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Abstract 

The GREAT spectrometer is a focal plane detector system recently installed 

in Jyväskylä, Finland. The spectrometer is used to study various topics of 
interest in nuclear structure physics, in particular the area of superheavy 

elements. 

One feature of the GREAT spectrometer is the triggerless total data readout 
(TDR) data acquisition system, the unique aspect of which is a lack of a 

system wide hardware trigger. This is intended to directly compensate for 

dead time problems of past systems. The TDR data acquisition system reads 

out the state of each detector independently of any other in the spectrometer 

when an event occurs. These events are then time-stamped from a central 

system clock, producing a single stream of time ordered data. 

A major challenge, and the primary focus of this thesis is to reconstruct 
information about time coincident events, and the sequence of events that 

have been lost by reading out the data as a single stream. The thesis dis- 

cusses the data analysis techniques used to extract physics information from 

the time ordered data stream and uses well known examples to demonstrate 
that the techniques discussed can be applied to real world problems. 
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Chapter 1 

Introduction 

Nuclear physics experiments collect a lot of data. A typical experimental 

set-up can have anywhere between ten and five hundred detector channels. In 

order to make sense of the large quantity of data generated by these systems 

some sort of triggering mechanism is needed to read out the state of the 
detectors at appropriate points in the experimental run. 

In general past data acquisition systems operate based on the principle of 

common dead time. One detector group in the system, usually the implanta- 

tion detector', is considered the trigger. When a given reaction or sequence of 

reactions result in the trigger being activated, the data acquisition is paused 

whilst the whole state of the system is read out. This set-up introduces dead 

time into the process of data acquisition that can be especially significant 
in experiments with a high reaction rate were the rate of incident beam is 
increased to compensate for the low efficiency of the decay process being 

studied and the reaction channel of interest is weak. 

Another limitation of past data acquisition systems was the fact that the 

nature of the hardware set-up forced the user to define the experimental 
conditions in advance. This imposed few limits on traditional in beam 'y ray 
spectroscopy as all the information on the reaction being studied is available 

'The implantation detector is the component of the spectrometer where the recoiling 
nuclei being studied initially embed. 
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in a short time period (< 1µs). However the situation was not so good for 

tagging experiments where parts of the information was not available until 
long after other parts of the reaction sequence. This limitation can be partly 

mitigated by using hardware delays to postpone information delivery to the 
data acquisition system. For example, for experiments triggering from recoil 
implantation, prompt decays at the target position need to be delayed by the 
flight time (of the order of ps ) of the recoil through the the recoil separator 
(see section 2.3 for details on recoil separators) if they are to be associated 
correctly. 

Again in this case the experimental conditions need to be defined in ad- 

vance to select the right delay times to allow the data acquisition system to 

correlate the delayed information to the triggering event. A further problem 
arises due to hardware limits in the amount of time a signal can be delayed 
for. If the required delay time exceeds these limits then no data can be 

gathered from these longer lived events. 

Returning to the data loss due to the common dead time in the data 

acquisition system it is useful to refer to figure 1.1. The middle line on 
the figure represents a time ordered sequence of data items from the focal 

plane silicon implant detector. In the GREAT spectrometer the focal plane 

silicon implant detector is the Double-sided Silicon Strip Detector (DSSD) 
(see section 2.4 for details). Each of the boxes on this line represents a 
triggerable event. When the first silicon event on the line triggers, the data 

acquisition system goes dead for the amount of time indicated by the box on 
the bottom line. During this dead time no other silicon events can trigger 
the data acquisition system and cause the state of the detectors to be read 
out. 

When this first event triggers the first three ry rays on the target 'y line fall 

within the trigger gate and are associated with the triggering silicon event. 
This sequence of events is the ideal circumstance for the data acquisition 
system to be in i. e. there are no overlapping events within the dead time 

5 



Trigger Gate 

xx 
Lost Coincidences 

Target yxxx 

xx Ix 

Focal Plane Si 

Dead Time 

Figure 1.1: Schematic demonstrating how a data wcctuisiti0ii systeiu's trigger- 

ing conditions can lead to associated dead tiiiie. The central hue represents 

a time line with triggers present on it. Any items that, are marked with an 
`x' are lost (lie to the dead time shown oil the bottom time line. 

assoýcia, ted with that trigger. Moving onto the second triggerable event on the 
focal plaice Silicon line it call see that this is not the case. This second event, 
triggers and is then associated with the -ý ray on the target. - line that falls 

wit hin the trigger gate. Unfortunately whilst, the data acquisition system is 

dead another triggerable event, occurs. This event, (h)es not, trigger the (Lila, 

acquisition system and this event is simply lost,. 

The next event on the focal plane silicon line t hat triggers shows a situation 

where data, other than that on the triggering line can get lost. The first 

event, in this sequence triggers and the data acquisition system goes dea. (l; 
in this case no gamma rays are in the trigger gate. The two following focal 

plane triggers occur within the (lead time and are lost. The final triggerable 

event in this sequence if it were triggered would have found several -y rays in 

coincidence. This shows that using such a common (lead time strategy large 

amounts of good data can be lost.. 

Past detector systems that have been used with these common dead time 
data acquisition systems generally consist of three main parts; a target posi- 
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tion detector array; a recoil separator and a focal plane spectrometer. Figure 

1.2 shows a schematic of such a system. A beam of nuclei from a cyclotron is 

incident on the target material, where during a fusion evaporation reaction 
the nuclei of interest are produced. Around this target position is an array 

of detectors used to measure prompt radiation from the produced nuclei. 
The recoiling nuclei are transported to the focal plane first passing through 

a recoil separator, where the nuclei being studied are separated from the 

other recoil products and any scattered beam. The nuclei are then incident 

on the focal plane spectrometer which usually consists of a position sensitive 
implantation detector surrounded by arrays of detectors designed to measure 

specific decay products of the implanted nuclei. 

-400kHz 

'ý3061 Separator 

110.10 

`Target 

0000 

Position 
Focal Plane 

Spectrometer 

40+ detectors 
10kHz each 

Figure 1.2: Diagram showing a generic detector system that consists of three 

main parts; a target position array; a recoil separator and a focal plane 
spectrometer. (The components in the figure are situated relative to each 
other in the configuration that most detector systems use. ) 

Considering the generic detector system in figure 1.2 it can clearly be seen 
how the magnitude of the problem of dead time is compounded when simple 
tagging is performed. Presuming that the target position array consists of 
40 detectors operating at 10kHz each this then equates to a target position 
count rate of approximately 400kHz. Due to the high efficiency of the recoil 

separator, the focal plane spectrometer can expect a count rate of around 
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10Hz. Presuming a common dead time of 10µs at the target position would 
lead to a 40% dead time at the focal plane. 

Given the above figures it can be presumed that there is an approximate 
60% probability of detecting a recoil implanting in the focal plane detector 

array. By the same token there is a 60% chance of detecting any alpha decay 

of a previously implanted recoil. This gives us an overall 36% chance of 
detecting and correlating a recoil alpha pair. It is obvious that the close 

coupling of all the detectors in the system leads to a large potential loss of 
data due to the significant dead time in the system. Given the low statistics 

of superheavy nuclei experiments this loss of data is very significant. 

The GREAT (Gamma Recoil Electron Alpha Tagging) [1] spectrometer 

and TDR (Total Data Readout) [2] data acquisition system was developed 

both as a `step up' in sensitivity and also as a means of circumventing the 

problems of the inherent dead time built in to previous detector and data 

acquisition systems. The GREAT spectrometer itself was designed to meet 
the characteristics of nuclear reactions and is discussed in detail in chapter 2. 

The TDR data acquisition system is a triggerless data acquisition system that 

is designed to virtually eliminate dead time by decoupling all the detector 

channels from the system wide trigger. Signals from each detector are read 

out independently from other channels. The only dead time left in the system 
is for the period of time that the channel is being read out and this is only 

applicable to that specific channel. 

One left over limitation of the TDR data acquisition system is due to this 

remaining dead time in the individual detector channels. Fast sequences of 
events within a single detector channel for example an implantation in a focal 

plane detector channel followed by a prompt decay would still be lost if the 
lifetime of the decay was less than dead time associated with the shaping 
time of the amplification process (-- 1- 3µs). This limitation imposed by 

the speed of the operating hardware can not be avoided; the only way of 
mitigating the situation would be to change the data acquisition system to 
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use digital electronics2 were the system is independent of the shaping time 

of the linear amplifiers. 

This decoupling of the detectors, although addressing the issues of dead 

time, introduces a number of other problems as a side effect. The main 

problem that is presented by such a triggerless data acquisition system is that 

the signals from the individual detectors are no longer associated. There are 

no events indicating spatial and temporal coincidences constructed during 

the data acquisition process as was the case in previous systems. 

The bulk of this thesis describes the TDRSorter data analysis code. The 

analysis code has an essential function to play in using the raw data stream 
supplied by the TDR data acquisition system and constructing usable physics 
events. The TDRSorter code takes the raw data stream, sorts it and performs 
prompt and delayed coincidences. From this the TDRSorter code produces 
various visualisations in the form of histograms. It is from these visualisations 
that the physical interpretation of the results can begin. 

One of the important functions that is performed by the data acquisition 
system is the time ordering process. The time ordering process sets an im- 

portant foundation that the data analysis code is built upon. Essentially 

this process sorts all the data generated by the detectors into time order. A 

more detailed discussion of the data acquisition process is given in chapter 3. 
One of the key challenges that must be overcome by the data analysis code 
is to take this triggerless, time ordered data stream and reconstruct physics 
events from it. 

2As opposed to the current analog based system of acquisition components. 
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Chapter 2 

Experimental and Detector 

Details 

2.1 Overview 

This chapter will discuss the experimental motivation as well as the overall 
structure of the GREAT (Gamma Recoil Electron Alpha Tagging)[1] spec- 
trometer. Further sections will go into some detail about the function and 
operation of the individual detector components that make up the whole 
spectrometer. A brief discussion will also be given as to the experimental de- 

tails of the data set used for all the physics examples depicted in subsequent 
chapters. 

2.2 Experimental Focus 

The experimental and data analysis techniques discussed in this and the 
following chapters apply to systems developed for the study of nuclei far 
from stability, for example the study of nuclei with high mass and charge i. e. 
super-heavy elements. One question that has been a focus of research in this 

area is whether an island of stability exists for nuclei with Z> 100. These 

very heavy nuclei should be unbound against fission. Simple calculations 
using various parameterisations of the liquid drop model predict that the 
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limit of stability should occur when the Coulomb repulsion between protons 

overcomes the attraction due to the strong nuclear force i. e. for nuclei with 

around Z= 100 to Z= 106. 

The fact that these nuclei exhibit stability is due solely to microscopic shell 

effects. These shell effects are due primarily to what is called the spin-orbit 
interaction which occurs between the orbital angular momentum and the 

intrinsic spin angular momentum of the individual nucleons in an given nuclei. 
A primary focus of research is to describe this effect by extrapolating the well 
known mean field for well studied nuclei of around Z= 92 up to nuclei with 
larger masses [3] [4]. Performing spectroscopy on these super-heavy elements 
to gain information about their excited states helps to constrain theoretical 

model parameters and hence improve understanding of these nuclei at the 

edge of stability. 

A major hurdle to overcome is the difficulty in producing the super heavy 

elements of interest. Two main approaches have been used to produce ele- 

ments with Z= 112 to Z= 116. Nuclei with Z= 112 have been produced by 

using beams of medium mass ions impinging on stable Pb and Bi targets[5]. 

Elements with Z= 114[6] and Z= 116[7] have been produced with an 

alternative method of using beams of lighter ions, in particular 48Ca, on ra- 
dioactive actinide targets. Both methods have a disadvantage in that they 

produce fairly neutron deficient nuclei. This limitation can be countered by 

using neutron rich radioactive beams and neutron rich radioactive targets, 
details of current work in this area are given in [8]. 

The approaches mentioned above use fusion evaporation reactions whose 
primary component to the total cross section of the reaction is fission, leav- 

ing only a small part to the fusion channels. The fission products decay 

via prompt gamma ray emission that masks the weak decays of the fusion 

products of interest. In order to isolate these transitions a selective way 
of distinguishing these channels is needed. By using recoil separators and 
suitably sensitive focal plane detector systems a technique known as Recoil 
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Decay Tagging (RDT) can be used [9][10]. Details of a recoil separator and 
focal plane spectrometer at the current forefront of research in the area of 

super-heavy elements is provided in the following sections. 

2.3 RITU and GREAT 

The GREAT spectrometer [11 is a focal plane spectrometer that is currently 
in situation at the RITU [11] gas filled separator in Jyviiskylä Finland. Re- 

coiling nuclei produced at the target position by fusion evaporation reactions 

are transported through the separator where the primary heavy ion beam 

and fission products are filtered from the fusion products of interest. 

target aý. 
beam 

RITU 

Q2 
beam 
dump k 

Q3 ýý 
4g_ 

GREAT 

Figure 2.1: Diagram showing RITU and GREAT and their relative posi- 
tioning. RITU is a recoil separator that consists of four magnets, one dipole 

magnet for separation and three quadrupole magnets for focusing of the recoil 

products. 

Differences in magnetic rigidity between the fusion, fission and primary 
beam allow these reaction products to be separated in flight by using a dipole 

magnet. After passing through the target the reaction products have a wide 
range of charge states, which after separation results in a wide spread of 
nuclei incident onto the focal plane. In order to improve focusing of the 
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recoil products this spread of charge states needs to be evened out. In order 
to do this a gas filled region is used within the separator's volume. Heavy ions 

passing into this region undergo many atomic collisions causing the charge 

state of the ions to change rapidly which has the result of causing the ions to 

follow an average trajectory through the separator according to the average 

charge state of the recoil products. 

RITU consists of four magnets, three of these are quadrupole magnets 

and are used for focusing. These are indicated on figure 2.1 by Q1, Q2 and 
Q3. The fourth magnet is a dipole magnet and is used for separation and 
is indicated by the D on the figure. Both the beam line and focal plane are 
kept at a vacuum which is separated from the lmbar of helium gas within the 

separator by thin windows that allow the transmission of the recoil products. 
After passing through the separator these products then enter the GREAT 

focal plane spectrometer. 

2.4 GREAT Spectrometer 

GREAT is situated on the end of the RITU gas filled separator. Given the 

set-up of RITU and GREAT as indicated in figure 2.1 it is useful to describe 

the individual components of the target position detector array. The GREAT 

focal plane spectrometer consists of five main parts. 

"A multi wire proportional counter (MWPC). 

" An array of 28 silicon PIN diodes. 

"A double sided silicon strip implantation detector (DSSD). 

"A double sided planar germanium detector. 

"A high efficiency segmented germanium clover detector. 

Figure 2.2 shows a schematic diagram of the layout of the above mentioned 
components and their relative positioning to each other and also within the 
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whole spectrometer. Referring to the figure it can be seen how the detectors 

in the spectrometer are arranged around the expected sequence of events 

produced from the reactions being studied. Recoil products leaving the exit 

window of the RITU gas filled separator pass through the MWPC and are 

subsequently embedded in the double sided silicon strip implantation detec- 

tor. The embedded recoils then decay and the particles and radiation they 

emit are detected either within the DSSD (i. e the particle or radiation does 

not escape or pass out of the material making up the detector) or the sur- 

rounding detectors in the rest of the spectrometer. The subsequent sections 

will describe the main purpose of each individual detector component and 

also give details of how they function. 

Recoil 

Pins Planar 

Si Strip 

Clover 

Figure 2.2: Schematic showing the basic layout of the GREAT spectrome- 
ter. GREAT consists of five main parts. The multi wire proportional (Gas) 

counter, a double sided silicon strip implantation detector, an array of PIN 

diodes, a planar germanium detector and a segmented germanium clover 
detector. 

Figure 2.3 is a photograph showing a partial setup of the GREAT spec- 
trometer situated at the exit window of RITU. In the figure the lid of the 

vacuum chamber has been removed. The two individually mounted DSSD 
detectors can be seen at the front of the figure surrounded by the banks of 
associated preamplifiers. Below the DSSD detectors is the face plate which 
is removed to allow the planar germanium detector to slide into place. The 
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aý-rýY. -1 f 

Figure 2.3: Photograph of the GREAT spectrometer with the lid of the 

vacuum chamber removed and the planar germanium detector removed. The 

rear face of the two separate DSSD detectors can be clearly seen at the front 

of the figure. 

PIN diode array is situated on the inner face of the detector and therefore 

cannot be seen in this photograph. 

2.4.1 Multiwire Proportional Counter (MWPC) 

After the recoil products leave the separator the first part of the GREAT 

spectrometer they enter is the multiwire proportional counter (MWPC). The 

multiwire proportional counter is situated at the exit of RITU. The MWPC 

is filled with low pressure isobutane gas and is separated from the helium of 
RITU at one end and the vacuum of the rest of the GREAT spectrometer 
by two thin Mylar windows. 
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The main function of the MWPC is to act as an active recoil discriminator. 
Any recoil product passing through the counter deposits energy, if the time- 

stamped data generated from these events is in prompt coincidence with any 

signals from the DSSD. It can be inferred that the implantation event must 
be caused by an object that has passed through the MWPC i. e. it is a recoil 

product. By the same reasoning any data item generated in the DSSD that 
is in anti-coincidence with the MWPC must not have passed through it i. e. 
it is a result of a decay from something already implanted in the DSSD for 

example an alpha decay from an embedded recoil. 

Another purpose that the multiwire proportional counter can be used for 

is to discriminate between the recoiling nuclei and scattered beam that has 

not been filtered out by the recoil separator. By combining the timing in- 
formation generated by the MWPC from nuclei passing through it with the 

energy deposited in the DSSD implantation detector it is possible to clearly 
identify the recoils and scattered beam. By selecting only these identified 

recoils at the data analysis stage it is possible to provide a cleaner recoil 
signal. Examples of this technique are given later in chapter 5. 

2.4.2 Cooling Block 

An important part of the GREAT spectrometer is the cooling block. As 

well as being held in a vacuum, it is useful to cool both the double sided 
silicon strip detector and the PIN diodes. Although the detectors operate at 

room temperature, cooling greatly reduces the noise levels and improves the 

resolution in these set-ups. The cooling block is a hollow metal block through 

which coolant is pumped. The cooling block reduces the temperature of the 

mounted DSSD's and PIN diodes to -20°C. Other detector systems e. g. the 

planar germanium and focal plane segmented clover detector are also cooled 
(albeit to much lower liquid nitrogen temperatures of around 63K) by their 
integral liquid nitrogen cooling systems. 
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2.4.3 Double Sided Silicon Strip Detector (DSSD) 

The double sided silicon strip detector is the core of the spectrometer. 
Recoils that have been separated by RITU and have passed through the 
MWPC implant here. This implantation along with their subsequent decays 

by a or ,ß particle emission are measured by the DSSD. The DSSD's need to 

measure both high energy recoils of around 50MeV as well as the subsequent 
a decays of around 5 -10MeV . With the energy of ,ß particles and protons 
falling around 500keV the possible energy range that the DSSD must be 

sensitive for is quite large. To compensate for this a series of Degrader foils 

can be placed into the path of the recoiling nuclei before they implant to slow 
them down. This allows the detector to cover the full energy range whilst 
still maintaining adequate resolution. 

Two individual DSSD's are placed at the focal plane of GREAT each hav- 
ing an active area of 60mm by 40mm with a silicon thickness of 300µm. 
The strips in both the x and y directions have a width of 1mm meaning 
each DSSD has a total of 60 by 40 strips giving the total number of effective 
pixels per DSSD as 2400. The two DSSD's are mounted side by side with 
the respective active areas being 6mm apart. The full DSSD therefore has a 
total number of 4800 pixels that has an estimated recoil collection efficiency 
of approximately 80%. 

As each detector is to be read out individually each strip of the detector 

is attached to its own charge sensitive pre-amplifier. These pre-amplifiers 
are mounted inside the vacuum chamber of the GREAT spectrometer on the 

outer face of the cooling block. The location of the pre-amplifiers allows 
them to be directly connected to the DSSD's. This minimises the length and 
number of connections between the signal output of the DSSD and the input 

stage of the pre-amplifiers. Limiting the length and number of connections 
of the cabling maximises the energy resolution of the detectors. 
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2.4.4 PIN Diodes 

The array of PIN diodes is primarily used for measuring energies of conver- 

sion electrons emitted from the de-exciting nucleus. An implanting nucleus 

typically embeds close to the surface of the DSSD detector 1 giving a sig- 

nificant chance that any conversion electrons are emitted in the backward 

direction. It is also possible that any a particles emitted by the nucleus 

could also escape the DSSD in the backward direction, the array of PIN 

diodes could therefore also be used for add-back calculations to improve the 

detection efficiency for a decay. 

The PIN diodes are arranged in a "box-like" configuration around the outer 

perimeter of the DSSD detector. There are a total of 28 PIN diodes in the 

array, each has an active area of 28mm by 28mm and a thickness of 500µm. 

The PIN diodes used were the S3584-06 windowless series manufactured by 

Hammamatsu. The PIN diodes are mounted in pairs to custom PCBs con- 
taining the input stage of the preamplification before being passed onto the 

external PSC761 preamplifiers manufactured by Eurisys mesures. 

Active Area. 
Mounting. 

Figure 2.4: Photograph of the Hammamatsu S3584-06 windowless series PIN 
diodes dual mounted onto their PCBs. 

'Typically 1- 10µm 
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A photograph of the twin mounted PIN diodes are shown in figure 2.4. The 

PIN diodes and PCBs are mounted on the inside surface of the cooling block 

so as to cool the PIN diodes to -20°C. The energy of conversion electrons 
produced in the primary reactions being studied are up to a maximum energy 

of around 500keV at which the PIN diodes have an approximate energy 

resolution of around 5keV. 

2.4.5 Planar Germanium Detector 

The planar germanium detector's main purpose is to measure the energy 
of X rays and low energy ry rays and 3 particles emitted by the recoiling 

nuclei embedded in the DSSD detector. The planar germanium detector is 

placed directly behind the DSSD and inside the vacuum chamber to minimise 
the attenuation of any photons. Any ,ß particles detected in the planar 
germanium detector must be of high energy (> 2MeV) so as to penetrate 
through the silicon of the DSSD. 

The planar germanium detector is segmented into strips similarly to the 
DSSD detector. The active area of the planar detector is a rectangle of 
120mm by 60mm with a thickness of 15mm and a strip width of 5mm. 
As with the DSSD implantation detector these strips can be used to pro- 

vide positional information about any events occurring within the planar 
germanium detector. The front face of the planar detector itself is situated 
approximately 10mm away from the rear of the DSSD. The planar detector 
has a thin beryllium entrance window and the whole detector is mounted to 

a cryostat for cooling with liquid nitrogen. 

2.4.6 Segmented Clover Detector 

The segmented clover detector is used for the measurement of high en- 
ergy gamma rays emitted from the recoils embedded in the DSSD. These 

gamma rays must have passed through the thickness of silicon in the DSSD 

and through the planar germanium detector to be detected by the clover. 
The clover detector is mounted outside the GREAT spectrometers vacuum 
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chamber and consists of four germanium crystals each with four-fold segmen- 
tation. Each clover crystal is 70mm in diameter and 105mm long with the 

first 30mm of the crystal tapered at an angle of 15° on the outside surface. 
Each clover detector is also surrounded by a bismuth germanate suppression 

shield to help improve the peak to total ratio. 

2.4.7 Silicon-Gas Tac 

A TAC (Time to Amplitude Converter) is an instrument which converts 
the time interval between two logic signals into an output pulse. This output 

pulse has an amplitude that is proportional to the time interval between these 

two logic signals. The silicon-gas TAC in the GREAT spectrometer consists 

of two logic gates, one that is triggered when a signal is generated from the 

MWPC gas detector and another that is generated by any signal in the focal 

plane silicon implantation detector. The TAC then generates an amplitude 

pulse that is related to the time interval between these logic signals. 

The generated pulse is higher resolution than the time-stamping used in 

the system metronome, it can therefore be used to generate more accurate 
time of flight information for recoiling nuclei. This information is useful in 

the generation of high resolution energy, time of flight matrices that can used 
to create data selection gates to accurately distinguish recoils from scattered 
beam particles. As well as using the silicon-gas TAC, the time of flight 

information can also be estimated using the parameters of the experiment e. g. 

produced nuclei mass, velocity etc. As an estimate of the order of magnitude 

of flight times through the spectrometer, presuming that the velocity of nuclei 
through the 3m long spectrometer has a2N1.5%, then the approximate 
time of flight through the spectrometer is 1µs. 

2.4.8 Target Position Arrays 

Although not part of the GREAT spectrometer itself an integral part of 
the setup is the target position detector array. The target position array 
is used to detect prompt decays (i. e. short lived transitions of t< lps) in 
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the nucleus being studied. As the target position array is independent of 

the GREAT focal plane spectrometer it can be set up with different detector 

types depending on the current experimental interests. One such array that is 

used in Jyväskylä is the JUROGAM gamma ray spectrometer that is used to 

detect prompt gamma rays at the target position. The JUROGAM array uses 
43 Compton escape-suppressed germanium detectors that combined have a 

gamma ray detection efficiency of 4.2% at 1.3MeV. 

4 
ýi 

Figure 2.5: Photograph of the J UROGAM gaiuriia ray spectrometer in sitli- 

ation at the laboratory of the university of Jyväskylä. 

2.5 Example Data Set 

Throughout this thesis several physics examples are used to illustrate that 
the principles being discussed can be applied to real physical situations. All 

of these examples are generated from the same data set gathered from an 
experiment performed at the laboratory in Jyväskylä, Finland. The data 
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set used was gathered from the fusion evaporation reaction where a beam of 
48Ca was incident on a 208Pb target to produce 254No nuclei through the 2 

neutron evaporation channel. 

This reaction was chosen as 254No has been the focus of much study [12] [18] 

so the basic properties of the nuclei are known to some accuracy. This knowl- 

edge is essential in order to infer that any techniques used are producing 

accurate results. The 254No nucleus has a half life of 51.2s which decays pri- 

marily by alpha emission to 250Fm with an energy of 8.09MeV. It is therefore 

possible to benchmark any results against these well known values to check 
if the techniques discussed produce meaningful results. One such check that 
is performed in section 6.6 is to calculate the half-life of the 254No using this 

a transition. 

In using the TDRSorter data analysis code to analyse a given set of data 

certain running parameters need to be set in order to extract meaningful 
results from the data stream. The values of these parameters are mentioned 
here so as to provide a complete description of the example data. Where 

components of the data analysis code are mentioned that have not yet been 

discussed in the text, references to the relevant sections of the thesis are 

given. 

In total the example data set used is over 49Gb in size and was gathered 

over an experimental running time of approximately 12 hours. The data set 

consisted of 2.1 x 109 individual data items that where generated by the 
TDR data acquisition system. From the time ordered data stream output 
from the system around 320,000 events (see chapter 5) were reconstructed 
that belonged to the channel of interest. This experiment was run with an 
unusually large background due to redundant channels in the high rate clover 
detector being read out to the data stream. From this high background the 
important events where extracted. 
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The time buffer of the data analysis code (CBuffer class see chapter 4) 

was constructed with a total time window of 20µs with the constituent for- 

ward and backwards time windows both having sizes of 10µs each. Event 

construction (chapter 5) was triggered by the presence of a silicon-gas TAC 

data item at the read position of the time buffer. A total DSSD X and Y 

strip search time of 1µs in the forwards and backwards time directions was 

used for pixel definition. 

The search time for any gas data items was set at ±l ps whereas the time 
for all other searches for event construction set to 10µs in the forwards and 
backwards time direction. No energy gates on the DSSD X and Y data items 

were set due to different gain ranges used on the X and Y strips of the DSSD. 

This non standard gain range was used due to the requirements of a different 

experimental run of which the gathering of this data set was a small part. 
The final parameter of the TDRSorter data analysis code that was the depth 

of the tagger (i. e the correlation time as shown in chapter 6). The tagger 
depth was set to 550s which corresponds to approximately ten half lives of 
the 254No a decay to 250Fm. 

2.6 Summary 

This chapter has discussed firstly the experimental motivation and also 
the overall design of the GREAT spectrometer. The discussion went into 

some detail describing the structure and function of the individual detector 

components within the spectrometer. A brief overview of the example data 

set used in subsequent physics examples was also given as well as a brief 

discussion of the TDRSorter parameters used to analyse the data gathered 
from the experimental run. 
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Chapter 3 

TDR Data Acquisition System 

and Data Format 

3.1 Overview 

In this chapter the TDR data acquisition system will be discussed. Cov- 

erage of the high level design of the electronics system is also provided as 

well as a discussion on the process of data acquisition. Descriptions of the 

TDR data format and the TDR data stream will also be given. The details 

of these are important in understanding the design decisions taken in the 

development of the TDRSorter data analysis code. Most of the informa- 

tion in this chapter is available in the form of electronic documents at the 

following web address [13]. Relevant specific documents from the website 

are referenced individually. The discussion in this section provides informa- 

tion about the details of the relevant data formats and structures that is 

important for future discussions on data analysis techniques. 

3.2 TDR Electronics System 

The GREAT spectrometer has been implemented with a new triggerless 
data acquisition system called TDR (Total Data Readout)[2]. The main 
feature of this system is the lack of a system wide hardware trigger. Each 
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individual detector channel is read out independently of the other channels in 

the spectrometer. In the context of this thesis a detector channel is essentially 

an individual detector element such as a single strip of the DSSD or an 

individual PIN Diode detector. 

Each detector channel is mapped to its own linear shaping amplifier which 

in turn is mapped to its own Constant Fraction Discriminator(CFD) which is 

then assigned its own channel in the Analogue to Digital Converter (ADC). 

Essentially within the TDR system each detector has its own acquisition 

path i. e. there are as many linear amplifiers, CFD's and ADC's as there 

are individual detectors. This has the effect of decoupling all the detectors 

from each other allowing each detector to gather as much (or as little) data 

as it is capable of gathering regardless of the state of other detectors in the 

spectrometer. 

E 

I 
L 
D 
E 
R 

Figure 3.1: Schematic of the TDR Electronics System. The figure shows how 

the individual detector channels are mapped to their own individual linear 

shaping amplifiers, constant fraction discriminators (CFD) and analogue to 

digital converter (ADC). 
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Figure 3.1 shows diagrammatically the layout of the major subsystems of 
the TDR electronics system. In the figure, detectors are divided into groups 
representing each individual detector channel. As mentioned before each 
detector is mapped individually onto an amplifier, CFD and ADC. When a 

charge pulse is generated from incident particles or radiation in a detector the 

signal is first pre-amplified and then passed onto the linear shaping amplifier. 
The shaping time of the linear amplifier accounts for the majority of the 
dead time in the data acquisition system. As the amplification from this 

stage takes a finite time (shaping time) to complete the fast output from 

the amplifier (where no amplification is performed) is passed into the CFD's 

input. 

The constant fraction discriminator essentially sets a threshold for which 
the magnitude of any signal from the detector must be greater than. Any 

signal which passes this threshold is then passed onto the ADC where it is 

converted to a digital format that is described in detail in the sections below. 

One vital aspect of the TDR system that has not been discussed so far is the 

time-stamping mechanism. A VME module known as the system metronome 

synchronises all the time-stamping in the ADC to a central 100MHz clock. 
The system clock is capable of generating timing information to an accuracy 

of 10ns. Each data item output from the ADC is time stamped indicating 

a time offset from the beginning of the experiment at which this data was 

gathered. 

After the detector signals have been digitised in the ADC and time stamped 
they are passed on to the merge stage. This stage is responsible for arranging 
the data output from the ADC into time order. This stage is important as 
data can arrive at slightly different intervals from the separate ADC cards 
and it is an important assumption of all further data analysis that all the 
data is in strict time order. The details of the produced data stream are 
given in the section 3.3.3 below. 
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The final step in figure 3.1 is the event builder. The event builder is 

responsible for performing basic checks (e. g. time ordering) on the data and 
marshalling the data to various output sources. The event builder can write 
the raw data stream to a tape source as well as to various online sorting 
software where basic checks on the performance of the experiment can be 

monitored. Most of the units mentioned here, particularly the ADC's and 
metronome were custom built at Daxesbury laboratory, more information 

about most of the TDR electronics is available in reference [2] 

3.3 TDR Data Format 

Each ADC card outputs both data items and information items. The data 
items essentially contain the ADC data; the channel number of the detector 

that fired and the time that the detector fired. The information items contain 

all the other information i. e. piled up data items, pause and resume functions 

etc. The detailed format of these data and information items[14] is described 
below. 

3.3.1 Data Items 

Each data item consists of 64 bits of information that is output from the 
ADC as two 32 bit words. Figure 3.2 shows the structure of each data item. 
Bits 0-15 in the first word contain the data from the ADC. This is essentially 
the digitised signal from the analogue linear amplifiers. Bits 16-27 contain 
the channel identity information. The final four bits 28-31 contain a fail and 
veto flag at bits 28 and 29 respectively. Bits 30 and 31 are always set to 1 

and can then be used to distinguish data items from other information items 
(discussed next) as they have a different bit pattern. 

The second word contains the time stamping information. Bits 0-27 con- 
tain the lower portion of the total time stamp which is 48 bits in length. The 
higher order more slowly changing 19 bits are transmitted in the information 
items every 64µs. The top four bits of the second word, bits 28-31 are used 
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for padding the time-stamp out to 32 bits in size. These padding bits are 

assigned a value of zero. 

31 30 29 28 27 ;, 16 15 0 

11 Fail Veto Channel ID ADC Data 

31 30 29 28 2J 0 

0000 Timestamp (10ns Precision) 

Figure 3.2: Schematic of the TDR data item format. The arrangement of the 

various components of the data item including the channel of the detector, 

the actual ADC data and the time-stamp showing the time that the data 

item was generated. 

31 30 29-24 23-20 19-0 

10r Module Number Information Code Information Field 

31 30 29 28 27-0 

000o Timestamp (I Ons Precision) 

Figure 3.3: Schematic of the TDR Info Item Format. The arrangements 

of the various components used in specifying information important to the 

sorting process is shown. The data carried by the info items relates to any 
information other than detector event information, e. g. time stream sync 

pulses. 

3.3.2 Info Items 

All other information is passed in the form of info items [14], see figure 3.3. 
As with the data items the info items consist of two 32 bit words making up 
64 bits of information. Bits 0-19 in the first word contain the information 
field, this field contains data that relates to the information code given in 
bits 20-23. Table 3.1 taken from [14] shows what data is contained in the 
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information field as it corresponds to the information code. Bits 24-29 contain 
the module number. The module number identifies the number of the ADC 

VXI card that sent the information. The final two bits 30 and 31 contain 
the values 0 and 1 respectively that distinguishes the information items from 

the data items described earlier ( data items contain a value of 1 for both 

bits). The second word contains the time stamping information and has an 
identical format to the Data Items time stamping word. 

Code Information Type Information Field Definition 

0 Undefined Data 

1 ADC Channel Pile-up Channel Number 

2 Pause Time-stamp Time-stamp bits 28-47 

3 Resume Time-stamp Time-stamp bits 28-47 

4 SYNC100 Time-stamp Time-stamp bits 28-47 
15 SHARC Link number Link Number. 

Table 3.1: Table showing the information code and information field defi- 

nitions that the respective components in the info item data structure can 
take. 

The total length of the time-stamp associated with each data item is 48 
bits. Only the bottom 27 bits are transmitted with each data item. The top 
19 bits are transmitted every 64psec in the information field of the SYNC100 
Information Items (Code 4 in table 3.1). 

3.3.3 Data Stream 

All the data and information items output from the ADC cards are arranged 
into strict time order. Figure 3.4 shows a high level view of the structure 
of the outputted data stream. This time ordered list of data is what is ul- 
timately stored and analysed. As the unaltered data stream is stored, the 
data can be analysed multiple times using any software created triggers that 
the user cares to invent. 
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Info Item 

Data Item 

Data Item 

Info Item 

Data Item 

Figure 3.4: Schematic showing the general data stream structure. i. e. a time 

ordered series of data and information items. 

3.3.4 Block Structure 

The data stream is split up into 16kb blocks for transmission and storage 
[15]. This process does not alter the time ordered nature of the data stream 
but is simply a convenience for storage and analysis. Figure 3.5 shows the 
structure of each 16kb block. 

24bj Block Header 

Data (Stream Format) 
16kb 

End Block Padding 

Padding 

Figure 3.5: Schematic showing the 16kb data block structure that the time 

ordered data stream is segmented into for serialisation onto hardware storage 
systems such as tape or hard drives. 

Each block consists of four main parts; The header; The Data part; The 

end of block statement and the padding. The header Figure 3.6 consists of 
24 bytes (192 bits) of information that describe the data in the data part of 
the block. The first 8 bytes are a simple identifier that designates the type 
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of block. In this case the bits represent the arbitrary ASCII character string 
`EBYEDATA'. The next 2 bytes of the header is the block sequence, this 
is simply the numerical order of the block as it is transmitted. The next 2 
bytes is the stream number, this number simply defines which data stream 
in the data acquisition system the data block originated from. The 2 bytes 

proceeding this contain a variable called `Tape'. The value of this variable is 

always set to 1. 

E B Y E D A T A 

Sequence Stream Tape 

MyEndian DataEndian Data Length 

}24 

B 

Figure 3.6: Schematic showing the detailed structure of the 24 byte block 
header portion of the data block structure shown in figure 3.5. The block 
header contains various parameters for describing the position of the block 

within the serialised data file and also the endianness of the binary data 

contained within it. 

The next 4 bytes of the header contain two variables called MyEndian and 
DataEndian, respectively. These two variables allow the hardware architec- 
ture of the data source to be determined. The variable MyEndian is written 
as a native 1 on the Tape Server (i. e. the computer that writes the data 

to tape or to disk). The second value DataEndian is written as a native 1 
in the hardware architecture of the machine where the data originated (i. e. 
The data acquisition system). By examining these two values it is possible 
to determine the endianness of the various systems involved. This determi- 

nation is critical if the data is to be interpreted correctly. The final 4 Bytes 
in the header contain the data length. This variable simply states the length 
in bytes of data that follows the header. 

The Data part of the block is simply the data stream of Info items and data 
items that was described earlier. The third part of the block is the end of 
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block sequence, this sequence is simply 4 bytes that contain the hexadecimal 

value (OxFFFFFFFF). This value simply declares that the length of data 

declared in the block header has finished. The fourth and final part of the 

block is the optional padding. If the total length of header, data stream and 

end of block statement is less than the total block length of 16 kilobytes then 

padding bytes containing the hexadecimal value (Ox5E) are inserted at the 

end of the block until the total length is achieved. 

3.4 Summary 

This chapter briefly described at a high level the operation of the TDR data 

acquisition system, specifically how charge pulses generated by the detectors 

are converted into time-stamped digital data. A detailed description was 

also given of the data format output from the ADC's and the structure of 
the resultant data stream. 
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Chapter 4 

Code Architecture and Data 
Buffering 

4.1 Overview 

This chapter explains both the high level design choices and the detailed 

implementation of the data buffering process. The chapter is started with a 

simple flow diagram that highlights the general structure of the data analy- 

sis code. Following this is a general UML (Unified Modeling Language, see 

section 4.3) diagram indicating the various classes used throughout the data 

analysis code. Following on from this is a detailed discussion of the various 
data buffering methods and also a detailed implementation of the data analy- 

sis codes time buffer and the various solutions to various buffering issues. 

4.2 High level Code Structure 

Using a UML (see section 4.3) class diagram as a starting point, each 
major section of the code is given a more in depth treatment. Details of the 

algorithms and data structures used and the decisions behind their choice are 
also covered in the individual sections below. Initially the chapter is started 
with a high level overview of the TDRSorter data analysis code which gives 
a useful outline of how all the components fit together. Following on from 
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this a more detailed discussion of the operation of each area of code is given. 

4.2.1 Logical Code Structure 

Figure 4.1 shows the logical code structure of the TDR sorter data analy- 

sis program. The functioning of the TDRSorter code can be broken down 

roughly into the following sections; data input; data buffering; event packag- 
ing and specialised sorting. The first section, data input, is fairly elementary 
in its construction and operation. It is mainly concerned with getting the 

raw binary data output from the ADC's, into memory, and in a form that is 

usable. 

The data buffering section of the TDRSorter code (see section 4.4) poses 

one of the major challenges in reconstructing useful physics information from 

the triggerless data stream. Here the time ordered data is buffered in such a 

way that given a particular data item in the data stream, all data items that 
have a time-stamp that fall within a specified time period (both forwards 

and backwards in time) can be accessed. 

The event packaging section of the TDRSorter code (see section 5.5) makes 
heavy use of the time buffer constructed in the data buffering portion of the 

code. Given a user defined software trigger the time buffer is searched for 

other data items from any other detector that lie within specified time periods 
of the trigger data item'. The event packaging mechanism is essentially a 
way of reconstructing prompt coincidences from detectors. 

The final section of the TDRSorter code is the specialised sorter section 
(see chapter 6). This portion of the code is essentially where the sorted data 
is tested against the expected physical outcomes of the experiment. Delayed 

coincidences can be stored and analysed with a tagging framework and one 
and two dimensional histograms can be generated. 

'Up to the maximum time period of data items stored in the time buffer. 
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Figure 4.1: Diagram showing the logical structure of the TDRSorter data 

analysis code. The figure shows how the code is split into four main sections; 
data input from the data stream; Data buffering using a time buffer; Event 

packaging and specialised sorting. 

4.3 UML Diagrams 

Throughout this thesis much of the discussion of the data analysis tech- 

niques used are backed up using examples of code from the TDRSorter pro- 

gram. In order to help in the understanding of these portions of code and 
how they relate to each other within the overall structure of the program it 

is useful to have some sort of diagrammatic visualisation. 

An international standard notation called the Unified Modeling Language2 

or UML has been defined to help in the visualisation and construction of ob- 
ject oriented software. UML uses several different types of diagrams to doc- 

ument the components of a software system using engineering best practices. 
Throughout the thesis constant reference will be made to standard UML class 
diagrams. The following section attempts to provide a brief introduction to 

the various notations used in these types of diagram. 

2The UML standard is maintained by the Object Management group http: //www. 

omg. org 
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4.3.1 Class Diagrams 

Class diagrams are used to describe the types of objects in a software 

system. In particular for object oriented languages this diagram describes 

the classes structure (including their contents) and also the relationships 
between the classes. Figure 4.2 shows how a basic class is represented. A 

class is drawn as a box split up into three parts; the class name; attributes; 

and operations. The top box holds the name of the class and appears as 
it would in actual code. The second box contains a list of all attributes 

contained in the class. An attribute is essentially the data that the class 

contains for example in the CEvent class an attribute would be the CPixel 

pixel object. The third box contains a list of all operations contained in the 

class, each operation is a method (or function) that can be called by users of 
the class. Referring again to the CEvent class an example of an operation 

would be the GetProperties() method. 

ClassName 
Attributei : Type 
Attribute2 : Type 

Operationl() : ReturnType 
Operation2() : ReturnType 

Figure 4.2: Figure showing the basic notation for describing a class in UML. 

The two core types shown are attributes and operations which correspond to 

the class member data and methods, respectively. 

When declaring attributes in the class diagram the name is given first. 

Following the name is a colon and the type of the attribute being declared. 
For example, in many modern programming languages an integer variable 
would be declared int x, in UML notation the variable would be declared 

as an attribute as x: int. A similar convention applies when describing 

operations in UML. Firstly the name of the operation is given then separated 
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by a colon the return type of the operation is given. For example a generic 
function int main() would be declared in UML as main(): int. Figure 4.3 

shows an example UML class diagram, alongside of which is a section of c++ 

code that it represents. One additional point to note is that the parameters 

of methods are described using the attribute syntax described earlier. 

CExample 
count : int 
total : int 

<<create»CExample() : void 
GetTotal( ): int 

Add( amount: int) : void 

...................... 
class CExample 

" public: 
CExample(); //constructor 
Int GetTotal(); 

" void Add(int amount); 

private: 
" int count; 

Int total; 

.............. ......... 

Figure 4.3: Figure showing an example UML class diagram and the corre- 

sponding c++ code that implements the diagram. 

Relationships Between Classes 

As well as describing the structure and content of classes the UML class 
diagram is used to describe how these classes relate to one another. Figure 4.4 

shows some of the most commonly used relationships in UML class diagrams. 

The list of relationships shown here is not exhaustive and only notation used 
in the thesis is given here. Further information about UML relationships 3 

can be found in [16]. 

The first relationship shown is aggregation. Aggregation is used to model 

classes that contain references to other classes but do not own them i. e. 
they are not ultimately responsible for the creation or destruction 4 of the 

3And most other UML information. 
4Classes that possess an aggregation relationship with another class can play a part in 

the creation of objects. A good example would be a class that creates an object but passes 
ownership to another class. 
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Aggregation 

Compostion 

K Generalisation 

-----------------> Dependency 

-----------------* Realisation 

Figure 4.4: Figure showing the most commonly used Relationships used in 

UML. 

aggregated objects. Another way of looking at the aggregation relationship 
is to say that it represents a `uses a' condition for example where class A 

uses an instance of class B. 

The composition relationship is similar to aggregation in that it contains 

references to other classes. The main difference is that in this case the class 

owns the other classes in that it is ultimately responsible for the creation 

and destruction of the contained classes. Composition is also said to model 

a `has a' relationship for example Class A `has a' Class B contained within 
it. 

The next relationship in figure 4.4 is the generalisation. This represents 
the common object oriented concept of inheritance. Inheritance represents 
an `is a' relationship e. g. Class B `is a' type of Class A. In this case the 
derived class is considered to be a specialisation of the base class. One key 

point to be aware of is that in UML the relationship is called a generalisation 
so the arrow in the relationship points from the derived class to the base class 
as shown in figure 4.5 

The fourth relationship shown in figure 4.4 is the dependency. The de- 

pendency relationship is fairly self explanatory, it indicates that any two 
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CBase 
baseValue : int 

CDerived 
<<create»CBase() : void 

derivedValue : int 

«treate»CDerivedO : void 

Figure 4.5: Figure showing a basic inheritance relationship between two 

classes. 

classes are dependent on one another for some aspect of their functioning. 

The nature of dependencies are often indicated on UML diagrams by the use 

of so called stereotypes that help to further define the relationship. Stereo- 

types are enclosed in angled brackets e. g. « stereotype ». two of the main 

stereotypes used in the diagrams throughout the thesis are « create » and 
« uses » which denote that one class creates or uses the other as indicated. 

The final relationship shown is the realisation. The realisation relationship 
is used in cases where one class realises another, this situation occurs where 

a class implements a specific abstract interface that cannot be instantiated 

in its own right. The realisation in this situation indicates that the realising 
class will support the methods outlined in the interface. 

One further feature of the UML diagrams used throughout the thesis is 

cardinality. e. g. 1.. 1 denotes a one to one relationship between any two 

classes. This is the default cardinality if no other is explicitly indicated, and 
hence 1.. 1 relationships are usually never depicted on class diagrams. Other 

commonly used cardinalities are 1.. * and *.. 1 which represent `one to many' 
and `many to one' relationships, respectively. 
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Figure 4.6: UML Class Diagram of the TDRSorter Data Analysis Code. The 

diagram shows how the different classes used in the code implementation are 

organised into the general categories illustrated in figure 4.1. 
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4.3.2 TDRSorter Class Diagram 

Figure 4.6 is a UML class diagram showing all of the classes in the TDR 

sorter analysis code. The central class in the TDRSorter code is the CSorter 

class. This class is responsible for managing all the other classes in the 

code. i. e. it instantiates and owns all the other controlling classes for various 

sections of the code. As well as owning, either directly or indirectly, all of the 

other classes it also contains the `main loop' of the program. The method 

containing the main loop is CSorter->Run(). Printed in figure 4.7 is an 

abbreviated version of the code in the main loop. 

Main Loop 

After the CSorter class has been set up the Run() method is called, 

passing in a list of run files for the program to iterate through. For every 

run file a CRunData object is created passing in the file name of the run 
file. As shown in figure 4.1 the code can be divided roughly into data input; 

data buffering; event packaging and specialised sorting sections. The created 
CRunData object encapsulates the Data Input section of the logical code 
diagram. 

Data Input 

Figure 4.8 shows a UML class diagram of the CRunData class. This 

class on creation opens the specified run file for processing. The main loop 

then enters a while loop that executes continuously on the condition that 

the method IsData() returns true. i. e. that there is still data remaining in 

the runfile. The main loop then executes a call to the CRunData method 
ProcessFile() which returns a CTDRDataltem object that can be used in 

the buffering stage. The ProcessFile() method takes care of the conversion 
of the raw data contained in the run file into these CTDRDataItem objects. 

The CRunData ProcessFile() method reads in 16kb of data into a dat- 

aBlock structure that comprises of a block header and an array of 2045 
data pairs as described in section 3.3.4. Once this structure has been read 
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1{ r(int j=1; j<argc; j++) 
2 
3 myrunfile = new CRunData (filelist[j]); 
4 while ( myrunfile->IsData() ) 
5{ 
6i (mybuffer->isFull()) 

8 this->process(mybuffer); 
9 mybuffer->increment(); 
10 continue; 
11 } 
12 
13 dataItem=myrunfile->ProcessFile(); 
14 calibration->calibrate(dataItem); 
15 
16 BUFFER_STATE bs = mybuffer->add(dataItem); 
17 
18 

if(bs==TIME_ERR) 

19 if(Tagger) 
20 Tagger->clearAll(); 
21 } 
22 
23 mybuffer->flushBuffer(); 
24 delete myrunfile; 
25 } 

Figure 4.7: Figure showing the main loop sorter code. The main loop is 

the core of the running data analysis code. Whilst there is valid data the 

main loop continues to execute, managing and using the various classes of 
the TDRSorter program to accomplish the data analysis process. 

into memory, a list of CTDRDataItem objects is created from the data 

pairs. This list contains both data and information items as described in 

sections 3.3.1 and 3.3.2, respectively. For each call to ProcessFile() the 

next CTDRDataltem is returned to the main loop. The method keeps 

returning CTDRDataltem's until the end of the list is reached, at which 
point it loads the next block in from the run file to create the next list of 
CTDRDataItem objects. This process continues until no more data is 

present in the run file at which point a flag is set so the call to IsData() 

returns false and the while loop exits to load in the next relevant run file. 
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Figure 4.8: Class diagram associated with the data input section of the 
TDRSorter analysis code. The relationship between the CRunData class 
(which manages the data input process) and the various data block structures 
is shown. 

4.4 Data Buffering 

As indicated in figure 4.1 the next stage in the data analysis process is 

the data buffering section. This section is a crucial part in getting rele- 
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vant physics information from the time ordered data stream. The underly- 
ing buffering method needs to be able to implement the features indicated 

in figure 4.9. A read position needs to be maintained (i. e. the current 
CTDRDataltem being processed) as well as two buffers, one containing all 

CTDRDataItems in the specified forward time window and one containing 

all CTDRDataltems in the backward time window. 

Figure 4.9: Schematic showing the general operational principles of the 

TDRSorter time buffer. The read position (the current data item of interest) 

is associated with all data items that lie within a specified time period (The 

forwards and backwards time windows). The time buffer is used to locate 

detector channels that have fired in prompt coincidence with each other. 

4.4.1 Buffering Methods 

Given the requirements discussed above two different underlying buffering 

methods were considered for the data analysis programs time buffer. The 

two structures considered were the static ring buffer and the double-ended 

queue (DE-Queue) otherwise known as a dynamic ring buffer. 

Ring Buffer 

The left hand side of Figure 4.10 shows the structure of a ring buffer. The 

ring buffer is constructed from a simple array and 3 pointers; the add data 

pointer the remove data pointer and the read position. The read position 
is the point at which data is retrieved from the buffer. When the data at 
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Figure 4.10: diagram showing the two different buffering methods compared 

in the text. The left hand side shows the ring buffer data structure whereas 

the right hand side shows the double-ended queue data structure. 

the read position is finished with the read position is incremented i. e. the 

pointer is incremented to point at the next point in the array. 

After an increment, any new data is added on at the position in the array 

assigned to the add pointer, whereas any data that is no longer required is 

removed from the array at the remove pointer. After any addition or removal 

process the associated pointers are either incremented or decremented as 

appropriate. Data can be added to the ring buffer up to the maximum size 

of the underlying array. 

Double Ended Queue 

The right hand side of Figure 4.10 shows the structure of the double-ended 

queue. The DE-Queue has four main operations that can be performed on it, 

push bottom(), pop bottom(), push-top( and pop top(). The push 

and pop bottom methods are used to add or remove data items from the tail 

of the structure whereas the push and pop top methods are used to add or 

remove data items from the head of the structure. 
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Method Comparison 

The main advantage of the ring buffer lies in the underlying data structure 
used to implement it, that is, an array. As the ring buffer is a simple static 

array it is quick to add, remove and use any data item stored in it. Only 

simple allocations, deletes and pointer arithmetic are needed to implement 

the add, remove and use functionality. However the ring buffer requires `well 

behaved' data that contains largely static buffer sizes or a large over sized 
buffer to handle the size changes which is obviously not desirable. 

Assuming that a time buffer is to be constructed that can search for 10µs 
forwards and backwards from the current data item an array must be con- 
structed that has enough space for one data item per lOns time-stamping 
`slot' i. e. 10µs equals 1000 lOns therefore an array capable of holding 2000 
CTDRDataItem objects needs to be created. The obvious shortcoming 
here is that the amount of memory used remains the same regardless of 
whether 1 or 1000 data items are currently being stored in the ring buffer. 

The major disadvantage of the ring buffer is that it has no capability to 

adjust in size if an increase in capacity is needed. This is an important 

capability because there is a possibility of high multiplicity events occurring. 
i. e. there may be more than one CTDRDataitem object for any given lOns 
time-stamp slot in the buffer. This leads to the situation where there may 
be more data that falls within the required time window than it is possible 
to store in the array. 

In contrast to the ring buffer the double-ended queues main advantage 
is its capability to resize itself. As data items are added or removed the 
data structure automatically resizes itself to take into account current re- 
quirements. This resizing reflects in the memory allocation aspects of the 
data structure also. As the data is added or removed, memory is allocated 
or deallocated, respectively. This dynamic allocation / deallocation ensures 
that the memory footprint of the double-ended queue accurately reflects the 

number of data items currently in the data structure. 
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The main drawback of the double-ended queue is its very ability to resize 
itself according to the current storage requirements. Each memory allocation 

or deallocation takes a specific period of time to complete. For most data sets 
the number of data items currently required will vary frequently and hence 

memory will need to be allocated and deallocated frequently. This frequent 

memory activity will cause a slow down in the operation of the buffer. This 

constant memory activity can be mitigated to a certain extent by requiring 
that the size of the double-ended queue is given a minimum value so that 

small changes in size does not result in extraneous memory activity. 

Given the associated strengths and weaknesses of the data structures given 

above and that the main disadvantage of the double-ended queue can be 

compensated for to a certain extent, it was decided that the double-ended 

queue would be used to implement the time buffer outlined in figure 4.9. 

4.4.2 Time Buffer Operation 

This section deals with how the time buffer, implemented with a double- 

ended queue, operates. Figure 4.11 shows a UML class diagram of the 
CBuffer class and how it relates to the other classes in the TDRSorter 
data analysis code. The CBuffer class implements the functionality of the 
time buffer as outlined in figure 4.9. 

Referring to the main loop in figure 4.7 there are two sections of code 
relevant to the operation of the CBuffer class. The first section is the line 
BUFFER-STATE bs = mybuffer->add(dataItem). This line of code 
adds the CTDRDataltem returned from the CRunData object as described 

earlier to the buffer. 

Figure 4.12 shows the operation of the add method of the CBuffer class. 
The add method passes in a pointer to a CTDRDataItem object that is 
to be added to the buffer. Before any processing is performed a check is 

performed to make sure that the time-stamp of the data item being added 
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Figure 4.11: UML Class Diagram showing the CBuffer class and the real- 
tionships between the various supporting classes. 

makes sense (i. e. is in correct time order). The basic requirement for the 
time-stamp of the added item is that it is equal to or greater than the time- 
stamp of the last data item added to the buffer. This check is necessary as 
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Add Data Item 

Check Timestamp 

time check ok 

Data inside time window 

Return : OK 

Return : Buffer Full 

Bad Time 

Return : Timing error 

Time Window Comparison 

Data outside time window 

Add As Pending 

Figure 4.12: Figure showing the operation of the add method of CBuffer 

class. The figure shows the logic of the process indicating how the data item 

added alters the internal state of the buffer i. e. when the buffer is fully 

constructed and contains valid data the buffer state is set to full, indicating 
that the CBuffer object is ready to use. 

it ensures that the time buffer remains in strict time order. The data being 
in time order is a fundamental assumption of all further processing. 

If the time-stamp fails the time-stamp test described above, the add func- 
tion returns a buffer state variable indicating that a timing error has oc- 
curred. This then allows the calling code to handle the condition and finish 

any processing necessary and to also clean up and release any necessary mem- 
ory including flushing the time buffer. Timing errors in the buffer are not 
a fatal condition, flushing the time buffer and then rebuilding it from the 

next item in the data stream is all that is necessary to recover and continue 
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processing. At any point where a timing error5 occurs the user is notified by 

an entry being placed in a program global log file that is created whenever 
the TDRSorter code is run. 

If the time check is passed then the next stage of the add method is to 

compare the time-stamp of the data item being added to see if it fits within 
the backwards time window of the buffer. If the time-stamp of the data item 

does fall within the range specified by the buffer it is added to the end of the 

DE-Queue structure by using the push-bottom( ) operation it defines. For 

example if a buffer is specified with a data item at the read position with an 

arbitrary time-stamp of 10001-ts and a backwards time window of 100µs. Any 

data item that has a time-stamp that falls in the range of 9001ts to 1000µs 

inclusive is considered to be within the backwards time window of the buffer. 

If the data item is added the add method returns with a buffer state of 'OK' 
indicating that more data can be added. 

If the data item being added to the buffer falls outside the backwards time 

window then the buffer is now considered to be full. When the buffer is full it 

means that it is fully constructed and ready to be used i. e. it contains valid 
data. It does not mean that the capacity of the buffer has been used and no 

more data can be added. Carrying on with the example above if the data 

item being added had a time-stamp that had a time < 900µs it would be 

considered to have fallen outside the backwards time window of the buffer. 

This data item is now classified as the buffers pending item and essentially 
is the next item to be added when the buffer is no longer considered to be 
full. At this point the add method returns with a buffer state of `FULL' 
indicating that the time buffer is read for use in any future analysis. 

The second section of code from the main loop that is relevant to the time 
buffer is the line starting 'if(mybuffer->isFull())'. This line, executed 
before another data item is added to the buffer, checks to see whether the 
buffer contains valid data. If the buffer does contain valid data it is passed 

50r indeed any other error the user needs to be made aware of. 
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as an argument to the process method of the CSorter class where event 

construction takes place. Event construction is detailed in the next chapter. 

Following the event processing the buffer is incremented. This incremen- 

tation moves the read position of the time buffer to point at the next data 

item. The incrementation process results in a resizing of the buffer with any 
data items that now lie outside the time window being removed from the 
buffer. The call to the process method and subsequent incrementation con- 
tinues whilst the buffer contains valid data. At any time the incrementation 

process and subsequent removal of data items from the buffer can alter the 

state of the buffer to be no longer full i. e. it no longer contains valid data, 

at which point data items are added again until the time buffer is full again. 

Figure 4.13 shows the detailed operation of the increment method of the 
buffer class. The first stage is to perform the initial increment of the read 
position of the buffer. This operation simply makes the read position point 
to the next item in the time buffer i. e. the next youngest data item. This 
incrementation now invalidates the rest of the buffer and all remaining data 

items need to be retested to see if they are still within the specified front and 
backward time windows. 

The next stage is to check the time-stamp of the oldest data item in the 
time buffer. If the data item's time-stamp indicates that the data item falls 

outside the backwards time window i. e. the data item is too old, then the 
data item is removed from the time buffer and the memory allocated to this 
data item is freed as it is no longer of interest. This process of checking the 

oldest items time-stamp and removing old items is continued until one of the 

checks finds a data item that lies within the backwards time window. This 
data item is the oldest data item in the data stream that is still of interest. 

At this point the backwards portion of the buffer is now valid, but the front 

portion is not. In order to see if more data is needed to fill the buffer, the 
time-stamp of the pending item is checked to see if it lies inside or outside the 
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Increment Read Pos 

Start 

Check oldest Items timestamp ( Remove oldest Item 

timestamp < back time window Data Item outside back window 

i timestamp > back time window 
i 

All items within back window 
Check front pending Item's timestamp 

Pending t< front Time Pending t> front time 

Pending Item Inside front window Pending Item outside front window 

i 

0,0 44 
Return buffer No longer Full Return Buffer still full 

Figure 4.13: Figure showing the logical operation of the increment method 
of CBuffer class. This operation increments the read position of the time 
buffer and forces the entire buffer to be revalidated. This revalidation can 
cause the buffer state to be changed. 

forward time window. If the time-stamp of the pending item is greater than 

the front time i. e. the pending item is outside the forward time window, then 

the buffer still contains valid data. If the pending items time-stamp indicates 

that the data item lies within the forward time window then the buffer is 

no longer full and more data items need to be added before it can be used. 
The increment method returns a buffer state variable indicating whether the 
buffer is still full and can be used, or if it is not full and more data needs to 
be added. 
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4.4.3 Buffer Operation Walk Through 

As the individual stages of data buffering has been discussed in some detail 

it is now useful to look at how all of these sections fit together in relation 

to the buffering of a real data stream. Figure 4.14 shows how the increment 

and add operations work on an example data stream. Along the top of the 

diagram, increasing in time from left to right is a time ordered sequence of 
data items as they appear in the data stream and is essentially the order of 
data items as they are read from the data source. 

This walk through of the buffering process is based on building a time 

buffer with a forward and backwards time window of 20ns. The buffering 

starts at the read position indicated in figure 4.14 (at the 30ns position) 

on the first line where there is already a complete time buffer in place with 

a single pending data item containing information about a ry ray. After 

this buffer has been passed on for further analysis an increment operation is 

needed to revalidate the buffer. The result of this incrementation is given in 

the second line of the figure. 

As described in section 4.4.2 the read position is first moved to the following 

data item in the data stream which in this case is the data item at the 40ns 

position. Firstly the back window is checked and any items that lie outside 
it are removed which in this case is the ry ray data item at the lOns position, 

secondly the time-stamp of the pending data item is checked against the 
forward time window. In this stage the pending data item still lies outside the 
time window so the time buffer is still valid and is passed on for subsequent 
analysis. 

Following this as the buffer still contains valid data another increment is 

performed with the results showing in part three of figure 4.14. In this line the 
data items out of time, scope in the backwards time window are again cleared 
up. The time-stamp of the pending item is checked and as in the previous 
stage the pending item is still outside the forward time window. This data 
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Figure 4.14: Figure showing how the increment and add buffer operations 

work on an example section of data stream. The resultant time buffers for 

successive iterations of the operations are shown, indicating the internal state 

of the time buffer. i. e. indicating whether the buffer is fully constructed and 

can be used for further data analysis. 
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buffer is therefore still valid and is passed on for further analysis. Another 

increment is performed showing the results on line four of the figure. After 

this operation the read position of the time buffer points to the pending item 

from the previous section, this data item is immediately added to the buffer 

resulting in it being invalidated. This time buffer is therefore not passed on 
for further analysis and data items now need to be added to the buffer again 
in order to fill it up. 

The result of the add operation is shown in line five in figure 4.14. The 

data item from the 90ns position in the data stream is the data item to be 

added to the buffer, before adding it the item's time-stamp is checked. In 

this case the item falls within the forward time window of the time buffer 

and it is simply added to the buffer. This results in no change in the buffers 

state, it is still not fully constructed with valid data so it is not passed on 
for further analysis. A further add operation is performed (line six in figure 

4.14) with the next data item in the data stream i. e. the data item from 

the 110ns position in the data stream. The time-stamp of this data item is 

outside the forward time window of the current read position at the 80ns 

position so this item becomes the current pending data item for this time 
buffer. This time buffer is now considered full i. e. it is fully constructed with 
valid data so it is passed on for further analysis. 

Stage seven and eight of the figure show similar incrementations and ad- 
ditions as already described previously; with data items being removed from 

the backwards time window and data items and pending items being checked 
against the forward time windows range. This process essentially continues 
throughout the data stream constructed from all of the runfiles passed into 
the TDRSorter data analysis code. As valid time buffers are constructed 
they are passed into the process() method of the CSorter class where pix- 
els and events are constructed. The process of pixel definition and event 
construction are described in detail in chapter 5 
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4.4.4 Example Time Buffer 

One final illustration that is useful at this point is to present an example of 

a complete, fully constructed time buffer as it would appear in the TDRSorter 

data analysis code. The time buffer presented here is an actual example of 

one that was created during a run through the example data set. All of the 
data items shown are simplified versions (containing only key information) 

of the real data items used in the construction of the time buffer. Figure 4.15 

shows this outline of the fully constructed CBuffer object. 

START BUFFER TIME DUMP 
INDEX 0 CHN 344 TIME 20739355984741 DATA 16364 ENERGY 15030.88 CLOVER 
INDEX I CHN 336 TIME 20739355984777 DATA 16287 ENERGY 14982.04 CLOVER 
INDEX 2 CHN 320 TIME 20739355984778 DATA 16299 ENERGY 14971.08 CLOVER 
INDEX 3 CHN 416 TIME 20739355985197 DATA 3343 ENERGY-1 GAS-X1 
INDEX 4 CHN 417 TIME 20739355985197 DATA 11732 ENERGY-1 GASJ(2 
INDEX 5 CHN 418 TIME 20739355985197 DATA 10840 ENERGY-1 GAS-Y1 
INDEX 6 CHN 419 TIME 20739355985197 DATA 9232 ENERGY-1 GAS_Y2 
INDEX 7 CHN 420 TIME 20739355985197 DATA 4387 ENERGY-1 GAS_E 
INDEX 8 CHN 128 TIME 20739355985199 DATA 16246 ENERGY 16985.3 DSSD X 
INDEX 9 CHN 59 TIME 20739355985199 DATA 16255 ENERGY 4242.9 DSSD_Y 
INDEX 10 CHN 432 TIME 20739355985209 DATA 7672 ENERGY-1 SI_GAS TAC 

PENDING 336 DATA 16238 TIME 20739355999552 CLOVER 

END BUFFER TIME DUMP 

Figure 4.15: Outline showing a real fully constructed time buffer (CBuffer 

object) created during a run through the example data set. 

It can be seen from the data dump of the buffer that the time buffer 

contains three clover events; the x, y and energy outputs of the MWPC; a 
DSSD X and Y data item; and the triggering silicon-gas TAC. The quoted 
energy value for the gas and the TAC data item values are indicated as -1 
meaning that there is no energy value because there is no calibration supplied 
for these channels. There is no energy calibration supplied as an energy value 
for these detector channels is either meaningless or unneeded. Another point 
to note is the energy values of the DSSD X and the DSSD Y data items. In 
the data set used the X and Y sides of the DSSD had different gain ranges 
with the Y side being approximately one quarter of the X side. Even though 

at first glance the X and Y data items appear to not be caused by the same 

56 



event, in reality the energy values are quite close and the data items would 

probably pass any required gates to define a real pixel if the gain ranges were 
the same. 

4.5 Summary 

This chapter covered the high level structure of the TDRSorter data analy- 

sis code and detailed how it can be broken down into four general sections. 
The first two sections; data input and data buffering were covered in this 

chapter, the remaining sections are covered in later chapters. Two different 

methods of buffering were also compared and an outline of the operation of 
the time buffer was given. A walk through of the entire process was also 

given at the end of this chapter. 
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Chapter 5 

Pixel Definition and Event 

Construction 

5.1 Overview 

This chapter discusses two important sections of the TDRSorter data 

analysis code; pixel definition and event construction. Pixel definition is 

an important aspect of the analysis code as it is effectively the central build- 

ing block from which all other data structures are formed. A discussion is 

given of how pixels are defined from fully constructed time buffers and some 
issues that arise during this process. The next major section discussed is 

that of Event construction. This section will detail how CEvent objects 
are constructed using the CPixel class previously discussed. The CEvent 

object encapsulates the fundamental `physics' data that is used in particular 
in the specialised sorting portion of the data analysis code as discussed in 

chapter 6. 

The process of pixel definition and event construction takes place en- 
tirely within the process( method of the CSorter class as outlined in 
figure 5.1. The process method is called from the main loop line this- 

>process(mybufFer). The mybuffer object passed as a parameter is the 
fully constructed CBuffer class as described in section 4.4. The read posi- 
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tion points to the current triggered data item and the forward and backward 

portions are filled with all CTDRDataItem objects from the data stream 
that have timestamps that lie within these given time periods 
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Figure 5.1: UML Class Diagram showing the CSorter, CEvent and 
EventProperties classes. 

The main purpose of the event construction process is to build valid 
CEvent objects that can be passed onto the specialised sorting section of 
the code. The CEvent class contains basic information about data items 
that are in prompt coincidence; pixel information; and detector energy infor- 

mation. The following sections will discuss how these CEvent objects are 
built and some of the most important issues that arise. 
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5.2 Pixel Definition 

The core of constructing a CEvent is the definition of a CPixel object that 

must be passed as an argument in the constructor of the CEvent object. As 

outlined in section 2.4.3 the double sided silicon strip detector (Or DSSD) 

consists of sets of individual detector strips positioned orthogonally to each 

other. These sets of strips are termed the x and y strips of the DSSD. 

The same principles discussed in the following sections are applicable to the 

planar germanium detector which is segmented into strips in a similar way 
to the DSSD. Other detectors in the spectrometer such as the PINs which 

are not segmented into strips do not need the following processes to be used 
effectively. 

The DSSD detector has both x and y oriented strips to gain spatial infor- 

mation from any signals produced from recoil implantations or subsequent 
decays. Using the example of a recoiling nucleus implanting in the DSSD 
detector, energy will be deposited in the nearest x and y strips. As the posi- 
tion of these strips within the overall detector is known an (x, y) coordinate 
for this implantation can be inferred. 

Given this information it can be seen that in order for a pixel to be defined a 
CTDRDataltem corresponding to a DSSD X strip and a CTDRDataItem 

corresponding to a DSSD Y strip need to occur in the data stream. Figure 
5.2 shows diagrammatically the process of defining a pixel using the x and y 
CTDRDataItem objects. 

Apart from the presence of these data items in the data stream there 

are also time and energy constraints to consider. In order for a pixel to 
be considered valid both x and y data items need to lie within a short time 

period of one another. Section 5.3 provides detailed information about timing 

relationships between strips. If however it is assumed that all detector and 
data acquisition paths should operate at approximately the same speed, and 
that the energy is deposited from a single implantation event it is highly 

60 



Figure 5.2: Diagram showing the principles of pixel definition. The diagram 

shows how a pixel is constructed from both a DSSD X data item and a DSSD 

Y data item. 

likely that any x and y data items in close temporal proximity in the data 

stream could define a valid pixel. 

As well as lying in close temporal proximity, any data item should also pass 

certain energy conditions to be considered a true pixel. The energy condition 
is that the magnitude of the energy deposited in a given x or y strip should 

closely match that of its respective x or y channel. This condition is put in 

place as the energy deposited in each strip should vary around a mean value. 
If the energy of one strip in the pixel was 4000keV and its corresponding 
channel was 40keV then there is the possibility that the smaller energy strip 

could be a false coincidence as the result of noise or background radiation in 

the detector. 

5.2.1 Time and Energy Condition Statistics 

Figure 5.3 shows the timing relationship between DSSD X and DSSD Y 

strips. This figure was generated by searching through the data stream and 
triggering from either a DSSD Y or a DSSD X strip. When one of these 

strips was found a search was performed to locate the nearest complimentary 
x or y strip. When this strip was found a difference was taken between the 
timestamps of the respective strips data items and the result was plotted 
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onto the figure. 

The x axis of figure 5.3 represents this time difference in nanoseconds. As 

can be seen the distribution lies around the zero position and quickly falls 

off at either side. This indicates that most x and y strips in the data stream 

that are near to each other probably were generated from the same event. 
In order to reduce any background or stray signals on future analysis it is 

possible to set a time gate on strips that are likely to be correlated. It can 
be seen that if the time difference between strips is greater than 100ns then 

they are unlikely to be valid strips for defining pixels. In reality a tighter 

gate can be used to ensure only good is used (i. e. a time gate of ±20ns ). It 

must be noted that such gates must be recalculated for different experiments 

and different set-ups as timing relationships are likely to vary. 
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Figure 5.3: Figure showing time difference between x and y strips in the data 

stream. 
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As well as filtering out widely different timestamps it is also useful to filter 

out located DSSD X and Y strips that have large energy differences. These 

energy differences could be caused by various problems in the system e. g. 

malfunctioning strips in the DSSD detector, or false coincidences with noise 

generated by a DSSD strip. Other sources of large energy differences could 

be caused by recoils embedding only partially on a strip of the DSSD. Figure 

5.4 below shows a plot of the energy of the DSSD X strips against the energy 

of the DSSD Y strips. 

2000 

0 2000 4000 6000 8000 10000 12000 14000 
DSSD X Energy ( keV ) 

Figure 5.4: Figure showing the DSSD X energy plotted against the DSSD Y 

energy. The figure shown is the raw strip data before any filtering on time 

or energy differences was performed. 

On figure 5.4 a straight line corresponding to DSSD X and Y data items 

that have identical or nearly identical values can be clearly seen. This main 
line represents the data items that need to be selected, all other data items 

represent less than ideal data items for pixel construction. Other structures 
on this plot are also visible. What appear to be horizontal or vertical lines 
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on this plot correspond to areas where strips are dead in one axis. The large 

dense patches near the zero position correspond to low end noise generated 
in the DSSD strips. In order to decide on how to filter out these unwanted 
data items it is useful to look at the energy difference between the x and y 

data items. 

Raw XY Energy Difference 
100 

80 
4.0 
C 

0 
60 

w 0 
L 

E 40 

z 

20 

0 

Figure 5.5: Figure showing the energy difference between x and y strips ill 

the data stream. A 100 keV energy gate is indicated, the results of this gate 

on the x vs y energy plot can be seen in figure 5.6. 

Figure 5.5 shows a plot of the energy differences between the DSSD X and 
Y strips. A spike can be seen around the zero position which corresponds 
to data items that have very similar x and y energies. By setting a gate of 
±50keV and again plotting the DSSD X energy versus the DSSD Y energy 

as in figure 5.6 it can clearly be seen that the only feature that remains is the 

straight line that corresponds to the data items used to build pixels from. All 

other artifacts have been removed by gating on only small energy differences 
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between the DSSD X and Y strips. 
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Figure 5.6: Plot showing the DSSD X energy plotted against the DSSD Y 

energy. The figure shows only the DSSD strips that have passed the energy 

gating criteria (±50keV energy gate). 

5.2.2 Triggering Considerations 

Before giving some examples of how pixels are defined froiri different data 

sets it is necessary to briefly discuss triggering issues and how the pixel de- 

finition process can vary depending on what data items are triggered from. 

As mentioned in previous sections the TDR data analysis system is trigger- 

less, this enables all the data to be read out without being dependent on any 

particular hardware trigger. 

In order to sort the time ordered data stream it is useful to have a user 
defined software trigger from which to build the CEvent objects necessary. 
One obvious choice is to trigger from the Silicon-Gas TAC as described in 

section 2.4.7. When a silicon-gas TAC data item is found in the data stream 
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it is an indication that a recoiling nucleus has passed through the MWPC 

gas detector and deposited some energy and has also implanted into the 

DSSD detector. As pixels are constructed from data items originating from 

implanting nuclei, choosing this as a trigger is an obvious prime candidate. 
The CEvent objects themselves are built by searching in the time buffer for 

any x and y DSSD data items that fall within user specified time constraints 

As a brief aside it is useful to discuss the relevancy of using a silicon-gas 
TAC as apposed to simply using the timestamps of the data items themselves. 

As previously mentioned the silicon-gas TAC is used to gather accurate time 

of flight information about recoils that have passed through the multiwire 

proportional counter and subsequently embedded in the DSSD by gating on 
these two occurrences. The silicon TAC generates high precision timing infor- 

mation that has a finer grained resolution than the time-stamping generated 
by the metronome. Figure 5.7 shows a histogram of the silicon-gas TAC's 

high resolution data. 
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Figure 5.7: Histogram showing the high resolution timing information gen- 
erated by the silicon-gas TAC. 
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In addition to the above method of gathering time of flight information 

about recoiling nuclei from the silicon-gas TAC. It is possible to gather the 

same information, albeit of lower precision, by using the time-stamping in- 

formation of data items in the data stream. By identifying a CEvent object 

that has both a defined pixel (or a DSSD X or DSSD Y event on its own ) 

and a defined gas event a similar function can be performed to the TAC by 

simply taking a difference between the relative data items timestamps. 
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Figure 5.8: Histogram showing time of flight information similar to that 

generated by the silicon-gas TAC. In this figure the difference between the 

timestamps of an events DSSD data item and its GAS data item was plotted. 

Figure 5.8 shows this time difference plotted in a histogram. Comparing 
this figure to the previous figure 5.7 it can be seen that both histograms 
have the same general shape. However it can also be seen that the histogram 

generated from the data item time-stamp differences is of significantly lower 

resolution than the histogram generated from the silicon-gas TAC. 

Another possibility for a good software trigger is to use CTDRDataltem 

objects that are generated from the individual DSSD detector channels them- 
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selves. In this case rather than the CEvent objects being built from the 

Silicon-gas TAC they are constructed from either an x or y DSSD data item. 

When a DSSD x or y data item is triggered from, a corresponding y or x 
DSSD data item is searched for in the time buffer. If the found data item 

falls within specified time constraints it can be used to define a pixel. 

5.3 Pixel Definition Examples and Problems 

Figure 5.9 shows an example data stream and time line. The read position 
is pointing to a silicon-gas TAC data item, which in this example is the 

data item type being used as a software trigger. There are two components 

to the diagram. The sequence of boxes represent data items in the data 

stream and the time line below represents the time at which the data items 

appear in relation to the read position( Ons ) in the forward and backward 

time windows of the buffer. In the diagram only the relevant data items to 

the discussion are named i. e DSSD X, DSSD Y and TAC. All data items 

from other detector channels are marked with a dash for clarity, the boxes 

themselves remain to indicate that there is other data present in the data 

stream besides that which is relevant for defining pixels. 
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Figure 5.9: Figure showing a sample data stream and timeline from which a 

pixel can be defined. 

Figure 5.9 shows a portion of data stream that is in an ideal state to 
define pixels. Suppose that a silicon-gas TAC data item is being used to 
trigger from and that the user has defined a time buffer with a forward and 
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backwards time window of 30ns. The sequence of data items in the diagram 

represents all of the data items in the data stream that lie within ±30ns of 
the time-stamp of the read position. The time line shown indicates the time 

in tens of nanoseconds starting from zero at the read position. 

As described in previous sections in order to define a pixel both a DSSD 

X strip and a DSSD Y strip need to be found in the buffer within close 
temporal proximity to the triggered silicon-gas TAC data item. When using 
the TAC as a trigger, the process to find these x or y strips is to simply 

search within the buffer and extract the appropriate data items when they 

are found. Referring to figure 5.9 it can be seen that within this portion 

of the data stream amongst the other events that are not relevant for pixel 
definition there are two data items, one from a DSSD X channel and one 
from a DSSD Y channel. 

The logic of the event construction process is as follows. The time-stamp 

of the data item at the read position is stored ( the read time ). Starting from 

the read time the buffer is then searched in both forwards and backwards 
time directions for any DSSD X or DSSD Y data items that have a time- 

stamp that fall within the appropriate time windows. For example the read 

position has a time-stamp of Ons in the buffer if the backwards time window 
is 30ns then any data item that has a time-stamp in the range -30ns to Ons 

will be found by the backwards search process. Also given that the forwards 

time window is 30ns any data item that has a time-stamp in the range Ons 

to 30ns will be found by the forward search process. From figure 5.9 it can 
be seen that a DSSD X strip is at the -10ns position in the data stream and 
a DSSD Y lies at the 20ns position, both of which lie within the required 
range. 

Searching the time buffer is performed by calling the find() or findAll() 

methods of the CBuffer object. Two variables are passed in as parameters 
that specify the amount of time to search within the buffer in a forwards and 
backwards direction. A third parameter is used to set the SEARCH_TYPE 
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of the find method that specifies what data item to look for in the buffer. 

This parameter essentially maps the channels in the GREAT spectrometer to 

a detector group defined in one of the TDRSorter's header files making it easy 
to search for specific groups without worrying about the channel numbers 1 

of the detector. The SEARCH_TYPE parameter is passed to the find() 

method which returns the first data item that it finds of the specified type 

that falls within the search criteria. The findAll() method returns a list of 

all data items that are found within the search criteria. 

In the example illustrated in figure 5.9 the findAll() method is being 

used to locate and return a list of all data items that fall within the specified 

search criteria. In the example the list of found data contains two items, one 
DSSD X strip at -10ns position and one DSSD Y strip at the 20ns position. 
These two data items are used to define the pixel. As mentioned earlier this 

example illustrates the simplest pixel definition case, the following sections 
describe other likely situations and how the complications they introduce are 

solved. 

5.4 Problem Conditions in Pixel Definition 

This section forms the bulk of this chapter. The various problems that 

can arise when defining pixels are discussed in some depth. In particular 
how pixels can still be successfully defined when there are multiple DSSD 

data item candidates within the time buffer. Attention is also given to the 

issue of double counting and how it can be avoided. 

5.4.1 Multiple X and Y Strips 

Figure 5.10 shows a different section of time buffer and its accompanying 
time line. This figure shows a more complicated situation. As before the 
diagram represents a complete time buffer triggered from a silicon-gas TAC 

'The channel numbers of the data acquisition system can be reordered so having the 

mapping of `channels to detector groups' in one place makes changing this mapping easy. 
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data item at the read position but this time there are two data items that 

correspond to DSSD X channels, one at the - iOns position and one at the 

-20ns position. There is also one data item corresponding to a DSSD Y 

channel at the lOns position. Using the same time buffer parameters as 

before all three of these data items fall within the buffer's time window for 

defining pixels. This situation creates a problem in that a decision now 

has to be made as to which of the data items in the data stream actually 

corresponds to the true x and y parameters of the pixel. 

Read 
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Figure 5.10: Figure showing a sample data stream and timeline with multiple 
x strips. 

Given the above situation it is necessary to develop a method for finding 

the most likely DSSD data items in the data stream to constitute a pixel. 
In dealing with the time and energy of the detector channels only, it is not 
possible to say that any given data items definitely correspond to a valid pixel 

and therefore have to manage with defining pixels from the most probable 
data items to constitute them. As before the findAll() method of the buffer 
is used to return a list of all DSSD X and Y data items that lie within the 

search time window of the buffer. 

The returned list of data items can be dealt with in various ways, the 

most trivial of which is to simply discount the data if there are multiple 
DSSD channels associated with a single silicon-gas TAC event. Obviously 

this is not the most desirable way of dealing with the data as with a little 

effort meaningful data can still be extracted from such a time buffer. 
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Another option is to select candidates from the list of DSSD data items 

based upon the difference in time from the time-stamp of the read position 
data item. The list of DSSD data items is searched and each DSSD X and Y 

data items time-stamp is checked against the time-stamp of the data item at 
the read position and a difference is taken. Using these calculated differences 

the DSSD X data item and the DSSD Y item that lies closest in time to the 

silicon-gas TAC are selected as the corresponding x and y items of the pixel. 
Referring to figure 5.10 using the method described would select the DSSD 

X data item at the -10ns position and the DSSD Y data item at the lOns 

position for the corresponding x and y components of the defined pixel. The 

DSSD X data item at the -20ns position would be discounted from the pixel 
definition. 

The final method that is discussed to choose candidates from the data 

stream is to select based on the difference in energy. The list of DSSD data 
items would be searched and the energy difference between each DSSD X 

and DSSD Y data item is taken. Referring to section 5.2.1 it can be seen 
that the energy difference between corresponding x and y strips lies within 
known limits. It can therefore be assumed that given a set of DSSD X and 
Y strips, those data items that lie closest in energy to one another are likely 

candidates for defining the components of the pixel. 

Referring to figure 5.10 the energy of the first DSSD X data item at the 

-20ns position would be read and the value compared to all other possible 
Y data items, which in the example is the DSSD Y data item at the 10ns 

position. The difference in energy between these two data items is calculated 
and then stored. The energy difference between the next DSSD X item at 
the 10ns position and the DSSD Y item is also taken and stored. Out of 
these two energy differences the pair of x and y data items with the smallest 
energy difference are selected as the most likely data items to constitute the 

x and y components of the pixel. 
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These two methods of pixel component selection; selecting by time dif- 

ference and selecting by energy difference are not mutually exclusive. They 

can be used together to filter out unlikely candidates. One such combination 

would be to first select based on time i. e. search through the data stream and 

select the two data items ( DSSD X and Y) that lie closest to the triggering 

silicon-gas TAC's time-stamp. The time difference between the DSSD X and 

DSSD Y data items would then be calculated, if this difference was within 

a certain range then they could be pixel candidates if they passed the next 

test. 

Next the two data items energy values would then be checked. Only if the 

two data items energy difference fell within a certain range would they be 

considered to define a pixel. These user defined time and energy differences 

are effectively being used as filters to remove data items with very different 

values. For example if the DSSD X data item's energy was 100keV and the 

DSSD Y data item's energy was 4000keV they are unlikely to be from the 

same event in the detector. The user could specify that only data items with 

energy differences of 200keV should be considered for pixel definition which 

would effectively discount the data items in this example. 

One caveat to be aware of when using the energy difference to select pixel 

components is if non-standard gain ranges are used. It is possible to apply 
different gains to the DSSD X and DSSD Y strips of the detector, which 
is useful if the DSSD is not only used to detect embedding nuclei and their 

subsequent alpha decays, but also to detect any conversion electron decay. As 

conversion electrons have a much lower energy range (maximum of 500keV) 

the amplifier gain range can be set differently for one side of the DSSD to 

provide this ability. Clearly in circumstances such as these using the energy 
difference to identify pixels is misguided. 
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5.4.2 Double Counting 

An issue that is of prime concern in any experiment and in particular those 

with low statistics is not only making sure that all data in the data source 
is accounted for but also that the data is only used once. In low statistic 

experiments this is vitally important as small variations in the number of 

counts can make a vast difference in any calculations carried out based on 
these counts. This section describes how situations can arise where double 

counting is an issue and also explains how this problem is overcome. 

Figure 5.11 shows a continuous section of the data stream starting from 

the Ons position and finishing at the 80ns position as shown on the time 
line at the bottom of the diagram. The section of data stream has had two 
individual time buffers, A and B constructed from it. Each time buffer has 
been triggered by two separate silicon-gas TAC data items indicated on the 
diagram as read position trigger A and B. Read position trigger A occurs at 
the 30ns position in the whole data stream section and read position trigger 
B occurs at the 50ns position of the section of data stream. 

Time Buffer A and Time Buffer B each have a forward and backwards 
time window of 30ns. The read position of each separate time buffer has 
been set at the Ons position with the forward and backward portions of the 
time buffer indicated as ±30ns respectively. It is important to remember in 
the following discussion that these two separate time buffers overlap and are 
constructed from the one continuous portion of the data stream. 

Starting with the read position trigger of time buffer A it can be seen that 
constructing a pixel by searching for all possible DSSD X and DSSD Y data 
items would return two data items one DSSD X at the -10ns position of time 
buffer A and one DSSD Y at the +10ns position of time buffer A. Assuming 
that these data items pass any user specified time and energy constraints a 
valid pixel can be constructed. 
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Figure 5.11: Figure showing a sample data stream and time line with the 

possibility of double counting. 

Moving on to time buffer Ba search for all possible DSSD X and DSSD 

Y data items in relation to the read position trigger would return two can- 
didates. The first a DSSD X data item at the -30ns position of time buffer 

B and the second a DSSD Y data item at the -107n. s position of time buffer 

B. Again assuming that these two data items pass any user defined time and 

energy conditions another valid pixel can be constructed. 

Individually the pixels constructed from both time buffer A and time buffer 

B are perfectly valid. The problem is only observed if the data items involved 

are considered in their relation to their overall position in the data stream. 
The DSSD X and Y data items at the 20ns and 40ns position in the data 

stream are used as the X and Y component of both defined pixels. A situation 
has now arose were if both of these pixels are used to construct an event the 

DSSD data items in the data stream have been counted twice i. e. double 

counted. 
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Overcoming this double counting is of vital importance in order to trust the 

validity of the conclusions made when using the time ordered data stream. A 

method is needed to determine whether any DSSD data item being considered 
has already been included in a pixel. In actuality it is necessary to ascertain 

whether any data items returned from any search of a time buffer has already 
been used in some way. 

As mentioned previously it is necessary to have a method of marking any 
data items that have been used in the construction of any pixels or events. 
In order to facilitate this, each CTDRDataItem object has a boolean flag 
(initially set to false) that can be set to true when a given data item has 
been included within a data structure. The CTDRDataItem class has two 

methods SetAsUsed() and GetUsed() that sets and retrieves the state 
of this flag. Essentially whenever a data item is being considered for being 
included in a pixel the state of the flag is checked and only if it is unset i. e. 
false can the data item be used. 

Considering the data given in figure 5.11 then the `used' flag prevents 
double counting in the following manner. Starting at the read position of 
time buffer A, a search for all DSSD data items returns a DSSD X data item 

at the 20ns position in the overall data stream and a DSSD Y data item 
at the 40ns position. Assuming the time and energy constraints set by the 
user are passed the data items are used to construct a pixel. At this point 
the SetAsUsed() method is called on each data item which sets the flag 
indicating that these data items have been used. 

As the time buffer is incremented the data item at read position B is 

eventually reached i. e. the silicon-gas TAC data item at the 50ns position in 
the overall time buffer. At this point a search for DSSD items is performed 
which returns the DSSD X data item at the 20ns position in the overall 
data stream and also the DSSD Y data item at the 40ns position. At this 
point before any checks are performed to see if the data items pass any user 
defined energy constraints the GetUsed() method is called on each data 
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item to see if they have already been included in any other data structure. 
In the example both data items have already been included in the previously 
defined pixel so the calls to this method return true indicating they have 

been used. 

At this point the construction of the pixel is abandoned as there are no valid 
data items left that could be used to construct a valid pixel. This method 

effectively removes any double counting issues by effectively disallowing any 
data item to be used more than once. The only remaining issue that can 

not be avoided is that it is impossible to judge which triggering data item 

the DSSD strips actually belong to. Simply being the first data item to be 

triggered in the data stream does not guarantee that the assignment of the 
DSSD data items to this event is the correct one. Unfortunately any false 

assignments due to this issue cannot be avoided, but as a consolation this 
is a lesser problem than double counting data. Any false assignments would 
probably generate events that would later be filtered out by further refining 
processes carried out. It is of course up to the user to decide if any of these 

events are used or ignored altogether. 

5.4.3 Pixel Construction from Alternate Triggering 

As mentioned previously in section 5.2.2 it is possible to use other types of 
data items apart from the silicon-gas TAC as a trigger. Figure 5.12 shows a 
portion of the data stream that could be used to define a pixel if any DSSD X 

or DSSD Y data item was chosen as a trigger. Using this triggering method 
the DSSD X data item at the Ores position would be the first data item in 

this section of the data stream to be triggered from. 

Similarly to previous methods the initial step when triggering is to perform 
a search in the time buffer for other DSSD data items that could be used to 
define a pixel. Previously the findAll() method was used to return a list of 
all DSSD data items in the data stream. As a different triggering method 
is being used a slightly different search strategy is necessary, but overall the 
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Figure 5.12: Figure showing a sample data stream and timeline to be used 

with alternate triggering mechanisms. 

principle remains the same. 

As individual DSSD data items are being triggered from as opposed to a 

silicon-gas TAC, simply searching the buffer for all DSSD data items will 

return all the data items present in the buffer including the original trigger- 

ing data item. It is obviously necessary to be more selective in the searches 

performed. One method for returning only relevant data items is to selec- 

tively search for the complementary DSSD type to the triggering data item. 
For example if when triggering from a DSSD X data item a search would be 

performed for all DSSD Y data items in the time buffer. When triggering 

from a DSSD Y data item a search would be performed for all DSSD X data 

items. 

Referring to figure 5.12 it can see that the data item being triggered frone 

i. e. the data item at the read position is a DSSD X data item. In order to 
build a valid pixel a corresponding DSSD Y data item is needed, therefore 
it is necessary to perform a search in the time buffer for all DSSD Y data 

items. In the example this returns a single DSSD Y data item from the 20ns 

position in the data stream. As described in previous sections this point of 
the process could be used to perform time and energy checks to see if the 
data items do define a pixel within the user defined constraints. 
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Considering figure 5.12 it can be seen that when triggering from either a 

DSSD X or DSSD Y data item, situations can arise were double counting 

can become an issue. This occurs as from any defined pixel both the x and 

y component would be used to trigger from. Fortunately it is possible to 

circumvent this by using the strategies discussed in previous sections. 

5.5 Event Packaging 

As mentioned previously at the beginning of this chapter the pixel is the 

central data structure needed in the construction of CEvent objects. Now 

that methods for defining a pixel have been discussed it is possible to progress 

onto a explaining how they are used to build these events. 
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Figure 5.13: Schematic showing how events are packaged within a CEvent 

object. The constructed pixel is used as the starting position to search for 
target, TAC, gas, PINs and focal plane gammas that are in prompt coinci- 
dence. 
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Figure 5.13 shows a schematic of how the CEvent object is composed once 
it has been constructed. As previously mentioned the pixel is the central 
data structure of the CEvent class. Alongside this is the related target data 

items; the associated silicon-gas TAC; the data items associated with the 

multi wire proportional counter (or gas detector); a list of all PIN diode data 

items and finally a list of all focal plane gamma data items that can include 

gamma rays detected from the planar germanium detector or other gamma 
detectors such as a clover detector. 

The various components of an event are built up using similar methods 
used in the construction of a pixel. Various searches are performed on the 
time buffer that has already had a valid pixel constructed from it and rele- 
vant data items are extracted and formed into groups within the event data 

structure. All of the data stored in the event are pointers to the memory 
locations containing the data items copied from the time buffer. The lists of 
PINs and 'y's are stored as c++ lists of pointers to the various data items. 

In order for these searches to be performed the first step is to decide on 
the point in the time buffer to search from. In the case of a pixel constructed 
from a silicon-gas TAC as the triggering data item the time-stamp of this 
data item can be used as the starting point of the search. In cases where 
other data items are used as triggers various other strategies could be used 
such as the mean time of the DSSD data items of the constructed pixel. In 

general though the main starting point is the time-stamp of the triggering 
data item. This choice means the valid time buffer is available for searching. 

Once the starting position has been decided the next stage is to perform 
various searches of the time buffer looking for the various other data item 

components that compose an event. The first stage would be to search for the 
silicon-gas TAC data item that is associated with the pixel. In cases where 
this is the triggering data item, no search is necessary and the data item is 
simply assigned to the event. In cases where the trigger is something other 
than the silicon-gas TAC a simple search is performed to find the silicon- 
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gas TAC that lies closest in time to the triggering data item. One thing to 

take note of is that the pixel is the only compulsory constituent of the event 

object, all other data items are optional so if any search returns zero data 

items the corresponding component of the event is simply left blank. The 

filtering of events that do not contain components that the user might want 
to require is performed in the specialised sorting section in which the user 

can define custom filtering code. 

The next search performed is for any multi wire proportional counter ( 

Gas ) data items that may be in the time buffer. As with the previous 

search in this case the data items that appear closest in time in the time 
buffer are selected as the gas components of the event object. It can also be 

appropriate at this point to perform the following sanity check on the values 

of any gas data items i. e. any gas data items time-stamp must be offset from 

the implantations time-stamp by the flight time 1µs see section 2.4.7) of 
the recoil through the spectrometer. If a gate is set around this time range 
then it is possible to positively identify if the gas data items found in the data 

stream indicate if this pixel is a true recoil candidate. Using this technique 
it is possible to eliminate any recoil misidentifications due to random noise 
in the gas detector being wrongly used to identify a recoil event. 

The next two searches performed, the one for the associated PIN diode 
detectors data items and the one for the associated focal plane gamma data 
items require that all the data items in the associated time buffer be passed 
into the event. In these two cases a call to the FindAll() method of the 
buffer is used which returns a list of all the data item types selected. This 

returned list is than passed into the event. The last type of data item that 

can be encapsulated in an event is a list of all associated target position 
data items. A target position search differs slightly from the normal search 
in that a time offset is required to correctly identify data items that are in 

prompt coincidence with the triggering data items time-stamp. This offset is 

necessary because of the fact that the recoiling nucleus takes a finite amount 
of time (Time of flight) to travel from the target position where it is produced 
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to the focal plane where it is implanted and the resultant triggering data item 

is generated. 

The time of flight of a given nucleus through the recoil separator can be 

calculated (ti 1µs see section 2.4.7 ) and this can be used to apply a time 

offset into any buffer search. Searches in the time buffer that use an offset 

essentially set the starting position of the search to some other point that 

does not correspond to the time-stamp of the triggering data item i. e. the 

read position. When any offset into the time buffer is used the user must 

ensure that sufficient data is being buffered by setting the time window of 

the buffer to an appropriate value so as to cover the size of the offset. Shorter 

searches are possible as each search method specifies a parameter that can 
be passed in to set the length of time to search for within the time, buffer. 

When all the searches have been performed and any data items that have 

been found to be in coincidence with the triggering pixel have been added 
to the event it is possible to proceed onto the next stage, that of specialised 

sorting. Before moving onto this it is useful to refer to figure 5.14 which 

shows a complete time buffer that can be used to construct an event. The 

following discussion steps through briefly the stages discussed in detail above 

and provides a concrete example of how an event is constructed from a `real' 

time buffer. 

Read 
Position 

O 
PIN 

O 
Gas EXD TAC Y PIN PIN 

O 

Figure 5.14: Figure showing a complete time buffer that an event can be 

constructed from. 
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The sample time buffer shown in 5.14 illustrates a 100ns continuous portion 

of the data stream. In this case the silicon-gas TAC data item is being used 

to trigger from. As indicated, a forward and backward time window of 50ns 

has been set with the TAC data item at the zero position. The user has set 

a time constraint on the pixel that any DSSD data items must have a time 

difference of at most 30ns. 

The first stage of event construction involves defining the pixel. A search 

of all DSSD data items returns a DSSD X data item at the -10ns position 

in the time buffer and a DSSD Y data item at the +10ns position. The time 

difference between these two DSSD data items is 20ns which is less than the 

user defined criteria for valid pixels. Mow there is a valid pixel which can be 

used to build up the rest of the event. The silicon-gas TAC data item used 

for triggering is assigned to the TAC parameter of the event. 

A series of searches is now performed to identify the rest of the data items 
(if any) that are in prompt coincidence with the pixel. Examining the time 

buffer it can be seen that the searches that will return results are the searches 
for PIN diodes, focal plane ry and gas data items. The gas search will return 

the gas energy data item at the -20ns position of the time buffer. The focal 

plane -y search returns a list of four data items from the -50ns, -30ns, 40ns 

and 50ns positions of the time buffer. The final search for PIN diodes returns 

a list of three data items from the -40ns, 20ns and 30ns positions of the 

time buffer. These data items are entered into the appropriate portions of 

the CEvent object which can then be passed onto the specialised sorting 

section as discussed in the following chapter. 

5.6 Summary 

This chapter covered the areas of event construction and pixel definition. 

An important stage of constructing an event was the definition of a pixel. The 

discussion went into some depth about how a pixel is defined and examples 

were given as solutions to common problems such as double counting. The 
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discussion briefly went on to mention how the remaining constituents such 

as the associated gas and focal plane gamma data items are searched for and 

added to the CEvent object. 
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Chapter 6 

Specialised Sorting 

6.1 Overview 

This chapter will discuss how the CEvent objects discussed in the previous 

chapter are used. Specifically how the user specifies detailed parameters and 

code to perform delayed coincidences using the tagging methodology. A 

section is also devoted to how physics information can finally be built up 

using the properties of the CEvent objects. 

6.2 Deriving A Specialised Sorting Class 

The main function of all previous code is to essentially extract relevant por- 
tions of the time ordered data stream and package them in a form (CEvent 

objects) that can be more effectively and easily utilised by the user. The 

user does this by specifying a section of code that organises the events and 
extracts physics information from them. 

In order to perform this `specialised sorting' the user first needs to derive 

their own user class from the CSorter class. Figure 6.1 shows how the user 
defined class MySorter derives from the base CSorter class. As described 

earlier the arrow denotes a generalisation, the derived MySorter class is a 
specialisation of the CSorter base class. One feature of derived classes that 
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CSorter 

-*cali bration: CCalibCoef 
-'Tagger. CTagerManager 
-'runfile: CRunData 

-Odataitem: CTDROataItem 
MySorter 

-Pmybuffer, CBuffer 

-eHistogram: CHistogram -Praw: CRaw 

-PdetectorPixel: CPixel 
cc create »+MySorter(): MySorter 

-PsorterSettings: CSettings 
+processEvent(e: CEvent'): void 

lt + t tR ( id 
. constants: CONSTANTS 

esu ): vo ou pu s 

-cc create >+CSorter(): CSorter 
cc destroy »-CSorterO: CSorter 
+outputDefaultsOvoid 
+OutputResultsO: void 
+process('buffer. CBuff er): vold 
+processEvent(event: CEvent'): void 
+Run(argc: lnt, "argvfl: ehar): Int 

Figure 6.1: UML class diagram showing how a user specified sort class 
`MySorter' derives from the base CSorter class. 

it is important to note is that they inherit all of the methods and data of 
their parent classes. In this case the MySorter class gains all of the methods 
defined in the operations section of the CSorter UML class diagram as well 

as all the data defined in the attributes section of the class diagram. The 

details of how to write a class that derives from the CSorter is not relevant 
to the immediate discussion, more information on how to do this is given in 

Appendix A. 

As described in the previous chapter, pixel definition and event construc- 
tion takes place entirely in the call to process() in the CSorter class. The 
CBuffer object that encapsulates a valid time buffer is passed in as a para- 
meter. As the process() method finishes it performs a call to the proces- 
sEvent() method passing in the newly constructed CEvent object. This 

method call is where all 1 of the specialised sorting, including tagging, takes 

place. 
'Apart from data output which is handled in the outputResults() method of the 

class. 
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Referring to Figure 6.1 it can be seen that there is a method called proces- 

sEvent() present in both the CSorter base class and the MySorter derived 

class. Defining a method in such a way is called method overriding and is 

an important concept in object oriented programming. Declaring a method 
in a derived class that has the same name automatically overrides the base 

method. Any implementation specified in the overridden method effectively 
takes the place of any implementation that was specified in the base class. 

To ensure that the specialised sorting class that the user derives from 

CSorter behaves correctly i. e. is capable of receiving the CEvent objects 

constructed from the time buffer then the specialised sorting class must over- 

ride the processEvent() method. Any particular data manipulation that 

the user requires is then placed into this method where it is called once for 

each CEvent object that is created and passed to it. 

6.3 Event Properties and Data Visualisation 

Every time the processEvent() method is called a new CEvent object is 

passed in as a parameter. In order to extract information from the CEvent 

object various methods can be called that return lists of data items of a spec- 
ified type. These data items can then be queried individually for information 

such as their energy. This process of selecting and querying can be time 

consuming when frequent access to the same information is needed. To limit 

this a summary of the most accessed data is calculated at event construction 
and stored for easy access. The data in the event properties structure is an 
exact mirror of the data contained in the main CEvent class and is simply 
present as a convenience for the user. 

This data structure called an event properties structure is shown as a UML 

class diagram in Figure 6.2. Information contained in the data structure 
include items such as the energy and time of the x and y components of the 
pixel; the various energies, times and data of the gas detector as well as the 

value of the silicon-gas TAC. At any point the user can pass in an event 

87 



struct 

-XEnergy: float 

-YEnergy: float 

-XTime: _164 
-YTime: _I64 
-gasXl: int 

-gasX2: int 

-gasYl: int 

-gasY2: int 

-gasE: int 

-gasT: int 

-tac: int 

-x: int 

y: int 
-type: PIXEL_TYPE 

Figure 6.2: UML Class Diagram showing the event properties structure. 

properties structure to the CEvent object currently being accessed where it 

will be populated by the event to contain the current values for its most used 

values. All of the values populated in the event properties structure can also 
be found by using methods directly on the CEvent object itself. 

Before proceeding with the discussion of how the event properties are used 

along with the data in the CEvent object it is useful to briefly discuss 

calibrations and also how data is accumulated using one and two dimensional 

histograms. 

6.3.1 Calibration 

Before any meaningful energy information can be extracted from the CEvent 

objects the detector system must be calibrated. As all the detectors are run 
through separate ADC's a separate energy calibration must be calculated 
for each individual detector channel in the spectrometer. These calibrations 
are usually performed externally to the code and provided to the TDRSorter 

program as text files made up of a large table containing all the relevant 
calibration data on a per channel basis. 
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These calibration text files are read in once and passed in to the CCalibra- 

tion class where it stores the parameters. The TDRSorter program usually 

applies the specified calibration of the users choosing e. g. linear or quadratic 
to the individual data items in the event construction stage. The energy 
for any given data item is calculated according to the calibration data for 

that channel by accessing methods on the CCalibration class. The energy 

value is then stored in the CTDRDataItem class for later retrieval. As the 

raw data value is always perpetuated throughout all stages of the sort code 

a different calibration could be applied at any time i. e. in the specialised 

sorting stage. 

6.3.2 Histograming 

In order to help use the data it is usual to provide some sort of visu- 

alisation to help in extracting information from the data set. It is useful 
to use both one and two dimensional histograms to help present the data 

gathered from the CEvent objects passed in as parameters to the proces- 

sEvent() method where the current processing is taking place. In the next 
two sections two different types of histogram, integer and floating point will 
be briefly discussed. 

Integer Histograms 

Both the integer histogram represented by the ClntHist class and the 
floating point histogram represented by the CFloatHist class are derived 

from the CHistogram base class. This base class specifies basic functionality 

that a basic histogram should have e. g. having the capacity to increment a 
specified `bin' of the histogram. The specialised integer and floating point 
classes are derived from this class so that collections of generic `histograms' 

can be created that actually contain objects of the specialised derived classes. 

The most basic type of histogram included in the TDRSorter code is the 
integer histogram. The integer histogram class ClntHist implements the 
functionality as prescribed by the CHistogram base class. Apart from 
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methods that provide output of the data the most important method is the 
increment() function that is used to add data to the histogram. The inte- 

ger histogram class adds whole counts to the relevant bin of the histogram, 

which can produce `staggering' in the data as no account is taken of how 

close a given count lies to the boundary of another bin. The data is either 
in one bin or another. 

Floating Point Histograms 

Floating point histograms serve to address some of the limitations of in- 

teger histograms. The main way that they do this is to allow the bins in 

the histogram to have fractional counts and aim to take into account the 

proximity of a given value to the histogram bin boundaries. For example if a 
given value was to lie exactly on the boundary between two bins 0.5 counts 
would be placed into each of the bins. 

As well as using the built in ClntHist and CF1oatHist classes to help 

visualise the data it is also possible to use a third party visualisation library. 
Using another library that has c++ bindings is simply a matter of including 

the appropriate header files and linking the library to the MySorter class. 
In most of the examples shown in the following chapter the ROOT system 
framework [17] is used in a purely visual capacity to display and print the 
data as it is sorted. 

6.3.3 Basic Spectra 

It is useful at this point in the discussion to show some examples of infor- 

mation that could be extracted from the data stream. All of the examples 
that follow are performed using only the information currently contained 
in the CEvent object passed into the processEvent() method and the 
EventProperties structure retrieved from the event. 
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DSSD Total Spectrum 

Figure 6.3 shows the total energy spectrum of the double sided silicon strip 

detector. This histogram has been created by plotting the energy of the pixel 

retrieved from the EventProperties structure. The spectrum has a number 

of interesting features including the labeled recoils and alpha decay lines from 

the 254No decay and the subsequent decay of its daughter nuclei. 
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of the embedded recoils can be clearly seen on the figure. 

DSSD Energy vs TAC 

Figure 6.4 shows a two dimensional histogram that is used to help distin- 

guish recoiling nuclei from other decay products and scattered beam. This is 

created by taking the pixel energy value of the event and plotting this against 
the value of the silicon-gas TAC from the same event. Various structures can 
be observed in this plot. The structure that is of primary importance is that 

of the recoils (indicated by the arrow). The identification of these recoils 
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allows a gate to be set on specific TAC and energy values. These gates can 

then be used to clean up further spectra that need positive recoil identifica- 

tion to give accurate results. Other structures on the figure are the result of 

other transfer products not completely filtered out by the recoil separator. 
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Figure 6.4: Spectrum showing the DSSD energy vs TAC. The recoiling nuclei 

can be clearly identified. 

6.3.4 Examples of Recoil and Alpha Identification 

The following sections give examples of how both recoils and alphas are 

correctly identified using the methods previously discussed. Each histogram 

shown is generated from the same example data set as before. 

Recoils 

By taking the event object and plotting the pixel energy only if the event 
contains a non zero value for any gas data item produces the result shown 
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in figure 6.5. This histogram essentially shows only events that have passed 

through the gas detector i. e. are recoiling nuclei embedding themselves in 

the DSSD detector. Comparing this plot to the total DSSD energy spectrum 

shown in figure 6.3 it can be seen that the alpha events that are clearly 

visible in the total spectra have been completely filtered out. This prompt 

coincidence with gas data items can be seen to be an effective identification 

mechanism for discerning recoils. 
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Figure 6.5: Spectrum showing the gas coincidence filtered Recoil Energy. 

The absence of alpha particles can be clearly seen. 

Alphas 

By using a similar method it is possible to clearly identify events that 

correspond to decays of nuclei previously embedded in the double sided silicon 

strip implantation detector. By plotting the pixel energy only of events that 

contain no gas data items figure 6.6 is produced. This histogram shows the 

energy of events that have not passed through the MWPC i. e. decays of 
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embedded recoils. Comparing this histogram to figure 6.3 it can be seen 

that the clearly defined area caused by recoiling nuclei has been completely 
filtered from the spectra, which shows that the above is a good method for 

distinguishing alpha decays from recoils in real experimental data. 
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Figure 6.6: Spectrum showing the gas anti-coincidence filtered alpha Energy. 

The absence of recoils can be clearly seen. 

6.4 Tagging 

This following section discusses the tagging methodology and how it is 

used to perform spatial and temporal correlation for delayed coincidences. 
The tagger is one of the key components of the data analysis process for 

extracting meaningful physics information from the data stream. 

Figure 6.7 shows a UML diagram for the tagger. The tagger framework is 

split into two parts; the tagger manager represented by the CTaggerMan- 

ager class and the individual tagger object represented by the CTagger 
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CTaggerManager I 

-tagg er: CTag ger[40,120] 

<< create >>+CTaggerManager(Depth: 
-164): 

CTaggerManager 
<< destroy >>-CTaggerManagero: CTaggerManager 
+get(x: int, y: int): vector<CEvent*> 
+add(e: CEvent*): void 
+clear(x: int, y: int): void 
+clearAll(): void 

1 .' 

CTagger 

-events: deque<C Event*> 

-m_IastEventTime: _I64 
-m taggerDepth: 

_I64 
<< create >>+CTaggero: CTagger 
<< destroy >>-CTaggero: CTagger 
+add(e: CEvent*): void 
+get(: vector<CEvent* e> 
+setDepth (time: 

_I64): void 
+isEmpty(: bool 
+IastEventTime(): 

_I64 
+clear(): void 

Figure 6.7: UML Class Diagram showing The TaggerManager and Tagger 

classes. 

class. Both of these classes are closely related and provide functionality that 

complements the operation of both classes. Before moving onto the tagger 

manager the purpose and operation of the CTagger class is first discussed. 

6.4.1 The CTagger Class 

The CTagger class is responsible for the sequencing of events that origi- 
nate from a single pixel. A CEvent object that is passed into the proces- 
sEvent() method of the specialised MySorter class corresponds to a specific 
CPixel object. As previously discussed the CPixel is made from a specific 
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DSSD X and DSSD Y data item. Any events generated from a pixel that 
has the same DSSD X and Y components are handled by the same CTagger 

object. 

The CTagger class has a number of methods used to manipulate the queu- 
ing of events within it. The first relevant method is the void add(CEvent* 

e) function that is used to add the CEvent object to the queue of the CTag- 

ger. Figure 6.8 shows how the CEvent objects are ordered within a given 
CTagger object. With each processEvent call of the specialised sorter rel- 

evant events are added to the CTagger object and subsequently appended 
to the end of the internal queue. 

As the tagger object is member data of the specialised sorting class it lives 

as long as this class does i. e. for the duration that the entire data analysis 

program is running. The tagger is essentially persisted between each call 
to the specialised sorters processEvent method. This means that as time 

progresses and more calls are made all the events that originated from the 

same DSSD X and Y data items are built into the tagger's list with the oldest 
event at the back of the queue and the most recent (or youngest) events at 
the front. 
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Time 

Figure 6.8: Figure showing how CEvent objects are added to the tagger. 

6.4.2 CTagger Depth Mechanism 

Another important functional aspect of the CTagger object is the tagger 
depth. The depth of the CTagger object is essentially the period of time that 
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the tagger is to store CEvent objects for. The tagger depth is set by calling 
the setDepth() method passing in a 64bit integer specifying the length in 

time, in terms of numbers of timestamps, in which to buffer CEvent objects 
for. 

Oldest Youngest 
tagger depth = 1000ns 

Event 
1 A ADD 

t=100ns 

Event Event 
2 A B ADD t=100ns t=400ns 

Event Event Event 
3 A BC 

t=100ns t=400ns t=650ns ADD 

t d th = 1000 
V 

agger ep ns 

Event Event Event Event 
4 A BCD 

t=100ns t=400ns t=650ns t=1200ns 
REMOVE 

Figure 6.9: Figure showing how the depth mechanism operates in the tagger. 

Figure 6.9 shows how the size of the event queue within the CTagger ob- 
ject is controlled using tagger depth checking. Whenever a CEvent object is 

added to the CTagger event queue the time-stamp of that event is recorded. 
The depth of the tagger is then subtracted from this time. The result is the 

earliest time that an event can have to remain on the queue. Any events that 
have a time earlier than this value should be removed as they are no longer 

of any interest in the analysis. 
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Referring to figure 6.9 it can be seen how this process works. Starting with 

a CTagger object that has had its depth set to 1000ns. Each of the indiviual 

stages represents a separate call to the specialised sorters procesEvent() 

method that is not necessarily consecutive to the previous call. The CEvent 

object passed in as a parameter corresponds to a pixel with the same DSSD 

X and Y as the previous tagger addition. 

At stage 1, event A is added to the tagger's queue. As the tagger was 

previously empty i. e. there was no items in the queue no tagger depth check 
is performed. Stage 2 has another CEvent, event B, being added. At this 

point a tagger depth check is performed. The last event added has a time- 

stamp of 400ns, the tagger depth of 1000ns is subtracted from this value 
leaving the earliest time that an event should be queued for as -600ns. The 

event queue is then iterated starting at the earliest item and the time is 

checked against the earliest time allowed. The first event in the queue, event 
A has a time of 100ns which is greater than this earliest time. All of the 

events currently on the queue are still of interest. 

Stage 3 corresponds to another addition of an event, event C that has 

a time of 650ns. As before a event depth check is performed, the earliest 

allowed event must have a time greater than -350ns to remain on the queue. 
The iteration shows that all events are still of interest. Stage 4 corresponds 
to the addition of event D with a time of 1200ns. The tagger depth check 
reveals that the earliest time an event can have to remain on the queue is 
200ns. As the queue is iterated starting at the earliest item it can be seen 
that the first event on the queue, event A has a time of 100ns. This time 
is less than the minimum value required so this event is removed from the 
tagger. 

The process of tagger depth checking is performed for all events in all 
CTagger objects as they arrive and are added. This mechanism ensures 
that only events that are deemed to be relevant for the user are stored in 
memory at any given time. The magnitude of the tagger depth must be 
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selected carefully as the depth is essentially the period of time that any 
delayed coincidences are to be searched for. A good rule of thumb for setting 
the depth of the tagger would be to select a time that is multiples of the 
lifetime of any decay being studied. (e. g. 3xT 2. ) 

6.4.3 The Tagger Manager 

As discussed in the previous section each individual pixel is associated with 
its own individual CTagger object. As each pixel is defined by a unique 

combination of DSSD X and DSSD Y channels it can be inferred that one 
CTagger object is needed for each pixel of the DSSD Detector. As discussed 

in Chapter 2 the DSSD detector is divided into two halves consisting of 60 X 

channels and 40 Y channels making a total of 4800 pixels. Therefore a total 

of 4800 CTagger objects are needed to accurately store and queue all of the 
CEvent objects for use in finding delayed coincidences. 

Trying to manage 4800 CTagger objects could rapidly become unwieldy 
so the CTaggerManager class was created to help in keeping all the indi- 

vidual objects in one place with a single interface used for adding, deleting 

and retrieving events as they are required. The CTaggerManager class 
is detailed in the UML diagram in figure 6.7 and provides several methods 
for manipulating the contained data. The central structure in the CTag- 

gerManager class is the two dimensional array of CTagger objects called 
tagger which is defined as CTagger tagger[120] [40]. This two dimensional 

array essentially maps the DSSD detectors physical layout with one CTagger 

object per pixel. 

Figure 6.10 shows how this arrangement can be visualised. The grid of 
squares in the figure is a representation of the two dimensional array of 
CTagger objects within the tagger manager class CTaggerManager. Each 

square of the grid is referred to as a tagger cell of the tagger manager and 
is essentially an instance of the CTagger class within the array. The boxes 

within each tagger cell correspond to a single CEvent object within the 
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event queue stored in the CTagger object. Multiple stacked boxes represent 

the sequence of events in the queue as outlined in figures 6.8 and 6.9. 
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Figure 6.10: Figure showing a simplified tagger manager. 

The CTaggerManager class has several methods as outlined in 6.7 for 

accessing and modifying the underlying array of CTagger objects. When the 

tagger manager is first created the required depth is passed in as a parameter. 
The tagger manager calls the setDepthO method of each CTagger object 
in the contained array to set the depths of the individual taggers. The tagger 

manager also specifies a method for adding CEvent objects to it. To do this 

a call to the add() method of the manager is made passing in the event 

object to be added. Within this method the X and Y parameters of the pixel 
is queried and the event is added to the appropriate tagger in the array. 

The final method that is of interest is the get method which is specified 

as vector<CEvent*> get(int x, int y). When executing this method the 

x and y parameters of the pixel of interest must be specified, which ensures 
that only the list of events that of are interest are returned. The CEvent 

objects are returned as a list of pointers that point to the events contained in 
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the underlying tagger objects within the managers array. These events are 

returned in the same order as they have been added as detailed in figure 6.8. 

6.4.4 Delayed Coincidences using the CTagger Class 

Following on from the discussion about how the CTagger class is used to 

queue CEvent objects passed into the specialised sorters processEvent() 

method and how the CTaggerManager class is used to access and process 

event data. It is possible to now discuss how the whole tagging framework 

can be used for analysing delayed coincidences. Figure 6.11 shows an example 

tagger manager that maps to a simplified DSSD detector consisting of four 

DSSD X channels and four DSSD Y channels producing a total of sixteen 

pixels. The diagram represents a snapshot in time with some of the taggers 

having events or queues of events currently in time scope. 
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Figure 6.11: Figure showing a generic tagger with multiple cells. 

One of the key delayed coincidences that is usually required is that of 

recoil alpha tagging. In order to perform this tagging it is necessary to 
be able to distinguish events that correspond to an alpha decay and events 
that correspond to recoil implantation. A simple way of doing this is use 
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the gas detector (MWPC) as a recoil discriminator. Essentially a recoil must 

pass through the gas detector, therefore any event that has a valid gas energy 

value i. e. has deposited energy in the gas detector is potentially a recoil. It is 

possible to now apply certain energy conditions dictated by the experimental 

parameters of the reaction being studied and positively identify a recoil event. 
Conversely if an event does not contain a gas energy event it has not passed 
through the gas detector and has therefore originated from a nucleus already 

embedded in the DSSD. Again energy restriction are imposed based on the 

expected energy of the alpha particle. 

6.4.5 Recoil Alpha Tagging 

Now that a method to distinguish recoil generated events from alpha gen- 

erated events has been identified it is possible to discuss how the tagger can 
be used to correlate related events. The first property that can be identified 

is that the events must follow a specific sequence in that the recoil event 

must occur before the alpha event. Another property is that the events must 
lie within close spatial proximity of each other. In this first instance it can 
be assumed that the recoil and alpha events must be in the same pixel, more 

complicated searching strategies are discussed in the following section. 

Referring to figure 6.11 and keeping the above in mind it can be seen that 
there are two instances in the diagram that meet these criteria, the CTagger 

object in tagger cell D1 and the CTagger object in cell A4. In both of these 

cases an alpha recoil pair has been identified that can be used as a basis to 

extract physics information. One possible use is to look for gamma rays that 

are only related to this specific decay by extracting the list of gamma rays 
associated with the alpha event and hopefully build up information about 
the level structure of the nucleus. 

In identifying these transitions the specialised sort code needs to be struc- 
tured in a certain way. As an event is received in the processEvent() 
method it needs to be tested to see if it is a potential alpha event or a recoil 
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event. The test is based on the presence or absence of a gas energy event as 

well as specified energy criteria as discussed above. If the event is identified 

as a recoil a flag is set in the CEvent class specifying that this event is a 

recoil event. This event is then added to the tagger in the appropriate pixel 

coordinates. If the event object is identified as being neither a recoil event 

nor an alpha event i. e. an `other' event it is appropriately flagged `other' and 

added to the appropriate tagger. 

If the event object is identified as an alpha event it is first appropriately 
flagged as an alpha event. After retrieving the relevant DSSD X and Y 

coordinates from the CEvent object it is then possible to retrieve a list of 

all events from that tagger cell by calling the get() method of the tagger 

manager. This method returns a list of all events that have been added to 

the specified cell with respect to the time of the last event added and the 

tagger depth. This list is then iterated, if any recoil events are found within 
it then a valid recoil alpha pair has been identified. At this point further 

filtering and data extraction can be performed according to the remit of the 

experiment. 

Recoil-Alpha Tagging Examples 

Given the method that has just been described, the code in figure 6.12 

gives an example sort file showing how a recoil alpha tag can be performed. 
The source code is an extract from a real sort file, extraneous lines of code 

relating to graphing and other tests not relevant to the current discussion 

have been omitted. 

The code starts by first checking if the event is an alpha particle, in this 

example alphas are identified by any event that has a pixel energy between 

8100keV and 8220keV and has no gas data associated with it. The next 

stage is to retrieve a list of all events in the tagger manager for this pixel 
and search back through them looking for all recoil events. In the example, 
recoils are identified by events that have a gas data item value and also pass 
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1 void MySorter:: processEvent(CEvent* e) 
2 
3 EventProperties EventData; 
4 e->GetProperties(&EventData); 
5 
6 //if its an alpha particle search for recoils 
7 if((EventData. XEnergy > 8100) && (EventData. XEnergy < 8220)&& 
8 (ventData. gasE < 10) ) 
9 
10 vector<CEvent*> eventList=Tagger->get( e->getX(), e->getY() ); 
11 
12 //loop over the arraylist from the tag er and check for recoils 
13 { r(int I =0 ; I<eventList. size() ; i++) 
14 
15 CEvent* tagged Event=eventList[i]; 
16 EventProperties tagged EventData; 
17 tagged Event->GetProperties(&taggedEventData); 
18 
19 //check to see if this is a recoil 
20 if (taggedEventData. gasE>1500)&&(ta gedEventData. gasE<5000)&& 
21 to gedEventData. XEnergy>5000)&&(taggedEventData. XEnerg <15000) 
22 &(taggedEventData. tac>5600)&&(taggedEventData. tac<7200) ) 
23 
24 //this Is a recoil 
25 recoilsx->Fill(tagged EventData. XEnergy); 
26 tagalphax->Fill(EventData. XEnergy); 
27 
28 
29 }}} 
30 else 
31 
32 //put everything else into the tagger 
33 Tagger->add(e); 
34 } 
35 
36 }//end of processEvent method 

Figure 6.12: Figure showing the processEvent() specialised sorting code. 

a basic DSSD and TAC gate defined by the values in the if statement. If any 

event in the list meets this criteria then a recoil alpha pair has been correctly 
identified. 

Now the relevant histograms are incremented with the DSSD energy values 
indicated by their appropriate EventProperties structure values. Figure 

6.13 shows the identified recoils of the correlated pair and Figure 6.14 shows 
the identified alphas of the correlated pair. Comparing these two figures 

with previously generated histograms shows that using the tagging method 

provides a much cleaner identification of the alpha and recoil components 
than simply relying on the presence or absence of a gas data item. 
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Figure 6.13: Figure showing the alpha tagged recoil energy. 

Example Event 

It is useful at this point to provide an example of a real tagged event 

constructed from the data stream. Figure 6.15 shows an event that has been 

completely constructed and passed onto the processEveiit() method during 

a run through the example data set and identified as an alpha. It also shows 

an event found from the tagger that meets the user defined criteria of a 

recoil. The figure shows a simplified version of the data items contained in 

the CEvent object, showing only the information relevant to the illustration. 

6.5 Tagger Search Strategies 

In the example discussed above delayed coincidences were only considered 
to be valid if the sequence of events required lay in the same cell of the 
tagger, however it is possible that the events may not be constrained to this 

one place. A possible cause would be if a recoil implanted in a pixel and the 
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Figure 6.14: Figure showing the recoils tagged alpha energy. 

ALPHA EVENT 
XEnergy : 8140.41 
YEnergy: 4100.16 
XT ime: 207497975108 50 
YTi me: 20749797510850 
gasX1: -1 
gasX2: .1 
gasY1: -1 
gasY2: -1 
gasE: -1 
gasT: -1 
x: 92 
y: 0 

PLANAR E: 158.971 

RECOIL EVENT 
XEnergy : 9638.06 
YEnergy: 4100.67 
XT ime: 20749062929448 
YT Ime: 20749062929448 
gasX1: 11226 
gasX2: 3889 
gasY1: 10721 
gasY2: 9737 
gasE: 2466 
gasT: -1 
x: 92 

y: 0 
CLOVER E: 6096.91 
CLOVER E: -1 
PLANAR E: 3.57883 
PLANAR E: 3.17846 
PLANAR E: 424.08 

Correlation Time : 734581402 (ticks) = 7.35s 

Figure 6.15: Outline showing the components of a real CEvent object con- 

structed from the data stream during a run through the example data set. 
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subsequent alpha escaped and itself implanted in a neighbouring pixel. To 

take into account such eventualities more complicated search strategies can 

be used. 

Single Cross Square 

Figure 6.16: Diagram Showing the single, cross and square search strategies. 

Figure 6.16 shows three possible search strategies that may be used to 

identify event sequences for delayed coincidences. The first strategy is the 

single cell (or pixel) strategy where the events must fall within the same pixel 
to be considered. The details of this method have been discussed previously. 
The next search strategy is the cross, in this case events are considered if 

they fall within the cross like pattern shown in the diagram, this pattern 

represents the most likely adjacent cells where an escaping alpha could be 

embedded. 

Referring to figure 6.17 and considering the following sequence of events; 
the recoil event at tagger cell B2 is generated due to a recoiling nucleus 

embedding at that pixel of the DSSD at time t= 100ns. In the proces- 

sEventO method of the specialised sorting class this event is identified as 

a recoil type event and then entered into the tagger manager at the B2 co- 

ordinate position. At a time t= 300n s another event is passed into the 

processEvent() method. This event is identified as an alpha type event so 
it is now possible to start searching for delayed coincidences. This is acheived 
by calling the get() method of the tagger manager supplying the coordinates 
of the cell of interest. 

107 



v E 
H 

t=100ns 1 

Figure 6.17: Figure showing a generic tagger with multiple cells and using a 

cross search strategy. 

The call to the get() method returns a list of all the relevant events from 

the tagger manager. As the search strategy is set to cross this returns a time 

ordered list of events from the cells shaded in figure 6.17 i. e. cells C1, C2, 

C3, D2 and B2. As can be seen from the figure this will result in the recoil 

occurring at time t= 100ns at cell B2. This has now established these two 

events as a recoil alpha pair that can now be used for further analysis. 

The final search type discussed here is the square search strategy. As the 

name implies this method searches for all possible delayed coincidences in 

a square shaped pattern around the originating pixel. The square search 

strategy is shown in figure 6.18 which shows how events can be correlated. 
Considering that the recoil event at time t= 100ns is added to tagger cell 
B1 and in a subsequent call to the processEventO method the event at cell 
C2 with time t= 200ns is added then these two events can be correlate using 
the square search strategy. The call to the tagger manager that retrieves all 

relevant events will return events frone the following cells D1 - D3, C1 - C3 

and cells B1 - B3. As can be seen this will result in the return of the recoil 

event at cell B2 which can be used to define a delayed coincidence pair for 
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Figure 6.18: Figure showing a generic tagger with multiple cells and using a 

square search strategy. 

further analysis. 

Referring again to figure 6.17 and 6.18 a situation can be seen were a given 

alpha event would not find a corresponding recoil in the cross strategy but 

would find one if the square strategy was used. The alpha event in cell D3 

when using the cross search strategy finds no recoil event, however the same 

alpha event when using a cross search strategy would find the recoil event 
in cell C4. From this it can be reasonably expected that the numbers of 

correlated recoil alpha pairs will be different for different strategies. 

Raw a Single Cross Square 

1523 

n/a 

1203 

78.9% 

1304 

85.6% 

1339 

87.9% 

Number of a particles 
% of correlated recoils 

Table 6.1: Table showing the number and percentage of recoils correlated 
from the detected alpha particles for single, square and cross tagging search 

strategies. 
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Table 6.1 shows how the different search strategies discussed above af- 
fect the amount of recoils that are correlated from identified alpha particles. 
Given a number of identified alpha particles (1523as) from a section of data 

the number of alphas that locate a recoil in the tagger for the specified search 

strategy is shown. The search time for recoil alpha correlation used was 550s 

which is approximately 10 x T2 for the decay. This is to ensure that there 

are sufficient events for the tagging method to be applied to. It can be seen 

that for the single pixel strategy that 78.9% of alpha particles locate a re- 

coil and for the cross and square strategies that 85.6% and 87.9% of alphas 

respectively locate a recoil. 

Given the values above it is useful to mention the relative benefits of each 

of the strategies. The single strategy which correlates 78.9% of recoils is 

the fastest in terms of execution speed. Compared to the square strategy 

which identifies 87.9% of recoils but is the slowest to execute due to the 

eight fold increase in tagger searches. The cross strategy is an excellent 

compromise however as it only has a four fold increase in tagger searches but 

more importantly only correlates 2.3% less recoils than the comprehensive 

square search strategy. 

6.6 Lifetime Calculations 

In this section the data gathered from the recoil alpha tagging section is 

used to calculate a real physical property of a nucleus. In the following the 
lifetime and half life of an alpha decaying nucleus will be calculated. In 

the example data set used throughout this thesis a prime candidate for this 

calculation is the alpha decay of 254No to 250Fm. The values of the lifetime 

and half life are well known [18] i. e. the the half life T2 = (51.2 ± 0.4)s 

To calculate the lifetime or half life of an alpha decaying nucleus it is first 

necessary to be able to identify a recoil alpha pair and gather information 

about their timing relationship. A segment of specialised sorting code similar 
to the code section given in figure 6.12 is used to identify the recoil alpha 
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pairs needed. Once they have been identified a difference of the two events 
timestamps is taken. This is accomplished in the specialised sorting code by 

inserting the following lines (figure 6.19 ) at line 26 of the code outlined in 

figure 6.12 

1 
_164 

dt = (EventData. XTime - taggedEventData. XTime); 
2 recoilalphatime->Fill((dt/(10*Constants. Seconds))); 

Figure 6.19: Section of code inserted into the specialised sorting class to 

calculate and plot the time difference between a correlated recoil alpha pair. 

Referring to figure 6.19 it can be seen that the additional lines of code 

needed in the specialised sorting class are fairly straightforward, line 1 simply 
takes the time-stamp of the DSSD X strip of the current event (the identified 

alpha) and subtracts the time-stamp of the DSSD X strip of the recoil event 
located by a tagger search. The calculated differences are then plotted into 

a histogram. It can be seen from line 2 of the code that the time difference 

calculated in tens of nanoseconds is scaled to fit into 10sec bins which is of 
the same order of magnitude as the expected half life. The results of this 

process can be seen in figure 6.20. 

As radioactive decay is governed by the well known law [191 given in equa- 
tion (6.1) fitting an exponential curve to the generated data can yield a value 
for A. By using equations (6.2) and (6.3) values for the half life and lifetime 

can then be calculated from the decay constant A. 

N(t) = Noe-T (6.1) 

T1 = 
In(2) 

A 
(6.2) 

2 

A=1 (6.3) 
T 
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Figure 6.20: Figure showing a decay curve for the 254No alpha decay. A 

exponential fit of the curve is shown. 

The result of an exponential fit to the data is shown in figure 6.20. The 

result of this fit yields a value for A as (0.0130 ± 0.0002)s-1. Using equation 
(6.2) and equation (6.3) gives a half life (Ti) of (53.5 ± 0.8)s and a lifetime 

T of (77.2 ± 1.1)s. The calculated half life compares well with the expected 

value of (51.2 ± 0.4) s. 

6.7 Comparison of TDRSorter to GRAIN 

During the process of developing the TDRSorter data analysis code and 
the subsequent writing of this thesis other data analysis tools to work with 
the TDR data acquisition system have been developed in other institutions. 
One of these systems known as GRAIN [21] was developed by Panu Rahkila 

at the university of Jyväskylä. GRAIN has been developed in Java to handle 

the same time ordered data stream produced by the TDR data acquisition 
system that is analysed by the TDRSorter code. 
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It is beneficial to compare the TDRSorter program to GRAIN as it pro- 

vides a useful cross check on the validity of any results generated from either 
program. In the comparisons shown below a separate set of data was used 
than in the analysis in previous sections. This separate data set was used 
due to changes made in the experimental setup; the channel mappings of 
individual detectors was altered before the initial release of GRAIN. This 

means that processing the data set used previously (containing the old de- 

tector mappings) GRAIN would incorrectly assign channel numbers in the 
data stream to their respective detectors. These detector mappings can not 
be changed due to the fact that GRAIN is a closed system. 

The solution to this issue is to use a more recent data set that so that 
GRAIN has the correct detector channel mappings. It is easy to update the 

mappings in the TDRSorter data analysis program due mainly to the fact 

that access to the source code is not restricted. An additional point to note is 

that this more recent data set is from an experiment designed to investigate 

the same nuclei as used in previous examples i. e. 254No. 

A comparison of each of the main stages passed through in order to obtain 
the half-life and lifetime values for the alpha decay of 254No was chosen to 

show that both TDRSorter and GRAIN are consistent with each other and 
established values. The first fundamental step in being able to calculate the 
half-life and lifetime is to correctly identify and distinguish recoiling nuclei 
and alpha particles. This is also the first step in comparing the two data 

analysis programs. 

Figure 6.21 shows the identified recoils and alphas for both the TDRSorter 

and GRAIN data analysis programs. The method of identification is the 

same as described in section 6.3.4 i. e. that the recoils are identified by DSSD 

events in coincidence with energy loss events in the gas detector (MWPC) 

and alphas are identified by DSSD events in anti-coincidence with events in 
the MWPC. Figure 6.21(a) and 6.21(b) show the identified recoils for the 
TDRSorter and GRAIN data analysis programs, respectively. The results 
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Figure 6.21: Comparison of recoil and alpha spectra for both GRAIN and 
TDRSorter data analysis programs. In both cases recoils are identified by a 
gas coincidence and alphas are identified by a gas anti-coincidence. (a) shows 
the recoils identified by the TDRSorter program, (b) shows the recoils identi- 
fied by GRAIN, (c) shows the alphas identified by TDRSorter and (d) shows 
the alphas identified by GRAIN. 

from both programs can be seen to be the same and it can also be seen 
that in both cases the alpha particles that should lie in the energy range 
of 6500keV to 8500keV have been correctly filtered from the recoils. Figure 
6.21(c) and 6.21(d) show the identified alphas for the TDRSorter and GRAIN 
data analysis programs, respectively. In both cases the alpha peaks can be 

seen to lie at the same energy and with similar peak heights. It can also be 

seen that the alphas have been correctly separated from the recoils by the 

process described above. 
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Figure 6.22: Comparison of tagged recoil and alpha spectra for both GRAIN 

and TDRSorter data analysis programs. (a) shows the alpha tagged re- 
coils identified by the TDRSorter program, (b) shows the alpha tagged re- 
coils identified by GRAIN, (c) shows the recoil tagged alphas identified by 
TDRSorter and (d) shows the recoil tagged alphas identified by GRAIN. 

The next step to be able to calculate the half-life and life time is to correctly 
correlate recoil and alpha pairs. This is performed by recoil alpha tagging 
as described in section 6.4.5. Figure 6.22 shows the correlated alpha and 
recoil pairs identified by the TDRSorter and GRAIN data analysis programs. 
Figure 6.22(a) and 6.22(b) show the identified alpha tagged recoils for the 
TDRSorter and GRAIN data analysis programs, respectively. Figure 6.22(c) 

and 6.22(d) show the identified recoil tagged alphas for the TDRSorter and 
GRAIN data analysis programs, respectively. In both cases the figures show 
that the identified recoils and alphas are similar to each other. 
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Figure 6.23: Comparison of decay curves for the 254No alpha decay. (a) shows 
the fit results for the data sorted using the TDRSorter analysis program. (b) 

shows the fit results for the same data sorted with the GRAIN data analysis 

program. 

The final step is to use these identified correlated alphas and recoils and 

calculate the time difference between them. Plotting this time difference for 

all recoil-alpha pairs produce a decay curve that can be used to calculate the 
half-life and lifetime of the 254No alpha decay. The process and calculations 

performed are identical to those in section 6.6. Figure 6.23 compares the 
fitted decay curve for the TDRSorter data analysis program (Fig. 6.6(a)) and 
for the GRAIN data analysis program (Fig. 6.6(b)). For both cases the same 
fit is performed using the same fitting program i. e. ROOT. The fit used is 

an exponential curve with a linear background, which provides the best fit 
for the data. In both cases the coefficients of the fit are shown as well as the 

X2/ndf (number of degrees of freedom). It can be seen from these X2 values 
that the fit performed with the data gathered from GRAIN 6.23(b) is `better' 
than the fit for the TDRSorter package. Despite this difference in goodness 
of fit, the calculated values of half-life and lifetime are still very consistent. 

Using these fits it is now possible, using the formula given in section 6.6 
to calculate the half-life and lifetime of the 254No alpha decay. Table 6.2 

shows the calculated half-life and lifetime along with errors for both the 
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Program Tý (s) err (s) A s-1 err s-1 
TDRSorter 

GRAIN 
50.9 

51.0 

0.9 

1.0 

73.4 

73.6 

0.2 

0.2 

Table 6.2: Table showing the calculated values of half-life and lifetime. The 

table compares values for the GRAIN and TDRSorter data analysis pro- 

grams. 

TDRSorter and GRAIN data analysis programs. The values shown in the 

table are consistent both with each other and with the expected value of 
(51.2 ± 0.4)s. 

This comparison has served as a useful cross check as to the validity of 
both the TDRSorter and GRAIN data analysis programs. As can be seen 
by the previous examples both packages produce results that are consistent 

with each other. In most cases it cannot be expected that both programs pro- 
duce identical results. Differences in design primarily in the algorithm used 
for data buffering and tagging will cause differences in the produced spec- 
tra. Without careful analysis at the source code level it would be impossible 

to attribute differences to any given design decision and therefore be able 
to make decisions about which method is the most acceptable or accurate. 
Given that both programs produce consistent results it shows that the meth- 

ods used are suitable for extracting useful information from the triggerless 

data generated by GREAT and the TDR data acquisition system. 

6.8 Summary 

This chapter has discussed how a user defined class was derived from the 
base CSorter class and how CEvent objects passed to it where then used 
in the specialised sorting section to extract physics information. The tagging 

methodology used to perform delayed coincidences was discussed as well as 
different tagging search strategies that were used. Also briefly discussed was 
how data gathered from the specialised sorting section can be visualised using 
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histograms or other third party visualisation libraries. 

This chapter has also provided some examples of how the techniques dis- 

cussed are used to produce meaningful and useful results. Basic tagged spec- 
tra have been shown indicating how recoiling nuclei can be discerned from 

alpha decays in the DSSD. A calculation of the half life and lifetime of 254No 

was also shown, proving that this data analysis method based on triggerless 
data streams is viable for performing real world analysis. 

Results generated from the TDRSorter data analysis program were com- 
pared to results generated from the GRAIN data analysis program. In both 

cases the same data set was used along with comparable sort programs. This 

comparison provided a useful cross check to validate the results generated 
from both programs. 
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Chapter 7 

Conclusions 

This chapter will briefly discuss whether the TDRSorter data analysis code 
has met the goals set out in the introduction. An overview of the advantages, 
disadvantages and limitations of the TDRSorter data analysis code imple- 

mentation is also given. A comparison of the TDRSorter as it relates to 

other software solutions available is discussed and finally a brief overview of 

possible future improvements of the code base is also given. 

Throughout this thesis, real world examples of the TDRSorter data analy- 

sis code being used on data gathered from a real experiment have been given. 
In all these instances the results produced from the code have been borne 

out by what is expected from the physics of the various specific situations. 
It can be seen through this that the TDRSorter class can be seen to produce 

accurate results. 

The TDRSorter data analysis code was designed with flexibility and control 
in mind. As the code is split off into separate classes that handle individual 

areas of responsibility it is easy to customise specific components to perform 

specialist functions that are required by any given experiment. As long as 
the interface that the component shares with classes that it uses and are 

used by remains the same then a given component can be rewritten and 
used with the rest of the framework of the application without needing to 

alter other components. This ability can be seen as one of the advantages of 
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the TDRSorter data analysis code. If a specific experiment requires that a 

specialised trigger is needed it can be rewritten easily as all the code for the 
implementation is freely available. For example a custom trigger could be 

required that does not build events from a silicon-gas TAC or an x or y pixel 
in the DSSD but instead triggers from a focal plane gamma ray or electron. 

In addition to the ability to rewrite core components is the amount of 

customisation that is available whilst using the inbuilt settings mechanism. 
Most of the variables used in the set-up of the data analysis code are read in 
from a settings file at run time, it is therefore easy for a user to tweak the 

parameters of event construction to be in line with the requirements of any 

given experiment. For example the values of the forward and backward time 

windows of the CBuffer class are read in from the settings file. 

One of the main design choices taken in building the TDRSorter data 

analysis code was to integrate with ROOT to provide a presentation layer 
for visualising histograms and other data. This decision meant that the data 

analysis was somewhat decoupled from the presentation of data although 
this is compensated by the fact that is easy to integrate with other third 

party libraries. As ROOT is cross platform the presentation of TDRSorter 
data will work on both windows and Linux systems with little or no change. 
Lack of availability of a cross platform graphical user interface toolkit for 

c++ that was robust enough to meet the requirements meant that a custom 
visualisation layer that was integrated closely to the data analysis code was 
not implemented. 

As briefly discussed in section 6.7 during the development of the TDRSorter 
data analysis code another data analysis tool called GRAIN was developed. 
GRAIN was developed with a different focus in mind and differs in design in 

several areas. It is useful at this point to discuss the two tools and compare 
their various strengths and weaknesses. 
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GRAIN was developed to provide easy online or nearline sorting to perform 

online checks on the running experiments. As such it has been used by a wide 
user base and has been continually expanded to the point where it has become 

the main analysis tool used in many institutions. Written in Java, GRAIN 

can be ran from any machine that has the Java virtual machine installed, this 
differs from the TDRSorter data analysis code which needs to be recompiled 
to work on different platforms. 

GRAIN is designed to handle most main stream experiments, it however 

requires expert intervention if a non standard experiment is to be analysed 
e. g. angular correlation experiments. The process of event construction is 
hidden from the user. If specialised buffering or triggering is needed it is 
impossible for the user to write a customised component to perform the op- 
erations as required by the parameters of the experiment. In essence the 

only information the user is given is a pre-packaged event that is similar to 
the CEvent class provided in the processEvent method of the specialised 
sorting code. In general use this limitation may not be great, but in more spe- 
cialised circumstances it becomes easier to use the TDRSorter data analysis 
code. 

Having two data analysis codes that can be used to analyse the same 
set of data gives us the ability to perform cross checks on the veracity of 
the results gathered from running data through either system. The cross 
check performed in section 6.7 showed that the two data analysis programs 
produced visually similar histograms. The results of the compared half-life 

and lifetime calculations were both consistent with each other and with the 

accepted value. 

Any system can be improved upon and during the development of the 
TDRSorter data analysis code some areas have presented themselves where 
future development may improve the overall system. Apart from general 
improvement of the efficiency of the sorting algorithms one area that could 
be improved upon is the area of integration. An ideal solution would be to 
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provide a complete tool that included an inbuilt visualisation layer that could 
be used to show histograms and other data without resorting to other third 

party solutions. Improving on this area would significantly improve the user 
friendliness of the data analysis code. 

Additional improvements could also be made in the sorter set-up area, a 

graphical user interface could be supplied to alter the various values used 
internally by the sorting classes. Currently this functionality is provided by 

having to manipulate text based configuration files. Other areas of improve- 

ment could be to provide inbuilt functionality to perform calibrations on 
the data, thus preventing the need for users to resort to other third party 

solutions to perform these necessary tasks. 

The use of either data analysis system is a viable solution for the data 

analysis requirements of any experiment using the GREAT spectrometer and 
the TDR data acquisition system. In certain areas the TDRSorter code 

presents some advantages over GRAIN hopefully the code will be used in 

these more specialised areas were more control over the construction and 
triggering of events is needed. 

Previous versions of the TDRSorter data analysis code and preliminary 
results produced from the code have previously been presented at the IOP 

conferences in 2003 and 2004 and also in poster format at the University of 
Liverpool. 
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Appendix A 

TDRSorter Data Analysis 

Package Operation 

A. 1 Overview 

This appendix is essentially a tutorial on how to setup, compile and use 
the TDRSorter data analysis code. A step by step guide on how to use the 

code as provided on the cd in appendix D is provided along with information 

on how to create specialised sorting classes and run the TDRSorter program. 

A. 2 Requirements 

The TDRSorter data analysis code can be compiled to run on both linux 

and windows platforms. Any available c++ compiler should be able to build 

the code on either platform. Throughout the development of the data analy- 
sis code one compiler was tested on each system. On linux g++ [22] was 

used whereas on windows, various versions' of visual studio [23] was used as 
the compiler. In order to build TDRSorter on either windows or linux the 

system must meet the requirements imposed by the relevant compiler. 
'Versions 6.0, . net 2002 and . net 2003 have been tested. 
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An important requirement for compiling the TDRSorter code as it is pre- 

sented on the CD is the presence of a fully installed and working copy of 
the ROOT [171 framework. The current implementation of the data analy- 
sis code uses ROOT histograms as a means of visualising the analysed data. 

The ROOT framework is currently available on both windows and linux. The 

TDRSorter has been tested with Version 4.04.02 on windows and 4.02.00 on 
linux systems. 

A. 3 Sort File Creation 

Before compiling and using the TDRSorter data analysis code a specialised 
sorting class must be created. This class is absolutely essential as the main 
CSorter class of the analysis code defines two pure virtual functions to be 

overridden in a class derived from the sorting classes. These functions essen- 
tially prevent the code from being compiled unless they are implemented in a 

class derived from the sorting class. Printed below is the minimal specialised 

sorting class that can be compiled. 

1 #include "CSorter. h" 
2 class MySorter : public CSorter 
3{ 
4 public: 
5 MySorter(); 
6 void processEvent(CEvent* e); 
7 void outputResults(); 
8 }; //end of sort class 
9 
10 MySorter:: MySorter() //Empty C++ constructor 
11 { 
12 } 
13 void MySorter:: processEvent(CEvent* e) 
14 { 
15 } 
16 void MySorter:: outputResults() 
17 { 
18 } 
19 // entry point for TDRSorter Data Analysis program 
20 int main(int argc, char *argv[]) 
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21 { 
22 MySorter* mysorter = new MySorter O; 
23 mysorter->Run(argc, argv); 
24 return 0; 
25 } 

Line 1 of the specialised sorting class specifies the main data analysis code 

header (CSorter. h). This file is the only include file needed to get the code 

to compile. This header includes all the files necessary for the compilation 

of the rest of the components of the data analysis code as well as including 

the headers for some components of the ROOT framework. The next stage 

of declaring a specialised sorting class is to derive a class from the CSorter 

base class as indicated on line 2. This class must inherit and implement the 

two methods processEvent() and outputResults() from the base class. 
These methods are declared on lines 6 and lines 7 and there subsequent empty 
implementations are found on later lines. 

The last section of this sort file that is of importance is on lines 20 to 25. 

This is essentially the entry point of the data analysis code. Line 20 is the 

standard c++ main function, where execution of the program begins. Line 

22 creates an instance of the derived sorter class declared above and calls the 

run method. This starts the execution of the sorting code. An important 

point is that the command line arguments arge and argv contain the names 

and locations of the runfiles that the data analysis code is to be run on. It 

is important to pass the command line arguments from the main function to 

this run method of the sorting class. 

A. 4 Compilation with g-} + on linux platform 
In order to compile the TDRSorter data analysis code on the linux plat- 

form the g++ compiler is used. The commands below must be executed from 

the shell to successfully build the code. It is assumed in the following that 

all the source and header files are in the same directory or somewhere in the 

users path. 
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g++ -I /usr/local/root x4.02.00/include/ -c *. cpp 

g++ -L /usr/local/root x4.02.00/lib/ -1Cint -1Hist 

-iCore -iMatrix -ldl -o TDR *. o 

The first line executes the compilation stage of the g++ compiler which 

is specified by the -c flag. The g++ compilation produces object code files 

indicated by the ". d" file extension. These object files are used by the linking 

stage of the process. The -I flag indicates that the following directory path 

specifies a location where necessary include files can be found. In this case 

the path points to the include directory of the ROOT distribution, indicating 

where the necessary classes used by the TDRSorter data analysis code can be 

found. The final section "*. cpp" indicates that all the c++ code files present 
in the current directory are to be compiled. 

The second line tells g++ to perform a link operation, the "-o" flag and 

produce an executable file called TDR. The link is performed on all "*. o" 

object files in the current directory. The -L flag specifies the directory 

where any library files needed can be located. In this case it specifies the 

lib directory of the installed ROOT distribution. Any libraries to be linked 

with are specified by their name preceded with a -l e. g. the Hist library is 

specified as -lHist. 

A. 5 Compilation with Visual Studio on the 

Windows Platform 

Compilation on the windows platform is specific to the version of visual 

studio used. As the process differs, step by step instructions are not given 
here, instead a broad overview is given. In general a visual studio workspace 
or solution is created and the TDRSorter include and source files are added 
into it. The specialised sorting class is usually created in the "main. cpp" 
file and is also added. The library and header file directories of the installed 
ROOT distribution need to be added to the list of searched directories within 
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the visual studio environment. Assuming all of this is done it should be 

possible to compile the code by following the standard steps of the given 

environment. 

A. 6 Usage 

Regardless of whether the code was compiled in a linux or windows en- 

vironment the operation of the TDRSorter data analysis code is the same. 
The only caveat is that in the linux environment the executing program may 

not be able to use the ROOT dynamic libraries. To fix this program the 

following line is executed in the shell. 

setenv LD_LIBRARY_PATH /usr/local/root_v4.02.00/lib/ 

This line sets the LDZIBRARY-PATH environment variable which gives 
ld. so, the run-time shared library loader, an extra set of directories to look 
for a required shared library in. 

To run the TDRSorter data analysis program the following command is 

used. 

... TDR runfilel runfile2 

This command simply runs the TDItSorter data analysis code on the spec- 
ified runfiles. All of the external files such as the calibration file "calib. dat", 
the veto file 2 "veto. dat", the threshold file3 "threshold. dat" and the sorter 
configuration file 4 "sorter. cfg" by default are searched for within the current 
directory that the data analysis code is executed from. Examples of all of 
these files are present on the included CD. 

'The veto. dat file specifies any channels to be excluded from the analysis 
'The threshold. dat file specifies an energy threshold for a given detector channel that 

a calibrated energy signal for that detector must exceed to be used in the analysis 
4The sorter. cfg file contains all of the run parameters of the TDSorter data analysis 

code e. g. tagger search depth, the use of a veto file etc. 
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Appendix B 

TDRSorter Class Overview 

B. 1 Classes 

This appendix contains a quick overview of the main functionality of each 

class. Although the names of each class where chosen such that their oper- 

ation could be inferred from their title this section serves as a glossary to 

allow the main function of a class to be known before it may have received 
treatment in the main body of the text. 

9 CiDGate 

This class serves as a simple one dimensional gate. It is constructed 

with an upper and lower limit floating point value. Various methods 
are provided for setting and retrieving these pre-set limits. The main 
method is bool passes(float value) which checks whether the value 
passed in as a parameter lies inside or outside of the limits specified. 
The method returns a boolean value of true if the parameter value is 
inside the limits or false if it lies outside. 

" CBuffer 

The CBuffer class is responsible for taking data items from the 
time ordered data stream and organising them into a time buffer. The 
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time buffer is constructed based upon user entered time durations i. e. a 

specified forward search time and backwards search time. The CBuffer 

class is discussed extensively in chapter 4.4. 

" CCalibCoeff 

The CCalibCoeff class is responsible for managing and applying the 

calibration coefficients for all the detector channels defined in the sys- 
tem. The calibrations are stored in a calibration file called `calib. dat'. 
This file is a simple text file containing all the appropriate coefficients 
that is read in by the class when it is constructed. This class also con- 
tains the function that performs the calculation i. e. takes a channel ID 

and raw data and returns an energy value. This function can be ex- 
panded to perform different kinds of calibrations besides the standard 
linear calibration. For example various non linear polynomial calibra- 
tions could be implemented. 

9 CClock 

The CClock class is used internally by the CTDRDataltem class 
to keep track of the synchronisation data items in the data stream. 
This class can also be used to ensure that the data stream is in time 

order. 

" CError 

This CError class provides simple logging functionality for the TDRSorter 
data analysis code. Any relevant warnings or errors are output to the 
same log file. The user may also make use of this class in the spe- 
cialised sorting section to allow any logging necessary to be kept in one 
centralised log file. 

" CEvent 

131 



The CEvent class is essentially the package of data items that are in 

prompt coincidence with each other. The central data structure used 

to build this class is the CPixel. All data items in prompt coincidence 

with the time-stamp of the pixel are placed into the event structure. 

The packaged CEvent is the primary parameter passed into the spe- 

cialised sorting class. This class is discussed extensively in section 5.5. 

" CFloatHist 

The CFloatHist class implements the CHistogram class and pro- 

vides a histogram class that provides floating point precision count- 
ing i. e allows bins of the histogram to be incremented with fractional 

counts. The CFloatHist class is described in more detail in section 
6.3.2. 

" CHistogram 

This class is an abstract interface that defines the behaviour a his- 
togram should exhibit. e. g. incrementation, output etc. The concrete 
histogram classes inherit from this to enable any type of histogram 

to be treated generically i. e. to allow a common histogram container. 
This class is discussed in more detail in section 6.3.2. 

9 ClntHist 

This class ClntHist implements the CHistogram class and pro- 

vides a histogram class that provides integer precision counting. The 

ClntHist class is described in more detail in section 6.3.2. 

" CPixel 

The CPixel class represents a DSSD X channel and a DSSD Y chan- 

nel that are in prompt time coincidence with a triggering data item. 
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The two defining DSSD channels are also within specified time and en- 

ergy constraints. The pixel encapsulates an event in the DSSD detector 

that has a defined position. The CPixel class is described in detail in 

section 5.2. 

" CRaw 

The CRaw class is a collection class that contains a histogram for 

each individual detector channel in the spectrometer. The class incre- 

ments each histogram with the data value of each data item before any 
further filtering is performed. The CRaw class histograms provide a 

record of the total counts in each channel of the detector system. 

9 CRunData 

The CRunData class is responsible for reading the raw binary data 
from the data source. The class takes this data and reads it into mem- 
ory in a series of structures that can later be accessed in the construc- 
tion of the time buffer. The CRunData class is covered in more detail 
in chapter 4. 

" CSettings 

The CSettings class is a utility class that is used to set various 

parameters in the data analysis code. This class reads in data from 

a file called `sorter. cfg' that contains various parameters that the user 

can alter to customize the triggering and event construction processes 
to fit requirements. Some of these settings are discussed in appendix 
A. 

" CSorter 

The CSorter class is responsible for managing all the other classes 
in the data analysis system and also controlling the overall flow of the 
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data analysis system. The various components of the class are discussed 

throughout the thesis. 

" CTagger 

The CTagger class is responsible for the sequencing of events that 

originate from a single pixel. This class along with the tagger manager 
forms a crucial part in identifying delayed coincidences between events 

such as recoil and alpha decays. 

" CTaggerManager 

The CTaggerManager class is used to manage the two dimensional 

array of CTagger objects that map to the corresponding physical pix- 

els of the DSSD detector. This class contains several methods for 

adding, retrieving and clearing data in the associated taggers. This 

class is discussed in section 6.4.3. 

" CTDRDataItem 

The CTDRDataltem class is the fundamental unit of data that is 

extracted from the time ordered data stream. This class is used within 
most other classes within the data analysis code. The types of data 

encapsulated within this class are discussed in detail in chapter 3. 

The final major class that is used in the TDRSorter data analysis code 
is the custom, specialised sorting class that is derived by the user from the 
CSorter class. This class is named by the user and contains all the sorting 
code specific to the experiment being performed. The creation of the spe- 
cialised sorting class is discussed in appendix A and the methods used within 
it are discussed in detail in chapter 6. 
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Appendix C 

Detailed TDRSorter UML 

Diagram 
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