
Revisiting Ancient 
Egyptian Mathematics 
Implications for Science Studies 

and Egyptology 

Thesis submitted in accordance with the requirements 
of the University of Liverpool 

for the degree of Doctor in Philosophy 

Elizabeth Hind 

THE UNIVERSITY 
of LIVERPOOL 

July 2004 

Science Communication Unit 



Though their portals and mansions have crumbled and their ka servants are gone; 
their tombstones are covered with soil, their graves are forgotten. But their names 
are pronounced because of their writings, which were good. Their names will last 
for eternity. 
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Abstract 

This thesis will revisit the two major mathematical texts from ancient Egypt, the 

Rhind and Moscow mathematical papyri. This will be done in order to examine 

how historians of mathematics and Egyptologists commonly view these texts. 

Egyptian mathematics is commonly held to be limited to applied mathematics 

that does not have the abstract qualities that have led historians of mathematics to 

identify the first mathematicians as the Greeks. In order to examine these ideas, 

this thesis will initially examine some of the most important problems from the 

Rhind and Moscow mathematical papyri. The features of these problems that 

have been used to build up the picture of the character of Egyptian mathematics 

can then be discussed in detail. It will be seen that Egyptian mathematics has 

many features that are hard to reconcile with the traditional view. This is 

because most commentators on Egyptian mathematics have a naive 

understanding of the philosophy of science. To add to this problem the aims of 

writing History of Science can be conflicting. Mathematicians have an interest 

in how theories they are familiar with arose and so write in chronological order. 

On the other hand, Egyptologists and other historians should be interested in the 

science and mathematics of the period they are studying for its own sake. This 

raises a philosophical problem; constructivism is one solution to this problem. 

This solution is unpopular with scientists and their objections will be explored. 

The questions which constructivism raises in relation to Egyptian mathematics 

will be identified and responded to in order that a more productive analysis of 

Egyptian mathematics can be achieved. This will lead to the conclusion that 

Egyptian mathematics does not deserve its current reputation and is in need of 

further investigation by specialist Egyptologists and archaeological theorists. 
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Chapter 1 Introduction 

Chapter One 

Introduction 

1.1: Introduction to the Study of the History of Science and 
Mathematics 

The study of history is a complicated one full of potential traps and 

misconceptions. Even defining what is meant by the term `history' is fraught 

with difficulty. It is too simplistic just to state that history is the study of 

documents from the past. Reading the texts is an active not a passive process. 

We all bring our own meanings to the text and this problem is compounded when 

the text is in a language that is now dead. 

Nor is history just about storytelling, although narrative can play an important 

part. It is not sufficient merely to report the significant names and dates from the 

past; an element of analysis is required in order for the past to have meaning and 

for us to learn about why events occurred'. In the natural sciences, it is not 

sufficient to observe nature; the scientist attempts to define theories that explain 

why the universe behaves in certain ways. The same is true in historical 

research. The historian should not just observe the bare facts; an element of 

analysis is needed in order for the subject to have any meaning or interest. 

Without the layer of analysis, the sciences become nothing more than 

' Green, A. and Troup K. (1999) The Houses of History: A critical reader in twentieth-century 
history and theory; University of Manchester Press; Manchester; pp 204-213. 



Chapter 1 Introduction 

dispassionate observation. It is only through analysis of the observations that 

scientists learn to understand the causes of their observations. In this way, 

scientists can then appreciate the next experiment that is needed in order to 

investigate the phenomenon further. The act of experimentation is not therefore 

the most important part of carrying out a scientific exploration; it is the analysis 

of the results that enables scientists to move on in their field. The same is true of 

history. It is not sufficient to be a dispassionate observer to the events of history, 

to give the study any meaning requires the historian to offer explanation. 

If historical writing were confined only to the bare facts then it would be a dull 

subject devoid of anything to stimulate the reader. Explaining the motives 

behind the events and exploring the cultural, social, economic and political 

networks of a period is the most difficult part of writing history and is therefore 

the most interesting. It takes a skilled and knowledgeable historian to be able to 

turn a series of facts into a document that illuminates the workings of human 

culture and society. 

The history of the sciences and mathematics is not a special case in this respect. 

It is not adequate simply to chart the discoveries of leading scientists and 

mathematicians: a chronicle of the important names, dates and places is not 

historical writing. A linear narrative of scientific discovery does not enable 

researchers to understand how scientific discoveries are made and the impact of 

those discoveries on other systems such as politics, economies and even artistic 

culture. If anything is to be learnt from the history of the sciences then analysis 

and contextualisation is not only desirable but also vital. Writings about the 

development of the sciences and mathematics have the ability to inspire modem 

2 



Chapter 1 Introduction 

scientists to make great discoveries. There is a place for books that chart 

discovery and praise the geniuses of the past. However, this cannot be described 

as history. Many anecdotal tales are told about the past, including anecdotes 

about scientists who are long since dead. These anecdotes have become part of 

our culture but it would be foolish to describe them as historical. History of the 

sciences has the power to help in the identification of the conditions necessary 

for the sciences to thrive. This is an important avenue of research yet in order to 

do this we have to be able to draw parallels across historical periods. This cannot 

be accomplished if researchers are engaged in only narrating the course of 

developments. A deeper understanding is required. 

In this way, it is similar to other areas of historical study. Yet, there are 

problems that are peculiar to the study of the history of the sciences and 

mathematics. Science and mathematics have developed along with progress in 

epistemology and the philosophical appreciation of science and mathematics. 

In a modem society, we have become familiar with disciplinary boundaries. 

However, many of the boundaries are only used for convenience: it is hard to 

define where many of them are placed and it is not always possible to remain 

within them. For example, the subject of physical chemistry is both physics and 

chemistry, while the subject of genetics needs a good understanding of both 

biological and chemical systems. There is a growing awareness of the need for 

inter-disciplinary research. Therefore, even within a modem academic system 

that is familiar, it is hard to classify some individual pieces of research. This 

problem can only be made more complicated when studying historical texts. The 

further back in time travelled, the more dissimilar the mode of investigation and 

3 
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the setting of the investigation. This can lead to problems when discussing the 

nature of the work in the text. It is too easy to allow our modern judgments about 

the nature of science and the desirable qualities of that science to interfere with 

an objective analysis of it. Not only is it difficult to identify accurately the 

boundaries between the elements of science, it is also difficult to draw 

boundaries between science and technology or science and engineering. One 

area which is common to all is mathematics. This investigation of ancient 

Egyptian mathematics will show how modern conceptual problems of definition 

have influenced our attitude to the science and mathematics of the past. It will 

also show how a slightly different approach to the study of scientific and 

mathematical texts of the past can radically alter our opinion of those texts. 

This thesis will examine the problems of the identification of texts for study. It 

will discuss how our definitions of science have been allowed to interfere with 

the production of an inclusive holistic picture of the development of the sciences 

and mathematics. It will examine the approach taken by many historians of 

science and mathematics and the linear narrative style adopted by large numbers 

of them. This linear narrative style only charts the development of mathematical 

ideas, rather than analysing the nature of science and mathematics and the 

meaning of scientific and mathematical texts from the past within their own 

context. 

In modem academic culture, we have come to prize science and mathematics 

because of their abstract nature and the apparent objectivity of the method of 

enquiry. One of the strengths of science is that statements can be made with a 

level of certainty that cannot be achieved in the arts and humanities subjects. 

4 
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Lewis Wolpert has even gone as far as calling science ̀ the defming feature of our 

age'. He proposes that science has the power to change our lives in a way that no 

other subject can2. This power is a worthy subject of study and there are many 

ways in which this can be done, some more popular with scientists than others 

are. 

Philosophy of science, sociology and history can all contribute to our insight into 

the methods of science and how it interacts with society and culture in the wider 

sense. However, the results of these studies are hard to integrate as each has its 

own point of view from which to study the problem. The way in which ancient 

Egyptian mathematics has been studied will be investigated in order to show how 

philosophy of science, sociology and history affect our understanding of the 

Egyptian mathematical achievement. This thesis aims to investigate these areas 

and try to combine the ideas obtained from each. Ancient Egyptian mathematics 

is a good example to use to identify the most salient points of the nature of the 

sciences and mathematics because there are so many factors that affect the 

modern reader's interpretation of the texts. The extreme age of the texts is one of 

their most important factors. The texts come from a time that is much removed 

from our own in space, religion and philosophy. The way in which they are 

written about has the ability to highlight many of the problems that we have 

when trying to write a history of science or mathematics. 

2 Wolpert, L. (1992) The Unnatural Nature of Science; Faber and Faber; London; p. ix. 

5 
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1.2: Ancient Egyptian Mathematics 

This thesis aims to study the problems of writing history of mathematics with 

special reference to the problems it causes to our understanding of the 

mathematics of ancient Egypt. This thesis will contain some of the more 

interesting problems of ancient Egyptian mathematics in order to give the reader 

a flavour of the nature and language of the extant texts. This thesis is not 

intended to be a complete survey of the contents of the papyri as this is 

unfeasible in a work of this size and type. The texts have been published in full 

in other volumes and the reader is advised to consult these for a complete edition 

of the texts3. The Egyptian mathematical material will be considered in order to 

investigate how our current method of studying and writing about the history of 

mathematics can colour our understanding of the mathematical product of 

another culture. The comments on the character of ancient Egyptian 

mathematics will be studied in order to identify the reasons why Egyptian 

mathematics has largely been ignored. This thesis will consider the comments of 

the earlier Egyptologists, such as Peet, who produced translations, as well as 

more modem editions such as Couchoud, Clagett and Imhausen. A comparison 

between the different editions will highlight how the ideas about Egyptian 

mathematics have changed, and also the changes in the histographical approach 

taken by the different researchers. 

3 
For the Moscow Mathematical Papyrus see: Struve W. W. (1930) Mathematisher Papyrus des 

Staatlichen Museums der Schönen Künste in Moskau, QSGM, Abt. A: Quellen; Berlin. 
For the Rhind Mathematical Papyrus see: Peet, T. E. (1923) The Rhind Mathematical Papyrus: 
British Museum 10057 and 10058; University of Liverpool Press; London. 
Facsimiles of the Struve edition of the Moscow Papyrus and an edition of the Rhind Papyrus by 
Chace, Manning and Archibald (Chace, Manning and Archibald (1927) The Rhind Mathematical 
Papyrus; Vol. 1; Oberlin; Ohio. ) can be found along with facsimiles of other Egyptian 
mathematical texts and their translations in: Clagett, M. (1999) Ancient Egyptian Science: .4 
Source Book Vol. 3; Ancient Egyptian Mathematics; Memoirs of the American Philosophical 
Society vol. 232; Philadelphia. 

6 
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The comparisons made between Greek mathematics and earlier mathematical 

traditions will also be considered. These comparisons are extremely illuminating 

as they draw out the reasoning behind the generally high opinion of Greek 

mathematics when it is compared to the earlier mathematical traditions. This 

contrast between the Greek and the Egyptian mathematical traditions allows the 

study of the opinions formed about both traditions simultaneously. This will 

make clear the reasoning behind the negative comments made about ancient 

Egyptian mathematics. 

Chapter Eight will look at how our understanding of Egyptian mathematics can 

be improved when we recognise how philosophy can distort our appreciation of 

the achievements of the ancient Egyptians. The final section in Chapter Eight 

will offer some suggestions for the furtherance of the study of ancient Egyptian 

mathematics. This section will offer observations on the problems of the 

reluctance or unwillingness of many in the Egyptological community to study of 

Egyptian mathematics because it is considered to be hard. The problems of 

science communication and the popular image of mathematics and the sciences 

will be considered in order to offer proposals for the integration of the study of 

Egyptian mathematics and science into a wider Egyptological context. 

1.3: Philosophy of Science and Its Relationshin To Historiograph 

This work will examine how modern philosophy of science has produced 

definitions of what science is that are now used retrospectively to appraise the 

science of the past. Through studying the works of the philosophers Thomas 

Kuhn, Karl Popper and Imre Lakatos and more recent commentaries, this thesis 

will examine the problems of definition and demarcation. 

7 
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The demarcation question was of special interest to Popper and Lakatos. They 

believed that it was possible to define a demarcation criterion or criteria that 

would be able to distinguish a scientific subject from a non-scientific or pseudo- 

scientific subject. Popper and Lakatos were both very influential thinkers and 

their ideas are still important. Their ideas are still taught to science research 

students so the students can learn to identify good practice in scientific research 

and make the students think about how they design their research and 

experiments to gain maximum benefit. The ideas of Popper and Lakatos are also 

very influential on how scientists perceive their work and the position that work 

has in the context of academia and the wider context of society and culture. As 

many researchers in the history of the sciences are trained as scientists, the work 

of such philosophers is therefore very influential on the approach and 

methodologies utilised in the history of the sciences. 

Kuhn is most famous for what may be the last macro-history of science - The 

Structure of Scientific Revolutions4. His ideas about the way in which science 

advances through periods of normal science followed by paradigm shift has also 

found its way into the consciousness of the scientific community. Kuhn appears 

in the same company as Popper and Lakatos in the philosophy of science but his 

work, especially The Structure of Scientific Revolutions, deals with a different set 

of issues. Kuhn is more interested in studying the process by which science 

advances. This is therefore an extremely important text for anyone wishing to 

study the history of the sciences. Kuhn's work has also been identified as the 

4 Kuhn, T. (1962) The Structure of Scientific Revolutions, University of Chicago Press. 

8 
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`harbinger of the constructivist movement's. Constructivism is an exceptionally 

important idea in the current historiography of science and constructivism will be 

looked at in detail in a later chapter. However, before constructivism can be 

fully appreciated it will be necessary to study the ideas of Kuhn and how his 

macro-history of science has come to be one of the most frequently quoted idea 

in scientific epistemology. 

1.3.1: Constructivism 

Recently there has been a lot of interest in the idea of constructivism in the 

history of science. Constructivism proposes that science is influenced by culture. 

The extent of this influence is a matter of opinion and various types of 

constructivism can be identified. Different authors also have different attitudes 

towards whether constructivism necessitates an anti-realist stance about science. 

This idea will be discussed and the importance of this approach not only to the 

understanding of history of science and mathematics itself, but also to the 

integration of the history of science into intellectual history and the much broader 

historical picture. 

The idea that the people engaged in doing science are affected by their culture 

also opens up the question of objectivity in science. It is the apparent objectivity 

of the subject that gives it a claim to be able to find the Truth. Objectivity is one 

of the most highly prized virtues of any piece of academic research and it is 

because science seems to have the claim to be the most objective of all the 

academic disciplines that it maintains the highly regarded position that it 

currently enjoys. Anything that brings this idea into question is seen as an attack 

s Golinski, J. (1998) MakingNatural Knowledge: Constructivism and the history of science; 
Cambridge University Press; Cambridge; p. 13. 
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upon science. This thesis will examine whether constructivism does mean that 

objectivity is unobtainable and whether this implies an attack on science. 

The study of the sciences from a humanities point of view can be informative. 

Unfortunately, some of the members of the science community have taken the 

idea of a cultural aspect of science as a criticism of it. Some researchers engaged 

in this aspect of research have been branded as anti-science. They have also 

been accused of being ignorant of science, the implication being that they do not 

understand the nature of the issues that they are studying. There is also a charge 

that the appreciation of science as a cultural phenomenon will undermine science 

teaching and science communication. The main proponents of this attack are 

Paul Gross and Norman Levitt. The final section of this thesis will explore the 

6 charges they make as they are outlined in their book, Higher Superstition. 

This thesis will examine whether supposing that there is a cultural aspect to 

science does in fact undermine science, science teaching and science 

communication, or whether in fact accepting and understanding the cultural 

aspect has the power to assist in a greater appreciation of science and 

mathematics. 

6 Gross, P and Levitt, N. (1998) Higher superstition: The academic left and its quarrels with 
science. John Hopkins University Press, Baltimore. 
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This thesis will begin by examining material from ancient Egyptian mathematical 

papyri. This material will constitute the core of the thesis. In later chapters it is 

this material that will serve as a type example of the difficulties that occur when 

studying the history of mathematics and science. However, this thesis is 

primarily concerned with the way in which this material has been studied and 

what this can tell us about the practice of the history of science and mathematics, 

rather than the mathematical achievements of the ancient Egyptians. 

Chapters Two, Three and Four will not, therefore, be a complete investigation of 

Egyptian mathematical texts. Instead, they will highlight the important features 

of ancient Egyptian mathematics needed to gain a good general understanding of 

the nature of ancient Egyptian mathematics. They will particularly look at those 

features that appear most often in the work of historians of mathematics of both 

specialist books on ancient Egyptian mathematics and general histories of 

mathematics. 

Chapter Two will look at the basic procedures of addition, subtraction, 

multiplication and division. These arithmetical operations will serve as an 

introduction to the way in which ancient Egyptian mathematical texts are 

composed and laid out. An understanding of these operations will also assist the 

reader in understanding some of the more complicated problems from Egyptian 

mathematical texts that are explored in later chapters. This chapter will also 

survey the employment of unit fractions, as this is one of the most unfamiliar 

11 
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techniques used in Egyptian mathematics to a modern reader and one that 

appears in many problems from the ancient Egyptian texts. 

Chapter Three will begin to look at some of the more advanced problems 

contained in the Egyptian mathematical texts. These will include geometrical 

problems and also problems known as aha problems, that work out the value of 

an unknown heap (rht in hieroglyphs) that are similar to algebraic problems. 

Chapter Four is devoted to the two most interesting problems to have survived 

from ancient Egypt, Problems 10 and 14 of the Moscow Mathematical Papyrus. 

These problems are dealt with in a separate chapter to allow for a more thorough 

investigation. Problem 10 is especially interesting and it is also the problem that 

has attracted the most discussion about its meaning. It is to be hoped that this 

thesis will present the most comprehensive investigation of this problem and that 

it will offer a reasonably conclusive argument for the adoption of the translation 

that it presents. Problem 14 attracts a fuller discussion because of what the 

method of the solution reveals about the nature of ancient Egyptian mathematics. 

Once the mathematical achievements of the Egyptians have been explored, the 

way in which these achievements have been studied will be reviewed; this will 

make up the content of Chapter Five. This review will be achieved through a 

study of each of the major authors of specialist books on Egyptian mathematics 

from the early works by Peet to the most up to date works by authors such as 

Imhausen and Couchoud. Authors of major chronological histories of 

mathematics will also be considered to see how Egyptian mathematics is 

perceived to fit into a general history of mathematics. There is also an increasing 

12 
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number of popular books on the history of mathematics that adopt a thematic, 

rather than a chronological approach to the history of mathematics. These will 

be analysed as they often have interesting observations to make and they 

illuminate unique aspects of the nature of history of mathematics and science. 

This survey of the way in which Egyptian mathematics has been written about 

will lead into a discussion about the need for a re-examination of the way in 

which history of science and mathematics is studied and its place within modern 

academic culture. This discussion will examine how the picture we have about 

the achievements of ancient Egyptian mathematics falls short of a complete 

understanding of the material within the context of the study of Egyptology. 

Chapter Six will begin an investigation into the philosophical context of work in 

the history of mathematics and science. Whilst investigating the work of some of 

the major philosophers of science and mathematics it will be made clear how this 

work affects presumptions made about science and mathematics in the study of 

its history and in turn how this might distort the picture gained about the 

mathematical and scientific achievements of cultures of the past. 

This examination of the philosophical context of work in the history of the 

sciences will continue into Chapter Seven. Chapter Seven will be particularly 

concerned about the ideas of Constructivism and considerations that emerge from 

a Constructivist approach to the history of science. The main aim of this chapter 

is to consider how an understanding of the mathematics and science produced by 

an ancient civilisation can be incorporated into the wider understanding. This 

chapter will then also explore the relationship between science and technology as 

13 
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the boundary between science and technology is not necessarily as clear in an 

ancient civilisation as it is in a modern academic culture. Therefore, assumptions 

that are made about the difference may obscure the true nature of the science or 

mathematics of that culture. 

Once the problems of writing history of mathematics and science have been 

investigated and solutions to these problems suggested, this thesis will return to 

the specific problems of ancient Egyptian mathematics. Chapter Eight will 

consist of a commentary on the character and nature of ancient Egyptian 

mathematics based on the discussions of the previous chapter. This chapter will 

refer back, when necessary, to the problems from the Egyptian texts contained in 

Chapters Two, Three and Four. Chapter Eight will look at how our 

understanding of Egyptian mathematics can be improved when we recognise 

how philosophy can distort our appreciation of the achievements of the ancient 

Egyptians and will offer some suggestions for the furtherance of the study of 

ancient Egyptian mathematics. This chapter will offer suggestions for dealing 

with the unwillingness of Egyptologists to study mathematics and science. 

Chapter Nine will consider some of the implications of this thesis for science 

studies in general. This thesis will raise issues about the nature of science that 

are relevant in current debates about science, science communication and public 

engagement with science. Whilst these issues do not relate directly to the ancient 

Egyptian material, they are important because the process of studying the ancient 

Egyptian material and examining the philosophical context of books written on 

the subject will necessarily highlight the prejudices for and against science that 

are causing many difficulties currently. It was felt that these aspects should 
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therefore be included so that the reader can consider the wider implications of 

this thesis. 

1.5: Notes on the Presentation of Problems from the Egyglt*an 
Mathematical Texts 

The chapters covering the Egyptian mathematical texts will largely consist of 

translations prepared by the author of selected problems from the Rhind and 

Moscow Mathematical Papyri. These two texts are the most complete texts to 

have survived, both in terms of their coverage of the range of mathematical 

material and their physical condition. 

Each problem will be translated on a separate page. Because some of the 

techniques are unfamiliar to a modern reader, it is helpful for each of the 

problems to be presented separately so that the problems can be easily seen and 

followed. Whilst this may make the material appear fragmentary, the benefits for 

ease of comprehension outweigh this difficulty. It is intended that the reader 

should be made familiar with the techniques employed so that he or she will be 

able to follow the analysis of the material that will appear in later chapters. The 

translations will present a transliteration of the hieroglyphic text maintaining the 

original lines. The transliteration is the first step in producing a translation of the 

hieroglyphics, this transliteration provides a phonetic equivalent of the 

hieroglyphs and will also separate out each of the words. 

Any diagrams that are part of the original texts will be presented after the 

translation, on a separate page if necessary. Where the accompanying diagrams 

contain hieroglyphic numbers, these will be presented at the top of the page, with 
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a translation of the numbers presented on a copy of the drawing at the bottom of 

the page. 

Arithmetical workings will be presented in a format as close to the original 

format as possible. Where substantial changes have had to be made either to 

elucidate the problem to a modem reader, or for reasons of physically fitting the 

problem on an A4 page, these will be made clear in a footnote. 

A commentary will follow each translated problem in a separately headed 

section. These commentaries will describe the methods employed by the 

Egyptian scribe and provide explanations employing modern mathematical 

notation where appropriate. These explanations have been kept separate from the 

translated problems in order that the reader should gain skill in deciphering the 

problems. The methods employed need to be understood for their own worth. If 

the reader is too reliant on the modern notation then this will act as a barrier 

between the reader and the material. The reader may find it useful to have a pen 

and paper on hand so that their understanding of the problem can be checked 

before reading the commentary provided. 

Some problems are included because they employ vocabulary that appears in 

other problems of a more enigmatic nature. A correlation between the instances 

of one particular word can assist in deciphering its exact meaning by comparing 

the contexts in which they appear. Where problems have been included for this 

reason this will be highlighted in the commentary and a cross-reference to other 

problems will be included in a footnote appended next to the word in question. 
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In some cases, there are rival interpretations of the problems; where these are 

significant they will follow the translation prepared by the author and any 

judgments made by the author will be explained. In the case of a few of the 

geometrical problems from the Moscow Mathematical Papyrus there are 

arguments over the hieroglyphic transcription from the original hieratic text, 

either because of gaps in the papyrus, or because of the notoriously bad 

handwriting of the scribe who prepared it. Where these arguments arise, the 

translation will be produced from the original full publication of the Moscow 

Mathematical Papyrus prepared by Struve, as this volume contains a complete 

facsimile of the Moscow Mathematical Papyrus and a complete transcription into 

hieroglyphs. The differences in the transcription will be discussed in a separate 

section after the translation and commentary of the appropriate problems. Any 

changes that the differences may make to the meaning of the text will be 

explained in this section. 

The Egyptians had a system of expressing fractions that is largely unfamiliar. 

Except for two-thirds, fractions were expressed as unit fractions, these are 

fractions with a numerator of 1. In this thesis, fractions are shown as the 

numerator-with a line over the top. A half is thus shown as 2, a quarter as 4 etc. 

Two-thirds will be shown as a three with two lines over the top: 3. A further 

explanation of unit fractions will be given in Section 2.4. 

Parts of some of the mathematical problems were written in red ink. Where this 

occurs any transliterations will be underlined and the translation will be given in 

bold. This follows standard procedure for the publication of mathematical texts 

from ancient Egypt. 
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Chapter 2 

Arithmetical Procedures 

This chapter will consider arithmetical procedures from ancient Egyptian 

mathematics. In addition to exploring the ways in which the Egyptians 

performed arithmetic procedures, it is also intended to familiarise the reader with 

the methods employed, as an understanding of these methods is useful when 

reading later chapters. The texts indicate that the Egyptians had a considerable 

proficiency in mental arithmetic. The features of Egyptian arithmetic that 

facilitate mental arithmetic will be explored in detail. 

2.1: Introduction 

Section 2.2 looks at addition in the mathematical texts and the suggestion that the 

Egyptians needed an addition table to complete their arithmetic. The aim of this 

chapter is to show the flexibility of the arithmetical procedures and their use in 

mental arithmetic. It is hoped that by the end of this chapter the reader will have 

no doubt whether the scribes that prepared the mathematical texts needed this 

table. 

Section 2.3 explores the different methods of multiplication contained in the 

Rhind Mathematical Papyrus. This is intended to be a complete and definitive 

list of the techniques used. Each example of multiplication contained in the 
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Rhind Mathematical Papyrus has been identified and categorised. This is to 

demonstrate how the method of multiplication was manipulated to suit the 

context of the problem. In some problems multiplications were carried out with 

great attention to detail, in other problems the scribe who prepared the text is 

more interested in demonstrating a geometrical method so the arithmetic is kept 

simple. 

Section 2.4 investigates the techniques employed in division. While the 

procedures are similar to those employed in multiplication, as can be expected, 

there are several features that show how the ideas are adapted to suit the needs of 

the scribe. 

The fmal section of this chapter will discuss the use of unit fractions in ancient 

Egypt. Most commentators on the use of fractions in Egypt find their methods 

clumsy and inferior to the method of writing fractions that we use today. 

However, through the detailed investigation of a group of three problems from 

the Rhind Mathematical Papyrus, it will be shown that the scribe, through 

considerable practice, was skilful in their use and this will highlight some of the 

advantages of unit fractions. Far from being a hindrance, unit fractions can be an 

asset in practical mathematics. 

2.2: Addition and Subtraction 

The method for working out the result of an addition or subtraction is not 

explained in any of the extant mathematical problems; the answer is simply given 

below or to the side of the numbers. 

19 



Chapter 2 Arithmetical Procedures 

Some writers of history of mathematics books' dismiss the process of addition as 

a particularly simple process in Egyptian mathematics because of their number 

system. In hieroglyphs, addition is a very simple process, as the hieroglyphs 

only need to be rearranged and then groups of ten converted into one symbol of 

the next power of ten. For example: 

nnn 35 oL�s finn ýýýýýý 65 

nrHl 
n n n 
n n n 
n n n 

n 

Ten units becomes one sign for ten 

Ten tens becomes one sign 
for a hundred 

Answer: 100 

1 See, for example, Teresi, D (2002) Lost Discoveries. The Ancient Roots of Modern Science - 
from the Babylonians to the Maya; Simon & Schuster, New York; pp. 39-40. See also Peet, T. E. 
(1923) The Rhind Mathematical Papyrus British Museum 10057 and 10058; University of 
Liverpool Press; p. 12. and Neugebauer, 0. (1952) The Exact Sciences in Antiquity; Princeton 
University Press; Princeton, New Jersey; p. 73. 

20 



Chapter 2 Arithmetical Procedures 

However, this process only works if the addition sum is written in hieroglyphic 

notation, whereas the mathematical texts were written in hieratic. In hieratic the 

process does not work, as there are different signs for each of the units, multiples 

of ten, multiples of a hundred etc. 

In this case, addition requires the mathematician to be aware of number 

combinations and to be able to work out the sum in another way. 

The hieratic number system works as a cipher. Instead of using the same sign 

several times to show a multiple of units or tens, the scribe would use a separate 

sign for different multiples of units, tens, hundreds, thousands etc. The numerals 

looked like this2: 

'Numerals copied from Gillings, R. (1972); Mathematics in The Time Of The Pharoahs; MIT 
Press, Cambridge, Mass.; p. 257-8 
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10 

20 
n 

J-10n 
30 A 

40 

50 

100 

200 

300 

500 

1000 
1 

2000 
4 

Whilst this system is not a place-value system, addition could not be performed 

by collecting together symbols and then converting them. The scribe would need 

to know number combinations. The addition completed above in hieroglyphic 

numerals would appear thus in hieratic: 
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35 

65 

100 

Additions are usually performed with no explanation in the text. This means that 

they were either performed mentally or on another piece of papyrus or on an 

ostracon. Given that Egyptians tend to write out in full the method for 

completing a multiplication sum, it seems that it is not unreasonable to presume 

that additions were carried out mentally. It is a very pessimistic interpretation of 

the texts to consider the idea that the mathematician might have had to write out 

an addition sum. 

2.2.1: Gillin2s' Addition Table. 

In his book, Mathematics in the Time of the Pharaohs Gillings3 asks whether the 

Egyptian mathematicians worked out an additions table like they had worked out 

a 2/n table in the Rhind papyrus and a list of fractional equalities in the Egyptian 

3 Gillings, R (1972) Mathematics in the Time of the Pharaohs; Cambridge Massachusetts; 
MIT Press. 
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Mathematical Leather Roll. He gives a possible table on page 13 of his book. Its 

translation into Arabic numbers looks like this: 

2 9 11 2 8 10 2 79 2 68 257 246 

3 9 12 3 8 11 3 7 10 3 69358347 

4 9 13 4 8 12 4 7 11 4 6 10 459 

5 9 14 5 8 13 5 7 12 5 6 11 

6 9 15 6 8 14 6 713 

7 9 16 7 8 15 

8 9 17 

He does not go as far as to suggest the Egyptians did not know what one plus one 

equals, but he comes close. Gillings suggests that modern children learn addition 

of simple numbers by a "look and say" method, so that number combinations are 

learned by heart, that children do not perform simple additions by counting. In 

much the same way we add words to our vocabulary by looking them up so 

many times that we eventually remember, this is how we learn simple number 

combinations. Is Gillings suggesting that the ancient Egyptians did not have the 

intellect of a modem child? He writes that hieratic numbers do not lend 

themselves to counting. This is a very curious statement. In what way are the 

hieratic symbols any different from our own? How are they different from 

hieroglyphic numbers? It is true that modem mathematics uses a place value 

system that mean only ten symbols need to be learnt. However, hieratic is a 

cursive form of hieroglyphic numbers. The importance of learning number 

combinations that add to ten is the same in both numeral systems. We must 

assume that the Egyptians had words for three and four, and could say them. It 

235 
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does not matter anyway; if you can hold up three fmgers on one hand and four on 

the other you do not need to be able to count in hieratic to see that you are 

holding up seven forgers. Even when we get beyond sums with an answer of ten 

or less we can still work them out in our heads. It is only when we are dealing 

with very big numbers that we need to write them down, but even then we do not 

require addition tables, we can just work out the sum of the units, the tens, the 

hundreds and so on until we have completed the sum. Is there any reason to 

believe that the Egyptians did not have this mental capacity? 

The Rhind Mathematical Papyrus is our best source for examples of Egyptian 

multiplication technique. In the Moscow Mathematical Papyrus, there are no 

examples of multiplication sums with the working shown. In the Moscow 

Mathematical Papyrus, the workings of a problem are not shown beneath a 

narrative version of the problem, as is the case in the Rhind Mathematical 

Papyrus. Conversely, the narrative versions of the problems are all that appear 

and contain in them multiplications where the result is given without any 

apparent recourse to working. In MMP 11, for example, it is necessary to square 

5. The result, 25, is given without any further explanation. It is possible that the 

scribe used another piece of papyrus or a broken piece of pottery to work out the 

correct answer before inserting this in the papyrus. This is pure speculation 

though and does not assist us in an understanding of how the Egyptians 

performed arithmetical procedures. This section will therefore concentrate on 

the Rhind Mathematical papyrus and look in detail at how multiplications are 

performed, and how they are written in the text. 
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There are surprisingly few examples of multiplication sums whose working is 

shown in the extant mathematical texts. It is therefore possible to look in detail 

at all the examples that come from the main source of the evidence, the Rhind 

Mathematical Papyrus. What follows is an attempt to classify these examples. 

Whilst it is understood that all the examples of multiplication that are included 

here are all superficially the same, there are distinct groups that have some 

correlation to the type of problem that they are taken from. These differences 

show that Egyptian multiplication technique can adapt to the problem at hand 

and is not a rigid way of performing the arithmetic. 
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Number of Examples in RMP Problem 
Multiplication Type Rhind Mathematical Numbers 

Papyrus 

A Multiplication by 

Repeat Doubling, with 6 26,32,41,48,50,52, 

No Fractions 

B Multiplication by 

Repeat Doubling of 7 24,25,27,43,54,55,69 

Fractions 

C Multiplication by 

Repeat Doubling and 5 35,42,53,69,70 

Fractions 

D Multiplication of 19 7-20,30,35,56,58,67 
Fractions. No Doubling 

E Multiplication of 

Fractions by Repeat 2 80,81 

Halving 

F Other Methods 8 41-46,49,79 

G Trivial Multiplication 
7 24,25,27,35,36,37,38 

in the Problems 

H Multiplication with No 40,61,62,72,73,74, 
9 

Working Shown 75,78,82 

Table 2.1 Multiplication Types in the Rhind Mathematical Papyrus 
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Type A- Multiplication by Repeat Doubling, with No Fractions 

Multiplications were sometimes worked out by repeated doubling. They could 

be written in two columns, one column showing the multiplicator, the other the 

multiplicand. For example, in RMP 41 it is necessary to work out 8 multiplied 

by 84. The working could appear as follows5: 

1 8 

2 16 

4 32 

/8 64 

The first row of the right-hand column shows one of the numbers to be 

multiplied. The left-hand column shows the multiplier of that number. Row one 

for example shows that 1 lot of 8 is 8, the second shows that 2 lots of 8 equals 16 

and so on. The numbers in both columns are doubled from one row to the next. 

This process is continued until the answer required is reached, that of 8 

multiplied by 8. The tick to the left of the 8 in the left-hand column shows that 

this is the correct multiplier reached. 

These ticks become important when it is necessary to perform a multiplication 

where neither of the numbers to be multiplied is a power of 2. In these cases it 

becomes necessary to add up the numbers in some of the columns. For example, 

48 multiplied by 8 also appears in RMP 48 and RMP 50. The method is the same so these 
problems are not shown here. 

In the Rhind Mathematical Papyrus itself, this sum appears over two columns to save on space. 
They have been placed in one column here to assist the reader. 
6 The Rhind Mathematical Papyrus was written from right to left so in fact the numbers were 
reversed. However, for the assistance of the reader multiplications will always be shown with the 
multiplier in the left-hand column and the multiplicand in the right-hand column. This 
convention follows all the major publications of the Rhind Mathematical Papyrus. 
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RMP 48 requires the scribe to calculate 9 multiplied by 9. The working could 

appear as follows7: 

U9 

2 18 

4 36 

\8 72 

Total 81 

The total is reached by adding the numbers in the right-hand columns of ticked 

rows. The two ticked numbers in the left-hand columns add up to the required 9. 

There is also an of example in RMP 26, showing the multiplication of 3 by 4: 

13 

26 

\4 12 

The last example of repeat doubling that does not involve fractions is found in 

part of RMP 32. In one part of the problem it is necessary to find the square of 

12. The working appears in the problems thus: 

" In this case, the numbers do appear in a single column. 
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1 12 

2 24 

\4 48 

\8 96 

Total 144 

Apart from these six examples, there are very few other examples of repeated 

doubling in the extant mathematical texts that do not involve fractions. One of 

these examples is RMP 79, which deals with a geometric progression. A full 

translation is given in Section 2.4. 

RMP 52 is a problem dealing with reckoning a truncated triangular area of land, 

or a trapezium. Although the text of the problem and the subsequent working is 

muddled, the scribe works out 2000 times 5. The working appears as 8: 

\1 2000 

2 4000 

\4 8000 Total 10000 

Multiplication by two has been omitted from this type, as they cannot be 

considered to show a repeat doubling as only one has occurred. An example of 

this can be found in RMP 51. In this case, 1000 is doubled to give 2000. 

8 This is the same layout as appears in the Rhind Mathematical Papyrus. 
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Type B- Multiplication by Repeat Doubling of Fractions9 

There are several examples of multiplication of fractions by the repeat doubling 

method. The method for this multiplication is unchanged to those above. The 

only difference is that the numbers in the right-hand column contain fractions. 

These examples appear in RMP 24,27 and 54. RMP 24 is one of the rr 

problems1°. In the fmal step of the problem, it is necessary to multiply 248 by 

7. This is achieved as follows": 

\1 248 

ý2 424 

\4 92 

RMP 27 is also an chc problem. Again, it is the final step in the problem that 

requires multiplication. In this case, it is 5 multiplied by 3 2. It is carried out as 

follows: 

\1 32 

27 

\4 14 

The quantity is 17 2 

9 For an explanation of the notation used for Egyptian Fractions, see Chapter 1. 
10 For an explanation of problems see Chapter 3. 
11 The total of this multiplication, 16 2 -4, is not explicitly stated. Instead, the answer is 
contained in the next step of the problem. 
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In RMP 43, it is necessary to work out 113 39 by 4. The working appears as 

follows: 

1 113 39 

2 2272 18 

\4 455 9 

It should be noted that in performing the doubling from row one to row two, the 

scribe has had to work out a unit fraction identity. In this example each term in 

the first row doubles as follows: 

Term: 113 39 

Doubled: 226 1+3 6+ 18 

Combinedi2: 227 218 

This technique will be explored later in this chapter in a section on unit fractions. 

Another example of this type of multiplication is in RMP 54. This problem uses 

setats, which were a unit of area equal to a square khet. Since khet was a unit of 

length equal to 100 cubits, a setat was therefore equal to 10,000 square cubits. 

Cubit-strips were a long rectangle 1 khet by 1 cubit, so 100 cubit strips made one 

setat13. The problem involves dividing 7 setat into ten fields of equal area. The 

final stage is a demonstration that the correct figure has been reached. The 

working appears as14: 

123+6=2 
13 Gillings, R (1972) Mathematics in the Time of the Pharaohs; MIT Press; Cambridge, Mass.; p. 
209-210. 
14 The total of 7 setat is not stated. 
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128 setat 

\2 148 setat 

4 22 4 setat 

\8 52 setat 

72 cubit-strips 

22 cubit-strips 

5 cubit-strips 

10 cubit-strips 

It should be noted that the scribe performed the change in units without any 

further explanation. The doubling from row one to row two requires a change 

from cubit-strips to setat. Double a half of a setat and an eighth of a setat gives 

one and a quarter setat, the first two terms of the second row. A half setat is 

equal to fifty cubit strips, so a quarter is equal to 25 cubit strips and an eighth of 

a setat is equal to twelve and a half cubit strips. Doubling the 72 cubit-strips 

from row one gives 15 cubit strips. This is equal to an eighth of a setat, with two 

and a half cubit-strips left over. Although all of these quantities could be 

expressed as a fraction of a setat, the scribe has chosen to only use unit fractions 

with a small, even denominator. The reasons why this makes practical sense will 

be explored later in this chapter. It can be noted though, that the scribe's choice 

of fractions makes the doubling from one row to another as simple as possible. 

This choice of fractions also makes the final step of adding the ticked rows 

together simple. 

RMP 55 is another example of multiplication that mixes setats with cubit-strips. 

Again, it employs only repeat doubling to work out 5 multiplied by 2 setat and 

10 cubit-strips. The working appears as follows: 
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\1 2 setat 

218 setat 

\4 24 8 setat 

10 cubit-strips 

72 cubit-strips 

22 cubit-strips 

As in RMP 54, the scribe converts the number of cubit-strips into a fraction of a 

setat only when this assists with the computations for the reasons explained 

above. 

In RMP 69, there is another example of repeat doubling which also involves a 

mixture of units. In this case, the units are hekat and ro, which are units of dry 

measure of grain. There were 320 ro in a hekat so a sixty-fourth of a hekat is 

equal to 5 ro15. The working appears thus16' 17: 

1 32 [hekat] 4 ro 

2 16 64 [hekat] 3 ro 

4 8 32 64 [hekat] 1 ro 

8 16 32 [hekat] 2 ro 

\16 28 16 [hekat] 4 ro 

32 14 64 [hekat] 3 ro 

\64 224 32 64 [hekat] 1 ro 

The result is 32 hekat 

15 Gillings, R. (1972) Mathematics in the Time of the Pharaohs; MIT Press; Cambridge, Mass.; p. 
210. 
16 The working actually appears as four columns as the rows for 32 times and 64 times were 
written beside the original two columns. For the assistance of the reader, here they have been 
shown in two columns only. 
"Horus-eye fractions are shown in italic. For a further explanation of Horus-eye fractions see 
Section 2.6.1. 
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Horus-eye fractions can be used easily in this example because it is easy to 

convert ro into Horus-eye fractions of a hekat because there are 320 ro to a hekat. 

Horus-eye fractions have the advantage that it is simple to keep doubling them. 

There is one further example, that of RMP 25, another chr problem In this 

example is the multiplication of 53 by 2 to give 10 3. It has been included in 

this section but it is debateable whether it should be counted as an example of 

repeat doubling because there is only one doubling. However, as the other "he 

problems use repeat doubling in this stage of the calculation it was felt that this 

was the best classification, even though it must be seen as a trivial example. 

Tyne C- Multiplication by Repeat Doubling of Fractions 

The repeat doubling method does not take into account multipliers that contain 

fractions. There are several examples of multiplications in the Rhind 

Mathematical Papyrus that are based on the repeat doubling method but which 

also contain multipliers that are fractional. For example in RMP 35 it is 

necessary to multiply 5 10 by 3 3. This multiplication cannot be completed by 

repeat doubling alone. Instead, the fast part of the working shows the repeat 

doubling and the third row shows the fractional part of the multiplication. The 

working appears in the papyrus thus: 

35 



Chapter 2 Arithmetical Procedures 

\1 510 

\2 210 

\3 10 Total ! 

RMP 42 is concerned with fording the volume of a cylindrical granary. In the 

first step in a problem of this type, once a ninth of the diameter has been 

subtracted it is squared. In this example, it is necessary to square 836 18. 

Because this is a complicated multiplication, the working takes several rows to 

complete1g: 

1 83618 

2 17 39 

4 35 2 18 

\8 71 9 

\3 5361827 

3 26 12 18 

\6 13 12 24 72 108 

\18 3-9- 27 108 324 

Total 79 108 324 

RMP 69 is the first in a series of problems that deals with a unit known as the 

pesu. The pesu was a measurement of quality of bread and beer. It is given as 

the number of loaves or jugs of beer that were made out of one hekat of grain, the 

" Again, this multiplication has been split so that in the text it appears in four columns. It is 
shown here in two columns to assist the reader. 
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lower the pesu, the greater the quality of the bread or beer'9. In this problem it is 

necessary to multiply 22 37 21 by 32 in order to show that the preceding 

division of 80 by 32 is correct. The total is not explicitly given as this 

multiplication adds up to 80 and is performed only as a check. The working 

appears thus: 

\1 223 721 

\2 45 34 14 28 42 

\2 1131442 

RMP 70 is another example dealing with pesu. This example of Type C 

multiplication also comes from the second stage of the problem as the method of 

solution follows the same pattern as the preceding problem. As an example of 

multiplication involving a larger multiplier, it serves as a better example of Type 

C multiplication than that of RMP 69. Again, this multiplication is performed to 

demonstrate that the preceding multiplication is correct. The multiplication is 12 

3 42 126 multiplied by 7248: 

\1 12 3 42 126 

\2 25 3 21 63 

\4 50 3 14 21 126 

63 84 252 

\4 36 168 504 

\8 12 12 336 1008 

19 See Gillings, R. (1972) Mathematics in The Time of The Pharaohs; MIT Press, Cambridge, 
Mass; p. 212. 
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RMP 53 is an unclear problem. The normal statement of the problem to be 

solved is missing in this case and there are also mistakes in the arithmetic. The 

accompanying diagram shows that this is a geometric problem concerned with 

the areas of a triangle and trapezoids contained in that triangle20. The second 

multiplication in this problem involves fording the area of a triangle with a height 

of 7 and a base of 2 4, The scribe therefore has to work out 7 multiplied by 24 

and then multiply the total by 2. This example has been classified in this type 

because it does contain a doubling even though there is only one doubling. 

Type D- Multiplication of Fractions. No Doubling 

This type of multiplication is the most common to be found in the Rhind 

Mathematical Papyrus. This reflects the fact that much of the Rhind 

Mathematical Papyrus is concerned with the manipulation of fractions. 

Problems 7 to 20 of the Rhind Mathematical Papyrus21 all deal with 

multiplications of two unit fraction series: 124 and 133. These problems 

, like most of the Rhind Mathematical Papyrus, do not state a problem to be 

solved at the beginning. At the beginning of RMP 7 it states: tp n tkm which 

translates as: an example of making complete as qkm is the causative of km which 

20 See Clagett, M. (1999) Ancient Egyptian Science A Source Book: Volume Three Egyptian 
Mathematics; American Philosophical Society, Philadelphia; Fig. IV. 5a-c; pp 382-4. 
21 See Gillings, R. (1972) Mathematics in the Time of the Pharaohs; MIT Press; Cambridge, 
Mass; p109-109-10. 
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means to complete22. This seems to serve as a title for this section. Instead, they 

seem to be examples of multiplying unit fractions in preparation for later 

examples. A couple of examples will suffice to show the method employed in 

these problems. RMP 9 appears thus23: 

i2 10 
24 20 

48 50 

Total 1 

The scribe here makes a mistake, as the third row is not double the second row. 

Either the total is incorrect, or as Peet suggests24 the fraction intended in the first 

row was 2 14, as this would make the second row 4 28 and the third row. This 

would give the correct total of one. 

This is not the only problem in this section of the papyrus where mistakes 

appear. In RMP II the problem appears thus: 

17 

29 14 

4 18 

Total 4 

This is clearly incorrect. It is possible that the scribe made the first error by 

giving twice 7 as 9, and then later realising a mistake and writing 14 in later. 

22 Peet, T. (1923) The Rhind Mathematical Papyrus British Museum 10057 and 10058; 
University of Liverpool Press, London; p. 54. Faulkner, R. (1999) A Concise Dictionary of 
Middle Egyptian; Griffith Institute, Oxford; p. 251. 
23 These problems do not use the customary ticks. 
24 Peet, T. E. (1923) Op. Cit. p. 55. 
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The mistake persists to the third row. Despite these errors, the total is given 

correctly, perhaps indicating that this problem has been copied badly from 

another papyrus. 

RMP 17 uses a different set of fractional multipliers and appears thus: 

13 

36 18 

39 

Total 3 

From these examples, it can be seen that these problems are not genuine 

mathematical problems, but practice in the manipulation and properties of 

fractions. It is clear that the scribe was in need of some practice. The second of 

these examples uses the multipliers 1,3 and 3. It cannot have escaped the 

attention of the scribe that these add to 2. Therefore, if these problems were only 

performed to solve the arithmetical problem the scribe would surely have 

multiplied by 2. 

RMP 56 requires the multiplication of 25 50 by 7 in the process of working 

out the seked, a measure of the slope, of a pyramid. The scribe proceeds thus: 

17 

2 32 

5 13 15 

50 10 25 

Its seked is 5 25 
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The scribe could have carried out this multiplication using the repeated doubling 

technique. The working would have looked like this25: 

1 2550 

2 131525 

423 10 30 15 75 

Total 5 25 

Although the method the scribe used takes more lines of working, using repeated 

doubling leads to more complicated fractional expressions. The final addition is 

also harder to complete. It should be noted, though, that the actual method 

requires the scribe to work out one fiftieth of 7, which he does without further 

explanation. This illustrates some of the problems using unit fractions and this 

example will be discussed in more detail in section 2.4. 

RMP 58 is a very similar problem as the problem is also concerned with fording 

the seked of a pyramid. In this example it is necessary to work out 93 3 

multiplied by 2 4. The working appears thus: 

1 93 3 

\2 463 

\4 23 3 

25 All doubles of unit fractions have been worked out using the 2/n table from the recto of the 
Rhind Mathematical Papyrus. See Appendix 1. 
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No total is given, but the tick marks are used to show that the first line should not 

be included in the total. 

RMP 30 uses a long string of unit fractions. The problem is to find a quantity 

that when multiplied by 3 10 becomes 10. The multiplication part of this 

problem is demonstrating that the correct answer was reached. It is very similar 

to RMP 58. The multiplication appears thus: 

1 13 23 

\3 83 46 138 

\10 15 10 230 

As in RMP 58, the tick marks are used to show that only the bottom two rows 

need to be summed, but the total is not given. 

RMP 67 is a unique problem in the Rhind Mathematical Papyrus as it deals with 

the number of cattle one herdsman needs to give in tribute. The herdsman needs 

to give two-thirds of one third of the cattle entrusted to him. It is interesting not 

only for the uniqueness of the problem type, but also for its treatment of 

fractions. The multiplication in this example is also a check that the correct 

answer has been reached. The herdsman has bought 70 cattle out of the herd to 

give as tribute. The previous working of the problem has arrived at the answer 

that the herd is 315 strong. The check is performed thus26: 

26 Here it is written in two columns although the end of this problem is a little confused and the 
working appears over 4 columns. 
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1 315 

3 210 

3 of it 105 

3 of 3 of it is 70. These are what he bought. 

It is standard in Egyptian mathematical texts for one third to be worked out by 

halving two thirds of the quantity, as the scribe has done here. It is interesting 

because although an earlier step in the problem showed that 3 of 3 is equal to 6 

18, the scribe performs the check with the numbers stated in the original 

problem, even though this requires more working. 

RMP 35 is also a check on the preceding work. In this case, it is necessary to 

check that 320 multiplied by 10 5 equals 96: 

1 320 

10 32 

5 64 

Total 96. 

It should be noted that the scribe selects the easier task of multiplying by a tenth 

before doubling that result to get 320 multiplied by a fifth. 

Type E- Multiplication of Fractions by Repeat Halving 

This method of multiplication is the reverse of Type A multiplication. Instead of 

each row being double the preceding row, it is half. There are only two 

examples of this method of multiplication in the Rhind Mathematical Papyrus in 
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two successive problems, RMP 80 and 81. Both of these problems are concerned 

with fractions of the hekat measure for grain in henu and ro, where there are 10 

henu in a hekat and 320 ro in a hekat. It is possible that RMP 80 is a scribal error 

because the first part of RMP 81 is identical. Only the titles given to the 

problems are different. The title of RMP 80 reads "As for vessels used in 

measuring by the functionaries of the granary", the title for RMP 81 reads 

simply "Another reckoning of the henu" 

The fractions of a hekat shown in these problems are all Horus-eye fractions, 

which makes the use of repeat halving appropriate. The table covers 34 rows, 

although some of them are repeated. The first six rows are the repeated section 

and appear thus: 

2 (hekat is) 5 (henu) 

4K22 66 

8 14 " 

16 66 28" 

32 66 4 16 " 

64 66 8 32 " 

The rest of the problem deals with other Horus-eye parts of the hekat, mostly 

sums of several Horus-eye parts that can be derived from the results above. 

Tyne F- Other Methods 

The repeat doubling method for multiplication is a laborious way to carry out a 

multiplication if the required multiplier is a large number. To account for this 

problem the Egyptians could use other techniques when multiplying. 
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Multiplying by ten is a fairly easy process and so in multiplications above ten, 

ten appears in the left-hand column as a multiplier. For example, in RMP 45 it is 

necessary to multiply 75 by 2027. The working appears as follows: 

1 75 

10 750 

20 1500 

This procedure is for more economical than repeat doubling. If the sum was to 

be performed by repeat doubling it would have appeared thus: 

1 75 

2 150 

\4 300 

8 600 

\16 1200 

Total 1500 

This is obviously more laborious than the way it actually appears in the Rhind 

Mathematical Papyrus as it takes more rows to reach the required multiplier and 

it also involves an addition of two rows. This method is also used to multiply 75 

by 20 in RMP 44. 

There are several more examples of this technique in the Rhind Mathematical 

Papyrus, using 10 as a multiplier, rather than the longer repeat-doubling method. 

Several of these examples come from problems concerned with working out how 

much grain a granary of a given size can hold. In these problems, it is necessary 

27 RMP 46 contains a very similar calculation, 25 multiplied by 20. It is worked out using the 
same method, multiplying by 10 and then by 2. 
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to convert the volume into 100 quadruple-hekat, or 400 hekat. Once the volume 

in cubic cubits had been worked out, then the volume was converted into khar, 

there being one and a half khar in a cubic cubit. This was then converted to 100 

quadruple hekat by multiplying by 20. The entire method can be seen in RMP 

41: 

Rhind Mathematical Papyrus Problem 41 

1) tp n in Isr dbn n 910 hb. hr=k 9n9m1 At 8 

Example of working out a granary, round 9,10 ( in height). You are 

to subtract a ninth of nine namely 1; remainder 8 

2) w3h-tp m8r sp. w 8 hpr. hr 64 #r. hr=k w3h-tp m 64 

You are to make the function of 8 times 8, becomes 64. You are to make 

the function of 64 

3) r sp 10 hpr. hr=f m 640 di 2 =f hr--f hpr. hr=f m 960 rht fm h3r. w 

times 10, it becomes 640. Put half of it on it, becomes 960. Its content in 

khar. 

4) ir. hr=k 20 n 960 m 48 h33. t pw r--fm 4-hk3t Is 4800 hk3t 

Make one twentieth of 960, namely 48. This is the amount that will go 

into it in quadruple-hekat. 4800 quadruple hekat of grain. 
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5)kins§m. t f 

Form of its reckoning 28 

18 

2 16 

4 32 

\8 64 

1 64 

\10 640 

\2 320 

Total 960 

10 96 

\20 48 

The last two stages of working are the most interesting in this kind of problem. 

In the last stage, a twentieth is worked out by using the intermediate step of 

working out a tenth. In the preceding step, the scribe mixes the number that the 

multiplier in the left hand column refers to, which occurs only in problems 

working out the volume of a granary in the Rhind Mathematical Papyrus. The 

second row shows ten times 64, the third row does not show a half of 64, but a 

half of 640. It is more common that the scribe should explain if the row follows 

28 In the Rhind Mathematical Papyrus, each double column of working is set alongside the 
previous one. Due to limitations of space, here they will be placed underneath. 
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on from the previous multiplicand, as he does in RMP 45 where he notes that a 

row is a 10 of a 10 of it. 

In other problems concerned with the volume of a granary the multiplication by 

20 appears frequently as this is a conversion factor. It appears in RMP 42,43, 

44 and 46. 

In RMP 42, there is a repeat of the multiplication by ten and then by half of the 

ten. Again, the scribe does not distinguish the two rows even though they use 

different multiplicands. In RMP 43, it is necessary to square 10 3. This is 

performed with the second row showing the multiplication of 10 with 10 3. 

RMP 49 shows a multiplication of 1000 with 100. In this case multiplying each 

row by 10 makes most sense29: 

1000 

10 10,000 

100 100,000. 

RMP 65 should also be included in this type, although at first it does not appear 

to be an example of multiplication. However, as addition of columns is a central 

part to all Egyptian multiplication, it has been included here. The problem is to 

work out the distribution of 100 loaves among 10 men including a sailor, a 

foreman and a watchman who are to receive double portions. The number of 

loaves is divided by the number of portions needed to give 100 divided by 13 

29 This is the multiplication that is worked out in the text, even though the text of this problem 
suggests the scribe should multiply 10 khet by 2 khet. 
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which is 73 39. The scribe then demonstrates that this is the correct answer, as 

is customary. However, instead of multiplying 7 by 73 39 and then adding six 

lots of 73 39 the scribe writes out the portions in full and adds them together3o: 

73 39 

73 39 

73 39 

73 39 

73 39 

73 39 

73 39 

Sailor 15 3 26 78 

Foreman 153 26 78 

Watchman 153 26 78 

Total 100 

The final example of this type of multiplication is the second section of RMP 79. 

This problem is concerned with finding the sum of a geometric progression. The 

first term of the progression is 7 and the common ratio is 7. Therefore, the scribe 

does not carry out a repeat doubling, but a repeat multiplication by 7. The 

translation of this problem is given in full in Section 2.5. 

30 The actual working is carried over three columns with the total given in a fourth. 
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Type G- Trivial Multiplication in the Problems 

RMP 24,25 and 27 are all the problems. In these problems a quantity has a 

fraction of itself added onto arrive to a given total. Because of the Egyptian 

method of solving this type of problem, in all these problems it is necessary to 

multiply an integer by a fraction, with the fraction being the multiplier to be 

reached as a sum of terms of the left-hand column. These examples are, 

however, trivial examples of multiplication as the integer is selected in order that 

the multiplication should take the fewest number of rows to complete, often in 

only two rows. One example shall be given here to illustrate this type of 

multiplication. In RMP 24, the problem is to find an unknown quantity such that 

when a seventh of this quantity is added to itself it becomes 19. The Egyptians 

used a false assumption method to work out this quantity. To make the first step 

easy in this case the scribe chooses 7, so the first step, to multiply 7 by 77 

appears thus: 

\1 7 

\7 1 

The total is not explicitly given in this case, although in other examples it is. For 

a fuller explanation of this type of problem, see Chapter 3. 

RMP 35 to 38 are a similar group of problems. In this group of problems the 

total required is always 1, but the method remains unchanged. The first step of 

these problems is to take a false position, which is then scaled up or down to give 

the correct figure. In these examples, the false position selected is always 1. 
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Type H- Multiplications with No Working Shown 

There are many problems in the Rhind Mathematical Papyrus where the scribe 

has performed calculations without explicitly stating the method. Every type of 

multiplication looked at so far, with perhaps the exception of Type F, has 

necessitated some arithmetical working as part of the whole procedure. This is 

particularly true of the examples that used fractions. Many of these examples 

require manipulation of fractions and this is carried out with no further 

explanation. However, the examples of multiplication that are included in this 

type are included in the narrative of the problem, in a similar way to that found in 

the Moscow Mathematical Papyrus. Only a few of the examples of this type will 

be investigated in detail to show the contexts in which this type of multiplication 

occurs. 

Rhind Mathematical Papyrus Problem 72 

This problem deals with the exchange of loaves of different quality. The quality 

is the number of that strength loaf that can be made from one measure of grain, 

the hekat. The method of solution is convoluted. It should be simple to scale up 

the number of loaves according to the strength, as the measure is inversely 

proportional to the amount of grain used. The procedure used, however, is to 

work out the excess of the quality, 35, and to work out the corresponding number 

of loaves, adding this to the original 100 loaves. 
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1) tp n db3 t3. w m t3. w ml dd. n=k t3. w 10 r 100 db3 m chc" t3. w 45 

Example of exchange, loaves for loaves. If it is said to you 100 loaves of 

strength 10 exchanged for a heap of loaves of strength 45 

2) ir. hr=k raw n 45 r 10 hpr. hr. 35 ir. hr=k 10 r gm. t 35 hpr. hr. 32 

You are to make the excess of the 45 over the 10, it becomes 35. You are 

to work with 10 in order to fmd 35, it becomes 3 and a half. 

3) ir. hr=k 100 r spw 32 hpr. hr 350 w3h. hr-k 100 hr=s hpr. hr 450 

You are to make 100 times 3 and a half, it becomes 350. You add 100 to 

it, it becomes 450. 

4) dd. hrk db3 pw 3t t3. w 10100 

You will then say, this means 100 loaves of strength 10 

5) m t3. w 45 r 450 

are exchanged for 450 loaves of strength 45, 

6)itmwgy. t 10 

making in wedyat flour 10 hekat. 

Although the example of multiplication in this problem is a reasonably simple 

one, 100 multiplied by 3 2, yet in other problems of the Rhind Mathematical 

Papyrus simple multiplications have been worked out in full. It may be the case 

that the scribe in this example wanted to draw out the method of solving the 

31 For a discussion of the meaning of the in Egyptian mathematical texts see Chapter 3 and the 
commentary on MMP 19. 
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problem as a whole and did not wish to break it up by demonstrating 100 

multiplied by 3 2. 

RMP 73 to 75 and 78 are also problems concerned with the exchange of bread 

and beer of different strengths. They use a very similar method. The 

multiplications contained within them are mostly relatively simple. It seems to 

be the scribe's intention to explore the method of working out the exchanges 

over several examples. As noted with RMP 72, to work out the multiplications 

would break up the continuity of the solution. The multiplications given are as 

follows: 

RMP 73 10 multiplied by 15 

RMP 74 100 multiplied by 10 

100 multiplied by 20 

RMP 75 30 multiplied by 724 

RMP 78 10 multiplied by 20 

RMP 62 is also concerned with a kind of exchange. In this case, there is a bag 

containing equal weights of gold, silver and lead. Different amounts are paid for 

each metal, which are given. The multiplications worked out in this problem are 

4 multiplied by 12,6,3 and 21. 

RMP 82 is concerned with feeding geese. The amount need to feed the geese for 

one day is given. The multiplications performed are 22 multiplied by 10 and by 

40. 
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The two other examples of multiplications in this type form rudimentary tables. 

An example of this kind that can be found in RMP 61 is a table of multiplications 

of fractions. Part of this problem is lost due to the condition of the papyrus. 

What remains is a list of multiplications of 3,3 and 2 by other unit fractions. 

Peet suggests that this problem was not originally intended as part of the papyrus 

as it is carelessly written in the margin. He also suggests that it is written here to 

provide reference for other problems written close to it on the papyrus roll32. 

32 Peet, T. (1923) The Rhind Mathematical Papyrus British Museum 10057 and 10058; 
University of LIverpool Press; London; p. 103. 
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Rhind Mathematical Papyrus Problem 40 

RMP 40 gives a list of multiplications of 1 3. The problem is to share out 100 

loaves among 5 men so that the number of loaves is an arithmetical progression. 

The problem reads: 

1)t3. w100ns5 7n3hry. w 

One hundred loaves to 5 men. One seventh of the first three men 

2)ns2hry. w 

to the two last. 

3) pty twnw 

What is the excess? 

4) fr. t ml bpr twnw 52 

The doing as it occurs, the excess 5 and a half. 

\1 23 

\1 17 2 

\1 12 

\1 62 

\1 1 

Total 60 
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\1 60 

\3 40 

Total 100 

ir. h[r] =k Wh 

You are to count 

tpm13 

with one and a third 

rsp 23 hpr. hr. f 38 3 

" 172 296 

" 12 20 

" 62 103 6 

"1 64 13 

23 times, it becomes 38 3 

172 296 

12 20 

62 61 66 103 6 

113 

In the second part of this problem, it is necessary to scale up the assumed shares 

of the first half to obtain the correct shares. This requires each of the shares in 

the first part to be multiplied by 3 2, which the scribe performs without showing 

the working in the normal way. 
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2.4: Division 

As division is the reverse of multiplication, the process looks the same in the 

Egyptian texts, as there are still two columns. An Egyptian would not ask ̀ what 

is 8 divided by 2? '; instead he would ask `by what must I multiply 2 to get 8? '. In 

the process of multiplication, it is necessary to add up the figures in the right- 

hand column until the correct answer has been reached. It is also known what 

factors are needed in the left hand colunui. In the process of division, it is the 

numbers in the left-hand column that have to be summed to reach the correct 

answer. This means that it is not known what figures need to be in this column 

and this is the column that is consciously manipulated. This requires a certain 

amount of educated guesswork on the part of the scribe. As a consequence of 

this guesswork, the repeated doubling method is far more prevalent in divisions. 

The strength of the repeat doubling method is that any number can be made up of 

a combination of the numbers in the doubling sequence. A modern 

mathematician would recognise these numbers as binary. 

Only a few examples are needed to show this method, as there is very little 

variation. A simple example of the method can be found in RMP 25, where it is 

necessary to divide 16 by 3. The working would appear as follows33: 

\1 3 

26 

\4 12 

32 

\3 1 

33 In this example, the working is divided into four columns, instead of the two shown here. 

57 



Chapter 2 Arithmetical Procedures 

The scribe starts with 3 and uses the repeat doubling method until the target 

figure is approached. Another line of doubling would be unnecessary, as this 

would make the number in the right-hand column larger than the target. 

Fractions are therefore necessary. The only unusual feature of this problem for a 

modern reader is the use of two-thirds in row 4. It seems strange that the 

Egyptians would first find two-thirds and then halve it to find one-third, but this 

is standard procedure in the Egyptian mathematical texts. 

RMP 66 involves the daily portion of ten hekat of fat that has been issued for one 

year. The hekat are converted into ro, giving 3200 ro. The division required is 

then to divide 3200 by 365, or to multiply 365 to find 3200. The working is 

shown as: 

1 365 

2 730 

4 1460 

3 243 3 

10 36 2 

2190 6 

Total 83 10 2190 

This example follows the general pattern of the previous example. Repeat 

doubling is used until that process can go no further, then fractions are used to 

find the remainder of the target number. This example is interesting, however, 

because of the fmal row of working, which is presented with no further 
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explanation. Up to this point the total of 355 5 has been reached. The scribe 

must now work out the number in the left-hand column that would give 6 in the 

right-hand column. This in itself can be considered an example of division, but 

not one that the scribe feels it necessary to explain. The required denominator 

can be found by multiplying 365 by 6; it is however speculative how the scribe 

actually achieved this answer. 

This problem also brings up questions of the utilitarian nature of the 

mathematical papyri. This problem appears to be a purely practical problem 

involving the rations of a commodity and therefore can be considered practically. 

Indeed, the reader is told at the end of this problem that "You may do similarly 

for any problem put to you resembling this example. ". However, the accuracy to 

which this problem is solved is impractical to administer. The suggestion that 

these problems are purely practical in nature is therefore inaccurate. The impetus 

for this problem may be practical, but the way in which it is carried out is not. 

An interesting example of division is RMP 69. It is necessary to multiply 80 to 

get 1120. The working appears as follows: 

1 80 

\10 800 

2 160 

\4 320 

Total 1120 

The scribe first selects to multiply by ten; this is because the target of 1120 is 

greater than ten times the starting number of 80. Once the scribe has multiplied 
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by ten the remainder to be found is 1120 minus 800, which equals 320. The 

scribe then returns to a repeat doubling method to find the remaining 320. This 

is achieved in two further rows. This is an interesting example because it 

reinforces that the Egyptians were flexible in their approach to arithmetic and 

could modify their procedures to fit the example at hand. 

2.5: Rhind Mathematical Papyrus Problem 7934 

1) wet imy. tpr 

An inventory of a household. 

1 2801 

2 5602 

4 11204 

Total 19607 

7 pr. w 
Houses 

49 myw. w 
Cats 

343 pnw. w 
Mice 

230135 bd. t 
Emmer 

16807 hk3. t 
Hekat 

34 The translation of this problem is discussed in Peet, T. E (1929) Op. Cit. p. 121-2. 
35 Sic. This should read 2401. Perhaps another copying error. 
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The problem that is posed here is similar to the nursery Rhyme "As I was going 

to St. Ives". A geometric progression is to be summed. Its first term is 7, the 

common ratio is 7 and it contains 5 terms. The sum is worked out in two ways. 

The second way is simply to work out the terms of the progression and then add 

them together. This is only remarkable because the repeat-doubling method is 

not used, See Section 2.3. Type F. 

The first method shown is more remarkable. The formula that we would use to 

work out the sum is: 

where a is the first term, 

rr is the common ratio 

r -1 and n is the number of terms. 

Replacing the terms of this progression: 

7x 
16807-1 

= 7x 
16806 

= 7x2801 
7-1 6 

This is exactly the calculation that is performed in the first part of this problem. 

How the scribe achieved this answer is not explained and as this is the only 

example of its type it cannot be compared to any other problem from the Rhind 

Mathematical Papyrus. It may be that the Egyptians only knew how to calculate 

the sum of a geometrical progression of this type, one in which the first term is 

also the common ratio. This makes the formula simpler: 

61 



Chapter 2 Arithmetical Procedures 

l 
-1 where I is the last term. 

a 
r-1 

Any further comments on this section of the problem are purely speculative as 

this is the only example of a geometric progression in the extant papyri. 

Unit fractions are one of the most distinctive features of Egyptian mathematical 

texts. As Section 2.3. has shown, the Rhind Mathematical Papyrus devotes a lot 

of attention to their use and manipulation. In this section, the main features of 

unit fractions will be explored. This will not be an exhaustive examination. 

However, it will aim to show the most important points and also to draw out the 

features that have attracted the most criticism. Section 2.6.3 will give an in- 

depth analysis of RMP 31,32 and 33. These problems are some of the most 

difficult problems concerning the manipulation of unit fractions 

2.6.1: General Description 

The ancient Egyptians used only unit fractions, with the exception of 2/3 in their 

mathematical papyri. Other fractions were expressed as a sum of unit fractions, 

with the largest fraction (smallest denominator) first and then decreasing in size. 

No fraction could be repeated. 

The use of unit fraction has intrigued many writers on Egyptian mathematics. It 

has been described as: "... at once the glory and the straitjacket of Egyptian 
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methodology"36. The "glory" refers to the technical skill shown by the texts in 

the manipulation of the unit fractions. The scribes show great talent in their use. 

The use of unit fractions in ancient Egyptian mathematics is one of the most 

debated topics in its study. There is a feeling in the literature on the subject that 

the Egyptians used unit fractions only because they could not think of anything 

better. Unit fractions have also been described as a negative influence on the 

development of mathematics37. 

Gillings, one of the most optimistic commentators on ancient Egyptian 

mathematics wrote: 

" Today, if a new concept arises, mathematicians devise at once a new 
notation for it, but the Egyptians, never thinking to improve or alter their 
notation for fractions developed instead special techniques for dealing 
with the notation that they already had. " 38 

Gillings links the use of unit fractions to the need for fairness in the division of 

commodities. Not only would loaves be distributed fairly it would be obvious 

that it had been done as well as each worker would get the same number of 

pieces of the same size. This argument is one of the most persuasive for the use 

and the continued use of unit fractions into the Graeco-Roman era. Unit 

fractions were the preferred method of expression of factional quantities in the 

Almagest. 

Horus-eye fractions were a special type of unit fractions. They are the fractions 

that are obtained through the repeat halving of one. 

36 Robins G. and Shute. (1987) The Rhind Mathematical Papyrus; British Museum Publications; 
London; pp. 58-9. 
" Neugebauer, O. (1952) Op. Cit. p. 72. 
3s Gillings, R. (1972) Op. Cit. p. 105. 
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2.6.2: Addition using Auxiliaries 

It is often necessary in Egyptian mathematical problems to add together a large 

number of unit fractions. This is one of the main weaknesses of the method. In 

RMP 31, for instance, in the first division sum it is necessary to add 11 unit 

fractions with 7 separate denominators. 

To make this process easier, auxiliaries were used. Auxiliaries are numbers 

placed below or to the side of a fraction, often but not exclusively in red ink, that 

show the numerator of that fraction as if it had been laced over a common 

denominator. For example in RMP 37 it is necessary to add up 8 unit fractions 

each with a different denominator. The scribe wrote out each of the fractions to 

be summed and beside or beneath each of the fractions with a large denominator 

an auxiliary was written. The actual working of the scribe is a little confusing as 

the fractions to be summed are written out over several columns of the text. 

Placed on two lines the working appears thus39: 

248 72 16 32 64 576 Total 8 

8 36 18 91 72 

The first three fractions in this group have a large, even denominator and so they 

are easy to add together. These fractions do not have auxiliaries placed 

underneath. However, the other fractions are difficult to handle. The auxiliaries 

underneath show the numerator of an equivalent fraction if the common 

denominator was 576. The total is only the total of the fractions with auxiliaries, 

72 is equal to 
1. This method of using auxiliaries to add fractions with large 

576 8 

39 Auxiliaries are shown under the fractions in italics. 
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denominators shows the skill of the Egyptian scribe. It also shows that the 

Egyptians had a deeper understanding of fractions than simply using unit 

fractions. The practice of using auxiliaries to add fractions is directly 

comparable to our use of common denominators. 

2.6.3: Problems Demonstrating the Use of Fractions from The Rhind 

Mathematical Papyrus 

To illustrate the techniques that have already been explored in this chapter, two 

problems from the Rhind Mathematical Papyrus are presented here in full. These 

two problems exemplify the mathematical skill of the scribe who prepared these 

texts. A translation will be given in full, followed by a full explanation of the 

method. 

Rhind Mathematical Papyrus Problem 3640 

1)#w=# h33. k-w#sp. w33=1 5=1 hri iw=imh. k-w# 

I go down three times, a third of me, a fifth of me, on me. I return 

satisfied. 

2) Ph' P3ncc ddsw 

What is the heap that says this? 

40 The parts of this problem have been placed below each other to make the process of the 
solution clear. In the Rhind Mathematical Papyrus, they are placed side by side. In this example, 
the auxiliaries are all written in red ink. They are shown here with italics. 
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1 1 

1 1 

1 1 

3 3 

5 5 

1 106 

2 53 

\4 262 

\106 1 

53 2 

\212 2 

Total 1 

1 4 53 106 212 

2 2 30 318 795 53 106 

3 12159318636 

5 20 265 530 1060 
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53 106 212 35 

20 10 5 

30 318 795 53 106 70 

353 33 13 20 10 

12 159 318 636 100 

883 63 33 13 

20 265 530 1060 80 [sic. read 60] 

53 4 2 1 

265 4 

2 530 

4 265 

4 265 

Total 1060 

The problem is to find a value which solves the following equation: 

x(3+3+5) =1 

The first step in the solution is the curious need for the Egyptians to show the 

multiplication of 335 by 1. The next step of working is not shown in the 

papyrus. The terms have to be added, which may have been done with 

auxiliaries. The common denominator chosen is 30. This gives the answer to the 
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sum as 
106 

The answer can now be obtained by dividing 1 by 106. In the 30 30 

Egyptian fashion, this requires multiplying 106 to find 30. The scribe is able to 

achieve this answer in the normal way. Two halvings are performed to reach 26 

2. The extra needed to reach 30 are found after seeing that 106 of 106 is 1. It 

is interesting to note that the total given is not 30, but 1. This shows that the 

Egyptian scribe never lost sight of the fact that his target was 1, even though he 

has had to change the fractions using the denominator of 30. 

The next part of this problem in the Rhind Mathematical Papyrus is a 

demonstration that the correct answer has been reached. This is the more 

complicated part of the problem because of the nature of unit fractions in 

Egyptian arithmetic. Each fraction has to be summed, but the fractions have 

large denominators that make this process difficult. To achieve the addition, the 

fractions are all written out with the auxiliary written in red ink underneath. The 

denominator chosen is 1060. In this example, we can see the strength of the 

Egyptian use of auxiliaries as several of the auxiliaries are themselves fractions. 

The fractions with small denominators: a half and two quarters are left out of this 

stage, and are added in later. The auxiliaries are first summed by row, and then 

the total of all of the rows is worked out. The total of all of the auxiliaries is 265, 

which the scribe shows is a quarter. This added together with the omitted 

fractions gives the desired total of 1. 
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Rhind Mathematical Papyrus Problem 31 

1) "hr 3 =f 2f7f hr f hpr fm 33 

A heap, two-thirds of it, a half of it, a seventh of it, on it, becomes as 

33 

1 1 3 27 

/2 4 3 4 28 

/4 9 18 (read 14 ) 

/8 18 7 

2 2 3 4 14 

/4 4 6 8 28 Total 32 Remainder 

/ 97 42 1 1 42 

/56 679 776 21 2 3 28 

/194 84 2 2 21 

/388 168 4 7 6 Total 99 
(should read 97) 

Total 33 

78 14 28 28 

6 S4 31 12 

174 

324 (Remainder) 2 (is) 21 
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To make this problem easier to follow, the parts of it need to be rearranged from 

the order of the Rhind papyrus so they are in the order of calculation. The line 

placed through the centre of the first part has been added in accordance with the 

edition of Peet41. All changes have been made in an attempt to facilitate the 

reader's understanding. The two steps to the solution of the problem are also 

identified. These steps correspond to the commentary below. 

Steel 

1 1 3 2 7 

/2 4 3 4 

/4 9 

/8 18 

2 2 3 4 14 

/4 4 6 

Total 32 2 Remainder 2 

28 

18 (read 14) 

7 

8 28 

78 14 28 28 

6 S4 3 12 12 

174 

324 (Remainder) 2 (is) 21 

41 Peet, T. E. (1923) The Rhind Mathematical Papyrus British Museum 10057 and 10058; 
University of Liverpool Press, p 66. 
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Step 2 

1 42 

3 28 

21 

76 Total 99 (should read 97) 

/ 97 42 1 

/56 679 776 21 2 

/194 84 

/388 168 4 

Total 33 

In RMP 31, the working of the problem shows that the scribe had some 

understanding of fractions beyond just using unit fractions. The scribe was able 

to add fractions by the use of a method similar to the modern technique of 

finding the common denominator. On the first reading of this problem, this is 

not obvious and it is for this reason that RMP 31 has been overlooked by other 

authors. The detailed description below is given in an attempt to show the 

importance of this problem for an understanding of Egyptian arithmetical 

procedure and to challenge notions about Egyptian fractions. 

The problem stated is to find a quantity that when two-thirds and a half and a 

seventh are added to it, equals 33. Algebraically this can be expressed as: 
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x 1+2+ 
1+1 

=33 327 

To solve this problem using modem fractions, a common denominator would be 

found so that the series of fractions can be expressed as one fraction and then 

both sides would be divided by this fraction: 

x(42 
+ 28 + 21+ 6 

=33 42 

xl 
42 

J =33 l 

33x42 1386 
x= _ 97 97 

x=1428 97 

Step one of the Egyptian method is to try to obtain the result using the doubling 

and halving technique. This technique yields an answer of 32 and a half when all 

the ticked rows on the left hand side of our imaginary line are added together, 

giving the stated remainder of a half. It can be seen that the fractions on the left 

hand side of this line are all fractions with a small, even denominator. This 
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makes the process of adding them reasonably simple. There are fractions, 

though, that are not included in this sum. 

The next stage then is to include these fractions to find out how much of a 

remainder from 33 has been achieved. This stage is carried out using auxiliaries. 

The fractions that have not been included have been written out in a horizontal 

row. Below each of these fractions, a number is written, the auxiliary (here 

shown in italics to highlight and separate them from the rest of the problem). 

This number shows how many times 
42 has to be multiplied to get the fraction 

above. This is a process extremely like fording a common denominator; the 

strength of the Egyptian method is that they use auxiliaries that are themselves 

fractions. This is not general practice. In modem arithmetic a common 

denominator would be used that would render all the numerators as whole 

numbers. Using these auxiliaries allows the fractions that were not included in 

the first addition to be summed. The auxiliaries sum to 17 and a quarter. The 

remainder is 3 and a half and a quarter, the difference between 21 and 17 and a 

quarter. This is because, as the scribe reminds us, we are looking for the half that 

was a remainder after the first sum and in the auxiliaries this is equal to 21. 

Step two of the Egyptian method is to calculate the necessary quantity to find the 

remainder left from part one. This can be considered as a new problem, 

expressed algebraically it would appear thus: 

_ 
131+11 

y(1+3+21 +ý) - 42 24 l 
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To obtain the answer both sides must be divided by 1+3+2+7. To do this it 

is necessary to express this sum in one common denominator. The obvious 

choice is to use 42, as the right hand side is already expressed using this 

denominator. The scribe does this and calculates that it is equal to 
42 

Therefore, we can now express our problem as: 

31+1 
(9fl 24 

y 42 42 

Following established procedures from other problems in the Rhind 

Mathematical Papyrus, it would seem that the scribe should now ask ̀ By what 

must I multiply 97 in order to get 32+4 ? '. This is not how the scribe proceeds 

in this case. The first stage of this problem is the scribe's attempt to solve the 

problem as a straight division. However, the usual method for working out a 

division requires some guess work. In stage one the scribe has gone as far as 

possible with this method and found that this example is too complicated to be 

solved in this manner, so another method has to be found. This method is now 

used here. The scribe multiplies 32+4 by the reciprocal of 97. Because 

auxiliaries have been used this is shown in a three-column sum, although it 

should be seen as an extension of the division in the first step of the problem. In 

the Rhind Mathematical Papyrus itself, it is shown as a continuation. The left- 

hand column and the central column serve the same function as those columns 

they are a continuation of. The left-hand column shows the multiplicators and 

74 



Chapter 2 Arithmetical Procedures 

the central column shows the multiplicands of the original terms. However, the 

central column also shows the multiples of 
42 

. This stage is achieved by 

multiplying 
1 by 3+ The left-hand column shows the number of 42 24 

multiples of 
42 

. The technique of multiplication is a simple one in this case 

because 31 +1 splits easily into 1,2,1 and 
1, 

which can be worked out using 2424 

the doubling and halving technique. 

The answer to the problem is not stated explicitly. To obtain the answer parts 

one and two have to be combined. Thus the final answer is: 

14 4 56 97 194 388 679 776 

This problem shows that the Egyptians could conceive of other ways of using 

fractions other than straight unit fractions. It this problem, not only are 

auxiliaries used, which is roughly equivalent to our use of common 

denominators, but the final step requires the use of reciprocals. The 

consequences to our understanding of the Egyptian use of fractions cannot be 

emphasised enough. Rather than presuming a deficiency in the mathematical 

skill and imagination of the Egyptian scribes, instead we find the positive 

properties of unit fractions that encouraged their use. 
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2.7: Conclusions 

This exploration of the arithmetical procedures of the ancient Egyptians shows 

that even the most basic functions of Egyptian mathematics are more 

sophisticated that it appears at first. Once the context of the arithmetic is 

factored into the assessment of it, it can be seen that the Egyptian scribes were 

able to modify their procedures to reflect the circumstances. This suggests that 

the Egyptians were not simply following rules but had a sophisticated 

mathematical imagination and an affinity for numerical manipulation. 

This understanding also raises the possibility that the Egyptians were skilled in 

mental arithmetic. The places where the working out of a multiplication or 

division is absent are just as illuminating as those places where it is present. It is 

often the case that the places where they are absent are in problems of a 

geometrical nature. The absence of any arithmetical working in the Moscow 

Mathematical Papyrus, a papyrus mostly concerned with geometry and which 

contains the two most sophisticated problems in the extent corpus, is highly 

suggestive. It seems likely that the reason that the working is absent in these 

cases is that the arithmetic is not the focus of these problems; the scribe who 

composed the text was more interested in showing the method for solving the 

problem. In those cases where the arithmetic is displayed clearly, it is the 

arithmetical procedures that the problem is concerned with practising. 

The assumed utilitarian nature of Egyptian mathematics also has to be 

questioned. Whilst many of the problems that this chapter has examined take 

their inspiration from everyday situations, the accuracy and care taken over their 
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solution is not everyday. This is evident not only in the use of fractions with 

very high denominators but also in RMP 79, which was discussed in Section 2.5. 

The problems of abstract features in Egyptian mathematics will be explored 

further in Chapter 5, once geometrical and algebraic problems have been 

investigated in more detail. 
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Chapter 3 

Geometrical and Algebraic Problems 

Chapter 2 began this inspection of the processes of Egyptian mathematics by a 

thorough study of arithmetical procedures. This chapter will examine 

geometrical and algebraic problems from the Moscow Mathematical Papyrus, 

except for Problems 10 and 14, which due to their importance and uniqueness 

will be examined in Chapter 4. A few examples of geometrical problems from 

the Rhind Mathematical Papyrus will be included where they illuminate either 

the mathematical procedure or the vocabulary of problems from the Moscow 

Mathematical Papyrus. 

3.1: Introduction 

The Moscow Mathematical Papyrus is one of the most important mathematical 

texts from ancient Egypt. Although it does not have as many problems as the 

better-known Rhind Mathematical Papyrus, it contains some unique geometrical 

problems and so should be afforded equal status to the Rhind Mathematical 

Papyrus by historians of mathematics. An understanding of the full scope of 

ancient Egyptian mathematics cannot be acquired without a comprehensive study 

of the perplexing problems from the Moscow Mathematical Papyrus. 

The Moscow Mathematical Papyrus is in the Museum of Fine Arts in Moscow. 

It is numbered 4676 in their collection, and it was discovered in Egypt in a tomb 
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not far from the Ramesseum. It was in a small building very close to the 

Ramesseum that the Rhind Mathematical Papyrus was found. It is part of the 

collection of W. S. Golenischeff, who donated his collection to the Museum of 

Fine Arts in 1912. For this he was supposed to receive a life annuity from the 

Russian Government. Unfortunately for Golenischeff, the change of government 

after the Russian Revolution resulted in the annuity being stopped. He died in 

19471. 

Unlike the Rhind Mathematical Papyrus in which the problems are arranged in 

broad categories such as fractional identities, division of loaves among workers, 

pesu problems, geometrical problems etc, the Moscow Mathematical Papyrus 

appears to be arranged in no logical order. It has been suggested that this can 

provide clues about the nature of the text and the method of its preparation. 

Clagett, remarking on the original edition of the text by Struve, suggests that it 

shows the papyrus is the work of a student. He says: 

" This leads to the conclusion that the author of the Moscow Papyrus was 
a student whose training has progressed enough for the teacher to present 
various problems to be solved in order to test the skill of the student"2 

The idea of a student trying to pass his fmal exam in a scribal school is an 

attractive idea. However, we can only theorise on how this document could find 

its way into a tomb on the West Bank at Thebes. Also, given the very small 

sample size of mathematical texts that have survived, we should be careful 

before indulging in flights of fancy. The Rhind Papyrus is a document that has 

been copied from another. It may be that the original was not ordered in the way 

that Ahmose, the scribe named as the copyist at the beginning of the text, copies 

Gillings, R. (1972), Mathematics In The Time of The Pharaohs, MIT Press, Cambridge MA. p. 
246. 
2 Clagett, M. (1999) Ancient Egyptian Science: A Source Book. Vo1.3 Egyptian Mathematics, 
American Philosophical Society, Philadelphia. p209. 
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it. The ordering may be editorial judgement on his part. This means that care 

should be taken when discussing the importance of the ordering. 

3.2: Contents of the Moscow Mathematical Payyrus3 

Problem Number Description of problem 

1 Damaged and unreadable 

2 Damaged and unreadable 

3 Working out a cedar mast 

4 Area of a triangle. 

5 Pesu of bread 

6 Dimensions of a rectangle with known area 

7 Dimensions of a triangle with known area 

8 Pesu of bread 

9 Pesu of bread. 

10 Area of the curved surface of a hemisphere 

11 Loaves and basket 

12 Pesu of beer. 

13 Pesu of loaves and beer 

14 Volume of a truncated pyramid. 

15 Pesu of beer. 

16 Pesu of beer. 

17 Dimensions of a triangle with known area. 

18 Measuring cloth. 

19 Working out a heap. 

20 Pesu of 1000 loaves. 

3 Adapted from Gillings, R. (1972) Op. Cit. Appendix7 pp 246-7. 
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21 Mixing bread. 

22 Pesu of loaves and beer. 

23 Unclear problem concerning the work of a cobbler. 

24 Exchange of loaves and beer 

25 Elementary equation. 

Each problem is translated below, with the transliteration. Each translated 

problem is followed by my commentary on its mathematical content, trying to be 

as true to the original text as possible. It is a mistake to try and render the text in 

modem mathematical language, as these modem terms have very strict 

definitions and connotations leading from their use in the precise texts that are 

produced today. These problems are presented under a general heading for the 

convenience of the modem reader, used to dealing with different types of 

mathematics. As discussed in the introduction to this chapter, there is little and 

tenuous evidence that the Egyptians generally treated their mathematics in this 

way. To order by type without a clear statement of the order that they appear in 

the original text is to add a layer of interpretation by stealth. Any diagrams that 

appear are copied as precisely as possible from the drawings that appear in the 

Moscow Mathematical Papyrus. 

The hieroglyphic transcriptions that were used to produce the transliteration and 

translation are those produced by Struve4 as this is the only complete 

transcription and the one that Clagett chose to reproduce in his sourcebook5. 

Where the transcription from the original hieratic to hieroglyphs produced by 

4 Struve W. W. (1930) Mathematischer Papyrus des Staatlichen Museums der Schönen Künste in 
Moskau, QSGM, Abt. A: Quellen, Berlin. 
5 Clagget M. (1999) op. cit. Figs 4.6a-t 
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Gunn and Peet6 is different, these differences are highlighted according to line 

number after the full translation. The translations accompanying Struve's 

transliteration are this author's; those accompanying Gunn and Peet's 

transliterations are those of Gunn and Peet. 

3.3: Rectangles and Triangles 

Moscow Mathematical Papyrus Problem 4 

1)tpnirtspdt 

Example of working out a triangle. 

2)midd n=kspdt nt 10 m mryt 

If it is said to you a triangle of ten in height 

3) 4 hr tp-r h3 dl-- k rh 

four on the shortest side, may you give knowledge 

4) [] pn 

this 

s)[ )sp2 

[) times two 

6) [] pw 

[] this 

6 Gunn, B. and Peet, T. (1929) "Four Geometrical Problems from the Moscow Mathematical 
Papyrus" The Journal of Egyptian Archaeology Vol. 15 pp 167-85. 
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A line may be lost here. 

n 

(1 I Hill 

n ýý, 

4 

10 1 

20 21 2 1/2 
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Commentarv on Moscow Mathematical Papyrus Problem 4 

This is an incomplete problem that deals with the dimensions of a triangle. Even 

though the last half of this problem is missing the diagram at the end of the 

problem gives us the full working. The mathematical content of this problem is 

straightforward. We are given a triangle where the length of one side is ten, and 

that of another is four. The arithmetic at the bottom shows the scribe found a 

half of one side and multiplied it by the other to give the area. Problem six 

proves that the scribe knew the relationship between the area of a triangle and a 

rectangle, so this problem is elementary. The workings in this problem are 

shown in the direction that they appear in the papyrus, so they should be read 

from right to left. 

Moscow Mathematical Papyrus Problem 7 

1)tp n frtspdt 

Example of working out a triangle. 

2)mf dd n=k spdt nt 3ht 2 idb n2 

If it is said to you a triangle, area two (thousands of land), bank of two 

and a half 

3) fr. hr-k k3[b=k 3]ht hpr. hr 40 jr sp 2'/2 

You are to make it double area becomes forty7 make (it) times two and a 

half. 

7 This appears to be a mistake, but the scribe has changed units. See commentary. 
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4)hpr. [hr100frknbt hpr. hr] 10 nfs wr hnt2'/2 

it becomes [one hundred, make the square root becomes ten]. Summon 

one from two and a half, 

5)hpr [. n im p]w 1/3 1/15 Ir n 10 hpr. hr 4 

this becomes two-fifths (1/3 + 1/15 = 2/5) do this to ten, becomes four. 

6)IOpwm? wr4mshw 

It is 10 in length by 4 in breadth. 

Differences In Gunn and Peet's Transcription 

Line 4 

hpr. [hr]00 Ir knbt=f m] 10 nis wr bnt 2 

result [one hundred. Take its square root, namely ten. ] Evoke 1 from 2 Y2 

Here the only difference lies in the reconstructed section. Peet inserts the second 

person singular suffix pronoun. The meaning of the line is not significantly 

altered. 

Line 5 

hpr [tim p] w 113 1/15 jr n 10 hpr. hr. 4 

what results is two-fifths . Apply this to 10 result four. 
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Again the only difference is in the reconstructed section. Peet reconstructs at at 

the end of the verb hpr where Struve places an n. The mathematical sense of this 

sentence is not changed. 

Both forms of the verb hpr are unusual in a mathematical context. The most 

usual form of the verb is in the sdm. hr=f form. This verb form is common in 

injunctions and as statements of result8. In mathematical texts it lends a feeling of 

a continuing process as it has a very strong narrative sense. In fact, the verb hpr 

appears in the sdm. hr=f form in every case in the Moscow Mathematical Papyrus 

(apart from a special case noted below), except for once in Problem 9. At the 

beginning of line 26 it appear as just hr. 

The verb is also used in the expression in ml hpr. The doing as it occurs. This is 

an expression that is used to introduce a section of arithmetical working. 

However, in this case the verb is not serving as part of the continuing, narrative 

process, instead it is a phrase that commonly comes at the end of the narrative 

section. 

Unlike the Rhind Mathematical Papyrus, the Moscow Mathematical Papyrus has 

very few arithmetical sections. They occur only in Problems 4,6,14 and 17. In 

only one case is the phrase Irt ml hpr used, in Problem 6, however, the end of 

Problem 4 has been lost, and it is possible that it occurred here. Problem 9 is 

again an exception to this rule as there is no arithmetical section at the end of the 

problem but this phrase is still used. The last line of the problem reads: Irt mi hpr 

gm= k nfr : The doing as it occurs, you will find it correct. This is in stark 

8 Gardiner, A. (1957) Egyptian Grammar, Td ed.; Griffith Institute; Oxford; p. 346. 
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contrast to the Rhind Mathematical Papyrus where the vast majority of problems 

finish with the arithmetical working. The problems that deal with the doubling of 

unit fractions contain very few words at all. The majority of the other problems 

in the Rhind Mathematical Papyrus each give a brief title to the problem, which 

then consists almost entirely of arithmetical procedure. 

Commentary on Moscow Mathematical Papyrus Problem 7 

This problem is similar in nature to MMP 69 because it deploys the same 

methodology, but the starting point for this problem is a triangle. The triangle has 

a known area and the length of one side is known and the ratio of the length of 

one side to the other is also known. This problem gives us a triangle of a known 

area and we are asked to find the lengths of the sides so that one side is two-fifths 

the length of the other side. The only difference to the method used in MMP 6 is 

that you first have to multiply the area by two, because a triangle is half the area 

of the rectangle that contains it. From this point it is easy to multiply the area by 

two and a half and find the square root. Note that the area is not scaled up by the 

reciprocal of the ratio of the two sides in this case, because the ratio given is 

greater than one. Therefore, after we have found the square root, we do find the 

reciprocal and multiply it by the length that we have found, giving us the length 

of the shorter side. 

It is interesting to note that in this problem the scribe moves from one unit of 

measurement to another without explaining this. In line two the area is given as 

two thousands of land. This is a unit equal to the area of a thousand strips one 

9 See later section. 
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cubit wide by 100 cubits long (100 cubits =1 khet. ). To make the mathematics 

easier the scribe coverts this measurement into arurae which are equal to a 

square khet. At the end of this problem we are not supplied with a 

demonstration that we have found the correct answer. 
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Moscow Mathematical Papyrus Problem 17 

1)tp n irtsbdtto 

Example of working out a triangle. 

2)mf dd n=k sbdt nt 20(? ) m 3ht=s 

If it is said to you a triangle of twenty(? ) in area; 

3) it di. t=k hr 3w di. n=k 1/3 1/15 iw=f by hr shw 

that which you put on the length, you put two fifths of it on the breadth. 

4) ir. hr-k k3b=k 20 hpr. hr. 40 

You are to double the twenty, it becomes forty. 

5)fr. hr=kIr-k 1/3 1/5rgmt1 hpr. hr rsp 2 

You are to work on a third and a fifteenth in order to find one, it becomes 

two and a half times 

6)ir. hr-kfrk40sp2% hpr. hr 100 ir. hr-kir=k Inbt=s 

You are to make forty times a third and a fifteenth; it becomes one 

hundred. You are to take its square [root]; 

7) hpr. hr 10 mk 10 -pw m 3w fr. hr-k ir=k 1/3 1/15 

it becomes ten. Look, it is ten in length. You are to take a third and a 

fifteenth 

10 Transliterated from Struve (1930) Op. Cit. sbdt is given instead of the usual noun for a triangle, 
spdt. 
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8) n 10 hpr. hr 4 mk 4 pw hr shw 

of ten, it becomes 4. Look, it is 4 on the width. 

9) gm=k nfr 

You will fmd it correct. 

ý 
IIII IIIII c 

(1 I 

n fl 

nn 
nn 

i nnnn 
nnnn 

\ýn 
dmd 100 tinnbt 10 
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4 2/5 

1 40 

2 80 

%z 20 

Total 100 Square root 10. 

Differences in Gunn and Peet's Transcription 

Line 2 

ml dd. n=ksbdt nt 2000 m 34=s 

If you are told: A triangle of 2 thousand(s-of-land) in its area, 

Struve places a question mark over his transcription of 20 in the transcription 

accompanying the plates. In the text of the translation he translates the number as 

20 quadruple khet. Gunn and Peet note that the hieratic sign for two thousand is 

abnormally formed but that, in their opinion, the reading is not in doubt (Gunn 

and Peet, 1929, p. 174) For a discussion of units in Egyptian mathematics see 

below. The accompanying diagram to MMP17 shows a triangle with a figure 2 

clearly written in the centre. This probably suggests that Gunn and Peet are 

correct in their reading of two thousands-of-land. 
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Line 3 

itdit-khr3wdd=k1/3 1/15 it hrshw 

and what you put on the length, you must put 2/5 thereof on the breadth. 

The transliteration of the accompanying diagrams also shows differences. In 

Gunn and Peet's paper a second 4 is inserted on the left hand-side where Struve 

conjectures a second line of a multiplication sum. 

Commentary on Moscow Mathematical Papyrus Problem 17 

This is a very similar problem to MMP 7, where the area of the triangle and the 

ratio of the lengths are again known. It is interesting, though, because it 

highlights a problem with Egyptian fractions. Again we are dealing with a 

triangle with a known area and we are told that the breadth of the triangle is two- 

fifths of the length. This is in reality exactly the same problem as Problem 7. 

We can see using modern fractions that two-fifths is simply the reciprocal of two 

and a half. This problem is included in the papyrus because of the difference this 

makes to the method of calculation. In Problem 6 (see below) we use the factor 

given in the problem to scale up the rectangle into the imaginary square. In this 

problem, because the factor stated is less than one we must use the reciprocal to 

turn the rectangle into a square. After we have found the square root, we can use 

the stated factor to find the breadth. This is the same method of operation as 

Problem 6, when the factor stated at the beginning of the problem was also less 

than one. 
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At the end of this problem, unlike Problem 7, we are shown a diagram to 

demonstrate that the answer is correct. The diagram that we are shown is more 

complicated than the diagram accompanying Problem 6. We are given a picture 

of the triangle inside the triangle the area 2 is shown. Surrounding the triangle 

we are given details of the arithmetic necessary to complete the problem. At the 

bottom the calculation of 2 and a half times forty is shown we are told this equals 

one hundred and the square root is quoted as ten. We are also told on the left 

hand side that 1/3 and 1/15 times ten is equal to four, although we are not shown 

how this calculation is carried out. 
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Moscow Mathematical Problem 6 

1) tp n frt p[t] 

Example of working out a rectangle' 

2) mi dd n=k [p]t nt stty /2 '/4 n 3w n shw 

If it is said to you a rectangle of <12 in> area a half and a quarter of the 

length is the breadth: 

3) ir. hr=k ir=k /2 %. rgmt we hpr. hr m1 1/3 

You are to take three-quarters in order to fmd one. It becomes one and a 

third. 

4) ! r=k [12] pn nt[t] m stty 1 1/3 hpr. hr. 16 

You take this twelve, which is the area {and multiply by) one and a third, 

becomes 16. 

5) ir. hr-k ir=kknb. t hpr. hr 4n 3w 3/. fm3n 

You are to make a square root; result 4 for the length three quarters of it 

namely 3 for 

6) shw frt ml hpr 

the breadth. The doing as it occurs: 

1 pt is translated as rectangle because the accompanying diagram shows the shape that we have 
to work with. There can be no doubt that pt refers in this problem to a geometrical figure. The 
title of the problem contains the name of the figure that we have to work on. It seems that here pt 
is related to the word for base, p. However, this is the only problem in the Moscow Mathematical 
Papyrus to deal with a rectangle. Compare to RMP49 where a different word for rectangle is 
used: lfd a word derived from fdw the numeral 4 (Peet. T. E. (1923) The Rhind Mathematical 
Papyrus: British Museum 10057 and 10058, University of Liverpool Press, London. p. 85) 
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Commentary on Moscow Mathematical Papyrus Problem 6 

In this problem we are faced with a rectangle with an area of 12 square khet and 

we need to find its dimensions. We are told that the breadth is three-quarters of 

the length. The first step is to take the reciprocal of three quarters, which is one 

and a third. Note that because we are dealing with the unit fractions of a half and 

a quarter fording a reciprocal in Egyptian mathematics is much harder than with 

modem fractions that have both the denominator and a numerator. With a 

modern fraction the numerator and denominator are swapped, so that the fraction 

is turned upside down. With the Egyptian fractions the scribe has to operate on 

the fraction to find one, i. e. he has to work out what number is needed to 

multiply three-quarters to become one. This calculation is done so that it is 

possible to scale up the rectangle so that it becomes an imaginary square. It is 

then easy to work out the longest side because this will be the square root of the 

area of the imaginary square that has been made. The ratio of the longest to the 

shortest sides is given to us when the problem was stated at the beginning, so this 

factor, three-quarters, is used to calculate the breadth. 
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The modern algebraic notation for the mathematics contained in this problem 

would run as follows: 

xx3x=12 4 

3x2=12 
4 

x2=12x4 3 

x2 =16 

x=4 

At the end of the problem we are shown that we have found the correct answer. 

We are given a drawing of the enclosure with one side marked with a four, and 

the other side marked with a three. The arithmetic following from the drawing 

seems incorrect. Struve hypothesised12 that a line is missing from the calculation 

and that it should read: 

4 

28 

\4 16 

1Z Struve. (1930) Op. Cit. p. 127 
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3.4: Algebraic Problems from the Moscow Mathematical Papyrus 

Moscow Mathematical Papyrus Problem 19 

1)tpnirtihf iry sp1 h/ nr 

Example of working out a heap. Make one and a half times together with 

2) 4 ii. n fr10 mrhrdd sw 

four, it has come as ten. What heap says this? 

3) ir. hr=k ir=k 113 n p310 r p3 4 hpr. hr 6 

You shall work out the excess of the ten over the four; it becomes six. 

4) ir. hr=k ir=k 1%r gmt 1 hpr. hr 2/3 ir. hr=k 

You shall work out one and a half in order to find one, it becomes two 

thirds. 

5) ir=k 2/3 n p3 6 hpr. hr r4 mk m4 

You shall work out two-thirds of the six, it becomes four. See, it is four, 

6) dd - sw gm=k nfr 

says it. You will fmd it good. 
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Commentary on Moscow Mathematical Papyrus Problem 19 

This problem deals with the solution of a simple equation, but it is interesting 

because of the way the problem is solved. This problem shows the use of 

mathematical techniques that are used when solving algebraic problems, even 

though there is no evidence that the Egyptians used any form of algebra. It is 

solved in exactly the same way a modern mathematician would; there is just 

different notation. Expressed with modem algebraic notation the problem would 

read: 

3x+4=10 
2 

3x=10-4 
2 

3x=6 
2 

x=6x? 3 

x=4 

This method is interesting because it shows that the author of the Moscow 

Mathematical Papyrus did not rely on the method of false assumption to solve 

equations, as the author of the Rhind Mathematical Papyrus seems to have done. 

The method of false assumption is illustrated by the following problems from the 

Rhind Mathematical Papyrus. To simplify the presentation of the problem I have 

omitted the hieroglyphic numbers, which form the arithmetical calculation. 
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Rhind Mathematical Papyrus Problem 24 

1) ýhý 7f hr =f hpr=fm 19 

A heap, a seventh of it on it becomes nineteen, 

2) rhr in mi hpr 

[what is the] heap? The doing as it occurs: 

\1 7 1 8 \4 2 

\7 1 12 16 \8 1 

2 4 

248 

\2 424 

\4 92 

1 16 28 

7248 

Total 19 
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The method of solving the problem can be explained thus: suppose the heap (i. e. 

the unknown quantity) is equal to one. The total of one times one and a seventh 

is eight. This sum is shown in the first column. The scribe then takes eight and 

works out what factor is needed to multiply eight by to give nineteen. This is 

worked out in the second and third columns. The answer is two and a quarter 

and an eighth. The same factor that is needed to convert eight into nineteen is 

needed to convert seven into the correct quantity of the heap. The next column 

shows two and a quarter and an eighth times seven. This gives the total of 

sixteen, a half and an eighth. The last column shows that one and a seventh 

times sixteen a half and an eighth is equal to nineteen. 

A very similar problem using the same method is given below to further illustrate 

the method: 
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Rhind Mathematical Papyrus Problem 25 

1) ihr 2f hr--f hpr m 16 

A heap, half of it on it, becomes sixteen. 

12 \1 332 

2 1 2 6 \3 1 

\4 12 

153 

\2 103 

in mi hpr 

The doing as it occurs: 

The heap: 1 10 3 

253 

Total 16 

Here the numbers are different but the process is exactly the same. We take the 

false position that the amount in the heap is two. One and a half times by two is 

three. We then ask what factor is needed to turn three into sixteen, i. e., what do 

we have to do to three to get sixteen. The answer is given by the sum of the 

ticked numbers in the left-hand side of the columns two and three. The answer is 

the sum of one, four and a third which gives five and a third. We are finally 

shown that one and a half times by ten and two thirds is indeed sixteen. MMP 19 

uses the method that is taught today for the solution of algebraic problems. 

Instead of using a trial example, as in the problems from the Rhind Mathematical 

papyrus, MMP 19 manipulates the equation until the required variable is found. 
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Moscow Mathematical Papyrus Problem 23 

1)tpninb3kwtbw 

Example of working out the work of a sandal maker. 

2) ml dd n=k b3kw tbw it wd= f 

If it is said to you, the work of a sandal-maker, if he cuts 

3)nr'10#rdb3 fnreS 

for 10 days if he replaces for five days. 

4)fn1wwd' f db3 fnr'1 

What does he cut and replace in one day? 

5)iw=frwrr ir. hr=kit-krmnynp3 10hn'p3 5 

the most is done, you shall work out the arms of the ten and the five. 

6) hpr. hr dmd r3 ir. hr= k ir= k -sw r gm t 10 hpr. hr sp 31 /3 

it becomes a total of three. You shall work on it in order to find ten, it 

becomes three and a third. 

5) mk 33 pw n rc 1 gm=k nfr 

Look it is three and a third in one day. You will find it good. 
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Commentary on Moscow Mathematical Papyrus Problem 23 

This problem is the most enigmatic in the whole extant corpus of Egyptian 

mathematics. We cannot tell for sure what this problem means, and unlike other 

problems where the translation is made easier by the mathematical context, here 

that mathematics serves to make it more obscure. Like the pesu problems it 

possibly has a basis in the calculations of economics that a scribe could be 

expected to perform in his duties. The function of 'finding the arms' is 

particularly curious. We start with ten and five, and finish with three. It is 

possible that it is referring to some kind of balance. If we were to balance ten and 

five we would require a balance with the fulcrum a third of the way along. 

However, how this relates to the activities of the sandal maker is not made clear. 

The problem appears to be trying to find the work that a sandal maker does in 

one day if in a fifteen-day period he cuts for ten days and replaces for five of 

those days. To make this problem make sense we require more information 

about what it is trying to achieve. We may also require more information about 

the work of a sandal maker. 
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Moscow Mathematical Papyrus Problem 25 

1)tpnirtchc iry sp2hn' iir 9 

Example of working out a heap, two times it on it, comes as nine. 

2) in3 llhc dd -sw Ir. hr=k ir=k dmd n p3 'h' hn' p3 2 

What heap says it? You shall work out the total of the heap together with 

the two 

3) hpr. hr r3 ir. hr=k ir=k p3 3r gmt 9 hpr. hr sp 3 

it becomes three. You will work on the three in order to find nine, it 

becomes three times. 

4) mk 3 dd-SW gm=k nfr 

Look it is three says it. You will fmd it good. 
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Commentary on Moscow Mathematical Papyrus Problem 25 

This is another problem involving an unknown quantity. The same word 'h' for 

the unknown quantity. This problem may be expressed algebraically as: 

x+2x=9 

3x=9 

x=9-3 

x=3 

Given the skill that the scribe showed in problem 19 this is an elementary 

problem. 

3.5: Conclusions 

The Moscow Mathematical Papyrus contains a wide range of geometrical and 

algebraic problems, although these problems are not ordered in any way. The 

Rhind Mathematical Papyrus, in contrast, ordered the problems in broad groups. 

It is also interesting that very few of the problems from the Moscow 

Mathematical Papyrus show any arithmetic. Section 2.7. proposed the idea that 

the texts only contain arithmetic where this is the object of completing the 

problem, in geometrical problems of the Rhind Mathematical Papyrus the 

arithmetic was sometimes absent. The Moscow Mathematical Papyrus follows 

this trend. Most of the problems in the Moscow Mathematical Papyrus are 

geometrical or algebraic in nature as can be seen from the contents list in Section 

3.2. This shows that the object of writing, or copying, the Moscow Mathematical 

Papyrus was to explore geometry and algebra. 
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The arithmetic of the Rhind Mathematical Papyrus showed an adaptability and 

skill on the part of the scribe who prepared it. The same is true of the geometry 

of the Moscow Mathematical Papyrus. MMP 19 shows that the Egyptians could 

conceive of algebraic problems in an abstract way. They were not limited by an 

inability to conceive of quantities in a purely physical and definite way. The 

geometrical problems investigated in this chapter demonstrate that the Egyptians 

had a curiosity about different shapes and their properties. These problems are, 

however, elementary when compared with MMP 14 and MMP 10, the subject of 

the next chapter. 
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Chapter 4 

Moscow Mathematical Papyrus 

Problems Fourteen and Ten 

Following the investigation of some of the simpler problems in Egyptian 

geometry, this chapter will turn to two of the most complicated and enigmatic. 

Both of these problems are contained in the Moscow Mathematical Papyrus and 

both question the notion that Egyptian geometry was straightforward and 

incapable of being abstract. 

4.1: Introduction 

This chapter will look at the two most intriguing problems not just from the 

Moscow Mathematical Papyrus but also from the whole of Egyptian 

mathematics. The first edition of the Moscow Mathematical Papyrus' appeared 

after many of the editions of the Rhind Mathematical Papyrus. When Struve's 

edition was published, Peet reviewed it for the Journal of Egyptian Archaeology. 

Peet, although admiring the work that Struve put into preparing the edition, 

repeated his opinion that the Moscow Mathematical Papyrus had nothing, apart 

from problem 14, dealing with the truncated pyramid, that would alter the 

opinion he had of Egyptian mathematics gained from other texts, most notably 

1 Struve W. W. (1930) Mathematisher Papyrus des Staatlichen Museums der Schönen Künste in 
Moskau, QSGM, Abt. A: Quellen; Berlin. 

107 



Chapter 4 Moscow Mathematical Papyrus Problems Fourteen and Ten 

the Rhind Mathematical Papyrus2. He includes MMP 10 in this assessment. 

There had already been plenty of interest in the MMP 143, presumably because 

of Peet's opinion of the problem. Before the full publication of the Moscow 

Mathematical papyrus, Peet and Gunn published an article in the Journal of 

Egyptian Archaeology, which discussed the problem at length and offers several 

possible dissections of the truncated pyramid. This article discussed three other 

problems: numbers six, seven and seventeen. It makes no mention of number 

ten. Peet gives his most detailed opinion of Moscow Mathematical Papyrus 

Problem 10 in another paper published in the Journal of Egyptian Archaeology', 

in this article Peet presents his arguments against the translation of the problem 

given in Struve's edition of the Moscow Mathematical Papyrus. Peet uses 

linguistic arguments for his interpretation of the problem. Since the publication 

of the article, there have been few commentators on the problem with the 

necessary knowledge of hieroglyphs to examine the differences and give a 

defmitive translation of the problem. It is usual to find that when this problem is 

discussed, both Peet's and Struve's interpretations are given with no further 

comment because the author does not have the expertise to judge the rival 

claims5. Section 4.2 will explore Peet's arguments in detail and provide 

examples from other mathematical problems to elucidate his points. It will also 

2 Peet, T. E. (1931) Review of Struve's edition of the Moscow Mathematical Papyrus; Journal of 
Egyptian Archaeology, vol. 17; pp. 154-60. 

W. R. (1931) "Moscow Mathematical Papyrus, No. 14" Journal of Egyptian Archaeology; vol. 
17; pp 50-2. Vogel, K. (1930) "The truncated pyramid in Egyptian Mathematics"; Journal of 
Egyptian Archaeology; vol. 16; pp 242-49. Gunn, B. and Peet, T. E, (1929) "Four Geometrical 
Problems from the Moscow Mathematical Papyrus" Journal of Egyptian Archaeology; vol. 15; 
pp 167-85. Turaiev, B. (1917) "The Volume of the truncated pyramid in Egyptian mathematics, " 
Ancient Egypt-, London; pp 100-02; 
4 Peet, T. E. (1931) "A Problem in Egyptian Geometry"; Journal of Egyptian Archaeology, vol. 
17; pp 100-06. 
5 See for example: Joseph, G. G. (2000) The Crest of the Peacock: Non-European Roots of 
Mathematics; 2nd ed.; Penguin, Harmondsworth; pp 87-9. Also Van Der Waerden, B. L. (1954) 
Science Awakening, P. Noordhoff ltd; Groningen; pp 33-34. 
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offer an alternative translation of the problem, which satisfies both the arguments 

of Peet and Struve. 

4.2: Moscow Mathematical Papyrus Problem 14 

1)tpnirt/ 

Example of working out a truncated pyramid6 

2) mi dd n=k 
11n6n 

Jtwt# 

If it is said to you a truncated pyramid of six in vertical height? 

3) r4 hr hr r2 hr hry 

by four on the base by two on top. 

4) fr. hr=k ir=k 4 -pn m fw hpr. hr. 16 

You are to square this four, it becomes sixteen. 

5) fr. hr=k k3b=k 4 hpr. hr 8 

You are to make double four, it becomes eight. 

6)fr. hr=k 1r-k2pn m fwhpr4 

You are to square this 2 it becomes four. 

7) ir. hr=k dmd k p316 

You are to make the total of the sixteen 

8) hnr p3 8 hnr p3 4 

together with the eight together with the four. 

6 This problem is unusual because the name of the figure it is concerned with is not spelt out. 
The only derivation for this symbol, suggested by Gunn and Peet is the determinative of is, the 
word for the plinths of old solar obelisks that had roughly the shape of a truncated pyramid. 
However, these were regular figures, where the figure in Moscow Mathematical Papyrus 14 is 
clearly not. 
7 The derivation and meaning of this word is unknown. It does not appear in texts outside of the 
Moscow Mathematical Papyrus. However, it clearly refers to the height because of the 
accompanying diagram. For further discussion, see Gunn, B. and Peet, T. E. (1929) Op Cit. 
p. 178. 
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9)hpr. hr 28 fr. hr=k fr=k 

it becomes twenty-eight. You are to make 

10) 3n6 hpr. hr. 2 ir. hr=k 

a third of six, it becomes two. You are to make 

11) ir=k 28 sp 2 hpr. hr 56 

twenty-eight times two, it becomes fifty-six. 

12) mk nf -sw 56 gm=k nfr 

See, it is of fifty-six. You will find it good. 
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4.2.1: Commentary on Moscow Mathematical Papyrus Problem 14 

Together with MMP 10, this problem is one of the greatest Egyptian 

mathematical achievements. In this problem, the correct formula for working out 

the volume of a truncated pyramid is used. The formula can be represented 

algebraically8 as: 

V=h/3(a2+ab+b2) 

Where h is the height, a the length of the base and b the length of the truncated 

side. 

It is not known how the Egyptians achieved this remarkable result9. The simplest 

solution is to suggest that the Egyptians worked out the solution using a model 

made out of Nile mud that was cut into small pieces and weighed to give the 

proportions. However, I feel that this ignores the evidence of the skill of the 

mathematicians as indicated by other problems in this papyrus. Other problems 

in the Moscow Mathematical Papyrus suggest that the scribe had at least some 

skills that we would associate with algebra. A plausible suggestion is that the 

truncated pyramid was split into sections and reformed to make solids of known 

volume. This did not have to be achieved by cutting up Nile mud, but through 

the imagination and reasoning of the scribe. We have seen from several of the 

problem in the Moscow Mathematical Papyrus that the mathematicians were able 

to work out the area of a figure of known dimensions and then scale it to the 

8 See Fig. 3.1. for a diagram. 
For a detailed summary of the earliest theories on the derivation of this formula see Clagett, M. 

(1999) Ancient Egyptian Science: A Source Book Vol. Three: Egyptian Mathematics American 
Philosophical Society; Volume 232; Philadelphia. 
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figure in hand, their method of solving ch" 10 problems by the method of false 

assumption is a similar process. This can also be achieved in three dimensions, 

albeit with increased difficulty, although there is no explicit evidence in the 

mathematical texts that the ancient Egyptian did this. There are several ways that 

a dissection of the truncated pyramid can be achieved to form a sum of shapes 

which is easier to manipulate. The exact procedure used by the Egyptian scribe 

that first came up with the correct formula for working out the volume of a 

truncated pyramid has been lost. 

A recent paper by Flora Vafeal1 has suggested a possible geometrical 

transformation. The premise of the transformation is the division of the height 

by three and then considering each of the parallelepipeds. This has the virtue of 

immediately introducing the h/3 term in the eventual equation. However, the 

geometrical reasoning involved is extremely complicated and there is no 

evidence that the Egyptians could reason to that level. There are many other 

interpretations of how this result was achieved12 

10 See Section 3.4. 
11 Vafea, F (2002) "The Mathematics of Pyramid Construction in Ancient Egypt" Mediterranean 
Archaeology andArchaeometry Vol 2: 1; pp 111-124. Reproduced with kind permission from the 
author and publisher. 
12 Gillings, R. J. (Dec. 1964) "The volume of a truncated pyramid"; The Mathematics Teacher; 
Part I: Vol. 59, No. 4, pp 552- 55. Vetter Q. (1933) "Problem 14 of the Moscow Mathematical 
Papyrus" Journal of EgyptianArchaeologl, vol. 19; pp 16-18. Thomas, W. R. (1931) "Moscow 
Mathematical Papyrus, No. 14" Journal of Egyptian Archaeology, vol. 17; pp 50-2. Vogel, K. 
(1930) "The truncated pyramid in Egyptian Mathematics"; Journal of Egyptian Archaeology; vol. 
16; pp 242-49. Gunn, B. and Peet, T. E, (1929) "Problems for the Moscow mathematical Papyrus" 
Journal of Egyptian Archaeology, vol. 15; pp 167-85. Turaiev, B. (1917) "The Volume of the 
truncated pyramid in Egyptian mathematics, " Ancient Egypt; London; pp 100-02; 
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Figure A 

Figure B 

O 
h/3 

00 

2h/3 

Figure C 

Fig. 3.1 Transformation of a truncated pyramid into a set of three 

parallelepipeds 
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It is to be presumed that the Egyptians knew the volume of a pyramid. Indeed, 

the volume of a square based pyramid can be worked out from the formula 

contained in the problem, as b equals zero. It is possible that the Egyptians knew 

how to work out the volume of a complete pyramid, before working out how to 

find the volume of a truncated pyramid. It should not be presumed that the 

Egyptians had a regular truncated pyramid in mind. Indeed, the illustration 

clearly shows an asymmetrical pyramid. The volume of the figure would be the 

same, because an asymmetrical pyramid is an easy transformation from a 

symmetrical one. However, it makes dissections of the figure easier to see. 

Drawn to scale the asymmetrical truncated pyramid would appear thus: 

Fig. 3.2: The Truncated Pyramid from MMP 14 Drawn to Scale 

This figure has a height of six and a base of four. The section cut off at the top 

has a base measurement of two. The truncated pyramid can be dissected into a 
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square prism, a square-based pyramid and two triangular pyramids, a common 

idea for the derivation of the method seen in the Moscow Mathematical Papyrus: 

Fig. 3.3: A Possible Dissection of the Truncated Pyramid 

The square prism will have a volume of ha2 

The pyramid will have a volume of: 3 a2 

The two triangular prisms will each have a volume of 
h 

a2 

This truncated pyramid is a special case, as the base is twice the length of the 

cut-off. This enables the simple dissection and also means that the volumes of 

115 



Chapter 4 Moscow Mathematical Papyrus Problems Fourteen and Ten 

the four pieces can be expressed as in terms of a. This dissection does not 

however offer an explanation of the method described in the Moscow 

Mathematical Papyrus. The first calculation is carried out in line 4. This 

calculation clearly deals with the length of the bottom side. If the truncated 

pyramid is cut up in any way then this dimension is cut. Explaining the method 

seen in MMP 14 will require more algebra than any previous writer on Egyptian 

mathematics has cared to admit. 

The practical applications of this problem are not hard to see considering that this 

problem comes from the land that built the pyramids. However, the existence of 

a practical application should not distract us from the abstract nature of the 

reasoning involved. This is not mere arithmetic brought to bear on an everyday 

problem. The pyramids were enormous projects undertaken with vast 

workforces. As such they would have attracted the keenest minds of the 

kingdom. It should not surprise us then that the building of the pyramids sparked 

a piece of brilliant deduction and reasoning. This problem, although grounded in 

application, should be considered as an example of pure mathematics. The 

precise nature of the reasoning is lost, but it must have existed at some time. 

Papyrus is a very friable material and does not survive well. The scribe engaged 

in the process of manipulating the mathematics may not have used papyrus 

anyway. Ostraca were used for writing on in ancient times as well and discarded 

readily. These do not survive to the present day unless they were preserved in 

extraordinary circumstances. When dealing with such a small sample of 

material, we cannot be too rigid in our criteria for investigation and 

categorisation. The benefit of the doubt in cases like this should be afforded to 
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the Egyptians. The most pessimistic perception of the achievements of Egyptian 

mathematics is an extreme position. It is easy to become dogmatic in the 

assumption that the Egyptians had no mathematical thought beyond the use of 

arithmetic for the solution of practical problems. 

4.3: Moscow Mathematical Papyrus Problem 10: What Shape is a 

Basket? 

There have been several interpretations of this problem, most notably those of 

Struve and Peet 13. This section will show that the most likely interpretation is 

that of a hemisphere, in preference to a semi-circle or a half cylinder. This is 

therefore a singular piece of mathematics. It is not intuitive to see a curved 

surface in the same terms that you see a flat surface. The curved surface of half a 

cylinder can be transformed into a flat surface very easily but the rounded 

surface of a sphere cannot. 

Explaining how this result was achieved is extremely difficult and will rely on a 

thorough understanding of how the Egyptians thought about the area of a circle, 

it will be this knowledge that may eventually yield an answer. It is not possible 

to tell whether this result was achieved through experimentation into how much 

material was needed to weave a basket of a known size, or whether it came about 

through logical reasoning. It may be possible that the Egyptians noticed that it 

takes twice as much material to weave a hemi-spherical basket than it takes to 

13 See Section 4.1. 
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weave the lid. What can be said, however, is that this problem represents the 

pinnacle of mathematical achievement in all the surviving papyri. 

4.3.1: Overview and examples 

This problem is probably the most interesting problem in the mathematical texts 

that have survived from ancient Egypt. It is certainly the most debated problem. 

Several rival interpretations have been proposed. The first interpretation put 

forward by Struve14 suggested that this problem deals with a hemisphere. This 

would put this problem apart from the other achievements of Egyptian 

mathematics because it would be the only problem to deal with a surface that 

cannot be flattened. To be able to conceive a curved surface in terms of a flat 

area is no mean feat and strongly suggests that the Egyptians were capable of 

abstract mathematical thought. Peet, however, was not convinced of this 

translation of the text and proposed opposing translations that involved either a 

semicircle or a semi-cylinder. These interpretations of the problem are not as 

abstract, because they only need the conceptualisation of a two-dimensional 

space and are less exciting to a historian of mathematics than Struve's 

interpretation. The arguments surrounding Peet's translations are dependent on 

our understanding of other mathematical problems, particularly in the way that 

they are formulated and communicated. Although the mathematical content of 

this particular problem is unique, the format is not. This problem should 

therefore only be considered after the character of all the other problems and 

their unique use of Egyptian words has been understood. 

14 Struve, (1930) Op. Cit. p. 157 
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To this end, I have produced my own translations of some of the more 

enlightening problems from the Rhind Mathematical Papyrus, which are 

presented here 15. These problems deal with points that are raised in the 

translation of Moscow Mathematical Papyrus Problem 10. I have tried to present 

the translations in the lines that they appear in the Rhind Papyrus. I have 

presented them in this way because breaks in line are sometimes, but not always, 

helpful in following the working of the problem. The arithmetical working that 

appears at the end of the problems preserves the columns used in the Rhind 

Mathematical Papyrus as far as possible. These columns are sometimes 

extremely confusing to a modern reader but they have been preserved because of 

this difficulty. Mathematics should always be clearly set out if the reader is to 

learn anything from the papyrus. Some arguments surrounding the mathematical 

ability of the Egyptians have been based on the untidy nature of their 

mathematical papyri. I have tried to be true to the layout of the original text, 

where possible within the confines of the word processor, to retain the confusion 

to try and be as true as possible to the original text, with apologies to the reader. 

For further notes on presentation style, see Section 1.5. 

15 These use my own terms "function" and "guidance" that will be justified later. 
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Rhind Mathematical Papyrus Problem 41 

1)tonin Brdbnn910 hb. hr=k9n9mld3t8 

Example of working out a container, round of 9 (by) 10; you deduct a 

ninth of 9, namely 1, remainder 8. 

2) Wh -tp m8r spw 8 hpr. hr 64 fr. hr =k Wh -tp m 64 

The function of 8 by times 8 becomes 64. You make the function of 64 

3) r sp 10 hpr. hr =f 640 di 2=f hr =f hpr. hr =fm 960 rht = 

m h3rw 

by times 10, it becomes 640; put half of it on it, it becomes 960. The 

amount of it in khar. 

4) fr. hr =k 20 n 960 m 48 h33t -pw r= fm 4-hk3t fs 4800 hk3t 

You make a twentieth of 960 namely 48, this is what goes into it in 

quadruple hekat. Grain 4800 hekat 

5) ki n stmt =f 

Form of its guidance 

dmd 

18 \8 64 total 960 

2 16 1 64 10 96 

4 32 \10 640 20 48 

\2 320 
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Rhind Mathematical Papyrus Problem 42 

1) J An n10 10 hb. hr=k9 n10 m1 9 d3t m 83618 

Round container of 10 (by) 10; you deduct a ninth of ten, namely one and 

a ninth, remainder is 8, two thirds, a sixth and an eighteenth 

2) ir. hr= k wTh -tp m836 18 r spw 836 18 hpr. hr. 79 108 324 

Carry out the function of (8, two thirds, a sixth and an eighteenth) by 

times (8, two thirds, a sixth and an eighteenth) becomes 79, a hundred 

and eighth and a three-hundred and -twenty-fourth 

3) ir. hr=k w3h-tp m 79 108324 sp 10hpr. hr= fm 790 82754 

Carry out the function of 79, a hundred and eighth and a three-hundred- 

and -twenty -fourth times 10, it becomes 790 an eighth, a twenty-seventh 

and a fifty-fourth 

4) X2 =f hr--f hpr. hr f m1185 w3h -tp m 1185 20 m594 Mit - 

pw r =fm 4-hk3t 

put half of it on it, it becomes 1,185; the function of 1,185 (times) a 

twentieth is 59 and a quarter, this is what goes into it in quadruple hekat 

5) s§ 5900 hk? t 4 

grain. 5900 hekat 25 ro 
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6) ki n stmt =f 

Form of its guidance 

1 83 618 3 236123654 1 79 108 324 

2 1739 \6 1 312 24 72108 10 790 18 27 54 

4 35218 \ 18 3927108 324 2 395 36 54108 

8 71 9 dmd 79 108 324 dmd 1185 

3 5361827 total total 

10 118 2 

\20 59 4 

The above problems demonstrate some of the difficulties of translating 

mathematical papyri into English. The main trouble is trying to translate into a 

language that has very strict definitions for mathematical terms. I have 

deliberately avoided using terms such as multiply, diameter and cylinder 

wherever possible because of the connotations they imply. The mathematical 

problems do deal with these concepts but the exact meaning of the Egyptian 

words is not known to us. The meaning of words such as w3h -tp can be 

understood from the context and the arithmetic that follows, but they do not 

warrant translation into technical English because of the imprecision in our 

understanding of the exact meaning of the words. In some cases in the problems 

translated above, w3h -tp is used to introduce a multiplication, in other cases it is 

used as a general word for an arithmetic operation. I have therefore translated it 

to mean ̀ function' as this is a word that is used to describe arithmetical or 

algebraic operations. It is difficult to find an English equivalent, because our 

mathematical terminology has such specific meanings, that although they can 
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have a range of meaning in colloquial English, their use in mathematical contexts 

renders the meaning precise. In previous translations of the Rhind Mathematical 

Papyrus, it has been translated as ̀ operate' `multiplication' and ̀ multiply', 

depending on the context. 16 The translation of `function' always allows us to 

translate w3h tp in the same way. I believe that this eliminates some of the 

difficulties of the translator although I recognise the inexactness of the 

comparison with modem mathematical language. 

The other word that I have tried not to use in my translation is 'proof. The 

nature of proof is a thorny problem. Mathematicians would hold that proof is 

entirely abstract and that the Egyptian way of showing that their working is 

correct is not proof in any way. This is a narrow way to view a civilisation that 

had no use for algebra, but so as not to become involved in that argument at this 

stage I have used the word `guidance'. I have chosen this word because the 

arithmetic is given at the bottom of each problem for exactly that purpose; to 

guide us through what has gone before. The use of technical words is also a 

problem when trying to translate the words used to give the values of dimensions 

of a geometrical figure. I have compiled a list of the words used in the Rhind 

Mathematical Papyrus to give dimensions, shown in Table 3.1. 

It becomes apparent when we examine this selection of words that some of them 

have a doubtful derivation from other hieroglyphic words. The only reason that 

we understand some of them at all is because of the context and how the 

dimensions are used in the arithmetical working. A good example of this 

16 Chace, Bull and Manning, (1929) Op. Cit. Peet, (1923) Op. Cit. 
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problem is that whi -tbt has been translated literally as ̀ what the sole requires' 7 

however, it is difficult to see why this particular word should be used. The 

Egyptian names for the dimensions do not inform us what the dimension is; it is 

for the context to determine. An understanding of the Moscow Mathematical 

Papyrus problem 10 should have grounding in the understanding of the Rhind 

Mathematical Papyrus. The above data is therefore vital in trying to select an 

interpretation of the Moscow Mathematical Papyrus. 

17 Peet, T. E. (1923) Op. Cit. p. 98 
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Word Translation 
RMP Problem 

Numbers 

3w length 44 

wsh width 43,44 

wr r wr base (of a pyramid) 56,57,58 

wh3 tbt height (of a pyramid) 56,57,58 

pr-m -wsg height 43,44 

k3 height 43,44 

k? =f-n-hrw height (of a cone? ) 60 

rht amount, dimension 46 

on the long side (of a 
hr mryt 51,52 

triangle) 

the truncation (of a 
hak 52 

triangle) 

sntt base width (of a cone) 60 

skd gradient (of a pyramid) 56,57,58 

the short side (of a 
tp -r 

51,52 
triangle) 

round (diameter of a 
An 41,42,50 

circle) 

Table 4.1: Translations of Dimensions from the Rhind Mathematical 
Papyrus 
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4.3.2: Struve's Translation 

The first translation of Moscow Mathematical Papyrus Problem 10 was 

published by Struve. '8 The following English translation of his German 

translation was produced by Peet'9: 

1 Form of working out a basket. 

2 If they mention to you a basket with a mouth 

3 of four and a half in preservation. 

4 Let me know its surface. 

5 Take a ninth of nine, since the basket 

6 is half an egg; result 1. 

7 Take the remainder, namely eight. 

8 Take a ninth of eight; 

9 result three and a sixth and an eighteenth 

10 Take the remainder of these eight 

11 after (the subtraction of) this three and a sixth and an eighteenth; 

result seven and a ninth. 

12 Reckon with seven and a ninth, four and a half times; 

13 result thirty two. Behold, that is its surface. 

14 You have found rightly. 

Peet has several objections to Struve's translation. He suggests that a dimension 

has been left out by scribal error from line 2. His argument is based on the use of 

'" Struve, W. W. (1930) Op. Cit. p. 157 
19 Peet, T. E, (1931) Op. Cit. p. 101 
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m to introduce a dimension of a geometrical figure and r to separate two 

dimensions. The basket or nbt is described as: 

nbt m tp-r r42m rd 

Struve translates this as "einen Korb mit einer Mündung zu 4 in Erhaltung"20 

"a basket with a mouth of four and a half in preservation". The problem with this 

translation becomes apparent when we examine how the other geometrical 

problems are posed. The main problem is the use of r to introduce a dimension 

of a geometrical shape. There are plenty of examples of its use meaning ̀ by' i. e. 

6 cubits by 2 cubits. For example, Line 2 of RMP 49 reads: 

3htnht10rht2 
A field of 10 khet by 2 khet 

In the majority of examples, the r is left out, RMP 41 and RMP 42 for example, 

but in no example is it used to mean ̀ of' in the way Struve proposes. The use of 

the preposition m in this case is also a problem. m is used to give the name of a 

dimension. If this rule is to be followed both tp-r and cd should be the names of 

two dimensions of the figure. A good example of this can be seen in the first line 

of problem 43: 

sal' dbn n mh 9m k3 f6m wsh =f 
A round container of 9 cubits in its height, 6 in its width. 

In this example, the two dimensions are k3 and wsh: height and width. Each of 

these dimensions is introduced with the preposition m, in this case the 

preposition r is not used to separate the two dimensions. 

20 Struve. (1930) Op. Cit. p. 157 
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If Moscow Mathematical Papyrus Problem 10 is to fit with the rules of using 

these prepositions, it would necessitate the restoration of the value of tp-r. The 

final point in the favour of the restoration of a value is the use of n. In all the 

examples of geometrical problems n is always used in the first line of the 

problem in its exposition. This seems to be the most concrete rule of all. In this 

case it is missing. The problem as posed in the Moscow Mathematical Papyrus is 

nonsensical. Therefore Peet's argument for the restoration of the value of tp-r in 

line two of this problem must be followed, making the reading of this line as 

follows: 

nbt [nt x] m tp-r r42m rd 

4.3.3: The Possible Restorations of the Value of tp-r 

The omission of this value leaves us with a problem. Which value has been left 

out? There are three mathematically possible solutions to this problem, i. e. they 

would all have a surface with an approximate area of 32. 

The first, implied by Struve, is a hemi-sphere with a diameter of 4.5. Although 

Struve did not recognise that there was a missing dimension, the missing 

dimension can be deduced from his figure: 
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Fig. 4.4: MMP10 as a Hemisphere 

The first of Peet's interpretations is a two-dimensional semicircle with diameter 

of 9: 

Fig. 4.5: MMP10 as a Semicircle 

The second of Peet's interpretations involves the curved surface (not the two 

semi-circular ends) of half a cylinder with a radius of 4.5 and a width of 4.5: 
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Fitz. 4.6: MMP10 as a Half-cylinder 

Peet's translations both use technical mathematical language. For the reasons 

discussed above I feel that using this language is a bad idea. He tries to translate 

nbt as either semicircle or semi-cylinder, depending on which interpretation of 

the problem he is discussing. I would prefer to leave the translation as basket. 

Problems from the Rhind papyrus that deal with finding the volume of a cylinder 

all give the problem as fording the volume of a container, presumably a 

granary2l, even though a granary would only be an approximation of the shape of 

a cylinder. The author(s) of these papyri may be using everyday objects to make 

it easier for the reader to visualise the shape that he is referring to. Peet also gives 

technical meanings to tp-r and rd., depending on the context. The translation of 

these words is extremely difficult for the reasons discussed above. tp-r was used 

in the Rhind Mathematical Papyrus to mean the shorter side of a triangle. It 

21 The word used for this figure s3 c, is unknown in other Egyptian texts. Peet, 1923, p. 80. It can 
be presumed that it is a granary however, because it's volume is shown by the amount of grain 
that it contains. 
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clearly does not mean that here, the use of tp-r in the Rhind papyrus was limited 

to problems that deal with the area of a triangle. Our translation of this word 

should have a link to the use of tp-r in the Rhind Mathematical papyrus, but be 

applicable to a curved shape. In his translation of the Rhind Papyrus, Peet is 

happy with the translation of `mouth' for tp-r, the tp adding little to the meaning 

of the compound word22. I put forward the idea that the translation should be the 

shorter of two dimensions. This would fit in with the ideas of the hemisphere and 

the semi-circle, as tp-r is the shorter dimension in both these cases. If this is true 

then rd could be translated with the sense of `whole'; meaning that it is the 

larger of the two dimensions. 

Peet dismisses the idea that this problem could deal with a hemisphere. He offers 

the interpretations of the semicircle and the cylinder for consideration. I do not 

understand why he dismisses the hemisphere solution so easily. He objects to 

Struve's restoration from the damaged hieratic of the word fnr meaning egg in 

line 6. The reading of this word may be doubtful, but as Peet himself admits it is 

difficult to restore any word with certainty. In Peet's translations of the problem 

the word that he restores in translation is the word for half the object that he is 

interpreting the problem to be dealing with. This means that neither of Peet's 

translations addresses this difficulty. At least Struve offers a hieroglyphic word 

for our consideration. The second objection that Peet has is the fact that two 

dimensions have been given. He claims that this is not necessary, because a 

hemisphere can be described with only one dimension. There are several counter 

arguments to this. The first is the word used to describe this figure is nbt and this 

should be translated as basket so as to avoid the problems of using technical 

22 Peet, T. E. (1923) Op. Cit. p. 91 
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English. What shape is a basket? There are several different shapes of basket and 

to make sure that the reader knew which particular form was meant two 

dimensions would have to be given, to ensure that the reader knew a hemisphere 

was meant. The second counter argument is that there is no evidence for the 

Egyptians using a radius in their mathematics. The relationship between the 

diameter and the radius may be obvious to modern mathematicians, but this does 

not mean that it would have been apparent to an Egyptian who is used to always 

using the diameter only. It may not have entered into the mind of the scribe that 

drew up this papyrus that there was a relationship between the two dimensions 

that he was quoting. The first of Peet's interpretations also gives the two 

dimensions, the diameter and the radius. If he thinks that it is possible that the 

Egyptian would quote the diameter and the radius in the heading of the same 

problem, why does he dismiss the hemisphere? The third objection is the 

introduction of the number 9 in line five of the problem. This is quoted without 

explanation. This is unusual in Egyptian mathematical texts, but by no means 

impossible. In line 3 of RMP 43, it is not obvious where the four and two thirds 

quoted come from, other than their relation to the breadth of six cubits: 

w3h-tp m 113 39r spw 43 pw n mh 6 my m wsh f hpr. hr fm 455 9 
rht L pw m h3rw 

the function of 113, two thirds and a ninth by times 4 and two thirds, this is 
of the 6 cubits which is its breadth; it becomes 445 and a ninth. This is the 
amount in khar 

The translations that Peet suggests are not free of objections. It seems strange 

that the Egyptians would use such a complicated method to work out the area of 

a semi-circle. The rule to work out the area of a circle was well known by the 

132 



Chapter 4 Moscow Mathematical Papyrus Problems Fourteen and Ten 

Egyptians. It would have been easier to use that rule and then divide the result by 

two. The other objection to this rendering of the problem is that other problems 

that deal with flat areas always pose the problems in the terms of a field. 

Whatever the shape of the two-dimensional plane the word used to describe it is 

always 3ht. The use of the word nbt is doubly confusing; why a basket should be 

an approximation to a semi-circle is not apparent. 

There are fewer, less conclusive, arguments against the translation of the curved 

surface of a semi-cylinder. The approximation of the figure, a basket, does not 

fit well with the translation, as it would have to be a basket with no sides for the 

arithmetical component of the problem to fit. The completion of the figure to 

give the surface area of the whole semi-cylinder would be very easy. It would 

only require the working out of the area of a circle with a diameter of 4.5, which 

we know the Egyptians could do. This rendering also suffers because it does not 

fit in with the translation of tp-r that is proposed here. In this case, the two 

dimensions are equal. However the main objection to this solution is that the 

Egyptian term for a cylinder is well known, in all the problems in the Rhind 

Mathematical Papyrus that deal with a cylinder, it is always referred to as sir 

dbn. 

The interpretation of a hemisphere does not suffer from these problems. It is a 

shape like no other dealt with in mathematical papyri, so it is logical that the 

problem should be posed using terms that no other mathematical problems use. 

If the reader were unfamiliar with working out the area of this figure then the 

explanation in lines 5 and 6 would also be necessary. The objections that Peet 
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has with this interpretation seem superficial and unless new evidence is brought 

forward the hemisphere is the best interpretation of the problem. 

Moscow Mathematical Papyrus Problem 10 

1) tpninnbt 
Example of working out a basket 

2) mi dd n =k nbt [nt 2 4]mtp-r 
If it is said to you a basket [of 2 and a quarter] in the short dimension 

3) r4 2m rd M 
by four and a half in the long dimension, Ha! 

4) di= k rh=1 3ht =s ir. hr=k 
let me know its area. You shall make 

5) #r =k 9n9 hr ntt it nbt 
a ninth of nine since the basket 

6) 2 -pw n i[? ] hpr. hr 1 
is half of a [? ] becomes 1 

7) fr. hr =k dJt m8 
you take the remainder, namely 8 

8) fr. hr=k fr--k 9n8 
you shall make a ninth of 8 

9) hpr. hr 2618 1r. hr=k 
becomes two thirds, a sixth and an eighteenth. You shall make 

10) fr =k d3t nt p3 8r s3 
the remainder of the 8 after subtracting 

11) p3 2618 hpr. hr 79 
the two thirds a sixth and an eighteenth, becomes seven and a ninth 

12) 1r. hr=k it =k 79sp 42 
you shall make seven and a ninth times four and a half 

13) hpr. hr 32 mk 3ht =s pw 
becomes 32. Behold! This is its area 

14) gm =k nfr 
you have found it correctly. 
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The mathematical workings of this problem are very interesting. The modern 

formula for working out the surface area of a hemi-sphere is: 

Area= 2itr2 

It is doubtful that this formula would have been known to the Egyptians, as it is 

based on the length of the radius. In none of the extant problems in Egyptian 

geometry does this dimension appear. The Egyptian method of fording the area 

of a circle was to find eight ninths of the diameter and square it. The formula 

used in MMP10 expressed in modem notation is23: 

2d )-9(2d-29 )] 
Ll 

The derivation of the modem formula from the ancient Egyptian one is a case of 

applying simple algebraic manipulation. 

Factorising the brackets by 2d: 

dý2dý11- 9l 
-9 l1- 

91ýJ 
lJlJ 

Simplifying: 

L 
f(8)_ 1(8)j] 

999 

2d=rgJ2 
ý9) 

23 where d equals the diameter. 
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The Egyptian approximation to t is 256 
, so 

(8)2 
is approximately equal to 4 

z 
Replacing 

(9) 
with 

4 

2d2(4) 

Replacing d with 2r, because the diameter is twice the radius and simplifying: 

Area =2'r r2 

Algebraic transformations are only easy, however, when one is working towards 

a known goal. Working from the modern formula to the ancient Egyptian 

formula would involve non-intuitive factorisation. Although I am convinced that 

this problem deals with a hemisphere, it is clear that much additional work will 

be required before a fuller understanding of how the ancient Egyptians were able 

to prepare this remarkable problem in abstract geometry can be achieved. 

4.4: Conclusions 

These two problems from the Moscow Mathematical Papyrus are the two most 

advanced problems in the extant corpus of Egyptian mathematics. They are also 

two of the most contested problems; the reasoning behind their production is 

unclear. They question the notion that Egyptian mathematics was incapable of 

being abstract. The method utilised in these problems could not have been 
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arrived at by chance. A now anonymous mathematician used some form of 

reasoning to work from simple observations of the figures to the sophisticated 

method employed. It is immaterial whether this reasoning was performed on 

papyrus, or with a more practical method using models made out of mud or 

observing the work of basket weavers, the reckoning is still an abstraction from a 

particular case to a general solution. There are several ways in which a truncated 

pyramid can be cut up to form simpler geometrical shapes, which can then be 

combined. However, all of these methods still require further spatial reasoning 

to reach the formula contained in the method of MMP 14. There is an apparent 

link between the Egyptian method for fording the area of a circle and the surface 

area of a hemisphere, though this link is far from clear. Both methods utilise the 

fraction of eight-ninths of the diameter which can give a good approximation to 

r. The method for fording the surface area of a hemisphere is complicated and 

how it is possible to arrive at this method from a circle is unclear. Together these 

problems show that the ancient Egyptians were capable of abstract reasoning, but 

that how it was achieved is uncertain. 
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Chapter 5 

Review of the Study of Ancient Egyptian 

Mathematics 

The study of Egyptian mathematics has produced some startling comments. For 

an Egyptologist, interested in how mathematics affected the lives of the ancient 

Egyptians, many of these comments are less than helpful. Yet texts on the 

history of mathematics present ideas that have permeated the thinking of 

Egyptologists about mathematics in Egypt. This chapter will explore how 

Egyptian mathematics has been viewed and written about. It will include a 

survey of some of the common ideas about Egyptian mathematics and what these 

comments accentuate about how the history of science and mathematics has been 

studied. This chapter will not deal will specific comments made about the 

Egyptian mathematical problems, rather it will focus on general comments made 

about the character of Egyptian mathematics. It will also begin to explore how 

the study of Egyptian mathematics has been coloured by philosophical ideas. 

5.1 Introduction 

The preceding chapters have provided translations of parts of the extant Egyptian 

mathematical texts and given a commentary on the mathematical content of these 

texts. It should be clear from these translations and commentaries that the 
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content is more mathematically sophisticated than it appears on the first reading 

of the problems. For example, the process of multiplication appears to be 

simple: repeated doubling until the answer can be obtained with addition. 

However, on a closer reading of the texts, it is found that the actual processes 

used offer a wider variety of technique, which is influenced by the context. It is 

this apparent simplicity that has struck many of the authors of books and paper 

on Egyptian mathematics: such books are often slow at noticing the depths and 

subtleties of the Egyptian mathematical texts. 

This chapter will explore the ways in which the subject of Egyptian mathematics 

has been approached. It will not deal with the specific comments of writers on 

Egyptian mathematics. Rather, it will look at the general comments about the 

character of Egyptian mathematics. The major writers and the major works on 

the subjects will be analysed to identify the common ideas about Egyptian 

mathematics and how these ideas arise. 

5.2: History of Mathematics Textbooks 

Reference to ancient Egyptian mathematics can be found in general textbooks on 

the history of mathematics. It is often found in a shared chapter with Babylonian 

mathematics before the author moves on to chapters on Greek mathematics. The 

treatment that Egyptian mathematics receives falls far short of a detailed 

examination. These chapters often concentrate on numeration and arithmetic, 

rather than on algebraic and geometrical elements. Even those textbooks that 

take a more sympathetic approach to Egyptian mathematics still do not deal 

adequately with the range of material present in the Egyptian texts. In addition, 
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because they are written by non-Egyptologists, mistakes and misunderstandings 

are bound to occur. These accounts of Egyptian mathematics will also 

necessarily rely on the work of others so will have little to say that is new. 

For example, Teresi's book on the ancient roots of modern science, dedicates 

most of his section on Egyptian mathematics to addition in hieroglyphic notation, 

something that does not appear in any of the Egyptian texts as they were written 

in hieratic script. In his explanation of multiplication, he is only aware of the 

repeat doubling method of multiplication. He writes: 

"Today, we can do the above problem in our heads: 180 x 20 = 3,600. 
Ancient Egyptians and medieval Europeans couldn't. "2 

This shows that as well as being unaware of the subtleties of Egyptian 

multiplication techniques, he is also unaware that the Moscow Mathematical 

Papyrus contains many examples of multiplication that have been completed 

without showing the working out3. This quote also seems to presume that the 

Egyptians were less intelligent than modem Europeans are. It seems that it is as 

much of a sweeping statement to say that all modem Europeans are capable of 

doing mental arithmetic, as it is to say that no ancient Egyptians could. Even his 

explanation of the placing of hieroglyphic numbers is flawed. He explains at 

length how the numbers are written and says that numbers were written in the 

opposite order to the way they are written now; with the units on the left hand 

side increasing powers of ten to the right. What he fails to realise is that the 

mathematical texts were written from right to left, so when reading across a line, 

the higher powers of ten would be read first moving across to the units. Most of 

these problems can be accepted as Teresi is not an Egyptologist and so he is not 

Teresi, D. (2002) Lost Discoveries : The Ancient Roots of Science -from the Babylonians to the 
Maya; Simon and Schuster, New York; pp 38 - 47. 
2 Teresi, D; Op. Cit. p. 43. 
3 See Section 23. 
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able to deal with the primary sources for himself. However, although Teresi 

quotes Herodotus' account of the birth of geometry being in Egypt as surveying 

was necessary after the annual inundation, he does not mention any of the 

geometrical achievements of the Egyptians. He does not even mention that they 

could work out the area of a quadrilateral, let alone the curved surface of a 

hemisphere. 

Unfortunately, Teresi's book is not an unusual example of the type of material 

that is written about Egyptian mathematics. 

George Gheverghese Joseph's book, The Crest of the Peacock4, has become a 

standard text for those interested in the roots of mathematics, and non-European 

mathematics in particular, since its first publication in 1991. Joseph is a 

specialist in mathematics of India, Tibet and the Indus valley. He raises many of 

the problems that dog the study of Egyptian mathematics, showing that the 

problems faced are not peculiar to Egyptian mathematics but a deeper problem 

with the way that the history of mathematics is researched. He justifies his book 

by appealing to the necessity of understanding non-European cultures so they do 

not remain a footnote. The problems of chasing the origins of mathematics are 

compounded by the way in which Europeans and their cultural dependencies 

write history only from their own viewpoint. Thus, Africa is only included in 

history after its peoples' encounter with Europe. He sees that the history of the 

sciences and mathematics has difficulties in this regard because of the prestigious 

nature of science and mathematics. 

Joseph, G. G (2000) The Crest of the Peacock: Non-European Roots of Mathematics; 2"d ed.; 
Penguin, Harmondsworth. 
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Joseph describes the ancient Egyptian's advances in geometry and algebra as 

well as arithmetic; although most of the space he affords Egyptian mathematics 

deals with multiplication, division and unit fractions. The only geometrical 

problems he deals with directly are RMP 48 and 50 and MMP 10 and 14. The 

two problems from the Rhind Mathematical Papyrus are included because they 

deal with the areas of circles. Joseph notes the implicit value for r contained in 

(! J2 
th ese problems, or approximately 3.1605, and gives a few explanations 

for how this value was achieved. 

The two problems from the Moscow Mathematical Papyrus are those dealt with 

in Chapter 4 of this work, as they are the pinnacle of Egyptian achievement in 

geometry. In his presentation of MMP 14, Joseph shows the translation of the 

Egyptian text on the left-hand side of the page and a modern algebraic equivalent 

on the right-hand side of the page, showing that the Egyptians were using the 

correct formula. Again, he gives several explanations for the Egyptian's 

derivation of the formula. 

Joseph's attitude to the geometrical problems that he discusses and the proposed 

explanations of how the Egyptians achieved them is that the Egyptians took a 

very practical approach to their mathematics. He favours those explanations that 

have some link to everyday life. His suggestions for finding the area of a circle 

and of MMP 10 involve everyday objects such as basket lids and matting. He 

refers to "the `concrete' approach to geometry that the Egyptians favoured"S. In 

his assessment of the character of Egyptian mathematics, Joseph argues against 

the ideas of Morris Kline, whose views he labels as Eurocentric. In particular, 

5 Joseph, G. G; Op. Cit, p 87. 
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Joseph highlights Kline's views on the contrast between Egyptian, Babylonian 

and Greek mathematics6. 

Most of Joseph's complaints about scholarship of Egyptian mathematics are 

related to his views that historians of mathematics tend to ignore new ideas that 

go against the idea of a Greek miracle, thus leading to views such as Kline's. 

He answers five main criticisms of pre-Greek mathematics: 

1) They had no general rules 

2) The texts contain no proofs 

3) They lacked abstraction 

4) They failed to distinguish clearly between exact and approximate 

results 

5) There was no discernable activity which we may label `mathematics' 

and which was studied for its own sake. 7 

Each of these points are answered in detail. However, although Joseph uses 

mathematical ideas from both Egyptian and Babylonian texts, he does not give 

examples of problems from the texts that can be used to argue against these 

ideas. This may be because of the limited space in a book of this nature, or 

because Joseph is not a specialist in these areas and is reliant on the experience 

of other scholars. Either way, his ideas are in need of expansion and solid 

examples. He answers Point 5 with general observations on the need for a 

leisured class before mathematics can be undertaken for purely aesthetic reasons. 

He also notes that the idea of mathematics as an end in itself is derived from the 

Greek ideals and is therefore a debatable statement. These arguments are 

persuasive, but the Egyptian material contains problems that after a little analysis 

6 See Section 5.4 
7 Joseph, G. G; Op. Cit,, p 126. 
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show only a tenuous link to practical need. RMP 798, for example, although 

couched in everyday terms has scant basis in everyday problems. It is exactly 

analogous to puzzle rhymes. Points 4 and 5 are answered from only the 

Babylonian texts. Joseph makes no mention of Egyptian geometry, presumably 

because he perceives the Egyptian material having a concrete nature. This is, 

however, a gut feeling on Joseph's part. His arguments in this matter are self- 

affirming. He believes that the Egyptian material is concrete, so he prefers 

concrete explanations of the derivations, which affirm his assessment that the 

mathematics is concrete. Many of the ideas in Joseph's assessment question 

definitions of mathematics and mathematical terms and their appropriateness in 

the study of ancient mathematics. 

Joseph finishes his assessment of Egyptian and Babylonian mathematics by 

noting that any perception of the achievements of these civilisations will rest on 

the definition of algebra. If `true' algebra requires the symbolism with which it 

has become identified, then the perception of the achievements of the Egyptians 

and Babylonians will suffer. However, it may be possible to argue that the 

Egyptian and Babylonian material represents an early phase in the development 

of algebra. This is a matter of the philosophy of mathematics. 

Joseph begins his appraisal of Egyptian mathematics by pointing out evidence 

that the Egyptian civilisation had African roots. He quotes Diodorus in support 

of his argument, even though this source was written millennia after the events 

he posits. He feels that it is important to emphasise the supposed African roots 

of the Egyptian civilisation and refers to the `black' origins of Egypt. It is 

8 See Section 2.5. 
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troubling to find mentions such as these of race in Joseph's work. We may have 

sympathy with his ideas about the subjugation of non-European peoples and the 

denial of their influence in European culture, but this should not be allowed to 

cloud our judgement of the Egyptian mathematical texts. Racial grouping is a 

modern political concept and as such, it should be left to modem politics and not 

influence our opinion, either way, of the Egyptian civilisation and its 

mathematical achievements. 

5.3: Specialist Writers 

5.3.1: Professor T. E. Peet 

Peet, late Brunner Professor of Egyptology at the University of Liverpool, 

deserves a section of his own. This is not only because of his immense output on 

the subject of Egyptian mathematics, but also because - as one of the first 

translators and editors of the Egyptian mathematical texts - his opinions have 

greatly influenced other authors' opinions. I also owe a personal gratitude to 

Peet; many of the books that made me interested in the subject were from Peet's 

personal library. 

Peet's 1923 edition of the Rhind Mathematical Papyrus9 was not the first edition 

of the text, but with its commentaries and full hieroglyphic transcription, it 

remains one of the best editions. Its size is also an advantage as the translations 

to the problems are laid out clearly. Gunn's review of 1926 says : 

9 Peet, T. E (1923) The Rhind Mathematical Papyrus: British museum 10057 and 10058; 
University of Liverpool Press; London. 
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"The author is to be congratulated on a very able piece of work; it may be 
added that the volume is handsome small folio, of unusually tasteful 
appearance inside and out, and does credit to its printers and publishers"lo 

The first edition of the text was published by Eisenlohr11 some fifty years 

previously but advances in understanding of the ancient Egyptian language 

warranted a fresh treatment of the text. This edition of the papyrus was followed 

a few years later by an edition of the Rhind Mathematical Papyrus12 that gave a 

reproduction of the hieratic text with a hieroglyphic transcription and a 

transliteration. Each problem was given a separate page and the clarity of this 

edition has reserved it an important place in the study of the Rhind Mathematical 

Papyrus, recently being produced in facsimile in Clagett's source book on 

ancient Egyptian mathematics 13. Gunn's edition is clearer and so is reproduced 

in Clagett's sourcebook, but the assessment of the text owes a lot to that of Peet. 

In Peet's 1923 edition of the Rhind Mathematical Papyrus, written before the 

first full publication of the Moscow Mathematical Papyrus, Peet devotes a 

section to his impressions of the character of ancient Egyptian mathematics. He 

only specifically mentions MMP 1414 as this had been published by Turaiev in 

191715. Peet does not mention MMP 1016, for example, it was not until 1931 that 

Peet publishes his article on the problem'7 in the same volume of the Journal of 

Egyptian Archaeology as his review of Struve's edition of the Moscow 

10 Gunn. B (1926) review of Peet T. E; 1923; The Rhind Mathematical Papyrus: British Museum 
10057 and 10058; in Journal of Egyptian Archaeology; vol. 12; pp 123-37. 
11 Eisenlohr (1877) Ein mathematsches Handbuch der alten Ägypter, übersetzt und erklärt; 
Leipzig. 
12 Chace, A. B, Bull, L. S, Manning, H. P. and Archibald R. C (1927/9) The Rhind Mathematical 
Papyrus; 2 volumes; Buffalo; NY; Mathematical Association of America. 
13 Clagett, M. (1999) Ancient Egyptian Science, A Source Book, Vol. 3 Ancient Egyptian 
Mathematics; Memoirs Of The American Philosophical Society; Vol. 232; Figs. IV. 2a-aaa. 
14 See Chapter 4. 
's Turaiev, B. A (1917) "The Volume of the Truncated Pyramid in Egyptian Mathematics"; 
Ancient Egypt, pp. 100-02. 
16 See Chapter 4. 
17 Peet, T. E. (1931) "A Problem in Egyptian Geometry"; Journal of Egyptian Archaeology; vol. 
17; pp 100-06. 

146 



Chapter 5 Review of the Study of Egyptian Mathematics 
Mathematical Papyrus18. In this review, he states that in his studies of 

photographs of the Moscow Mathematical Papyrus he had found nothing to 

modify our opinion of Egyptian mathematics apart from MMP 14, a statement he 

stands by. His treatment of MMP 10 is studied in detail in Chapter 4. Nothing 

much needs to be added here, except to note that Peet takes a pessimistic view of 

the ability of the Egyptians and looks for a simpler translation of the problem 

than that of the surface area of a hemisphere. The rest of the review concerns 

Peet's arguments for alternative transliterations and translations. Also, there is 

no argument that the Egyptians took the inspiration for their mathematics from 

everyday life, the word for the object in MMP 10 is nbt, a word that does not 

appear in any other of the surviving mathematical texts, but is usually translated 

as basket19. Peet, in his insistence that the figure must relate to a figure that has 

two different dimensions, is ascribing a mathematical meaning to the word nbt. 

Yet, Peet does not believe that Egyptian mathematics was `scientific'. Baskets in 

ancient Egypt come in many shapes and sizes; a lot of them are roughly 

hemispherical. If the scribe who prepared MMP 10 was thinking of an actual 

basket then two dimensions would be necessary to distinguish between a 

hemispherical basket and any other shape basket. This fits with Peet's own 

arguments about the practical nature of Egyptian mathematics. 

Peet has a lot to say on the character of Egyptian mathematics. In 1931, he gave 

a lecture on mathematics in ancient Egypt at the John Rylands library in 

18 Peet, T. E (1931) Review of Struve W. W; 1930; Mathematisher Papyrus des Staatlichen 
Museums der Schönen Künste in Moskau, QSGMI; in. Journal of Egyptian Archaeology; vol. 17; 
pp 154-60. 

See Faulkner, R. O. (1962) A Concise Dictionary of Middle Egyptian; Griffith Institute, 
Oxford; p. 128. 
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Manchester, which was published in the bulletin the same year20. This lecture 

came after Struve's publication of the Moscow Mathematical Papyrus. In the 

conclusion of the lecture, Peet returned to his statements about the character of 

mathematics that he made in his edition of the Rhind Mathematical Papyrus, and 

found that the publication of the Moscow Mathematical Papyrus did not alter his 

main opinion that "The outstanding feature of Egyptian mathematics is its 

intensely practical character"21. He does concede, though, that there are 

problems in the Rhind Mathematical Papyrus that deal with abstract numbers. 

These problems are the the problems. Peet's change of mind over these problems 

stems from the determinative given to the word in the mathematical texts. In the 

mathematical texts the word is given the papyrus roll determinative, which is 

used for abstract concepts such as truth, new, know and great. This changes the 

nuance of the word. Instead of being a literal heap, a physical entity, it is this 

argument that renders the translation of this word from `heap' to quantity'. 

Despite this concession, Peet is adamant that Egyptian mathematics is only 

practical. The examples of geometrical progressions are dismissed, putting him 

at odds with the opinion of Chace who believed that these problems are 

theoretical problems in practical form22. Peet simply states: 

"Examples of this kind do suggest that, while mainly occupied with 
practical problems, the Egyptians occasionally allowed themselves to 
observe and even to record a result or method which had no direct 
application to the concrete facts of life. But there is no sign that such 
things were regarded as more than idle curiosities"23 

The absence of a philosophical work written by the Egyptians on the intentions 

of their mathematicians makes any comment on how these problems were 

20 Peet. T. E. (1931) "Mathematics in Ancient Egypt"; Bulletin of the John Rylands Library 
Manchester, vol. 15; pp 409-441. 
21 Peet T. E. (1931) Op. Cit. p. 437 
22 Chace, A. B (tr. and ed. ) (1927) The Rhind Mathematical Papyrus; Mathematical Association 

of America; p. 43. 
23 Peet T. E. (1931) Op. Cit. p. 438 
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regarded as speculative. The very fact of the inclusion of these problems in the 

ancient texts shows that they were afforded some importance. The level of this 

importance is not known. However, it would be as debatable to say that they 

were regarded as the crowning achievement of mathematical activity as it is to 

say they were regarded as idle curiosities. 

Peet also speculates on whether Egyptian mathematics can be regarded as 

"scientific" as modem mathematics can. He cites several authors, notably Vogel, 

who consider Egyptian mathematics to be abstract because they are able to deal 

with numbers in themselves rather than a number of objects. Vogel also points 

to the ordering of the Rhind Mathematical Papyrus and to the use of verifications 

at the end of the problems as evidence of a scientific element to Egyptian 

mathematics. Peet rejects each of these points in turn. To him, the presence of 

abstract numbers does not make science, only a form of proto-science. The 

ordering of the Rhind papyrus is - he says - nothing more than evidence of the 

orderly mind of the Egyptians and the use of verifications is an a posteriori 

method, it is not a priori as a modem proof, so these verifications cannot be used 

as evidence for a scientific system. Peet writes: 

"That they did not reach the conception of scientific mathematics and its 
dependence on cogent a priori demonstration is merel4y another instance 
of the vast debt which the world owes to the Greeks"Z 

24 Peet T. E. (1931) Op. Cit. p. 441. For commentary on the idea of a Greek miracle, see Section 
8.4.3. 
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5.3.2: Neugebauer 

Neugebauer achieved fame in the history of mathematics for his work 

deciphering Babylonian clay tablets. It is in Babylonian mathematics that he has 

the most to say. In his most important work, The Exact Sciences in Antiquit}y5, 

the vast majority of the book is given to Babylonian mathematics and science. 

Egyptian mathematics and astronomy is given only one chapter of twenty pages 

in a book of 191 pages. However, because of his authority on Babylonian 

mathematics, his writings on Egyptian mathematics were taken seriously and 

26 Neugebauer's work is widely referenced. 

Neugebauer seems to have been particularly influenced by Peet. He calls Peet's 

lecture at the John Rylands library "an excellent brief summary"27. The parallels 

between the views of Peet and Neugebauer are clear. Peet commonly 

characterises the mathematics of the Egyptians as practical and concrete. 

Neugebauer does not overtly speculate on whether Egyptian mathematics can be 

seen as scientific, although the tone of his work and the assumptions he makes 

about the ability of the Egyptians shows that he does not consider it to be 

scientific. Perhaps he felt this was a question that had been satisfactorily dealt 

with by Peet in his John Rylands lecture. This assumption runs through all the 

writings of Neugebauer and so does the influence of Peet. 

25 Neugebauer, 0 (1952) The Exact Sciences in Antiquity; Princeton University Press; Princeton, 
New Jersey. 
26 See for example: Bell, E. T. (1945) (2°d ed. ); The Development of Mathematics; McGraw-Hill; 
New York. Also: Boyer, C. B. rev. Merzbach; V. C. (1989) A History of Mathematics ; John 
Wiley and sons inc, New York. 
27 Neugebauer, O. (1952) Op. Cit p. 87. 
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Neugebauer is one of the most pessimistic commentators on Egyptian 

mathematics. He compares Egyptian mathematics unfavourably with not only 

Greek mathematics, but with Babylonian mathematics as well, writing: 

"Ancient science was the product of a very few men; and these men 
happened not to be Egyptian"28 

His appraisal of Egyptian mathematics is nothing short of damning. The first 

section of the chapter explains how mathematics and astronomy had no effect on 

the lives of the Egyptians and that: 

"The mathematical requirements for even the most developed economic 
structures of antiquity can be satisfied with elementary household 
arithmetic that no mathematician would call mathematics. "29 

His specific appraisal of the individual achievements of the Egyptians works 

from this assumption; that the mathematics they produce is nothing more than 

elementary arithmetic that arises from practical, everyday problems. Working 

from this assumption leads Neugebauer to fail to grasp the significance of some 

of the contents of the Egyptian texts. The procedure for multiplication, for 

example, is sophisticated and developed for ease of computation30. The repeat- 

doubling method enables the Egyptian scribe to complete multiplication sums 

with the minimum amount of fuss. Yet, Neugebauer misses the subtleties of the 

Egyptian method and describes only the repeat-doubling method. He then 

writes: 

"In general, multiplication is performed by breaking up one factor into a 
series of duplications. It certainly never entered the minds of the 
Egyptians to ask whether this process will always work. Fortunately it 
does; and it is amusing to see that modem computing machines have 

made use of this principle to exactly the same end, namely, to reduce 
multiplication to a simple process of counting. "31 

28 Neugebauer, O. (1952) Op. Cit. p. 86 
29 Neugebauer, 0 (1952) Op. Cit. pp. 71.2 
30 See Section 2.3. 
31 Neugebauer, 0 (1952) Op. Cit. p. 73. 
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This statement is misguided for several reasons. Pronouncements on the 

intentions, motives and thoughts of the Egyptian scribes who produced the 

mathematical texts are speculative and should be approached with trepidation. 

There is no evidence in the Egyptian material to support the idea that the 

Egyptians were not aware of the effectiveness of their multiplication system. It 

is far from certain that the Egyptians had not noticed the ease in which they were 

able to perform multiplications. Indeed, the Moscow Mathematical Papyrus 

shows that they did not find it necessary to always show how they achieved their 

results if the problems involved geometry. Moreover, it should serve as a 

positive indication that modern computing machines use the same technique, as it 

shows the efficiency of this system. It should not be amusing to see this parallel. 

Rather, while it may at first seem surprising that the Egyptians had found such a 

marvellous system, this surprise should be tempered with the realisation that the 

scribes involved in accounting and field measurements would have had to 

perform many of these calculations, maybe under pressure. 

His appraisal of unit fractions is similar in tone. Because he assumes that the 

Egyptians had not adopted their mathematical procedures through practice and 

convenience, rather through a lack of inquisition, he misunderstands the 

significance of the 2/n table contained in the Rhind Mathematical Papyrus. His 

analysis is complicated and relies on the idea of `natural' and ̀ algorithmic' 

fractions, a distinction that arises not from the mathematical texts, but from 

Neugebauer's own feelings. This analysis falls far short of that of Gillings32 

whose treatment, stemming from the idea that the Egyptians selected fractions 

that made arithmetic simpler to perform, is elegant and simple. 

32 See Section 5.3.3 
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Neugebauer's attitude to the mathematics and the logical scientific thinking of 

the Egyptians is beginning to be replaced. In 1980, he wrote a short article on 

the orientation of the pyramids33. In this article, he proposes that the Egyptians 

achieved the accuracy of the alignment of the Great pyramid using a solar 

method. Neugebauer begins from the assumption that astronomical theories of 

alignment - those that depend on the stars - are beset with practical difficulties. 

His theory needs only the "... primitive experience of symmetry of shadows... "34. 

Whilst it should be recognised that Neugebauer is only presenting a theory as to 

how the accuracy could have been achieved, it is interesting to note that the 

theory he supplies is one of the most basic theories that fits the facts. It requires 

only observation and experimentation and very few scientific evaluations. In a 

recent paper, Kate Spence35 has shown that the pyramids were probably aligned 

using the stars. She shows that the processional movement of two stars, Kochab 

and Mizar match the drift in the alignment of the pyramids. This seems to 

suggest that the Egyptians were using these two stars to prove the alignments. 

This evidence suggests that the Egyptians were more acute observers than 

Neugebauer gives them credit for. In The Exact Sciences in Antiquity, 

Neugebauer writes that he does not believe that the Egyptian astronomical texts 

lend themselves to accurate computation. Yet, from the work of Spence, we 

know that the accuracy of the pyramid alignments is due to the Egyptians' 

careful observations of astronomy. 

33 Neugebauer, 0 (1980) "On the Orientation of Pyramids"; Centaurus, vol. 24; pp 1-3. 
34 Neugebauer, O. (1980) Op. Cit.; p. 1. 
35 Spence, K. (Nov. 200) "Ancient Egyptian Chronology and Astronomical Orientation of 
Pyramids"; Nature 408; pp 320 - 324. 

153 



Chapter 5 Review of the Study of Egyptian Mathematics 

He is also dismissive of the Egyptian calendar, drawing our attention to its 

agricultural significance36. The Egyptian calendar was divided into three 

seasons, which reflected the rising and falling of the Nile. The heliacal rising of 

Sirius, or Sothis to give it its Egyptian name, was used as a marker because this 

event coincided with the start of the inundation. The utility of the calendar is 

used as a negative indicator of the scientific abilities of the Egyptians, in a 

similar way to the utility of their mathematics being used as a counter-argument 

to claims of abstraction. Yet calendars are practical concepts, the measurement 

of the year must necessarily fit with the yearly cycle of the seasons. The internal 

divisions of that cycle are completely arbitrary and so no divisions will have 

basis in science. The Egyptians also used lunar calendars, in fact their 

calendrical system is very complicated as it involves the observation of several 

astronomical phenomena. To dismiss this, as Neugebauer does, is short-sighted. 

Neugebauer's work suffers because he works from pessimistic estimates of the 

abilities of the Egyptians and so fails to perceive the significance of many of the 

more subtle features of Egyptian arithmetic. He rarely comments on geometry 

and so misses some of the most important achievements of the Egyptians. If 

Neugebauer is being replaced, then it is a development to be welcomed. 

5.3.3: Gillines 

One of the most prolific writers on the subject of ancient Egyptian mathematics 

was Richard Gillings. His works include the most complete book on the subject 

of Egyptian mathematics, Mathematics in the Time of the Pharaohs. He is also 

the author of many journal articles written in the 1950's and 60's37 . 

36 Neugebauer, O. (1952) Op. Cit. p. 82 
37 For a list of these journal articles see the bibliography. 
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Mathematics in the Time of the Pharaohs covers the contents of all the 

mathematical papyri in themed chapters. Gillings also includes appendices 

where he tries to answer some of the critics of Egyptian mathematics. The only 

downfall to Gillings' work is that in all the time he spent studying the texts, he 

never learnt to read hieroglyphs, so his interpretations of the texts are distant and 

he lacks the authority to present a definitive edition of the texts. In fact, he relies 

on the help of T. G. H. James, then Assistant Keeper of the Department of 

Egyptian Antiquities of the British Museum, to explain the difficulties translating 

the mathematical problems. In some cases, such as MMP 10 he does not have 

the knowledge to analyse the competing translations of Struve and Peet. He 

seems to prefer the idea that the problem deals with a hemisphere but his 

exploration of the problem relies on reconstructing the arithmetic that may have 

accompanied this problem. Of course, the scribe of the Moscow Mathematical 

Papyrus did not include arithmetic in the papyrus so Gilling's reconstruction is 

guesswork. Gillings also shows the formula worked out in the problem in 

modern algebraic notation. Here, though, he is a little disingenuous, as he does 

not make it clear that the formula he shows has to be derived from the Egyptian 

method with several lines of algebra. Also, the formulae for the surface area of a 

semi-cylinder and the semi-circle can equally be extracted from the Egyptian 

method. Whilst the translation as a hemisphere does seem after careful 

examination of the text to be the most probable one, Gillings arguments have 

little weight. 

Apart from these problems, Gillings remains one of the best and most complete 

commentators on Egyptian mathematics. His treatment of unit fractions is one of 

his best achievements. He analysed the unit fraction identities of the 2/n table of 
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the recto of the Rhind Mathematical Papyrus and came up with five precepts 

which explain why one identity is chosen over another. These five precepts are: 

Precept 1 

Of the possible equalities, those with the smaller numbers are preferred, but none 

as large as 1,000. 

Precept 2 

An equality of only 2 terms is preferred to one of 3 terms, and one of 3 terms to 

one of 4 terms, but an equality of more than 4 terms is never used. 

Precept 3 

The unit fractions are always set down in descending order of magnitude, that is, 

the smaller numbers come first, but never the same fraction twice. 

Precept 4 

The smallness of the first number is the main consideration, but the scribe will 

accept a slightly larger first number, if it will greatly reduce the last number. 

Precept 5 

Even numbers are preferred to odd numbers, even though they might be larger, 

and even though the numbers of terms might thereby be increased. 38 

Gillings then demonstrates that these precepts explain virtually every entry in the 

table. These precepts show that the Egyptians produced a table that had 

38 Gillings, R (1972) Op. Cit; p. 49. Emphasis of Gillings. 
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maximum value for ameliorating the processes of arithmetic. Although Gillings 

does not state it directly, his admiration for the work of the 2/n table is clear. He 

points to the many variations and extensions of this table that have been found in 

other mathematical fragments, and to the fact that they can be found as late as the 

sixth century C. E. His opinion is therefore in conflict with that of Peet who 

wrote: 

"The Recto is a monument to the lack of scientific attitude of mind"39 

The appendices at the back of the book show Gillings' attitude to Egyptian 

mathematics. Appendix 1 deals with the nature of proof, and Appendix 4 offers 

a response to the views of Morris Kline. In these appendices, Gillings attempts 

to answer the most common criticisms of Egyptian mathematics. Of the nature 

of proof °, Gillings points to the numerical solutions present in many of the 

problems. He feels that although the Egyptians did not use symbolic proofs, 

their method could be rigorous without it. He reasons that if the value chosen is 

typical and any further generalizations are immediate then a nonsymbolie 

argument can be rigorous. Yet, Gillings agrees that the Egyptians did not reason 

in the same way as the Greeks. Unfortunately, this discussion misses a 

discussion of the purpose of the Egyptian texts. If the texts that have survived 

are training manuals, then it is not possible to draw direct comparisons between 

these texts and the theoretical treatises of the Greeks. Of course, this argument is 

to ascribe motive to the Egyptian scribes, and that should be done with caution. 

However, it is a possibility that deserves exploration. The paucity of available 

evidence will always be a problem when trying to evaluate ancient Egyptian 

39 Peet, T. E. (1931) Op. Cit.; p. 413. 
40 Gillings, R (1972) Op. Cit, Appendix 1; pp 232-233. 
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mathematics: different ideas should be explored to give the most complete 

picture possible. 

Appendix 4 is an argument against the views of Morris Kline, a historian of 

mathematics and the author of Mathematics a Cultural Approach41, a volume of 

seven hundred pages. In particular, Gillings disputes the statement that Egyptian 

mathematics is like the scrawling of children. Gillings does not try to conceal his 

contempt for the poor scholarship of Kline. The idea that the Egyptians did not 

recognise mathematics as a separate subject comes under the most scorn. 

Gillings feels that the presence of the Rhind Mathematical papyrus, a text 

devoted entirely to mathematics, is a counter to this. Unfortunately, he does not 

elaborate on this point. The idea that the Egyptians did not do mathematics as a 

separate subject has found its way into modern Egyptology42. This argument 

hinges on the idea that their mathematics was not abstract. It appears that it is 

not enough to have produced texts such as the Rhind and Moscow mathematical 

papyri, Kemp's argument is based on the idea that these texts deal with 

individual cases, rather than with mathematical principles. This is a restatement 

of Peet's `concrete mathematics'. 

The importance of Gillings' work is that it showed that another interpretation of 

the texts was possible. He questions many of the assumptions made by Peet, 

Kline, Van der Waerden and other historians of mathematics. His treatment of 

the texts is sympathetic and he realises the importance of considering the 

contents within the context they were written. His book brings together all the 

41 Kline, M. (1962) Mathematics, A Cultural Approach; Addison-Wesley; Reading, Mass. 
42 For example see Kemp; B. J. (1989) Ancient Egypt: Anatomy of a Civilization; Routledge; 
London; p. 117. 
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Egyptian texts and gives a clear list of their contents. It is an invaluable 

reference for anyone interested in Egyptian mathematics. 

5.4: Current commentators on Egyptian Mathematics 

Recently there has been a renewed interest in Egyptian mathematics, partly 

owing to the interest in non-European mathematics. This section will survey the 

most important of these commentators, particularly those who are studying the 

Egyptian mathematical texts for an Egyptological audience. 

Generally, the approach taken by more recent commentators has been a more 

favourable towards the achievements of the Egyptians. It has also been 

recognised that Egyptian mathematics is far from being exhaustively studied and 

that more work and a wider appreciation of the material within the Egyptological 

community is warranted. There is even some appreciation that the context of 

mathematics in ancient Egypt is important43. However, these commentators still 

have opinions about the nature of science and mathematics that are ill considered 

and naive. The exception to this is the set of sourcebooks written by Clagett44, 

which through their completeness have made a substantial contribution to the 

subject and which present material that has relevancy to the context of Egyptian 

mathematical texts so they can be considered in their proper setting. A fourth 

43 Imhausen, I. (2003) "Egyptian Mathematical Texts and Their Contexts" Science in Context; 
vol. 16(3) pp 367-89. 
44 Clagett, M. (1992) Ancient Egyptian Science Volume I: Knowledge and Order; Memoirs of the 
American Philosophical Society vol. 184; Philadelphia. 
Clagett, M. (1995) Ancient Egyptian Science Volume 2: Calendars, Clocks and Astronomy; 
Memoirs of the American Philosophical Society vol. 214; Philadelphia. 
Clagett, M. (1999) Ancient Egyptian Science Volume 3: Ancient Egyptian Mathematics; Memoirs 
of the American Philosophical Society vol. 232; Philadelphia. 
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volume is intended that will discuss medicine, anatomy and the way in which 

nature was rendered in art. 

Clagett's first volume is perhaps the most important as it presents texts which 

may not be considered scientific, but do illuminate the way in which the 

Egyptians thought about knowledge and its place in Egyptian culture. This 

selection includes texts that are more traditionally considered historical such as 

the Westcar papyrus and the Palermo stone. These texts are incorporated 

because of what they show about the nature of the Egyptian court and the 

importance that was placed on knowledge and accurate records. Other texts 

include tomb inscriptions that discuss the idea of scribal immortality through the 

production of knowledge: 

"Blessed nobles too are buried in their tombs. 
(Yet) those who built tombs, 
Their places are gone. 
What has become of them? 
I have heard the words of Imhotep and Hardedef, 

s45 Whose sayings are recited whole. 

Onomastica are included that list objects and ideas by general categories. These 

were produced by the ancient Egyptians in order that they would be able to bring 

forth what is named. For an Egyptologist they are instructional because of the 

way they demonstrate that religious ideas intersect with what would now be 

considered scientific ideas. They show that to make the distinction with regard 

to ancient Egypt is nonsensical. 

Volume three deals solely with Egyptian mathematical texts and is the most 

complete volume on the subject as it contains not only the Rhind and Moscow 

45 Clagett, M. (1992) Op. Cit. p. 220. 
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Mathematical Papyri, but the Kahun fragments, the Berlin papyrus, the Reisner 

Papyrus and the Mathematical Leather Roll. Part one of the volume is a 

commentary on all the contents of these texts arranged into themes, part two 

presents full translations of them. 

Clagett's work is an important text for those wishing to know more abut ancient 

Egyptian science as it provides the most complete edition of the relevant texts. 

However, his conclusions are not particularly original and so do not give a 

student of Egyptian science much more than the bare essentials. The three 

published volumes of these source books are impressively detailed, but lack the 

overall view that authors such as Gillings bring to the study. 

For his conclusion, Clagett discusses the predominance of arithmetical workings 

in the extant texts. In his opinion, these texts were composed to provide scribes 

with a manual to which they could refer in the course of their work. Although 

the texts use concrete numbers, in many cases the procedures can be generalised. 

Clagett draws attention to the final line of RMP 66: 

"You shall proceed in this way [given above] in any example like this. A6 

Through this evidence, he seems to imply that he believes that the Egyptians 

were engaged in science. He draws attention to this debate, but does not give 

any opinions of his own. Indeed, he seems reluctant to do so as his intention 

when compiling the source books was to document the actual mathematical 

procedures. 

46 Clagett, M. (1999) Op. Cit. p. 94. 
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The most important commentator on Egyptian mathematics at present is Annette 

Imhausen47. She has been greatly influenced by the work of Sabetai Unguru48 

and so she recognises the great importance of the context of the production of the 

Egyptian mathematical texts. The definition Imhausen advances for 

"mathematics" does not include texts that show evidence of mathematical 

knowledge, such as accounting texts. Mathematical texts are only those that 

have been written to teach or learn mathematics. Thus, the texts Imhausen 

identifies from ancient Egypt as being mathematical are problem texts, such as 

the Rhind and Moscow Mathematical Papyri and table texts, such as the 

Mathematical Leather Roll. She proposes a new way of studying the 

mathematical texts by examining their algorithmic structure. Egyptian texts have 

been described as numeric, rhetorical and algorithmic49. This means that the 

texts are written with concrete numbers, that they are written in a narrative style 

and the solution is given as a sequence of instructions. It is through studying the 

algorithmic structure of the mathematical texts that Imhausen believes a new, 

better understanding of the texts can be achieved. She warns against using 

modern algebraic notation in translations of the problems, as this will lead to a 

loss of the three features of the Egyptian mathematical texts. Instead, she has 

devised a notational system that can summarise the main features of the 

algorithms used in the separate mathematical problems. This will then allow for 

a comparison between different problems. This approach to the problems is new 

and as yet untested. Imhausen's work deserves time to develop and a chance to 

prove that her new approach has applications. The only caveat is that the 

" Imhausen, I. (2003) Op. Cit and Imhausen, I. (2002) "The Algorithmic Structure of the 
Egyptian Mathematical Problem Texts" in Steele, J. and Imhausen, I. (eds. ) Under One Sky: 
Mathematics and Astronomy in the Ancient Near East; Alter Orient und Altes Testament; Band 
297; Ugarit-Verlag; Minster, pp149-66. 
48 See Chapter 7. 
+9 Ritter, J. (1989) "Chacun sa v6rit6: les math6matiques en Egypte et en Mesopotamie. " in 
Serres, M. (ed. ) Elements d'histoire des sciences; Bordas; Paris; pp. 39-61. 
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algorithmic structures she identifies can lose a lot of detail. For example the 

algorithmic structure for RMP 3150 appears thus51: 

Translation Numerical Algorithm Symbolical Algorithm 

a quantity 1 Di 

its 3 3 D2 

its 2 2 D3 

its 7 are added to it 7 D4 

so that 33 results. 33 D5 

[1+3+2+7= 

1+3+2+7] 

(1) Dl + D2 + D3 + D4 

[calculation] 33: 1+3+2+ 7 (2) D5: (1) 

The first column gives a translation of the problem as it appears in the text, the 

second column shows the numbers that are in each section of the problem and the 

third column is Imhausen's symbolic interpretation of it. Each D is one 

particular dimension or numerical value; the subscript numbers show which one. 

Where these dimensions are operated on, the operation is shown and it is given a 

number in brackets. Subsequent operations will use these bracketed numbers to 

show where the result of this operation has been used. The small numbers on the 

left hand side of the first column shows the line numbers from the original text. 

It can be seen that in this example, most of the table is concerned with only the 

first line of the problem. The majority of the problem is concerned with carrying 

out the calculation, and the means by which it is calculated is the most important 

part of this problem. 

so See Section 2.6.3 for af WI translation. 
51 Imhausen, A. (2002) Op. Cit. p. 164. 
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These concerns aside, finding new ways of evaluating the Egyptian mathematical 

texts is a worthwhile pursuit. The work of Imhausen has just started and it will 

be interesting to see what her analysis uncovers. 

Recent commentaries on ancient Egyptian mathematics have taken a far more 

optimistic view about the achievements of the Egyptians and the value in 

studying the texts in more detail. It is beginning to be recognised that context is 

important and that comparisons to other mathematical traditions are largely 

redundant. However, this is yet to have gained any credence in general 

mathematical history, nor are Egyptologists aware of these developments. Also, 

the changes in attitude are tentative and need a solid theoretical basis if these 

developments are to be sustained. 

5.5: Conclusions 

The definition of mathematics that is used to examine and to evaluate the 

competence of the ancient Egyptians is one that has been arrived at through 

millennia of use, development and practice. Yet, this is a definition that is 

projected back on a time before it was developed. It is this definition that is used 

to provide comparisons with Greek mathematics. It should not be surprising that 

this definition finds in favour of Greek mathematics. The mathematics of the 

Greeks has been held in high opinion for centuries and it has been used as an 

ideal, a standard to be followed. The opinion of Kant was written long before the 

Egyptian mathematical texts were discovered and translated. Yet the discovery 

of the Egyptian texts does not appear to have altered the opinion that the 

164 



Chapter 5 Review of the Study of Egyptian Mathematics 

Egyptians were no more than a prologue, they were `groping around' before the 

revolution of the Greeks. This should be troubling and it is time that our 

assumptions about the nature of mathematics and its use and place in society 

should be re-evaluated. If we are to do justice to Egyptian mathematics then new 

methods need to be found to appraise it and to describe its place within the 

culture that it was created. 

In no other area of History of Archaeology are comparisons made as they are in 

the History of Mathematics. It would seem absurd to try to draw comparisons 

between the Pharaonic system of kingship and Athenian democracy and then 

criticise the Egyptians: it is accepted that the two civilisations had different 

needs. However, this is analogous to what is taking place in the History of 

Mathematics. Instead of trying to understand why the Egyptians produced the 

mathematical texts that have been found, as Egyptologists do when studying any 

other aspect of the civilisation, strict definitions have been applied to show how 

right the Egyptians were. They are being judged on our standards, instead of 

their own. 

The two following chapters will attempt to address this problem. Chapter 6 will 

investigate some of the most important philosophers of science so that the 

defmitions by which the Egyptians are being judged can be examined in more 

detail. The assumptions of these philosophers can also be examined 

Identifying science is problematic. We need to work from the assumption that 

every text that deals with looking at the natural world is scientific and produce 

criteria for non-inclusion in the scientific corpus, rather than assuming that they 
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are non-scientific and producing criteria for inclusion. Our own assumptions 

about what science is and how to go about doing it should not influence our 

decision, hard as this may be. 

The relationship between science and technology is also important. Distinctions 

between science and technology often rely on technology being the realisation of 

scientific ideas. Technology is practical, where science is abstract. This is a 

clear parallel with distinctions drawn between pure and applied mathematics. 

Technology is a phenomenon that has been explored in detail in archaeology as 

technology leaves more material remains than scientific ideas. Not only does 

science need to be written down, a medium that survives poorly in the 

archaeological record, but only a fraction of people were engaged in science. 

Chapter 7 will examine this relationship in more detail so that lessons learnt in 

this area can be applied to the study of Egyptian mathematics. 

After this evaluation of philosophy and its effects on the way that ancient 

Egyptian mathematics is studied, a new approach to the topic - useful for 

Egyptologists - will be attempted. This approach will try to maximise our 

understanding of the contents of the texts without resorting to crude comparisons. 

The evaluation will take into account the criticisms of mathematics that have 

been revealed from a study of the literature. These criticisms are: 

1) Egyptian mathematics is not abstract. 

2) The Egyptians did not recognise mathematics as a distinct subject. 

3) The Egyptians were a retarding force on the development of mathematics. 

4) The texts only provide concrete examples, rather than general principles. 
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5) The geometry of the Egyptians was merely applied arithmetic. 

In addition to discussing these criticisms, an approach that is valuable to an 

Egyptologist also needs to provide answers that enable the study of mathematics 

to be integrated into a wider understanding of the Egyptian civilisation. For 

example, if it is assumed that these texts provide training materials for Egyptian 

scribes, how effective are they? What does that say about the duties of scribes? 

The evaluation of the Egyptian sources can also be approached from the other 

direction; what were the needs of the Egyptians? What would constitute good 

mathematics to an ancient Egyptian? 
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Chapter 6 

Philosophy of Science and Ancient 

Egyptian Mathematics 

In Chapter 5, it could be seen that the ancient Egyptian mathematics was being 

evaluated according to defmitions of science and mathematics that have been 

arrived at after millennia of use. The source of these definitions was largely 

philosophical. These definitions were then projected back onto the ancient 

Egyptian material, which unsurprisingly fell short. In this chapter, philosophical 

definitions of science will be examined, particularly those that use the history of 

science as a guide. From this examination, it will be possible to study to what 

extent Egyptologists interested in Egyptian science should pay heed to the 

philosophy of science. 

6.1: Introduction 

The works of some of the major philosophers of science will be investigated so 

that the thinking behind their definitions of science can be identified. This will 

then lead into a discussion of whether these definitions are appropriate in the 

History of Science'. In particular, this chapter will investigate the demarcation 

question set by Popper and investigated by others such as Lakatos and 

'I will make the distinction between "the history of science" and "History of Science" in line 

with Ivor Grattan-Guinness. The first denotes history in the past and its development, whereas 
the second is the academic discipline and study of the former. cf. Grattan Guiness I. (1990) 
"Does History of Science Treat of the History of Science? The Case of Mathematics" (sic) 
History of Science; vol. 28, pp 149-73. 
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Feyerabend. This question and the proposed answers are very illuminating 

because they show some of the assumptions that philosophers make whilst 

exploring the nature of science. Again, the affect this has on the History of 

Science will be examined. This chapter will also begin to identify the reasons 

why the philosophy of science has such an important place in the History of 

Science. An assessment of the goals of research in the History of Science and 

the relationship between History of Science and Philosophy of Science will be 

explored in detail in Chapter 7. 

When research is carried out in the History of Science and Mathematics, it may 

be done for a variety of reasons, dependent on the experience and interests of the 

researcher. The History of Science must necessarily be concerned with the past 

and with science; this may seem to be an obvious and frivolous statement to 

make but it is one that should be borne in mind when we try to identify the nature 

and goals of research. The relative importance of each of these major aspects is a 

question that should be considered before the research is attempted. Are we 

studying the past to see what science was produced by each period of the human 

past or looking at the past of a particular idea, theory or paradigm? The 

emphasis of the study will dictate the research goals and it should also dictate the 

research methodology. 

The study of history is the study of the human past. Scientific and mathematical 

ideas have been very important in shaping civilisations and have affected the way 

in which we live in many different ways. This influence can be quite subtle, 

science explores our place in the universe and has to refer to observable truths 

about the universe, but it affects the way humans see themselves through their 
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place in the universe. This means that in the History of Science it is possible to 

judge how correct a particular person or idea was, in a way it is not possible to do 

in other areas of history. However, a scientific study cannot survive without the 

practitioners of that study and this creates problems when trying to assess these 

ideas. For the purposes of an approach which is more interested in the ideas, 

judgements of `correctness' are important. However, if the object of study is 

those people who created the ideas, then this becomes less important: in this 

approach a wrong answer can be just as revealing as a correct one. This people- 

centred methodology should encompass the entirety of the scientific and 

mathematical output of a period or culture, it should also try to describe the 

achievements of the culture in a less passionate manner and reserve judgement. 

Any comments made about that culture or period should be rooted in the ideas of 

that culture. 

This is not to say that the `correctness' of the mathematics should be ignored. 

Yet, using modem philosophical definitions is problematic. The criticisms of 

ancient Egyptian mathematics rely on definitions of mathematics and also its 

place in academic enquiry. The idea that mathematics should be abstract and that 

applied mathematics, such as the problems in the Egyptian texts, is less important 

than pure mathematics is an assumption that is largely unquestioned. Yet, 

definitions of science and mathematics are not rigid. This chapter will examine 

some of the more important ideas about science and mathematics in order that 

the origin of these criticisms can be more fully appreciated. 
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6.2: Philosophical Definitions of Science 

The nature of science and mathematics is something that the History of Science 

attempts to explore, but it is also central to defining which texts are studied and 

how they are perceived. The philosophy of science and mathematics, therefore, 

has a strong impact on the way that the subject is studied. What constitutes a 

scientific text worthy of study will depend upon the philosophical criteria that are 

used to define science. These philosophies also determine the boundaries 

between mathematics, science and technology. 

Giving a precise defmition of the nature of science is very difficult. Definitions 

tend to be based on how science operates. The features of experimentation or 

close observation, an ordered area of study, an ability to build on answers and a 

logical approach are the main features of science that have made it successful. 

However, these features are not the goal of scientific research, only the process 

by which it is most efficiently achieved. The purpose of science is an attempt to 

gain an insight into the universe, to understand its inner workings and perhaps 

use that knowledge for our own advantage. This is one of the reasons that 

science has gained such a respected place within the confines of academia. As 

well as being able to produce theoretical, abstract ideas describing fundamental 

properties of nature, it is also able to develop these ideas into concrete realities 

that affect and improve the standard of living. It is this endeavour to gain an 

insight into the natural world that makes science so attractive. Because it deals 

with small incremental observations that can be developed into complex theories 

and models, it has enabled the human race to develop into one of the most 

successful species on the planet. It is this property of science - the ability to form 
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complex theories - that should be the focus of investigative research into the 

origins of scientific thought. By only using a narrow definition of science, we 

are closing interesting lines of research. Study into the importance of magical 

and theological texts in ancient societies does not have the same prestige as 

examinations of texts that are recognised as scientific, because magic does not 

have the same modern cultural implications. However, such texts form an 

important body of material that should be reviewed with the same vigour and 

with the view to understanding the thought processes that went into their 

production. The modern world has come to trust scientific answers over 

superstitious ones in many areas of our lives, but when the scientific explanations 

fall short, we still turn to superstitious or alternative methods. This is 

particularly true in medicine, where we still have an incomplete understanding of 

the workings of the human body. When magical methods are used in this 

situation then they may secure a result, if only though accident or coincidence or 

a placebo effect. This does not equate with people consulting their horoscope in 

the national papers. Here the objectives of reading the horoscope and the advice 

it contains are generic and applicable to any situation. Magical texts that are 

aiming for a specific result are comparable with scientific texts. 

The definition of science that has been built up by philosophers and writers such 

as Lakatos, Kuhn and Popper is written to explore the best practice within the 

scientific disciplines and how scientific knowledge is created. The writings of 

Popper, for example, investigate the nature of evidence and how scientific 

knowledge is obtained from this evidence. His two main concerns were 

induction and demarcation. He was interested in inductive reasoning because of 

the conflicting arguments associated with it. On the one hand it can be argued 
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that observation and experiment cannot be used to justify laws since they 

transcend human experience. One the other hand, science uses laws all the time 

and in science empirical evidence is held as the only way to pronounce on the 

validity of scientific laws. The apparent disagreement of these ideas is the 

foundation of the problem of induction. The problem of demarcation is to find a 

normative criterion for distinguishing between science and pseudo-science. 

These are closely linked in the minds of the philosophers who examined it, and 

have obvious implications for the assessment of ancient Egyptian mathematics. 

The Demarcation question will be discussed in detail in Section 6.4. 

These two problems are key to understanding the epistemology of modern 

science and to appreciating how scientific advance can be made. Understanding 

scientific advance is an admirable aim, but where does it leave researchers in the 

History of Science? How much attention do we need to pay to modern ideas 

about the place of science in modern society and the way in which it operates 

now? It is tempting to see the modem view of science provided by the 

Philosophy of Science as the best model for the operation of science. This model 

has been built up after millennia of scientific research. It reflects all the 

examples of advancement in science. If science is progressing then surely its 

Philosophy must progress too to reflect changing paradigms and in order for 

scientists to make new advances within those paradigms. 

2 Popper, K. (1974) The Problem of Induction; http: //dieoff org/page126. htm; retrieved 17/05/04. 
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6.2.1: Realism and Instrumentalism- 3 

The argument between realist and antirealist philosophies rests on the question of 

whether scientific knowledge exists independently of the minds of scientists. 

Realism asserts that we can know what exists and what laws govern the 

behaviour of the universe. Antirealist philosophies challenge the notion of 

objectivity in several ways and link science to the actions of humans and their 

creativity in varying degrees. Realism is popular with practising scientists. 

Science and its technological applications have come to hold an important place 

in Western culture. Many scientists instinctively feel that science must have 

some relationship to the Universe: that we are discovering truths, not inventing 

them4. One of the main arguments for realism is the `cosmic coincidence' 

argument5. This argument rests on the success of science; if the entities 

employed by science did not exist and scientific theories were not at least 

approximately true then the massive convergence of evidence would be a 

coincidence of implausibly cosmic proportions. Realism is therefore attractive to 

scientists who deal with these entities and who see the success and the wide 

applications for their work. Antirealist theories are sometimes seen as an attack 

on science because they threaten to undermine the privileged position of science 

and its claims to objectivity6. However, in History of Science, ideas, which have 

been proved false, have to be evaluated. For this reason, antirealist philosophies 

of science deserve further investigation. Instrumentalism holds that concepts are 

merely useful instruments for human purpose. Truth is therefore not central to 

3 Fine, A. (1998) "Scientific realism and antirealism" In Craig, E. (ed. ); Routledge 
Encyclopaedia of Philosophy; London: Routledge. Retrieved May 17,2004, from 
http: //www. rep. Routledge. com/article/Q094 
4 Rescher, N. (1987) Scientific Realism; Reidel; Dordrecht; pp31-54. 
s Klee, R (1997) Introduction to the Philosophy of Science: Cutting Nature at its Seams; Oxford 
University Press; Oxford. 
6 See Chapter 9 
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scientific enquiry, rather reliability and usefulness are. It is allied to pragmatism. 

Two prevalent anti-realist theories are instrumentalism and Constructionalism. 

Instrumentalism is the belief that scientific theories are not necessarily true, but 

they are useful as instruments for prediction. Lakatos was critical of 

instrumentalism. He sees instrumentalists as conventionalists7 who do not have 

the education to see that some hypotheses can be true whilst being unproven and 

others false whilst having true consequences8. Constructionalism is - in essence 

-an idea that science is constructed by human beings and is affected by cultural 

beliefs, it will be explored in detail in Chapter 7. 

For the study of ancient Egyptian science, the arguments for realism that depend 

on the predictive power of science and the reaction of scientists are less 

important that the idea of the human element in scientific activity. Because the 

scientific ideas being studied have been superseded and comparisons to later 

scientific cultures have no interest for an Egyptologist, the arguments for realism 

hold little interest. 

7 Conventionalism sees science as a series of pigeon holes which organise facts. These pigeon 
holes are not held to be true, they are only true by convention. 
° Lakatos, I. (1981) "History of Science and its Rational Reconstructions" in Hacking, I (ed. ) 
Scientific Revolutions; Oxford Readings in Philosophy; Oxford University Press; Oxford; p110- 
13 
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This discussion is based on the fact that the ideas of Newton and Galileo have 

been superseded by the ideas of Einstein and quantum mechanics. Each new 

theory is likely to be investigated further and found to be if not untrue, then 

unable to explain new observations of the fundamental nature of the universe. 

This leaves the historian of science with a problem. If science does operate in 

this way then how can we sit in judgement on earlier ideas knowing them to be 

false, or less true than current ideas? It is all too easy to criticise previous ideas 

because they do not match up to the rigour of modem scientific ideals and yet it 

is just as hard to abandon our own cultural prejudices in favour of a more 

primitive model. This idea is fundamental to chronological Histories of Science. 

The notion that each idea is replaced eventually by one that is a better 

approximation is very pervasive and persuasive. This model of the progress of 

scientific thought takes no account, however, of the impact that these ideas have 

on society. There are many examples in the history of science where one 

particular theory gains favour over another because of influences from culture 

and religion that predispose the reviewers and general scientific community 

towards that idea. The resistance to Darwin's theories on evolution can be seen 

as an example of this. Personalities are also very important to consider. Lord 

Kelvin's views on the age of the Earth, for example, remained important for a 

long time because of the personality and status of Lord Kelvin, and also greatly 

impeded the acceptance of Darwin's idea because he proposed such a young age 

for the Earth. 
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Other definitions of science depend on the logic of scientific discovery. They 

attempt to define science by the way in which scientific knowledge is created. 

These definitions are discussed in detail by philosophers interested in the 

demarcation question. Each of these definitions is discussed in the following 

section. 

6.3: The Demarcation Question 

The demarcation question was set by Popper. It asks whether there is one 

criterion that can be used to distinguish between science and non-science, which 

he identifies as including, amongst others, logic, metaphysics, psychoanalysis. 

This is an extremely important question for anyone engaged in the history of 

science. The criticisms of Egyptian mathematics show that the question of 

whether or not something is scientific can radically alter our opinion of it. 

However, this judgement is often performed on a gut feeling of what science is. 

There is a feeling that we all know what science is when we come across it. 

There may be some truth in this when we are dealing with modern science. The 

people engaged in producing the science have all had a standard training and 

they will fit into standard roles. This cannot be assumed when dealing with texts 

from the past. There is no reason to suppose that the practitioners of the past 

were dealing within these standard roles. In this case, to ask for clarification on 

what is meant by the term science is not as facetious as it may appear. By 

examining Popper's demarcation question and some of the reactions to it, it will 

be possible to see that the question "what do you mean by science? " is 

complicated and deserves thought before making pronouncements on the 

scientific achievements of the past. Popper is concerned with contemporary 
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science, by showing that working out what is science is a complicated process; it 

will be shown that asking this question of the past is even more complicated. 

6.3.1: Description of Demarcation Problem 

Popper believed that all observation in science is selective and bound by current 

theories. This means that there can be no freestanding observations and thus that 

the primacy of `pure' observation is mistaken. He therefore questions the 

traditional view that there is one methodology that can distinguish science from 

non-science or pseudo-science. Instead, Popper believes that science is like any 

other human activity and consists largely of problem solving. 

Popper's solution to this question was falsification, having rejected inductive 

reasoning. Falsification asserts that it is not proving a theory that is important in 

science, since it is easy to obtain evidence to support any hypothesis. 

Confirmations should count only if they are the result of risky predictions, which 

might have conceivably been false. Thus, any theory which is to be considered 

scientific must have a test that has the power to falsify it: a crucial experiment. 

Theories should also be able to make new predictions of phenomena as yet 

unseen. 

The demarcation problem is at the heart of many philosophical uses for the 

history of science. Philosophical approaches want to use the history of science as 

a sourcebook of experimental data in order empirically to test hypotheses about 

the workings of science. Philosophers involved in this methodological approach 

claim to be interested in the whole of science: they certainly do not attempt to 
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define the object of their enquiry more closely, nor do they explicitly state 

whether they are excluding any part of science from this enterprise. However, 

from the assumptions and examples given, it is clear that they are only interested 

in defining the distinguishing feature of modern, pure, academic science. The 

examples used are from the recognised science of academic study. Science that 

may have happened outside the structure of academia is not important in this 

study. They are also only looking at science that has informed modem academic 

science; non-Western approaches and results are ignored. One can only assume 

that these are not considered part of the scientific venture and that their logical 

structure is of no interest to those philosophers and scientists who are concerned 

with defining what science is. 

There is also a much more fundamental problem with this approach, both in its 

application to history of mathematics and in answering the question posed. In 

trying to define what science is, examples are used from history of science to test 

whether or not they fit a particular definition of science. Whether inductivist, 

constructionalist or falsificationalist, these ideas are checked against the history 

of science. This approach therefore claims to be testing the foundations of a 

subject, but uses the writer's assumptions of what science is in order to answer 

the question. The assumptions underlying what science is are therefore applied 

retrospectively to select episodes from history that can tell us what science is. 

The writer's own assumptions must then become part of the definition that is 

reached. If we were to assume that science includes non-academic science and 

selected our examples accordingly, then we would reach a very different 

definition. The conclusion that Lakatos reaches, that science is defined by 

Research Programmes, shows that he is only interested with how science 
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develops within the confines of academia. He does not feel that it is necessary to 

explain how these ideas might find their way into the collective consciousness of 

society as a whole, as this is not where he sees science operating. Nor is he 

interested in non-Western approaches, as none of the examples come from non- 

Western societies. He therefore excludes from his study the idea that there may 

be another way to do science. 

However, Popper's response to the demarcation question holds interesting ideas 

for a historian of science. Popper rejects inductive reasoning and the primacy of 

observation from his answer because he recognises that these observations are 

selective and bound by current theories. Therefore, he recognises that the 

context of scientific work can affect its outcome. Falsification does not imply 

that there is any correct way for finding knowledge, nor is there any correct way 

of presenting it. It does not even suggest what a scientist should be interested in. 

It merely states that any theories should have the ability to be shown as incorrect. 

Recognising that the context is all-important is necessary if an objective analysis 

of ancient science and Egyptian mathematics is to be achieved. 

In addition, the idea of falsification is an important one in studying Egyptian 

mathematics because it is closely allied with the idea of proof. There is much 

discussion over whether the Egyptians had the concept of proof and this will be 

discussed further in Chapter 8. However, it should be noted that falsification and 

the idea of proof are closely aligned. There are important differences, but to 

evaluate the Egyptian texts it is necessary to question these terms because they 

have all been defined with modern scientific practice in mind. 
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The concept of pseudo-science is prevalent in attempts to answer the 

demarcation problem. If an idea does not live up to the high standards exacted 

by the various philosophical schools then it is relegated to the realms of pseudo- 

science. Here such ideas become uninteresting and subject to no further study. 

Instead, I believe these ideas should be investigated further. Even if they are not 

science, then identifying the reasons behind their creation becomes just as 

important as classifying those ideas and theories that are considered scientific. 

History is a complicated subject and all the variables have to be studied in order 

to come up with a complete picture. This approach is championed by 

Feyerabend9. It does not usually find favour amongst scientists, as they are keen 

to maintain the supremacy of science. It is true that science has been a great 

success in modern society and that we owe a lot to it. However, in academic 

study there should be no room for hierarchies of knowledge. If science and its 

place in society are to be understood then a more inclusive attitude to different 

forms of knowledge is needed. This fact was recognised by Lakatos10 who 

argued that if the threshold of rationality is set too high then too much of the 

history of science appears irrational. This compels historians of science who 

treat the growth of scientific knowledge as the epitome of rationality either to 

give a curtailed account of the development of scientific thought, or to twist the 

facts to conform to this idea. This suggests that the most useful theories for the 

use of historians of science are the most inclusive because these would stimulate 

the least distorted account of the growth of science. It should also suggest that 

9 See Section 2.5. 
10 Lakatos, I. (1978) "On Popperian historiography" Mathematics, Science and Epistemology 
Worrall and Currie, G (eds. ) Philosophical Papers volume 2; Cambridge University Press; 
Cambridge; pp 201-10. 
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historians of science should not be too quick to assume that the growth of science 

is the epitome of rationality and that it is possible for scientists in the past not to 

live up to the standards of rationality that we now prize in our scientists. Thus 

the idea of pseudo-science is problematic for historians of science and caution 

should be taken when applying it to the history of science. 

6.3.3: Imre Lakatos and the Demarcation Question 

Lakatos was also interested in the demarcation question, as he had been a pupil 

of Popper. It is in his writings about the demarcations question that the link 

between history of science and philosophy of science is made plain. He wrote as 

the opening line to a paper: 

"Philosophy of science without histo7 is empty. History of science 
without philosophy of science is blind" 1 

This is evocative of Kant who wrote: 

"Concepts without percepts12 are empty, percepts without concepts are 
blind. 13, )-) 

By using this quote from Kant, Lakatos is saying that philosophy of science gives 

concepts, where history of science gives percepts, or that history of science is 

there to give evidence for the concepts in the philosophy of science. 

In this paper, Lakatos explores the demarcation question. He states his aims as 

arguing: 

Lakatos, I (1978) "History of Science and its Rational Reconstructions" in Worral J. and 
Currie, G. (eds. ) The Methodology of Scientific Research Programmes. Philosophical Papers vol. 
1; Cambridge University Press; Cambridge; ppl02-138. 
12 A percept: The mental product or result of perceiving as distinguished from the action. 
13 Kant, I. (1787) Critique of Pure Reason, A 51B 75 Translation Goyer, P. & Wood, A. 
Cambridge Edition of the Works of Immanuel Kant (1998) Cambridge University Press, 
Cambridge 

182 



Chapter 6 Philosophy of Science and Ancient Egyptian Mathematics 

"a) Philosophy of science provides normative methodologies in terms of 
which the historians construct `internal history' and thereby provides a 
rational explanation of the growth of objective knowledge. 

b) Two competing methodologies can be evaluated with the help of 
(normatively interpreted) history 

c) Any rational reconstruction of history needs to be supplemented by an 
empirical (socio-psychological) `external' history. "14 

Internal history is usually defined as intellectual history, whereas external history 

is identified as social history. Lakatos here tries to redefine the distinction 

between them. The difference between the two sets of definitions is slight and the 

attempt to split the history of science into two distinct sections remains 

unresolved. Lakatos argues that understanding external history is unimportant for 

the understanding of the history of science. He sees internal history as being 

normative; internal history should search for the rules by which science 

advances. On the other hand, external history is empirical; it judges the 

observation of events. Thus Lakatos argues that external history is guided only 

by the methodology used and the choice of problem. Because he sees internal 

history as normative, in his opinion internal history does not suffer from the 

biases of problem selection. This argument presumes, of course, that there is a 

normative logic about the advance of scientific knowledge, that there is a single 

way by which knowledge can be found. It also presumes that internal history 

and external history can be separated and that scientific advance is not altered by 

external religious, social and cultural factors. This idea is the antithesis of 

constructivism15. 

14 Lakatos, I (1978) Op. Cit. p. 107. 
15 For more on constructivism see Chapter 7. 

183 



Chapter 6 Philosophy of Science and Ancient Egyptian Mathematics 
Lakatos compares the rival methodologies of science that are proposed by the 

philosophy of science. Each of these methodologies represents rational 

reconstructions as guides to history, and inspired by history. By methodology, 

Lakatos means codes or logics of discovery, a set of rules by which existing 

theories can be appraised. He says that normative no longer means rules for 

arriving at solutions but only for appraising what is there. These rules have a 

double function and are often what are cited when we talk about what science is. 

Firstly, they are a kind of ethical code for scientists. Secondly, they are the cores 

of historiographical research programmes. It is worth looking in detail at the 

arguments Lakatos advances for the acceptance or rejection of each of the 

methodologies. There are features in each of them that are reflected in previous 

approaches to ancient Egyptian mathematics. By examining why these 

methodologies are accepted or not it will illuminate the assumptions made by 

philosophy of science about the nature of the History of Science. The 

internal/external divide is prevalent in the arguments of Lakatos. Understanding 

this divide is of extreme importance, as it will be argued that Egyptian 

mathematical texts can only be fully understood if they are incorporated into our 

wider understanding of Egyptian culture and society. 
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6.3.3.1: Inductivism 

"According to inductivism, only those propositions can be accepted into 
the body of science, which either describe hard facts or are infallible 
inductive generalizations from them. "16 

Inductivism has its problems because of its preoccupation with establishing the 

truth: if a proposition cannot be inductively argued from observed facts then it is 

ignored. If actual history does not fit the inductivist standards, inductivists may 

suggest starting the whole business of science anew. Criticism is sceptical, it 

consists of showing that a proposition is unproven, or pseudo-scientific rather 

than showing it is false. 

There are two sorts of discovery in this method: fact propositions and inductive 

generalisations. A historian of science following the inductivist approach will 

scan the history of science looking for these two types as these are the backbone 

of internal history. A revolution in inductivism terms happens when errors are 

unmasked and what were scientific theories are shown to be pseudo-science. 

Radical inductionism invalidates propositions when external influence can be 

shown, this is a kind of radical internalism. It is noted, though, that this is a 

utopian position. Scientists cannot select observations with an empty mind. An 

inductivist approach, although vigorous in its scientific standards, cannot explain 

why things happen. This defeats Lakatos' attempts to find a normative internal 

history and so he does not favour this approach. 

16 Lakatos, I. (1978) Op. Cit. p. 103 
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6.3.3.2: Conventionalism 

This allows for the pigeon-holing of ideas to build a coherent whole. This 

system is not proven true, it is only `true by convention'. Genuine progress in 

conventualist science is cumulative and takes place at the ground level of `proven 

facts'. The changes to the pigeon-hole system are on the theoretical level and are 

merely instrumental, thus progress in theory is only in convenience and not at the 

truth level. 

Conventionalism recognises that false theories may have true consequences; they 

may also have great predictive ability, which is, of course, a means of 

experimental verification. Instrumentalism is a form of conventionalisml7. In 

the opinion of Lakatos, instrumentalism ignores the problems of some 

propositions being true while unproven and others being false while having true 

consequences; theories are merely instruments for prediction. Lakatos considers 

this to be a lower form of conventionalism, caused by a lack of proper logical 

training. 

Conventionalism does not brand discarded systems as unscientific. The 

conventionalist sees much more of the actual history of science as rational 

(internal) than does the inductivist. Major discoveries are primarily inventions of 

new and better pigeon-hole systems, where better systems are simpler ones, as 

these require fewer assumptions. This constitutes the backbone of history. 

Unfortunately, this method of history cannot give a rational explanation of why 

different ideas are selected and different systems are tried at different times when 

117 See Section 6.2.1 
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the benefits of the new system are unproven Thus, like inductivism, external 

programmes have to be appealed to. 

6.3.3.3: Methodological Falsification 

Methodological falsification was Popper's solution to the demarcation question. 

Lakatos respects Popper's methodology because of its simplicity and force. He 

feels, however, that there are problems with it because it cannot explain how 

some crucial experiments are taken to be confirming rather than falsifying. Thus 

external theories are needed to supplement internal history. Also, in Lakatos' 

view, each scientific theory is born falsified because of the anomalies that 

surround every scientific experiment. 

6.3.3.4: Methodolo2y of Scientific Research Proarammes1s 

Lakatos felt that each of these three demarcation criteria fails when the history of 

science is appealed to. This is because Lakatos was examining history for 

rational episodes. Because Lakatos felt that internal history should be able to 

explain the growth of knowledge, any methodology that had to appeal to external 

history could not constitute the demarcation criterion. Lakatos is dismissive of 

any scientist's claim to inductive reasoning, including Newton, who Lakatos says 

did not derive his laws from Kepler, because Newton knew Kepler's laws, based 

on prefect ellipses, to be false19. Conventionalism is dismissed through the idea 

18 Larvor, B. (1998) Lakatos: An Introduction; Routledge; London; pp 50 - 58. 
19 Lakatos, I (1978) "Newton's Effect of Scientific Standards" in Worral J. and Currie, G. (eds. ) 

The Methodology of Scientific Research Programmes. Philosophical Papers vol. 1; Cambridge 
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that Copernicus' theories did not constitute a simpler system than those that they 

replaced20 

To solve the demarcation question Lakatos believes that instead of focussing on 

separate theories, research programmes are the appropriate way to examine the 

history of science. Research programmes are the historically linked theories. 

Theories are static because their content does not change, whereas the research 

programme may have central ideas, but the details can change over time. 

The idea of the research programme, rather than the theory, being the correct 

level of detail for study, allows Lakatos to modify Popper's ideas on falsification. 

The anomalies that Lakatos sees in scientific experiments that would falsify a 

theory are not a problem in the context of a research programme. Crucial 

experiments disappear, because it is only long after the event that an anomaly is 

recognised as falsifying a scientific hypothesis, when one programme has been 

defeated by another one. 

The idea, which is central to Lakatos' solution to the demarcation problem, is 

that there have been extended wars during the history of science between 

research programmes, some of which are progressing and some of which are 

degenerating. A discipline can be considered scientific as long as progressive 

programmes triumph over degenerating ones. The consequences of this line of 

reasoning for Egyptian mathematics are clear. The enterprise of Egyptian 

University Press; Cambridge; pp 193- 222. See p. 210 for a detailed discussion on Lakatos' views 
of the advance of Newton's laws. 
20 Lakatos discussed Copernicus in detail in: Lakatos, I (1978) "Why Copernicus's Programme 
Superceeded Ptolemy's"in Worral J. and Currie, G. (eds. ) The Methodology of Scientilc 
Research Programmes. Philosophical Papers vol. 1; Cambridge University Press; Cambridge; 

pp 168 - 92.. 
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science should be taken as a whole rather than isolating particular mathematical 

problems, or even separating mathematics from other scientific disciplines in 

ancient Egypt. The entire corpus of Egyptian scientific literature needs to be 

examined and if possible a chronological account built up. Lakatos has his 

critics and his theories on scientific research programmes may not fully explain 

the growth of scientific knowledge, but it is clear that understanding programmes 

rather than separate theories opens up a new line of enquiry for ancient Egyptian 

science that should be followed. 

Lakatos was not only a philosopher of science, but also of mathematics. His 

most important work on the philosophy of mathematics21 was a dialectic 

exploration of concepts in mathematics, such as proof and its role within 

mathematical theorems. Lakatos was interested in the development of concepts 

in mathematics and in order to explore the relations between these concepts, 

Lakatos invents pupils who represent various viewpoints, drawing on the 

tradition of Socratic dialogue. These pupils discuss the topics in the presence of 

a teacher who prompts them into discussion. Much of the book is concerned 

with proof, and it is the concept of proof that is of most interest to the 

Egyptologist. 

Lakatos' views on proof are neatly summed up in a paper that he wrote for a 

seminar at Cambridge, although he himself had no intentions of publishing it. It 

Z' Lakatos, I. (1976) Proof and Refutations; Worrall J. and Zahar E. (eds); Cambridge University 
Press; Cambridge. 
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does however include the relevant material from Proofs and Refutations. For 

example, Euler's conjecture and the problems of proving it take up 102 pages out 

of 170 in Proofs and Refutations. Much of the interesting part of this argument 

is summarised in Lakatos' description of pre-formal proofs. 

Lakatos opens the paper with the observation that: 

"Pure mathematicians disown the proofs of applied mathematicians, 
while logicians in turn disavow those of pure mathematics. "22 

In this statement Lakatos is recognising that there are several forms of proof and 

the needs of different groups will require a different form of proof. Lakatos 

defines three types of proof: pre-formal, formal and post formal. Pre-formal 

proof is illustrated with a proof of Euler's theorem of polyhedra which states 

that: 

V-E+F=2. 

Where V is the number of vertices, E is the number of edges and Fis the 

number of faces. 

The premise for this proof lies not in the formal manipulation of formulae, but in 

an argument that relies on a thought experiment. The proof requires the reader to 

imagine the figures and to manipulate them mentally. 

Lakatos asserts that there is more to proof than the instinctive formalist23 

definition of mathematics and proof. He argues that proof is a "finite sequence 

of formulae of some given system, where each formula of the sequence is either 

22 Lakatos, L. (1978) "What does a mathematical proof prove? " Mathematics, Science and 
Epistemology Worrall and Currie, G (eds. ) Philosophical Papers volume 2; Cambridge 
University Press; Cambridge; p. 61. 
23 Lakatos defines formalism as "the school of mathematical philosophy which tends to identify 
mathematics with its formal axiomatic abstraction" Lakatos, I. (1976) Op. Cit. p. 1. 
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an axiom or a formula derived by a rule of the system from some proceeding 

formulae"24. He also believes that there is not a definition of proof that would 

allow us to decide what is a proof and what is not. Instead, Lakatos takes a 

quasi-Popperian approach and appeals to falsification. Euler's theorem can be 

shown to have omitted possibilities that do not agree with his conjecture; the 

conjecture assumes a simple polygon, whereas a polygon with a hole in the 

centre would not fit the conjecture. Thus the conjecture has to be modified. 

Formal proofs are those that are most often associated with proof. They are the 

formal statements of formulae that follow on from axioms. Formalisation of a 

pre-formal proof is possible, and it can lend authority to a proof, as it will show 

that there is no counter-example. For many mathematicians, this is the only 

permissible definition of a proof, and it is the definition that is now used to judge 

the Egyptian mathematical papyri. 

Lakatos goes on to define a type of proof that need not concern the student of 

Egyptian mathematics; it is included here only for completeness. Post-formal 

proofs are those which define more than the mathematician wished to prove. 

Lakatos gives examples such as Peano's axioms25 which are satisfied by more 

than natural numbers. 

Lakatos concludes his paper by stating that pre and post-formal proofs prove 

things that are sometimes clear and empirical, and sometimes vague. Formal 

24 Lakatos, I (1978) Op. Cit, p. 62 
25 There is a natural number 0. 
Every natural number a has a successor, denoted by S(a). 
There is no natural number whose successor is 0. 
Distinct natural numbers have distinct successors: if a#b, then S(a) # S(b). 
If a property is possessed by 0 and also by the successor of every natural number which possesses 
it, then it is possessed by all natural numbers. 
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proofs are reliable, but given the elusive nature of mathematics, it is sometimes 

not clear what they are reliable about26. 

Where does this leave the idea of proof in Egyptian mathematics? It is clear that 

in Lakatos' opinion the Egyptian texts should not be dismissed as quickly as they 

often are. The arguments that are used to argue that the Egyptians did not use 

proofs are based solely on the formal definition of proof. Yet, the ideas about 

proof articulated by Lakatos show that there is more scope than this idea will 

admit. From his opening remarks it can be seen that different groups of people 

have different needs for mathematics, and so require different standards in their 

proofs. So we should not be too critical of the Egyptian texts, instead we should 

identify the needs of their mathematicians and then judge the standard of their 

proofs within that context. 

Proofs and Refutations is anti-positivist in its historiography27. Positivist 

historiography takes the view that to explain a historical fact is to subsume it into 

a historical law. It will attempt to offer the same logical analysis for history as 

positivism does for the sciences. Lakatos makes no attempt to discover general 

laws of mathematical development; he rejects the idea that it is possible. He 

admits that there are logical patterns in mathematics, but that those patterns do 

not hold any explanation for why the episodes of mathematical history occurred 

they way they did. His loathing for positivist historiography is shown in other 

papers. For example, in his paper "What does mathematical proof prover' he 

26 Lakatos, I (1978) Op. Cit; p. 69 
21 Larvor, B. (1998) Op. Cit; p. 22 
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writes that he does not wish to let "a disastrous historicism into sound 

mathematical philosophy" 28. 

6.5: Kuhn and The Structure of Scientific Revolutions 

While writing The Structure of Scientific Revolutions" Kuhn realised that as he 

found out about science in the past, his preconceptions were shattered. His 

background was in physics and he received a PhD. in physics in 1949. However, 

when he examined the history of science he found that neither inductivist nor 

falsificationist theories explained the way in which one scientific idea replaces 

another. His theories of revolutions in science reflect the way in which one set of 

theories and dogma are replaced by another incompatible with the original. His 

idea of the progress of the sciences can be summarized by the following scheme: 

pre-science - normal science - crisis - revolution 

- new normal science - new crisis. 

The idea behind this scheme is that there is plenty of disorganised activity that 

predates the conception of a scientific theory. Once a theory is established, a 

period of normal science is entered in which scientists work within the paradigm 

of the theory. This experimentation will create anomalous results which will 

build up until a crisis in the theory ensues and eventually the original paradigm 

will be abandoned in favour of a new one and a paradigm shift will occur. There 

28 Lakatos, I. ed. Worrall and Currie, G. (1978) Mathematics, Science and Epistemology. 
Philosophical Papers volume 2; Cambridge University Press; Cambridge; p. 61. 
29 Kuhn, T. S. (1970) The Structure of Scientific Revolutions, 2nd ed.; University of Chicago 
Press; Chicago. 
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will then be another period of normal science as the new paradigm is developed 

and explored and new anomalies arise, until a new crisis is encountered. 30 

The main problem with Kuhn's theories is the idea of paradigm. Kuhn never 

explicitly explains what is meant by a paradigm and consequently what is meant 

by a paradigm shift. It is possible to describe some of the typical components of 

a paradigm, however. Loosely, a paradigm is a system of beliefs shared by 

scientists. It can, however, be a singular scientific achievement such as 

Newton's Principia that came to serve as the basis for the work of many 

scientists that followed him. Paradigms will also include the ways in which 

fundamental laws are applied to various situations. Kuhn felt that there is more 

to a paradigm than can be laid down in the form of rules or directions. If one 

tries to characterise a specific paradigm then it will always turn out that some 

work within the paradigm violates the characterisation31. This should not make 

the idea of a paradigm untenable, however. Many of the features of a paradigm 

are similar to the research programmes advanced by Lakatos. 

The criticisms that Kuhn's work has attracted come mostly from scientists who 

thought that Kuhn was attacking scientific objectivity. There is an inherent 

conservatism about Kuhn's ideas as scientists become not independent thinkers, 

but people guided by what they have been taught and the paradigm in which they 

are working. This brought attention to the need for a historical approach to the 

30 Chalmers, A. F. (1978) What is this thing called Science?; Open University Press; Milton 
Keynes; p. 86. 
" Chlamers A. F. (1978) Op. Cit.; pp. 87-9. 
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philosophy of science. Lakatos in particular was influenced by the work of 

Kuhn32. 

It is the idea of Pre-Science that is troubling, particularly for the study of 

Egyptian mathematics. This model evades the question of the origin of science. 

Scientific thought is one area of human cognition and behaviour that separates us 

from the rest of the animal kingdom. However, identifying the point in our 

evolution when scientific ideas happened is as difficult as identifying the first 

time our ancestors used language. Whilst this is partly a problem of the non- 

survival of evidence, it is also partly due to definitions. When considering the 

origin of language, non-verbal communication has to be considered. This leads 

to problems over the definition of language. Just as non-verbal communication 

may not fulfil all the criteria for identification as a language, pre-science may not 

fulfil all the criteria for science. Archaeologies of pre-history concern 

themselves with technology. It is argued that advances in flint-knapping 

techniques and the production of stone tools of increasing complexity and 

specialisation of use do not constitute scientific thought. It is presumed that they 

were produced in a trial and error fashion; likened to an evolutionary process, 

where those tools that were better gave the people who made them an advantage. 

Our ancestors are not often credited with the intellectual capability to think 

through the processes used to make flint tools in a way that is considered 

scientific. Yet, this is to place too much importance on the way in which science 

operates now, rather than to understand the process of early man. 

32 Rorty, R (2000) "Kuhn" in Newton-Smith, W. H. (ed. ) A Companion to the Philosophy of 
Science; Blackwell Publishers Oxford; pp 203 -6. 
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6.6: Feuerabend and Epistemological Anarch 

Paul Feyerabend was a fierce critic of philosophers who claim that there is only 

one methodology for successful science; he was critical of the idea that there is 

only one way to increase our knowledge of the universe. For Feyerabend, there 

should be no restrictions on activities that create knowledge: in his view, 

anarchy, while not being a good political philosophy, is excellent in the 

philosophy of science33. In Feyerabend's view, the idea that there should be 

rules to scientific epistemology is not just misguided but also detrimental to 

science because it neglects the social and cultural factors that can lead to 

scientific change3a 

Against Method is dedicated to Lakatos "Friend and fellow-anarchist". For 

some time Feyerabend and Lakatos taught at the LSE together. He sees Lakatos 

as an anarchist because Lakatos' methodology of research programmes does not 

give rules for scientific advance, rather it provides standards35. Lakatos was 

originally to write a reply to Against Method but sadly died before he could do 

so. Lakatos and Feyerabend had limited differences in their outlook. The main 

difference in their approach was whether scientists need philosophers to explore 

the dialectics of their work by producing the type of rational reconstructions of 

the advance of knowledge that Lakatos was enthusiastic about 36 

Anarchy should not be understood to mean that there is no distinction between 

reasonable scientists and cranks. However, the difference Feyerabend sees 

33 Feyerabend, P. (1975) Against Method, New left Books; London. 
3e Feyerabend, P. (1975) Op. Cit. p. 295- 309. 
35 Chalmers, A. F. (1982) What is This Thing Called Science?; 2°d. Ed.; Open University Press, 
Milton Keynes; p 135. 
36 Larvor, B (1998) Op. Cit, pp 84-5. 
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between these groups is not that one group can suggest what is plausible and 

bound to work whereas the other is bound to fail. Within epistemological 

anarchy there is no way to predict which theories will be successful; the 

difference arises because the reasonable scientist will develop an argument and 

adapt it in response to contrary evidence, whereas the crank will defend his point 

of view in its original form regardless of such evidence37. Feyerabend's view of 

epistemological anarchy is, therefore, one where he recognises that the human 

beings who engage in scientific thinking do not always follow rules of discovery, 

rather that they must at times break them in order to advance science. 

Feyerabend complains that the defenders of science do not adequately investigate 

other forms of knowledge and that science cannot be seen as the only form of 

knowledge that should be taken seriously. He argues that witchcraft can and 

should be studied with the same seriousness as science by immersing oneself in 

witchcraft with the view to become a witch38. Feyerabend also recognises the 

importance of having a historical component to the study of the philosophy of 

science, but he argues for the usefulness of studying other forms of knowledge. 

37 Feyerabend, P. (1964) "Realism and Instrumentalism : Comments on the Logic of Factual 
Support"; Bunge E. (ed. ) The Critical Approach to Science and Philosophy, Free Press; New 
York; p. 305. 
38 Williams, M. (1998). "Feyerabend, Paul Karl". In E. Craig (Ed. ), Routledge Encyclopedia of 
Philosophy. London: Routledge. Retrieved May 20,2004, from 
http: //www. rep. routledge. com/article/Q 114 
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He writes: 

"The history of science, after all, does not just consist of facts and 
conclusions drawn from facts. It also contains ideas, interpretations of 
facts, problems created by conflicting interpretations, mistakes, and so 
on.... the history of science will be as complex, chaotic, full of mistakes 
and entertaining as the ideas it contains, and these ideas in turn will be as 
complex, chaotic, full of mistakes and entertaining as the minds of those 
who invented them. Conversely, a little brainwashing will go a long way 
in making the history of science duller, simpler, more uniform, more 
`objective' and more easily accessible to treatment by strict and 
unchangeable rules. i39 

This approach has been accused of being relativistic, of thinking that scientific 

theories are not true absolutely, that they only have truth-value from a particular 

standpoint. He is also charged with wishing for a world where science is not 

specia140; some go so far as to call Feyerabend an irrationalist°1. These 

comments are largely unfair and miss the point. Feyerabend is reacting against 

the philosophies of Popper and Lakatos and suggesting that to understand 

science, other ideas have to be explored with equal emphasis. 

Feyerabend's view of epistemological anarchy seems very attractive, considering 

that Egyptian mathematics does not fit into the traditional ideas of science and 

that it is necessary to contextualise the texts into the wider Egyptian culture. It 

can certainly be seen that mathematics and science should not be given a 

privileged position in Egyptologists' attempts to understand Egyptian culture. 

However, within Egyptology the opposite has been true. Mathematics and 

science have been pushed to the fringes partly because of Egyptologists' 

unwillingness to deal with mathematical and scientific texts, but also because of 

the generally negative opinion that can be found in textbooks. Despite this, to 

39 Feyerabend, P. (1975) Op. Cit; p. 19. 
40 Couvalis, G (1997) The Philosophy of Science; Science and Objectivity; SAGE Publications; 
London; pp 111-2. 
"Stove, D. (1982) Popper and After: Four Modern Irrationalists; Pergamon Press; Oxford; p. 3. 
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follow Feyerabend and consider Egyptian mathematics as only one way in which 

the Egyptians discovered knowledge would be to go too far. Egyptian 

mathematics deserves serious, considered thought. To accept anarchy and the 

view that science and mathematics is no different from other forms of knowledge 

would not help facilitate this. Nor would this approach be helpful for 

Egyptologists who are reluctant to look at mathematical texts. 

Feyerabend can tend towards the idea that science has no special place. This 

should be particularly avoided in the case of Egyptian mathematics. Egyptian 

mathematics has a strong practical component. It is not entirely practical, there 

are abstract elements and problems that do not have an obvious application, but 

much of the impetus for Egyptian mathematics comes from everyday problems. 

Thus Egyptian mathematics has a purpose in Egyptian society. To adopt a 

relativistic approach when the Egyptians were clearly using their mathematics to 

solve practical problems would be to ignore the importance that the Egyptians 

themselves place on their scientific knowledge. 

6.7: Conclusions 

This chapter has only been able to chart some of the more important ideas in the 

philosophy of science and its relationship to the history of science. Many 

philosophers of science have been attracted to the subject because of their 

admiration for the seemingly rigorous nature of science and its apparent logic42. 

The idealistic nature of the philosophy of science has led to some accounts of 

scientific advances that do not take into account the often disorderly nature of 

42 Larvor, B. (2000) "History, Role in the Philosophy of Science" in Newton-Smith, W. H. (ed. ) 
A Companion to the Philosophy of Science; Blackwell Publishers Oxford; pp 154-161. 
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human beings. This has led to the distinction between internal and external 

history. This distinction allows science to be seen as purely logical, with 

anything that does not fit within this logical pattern of the growth of scientific 

knowledge, being explained as external influence. Some say that philosophers of 

science should not be allowed to engage in the History of Science at all: 

"Philosophers tend to be interested in ideas, their logical connections and 
their logical consequences. They do not seem to find it very interesting to 
ask where ideas came from, how they developed and how they were 
interpreted by others who claim to have been influenced by them. They 
are, therefore, at their best when analysing a system; as we have seen, 
they are at their worst when trying to account for the evolution of one. "43 

It seems clear that a definition of science, used for the purposes of the history of 

science should not be based solely on modern concepts of the philosophy of 

science. Because the philosophy of science changes with shifts in scientific 

thought, we should not use a philosophy that has evolved to cope with post- 

Newtonian physics in order to judge and evaluate the achievements of ancient 

science. The definition that is used should reflect the essence of the purpose of 

science, but not include areas of philosophy that deal with the way in which 

science operates. This would allow a more inclusive and less judgemental 

approach. The demarcation question attempts to distinguish between science and 

pseudo-science. The criteria selected for this demarcation are ideas which are 

concerned with the operation of science and the way in which it is explored and 

is built up. Thus, ideas such as Conventionalism do not try to engage with the 

purpose of science, but rather with systems of pigeon-holes which allow for the 

organisation of scientific `facts'. Historians are often concerned with the reasons 

why historical texts were produced. Discovering motivation is a key aim in 

History. For example, understanding the motivation of a particular account of a 

43 Pearce Williams, L. (1975) "Should philosophers be allowed to write history? " British Journal 
of the Philosophy of Science; 26; 241-53; p. 252. 
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battle can also reveal bias and help build up an objective analysis of the events 

and outcome of the battle. History of Science should not be an exception to this 

rule. The purpose of producing a text should still be of paramount importance. 

When an historian tries to write history, it is important to try to relieve oneself of 

any cultural or societal assumptions in order to have an objective approach. This 

may be impossible to do but it is important the attempt is made and it is vital for 

historians to be vigilant in their search for assumptions that affect our view of 

what happened. We should be interested in the past for its own merits and ideas. 

In contrast, Lakatos and others using history of science to inform the question of 

demarcation are applying cultural assumptions to history. By only selecting 

those ideas that they would recognise as being scientific, they invalidate the 

entire line of enquiry. Lakatos states that he is interested in writing normative 

history. The attempt to place strict rules on human behaviour in the past, 

particularly rules that have a notion of `correctness' attached to them, is not only 

diverse from the best practice in History but it is in opposition to it. The more a 

researcher probes into an area of history the more complicated it becomes. The 

more factors behind a particular event are recognised and the more links between 

these different events are discovered. This builds an ever more complex picture. 

Just because an idea does not fit neatly into a model does not mean that it can be 

discarded or relegated into a lesser category. 

To answer the question ̀ What is Science? ', what is not science should be 

considered as a matter of equal urgency. We also have to consider the claims of 

people from the past that their ideas are scientific. They cannot be relegated to 

pseudo-science because that would be placing our own assumptions at the 

forefront of our research. They must be considered as having equal merit in the 
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examination of what makes science. It may be that to the modem observer the 

theories appear ludicrous and they may be wrong but that does not make them 

unimportant in our approach to History of Science. 

If the distinction between external and internal history appears strange to an 

Egyptologist or a historian, then they should learn from the problems with this 

distinction. In Egyptology this division is alive and healthy. There are many who 

consider mathematics and science to be too difficult and so do not engage with 

the texts on even the most superficial level. This is to promote the cause of those 

who would like to see science and mathematics as separate from the rest of 

human achievement. It will serve to separate the study of science and 

mathematics and allow it to be the sole province of historians of science, who do 

not have the necessary education to see the links between the content of texts 

such as the Rhind Mathematical Papyrus and the rest of Egyptian culture. 

Egyptologists will have to take more note of the science of the ancient Egyptians 

if the artificial internal/external divide is to be replaced with a more astute 

analysis. 

Egyptologists interested in ancient Egyptian science and mathematics certainly 

need to be aware of philosophical issues. Philosophy of science has an important 

role in making sense of scientific thought. An approach to ancient science that 

does not take account of philosophical issues will always be naive and will not 

properly address the issues of scientific thought in its proper context. However, 

that is not to say that Egyptologists need to follow the philosophical arguments in 

great detail, nor should philosophical analyses of science be adhered to too 

strictly. The uses that philosophy of science has for the history of science are at 
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times in conflict with the interests of Egyptologists. For example, the distinction 

between internal and external history. To understand the ancient Egyptian 

mathematical texts, knowledge of the system of education, scribes and the state is 

important when evaluating the types of problems that were solved. Therefore 

Egyptologists need to temper their appreciation of the philosophy of science with 

an understanding of the best way to evaluate the texts with the correct 

perspective and emphasis. It is of primary importance for Egyptologists to 

decide what information they wish to glean from the texts and how an 

understanding of ancient Egyptian science might fit with more traditional aspects 

of Egyptology. Once this has been achieved, it will be possible to approach the 

philosophy of science and epistemology within an Egyptological framework. 
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Chapter 7 

Science, Egyptology and Culture 

In the previous chapter, it was argued that definitions of science that rely on the 

presumption of a rational method of discovery do not do justice to science and 

mathematics in ancient Egypt. It was proposed that the definition of science that 

is used takes into account the purposes for which science is produced. It should 

also be a matter of priority to research ancient Egyptian epistemology. The 

production of a contextualised History of Mathematics and Science requires that 

the context is researched as much as the content. This chapter will explore 

whether it is possible to define science as the process by which scientific theories 

are discovered. The definitions of science explored in the previous chapter rely 

on ideas such as observation, experimentation and falsification. These ideas 

define science as the means by which we arrive at the understanding of observed 

data and how this understanding is turned into an understanding of the workings 

of the universe. 

7.1: Introduction 

Attempts to define science by what is produced in scientific journals are difficult 

because there are no set definitions of what is produced. There are conventions 

regarding how a scientific paper is written, but these change. There are also gaps 

in our understanding and present models of the fundamental workings of the 

universe will probably be superseded by ones that are more complete. What, 
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therefore, is the product of the process of science? How can these products be 

identified in a text that is known to be incomplete or simply wrong? It is 

possible to look back into the past, read the treatises of scientists and thinkers of 

the past, and then judge them for their understanding of the truth compared to the 

understanding of the modern scientist, to compare the understanding in the past, 

to modem understanding. We cannot possibly mark them against an absolute 

concept of reality and truth (whatever these concepts may mean), because there 

is no guarantee that the most efficient method for doing science has been 

discovered. This means that the only absolute standard that we can use to assess 

the achievements of previous cultures is the methodological approach that they 

take. Therefore, for the purposes of the History of Science we should define 

science in terms of process. 

There is always a need in academic studies to categorise things. The use of 

language dictates that we assign definite terms to abstract concepts. These 

concepts will often overlap and the difference between two ideas will be unclear. 

It is obstructive to productive discourse to be pedantic about the use of terms and 

deconstruct the ideas until there is no word that can be used without reams of 

explanation. However, this is not to say that we should take classificational 

terms for granted and use them without consideration. This leads to an over- 

simplification of the situation and will lose the rich variety present in scientific 

and mathematical texts. Modern mathematics has to make use of a precise 

language and each of its terms has been precisely defined, but it should not be 

presumed that this was the case in the past. 
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This discussion shows that to research usefully and understand scientific texts 

from the past a more historically sensitive approach needs to be taken which 

takes into account the purposes for which science was produced and the way in 

which people organised themselves to produce it. Modern terms and their 

definitions should not be taken too seriously, but a healthy appreciation of them 

is helpful and should form the basis of the discussion. 

7.2: Approaches to the History of Mathematics 

Two types of historian can be identified in the History of Mathematics: Cultural 

Historians (those who approach mathematics as historians of science, ideas and 

institutions) and Mathematical Historians (those who study the history of 

mathematics primarily from the standpoint of modern mathematics). The 

argument between the relative advantages and disadvantages of each approach is 

characterised in the debate between Andre Weil and Sabetai Unguru about 

ancient Greek mathematics and the existence of geometrical algebra. Unguru 

took the cultural approach, Weil the mathematical one. 

Weil went as far as saying that only mathematicians are qualified to write 

History of Mathematics and that the better the mathematician, the better the 

History was likely to be'. This is because Weil sees the major audience for 

History of Mathematics as mathematicians. To illustrate his point he quotes 

Leibniz: 

' Dauben, J. W. (1993) "Mathematics: An Historians Perspective" Philosophy and the History of 
Science: A Taiwanese Journal; Vol. 2, No. 1, April 1993; pp 1-21. 
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"Its use is not just that History may give everyone his due and that others 
may look forward to similar praise, but also that the art of discovery be 
promoted and its method known through illustrious examples. "2 

He also sees History of Mathematics as auxiliary to general History; its use for 

general Historians being to supply them with catalogues of facts in chronological 

order, ordered by themes, countries and author. These would then be used by the 

general Historian to understand the social developments in the time period of 

study. Weil does not see that general Historians would be interested in the 

specifics of mathematics or science. An Historian of the 19th Centaury, while 

recognising the influence of the steam engine is not - in Weil's view - interested 

in how it works, nor the effort that went into the discovery of the laws of 

thermodynamics;. This view reflects the arguments of philosophers such as 

Lakatos who have tried to use History of Science to provide rational 

reconstructions of the advance of knowledge. It exactly reflects the division 

between internal and external history. However, Weil does not see this link 

himself. Indeed, he does not see the relationship between history and philosophy 

of science whatsoever. On the contrary, he believes that there is no link at all. 

Because of this unawareness of the relationship, he has little to offer on one of 

the most difficult questions, and the question most pertinent to an Egyptologist: 

what is a mathematical idea? His only answer is to paraphrase Housman on the 

definition of poetry: a mathematician may not be able to define a mathematical 

idea, but he knows one when he smells one4. This naive understanding of the 

nature of mathematics forms the basis of many opinions on the character of 

Egyptian mathematics. 

2 Weil, A. (1978) "History of Mathematics: Why and How" Proceedings of the International 
Congress of Mathematicians. Helsinki, 1978; pp 227-236. 
3 Weil, A. (1978) Op. Cit. p. 228. 
4 Weil, A. (1978) Op. Cit. p. 230. 
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Neither does Weil engage with the problem of identifying suitable texts for 

study. Unless some thought is put into ascertaining which texts should be 

considered scientific then there is a danger of a self-confirming hypothesis. 

Historians are active agents in this process. It is reasoned that what looks like 

science to a modem reader constitutes what looked like science in the pasts. This 

is often not a problem as some distinctions do have to be drawn and for 

historians of science who are tracing back a current scientific idea to explore its 

origins, it is not a problem at all. It does become a major problem when studying 

science in ancient Egypt. Chapter 5 explored some of the most common ideas 

about Egyptian mathematics and it was shown that many of these problems come 

from the current definitions that are projected back on the past. The nasal 

receptors of commentators have come across something they are unaccustomed 

to and this leads to problems as they are unsure what to make of it. 

It has not escaped the attention of historians of mathematics that the views of 

Weil and others like him severely limits the number of people likely to have an 

interest in the History of Mathematics. There are few enough Historians of 

Science and within this, there are still fewer Historians of Mathematics. History 

of Mathematics written by mathematicians focuses on the technical detail and 

specific papers, rather than constructing broad histories written by themes. This 

loses some of the richness and interest of the past as it divorces mathematics 

from mathematicians and the human stories that provide so much interest to the 

story. It has been pointed out even Weil's quotation of Leibniz is not as 

straightforward as he leads us to believe. Leibniz was not only a philosopher, he 

is one of the contenders for the discovery of differential calculus. Both Leibniz 

s Cunningham, A. (1988) "Getting the Game Right: Some Plain Words on the Identity and 
Invention of Science" Studies in History and Philosophy of Science; Vol. 19, no. 3; pp. 365-89. 
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and Newton, the other contender, wrote histories of their discovery of calculus to 

promote their respective claims. The debate between Newton and Leibniz 

became acrimonious and Leibniz eventually asked the Royal Society to 

investigate their claims. A year later, the Royal Society produced its own 

history, a collection of documents on which Newton had been allowed to 

comment. Unsurprisingly, the Royal Society found in favour of Newton. This 

episode in the history of mathematics sheds new light on the motivation for 

Leibniz's comments. In this case, it was not possible to write a purely objective 

History of Mathematics. There were too many reputations at stake and it was 

impossible to be purely objective6. 

This example is extreme, but it does show some of the dangers of writing History 

and that the History of Mathematics is not immune from these problems. 

Weil's argument that only mathematicians should be allowed to write History of 

Mathematics can lead to other problems in the emphasis of their work. 

Naturally, a mathematician will be most interested in the branch of mathematics 

that they have worked in. Their lack of historiographical training also lends them 

to the idea that History should be chronological and narrative. The resulting 

work is anecdotal and lacks detailed research. As Ivor Grattan-Guiness describes 

it: 

6 Dauben. J, (1993) "Mathematics: An Historian's Perspective" Philosophy and the History of 
Science: A Taiwanese Journal; Vol 2, no. 1; April 1993; pp. 1-21. 
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"Even those mathematicians who become somewhat interested in history 
usually assert its importance only for trivial reasons of anecdote and 
general heuristic without consideration of basic questions of 
historiography. Further and more importantly, they usually view history 
as the record of a "royal road to me" - that is, an account of how a 
particular modem theory arose out of older theories instead of an account 
of those older theories in their own right. In other words, they confound 
the question, "How did we get here? ", with the different question, `What 
happened in the past? "97 

A good example of this problem can be seen in relationship to ancient 

mathematics. 

B. L. Van der Waerden is particularly overt in his linear developmental model for 

the advancement of mathematics in the ancient world8. In reviewing the 

evidence for the use of what modern mathematicians would call `Pythagorean 

triples' in ancient civilisations from many different cultures including India, 

England, China and the Near East, he concludes that there must have been a 

single discovery of the triples which then spread across the world. The origin of 

this discovery, he postulates, is a Neolithic culture of Central Europe dating to 

around 3000 and 2500 B. C. 9. 

This is a diffusionist hypothesis. Diffusionism is defined as a: 

`Tendency to explain cultural change and cultural similarities in terms of 
the adoption of technologies and stylistic traits from neighbouring or 
trading-partner cultures. ' lo 

Diffusionism has lost credence in archaeology since the radiocarbon revolution, 

when it was shown that the megalithic tradition may have been invented in 

several different places and could have not followed the diffusionist path 

suggested by earlier archaeologists. Even when introduction of a technology can 

7 Grattan Guiness I. (1990) "Does History of Science Treat of the History of Science? The Case 
of Mathematics" (sic) History of Science; vol. 28, pp 149-73; p. 157. 

Van der Waerden (1983) Geometry and Algebra in Ancient Civilisations Springer Verlag, 
Berlin 
9 Van der Waerden (1983) op cit p. xi 
10 Jameison, R (1999) "Diffusionism" in Shaw and Jameison (eds) A Dictionary ofArchaeology 
Blackwell Publishers, Oxford. p. 200 
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be shown to have happened, the focus on the archaeological research is why the 

innovation was accepted and the effect that it had on the culture as a whole. The 

use of diffusionist principles by Van der Waerden shows his lack of appreciation 

of historical and archaeological theory. He has taken the linear narrative to its 

extreme and reaches conclusions which the evidence does not support. 

The work of Sabetai Unguru is used as a counterargument to Weil. Unguru is 

critical of the plundering of history for anecdotes and argues for the need for a 

cultural approach. His work has been highly influential on, for example, the 

work by Imhausen on ancient Egyptian mathematics". Unguru draws attention 

to the assumption of many mathematicians that mathematical entities reside in 

the realm of Platonic ideas and consequently are eternal and unchanging and 

there to be discovered rather than invented 12. This will also predispose 

mathematicians to ask "Who was first? " and so follow linear modes of thought. 

Unguru is direct in his opinion of this approach, it is "ahistorical and should be 

recognised as such by the community of mathematicians 43. Instead, historians of 

mathematics should strive for a faithful reconstruction of the past, although 

Unguru recognises that this is unachievable as it is impossible to think like an 

ancient mathematician. His main concern is the discussion of geometrical 

algebra in ancient Greece. It is posited by some that Euclid's geometrically 

expressed statements are actually an algebraic reasoning; only he did not have 

11 Imhausen, I. (2003) "Egyptian Mathematical Texts and Their Contexts" Science in Context; 
vol. 16(3) pp 367-89. 
12 Unguru, S. (1979) "History of Ancient Mathematics. Some reflections on the state of the art. " 
Isis; vol. 70, no. 254; pp. 556-65. For the work of Unguru see also: Unguru, S. (1975) "On the 
need to Rewrite the History of Greek Mathematics"; Archive For The History of The Exact 
Sciences; Vol. 15; pp. 67-114. Unguru, S. and Rowe, D. (1981) "Does the Quadratic Equation 
have Greek Roots? A Study of `Geometric Algebra', `Application of Areas', and related 
problems (Part 1)"; Libertas Mathematic; Vol. 1; pp. 1-49. Unguru, S. and Rowe, D. (1982) 
"Does the Quadratic Equation have Greek Roots? A Study of `Geometric Algebra', `Application 
of Areas', and related problems (Part 2)"; Libertas Mathematic; Vol. 2; pp. 1-62 
13 Unguru, S. (1979) Op. C1L p. 556. 
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the symbolism to articulate it properly. To Unguru, this is equivalent to saying 

that Euclid would have written in Sanskrit, but only if he was aware of the 

Sanskrit alphabet. The point Unguru is making is that mathematical texts from 

the past should only be discussed in terms that are applicable to the time in which 

they were produced. He says: 

"The only acceptable meta-language for a historically sympathetic 
investigation and comprehension of Greek mathematics seems to be 
ordinary language, not algebra" 14 

The consequences of these ideas for the study of Egyptian mathematics are clear. 

Wherever possible they must be written about in terms that the Egyptians might 

recognise. The dissociation of the texts from their analysis is to be avoided; the 

texts should be allowed to speak for themselves. Linear narratives and the "royal 

road to me" are unconstructive and will lead to an impoverished analysis of the 

texts. There is a definite danger that if an approach like that advocated by Weil 

is taken, then the achievement of the ancient Egyptians will be overlooked. 

7.3: Constructivism 

One way of incorporating the ideas of Unguru into research into the History of 

Science is to adopt a constructivist approach. Constructivism describes a range 

of philosophical ideas about the nature of science, within which there are several 

viewpoints that are different from each other in terms of how rigorously the 

central ideas of constructivism are believed. 

14 Unguru, S. (1979) Op. Cit p. 556. 
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Constructivism is a philosophical idea that defines science in terms of how 

scientific ideas were achieved. Broadly speaking, constructivism sees scientific 

ideas as a construct of humans. It, therefore, emphasises the relationship 

between science and society and its cultural notions. However, there are many 

different degrees of significance within constructivist thinking and the degree to 

which it is thought that culture influences scientific methodology and research 

varies quite considerably from author to author. Whilst some use constructivism 

as a way of investigating how scientists organise themselves in the process of 

research, others suggest that society and culture affect the product of science. 

Constructivism, according to the Routledge Encyclopaedia of Philosophy, is the 

view that scientific knowledge is made by scientists and not determined by the 

world, thus this links constructivism to anti-realism. Constructivism is also 

linked to relativism, because constructivist philosophers do not suppose that 

scientists are guided by one particular method, rather they try to observe the 

workings of science without bias 's. However, this approach is necessary because 

if we are to understand the processes by which scientific ideas are achieved, there 

needs to be unbiased examination of the processes involved. 

Constructivism within science studies can be more of a methodological rather 

than a philosophical way of thinking. Those wishing to study the way in which 

scientific knowledge is gained, and how this knowledge is accepted or rejected 

by the wider scientific community, usually have some form of constructivist 

opinion. However, because it is not a strictly defined phenomenon, there are as 

many ideas about the details of constructivism as there are researchers who use 

" Downes, S (1998) "Constructivism". In Craig, E. (ed. ) Routledge Encyclopaedia of Philosophy. 
London: Routledge. Retrieved July 29,2003, from http: //rep. routledge. com/article/Q017 
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it. The different approaches vary most in the degree in which they see scientific 

ideas as a product of society. 

Barnes, Bloor and Henry tried to research the potential of "the sociology of 

knowledge" and their approach became known as the Strong Programme, as it 

used an extreme form of constructivism16. The question they wished to answer is 

whether sociology could investigate the content and the nature of scientific 

knowledge'7. To answer this question the Strong Programme took a social 

constructivist argument. This is one of the most extreme versions of 

constructivism as it is prone to relativism. This version of constructivism argues 

that scientific ideas are only considered true because a body of scientists for their 

own reasons have decided that they are true. Social constructivism questions the 

link between observations and objective analysis. This version of constructivism 

at first seems to be one of the best for a historian interested in science. If 

historians are interested in the ways in which society manifests itself in its 

scientific ideas then it seems that the assumption that society directly affects 

scientific ideas is inherent. 

However, the problem with this approach is that it is one of the aims of history to 

study the way in which society works. To use the version of constructivism that 

is proposed by the Strong Programme, we have already made too many 

assumptions about the society that the historian is trying to understand. For a 

method to have any strength then it needs to work from the known into the 

unknown. Society is an unknown; therefore trying to understand science through 

its society cannot ever be a secure methodology. 

16 Barnes, B, Bloor, D. and Henry, J. (1996) Scientific Knowledge: A Sociological Analysis, 
Chicago University Press, Chicago. 
17 Bloor, D. (1991) Knowledge and Social Imagery. 2nd ed. University of Chicago Press. p. 3 
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Golinski is another strong advocate for the use of constructivism in the History 

of Science 18. His version of constructivism is weaker than that of Bloor. He 

states in the preface: 

"I argue implicitly that the best justification of an approach is to show 
that it can be used productively to generate new knowledge and to deepen 
understanding. " 19 

He defends his approach from relativism by stating that he sees his version of 

constructivism as methodological relativism. He makes no claims that all forms 

of knowledge are the same, only that they should be studied in the same manner. 

This distinction takes its cue from the philosophy of Feyerabend. A 

constructivist approach to the History of Science does not imply that the 

researcher necessarily believes that scientific knowledge does not bear any 

relationship to the ideas or truth or reality. It merely implies that there are better 

ways to study the way in which human beings approach the subject and better 

ways to think about history. 

There are several problems in the History of Science that Golinski feels are an 

impediment to productive research. The most fundamental of these problems is 

the disciplinary structure of the education system. The strict disciplinary 

boundaries have led to confusion over whether History of Science is a form of 

science or a form of history. This may seem to be a trivial question but, in fact, 

there are serious methodological and cultural differences between the ways these 

two disciplines work. Science tends to be associated with technical language, 

objectivity and the non-human world. Its outlook is also towards the future, to 

the next big discoveries and how these will change the world. History is the 

18 Golinski, J. (1998) Making Natural Knowledge; Cambridge University Press; Cambridge. 
19 Golinski, J. (1998) Op. Cit. p. xi. 
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opposite, it uses common language, it is subjective, it is concerned with human 

culture and it looks backwards. The challenge for historians of science is to find 

a way that these objectives can be combined to produce new ideas about what 

science is and its role in human culture. Golinski warns that to achieve this goal 

requires scientists to handle the ideas of social influence in science and historians 

to look at the analytical issues involved in looking for evidence. Historians are 

as prone to generalisations and assumptions in their thinking about the History of 

Science as scientists are. To solve these problems will require a level of 

frankness and cooperation that has not been seen before. 

Constructivism likes to see science as practice rather than as a body of ideas. 

This is an important consideration because it opens up a field of research that is 

more interested in the peripheries of science and the intellectual context in which 

science operates. However, this still suffers from the problems that Lakatos' 

approach to History of Science does. Lakatos was interested in looking at the 

logical structure underpinning science and providing a rational reconstruction 20. 

He presumed that science could be identified in the past by looking for a 

particular mode of thought. The attempt to define science in the past whether by 

method or by product still requires that the modern writer can recognise in 

documents and treatises from the past the mode of thought or the desired 

outcome of a writer. Historians are active agents and this leads to problems of 

subjectivity. It is impossible to be philosophically neutral towards science. The 

best an historian can do is to attempt to understand the philosophy of the time 

that the texts being studied were written. This is the most productive reading of 

constructivist thought. The weaker versions of constructivism attempt to explore 

20 See Chapter 5. 
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the link between society and the production of knowledge. Any attempts to write 

History of Science should be critically aware of this philosophy, even if it is not 

subscribed to, as it has important ramifications for the selection of texts for study 

and so to the minimisation of subjective thinking. 

7.4: The Relationship between Science and Technology 

The relationship between science and technology is pertinent to the study of 

Egyptian mathematics because of the distinction that is made between applied 

and pure mathematics. It is generally taken by general historians of mathematics 

that Egyptian mathematics deals with only concrete examples and so cannot be 

considered as abstract mathematics. This is similar to the distinction that is made 

between science, the abstract, and technology, the applied. 

I agree with Lewis Wolpert when he says that technology is not science. 

However, the fact that he had to make the distinction between science and 

technology the subject of an entire chapter of his book The Unnatural Nature of 

Science21 shows that the nature of the association is complicated and may run 

contrary to public, and academic, perceptions of the two fields. He goes to great 

lengths to explain how advancement in technology goes along evolutionary lines. 

He is particularly keen to separate technology from science as he wishes to 

promote the cause of science and its position within the hierarchy of knowledge. 

Technology is defined as a practical or industrial art. It is often used to refer to 

machinery and tools that are used for a practical end. As such, one of the main 

differences Wolpert sees between science and technology is the rewards to be 

21 Wolpert, L (1992) The Unnatural Nature of Science, Faber and Faber, London. 

217 



Chapter 7 Science, Eggyptology and Culture 

gained from them. Advance in technology is driven by the market place, so 

rewards in technology are monetary. In opposition, science is, in Wolpert's 

view, driven by the search of scientists for esteem and personal satisfaction. He 

also believes that in the past craftsmen organised themselves into guilds in order 

to keep their ideas secret, whereas scientists made their work freely available. 

He believes that it is impossible to patent scientific advance22. This distinction is 

not valid for ancient Egypt. Knowledge was kept within the scribal class, so it 

was not possible to become a mathematician if one was not a scribe. So, by 

Wolpert's criteria, technology and science in ancient Egypt become much closer 

than is true in more modern times. Again, the question of the intent of the people 

who produced these texts becomes extremely pertinent. This question will be 

explored in Chapter 8. 

Technology is often considered to progress in a way akin to biological evolution. 

When considering ancient and prehistoric technology this is particularly the case. 

There are no names in the early history of technology. Technological 

advancement seems to happen without the conscious influence of people. It is 

therefore presumed that technological advance happens on a trial and error basis. 

George Basalla23 is the most recent author to probe this question in detail and to 

explore the limits of an evolutionary metaphor. He feels that evolution is a good 

metaphor as machines display many of the features of evolving organisms. They 

change slowly over time, they can have vestigial features, and machines engage 

in a struggle for survival, albeit with the aid of humans. Pitt-Rivers was one of 

the first to attempt to fit the theories of evolution to archaeology. He had seen 

the difference it had made to the biological sciences and was keen to replicate 

Z2 Wolpert, L. (1992) Op. Cit. p. 31-2 
23 Basalla, G. (1988) The Evolution of Technology, Cambridge University Press; Cambridge. 

218 



Chapter 7 Science, Egyptology and Culture 

this success. The idea is that humans select the best artefacts for the job and thus 

gradually modify the surviving artefacts so they perform their tasks better. As a 

result, a progressive path can be reconstructed even though artisans are not aware 

of the long-term implications of their changes. Basalla is critical of the Pitt- 

Rivers model of technological change because there is no room in it for titular 

inventors, gifted individuals who make a significant advance. Basalla's model is 

based on four concepts: diversity, continuity, novelty and selection. He feels it is 

better than a cumulative theory of invention because in this model there is little 

room for innovation of gifted individuals. His model takes account of big 

advances while recognising periods of smaller changes. 

"This diversity can be explained as the result of technological evolution 
because artefactual continuity exists; novelty is an integral part of the 
made world; and a selection process operates to choose novel artefacts for 
replication and addition to the stock of made things. "24 

The problem with the comparison to evolutionary biology is that there are no 

conscious beings making selections in biological evolution, nor is there'any end 

product. Biological organisms evolve to fit whatever niche is available; 

technology must change to suit the needs of humans. The diversity of 

technological tools cannot always be explained by niches of human need for 

different tools. The concept of human need is also problematic as there are 

several different levels of need. The need for food and shelter is the most 

important, but in a civilisation that has a hierarchy and a surplus there is demand 

for technology that surpasses these basic needs. It is presumed that mathematics 

in Egypt started because of the demands of building the pyramids. The existence 

of the pyramids can hardly be described as a basic need, yet their construction 

prompted advances in science, mathematics, engineering and technology. 

24 Basalla, G. (1988) Op. Cit p. 25. 
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Science is dependent on advances in technology. Astronomy for example is 

dependent on the ability to make observations. Our ability to make better, more 

precise observations leads us to a better, more precise understanding of stars, 

nebulae, galaxies etc. Modem particle physics would be impossible unless we 

had the technology, such as a particle accelerator, to make it possible. 

There is a complicated interaction between science and technology. 

Technological advancement relies on science and scientific advancements are 

sometimes dependent on having the technology available to make the 

experimental observations that science relies on. They are different parts of the 

same human endeavour: to understand and control the natural world. 

Classifications of human intellectual activity will always have arbitrary 

boundaries. Where these are placed is not normally a problem and we can resort 

to a common-sense approach to the question. Most of the time, we do not have 

to consider the reasoning behind placing the boundary at a particular point. 

However, when challenged, we may find it hard to justify the position that we 

take. The common-sense ideas that we have are not always based on any rational 

thought. Indeed, there are very few people who even consider what the 

difference might be. A common-sense idea is that technology is the application 

of scientific ideas, technology is the physical embodiment of abstract ideas. This 

difference is satisfactory for most modern uses of the terms "science" and 

"technology" but problematic when studying the origins of science. It becomes a 

circular argument. If technology is the embodiment and application of scientific 

ideas then science must come before technology. Yet, stone tools are classified 

as technological and there are very few if any historians of science that are happy 
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with the idea that early hominids thought scientifically. For science to occur 

historians of science need hard evidence to show that abstract thought and 

reasoning has taken place. Further to this, attempts at solving problems even if 

those problems would be considered science in a modern context, are dismissed 

from the scientific canon as not being abstract enough. The intellectual 

achievements of the Egyptians is criticised in this way. Because their 

mathematical texts are expressed in terms of solutions to a definite problem, 

rather than as general solutions to general conceptual problems they are rejected 

because they are not abstract enough. 

There are many similarities between the relationship of science and technology 

and the argument about abstractness in ancient Egyptian mathematics. The 

presumption that technological advance is made in a manner akin to biological 

evolution, rather than through the intellectual work of some now anonymous 

inventor is particularly reminiscent of some of the arguments about advances in 

ancient Egyptian mathematics. The perceived concrete nature of ancient 

Egyptian mathematics has led many to argue for explanations of problems, such 

as MMP 14, that have the least abstract thought possible. It seems that the use of 

mathematics for practical needs has placed it on the level of technology, which is 

considered to advance along lines divergent from scientific advance. 

7.5: Historical Archaeology and the History of Science 

Broadly speaking, we identify science with texts and technology with more 

tangible things. This distinction can also be seen in the different disciplines of 

history and archaeology. Here the same broad definitions can be used with few 
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reservations. Archaeology is about material culture and environmental remains, 

things to be dug up and investigated. History, on the other hand, is about the 

analysis of the textual remains of the past. If Egyptian science is to be 

understood properly then these two disciplines must be able to interact 

productively. 

The problems of combining archaeological investigation of artefacts with textual 

history are well known and have become the subject of recent research. Some of 

the problems are due to the differences in standing perceived by researchers of 

their own discipline and that of the discipline of others. Dirt archaeologists deal 

with very different things from historians interested in the words. However, the 

same people who engaged in written historical activity also made and used 

material culture. Traditionally, it was the duty of history to reconstruct events 

that the objects of archaeology could illustrate. Archaeology took a subservient 

role to that of history. However, recently there is a growing realisation that the 

two disciplines complement each other. Evidence from archaeology can even 

overturn the received historical view. An amazing study has been carried out by 

Fox25 on the battle of Little Big Horn. Fox traced the progress of the battle of the 

Little Big Horn by using ballistic analysis on cartridge shells found on the battle 

site. Through this analysis, he was able to reconstruct the paths of individual 

guns around the battle site. The weight of the archaeological evidence shows 

that Custer's battalion disintegrated and the weapons were seized by the 

attacking forces and turned against Custer's battalion. This picture is far from the 

popular idea of a heroic last stand. This study prompted Fox to reflect on the 

character of history, archaeology and their interaction or lack of it. He found 

25 Fox, R. A. (1993) Archaeology, History and Custer's Last Battle: The Little Big Horn Re- 

examined, University of Oklahoma Press, Norman. 
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while presenting work at academic conferences that there was a feeling that he 

should not have attempted the analysis. Instead, he should have just made his 

findings available to people with more expertise on the events of the battle, i. e. 

historians of the battle. He defines the two disciplines. He says: 

"Paraphrasing Deetz, then, we can define the practice of archaeology as 
the value-laden construction of past actuality based on fragmentary 
remains.. . But historians will now agree that histories represent 
constructions of the past and are the product of contemporary values 
imposed on excerpts of past actuality" 26 

The paper by Deetz27 introduces a new term to the mix, that of `archaeography' 

which he defines as "... the writing of contexts from the material culture of past 

actuality"28. In current British archaeology, we are more likely to identify this 

with theoretical archaeology. However, the idea that archaeological data can be 

used to write overarching commentaries on the nature of past societies and 

culture is an idea familiar to archaeologists on both sides of the Atlantic. 

The comparison between these two conflicts between research fields only works 

to a certain point. Archaeology and history are both attempting to understand ̀ the 

past', whatever that may be. Science and technology, however, are two distinct 

entities. Yet the two conflicts have at their core the same notion: the idea of the 

primacy of text over objects. Both science and history deal with textual evidence 

and traditionally the word has been seen to be more important. John Moreland29 

shows this relationship diagrammatically on what he calls a `Hawkesian ladder', 

named after the archaeologist who first articulated the idea of the hierarchical 

steps in archaeological inference. 

26 Fox, R. A. (1993) Op. Cit. p. 327. 
27 Deetz, J. (1988) `History and Archaeological Theory: Walter Taylor Revisited' American 
Antiquity Vol 53: 1; pp 13-22. 
28 Deetz, J. (1988) Op. Cit. p 18 
29 Moreland, J. (2001) Archaeology and Text, Duckworth, London. 
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Religion/ 
Ideology 

Elites History 

[Science] 

Social 
Relations/ Elites History 

Politics 

Subsistence `Peasants' Archaeology 

Technology `Peasants' Archaeology 

Fig 7.1. Archaeology and History on a Hawkesian ladder30 

7.6: Conclusions 

If history is written by the victors, then History of Science is written by the most 

successful scientists. Even an historian with little scientific training will be 

aware of the power of science and its technological applications. It is impossible 

to forget knowledge of a when reading ancient Egyptian mathematical texts. The 

notion of letting the past speak for itself is therefore challenging and requires 

consideration of not only the aims of the study but also its methodology and 

assumptions. Writing the History of Science and particularly the History of 

Mathematics requires the combination of many disciplines, some of which have 

competing methodologies and aims. The further back in the past travelled, and 

30 Taken from Moreland, J. (2001) p. 14. This is a diagrammatic representation of arguments 
published in: Hawkes, C. (1954) `Archaeological theory and method: some suggestions from the 
Old World', American Anthropologist 56: 155-68 
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the scarcer the evidence, the harder this problem becomes. Any analysis of 

ancient Egyptian mathematics must consider these problems. For an 

Egyptologist, some of these problems are made simpler because the goals of 

Egyptology have been explored and so a clearer picture is possible. However, 

abstractness in Egyptian mathematics is important and to make a judgement it is 

essential that the competing claims of different disciplines are considered. 

The relationship between science and technology is the most significant problem 

to consider. Egyptian mathematics has been placed on the level of technology, 

yet this distinction is based on features of science and technology that have little 

comparison with ancient Egypt. Consequently, this identification has no basis in 

the general analysis of Egyptian culture. If science and technology are 

comparable then it makes sense to recognise Egyptian mathematics as science. 

The problems of integrating history and archaeology are not unfamiliar to 

Egyptologists. Attempts to find archaeological evidence for scientific thought 

are, however, going to meet with difficulties. The accuracy of the alignment of 

the pyramids at Giza has shown astronomical knowledge, but the application of 

mathematics leaves less evidence. The debate between Weil and Unguru does 

not present any difficulties to an Egyptologist. The plundering of history for 

episodes to inspire current mathematicians is not a concern. A more sensitive 

approach is necessary if the Egyptian mathematical texts are to be properly 

understood. 
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Chapter 8 

A New Approach to Ancient Egyptian 

Mathematics 

This chapter will explore how a better understanding of the context of research 

into the history of mathematics may alter our appreciation of ancient Egyptian 

mathematics. It will draw on the conclusions reached in Chapters 6 and 7 on the 

nature of science and the best way in which to study the history of science and 

apply these findings to the study of ancient Egyptian mathematics. It will also 

return to the observations made in Chapters 2 to 4 about the achievements of 

ancient Egyptian mathematics. 

8.1: Introduction 

A contextualised approach to ancient Egyptian mathematics is important, but 

understanding what that context is is very difficult. To understand this context a 

consideration of the aims behind the production of the texts is necessary. The 

Rhind and Moscow Mathematical Papyri each contain a series of problems with 

concrete, numerical terms. They have been copied and stored. It is largely 

agreed that they were produced as training manuals so that Egyptian scribes 

could learn mathematics to carry out their tasks. Each of the factors by which the 

texts are to be judged need to have significance in relationship to these 

observations. These factors can be very simple ideas such as ease of reading but 

once these simple factors have been appraised, more complicated factors can be 
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brought into consideration, such as the idea of an ancient Egyptian epistemology. 

Building up an epistemology requires the combination of all the branches of 

ancient Egyptian science, such as mathematics, medicine, anatomy, veterinary 

science and astronomy. This will then need to be integrated with what is known 

of the ancient Egyptian's religious beliefs. This is a possibility for further 

research but it will require the combined efforts of many experts on other areas 

of Egyptian science. This thesis can, however, start to investigate some of the 

simpler factors. The questions that this chapter will attempt to answer are: 

Are the texts easy to understand? 

Is the mathematics easy to use? 

Does the mathematics provide an insight? 

Was the mathematics useful? 

Can the mathematics solve complex problems? 

In addition to these questions, this chapter will examine some further 

considerations that have been considered important by other historians of 

mathematics: 

Is the mathematics abstract? 

Do the Egyptians have a place in the development of mathematics? 

Did the Egyptians have the concept of proof? 

227 



Chapter 8A New Approach to the study of Egyptian Mathematics 

8.2: To What Extent Can we Talk about the `Character' of Ancient 

Egyptian Mathematics? 

Arguments about whether or not the Egyptians were able to calculate and use 

various mathematical formulae or concepts generally lead to comments about the 

`character of ancient Egyptian mathematics". This trend appears to have been 

started by Peet in the original translation and publication of the Rhind 

Mathematical Papyrus2. This implies that ancient Egyptian mathematics, or at 

least Egyptian mathematical texts show particular attributes that separate them 

from other mathematics or mathematical texts. As Egyptian mathematics is seen 

to lie outside the main corpus of mathematical works, these comments are 

usually directed towards discounting an achievement. Yet, the ideas we have 

about the character of Egyptian mathematics are based on what can be presumed 

to be only a sample of texts produced. Not only that, the extant texts hint at 

further mathematical work that does not survive, perhaps because it was never 

written down. MMP 10 is perhaps the type example. The method used to 

calculate the surface area of the hemisphere is not an obvious method3. Indeed, 

the conception of a three dimensional curved surface in terms of a flat area is an 

idea that takes more thought than is evident in the surviving text. The existence 

of a link between the method of calculation of the hemisphere and a circle4 is 

evident. The use of the same fraction [8/9] and the squaring of the diameter are 

devices used in both methods to achieve the answer. This problem and others 

like it show that there was more thought and rationalising in ancient Egypt than 

1 See for example Rossi, C and Tout, C. (2002) "Were the Fibonacci Series and the Golden 
Section Known in Ancient Egypt.? " Hisioria Mathematica; 29; pp. 101-113. 
2 See Chapter 5. 

See Chapter 4. 
4 See RMP 41, Chapter 4. 
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survive in their texts. This should not surprise us, as papyrus is a fragile material 

and prone to many forms of decay. The similarity between the methods 

employed to find the surface of a hemisphere and a circle, suggests that there 

may have been a particular way in which the Egyptians thought about 

mathematical problems and therefore a particular way they went about solving 

them, which in turn suggests a `character'. Unfortunately, there are very few 

surviving texts so any commentators on Egyptian mathematics need to be 

mindful that anything they say will be a generalisation. 

We cannot suppose that the texts that survive from ancient Egypt are anything 

other that the work of skilled mathematicians. It must be assumed that the 

mathematics they contain is representative of the level of achievement for the 

time they were written. The method achieved in MMP 14 could not have been 

reached by chance. It represents an end product of a long line of mathematical 

reasoning. Some now anonymous mathematician(s) sat down and reasoned out 

the arguments behind the mathematics. This knowledge should also inform any 

discussion on the achievements of the Egyptians. 

8.3: An Appraisal of Egyptian Mathematics 

8.3.1: Is the Mathematics Easy to Understand? 

This is perhaps one of the most difficult questions to answer because the 

language that it is expressed in is idiomatic, and thus hard to decipher. There are 

also technical terms used in the problems that do not appear in any other type of 

text. We must assume their meaning from the mathematical context they are 
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given in. To make it even harder, some of the technical mathematical terms are 

also idiomatic. Some of these idiomatic phrases are reasonably clear, others are 

more opaque, as is the nature of idiomatic phrases. As they are embedded in the 

culture that produced them, and this culture is not fully understood, we will not 

be able to retrieve the meaning from all the phrases. For example, the term for a 

square root is reasonably straight forward as knbt is also the word for a corners, 

but others are more obscure. For example, in MMP 7 we are given the ratio of 

the height to the breadth of a triangle as idb: the `bank', referring to a river 

bank6. We can only understand what this term means from the preceding and 

following arithmetic. The precise meaning of the term and any nuance implied 

to an Egyptian reader is lost on us. We must presume that the Egyptian scribe 

that prepared the text knew what was meant. We must also presume that he was 

using idiom that was apparent to his intended readership. 

As to the mathematical processes involved, it does take a knowledgeable eye to 

ascertain exactly what is meant in the problems and the methods concerned. For 

example, the problems dealing with false supposition do not explain the 

reasoning behind the argument. It is up to the readers to work it out for 

themselves. This is certainly a defect in any mathematical text, it means that the 

texts could not be used other than in a lesson with a master. This is not a self- 

study manual. 

s Faulkner, R. (1999) Dictionary of Middle Egyptian; Griffith Institute; Oxford; p. 280. 
6 Faulkner, R. (1999) Op. Cit. p. 35. 
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8.3.2: Is the Mathematics Easy to Use? 

The foundation of a mathematical system that is easy to use is clear arithmetical 

procedures and good notation. If the procedures are too complex then it is easy 

to make mistakes. The arithmetic in the papyri is unfamiliar to a modern reader, 

but there is no reason to see this as a fault. There is also no reason to suppose 

that because the Egyptians spelt out every arithmetical step in the problems that 

they were intellectually inferior. 

The system for multiplication is extremely clear, once it has been explained what 

the two columns of numbers represent. The system of repeat doubling is the best 

system for working out a multiplication sum, and the Egyptians could modify 

this system to fit the specific problem. It is superior to our system because it 

does not necessitate the learning of multiplication tables. Neugebauer writes 

that: 

"... the whole procedure of Egyptian mathematics is essentially additive. 

... It certainly never entered the minds of the Egyptians to ask whether 
this process will always work. Fortunately it does; and it is amusing to 
see that modern computing machines have made use of this principle to 
exactly the same end, namely to reduce multiplication to a simple process 
of counting" 7 

What Neugebauer fails to recognise is that multiplication is a process of repeat 

addition; it is essentially counting. The modem way of working out a 

multiplication of numbers with more than two digits splits the sum into several 

smaller parts. Thus, the sum twenty six times fourteen is split into the sums six 

times four, twenty times four, six times ten and twenty times ten all added 

together. The answers to these multiplications we only know because we learnt 

7 Neugebauer, 0: (1952) The Exact Sciences in Antiquity: Princeton: Princeton University Press 
p. 73. 
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them parrot fashion at school. It is only by an accident of nature that human 

beings are so obsessed with base ten. A binary system is the simplest system to 

use. 

There is a problem with unit fractions. They are very awkward for modern 

mathematicians to use as they are so used to fractions with a denominator and a 

numerator,. However, with practice and experience they do become easier to 

understand. The 2/n table is an invaluable reference. The use of other tables 

such as the Egyptian Mathematical Leather Roll must have made calculations 

easier, but the use of unit fractions does give rise to complications in the 

arithmetic. The difference between MMP 7 and 17 is only in the way the 

mathematics is calculated. This problem would not arise if top-heavy fractions 

could be used, as there would be no difference in the method. 

There are several reasons why the Egyptians may have used unit fractions. The 

first is the problem of notation. Apart from Horus-eye fractions, fractions are 

written with an r over the number. A new system of notation would have to be 

invented to allow anything other than unit fractions. Two-thirds is a special case, 

but this has its own symbol. It is impossible to create a unique symbol for every 

fraction. The second reason is that splitting loaves into unit fractions appeals to 

our sense of fairness. If loaves that are to be shared equally among a group of 

men are split into pieces the same size than each man can see that he has the 

same amount as his companion, discounting the crumbs that would fall off and 

the crusts. Whatever the reasons for the use of unit fractions, Section 2.6.3. 

shows that the Egyptians could conceive of non-unit fractions. This means that 

there were positive reasons for the use of unit fractions, which must have 
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something to do with the way mathematics was used in ancient Egypt. It is 

possible that the use of mathematics in accounting was the incentive. 

8.3.3. Does the Mathematics Provide an Insight? 

It is interesting to see that the geometrical problems in the Moscow Mathematical 

Papyrus use numbers that make the arithmetic easier. For example, Problem 10 

uses a hemisphere with a diameter of nine because this is the smallest value that 

gives a whole number when divided by nine. Similarly, problem 6 gives a case 

where the values given make the arithmetic simple. This was no doubt done 

deliberately and improves the instructional value of the text. The student of 

mathematics does not have to worry about the sharpness of his arithmetical skill 

to be able to follow the text. He is therefore free to follow the mathematical 

reasoning of the problem with as little hindrance as possible. However, Gunn 

and Peet argue: 

"Now from our standpoint this simplicity is a defect; we feel that some 
difficult divisions and square roots would have been more instructive to 
the student as showing that the problem does not depend for being solved 
on containing only fours and sixes and hundreds, and that in the case of 
square roots he would see what degree of accuracy was expected when 
the root would not "come out" exactly. " 8 

I do not agree with this point of view. There are plenty of mathematical 

problems that would allow the student to practise his arithmetical skill. When 

dealing with problems that contain geometrical ideas, the arithmetic should be 

kept as simple as possible. Gunn and Peet suggest that the geometrical problems 

are kept simple so that they can be learned by heart. It is suggested that a student 

faced with a truncated pyramid of any size could then recall MMP 14 and so 

8 Gunn, B and Peet, T. E (1929) `Problems from the Moscow Mathematical Papyrus, ' Journal of 
Egyptian Archaeology Vol. 15 pp. 166-185; p. 185. 
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solve the problem. I do not think this is the case. The most obvious application 

of the mathematics in MMP 14 is to the volume of a mud brick ramp. The scribe 

may very well have had to find the volume of a figure that approximated a 

truncated pyramid, or had elements of it. To apply the knowledge an insight into 

the mathematics is needed, this is what the Egyptians were trying to achieve 

when they gave values that made the sums easy. 

8.3.4: Was the Mathematics Useful? 

Egyptian mathematics is often dismissed as ̀ purely practical'. The problems 

certainly lend themselves to the measurement of land, the reason given by Greek 

writers for the invention of geometry in Egypt. However, the practical nature of 

Egyptian mathematics does not mean that it had no time for intellectual curiosity. 

The most famous example of this is problem 79 from the Rhind Mathematical 

Papyrus which seems to be the forerunner of the rhyme "As I was going to St. 

Ives ... ". However, the vast majority has a practical use and I think this is to be 

praised, as long as the other ideas of good mathematics are not sacrificed. 

8.3.5: Can the Mathematics Solve Complex Problems? 

The Egyptian mathematician had many tools at his disposal. He could find the 

volume of rectangular and circular prisms and pyramids, he knew about the 

relationships that the areas of different shapes have, he had a wide range of 

arithmetic skills, and he could work out ratios and proportion. The problems in 

the papyri are not prescriptions for solving particular problems, they are a recipe 

book of skills. It is difficult to say if these skills were complex enough to solve 
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all of the problems that an Egyptian mathematician would face. Some work may 

have been solved by trial and error. However, we can hardly criticise the 

Egyptians for not having a sound appreciation of calculus. 

8.4: Further Considerations 

Further to the ideas of good mathematics in an ancient Egyptian context, there 

are other important considerations that historians of mathematics have used in 

order to evaluate the importance of Egyptian mathematics. 

8.4.1: Is the Mathematics Abstract? 

Egyptian mathematics is commonly criticised for not being abstract. The main 

consequence to this fact is the perception that the Egyptians had no algebraic 

system, either in concept or notation. Gunn and Peet wrote in their commentary 

on MMP 6: 

"This is hardly the place in which to discuss the psychological meaning 
of the use of the unknown x in mathematics, but it is at least clear that 
this, whether used explicitly in an algebraical solution or implicitly in 
some purely "arithmetical" one, gives to the modern method an abstract 
character entirely foreign to Egyptian mathematics. " 9 

To Gunn and Peet algebra is the most abstract form of mathematics. Algebra 

uses letters to show the unknown quantities and rearranges equalities until the 

unknown is found. However, algebra is a modern convention to express the 

problem in a simple, visual way. Modern mathematicians have got so used to 

using algebra that they will `think' in algebra. Egyptian mathematics does suffer 

9 Gunn and Peet, (1929) "Problems from the Moscow Mathematical Papyrus" Journal of 
Egyptian Archaeology, Vol. 15; pp. 166-85; p. 169. 
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because it does not use algebraic notation, but this does not mean that Egyptian 

mathematicians could not use the abstract ideas that underlie algebra to solve 

their mathematical problems. As we have already seen in MMP 19, the scribe 

who wrote the papyrus was able to manipulate the equality in exactly the same 

way that a modem mathematician using algebra would. In MMP 19, the formula 

used in the solution could only have been achieved by knowledge of abstract 

mathematical arguments. There are also Egyptian mathematical problems that 

do use a word that I believe exactly corresponds to the unknown x used in 

modern mathematics. The word 'h'is translated as heap. What is a heap if it is 

not a pile of unknown quantity? The fact that the Egyptians are using a word 

where we would use a single letter does not alter the mathematical concepts 

behind their use. The word 'algebra' is a European corruption of an Arabic 

phrase which means "restoration and reduction". Restoration refers to the idea 

that the same quantity can be added or subtracted to either side of an equation, 

but leave the same equality. This idea is used in many problems including 

problem 19 of the Moscow Papyrus. The idea of reduction refers to the way 

algebra is used to simplify an equation until it can be solved. This idea is also 

present in Egyptian mathematics. The person who prepared the formula used in 

MMP 14 was certainly using this principle, whatever his starting point was. 

It is not only from algebra that mathematics gets its abstract quality. The fact 

that the Egyptians had a number system that is independent of objects is the basis 

of an abstract philosophy of mathematics. In many histories of mathematics the 

authors say that the Egyptians were not able to think of numbers independently 

of the counted object. They say that the mathematics is all about practical 

problems, so that in every part of the text the numbers are always counting 
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something. Contemporary wisdom states that the Egyptians were not able to 

think of `three' but would have to think of `three bulls', 'three hekat of grain' or 

`three loaves of bread'. There are two rejoinders to this argument. Firstly, most 

people in our society do not consider that number is an abstract concept; the idea 

of number is so fixed in the cultural zeitgeist that the count and the object are 

inseparable. But number is, ipso facto, abstract; one cannot hold three in the 

palm of one's hand; only three things, not three alone. The sign for the concept 

remains the same; three is applicable to atoms as much as it is to elephants. This 

was well understood by the Egyptians and is the second opposition to the 

argument. 

The way that the Egyptians represented ̀ three' did not change according to the 

object. It did not change whether it was representing a number of objects, a 

linear measure, a measure of area or a measure of volume. In MMP 6 the 

numbers refer to different properties of the rectangle: we are given a ratio and the 

area and have to work out the two lengths. The numbers are used together; there 

is no difference to how they are treated. This means that the Egyptians did know 

that `three' has properties that transcend the object. This is pure and abstract 

mathematics. 

The Egyptians' abstract conceptualisation of mathematics goes further. In MMP 

10, among others, there are no units given. Therefore, the reader may assume 

what units are used, but none are stated. This shows that the Egyptians 

understood that units are arbitrary and that any system of measurement will be a 

ratio scale. Ratio is a concept not purely of measurement but of the inherent 

properties of analogy. A ratio scale is a scale where the units of measurement are 
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arbitrary, so several numerical values could be given for the same concepts; 

whether they be length, area, mass or volume; but the ratios between two 

measurements will be identical as long as they are both stated in the same units. 

For example, the ratio between the distances from London to Edinburgh and 

from London to Paris, will always be the same, but the numerical values given 

for the distances will change depending on whether the measurement is given in 

miles, metres or yards. There is nothing more abstract in mathematics than the 

idea of analogy or of the irrelevance of number and the supremacy of concept. 

Another reason for supposing that Egyptian mathematics is not abstract is 

because the problems are expressed in ways that lead us to believe that the 

mathematics is for purely practical purposes. We have already dealt with the 

need of practicality in the mathematics, but we can also ask: "Are all the 

problems practical? ". There are problems in the mathematics that expound with 

implausible, and in some instances, impossible numbers. For example, RMP 50 

deals with a circular piece of land with a diameter of 9 khet. One khet is equal to 

one hundred cubits. The area of the piece of land is given as 64 square khet so 

the piece of land has an area of 640,000 square cubits or over 600 km2. It is 

hard to see how being able to measure a piece of land this size would be practical 

for everyday agrarian problems, particularly as it is a circular piece of land and 

fields are normally quadrilateral in dimension. 

The numbers used in the problem are chosen because the Egyptian method 

requires that eight ninths of the diameter be found: this is easy to do when the 

diameter is nine. The methodology used is to find eight ninths of the diameter 

and square it; the concept of `field' is purely arbitrary, it has no intrinsic 
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significance to the problem. It could have easily been a building or a well, but 

the idiom used is agrarian because the society was so. RMP 50 just shows the 

method. It is not an example of a `real' mathematical problem. This shows that 

the Egyptians could see that their methods would work for cases of which they 

had no practical experience. Thus, the concept of `household arithmetic' is 

invalid in such a proposition. 

Philosophers of science also write about the beauty of mathematics. Kline 

writes: 

"To describe mathematics as only a method of inquiry is to describe da 
Vinci's `Last Supper' as an organisation of paint on canvas"10 

Considering the fact that Leonardo da Vinci's 1498 depiction of the `Last 

Supper' in the Convent of Santa Maria delle Grazie (Refectory) in Milan is a 

fresco and is therefore not on canvas how far can one rely on the research of 

Kline? In fact any pictorial representation is an organisation of pigment on 

medium; any meaning is not inherent in the pigment itself but on the ability of 

the viewer to make sense of the pattern of pigmentation. Thus, mathematics may 

be viewed as both a methodology and an abstraction, without detracting from 

either viewpoint. Egyptian art could also be functional, to suggest that the 

Egyptians should see aesthetic value in their mathematics is another example for 

the need to have a contextualised approach to the history of mathematics. 

Kline asserts that the reason that the great mathematicians have striven to 

produce new algorithms and proofs is to satisfy their higher intellectual need and 

their want for beauty. Mathematics obtains its beauty because of the logical 

10 Kline, M. (1964) Mathematics in Western culture, Oxford: Oxford University Press, p 147. 
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reasoning and the ability to express complicated ideas in a simple way. 

Symmetry is perceived as the ultimate expression of beauty in nature and much 

of mathematics and modem physics lends itself to this ideal. Mathematics can be 

very intellectually satisfying because it appeals to our logical temperament. If 

beauty is a necessary component for mathematics then it is a component that the 

Egyptians were well aware of. At the end of the problems we are told `Look, 

you will find it good. " The word used for correct is nfr which is also the word for 

beauty. For an ancient Egyptian truth is beauty, literally. 

8.4.2: Did the Ezyptians Have the Concept of Proof? 

A question that follows on from the ideas surrounding the abstract nature of the 

mathematics is whether Egyptian mathematics is scientific. David Oldroyd in his 

The Arch of Knowledge defines science as 

"The scientific movement is made up of a community of people who seek 
to gain knowledge of the world by the use of various kinds of 
observational and experimental procedures, not merely by thinking or 
talking about problems as do philosophers - though obviously a deal of 
though and talk is involved along the way in scientific work. The 
scientist seeks to discover the regularities of nature and the laws 
describing these regularities; and theoretical explanations are proposed to 
account for such laws. "" 

This regularity is important to the concept of proof; the necessity that an instance 

is reproducible and applicable to extended circumstances not necessarily reliant 

upon the initial exempla. So, one of the important features of science is proof as 

a demonstration of logical reasoning. The Egyptians obviously saw the need to 

demonstrate the results that they obtained. We see phrases such as "the doing as 

" Oldroyd, D. (1989) The Arch of Knowledge: an Introductory Study of the History of the 
Philosophy and Methodology of Science New South Wales: New South Wales University Press 

p. 2. 
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it occurs" appearing at the end of the problem followed with the argument behind 

the solution of the problem. 

In MMP 6, we are shown a diagram of the completed answer. Next to the two 

sides of the diagram we are given the two measurements, and inside the rectangle 

we are given the area. By the side we are shown that 3, the breadth, times 4, the 

height, do in fact equal the area, 12. After MMP 17 and 14, we are given more 

of the arithmetic needed to solve the problem. These are not proofs in the 

modern sense. They are demonstrations, but they serve some of function that a 

modem proof does. Science needs to have an objective demonstration that the 

answer it has reached was not arrived at by chance, but because the method is 

sound. Modem mathematicians will not use any definite values when 

constructing a proof. In the Egyptian problems we can see the beginnings of 

scientific thought because they saw the need for demonstration of the result. 

They were not able to express this in the objective way that is necessary in 

modem proof, because algebraic notation is the contemporary means of 

transmitting such proof. 

In Chapter 6, the idea of mathematical proof was examined through the work of 

Lakatos. Lakatos was keen to impress on his readers the idea that proofs do not 

necessarily have to be formal to be sound. In fact, he sees mathematicians who 

only give the epithet `proof to abstract, formulaic proofs as naive. His 

description of pre-formal proofs holds much that is relevant to an Egyptologist 

trying to explore the nature of proof in ancient Egyptian mathematics. In pre- 

formal proofs, the premise lies not in the formal manipulation of formulae, but in 

an argument that relies on a thought experiment. The proof requires the reader to 
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imagine the figures and to manipulate them mentally. This has similarities to the 

Egyptian approach to writing mathematical texts. The extant texts do not show a 

formal understanding of proof, but to deny that the ancient Egyptians did not 

have any concept of proof is clearly false. The use of modern terminology to 

describe a civilization that has been dead for thousands of years is not 

productive, and this is a clear example of how modem terminology can cause 

problems. It may be that the idea of clarification, rather than proof, is more 

appropriate to the processes of the ancient Egyptians. They used their numerical 

workings at the end of the problems to demonstrate that, in the specific case at 

least, the method is valid. The numerical arguments are therefore showing the 

procedure in a different way. There are no examples of the Egyptians using a 

method that only works by chance. The procedures that went into the production 

of these texts must have been rigorous, even if they were not as rigorous as 

modem standards. 

We may not be able to recognise Egyptian mathematics as scientific, but is it fair 

to ask whether Egyptian mathematics conforms to our modem idea of science? 

In no other areas of Egyptology is this question asked. We do not discuss the 

failings of the political system because it lacked democracy. We do not criticise 

the Egyptians for transporting material by raft and sledge, when if only they had 

thought of it they could have used a speedboat and a lorry. We learn nothing 

new about either the nature of mathematics or the Egyptians. We can hardly 

expect one of the first civilisations to have achieved the mathematical maturity 

that is present in a modern society. We have inherited thousands of years of 

thought; it is no wonder that we are more scientific in our representation. In art 

and religion the Egyptians had an entirely different outlook. They required 
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different things of their art than we do. It is therefore not appropriate to use our 

ideas of using perspective in art when looking at Egyptian art. We can see that 

the Egyptians could think in a logical manner. The fact that this is not always the 

case should not shock us. When we cannot see the logic behind Problem 23 of 

the Moscow Mathematical Papyrus we should not condemn the entirety of 

Egyptian mathematics for being illogical. There may have been a sound reason 

that is now lost to us. One must resist importing contemporary constructs and 

ideas into an ancient world. 

8.4.3: Do the Egyptians Have a Place the in History of Mathematics? 

"There is hardly a culture, however primitive, which does not exhibit 
some rudimentary kind of mathematics. The mainstream of western 
mathematics as a systematic pursuit has its origin in Egypt and 
Mesopotamia. It spread to Greece and to the Graeco-Roman world. For 
some 500 years following the fall of Rome, the fire of mathematical 
creativeness was all but extinguished in Europe; it is thought to have been 
preserved in Persia. After some centuries of inactivity, the flame 
appeared again in the Islamic world and from there mathematical 
knowledge and enthusiasm spread through Sicily and Italy to the whole 
of Europe" 12 

The received view of the history of mathematics is a linear model where ideas 

are discovered and then passed on to the next generation of mathematicians. The 

arrow of time is the arrow of progress. The writers of these comments are 

usually fixed into a linear narrative model where discoveries are made only once 

and the next mathematician in the chain will improve on the idea or use it to 

make a new discovery. Models are constructed where one person makes a 

mathematical discovery, and then either through a written or a spoken medium, 

12 David, P and Hersh, R (1981) The Mathematical Experience; Birkhauser, Boston. 
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this idea is passed on wholesale to the next generation of mathematicians. 

Through this mechanism, the corpus of mathematical literature is built up in a 

linear fashion with ideas being built upon in each successive stage. Working 

backwards, it follows that the mathematics of an antecedent culture is only 

valuable if it had a contribution to make to the culture under study and therefore 

an impact on the whole of the process of development of mathematical thinking. 

This model necessitates the idea of a progenitor of mathematics, who started the 

chain, usually identified as Thales of Miletos. It is a commonly held view that 

mathematics started with the ancient Greeks. Indeed, the idea that mathematics 

started with the ancient Greeks and that everything before it was no more than a 

confused prologue goes back at least as far as Kant: 

"Yet it must not be thought that it was as easy for it [mathematics] as for 
logic - in which reason has to do only with itself - to find the royal path, 
or rather itself to open up; rather, I believe that mathematics was left 
groping about for a long time (chiefly among the Egyptians), and that its 
transformation is to be ascribed to a revolution, brought about by the 
happy inspiration of a single man [Thales]. 9113 

Thales of Miletos has been called the Father of Mathematics 14. If Thales was the 

progenitor of mathematics then this precludes there being anything mathematical 

before he made his discoveries. Therefore, the numerate reckonings of the 

Egyptians are in some way short of the benchmark that is set by the working of 

Thales. One of the reasons for this is the perceived utility of Egyptian 

mathematics. Egyptian mathematics is seen to be merely applied mathematics 

13 Kant, I (1786) Critique of Pure Reason, preface to second edition. Bxi. 
Translation: Goyer, P. & Wood, A. Cambridge Edition of the Works of Immanuel Kant (1998) 
Cambridge University Press, Cambridge. 
14 See, for example, Boyer, C, rev. Merzbach, U (1991)A History of Mathematics, 2"d ed; John 
Wiley and Sons; p. 46. Also: Lloyd, G. E. R. (1970); Early Greek Science: Thales to Aristotle; 
Norton; London; p. 8. 
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and that it lacks abstract elements. The way that the Egyptians phrased their 

ls mathematical problems is often cited as evidence for this 

Most Western historians of mathematics will hold that mathematics as a pure 

subject was born in ancient Greece, an invention of Europeans. In histories of 

mathematics, Egypt is confined to a short opening chapter, if given any space at 

all. The book will then move on to the important business of discussing Greek 

mathematics, as this quote from Morris Kline's `Mathematics in Western Culture 

illustrates: 

"We shall see that the last few hundred years during which the Greeks 
flourished and the last few hundred years of our modern era produced 
infinitely more knowledge and progress than the millenniums of the two 
ancient civilisations. " 

It is surprising to see a man who would call himself a mathematician fall prey to 

mathematical error. We are not progressing with mathematics at an infinite rate, 

therefore either he is distorting the picture by vastly exaggerating the situation, or 

he believes that there was no progress made in mathematics and the sciences in 

Egypt or Mesopotamia. Kline also writes that Egyptian mathematics compared 

to Greek mathematics is like comparing "the scrawlings of a child just learning 

how to write" to great literature 16. In his history of mathematics Egyptian and 

Babylonian mathematics is only given three pages in a volume of seven hundred. 

This indicates the proportion of our mathematical ability he thinks we owe the 

Egyptians. 

15 Peet, T. E. (1923) The RhindMathematical Papyrus British Museum 10057 and 10058; 
University of Liverpool Press, Liverpool; p. 10-11 
Also Boyer, C, rev. Merzbach, U (1991). Op. cit. p. 21. 
16 Kline, M. (1962) Mathematics a Cultural Approach, Reading Mass.: Addison-Wesley, p. 258. 
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There are some writers who believe that Egyptian mathematics was a retarding 

force on progress. The main charge against them is their use of unit fractions, 

the use of which persisted well into Greek and Roman times. The use of unit 

fractions was taught to administrators and so the use of unit fractions spread to 

other areas of the Roman Empire. Fractions were sometimes expressed as unit 

fractions, although the problem had been posed in sexagesimal fractions, which 

can give a more accurate result. However, the Egyptians cannot be blamed for 

the continuing use of their practices. Rather, the use of unit fractions was 

presumably due to the fact that the system that was easy to understand, this is 

particularly evidenced as results were changed into unit fractions. There is no 

evidence that the continued use of unit fractions in any way impeded the 

mathematical output of the Greeks and Romans. 

Even those sympathetic to the achievements of Egyptian mathematics are still in 

the practice of denigrating the achievements that the Egyptians did make. 

Newman remarks that the Egyptians were remarkably pertinacious in solving 

everyday problems, yet: 

"As to the question of how Egyptian mathematics compares with 
Babylonian or Mesopotamian or Greek mathematics, the answer is 
comparatively easy and comparatively unimportant" 17 

Neugebauer goes even further saying: 

"To some extent Egyptian mathematics has had some, though rather 
negative, influence on later periods. s 8 

"The role of Egyptian mathematics is probably best described as a 
retarding force upon numerical procedures"19 

17 Newman, J. (1956) The World of Mathematics, London: Allen and Unwin p. 84 
18 Neugebauer, 0. (1952) The Exact Sciences in Antiquity; Princeton University Press; Princeton, 
New Jersey, p. 72 
19 Neugebauer, 0; Op. Cit. p. 80. 
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Do the Egyptians have a place in the history of mathematics or are we to believe 

that the contribution that they made is worth only three pages out of seven 

hundred? The indebtedness of the Greeks to Egyptian and Babylonian 

mathematics has to be explained in order for the linear model to work. Many 

Greek writers wrote about how much they owed to the Egyptians. These 

comments also have to be explained. 

The Greeks themselves were not shy at acknowledging the debt they felt they 

owed to the Egyptians. They certainly thought they geometry was born in Egypt. 

Herodotus2° wrote: 

"The king moreover (so they say) divided the country among all the 
Egyptians by giving each an equal square parcel of land, and made this 
his source of revenue, appointing the payment of a yearly tax. And any 
man who was robbed by the river of a part of his land would come to 
Sesostris and declare what had befallen him; then the king would send 
men to look into it and measure the space by which the land was 
diminished, so that thereafter it should pay in proportion to the tax 
originally imposed. From this, to my thinking, the Greeks learned the art 
of geometry. " 

Proclus2I wrote: 

"According to most accounts geometry was first discovered among the 
Egyptians, taking its origin from the measurement of areas. For they 
found it necessary by reason of the rising of the Nile, which wiped out 
everybody's proper boundaries. Nor is there anything surprising in that 
the discovery both of this and of the sciences should have had its origin in 
practical need, since everything which is in process of becoming 

progresses from the imperfect to the perfect. Thus the transition from 

perception to reasoning and from reasoning to understanding is natural. 
Just as exact knowledge of numbers received its origin among the 
Phoenicians by reason of trade and contracts, even so geometry was 
discovered among the Egyptians for the aforesaid reason. " 

20 Herodotus, History, II, 109; tr. A. D. Godley, (1920) Heinemann, Portsmouth. 
21 Proclus, On Euclid I ; tr. I. Thomas, (1939) Greek Mathematical works 1, Heinemann, 
Portsmouth 
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The Greeks acknowledged the debt they had to the Egyptians. It is often claimed 

that the Greeks were exaggerating when they recognised geometry as an 

invention of the Egyptians. Some claim that there is no evidence that the Greek 

mathematicians ever visited Egypt to learn about its mathematics22. Yet it does 

not seem to be a coincidence that the early Greek mathematicians studied in 

Alexandria. Many Greek mathematicians such as Eudoxus, Thales, Democritus 

and Pythagoras were supposed to have learnt from the Egyptians. We have no 

direct source that this is the case, but there is no reason not to believe it. It seems 

absurd that the Greeks should not be believed in this case. The writings of 

Proclus contain ideas similar to those that are seen Egyptian mathematics as a 

prologue. 

Peet does not argue against these accounts of the Greeks. Indeed, he writes: 

"The statement with regard to the equal division of land between the 
people has probably little historical value, but we need have no doubts as 
to the soundness of the derivation of Greek geometry from Egypt. 
Geometry is an intensely practical science and would naturally first 
appear in a country where land was of very great value, in other words, in 
a highly agricultural country"23 

Yet, Peet in his John Rylands lecture speaks of "the vast debt which the world 

owes to the Greeks"24. There is obviously a discrepancy in these opinions. The 

key to this discrepancy lies in philosophical definitions of mathematics and 

science. These definitions have been built up from the beginnings of philosophy 

in Greece. There are works written by the Greeks explaining what they saw as 

desirable in mathematics. Our philosophy stems from these works. Therefore, 

the definitions that are used to evaluate Greek and Egyptian mathematics come 

22 See for example, Mary Leftkowitz (1996) Not out of Africa, HowAfrocentrism became an 
excuse to teach myth as history; Basic books; New York. 
23 Peet. T. E. (1923) Op. Cit.; p. 31. 
24 Peet T. E. (1931) Op. Cit. p. 441. 
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from the ideas of the Greeks. Since Egyptian mathematics precedes Greek 

mathematics, effectively ideas are being retrospectively applied. So while the 

Greeks are happy to credit the Egyptians for their contributions, because 

philosophy was in its infancy, modern writers are coming after millennia of 

philosophical enquiry which is affecting their treatment of the mathematical 

texts. 

With the publication of Black Athena2s, the level to which the Greeks borrowed 

mathematical ideas from the Egyptians has become a political one. The question 

is now loaded with modem assumptions about race. This is most unfortunate as 

it is impossible to have an unimpassioned academic debate about this issue. It is 

my feeling that Black Athena makes too many claims for the Egyptians, however, 

this does not mean that the idea that the Greeks should have learnt from the 

Egyptians is flawed. It is extremely difficult to trace cultural influence, 

particularly of such an intellectual kind, and extreme care should be taken over 

speculations of this kind. However, racial considerations and the modem 

political climate should not interfere with our efforts. 

It seems clear, therefore, that we should not dismiss the mathematics of the 

Egyptians as unscientific, rather we should see it as proto-science that had an 

important role in the beginnings of mathematics as a separate scientific subject. 

We should not underestimate the importance of the first attempts to write an 

instructional text on mathematics. 

ZS Bernal, M. (1987) Black Athena : The Afroasiatic Roots of Classical Civilization Vol. 1: The 
Fabrication ofAncient Greece 1785-1985; Free Association Books; London. 
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8.5: Conclusions 

Egyptian mathematics does not fulfil some of the complex principles that are 

sought in modem mathematics. The texts do not show the intricate proofs that 

are so highly valued now, nor do all the problems show detachedness from the 

everyday. However, this is not to say that the Egyptian texts show no evidence 

for the prizing of mathematics for its own sake: there was certainly recognition 

of the separate subject of mathematics. The appraisal of the texts in the 

appropriate context shows that they do exceed the immediate need for numerical 

manipulation. Once this is understood, then it is impossible to deny that the 

Egyptians have an important place in the development of mathematics. 

If it is assumed that these texts represent a teaching aid for new scribes, then 

questions about how easy it is to learn mathematics from them and how easy they 

are to read are fundamental to a balanced appraisal. The Rhind Mathematical 

Papyrus gives the reader plenty of examples to practise the manipulation of unit 

fractions. Unit fractions had significance in ancient Egyptian mathematics, as 

the study of RMP 31 shows they were productive in their mathematical system 

and fulfilled some need. The appearance of tables to facilitate their use and the 

number of examples should be seen as a positive characteristic of the texts. The 

fact that the texts have nominal practical value is also important for the training 

of new scribes, this is as true today as it was in the past. It is easier to learn 

mathematics once the lessons are placed in a recognisable situation. It would 

have made it easier for the scribes taking lessons to imagine the shapes and so to 

work out their volumes and areas. 
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The nature of proof is a philosophical problem and the Egyptians did not live up 

to the more vigorous definitions of proof, but this does not explain what the 

Egyptians were capable of. It is easy to say what they did not do, it is far harder 

to understand the strengths and weaknesses of the procedures found in the texts. 

There is also the far more profound issue of why the Egyptians were satisfied 

with their demonstrations and where the impetus for a more formal 

understanding of proof came from. It is not satisfactory to simply explain away 

this problem as a Greek Miracle, to do so implies that the Egyptians were less 

intellectually and culturally sophisticated. The discrepancies between the 

modern reconstruction of the Greek Miracle and the Greek's own accounts of the 

debt that they owe to the Egyptians should be a matter of concern. Of course, 

there are problems with the survival of evidence, MMP 10 and 14 suggest that 

reasoning beyond what has survived took place. It is possible that this work was 

not recorded, or it was not deemed sufficiently important for the Egyptians to put 

them in a place that would promote their survival. If the Moscow Mathematical 

Papyrus had not survived, then our opinion of Egyptian mathematics would be 

severely altered. The possibility is that other texts that would have had the 

power to do the same have not survived. If this is the case, then more attention 

needs to be paid to people who had the opportunity to meet ancient Egyptian 

mathematicians. 

It is clear that answering these few seemingly easy questions will require a much 

more considered approach than has formerly been taken. These questions raise 

important issues about the nature of evidence in the History of Mathematics, and 

how this evidence should be used. In the context of research into ancient 

Egyptian mathematics, these questions need to be explored within a wider 
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framework and include what is known about other branches of Egyptian science 

and religion. Only then can the philosophical assumptions and naive opinions 

about science and mathematics be eradicated from our understanding of some of 

the most enigmatic texts to survive from ancient Egypt. 
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Chapter 9 

Conclusions and Consequences for 

Science Studies, History of Mathematics 

and Egyptology 

The previous three chapters in this thesis have been dedicated to challenging our 

ideas about mathematics and science. They have shown that by understanding 

that science has a place within culture, a new approach to Egyptian mathematics 

is possible. Unfortunately, this definition of science has many critics. In this 

chapter, the comments of these critics will be examined and answered. 

9.1: Introduction 

This chapter will explore the reaction that many scientists have had to the notions 

of constructivism, and attempts to place science within a social context. There 

has been at times a vociferous and ill-tempered reaction to science studies, 

perhaps best exemplified by the Sokal affair'. The prevailing idea amongst the 

critics of science studies and constructivist thought is that it is in some way anti- 

scientific. Why Science Studies are anti-scientific is often poorly defined and 

elucidated, there is almost a conspiratorial feeling in much of the writing. Often 

the authors of this scientific backlash against Science Studies accuse their 

See section 9.6 
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opposites of being ignorant of science. They seem to think that only qualified 

research scientists should have the authority to write about science. Some of the 

most vociferous and active in this backlash will be discussed in sections 9.1 to 

9.3. This is by no means a complete review of the field nor is it meant to be a 

complete reply. However, an understanding of the approach taken by these 

authors is instructive when considering how mathematics and science are 

portrayed in the history of science and mathematics. This is important to 

Egyptologists and the study of Egyptian mathematics because much of what has 

been proposed as the new approach to Egyptian mathematics is prone to criticism 

from this quarter. The belief in their superiority that these authors display and 

their love of the purest forms of science, untainted and uncontaminated by 

society, culture or any external factor is evident. 

This position is often accompanied by a reference to the "Two Cultures". This 

phrase was first used by C. P. Snow in his lecture of the same name. In academic 

circles the phrase "Two Cultures" is used to encapsulate the idea of a schism 

between science and the arts. The phrase is used almost to justify this schism 

and argue that this status quo is natural. This is a complete misappropriation of 

C. P. Snow's original view. Snow's original idea and the effect that the 

misappropriation of his phrase "Two Cultures" is having on the relationship 

between the different disciplines is discussed in section 9.4. 

This chapter will also explore the wider implications of this study. Initially, it 

will look at the consequences for science communication and the public 

understanding of science by considering the impact that the social setting of 

science and mathematics might make. The position of scientists over this issue 
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will also be examined in order to show how this attitude can be detrimental to the 

popular image of science. Finally, this chapter will show the general 

implications for Egyptology and offer suggestions for the improvement of the 

study of Egyptian science and its contextualisation. 

9.2: Constructivism and The Position of Scientists 

Constructivism does not try to place doubt on the products of science. 

Constructivism as it is used in the history of science tries to understand the 

processes by which scientists come to formulate hypotheses and laws. 

Constructivism, in this sense, is not necessarily anti-realist. The main idea in this 

theory is that science is a human creation. It is the nature of the formulation that 

is constructivist, not the product of this process. Therefore, it should not be taken 

that a researcher taking a constructivist approach believes that science can be 

reduced to a purely linguistic or a cultural activity, nor that the product of science 

is a kind of collective delusion or hallucination. Neither is Constructivism a firm 

set of philosophical ideas, rather it should be seen as a methodological approach 

to the problems of writing the History of Science. 

Treating scientists as social actors is in no way derogatory, nor should 

constructivist ideas be used to detract from the wonder of the product of the 

sciences. However, some scientists have taken the constructivist argument as an 

attack. Gross and Levitt2 felt it necessary to launch a counter-attack on 

constructivist thinkers in order to defend what they saw as their reputations under 

2 Gross, P. and Levitt, N. (1998) Higher Superstition: The academic left and its quarrels with 
science. (2nd ed. ) John Hopkins University Press, Baltimore. 
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condemnation. They allow the point that scientists are human beings and as such 

should not be immune from study by the social sciences3. They even 

acknowledge that the questions and investigations that scientists are interested in 

reflect the interests and prejudices of culture. In this they have comprehended 

the usefulness of the constructivist argument to those engaged in trying to 

understand how human beings can produce knowledge about the natural world. 

It is impossible to prove a realist or an anti-realist philosophy of science. If it is 

universally accepted that human beings perform scientific research and that they 

will be, as all humans are, influenced by their own cultural preconceptions, then 

it is impossible for anyone to have an opinion about science that goes beyond 

human nature. There can never be any knowledge about the Universe that is not 

prey to the problems of human sensual experience and is not bounded by human 

language and all of the difficulties inherent in that. The argument about realism 

and anti-realism in science is therefore an argument, which while intriguing, is 

unsolvable. It requires us to examine ourselves and our own understanding of 

the Universe, but with no other tools than we have used to gain experience of the 

Universe. We are trapped by our own nature and we cannot leave behind our 

nature. This was recognised by Kant in the Critique of Pure Reason: 

"Human reason, in one sphere of its cognition, is called upon to consider 
questions, which it cannot decline, as they are presented by its own 
nature, but which it cannot answer, as they transcend every faculty of the 
mind. "4 

3 Gross, P. and Levitt, N. (1998) op. cit. p. 42 
Kant, I. (1786) The Critique of Pure Reason. Preface to the 2nd ed. Translation: Goyer, P. & 

Wood, A. Cambridge Edition of the Works of Immanuel Kant. (1998) Cambridge University 
Press, Cambridge. 
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However, accepting a constructivist argument, even in its strong form, does not 

necessitate a complete breakdown of scientific thinking. 

This situation is not a problem for historians. Historians are used to dealing with 

the idea that their representation of the past may not be how it `actually was'. 

This idea is important in historical research and it is vital that students learn to 

critically appreciate the nature and pitfalls of historical research. It is through 

understanding these problems that researchers can become better. 

Gross and Levitt maintain that to work with the strong form of constructivism is 

to believe that scientists deludes themselves when they assert that they can know 

reality. They develop this idea to conclude that to follow that argument means 

that there is no way to distinguish between science and superstition5. This is 

clearly a mistaken argument and reveals the prejudices of the authors. Using the 

parallel with historical research, there may be no way to be certain that historians 

have discovered any truth about the past. Nevertheless, not every statement 

about the past is given equal credibility. Writers such as Eric von Daniken6 

propose that extra-terrestrial beings constructed the pyramids of Giza and other 

ancient monuments. This clearly is not afforded the same integrity as I. E. S 

Edwards'? account of the construction of the same pyramids. There are groups 

of people that believe the account of von Daniken and other similar writers but 

these are generally confined to non-academic circles. Since there is no way for 

academia to control the beliefs of the populace, nor, it can be argued, is control a 

s Gross, P and Levitt, N; (1998) Higher superstition: The academic left and its quarrels with 
science. John Hopkins University Press, Baltimore. p. 45. 
6 Von Daniken, E (1969) The Chariots of the Gods London : Souvenir Press. 
'Edwards, I. E. S. (1993) 9th ed. The Pyramids of Egypt Penguin Books, Harmondsworth, 
Chapters 4 and 8. pp 98-15 1; 245-294. 
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desirable ideal, von Daniken and his associates need not concern Egyptologists 

greatly. Clearly the acceptance by Egyptologists that their hypotheses about 

ancient Egypt may not be how it actually was and their acknowledgement of the 

incomplete understanding of ancient Egypt is not detrimental to the subject. In 

fact it is a truth that must be understood and recognised in order to study the 

subject successfully. Similarly, the ideas of constructivism in scientific thinking 

do not reduce science to the same level as superstition. Constructivism, even in 

its strong form, does not deny that scientific ideas about the workings of the 

universe are more likely to be correct than superstitious beliefs. Constructivism 

does not deny the ideal of objectivity; it merely suggests that the objectivity of 

scientific experiments happens within a framework. Scientists work within a 

framework of economic, social, political and ideological factors; yet, this does 

not preclude the fact that scientists will try to suspend those ideas and be 

vigorous in their research. Far from seeing scientists as deluded individuals 

caught up in a type of mass hysteria, scientists are seen as cultural agents. 

As the distinctions that we make between different academic disciplines is also 

necessarily cultural, it is important when reviewing scientific material from the 

past that we do not allow these hierarchies to cloud our judgement of the nature 

of the texts. Arguments of a constructivist nature do not try to place one system 

of ideas above another. Instead, neutrality is made important in research in the 

history of sciences and mathematics. For this reason constructivism is a 

necessary methodological approach to take. 

9.3: Is Science Studies Anti-Science? 
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In this thesis I have supported the view that constructivism is a useful idea when 

we are studying the history of science. My reason for this is that it allows us to 

study the people that produced the science or mathematics as well as the ideas 

themselves; it allows us to consider both the process and the product of science. 

There have been many attacks on the discipline of Science Studies. These have 

often centred on the idea that in some way Science Studies and those researchers 

who partake in it are anti-science or ignorant of the nature of the subject they are 

studying. It is presumed that through studying the links between science and 

culture both in the past and in the present, science itself comes under attack. 

There are many reasons for this idea and yet who those engage in Science 

Studies do so because they realise the power of science and recognise that 

science is in itself a subject worthy of study. 

History of Science is an area of research that I would place under the greater 

umbrella of science studies. As discussed in Chapter 2 there are several 

approaches to the history of science and mathematics. One is defined as the 

`mathematical' approach where the mathematical ideas are the data used for 

analysis. The other is the cultural approach where the relationships between 

mathematics, science, technology, culture and society in the past are studied. 

This is an aspect of science studies. Yet, scientists feel that they are under attack 

from this area of research and are highly critical of it. One of the most often 

repeated criticisms that scientists level at those engaged in science studies is that 

they don't understand science. 
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Surely, scientists do not want nor expect academic culture or the general public 

to take what they say on faith? Therefore, they should encourage debate on what 

science is and how it fits into society. This idea is reflected in the move from 

Public Understanding of Science to Public Engagement with Science. Through 

this understanding we have a better chance of making science more accessible 

and through this increase the level of understanding of science. Promotion of a 

healthy respect for science is of paramount importance if there is to be 

constructive debate about the power that science has in modem society. A 

healthy respect does not entail gazing in wonderment from afar. A healthy 

respect means recognising the true nature of the subject with all its flaws whilst 

still recognising the potential and power that it has. Science undoubtedly has the 

power to change our lives. Surely then we need to study what science is in as 

many ways as possible in order to gain a better understanding of what it is and 

how it works? 

The idea of the two cultures, first introduced by C. P. Snow8 has so pervaded our 

ideas about the relationship between different academic disciplines that it is now 

extremely difficult to have a discussion between disciplines without one side 

being suspicious of the other's motives. 

We should not shun the idea that science is a part of human culture. It does not 

denigrate the enterprise of science to recognise that it is done by fallible human 

beings. On the contrary, it makes science even more special as we have had to 

struggle against our human instincts and our `common sense' view of the world 

e See Section 9.1 
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in order to practise science. Indeed, most major advances in science are counter- 

intuitive. 

9.4: Objectivity and Scientism 

Objectivity is often argued as the defining factor in distinguishing between an 

arts and a science discipline. It is this ideal that some writers9 have argued places 

science in a superior position and allows it to pursue the truths of the universe. It 

is also why the idea of using constructivist philosophy is so widely condemned. 

If there is any social factor in the production of scientific knowledge then this 

brings the question of objectivity in scientific research under scrutiny. 

Objectivity also conjures up notions of fairness, impartiality and truth. It also 

suggests that there are no distorting factors. If society and culture are affecting 

scientific research, then surely there is a distorting factor and the claim science 

has to objectivity is suspect. Another problem is whether it is possible to remain 

objective whilst working within a community of scientists. Because objective 

has a natural association with ideas such as fairness, it is also supposed that the 

scientific method is better equipped to discover truths about the Universe. 

These ideas can lead to the extreme of scientism. Scientism is the philosophical 

belief that science is the best kind of knowledge there is. This is believed 

because science is seen as the most authoritative, objective and so the most 

serious branch of learning. The idea of objectivity is one of the central values of 

the academic system. To be objective is to not let personal ideas and feelings 

See for example, Porter, T. M. (1996) Trust in Numbers: The Pursuit of Objectivity in Science 
and Public Life, Princeton University Press, Princeton New Jersey. Wolpert, L. (1992) The 
Unnatural Nature of Science; Faber and Faber, London. 
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interfere with the search for the truth. The reliance of science on 

experimentation and the quantitative nature of data are seen as the pinnacle of 

this ideal. The desire of subjects such as linguistics, and to a certain extent, 

archaeology and history, to be considered a science is one of the symptoms of 

scientism. These subjects desire the label that will enable them to enter the inner 

sanctum of academic culture. The desire is not to change the aims of the subjects 

or to significantly change the methodology, but to gain status within the 

academic community. 

There have been claims that scientific objectivity can be equated with moral 

superiority: 

"In defending the scientific community's just claims to knowledge I am 
also defending the moral superiority of that community relative to any 
other human association"'o 

The association with moral values is linked to the idea of objectivity in science. 

Objectivity not only means truth to nature but also to ideas of impersonality, 

universality and to fairnesslt. 

These ideas are important when considering the way in which the study of the 

history of science is considered. Scientists who write history of science and 

inform what is seen to be desirable in science are used to the idea that objectivity 

in research is everything. Yet when writing history the aims are different from 

those of a natural science. It takes a different philosophy to write history than to 

do science. Historians have to be able to weigh up evidence that may conflict 

and may have been written with ulterior motives. 

10 Harre R (1986) Varieties of Realism: a rationale for the natural sciences, Blackwell, Oxford. 
" Porter, T. M. (1996) Trust in Numbers: The Pursuit of Objectivity in Science and Public Life, 
Princeton University Press, Princeton New Jersey. 
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9.5: The Misappropriation of C. P. Snow's Two Cultures 

In 1959, C. P. Snow gave the Rede lecture at the University of Cambridge. It was 

called "The Two Cultures and the Scientific Revolution" and was later 

published12. `The Two Cultures' is a phrase that has found its way into the 

academic consciousness and yet few have read Snow's original lecture. The fact 

that it was a lecture on the scientific revolution as well is also a fact that has been 

lost in the majority of cases. The phrase has been misappropriated to such an 

extent that Snow himself would be appalled. It has come to justify attitudes that 

are, in sentiment, the precise opposite of what Snow was arguing. Many use the 

phrase to sum up what they see as a great divide between the arts on one side and 

the sciences on the other and to maintain that divide. It is also used to excuse an 

ignorance of another academic's field of research. This is as true of scientists 

misunderstanding the arts as it is of arts researchers misunderstanding the 

sciences. 

It should be remembered when considering the Two Cultures that the two 

disciplines Snow had in mind are the sciences and literary culture. The literary 

culture, as discussed by Snow, does not extend to cover the humanities. His 

examples of the literary culture are all part of the literary culture in the narrowest 

sense. His examples are novelists such as Dickens, playwrights, such as 

Shakespeare and poets like Yeats. Only once is history mentioned in the original 

12 Snow, C. P. (1962) The Two Cultures and the Scientific Revolution, Cambridge University 
Press, Cambridge. 
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lecture and that in negative comments about the attitude of scientists when 

describing the culture of scientists. Snow writes: 

"Their culture is in many ways an exacting and admirable one. It doesn't 
contain much art, with the exception, an important exception, of music... 
Of books, though, very little. And of the books which to most literary 
persons are bread and butter, novels, history, poetry, plays, almost 
nothing at all. i13. 

Despite this crucial point, some writers would include historians and classicists 

in the literary culture 14. 

The definition of culture is one point at which Snow attracts critics. In his 

original lecture it is not clear what he means by the term, so he is forced to 

expand the idea in a second extended version. In this second version, Snow 

defines culture in two ways. The first he calls the dictionary definition 

"intellectual development, development of the mind" which he backs up with a 

quote from Coleridge "Qualities and faculties which characterise our 

humanity"15. However, by this definition, as Snow admits, no one academic 

disciple can count as culture, only sub-cultures. The second of Snow's 

definitions he borrows from anthropology: "A group of persons living in the 

same environment, linked by common habits, common assumptions, a common 

way of life"16. This is the stronger definition of the two when trying to 

understand Snow's idea of the two cultures. However, Snow's examples seem to 

us simplistic. The notion of culture is problematic and one that different 

disciplines describe in different ways and have different uses for. 

13 Snow, C. P. (1962) pp. 12-13 
" Gross, P. & Levitt, L. (1998) p. 7 
15 Snow, C. P. (1964) The Two Cultures: A Second Look, Cambridge University Press, 
Cambridge. p. 62 Original italicisation 

. 16 Snow, C. P. (1964) p. 64 
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Robin Dunbar misrepresents Snow's ideas when he tries to use the lecture to 

prove that people are concerned by the apparent destruction of traditional values. 

He portrays the content of Snow's lecture as being "science versus the arts" 7 

thus giving the impression that Snow's purpose was to highlight and maintain, 

even promote a pugilistic relationship between the two cultures. The quote that 

he uses from the lecture is a highly perverted and one-sided account of the true 

content and meaning of Snow's original lecture. He plucks from Snow's lecture 

a quote that "literary intellectuals are natural Ludditess. He does not include 18 

the parts of the lecture where Snow is critical of the attitude of scientists toward 

literary culture. Snow was very critical of a scientist's ignorance of traditional 

(literary) culture. He says of scientists: 

"The whole literature of the traditional culture doesn't seem to them 
relevant ... They are, of course, dead wrong. As a result their imaginative 
understanding is less than it could be. They are self impoverished" 19. 

Dunbar does note that it would be unfair to presume that all intellectuals and 

members of the humanities (a group not included in Snow's definition of the 

literary culture) are anti-science. However, Dunbar also believes that there is 

growing evidence that the humanities are feeling the pressure from scientists and 

so are turning against the sciences. 

Snow is horrified by the lack of communication between his Two Cultures. He 

says: "The degree of incomprehension on both sides is the kind of joke which has 

gone sour"20. He does not advocate a position where there is a divide between 

the sciences and the arts, on the contrary he feels that not only academia and the 

'7 Dunbar, R (1995) The Trouble With Science; Faber and Faber; London. p. 2 
18 Dunbar, R (1995) Op. Cit. p. 2 
19 Snow, C. P. (1962) Op. Cit. p. 13 
20 Snow, C. P. (1962) Op. Cit. p. 11 
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academics it contains are worse off for it, but society as a whole. The difference 

between academia and science is characterised by Snow as a distinction between 

intellectual life and practical life. These two ideas he sees as linked at a deep 

level. 

In his second version he identifies what he considers a hope for better 

communication between his Two Cultures: a Third Culture. Snow identifies this 

Third Culture as an American phenomenon. It consists of various fields of the 

humanities: social history, sociology, demography, political science, economics, 

government studies and social arts and also psychology and medicine. Snow 

groups these disciplines together because they are all interested in researching 

how human beings live and as Snow puts it they are concerned "not in terms of 

legend, but of fact"21. He feels that this Third Culture has the power to unite the 

other two as it is aligned with literary culture but "for such a culture to do its job, 

it has to be on speaking terms with the scientific one". 

Clearly, history of science and mathematics should be seen as part of this third 

culture. In addition, the works of people such as Latour, Golinski and other 

sociologists of science should also been included in this culture. However, there 

needs to be cooperation between the different cultures so that there can be a free 

flow of ideas. The scientific community has reacted with horror at some of the 

findings of this Third Culture22. They have been keen to point out that because 

the researchers are not part of the scientific culture, they cannot understand the 

science they are writing about. Instead of a value-free discussion of the issues, 

Z1 Snow, C. P. (1964) p. 70. 
22 See Gross & Levitt (1998) Op. Cit., Porter (1996) Op. Cit and Dunbar (1995) 
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scientists have severely criticised and even ridiculed the Third Culture. They are 

guilty of precisely what Snow was complaining about in his lecture on the Two 

Cultures: "the politeness has gone, and they just make faces". 23 

C. P. Snow also talked about how scientific culture and traditional culture have 

become separated. He saw traditional culture being embodied by the great 

authors of the past. He therefore associates traditional culture with literary 

culture, using the terms almost synonymously. 

9.6: Science Communication 

Science communication is a growing field of research that covers a diverse range 

of topics. This discipline covers science journalism, the public understanding of 

science and how science is represented in texts. Central to science 

communication is the desire to raise the profile and preconceptions about 

science. There are many contentious issues surrounding science and the 

applications of science. 

Dunbar points out a crisis in our education system24. Fewer students are opting 

to study the sciences at university. A lot of money is therefore being spent on 

public understanding of science initiatives. As Dunbar notes, one of the big 

problems facing these initiatives is the problem of the image of the sciences as 

`hard'. Students perceive that the sciences are harder than humanities and arts 

subjects. The rivalry between students from the two sides is legendary. As 

23 Snow, C. P. (1962) p. 17 
24 Dunbar, R (1995) 
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Dunbar points out there is an idea that in the sciences there is a right or a wrong 

answer, "Whereas in the humanities you can get away with waffle even if you 

don't know what the answer really should be"25. This is a double failure on the 

part of the education system and society that propagates these ideas. Not only do 

we need to encourage the idea that the sciences are not too difficult and thus 

encourage more students to take them up; we also need to put an end to the silly 

notion that the arts and humanities are a soft option. 

The roots of this argument are promoted by many scientists. The foundation of 

the idea that the sciences are hard as opposed to the undemanding option of the 

arts and humanities comes from the notion that the sciences are purely objective 

whilst the humanities are simply subjective. Thus, the argument goes that in the 

humanities any opinion is valid whereas in the sciences there is only one right 

answer, which must be learnt. By denigrating the humanities and the arts, the 

sciences look harder by comparison. Consequently, in order for the sciences to 

improve their image, there must be a greater understanding and cooperation 

between the disciplines. Scientists must refrain from out of hand rebuffs of the 

arts and humanities. For example, Dunbar argues that: 

"Not everyone intuitively understands the principles of photosynthesis, 
but everyone knows what a good story is or how to sing a song. Anyone 
can paint (even if it is not Michelangelo's class), but not everyone can 
write out the geometric proof of Pythagoras' theorem"26. 

This argument does great harm to both the sciences and the arts. Simultaneously 

it reduces the achievement of those in the arts and at the same time perpetuates 

the idea that you have to be a special kind of person to study science. Whilst we 

Zs Dunbar, R. (1995) p. 181 
26 Dunbar, R. (1995) p. 181 
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may all be able to sing in the shower, performing Handel's "Messiah" to a large 

audience requires training and musical expertise. 

There has also been confusion over the polysemious meaning of the word `hard'. 

When used to compare the sciences to the arts, `hard' is being used as the 

antonym of `soft'. However, it has now been adopted as a description of the 

sciences. Physics is `hard' where sociology is `soft'. On its own, rather than in 

company of the word `soft' it appears that the sciences are more difficult as 

`hard' can also be the antonym of `easy'. 

The history of science is full of examples where it is the process of overcoming 

difficulties and fording resourceful and original ways to study the world that has 

the power to inspire. The pyramids of Giza are an example of this point. Even 

though the Egyptians were working with primitive tools, they were able to ford 

inventive solutions and therefore build the only surviving wonder of the ancient 

world. We can now only hypothesise about which stars were used to align the 

pyramids to the compass points to within a fraction of a degree. Through the 

scant remains of their mathematical texts we can have a guess at some of the 

mathematical procedures that they used to lay out the ground, yet the details of 

the process remain elusive. Newton also has the ability to inspire, not just 

because his understanding of optics and gravity enabled us to develop 

scientifically and technologically, but also because he approached old problems 

in an ingenious way. 

Cooperation between the arts and the sciences is necessary, not only in the 

History of Science, but also for gaining a better understanding of the nature of 
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science. When this cooperation does not work, then it can cause mistrust and 

difficulties for both sides, as evidenced by the Sokal affair. This was 27 a 

notorious event that instigated the science wars. This affair is still written about 

even though the article that began the trouble was published in 1996. In a recent 

column in The Guardian28, Sokal was proclaimed as a hero, "The man who 

pulled the greatest academic scam of our times". Sokal had sent a parody article 

for publication in a Science Studies journal. Sokal's method was unscientific, 

yet it is one that scientists have defended because they believe themselves under 

attack29. The affair had caused many problems and has not advanced Sokal's 

premise to anyone who was not already in agreement. It is not possible to carry 

out research in an atmosphere of suspicion, Historians of Science should learn 

from Sokal's mistake and ensure that dialogue is kept productive at all times. 

9.7: Lessons for the study of Egyptian Mathematics 

For any useful understanding of ancient Egyptian mathematics to be produced 

there needs to be a consideration of different methodologies and philosophies. 

On the one hand, the purely mathematical content of the texts needs to be 

established and the place of this mathematics in the development of Western 

mathematics needs to be understood. This requires mathematical training and an 

appreciation of the philosophy of mathematics and how this philosophy relates to 

other episodes in the development of Western mathematics. Platonic philosophy 

is often used in this case; it is assumed that numbers and mathematical constructs 

are above and beyond human invention. 

27 Relevant material is available through Sokal's website at 
http: //www. physics. nyu. edu/faculty/sokal/ 
28 B. Goldacre, (5th June 2003) Bad Science Column, The Guardian, 
29 Hilgartner, S. (1997) `The Sokal Affair in context' in Science, Technology & Human Values, 
Vol. 22, No. 4, pp 506-522. 
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On the other hand, an appreciation of the context in which the texts were 

produced and how the mathematics fits into the broader understanding of the 

culture that produced it is also necessary. I have argued in this thesis that a 

constructivist philosophy is the most useful in this case. Mathematics may be 

beyond human invention but the ways in which it is explored and the methods 

used to record findings will vary according to cultural and societal needs. This 

potentially brings different areas of academic research into conflict. To date, this 

conflict has been dealt with very badly, bringing bitterness and acrimony. 

Whatever our opinions of the mathematics of ancient Egypt, the Egyptian 

mathematical texts should be of intense interest to an Egyptologist. It is 

unpardonable that mathematics is such a marginal subject in the field of 

Egyptology. Even if the Egyptians were simply interested in using mathematics 

as a tool to solve everyday problems, that still is a valuable insight into the minds 

of the ancient Egyptians. In science, a null experiment is often more telling than 

a positive one. 

It should be the work of Egyptologists to pronounce judgement on Egyptian 

texts, whatever their content. An understanding of the wider context of the 

production of the texts is vital in trying to approach the topic with any credibility. 

In addition, the texts should be studied in their original language: too much is 

lost if the authors have to rely on translations, there is too much room for 

mistake. Science and mathematics are not special cases in this respect. 

Egyptologists have traditionally had a background in the humanities and arts, 

which is reflected in the way the subject is approached and the topics that can be 
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found in the undergraduate curriculum. Yet, mathematics has been allowed to 

take a special place in the academic hierarchy as it is that it believed that it is a 

more difficult subject. It is common to hear arts and humanities students state: "I 

can't do maths". This attitude has been allowed to prosper so that it is an 

acceptable thing to shut off from mathematics and not even attempt to understand 

it. This is an attitude that I have encountered whilst giving lectures and 

conference papers. I am yet to find a mathematician who says: "I can't do 

history". For this reason mathematics in ancient Egypt has become such a 

specialised topic that it is not even mentioned in most Egyptology lecture courses 

and general textbooks. This attitude is so engrained that Kemp fords it necessary 

to apologise to his readers when introducing the most basic mathematics30. The 

standard view seems to be: 

"These are exact sciences which fall outside the usual purview of the 
humanities, and they can be treated properly only by specialists, while 
Egyptologists must accept their judgement with respect and gratitude"31 

However, being an Egyptologist should entail studying the whole culture, even if 

it is not possible to become an expert on every topic. 

The mathematical papyri are unfamiliar; it takes patience to master the arithmetic 

and particularly the use of unit fractions. With patience, however, and a lecturer 

who understands the material and can guide the student through that initial 

unfamiliarity, it is possible to gain insight into the material. Just because the 

student has not achieved good results in traditional mathematics exams, it does 

30 Kemp, B. (1989)Ancient Egypt: Anatomy ofa Civilization; Routledge; London; p. 116. 
31 Sauneron, S (Trans. Lorton, D); 2000; The Priests ofAncient Egypt, Cornell University Press; 
New edition. First published 1957. 
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not mean that with a little patience they should not master the Egyptian material. 

Indeed, much of the mathematics, particularly arithmetic, that is taught in schools 

is prescriptive. Egyptian arithmetic requires a different approach so it is 

necessary to start from the beginning and work towards more complicated 

problems. In essence, the Egyptian texts should be used to teach mathematics to 

Egyptologists. The Rhind Mathematical Papyrus in particular has many 

problems that given the right guidance have relatively simple mathematical 

content, but show interesting features of Egyptian mathematics. 

It is to be hoped that mathematics becomes a standard part of an Egyptology 

curriculum, even as only part of a module. The place of mathematics in art, 

accounting, religion and every other aspect of the Egyptian civilisation is poorly 

understood because mathematics has always been left to the mathematicians. To 

understand these relationships, it is necessary that Egyptologists who specialise 

in these areas become aware of the Egyptian mathematical procedures. It is only 

then that Egyptology will begin to recognise where these links exist and then 

allow specialists to investigate. Egyptologists are prone to misunderstand the 

idea of the Two Cultures and use it as a defence for scientific ignorance and even 

science phobia. In Section 9.5, it was shown that Snow did not intend his phrase 

to be used as an excuse. On the contrary, he wanted to encourage cooperation 

and mutual understanding. History of Science is an obvious area where this 

could become a reality. Egyptologists need to be more open minded about 

science and show more willingness to engage with the science of ancient Egypt. 

It has been my experience that Egyptologists in general are disinclined to 

investigate the nature of Egyptian mathematics. There are, I feel, a number of 
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reasons for this. First, it is a hard subject to break into. For example, 

Mathematical texts are not particularly suitable for classes in Egyptian 

hieroglyphs. As the translations in Chapter 2 to 4 show, there are either very few 

words amongst the numerical workings, or the meaning of the words is too 

uncertain for the translations of the texts to be a useful linguistic exercise. Also 

the use of the sdm. hr-f form is extremely unusual and so mathematical texts are 

a specialist area, not particularly useful for the general student of Egyptian 

hieroglyphs. The study of Egyptian mathematics has no tradition of being taught 

on an undergraduate degree and so it has become a specialised topic. This means 

that only a few who already have an interest in mathematics seek out books on 

the subject. It is then hard to find like-minded researchers to discuss problems 

with or fmd conferences at which papers can be presented alongside papers on a 

similar topic. Also, the many negative comments made about Egyptian 

mathematics give the impression that the subject is unworthy of attention. 

The main problem, though, is the image that science and mathematics has. 

Science is perceived as being a subject that only a specialised few can 

understand. It has become acceptable for students in arts subjects to confess to a 

lack of understanding of the sciences or mathematics. Indeed, it has become 

common that arts students not only confess to not understanding mathematics but 

that they also express fear or loathing of the subject. It is therefore hard to 

engage with these students, as they are unwilling to consider the texts because of 

their perception that they are no good at mathematics. The use of unit fractions 

and other functions and methods that are unfamiliar to students are also a factor 

that confuses and so causes another barrier to be raised between the student and 

the texts. These barriers are largely a matter of preconceptions, once enough 
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problems have been explained and worked through in front of the student, the 

student can grasp the essentials of the methods involved. This holds true not 

only for Egyptology students but also for school pupils of all ages. 

9.8: Overall Conclusions 

Egyptian mathematics is worth revisiting as the frameworks and philosophies 

that have been used previously to evaluate the material are naive and give an 

incomplete picture. There is much work to be done if the Egyptian mathematical 

Papyri are to be afforded the recognition they deserve: as some of the most 

important texts to survive from ancient Egypt. Egyptian mathematics deserves a 

more prominent place in chronological histories of mathematics. The Greeks 

acknowledged the debt they owed to the Egyptians. The idea of a Greek miracle 

can no longer be sustained. It is time that mathematicians examine the dogma 

that is present in their understanding of the development of mathematics. The 

ancient Egyptian mathematical texts reveal a rich mathematical culture, albeit in 

infancy. Egyptologists should certainly pay more attention to these fascinating 

texts. It is not possible to fully appreciate the intellectual culture of ancient 

Egypt without reference to their mathematical and other scientific achievements. 

To achieve this modern preconception of the nature of science and mathematics 

should be set aside. Egyptologists have become accustomed to being cautious 

when evaluating Egyptian religious and ritual practices as many of the features of 

these practices do not fit with modern ideas of religion. The same should be true 

for mathematics and science. 
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It is suggested that a constructivist philosophy can open up interesting avenues of 

research. By understanding mathematics and science as part of human culture, it 

can be seen that even apparently trivial questions can open up interesting 

possibilities for research. Whether or not Platonism is followed, the production 

of mathematics and science is cultural, the uses to which it is put and the 

questions that are deemed worthy of study are determined by society. If another 

culture has different needs for science and mathematics this does not make their 

texts less worthy of study. In contrast, they are possibly more interesting as they 

have the ability to question our presumptions and stereotyped ideas. 

The boundary between internal and external influences is illogical. This 

distinction presupposes that the advance of science is purely rational. It assumes 

that there is an arrow of progress that is always followed. Archaeologists have 

come to be suspicious of arrows drawn on maps to show the advance of a culture, 

it is recognised that the mechanisms for advance are important and that reality is 

more complicated than these diagrams can show. Diffusionism has been shown 

to be simplistic, independent invention is possible. The mechanisms behind 

scientific advance are not clear. It should not be assumed that they are rational, 

nor should it be thought that scientific advance is mapped out. The `royal road to 

me' can be of interest to practicing mathematicians, but it should not concern a 

serious researcher in the History of Science and Mathematics. 

Egyptian mathematics should not be derided because it has its origins in practical 

need, nor should this fact be shocking. There are strong abstract elements in the 

mathematical texts, even if these elements are not immediately obvious. The 

vocabulary and linguistic structure of the mathematical texts merits further 
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research. The translations offered in this thesis are not definitive, merely the best 

possible given the present level of understanding. It would also be interesting to 

carry out a comparative study between the mathematical texts and other scientific 

texts such as medical papyri. The method of communication of science is an 

important factor in understanding its status and function in society. There is 

scope for building a better framework for understanding ancient mathematics in 

the relatively new field of Ethnomathematics. Ethnomathematics investigates 

mathematical knowledge in small-scale indigenous cultures. An anthropology of 

mathematics may be able to provide ways of discussing mathematics that do not 

rely on received understandings of the nature of mathematics. Whatever the 

approach taken, it is imperative that ancient Egyptian mathematics becomes 

more widely understood within Egyptology so a debate about its importance in 

ancient Egypt can take place. 
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Appendix I 

The 2/n from the Recto of The Rhind 
Mathematical Papyrus 
Divisor Unit Fractions Divisor Unit Fractions 

3 3 53 30 318 795 

5 3 15 55 30 330 

7 4 28 57 38 114 

9 6 18 59 36 236 531 

11 6 66 61 40 244 488 610 

13 8 52 104 63 42 126 

15 10 30 65 39 195 

17 12 51 68 67 40 335 536 

19 12 76 114 69 46 138 

21 14 42 71 40 568 710 

23 12 276 73 60 237 316 790 

25 15 75 75 50 150 

27 18 54 77 44 308 

29 24 58 174 232 79 60 237 316 790 

31 20 124 155 81 54 162 

33 22 66 83 60 332 415 498 

35 30 42 85 51 255 

37 24 111 296 87 58 174 

39 26 78 89 60 332 415 498 

41 24 246 328 91 70 130 

43 42 86 129 301 93 62 186 

45 30 90 95 60 380 570 

47 30 141 470 97 56 679 776 

49 28 196 99 66 198 

51 34 102 101 101 202 303 606 

Taken from Gillings, R (1972), Mathematics In The Time of The Pharaohs, MIT 
Press, Cambridge MA; p. 50. All unit fractions are written without overbars for 
simplicity. 
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Appendix 2 

Hieroglyphic Texts of Problems from the 
Rhind Mathematical Papyrus Translated 
in this Thesis 

Reproduced from Peet, T. E. (1923) The Rhind Mathematical Papyrus: British 
Museum 10057 and 10058, University of Liverpool Press, London 
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Appendix 3 

Hieroglyphic Texts of Problems from the 
Moscow Mathematical Papyrus 
Translated in this Thesis 

Struve W. W. (1930) Mathematisher Papyrus des Staatlichen Museums der 
Schönen Künste in Moskau, QSGM, Abt. A: Quellen, Berlin. 
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