
Data Analysis Techniques for Triggerless
Data Streams in Nuclear Structure Physics

Thesis submitted in accordance with the requirements of the University of
Liverpool for the degree of Doctor in Philosophy

by

Peter Jonathon Christopher Ikin

August 2005

Abstract

The GREAT spectrometer is a focal plane detector system recently installed

in Jyväskylä, Finland. The spectrometer is used to study various topics of
interest in nuclear structure physics, in particular the area of superheavy

elements.

One feature of the GREAT spectrometer is the triggerless total data readout
(TDR) data acquisition system, the unique aspect of which is a lack of a

system wide hardware trigger. This is intended to directly compensate for

dead time problems of past systems. The TDR data acquisition system reads

out the state of each detector independently of any other in the spectrometer

when an event occurs. These events are then time-stamped from a central

system clock, producing a single stream of time ordered data.

A major challenge, and the primary focus of this thesis is to reconstruct
information about time coincident events, and the sequence of events that

have been lost by reading out the data as a single stream. The thesis dis-

cusses the data analysis techniques used to extract physics information from

the time ordered data stream and uses well known examples to demonstrate
that the techniques discussed can be applied to real world problems.

Contents

1 Introduction 4

2 Experimental and Detector Details 10

2.1 Overview 10

2.2 Experimental Focus 10

2.3 RITU and GREAT 12
2.4 GREAT Spectrometer

... 13

2.4.1 Multiwire Proportional Counter (MWPC)
.... ... 15

2.4.2 Cooling Block 16

2.4.3 Double Sided Silicon Strip Detector (DSSD)
... ... 17

2.4.4 PIN Diodes 18
2.4.5 Planar Germanium Detector 19

2.4.6 Segmented Clover Detector
............ ... 19

2.4.7 Silicon-Gas Tac
................... ... 20

2.4.8 Target Position Arrays
. 20

2.5 Example Data Set
.......... 21

2.6 Summary
. 23

3 TDR Data Acquisition System and Data Format 24
3.1 Overview

...... 24
3.2 TDR Electronics System

...... 24
3.3 TDR Data Format

........................
27

3.3.1 Data Items
........................

27
3.3.2 Info Items

.........................
28

3.3.3 Data Stream
......... 29

1

3.3.4 Block Structure
.......

30

3.4 Summary
...

32

4 Code Architecture and Data Buffering 33

4.1 Overview
33

4.2 High level Code Structure
.....

33

4.2.1 Logical Code Structure
............ 34

4.3 UML Diagrams 35

4.3.1 Class Diagrams 36

4.3.2 TDRSorter Class Diagram 41

4.4 Data Buffering 43

4.4.1 Buffering Methods
....... 44

4.4.2 Time Buffer Operation
............ 47

4.4.3 Buffer Operation Walk Through 53
4.4.4 Example Time Buffer

.... 56

4.5 Summary 57

5 Pixel Definition and Event Construction 58
5.1 Overview 58
5.2 Pixel Definition 60

5.2.1 Time and Energy Condition Statistics
...... ... 61

5.2.2 Triggering Considerations
......... 65

5.3 Pixel Definition Examples and Problems
........ 68

5.4 Problem Conditions in Pixel Definition
.... 70

5.4.1 Multiple X and Y Strips
.............. ... 70

5.4.2 Double Counting 74
5.4.3 Pixel Construction from Alternate Triggering 77

5.5 Event Packaging
. 79

5.6 Summary
....... 83

6 Specialised Sorting 85
6.1 Overview

......
85

6.2 Deriving A Specialised Sorting Class
.............. 85

6.3 Event Properties and Data Visualisation
............

87

2

6.3.1 Calibration
88

6.3.2 Histograming
89

6.3.3 Basic Spectra
90

6.3.4 Examples of Recoil and Alpha Identification
92

6.4 Tagging 94

6.4.1 The CTagger Class
.... 95

6.4.2 CTagger Depth Mechanism 96

6.4.3 The Tagger Manager
.... 99

6.4.4 Delayed Coincidences using the CTagger Class
.. .. 101

6.4.5 Recoil Alpha Tagging 102

6.5 Tagger Search Strategies
............ 105

6.6 Lifetime Calculations
......... 110

6.7 Comparison of TDRSorter to GRAIN 112

6.8 Summary
..... 117

7 Conclusions 119

A TDRSorter Data Analysis Package Operation 125

A. 1 Overview
.........

125

A. 2 Requirements
125

A. 3 Sort File Creation
. 126

A. 4 Compilation with g++ on linux platform
127

A. 5 Compilation with Visual Studio on the Windows Platform .. 128

A. 6 Usage 129

B TDRSorter Class Overview
B. 1 Classes

.......

C Detailed TDRSorter UML Diagram

D TDRSorter Code CD

130

............
130

135

136

3

Chapter 1

Introduction

Nuclear physics experiments collect a lot of data. A typical experimental

set-up can have anywhere between ten and five hundred detector channels. In

order to make sense of the large quantity of data generated by these systems

some sort of triggering mechanism is needed to read out the state of the
detectors at appropriate points in the experimental run.

In general past data acquisition systems operate based on the principle of

common dead time. One detector group in the system, usually the implanta-

tion detector', is considered the trigger. When a given reaction or sequence of

reactions result in the trigger being activated, the data acquisition is paused

whilst the whole state of the system is read out. This set-up introduces dead

time into the process of data acquisition that can be especially significant
in experiments with a high reaction rate were the rate of incident beam is
increased to compensate for the low efficiency of the decay process being

studied and the reaction channel of interest is weak.

Another limitation of past data acquisition systems was the fact that the

nature of the hardware set-up forced the user to define the experimental
conditions in advance. This imposed few limits on traditional in beam 'y ray
spectroscopy as all the information on the reaction being studied is available

'The implantation detector is the component of the spectrometer where the recoiling
nuclei being studied initially embed.

4

in a short time period (< 1µs). However the situation was not so good for

tagging experiments where parts of the information was not available until
long after other parts of the reaction sequence. This limitation can be partly

mitigated by using hardware delays to postpone information delivery to the
data acquisition system. For example, for experiments triggering from recoil
implantation, prompt decays at the target position need to be delayed by the
flight time (of the order of ps) of the recoil through the the recoil separator
(see section 2.3 for details on recoil separators) if they are to be associated
correctly.

Again in this case the experimental conditions need to be defined in ad-

vance to select the right delay times to allow the data acquisition system to

correlate the delayed information to the triggering event. A further problem
arises due to hardware limits in the amount of time a signal can be delayed
for. If the required delay time exceeds these limits then no data can be

gathered from these longer lived events.

Returning to the data loss due to the common dead time in the data

acquisition system it is useful to refer to figure 1.1. The middle line on
the figure represents a time ordered sequence of data items from the focal

plane silicon implant detector. In the GREAT spectrometer the focal plane

silicon implant detector is the Double-sided Silicon Strip Detector (DSSD)
(see section 2.4 for details). Each of the boxes on this line represents a
triggerable event. When the first silicon event on the line triggers, the data

acquisition system goes dead for the amount of time indicated by the box on
the bottom line. During this dead time no other silicon events can trigger
the data acquisition system and cause the state of the detectors to be read
out.

When this first event triggers the first three ry rays on the target 'y line fall

within the trigger gate and are associated with the triggering silicon event.
This sequence of events is the ideal circumstance for the data acquisition
system to be in i. e. there are no overlapping events within the dead time

5

Trigger Gate

xx
Lost Coincidences

Target yxxx

xx Ix

Focal Plane Si

Dead Time

Figure 1.1: Schematic demonstrating how a data wcctuisiti0ii systeiu's trigger-

ing conditions can lead to associated dead tiiiie. The central hue represents

a time line with triggers present on it. Any items that, are marked with an
`x' are lost (lie to the dead time shown oil the bottom time line.

assoýcia, ted with that trigger. Moving onto the second triggerable event on the
focal plaice Silicon line it call see that this is not the case. This second event,
triggers and is then associated with the -ý ray on the target. - line that falls

wit hin the trigger gate. Unfortunately whilst, the data acquisition system is

dead another triggerable event, occurs. This event, (h)es not, trigger the (Lila,

acquisition system and this event is simply lost,.

The next event on the focal plane silicon line t hat triggers shows a situation

where data, other than that on the triggering line can get lost. The first

event, in this sequence triggers and the data acquisition system goes dea. (l;
in this case no gamma rays are in the trigger gate. The two following focal

plane triggers occur within the (lead time and are lost. The final triggerable

event in this sequence if it were triggered would have found several -y rays in

coincidence. This shows that using such a common (lead time strategy large

amounts of good data can be lost..

Past detector systems that have been used with these common dead time
data acquisition systems generally consist of three main parts; a target posi-

6

tion detector array; a recoil separator and a focal plane spectrometer. Figure

1.2 shows a schematic of such a system. A beam of nuclei from a cyclotron is

incident on the target material, where during a fusion evaporation reaction
the nuclei of interest are produced. Around this target position is an array

of detectors used to measure prompt radiation from the produced nuclei.
The recoiling nuclei are transported to the focal plane first passing through

a recoil separator, where the nuclei being studied are separated from the

other recoil products and any scattered beam. The nuclei are then incident

on the focal plane spectrometer which usually consists of a position sensitive
implantation detector surrounded by arrays of detectors designed to measure

specific decay products of the implanted nuclei.

-400kHz

'ý3061 Separator

110.10

`Target

0000

Position
Focal Plane

Spectrometer

40+ detectors
10kHz each

Figure 1.2: Diagram showing a generic detector system that consists of three

main parts; a target position array; a recoil separator and a focal plane
spectrometer. (The components in the figure are situated relative to each
other in the configuration that most detector systems use.)

Considering the generic detector system in figure 1.2 it can clearly be seen
how the magnitude of the problem of dead time is compounded when simple
tagging is performed. Presuming that the target position array consists of
40 detectors operating at 10kHz each this then equates to a target position
count rate of approximately 400kHz. Due to the high efficiency of the recoil

separator, the focal plane spectrometer can expect a count rate of around

7

10Hz. Presuming a common dead time of 10µs at the target position would
lead to a 40% dead time at the focal plane.

Given the above figures it can be presumed that there is an approximate
60% probability of detecting a recoil implanting in the focal plane detector

array. By the same token there is a 60% chance of detecting any alpha decay

of a previously implanted recoil. This gives us an overall 36% chance of
detecting and correlating a recoil alpha pair. It is obvious that the close

coupling of all the detectors in the system leads to a large potential loss of
data due to the significant dead time in the system. Given the low statistics

of superheavy nuclei experiments this loss of data is very significant.

The GREAT (Gamma Recoil Electron Alpha Tagging) [1] spectrometer

and TDR (Total Data Readout) [2] data acquisition system was developed

both as a `step up' in sensitivity and also as a means of circumventing the

problems of the inherent dead time built in to previous detector and data

acquisition systems. The GREAT spectrometer itself was designed to meet
the characteristics of nuclear reactions and is discussed in detail in chapter 2.

The TDR data acquisition system is a triggerless data acquisition system that

is designed to virtually eliminate dead time by decoupling all the detector

channels from the system wide trigger. Signals from each detector are read

out independently from other channels. The only dead time left in the system
is for the period of time that the channel is being read out and this is only

applicable to that specific channel.

One left over limitation of the TDR data acquisition system is due to this

remaining dead time in the individual detector channels. Fast sequences of
events within a single detector channel for example an implantation in a focal

plane detector channel followed by a prompt decay would still be lost if the
lifetime of the decay was less than dead time associated with the shaping
time of the amplification process (-- 1- 3µs). This limitation imposed by

the speed of the operating hardware can not be avoided; the only way of
mitigating the situation would be to change the data acquisition system to

8

use digital electronics2 were the system is independent of the shaping time

of the linear amplifiers.

This decoupling of the detectors, although addressing the issues of dead

time, introduces a number of other problems as a side effect. The main

problem that is presented by such a triggerless data acquisition system is that

the signals from the individual detectors are no longer associated. There are

no events indicating spatial and temporal coincidences constructed during

the data acquisition process as was the case in previous systems.

The bulk of this thesis describes the TDRSorter data analysis code. The

analysis code has an essential function to play in using the raw data stream
supplied by the TDR data acquisition system and constructing usable physics
events. The TDRSorter code takes the raw data stream, sorts it and performs
prompt and delayed coincidences. From this the TDRSorter code produces
various visualisations in the form of histograms. It is from these visualisations
that the physical interpretation of the results can begin.

One of the important functions that is performed by the data acquisition
system is the time ordering process. The time ordering process sets an im-

portant foundation that the data analysis code is built upon. Essentially

this process sorts all the data generated by the detectors into time order. A

more detailed discussion of the data acquisition process is given in chapter 3.
One of the key challenges that must be overcome by the data analysis code
is to take this triggerless, time ordered data stream and reconstruct physics
events from it.

2As opposed to the current analog based system of acquisition components.

9

Chapter 2

Experimental and Detector

Details

2.1 Overview

This chapter will discuss the experimental motivation as well as the overall
structure of the GREAT (Gamma Recoil Electron Alpha Tagging)[1] spec-
trometer. Further sections will go into some detail about the function and
operation of the individual detector components that make up the whole
spectrometer. A brief discussion will also be given as to the experimental de-

tails of the data set used for all the physics examples depicted in subsequent
chapters.

2.2 Experimental Focus

The experimental and data analysis techniques discussed in this and the
following chapters apply to systems developed for the study of nuclei far
from stability, for example the study of nuclei with high mass and charge i. e.
super-heavy elements. One question that has been a focus of research in this

area is whether an island of stability exists for nuclei with Z> 100. These

very heavy nuclei should be unbound against fission. Simple calculations
using various parameterisations of the liquid drop model predict that the

10

limit of stability should occur when the Coulomb repulsion between protons

overcomes the attraction due to the strong nuclear force i. e. for nuclei with

around Z= 100 to Z= 106.

The fact that these nuclei exhibit stability is due solely to microscopic shell

effects. These shell effects are due primarily to what is called the spin-orbit
interaction which occurs between the orbital angular momentum and the

intrinsic spin angular momentum of the individual nucleons in an given nuclei.
A primary focus of research is to describe this effect by extrapolating the well
known mean field for well studied nuclei of around Z= 92 up to nuclei with
larger masses [3] [4]. Performing spectroscopy on these super-heavy elements
to gain information about their excited states helps to constrain theoretical

model parameters and hence improve understanding of these nuclei at the

edge of stability.

A major hurdle to overcome is the difficulty in producing the super heavy

elements of interest. Two main approaches have been used to produce ele-

ments with Z= 112 to Z= 116. Nuclei with Z= 112 have been produced by

using beams of medium mass ions impinging on stable Pb and Bi targets[5].

Elements with Z= 114[6] and Z= 116[7] have been produced with an

alternative method of using beams of lighter ions, in particular 48Ca, on ra-
dioactive actinide targets. Both methods have a disadvantage in that they

produce fairly neutron deficient nuclei. This limitation can be countered by

using neutron rich radioactive beams and neutron rich radioactive targets,
details of current work in this area are given in [8].

The approaches mentioned above use fusion evaporation reactions whose
primary component to the total cross section of the reaction is fission, leav-

ing only a small part to the fusion channels. The fission products decay

via prompt gamma ray emission that masks the weak decays of the fusion

products of interest. In order to isolate these transitions a selective way
of distinguishing these channels is needed. By using recoil separators and
suitably sensitive focal plane detector systems a technique known as Recoil

11

Decay Tagging (RDT) can be used [9][10]. Details of a recoil separator and
focal plane spectrometer at the current forefront of research in the area of

super-heavy elements is provided in the following sections.

2.3 RITU and GREAT

The GREAT spectrometer [11 is a focal plane spectrometer that is currently
in situation at the RITU [11] gas filled separator in Jyviiskylä Finland. Re-

coiling nuclei produced at the target position by fusion evaporation reactions

are transported through the separator where the primary heavy ion beam

and fission products are filtered from the fusion products of interest.

target aý.
beam

RITU

Q2
beam
dump k

Q3 ýý
4g_

GREAT

Figure 2.1: Diagram showing RITU and GREAT and their relative posi-
tioning. RITU is a recoil separator that consists of four magnets, one dipole

magnet for separation and three quadrupole magnets for focusing of the recoil

products.

Differences in magnetic rigidity between the fusion, fission and primary
beam allow these reaction products to be separated in flight by using a dipole

magnet. After passing through the target the reaction products have a wide
range of charge states, which after separation results in a wide spread of
nuclei incident onto the focal plane. In order to improve focusing of the

12

recoil products this spread of charge states needs to be evened out. In order
to do this a gas filled region is used within the separator's volume. Heavy ions

passing into this region undergo many atomic collisions causing the charge

state of the ions to change rapidly which has the result of causing the ions to

follow an average trajectory through the separator according to the average

charge state of the recoil products.

RITU consists of four magnets, three of these are quadrupole magnets

and are used for focusing. These are indicated on figure 2.1 by Q1, Q2 and
Q3. The fourth magnet is a dipole magnet and is used for separation and
is indicated by the D on the figure. Both the beam line and focal plane are
kept at a vacuum which is separated from the lmbar of helium gas within the

separator by thin windows that allow the transmission of the recoil products.
After passing through the separator these products then enter the GREAT

focal plane spectrometer.

2.4 GREAT Spectrometer

GREAT is situated on the end of the RITU gas filled separator. Given the

set-up of RITU and GREAT as indicated in figure 2.1 it is useful to describe

the individual components of the target position detector array. The GREAT

focal plane spectrometer consists of five main parts.

"A multi wire proportional counter (MWPC).

" An array of 28 silicon PIN diodes.

"A double sided silicon strip implantation detector (DSSD).

"A double sided planar germanium detector.

"A high efficiency segmented germanium clover detector.

Figure 2.2 shows a schematic diagram of the layout of the above mentioned
components and their relative positioning to each other and also within the

13

whole spectrometer. Referring to the figure it can be seen how the detectors

in the spectrometer are arranged around the expected sequence of events

produced from the reactions being studied. Recoil products leaving the exit

window of the RITU gas filled separator pass through the MWPC and are

subsequently embedded in the double sided silicon strip implantation detec-

tor. The embedded recoils then decay and the particles and radiation they

emit are detected either within the DSSD (i. e the particle or radiation does

not escape or pass out of the material making up the detector) or the sur-

rounding detectors in the rest of the spectrometer. The subsequent sections

will describe the main purpose of each individual detector component and

also give details of how they function.

Recoil

Pins Planar

Si Strip

Clover

Figure 2.2: Schematic showing the basic layout of the GREAT spectrome-
ter. GREAT consists of five main parts. The multi wire proportional (Gas)

counter, a double sided silicon strip implantation detector, an array of PIN

diodes, a planar germanium detector and a segmented germanium clover
detector.

Figure 2.3 is a photograph showing a partial setup of the GREAT spec-
trometer situated at the exit window of RITU. In the figure the lid of the

vacuum chamber has been removed. The two individually mounted DSSD
detectors can be seen at the front of the figure surrounded by the banks of
associated preamplifiers. Below the DSSD detectors is the face plate which
is removed to allow the planar germanium detector to slide into place. The

14

aý-rýY. -1 f

Figure 2.3: Photograph of the GREAT spectrometer with the lid of the

vacuum chamber removed and the planar germanium detector removed. The

rear face of the two separate DSSD detectors can be clearly seen at the front

of the figure.

PIN diode array is situated on the inner face of the detector and therefore

cannot be seen in this photograph.

2.4.1 Multiwire Proportional Counter (MWPC)

After the recoil products leave the separator the first part of the GREAT

spectrometer they enter is the multiwire proportional counter (MWPC). The

multiwire proportional counter is situated at the exit of RITU. The MWPC

is filled with low pressure isobutane gas and is separated from the helium of
RITU at one end and the vacuum of the rest of the GREAT spectrometer
by two thin Mylar windows.

15

The main function of the MWPC is to act as an active recoil discriminator.
Any recoil product passing through the counter deposits energy, if the time-

stamped data generated from these events is in prompt coincidence with any

signals from the DSSD. It can be inferred that the implantation event must
be caused by an object that has passed through the MWPC i. e. it is a recoil

product. By the same reasoning any data item generated in the DSSD that
is in anti-coincidence with the MWPC must not have passed through it i. e.
it is a result of a decay from something already implanted in the DSSD for

example an alpha decay from an embedded recoil.

Another purpose that the multiwire proportional counter can be used for

is to discriminate between the recoiling nuclei and scattered beam that has

not been filtered out by the recoil separator. By combining the timing in-
formation generated by the MWPC from nuclei passing through it with the

energy deposited in the DSSD implantation detector it is possible to clearly
identify the recoils and scattered beam. By selecting only these identified

recoils at the data analysis stage it is possible to provide a cleaner recoil
signal. Examples of this technique are given later in chapter 5.

2.4.2 Cooling Block

An important part of the GREAT spectrometer is the cooling block. As

well as being held in a vacuum, it is useful to cool both the double sided
silicon strip detector and the PIN diodes. Although the detectors operate at

room temperature, cooling greatly reduces the noise levels and improves the

resolution in these set-ups. The cooling block is a hollow metal block through

which coolant is pumped. The cooling block reduces the temperature of the

mounted DSSD's and PIN diodes to -20°C. Other detector systems e. g. the

planar germanium and focal plane segmented clover detector are also cooled
(albeit to much lower liquid nitrogen temperatures of around 63K) by their
integral liquid nitrogen cooling systems.

16

2.4.3 Double Sided Silicon Strip Detector (DSSD)

The double sided silicon strip detector is the core of the spectrometer.
Recoils that have been separated by RITU and have passed through the
MWPC implant here. This implantation along with their subsequent decays

by a or ,ß particle emission are measured by the DSSD. The DSSD's need to

measure both high energy recoils of around 50MeV as well as the subsequent
a decays of around 5 -10MeV . With the energy of ,ß particles and protons
falling around 500keV the possible energy range that the DSSD must be

sensitive for is quite large. To compensate for this a series of Degrader foils

can be placed into the path of the recoiling nuclei before they implant to slow
them down. This allows the detector to cover the full energy range whilst
still maintaining adequate resolution.

Two individual DSSD's are placed at the focal plane of GREAT each hav-
ing an active area of 60mm by 40mm with a silicon thickness of 300µm.
The strips in both the x and y directions have a width of 1mm meaning
each DSSD has a total of 60 by 40 strips giving the total number of effective
pixels per DSSD as 2400. The two DSSD's are mounted side by side with
the respective active areas being 6mm apart. The full DSSD therefore has a
total number of 4800 pixels that has an estimated recoil collection efficiency
of approximately 80%.

As each detector is to be read out individually each strip of the detector

is attached to its own charge sensitive pre-amplifier. These pre-amplifiers
are mounted inside the vacuum chamber of the GREAT spectrometer on the

outer face of the cooling block. The location of the pre-amplifiers allows
them to be directly connected to the DSSD's. This minimises the length and
number of connections between the signal output of the DSSD and the input

stage of the pre-amplifiers. Limiting the length and number of connections
of the cabling maximises the energy resolution of the detectors.

17

2.4.4 PIN Diodes

The array of PIN diodes is primarily used for measuring energies of conver-

sion electrons emitted from the de-exciting nucleus. An implanting nucleus

typically embeds close to the surface of the DSSD detector 1 giving a sig-

nificant chance that any conversion electrons are emitted in the backward

direction. It is also possible that any a particles emitted by the nucleus

could also escape the DSSD in the backward direction, the array of PIN

diodes could therefore also be used for add-back calculations to improve the

detection efficiency for a decay.

The PIN diodes are arranged in a "box-like" configuration around the outer

perimeter of the DSSD detector. There are a total of 28 PIN diodes in the

array, each has an active area of 28mm by 28mm and a thickness of 500µm.

The PIN diodes used were the S3584-06 windowless series manufactured by

Hammamatsu. The PIN diodes are mounted in pairs to custom PCBs con-
taining the input stage of the preamplification before being passed onto the

external PSC761 preamplifiers manufactured by Eurisys mesures.

Active Area.
Mounting.

Figure 2.4: Photograph of the Hammamatsu S3584-06 windowless series PIN
diodes dual mounted onto their PCBs.

'Typically 1- 10µm

18

Channel A Channel B

A photograph of the twin mounted PIN diodes are shown in figure 2.4. The

PIN diodes and PCBs are mounted on the inside surface of the cooling block

so as to cool the PIN diodes to -20°C. The energy of conversion electrons
produced in the primary reactions being studied are up to a maximum energy

of around 500keV at which the PIN diodes have an approximate energy

resolution of around 5keV.

2.4.5 Planar Germanium Detector

The planar germanium detector's main purpose is to measure the energy
of X rays and low energy ry rays and 3 particles emitted by the recoiling

nuclei embedded in the DSSD detector. The planar germanium detector is

placed directly behind the DSSD and inside the vacuum chamber to minimise
the attenuation of any photons. Any ,ß particles detected in the planar
germanium detector must be of high energy (> 2MeV) so as to penetrate
through the silicon of the DSSD.

The planar germanium detector is segmented into strips similarly to the
DSSD detector. The active area of the planar detector is a rectangle of
120mm by 60mm with a thickness of 15mm and a strip width of 5mm.
As with the DSSD implantation detector these strips can be used to pro-

vide positional information about any events occurring within the planar
germanium detector. The front face of the planar detector itself is situated
approximately 10mm away from the rear of the DSSD. The planar detector
has a thin beryllium entrance window and the whole detector is mounted to

a cryostat for cooling with liquid nitrogen.

2.4.6 Segmented Clover Detector

The segmented clover detector is used for the measurement of high en-
ergy gamma rays emitted from the recoils embedded in the DSSD. These

gamma rays must have passed through the thickness of silicon in the DSSD

and through the planar germanium detector to be detected by the clover.
The clover detector is mounted outside the GREAT spectrometers vacuum

19

chamber and consists of four germanium crystals each with four-fold segmen-
tation. Each clover crystal is 70mm in diameter and 105mm long with the

first 30mm of the crystal tapered at an angle of 15° on the outside surface.
Each clover detector is also surrounded by a bismuth germanate suppression

shield to help improve the peak to total ratio.

2.4.7 Silicon-Gas Tac

A TAC (Time to Amplitude Converter) is an instrument which converts
the time interval between two logic signals into an output pulse. This output

pulse has an amplitude that is proportional to the time interval between these

two logic signals. The silicon-gas TAC in the GREAT spectrometer consists

of two logic gates, one that is triggered when a signal is generated from the

MWPC gas detector and another that is generated by any signal in the focal

plane silicon implantation detector. The TAC then generates an amplitude

pulse that is related to the time interval between these logic signals.

The generated pulse is higher resolution than the time-stamping used in

the system metronome, it can therefore be used to generate more accurate
time of flight information for recoiling nuclei. This information is useful in

the generation of high resolution energy, time of flight matrices that can used
to create data selection gates to accurately distinguish recoils from scattered
beam particles. As well as using the silicon-gas TAC, the time of flight

information can also be estimated using the parameters of the experiment e. g.

produced nuclei mass, velocity etc. As an estimate of the order of magnitude

of flight times through the spectrometer, presuming that the velocity of nuclei
through the 3m long spectrometer has a2N1.5%, then the approximate
time of flight through the spectrometer is 1µs.

2.4.8 Target Position Arrays

Although not part of the GREAT spectrometer itself an integral part of
the setup is the target position detector array. The target position array
is used to detect prompt decays (i. e. short lived transitions of t< lps) in

20

the nucleus being studied. As the target position array is independent of

the GREAT focal plane spectrometer it can be set up with different detector

types depending on the current experimental interests. One such array that is

used in Jyväskylä is the JUROGAM gamma ray spectrometer that is used to

detect prompt gamma rays at the target position. The JUROGAM array uses
43 Compton escape-suppressed germanium detectors that combined have a

gamma ray detection efficiency of 4.2% at 1.3MeV.

4
ýi

Figure 2.5: Photograph of the J UROGAM gaiuriia ray spectrometer in sitli-

ation at the laboratory of the university of Jyväskylä.

2.5 Example Data Set

Throughout this thesis several physics examples are used to illustrate that
the principles being discussed can be applied to real physical situations. All

of these examples are generated from the same data set gathered from an
experiment performed at the laboratory in Jyväskylä, Finland. The data

21

set used was gathered from the fusion evaporation reaction where a beam of
48Ca was incident on a 208Pb target to produce 254No nuclei through the 2

neutron evaporation channel.

This reaction was chosen as 254No has been the focus of much study [12] [18]

so the basic properties of the nuclei are known to some accuracy. This knowl-

edge is essential in order to infer that any techniques used are producing

accurate results. The 254No nucleus has a half life of 51.2s which decays pri-

marily by alpha emission to 250Fm with an energy of 8.09MeV. It is therefore

possible to benchmark any results against these well known values to check
if the techniques discussed produce meaningful results. One such check that
is performed in section 6.6 is to calculate the half-life of the 254No using this

a transition.

In using the TDRSorter data analysis code to analyse a given set of data

certain running parameters need to be set in order to extract meaningful
results from the data stream. The values of these parameters are mentioned
here so as to provide a complete description of the example data. Where

components of the data analysis code are mentioned that have not yet been

discussed in the text, references to the relevant sections of the thesis are

given.

In total the example data set used is over 49Gb in size and was gathered

over an experimental running time of approximately 12 hours. The data set

consisted of 2.1 x 109 individual data items that where generated by the
TDR data acquisition system. From the time ordered data stream output
from the system around 320,000 events (see chapter 5) were reconstructed
that belonged to the channel of interest. This experiment was run with an
unusually large background due to redundant channels in the high rate clover
detector being read out to the data stream. From this high background the
important events where extracted.

22

The time buffer of the data analysis code (CBuffer class see chapter 4)

was constructed with a total time window of 20µs with the constituent for-

ward and backwards time windows both having sizes of 10µs each. Event

construction (chapter 5) was triggered by the presence of a silicon-gas TAC

data item at the read position of the time buffer. A total DSSD X and Y

strip search time of 1µs in the forwards and backwards time directions was

used for pixel definition.

The search time for any gas data items was set at ±l ps whereas the time
for all other searches for event construction set to 10µs in the forwards and
backwards time direction. No energy gates on the DSSD X and Y data items

were set due to different gain ranges used on the X and Y strips of the DSSD.

This non standard gain range was used due to the requirements of a different

experimental run of which the gathering of this data set was a small part.
The final parameter of the TDRSorter data analysis code that was the depth

of the tagger (i. e the correlation time as shown in chapter 6). The tagger
depth was set to 550s which corresponds to approximately ten half lives of
the 254No a decay to 250Fm.

2.6 Summary

This chapter has discussed firstly the experimental motivation and also
the overall design of the GREAT spectrometer. The discussion went into

some detail describing the structure and function of the individual detector

components within the spectrometer. A brief overview of the example data

set used in subsequent physics examples was also given as well as a brief

discussion of the TDRSorter parameters used to analyse the data gathered
from the experimental run.

23

Chapter 3

TDR Data Acquisition System

and Data Format

3.1 Overview

In this chapter the TDR data acquisition system will be discussed. Cov-

erage of the high level design of the electronics system is also provided as

well as a discussion on the process of data acquisition. Descriptions of the

TDR data format and the TDR data stream will also be given. The details

of these are important in understanding the design decisions taken in the

development of the TDRSorter data analysis code. Most of the informa-

tion in this chapter is available in the form of electronic documents at the

following web address [13]. Relevant specific documents from the website

are referenced individually. The discussion in this section provides informa-

tion about the details of the relevant data formats and structures that is

important for future discussions on data analysis techniques.

3.2 TDR Electronics System

The GREAT spectrometer has been implemented with a new triggerless
data acquisition system called TDR (Total Data Readout)[2]. The main
feature of this system is the lack of a system wide hardware trigger. Each

24

individual detector channel is read out independently of the other channels in

the spectrometer. In the context of this thesis a detector channel is essentially

an individual detector element such as a single strip of the DSSD or an

individual PIN Diode detector.

Each detector channel is mapped to its own linear shaping amplifier which

in turn is mapped to its own Constant Fraction Discriminator(CFD) which is

then assigned its own channel in the Analogue to Digital Converter (ADC).

Essentially within the TDR system each detector has its own acquisition

path i. e. there are as many linear amplifiers, CFD's and ADC's as there

are individual detectors. This has the effect of decoupling all the detectors

from each other allowing each detector to gather as much (or as little) data

as it is capable of gathering regardless of the state of other detectors in the

spectrometer.

E

I
L
D
E
R

Figure 3.1: Schematic of the TDR Electronics System. The figure shows how

the individual detector channels are mapped to their own individual linear

shaping amplifiers, constant fraction discriminators (CFD) and analogue to

digital converter (ADC).

25

Figure 3.1 shows diagrammatically the layout of the major subsystems of
the TDR electronics system. In the figure, detectors are divided into groups
representing each individual detector channel. As mentioned before each
detector is mapped individually onto an amplifier, CFD and ADC. When a

charge pulse is generated from incident particles or radiation in a detector the

signal is first pre-amplified and then passed onto the linear shaping amplifier.
The shaping time of the linear amplifier accounts for the majority of the
dead time in the data acquisition system. As the amplification from this

stage takes a finite time (shaping time) to complete the fast output from

the amplifier (where no amplification is performed) is passed into the CFD's

input.

The constant fraction discriminator essentially sets a threshold for which
the magnitude of any signal from the detector must be greater than. Any

signal which passes this threshold is then passed onto the ADC where it is

converted to a digital format that is described in detail in the sections below.

One vital aspect of the TDR system that has not been discussed so far is the

time-stamping mechanism. A VME module known as the system metronome

synchronises all the time-stamping in the ADC to a central 100MHz clock.
The system clock is capable of generating timing information to an accuracy

of 10ns. Each data item output from the ADC is time stamped indicating

a time offset from the beginning of the experiment at which this data was

gathered.

After the detector signals have been digitised in the ADC and time stamped
they are passed on to the merge stage. This stage is responsible for arranging
the data output from the ADC into time order. This stage is important as
data can arrive at slightly different intervals from the separate ADC cards
and it is an important assumption of all further data analysis that all the
data is in strict time order. The details of the produced data stream are
given in the section 3.3.3 below.

26

The final step in figure 3.1 is the event builder. The event builder is

responsible for performing basic checks (e. g. time ordering) on the data and
marshalling the data to various output sources. The event builder can write
the raw data stream to a tape source as well as to various online sorting
software where basic checks on the performance of the experiment can be

monitored. Most of the units mentioned here, particularly the ADC's and
metronome were custom built at Daxesbury laboratory, more information

about most of the TDR electronics is available in reference [2]

3.3 TDR Data Format

Each ADC card outputs both data items and information items. The data
items essentially contain the ADC data; the channel number of the detector

that fired and the time that the detector fired. The information items contain

all the other information i. e. piled up data items, pause and resume functions

etc. The detailed format of these data and information items[14] is described
below.

3.3.1 Data Items

Each data item consists of 64 bits of information that is output from the
ADC as two 32 bit words. Figure 3.2 shows the structure of each data item.
Bits 0-15 in the first word contain the data from the ADC. This is essentially
the digitised signal from the analogue linear amplifiers. Bits 16-27 contain
the channel identity information. The final four bits 28-31 contain a fail and
veto flag at bits 28 and 29 respectively. Bits 30 and 31 are always set to 1

and can then be used to distinguish data items from other information items
(discussed next) as they have a different bit pattern.

The second word contains the time stamping information. Bits 0-27 con-
tain the lower portion of the total time stamp which is 48 bits in length. The
higher order more slowly changing 19 bits are transmitted in the information
items every 64µs. The top four bits of the second word, bits 28-31 are used

27

for padding the time-stamp out to 32 bits in size. These padding bits are

assigned a value of zero.

31 30 29 28 27 ;, 16 15 0

11 Fail Veto Channel ID ADC Data

31 30 29 28 2J 0

0000 Timestamp (10ns Precision)

Figure 3.2: Schematic of the TDR data item format. The arrangement of the

various components of the data item including the channel of the detector,

the actual ADC data and the time-stamp showing the time that the data

item was generated.

31 30 29-24 23-20 19-0

10r Module Number Information Code Information Field

31 30 29 28 27-0

000o Timestamp (I Ons Precision)

Figure 3.3: Schematic of the TDR Info Item Format. The arrangements

of the various components used in specifying information important to the

sorting process is shown. The data carried by the info items relates to any
information other than detector event information, e. g. time stream sync

pulses.

3.3.2 Info Items

All other information is passed in the form of info items [14], see figure 3.3.
As with the data items the info items consist of two 32 bit words making up
64 bits of information. Bits 0-19 in the first word contain the information
field, this field contains data that relates to the information code given in
bits 20-23. Table 3.1 taken from [14] shows what data is contained in the

28

information field as it corresponds to the information code. Bits 24-29 contain
the module number. The module number identifies the number of the ADC

VXI card that sent the information. The final two bits 30 and 31 contain
the values 0 and 1 respectively that distinguishes the information items from

the data items described earlier (data items contain a value of 1 for both

bits). The second word contains the time stamping information and has an
identical format to the Data Items time stamping word.

Code Information Type Information Field Definition

0 Undefined Data

1 ADC Channel Pile-up Channel Number

2 Pause Time-stamp Time-stamp bits 28-47

3 Resume Time-stamp Time-stamp bits 28-47

4 SYNC100 Time-stamp Time-stamp bits 28-47
15 SHARC Link number Link Number.

Table 3.1: Table showing the information code and information field defi-

nitions that the respective components in the info item data structure can
take.

The total length of the time-stamp associated with each data item is 48
bits. Only the bottom 27 bits are transmitted with each data item. The top
19 bits are transmitted every 64psec in the information field of the SYNC100
Information Items (Code 4 in table 3.1).

3.3.3 Data Stream

All the data and information items output from the ADC cards are arranged
into strict time order. Figure 3.4 shows a high level view of the structure
of the outputted data stream. This time ordered list of data is what is ul-
timately stored and analysed. As the unaltered data stream is stored, the
data can be analysed multiple times using any software created triggers that
the user cares to invent.

29

Info Item

Data Item

Data Item

Info Item

Data Item

Figure 3.4: Schematic showing the general data stream structure. i. e. a time

ordered series of data and information items.

3.3.4 Block Structure

The data stream is split up into 16kb blocks for transmission and storage
[15]. This process does not alter the time ordered nature of the data stream
but is simply a convenience for storage and analysis. Figure 3.5 shows the
structure of each 16kb block.

24bj Block Header

Data (Stream Format)
16kb

End Block Padding

Padding

Figure 3.5: Schematic showing the 16kb data block structure that the time

ordered data stream is segmented into for serialisation onto hardware storage
systems such as tape or hard drives.

Each block consists of four main parts; The header; The Data part; The

end of block statement and the padding. The header Figure 3.6 consists of
24 bytes (192 bits) of information that describe the data in the data part of
the block. The first 8 bytes are a simple identifier that designates the type

30

of block. In this case the bits represent the arbitrary ASCII character string
`EBYEDATA'. The next 2 bytes of the header is the block sequence, this
is simply the numerical order of the block as it is transmitted. The next 2
bytes is the stream number, this number simply defines which data stream
in the data acquisition system the data block originated from. The 2 bytes

proceeding this contain a variable called `Tape'. The value of this variable is

always set to 1.

E B Y E D A T A

Sequence Stream Tape

MyEndian DataEndian Data Length

}24

B

Figure 3.6: Schematic showing the detailed structure of the 24 byte block
header portion of the data block structure shown in figure 3.5. The block
header contains various parameters for describing the position of the block

within the serialised data file and also the endianness of the binary data

contained within it.

The next 4 bytes of the header contain two variables called MyEndian and
DataEndian, respectively. These two variables allow the hardware architec-
ture of the data source to be determined. The variable MyEndian is written
as a native 1 on the Tape Server (i. e. the computer that writes the data

to tape or to disk). The second value DataEndian is written as a native 1
in the hardware architecture of the machine where the data originated (i. e.
The data acquisition system). By examining these two values it is possible
to determine the endianness of the various systems involved. This determi-

nation is critical if the data is to be interpreted correctly. The final 4 Bytes
in the header contain the data length. This variable simply states the length
in bytes of data that follows the header.

The Data part of the block is simply the data stream of Info items and data
items that was described earlier. The third part of the block is the end of

31

block sequence, this sequence is simply 4 bytes that contain the hexadecimal

value (OxFFFFFFFF). This value simply declares that the length of data

declared in the block header has finished. The fourth and final part of the

block is the optional padding. If the total length of header, data stream and

end of block statement is less than the total block length of 16 kilobytes then

padding bytes containing the hexadecimal value (Ox5E) are inserted at the

end of the block until the total length is achieved.

3.4 Summary

This chapter briefly described at a high level the operation of the TDR data

acquisition system, specifically how charge pulses generated by the detectors

are converted into time-stamped digital data. A detailed description was

also given of the data format output from the ADC's and the structure of
the resultant data stream.

32

Chapter 4

Code Architecture and Data
Buffering

4.1 Overview

This chapter explains both the high level design choices and the detailed

implementation of the data buffering process. The chapter is started with a

simple flow diagram that highlights the general structure of the data analy-

sis code. Following this is a general UML (Unified Modeling Language, see

section 4.3) diagram indicating the various classes used throughout the data

analysis code. Following on from this is a detailed discussion of the various
data buffering methods and also a detailed implementation of the data analy-

sis codes time buffer and the various solutions to various buffering issues.

4.2 High level Code Structure

Using a UML (see section 4.3) class diagram as a starting point, each
major section of the code is given a more in depth treatment. Details of the

algorithms and data structures used and the decisions behind their choice are
also covered in the individual sections below. Initially the chapter is started
with a high level overview of the TDRSorter data analysis code which gives
a useful outline of how all the components fit together. Following on from

33

this a more detailed discussion of the operation of each area of code is given.

4.2.1 Logical Code Structure

Figure 4.1 shows the logical code structure of the TDR sorter data analy-

sis program. The functioning of the TDRSorter code can be broken down

roughly into the following sections; data input; data buffering; event packag-
ing and specialised sorting. The first section, data input, is fairly elementary
in its construction and operation. It is mainly concerned with getting the

raw binary data output from the ADC's, into memory, and in a form that is

usable.

The data buffering section of the TDRSorter code (see section 4.4) poses

one of the major challenges in reconstructing useful physics information from

the triggerless data stream. Here the time ordered data is buffered in such a

way that given a particular data item in the data stream, all data items that
have a time-stamp that fall within a specified time period (both forwards

and backwards in time) can be accessed.

The event packaging section of the TDRSorter code (see section 5.5) makes
heavy use of the time buffer constructed in the data buffering portion of the

code. Given a user defined software trigger the time buffer is searched for

other data items from any other detector that lie within specified time periods
of the trigger data item'. The event packaging mechanism is essentially a
way of reconstructing prompt coincidences from detectors.

The final section of the TDRSorter code is the specialised sorter section
(see chapter 6). This portion of the code is essentially where the sorted data
is tested against the expected physical outcomes of the experiment. Delayed

coincidences can be stored and analysed with a tagging framework and one
and two dimensional histograms can be generated.

'Up to the maximum time period of data items stored in the time buffer.

34

Data Stream

HENNA Sorter

Time
t_ using

_ Packate
Buffer g

Specialised -ý Tagging
Sorter

_ý Histograms

Figure 4.1: Diagram showing the logical structure of the TDRSorter data

analysis code. The figure shows how the code is split into four main sections;
data input from the data stream; Data buffering using a time buffer; Event

packaging and specialised sorting.

4.3 UML Diagrams

Throughout this thesis much of the discussion of the data analysis tech-

niques used are backed up using examples of code from the TDRSorter pro-

gram. In order to help in the understanding of these portions of code and
how they relate to each other within the overall structure of the program it

is useful to have some sort of diagrammatic visualisation.

An international standard notation called the Unified Modeling Language2

or UML has been defined to help in the visualisation and construction of ob-
ject oriented software. UML uses several different types of diagrams to doc-

ument the components of a software system using engineering best practices.
Throughout the thesis constant reference will be made to standard UML class
diagrams. The following section attempts to provide a brief introduction to

the various notations used in these types of diagram.

2The UML standard is maintained by the Object Management group http: //www.

omg. org

35

4.3.1 Class Diagrams

Class diagrams are used to describe the types of objects in a software

system. In particular for object oriented languages this diagram describes

the classes structure (including their contents) and also the relationships
between the classes. Figure 4.2 shows how a basic class is represented. A

class is drawn as a box split up into three parts; the class name; attributes;

and operations. The top box holds the name of the class and appears as
it would in actual code. The second box contains a list of all attributes

contained in the class. An attribute is essentially the data that the class

contains for example in the CEvent class an attribute would be the CPixel

pixel object. The third box contains a list of all operations contained in the

class, each operation is a method (or function) that can be called by users of
the class. Referring again to the CEvent class an example of an operation

would be the GetProperties() method.

ClassName
Attributei : Type
Attribute2 : Type

Operationl() : ReturnType
Operation2() : ReturnType

Figure 4.2: Figure showing the basic notation for describing a class in UML.

The two core types shown are attributes and operations which correspond to

the class member data and methods, respectively.

When declaring attributes in the class diagram the name is given first.

Following the name is a colon and the type of the attribute being declared.
For example, in many modern programming languages an integer variable
would be declared int x, in UML notation the variable would be declared

as an attribute as x: int. A similar convention applies when describing

operations in UML. Firstly the name of the operation is given then separated

36

by a colon the return type of the operation is given. For example a generic
function int main() would be declared in UML as main(): int. Figure 4.3

shows an example UML class diagram, alongside of which is a section of c++

code that it represents. One additional point to note is that the parameters

of methods are described using the attribute syntax described earlier.

CExample
count : int
total : int

<<create»CExample() : void
GetTotal(): int

Add(amount: int) : void

......................
class CExample

" public:
CExample(); //constructor
Int GetTotal();

" void Add(int amount);

private:
" int count;

Int total;

..............

Figure 4.3: Figure showing an example UML class diagram and the corre-

sponding c++ code that implements the diagram.

Relationships Between Classes

As well as describing the structure and content of classes the UML class
diagram is used to describe how these classes relate to one another. Figure 4.4

shows some of the most commonly used relationships in UML class diagrams.

The list of relationships shown here is not exhaustive and only notation used
in the thesis is given here. Further information about UML relationships 3

can be found in [16].

The first relationship shown is aggregation. Aggregation is used to model

classes that contain references to other classes but do not own them i. e.
they are not ultimately responsible for the creation or destruction 4 of the

3And most other UML information.
4Classes that possess an aggregation relationship with another class can play a part in

the creation of objects. A good example would be a class that creates an object but passes
ownership to another class.

37

Aggregation

Compostion

K Generalisation

-----------------> Dependency

-----------------* Realisation

Figure 4.4: Figure showing the most commonly used Relationships used in

UML.

aggregated objects. Another way of looking at the aggregation relationship
is to say that it represents a `uses a' condition for example where class A

uses an instance of class B.

The composition relationship is similar to aggregation in that it contains

references to other classes. The main difference is that in this case the class

owns the other classes in that it is ultimately responsible for the creation

and destruction of the contained classes. Composition is also said to model

a `has a' relationship for example Class A `has a' Class B contained within
it.

The next relationship in figure 4.4 is the generalisation. This represents
the common object oriented concept of inheritance. Inheritance represents
an `is a' relationship e. g. Class B `is a' type of Class A. In this case the
derived class is considered to be a specialisation of the base class. One key

point to be aware of is that in UML the relationship is called a generalisation
so the arrow in the relationship points from the derived class to the base class
as shown in figure 4.5

The fourth relationship shown in figure 4.4 is the dependency. The de-

pendency relationship is fairly self explanatory, it indicates that any two

38

CBase
baseValue : int

CDerived
<<create»CBase() : void

derivedValue : int

«treate»CDerivedO : void

Figure 4.5: Figure showing a basic inheritance relationship between two

classes.

classes are dependent on one another for some aspect of their functioning.

The nature of dependencies are often indicated on UML diagrams by the use

of so called stereotypes that help to further define the relationship. Stereo-

types are enclosed in angled brackets e. g. « stereotype ». two of the main

stereotypes used in the diagrams throughout the thesis are « create » and
« uses » which denote that one class creates or uses the other as indicated.

The final relationship shown is the realisation. The realisation relationship
is used in cases where one class realises another, this situation occurs where

a class implements a specific abstract interface that cannot be instantiated

in its own right. The realisation in this situation indicates that the realising
class will support the methods outlined in the interface.

One further feature of the UML diagrams used throughout the thesis is

cardinality. e. g. 1.. 1 denotes a one to one relationship between any two

classes. This is the default cardinality if no other is explicitly indicated, and
hence 1.. 1 relationships are usually never depicted on class diagrams. Other

commonly used cardinalities are 1.. * and *.. 1 which represent `one to many'
and `many to one' relationships, respectively.

39

a

y

O

C,
a 4

T

r.
O

mý
ae r r

O
m

C)
N
0
a J

C Y

C_
n

8

R

n
O
J
Y
m

J

6

.s

-------+----------

w A

n

X fl i

t
3

ý
\ 1

\ 1

°\ c

y\
\ IV

\ 1

\ 1
A

1 t^i

\
\ ,ö lö

1 ,ý Iv

A n
ý
d

3
g A

x
O

0
O /
m
6
m

33pFF

1

1

v
^

F

S
E
m M
dQp

7

Figure 4.6: UML Class Diagram of the TDRSorter Data Analysis Code. The

diagram shows how the different classes used in the code implementation are

organised into the general categories illustrated in figure 4.1.

40

4.3.2 TDRSorter Class Diagram

Figure 4.6 is a UML class diagram showing all of the classes in the TDR

sorter analysis code. The central class in the TDRSorter code is the CSorter

class. This class is responsible for managing all the other classes in the

code. i. e. it instantiates and owns all the other controlling classes for various

sections of the code. As well as owning, either directly or indirectly, all of the

other classes it also contains the `main loop' of the program. The method

containing the main loop is CSorter->Run(). Printed in figure 4.7 is an

abbreviated version of the code in the main loop.

Main Loop

After the CSorter class has been set up the Run() method is called,

passing in a list of run files for the program to iterate through. For every

run file a CRunData object is created passing in the file name of the run
file. As shown in figure 4.1 the code can be divided roughly into data input;

data buffering; event packaging and specialised sorting sections. The created
CRunData object encapsulates the Data Input section of the logical code
diagram.

Data Input

Figure 4.8 shows a UML class diagram of the CRunData class. This

class on creation opens the specified run file for processing. The main loop

then enters a while loop that executes continuously on the condition that

the method IsData() returns true. i. e. that there is still data remaining in

the runfile. The main loop then executes a call to the CRunData method
ProcessFile() which returns a CTDRDataltem object that can be used in

the buffering stage. The ProcessFile() method takes care of the conversion
of the raw data contained in the run file into these CTDRDataItem objects.

The CRunData ProcessFile() method reads in 16kb of data into a dat-

aBlock structure that comprises of a block header and an array of 2045
data pairs as described in section 3.3.4. Once this structure has been read

41

1{ r(int j=1; j<argc; j++)
2
3 myrunfile = new CRunData (filelist[j]);
4 while (myrunfile->IsData())
5{
6i (mybuffer->isFull())

8 this->process(mybuffer);
9 mybuffer->increment();
10 continue;
11 }
12
13 dataItem=myrunfile->ProcessFile();
14 calibration->calibrate(dataItem);
15
16 BUFFER_STATE bs = mybuffer->add(dataItem);
17
18

if(bs==TIME_ERR)

19 if(Tagger)
20 Tagger->clearAll();
21 }
22
23 mybuffer->flushBuffer();
24 delete myrunfile;
25 }

Figure 4.7: Figure showing the main loop sorter code. The main loop is

the core of the running data analysis code. Whilst there is valid data the

main loop continues to execute, managing and using the various classes of
the TDRSorter program to accomplish the data analysis process.

into memory, a list of CTDRDataItem objects is created from the data

pairs. This list contains both data and information items as described in

sections 3.3.1 and 3.3.2, respectively. For each call to ProcessFile() the

next CTDRDataltem is returned to the main loop. The method keeps

returning CTDRDataltem's until the end of the list is reached, at which
point it loads the next block in from the run file to create the next list of
CTDRDataItem objects. This process continues until no more data is

present in the run file at which point a flag is set so the call to IsData()

returns false and the while loop exits to load in the next relevant run file.

42

m ttItt ! ! 'J

!

. . n

ý Cbý Ä ý1

A A
r=n

äýOO

Ap

T3ä3

z"n C,
-r c

cH o
, v

ml
3

m

öw

a
0

ä

Ie!!

IImI

ä
m'

'ý°
sa

m ýý

v d
v d

5,

tr in Er 1y

m
m3'

ä

1.1
<

O my
dýý
dý
R' ýQ iii

" C) 0

w3ý

6
3

Figure 4.8: Class diagram associated with the data input section of the
TDRSorter analysis code. The relationship between the CRunData class
(which manages the data input process) and the various data block structures
is shown.

4.4 Data Buffering

As indicated in figure 4.1 the next stage in the data analysis process is

the data buffering section. This section is a crucial part in getting rele-

43

vant physics information from the time ordered data stream. The underly-
ing buffering method needs to be able to implement the features indicated

in figure 4.9. A read position needs to be maintained (i. e. the current
CTDRDataltem being processed) as well as two buffers, one containing all

CTDRDataItems in the specified forward time window and one containing

all CTDRDataltems in the backward time window.

Figure 4.9: Schematic showing the general operational principles of the

TDRSorter time buffer. The read position (the current data item of interest)

is associated with all data items that lie within a specified time period (The

forwards and backwards time windows). The time buffer is used to locate

detector channels that have fired in prompt coincidence with each other.

4.4.1 Buffering Methods

Given the requirements discussed above two different underlying buffering

methods were considered for the data analysis programs time buffer. The

two structures considered were the static ring buffer and the double-ended

queue (DE-Queue) otherwise known as a dynamic ring buffer.

Ring Buffer

The left hand side of Figure 4.10 shows the structure of a ring buffer. The

ring buffer is constructed from a simple array and 3 pointers; the add data

pointer the remove data pointer and the read position. The read position
is the point at which data is retrieved from the buffer. When the data at

44

Read DE-QUEUE
Position

Push_Top() Pop Top()

9
New Data Old Data 8

New Data
7

RING BUFFER 6
5 Read

position
Add Remove 4
Data Data 3

Old Data
2

array] 1 r= to ýlx

Push
_Bot

() Poottom()
Remove Read Add

Data Position Data

Figure 4.10: diagram showing the two different buffering methods compared

in the text. The left hand side shows the ring buffer data structure whereas

the right hand side shows the double-ended queue data structure.

the read position is finished with the read position is incremented i. e. the

pointer is incremented to point at the next point in the array.

After an increment, any new data is added on at the position in the array

assigned to the add pointer, whereas any data that is no longer required is

removed from the array at the remove pointer. After any addition or removal

process the associated pointers are either incremented or decremented as

appropriate. Data can be added to the ring buffer up to the maximum size

of the underlying array.

Double Ended Queue

The right hand side of Figure 4.10 shows the structure of the double-ended

queue. The DE-Queue has four main operations that can be performed on it,

push bottom(), pop bottom(), push-top(and pop top(). The push

and pop bottom methods are used to add or remove data items from the tail

of the structure whereas the push and pop top methods are used to add or

remove data items from the head of the structure.

45

Method Comparison

The main advantage of the ring buffer lies in the underlying data structure
used to implement it, that is, an array. As the ring buffer is a simple static

array it is quick to add, remove and use any data item stored in it. Only

simple allocations, deletes and pointer arithmetic are needed to implement

the add, remove and use functionality. However the ring buffer requires `well

behaved' data that contains largely static buffer sizes or a large over sized
buffer to handle the size changes which is obviously not desirable.

Assuming that a time buffer is to be constructed that can search for 10µs
forwards and backwards from the current data item an array must be con-
structed that has enough space for one data item per lOns time-stamping
`slot' i. e. 10µs equals 1000 lOns therefore an array capable of holding 2000
CTDRDataItem objects needs to be created. The obvious shortcoming
here is that the amount of memory used remains the same regardless of
whether 1 or 1000 data items are currently being stored in the ring buffer.

The major disadvantage of the ring buffer is that it has no capability to

adjust in size if an increase in capacity is needed. This is an important

capability because there is a possibility of high multiplicity events occurring.
i. e. there may be more than one CTDRDataitem object for any given lOns
time-stamp slot in the buffer. This leads to the situation where there may
be more data that falls within the required time window than it is possible
to store in the array.

In contrast to the ring buffer the double-ended queues main advantage
is its capability to resize itself. As data items are added or removed the
data structure automatically resizes itself to take into account current re-
quirements. This resizing reflects in the memory allocation aspects of the
data structure also. As the data is added or removed, memory is allocated
or deallocated, respectively. This dynamic allocation / deallocation ensures
that the memory footprint of the double-ended queue accurately reflects the

number of data items currently in the data structure.

46

The main drawback of the double-ended queue is its very ability to resize
itself according to the current storage requirements. Each memory allocation

or deallocation takes a specific period of time to complete. For most data sets
the number of data items currently required will vary frequently and hence

memory will need to be allocated and deallocated frequently. This frequent

memory activity will cause a slow down in the operation of the buffer. This

constant memory activity can be mitigated to a certain extent by requiring
that the size of the double-ended queue is given a minimum value so that

small changes in size does not result in extraneous memory activity.

Given the associated strengths and weaknesses of the data structures given

above and that the main disadvantage of the double-ended queue can be

compensated for to a certain extent, it was decided that the double-ended

queue would be used to implement the time buffer outlined in figure 4.9.

4.4.2 Time Buffer Operation

This section deals with how the time buffer, implemented with a double-

ended queue, operates. Figure 4.11 shows a UML class diagram of the
CBuffer class and how it relates to the other classes in the TDRSorter
data analysis code. The CBuffer class implements the functionality of the
time buffer as outlined in figure 4.9.

Referring to the main loop in figure 4.7 there are two sections of code
relevant to the operation of the CBuffer class. The first section is the line
BUFFER-STATE bs = mybuffer->add(dataItem). This line of code
adds the CTDRDataltem returned from the CRunData object as described

earlier to the buffer.

Figure 4.12 shows the operation of the add method of the CBuffer class.
The add method passes in a pointer to a CTDRDataItem object that is
to be added to the buffer. Before any processing is performed a check is

performed to make sure that the time-stamp of the data item being added

47

tgm
mA

"m s A'
p c
OS

m
al A

aä6i yN gg a
ýý

3 m

Il a m
Am

3

ba

IÄ X Al
Dy

gm
33 .1 S
1

_'1 3ý n
m

m1ý1

I= f7

1 ix In

1Q

c

mm ä

f1
3n1

V
zo

3J

ý,
ýý

1111111 "" -ý aff"a

lilt, 3m$ý6

3

.. Ä..

V
V

AAA

f Hugs .
yÄ

PS
Yp4,

S

Sý.

t

1

1

A,
a1

Ytl 1

v1

Figure 4.11: UML Class Diagram showing the CBuffer class and the real-
tionships between the various supporting classes.

makes sense (i. e. is in correct time order). The basic requirement for the
time-stamp of the added item is that it is equal to or greater than the time-
stamp of the last data item added to the buffer. This check is necessary as

48

Add Data Item

Check Timestamp

time check ok

Data inside time window

Return : OK

Return : Buffer Full

Bad Time

Return : Timing error

Time Window Comparison

Data outside time window

Add As Pending

Figure 4.12: Figure showing the operation of the add method of CBuffer

class. The figure shows the logic of the process indicating how the data item

added alters the internal state of the buffer i. e. when the buffer is fully

constructed and contains valid data the buffer state is set to full, indicating
that the CBuffer object is ready to use.

it ensures that the time buffer remains in strict time order. The data being
in time order is a fundamental assumption of all further processing.

If the time-stamp fails the time-stamp test described above, the add func-
tion returns a buffer state variable indicating that a timing error has oc-
curred. This then allows the calling code to handle the condition and finish

any processing necessary and to also clean up and release any necessary mem-
ory including flushing the time buffer. Timing errors in the buffer are not
a fatal condition, flushing the time buffer and then rebuilding it from the

next item in the data stream is all that is necessary to recover and continue

49

processing. At any point where a timing error5 occurs the user is notified by

an entry being placed in a program global log file that is created whenever
the TDRSorter code is run.

If the time check is passed then the next stage of the add method is to

compare the time-stamp of the data item being added to see if it fits within
the backwards time window of the buffer. If the time-stamp of the data item

does fall within the range specified by the buffer it is added to the end of the

DE-Queue structure by using the push-bottom() operation it defines. For

example if a buffer is specified with a data item at the read position with an

arbitrary time-stamp of 10001-ts and a backwards time window of 100µs. Any

data item that has a time-stamp that falls in the range of 9001ts to 1000µs

inclusive is considered to be within the backwards time window of the buffer.

If the data item is added the add method returns with a buffer state of 'OK'
indicating that more data can be added.

If the data item being added to the buffer falls outside the backwards time

window then the buffer is now considered to be full. When the buffer is full it

means that it is fully constructed and ready to be used i. e. it contains valid
data. It does not mean that the capacity of the buffer has been used and no

more data can be added. Carrying on with the example above if the data

item being added had a time-stamp that had a time < 900µs it would be

considered to have fallen outside the backwards time window of the buffer.

This data item is now classified as the buffers pending item and essentially
is the next item to be added when the buffer is no longer considered to be
full. At this point the add method returns with a buffer state of `FULL'
indicating that the time buffer is read for use in any future analysis.

The second section of code from the main loop that is relevant to the time
buffer is the line starting 'if(mybuffer->isFull())'. This line, executed
before another data item is added to the buffer, checks to see whether the
buffer contains valid data. If the buffer does contain valid data it is passed

50r indeed any other error the user needs to be made aware of.

50

as an argument to the process method of the CSorter class where event

construction takes place. Event construction is detailed in the next chapter.

Following the event processing the buffer is incremented. This incremen-

tation moves the read position of the time buffer to point at the next data

item. The incrementation process results in a resizing of the buffer with any
data items that now lie outside the time window being removed from the
buffer. The call to the process method and subsequent incrementation con-
tinues whilst the buffer contains valid data. At any time the incrementation

process and subsequent removal of data items from the buffer can alter the

state of the buffer to be no longer full i. e. it no longer contains valid data,

at which point data items are added again until the time buffer is full again.

Figure 4.13 shows the detailed operation of the increment method of the
buffer class. The first stage is to perform the initial increment of the read
position of the buffer. This operation simply makes the read position point
to the next item in the time buffer i. e. the next youngest data item. This
incrementation now invalidates the rest of the buffer and all remaining data

items need to be retested to see if they are still within the specified front and
backward time windows.

The next stage is to check the time-stamp of the oldest data item in the
time buffer. If the data item's time-stamp indicates that the data item falls

outside the backwards time window i. e. the data item is too old, then the
data item is removed from the time buffer and the memory allocated to this
data item is freed as it is no longer of interest. This process of checking the

oldest items time-stamp and removing old items is continued until one of the

checks finds a data item that lies within the backwards time window. This
data item is the oldest data item in the data stream that is still of interest.

At this point the backwards portion of the buffer is now valid, but the front

portion is not. In order to see if more data is needed to fill the buffer, the
time-stamp of the pending item is checked to see if it lies inside or outside the

51

Increment Read Pos

Start

Check oldest Items timestamp (Remove oldest Item

timestamp < back time window Data Item outside back window

i timestamp > back time window
i

All items within back window
Check front pending Item's timestamp

Pending t< front Time Pending t> front time

Pending Item Inside front window Pending Item outside front window

i

0,0 44
Return buffer No longer Full Return Buffer still full

Figure 4.13: Figure showing the logical operation of the increment method
of CBuffer class. This operation increments the read position of the time
buffer and forces the entire buffer to be revalidated. This revalidation can
cause the buffer state to be changed.

forward time window. If the time-stamp of the pending item is greater than

the front time i. e. the pending item is outside the forward time window, then

the buffer still contains valid data. If the pending items time-stamp indicates

that the data item lies within the forward time window then the buffer is

no longer full and more data items need to be added before it can be used.
The increment method returns a buffer state variable indicating whether the
buffer is still full and can be used, or if it is not full and more data needs to
be added.

52

4.4.3 Buffer Operation Walk Through

As the individual stages of data buffering has been discussed in some detail

it is now useful to look at how all of these sections fit together in relation

to the buffering of a real data stream. Figure 4.14 shows how the increment

and add operations work on an example data stream. Along the top of the

diagram, increasing in time from left to right is a time ordered sequence of
data items as they appear in the data stream and is essentially the order of
data items as they are read from the data source.

This walk through of the buffering process is based on building a time

buffer with a forward and backwards time window of 20ns. The buffering

starts at the read position indicated in figure 4.14 (at the 30ns position)

on the first line where there is already a complete time buffer in place with

a single pending data item containing information about a ry ray. After

this buffer has been passed on for further analysis an increment operation is

needed to revalidate the buffer. The result of this incrementation is given in

the second line of the figure.

As described in section 4.4.2 the read position is first moved to the following

data item in the data stream which in this case is the data item at the 40ns

position. Firstly the back window is checked and any items that lie outside
it are removed which in this case is the ry ray data item at the lOns position,

secondly the time-stamp of the pending data item is checked against the
forward time window. In this stage the pending data item still lies outside the
time window so the time buffer is still valid and is passed on for subsequent
analysis.

Following this as the buffer still contains valid data another increment is

performed with the results showing in part three of figure 4.14. In this line the
data items out of time, scope in the backwards time window are again cleared
up. The time-stamp of the pending item is checked and as in the previous
stage the pending item is still outside the forward time window. This data

53

8 (9
I 1--1

III

II

O

IýI

I

: a. Z ;Z v vl

EIJ -Inl L öL
aU

i
LDF« Sb

ý

O ýW
3
930

'I IC
n

iA

03
Co WC O

O

c9

ö

m

W

91 we

pl c

E. 90
ui

E

,ý3kö no o

FU

oýöDoDýn

i EJ EI r) F. -1
ÄÄ

ýna

m

3r : rn m: 3

m: m; mý
=i Zi Z,

.; m

iý"'I
l_J

suoi; e. Iado . ia;; n8 1s

0

0

ö

O

; 4' 3

a
0

0

0

0

.ö
O

"ö ad
H

PM

_U 3 ä
-I
3

Figure 4.14: Figure showing how the increment and add buffer operations

work on an example section of data stream. The resultant time buffers for

successive iterations of the operations are shown, indicating the internal state

of the time buffer. i. e. indicating whether the buffer is fully constructed and

can be used for further data analysis.

54

buffer is therefore still valid and is passed on for further analysis. Another

increment is performed showing the results on line four of the figure. After

this operation the read position of the time buffer points to the pending item

from the previous section, this data item is immediately added to the buffer

resulting in it being invalidated. This time buffer is therefore not passed on
for further analysis and data items now need to be added to the buffer again
in order to fill it up.

The result of the add operation is shown in line five in figure 4.14. The

data item from the 90ns position in the data stream is the data item to be

added to the buffer, before adding it the item's time-stamp is checked. In

this case the item falls within the forward time window of the time buffer

and it is simply added to the buffer. This results in no change in the buffers

state, it is still not fully constructed with valid data so it is not passed on
for further analysis. A further add operation is performed (line six in figure

4.14) with the next data item in the data stream i. e. the data item from

the 110ns position in the data stream. The time-stamp of this data item is

outside the forward time window of the current read position at the 80ns

position so this item becomes the current pending data item for this time
buffer. This time buffer is now considered full i. e. it is fully constructed with
valid data so it is passed on for further analysis.

Stage seven and eight of the figure show similar incrementations and ad-
ditions as already described previously; with data items being removed from

the backwards time window and data items and pending items being checked
against the forward time windows range. This process essentially continues
throughout the data stream constructed from all of the runfiles passed into
the TDRSorter data analysis code. As valid time buffers are constructed
they are passed into the process() method of the CSorter class where pix-
els and events are constructed. The process of pixel definition and event
construction are described in detail in chapter 5

55

4.4.4 Example Time Buffer

One final illustration that is useful at this point is to present an example of

a complete, fully constructed time buffer as it would appear in the TDRSorter

data analysis code. The time buffer presented here is an actual example of

one that was created during a run through the example data set. All of the
data items shown are simplified versions (containing only key information)

of the real data items used in the construction of the time buffer. Figure 4.15

shows this outline of the fully constructed CBuffer object.

START BUFFER TIME DUMP
INDEX 0 CHN 344 TIME 20739355984741 DATA 16364 ENERGY 15030.88 CLOVER
INDEX I CHN 336 TIME 20739355984777 DATA 16287 ENERGY 14982.04 CLOVER
INDEX 2 CHN 320 TIME 20739355984778 DATA 16299 ENERGY 14971.08 CLOVER
INDEX 3 CHN 416 TIME 20739355985197 DATA 3343 ENERGY-1 GAS-X1
INDEX 4 CHN 417 TIME 20739355985197 DATA 11732 ENERGY-1 GASJ(2
INDEX 5 CHN 418 TIME 20739355985197 DATA 10840 ENERGY-1 GAS-Y1
INDEX 6 CHN 419 TIME 20739355985197 DATA 9232 ENERGY-1 GAS_Y2
INDEX 7 CHN 420 TIME 20739355985197 DATA 4387 ENERGY-1 GAS_E
INDEX 8 CHN 128 TIME 20739355985199 DATA 16246 ENERGY 16985.3 DSSD X
INDEX 9 CHN 59 TIME 20739355985199 DATA 16255 ENERGY 4242.9 DSSD_Y
INDEX 10 CHN 432 TIME 20739355985209 DATA 7672 ENERGY-1 SI_GAS TAC

PENDING 336 DATA 16238 TIME 20739355999552 CLOVER

END BUFFER TIME DUMP

Figure 4.15: Outline showing a real fully constructed time buffer (CBuffer

object) created during a run through the example data set.

It can be seen from the data dump of the buffer that the time buffer

contains three clover events; the x, y and energy outputs of the MWPC; a
DSSD X and Y data item; and the triggering silicon-gas TAC. The quoted
energy value for the gas and the TAC data item values are indicated as -1
meaning that there is no energy value because there is no calibration supplied
for these channels. There is no energy calibration supplied as an energy value
for these detector channels is either meaningless or unneeded. Another point
to note is the energy values of the DSSD X and the DSSD Y data items. In
the data set used the X and Y sides of the DSSD had different gain ranges
with the Y side being approximately one quarter of the X side. Even though

at first glance the X and Y data items appear to not be caused by the same

56

event, in reality the energy values are quite close and the data items would

probably pass any required gates to define a real pixel if the gain ranges were
the same.

4.5 Summary

This chapter covered the high level structure of the TDRSorter data analy-

sis code and detailed how it can be broken down into four general sections.
The first two sections; data input and data buffering were covered in this

chapter, the remaining sections are covered in later chapters. Two different

methods of buffering were also compared and an outline of the operation of
the time buffer was given. A walk through of the entire process was also

given at the end of this chapter.

57

Chapter 5

Pixel Definition and Event

Construction

5.1 Overview

This chapter discusses two important sections of the TDRSorter data

analysis code; pixel definition and event construction. Pixel definition is

an important aspect of the analysis code as it is effectively the central build-

ing block from which all other data structures are formed. A discussion is

given of how pixels are defined from fully constructed time buffers and some
issues that arise during this process. The next major section discussed is

that of Event construction. This section will detail how CEvent objects
are constructed using the CPixel class previously discussed. The CEvent

object encapsulates the fundamental `physics' data that is used in particular
in the specialised sorting portion of the data analysis code as discussed in

chapter 6.

The process of pixel definition and event construction takes place en-
tirely within the process(method of the CSorter class as outlined in
figure 5.1. The process method is called from the main loop line this-

>process(mybufFer). The mybuffer object passed as a parameter is the
fully constructed CBuffer class as described in section 4.4. The read posi-

58

tion points to the current triggered data item and the forward and backward

portions are filled with all CTDRDataItem objects from the data stream
that have timestamps that lie within these given time periods

'cshb. Ibn: CCMWCwf

'runSla CRunData
Idatotam. CTD RDataIran
JmybuNunCButhr
+ow CRaw
"MMdaWxal CRaal
"aortw5. t&ps. CSatänga

-kEnwyyilwl
1'En. py'llowt

*Tims:
_I64

yuXt: IM
y. X21M
yuYl: lrt

-MY2. Ml
yaE t
y.. Tint
iýcýnl
paint
yinl
AM PIXEL TYPE

CEwM

.. -. cPI, N

«a.. u>-cson. q): csww
.4d.. tmy »-CS«W rp cson. r
. ouluro. l«+agwa
+OugwIR. >uN>(): vdd
+poa>q"buffu CBue«)-Md
+pan«Ew t(-, A CEvwr); vmd
+Run(. gc: k t gvg t . rpM

u aMb

Cftn r-CE.. nt

"g.. X3 CTDRD. I. II. m
'p.. r1: CTDRD. I. IMm

+p.. V2. CTDRD. t. u. m
"p.. E. CTDRD. t. Irm

'p.. T: CTDRD. 1. M. m
+I. o: CTDRD. I. R. m

jmU. LN. t CTDRD. I. II. m.

-cbw. WI IIKCTDRD. I. It. m

yLnwUa"M. I<CTDRD. LIt. m
4PGELa"<CTDRD. LIbm.

« onto: -+C Ewol('pCPIaN): CEwnl
« m. 14 ºý+CEwnl(H cunsl CEv. M) CEvsr

d.. by »-CEw l(). CEvw4
"G. IProp. l. s('p EwntPropstl. r'p EnntPropct.,)'vold

Figure 5.1: UML Class Diagram showing the CSorter, CEvent and
EventProperties classes.

The main purpose of the event construction process is to build valid
CEvent objects that can be passed onto the specialised sorting section of
the code. The CEvent class contains basic information about data items
that are in prompt coincidence; pixel information; and detector energy infor-

mation. The following sections will discuss how these CEvent objects are
built and some of the most important issues that arise.

59

5.2 Pixel Definition

The core of constructing a CEvent is the definition of a CPixel object that

must be passed as an argument in the constructor of the CEvent object. As

outlined in section 2.4.3 the double sided silicon strip detector (Or DSSD)

consists of sets of individual detector strips positioned orthogonally to each

other. These sets of strips are termed the x and y strips of the DSSD.

The same principles discussed in the following sections are applicable to the

planar germanium detector which is segmented into strips in a similar way
to the DSSD. Other detectors in the spectrometer such as the PINs which

are not segmented into strips do not need the following processes to be used
effectively.

The DSSD detector has both x and y oriented strips to gain spatial infor-

mation from any signals produced from recoil implantations or subsequent
decays. Using the example of a recoiling nucleus implanting in the DSSD
detector, energy will be deposited in the nearest x and y strips. As the posi-
tion of these strips within the overall detector is known an (x, y) coordinate
for this implantation can be inferred.

Given this information it can be seen that in order for a pixel to be defined a
CTDRDataltem corresponding to a DSSD X strip and a CTDRDataItem

corresponding to a DSSD Y strip need to occur in the data stream. Figure
5.2 shows diagrammatically the process of defining a pixel using the x and y
CTDRDataItem objects.

Apart from the presence of these data items in the data stream there

are also time and energy constraints to consider. In order for a pixel to
be considered valid both x and y data items need to lie within a short time

period of one another. Section 5.3 provides detailed information about timing

relationships between strips. If however it is assumed that all detector and
data acquisition paths should operate at approximately the same speed, and
that the energy is deposited from a single implantation event it is highly

60

Figure 5.2: Diagram showing the principles of pixel definition. The diagram

shows how a pixel is constructed from both a DSSD X data item and a DSSD

Y data item.

likely that any x and y data items in close temporal proximity in the data

stream could define a valid pixel.

As well as lying in close temporal proximity, any data item should also pass

certain energy conditions to be considered a true pixel. The energy condition
is that the magnitude of the energy deposited in a given x or y strip should

closely match that of its respective x or y channel. This condition is put in

place as the energy deposited in each strip should vary around a mean value.
If the energy of one strip in the pixel was 4000keV and its corresponding
channel was 40keV then there is the possibility that the smaller energy strip

could be a false coincidence as the result of noise or background radiation in

the detector.

5.2.1 Time and Energy Condition Statistics

Figure 5.3 shows the timing relationship between DSSD X and DSSD Y

strips. This figure was generated by searching through the data stream and
triggering from either a DSSD Y or a DSSD X strip. When one of these

strips was found a search was performed to locate the nearest complimentary
x or y strip. When this strip was found a difference was taken between the
timestamps of the respective strips data items and the result was plotted

61

onto the figure.

The x axis of figure 5.3 represents this time difference in nanoseconds. As

can be seen the distribution lies around the zero position and quickly falls

off at either side. This indicates that most x and y strips in the data stream

that are near to each other probably were generated from the same event.
In order to reduce any background or stray signals on future analysis it is

possible to set a time gate on strips that are likely to be correlated. It can
be seen that if the time difference between strips is greater than 100ns then

they are unlikely to be valid strips for defining pixels. In reality a tighter

gate can be used to ensure only good is used (i. e. a time gate of ±20ns). It

must be noted that such gates must be recalculated for different experiments

and different set-ups as timing relationships are likely to vary.

YV Timm flifFc i- #'

350

300
0
41

250
0
U
o200
I-

E 150
3
Z

100

50

-600

Figure 5.3: Figure showing time difference between x and y strips in the data

stream.

62

-400 -200 0 200 400 600
XY Time Difference (ns)

As well as filtering out widely different timestamps it is also useful to filter

out located DSSD X and Y strips that have large energy differences. These

energy differences could be caused by various problems in the system e. g.

malfunctioning strips in the DSSD detector, or false coincidences with noise

generated by a DSSD strip. Other sources of large energy differences could

be caused by recoils embedding only partially on a strip of the DSSD. Figure

5.4 below shows a plot of the energy of the DSSD X strips against the energy

of the DSSD Y strips.

2000

0 2000 4000 6000 8000 10000 12000 14000
DSSD X Energy (keV)

Figure 5.4: Figure showing the DSSD X energy plotted against the DSSD Y

energy. The figure shown is the raw strip data before any filtering on time

or energy differences was performed.

On figure 5.4 a straight line corresponding to DSSD X and Y data items

that have identical or nearly identical values can be clearly seen. This main
line represents the data items that need to be selected, all other data items

represent less than ideal data items for pixel construction. Other structures
on this plot are also visible. What appear to be horizontal or vertical lines

63

on this plot correspond to areas where strips are dead in one axis. The large

dense patches near the zero position correspond to low end noise generated
in the DSSD strips. In order to decide on how to filter out these unwanted
data items it is useful to look at the energy difference between the x and y

data items.

Raw XY Energy Difference
100

80
4.0
C

0
60

w 0
L

E 40

z

20

0

Figure 5.5: Figure showing the energy difference between x and y strips ill

the data stream. A 100 keV energy gate is indicated, the results of this gate

on the x vs y energy plot can be seen in figure 5.6.

Figure 5.5 shows a plot of the energy differences between the DSSD X and
Y strips. A spike can be seen around the zero position which corresponds
to data items that have very similar x and y energies. By setting a gate of
±50keV and again plotting the DSSD X energy versus the DSSD Y energy

as in figure 5.6 it can clearly be seen that the only feature that remains is the

straight line that corresponds to the data items used to build pixels from. All

other artifacts have been removed by gating on only small energy differences

64

-600 -400 -200 0 200 400 600
Energy Difference (keV)

between the DSSD X and Y strips.

16

14000

12000

1 10000
L

uni 8000

6000

4000

2000
00 2000 4000 6000 8000 10000 12000 14000 16000

DSSD X Energy (keV)

Figure 5.6: Plot showing the DSSD X energy plotted against the DSSD Y

energy. The figure shows only the DSSD strips that have passed the energy

gating criteria (±50keV energy gate).

5.2.2 Triggering Considerations

Before giving some examples of how pixels are defined froiri different data

sets it is necessary to briefly discuss triggering issues and how the pixel de-

finition process can vary depending on what data items are triggered from.

As mentioned in previous sections the TDR data analysis system is trigger-

less, this enables all the data to be read out without being dependent on any

particular hardware trigger.

In order to sort the time ordered data stream it is useful to have a user
defined software trigger from which to build the CEvent objects necessary.
One obvious choice is to trigger from the Silicon-Gas TAC as described in

section 2.4.7. When a silicon-gas TAC data item is found in the data stream

65

it is an indication that a recoiling nucleus has passed through the MWPC

gas detector and deposited some energy and has also implanted into the

DSSD detector. As pixels are constructed from data items originating from

implanting nuclei, choosing this as a trigger is an obvious prime candidate.
The CEvent objects themselves are built by searching in the time buffer for

any x and y DSSD data items that fall within user specified time constraints

As a brief aside it is useful to discuss the relevancy of using a silicon-gas
TAC as apposed to simply using the timestamps of the data items themselves.

As previously mentioned the silicon-gas TAC is used to gather accurate time

of flight information about recoils that have passed through the multiwire

proportional counter and subsequently embedded in the DSSD by gating on
these two occurrences. The silicon TAC generates high precision timing infor-

mation that has a finer grained resolution than the time-stamping generated
by the metronome. Figure 5.7 shows a histogram of the silicon-gas TAC's

high resolution data.

Tac Data
60

50

a c 40
3 O

w
30

a> m
E

20

IC

Figure 5.7: Histogram showing the high resolution timing information gen-
erated by the silicon-gas TAC.

66

3000 4000 5000 6000 7000 8000 9000
Tac Value (Arbitrary Units)

In addition to the above method of gathering time of flight information

about recoiling nuclei from the silicon-gas TAC. It is possible to gather the

same information, albeit of lower precision, by using the time-stamping in-

formation of data items in the data stream. By identifying a CEvent object

that has both a defined pixel (or a DSSD X or DSSD Y event on its own)

and a defined gas event a similar function can be performed to the TAC by

simply taking a difference between the relative data items timestamps.

Tac Data Generated From Timestamps

2400
2200

2000

0 1800
2 1600
0
U 1400
w 01200
b. .0 1000
3 800
Z 600

400

200

0 Io

Figure 5.8: Histogram showing time of flight information similar to that

generated by the silicon-gas TAC. In this figure the difference between the

timestamps of an events DSSD data item and its GAS data item was plotted.

Figure 5.8 shows this time difference plotted in a histogram. Comparing
this figure to the previous figure 5.7 it can be seen that both histograms
have the same general shape. However it can also be seen that the histogram

generated from the data item time-stamp differences is of significantly lower

resolution than the histogram generated from the silicon-gas TAC.

Another possibility for a good software trigger is to use CTDRDataltem

objects that are generated from the individual DSSD detector channels them-

67

Time of Flight (Arbitrary units)

selves. In this case rather than the CEvent objects being built from the

Silicon-gas TAC they are constructed from either an x or y DSSD data item.

When a DSSD x or y data item is triggered from, a corresponding y or x
DSSD data item is searched for in the time buffer. If the found data item

falls within specified time constraints it can be used to define a pixel.

5.3 Pixel Definition Examples and Problems

Figure 5.9 shows an example data stream and time line. The read position
is pointing to a silicon-gas TAC data item, which in this example is the

data item type being used as a software trigger. There are two components

to the diagram. The sequence of boxes represent data items in the data

stream and the time line below represents the time at which the data items

appear in relation to the read position(Ons) in the forward and backward

time windows of the buffer. In the diagram only the relevant data items to

the discussion are named i. e DSSD X, DSSD Y and TAC. All data items

from other detector channels are marked with a dash for clarity, the boxes

themselves remain to indicate that there is other data present in the data

stream besides that which is relevant for defining pixels.

Read
Position

][DsS][C]
DSSD

O

-30ns -20ns -10ns Ons Ions 20ns 30ns

Figure 5.9: Figure showing a sample data stream and timeline from which a

pixel can be defined.

Figure 5.9 shows a portion of data stream that is in an ideal state to
define pixels. Suppose that a silicon-gas TAC data item is being used to
trigger from and that the user has defined a time buffer with a forward and

68

backwards time window of 30ns. The sequence of data items in the diagram

represents all of the data items in the data stream that lie within ±30ns of
the time-stamp of the read position. The time line shown indicates the time

in tens of nanoseconds starting from zero at the read position.

As described in previous sections in order to define a pixel both a DSSD

X strip and a DSSD Y strip need to be found in the buffer within close
temporal proximity to the triggered silicon-gas TAC data item. When using
the TAC as a trigger, the process to find these x or y strips is to simply

search within the buffer and extract the appropriate data items when they

are found. Referring to figure 5.9 it can be seen that within this portion

of the data stream amongst the other events that are not relevant for pixel
definition there are two data items, one from a DSSD X channel and one
from a DSSD Y channel.

The logic of the event construction process is as follows. The time-stamp

of the data item at the read position is stored (the read time). Starting from

the read time the buffer is then searched in both forwards and backwards
time directions for any DSSD X or DSSD Y data items that have a time-

stamp that fall within the appropriate time windows. For example the read

position has a time-stamp of Ons in the buffer if the backwards time window
is 30ns then any data item that has a time-stamp in the range -30ns to Ons

will be found by the backwards search process. Also given that the forwards

time window is 30ns any data item that has a time-stamp in the range Ons

to 30ns will be found by the forward search process. From figure 5.9 it can
be seen that a DSSD X strip is at the -10ns position in the data stream and
a DSSD Y lies at the 20ns position, both of which lie within the required
range.

Searching the time buffer is performed by calling the find() or findAll()

methods of the CBuffer object. Two variables are passed in as parameters
that specify the amount of time to search within the buffer in a forwards and
backwards direction. A third parameter is used to set the SEARCH_TYPE

69

of the find method that specifies what data item to look for in the buffer.

This parameter essentially maps the channels in the GREAT spectrometer to

a detector group defined in one of the TDRSorter's header files making it easy
to search for specific groups without worrying about the channel numbers 1

of the detector. The SEARCH_TYPE parameter is passed to the find()

method which returns the first data item that it finds of the specified type

that falls within the search criteria. The findAll() method returns a list of

all data items that are found within the search criteria.

In the example illustrated in figure 5.9 the findAll() method is being

used to locate and return a list of all data items that fall within the specified

search criteria. In the example the list of found data contains two items, one
DSSD X strip at -10ns position and one DSSD Y strip at the 20ns position.
These two data items are used to define the pixel. As mentioned earlier this

example illustrates the simplest pixel definition case, the following sections
describe other likely situations and how the complications they introduce are

solved.

5.4 Problem Conditions in Pixel Definition

This section forms the bulk of this chapter. The various problems that

can arise when defining pixels are discussed in some depth. In particular
how pixels can still be successfully defined when there are multiple DSSD

data item candidates within the time buffer. Attention is also given to the

issue of double counting and how it can be avoided.

5.4.1 Multiple X and Y Strips

Figure 5.10 shows a different section of time buffer and its accompanying
time line. This figure shows a more complicated situation. As before the
diagram represents a complete time buffer triggered from a silicon-gas TAC

'The channel numbers of the data acquisition system can be reordered so having the

mapping of `channels to detector groups' in one place makes changing this mapping easy.

70

data item at the read position but this time there are two data items that

correspond to DSSD X channels, one at the - iOns position and one at the

-20ns position. There is also one data item corresponding to a DSSD Y

channel at the lOns position. Using the same time buffer parameters as

before all three of these data items fall within the buffer's time window for

defining pixels. This situation creates a problem in that a decision now

has to be made as to which of the data items in the data stream actually

corresponds to the true x and y parameters of the pixel.

Read
Position

LDFXD][]C0S5D]LO

-30ns -20ns -1 Ons Ons Ions tons Sons

Figure 5.10: Figure showing a sample data stream and timeline with multiple
x strips.

Given the above situation it is necessary to develop a method for finding

the most likely DSSD data items in the data stream to constitute a pixel.
In dealing with the time and energy of the detector channels only, it is not
possible to say that any given data items definitely correspond to a valid pixel

and therefore have to manage with defining pixels from the most probable
data items to constitute them. As before the findAll() method of the buffer
is used to return a list of all DSSD X and Y data items that lie within the

search time window of the buffer.

The returned list of data items can be dealt with in various ways, the

most trivial of which is to simply discount the data if there are multiple
DSSD channels associated with a single silicon-gas TAC event. Obviously

this is not the most desirable way of dealing with the data as with a little

effort meaningful data can still be extracted from such a time buffer.

71

Another option is to select candidates from the list of DSSD data items

based upon the difference in time from the time-stamp of the read position
data item. The list of DSSD data items is searched and each DSSD X and Y

data items time-stamp is checked against the time-stamp of the data item at
the read position and a difference is taken. Using these calculated differences

the DSSD X data item and the DSSD Y item that lies closest in time to the

silicon-gas TAC are selected as the corresponding x and y items of the pixel.
Referring to figure 5.10 using the method described would select the DSSD

X data item at the -10ns position and the DSSD Y data item at the lOns

position for the corresponding x and y components of the defined pixel. The

DSSD X data item at the -20ns position would be discounted from the pixel
definition.

The final method that is discussed to choose candidates from the data

stream is to select based on the difference in energy. The list of DSSD data
items would be searched and the energy difference between each DSSD X

and DSSD Y data item is taken. Referring to section 5.2.1 it can be seen
that the energy difference between corresponding x and y strips lies within
known limits. It can therefore be assumed that given a set of DSSD X and
Y strips, those data items that lie closest in energy to one another are likely

candidates for defining the components of the pixel.

Referring to figure 5.10 the energy of the first DSSD X data item at the

-20ns position would be read and the value compared to all other possible
Y data items, which in the example is the DSSD Y data item at the 10ns

position. The difference in energy between these two data items is calculated
and then stored. The energy difference between the next DSSD X item at
the 10ns position and the DSSD Y item is also taken and stored. Out of
these two energy differences the pair of x and y data items with the smallest
energy difference are selected as the most likely data items to constitute the

x and y components of the pixel.

72

These two methods of pixel component selection; selecting by time dif-

ference and selecting by energy difference are not mutually exclusive. They

can be used together to filter out unlikely candidates. One such combination

would be to first select based on time i. e. search through the data stream and

select the two data items (DSSD X and Y) that lie closest to the triggering

silicon-gas TAC's time-stamp. The time difference between the DSSD X and

DSSD Y data items would then be calculated, if this difference was within

a certain range then they could be pixel candidates if they passed the next

test.

Next the two data items energy values would then be checked. Only if the

two data items energy difference fell within a certain range would they be

considered to define a pixel. These user defined time and energy differences

are effectively being used as filters to remove data items with very different

values. For example if the DSSD X data item's energy was 100keV and the

DSSD Y data item's energy was 4000keV they are unlikely to be from the

same event in the detector. The user could specify that only data items with

energy differences of 200keV should be considered for pixel definition which

would effectively discount the data items in this example.

One caveat to be aware of when using the energy difference to select pixel

components is if non-standard gain ranges are used. It is possible to apply
different gains to the DSSD X and DSSD Y strips of the detector, which
is useful if the DSSD is not only used to detect embedding nuclei and their

subsequent alpha decays, but also to detect any conversion electron decay. As

conversion electrons have a much lower energy range (maximum of 500keV)

the amplifier gain range can be set differently for one side of the DSSD to

provide this ability. Clearly in circumstances such as these using the energy
difference to identify pixels is misguided.

73

5.4.2 Double Counting

An issue that is of prime concern in any experiment and in particular those

with low statistics is not only making sure that all data in the data source
is accounted for but also that the data is only used once. In low statistic

experiments this is vitally important as small variations in the number of

counts can make a vast difference in any calculations carried out based on
these counts. This section describes how situations can arise where double

counting is an issue and also explains how this problem is overcome.

Figure 5.11 shows a continuous section of the data stream starting from

the Ons position and finishing at the 80ns position as shown on the time
line at the bottom of the diagram. The section of data stream has had two
individual time buffers, A and B constructed from it. Each time buffer has
been triggered by two separate silicon-gas TAC data items indicated on the
diagram as read position trigger A and B. Read position trigger A occurs at
the 30ns position in the whole data stream section and read position trigger
B occurs at the 50ns position of the section of data stream.

Time Buffer A and Time Buffer B each have a forward and backwards
time window of 30ns. The read position of each separate time buffer has
been set at the Ons position with the forward and backward portions of the
time buffer indicated as ±30ns respectively. It is important to remember in
the following discussion that these two separate time buffers overlap and are
constructed from the one continuous portion of the data stream.

Starting with the read position trigger of time buffer A it can be seen that
constructing a pixel by searching for all possible DSSD X and DSSD Y data
items would return two data items one DSSD X at the -10ns position of time
buffer A and one DSSD Y at the +10ns position of time buffer A. Assuming
that these data items pass any user specified time and energy constraints a
valid pixel can be constructed.

74

Ons IOns 20ns 30ns

D5X D TAC DSSD TAC ý- BufTime fer A
OOOOOOO

Time
Buffer B

-30ns -20ns -10ns Ons 1Ons 20ns 30ns

DD TAC DSSD TAC
OOO

sons

Figure 5.11: Figure showing a sample data stream and time line with the

possibility of double counting.

Moving on to time buffer Ba search for all possible DSSD X and DSSD

Y data items in relation to the read position trigger would return two can-
didates. The first a DSSD X data item at the -30ns position of time buffer

B and the second a DSSD Y data item at the -107n. s position of time buffer

B. Again assuming that these two data items pass any user defined time and

energy conditions another valid pixel can be constructed.

Individually the pixels constructed from both time buffer A and time buffer

B are perfectly valid. The problem is only observed if the data items involved

are considered in their relation to their overall position in the data stream.
The DSSD X and Y data items at the 20ns and 40ns position in the data

stream are used as the X and Y component of both defined pixels. A situation
has now arose were if both of these pixels are used to construct an event the

DSSD data items in the data stream have been counted twice i. e. double

counted.

75

Overcoming this double counting is of vital importance in order to trust the

validity of the conclusions made when using the time ordered data stream. A

method is needed to determine whether any DSSD data item being considered
has already been included in a pixel. In actuality it is necessary to ascertain

whether any data items returned from any search of a time buffer has already
been used in some way.

As mentioned previously it is necessary to have a method of marking any
data items that have been used in the construction of any pixels or events.
In order to facilitate this, each CTDRDataItem object has a boolean flag
(initially set to false) that can be set to true when a given data item has
been included within a data structure. The CTDRDataItem class has two

methods SetAsUsed() and GetUsed() that sets and retrieves the state
of this flag. Essentially whenever a data item is being considered for being
included in a pixel the state of the flag is checked and only if it is unset i. e.
false can the data item be used.

Considering the data given in figure 5.11 then the `used' flag prevents
double counting in the following manner. Starting at the read position of
time buffer A, a search for all DSSD data items returns a DSSD X data item

at the 20ns position in the overall data stream and a DSSD Y data item
at the 40ns position. Assuming the time and energy constraints set by the
user are passed the data items are used to construct a pixel. At this point
the SetAsUsed() method is called on each data item which sets the flag
indicating that these data items have been used.

As the time buffer is incremented the data item at read position B is

eventually reached i. e. the silicon-gas TAC data item at the 50ns position in
the overall time buffer. At this point a search for DSSD items is performed
which returns the DSSD X data item at the 20ns position in the overall
data stream and also the DSSD Y data item at the 40ns position. At this
point before any checks are performed to see if the data items pass any user
defined energy constraints the GetUsed() method is called on each data

76

item to see if they have already been included in any other data structure.
In the example both data items have already been included in the previously
defined pixel so the calls to this method return true indicating they have

been used.

At this point the construction of the pixel is abandoned as there are no valid
data items left that could be used to construct a valid pixel. This method

effectively removes any double counting issues by effectively disallowing any
data item to be used more than once. The only remaining issue that can

not be avoided is that it is impossible to judge which triggering data item

the DSSD strips actually belong to. Simply being the first data item to be

triggered in the data stream does not guarantee that the assignment of the
DSSD data items to this event is the correct one. Unfortunately any false

assignments due to this issue cannot be avoided, but as a consolation this
is a lesser problem than double counting data. Any false assignments would
probably generate events that would later be filtered out by further refining
processes carried out. It is of course up to the user to decide if any of these

events are used or ignored altogether.

5.4.3 Pixel Construction from Alternate Triggering

As mentioned previously in section 5.2.2 it is possible to use other types of
data items apart from the silicon-gas TAC as a trigger. Figure 5.12 shows a
portion of the data stream that could be used to define a pixel if any DSSD X

or DSSD Y data item was chosen as a trigger. Using this triggering method
the DSSD X data item at the Ores position would be the first data item in

this section of the data stream to be triggered from.

Similarly to previous methods the initial step when triggering is to perform
a search in the time buffer for other DSSD data items that could be used to
define a pixel. Previously the findAll() method was used to return a list of
all DSSD data items in the data stream. As a different triggering method
is being used a slightly different search strategy is necessary, but overall the

77

Read
Position

OOO

-30ns -20ns -1 Ons Ons Ions tons Sons

Figure 5.12: Figure showing a sample data stream and timeline to be used

with alternate triggering mechanisms.

principle remains the same.

As individual DSSD data items are being triggered from as opposed to a

silicon-gas TAC, simply searching the buffer for all DSSD data items will

return all the data items present in the buffer including the original trigger-

ing data item. It is obviously necessary to be more selective in the searches

performed. One method for returning only relevant data items is to selec-

tively search for the complementary DSSD type to the triggering data item.
For example if when triggering from a DSSD X data item a search would be

performed for all DSSD Y data items in the time buffer. When triggering

from a DSSD Y data item a search would be performed for all DSSD X data

items.

Referring to figure 5.12 it can see that the data item being triggered frone

i. e. the data item at the read position is a DSSD X data item. In order to
build a valid pixel a corresponding DSSD Y data item is needed, therefore
it is necessary to perform a search in the time buffer for all DSSD Y data

items. In the example this returns a single DSSD Y data item from the 20ns

position in the data stream. As described in previous sections this point of
the process could be used to perform time and energy checks to see if the
data items do define a pixel within the user defined constraints.

78

Considering figure 5.12 it can be seen that when triggering from either a

DSSD X or DSSD Y data item, situations can arise were double counting

can become an issue. This occurs as from any defined pixel both the x and

y component would be used to trigger from. Fortunately it is possible to

circumvent this by using the strategies discussed in previous sections.

5.5 Event Packaging

As mentioned previously at the beginning of this chapter the pixel is the

central data structure needed in the construction of CEvent objects. Now

that methods for defining a pixel have been discussed it is possible to progress

onto a explaining how they are used to build these events.

EVENT

.
PIXEL

FT'ARGET TAC GAS List of pins List of
t pin focal y

pin
y from Gas AE

JUROGAM Gas X pin

or Gas Y

e- from pin

SACRED

Figure 5.13: Schematic showing how events are packaged within a CEvent

object. The constructed pixel is used as the starting position to search for
target, TAC, gas, PINs and focal plane gammas that are in prompt coinci-
dence.

79

Figure 5.13 shows a schematic of how the CEvent object is composed once
it has been constructed. As previously mentioned the pixel is the central
data structure of the CEvent class. Alongside this is the related target data

items; the associated silicon-gas TAC; the data items associated with the

multi wire proportional counter (or gas detector); a list of all PIN diode data

items and finally a list of all focal plane gamma data items that can include

gamma rays detected from the planar germanium detector or other gamma
detectors such as a clover detector.

The various components of an event are built up using similar methods
used in the construction of a pixel. Various searches are performed on the
time buffer that has already had a valid pixel constructed from it and rele-
vant data items are extracted and formed into groups within the event data

structure. All of the data stored in the event are pointers to the memory
locations containing the data items copied from the time buffer. The lists of
PINs and 'y's are stored as c++ lists of pointers to the various data items.

In order for these searches to be performed the first step is to decide on
the point in the time buffer to search from. In the case of a pixel constructed
from a silicon-gas TAC as the triggering data item the time-stamp of this
data item can be used as the starting point of the search. In cases where
other data items are used as triggers various other strategies could be used
such as the mean time of the DSSD data items of the constructed pixel. In

general though the main starting point is the time-stamp of the triggering
data item. This choice means the valid time buffer is available for searching.

Once the starting position has been decided the next stage is to perform
various searches of the time buffer looking for the various other data item

components that compose an event. The first stage would be to search for the
silicon-gas TAC data item that is associated with the pixel. In cases where
this is the triggering data item, no search is necessary and the data item is
simply assigned to the event. In cases where the trigger is something other
than the silicon-gas TAC a simple search is performed to find the silicon-

80

gas TAC that lies closest in time to the triggering data item. One thing to

take note of is that the pixel is the only compulsory constituent of the event

object, all other data items are optional so if any search returns zero data

items the corresponding component of the event is simply left blank. The

filtering of events that do not contain components that the user might want
to require is performed in the specialised sorting section in which the user

can define custom filtering code.

The next search performed is for any multi wire proportional counter (

Gas) data items that may be in the time buffer. As with the previous

search in this case the data items that appear closest in time in the time
buffer are selected as the gas components of the event object. It can also be

appropriate at this point to perform the following sanity check on the values

of any gas data items i. e. any gas data items time-stamp must be offset from

the implantations time-stamp by the flight time 1µs see section 2.4.7) of
the recoil through the spectrometer. If a gate is set around this time range
then it is possible to positively identify if the gas data items found in the data

stream indicate if this pixel is a true recoil candidate. Using this technique
it is possible to eliminate any recoil misidentifications due to random noise
in the gas detector being wrongly used to identify a recoil event.

The next two searches performed, the one for the associated PIN diode
detectors data items and the one for the associated focal plane gamma data
items require that all the data items in the associated time buffer be passed
into the event. In these two cases a call to the FindAll() method of the
buffer is used which returns a list of all the data item types selected. This

returned list is than passed into the event. The last type of data item that

can be encapsulated in an event is a list of all associated target position
data items. A target position search differs slightly from the normal search
in that a time offset is required to correctly identify data items that are in

prompt coincidence with the triggering data items time-stamp. This offset is

necessary because of the fact that the recoiling nucleus takes a finite amount
of time (Time of flight) to travel from the target position where it is produced

81

to the focal plane where it is implanted and the resultant triggering data item

is generated.

The time of flight of a given nucleus through the recoil separator can be

calculated (ti 1µs see section 2.4.7) and this can be used to apply a time

offset into any buffer search. Searches in the time buffer that use an offset

essentially set the starting position of the search to some other point that

does not correspond to the time-stamp of the triggering data item i. e. the

read position. When any offset into the time buffer is used the user must

ensure that sufficient data is being buffered by setting the time window of

the buffer to an appropriate value so as to cover the size of the offset. Shorter

searches are possible as each search method specifies a parameter that can
be passed in to set the length of time to search for within the time, buffer.

When all the searches have been performed and any data items that have

been found to be in coincidence with the triggering pixel have been added
to the event it is possible to proceed onto the next stage, that of specialised

sorting. Before moving onto this it is useful to refer to figure 5.14 which

shows a complete time buffer that can be used to construct an event. The

following discussion steps through briefly the stages discussed in detail above

and provides a concrete example of how an event is constructed from a `real'

time buffer.

Read
Position

O
PIN

O
Gas EXD TAC Y PIN PIN

O

Figure 5.14: Figure showing a complete time buffer that an event can be

constructed from.

82

The sample time buffer shown in 5.14 illustrates a 100ns continuous portion

of the data stream. In this case the silicon-gas TAC data item is being used

to trigger from. As indicated, a forward and backward time window of 50ns

has been set with the TAC data item at the zero position. The user has set

a time constraint on the pixel that any DSSD data items must have a time

difference of at most 30ns.

The first stage of event construction involves defining the pixel. A search

of all DSSD data items returns a DSSD X data item at the -10ns position

in the time buffer and a DSSD Y data item at the +10ns position. The time

difference between these two DSSD data items is 20ns which is less than the

user defined criteria for valid pixels. Mow there is a valid pixel which can be

used to build up the rest of the event. The silicon-gas TAC data item used

for triggering is assigned to the TAC parameter of the event.

A series of searches is now performed to identify the rest of the data items
(if any) that are in prompt coincidence with the pixel. Examining the time

buffer it can be seen that the searches that will return results are the searches
for PIN diodes, focal plane ry and gas data items. The gas search will return

the gas energy data item at the -20ns position of the time buffer. The focal

plane -y search returns a list of four data items from the -50ns, -30ns, 40ns

and 50ns positions of the time buffer. The final search for PIN diodes returns

a list of three data items from the -40ns, 20ns and 30ns positions of the

time buffer. These data items are entered into the appropriate portions of

the CEvent object which can then be passed onto the specialised sorting

section as discussed in the following chapter.

5.6 Summary

This chapter covered the areas of event construction and pixel definition.

An important stage of constructing an event was the definition of a pixel. The

discussion went into some depth about how a pixel is defined and examples

were given as solutions to common problems such as double counting. The

83

discussion briefly went on to mention how the remaining constituents such

as the associated gas and focal plane gamma data items are searched for and

added to the CEvent object.

84

Chapter 6

Specialised Sorting

6.1 Overview

This chapter will discuss how the CEvent objects discussed in the previous

chapter are used. Specifically how the user specifies detailed parameters and

code to perform delayed coincidences using the tagging methodology. A

section is also devoted to how physics information can finally be built up

using the properties of the CEvent objects.

6.2 Deriving A Specialised Sorting Class

The main function of all previous code is to essentially extract relevant por-
tions of the time ordered data stream and package them in a form (CEvent

objects) that can be more effectively and easily utilised by the user. The

user does this by specifying a section of code that organises the events and
extracts physics information from them.

In order to perform this `specialised sorting' the user first needs to derive

their own user class from the CSorter class. Figure 6.1 shows how the user
defined class MySorter derives from the base CSorter class. As described

earlier the arrow denotes a generalisation, the derived MySorter class is a
specialisation of the CSorter base class. One feature of derived classes that

85

CSorter

-*cali bration: CCalibCoef
-'Tagger. CTagerManager
-'runfile: CRunData

-Odataitem: CTDROataItem
MySorter

-Pmybuffer, CBuffer

-eHistogram: CHistogram -Praw: CRaw

-PdetectorPixel: CPixel
cc create »+MySorter(): MySorter

-PsorterSettings: CSettings
+processEvent(e: CEvent'): void

lt + t tR (id
. constants: CONSTANTS

esu): vo ou pu s

-cc create >+CSorter(): CSorter
cc destroy »-CSorterO: CSorter
+outputDefaultsOvoid
+OutputResultsO: void
+process('buffer. CBuff er): vold
+processEvent(event: CEvent'): void
+Run(argc: lnt, "argvfl: ehar): Int

Figure 6.1: UML class diagram showing how a user specified sort class
`MySorter' derives from the base CSorter class.

it is important to note is that they inherit all of the methods and data of
their parent classes. In this case the MySorter class gains all of the methods
defined in the operations section of the CSorter UML class diagram as well

as all the data defined in the attributes section of the class diagram. The

details of how to write a class that derives from the CSorter is not relevant
to the immediate discussion, more information on how to do this is given in

Appendix A.

As described in the previous chapter, pixel definition and event construc-
tion takes place entirely in the call to process() in the CSorter class. The
CBuffer object that encapsulates a valid time buffer is passed in as a para-
meter. As the process() method finishes it performs a call to the proces-
sEvent() method passing in the newly constructed CEvent object. This

method call is where all 1 of the specialised sorting, including tagging, takes

place.
'Apart from data output which is handled in the outputResults() method of the

class.

86

Referring to Figure 6.1 it can be seen that there is a method called proces-

sEvent() present in both the CSorter base class and the MySorter derived

class. Defining a method in such a way is called method overriding and is

an important concept in object oriented programming. Declaring a method
in a derived class that has the same name automatically overrides the base

method. Any implementation specified in the overridden method effectively
takes the place of any implementation that was specified in the base class.

To ensure that the specialised sorting class that the user derives from

CSorter behaves correctly i. e. is capable of receiving the CEvent objects

constructed from the time buffer then the specialised sorting class must over-

ride the processEvent() method. Any particular data manipulation that

the user requires is then placed into this method where it is called once for

each CEvent object that is created and passed to it.

6.3 Event Properties and Data Visualisation

Every time the processEvent() method is called a new CEvent object is

passed in as a parameter. In order to extract information from the CEvent

object various methods can be called that return lists of data items of a spec-
ified type. These data items can then be queried individually for information

such as their energy. This process of selecting and querying can be time

consuming when frequent access to the same information is needed. To limit

this a summary of the most accessed data is calculated at event construction
and stored for easy access. The data in the event properties structure is an
exact mirror of the data contained in the main CEvent class and is simply
present as a convenience for the user.

This data structure called an event properties structure is shown as a UML

class diagram in Figure 6.2. Information contained in the data structure
include items such as the energy and time of the x and y components of the
pixel; the various energies, times and data of the gas detector as well as the

value of the silicon-gas TAC. At any point the user can pass in an event

87

struct

-XEnergy: float

-YEnergy: float

-XTime: _164
-YTime: _I64
-gasXl: int

-gasX2: int

-gasYl: int

-gasY2: int

-gasE: int

-gasT: int

-tac: int

-x: int

y: int
-type: PIXEL_TYPE

Figure 6.2: UML Class Diagram showing the event properties structure.

properties structure to the CEvent object currently being accessed where it

will be populated by the event to contain the current values for its most used

values. All of the values populated in the event properties structure can also
be found by using methods directly on the CEvent object itself.

Before proceeding with the discussion of how the event properties are used

along with the data in the CEvent object it is useful to briefly discuss

calibrations and also how data is accumulated using one and two dimensional

histograms.

6.3.1 Calibration

Before any meaningful energy information can be extracted from the CEvent

objects the detector system must be calibrated. As all the detectors are run
through separate ADC's a separate energy calibration must be calculated
for each individual detector channel in the spectrometer. These calibrations
are usually performed externally to the code and provided to the TDRSorter

program as text files made up of a large table containing all the relevant
calibration data on a per channel basis.

88

These calibration text files are read in once and passed in to the CCalibra-

tion class where it stores the parameters. The TDRSorter program usually

applies the specified calibration of the users choosing e. g. linear or quadratic
to the individual data items in the event construction stage. The energy
for any given data item is calculated according to the calibration data for

that channel by accessing methods on the CCalibration class. The energy

value is then stored in the CTDRDataItem class for later retrieval. As the

raw data value is always perpetuated throughout all stages of the sort code

a different calibration could be applied at any time i. e. in the specialised

sorting stage.

6.3.2 Histograming

In order to help use the data it is usual to provide some sort of visu-

alisation to help in extracting information from the data set. It is useful
to use both one and two dimensional histograms to help present the data

gathered from the CEvent objects passed in as parameters to the proces-

sEvent() method where the current processing is taking place. In the next
two sections two different types of histogram, integer and floating point will
be briefly discussed.

Integer Histograms

Both the integer histogram represented by the ClntHist class and the
floating point histogram represented by the CFloatHist class are derived

from the CHistogram base class. This base class specifies basic functionality

that a basic histogram should have e. g. having the capacity to increment a
specified `bin' of the histogram. The specialised integer and floating point
classes are derived from this class so that collections of generic `histograms'

can be created that actually contain objects of the specialised derived classes.

The most basic type of histogram included in the TDRSorter code is the
integer histogram. The integer histogram class ClntHist implements the
functionality as prescribed by the CHistogram base class. Apart from

89

methods that provide output of the data the most important method is the
increment() function that is used to add data to the histogram. The inte-

ger histogram class adds whole counts to the relevant bin of the histogram,

which can produce `staggering' in the data as no account is taken of how

close a given count lies to the boundary of another bin. The data is either
in one bin or another.

Floating Point Histograms

Floating point histograms serve to address some of the limitations of in-

teger histograms. The main way that they do this is to allow the bins in

the histogram to have fractional counts and aim to take into account the

proximity of a given value to the histogram bin boundaries. For example if a
given value was to lie exactly on the boundary between two bins 0.5 counts
would be placed into each of the bins.

As well as using the built in ClntHist and CF1oatHist classes to help

visualise the data it is also possible to use a third party visualisation library.
Using another library that has c++ bindings is simply a matter of including

the appropriate header files and linking the library to the MySorter class.
In most of the examples shown in the following chapter the ROOT system
framework [17] is used in a purely visual capacity to display and print the
data as it is sorted.

6.3.3 Basic Spectra

It is useful at this point in the discussion to show some examples of infor-

mation that could be extracted from the data stream. All of the examples
that follow are performed using only the information currently contained
in the CEvent object passed into the processEvent() method and the
EventProperties structure retrieved from the event.

90

DSSD Total Spectrum

Figure 6.3 shows the total energy spectrum of the double sided silicon strip

detector. This histogram has been created by plotting the energy of the pixel

retrieved from the EventProperties structure. The spectrum has a number

of interesting features including the labeled recoils and alpha decay lines from

the 254No decay and the subsequent decay of its daughter nuclei.

DSSD x Energy (4kev bins)

1000

IA c 800
0
U
w

600
L.

E
Z 400

200

0
Energy (keV)

00

Figure 6.3: Total DSSI cnº'. rgy 5I e : trtutº. 'I'lle rcº: uil tºuº: lci ; ºtºº1 aljºlºa º1cº"ay s

of the embedded recoils can be clearly seen on the figure.

DSSD Energy vs TAC

Figure 6.4 shows a two dimensional histogram that is used to help distin-

guish recoiling nuclei from other decay products and scattered beam. This is

created by taking the pixel energy value of the event and plotting this against
the value of the silicon-gas TAC from the same event. Various structures can
be observed in this plot. The structure that is of primary importance is that

of the recoils (indicated by the arrow). The identification of these recoils

91

allows a gate to be set on specific TAC and energy values. These gates can

then be used to clean up further spectra that need positive recoil identifica-

tion to give accurate results. Other structures on the figure are the result of

other transfer products not completely filtered out by the recoil separator.

DSSD E vs TAC

8000

,,,,,
7000

C
n

N000

-500C
U
F-

400(

3001

ý7
N

ti N
aý e'YtrW ý{ký` i'3+ý.

° wto t;
ýw

fý

4
J

zi
'ý

ýýýýý"^
01

.(7)' 1

`
f5

Recoils

0 2000 4000 6000 8000 10000 12000 14000 16000
DSSD Energy (keV)

Figure 6.4: Spectrum showing the DSSD energy vs TAC. The recoiling nuclei

can be clearly identified.

6.3.4 Examples of Recoil and Alpha Identification

The following sections give examples of how both recoils and alphas are

correctly identified using the methods previously discussed. Each histogram

shown is generated from the same example data set as before.

Recoils

By taking the event object and plotting the pixel energy only if the event
contains a non zero value for any gas data item produces the result shown

92

in figure 6.5. This histogram essentially shows only events that have passed

through the gas detector i. e. are recoiling nuclei embedding themselves in

the DSSD detector. Comparing this plot to the total DSSD energy spectrum

shown in figure 6.3 it can be seen that the alpha events that are clearly

visible in the total spectra have been completely filtered out. This prompt

coincidence with gas data items can be seen to be an effective identification

mechanism for discerning recoils.

Recoil XE (4keV bins)I

50

c 40
0 U

30

Z 20

Region of expected
Alpha decays

10

0 2000 4000 6000 8000 10000 12000 14000 16000
Energy (keV)

Figure 6.5: Spectrum showing the gas coincidence filtered Recoil Energy.

The absence of alpha particles can be clearly seen.

Alphas

By using a similar method it is possible to clearly identify events that

correspond to decays of nuclei previously embedded in the double sided silicon

strip implantation detector. By plotting the pixel energy only of events that

contain no gas data items figure 6.6 is produced. This histogram shows the

energy of events that have not passed through the MWPC i. e. decays of

93

embedded recoils. Comparing this histogram to figure 6.3 it can be seen

that the clearly defined area caused by recoiling nuclei has been completely
filtered from the spectra, which shows that the above is a good method for

distinguishing alpha decays from recoils in real experimental data.

Alpha xE (4keV bins)

2 No

1000

800
0
U
w
0 600
L

J2

E
3 400
z

200

flL 0ö

250Fm

246Cf

Expected Region
For Recoils

2000 4000 6000 8000 10000 12000 14000 16000
Energy (keV)

Figure 6.6: Spectrum showing the gas anti-coincidence filtered alpha Energy.

The absence of recoils can be clearly seen.

6.4 Tagging

This following section discusses the tagging methodology and how it is

used to perform spatial and temporal correlation for delayed coincidences.
The tagger is one of the key components of the data analysis process for

extracting meaningful physics information from the data stream.

Figure 6.7 shows a UML diagram for the tagger. The tagger framework is

split into two parts; the tagger manager represented by the CTaggerMan-

ager class and the individual tagger object represented by the CTagger

94

CTaggerManager I

-tagg er: CTag ger[40,120]

<< create >>+CTaggerManager(Depth:
-164):

CTaggerManager
<< destroy >>-CTaggerManagero: CTaggerManager
+get(x: int, y: int): vector<CEvent*>
+add(e: CEvent*): void
+clear(x: int, y: int): void
+clearAll(): void

1 .'

CTagger

-events: deque<C Event*>

-m_IastEventTime: _I64
-m taggerDepth:

_I64
<< create >>+CTaggero: CTagger
<< destroy >>-CTaggero: CTagger
+add(e: CEvent*): void
+get(: vector<CEvent* e>
+setDepth (time:

_I64): void
+isEmpty(: bool
+IastEventTime():

_I64
+clear(): void

Figure 6.7: UML Class Diagram showing The TaggerManager and Tagger

classes.

class. Both of these classes are closely related and provide functionality that

complements the operation of both classes. Before moving onto the tagger

manager the purpose and operation of the CTagger class is first discussed.

6.4.1 The CTagger Class

The CTagger class is responsible for the sequencing of events that origi-
nate from a single pixel. A CEvent object that is passed into the proces-
sEvent() method of the specialised MySorter class corresponds to a specific
CPixel object. As previously discussed the CPixel is made from a specific

95

DSSD X and DSSD Y data item. Any events generated from a pixel that
has the same DSSD X and Y components are handled by the same CTagger

object.

The CTagger class has a number of methods used to manipulate the queu-
ing of events within it. The first relevant method is the void add(CEvent*

e) function that is used to add the CEvent object to the queue of the CTag-

ger. Figure 6.8 shows how the CEvent objects are ordered within a given
CTagger object. With each processEvent call of the specialised sorter rel-

evant events are added to the CTagger object and subsequently appended
to the end of the internal queue.

As the tagger object is member data of the specialised sorting class it lives

as long as this class does i. e. for the duration that the entire data analysis

program is running. The tagger is essentially persisted between each call
to the specialised sorters processEvent method. This means that as time

progresses and more calls are made all the events that originated from the

same DSSD X and Y data items are built into the tagger's list with the oldest
event at the back of the queue and the most recent (or youngest) events at
the front.

Oldest Youngest

Event 11 Event 11
Event

11
Event

ABc

Iol

n

Time

Figure 6.8: Figure showing how CEvent objects are added to the tagger.

6.4.2 CTagger Depth Mechanism

Another important functional aspect of the CTagger object is the tagger
depth. The depth of the CTagger object is essentially the period of time that

96

the tagger is to store CEvent objects for. The tagger depth is set by calling
the setDepth() method passing in a 64bit integer specifying the length in

time, in terms of numbers of timestamps, in which to buffer CEvent objects
for.

Oldest Youngest
tagger depth = 1000ns

Event
1 A ADD

t=100ns

Event Event
2 A B ADD t=100ns t=400ns

Event Event Event
3 A BC

t=100ns t=400ns t=650ns ADD

t d th = 1000
V

agger ep ns

Event Event Event Event
4 A BCD

t=100ns t=400ns t=650ns t=1200ns
REMOVE

Figure 6.9: Figure showing how the depth mechanism operates in the tagger.

Figure 6.9 shows how the size of the event queue within the CTagger ob-
ject is controlled using tagger depth checking. Whenever a CEvent object is

added to the CTagger event queue the time-stamp of that event is recorded.
The depth of the tagger is then subtracted from this time. The result is the

earliest time that an event can have to remain on the queue. Any events that
have a time earlier than this value should be removed as they are no longer

of any interest in the analysis.

97

Referring to figure 6.9 it can be seen how this process works. Starting with

a CTagger object that has had its depth set to 1000ns. Each of the indiviual

stages represents a separate call to the specialised sorters procesEvent()

method that is not necessarily consecutive to the previous call. The CEvent

object passed in as a parameter corresponds to a pixel with the same DSSD

X and Y as the previous tagger addition.

At stage 1, event A is added to the tagger's queue. As the tagger was

previously empty i. e. there was no items in the queue no tagger depth check
is performed. Stage 2 has another CEvent, event B, being added. At this

point a tagger depth check is performed. The last event added has a time-

stamp of 400ns, the tagger depth of 1000ns is subtracted from this value
leaving the earliest time that an event should be queued for as -600ns. The

event queue is then iterated starting at the earliest item and the time is

checked against the earliest time allowed. The first event in the queue, event
A has a time of 100ns which is greater than this earliest time. All of the

events currently on the queue are still of interest.

Stage 3 corresponds to another addition of an event, event C that has

a time of 650ns. As before a event depth check is performed, the earliest

allowed event must have a time greater than -350ns to remain on the queue.
The iteration shows that all events are still of interest. Stage 4 corresponds
to the addition of event D with a time of 1200ns. The tagger depth check
reveals that the earliest time an event can have to remain on the queue is
200ns. As the queue is iterated starting at the earliest item it can be seen
that the first event on the queue, event A has a time of 100ns. This time
is less than the minimum value required so this event is removed from the
tagger.

The process of tagger depth checking is performed for all events in all
CTagger objects as they arrive and are added. This mechanism ensures
that only events that are deemed to be relevant for the user are stored in
memory at any given time. The magnitude of the tagger depth must be

98

selected carefully as the depth is essentially the period of time that any
delayed coincidences are to be searched for. A good rule of thumb for setting
the depth of the tagger would be to select a time that is multiples of the
lifetime of any decay being studied. (e. g. 3xT 2.)

6.4.3 The Tagger Manager

As discussed in the previous section each individual pixel is associated with
its own individual CTagger object. As each pixel is defined by a unique

combination of DSSD X and DSSD Y channels it can be inferred that one
CTagger object is needed for each pixel of the DSSD Detector. As discussed

in Chapter 2 the DSSD detector is divided into two halves consisting of 60 X

channels and 40 Y channels making a total of 4800 pixels. Therefore a total

of 4800 CTagger objects are needed to accurately store and queue all of the
CEvent objects for use in finding delayed coincidences.

Trying to manage 4800 CTagger objects could rapidly become unwieldy
so the CTaggerManager class was created to help in keeping all the indi-

vidual objects in one place with a single interface used for adding, deleting

and retrieving events as they are required. The CTaggerManager class
is detailed in the UML diagram in figure 6.7 and provides several methods
for manipulating the contained data. The central structure in the CTag-

gerManager class is the two dimensional array of CTagger objects called
tagger which is defined as CTagger tagger[120] [40]. This two dimensional

array essentially maps the DSSD detectors physical layout with one CTagger

object per pixel.

Figure 6.10 shows how this arrangement can be visualised. The grid of
squares in the figure is a representation of the two dimensional array of
CTagger objects within the tagger manager class CTaggerManager. Each

square of the grid is referred to as a tagger cell of the tagger manager and
is essentially an instance of the CTagger class within the array. The boxes

within each tagger cell correspond to a single CEvent object within the

99

event queue stored in the CTagger object. Multiple stacked boxes represent

the sequence of events in the queue as outlined in figures 6.8 and 6.9.

CEvent object in
Event Queue of
CTagger

er object

is Ta99eý
ce//S

Two Dimensional
Collection of
CTagger objects
are stored in the
CTaggerManager

Figure 6.10: Figure showing a simplified tagger manager.

The CTaggerManager class has several methods as outlined in 6.7 for

accessing and modifying the underlying array of CTagger objects. When the

tagger manager is first created the required depth is passed in as a parameter.
The tagger manager calls the setDepthO method of each CTagger object
in the contained array to set the depths of the individual taggers. The tagger

manager also specifies a method for adding CEvent objects to it. To do this

a call to the add() method of the manager is made passing in the event

object to be added. Within this method the X and Y parameters of the pixel
is queried and the event is added to the appropriate tagger in the array.

The final method that is of interest is the get method which is specified

as vector<CEvent*> get(int x, int y). When executing this method the

x and y parameters of the pixel of interest must be specified, which ensures
that only the list of events that of are interest are returned. The CEvent

objects are returned as a list of pointers that point to the events contained in

100

the underlying tagger objects within the managers array. These events are

returned in the same order as they have been added as detailed in figure 6.8.

6.4.4 Delayed Coincidences using the CTagger Class

Following on from the discussion about how the CTagger class is used to

queue CEvent objects passed into the specialised sorters processEvent()

method and how the CTaggerManager class is used to access and process

event data. It is possible to now discuss how the whole tagging framework

can be used for analysing delayed coincidences. Figure 6.11 shows an example

tagger manager that maps to a simplified DSSD detector consisting of four

DSSD X channels and four DSSD Y channels producing a total of sixteen

pixels. The diagram represents a snapshot in time with some of the taggers

having events or queues of events currently in time scope.

. T...

1 D
Di

V
E
I-

2

Figure 6.11: Figure showing a generic tagger with multiple cells.

One of the key delayed coincidences that is usually required is that of

recoil alpha tagging. In order to perform this tagging it is necessary to
be able to distinguish events that correspond to an alpha decay and events
that correspond to recoil implantation. A simple way of doing this is use

101

the gas detector (MWPC) as a recoil discriminator. Essentially a recoil must

pass through the gas detector, therefore any event that has a valid gas energy

value i. e. has deposited energy in the gas detector is potentially a recoil. It is

possible to now apply certain energy conditions dictated by the experimental

parameters of the reaction being studied and positively identify a recoil event.
Conversely if an event does not contain a gas energy event it has not passed
through the gas detector and has therefore originated from a nucleus already

embedded in the DSSD. Again energy restriction are imposed based on the

expected energy of the alpha particle.

6.4.5 Recoil Alpha Tagging

Now that a method to distinguish recoil generated events from alpha gen-

erated events has been identified it is possible to discuss how the tagger can
be used to correlate related events. The first property that can be identified

is that the events must follow a specific sequence in that the recoil event

must occur before the alpha event. Another property is that the events must
lie within close spatial proximity of each other. In this first instance it can
be assumed that the recoil and alpha events must be in the same pixel, more

complicated searching strategies are discussed in the following section.

Referring to figure 6.11 and keeping the above in mind it can be seen that
there are two instances in the diagram that meet these criteria, the CTagger

object in tagger cell D1 and the CTagger object in cell A4. In both of these

cases an alpha recoil pair has been identified that can be used as a basis to

extract physics information. One possible use is to look for gamma rays that

are only related to this specific decay by extracting the list of gamma rays
associated with the alpha event and hopefully build up information about
the level structure of the nucleus.

In identifying these transitions the specialised sort code needs to be struc-
tured in a certain way. As an event is received in the processEvent()
method it needs to be tested to see if it is a potential alpha event or a recoil

102

event. The test is based on the presence or absence of a gas energy event as

well as specified energy criteria as discussed above. If the event is identified

as a recoil a flag is set in the CEvent class specifying that this event is a

recoil event. This event is then added to the tagger in the appropriate pixel

coordinates. If the event object is identified as being neither a recoil event

nor an alpha event i. e. an `other' event it is appropriately flagged `other' and

added to the appropriate tagger.

If the event object is identified as an alpha event it is first appropriately
flagged as an alpha event. After retrieving the relevant DSSD X and Y

coordinates from the CEvent object it is then possible to retrieve a list of

all events from that tagger cell by calling the get() method of the tagger

manager. This method returns a list of all events that have been added to

the specified cell with respect to the time of the last event added and the

tagger depth. This list is then iterated, if any recoil events are found within
it then a valid recoil alpha pair has been identified. At this point further

filtering and data extraction can be performed according to the remit of the

experiment.

Recoil-Alpha Tagging Examples

Given the method that has just been described, the code in figure 6.12

gives an example sort file showing how a recoil alpha tag can be performed.
The source code is an extract from a real sort file, extraneous lines of code

relating to graphing and other tests not relevant to the current discussion

have been omitted.

The code starts by first checking if the event is an alpha particle, in this

example alphas are identified by any event that has a pixel energy between

8100keV and 8220keV and has no gas data associated with it. The next

stage is to retrieve a list of all events in the tagger manager for this pixel
and search back through them looking for all recoil events. In the example,
recoils are identified by events that have a gas data item value and also pass

103

1 void MySorter:: processEvent(CEvent* e)
2
3 EventProperties EventData;
4 e->GetProperties(&EventData);
5
6 //if its an alpha particle search for recoils
7 if((EventData. XEnergy > 8100) && (EventData. XEnergy < 8220)&&
8 (ventData. gasE < 10))
9
10 vector<CEvent*> eventList=Tagger->get(e->getX(), e->getY());
11
12 //loop over the arraylist from the tag er and check for recoils
13 { r(int I =0 ; I<eventList. size() ; i++)
14
15 CEvent* tagged Event=eventList[i];
16 EventProperties tagged EventData;
17 tagged Event->GetProperties(&taggedEventData);
18
19 //check to see if this is a recoil
20 if (taggedEventData. gasE>1500)&&(ta gedEventData. gasE<5000)&&
21 to gedEventData. XEnergy>5000)&&(taggedEventData. XEnerg <15000)
22 &(taggedEventData. tac>5600)&&(taggedEventData. tac<7200))
23
24 //this Is a recoil
25 recoilsx->Fill(tagged EventData. XEnergy);
26 tagalphax->Fill(EventData. XEnergy);
27
28
29 }}}
30 else
31
32 //put everything else into the tagger
33 Tagger->add(e);
34 }
35
36 }//end of processEvent method

Figure 6.12: Figure showing the processEvent() specialised sorting code.

a basic DSSD and TAC gate defined by the values in the if statement. If any

event in the list meets this criteria then a recoil alpha pair has been correctly
identified.

Now the relevant histograms are incremented with the DSSD energy values
indicated by their appropriate EventProperties structure values. Figure

6.13 shows the identified recoils of the correlated pair and Figure 6.14 shows
the identified alphas of the correlated pair. Comparing these two figures

with previously generated histograms shows that using the tagging method

provides a much cleaner identification of the alpha and recoil components
than simply relying on the presence or absence of a gas data item.

104

tagged Recoils (X) 4kev bin tagged Recoils (X)4kevbin

Entries 4899
Mean 1.048e+004
RMS 1524

12

10
w c
08
C.)

0
I- 6
E
Z4

2

0. " II ', '"-L II l. IIý=ýILLIýI.

6000 8000 10000 12000 14000
Energy (keV)

Figure 6.13: Figure showing the alpha tagged recoil energy.

Example Event

It is useful at this point to provide an example of a real tagged event

constructed from the data stream. Figure 6.15 shows an event that has been

completely constructed and passed onto the processEveiit() method during

a run through the example data set and identified as an alpha. It also shows

an event found from the tagger that meets the user defined criteria of a

recoil. The figure shows a simplified version of the data items contained in

the CEvent object, showing only the information relevant to the illustration.

6.5 Tagger Search Strategies

In the example discussed above delayed coincidences were only considered
to be valid if the sequence of events required lay in the same cell of the
tagger, however it is possible that the events may not be constrained to this

one place. A possible cause would be if a recoil implanted in a pixel and the

105

tagged alphas (X) 4ev b tagged alphas (X)4ksvbin

Entries 4899
Mean 8158

700 n RMS 15.09

600
N
c 500
0 U

400

E 300

200

100

ýQ
l11I11IIII1II1II11II1I 1-T-1-L+T1 1

8 80 8100 8120 8140 8160 8180 8200 8220 8240
Energy (keV)

Figure 6.14: Figure showing the recoils tagged alpha energy.

ALPHA EVENT
XEnergy : 8140.41
YEnergy: 4100.16
XT ime: 207497975108 50
YTi me: 20749797510850
gasX1: -1
gasX2: .1
gasY1: -1
gasY2: -1
gasE: -1
gasT: -1
x: 92
y: 0

PLANAR E: 158.971

RECOIL EVENT
XEnergy : 9638.06
YEnergy: 4100.67
XT ime: 20749062929448
YT Ime: 20749062929448
gasX1: 11226
gasX2: 3889
gasY1: 10721
gasY2: 9737
gasE: 2466
gasT: -1
x: 92

y: 0
CLOVER E: 6096.91
CLOVER E: -1
PLANAR E: 3.57883
PLANAR E: 3.17846
PLANAR E: 424.08

Correlation Time : 734581402 (ticks) = 7.35s

Figure 6.15: Outline showing the components of a real CEvent object con-

structed from the data stream during a run through the example data set.

106

subsequent alpha escaped and itself implanted in a neighbouring pixel. To

take into account such eventualities more complicated search strategies can

be used.

Single Cross Square

Figure 6.16: Diagram Showing the single, cross and square search strategies.

Figure 6.16 shows three possible search strategies that may be used to

identify event sequences for delayed coincidences. The first strategy is the

single cell (or pixel) strategy where the events must fall within the same pixel
to be considered. The details of this method have been discussed previously.
The next search strategy is the cross, in this case events are considered if

they fall within the cross like pattern shown in the diagram, this pattern

represents the most likely adjacent cells where an escaping alpha could be

embedded.

Referring to figure 6.17 and considering the following sequence of events;
the recoil event at tagger cell B2 is generated due to a recoiling nucleus

embedding at that pixel of the DSSD at time t= 100ns. In the proces-

sEventO method of the specialised sorting class this event is identified as

a recoil type event and then entered into the tagger manager at the B2 co-

ordinate position. At a time t= 300n s another event is passed into the

processEvent() method. This event is identified as an alpha type event so
it is now possible to start searching for delayed coincidences. This is acheived
by calling the get() method of the tagger manager supplying the coordinates
of the cell of interest.

107

v E
H

t=100ns 1

Figure 6.17: Figure showing a generic tagger with multiple cells and using a

cross search strategy.

The call to the get() method returns a list of all the relevant events from

the tagger manager. As the search strategy is set to cross this returns a time

ordered list of events from the cells shaded in figure 6.17 i. e. cells C1, C2,

C3, D2 and B2. As can be seen from the figure this will result in the recoil

occurring at time t= 100ns at cell B2. This has now established these two

events as a recoil alpha pair that can now be used for further analysis.

The final search type discussed here is the square search strategy. As the

name implies this method searches for all possible delayed coincidences in

a square shaped pattern around the originating pixel. The square search

strategy is shown in figure 6.18 which shows how events can be correlated.
Considering that the recoil event at time t= 100ns is added to tagger cell
B1 and in a subsequent call to the processEventO method the event at cell
C2 with time t= 200ns is added then these two events can be correlate using
the square search strategy. The call to the tagger manager that retrieves all

relevant events will return events frone the following cells D1 - D3, C1 - C3

and cells B1 - B3. As can be seen this will result in the return of the recoil

event at cell B2 which can be used to define a delayed coincidence pair for

108

a) E

Figure 6.18: Figure showing a generic tagger with multiple cells and using a

square search strategy.

further analysis.

Referring again to figure 6.17 and 6.18 a situation can be seen were a given

alpha event would not find a corresponding recoil in the cross strategy but

would find one if the square strategy was used. The alpha event in cell D3

when using the cross search strategy finds no recoil event, however the same

alpha event when using a cross search strategy would find the recoil event
in cell C4. From this it can be reasonably expected that the numbers of

correlated recoil alpha pairs will be different for different strategies.

Raw a Single Cross Square

1523

n/a

1203

78.9%

1304

85.6%

1339

87.9%

Number of a particles
% of correlated recoils

Table 6.1: Table showing the number and percentage of recoils correlated
from the detected alpha particles for single, square and cross tagging search

strategies.

109

Table 6.1 shows how the different search strategies discussed above af-
fect the amount of recoils that are correlated from identified alpha particles.
Given a number of identified alpha particles (1523as) from a section of data

the number of alphas that locate a recoil in the tagger for the specified search

strategy is shown. The search time for recoil alpha correlation used was 550s

which is approximately 10 x T2 for the decay. This is to ensure that there

are sufficient events for the tagging method to be applied to. It can be seen

that for the single pixel strategy that 78.9% of alpha particles locate a re-

coil and for the cross and square strategies that 85.6% and 87.9% of alphas

respectively locate a recoil.

Given the values above it is useful to mention the relative benefits of each

of the strategies. The single strategy which correlates 78.9% of recoils is

the fastest in terms of execution speed. Compared to the square strategy

which identifies 87.9% of recoils but is the slowest to execute due to the

eight fold increase in tagger searches. The cross strategy is an excellent

compromise however as it only has a four fold increase in tagger searches but

more importantly only correlates 2.3% less recoils than the comprehensive

square search strategy.

6.6 Lifetime Calculations

In this section the data gathered from the recoil alpha tagging section is

used to calculate a real physical property of a nucleus. In the following the
lifetime and half life of an alpha decaying nucleus will be calculated. In

the example data set used throughout this thesis a prime candidate for this

calculation is the alpha decay of 254No to 250Fm. The values of the lifetime

and half life are well known [18] i. e. the the half life T2 = (51.2 ± 0.4)s

To calculate the lifetime or half life of an alpha decaying nucleus it is first

necessary to be able to identify a recoil alpha pair and gather information

about their timing relationship. A segment of specialised sorting code similar
to the code section given in figure 6.12 is used to identify the recoil alpha

110

pairs needed. Once they have been identified a difference of the two events
timestamps is taken. This is accomplished in the specialised sorting code by

inserting the following lines (figure 6.19) at line 26 of the code outlined in

figure 6.12

1
_164

dt = (EventData. XTime - taggedEventData. XTime);
2 recoilalphatime->Fill((dt/(10*Constants. Seconds)));

Figure 6.19: Section of code inserted into the specialised sorting class to

calculate and plot the time difference between a correlated recoil alpha pair.

Referring to figure 6.19 it can be seen that the additional lines of code

needed in the specialised sorting class are fairly straightforward, line 1 simply
takes the time-stamp of the DSSD X strip of the current event (the identified

alpha) and subtracts the time-stamp of the DSSD X strip of the recoil event
located by a tagger search. The calculated differences are then plotted into

a histogram. It can be seen from line 2 of the code that the time difference

calculated in tens of nanoseconds is scaled to fit into 10sec bins which is of
the same order of magnitude as the expected half life. The results of this

process can be seen in figure 6.20.

As radioactive decay is governed by the well known law [191 given in equa-
tion (6.1) fitting an exponential curve to the generated data can yield a value
for A. By using equations (6.2) and (6.3) values for the half life and lifetime

can then be calculated from the decay constant A.

N(t) = Noe-T (6.1)

T1 =
In(2)

A
(6.2)

2

A=1 (6.3)
T

111

700

600

N
c 500
0 w

400
0
ä 300
E
Z 200

100

0O5 10 15 20 25 30 35 40
Recoil a Time difference (10s bins)

Figure 6.20: Figure showing a decay curve for the 254No alpha decay. A

exponential fit of the curve is shown.

The result of an exponential fit to the data is shown in figure 6.20. The

result of this fit yields a value for A as (0.0130 ± 0.0002)s-1. Using equation
(6.2) and equation (6.3) gives a half life (Ti) of (53.5 ± 0.8)s and a lifetime

T of (77.2 ± 1.1)s. The calculated half life compares well with the expected

value of (51.2 ± 0.4) s.

6.7 Comparison of TDRSorter to GRAIN

During the process of developing the TDRSorter data analysis code and
the subsequent writing of this thesis other data analysis tools to work with
the TDR data acquisition system have been developed in other institutions.
One of these systems known as GRAIN [21] was developed by Panu Rahkila

at the university of Jyväskylä. GRAIN has been developed in Java to handle

the same time ordered data stream produced by the TDR data acquisition
system that is analysed by the TDRSorter code.

112

It is beneficial to compare the TDRSorter program to GRAIN as it pro-

vides a useful cross check on the validity of any results generated from either
program. In the comparisons shown below a separate set of data was used
than in the analysis in previous sections. This separate data set was used
due to changes made in the experimental setup; the channel mappings of
individual detectors was altered before the initial release of GRAIN. This

means that processing the data set used previously (containing the old de-

tector mappings) GRAIN would incorrectly assign channel numbers in the
data stream to their respective detectors. These detector mappings can not
be changed due to the fact that GRAIN is a closed system.

The solution to this issue is to use a more recent data set that so that
GRAIN has the correct detector channel mappings. It is easy to update the

mappings in the TDRSorter data analysis program due mainly to the fact

that access to the source code is not restricted. An additional point to note is

that this more recent data set is from an experiment designed to investigate

the same nuclei as used in previous examples i. e. 254No.

A comparison of each of the main stages passed through in order to obtain
the half-life and lifetime values for the alpha decay of 254No was chosen to

show that both TDRSorter and GRAIN are consistent with each other and
established values. The first fundamental step in being able to calculate the
half-life and lifetime is to correctly identify and distinguish recoiling nuclei
and alpha particles. This is also the first step in comparing the two data

analysis programs.

Figure 6.21 shows the identified recoils and alphas for both the TDRSorter

and GRAIN data analysis programs. The method of identification is the

same as described in section 6.3.4 i. e. that the recoils are identified by DSSD

events in coincidence with energy loss events in the gas detector (MWPC)

and alphas are identified by DSSD events in anti-coincidence with events in
the MWPC. Figure 6.21(a) and 6.21(b) show the identified recoils for the
TDRSorter and GRAIN data analysis programs, respectively. The results

113

TDRSorter Recoils GRAIN Recoils
(a) (b)

ISO 160

140 140

120 0 120

loo 0 100
so 0 so

"
60 E 60

= 40 = 40

20 20

0
2000 4000 6000 6000 10000 12000 14000 160 00 2000 4000 6000 6000 10000 12000 14000 16000

Energy k"V (16k"V bins) Energy k"V (16k"V bins)

TDRSorter Alphas GRAIN Alphas

(c) (d)
1600 1600

1400 1400

1200 1200

1000 1000

0 goo Boo
1

600
E

600
i

400

JL

Z 400

200
,

200

, 0 0
6500 7000 7500 8000 6500 6500 7000 7500 $000 6500

Energy k"V (16k"V bins) Energy k"V (I6k"V bins)

Figure 6.21: Comparison of recoil and alpha spectra for both GRAIN and
TDRSorter data analysis programs. In both cases recoils are identified by a
gas coincidence and alphas are identified by a gas anti-coincidence. (a) shows
the recoils identified by the TDRSorter program, (b) shows the recoils identi-
fied by GRAIN, (c) shows the alphas identified by TDRSorter and (d) shows
the alphas identified by GRAIN.

from both programs can be seen to be the same and it can also be seen
that in both cases the alpha particles that should lie in the energy range
of 6500keV to 8500keV have been correctly filtered from the recoils. Figure
6.21(c) and 6.21(d) show the identified alphas for the TDRSorter and GRAIN
data analysis programs, respectively. In both cases the alpha peaks can be

seen to lie at the same energy and with similar peak heights. It can also be

seen that the alphas have been correctly separated from the recoils by the

process described above.

114

TDRSorter Tagged Recoils GRAIN Tagged Recoils
(a) (b)

40 45

3S
40

30 S
35

C
I

25
!0 0

25

20 0
20 E

1S E is
s 10 = 10

{

80 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 t000 10000 12000 14000 16000
Energy k6V (16k6V bins) En. rs k6V (16k6V bins) y

TDRSorter Tagged Alphas GRAIN Tagged Alphas
(c) (d)

400
450

A 3S0

300

400
3

3S0

V 300
250

250
200 1200
lso E

z
130

100 100
s0 50

0 7950 $000 $050 8100 41150 $200 8250 3300 0 7950 8000 6050 $100 $150 9200 2250 8300
Energy k6V (16k. V bins) Energy k. V (16k6V bins)

Figure 6.22: Comparison of tagged recoil and alpha spectra for both GRAIN

and TDRSorter data analysis programs. (a) shows the alpha tagged re-
coils identified by the TDRSorter program, (b) shows the alpha tagged re-
coils identified by GRAIN, (c) shows the recoil tagged alphas identified by
TDRSorter and (d) shows the recoil tagged alphas identified by GRAIN.

The next step to be able to calculate the half-life and life time is to correctly
correlate recoil and alpha pairs. This is performed by recoil alpha tagging
as described in section 6.4.5. Figure 6.22 shows the correlated alpha and
recoil pairs identified by the TDRSorter and GRAIN data analysis programs.
Figure 6.22(a) and 6.22(b) show the identified alpha tagged recoils for the
TDRSorter and GRAIN data analysis programs, respectively. Figure 6.22(c)

and 6.22(d) show the identified recoil tagged alphas for the TDRSorter and
GRAIN data analysis programs, respectively. In both cases the figures show
that the identified recoils and alphas are similar to each other.

115

TDRSorter Fit
(a)

GRAIN Fit
(b)

600

700
X'/ ndf 67.47 /52
PO 3.463! 0.419

l

700 X'/ ndf 51.59 / 52
PO 7.0 530.71

0021 l p 6.655±0.020 600 P 6.6163 o
600 p2 0.136310.0023 59t0. 026

500

t 400
400 !!

300
j
; 300

I

200 200

100 100

0 0 10 20 30 40 50
0

0 10 20 30 40 50
a«. a 0 TW» DM. nne. (10. Nws) Reef Ct TN» DIM.... e. (106 bIn.)

Figure 6.23: Comparison of decay curves for the 254No alpha decay. (a) shows
the fit results for the data sorted using the TDRSorter analysis program. (b)

shows the fit results for the same data sorted with the GRAIN data analysis

program.

The final step is to use these identified correlated alphas and recoils and

calculate the time difference between them. Plotting this time difference for

all recoil-alpha pairs produce a decay curve that can be used to calculate the
half-life and lifetime of the 254No alpha decay. The process and calculations

performed are identical to those in section 6.6. Figure 6.23 compares the
fitted decay curve for the TDRSorter data analysis program (Fig. 6.6(a)) and
for the GRAIN data analysis program (Fig. 6.6(b)). For both cases the same
fit is performed using the same fitting program i. e. ROOT. The fit used is

an exponential curve with a linear background, which provides the best fit
for the data. In both cases the coefficients of the fit are shown as well as the

X2/ndf (number of degrees of freedom). It can be seen from these X2 values
that the fit performed with the data gathered from GRAIN 6.23(b) is `better'
than the fit for the TDRSorter package. Despite this difference in goodness
of fit, the calculated values of half-life and lifetime are still very consistent.

Using these fits it is now possible, using the formula given in section 6.6
to calculate the half-life and lifetime of the 254No alpha decay. Table 6.2

shows the calculated half-life and lifetime along with errors for both the

116

Program Tý (s) err (s) A s-1 err s-1
TDRSorter

GRAIN
50.9

51.0

0.9

1.0

73.4

73.6

0.2

0.2

Table 6.2: Table showing the calculated values of half-life and lifetime. The

table compares values for the GRAIN and TDRSorter data analysis pro-

grams.

TDRSorter and GRAIN data analysis programs. The values shown in the

table are consistent both with each other and with the expected value of
(51.2 ± 0.4)s.

This comparison has served as a useful cross check as to the validity of
both the TDRSorter and GRAIN data analysis programs. As can be seen
by the previous examples both packages produce results that are consistent

with each other. In most cases it cannot be expected that both programs pro-
duce identical results. Differences in design primarily in the algorithm used
for data buffering and tagging will cause differences in the produced spec-
tra. Without careful analysis at the source code level it would be impossible

to attribute differences to any given design decision and therefore be able
to make decisions about which method is the most acceptable or accurate.
Given that both programs produce consistent results it shows that the meth-

ods used are suitable for extracting useful information from the triggerless

data generated by GREAT and the TDR data acquisition system.

6.8 Summary

This chapter has discussed how a user defined class was derived from the
base CSorter class and how CEvent objects passed to it where then used
in the specialised sorting section to extract physics information. The tagging

methodology used to perform delayed coincidences was discussed as well as
different tagging search strategies that were used. Also briefly discussed was
how data gathered from the specialised sorting section can be visualised using

117

histograms or other third party visualisation libraries.

This chapter has also provided some examples of how the techniques dis-

cussed are used to produce meaningful and useful results. Basic tagged spec-
tra have been shown indicating how recoiling nuclei can be discerned from

alpha decays in the DSSD. A calculation of the half life and lifetime of 254No

was also shown, proving that this data analysis method based on triggerless
data streams is viable for performing real world analysis.

Results generated from the TDRSorter data analysis program were com-
pared to results generated from the GRAIN data analysis program. In both

cases the same data set was used along with comparable sort programs. This

comparison provided a useful cross check to validate the results generated
from both programs.

118

Chapter 7

Conclusions

This chapter will briefly discuss whether the TDRSorter data analysis code
has met the goals set out in the introduction. An overview of the advantages,
disadvantages and limitations of the TDRSorter data analysis code imple-

mentation is also given. A comparison of the TDRSorter as it relates to

other software solutions available is discussed and finally a brief overview of

possible future improvements of the code base is also given.

Throughout this thesis, real world examples of the TDRSorter data analy-

sis code being used on data gathered from a real experiment have been given.
In all these instances the results produced from the code have been borne

out by what is expected from the physics of the various specific situations.
It can be seen through this that the TDRSorter class can be seen to produce

accurate results.

The TDRSorter data analysis code was designed with flexibility and control
in mind. As the code is split off into separate classes that handle individual

areas of responsibility it is easy to customise specific components to perform

specialist functions that are required by any given experiment. As long as
the interface that the component shares with classes that it uses and are

used by remains the same then a given component can be rewritten and
used with the rest of the framework of the application without needing to

alter other components. This ability can be seen as one of the advantages of

119

the TDRSorter data analysis code. If a specific experiment requires that a

specialised trigger is needed it can be rewritten easily as all the code for the
implementation is freely available. For example a custom trigger could be

required that does not build events from a silicon-gas TAC or an x or y pixel
in the DSSD but instead triggers from a focal plane gamma ray or electron.

In addition to the ability to rewrite core components is the amount of

customisation that is available whilst using the inbuilt settings mechanism.
Most of the variables used in the set-up of the data analysis code are read in
from a settings file at run time, it is therefore easy for a user to tweak the

parameters of event construction to be in line with the requirements of any

given experiment. For example the values of the forward and backward time

windows of the CBuffer class are read in from the settings file.

One of the main design choices taken in building the TDRSorter data

analysis code was to integrate with ROOT to provide a presentation layer
for visualising histograms and other data. This decision meant that the data

analysis was somewhat decoupled from the presentation of data although
this is compensated by the fact that is easy to integrate with other third

party libraries. As ROOT is cross platform the presentation of TDRSorter
data will work on both windows and Linux systems with little or no change.
Lack of availability of a cross platform graphical user interface toolkit for

c++ that was robust enough to meet the requirements meant that a custom
visualisation layer that was integrated closely to the data analysis code was
not implemented.

As briefly discussed in section 6.7 during the development of the TDRSorter
data analysis code another data analysis tool called GRAIN was developed.
GRAIN was developed with a different focus in mind and differs in design in

several areas. It is useful at this point to discuss the two tools and compare
their various strengths and weaknesses.

120

GRAIN was developed to provide easy online or nearline sorting to perform

online checks on the running experiments. As such it has been used by a wide
user base and has been continually expanded to the point where it has become

the main analysis tool used in many institutions. Written in Java, GRAIN

can be ran from any machine that has the Java virtual machine installed, this
differs from the TDRSorter data analysis code which needs to be recompiled
to work on different platforms.

GRAIN is designed to handle most main stream experiments, it however

requires expert intervention if a non standard experiment is to be analysed
e. g. angular correlation experiments. The process of event construction is
hidden from the user. If specialised buffering or triggering is needed it is
impossible for the user to write a customised component to perform the op-
erations as required by the parameters of the experiment. In essence the

only information the user is given is a pre-packaged event that is similar to
the CEvent class provided in the processEvent method of the specialised
sorting code. In general use this limitation may not be great, but in more spe-
cialised circumstances it becomes easier to use the TDRSorter data analysis
code.

Having two data analysis codes that can be used to analyse the same
set of data gives us the ability to perform cross checks on the veracity of
the results gathered from running data through either system. The cross
check performed in section 6.7 showed that the two data analysis programs
produced visually similar histograms. The results of the compared half-life

and lifetime calculations were both consistent with each other and with the

accepted value.

Any system can be improved upon and during the development of the
TDRSorter data analysis code some areas have presented themselves where
future development may improve the overall system. Apart from general
improvement of the efficiency of the sorting algorithms one area that could
be improved upon is the area of integration. An ideal solution would be to

121

provide a complete tool that included an inbuilt visualisation layer that could
be used to show histograms and other data without resorting to other third

party solutions. Improving on this area would significantly improve the user
friendliness of the data analysis code.

Additional improvements could also be made in the sorter set-up area, a

graphical user interface could be supplied to alter the various values used
internally by the sorting classes. Currently this functionality is provided by

having to manipulate text based configuration files. Other areas of improve-

ment could be to provide inbuilt functionality to perform calibrations on
the data, thus preventing the need for users to resort to other third party

solutions to perform these necessary tasks.

The use of either data analysis system is a viable solution for the data

analysis requirements of any experiment using the GREAT spectrometer and
the TDR data acquisition system. In certain areas the TDRSorter code

presents some advantages over GRAIN hopefully the code will be used in

these more specialised areas were more control over the construction and
triggering of events is needed.

Previous versions of the TDRSorter data analysis code and preliminary
results produced from the code have previously been presented at the IOP

conferences in 2003 and 2004 and also in poster format at the University of
Liverpool.

122

Bibliography

[1] Page RD et al 2003 Nucl. Instrum. Methods B 204 634

[2] Lazarus IH et al 2001 IEEE Trans. Nucl. Sci. 48 567

[3] Nilsson SG et al 1968 Nucl. Phys. A 115 545

[4] Nilsson SG et al 1969 Nucl. Phys. A 131 1

[5] Hofman S et al 1996 Z. Phys. A 354 229

[6] Oganessian Yu Ts et al 1999 Phys. Rev. Lett. 83 3154

[7] Oganessian Yu Ts et al 2001 Phys. Rev. C 63 11301R

[8] Hofmann S and Münzenberg G 2000 Rev. Mod. Phys. 72 733

[9] Simon RS et al 1986 Z. Phys. A 325 197

[10] Paul ES et al 1995 Phys. Rev. C 51 78

[ill M. Leino et al., Nucl. Instr. and Meth.. B 99 (1999) 653.

[12] Herzberg R-D J. Phys. G: Nucl. Part. Phys. 30 (2004) R123-R141

[13] http: //npg. dl. ac. uk/documents/edoc000/#GREAT

[14] http: //npg. dl. ac. uk/documents/edoc504/edocSO4. htm

[15] http: //nnsa. dl. ac. uk/MIDAS/DataAcq/TSformat. html

[16] M Fowler, K Scott: UML Distilled: A Brief Guide to the Standard

Object Modeling Language (Object Technology S.). Addison Wesley.

ISBN: 0321193687

123

[17] Rene Brun and Fons Rademakers, ROOT - An Object Oriented Data

Analysis Framework, Proceedings AIHENP'96 Workshop, Lausanne,

Sep. 1996, Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81-86. See

also http: //root. cern. ch/.

[18] R-D Herzberg et al. Private communication and Physica Scripta, ac-

cepted for publication.

[19] K Heyde: Basic Ideas and Concepts in Nuclear Physics. (Second Edi-

tion) Institute of Physics Publishing. ISBN: 0750305355

[20] B. Stroustrup: The C++ Programming Language (Special Edition).

Addison Wesley. (February 11,2000) ISBN: 0201700735

[211 Rahkila P http: //phys157. phys. ad. jyu. fi/grain/

[22] http: //www. gnu. org/software/gcc/gcc. html

[23] http: //msdn. microsoft. com/vstudio/

124

Appendix A

TDRSorter Data Analysis

Package Operation

A. 1 Overview

This appendix is essentially a tutorial on how to setup, compile and use
the TDRSorter data analysis code. A step by step guide on how to use the

code as provided on the cd in appendix D is provided along with information

on how to create specialised sorting classes and run the TDRSorter program.

A. 2 Requirements

The TDRSorter data analysis code can be compiled to run on both linux

and windows platforms. Any available c++ compiler should be able to build

the code on either platform. Throughout the development of the data analy-
sis code one compiler was tested on each system. On linux g++ [22] was

used whereas on windows, various versions' of visual studio [23] was used as
the compiler. In order to build TDRSorter on either windows or linux the

system must meet the requirements imposed by the relevant compiler.
'Versions 6.0, . net 2002 and . net 2003 have been tested.

125

An important requirement for compiling the TDRSorter code as it is pre-

sented on the CD is the presence of a fully installed and working copy of
the ROOT [171 framework. The current implementation of the data analy-
sis code uses ROOT histograms as a means of visualising the analysed data.

The ROOT framework is currently available on both windows and linux. The

TDRSorter has been tested with Version 4.04.02 on windows and 4.02.00 on
linux systems.

A. 3 Sort File Creation

Before compiling and using the TDRSorter data analysis code a specialised
sorting class must be created. This class is absolutely essential as the main
CSorter class of the analysis code defines two pure virtual functions to be

overridden in a class derived from the sorting classes. These functions essen-
tially prevent the code from being compiled unless they are implemented in a

class derived from the sorting class. Printed below is the minimal specialised

sorting class that can be compiled.

1 #include "CSorter. h"
2 class MySorter : public CSorter
3{
4 public:
5 MySorter();
6 void processEvent(CEvent* e);
7 void outputResults();
8 }; //end of sort class
9
10 MySorter:: MySorter() //Empty C++ constructor
11 {
12 }
13 void MySorter:: processEvent(CEvent* e)
14 {
15 }
16 void MySorter:: outputResults()
17 {
18 }
19 // entry point for TDRSorter Data Analysis program
20 int main(int argc, char *argv[])

126

21 {
22 MySorter* mysorter = new MySorter O;
23 mysorter->Run(argc, argv);
24 return 0;
25 }

Line 1 of the specialised sorting class specifies the main data analysis code

header (CSorter. h). This file is the only include file needed to get the code

to compile. This header includes all the files necessary for the compilation

of the rest of the components of the data analysis code as well as including

the headers for some components of the ROOT framework. The next stage

of declaring a specialised sorting class is to derive a class from the CSorter

base class as indicated on line 2. This class must inherit and implement the

two methods processEvent() and outputResults() from the base class.
These methods are declared on lines 6 and lines 7 and there subsequent empty
implementations are found on later lines.

The last section of this sort file that is of importance is on lines 20 to 25.

This is essentially the entry point of the data analysis code. Line 20 is the

standard c++ main function, where execution of the program begins. Line

22 creates an instance of the derived sorter class declared above and calls the

run method. This starts the execution of the sorting code. An important

point is that the command line arguments arge and argv contain the names

and locations of the runfiles that the data analysis code is to be run on. It

is important to pass the command line arguments from the main function to

this run method of the sorting class.

A. 4 Compilation with g-} + on linux platform
In order to compile the TDRSorter data analysis code on the linux plat-

form the g++ compiler is used. The commands below must be executed from

the shell to successfully build the code. It is assumed in the following that

all the source and header files are in the same directory or somewhere in the

users path.

127

g++ -I /usr/local/root x4.02.00/include/ -c *. cpp

g++ -L /usr/local/root x4.02.00/lib/ -1Cint -1Hist

-iCore -iMatrix -ldl -o TDR *. o

The first line executes the compilation stage of the g++ compiler which

is specified by the -c flag. The g++ compilation produces object code files

indicated by the ". d" file extension. These object files are used by the linking

stage of the process. The -I flag indicates that the following directory path

specifies a location where necessary include files can be found. In this case

the path points to the include directory of the ROOT distribution, indicating

where the necessary classes used by the TDRSorter data analysis code can be

found. The final section "*. cpp" indicates that all the c++ code files present
in the current directory are to be compiled.

The second line tells g++ to perform a link operation, the "-o" flag and

produce an executable file called TDR. The link is performed on all "*. o"

object files in the current directory. The -L flag specifies the directory

where any library files needed can be located. In this case it specifies the

lib directory of the installed ROOT distribution. Any libraries to be linked

with are specified by their name preceded with a -l e. g. the Hist library is

specified as -lHist.

A. 5 Compilation with Visual Studio on the

Windows Platform

Compilation on the windows platform is specific to the version of visual

studio used. As the process differs, step by step instructions are not given
here, instead a broad overview is given. In general a visual studio workspace
or solution is created and the TDRSorter include and source files are added
into it. The specialised sorting class is usually created in the "main. cpp"
file and is also added. The library and header file directories of the installed
ROOT distribution need to be added to the list of searched directories within

128

the visual studio environment. Assuming all of this is done it should be

possible to compile the code by following the standard steps of the given

environment.

A. 6 Usage

Regardless of whether the code was compiled in a linux or windows en-

vironment the operation of the TDRSorter data analysis code is the same.
The only caveat is that in the linux environment the executing program may

not be able to use the ROOT dynamic libraries. To fix this program the

following line is executed in the shell.

setenv LD_LIBRARY_PATH /usr/local/root_v4.02.00/lib/

This line sets the LDZIBRARY-PATH environment variable which gives
ld. so, the run-time shared library loader, an extra set of directories to look
for a required shared library in.

To run the TDRSorter data analysis program the following command is

used.

... TDR runfilel runfile2

This command simply runs the TDItSorter data analysis code on the spec-
ified runfiles. All of the external files such as the calibration file "calib. dat",
the veto file 2 "veto. dat", the threshold file3 "threshold. dat" and the sorter
configuration file 4 "sorter. cfg" by default are searched for within the current
directory that the data analysis code is executed from. Examples of all of
these files are present on the included CD.

'The veto. dat file specifies any channels to be excluded from the analysis
'The threshold. dat file specifies an energy threshold for a given detector channel that

a calibrated energy signal for that detector must exceed to be used in the analysis
4The sorter. cfg file contains all of the run parameters of the TDSorter data analysis

code e. g. tagger search depth, the use of a veto file etc.

129

Appendix B

TDRSorter Class Overview

B. 1 Classes

This appendix contains a quick overview of the main functionality of each

class. Although the names of each class where chosen such that their oper-

ation could be inferred from their title this section serves as a glossary to

allow the main function of a class to be known before it may have received
treatment in the main body of the text.

9 CiDGate

This class serves as a simple one dimensional gate. It is constructed

with an upper and lower limit floating point value. Various methods
are provided for setting and retrieving these pre-set limits. The main
method is bool passes(float value) which checks whether the value
passed in as a parameter lies inside or outside of the limits specified.
The method returns a boolean value of true if the parameter value is
inside the limits or false if it lies outside.

" CBuffer

The CBuffer class is responsible for taking data items from the
time ordered data stream and organising them into a time buffer. The

130

time buffer is constructed based upon user entered time durations i. e. a

specified forward search time and backwards search time. The CBuffer

class is discussed extensively in chapter 4.4.

" CCalibCoeff

The CCalibCoeff class is responsible for managing and applying the

calibration coefficients for all the detector channels defined in the sys-
tem. The calibrations are stored in a calibration file called `calib. dat'.
This file is a simple text file containing all the appropriate coefficients
that is read in by the class when it is constructed. This class also con-
tains the function that performs the calculation i. e. takes a channel ID

and raw data and returns an energy value. This function can be ex-
panded to perform different kinds of calibrations besides the standard
linear calibration. For example various non linear polynomial calibra-
tions could be implemented.

9 CClock

The CClock class is used internally by the CTDRDataltem class
to keep track of the synchronisation data items in the data stream.
This class can also be used to ensure that the data stream is in time

order.

" CError

This CError class provides simple logging functionality for the TDRSorter
data analysis code. Any relevant warnings or errors are output to the
same log file. The user may also make use of this class in the spe-
cialised sorting section to allow any logging necessary to be kept in one
centralised log file.

" CEvent

131

The CEvent class is essentially the package of data items that are in

prompt coincidence with each other. The central data structure used

to build this class is the CPixel. All data items in prompt coincidence

with the time-stamp of the pixel are placed into the event structure.

The packaged CEvent is the primary parameter passed into the spe-

cialised sorting class. This class is discussed extensively in section 5.5.

" CFloatHist

The CFloatHist class implements the CHistogram class and pro-

vides a histogram class that provides floating point precision count-
ing i. e allows bins of the histogram to be incremented with fractional

counts. The CFloatHist class is described in more detail in section
6.3.2.

" CHistogram

This class is an abstract interface that defines the behaviour a his-
togram should exhibit. e. g. incrementation, output etc. The concrete
histogram classes inherit from this to enable any type of histogram

to be treated generically i. e. to allow a common histogram container.
This class is discussed in more detail in section 6.3.2.

9 ClntHist

This class ClntHist implements the CHistogram class and pro-

vides a histogram class that provides integer precision counting. The

ClntHist class is described in more detail in section 6.3.2.

" CPixel

The CPixel class represents a DSSD X channel and a DSSD Y chan-

nel that are in prompt time coincidence with a triggering data item.

132

The two defining DSSD channels are also within specified time and en-

ergy constraints. The pixel encapsulates an event in the DSSD detector

that has a defined position. The CPixel class is described in detail in

section 5.2.

" CRaw

The CRaw class is a collection class that contains a histogram for

each individual detector channel in the spectrometer. The class incre-

ments each histogram with the data value of each data item before any
further filtering is performed. The CRaw class histograms provide a

record of the total counts in each channel of the detector system.

9 CRunData

The CRunData class is responsible for reading the raw binary data
from the data source. The class takes this data and reads it into mem-
ory in a series of structures that can later be accessed in the construc-
tion of the time buffer. The CRunData class is covered in more detail
in chapter 4.

" CSettings

The CSettings class is a utility class that is used to set various

parameters in the data analysis code. This class reads in data from

a file called `sorter. cfg' that contains various parameters that the user

can alter to customize the triggering and event construction processes
to fit requirements. Some of these settings are discussed in appendix
A.

" CSorter

The CSorter class is responsible for managing all the other classes
in the data analysis system and also controlling the overall flow of the

133

data analysis system. The various components of the class are discussed

throughout the thesis.

" CTagger

The CTagger class is responsible for the sequencing of events that

originate from a single pixel. This class along with the tagger manager
forms a crucial part in identifying delayed coincidences between events

such as recoil and alpha decays.

" CTaggerManager

The CTaggerManager class is used to manage the two dimensional

array of CTagger objects that map to the corresponding physical pix-

els of the DSSD detector. This class contains several methods for

adding, retrieving and clearing data in the associated taggers. This

class is discussed in section 6.4.3.

" CTDRDataItem

The CTDRDataltem class is the fundamental unit of data that is

extracted from the time ordered data stream. This class is used within
most other classes within the data analysis code. The types of data

encapsulated within this class are discussed in detail in chapter 3.

The final major class that is used in the TDRSorter data analysis code
is the custom, specialised sorting class that is derived by the user from the
CSorter class. This class is named by the user and contains all the sorting
code specific to the experiment being performed. The creation of the spe-
cialised sorting class is discussed in appendix A and the methods used within
it are discussed in detail in chapter 6.

134

Appendix C

Detailed TDRSorter UML

Diagram

135

*Pmon&Evwd(svwt, CEvwO. j. w: imrv, wow

. MAx, t. «, 1bo, oa

+9DKCTN9. lb. 120j
IMspy SEARcH STRATEGY

N croft ýýCTagWMrAgw(Dop :
_IM}Ci1QQMMwQr

"damp, "-CT wwgwo: ä. '1 wwW

*@"a CEvenrrvoid

-6-Al -W
"S. S thSP. gs SEARDl 8TMTEGYrvm

CT. gg..

0.0 dwlu&4cEvwtb
w r. rtv@rrFW'_$4
. R_rggsiOs n:

_
64

crooft *-CTaggsßCT. pp.
d s* »-CTag «pt'T, ags

*. "" ,,. rt, poe

"«"Ewwbab
. wr Wie,
4z-d

Cs«a.

"'nhbntwn: CCalibCoal
+'Tagger: CTaggerManapa
""runM1NCRunData
+'datalbm: CTDRDataksm
"'mybufferCBuMr
. 'rawCRav
"'demcbrPb. WCPis

ý'awarSem^Gc

"CSortsfo"md
ý -toy I+ CSatQ va. d
+a utDslauIap: vad
$Ou R»WbQvad

+Procaa('buRMCBuflsr}iioid
"plownEvsnt(evera: CEV«M'): void
+Run(argc *t .

'argvo: dw): IM

,
,
,

,

,,

,,

,,

,,

,,

CMa4d

SiSYpCTDRDMaMm* TDRD. talbm'

dewoy> IwOQcpmw
MemtDwibm(x: CTDRDWAk@m*j and
41kdYDftfa4m(Y'CTDRDmttMm'}i
#psU(Dai JCTDRDwbm-

*g. DIY
-CTDRDWmkvn"

CFIoatHlst

fMst. f oat'

+CFIoatHist(): voad
"CFIoatHst(size. int, file. ahar", c: CCaIibCoeff)void

destroy s 4CFloetHist(): Veid
C +new0peraban(): vad

MistData. ClntHkg500) . Inmaement(veIue oat)vad
+serFMeNams(fils: strirg)vod

+CRaw(filename: sbing. TextOutputbool): vad
------ wutaua): vad

+OuWo: vdd «crsate»
+Processrdi "CTDRDatatlem): void

--- «aaata» --- ClntHist

"hlst: lnt'

+ClntHist(): void

fClntH st(size. int, file: chsr'): void
CCdestroy » `CIntHist(): void
+Incrament(binant): void
+setFileName(fiie: stnng): void
+outputp: void

CBuf er

v"wvImnECTCRDatafsm"

1 USUSAaque<CTDRDataltsrfl"s

4 creata »+CBuNsr(badcwardThasButfer. IM, forwerdrlrmBufler. MQ: CBuRer
44 desIoy aa-CBu«"r f: CBuft,
+add(aemCTDRDataltamy BUFFS STATE
$isFulQ bool
+inaemsnt()vad
+pa1Q: CTDRDataitem-
+yetM(backwardsSearthTlms: yp, lorwardsSearchTlma. iM, typa: SEARCH TYPE): Iist<CTDRDatalmm">
+ge W I(backwwdSeaiohTwn.. lpwardSearchTlme: Int, typs. SEARCH_TYPE, UmeOftet: lnt): Iist<CTDRDataltsm">
MndNearat(backwardSearcATima: VA, brwerdSsarchTlms. IM, 4": SEARCH TYPE): CMRDatellem"
MMNwast(DackwardSearrhTime M, t 'a'dSearchTims"Int, type: SEARCH_TYPE, ömsOf set: Int): CTDRDateRem"
MuahBulbr() od

CEv. M

yixNCP6al

p&Xl CTDRDWNem

yMaX2CTDRDoUltem

yuY1. CTDRDataNsm

yssECTDRDa a em
9aTCTDRD. uNem
Br. CTDRDa4Nwn

jwAAtFmPCTDRDWNama
4overLatJxtcCTDRDwNoms

1"rwt *: bst-CTDROMaNsmý
f rALiwtimCMFU)atall@mý
4rpdLrtid-CTDRDauUsmm

« U. W I"cEv-MPGCPbuW): CEven
«cn"tt» MervOcconstCEwM)CEvwt

« doWW »-CEvent(: CEvs
~D. Evsnt 5r p ea)"Evwvdkopmpn

s<yya>ý

+CalIb. veaorCcoeff
*CCalibcoenp: raa
. CCalibCoeB(t'ilename sWng): void
« destroy ... CCe hbCoetl(): vdd
+calibrate(d CTDRDataflem'): ltoat
. eahbnte(channel unsigned short, data: unilgned short). 1bal

« Interface s
CHIstogram

<-c create 3-"CHIstogramo: Oiisto9ram

fIncrement(velue. int): void
+ouroutO void

CRunData

"detunUstvedor<CMRDetettem'>
«U8O'a

Dataßloek
+CRunData(filenemaakiny)"vold
'(destroy »+CRunDatao : void +header: Wodt_heade

+Procsss fle): CTDRDatskem" tdote: detaPalr[2045)
NsDetaQ tool

DataPair
"create) e how date: unslpned Int

4iI h data: unsigned nt

CCTDRDstalbm

cc. nnco. f

thannstld: unslynad short
dI ahvnsignsd shoat
iimasfamp:

_
U

-0irty: bool

44 create »+CTDRDataltem(low: unslgned Int, high: unsgned Int): void
« create >�CTDRData ltem(di: CTDRDataItem&)void
C' des" »-tTDRD@taltsmov. oki
+GetData(): unsigned short
GGetChannsIIDQ: unisigned short
4GetTen. stampO:

_I64
"SetAsUsedQvoid
"GetUsedO: hoot

+ResetUsedFlagOvoid

BloekHaadn

header id: unslgnsd charIBJ
-header sequenos: unsigned Wng

header stream: unsigned kxq

reader lape: unspned short
-. oder MyEnd an unsigned short
fiaader DalaEndfan: unspned short
iieader_dalaLan: unsinged long

Appendix D

TDRSorter Code CD

1 36

