clearly in Fig. 8, in which the results for all the 74 designs 
studied herein are shown. It demonstrates that the 
correlation between entropy and reliability is much stronger 
when the analysis is done using HDA. In particular, the 
correlation coefficient value of r2 =  0.94 for HDA is 
remarkable considering that 32 different layouts (i.e. 31 
from Refs. [11,14] plus the six-loop layout of Fig. 1) and 
exponent, e, values of 1.5 and 2.0 were involved.

The rather simple sample network used herein is 
considered appropriate for this study which requires 
numerous calculations of the respective maximum entropy 
values, design optimization runs (each of which requires 
three to six runs of the optimization program, PEDOWDS) 
and evaluation of the reliability values. Furthermore,

Reliability

Fig. 8. Plots of entropy vs. reliability for all the designs.

the reliability of each design was calculated twice, i.e. one 
value based on DDA and the other based on HDA. Each 
reliability value entails the hydraulic simulation of all the 
operational conditions required in Eq. (13). It could be 
pointed out also that, additionally, the DDA reliability 
values were calculated twice (Fig. 3). Therefore, perhaps it 
can be appreciated that the range of results in this study 
would be significantly more difficult to reproduce using a 
much larger network. To put this in perspective, the results 
reported in this paper would perhaps correspond to a 
laboratory-level study ahead of a full-scale field trial or 
pilot-type study. An advantage of the laboratory-level 
investigation is that it enables a large number of issues to 
be addressed quickly at minimal cost whilst tackling the 
research questions, for example, whether a concept is 
feasible, at least in principle. Many questions about the 
relationship between entropy and reliability have been 
tackled in this way, to the point where real-world 
demonstrations or applications now appear close. In this 
study, the network of Fig. 1 enabled useful results to be 
obtained while keeping the computations manageable.

8. Summary and conclusions

Recognising the importance of the reliability of WDS 
and the difficulties in obtaining its value, researchers strive 
to find alternative approaches to quantify the reliability. 
Entropy has been suggested to provide good representation 
of the reliability value for WDS. Its strengths stem from the 
ease of computation and, in the design of WDS, it can be 
easily incorporated into the optimisation procedure. In this 
study, the effects of modelling errors on the relationship 
between entropy and reliability have been investigated. The 
errors are small surpluses or deficits in the head at the 
critical nodes. Other aspects were examined, also, to 
provide further background evidence of a strong relation
ship between entropy and reliability using designs based on 
different layouts and cost objective functions. Results for a 
sample network were presented and discussed.

For the sample network, there seems to be a strong 
relationship between entropy and reliability. This relation
ship is stronger when the analysis is carried out using HDA 
in comparison to DDA. Small, unavoidable modelling 
errors, in the form of small surpluses or deficits in the 
pressure heads at the critical nodes, would appear to have no 
real influence on the entropy-reliability relationship. In 
particular, the new HDA results herein are very encoura
ging. They strongly support and reinforce previous DDA- 
based conclusions and would appear to suggest that there is 
some potential in the water distribution entropy research. 
While this study is based on a simple network, the results 
appear to warrant research on larger, more complicated 
networks, which may include components other than pipes.
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Joint Layout, Pipe Size and Hydraulic Reliability Optimization o f Water Distribution Systems
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Abstract

A multicriteria maximum entropy approach to the joint layout, pipe size and reliability optimization of water 

distribution systems is presented in this paper. The capital cost o f the system is taken as the principal objective, 

and so the trade-offs between cost, entropy, reliability and redundancy are examined sequentially in a large 

population o f optimal solutions. The novelty of the method stems from the use of the maximum entropy value as 

a preliminary filter, which screens out a large proportion of the candidate layouts at an early stage of the process 

before the designs and their reliability values are actually obtained. This technique, which is based on the notion 

that the entropy is potentially a robust hydraulic reliability measure, contributes greatly to the efficiency of the 

proposed method. In addition, maximum entropy designs help reveal the optimum performance of the candidate 

layouts and so promote a like-with-like comparison of the layouts. The use of head dependent modeling for 

simulating pipe failure conditions in the reliability calculations also complements the method in locating the true 

Pareto-optimal front. The computational efficiency, robustness, accuracy and other advantages o f the proposed 

method are demonstrated by application to a sample network.

Keywords: entropy, head-dependent modeling, multicriteria design optimization, reliability, water distribution 

system
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INTRODUCTION

It is widely accepted that the supply of water in urban areas should be available on demand. However, a water 

distribution system (WDS) is a network with many components that are subject to random failures. To help 

increase the reliability of supply, WDSs usually have loops to reduce the possibility of some of the demand 

points being separated from the rest o f the network if  a pipe is not in service. A WDS can suffer from 

mechanical and hydraulic failure. Mechanical reliability measures the probability that the component or system 

being considered is operational at any time while hydraulic reliability is a measure of the probability that the 

system can supply enough water at the right pressure. Although hydraulic reliability depends on mechanical 

reliability, it is largely governed by the hydraulic performance of the network. In turn, the performance depends 

on the layout and capacities of the pipes; the locations and capacities of storage facilities and pumps; the spatial 

and temporal variations in supply and demands; and the locations of valves and other appurtenances. The above 

characterization of reliability may appear straightforward. In practice, however, the issue is so complicated that 

there is no universally adopted practical definition of reliability in the context of WDSs.

Because the reliability of a WDS is inherently linked to its layout, reliability considerations significantly 

increase the complexity of simultaneously optimizing the layout and components o f a WDS. The literature is 

replete with models for the design of WDSs, but they generally do not optimize the hydraulic reliability 

explicitly. Joint layout and pipe-size optimization with regard to reliability is extremely complex and there is no 

completely satisfactory model for solving this problem. Furthermore, virtually no layout optimization models 

incorporate hydraulic reliability in a formalized way. Therefore, this gives added impetus to the search for a 

quantified surrogate for reliability and, fortunately, extensive research based on head-dependent modeling has 

demonstrated the potential of entropy as a robust hydraulic reliability measure (Setiadi et al., 2005).

The aim of this paper is to demonstrate the effectiveness of the maximum entropy (ME) approach to the 

joint layout, pipe-size and reliability optimization o f WDSs. Some o f the properties worth highlighting include 

simplicity, computational efficiency, robustness, diversity among the non-dominated solutions and the ability to 

locate the true Pareto-optimal (PO) front. A key feature o f the technique is that it operates on a small portion of 

the solution space and, as such, its efficiency is not overly affected by the size of the WDS. The main difference 

from an earlier demand-driven analysis (DDA) study (Tanyimboh and Sheahan, 2002) is that the present work 

used head-dependent analysis (HDA) and a vastly expanded population of solutions. The HDA results herein 

show that the non-dominated solutions found are virtually identical to the PO front. The rest o f this paper 

includes the following sections: literature review; description of proposed approach; overviews of entropy,
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reliability, HDA and ME pipe-size optimization; demonstration and discussion o f proposed approach. 

LITERATURE REVIEW

Layout optimization models include those that begin with a spanning tree and then add loop-completing links in 

an attempt to meet some reliability criteria while minimizing the cost of the network. Other models start with the 

candidate links of the network and then remove some of these links in an attempt to reduce the cost while 

satisfying some reliability criteria. Rowell and Barnes (1982) used two main steps. In Step 1, an optimal 

spanning tree layout was identified and its pipe sizes determined by solving a non-linear minimum cost flow 

problem. In Step 2, loop-completing pipes were added in order to provide an alternative supply path to each 

demand node. However, the designs were not hydraulically consistent (Goulter and Morgan, 1984). Loganathan 

et al. (1990) adopted a conceptually similar approach and assured hydraulic consistency by redesigning the WDS 

following the addition o f the loop-completing links. The loops were completed using minimum-diameter pipes 

whose usefulness is questionable (Tanyimboh and Templeman, 1993a).

Kessler et al. (1990) used the concept of two trees to design a WDS that would be invulnerable to any 

single-pipe failure. Two spanning trees were selected with graph theory algorithms such that they overlapped 

and ensured the existence of an alternative path to each demand node following any single-link failure. 

Invulnerability was provided by designing each tree so that, on its own, it could supply all the demands of the 

WDS. However, the method was only applicable to single-source networks and there was no means of 

determining the best pair of trees prior to a full design and evaluation of all the possible pairs of trees.

The models just described first select a core tree, then add loop-completing links while the models 

considered next start with the potential links, and then eliminate those that are less cost effective. Awumah et al. 

(1989) developed a heuristic integer-programming model. The main constraint, from a reliability point of view, 

was that each node had to be connected by at least two links. However, the reliability was not quantified. 

Morgan and Goulter (1985) developed an LP-based heuristic with the advantage that, for a given network, the 

number o f variables and constraints remained constant no matter the number of demand patterns considered 

explicitly in the design. The method enhanced the resilience o f the WDS by using a multiplicity of flow patterns. 

However, the formulation did not have an in-built capability for removing unwanted pipes.

In Afshar et al. (2005), a minimum-cost design having all the candidate pipes was obtained using 

minimum-diameter constraints. Then, heuristics were used to identify the pipes to be considered for removal. 

The minimum-diameter constraints for these pipes were then relaxed and the WDS redesigned to allow the pipe- 

size optimization program to remove the chosen pipes as appropriate. However, the method did not consider the
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hydraulic reliability of the network explicitly. Awumah and Goulter (1992) presented a non-liner programming 

(NLP) model based on an entropy-type function. The optimization process started with an upper bound upon the 

capital cost so large that it would be inactive at the solution. Then the model was re-run for successively lower 

allowable costs until no more cost reductions were possible. However, the method seemed unable adequately to 

preserve loops (Tanyimboh, 1993). Jacobs and Goulter (1989) developed a layout-only model by applying graph 

theory principles. However, costs and hydraulic considerations were not addressed.

The literature is replete with models for optimizing the design of WDSs. The overwhelming majority do 

not optimize the hydraulic reliability explicitly and those that consider the hydraulic reliability often do not 

optimize the layout. The present review does not include “components sizing only” models due to the limitations 

of space. Usually, the layout is pre-specified based on a number of considerations including practicability and 

cost. The model in Su et al. (1987) was an NLP formulation in which the conservation of mass and energy 

equations were satisfied using a WDS simulation model. The reliability was calculated by the minimum cut set 

method and defined as the probability of having sufficient flow and pressure. However, the use of simulation as 

part of the optimization process required a large amount of computer time. In addition, the gradients of the 

reliability function were calculated using finite differences. The computational expense of calculating these 

gradients can be considerable, as the evaluation of the reliability requires a large number of pipe-failure 

simulations. The model of Cullinane et al. (1992) was an NLP formulation similar to Su et al. (1987) at the 

conceptual level. In Fujiwara and De Silva (1987), reliability was optimized using an LP-based heuristic. 

However, the conservation of energy equations were ignored in the reliability calculations.

DESCRIPTION OF LAYOUT, PIPE SIZE AND RELIABILITY OPTIMIZATION METHOD

There is strong evidence which suggests that, for a fixed layout, the hydraulic reliability increases as the 

informational entropy of the pipe flow rates increases (Setiadi et al., 2005). Tanyimboh and Templeman (1993a) 

recommended that WDSs be designed to carry ME flows and the reasons are that: (a) Maximum-entropy WDSs 

would be more reliable than traditional minimum-cost designs, (b) ME designs would appear not to be unduly 

expensive, (c) ME designs are computationally easier to produce because the flows are calculated first and then 

the pipes sized (Tanyimboh and Sheahan, 2002). ME flows can be calculated readily using an efficient algorithm 

that does not require formal optimization methods (Yassin-Kassab et. al., 1999). The algorithm is non-iterative 

and only requires the solution of a system o f non-linear equations. Pipe sizing for a WDS is much simpler if the 

pipe flow rates are fixed in advance (Alperovits and Shamir, 1977); inter alia, the number of decision variables 

is more or less halved and the nodal flow continuity equations removed.
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The unique advantage that ME designs have in layout optimization is that the ME value can be calculated 

using only the nodal demands and network connectivity. Pipe lengths, diameters and roughness coefficients are 

not required. This permits screening of the layouts using the ME values only. Also, ME designs help reveal the 

optimum performance of the candidate layouts and so promote a like-with-like comparison of the layouts. The 

design of a WDS is a multicriteria optimization problem, and a natural solution strategy is to generate a diverse 

population of non-dominated designs. By taking the capital cost of the WDS as the principal objective, the trade

offs between cost, entropy, reliability and redundancy are examined sequentially. If each solution in a set of 

solutions is better than the rest of the solutions in at least one objective, then the solutions are mutually non- 

dominated. The non-dominated set o f solutions is PO if it includes all the non-dominated solutions o f the 

problem. The overall approach can be summarized as follows:

1. Generate the candidate layouts. In theory, this is generally a large combinatorial problem. In practice, 

however, the options are often limited by practical considerations. This aspect might be addressed using any 

suitable technique including graph theory. However, it is not addressed herein as there is not enough space.

2. (a) Calculate the ME flows and ME value for each layout.

(b) Using the ME values — while recognizing the importance of diversity among the ultimate non-dominated 

solutions — screen out a portion o f the layouts as appropriate.

3. For the layouts not discarded in 2b, size the pipes to carry the ME flows found in 2a. This can be done by 

LP or other methods e.g. genetic algorithms.

4. Using only the cost and entropy, identify the cost-entropy non-dominated (CEND) designs. Discard the 

rest of the designs.

5. Calculate the hydraulic reliability and redundancy of the CEND designs.

6. Using only the cost and hydraulic reliability, identify the cost-reliability non-dominated (CRND) designs. 

Discard the rest of the designs.

7. Using only the cost and hydraulic redundancy, identify the cost-redundancy non-dominated designs. Discard 

the rest o f the designs.

INFORMATIONAL ENTROPY FUNCTION FOR WATER DISTRIBUTION SYSTEMS

Shannon (1948) derived the informational entropy function as a quantitative measure of the amount of 

uncertainty that a probability distribution represents. For an exhaustive probability scheme with mutually 

exclusive events (i.e. pi + p2 + ... + p„ = 1; n = number of events), Shannon’s entropy function is

5
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in which S is the entropy and p, is the probability of the rth event.

Several applications of entropy in WDSs have been reported (Setiadi et al., 2005). Tanyimboh and 

Templeman (1993a, 1993b) developed the WDS entropy function in a framework that enabled pipe flow rates to 

be interpreted as probabilities. For example, the particles of water in a WDS follow different paths through the 

system and the probability that a particle travels through a particular path depends on the flow rates in the pipes 

in the path. For a network in which the pipe flow rates and directions are known, the entropy function is

N

s = s 0 + I > / s / (2)
/=!

where S = WDS entropy; So = entropy of source supplies; S, = entropy of node z; P, = T /T  = fraction of the total 

flow through the network that reaches node i; T, = total flow reaching node i; T = sum of the nodal demands; N = 

number of nodes in the network;

s . = -£ % '■ >
ie l *

r Q ^

v T j
(3)

where Q0i is the inflow at source node i; /  represents the source nodes. Similarly, the entropy of the nodes is

l =  l, N  (4)
O ( 0  ^

s,=- y , — ln '̂J
ijeND, T j \ T ,J

where QtJ = outflow ij from node i; NDj represents the outflows, including any demand, at node i. For any given 

WDS, the entropy value depends solely on the pipe flow rates since the nodal demands are usually specified. 

When computerized, Eqs. (2-4) are very easy and rapid to evaluate; the calculations are easily done by hand for 

small networks (Tanyimboh and Templeman, 1993b, c). This simplicity and computational speed are in part the 

reason for the research into the various applications of entropy in WDSs. The WDS entropy (Eq. 2) is a measure 

of the uniformity of the pipe flow rates (Tanyimboh, 1993). For example, for any node, 5, (Eq. 4) attains its 

maximum value if the outflows, including any demand, QtJ are identical. Similarly, the maximum value of Eq. 

(1) is S = ln(n), which corresponds to the uniform probability distribution, = p 2 = ... = p„ = 1/n.

HYDRAULIC RELIABILITY CALCULATION

There is no universally agreed definition for the hydraulic reliability of WDSs. Herein, the definition used is a 

measure o f the system’s ability to satisfy the nodal demands and is taken as the time-averaged value of the ratio 

of the flow delivered to the flow required (Tanyimboh et al., 2001). By assuming a constant demand value, this
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can be written as (Tanyimboh and Sheahan, 2002)

R =
M M-1 M

p(0)T(0) + £  P(m)T(m) + £  £  p (w , (m,n)
n=I m=l w=/w+I

\
+ ...

1+—
2

/  M M-1 M A

V m= 1 m=l w=/w+l y
(5)

in which /? = hydraulic reliability; M  = number of links (i.e. pipes, pumps and valves); p(0) = aia2a3 ...aM = 

probability that all links are in service; am = probability that link m is in service at any given moment; p(m) = 

p(0)(uja„) -  probability that only link m is not in service; um -  l  -  am; p(m, n) = p(0)(un/a n)(ur/a n) = 

probability that only links m and n are not in service; T(0), T(m) and T(m, n) are, respectively, the total flows 

supplied with all links in service, only link m out of service, and only links m and n out of service.

Eq. (5) has two main parts, i.e. the terms associated with the two pairs of large parentheses. The first part 

corresponds to the proportion of the total demand that the system satisfies on average. However, it is often 

impracticable to simulate all the configurations of the WDS with multiple components out of service when 

calculating the hydraulic reliability. Consequently, the calculation of the first part of Eq. (5) generally 

underestimates the reliability in practice. The second part of Eq. (5) is an estimate of the amount by which the 

first part underestimates the reliability. Eq. (5) has been verified numerically (Tanyimboh and Tabesh, 1997) 

while a full derivation can be found in Tanyimboh and Sheahan (2002). Herein, the nodal demands were taken as 

constants. In practice, however, water consumption varies with time. The incorporation of variations in demands 

is currently an area of active research (Surendran et al., 2005) and, as yet, no entirely satisfactory and/or easy-to- 

use model has been developed. The hydraulic reliability values for the sample network described later were 

calculated using Eq. (5) with assumed pipe availability (am) values based on a formula in Cullinane et al. (1992).

Another measure of reliability is the hydraulic redundancy, which is the time-averaged value o f the 

fraction of the total demand satisfied when one or more components are out of service. It is thus a measure of 

resilience or invulnerability. Given R and p(0), the evaluation of the hydraulic redundancy, FT, is simple, i.e.

FT R -p (0 )T (0 )/T  (6)
1 -P(0 )

The derivation and further characterization of Eq. (6) can be found in Tanyimboh and Templeman (1998) while 

Kalungi and Tanyimboh (2003) have shown the importance of assessing WDSs using FT in addition to R.

HEAD DEPENDENT MODELING

A WDS may not be able to satisfy all of the nodal demands in full if there is insufficient pressure, for example, if 

the demands exceed the capacity of the network or some o f the components are not in service. Unfortunately, the
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conventional DDA approach is, in general, unable to cope with such situations and the results can be misleading 

(Tanyimboh et al., 2003). Recognizing the relationship between the nodal outflows and heads under pressure- 

deficient conditions, an alternative approach, often referred to as head-dependent analysis (HDA), aims to 

determine the actual nodal outflows that the system can provide. Therefore, using the flow continuity equations, 

nodal head-outflow relationships can be incorporated in the system of equations for the network as follows:

Fi(Hi,Hj ) = Y JQij -Q i(H i) = 0; i = 1, ..., N - l (7)
jeN j

where H, and Hj = piezometric heads at nodes / and j ,  respectively; N, represents all the nodes connected to node 

/; Qij = flow in link ij (i.e. pipe, pump or valve) expressed in terms of H, and Hp Q,(Hj = head-dependent 

outflow at node i. A commonly used relationship proposed by Wagner et al. (1988) is

Q , m
o r

/  • x 0.5I H — /ymin '
Tjdes tj-mil H mm < H ,< H des ( 8)

where Q jeq = demand at node i; / / /”'” and H?es = piezometric heads at node i below which there would be no 

outflow and above which the outflow would be equal to the demand, respectively. Qi(Hj) = 0 if H, < H ?m\ Q,(H,) 

= Q r  if  H, > H,des. HDA was used to simulate the pipe closures (unavailabilities) for the reliability calculations 

herein (Eq. 5). This was essential because the minimum-cost designs (described in the next section) did not have 

any spare capacity and any pipe closures resulted in pressure-deficient conditions. A prototype Fortran computer 

program called PRAAWDS (Tanyimboh et al., 2003) was used for the post-design hydraulic simulations.

MAXIMUM ENTROPY PIPE SIZE OPTIMIZATION

The approach used to generate minimum-cost maximum-entropy (MCME) designs has two steps (Tanyimboh 

and Sheahan, 2002). Step 1 involves the calculation of the ME pipe flows rates — the decision variables — for the 

given nodal demands, layout and flow directions, along with the ME value. This step can be summarized as

Problem 1 - Maximize entropy:

N
Maximize S = Sft+'^PiSi (2 )

v9/ ;=i
Subject to:

Z s ,  = e ,  ; Vi
jeN , (9)

Qij -  0; v &-
( 10)

where the Q, are the inflows (for source nodes) or demands (for demand nodes). The entropy (Eq. 2) is
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maximized subject to nodal flow continuity (Eqs. 9). Problem 1 is convex because the objective function is a 

summation of concave functions and the constraints are linear. Consequently, there is a unique set of ME flows 

for any given network and specified flow directions (Tanyimboh, 1993; Tanyimboh and Sheahan, 2002). As 

explained earlier, Yassin-Kassab et al. (1999) have proposed an efficient algorithm for solving Problem 1.

In Step 2, the pipes are sized to carry the ME flows Q*y obtained in Step 1. This step can be summarized 

in general terms as follows.

Problem 2 - Minimize cost:

Minimize Cost = y V  L;:Di 
VO, 7

Subject to:

K j  = C C L y ( Q * / C y Ÿ * 5 2 / D Ï * 7

I  hij = 0
ÿe/

V /

X  h U = h P
i j e p

des

ije t

t̂nax — Dÿ — ^min

Vf

Vÿ

Vÿ

(H )

( 12)

(13)

(14)

(15)

(16)

In the above problem e = constant (taken as 1.5 herein; Fujiwara and Khang, 1990). The cost coefficient y was 

taken as 800. It may be regarded as a scaling parameter and has no real effect on the results, a = dimensionless 

conversion factor (10.67 in S.I. units); Cy, D,p hiJt Ly and Q *  = Hazen-Williams roughness coefficient, diameter

(the decision variable), headloss, length and ME flow rate, respectively, for pipe ij; p  (p = 1, 2, ...) represents the 

pth path having a known value of headloss, hp; l (1 = I, 2, ...) represents the /th loop; t (t = 1, 2, ...) represents a 

path from a specified source to a critical or terminal node t; Hs = head at a specified source; H,des = minimum 

allowable head at critical or terminal node t\ Dmm = minimum allowable pipe diameter (100 mm); Dmax = 

maximum pipe diameter (600 mm). The objective function (Eq. 11) is the cost of the system; Eq. (12) is the 

Hazen-Williams pipe headloss formula; Eqs. (13-14) are for the conservation o f energy; Eq. (15) ensures the 

heads at demand nodes are high enough. The solution to Problem 2 yields the cost and pipe diameters DtJ of a 

particular design. It must be emphasized that, as presented, Problems 1 and 2 are general-purpose descriptions 

and, as such, do not conform to the requirements of any particular approaches for their computational solutions. 

Problem 2 was solved using a prototype Fortran computer program called PEDOWDS, which uses sequential 

quadratic programming (Tanyimboh, 1993; Setiadi et al., 2005).
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SAMPLE NETWORK AND RESULTS

The network chosen to illustrate the proposed technique is shown in Figure la. This grid-type network inherently 

lends itself to layout optimization and entropy maximization studies. Previous related studies on this network 

include Setiadi et al. (2005); Tanyimboh and Sheahan (2002); Tanyimboh and Templeman (2000); and Awumah 

et al. (1991). All pipes have a length of 1000 m and Hazen-Williams roughness coefficient of 130; nodal 

elevations are all zero. The nodal piezometric heads above which demands are satisfied in full are H * s = 30 m 

and below which outflows cease are H?'" = 0 m; the head at the source node is Hs = 100 m. The values of the 

other relevant parameters are as stated at the end of the previous section.

For the full set of links in Figure la, there are 65 fully looped layouts. For each fully looped layout, an 

MCME design was produced as described in Problems 1 and 2 based on an assumed set of flow directions. The 

layouts, flow directions and other details can be found in Tanyimboh and Sheahan (2002). 72 additional designs 

were generated herein with alternative flow directions. Flow directions in a WDS are generally not predictable 

without a hydraulic simulation of the WDS. However, many design methods, including the one used in this 

study, require the flow directions in the WDS to be specified a priori. These pre-specified flow directions would 

affect the resulting design in terms of cost, performance and ME value. The identification of the optimum 

designs under a wide range o f layouts and flow directions is therefore highly desirable. The additional flow 

directions were generated based on three layouts only, these being Figures la, lb and lc. Based on the flow 

directions in Tanyimboh and Sheahan (2002), Figure la had the largest ME value (S = 3.12900), Figure lb the 

median value (S = 2.67122) and Figure lc  the next smallest (S = 2.49454). These layouts were chosen based on 

an assumption that it would be impracticable to identify, design and calculate the hydraulic reliability values for 

all the feasible flow directions of the 65 layouts. The additional flow directions were chosen somewhat 

arbitrarily provided they were feasible. For example, all demand nodes should be reachable.

After calculating the ME flows (Problem 1), the computational solution of the pipe sizing problem 

(Problem 2) was obtained using PEDOWDS as explained in the preceding section. As in Tanyimboh and 

Sheahan (2002), the NLP and continuous diameter approach was used to reduce the overall computational effort 

considering both the design phase and subsequent reliability calculations. Several measures were used to 

increase the confidence in the optimality and hydraulic feasibility of the solutions found, e.g. multiple starting 

points in the design phase (Problem 2) and subsequent hydraulic simulations to reveal any surplus heads at the 

terminal nodes (for suboptimal designs) or insufficient nodal heads (for infeasible designs).

The reliability and redundancy values were then calculated as described in Eqs. (5) and (6). For each
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design, HDA analyses were performed for the WDS with all pipes in service and for each degraded 

configuration with one pipe out of service. Due to the small size of the network and by virtue of the error 

correction (i.e. second) term of Eq. (5), cases with two or more pipes out of service were not considered as in 

previous studies. Figure 2 is a plot of the costs against the hydraulic reliability values, which shows the non- 

dominated sets and true PO front. For comparison purposes, Figure 3 shows the updated (HDA) reliability values 

for the Tanyimboh and Sheahan (2002) flow directions. Figure 4 takes the analysis a step further and shows the 

costs versus the hydraulic redundancy values. Only 9 (81.8%) of the 11 CRND designs are cost-redundancy non- 

dominated. This demonstrates the importance of assessing the redundancy explicitly, in addition to the reliability 

(Kalungi and Tanyimboh, 2003). For comparison purposes, the values for all the designs including the non- 

dominated sets are shown. The layouts and flow directions corresponding to the 9 ‘best’ designs obtained are 

shown in the appendix in Figure A l. The pipe diameters and additional details can be found in Setiadi (2006).

The proposed approach was assessed using the “generational distance” (GD) which measures the average 

distance between the non-dominated solutions and the true PO front (Deb, 2001), i.e.

1 f  n s  \ 1 / 2
GD =

v s  I P '
(17)

<=i y
where NS =  number of non-dominated solutions; d, = Euclidean distance, in the space of the objective functions, 

between the rth non-dominated solution and the nearest solution in the true PO front;

d , = M i n  I - / ; m )
m = \

1/2

; k  = 1,..., N P (18)

f d )  = value of the mth objective function for the rth non-dominated solution; f ^ k) = value of the mth

objective function for the Ath PO solution; NP -  number of PO solutions. The GD values for the CRND sets in 

Figures 2 and 3 are 6.4 x 10'6 and 7.0 x 10'6, respectively. For comparison purposes, the DDA version of Figure 

3 in Tanyimboh and Sheahan (2002) yields a GD value of 9.2 * 10‘4 for the CRND set. Finally, for the sample 

network, the typical CPU times for a Pentium 4 personal computer (256 MB RAM, 1400 MHz processor) were 

as follows. Calculation of the ME flows, i.e. Problem 1: 0.2 seconds; solving the MCME design, i.e. Problem 2: 

0.5 seconds; calculating the hydraulic reliability and redundancy including the HDA simulations of the full and 

degraded configurations, i.e. Eqs. (5) and (6): 0.32 seconds.

DISCUSSION

The method proposed is very quick and effective and Figure 2 demonstrates a key feature of the technique. The
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bulk of the designs do not belong to the CEND set, and the performance (hydraulic or otherwise) of designs that 

are not members of the CEND set would not be evaluated when using the proposed approach. As observed by 

Tanyimboh and Sheahan (2002), this filtering contributes to the efficiency of the method. The fraction of designs 

that are CEND is expected to decrease as the total number of layouts increases, which assures the practicability 

of the technique. Thus, the proportion of CEND designs in Figure 3 with 65 designs is 26.2 % (i.e. 17/65) while, 

in Figure 2 with 137 designs, only 16.8 % (i.e. 23/137) of the designs are CEND. This is an extremely important 

property: it shows that the efficiency of the method is not affected in an adverse way by the size of the WDS in 

terms of the number of pipes and thus the number of alternative layouts.

Furthermore, as there are only 23 CEND designs in Figure 2, at most 23 reliability evaluations (Eq. 5) 

would be required when using the proposed approach. This figure is really very small for a joint layout, pipe size 

and reliability optimization model. For example, Tanyimboh and Sheahan (2002) observed that the reliability is 

often evaluated in each iteration of components sizing optimization routines (Cullinane et al., 1992; Fujiwara and 

Tung, 1991; Su et al., 1987). To illustrate this point, the numbers of iterations for the MCME designs (Problem 

2) herein were of the order of about 50 to 100. It is worth repeating that most models for optimizing the design of 

WDSs do not consider both layout selection and a quantified measure of hydraulic reliability.

Figure 2 shows that the CRND set locates the true CRPO front excellently, with GD = 6.4 x 10'6. To put 

this in perspective, for the solutions in Figure 2, the maximum GD value would be about 0.55. Also, the CRND 

designs are fairly uniformly spread out along the PO front. This is a desirable feature as it provides a range of 

alternative solutions and highlights the trade-off between cost and reliability. Additional performance indicators 

could be used to help determine the ‘best’ designs. Herein, the redundancy (Eq. 6) was used as an example 

(Figure 4). By contrast, other layout and pipe size optimization techniques generally yield a single solution.

It is worth observing that the CRND set in Figure 2 is merely a subset of the CRPO front; the proposed 

approach would not necessarily identify all the CRPO designs. However this, in reality, is another extremely 

important property that contributes to the computational efficiency of the present approach, so long as the CRPO 

front is located accurately. In practice, this merely requires a more or less uniformly distributed set o f CRND 

designs, as in Figure 2 for example. Indeed, as mentioned in Step 2b of the proposed procedure, for networks 

with large numbers of candidate layouts, a fraction of the layouts could be discarded purely on the basis of their 

entropy values. Compared to the effort involved in generating a complete design and evaluating its hydraulic 

reliability, the calculation of the ME value is a relatively simple exercise.

Finally, Figure 3 has fewer data points than Figure 2 as Figure 2 also includes designs based on other
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(often, but not always, less appropriate) sets of flow directions in addition to those of Figure 3. Figure 2 suggests 

the proposed approach and the relationship between entropy and hydraulic reliability are robust enough as 

virtually all o f the CEND designs are close to the CRPO front. Thus, even though different layouts and flow 

directions yield different local optimum designs, there seems to be a strong correlation between entropy and 

hydraulic reliability. Indeed, Tanyimboh and Sheahan (2002) have shown that, in cases where different layouts 

or flow directions have identical ME values (due to the invariance property of the entropy function) the 

corresponding MCME designs (Problem 2) usually possess essentially identical hydraulic reliability properties.

SUMMARY AND CONCLUSIONS

The maximum entropy approach to the joint layout, pipe size and hydraulic reliability optimization of WDSs has 

been demonstrated. The approach has been shown to be dominant in several aspects in comparison to its 

predecessors (e.g. Afshar et al., 2005; Cullinane et al., 1992; Fujiwara and Tung, 1991; Kessler et al., 1990; Su et 

al., 1987). Firstly, the proposed method proves more effective since it concentrates on a small proportion of the 

available layouts and designs and hence the size of the WDS does not affect the method in an adverse way. 

Secondly, the method quantifies the hydraulic reliability explicitly in the search for the optimum layout 

configuration. Thirdly, unlike other methods which generally produce a single solution, the outcome of the 

procedure in this paper is a range of non-dominated solutions from which a design can be selected based on the 

trade-offs and other relevant considerations. Finally, the use of HDA in the reliability calculations adds to the 

accuracy of the ME method in identifying the true cost-reliability PO front.

More research is necessary to improve the applicability of the proposed method to real-world WDSs. For 

example, the entropy approach has yet to be applied in the optimization of WDSs involving components other 

than pipes, i.e. pumps, valves and service reservoirs. Also, the uncertainties and fluctuations in demands, which 

will affect the values of the network entropy and reliability and thus their correlation, were not considered 

herein. The results presented would appear to suggest that the time is ripe to use actual, discrete pipe sizes for 

MCME designs. In conclusion, the ME approach presented in this paper provides an excellent foundation for the 

search towards the ultimate design optimization tool for WDSs. The method is quick, robust and accurate, as 

demonstrated by its capacity to locate the true Pareto-optimal front.
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APPENDIX. NOTATION

The following symbols are used in this paper:

am = probability that link m is in service at any given moment;

Cjj, Dij = Hazen-Williams roughness coefficient and diameter, respectively, for pipe ij;

A»/», Dmax =  minimum allowable and maximum available pipe diameters, respectively;

di = Euclidean distance, in the space of the objective functions, between the ith non-dominated

solution and the nearest solution in the Pareto-optimal front; 

e = exponent in cost function;

FT = hydraulic redundancy;

yjt') = value of the /nth objective function for the /th non-dominated solution;

f m k'1 = value ° f  the /nth objective function for the kth Pareto-optimal solution;

GD = generational distance;

Hh Hs = piezometric head at node i and head at source node s, respectively;

Hfa -  piezometric head at node i above which outflow equals demand;

Hf" = piezometric head at node i below which outflow equals zero;

hij, hp = headloss in pipe ij and path p, respectively;

/  = the set of all source nodes;

L, j = length of pipe ij;

M , N = number of links (i.e. pipes, pumps and valves) and nodes, respectively;

Ni = the set o f all the nodes connected to node i;

NDj = the set of outflows, including any demand, at node i;

NP, NS = number of Pareto-optimal and non-dominated. solutions, respectively;

P, = fraction of total flow through network that reaches node i;
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P i = probability o f rth event;

p(m), p(m, n) = respective probabilities that only link m and only links m and n are not in service; 

p(0) = probability that all links are in service;

Qi = inflow (for sources) or demand (for demand nodes) at node i;

Q,req ~ demand at node i;

Qoi -  inflow at source node i;

Qi(Hj) = head-dependent outflow at node i;

QiJt Q 'j = flow and maximum entropy flow in link ij, respectively;

R = hydraulic reliability;

5 = informational entropy;

Si, S0 = entropy of node /' and entropy of source supplies, respectively;

T = sum of nodal demands;

Ti = total flow reaching node i;

T(m), T(m, n) = respective total flows supplied with only link m and only links m and n out of service; 

T(0) = total flow supplied with all links in service;

um = probability that link m is not in service;

a = dimensionless conversion factor (10.67 in S.I. units); and

y  = coefficient in cost function.



FIGURE CAPTIONS

Fig. 1 Alternative layouts for the sample network (with demands in liters per second) 

Fig. 2 Cost versus hydraulic reliability for all designs

Fig. 3 Cost versus hydraulic reliability for the Tanyimboh and Sheahan flow directions 

Fig. 4 Cost versus hydraulic redundancy for all designs 

Fig. A1 Optimal layouts and flow directions
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