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Abstract

The GREAT spectrometer is a focal plane detector system recently installed
in Jyvaskyla, Finland. The spectrometer is used to study various topics of

interest in nuclear structure physics, in particular the area of superheavy
elements.

One feature of the GREAT spectrometer is the triggerless total data readout
(TDR) data acquisition system, the unique aspect of which is a lack of a
system wide hardware trigger. This is intended to directly compensate for
dead time problems of past systems. The TDR data acquisition system reads
out the state of each detector independently of any other in the spectrometer
when an event occurs. These events are then time-stamped from a central

system clock, producing a single stream of time ordered data.

A major challenge, and the primary focus of this thesis is to reconstruct
information about time coincident events, and the sequence of events that
have been lost by reading out the data as a single stream. The thesis dis-

cusses the data analysis techniques used to extract physics information from
the time ordered data stream and uses well known examples to demonstrate

that the techniques discussed can be applied to real world problems.
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Chapter 1

Introduction

Nuclear physics experiments collect a lot of data. A typical experimental
set-up can have anywhere between ten and five hundred detector channels. In
order to make sense of the large quantity of data generated by these systems
some sort of triggering mechanism is needed to read out the state of the

detectors at appropriate points in the experimental run.

In general past data acquisition systems operate based on the principle of
common dead time. One detector group in the system, usually the implanta-

tion detector!, is considered the trigger. When a given reaction or sequence of

reactions result in the trigger being activated, the data acquisition is paused
whilst the whole state of the system is read out. This set-up introduces dead
time into the process of data acquisition that can be especially significant
In experiments with a high reaction rate were the rate of incident beam is

increased to compensate for the low efficiency of the decay process being

studied and the reaction channel of interest is weak.

Another limitation of past data acquisition systems was the fact that the
nature of the hardware set-up forced the user to define the experimental
conditions in advance. This imposed few limits on traditional in beam 7 ray

spectroscopy as all the information on the reaction being studied is available

'The implantation detector is the component of the spectrometer where the recoiling
nuclei being studied initially embed.



in a short time period (< 1ps). However the situation was not so good for
tagging experiments where parts of the information was not available until
long after other parts of the reaction sequence. This limitation can be partly

mitigated by using hardware delays to postpone information delivery to the
data acquisition system. For example, for experiments triggering from recoil

implantation, prompt decays at the target position need to be delayed by the
flight time (of the order of s ) of the recoil through the the recoil separator

(see section 2.3 for details on recoil separators) if they are to be associated
correctly.

Again in this case the experimental conditions need to be defined in ad-
vance to select the right delay times to allow the data acquisition system to
correlate the delayed information to the triggering event. A further problem
arises due to hardware limits in the amount of time a signal can be delayed

for. If the required delay time exceeds these limits then no data can be
gathered from these longer lived events.

Returning to the data loss due to the common dead time in the data
acquisition system 1t 1s useful to refer to figure 1.1. The middle line on

the figure represents a time ordered sequence of data items from the focal

plane silicon implant detector. In the GREAT spectrometer the focal plane
silicon implant detector is the Double-sided Silicon Strip Detector (DSSD)
(see section 2.4 for details). Each of the boxes on this line represents a
triggerable event. When the first silicon event on the line triggers, the data
acquisition system goes dead for the amount of time indicated by the box on
the bottom line. During this dead time no other silicon events can trigger

the data acquisition system and cause the state of the detectors to be read
out.

When this first event triggers the first three y rays on the target 4 line fall
within the trigger gate and are associated with the triggering silicon event.
This sequence of events is the ideal circumstance for the data acquisition

system to be in i.e. there are no overlapping events within the dead time
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Figure 1.1: Schematic demonstrating how a data acquisition system’s trigger-
ing conditions can lead to associated dead time. The central line represents

a time line with triggers present on it. Any items that are marked with an

‘x" are lost due to the dead time shown on the bottom time line.

associated with that trigger. Moving onto the second triggerable event on the
tocal plane silicon line it can see that this is not the case. This second event
triggers and 1s then associated with the v ray on the target 7 line that falls
within the trigger gate. Unfortunately whilst the data acquisition system is
dead another triggerable event occurs. This event does not trigger the data

acquisition system and this event is simply lost.

The next event on the focal plane silicon line that triggers shows a situation
where data other than that on the triggering line can get lost. The first
event 1 this sequence triggers and the data acquisition system goes dead;
In this case no gamma rays are in the trigger gate. The two following focal
plane triggers occur within the dead time and are lost. The final triggerable
event 1n this sequence if it were triggered would have found several ~ rays in

comcidence. This shows that using such a common dead time strategy large

amounts of good data can be lost.

Past detector systems that have been used with these common dead time

data acquisition systems generally consist of three main parts; a target posi-



tion detector array; a recoil separator and a focal plane spectrometer. kFigure
1.2 shows a schematic of such a system. A beam of nuclei from a cyclotron 1s

incident on the target material, where during a fusion evaporation reaction

the nuclei of interest are produced. Around this target position is an array
of detectors used to measure prompt radiation from the produced nuclei.
The recoiling nuclei are transported to the focal plane first passing through
a recoil separator, where the nuclei being studied are separated from the
other recoil products and any scattered beam. The nuclei are then incident
on the focal plane spectrometer which usually consists of a position sensitive

implantation detector surrounded by arrays of detectors designed to measure
specific decay products of the implanted nuclei.

~400kHz

Q Separator

\Target
Position
Focal Plane
0 DQ Spectrometer

40+ detectors
@ 10kHz each

Figure 1.2: Diagram showing a generic detector system that consists of three

main parts; a target position array; a recoil separator and a focal plane
spectrometer. (The components in the figure are situated relative to each

other in the configuration that most detector systems use.)

Considering the generic detector system in figure 1.2 it can clearly be seen
how the magnitude of the problem of dead time is compounded when simple
tagging is performed. Presuming that the target position array consists of
40 detectors operating at 10kHz each this then equates to a target position
count rate of approximately 400kHz. Due to the high efficiency of the recoil

separator, the focal plane spectrometer can expect a count rate of around



10Hz. Presuming a common dead time of 10us at the target position would
lead to a 40% dead time at the focal plane.

Given the above figures it can be presumed that there is an approximate
60% probability of detecting a recoil implanting in the focal plane detector
array. By the same token there is a 60% chance of detecting any alpha decay
of a previously implanted recoil. This gives us an overall 36% chance of
detecting and correlating a recoil alpha pair. It is obvious that the close
coupling of all the detectors in the system leads to a large potential loss of
data due to the significant dead time in the system. Given the low statistics

of superheavy nuclei experiments this loss of data is very significant.

The GREAT (Gamma Recoil Electron Alpha Tagging) [1] spectrometer
and TDR (Total Data Readout) [2] data acquisition system was developed
both as a ‘step up’ in sensitivity and also as a means of circumventing the
problems of the inherent dead time built in to previous detector and data
acquisition systems. The GREAT spectrometer itself was designed to meet
the characteristics of nuclear reactions and is discussed in detail in chapter 2.
The TDR data acquisition system is a triggerless data acquisition system that

is designed to virtually eliminate dead time by decoupling all the detector

channels from the system wide trigger. Signals from each detector are read
out independently from other channels. The only dead time left in the system

s for the period of time that the channel is being read out and this is only
applicable to that specific channel.

One left over limitation of the TDR data acquisition system is due to this
remaining dead time in the individual detector channels. Fast sequences of
events within a single detector channel for example an implantation in a focal
plane detector channel followed by a prompt decay would still be lost if the
lifetime of the decay was less than dead time associated with the shaping
time of the amplification process (= 1 — 3us). This limitation imposed by
the speed of the operating hardware can not be avoided: the only way of

mitigating the situation would be to change the data acquisition system to



use digital electronics® were the system is independent of the shaping time
of the linear amplifiers.

This decoupling of the detectors, although addressing the issues of dead

time, introduces a number of other problems as a side effect. The main

problem that is presented by such a triggerless data acquisition system is that
the signals from the individual detectors are no longer associated. There are

no events indicating spatial and temporal coincidences constructed during

the data acquisition process as was the case in previous systems.

The bulk of this thesis describes the TDRSorter data analysis code. The
analysis code has an essential function to play in using the raw data stream
supplied by the TDR data acquisition system and constructing usable physics
events. The TDRSorter code takes the raw data stream, sorts it and performs
prompt and delayed coincidences. From this the TDRSorter code produces

various visualisations in the form of histograms. It is from these visualisations
that the physical interpretation of the results can begin.

One of the important functions that is performed by the data acquisition
system is the time ordering process. The time ordering process sets an im-
portant foundation that the data analysis code is built upon. Essentially
this process sorts all the data generated by the detectors into time order. A
more detailed discussion of the data acquisition process is given in chapter 3.

One of the key challenges that must be overcome by the data analysis code

is to take this triggerless, time ordered data stream and reconstruct physics
events from it.

*As opposed to the current analog based system of acquisition components.



Chapter 2

Experimental and Detector
Details

2.1 Overview

This chapter will discuss the experimental motivation as well as the overall
structure of the GREAT (Gamma Recoil Electron Alpha Tagging){1] spec-
trometer. Further sections will go into some detail about the function and
operation of the individual detector components that make up the whole

spectrometer. A brief discussion will also be given as to the experimental de-

tails of the data set used for all the physics examples depicted in subsequent
chapters.

2.2 Experimental Focus

The experimental and data analysis techniques discussed in this and the
following chapters apply to systems developed for the study of nuclei far
from stability, for example the study of nuclei with high mass and charge i.e.
super-heavy elements. One question that has been a focus of research in this
area 1s whether an island of stability exists for nuclei with Z > 100. These

very heavy nuclei should be unbound against fission. Simple calculations

using various parameterisations of the liquid drop model predict that the
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limit of stability should occur when the Coulomb repulsion between protons

overcomes the attraction due to the strong nuclear force i.e. for nuclei with
around Z = 100 to Z = 106.

The fact that these nuclei exhibit stability is due solely to microscopic shell
effects. These shell eflects are due primarily to what is called the spin-orbit
interaction which occurs between the orbital angular momentum and the
intrinsic spin angular momentum of the individual nucleons in an given nuclei.
A primary focus of research is to describe this effect by extrapolating the well
known mean field for well studied nuclei of around Z = 92 up to nuclei with
larger masses [3][4]. Performing spectroscopy on these super-heavy elements
to gain information about their excited states helps to constrain theoretical

model parameters and hence improve understanding of these nuclei at the
edge of stability.

A major hurdle to overcome is the difficulty in producing the super heavy
elements of interest. Two main approaches have been used to produce ele-
ments with Z = 112 to Z = 116. Nuclei with Z = 112 have been produced by
using beams of medium mass ions impinging on stable Pb and Bi targets(5].
Elements with Z = 114[6] and Z = 116{7] have been produced with an
alternative method of using beams of lighter ions, in particular Ca, on ra-
dioactive actinide targets. Both methods have a disadvantage in that they
produce fairly neutron deficient nuclei. This limitation can be countered by

using neutron rich radioactive beams and neutron rich radioactive targets,

details of current work in this area are given in [8].

The approaches mentioned above use fusion evaporation reactions whose
primary component to the total cross section of the reaction is fission, leav-
Ing only a small part to the fusion channels. The fission products decay
via prompt gamma ray emission that masks the weak decays of the fusion
products of interest. In order to isolate these transitions a selective way
of distinguishing these channels is needed. By using recoil separators and

suitably sensitive focal plane detector systems a technique known as Recoil
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Decay Tagging (RDT) can be used [9]{10]. Details of a recoil separator and

focal plane spectrometer at the current forefront of research in the area of

super-heavy elements is provided in the following sections.

2.3 RITU and GREAT

The GREAT spectrometer [1] is a focal plane spectrometer that is currently
in situation at the RITU [11] gas filled separator in Jyvaskyla Finland. Re-
coiling nuclei produced at the target position by fusion evaporation reactions
are transported through the separator where the primary heavy ion beam
and fission products are filtered from the fusion products of interest.

beam !

GREAT

Figure 2.1: Diagram showing RITU and GREAT and their relative posi-

tioning. RITU is a recoil separator that consists of four magnets, one dipole

magnet for separation and three quadrupole magnets for focusing of the recoil
products.

Differences in magnetic rigidity between the fusion, fission and primary
beam allow these reaction products to be separated in flight by using a dipole

magnet. After passing through the target the reaction products have a wide

range of charge states, which after separation results in a wide spread of

nuclei incident onto the focal plane. In order to improve focusing of the

12



recoil products this spread of charge states needs to be evened out. In order
to do this a gas filled region is used within the separator’s volume. Heavy 1ons

passing into this region undergo many atomic collisions causing the charge

state of the ions to change rapidly which has the result of causing the ions to

follow an average trajectory through the separator according to the average
charge state of the recoil products.

RITU consists of four magnets, three of these are quadrupole magnets
and are used for focusing. These are indicated on figure 2.1 by Q1,02 and
Q3. The fourth magnet is a dipole magnet and is used for separation and
is indicated by the D on the figure. Both the beam line and focal plane are
kept at a vacuum which is separated from the 1mbar of helium gas within the

separator by thin windows that allow the transmission of the recoil products.

After passing through the separator these products then enter the GREAT
focal plane spectrometer.

2.4 GREAT Spectrometer

GREAT is situated on the end of the RITU gas filled separator. Given the
set-up of RITU and GREAT as indicated in figure 2.1 it is useful to describe

the individual components of the target position detector array. The GREAT
focal plane spectrometer consists of five main parts.

e A multi wire proportional counter (MWPC).

e An array of 28 silicon PIN diodes.

¢ A double sided silicon strip implantation detector (DSSD).

e A double sided planar germanium detector.

e A high efficiency segmented germanium clover detector.

Figure 2.2 shows a schematic diagram of the layout of the above mentioned

components and their relative positioning to each other and also within the

13



whole spectrometer. Referring to the figure it can be seen how the detectors
in the spectrometer are arranged around the expected sequence of events
produced from the reactions being studied. Recoil products leaving the exit
window of the RITU gas filled separator pass through the MWPC and are
subsequently embedded in the double sided silicon strip implantation detec-
tor. The embedded recoils then decay and the particles and radiation they
emit are detected either within the DSSD (i.e the particle or radiation does
not escape or pass out of the material making up the detector) or the sur-
rounding detectors in the rest of the spectrometer. The subsequent sections

will describe the main purpose of each individual detector component and
also give details of how they function.

Clover
mwpc Pins Planar

Recoil tof

Si Strip

Figure 2.2: Schematic showing the basic layout of the GREAT spectrome-
ter. GREAT consists of five main parts. The multi wire proportional (Gas)
counter, a double sided silicon strip implantation detector, an array of PIN

diodes, a planar germanium detector and a segmented germanium clover
detector.

Figure 2.3 is a photograph showing a partial setup of the GREAT spec-
trometer situated at the exit window of RITU. In the figure the lid of the
vacuum chamber has been removed. The two individually mounted DSSD
detectors can be seen at the front of the figure surrounded by the banks of
associated preamplifiers. Below the DSSD detectors is the face plate which

is removed to allow the planar germanium detector to slide into place. The

14



Figure 2.3: Photograph of the GREAT spectrometer with the lid of the
vacuum chamber removed and the planar germanium detector removed. The

rear face of the two separate DSSD detectors can be clearly seen at the front

of the figure.

PIN diode array is situated on the inner face of the detector and therefore

cannot be seen in this photograph.

2.4.1 Multiwire Proportional Counter (MWPC)

After the recoil products leave the separator the first part of the GREAT
spectrometer they enter is the multiwire proportional counter (MWPC). The
multiwire proportional counter is situated at the exit of RITU. The MWPC
1s filled with low pressure isobutane gas and is separated from the helium ot

RITU at one end and the vacuum of the rest of the GREAT spectrometer
by two thin Mylar windows.
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The main function of the MWPC is to act as an active recoil discriminator.

Any recoil product passing through the counter deposits energy, if the time-

stamped data generated from these events is in prompt coincidence with any
signals from the DSSD. It can be inferred that the implantation event must
be caused by an object that has passed through the MWPC i.e. it is a recoil

product. By the same reasoning any data item generated in the DSSD that
1s in anti-coincidence with the MWPC must not have passed through it i.e.

it 1s a result of a decay from something already implanted in the DSSD for
example an alpha decay from an embedded recoil.

Another purpose that the multiwire proportional counter can be used for
1s to discriminate between the recoiling nuclei and scattered beam that has
not been filtered out by the recoil separator. By combining the timing in-
formation generated by the MWPC from nuclei passing through it with the
energy deposited in the DSSD implantation detector it is possible to clearly
identify the recoils and scattered beam. By selecting only these identified

recoils at the data analysis stage it is possible to provide a cleaner recoil
signal. Examples of this technique are given later in chapter 5.

2.4.2 Cooling Block

An important part of the GREAT spectrometer is the cooling block. As
well as being held in a vacuum, it is useful to cool both the double sided
silicon strip detector and the PIN diodes. Although the detectors operate at

room temperature, cooling greatly reduces the noise levels and improves the
resolution in these set-ups. The cooling block is a hollow metal block through
which coolant is pumped. The cooling block reduces the temperature of the
mounted DSSD’s and PIN diodes to —20°C. Other detector systems e.g. the
planar germanium and focal plane segmented clover detector are also cooled

(albeit to much lower liquid nitrogen temperatures of around 63K) by their
integral liquid nitrogen cooling systems.

16



2.4.3 Double Sided Silicon Strip Detector (DSSD)

The double sided silicon strip detector is the core of the spectrometer.
Recoils that have been separated by RITU and have passed through the
MWPC implant here. This implantation along with their subsequent decays

by a or 3 particle emission are measured by the DSSD. The DSSD’s need to
measure both high energy recoils of around 50MeV as well as the subsequent
a decays of around 5 — 10MeV. With the energy of 8 particles and protons
falling around 500keV the possible energy range that the DSSD must be
sensitive for is quite large. To compensate for this a series of Degrader foils
can be placed into the path of the recoiling nuclei before they implant to slow

them down. This allows the detector to cover the full energy range whilst

still maintaining adequate resolution.

Two individual DSSD’s are placed at the focal plane of GREAT each hav-
Ing an active area of 60mm by 40mm with a silicon thickness of 300um.
The strips in both the x and y directions have a width of 1mm meaning
each DSSD has a total of 60 by 40 strips giving the total number of effective
pixels per DSSD as 2400. The two DSSD’s are mounted side by side with

the respective active areas being 6mm apart. The full DSSD therefore has a

total number of 4800 pixels that has an estimated recoil collection efficiency
of approximately 80%.

As each detector is to be read out individually each strip of the detector

1s attached to its own charge sensitive pre-amplifier. These pre-amplifiers
are mounted inside the vacuum chamber of the GREAT spectrometer on the
outer face of the cooling block. The location of the pre-amplifiers allows
them to be directly connected to the DSSD’s. This minimises the length and
number of connections between the signal output of the DSSD and the input
stage of the pre-amplifiers. Limiting the length and number of connections

of the cabling maximises the energy resolution of the detectors.

17



2.4.4 PIN Diodes

The array of PIN diodes is primarily used for measuring energies of conver-
sion electrons emitted from the de-exciting nucleus. An implanting nucleus

typically embeds close to the surface of the DSSD detector ! giving a sig-
nificant chance that any conversion electrons are emitted in the backward

direction. It is also possible that any a particles emitted by the nucleus
could also escape the DSSD in the backward direction, the array of PIN

diodes could therefore also be used for add-back calculations to improve the

detection efhciency for a decay.

The PIN diodes are arranged in a “box-like” configuration around the outer
perimeter of the DSSD detector. There are a total of 28 PIN diodes in the
array, each has an active area of 28mm by 28mm and a thickness of 500um.
The PIN diodes used were the S3584-06 windowless series manufactured by
Hammamatsu. The PIN diodes are mounted in pairs to custom PCBs con-

taining the input stage of the preamplification before being passed onto the

external PSC761 preamplifiers manufactured by Eurisys mesures.

Active Area.

Mounting. ‘

Channel A Channel B

Figure 2.4: Photograph of the Hammamatsu S3584-06 windowless series PIN
diodes dual mounted onto their PCBs.

Typically 1 — 10pum

18



A photograph of the twin mounted PIN diodes are shown in figure 2.4. The
PIN diodes and PCBs are mounted on the inside surface of the cooling block
so as to cool the PIN diodes to —20°C. The energy of conversion electrons

produced in the primary reactions being studied are up to a maximum energy

of around 500keV at which the PIN diodes have an approximate energy
resolution of around 5keV.

2.4.5 Planar Germanium Detector

‘The planar germanium detector’s main purpose is to measure the energy

of X rays and low energy 7 rays and (3 particles emitted by the recoiling
nuclei embedded in the DSSD detector. The planar germanium detector is

placed directly behind the DSSD and inside the vacuum chamber to minimise
the attenuation of any photons. Any  particles detected in the planar

germanijum detector must be of high energy (> 2MeV) so as to penetrate
through the silicon of the DSSD.

The planar germanium detector is segmented into strips similarly to the
DSSD detector. The active area of the planar detector is a rectangle of
120mm by 60mm with a thickness of 15mm and a strip width of Smm.
As with the DSSD implantation detector these strips can be used to pro-
vide positional information about any events occurring within the planar
germanium detector. The front face of the planar detector itself is situated
approximately 10mm away from the rear of the DSSD. The planar detector

has a thin beryllium entrance window and the whole detector is mounted to
a cryostat for cooling with liquid nitrogen.

2.4.6 Segmented Clover Detector

The segmented clover detector is used for the measurement of high en-
ergy gamma rays emitted from the recoils embedded in the DSSD. These
gamma rays must have passed through the thickness of silicon in the DSSD
and through the planar germanium detector to be detected by the clover.
The clover detector is mounted outside the GREAT spectrometers vacuum
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chamber and consists of four germanium crystals each with four-fold segmen-

tation. Each clover crystal is 70mm in diameter and 105mm long with the

first 30mm of the crystal tapered at an angle of 15° on the outside surface.

Each clover detector is also surrounded by a bismuth germanate suppression
shield to help improve the peak to total ratio.

2.4.7 Silicon-Gas Tac

A TAC (Time to Amplitude Converter) is an instrument which converts
the time interval between two logic signals into an output pulse. This output
pulse has an amplitude that is proportional to the time interval between these
two logic signals. The silicon-gas TAC in the GREAT spectrometer consists
of two logic gates, one that is triggered when a signal is generated from the

MWPC gas detector and another that is generated by any signal in the focal

plane silicon implantation detector. The TAC then generates an amplitude

pulse that is related to the time interval between these logic signals.

The generated pulse is higher resolution than the time-stamping used in
the system metronome, it can therefore be used to generate more accurate
time of flight information for recoiling nuclei. This information is useful in
the generation of high resolution energy, time of flight matrices that can used
to create data selection gates to accurately distinguish recoils from scattered
beam particles. As well as using the silicon-gas TAC, the time of flight
information can also be estimated using the parameters of the experiment e.g.
produced nuclei mass, velocity etc. As an estimate of the order of magnitude

of flight times through the spectrometer, presuming that the velocity of nuclei

through the 3m long spectrometer has a ¢ ~ 1.5%, then the approximate
time of flight through the spectrometer is 1us.
2.4.8 Target Position Arrays

Although not part of the GREAT spectrometer itself an integral part of

the setup is the target position detector array. The target position array

is used to detect prompt decays (i.e. short lived transitions of ¢ < 1ps) in

20



the nucleus being studied. As the target position array is independent of
the GREAT focal plane spectrometer it can be set up with different detector
types depending on the current experimental interests. One such array that is

used in Jyvaskyla is the JUROGAM gamma ray spectrometer that is used to
detect prompt gamma rays at the target position. The JUROGAM array uses

43 Compton escape-suppressed germanium detectors that combined have a

gamma ray detection efficiency of 4.2% at 1.3MeV.

Figure 2.5: Photograph of the JUROGAM gamma ray spectrometer in situ-

ation at the laboratory of the university of Jyvaskyla.

2.9 Example Data Set

Throughout this thesis several physics examples are used to illustrate that
the principles being discussed can be applied to real physical situations. All
of these examples are generated from the same data set gathered from an

experiment performed at the laboratory in Jyviaskyla, Finland. The data
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set used was gathered from the fusion evaporation reaction where a beam of

*®Ca was incident on a 2%Pb target to produce #**No nuclei through the 2
neutron evaporation channel.

This reaction was chosen as ***No has been the focus of much study [12][18]
so the basic properties of the nuclei are known to some accuracy. This knowl-
edge is essential in order to infer that any techniques used are producing
accurate results. The **No nucleus has a half life of 51.2s which decays pri-

marily by alpha emission to *°°Fm with an energy of 8.09MeV. 1t is therefore

possible to benchmark any results against these well known values to check
if the techniques discussed produce meaningful results. One such check that

is performed in section 6.6 is to calculate the half-life of the “>*No using this
a transition.

In using the TDRSorter data analysis code to analyse a given set of data
certain running parameters need to be set in order to extract meaningtul
results from the data stream. The values of these parameters are mentioned
here so as to provide a complete description of the example data. Where
components of the data analysis code are mentioned that have not yet been

discussed in the text, references to the relevant sections of the thesis are
given.

In total the example data set used is over 49Gb in size and was gathered

over an experimental running time of approximately 12 hours. The data set
consisted of & 2.1 x 10” individual data items that where generated by the
TDR data acquisition system. From the time ordered data stream output
from the system around 320,000 events (see chapter 5 ) were reconstructed
that belonged to the channel of interest. This experiment was run with an
unusually large background due to redundant channels in the high rate clover

detector being read out to the data stream. From this high background the
important events where extracted.
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The time buffer of the data analysis code (CBuffer class see chapter 4)
was constructed with a total time window of 20us with the constituent for-

ward and backwards time windows both having sizes of 10us each. Event

construction (chapter 5) was triggered by the presence of a silicon-gas TAC

data item at the read position of the time buffer. A total DSSD X and Y

strip search time of 1us in the forwards and backwards time directions was
used for pixel definition.

The search time for any gas data items was set at ®1us whereas the time

for all other searches for event construction set to 10us in the forwards and
backwards time direction. No energy gates on the DSSD X and Y data items
were set due to different gain ranges used on the X and Y strips of the DSSD.
This non standard gain range was used due to the requirements of a different
experimental run of which the gathering of this data set was a small part.
The final parameter of the TDRSorter data analysis code that was the depth
of the tagger (i.e the correlation time as shown in chapter 6). The tagger

depth was set to 550s which corresponds to approximately ten half lives of
the ***No a decay to #°Fm.

2.6 Summary

This chapter has discussed firstly the experimental motivation and also
the overall design of the GREAT spectrometer. The discussion went into
some detail describing the structure and function of the individual detector
components within the spectrometer. A brief overview of the example data

set used in subsequent physics examples was also given as well as a brief

discussion of the TDRSorter parameters used to analyse the data gathered
from the experimental run.
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- Chapter 3

TDR Data Acquisition System

and Data Format

3.1 Overview

In this chapter the TDR data acquisition system will be discussed. Cov-
erage of the high level design of the electronics system is also provided as
well as a discussion on the process of data acquisition. Descriptions of the
TDR data format and the TDR data stream will also be given. The details
of these are important in understanding the design decisions taken in the
development of the TDRSorter data analysis code. Most of the informa-
tion in this chapter is available in the form of electronic documents at the
following web address [13]. Relevant specific documents from the website
are referenced individually. The discussion in this section provides informa-

tion about the details of the relevant data formats and structures that is

important for future discussions on data analysis techniques.

3.2 'TDR Electronics System

The GREAT sf)ectrometer has been implemented with a new triggerless
data acquisition system called TDR (Total Data Readout){2]. The main

feature of this system is the lack of a system wide hardware trigger. Each
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individual detector channel is read out independently of the other channels in
the spectrometer. In the context of this thesis a detector channel is essentially

an individual detector element such as a single strip of the DSSD or an
individual PIN Diode detector.

Each detector channel is mapped to its own linear shaping amplifier which
in turn is mapped to its own Constant Fraction Discriminator(CFD) which is
then assigned its own channel in the Analogue to Digital Converter (ADC).
Essentially within the TDR system each detector has its own acquisition
path i.e. there are as many linear amplifiers, CFD’s and ADC’s as there
are individual detectors. This has the effect of decoupling all the detectors

from each other allowing each detector to gather as much (or as little) data

as it is capable of gathering regardless of the state of other detectors in the
spectrometer.

ADC'

Detector Shapmg CFD's

"~:-'

Figure 3.1: Schematic of the TDR Electronics System. The figure shows how
the individual detector channels are mapped to their own individual linear

shaping amplifiers, constant fraction discriminators (CFD) and analogue to
digital converter (ADC).
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Figure 3.1 shows diagrammatically the layout of the major subsystems of

the TDR electronics system. In the figure, detectors are divided into groups

representing each individual detector channel. As mentioned before each
detector is mapped individually onto an amplifier, CFD and ADC. When a
charge pulse is generated from incident particles or radiation in a detector the

signal is first pre-amplified and then passed onto the linear shaping amplifier.

The shaping time of the linear amplifier accounts for the majority of the
dead time in the data acquisition system. As the amplification from this
stage takes a finite time (shaping time) to complete the fast output from

the amplifier (where no amplification is performed) is passed into the CFD’s
input.

The constant fraction discriminator essentially sets a threshold for which
the magnitude of any signal from the detector must be greater than. Any
signal which passes this threshold is then passed onto the ADC where it is

converted to a digital format that is described in detail in the sections below.

One vital aspect of the TDR system that has not been discussed so far is the
time-stamping mechanism. A VME module known as the system metronome

synchronises all the time-stamping in the ADC to a central 100MHz clock.
The system clock is capable of generating timing information to an accuracy
of 10ns. Each data item output from the ADC is time stamped indicating

a time offset from the beginning of the experiment at which this data was
gathered.

After the detector signals have been digitised in the ADC and time stamped
they are passed on to the merge stage. This stage is responsible for arranging
the data output from the ADC into time order. This stage is important as
data can arrive at slightly different intervals from the separate ADC cards
and it is an important assumption of all further data analysis that all the

data is in strict time order. The details of the produced data stream are
given in the section 3.3.3 below.
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The final step in figure 3.1 is the event builder. The event builder is
responsible for performing basic checks (e.g. time ordering) on the data and
marshalling the data to various output sources. The event builder can write
the raw data stream to a tape source as well as to various online sorting
software where basic checks on the performance of the experiment can be
monitored. Most of the units mentioned here, particularly the ADC’s and

metronome were custom built at Daresbury laboratory, more information

about most of the TDR electronics is available in reference [2]

3.3 TDR Data Format

Each ADC card outputs both data items and information items. The data,
items essentially contain the ADC data; the channel number of the detector
that fired and the time that the detector fired. The information items contain
all the other information i.e. piled up data items, pause and resume functions

etc. The detailed format of these data and information items{14] is described
below.

3.3.1 Data Items

Each data item consists of 64 bits of information that is output from the
ADC as two 32 bit words. Figure 3.2 shows the structure of each data item.
Bits 0-15 in the first word contain the data from the ADC. This is essentially
the digitised signal from the analogue linear amplifiers. Bits 16-27 contain
the channel identity information. The final four bits 28-31 contain a fail and
veto flag at bits 28 and 29 respectively. Bits 30 and 31 are always set to 1

and can then be used to distinguish data items from other information items
(discussed next) as they have a different bit pattern.

The second word contains the time stamping information. Bits 0-27 con-
tain the lower portion of the total time stamp which is 48 bits in length. The

higher order more slowly changing 19 bits are transmitted in the information

items every 64us. The top four bits of the second word, bits 28-31 are used
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for padding the time-stamp out to 32 bits in size. These padding bits are
assigned a value of zero.

31 27 - 16 15-0
e —————

30 29 28
f'-'__—'&"'_'——\
[ ] oen [ socom

28 27 -0

31 30 29
nn“ Timestamp (10ns Precision)

Figure 3.2: Schematic of the TDR data item format. The arrangement of the
various components of the data item including the channel of the detector,

the actual ADC data and the time-stamp showing the time that the data
item was generated.

31 30 29524 23 - 20 190
frm——— S ——————
-n Module Number Information Code Information Field

31 28 27 -0

30 29
nnn Timestamp (10ns Precision)

Figure 3.3: Schematic of the TDR Info Item Format. The arrangements

of the various components used in specifying information important to the

sorting process is shown. The data carried by the info items relates to any

information other than detector event information, e.g. time stream sync
pulses.

3.3.2 Info Items

All other information is passed in the form of info items [14], see figure 3.3.
As with the data items the info items consist of two 32 bit words making up
64 bits of information. Bits 0-19 in the first word contain the information

field, this field contains data that relates to the information code given in

bits 20-23. Table 3.1 taken from [14] shows what data is contained in the
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information field as it corresponds to the information code. Bits 24-29 contain

the module number. The module number identifies the number of the ADC

VXI card that sent the information. The final two bits 30 and 31 contain

the values 0 and 1 respectively that distinguishes the information items from
the data items described earlier ( data items contain a value of 1 for both

bits). The second word contains the time stamping information and has an
identical format to the Data Items time stamping word.

Information Type Information Field Definition

0 Undefined Data

1 ADC Channel Pile-up Channel Number

2 Pause Time-stamp Time-stamp bits 28-47
3 Resume Time-stamp Time-stamp bits 28-47
4 | SYNC100 Time-stamp Time-stamp bits 28-47
15 | SHARC Link number Link Number.

Table 3.1: Table showing the information code and information field defi-

nitions that the respective components in the info item data structure can
take.

The total length of the time-stamp associated with each data item is 48
bits. Only the bottom 27 bits are transmitted with each data item. The top

19 bits are transmitted every 64usec in the information field of the SYNC100
Information Items (Code 4 in table 3.1).

3.3.3 Data Stream

All the data and information items output from the ADC cards are arranged
Into strict time order. Figure 3.4 shows a high level view of the structure

of the outputted data stream. This time ordered list of data is what is ul-
timately stored and analysed. As the unaltered data stream is stored, the

data can be analysed multiple times using any software created triggers that
the user cares to invent.
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info jtem
Data ltem

Data ltem

Info Item

Data item

Figure 3.4: Schematic showing the general data stream structure. i.e. a time

ordered series of data and information items.

3.3.4 Block Structure

The data stream is split up into 16kb blocks for transmission and storage
115]. This process does not alter the time ordered nature of the data stream

but is simply a convenience for storage and analysis. Figure 3.5 shows the
structure of each 16kb block.

24b-[ Block Header

Data (Stream Format)

End Block Padding
Padding

Figure 3.5: Schematic showing the 16kb data block structure that the time

ordered data stream is segmented into for serialisation onto hardware storage
systems such as tape or hard drives.

16kb

Each block consists of four main parts; The header; The Data part; The
end of block statement and the padding. The header Figure 3.6 consists of
24 bytes (192 bits) of information that describe the data in the data part of

the block. The first 8 bytes are a simple identifier that designates the type
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of block. In this case the bits represent the arbitrary ASCII character string
'‘EBYEDATA’. The next 2 bytes of the header is the block sequence, this
1s simply the numerical order of the block as it is transmitted. The next 2

bytes is the stream number, this number simply defines which data stream

in the data acquisition system the data block originated from. The 2 bytes

proceeding this contain a variable called ‘Tape’. The value of this variable is
always set to 1.

elefv]efofalT]a
MyEndian Data Length

Figure 3.6: Schematic showing the detailed structure of the 24 byte block
header portion of the data block structure shown in figure 3.5. The block

header contains various parameters for describing the position of the block
within the serialised data file and also the endianness of the binary data
contained within it.

24B

The next 4 bytes of the header contain two variables called MyEndian and

DataEndian, respectively. These two variables allow the hardware architec-

ture of the data source to be determined. The variable MyEndian is written

as a native 1 on the Tape Server ( i.e. the computer that writes the data
to tape or to disk). The second value DataEndian is written as a native 1
in the hardware architecture of the machine where the data originated (i.e.
The data acquisition system). By examining these two values it is possible
to determine the endianness of the various systems involved. This determi-
nation is critical if the data is to be interpreted correctly. The final 4 Bytes

in the header contain the data length. This variable simply states the length
in bytes of data that follows the header.

The Data part of the block is simply the data stream of Info items and data
items that was described earlier. The third part of the block is the end of
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block sequence, this sequence is simply 4 bytes that contain the hexadecimal
value (OxFFFFFFFF). This value simply declares that the length of data
declared in the block header has finished. The fourth and final part of the

block is the optional padding. If the total length of header, data stream and
end of block statement is less than the total block length of 16 kilobytes then

padding bytes containing the hexadecimal value (0x5E) are inserted at the
end of the block until the total length is achieved.

3.4 Summary

This chapter briefly described at a high level the operation of the TDR data
acquisition system, specifically how charge pulses generated by the detectors

are converted into time-stamped digital data. A detailed description was

also given of the data format output from the ADC’s and the structure of
the resultant data stream.
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Chapter 4

Code Architecture and Data
Buflering

4.1 Overview

This chapter explains both the high level design choices and the detailed
implementation of the data buffering process. The chapter is started with a
simple flow diagram that highlights the general structure of the data analy-
sis code. Following this is a general UML (Unified Modeling Language, see
section 4.3) diagram indicating the various classes used throughout the data

analysis code. Following on from this is a detailed discussion of the various

data buffering methods and also a detailed implementation of the data analy-

sis codes time buffer and the various solutions to various buffering issues.

4.2 High level Code Structure

Using a UML (see section 4.3) class diagram as a starting point, each
major section of the code is given a more in depth treatment. Details of the
algorithms and data structures used and the decisions behind their choice are
also covered in the individual sections below. Initially the chapter is started
with a high level overview of the TDRSorter data analysis code which gives

a useful outline of how all the components fit together. Following on from
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this a more detailed discussion of the operation of each area of code is given.

4.2.1 Logical Code Structure

Figure 4.1 shows the logical code structure of the TDR sorter data analy-
sis program. The functioning of the TDRSorter code can be broken down
roughly into the following sections; data input; data buffering; event packag-
Ing and specialised sorting. The first section, data input, is fairly elementary

in its construction and operation. It is mainly concerned with getting the

raw binary data output from the ADC’s, into memory, and in a form that is
usable.

The data buffering section of the TDRSorter code (see section 4.4) poses
one of the major challenges in reconstructing useful physics information from
the triggerless data stream. Here the time ordered data is buffered in such a
way that given a particular data item in the data stream, all data items that

have a time-stamp that fall within a specified time period (both forwards
and backwards in time) can be accessed.

The event packaging section of the TDRSorter code (see section 5.5) makes
heavy use of the time buffer constructed in the data buffering portion of the

code. Given a user defined software trigger the time buffer is searched for
other data items from any other detector that lie within specified time periods
of the trigger data item'. The event packaging mechanism is essentially a

way of reconstructing prompt coincidences from detectors.

The final section of the TDRSorter code is the specialised sorter section
(see chapter 6). This portion of the code is essentially where the sorted data

1s tested against the expected physical outcomes of the experiment. Delayed

coincidences can be stored and analysed with a tagging framework and one

and two dimensional histograms can be generated.

_m_

'Up to the maximum time period of data items stored in the time buffer.
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Data Stream
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Time using Event
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Sorter ——p Histograms

Figure 4.1: Diagram showing the logical structure of the TDRSorter data

analysis code. The figure shows how the code is split into four main sections;

data input from the data stream; Data buffering using a time buffer; Event

packaging and specialised sorting.

4.3 UML Diagrams

Throughout this thesis much of the discussion of the data analysis tech-

niques used are backed up using examples of code from the TDRSorter pro-
gram. In order to help in the understanding of these portions of code and

how they relate to each other within the overall structure of the program it

is useful to have some sort of diagrammatic visualisation.

An international standard notation called the Unified Modeling Language’
or UML has been defined to help in the visualisation and construction of ob-
Ject oriented software. UML uses several different types of diagrams to doc-
ument the components of a software system using engineering best practices.
Throughout the thesis constant reference will be made to standard UML class

diagrams. The following section attempts to provide a brief introduction to

the various notations used in these types of diagram.

*The UML standard is maintained by the Object Management group http://www.
omg.org
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4.3.1 Class Diagrams

Class diagrams are used to describe the types of objects in a software
system. In particular for object oriented languages this diagram describes
the classes structure (including their contents) and also the relationships

between the classes. Figure 4.2 shows how a basic class is represented. A

class is drawn as a box split up into three parts; the class name; attributes;
and operations. The top box holds the name of the class and appears as
it would in actual code. The second box contains a list of all attributes
contained in the class. An attribute is essentially the data that the class
contains for example in the CEvent class an attribute would be the CPixel
pixel object. The third box contains a list of all operations contained in the
class, each operation is a method ( or function) that can be called by users of

the class. Referring again to the CEvent class an example of an operation
would be the GetProperties() method.

ClassName
Attribute1 : Type
Attribute2 : Type

Operation1() : ReturnType
Operation2() : ReturnType

Figure 4.2: Figure showing the basic notation for describing a class in UML.

The two core types shown are attributes and operations which correspond to
the class member data and methods, respectively.

When declaring attributes in the class diagram the name is given first.
Following the name is a colon and the type of the attribute being declared.

For example, in many modern programming languages an integer variable

would be declared int x, in UML notation the variable would be declared

as an attribute as x : int. A similar convention applies when describing

operations in UML. Firstly the name of the operation is given then separated
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by a colon the return type of the operation is given. For example a generic

function int main() would be declared in UML as main():int. Figure 4.3
shows an example UML class diagram, alongside of which is a section of ¢+

code that it represents. One additional point to note is that the parameters

of methods are described using the attribute syntax described earlier.

CExample : class CExample ¢

o { :

_ ' public: .

count : int ' CExample(); //constructor

total : int ¢ Iint GetTotal(); :

: void Add(int amount); N

< <create>>CExample() : void , private: :
GetTotal( ) : int * int count; .

Add( amount:int) : void , Nt iotal; :

Figure 4.3: Figure showing an example UML class diagram and the corre-
sponding c++ code that implements the diagram.

Relationships Between Classes

As well as describing the structure and content of classes the UML class
diagram is used to describe how these classes relate to one another. Figure 4.4
shows some of the most commonly used relationships in UML class diagrams.

The list of relationships shown here is not exhaustive and only notation used

in the thesis is given here. Further information about UML relationships °
can be found in [16].

The first relationship shown is aggregation. Aggregation is used to model
classes that contain references to other classes but do not own them i.e.

they are not ultimately responsible for the creation or destruction * of the

*And most other UML information.
Classes that possess an aggregation relationship with another class can play a part in

the creation of objects. A good example would be a class that creates an object but passes
ownership to another class.
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{O>—— > Aggregation

Compostion

Generalisation

Dependency

""""""""" D Realisation

Figure 4.4: Figure showing the most commonly used Relationships used in
UML.

aggregated objects. Another way of looking at the aggregation relationship

is to say that it represents a ‘uses a’ condition for example where class A
uses an instance of class B.

The composition relationship is similar to aggregation in that it contains
references to other classes. The main difference is that in this case the class
owns the other classes in that it is ultimately responsible for the creation

and destruction of the contained classes. Composition is also said to model

a ‘has a’ relationship for example Class A ‘has a’ Class B contained within
it.

The next relationship in figure 4.4 is the generalisation. This represents

the common object oriented concept of inheritance. Inheritance represents

an ‘is a’ relationship e.g. Class B ‘is a’ type of Class A. In this case the
derived class is considered to be a specialisation of the base class. One key
point to be aware of is that in UML the relationship is called a generalisation

so the arrow in the relationship points from the derived class to the base class
as shown in figure 4.5

The fourth relationship shown in figure 4.4 is the dependency. The de-

pendency relationship is fairly self explanatory, it indicates that any two
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CBase

baseValue : int

<<create>>CBase() : void

CDerived

derivedValue : int

< <create>>CDerived() : vold

Figure 4.5: Figure showing a basic inheritance relationship between two
classes.

classes are dependent on one another for some aspect of their functioning.
The nature of dependencies are often indicated on UML diagrams by the use
of so called stereotypes that help to further define the relationship. Stereo-
types are enclosed in angled brackets e.g. < stereotype >. two of the main
stereotypes used in the diagrams throughout the thesis are < create > and

< uses > which denote that one class creates or uses the other as indicated.

The final relationship shown is the realisation. The realisation relationship
is used in cases where one class realises another, this situation occurs where
a class implements a specific abstract interface that cannot be instantiated

1n 1ts own right. The realisation in this situation indicates that the realising
class will support the methods outlined in the interface.

One further feature of the UML diagrams used throughout the thesis is
cardinality. e.g. 1..1 denotes a one to one relationship between any two
classes. This is the default cardinality if no other is explicitly indicated, and

hence 1..1 relationships are usually never depicted on class diagrams. Other

commonly used cardinalities are 1..% and *..1 which represent ‘one to many’

and ‘many to one’ relationships, respectively.
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Data Visualisation

Specialised sorting

CTaggerManager

Figure 4.6: UML Class Diagram of the TDRSorter Data Analysis Code. The
diagram shows how the different classes used in the code implementation are

organised into the general categories illustrated in figure 4.1.
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4.3.2 TDRSorter Class Diagram

Figure 4.6 is a UML class diagram showing all of the classes in the TDR
sorter analysis code. The central class in the TDRSorter code is the CSorter
class. This class is responsible for managing all the other classes in the
code. i.e. it instantiates and owns all the other controlling classes for various

sections of the code. As well as owning, either directly or indirectly, all of the

other classes it also contains the ‘main loop’ of the program. The method

containing the main loop is CSorter->Run(). Printed in figure 4.7 1s an
abbreviated version of the code in the main loop.

Main Loop

After the CSorter class has been set up the Run() method is called,
passing in a list of run files for the program to iterate through. For every
run file a CRunData object is created passing in the file name of the run
file. As shown in figure 4.1 the code can be divided roughly into data input;

data buffering; event packaging and specialised sorting sections. The created

CRunData object encapsulates the Data Input section of the logical code
diagram.

Data Input

Figure 4.8 shows a UML class diagram of the CRunData class. This
class on creation opens the specified run file for processing. The main loop
then enters a while loop that executes continuously on the condition that
the method IsData() returns true. i.e. that there is still data remaining in

the runfile. The main loop then executes a call to the CRunData method
ProcessFile() which returns a CTDRDataltem object that can be used in

the buffering stage. The ProcessFile() method takes care of the conversion

of the raw data contained in the run file into these CTDRDataltem objects.

The CRunData ProcessFile() method reads in 16kb of data into a dat-
aBlock structure that comprises of a block header and an array of 2045

data pairs as described in section 3.3.4. Once this structure has been read
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% f{or(int j=1;j<argc;j++)

3 myrunfile = new CRunData(filelist[j]);

csl \Evhile ( myrunfile->IsData() )

6 'i{(mybuffer->isFulI())

7

8 this->process(mybuffer);

9 mybuffer->increment();

10 continue;

11 }

12

13 dataltem=myrunfile->ProcessFile();
%45} calibration->calibrate(dataltem);

16 BUFFER_STATE bs = mybuffer->add(dataltem);
%g i{(bs==TIME_ERR)

19 if(Tagger)

%(1) Y Tagger->clearAll();

22 }

23 mybuffer->flushBuffer();

%g \ delete myrunfile;

Figure 4.7: Figure showing the main loop sorter code. The main loop 1is

the core of the running data analysis code. Whilst there is valid data the
main loop continues to execute, managing and using the various classes of
the TDRSorter program to accomplish the data analysis process.

into memory, a list of CTDRDataltem objects is created from the data
pairs. This list contains both data and information items as described in
sections 3.3.1 and 3.3.2, respectively. For each call to ProcessFile() the
next CTDRDataltem is returned to the main loop. The method keeps
returning CTDRDataltem’s until the end of the list is reached, at which
point it loads the next block in from the run file to create the next list of
CTDRDataltem objects. This process continues until no more data is
present in the run file at which point a flag is set so the call to IsData()

returns false and the while loop exits to load in the next relevant run file.
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*calibration : CCalibCoef
*Tagger : CTaggerManager
*runfile : CRunData
*dataltem : CTDRDataltemn
*mybuffer : CBuffer

*raw : CRaw

*detactorPixel : CPixel
*sorterSettings : CSetlings
constants - CONSTANTS
<<create>> CSorter() : void
<<destroy>> ~CSorter() : void
outputDefaults({) : void

OutputResults() : void

process(in *buffer : CBuffer) : void
processEvent(in event : CEvent®) : void

CCTDRDataltem

channelid : data
newAltr : int

timestamp: (64

<<create>> CTDRDataliem(low:unsigned int, high:unsigned int) : void
<<create>> CTDRDataltem(di. CTDRDataltem&) : void

<<destroy>> CTDRDataltem() : void
GetData():unisgned short
GetChannellD() unsigned short
GetTimestamp() : 164

<<create>> CRunData(in filename : string) : void

<<destroy>> CRunData() : void

ProcessFile() : CTDRDataltem®

isData() : bool
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DataBlock

header : block_header
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Figure 4.8: Class diagram associated with the data input section of the
TDRSorter analysis code. The relationship between the CRunData class

(which manages the data input process) and the various data block structures

1S shown.

4.4 Data Buffering

As indicated in figure 4.1 the next stage in the data analysis process is

the data buffering section. This section is a crucial part in getting rele-
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vant physics information from the time ordered data stream. The underly-
ing buffering method needs to be able to implement the features indicated
in figure 4.9. A read position needs to be maintained (i.e. the current
CTDRDataltem being processed) as well as two buffers, one containing all

CTDRDataltems in the specified forward time window and one containing
all CTDRDataltems in the backward time window.

Figure 4.9: Schematic showing the general operational principles of the
TDRSorter time buffer. The read position (the current data item of interest)

1s associated with all data items that lie within a specified time period (The

forwards and backwards time windows). The time buffer is used to locate

detector channels that have fired in prompt coincidence with each other.

4.4.1 Buffering Methods

Given the requirements discussed above two different underlying buffering
methods were considered for the data analysis programs time buffer. The

two structures considered were the static ring buffer and the double-ended

queue (DE-Queue) otherwise known as a dynamic ring buffer.

Ring Buffer

The left hand side of Figure 4.10 shows the structure of a ring buffer. The
ring buffer is constructed from a simple array and 3 pointers; the add data
pointer the remove data pointer and the read position. The read position

1s the point at which data is retrieved from the buffer. When the data at
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Figure 4.10: diagram showing the two different buffering methods compared
in the text. The left hand side shows the ring buffer data structure whereas

the right hand side shows the double-ended queue data structure.

the read position is finished with the read position is incremented 1.e. the

pointer is incremented to point at the next point in the array.

After an increment, any new data is added on at the position in the array
assigned to the add pointer, whereas any data that is no longer required is
removed from the array at the remove pointer. After any addition or removal

process the associated pointers are either incremented or decremented as

appropriate. Data can be added to the ring buffer up to the maximum size

of the underlying array.

Double Ended Queue

T'he right hand side of Figure 4.10 shows the structure of the double-ended

queue. The DE-Queue has four main operations that can be performed on it,

push_bottom(), pop_bottom(), push_top() and pop_top(). The push

and pop bottom methods are used to add or remove data items from the tail

of the structure whereas the push and pop top methods are used to add or
remove data items from the head of the structure.
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Method Comparison

The main advantage of the ring buffer lies in the underlying data structure

used to implement it, that is, an array. As the ring buffer is a simple static
array it is quick to add, remove and use any data item stored in it. Only
simple allocations, deletes and pointer arithmetic are needed to implement
the add, remove and use functionality. However the ring buffer requires ‘well

behaved’ data that contains largely static buffer sizes or a large over sized

buffer to handle the size changes which is obviously not desirable.

Assuming that a time buffer is to be constructed that can search for 10us

forwards and backwards from the current data item an array must be con-
structed that has enough space for one data item per 10ns time-stamping
'slot’ 1.e. 10us equals 1000 10ns therefore an array capable of holding 2000
CTDRDataltem objects needs to be created. The obvious shortcoming

here is that the amount of memory used remains the same regardless of

whether 1 or 1000 data items are currently being stored in the ring buffer.

The major disadvantage of the ring buffer is that it has no capability to
adjust in size if an increase in capacity is needed. This is an important
capability because there is a possibility of high multiplicity events occurring.
1.e. there may be more than one CTDRDataitem object for any given 10ns
time-stamp slot in the buffer. This leads to the situation where there may

be more data that falls within the required time window than it is possible
to store in the array.

In contrast to the ring buffer the double-ended queues main advantage
s its capability to resize itself. As data items are added or removed the
data structure automatically resizes itself to take into account current re-
quirements. This resizing reflects in the memory allocation aspects of the
data structure also. As the data is added or removed, memory is allocated

or deallocated, respectively. This dynamic allocation / deallocation ensures

that the memory footprint of the double-ended queue accurately reflects the
number of data items currently in the data structure.
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The main drawback of the double-ended queue is its very ability to resize

itself according to the current storage requirements. Each memory allocation

or deallocation takes a specific period of time to complete. For most data sets
the number of data items currently required will vary frequently and hence
memory will need to be allocated and deallocated frequently. This frequent
memory activity will cause a slow down in the operation of the buffer. This

constant memory activity can be mitigated to a certain extent by requiring
that the size of the double-ended queue is given a minimum value so that

small changes in size does not result in extraneous memory activity.

Given the associated strengths and weaknesses of the data structures given

above and that the main disadvantage of the double-ended queue can be

compensated for to a certain extent, it was decided that the double-ended

queue would be used to implement the time buffer outlined in figure 4.9.

4.4.2 Time Buffer Operation

This section deals with how the time buffer, implemented with a double-
ended queue, operates. Figure 4.11 shows a UML class diagram of the

CBuffer class and how it relates to the other classes in the TDRSorter

data analysis code. The CBuffer class implements the functionality of the
time buffer as outlined in figure 4.9.

Referring to the main loop in figure 4.7 there are two sections of code
relevant to the operation of the CBuffer class. The first section is the line
BUFFER_STATE bs = mybuffer->add(dataltem). This line of code

adds the CTDRDataltem returned from the CRunData object as described
earlier to the buffer.

Figure 4.12 shows the operation of the add method of the CBuffer class.

The add method passes in a pointer to a CTDRDataltem object that is
to be added to the buffer. Before any processing is performed a check is

performed to make sure that the time-stamp of the data item being added
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tionships between the various supporting classes.

).

makes sense (i.e. is in correct time order
time-stamp of the added item is that it is eq

The basic requirement for the

ual to or greater than the time-

stamp of the last data item added to the buffer. This check is necessary as
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Figure 4.12: Figure showing the operation of the add method of CBuffer
class. The figure shows the logic of the process indicating how the data item
added alters the internal state of the buffer i.e. when the buffer is fully

constructed and contains valid data the buffer state is set to full, indicating
that the CBuffer object is ready to use.

it ensures that the time buffer remains in strict time order. The data being

In time order is a fundamental assumption of all further processing.

If the time-stamp fails the time-stamp test described above, the add func-

tion returns a buffer state variable indicating that a timing error has oc-
curred. This then allows the calling code to handle the condition and finish

any processing necessary and to also clean up and release any necessary mem-

ory including flushing the time buffer. Timing errors in the buffer are not
a fatal condition, flushing the time buffer and then rebuilding it from the

next item in the data stream is all that is necessary to recover and continue
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processing. At any point where a timing error® occurs the user is notified by

an entry being placed in a program global log file that is created whenever
the TDRSorter code is run.

If the time check is passed then the next stage of the add method is to
compare the time-stamp of the data item being added to see if it fits within

the backwards time window of the buffer. If the time-stamp of the data item
does fall within the range specified by the buffer it is added to the end of the

DE-Queue structure by using the push_bottom( ) operation it defines. kor
example if a buffer is specified with a data item at the read position with an

arbitrary time-stamp of 1000us and a backwards time window of 100us. Any
data item that has a time-stamp that falls in the range of 900us to 1000us
inclusive is considered to be within the backwards time window of the buffer.

If the data item is added the add method returns with a buffer state of ‘OK’
indicating that more data can be added.

If the data item being added to the buffer falls outside the backwards time
window then the buffer is now considered to be full. When the buffer is full it

means that it is fully constructed and ready to be used i.e. it contains valid
data. It does not mean that the capacity of the buffer has been used and no
more data can be added. Carrying on with the example above if the data
item being added had a time-stamp that had a time < 900us it would be

considered to have fallen outside the backwards time window of the buffer.

This data item is now classified as the buffers pending item and essentially
1s the next item to be added when the buffer is no longer considered to be

full. At this point the add method returns with a buffer state of ‘FULL’

Indicating that the time buffer is read for use in any future analysis.

The second section of code from the main loop that is relevant to the time

buffer is the line starting ’if(mybuffer->isFull())’. This line, executed
before another data item is added to the buffer, checks to see whether the

buffer contains valid data. If the buffer does contain valid data it is passed

“_____—m

°Or indeed any other error the user needs to be made aware of.
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as an argument to the process method of the CSorter class where event

construction takes place. Event construction is detailed in the next chapter.

Following the event processing the buffer is incremented. This incremen-
tation moves the read position of the time buffer to point at the next data
item. The incrementation process results in a resizing of the buffer with any
data items that now lie outside the time window being removed from the
buffer. The call to the process method and subsequent incrementation con-

tinues whilst the buffer contains valid data. At any time the incrementation
process and subsequent removal of data items from the buffer can alter the

state of the buffer to be no longer full i.e. it no longer contains valid data,

at which point data items are added again until the time buffer is full again.

Figure 4.13 shows the detailed operation of the increment method of the
buffer class. The first stage is to perform the initial increment of the read
position of the buffer. This operation simply makes the read position point
to the next item in the time buffer i.e. the next youngest data item. This
incrementation now invalidates the rest of the buffer and all remaining data

items need to be retested to see if they are still within the specified front and
backward time windows.

The next stage is to check the time-stamp of the oldest data item in the
time buffer. If the data item’s time-stamp indicates that the data item falls
outside the backwards time window i.e. the data item is too old, then the
data item is removed from the time buffer and the memory allocated to this

data item is freed as it is no longer of interest. This process of checking the
oldest items time-stamp and removing old items is continued until one of the
checks finds a data item that lies within the backwards time window. This

data item is the oldest data item in the data stream that is still of interest.

At this point the backwards portion of the buffer is now valid, but the front

portion is not. In order to see if more data is needed to fill the buffer, the

time-stamp of the pending item is checked to see if it lies inside or outside the
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Increment Read Pos
Start
Check oldest items timestamp Remove oldest Item

Return buffer No longer Full

Return Buffer still full

Figure 4.13: Figure showing the logical operation of the increment method

of CBuffer class. This operation increments the read position of the time

buffer and forces the entire buffer to be revalidated. This revalidation can
cause the buffer state to be changed.

forward time window. If the time-stamp of the pending item is greater than

the front time i.e. the pending item is outside the forward time window, then
the buffer still contains valid data. If the pending items time-stamp indicates
that the data item lies within the forward time window then the buffer is
no longer full and more data items need to be added before it can be used.
The increment method returns a buffer state variable indicating whether the

buffer is still full and can be used, or if it is not full and more data needs to
be added.
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4.4.3 Buffer Operation Walk Through

As the individual stages of data buffering has been discussed in some detail
it is now useful to look at how all of these sections fit together in relation
to the buffering of a real data stream. Figure 4.14 shows how the increment
and add operations work on an example data stream. Along the top of the
diagram, increasing in time from left to right is a time ordered sequence of

data items as they appear in the data stream and is essentially the order of
data items as they are read from the data source.

This walk through of the buffering process is based on building a time
buffer with a forward and backwards time window of 20ns. The buflering
starts at the read position indicated in figure 4.14 (at the 30ns position)
on the first line where there is already a complete time buffer in place with
a single pending data item containing information about a 7 ray. After
this buffer has been passed on for further analysis an increment operation 1s

needed to revalidate the buffer. The result of this incrementation is given in
the second line of the figure.

As described in section 4.4.2 the read position is first moved to the following
data item in the data stream which in this case is the data item at the 40ns
position. Firstly the back window is checked and any items that lie outside

1t are removed which in this case is the 7y ray data item at the 10ns position,

secondly the time-stamp of the pending data item is checked against the

forward time window. In this stage the pending data item still lies outside the

time window so the time buffer is still valid and is passed on for subsequent
analysis.

Following this as the buffer still contains valid data another increment is
performed with the results showing in part three of figure 4.14.In this line the
data items out of time scope in the backwards time window are again cleared
up. The time-stamp of the pending item is checked and as in the previous

stage the pending item is still outside the forward time window. This data
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Figure 4.14: Figure

work on an example section of data stream. The resultant time buffers for

uccessive iterations of the operations are shown, indicating the internal state

of the time buffer. i.e. indicating whether the buffer is fully constructed and
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buffer is therefore still valid and is passed on for further analysis. Another
increment is performed showing the results on line four of the figure. After
this operation the read position of the time buffer points to the pending item

from the previous section, this data item is immediately added to the buffer
resulting in it being invalidated. This time buffer is therefore not passed on

for further analysis and data items now need to be added to the bufter again
in order to fill it up.

The result of the add operation is shown in line five in figure 4.14. The
data item from the 90ns position in the data stream is the data item to be
added to the buffer, before adding it the item’s time-stamp is checked. In
this case the item falls within the forward time window of the time buffer
and 1t is simply added to the buffer. This results in no change in the buffers
state, it is still not fully constructed with valid data so it is not passed on
for further analysis. A further add operation is performed (line six in figure
4.14) with the next data item in the data stream i.e. the data item from
the 110ns position in the data stream. The time-stamp of this data item is
outside the forward time window of the current read position at the 80ns
position so this item becomes the current pending data item for this time

buffer. This time buffer is now considered full i.e. it is fully constructed with
valid data so it is passed on for further analysis.

Stage seven and eight of the figure show similar incrementations and ad-
ditions as already described previously; with data items being removed from
the backwards time window and data items and pending items being checked
against the forward time windows range. This process essentially continues
throughout the data stream constructed from all of the runfiles passed into
the TDRSorter data analysis code. As valid time buffers are constructed

they are passed into the process() method of the CSorter class where pix-

els and events are constructed. The process of pixel definition and event
construction are described in detail in chapter 5
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4.4.4 Example Time Buffer

One final illustration that is useful at this point is to present an example of
a complete, fully constructed time buffer as it would appear in the TDRSorter

data analysis code. The time buffer presented here is an actual example of

one that was created during a run through the example data set. All of the
data items shown are simplified versions (containing only key information)

of the real data items used in the construction of the time buffer. Figure 4.15
shows this outline of the fully constructed CBuffer object.

START BUFFER TIME DUMP

INDEX O CHN 344 TIME 20739355984741 DATA 16364 ENERGY 15030.88 CLOVER
INDEX 1 CHN 336 TIME 20739355984777 DATA 16287 ENERGY 14982.04 CLOVER
INDEX 2 CHN 320 TIME 20739355984778 DATA 16299 ENERGY 14971.08 CLOVER
INDEX 3 CHN 416 TIME 20739355985197 DATA 3343 ENERGY -1 GAS_X1

INDEX 4 CHN 417 TIME 20739355985197 DATA 11732 ENERGY -1 GAS_X2
INDEX S CHN 418 TIME 20739355985197 DATA 10840 ENERGY -1 GAS_Y1
INDEX 6 CHN 419 TIME 20739355985197 DATA 9232 ENERGY -1 GAS_Y2
INDEX 7 CHN 420 TIME 20739355985197 DATA 4387 ENERGY -1 GAS_E

INDEX 8 CHN 128 TIME 20739355985199 DATA 16246 ENERGY 16985.3 DSSD_X
INDEX9 CHN 39 TIME 20739355985199 DATA 16255 ENERGY 4242.9 DSSD_Y
INDEX 10 CHN 432 TIME 20739355985209 DATA 7672 ENERGY -1 SI_GAS_TAC

PENDING 336 DATA 16238 TIME 20739355999552 CLOVER

END BUFFER TIME DUMP

Figure 4.15: Outline showing a real fully constructed time buffer (CBuffer
object) created during a run through the example data set.

It can be seen from the data dump of the buffer that the time buffer

contains three clover events; the x,y and energy outputs of the MWPC; a
DSSD X and Y data item; and the triggering silicon-gas TAC. The quoted
energy value for the gas and the TAC data item values are indicated as -1
meaning that there is no energy value because there is no calibration supplied
for these channels. There is no energy calibration supplied as an energy value
for these detector channels is either meaningless or unneeded. Another point
to note 1s the energy values of the DSSD X and the DSSD Y data items. In
the data set used the X and Y sides of the DSSD had different gain ranges

with the Y side being approximately one quarter of the X side. Even though
at first glance the X and Y data items appear to not be caused by the same

00



event, in reality the energy values are quite close and the data items would

probably pass any required gates to define a real pixel if the gain ranges were
the same.

4.5 Summary

This chapter covered the high level structure of the TDRSorter data analy-

sis code and detailed how it can be broken down into four general sections.
The first two sections; data input and data buffering were covered in this
chapter, the remaining sections are covered in later chapters. Two different
methods of buffering were also compared and an outline of the operation of

the time buffer was given. A walk through of the entire process was also
given at the end of this chapter.
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Chapter 5

Pixel Definition and Event

Construction

5.1 Overview

This chapter discusses two important sections of the TDRSorter data
analysis code; pixel definition and event construction. Pixel definition is

an important aspect of the analysis code as it is effectively the central build-
ing block from which all other data structures are formed. A discussion is

given of how pixels are defined from fully constructed time buffers and some
1ssues that arise during this process. The next major section discussed is
that of Event construction. This section will detail how CEvent objects
are constructed using the CPixel class previously discussed. The CEvent
object encapsulates the fundamental ‘physics’ data that is used in particular

In the specialised sorting portion of the data analysis code as discussed in
chapter 6.

The process of pixel definition and event construction takes place en-
tirely within the process() method of the CSorter class as outlined in
figure 5.1. The process method is called from the main loop line this-
>process(mybuffer). The mybuffer object passed as a parameter is the

fully constructed CBuffer class as described in section 4.4. The read posi-
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tion points to the current triggered data item and the forward and backward
portions are filled with all CTDRDataltem objects from the data stream

that have timestamps that lie within these given time periods
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<< destroy »>»=CEveni().CEvenl

+GelProperties("p EventProperties *p EventProperties) void

Figure 5.1: UML Class Diagram showing the CSorter, CEvent and
EventProperties classes.

The main purpose of the event construction process is to build valid
CEvent objects that can be passed onto the specialised sorting section of
the code. The CEvent class contains basic information about data items
that are in prompt coincidence; pixel information; and detector energy infor-

mation. The following sections will discuss how these CEvent objects are
built and some of the most important issues that arise.
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5.2 Pixel Definition

The core of constructing a CEvent is the definition of a CPixel object that
must be passed as an argument in the constructor of the CEvent object. As
outlined in section 2.4.3 the double sided silicon strip detector (Or DSSD)
consists of sets of individual detector strips positioned orthogonally to each
other. These sets of strips are termed the x and y strips of the DSSD.
The same principles discussed in the following sections are applicable to the
planar germanium detector which is segmented into strips in a similar way

to the DSSD. Other detectors in the spectrometer such as the PINs which

are not segmented into strips do not need the following processes to be used
effectively.

The DSSD detector has both x and y oriented strips to gain spatial infor-
mation from any signals produced from recoil implantations or subsequent

decays. Using the example of a recoiling nucleus implanting in the DSSD
detector, energy will be deposited in the nearest x and y strips. As the posi-

tion of these strips within the overall detector is known an (z,y) coordinate
for this implantation can be inferred.

Given this information it can be seen that in order for a pixel to be defined a

CTDRDataltem corresponding to a DSSD X strip and a CTDRDataltem
corresponding to a DSSD Y strip need to occur in the data stream. Figure

0.2 shows diagrammatically the process of defining a pixel using the x and y
CTDRDataltem objects.

Apart from the presence of these data items in the data stream there
are also time and energy constraints to consider. In order for a pixel to
be considered valid both x and y data items need to lie within a short time
period of one another. Section 5.3 provides detailed information about timing
relationships between strips. If however it is assumed that all detector and
data acquisition paths should operate at approximately the same speed, and

that the energy is deposited from a single implantation event it is highly
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Defined X
Pixel

Figure 5.2: Diagram showing the principles of pixel definition. The diagram

shows how a pixel is constructed from both a DSSD X data item and a DSSD
Y data item.

likely that any x and y data items in close temporal proximity in the data
stream could define a valid pixel.

As well as lying in close temporal proximity, any data item should also pass
certain energy conditions to be considered a true pixel. The energy condition
is that the magnitude of the energy deposited in a given x or y strip should

closely match that of its respective x or y channel. This condition is put in
place as the energy deposited in each strip should vary around a mean value.

If the energy of one strip in the pixel was 4000keV and its corresponding
channel was 40keV then there is the possibility that the smaller energy strip

could be a false coincidence as the result of noise or background radiation in
the detector.

90.2.1 Time and Energy Condition Statistics

Figure 5.3 shows the timing relationship between DSSD X and DSSD Y
strips. This figure was generated by searching through the data stream and
triggering from either a DSSD Y or a DSSD X strip. When one of these
strips was found a search was performed to locate the nearest complimentary

X or y strip. When this strip was found a difference was taken between the

timestamps of the respective strips data items and the result was plotted
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onto the figure.

The x axis of figure 5.3 represents this time difference in nanoseconds. As
can be seen the distribution lies around the zero position and quickly falls
off at either side. This indicates that most x and y strips in the data stream
that are near to each other probably were generated from the same event.
In order to reduce any background or stray signals on future analysis it 1s

possible to set a time gate on strips that are likely to be correlated. It can

be seen that if the time difference between strips is greater than 100ns then
they are unlikely to be valid strips for defining pixels. In reality a tighter

gate can be used to ensure only good is used (i.e. a time gate of +20ns ). It
must be noted that such gates must be recalculated for different experiments

and different set-ups as timing relationships are likely to vary.
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Figure 5.3: Figure showing time difference between x and y strips in the data
stream.
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As well as filtering out widely different timestamps it is also useful to filter

out located DSSD X and Y strips that have large energy differences. T'hese

energy differences could be caused by various problems in the system e.g.
malfunctioning strips in the DSSD detector, or false coincidences with noise

generated by a DSSD strip. Other sources of large energy differences could

be caused by recoils embedding only partially on a strip of the DSSD. Figure

5.4 below shows a plot of the energy of the DSSD X strips against the energy
of the DSSD Y strips.
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