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Abstract 

We develop a mathematical model that describes a new design for an environ- 
mentally friendly compact industrial reactor. The reactor consists of long and 
thin parallel channels, packed with pellets, with exothermic and endothermic 

reactions taking place alternately. Thin conducting walls separate the channels. 
A description of the chemical reactions and the heat transfer in this new cat- 

alytic reformer is presented. Much of the previous work on this design has been 

experimental. Until now, there remained the challenge to provide a detailed and 

accurate theoretical model, which would be used to analyse and develop design 

alternatives. 

We are interested in the coupling of the temperatures between the channels 

across the thin walls. First, a model example for fluids flowing in unobstructed 

channels is considered. The temperature in the wall is expanded asymptotically. 
The coupling in the temperatures is obtained from the solvability conditions. 
Numerical simulations of the uncoupled and coupled temperature distributions 

are presented. 

We then consider the case when the channels are packed with catalytic pellets. 
For the conditions between the channels and the wall we take a combination 
of Newton's law of cooling and Fourier's conduction law. Industrial data taken 
from experimental literature is used in numerical simulations. 

Thermal conductivity of the wall influences the coupling in temperatures. There- 
fore, layers of different widths and thermal conductivities within the wall are 
considered. Additionally, the coupling could be controlled by introducing an 
air gap inside the wall, where heat is also transferred via radiation. A detailed 

analysis of this case is presented. 

Boundary layer solutions near the inlet and outlet of the reactor are constructed 
and we provide an asymptotic approximation to the solution for both the linear 
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and nonlinear models along the full length of the reactor. 

A detailed model of a fluid flowing through a packed bed channel is given, and 

we explain the relationship to Darcy's law and Hartmann flow. Analytical ex- 

pressions for the equations of motion and the effective velocity are derived. 

Finally the transient problem is considered. We conclude that the steady state 

solution, which the transient problem evolves to, is exactly the same as the 

solution of the corresponding steady state problem. 
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Chapter 1 

Introduction 

1.1 Motivation 

The work presented in this thesis is predominantly motivated by the need for a 

mathematical model to describe a problem that arises in engineering. The chal- 
lenge lies in the modelling of a new design for a catalytic reactor (used to make 
hydrogen). This work is potentially of great importance in industry as it offers 
the opportunity to design a new, efficient and environmentally friendly compact 

reactor. The aim of this thesis is to provide a detailed explanation of how one can 

use the asymptotic method to accurately describe theoretical concepts associated 

with this new catalytic reactor. Although this work is primarily concerned with 

mathematical modelling and the use of the asymptotic expansions technique, we 
believe it is also important to highlight the industrial novelty and the physical 
background associated with this field of research. 

The industrial motivation 
The description of the industrial challenges associated with this new design is 

as follows: Using catalytic combustion to convert natural gas into hydrogen is 

well established and known as steam reforming. A typical plant could have 

a capacity of 1000 tonne per day and a heat duty of about 65 MW, with a 
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volume of over 1000 m3 (see [25]). Natural gas is burned in a furnace, where 
the predominant mode of heat transfer is radiation. Then there is a convection 

chamber, where additional heat is recovered from the hot gas leaving the radiant 

section. In these large chemical plants the hydrogen produced is mainly used 
in petroleum refining and also in the petrochemical industries for ammonia and 

methanol synthesis, see the reviews by Jamal and Wyszynskie [52] and Pigent 

[76]. A considerable amount of energy is required for the convection section, 

which is obtained from the combustion of the natural gas in the radiant section. 
In this radiant section the temperatures are in excess of 1500°C. At such high 

temperatures the formation of dangerous oxides of nitrogen from the air cause 

significant pollution, see [25] and [45]. Therefore, the industrial objective is to 

reduce the production of these pollutants and also reduce the size of the plant. An 

effective way of doing this is to combine catalytic combustion and catalytic steam 

reforming in a novel way: the new reactor could be visualised as consisting of 

a large number of parallel channels with endothermic and exothermic reactions 

occurring in alternate channels. Each channel is packed with pellets that are 

covered in an appropriate catalyst (to promote whatever reaction is taking place 
in that channel). This means that the large radiant `firebox' is no longer required, 

which would reduce the size by about 100 to only 11 m3 (see [25] and [26]). 

This would allow for a modular structure that could easily be scaled up or down 

depending on its need. The other major industrial advantage of this design is that 

the peak temperatures would be reduced to about 1000°C where the polluting 

nitrogen oxides are no longer formed. Another novelty of the design is that it 

also tackles the problem of the two balanced reactions being operated in parallel 

rather than in series: the parallel approach is more efficient, as the method of heat 

input is at the point where it is required. Much of the previous investigative work 
has been experimentally led (see, for example, [20], [25], [26], [38], [95] and [96]), 

but so far there has been a substantial lack of emphasis on understanding the 

interaction among the physical and chemical processes taking place. Until now, 
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there still remains the challenge to develop a workable design, paying particular 

attention to the theoretical concepts associated with the transfer of heat between 

the parallel channels. 

The mathematical motivation 
To date, little has been done from a mathematical modelling point of view re- 

garding the description of these types of catalytic reactors, which are complicated 
due to the nonlinearity of the transient first and second order differential and 

algebraic equations in the channels. In addition, the heat transfer process also 

couples the equations across the connecting wall. If a full time-dependent model 

of this reactor were to be constructed, with highly exothermic reactions balanc- 

ing highly endothermic reactions in neighbouring channels, then some solutions 

of the system of nonlinear equations may be unstable. This would result in dif- 

ficulties in using modelling techniques to identify possible operating conditions 

and design scenarios. In this thesis we use the asymptotic method as a tool, not 

only to provide information about the theoretical concepts behind what is phys- 
ically happening, but also to reduce the complications that numerical packages 

solving this problem may encounter. The model includes asymptotic analysis 

of both the fields within the thin interconnecting walls, and also the thermal 

coupling between the channels. In the physical phenomenon we describe, re- 

actions take place at relatively low temperatures. The mathematical model of 

such a reactor involves a reaction-diffusion system of nonlinear partial differen- 

tial equations with algebraic equations. It describes the chemical reactions that 

take place in the thin channels of the reactor as well as the effect of thermal 
interaction across the layers. A direct three-dimensional (3D) problem would 

require enormous computational resources and would probably not provide suf- 
ficient accuracy. Our mathematical model incorporates the above-mentioned 

asymptotic method, which enables us to use a 1D formulation to describe the 
leading approximation along the channels, and a 2D formulation to describe the 
temperature and concentration distributions across and along the wall. We take 
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many of the design and physical properties for the system of interest as fixed 

values. These are not considered to be absolute values as they could change as 
the design evolves. Many of these values may also relate to physical, chemical 

and/or transport properties and therefore could be functions of temperature, 

pressure, composition of reactants, flow rates in the channels, and properties of 
the catalyst. They provide an indication of the order of magnitude of the terms 

that have been calculated for a fixed set of inlet conditions or estimated as a 

good starting point for a design concept. 

Therefore, we need to address the following main issues relating to the design of 
the new reactor: 

" Asymptotic modelling of the coupling in the temperatures across the thin 

walled structure of the catalytic reactor, and the resulting effect of this 

coupling on the distributions of the temperatures and concentrations in 

the adjacent channels. 

9 Analysis of the effect of varying the resistance (to the transfer of heat) of 
the wall on the temperature and concentration distributions. 

e Analysis of what is needed to avoid failure of the system: understanding 
how one could prevent the endothermic reaction taking too much heat and 

consequently extinguishing the exothermic reaction. 

" Use of the asymptotic expansions technique to model the flow of a fluid 

through a packed bed channel. 

9 Use of the asymptotic expansions technique to analyse boundary layer re- 

gions associated with the model. 

" The inclusion of transient terms and the stability of the system. 

These are the key features in solving the problems that people working in this 
field have faced so far. An experimental study of this type would be very costly 
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and time consuming and may even result in the wrong thing being attributed to 

the breakdown of the process. Consequently, a mathematical model is vital for 

the progressive development of the work in this field, as it provides detailed infor- 

mation on the necessary operating conditions, and the key theoretical concepts 

required to meet all of the above challenges. 

1.2 Literature review 

Review of engineering literature 

Hunter and McGuire 1980, [49], give an early application of the reactor dis- 

cussed in this thesis. They are the first to suggest coupling of chemical reac- 
tions, by means of heat transfer, as an improved method for obtaining efficiency 
in catalytic heat exchangers. They recommend a process in which flameless 

combustion is involved, and highly exothermic reactions are suggested as a heat 

source for highly endothermic reactions. Many experimental studies have fol- 

lowed, which include the work by Branch and Tomlinson [20] on the feasibility 

of coupling methane reforming with catalytic combustion in a catalytic plate 

reactor. They deduce that the catalyst plays a vital role in the process, and 
they show how deactivation of this catalyst can have severe consequences on the 

operation and stability of the reactor. A theoretical and experimental study is 

given by Charlesworth [25] and Charlesworth et al. [26], where steam reform- 
ing and combustion of methane on micro-thin catalysts, for use in an industrial 

reactor, is discussed. They also demonstrate how this new design would make 
the catalytic reactor substantially smaller than existing conventional reformers. 
Frauhammer et al. [38] present analysis of the coupling of catalytic combustion 

and steam reforming in counter-current flow, using so-called ceramic honeycomb 

monolithic reactors. They show that in the middle of the channels there is a high 

temperature zone leading to a high conversion of heat. They also conclude that 
the performance of the reactor is affected by the catalyst distribution, the heat 
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capacity of the flows and the presence of the homogeneous reactions. Recent ex- 

perimental work includes that of Zanfir [95], and Zanfir et al. [96], where a more 

mathematical study, on the coupling of endothermic and exothermic reactions 
in a catalytic plate reactor, is presented, and a two-dimensional model is used. 
They take the reaction rate in the Arrhenius form (which is discussed in detail 

in Section 1.5). Their work explains that the catalyst loading (directly related 
to the pre-exponential factor in the reaction rate), the thermal conductivity of 
the wall, and the flow rate between each plate are key parameters, which need 

careful adjustment, to avoid hotspots or insufficient conversion in the reactor. 
When heat generated and heat consumed are not balanced locally, hot and cold 

spots are formed which could potentially damage the reactor. This is also con- 

sidered in the work by Worth et al. [93], where an explanation is given about 
the validity of the one-dimensional model. Khanna and Seinfeld [53] include a 

mathematical model of the packed bed reactor in their work, and emphasize why 

using a heterogeneous model is physically more realistic. These studies (Zanfir, 

Worth, Khanna and Seinfeld) confirm the importance of mathematical modelling 

with regards to industrial reactors, and the use of this modelling as a tool to ex- 

plore design concepts. However, neither transient terms nor diffusion/dispersion 

terms are included in these models. In general, in the work in this field, there 

tends to be a lack of emphasis on a thorough understanding of the interaction 

between physical and chemical processes taking place in the reactor. Other re- 

cent work on reactors include the mathematical models presented by Antipov 

et al. [5] and Kolaczkowski et al. [54]. In both of these papers a monolithic 

reactor is described, and asymptotic analysis is used, but their aim is to look at 
the formation of cracks and the breakdown of the catalysts. Chemical reactions, 

which would further complicate the problem, are not taken into account. 
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Stiff systems 
In the systems of differential equations that describe catalytic reactors, small 

coefficients usually multiply the principal derivative terms, giving stiff systems 

of equations. In our particular case we use the numerical package Femlab (which 

provides an equivalence to the limit solution) and we then construct the boundary 

layers separately. Stiff systems (characterised by widely varying eigenvalues) are 

encountered in many areas of applied mathematics. Curtiss [28] and Liniger and 
Willoughby [61] discuss efficient integration methods for stiff systems of ordinary 
differential equations. They present numerical examples and discuss the applica- 
tion to nonlinear systems. They analyse the advantages of using methods such as 
the forward Euler method, Newton's method and implicit integration formulae 

to solve nonlinear systems. Miranker [64] also discusses numerical methods for 

systems of differential equations, paying particular attention to methods of the 

boundary layer type. There is equivalence between singularly perturbed prob- 
lems and a certain subclass of stiff systems. The small parameter characterising 

a stiff system as one of the singularly perturbed type is not always identifiable. 

Miranker presents results showing how boundary layer techniques can be used to 

obtain numerical approximations, without having to identify this small param- 

eter directly. Similar work, employing singular perturbation methods for stiff 

systems, is carried out by Aiken and Lapidus [1]. Here, the thickness of the 

boundary layer is determined, and the numerical integration method presented 
is shown to be capable of high stability and accuracy. Hayes and Tanguy [47] 

look specifically at a convection-diffusion system (a stiff, nonlinear problem with 

chemical reactions) and present a modified form of what is known as the Mar- 

quardt's method. This is an implicit finite difference method and it provides an 

effective process for predicting the behaviour of the system. Other examples of 

work on stiff systems in packed bed reactor models includes that of Blouza and 
Coquel [17], Foss and Wasbo [36] and Iordanidis et at. [51]. 
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Sandwich structures 
In our work we consider a sandwich structure - three layers corresponding to 

the two channels of the reactor, with a thin wall between them. There is a vast 

amount of literature available on sandwich structures. Here we present a few 

examples of the on-going work in this field. Designers of composite structures 

need to assess decay effects associated with loading, and consequently, there is 

a lot of research being carried out on what is known as St. Venant end effects. 
A simple explanation of this is as follows: if a force acting on a small portion of 

an elastic body is replaced by another force (with the same resulting force and 

momentum), the redistribution of loading produces substantial changes in stress 
in the close neighbourhood of the loading. The stresses on the parts of the body 

that are far away from this portion essentially remain the same. The work by 

Baxter and Horgan [10] and Choi and Horgan [27] discusses the decay length of 
the St. Venant end effects with perfect and imperfect bonding for isotropic (has 

the same properties in all directions) and anisotropic (properties differ according 
to direction of measurement) sandwich structures. The main results include 

the fact that these end effects for an isotropic structure, with a soft middle 
layer, decay slower (have longer decay lengths) than those for a homogeneous 

isotropic strip. Also, the decay length is much longer for an anisotropic strip 
than for an isotropic strip, and for imperfect bonding rather than perfect bonding. 

The work presented by Benveniste and Miloh [13] is of a different nature: they 

study composites with highly conducting interfaces. They describe in detail 

the interface conditions and they derive a definition for the effective (averaged) 

conductivity of these composites. The modelling of steady-state heat conduction 
in an anisotropic layered sandwich is the focus of other work by Baxter and 
Horgan [9]. They consider the effect of increasingly imperfect thermal contact on 
the deformations of the sandwich structure. The main objective of the thesis by 
Avila-Pozos [7] is to apply mathematical models to problems of layered structures 
with imperfect interfaces. The application of the work in [7] is to increase the 

8 



performance of adhesive joints used in the design of aeroplane wing structures. 
Homogenisation and porous media 
The idea of averaging and homogenisation of porous media began in the second 
half of the 19th century with work by Maxwell, Rayleigh and then Einstein in 

1905 (see the references given in the book by Hornung [50]). Since then it has 

been a very active field of research in civil engineering, chemical engineering, 

mathematics and theoretical physics. In our work we consider a packed bed 

reactor -a structure consisting of parallel channels, which are packed with fixed 

spherical solid pellets. We model fluids flowing through this porous network. 
Because of the complicated nature of the microscopic boundaries, a rigorous 

solution to this problem is practically impossible. Usually an averaging process 

or a conceptual continuum model is used for problems involving a porous media. 
Many important examples of the applications of transport phenomena (transport 

of mass, momentum, energy etc. ) in porous media are given in the detailed works 

of Dullien [34], Hornung [50] and Polubarinova-Kochina and Falkovich [75], to 

name but a few. Allaire [3] and [4] considers the homogenisation of the Navier- 

Stokes equation in a domain containing many tiny periodically distributed solid 

particles. He shows the convergence of the homogenisation process to what is 

known as a Brinkman law, when a linear term for the velocity is added to the 

Navier-Stokes equation. He also derives Darcy's law for the limiting behaviour 

when the holes are large. Other work of this type is carried out by Bear and 
Bachmat [11] and [12]. They discuss transport phenomena in porous media 

and analyse the processes occurring in the solid-void interfaces. The work by 

Berlyand and colleagues [14], [15] and [40] looks at high contrast composites. 
The emphasis is on obtaining the effective properties (for example, the effective 

conductivity) associated with the random location of the inclusions and the small 
interparticle distances. In [18] and [19] Borcea gives additional results on what 
is known as the resistor-capacitor network approximation, to obtain the effective 
transport properties. The work of Brezis and Lions [21] explains the additional 

9 



`strange' term that is added to the equations of motion. This appears when the 

holes are of a critical size depending on their number and distribution. Prieur 

Du Plessis and Masliyah [77] consider a laminar flow through a rigid anisotropic 

porous media with varying permeability. Other work includes that of Kvernfold 

and Tyvand [56], Hayes, Afacan and Boulanger [44] and Slattery [85], in which 
heat transfer in reactors, flow through channels, and the prediction of the pressure 
drop in packed beds, can be found. 

Exponential nonlinearities and transient problems 
Our work studies the coupling of temperatures across the thin wall of a packed 
bed reactor. The transient problem we present confirms that the steady state 

solution discussed in the main part of the thesis is stable. There is extensive 
literature on the stability of solutions of problems in reactor design. Those with 

reaction rates of a similar form to the one we take include the work on non- 

adiabatic tubular reactor models (non-adiabatic means that heat exchange with 
the surroundings is taken into account), for example, Hawkings and Spence [43], 

Heinemann and Poore [48], Uppal, Ray and Poore [88] and [89]. The work of 
Hawkings and Spence [43] is concerned with the steady states of a system of 

nonlinear partial differential equations. The eigenvalues of a Jacobian matrix 

are compared with the eigenvalues of a corresponding preconditioned Jacobian 

matrix, to detect Hopf bifurcations and analyse the stability of the solutions. 
Heinemann and Poore [48] study the multiplicity and stability of steady states, 

and the oscillatory dynamics of the system. They use numerical procedures to 

present Hopf bifurcation formulae, which determine stability and location of the 
Hopf points. Heinemann and Poore also present numerical simulations, which 

show how temperature changes with the parameter known as the Damköhler 

number. In [88] the types of dynamic behaviour are also classified, and the ex- 
istence and stability of limit cycles is predicted. Uppal, Ray and Poore [89] 

present a system of first order differential equations for the reactor, and analyse 
the evolution of multiple steady states and limit cycles over time. Plots of the 
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Damköhler number against temperature are given, to show the effect of certain 

parameters on the behaviour. The work on unsteady fronts by Balmforth et 

al. [8] suggests that travelling waves, in some models for catalytic reactions, 
lose stability, and the authors also demonstrate the similarity to combustion sys- 
tems with Arrhenius kinetics. They employ the method of matched asymptotic 

expansions to find the asymptotic speed of the front of the chemical reaction. 
Needham and colleagues [59], [63], [68] and [69] also consider wave fronts in 

chemical reactions. Chapter 1 of Needham's book [59], and the paper [69] refer 
to what is known as the Fisher equation and they discuss the position of bifur- 

cation points and their relation to reaction-diffusion type wave fronts. McCabe, 

Leach and Needham [63] examine a coupled system of singular reaction-diffusion 

equations, with the objective being to predict when travelling waves are most 
likely to arise. The paper [68] is associated with the accelerating wave fronts for 

a system of reaction-diffusion equations, and matched asymptotic expansions are 

used to obtain a complete solution over a large time. 

1.3 Structure of the thesis 

Throughout the thesis we use the asymptotic expansions technique, discussed in 

detail in the next section, to model the transfer of heat between the channels of 
the catalytic reactor. Our first aim is to present an illustrative example showing 
how an asymptotic method is used to model heat transfer between fluids in two 

adjacent channels, where the channels are separated by a thin conducting wall. 
This is the objective of Chapter 2. Our model consists of a two-dimensional (2D) 

problem with nonhomogeneous equations in the channels and homogeneous equa- 
tions in the wall. We introduce a small parameter and expand the temperatures 

asymptotically. Consequently, this allows us to obtain a set of solvability condi- 
tions for a set of boundary value problems, which contains a coupling term, that 
is, the difference between the leading order temperatures in the two channels. We 

11 



consider a particular example showing how this difference in temperatures affects 
the temperature distributions along the channels. We then extend this analysis 
to the more physical problem where we consider the case when we have two ho- 

mogeneous 2D steady state chemical reactions taking place in the channels, one 
that gives out heat and the other that consumes heat. We follow the asymptotic 

method described in the first part of the chapter, expanding the functions that 

denote temperature and concentration of a particular reactant, and, as before, 

we obtain the coupling terms from the solvability conditions. Solving the system 

numerically for a set of model parameters, we present the results of coupled and 

uncoupled temperature and concentration distributions along a channel of fixed 

length. 

Chapter 3 looks in more detail at the model for the industrial packed bed cat- 

alytic reformer. We explain the novelty of the design. We describe the geometry 

of the multi-channel reactor and the formulation of the problem, specifying the 

endothermic and exothermic reactions that occur, as well as the non-dimensional 

parameter associated with the geometry. The equations for molar and energy 
balances, with a detailed explanation of the coefficients and the reaction rates we 
take, are explained in the next section. Our aim is to study how heat is trans- 
ferred across the thin conducting wall between the two channels of this chemical 

reactor and how temperature and concentration distributions are effected as a re- 

sult. We expand the temperature in the wall asymptotically as before and using 
the conditions between the wall and the channels we obtain the coupling terms 

which relate the fluid temperatures in the two channels. The full well posed sys- 
tem of equations is then solved numerically for both a set of model parameters 

and a set of industrial parameters taken from the appropriate literature. Uncou- 

pled and coupled graphs are presented in both cases to show the effect of this 

coupling on temperature and concentration distributions along the channels. A 

note is made in this chapter about the fact that the numerical package does not 
solve the system precisely: the numerical solution does not satisfy the zero-flux 
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conditions that are set at the outlet of the reactor. Chapter 3 focuses on the 

analysis of the main trends of the temperature and concentration distributions: 

more detail on boundary layer regions near the ends of the channels is given in 

Chapter 5. We also discuss the effect of the geometry of the pellets inside the 

channel on the overall temperature distributions and we show that if the volume 
fraction of the pellets remains constant, the graphs do not change significantly 

as the surface area is increased. In the last section of Chapter 3 we explore the 

effect of changing the wall: the wall is constructed of layers of different widths 

and thermal conductivities. We assume ideal thermal contact between the layers. 

As a result, the forms of the coupling terms and the overall heat transfer coef- 
ficient change. Three examples with their corresponding numerical simulations 

are discussed in detail. 

In Chapter 4 we extend the ideas developed in Chapter 3 and focus on the con- 

cept of having an air gap inside the wall: the wall is made up of three layers 

where two of those layers are some conducting material and the layer between 

them is filled with air. As a consequence, there is an additional transfer of heat 

via radiation across the air gap, resulting in the conditions within the wall chang- 
ing significantly. The radiation condition contains nonlinear terms (only linear 

terms appeared in the conditions in Chapter 3), which means that the coupling 
terms cannot be written analytically. Nevertheless, we construct the asymptotic 

expansion for the temperature in the wall as before and obtain the coupling 
terms numerically using Femlab. Temperature and concentration distributions 

are presented, to show the effect on the coupling when the parameters associated 

with the air gap are changed. One conclusion is that for this particular set of 
industrial data, there is no significant change in the graphs when the width of 
the air gap is changed slightly. The explanation for this is given in detail in 

the last section of Chapter 4. Additionally we consider the sensitivity to certain 
boundary conditions and plot the corresponding cases for the air gap, together 

with uncoupled and coupled cases for comparison. The final section is associated 
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with the limiting air gap case, when no physical air gap exists. We show that, 

in order to obtain accurate and physically realistic results, conduction as well as 

radiation needs to be considered. 

Chapter 5 includes an analytical analysis of the equations and conditions in the 

previous chapters. We present a detailed explanation of the full solution satisfy- 

ing all the boundary conditions. We first normalise the nonlinear differential sys- 

tem. The problem is then written in the form of a singularly perturbed boundary 

value problem, with small coefficients multiplying the second order derivatives 

for the vector Z, whose six components are unknown functions. The first half 

of this chapter deals with the linear case: we linearise the problem by taking 

the solid temperature upon which the reaction rate is exponentially dependent 

as the solid temperature at the inlet. Since the coefficient in front of the second 

order derivative is small, we first consider the limit case: we set this coefficient 

equal to zero. We compute the eigenvalues and corresponding eigenvectors of the 

limiting differential system, and the constants associated with the boundary con- 
ditions. However, some inlet conditions are not satisfied, which implies that the 

corresponding functions change rapidly near this region. We therefore construct 
boundary layers for these functions: we consider the full differential system, 

which contains the small coefficient, and we obtain the eigenvalues, eigenvectors 

and constants associated with this full system. The solution obtained from this 

process gives small discrepancies in all the conditions at the outlet. This implies 

that all six components of the vector Z have boundary layer regions at the outlet 

and these are constructed accordingly to compensate for any errors in the condi- 

tions. The full asymptotic solution is a combination of the solution of the limit 

problem and the boundary layers at both the inlet and outlet. We also present 
the numerical results showing the magnified regions near the inlet and outlet. 
The second part of Chapter 5 deals with an approximation to the nonlinear 

problem. We assume that the problem can be solved in three steps for three 

regions that make up the length of the channel. The three solutions are `matched' 
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to give the overall solution. In the first region we solve the nonlinear equations 
for the functions that change rapidly near the inlet. The second region is one 
in which the nonlinearity does not play a significant role in the distributions 

of temperature and concentration and therefore, we take a modified form of the 

solution for the linearised system in this region. The third region, associated with 
the outlet proves to be the most difficult. The solution for the region at the outlet 
is made up of two parts: one that depends on a slow variable, and the other that 

depends on fast variables. The boundary layer region for the fluid temperatures 

starts closer to the right end than the boundary layer regions for the other four 

functions. We solve the equations for these fluid temperatures separately and 
then substitute these into the remaining four equations. The solutions in the 

three regions of the channel for the nonlinear case are consequently matched. 
The results of the temperature and the concentration distributions are presented 
for the full solution and for the magnified regions near the inlet and outlet. 

Our objective in Chapter 6 differs from the previous chapters in the fact that 

the main emphasis shifts slightly from the transfer of heat between the fluids 

in the channels to the specific case of a fluid flow in a channel which is packed 

with pellets obstructing the flow. Previously we used constant values for the 

coefficients, and we took 1D equations in the channels of the catalytic reformer. 
This chapter focuses more on how one could model the flow of fluid through 

a channel that is randomly packed with pellets. We compare two 2D models: 
the first assumes a certain arrangement of the pellets and the second looks at 

what is known in the literature as a homogenised channel. In Model 2 the 

governing equations contain an additional term that accounts for the fact that 

we have obstructions in the flow. Our aim in this chapter is to write the governing 

equations for the homogenised fluid and the solution for the homogenised velocity 
in terms of the properties of the real fluid described in Model 1. We expand the 

velocity and the pressure asymptotically and from the leading order terms for 

the velocity we derive what is known in the literature as Darcy's law. We also 
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show the similarity to Hartmann flow, which is known for problems involving 

magnetic fluids. Both Darcy's law and Hartmann flow are discussed in detail in 

the next section. We then write the full analytical representation of the average 

velocity, across any cross-section of the homogenised channel, in terms of known 

quantities. The idea of the pellets being arranged in a certain way is extended 
to more complicated arrangements, and similar analysis is carried out for these 

cases. 

In the final chapter, Chapter 7, we return to the idea of the full catalytic reactor 

with exothermic and endothermic reactions taking place in adjacent channels, 

although this time the emphasis is on the transient problem. We expand the 

temperature in the wall asymptotically. We follow the methods used in Chap- 

ter 3 to find the coupling terms and then solve the problem numerically for a 

certain time interval. We show that the results for the steady state case are 

exactly those that the solution of the transient problem converges to over time. 

This emphasizes that the steady state case described in the previous chapters is 

physically valid. We also explore the sensitivity of the boundary conditions and 
the initial conditions on the temperature and concentration distributions. We 

provide a detailed summary of the effect on the graphs when these conditions 

are slightly perturbed. 

1.4 Mathematical background 

1.4.1 Asymptotics in thin domains 

The main feature of the asymptotic technique used here is to present solutions 

of problems as series in powers of a small parameter, say e. These expansions 

are asymptotic and give a sufficiently accurate approximation to the solution, 

see [55] and [70]. 

The analysis of laminar flow of a fluid through a thin domain is known in the 
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theory of hydrodynamics as the lubrication theory, see, for example [70], [72] and 
[87]. This theory assumes that the viscous term of the Navier-Stokes equation 
is much greater than the inertia term, and therefore, the inertia term can be 

neglected. Here we present a detailed explanation of this lubrication theory, 

using asymptotic expansions for the velocity and the pressure, and we show how 

the 2D problem can be reduced to the 1D problem for the leading order term of 
the velocity. 

Ill\ 
y= eh+(x) 

Flow of fluid 

two rigid boi 

= -eh- (X) 

V 

Figure 1.1: The flow of fluid through a thin domain. 

Consider an incompressible fluid flowing through a thin space between two fixed 

rigid bodies as shown in Figure 1.1, where h± (x) are some given functions of the 

space parameter x, and e is a small parameter, 0<E«1. The 2D governing 

equations, relating the velocity and the pressure, are the steady state Navier- 

Stokes equation and the continuity equation given by 

-(v(x, y) - V)v(x, y) + T1*V2v(x, y) - 
17p 

(x, y) = 0, (1.4.1) 
P 

7 "v=0, (1.4.2) 

-oo <x< oo, - Eh_(x) <y< Eh+(x). 

Here, v is the velocity, q* is the viscosity, p is the density, and P is the pressure. 
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We consider the case when the velocity increases as the distance between the 

rigid bodies decreases, that is, we assume that the viscosity is small, r7* = E2O, 

where 77 is of order 0(1). The governing equations above contain the nonlinear 
term (v(x, y) " V)v(x, y)), and the rigid bodies are assumed to be fixed, so we 
have the non-slip boundary conditions 

v(x, fsh±(x)) = 0. (1.4.3) 

In order to solve the system (1.4.1) - (1.4.3) we first simplify the problem by 

assuming that the space between the rigid bodies is symmetric, see Figure 1.2, 

such that h+(x) = h_(x) = h(x). 
y 

h(X) 

ch(x) 

Figure 1.2: A simplified model of a fluid flow through a thin symmetric domain. 

We also introduce a scaled coordinate T such that 

Eh(x) , 

Conditions (1.4.3) then imply that v(x, ±1) = 0. 
The formal asymptotic expansions for the pressure and the velocity are given by 

P(x, T) = P(°) (x)T) + EP(l) (x, T) + e2P(2) (x, T) + ..., 
(1.4.4) 

v(x, T) = v(°)(x, T) + ev(l) (x, T) + 62v(2) (x, r) + .... 
(1.4.5) 

Rewriting the continuity equation (1.4.2) in terms of the scaled coordinate, and 
substituting the expansion for the velocity given in (1.4.5), we obtain the follow- 
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ing, where r- = r(x): 

°=°'V (x, T) _ 

('h(x)) 

(0 (0 
' 

(vl(x, T), v2(x, T)) 

9v 3v1 ÖT 1 0V2 

Ox 
(x3T) + 

ÖT 
(x5 T) 

(9x 

(x) + 

ish(x) 
OT 

(XIT ) 

0v1 h(x) avl 1 0V2 
Ox 

(xý T) -T h(x) Or 
(xý T) + 

eh(x) Or 
ýxý T). 1.4.6) 

From the leading order term of (1.4.6), we find that v20) = A(x), where A is some 
function of x. However, the non-slip conditions at T= ±1 imply that 

v2°ý - 0. (1.4.7) 

The next term in the asymptotic expansion given by (1.4.5) is the following: 

av«» av(°) av(l) h(x) 1 (x, r) - Tlt'(x) 1 (X, T) +2 (X, T) _ Ox aT aT 

Now, rewriting the momentum equation (1.4.1) in terms of the scaled coordinate, 

and substituting the expansions for v and P we have 

(Öx' 

elt(x) 0T /J 
(V(°)(x, T)+ev(1) ýxý T)+... ) 

2 
+E27] 

(002X2 
+ 

E2(h(x))2 ÖT-2 

)(v(0)(x, 
T) + EV(') (x, T) + 

... 
) 

(cix' 
Eh(x) aT / 

(Pýýý (x, T) + EP(1) (x, T) + ... 
) = 0. 

Due to (1.4.7), the leading order term from the momentum equation above gives 

P(°) = P(°) (x) 

that is, the leading order pressure does not depend on the scaled coordinate. The 
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problem for the next term (of order 0(1)) is given by 

°) 
äv1°) v21) x, 7)19v«» 77 02v1°) C- 

vl (x, T) Ox 
(x, T) h(x) 8T 

(x 7)+ (h(x))2 0, r2 
-4X3 T )/ e(1) 

1 do) (x) e(1) 
al) (x' T)e(2) = 0, (1.4.9) 

P dx Ph (x) a( 

where e(j), j=1,2, are unit vectors parallel to the x- and y- axes, respectively. 
Equation (1.4.9) implies that 

Pýlý = P(l) (x), 

and 

ý°ý( ýövl°) v21)(x, T)Ov(°) r7 ä2v1°) 1 dP(°) 
-V1 (xýT 

x lxs T) h(x) ÖT 
(x' T)+ (%l( x))2 (7-2 

(x, T) 
p dx `x) _ ý. 

Stokes flow 
We assume that the velocity and its derivative are small so that any product of 
the two is significantly smaller than any other term in equation (1.4.1). Therefore, 

the term (v(x, y) " V)v(x, y)) may be neglected. As a consequence, the equations 
for the system become 

a2-'x 
aý0) avý1) (x, T) = 0. (1.4.10) h(x) 

ax 
(x, T) - Th'(x) 

v- (x, T) + 0-r 

1 ýa 

-2 
(x T) - 

(h(x))2 dý( ) 
(x) = 0, (1.4.11) 

P'g 

with v1 (x, f1) = v21) (x, f1) = 0. 

Equations (1.4.10) and (1.4.11) are what is known in the literature as the lu- 

brication model. Examples when the thin domain is of a constant thickness are 

considered by Ockendon and Ockendon [70], Parker, Boggs and Blick [72], and 
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Streeter and Wylie [87]. Here, when h(x) is constant, h say, solving (1.4.11) for 

vi°), we obtain the following quadratic equation in the scaled coordinate T: 

a (°) 
v(°) = C(x)(T2 - 1), C(x) = 

2Pil ddx 
. 

(1.4.12) 

This implies that, for any given x, to leading order, the horizontal component 

of the velocity has a parabolic profile in the thin domain and from (1.4.7) the 

vertical component is zero. 
In Chapter 6 we model the flow of fluid through a packed bed channel. We 

compare the results of two cases. The first is when we assume the pellets can 
be arranged in such a way that the fluid flows through the thin spaces between 

the layers of pellets, and in this case we show that the horizontal component 

of the velocity has a parabolic profile, in the same way as above. The second 

model describes a homogenised channel and we show that, in this channel, the 

velocity distribution is flat across the main section but decays exponentially near 
the walls. This effect is similar to the model of Hartmann flow (described in the 

following section) which is used to model magnetic fluids. 

1.4.2 Hartmann flow 

In this section we present a classical model for what is known in the theory of 

magneto fluid dynamics as Hartmann flow (see, for example, [22], [42], [57] and 
[66]). For a fluid moving in a magnetic field between parallel plates, where the 

b 

t 
Figure 1.3: An infinite channel formed by two parallel plates. 
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magnetic field b is perpendicular to the plates as shown in Figure 1.3, and the 

space between the parallel plates is long and thin (so we assume that the velocity 

and the magnetic fields are one-dimensional (1D)), the governing equations can 
be reduced to give 

O'u 
(y) ýy2 (2J) + Ha 

19Y 
a(y)+H,, 

-OU(y)=O y 
for -1<y<1, (1.4.13) 

where Ha, is known as the Hartmann number. The conditions on the velocity 

u(y) and the induced magnetic field b(y) are 

U=01 
b±b=0 

at y=f1, 
y 

(1.4.14) 

where c is a constant associated with the conductance of the walls. The solution 
(see [66] for relevant details) of system (1.4.13) with conditions (1.4.14) is 

n(y) = u* 1- cosh(Ha, y)l b(y) y+u,, sinh(H. y) (1.4.15) C cosh(Ha) / Ha cosh(HQ) 

where the constant u* is the characteristic magnitude of the velocity, specified 
in [22], [42], [57] and [66]. The solution for the velocity in equation (1.4.15) 

corresponds exactly to the solution we derive for the velocity in the homogenised 

channel in Chapter 6. For Hartmann flow, an increase in the Hartmann number 

corresponds to a flattened velocity profile in the main part of the channel, but 

produces boundary layers called Hartmann layers, near the plates. For large H,, 

there is an exponential decay in the velocity near the plates. We show that a 

similar concept holds in our model for a fluid flowing through a packed bed. 

Darcy's law, discussed in the following section, gives a relationship between the 

velocity and the pressure. In Chapter 6 we derive Darcy's law for our particular 

case of a fluid flowing through a packed bed channel of a catalytic reactor. 
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1.4.3 Darcy's law 

Darcy's law is used widely in the literature for predicting velocities and flow rates 
through porous media (see, for example, [11], [12], [16], [44], [62] and [72]). It 

states that, for zero body force, the velocity of a fluid flowing through a porous 

media is of the form 

dP 
U=--- 

77 dx ' 

where u is the velocity, ' is the permeability, 77 is the viscosity, and P is pressure. 
In Chapter 6, we model a homogenised channel with effective properties and 
derive an expression for the effective velocity of a fluid flowing through a packed 
bed reactor, where the coefficient 1/a multiplies the second order derivative. 

When a is large, we have a singularly perturbed problem, whose limit solution 

relates the velocity and the pressure gradient in exactly the same way as in 

Darcy's law. We show that away from the boundaries of the channel, to leading 

order, we have a flat velocity profile, in accordance with Darcy's law. However, 

close to the boundaries the velocity changes exponentially; the corresponding 
details are given in Chapter 6. 

1.4.4 Singular perturbation 

Singularly perturbed boundary value problems are usually characterised by a 

small coefficient multiplying the highest order derivative. They differ from reg- 
ularly perturbed boundary value problems in that the asymptotic solution is 

not a smooth function of the small parameter, and as a consequence, boundary 
layer terms need to be constructed. We use the technique of compound asymp- 
totic expansions (see, for example, [7], [55], [65], [67], [70], [83] and [90]), in the 
first part of Chapter 5, for the full linear system of differential and algebraic 

reaction-diffusion equations associated with the catalytic reactor. 
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7' = qo Z' = 4'i 

Figure 1.4: A thin rod connecting two bodies, which are maintained at constant 
temperatures. 

To illustrate the technique, we present a simple example, see Figure 1.4, where 

a thin rod connects two large bodies, which are maintained at constant temper- 

atures (for a similar example see [55]). We allow the thermal conductivity of 

the rod to be a function of x, and we allow the temperature of the surrounding 

medium to vary in x. We consider a Dirichlet boundary value problem for a sec- 

ond order differential equation where the small coefficient multiplies the highest 

order derivative: 

e2T"(x, E) - r(x)T (x, e) = p(x), 0<x<1, 

T(0) = qo, T(1) = ql, (1.4.16) 

where T is temperature, r and p are smooth, qo and ql are given constants, and 

r(x) >0 for xE [0,1]. 

Limit solution 
The limit solution (when e= 0) is 

To(x) =--, 
(x). 

The above solution may not necessarily satisfy the boundary conditions; this 

implies that we need to construct boundary layers near the left and right ends. 
Boundary layers 

In order to compensate for the discrepancies in the boundary conditions left by 

the limit solution, To (x), we approximate the solution for the function T (x, E) as 

T (x, e) ý-- To(x) +V (X) +W (Y); 
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where V is a boundary layer function, which compensates for the error at the left 

end, and W is a boundary layer function compensating for the error at the right 

end. The independent variables, X and Y, are scaled coordinates in magnified 

regions near the ends, such that, 

X=x and y= 
1-x 

The boundary layers decay as we move away from the end regions. 
Boundary layer at the left end 
The model problem (independent of the small parameter) for V is 

Vo (X) - r(0)Vo(X) = 0, X>0, 

where we have fixed the function r at x=0. The corresponding boundary 

conditions are 

Vo(0) = T(0) - To(0) = qo - To(0), 

and Vo(X)-; 0 as X->oo. 

The solution for the above problem for VO is given by 

Vo(X) = (4o - To(O))e- r(o)x. 

Boundary layer at the right end 
The model problem (independent of the small parameter) for W is 

WO' (Y) - r(1)Wo(Y) = 0, Y>0, 

where we have fixed the function r at x=1. The corresponding boundary 

conditions are 

Wo(0) = T(1) - To(1) = qi - T0(1), 

and Wo(Y) -* 0 as Y oc. 
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The solution for Wo is given by 

Wo(Y) = (q'i - To(l))e- r(i)Y 

Consequently, to leading order, the solution of (1.4.16) is the sum 

T(x, e) = To (x) +Vo(X) +Wo(Y) 

_ 
P( 

x) 
+ (qo - To(0))e- r(o)X + (qi + To(1))e- r(1)Y 

_ 
P(x) + (qo +1 

(0)) 
e- r(o) E+ (q, 

_ 
(1)1 

er(x) 
r(0) J r(1) J 

Similar analysis is carried out in Chapter 5 for the model describing the exother- 

mic and endothermic reactions taking place in the adjacent channels of an in- 

dustrial reactor. We explain how the numerical solution corresponds to the limit 

problem, and we construct asymptotic approximations for the boundary layers 

in a similar way to what is presented here. 

The second part of Chapter 5 is associated with a nonlinear problem. We ap- 

proximate the solution by taking three separate regions along the length of the 

channel, and we then use a certain matching procedure, sometimes called "the 

method of inner and outer expansions" (see, for example, [59], [68] and [90]), to 

join the solutions in the three regions. For our particular case of the catalytic 

reactor, the `outer' region is the main part of the channel, and the `inner' regions 

are associated with magnified areas at the ends of the channels. 

1.5 Physical and engineering background 

1.5.1 Packed bed reactors and balance equations in the 

channels 
Packed bed reactors, of the type we consider in the present work, usually con- 

sist of parallel channels filled with pellets, which are covered in a catalyst that 
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promotes the chemical reactions taking place inside the channels. The velocity 

profile in a packed bed is quite complex as the fluid must pass through the pore 

network formed by usually randomly packed particles. The average velocity pro- 
file at a macroscopic level is approximately flat in the main central portion of 
the bed but changes rapidly near the walls of the reactor (see, for example, [30], 

[45], [60], [71] and [80]). In the previous section we explained how this relates to 

the theoretical concepts known in the literature as Darcy's law and Hartmann 

flow. Usually in applications, the profile is considered to be flat along the entire 

cross-section of the bed, and the changes that occur near the walls are ignored 

(see, for example, [23], [29], [45], [53] and [91]). In the literature on chemical 

engineering there are three types of reactors discussed. The first is the homo- 

geneous reactor in which a single phase, i. e. only the fluid phase, is modelled; 
this is usually in cases when there is no packed bed. For cases when there is a 

packed bed, one model is for the pseudo-homogeneous reactor and the other is 

for the heterogeneous reactor. In the pseudo-homogenous reactor, the solid and 
fluid temperatures are the same at any given point. In the heterogeneous reac- 
tor, which is the most physically realistic (see, for example, [45] and [53]), the 

fluid and solid phases are accounted for separately, with heat and mole balance 

equations written for each phase. For the model considered in this thesis we de- 

rive the equations for a non-adiabatic heterogeneous packed bed reactor. Other 

work on steady state dispersion models for packed bed reactors and the kinetics 

of catalytic reactions can be found in the work by Hayes and Kolaczkowski [45], 

Hayes et al. [46], Slattery [85] and Spence et al. [86]. 

For our model, dispersion is included in the fluid phase balance equation only. 
In the energy balance equations diffusion is taken into account in both phases, 

since they both can conduct heat. 

Consider the reactor volume element shown in Figure 1.5 (a similar description 

of the equations can be found in [23] and [45]), where H denotes the enthalpy 
(heat) of reaction and F is the molar flow rate. 
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T 
---------------------------- 

qconv 

H(x) H(x + Ox) 

F(x) F(x + Ox) 

X, gconv x+ Ox 

Tw -------------------------- 

Figure 1.5: Differential volume element used to obtain molar and energy balances 

for the non-adiabatic packed bed reactor. 

Fluid mole balance 
(without superimposed dispersion term) 

[Moles in] - 
[Moles 

out] - 
[Moles transported to cat. surface] = 0. 

where 

and 

[Moles in] - 
[Moles 

out] = 
[F] 

ý- 

[F]. 
+ox 

= -AF 

[Moles transported to cat. surface] = 

[mass transfer coeff. 
] 

x 
[cat. 

surf. area] x 
[mean 

conc. 
] 

x 
[mole frac. ] 

= kmLSCf(Yf - Ys), 

giving 

0= -OF - kmLSCf(Yf - Y3). (1.5.17) 

The solid particle surface area per unit bed volume, denoted by a,, is given by 

os av = QV where AV= A, Ax, 

28 



and the molar flow rate F is related to the mole average velocity v., as follows: 

F=v., A, CfY1. 

Here A, is the cross-sectional area of the packed bed, and Cf is the mean fluid 

concentration. Dividing (1.5.17) by A, Ax and considering the case when the vol- 

ume element becomes small (when it approaches its differential volume element), 

we have 

0= -v., 
df-k,,,, 

a�(Yf - Ys). 

Superimposing the dispersion term, the steady state fluid mole balance equation 
becomes 

0 De 
d 
dxf 

vx dxf - kma, (Yf - Ys). 

Solid mole balance 

Similarly for the solid mole balance equation we have 

[Moles transported to cat. surface] = 
[Moles 

reacted in cat. reaction]. 

k,,, SCf(Yf - Ys) = ý(-R)s(l - O)OV Pc, 

where e is the effectiveness factor of the catalyst, (-R)3 is the reaction rate, 
(1- 0) is the fraction of bed occupied by the catalyst pellets, and p, is the solid 
density. Dividing through by AV we obtain the algebraic steady state solid mole 
balance equation, 

km. avcf(Yf - Y8) = ý(-R)s(l - O)pc. 

Fluid energy balance 
(without superimposed diffusion term) 

[Enthalpy increase as a result of temperature rise and heat added 

from surroundings] = 
[Heat 

added to fluid from surface], 

-v., A, pfCpzTf + afAczxUa(Tw - Tf) _ -h f30S(T3 - Tf), 
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where pf is the fluid density, C, is the specific heat capacity, af is the heat 

transfer area of the wall of the channel per unit bed volume, Ua is the overall 
heat transfer coefficient, and h f3 is the heat transfer coefficient between the solid 

and the fluid. Dividing through by AV, assuming that the volume element is 

small, and superimposing the diffusion term, the steady state fluid energy balance 

equation becomes 

2T T d 
kf 

dxf -VxPfcndf +hfsaz, (T3-Tf)+afUa(Tw-Tf)=0. 

Solid energy balance 
(with superimposed diffusion term) 

[Diffusion term] + [Heat 
released by reaction] 

- 
[Heat transferred from solid] = 0, 

giving the steady state solid energy balance equation as 

d2Ts 
k9 

dx2 - eý-R)SP, (1- ¢)OHR -h fsav(T9 - T1) = 0. 

1.5.2 Explanation of industrial constants 

In this thesis we consider the following catalytic combustion and steam reforming 
reactions: 

CH4+H20 = 3H2+CO 

CH4 + 202 -ý 2H20 + C02 

Steam reforming reaction (simplified) 

Catalytic combustion reaction. 

There is extensive literature on the steam reforming and combustion of methane 
(see, for example, [2], [35], [45], [74], [78] and [96]). We give a detailed explanation 
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below of the industrial data associated with these chemical reactions, which we 

use in Chapters 3 to 7: 

The mass transfer coefficient km is given in [45] as 

km = Dp 
(2 + 1.1(Sc) 2 (Re)I)1 (1.5.18) 

where Sc and Re are the Schmidt number and Reynolds number respectively, 

such that 

Sc =7, Re = 
Dpv, p 

pm Dif f 77 

Di pf is the diffusion of methane into water, Dp is the diameter of the pellets, i 
is the viscosity, p is the mass density, and the mole average superficial velocity 

vx is given by 
Ft 

Acpf 

with Ft being the total molar flow rate. For the above-mentioned coefficients we 
take the values given in Table 1.1. 

The dispersion coefficient De is related to the velocity as follows: 

DBVX 
De = PeR 

(1.5.19) 

where DB is associated with the specific geometry, and PeR is the Peclet number, 

which describes the flow of the fluid in the channel (see, for example, [45]). 

The heat transfer coefficient between the solid and the fluid, denoted by h fs, is 

computed using the following relation (see, for example, [45]), 

h fs = 
kp (2 

+ 1.1(Pr) 3 (Rep) 5 ), (1.5.20) 

where Pr is the Prandtl number, which describes the flow of the fluid in the 

channel, and it is given by 

Pr = 
PI7 
kf 
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Constant Units Reformer side Combustion side 
Di ff m2/s 5.3 x 10-6 4.2 x 10-6 
Dp m 0.0174 0.0174 

71 Pa s 3.6 x 10-5 3.4 x 10-5 

p kg/m3 7.076 11.2 

FT mol/s 6.25 5.66 
A, m2 0.00632 0.00632 

Pf mol/m3 400.4 400.4 

vX m/s 2.47 2.24 
Sc - 0.9599 0.7228 

Rep - 8447 12839 

km m/s 0.0794 0.070 

Table 1.1: Values taken from [2], [6], [35] and [45] to compute the mass transfer 

coefficient km, given by (1.5.18). 
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Constant Units Reformer side Combustion side 
DB m 0.0214 0.0214 

PeR - 10 10 

De m2/s 0.0053 0.0048 

CP J/(kg K) 2490.1 1147.78 

kf W/(m K) 0.061 0.054 

Pr - 1.47 0.723 

h18 W/(m2 K) 1002.4 900.34 

Table 1.2: Values taken from [32], [45] and [60] to compute the dispersion co- 

efficient D, given by (1.5.19) and the heat transfer coefficient h fs, given by 

(1.5.20). 

kf is the thermal conductivity of the fluid, and Cp is the mass heat capacity. For 

the dispersion coefficient De and the heat transfer coefficient h f3, we take the 

values given in Table 1.2. 

The heat transfer coefficient between the wall and the fluid, denoted by hw is 

computed from the following relation 

hw = 
kfNu 

ý DP 

where Nu is known as the Nusselt number (see, for example, [45]), which is a 
dimensionless parameter describing the flow of the fluid in the channel, and it is 

given by 
Nu = 0.17(Rep)°'79, 

The reaction rate is expressed as the moles of methane reacting per unit area 

of catalyst per unit time. It is the product of the concentration and a factor 

containing the solid temperature, the second of which is denoted here by IF and 
is known in the literature as the reaction velocity function, (see, for example, [2] 
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Constant Units Description Reformer 

side 

Combustion 

side 
Nu - Nusselt number 215.06 299.36 
h,, � W/(m2 K) Heat transfer 

between wall and fluid 

753.95 929.05 

a� 1/m (Surface area)/volume 76.33 76.33 

- Effectiveness 

factor of catalyst 

0.65 0.65 

PC kg/m3 Catalyst density 2355.2 2355.2 
0 - Bed porosity 0.605 0.605 
k3 W/(m K) Solid thermal 

conductivity 

0.22 0.22 

(OHR) J/mol Heat of reaction 206000 -802000 
A mol/(kgcat s) Pre-exponential factor 0.778 0.0794 

E J/(mol K) Activation energy 36720 1100 

R9 J/(mol K) Universal gas constant 8.314 8.314 

L m Length of channel 12 12 

Table 1.3: Description and values of industrial data taken from [6], [23], [35], 

[45], [74], [78], [94] and [96]. 
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and [45]). This second factor can be expressed using the Arrhenius equation 

dlnW 
_E dTs 

(x) 
RgT3 (x)' 

where E is the apparent activation energy, R9 is a universal gas constant, and 
Ts is the solid temperature. Integrating gives the more common form of the 

temperature dependent factor of what is known as the Arrhenius reaction rate: 

AE 
`Y =� e_ R9Ta(x) 

7 

where A is the pre-exponential factor. For the constants involved in this reaction 

rate, and the remaining industrial data, we use the values given in Table 1.3, 

which have been taken from the extensive literature on experimental studies of 

reactors (see, for example, [6], [23], [35], [45], [74], [78], [94] and [96]). For the 

numerical simulations of the industrial examples in this thesis we take Dirichlet 

conditions at the inlet of the reactor, with the Dirichlet data taken from the above 
literature. The conditions at the outlet of the reactor are the zero-flux conditions 
for all the functions. Examples by Hayes and Kolaczkowsi [45], Parulekar and 
Ramkrishna [73], Wehner and Wilhelm [92] and Zanfir [95] and [96] show that 

the zero-flux condition is the usual assumption for models of reactors of this type. 
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Chapter 2 

Asymptotic analysis of heat 

transfer in a system of channels 

connected by thin conducting 

walls 

2.1 Introduction 

The aim of this chapter is to present an illustrative example showing how we 

use an asymptotic method to analyse the thermal interaction between fluids in 

adjacent channels which are connected by thin walls of low thermal conductivity. 
The model we investigate is a system of n thin channels of normalised thickness 

s (0 <e« 1) separated by thin conducting walls of normalised thickness E2. 
We consider a two-dimensional problem, where we allow for heat sources in the 

channels and assume there is no heat sources in the wall, that is, we have non- 
homogeneous heat equations in the channels and homogeneous heat equations in 

the walls. Neumann boundary conditions are set on the upper and lower hori- 

zontal parts of the external boundary of the system, and ideal thermal contact 
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(continuity in temperature and heat flux) is assumed between each layer. Using 

an asymptotic method we reduce the dimensions of the leading order problem 

by obtaining a set of solvability conditions which lead to a coupling between the 

temperatures in the channels. This asymptotic model enables us to accurately 

describe the thermal interaction between the channels across the thin wall. A 

particular example incorporating chemical reactions inside the channels high- 

lights possible industrial applications. 
A model asymptotic problem where the heat source density is independent of the 

temperature is considered in the next section of this chapter. We present results 

that show the coupling in the temperatures between the adjacent channels. In 

Section 2.3 we relate the asymptotic algorithm to two steady state chemical reac- 

tions, one of which generates heat and the other consumes heat. The numerical 

results for a simple illustrative example showing the coupling in temperature be- 

tween these chemical reactions are also presented in this chapter. This chapter 

is partially based on Selsil, Movchan and Movchan [811. 

2.2 Formulation of a model problem 

Consider the system shown in Figure 2.1, which consists of two channels 01 and 
SZ2 of normalised' width 6, separated by a thin conducting wall SZo of normalised 

width e2, where E is a small positive parameter, 0<e«1. Assume that each 

channel SZj, j=1,2, is filled with a fluid whose temperature TU> satisfies a 

nonhomogeneous heat equation 

aT(ý) 
µ? p2T(i) (X, Y, t) - at 

(x, y, t) -)- f 
(i) (x, y, t) =0 in ci ,=1,2, (2.2.1) 

1Throughout this thesis we assume that the ratio of the width DC of the channel to its length 

L is small, and we denote this dimensionless quantity by s, that is, s= Dc/L, 0<e«1. In 

this chapter we are interested in the temperature and concentration distributions in the middle 

regions of the channels (away from the ends). 
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y 

x 

Figure 2.1: Two infinite channels separated by a thin conducting wall. 

where t is time, µj denotes the thermal diffusivity2, and f () is the heat source 
density, which is independent of s and TO), j=1,2. 

The distribution of the temperature TO) within the wall SZ° is described by a 
homogeneous heat equation 

µoV2T(°) (x, y, t) - 
mo(o) 

at 
(x, y, t) =0 in Q o, (2.2.2) 

where po is the thermal diffusivity of the wall. 
We assume that the temperatures TM, T(2) and TM satisfy the ideal thermal 

contact conditions (continuity in temperature and heat flux) on the surfaces (P+ 

and (D- of the wall Q0, that is, 

ff (1) 7T(0) V= T(°), kl 
ay = ko 

ay on 4)+, (2.2.3) 

äT(2) c7T(°) Tý2ý = T(°), k2 
ay = ko 

ay on I. (2.2.4) 

2Thermal diffusivity is proportional to thermal conductivity: µi = 
PO f 

Cn; 
ý ,i=0,1,2, where 

ki is the thermal conductivity, pfi is the fluid density, and C, zl is the constant pressure heat 

capacity. 
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On the upper and lower horizontal external boundaries r+ and I'- (see Figure 

2.1) we set the following flux conditions 

OT(l) 
k1 

ay = Ep+ on P+, (2.2.5) 

IT(2) 
k2 = Ep on r-, (2.2.6) 

O 

where p± are given functions of x and t, and they are independent of E. 
Our objective is to find the temperature distribution in such a system and to 

analyse how changing the temperature in one channel affects the temperature in 

the other channel. 
We assume that the thermal conductivity ko of the wall is small compared to the 

thermal conductivities kl and k2 of the channels, that is, ko is taken in the form 

ko = e3k*, (2.2.7) 

where k* has the same order of magnitude as kl and k2. 

2.2.1 Scaled variables and asymptotic approximations 

Using an asymptotic technique similar to those described in [7], [55], [65], [67], 
[70], [83] and [90], we construct asymptotic expansions for the temperatures T(j) 

in the following form 

T(ý) (x, y, t) =T 
U) (X, y, t) + ET (i) (X, y, t) + e2T(i) (X, y, t) + ... , 

(2.2.8) 

j =0,1,2. 

We use expansions (2.2.8) to derive a set of conditions which `couple' the leading 

order temperatures T01 and T( 2) in the two channels. A `coupled' system is one 0 
in which the differential equation for the temperature in one channel contains 
the function for the temperature from the other channel, that is, the differential 
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equation for T' contains the function T02ý via a term of the form Töle - Tö2ý 

and vice versa. An `uncoupled' system is one in which the two reactions in 

the channels are completely independent and changing the temperature in one 

channel will have no effect on the temperature in the other channel. 
Since the channels are thin, we introduce new scaled variables, such that 

Tý =j in 52j, j=1,2, ýro =2 in 00, (2.2.9) 

where 

TiE 
(-'), 22i=O, 

1,2; yj _y+(-1) 
21-4-E), 

j=1,2. 

In these new variables, the conditions (2.2.3) - (2.2.6) can be rewritten as follows: 

T(1) T(°) 
k1 k0 OT 

(2.2.10) 
T1=-z T0=2 E aTl 

T1=-2 
a 

62 VT0 T0=2 

=T (°) I T(2) I 
k2 I= k0 aT 1 (2.2.11) 

T2 =2 TO -2 E 1972 T2=1 r0 E2 57° 2 
ki (l) I + - --p ' 2 (2) 

= Ep . 
I (2.2.12) 

ýa1 TS=2 a2 T2--- 2 

Substituting (2.2.8) into equations (2.2.1) and (2.2.2), for the first two terms of 

each expansion we obtain 

a2T(i) a2TCý) 1 
a»2 =0, a1 =0, TAE 

(-2,2), j=0,1,2. 
7 

This implies that T0(j) and T1(j)1 j=0,1,2, are linear in Tj, that is, 

Ti(ý)(x, 7-j, t) = (x, t) Q(2i, 7)(X) t)Tj, i=0,1,0,1,2,2.2.13) 

where /31(z'j) and , QZi'i) i=0,1, j=0,1,2, are functions that we find from the 
boundary conditions. By substituting (2.2.7) into the flux conditions in (2.2.10) 
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- (2.2.12), it follows that 

ti =0,1 =0, i=0,1, 071 
17-1=±1/2 

art 
T2-±1/2 

and therefore, the functions Töle, To2), Ti1) and T(2) are independent of the scaled 

variable Yj, j=1,2. 

The remaining two Dirichlet conditions in (2.2.10) and (2.2.11), together with 
(2.2.13), give 

(0,0) 
TO, (x) 

2ý 
t) = ß(0,1) (x, t) 

P2 xý tý 
= Töl) ýxý t) 

(0,0) 
T0 n) (x, 

-2 t) = Q(0,0) (x, t) - 
ß2 2 xý tý 

=Toe) (x, tý. 

Thus, eliminating the functions 01°'°l (x, t) and ß2°'°l (x, t), for the leading term 

of the temperature in the wall, we obtain 

Too)(xýTOýt) = 
Tol)(x't) + 7°2)(x, 1) 

2 

{- (Tölý(x, t) - io ro, To E (- 
, 
1). 

22 

In order to find the unknown functions T' (x, t) and T(2) (x, t), we derive a set 

of boundary value problems for the next terms T2 (j), j=1,2, in the asymptotic 

representations (2.2.8) in the two channels: 

a2T(') 
_ 

a2T(i) 1 aT(') 
07»8x2 

(2.2.14) + at 
(-n), 

(1) + 1) r 

(Ti 
I7-1=1/2 

kl 
aarl ITS=-1/2 

kl 
(T (1) 

- Tý2))' (2.2.15) 

- (2) 2` 8T2 17-2=-1/2 
_ 

1? °ý! '2 IT-2=1/2 k 
(T(1) To2)). (2.2.16) 

0972 2 
ÖT2 - k2 
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The functions T21) and T(2) satisfy Neumann boundary conditions at Ti = ±2 

and -r2 = f2, respectively. The system of equations (2.2.14) - (2.2.16) is solvable 
if and only if 

a21 12 

x°) 
+1 at 1f 

(l)dýrl 
1k 

(Töl) - Tö2ý), (2.2.17) 
2 

and 

02T(2) CýTý2) 122k (1) 
- 

(2) p_ 
k2 (T To )- 

k2 
(2.2.18) 

axe + 
µz at µa 1f 

() dT2 = 
2 

The solvability conditions (2.2.17) and (2.2.18) can be rearranged to give the 

following system of equations for T0(1) and T0(2): 

- 

DT°1) k* 
(TO1) 

- T(2)) = 
p+ 

-Zf 
(147.1i (2.2.19) µl 

a2T(1) 

Öx2 o pf1CP1 p. f1cP1 

f- i2 

i 

a 
32T(2) 

- 
5To2) 

+ 
k* 

ýT 1) 
- T(2)) =p- f'2 µ> dr2. (2.2.20 

2f\) at pf2cp2 Pf2cp2 1 2 

Equations (2.2.19) and (2.2.20) are coupled via the term (T 1- Tö2ý) which 

characterises the jump in temperature across the wall. The system (2.2.19) and 
(2.2.20), together with the initial conditions at t=0 and conditions as x --* ±00 

(or x=0, x=L for channels of finite length L), can then be solved (analytically 

or numerically) for the given source densities f (1), f (2) and the fluxes p+, p-. 

As a particular example, we consider the case when there is no dependence on 

time and each channel is of length L=1m. The fluxes p+, p-, and the source 
densities f (') and f (2), are given by 

p+ = -10 (K m)/s, p=4 (K m)/s, 
f 1/2 

f(1)dr1 =0 K/s, 
1/2 

f (2) dr2 = 12 K/s. 

1/2 

J 

1/2 
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The temperatures T0' and T(2) satisfy the following boundary conditions 0 

dT(l) dT(2) 
Töl) (0) = 760 K, To2ý (0) = 730 K, ° (1) =0, ° (1) = 0. 

dx dx 

For the fluid densities, the heat capacities and the thermal conductivities we take 

the values 

=5 J/(mol K), pf )=0.5 mol/m3, CPI) =2 J/(mol K), pf=0.2 mol/m3, Cp2) 

kl = 0.2 W/(m K), k2 = 0.1 W/(m K), k* = 18 W/(m K). 

The temperature distribution in each channel', for the uncoupled (k* =0 W/(m K)) 

and coupled (k* = 18 W/(m K)) cases, is presented in Figures 2.2(a) and 2.2(b). 

»o UNCOUPLED CASE 7701 COUPLED CASE 
(k' =0 W/m K) b) 1 (k' = 18 W/m K) 

a 

760 / 760 

Endothermic reaction 

T 750 1 

/\ 

T 750 
Endothermic reaction 

740 740 

Exothermic reaction Exothermic reaction 
730 730 

0 0.2 0.4 0.6 0.8 100.2 0.4 

LL 

Figure 2.2: Temperature distribution along the channels. (a) Uncoupled temper- 

ature distribution (with k* =0 W/(m K)), (b) Coupled temperature distribution 

(with k*=18 W/(m K)). 

3In the figures presented in this thesis the temperature T is measured in Kelvins (°K) and 

the length L is measured in metres (m). 
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For a non-conducting wall, the two reactions are uncoupled, see Figure 2.2(a). 

In the channel S21i we assume that the temperature decreases along the channel, 
i. e. we have an endothermic reaction where heat is consumed. In the channel 
SZ2 we assume that the temperature increases along the channel, i. e. we have 

an exothermic reaction where heat is generated. However, when the wall does 

conduct heat, we have a coupling in the temperatures, and, as a consequence, 
the reactions balance each other: the heat generated by the exothermic reaction 
is consumed by the endothermic reaction, see Figure 2.2(b). Consequently, the 

two temperatures approach a certain value and then remain close to this value 
for the rest of the channel. 

2.3 Illustrative example 

Assume now that a steady state chemical reaction takes place in each chan- 

nel, and the fluid, which, for convenience, is assumed to be Newtonian and in- 

compressible, moves steadily in the horizontal direction with a nonzero velocity 
0), j=1,2. In this case the temperatures TM and T(2) satisfy the following 

2D equations in SZl and S22 respectively (see Chapter 3 of [45] on 2D steady state 

models of laminar flow in catalytic reactors): 

(OH(A) ) 
µjV2T(i) - v(i) . VT(R) - (-R)(j) = 0, j=1,2, (2.3.21) 

Pf(j)C(j) 

where pf() is the fluid density, CPI is the constant pressure heat capacity, (-R)sj) 

is the reaction rate, and (OHR? )) is the heat of the reaction. A positive value 

of (L HR')) corresponds to an endothermic reaction, and a negative value corre- 

sponds to an exothermic reaction. 
For this example we shall take the reaction rates (-R)g') in the Arrhenius form 
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(see, for example, [2], [45] and [79]): 

E; () 

(_R)s') _ , 
A(y)e-RTýi)y(j), j_1,2, 

where AU) are constants known as pre-exponential factors, EU) is the activation 

energy, R is a gas constant, and Y(j) is the concentration of a certain reactant 
in the channel f j, j=1,2, which satisfies the equation (see [45]): 

Pf 
(7)D(7)02y(7) 

- Pf 
(ß)V(7) 

. VY(i) - (-R)(j) = 0, j=1,2. (2.3.22) 

In equation (2.3.22) DW is the diffusion coefficient. For the remainder of this 

chapter, we shall use a simplified version of the above reaction rate. We shall 

neglect the nonlinearity by replacing the temperature function in the exponential 
term by the temperature T(ß)(0) at the inlet, that is, we shall take the reaction 

rate in the form: 

EU) 
(-R)(io) = A(d)e_R Y(. 7)ß j=1,2. 

We take equations (2.3.21) and (2.3.22) for the temperature and concentration 
in the channels and the homogeneous heat equation (2.2.2) for the temperature 

TO) inside the wall. The boundary conditions we set are ideal thermal contact 

conditions (2.2.3) and (2.2.4) with the flux conditions (2.2.5) and (2.2.6), when 

pý: = 0, for the temperatures TO), j=0,1,2, the non-slip conditions for the 

velocities 

výý> =0 on 4), u F') (2.3.23) 

and for the concentrations we have 

ay(l) ay(2) =0 on r+ U 4)+, =0 on r- U (D-. (2.3.24) 
ay ay 

Due to the fact that we have an incompressible Newtonian fluid, with the flow 

in one direction only, it follows that 

v (j) = w(j)(yy), 0), j=1,2. 
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The first component of this velocity satisfies the equation (see, for example, [16]) 

Q2v(j) = G(9)/q(9), (2.3.25) 

where G(j) denotes the pressure gradient, and 77(i), j=1,2, is the viscosity. 
Equation (2.3.25) implies that the velocity distribution in each channel has the 

form 

V(7) = «G(7)/27j(7))yj2 + b(1j)yj + b27), 0), j=1,2, (2.3.26) 

where the constants b(i') and b2(j) are obtained from the boundary conditions on 
rý and ýDl, 

blj)_0, b(2j)__G(j)62 
g71(ß) 

Using the coordinate transformation (2.2.9) and the representations (2.3.26) for 

the velocities y(3) in each channel, we rewrite the system (2.3.21), (2.3.22) in the 

form 

a2T(j) 1 a2T(j) 0T(ß) µý \ axe + 
E2 8)-T 

(j) (4, rß - 1) 
09X 7 

OH(A) 
-( RU(-R)(jo) = 0, (2.3.27) 

Pf(')C 

a2y(j) 1 a2y(j) ay(e) 
PfU)DW 

( 
0x2 + 

ý2 aTý 
)- T(A)P f(i)(4r- 1) 

äx 

- (-R)(jo)=0, (2.3.28) 

E2G(j) 
where TO) =j=1,2, and for convenience, we assume that this quantity 

is of order 0(1). 

We shall take the asymptotic expansions for the temperatures TU) and the con- 

centrations Y(j) in the form 

TU) = Ta') + STl') + E2T2') + ... ,j=0,1,2, (2.3.29) 
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y(i) = y(ý) + ey(i) + E2y(j) + ... ,j=1,2. (2.3.30) 

Substituting these expansions into equations (2.2.2), (2.3.27) and (2.3.28), and 
the boundary conditions (2.2.3) - (2.2.6), with p± = 0, (2.3.23) and (2.3.24), we 

obtain, in the same way as in the previous case, that the functions T0(j)7 Ti'l, Y(3) 

and Y(j), j=1,2, are independent of the scaled variable Tj, and the functions 

T(') and Y(') solve the following problems: 

2 (7) 

µi 
8T(_ 

ÖT 

(7) 
- (OHR ) 

A(y)e 
7) (j)c( 

- 
e(i) (7) 

RT' y(ý) + T(j) (4T? - 1) 
dT° 

dx 

2T0 

- µ; 
d T° 

dx2 

.7 
Pf p 

i 
kl 

aTZ 
= k* (TO - T(2)DT2 =0 aTl 

IT, 
--ýý2 

(o 0 )ý DT1 (Tl-ßi2 
, 

0a 22) IT 

--i 2 
0, k2 as 22) I=2= k* (To( l) Tö2) ); (2.3.31) 

2 (ý) 
_ 

EU) (1) 2 (9) 
(ý)D(ý) a Y2 

=. A(y)e RT (O) y(ý)+T(i)p f(j) (4r'- 1) 
dYo 

-P(j)D(i) 
d Yo 

Pf aTj dx f dx2 ' 

3Y(i) 2=0, j=1,2. (2.3.32) 
(9 Tj 

17-j=±1/2 

The solvability conditions for (2.3.31) and (2.3.32) give a system of coupled 
differential equations for the leading terms T0(j) and 0 

i), 

1* (1) 
_ 

E( 

µl 
d2To 

+ 
2-f(1) dTol 

-k (T(1) - T(2) )_ 
(OHR ) 

A(1)e RTC (0) ý, (1) 
dx2 3 dx pf>Lip 00 

pf(1)C, P 
o 

2 22+ (z) E(2) 

Fez 
d T° 

+2Y (z) dT° 
+k (T(1) _ T(z)) _ 

(QHR ) 
A(z) e_ RT--mo(o) ßr(2) dx2 3 dx P fz)C(z) °0 

p1(2)Cpz) °' 

d2lr(i) 2- dY(i) E(i) 
P}(i)D(i) dx2 3(i)Pf(j) dx - Aj)e RTD ) y(7) 

= 0, j=1,2. (2.3.33) 
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We solve system (2.3.33) numerically, using Maple, for the following values of the 

parameters (the parameters are chosen in such a way that we have an endothermic 

reaction in channel 1 and an exothermic reaction in channel 2): 

D(l) = D(2) =2 m2/s, T(1) = T(2) =3 (m s)-1, R=3 J/(mol K), 

C(1) = Cý2) = 0.5 J/(mol K), kl = k2 = 0.15 W/(m K), k* = 1.5 W/(m K), 

, 
4(1) = A(2) =3 mol/(m3 s), E(l) =. E(2) =2 J/mol, 

(OHR)) =2 J/mol, (L HR2)) = -2 J/mol, Pf (1) = Pf (2) =1 mol/m3, 

assuming that both channels are of finite length L (L =1 m). The tempera- 

tures T0' 1 Toe) and the concentrations Y(1) Y(2) satisfy the following boundary 

conditions: 

dY(l) dY(2) 
Y(l) (0) = 0.3, ° (1) = 0, Yý2ý(0) = 0.1, ° (1) = 0, dx dx 

dT(1) dT(2) 
T' (0) = 800 K, T(2) (0) = 700 K, ° (1) = 0, ° (1) = 0. dx dx 

2.3.1 Numerical results and discussion 

The results of numerical calculations are presented in Figures 2.3(a) - 2.3(d). To 

highlight the effect of coupling, the graphs for the uncoupled (k* =0 W/m K) 

case are given in Figures 2.3(a) and 2.3(c). The graphs with the higher inlet 

conditions represent the endothermic reaction whereas the graphs with the lower 

inlet conditions represent the exothermic reaction. Comparing Figures 2.3(a) 

and 2.3(b) for the temperature, it is clear that in the coupled (k* = 1.5 W/m K) 

case, the temperature generated by the exothermic reaction is consumed by the 

endothermic reaction. Figures 2.3(c) and 2.3(d) show that the coupling effect on 
the concentrations is not as significant as that for the temperatures. 

In this chapter we analysed the effect of heat transfer across a thin conducting 

wall on the temperature and concentration distributions in adjacent channels. 
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Using an asymptotic technique we derived the system of differential equations 
that couples the temperatures in the two channels. In the next chapter we 

extend this analysis to the case when more complicated heterogeneous reactions 
take place in thin channels of a packed bed industrial reactor. Similar to the 

present chapter, the main emphasis is on understanding the theoretical concepts 

associated with heat transfer and the coupling of the temperatures in the channels 

across the thin wall. 
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UNCOUPLED CASE 
800 COUPLED CASE 

800 (k' =0 W/m K) b) (k" = 1.5 W/m K) 
a) 

780 780 

760 760 

T Endothermic reaction 
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Endothermic reaction 
740 740 
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720 
Exothermic 

reaction 720 

Exothermic reaction 

700 700 

0 0.2 0.4 n. 6 0.8 10 
L -m 

0.2 0.4 0. R OR I 
Lsn 

0.3 UNCOUPLED CASE 0.3 COUPLED CASE 

c) 
(k' =0 W/m K) d) (k" = 1.5 W/m K) 

0.25 0.25 

0.2 0.2- 

yY 
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0.1 0.1 

0.05 0.05- 
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L 
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Figure 2.3: Graphs showing the temperature and concentration distributions 

along the channels for the exothermic and the endothermic reactions. (a) Tem- 

perature distribution for non-conducting wall; (b) Temperature distribution for 

conducting wall; (c) Concentration distribution for non-conducting wall; (d) Con- 

centration distribution for conducting wall. 

50 



Chapter 3 

Mathematical modelling of heat 

transfer in a catalytic reformer 

3.1 Introduction 

In this chapter we analyse heat transfer in a catalytic reformer -a chemical 

reactor used in industry to produce hydrogen for fuel cells. The novelty, as ex- 

plained in the thesis introduction, lies in the fact that the reactor itself is made 

up of adjacent channels connected by thin conducting walls, and it combines 

exothermic and endothermic reactions in the alternating channels. The channels 

are packed with catalytic pellets, which promote both the catalytic combustion 

reactions and the steam reforming reactions. A model is developed in which the 

thermal conductivity and the thickness of the interconnecting wall can be used as 

control parameters characterising the heat exchange between the neighbouring 

channels. The important part of this model includes the asymptotic analysis of 

the fields within the interconnecting walls between the channels and the thermal 

coupling between the neighbouring channels. Similar to the previous chapter, 

our main objective is to study how the heat is transferred across the conduct- 
ing walls and how this influences the temperature distribution in the channels. 
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The physical phenomenon discussed is known in the engineering literature as 

catalytic combustion/reforming, where the reactions take place at relatively low 

temperatures. 

We organise the chapter as follows: first we formulate the problem - present the 

physical details, describe the geometry of the multi-channel reactor, set the sys- 
tem of governing equations - and discuss the asymptotic features of the model. 
The set of parameters characterising the model is given in Section 3.3, accom- 

panied by test numerical simulations that show temperature versus longitudinal 

distance along the channels of the reactor. Finally Section 3.4 deals with the 

modelling of the temperature distribution within a composite (layered) wall sep- 

arating the channels, and numerical results are presented. 
This chapter is partially based on Selsil et al. [82]. 

3.2 Formulation of the problem 
We start by analysing the simplest case, when there are two channels of equal 

width DC connected by a thin wall of width D11,, see Figure 3.1. Inside the 

channels there are chemical reactions taking place -a steam reforming reaction 
in one channel and a catalytic combustion reaction in the other. We investigate 

how the energy transfers from one channel to the other via a thin conducting 

wall. 
The full time dependent set of equations that describes the reactions taking place 
in a catalytic reformer forms a system of three-dimensional (3D) nonlinear sin- 

gularly perturbed reaction-diffusion partial differential equations and algebraic 

equations. Due to the complications of the full problem, we consider a simplified 

model, which involves 1D equations describing the behaviour of the tempera- 

tures and the concentrations along the channels, and 2D equations describing 

the temperature distribution across as well as along the wall. We denote the 
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y 

Do 
ýC, Steam reforming reaction 

On 
(ý' 

ýý 

Uvx 

00 00 00 00 00000 000 00 000 
ýý Dc 0o 

00 00 Catalytic combustion reaction 0-0000 ýºcPOOO000000000000 

00 00008 x=0 x=L 

Figure 3.1: Simplified model - two adjacent channels connected by a thin wall. 

temperatures' of the fluid and the solid by Tf(x) and T3(x) and the concentra- 

tions of methane (represented as mole fractions) by Yf(x) and Y8(x), respectively. 
The reactions that take place are (see, for example, [2], [35], [45], [74] and [78]): 

CH4 + H2O = 3H2 + CO Steam reforming reaction (simplified), 

CH4 + 202 -+ 2H20 + CO2 Catalytic combustion reaction. 

Our aim is to study the effect of the thin conducting wall on how the temperatures 

in the channels influence each other. The asymptotic technique is used to analyse 

the temperature distribution within the wall, exploiting the fact that the ratio 

of the entire width of the wall to the entire width of the channel is small. This 

enables us to introduce a small nondimensional parameter e (where 0<E« 1), 

representing the normalised width of the wall, E= D21/Dc. The steady state 

equations for the mass and energy balances in the channels (see, for example, 
[45], [46], [85] and [86]) are given in the next section. The equations have the 

same form in both channels, with the differences occuring in the coefficients. 
(These equations and coefficients are described in detail in Section 1.5 on the 

theoretical background. ) The boundary conditions are prescribed at the inlet, 

x=0, and the outlet, x=L, of the catalytic reformer. 
'All temperatures are measured in Kelvins, °K =°C+273 
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3.2.1 Full system of equations 

The following steady state system of equations for the model describes the energy 

and molar balances for the temperature and the concentration in both the fluid 

and solid phases inside the channels, as well as the 2D energy balance equation 
in the thin conducting wall. 

Solid mole balance equations 
These equations relate the concentrations of methane in the fluid and the solid 

phases, and contain the terms that represent the rates of the chemical reactions. 
They are given by 

alýý (Y(') (x) - Y(i) (x)) - a(')(-R)(') = 0, i=1,2. (3.2.1) 

Here, (-R)» denotes the reaction rate, that is, the rate of disappearance of 

methane at the external surfaces of the catalyst pellets, with i=1 for the 

reformer side and i=2 for the combustion side. In both of the channels we 

assume that the reaction rate takes the following form 

1,2, (3.2.2) 

where, M(i) is a function of the concentrations Y(') and Y(i), i=1,2, and, as 
in the thesis introduction and Chapter 2, the term obtained from the Arrhenius 

equation is 
E(t) 

) 

(2) 
_ 

A(') e R9Ts (x) /, i=12. 

The pre-exponential factors AM and A(2) are positive constants, E(l) and E(2) are 
the apparent activation energies, Ry is the universal gas constant, 8.314 J/mol K, 

and T (1) (x) and T(2) (x) are the temperatures of the catalyst pellets. The co- 

efficients a, and a('), i=1,2, are independent of the temperature and the 

concentration and have the following representations: 

(i) 
= 

k$ m) a(2) F(Z) (i) 
- (i) (i) ai (z) (z) as = p( (1- 0('», z=1,2, 

AC vý 
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where all the physical parameters are assumed to be constant and are explained 
in detail in Section 1.5. 

Similar to Chapter 2 we deal with a simplified version of the reaction rate, de- 

noted by (-R)s('° 
,i=1,2, that is, we set the temperature in stil, i=1,2, as the 

temperature at the inlet, resulting in temperature independent reaction rates in 

both channels. (We accept that this may appear to be an oversimplification, for 

an industrial reactor, as intrinsic rate expressions of this type are exponentially 
dependent on temperature. However, this assumption is acceptable within the 

range of inlet conditions adopted in the present model. It is assumed that the 

catalyst is operating above a temperature at which it is very active; in this case 
the overall effect would be to produce relatively small changes in the reaction 

rate with changing temperature, and hence the inlet values of temperature can 
be used in overall calculations). In Chapter 5.4 we return to this point and deal 

in more detail with this nonlinearity, and the construction of boundary layers, 

showing that this assumption regarding temperature independent reaction rates 
holds for the main part of the channel. 

The remaining three mass and energy balance equations, and the equation inside 

the wall are given below. 

Fluid mole balance equations 

d2Yl2) dYf") 
a3ýý 

dx2 
(x) 

- a4iý 
f 

dx 
(x) 

- a5') (YJ (x) - Y('(x)) = 0, i=1,2. (3.2.3) 

Fluid energy balance equations 

d2T (Z) dT (Z) 
a6ýý 

2 (x) 
- a72ý 

f (x) + a8(') (x) 
-T 

f2) (x)) 
dx dx 

+ asZ) (7'(x) (x) - T7 (x)) = 0, i=1,2. (3.2.4) 

Solid energy balance equations 

(i) d2T3 Z) (i) (i) (i) (z) (i) (z) (ti) a10 dx2 
(x) - a2 all Ys (x) - as (T (x) - Tf (x)) = 0, i=1,2. (3.2.5) 
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Equation for the temperature inside the wall 

92 V') a2T(°) X2T °) (x' y) = axe 
(x' Y)+ aye 

(x' y) = 0. (3.2.6) 

At the inlet (x = 0): 

Y(') (0) = Yfo), Tfl) (0) =T 
fo), T, (0) =T 

ýö 

Yf2) (0) = Yfö), T f2)(0) 
=T fob, T3(2) (0) =sTö). 

At the outlet (x = L): 

dY(') dT (') dT (') 

dx 
(L) = dx 

ýL) = dx 
(L)=O, i=1,2. (3.2.7) 

The coefficients a(' ) to a('), i=1,2, are assumed to be constant (independent of 3 11 

temperature and concentration) and are given by 

a(' 3)= Dýi), a4) = v(')' a(') - km)av') a('6 )= kfz)' a, (') = P(')cý(')vx')I 

11 = (OHR')), i-1,2. (3.2.8) age) = hf3a(i), a9) = U(2)a1 , a10 = ý2)' a(' 

Similar to a, and a2Zý, i=1,2, all the industrial parameters are explained in 

detail in Section 1.5. Equations (3.2.3) to (3.2.5) are second order differential 

equations for T1')7 T84i and Y1' i=1,2. An algebraic relationship between 

Y(') and YC21, i=1,2, is given by (3.2.1). In the fluid energy balance equation 

(3.2.4) we also have the terms T(, 1) (x) and T2) (x) which are the temperatures 

at the reformer and combustion sides of the wall, respectively; TI, 1) (x) is the 

temperature of the wall where the wall touches the channel with the reforming 

reaction and 
T2ý is the temperature of the wall where the wall touches the 

channel with the combustion reaction. In order to find these functions, we analyse 
the temperature distribution within the wall using an asymptotic expansions 
technique. 
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3.2.2 Scaled variable and asymptotic approximations 

First, we introduce a new dimensionless scaled variable, ro = y/(EDc). Then 

equation (3.2.6) can be written as 

a (o) z (o) 
AZT (o) (x, To) = 

as 
2 

(x, To) + 
ý212 

aaT 
2 

(x, To) = 0, (3.2.9) 
Co 

1 
xE (0, L), To E 

(- 
2' 2/. 

We assume ideal thermal contact between the wall and the channels. In the new 

variable, we have 

1 
at ýro =2: T (O) (x' 

2) = T(i) (x), (3.2.10) 

&T(O) ( 1l 
On 

( 
2l 

at To 
2: 

T'(°) 
\x' 2) 

an 

) 

\x' 2/ 

= h(l) (Tfl) (x) -T �(, 
l) (x)), (3.2.11) 

= T(2) (X), (3.2.12) 

= h(2) (T (2) (x) - T(2) (x»», (3.2.13) 

where k,,, is the thermal conductivity of the wall, hw(') 
,i=1,2, is the heat transfer 

coefficient between the fluid and the wall, and n is the outward normal. Condi- 

tions similar to (3.2.11) and (3.2.13), which represent a combination of Newton's 

law of cooling and Fourier's conduction law, can be found in the literature (see, 

for example, [16], [24], [29], [30], [32], [33], [39], [45], [53] and [91]). 

The coefficients a9ýý, i=1,2, are proportional to the overall heat transfer co- 

efficients Ua'), which depend on the thermal conductivity of the wall k,,,, the 

half-thickness Dti, /2 of the wall, and the heat transfer coefficients hw('), i=1,2, 

in the following way (see, for example, [24], page 53): 

(+y) D1 -1 
a_, i=1,2. (3.2.14) 

ww h2 
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We would like to emphasize that the flow in both channels is described using a 
heterogeneous 1D axial dispersion model. The concentration, temperature and 

velocity may have nonzero gradients in the x-direction but do not vary in the 

y-direction. (More details on heterogeneous axial dispersion models can be found 

in [16], [24], [39], [45] and [53]. ) 

Inside the wall the temperature TO) satisfies equation (3.2.9) and can be ex- 

panded asymptotically in the following way 

T (O) (x, To) = Tý°) (x, T°) + ETl°) (x, 70) + E2T 
O) (x, To) + 

... . 

From (3.2.9) it follows that 

a2T (°) 
(-'), 

a2 
(x' TO)O, xE(O, L), T0E 

0 

which implies that T0(O) is linear in To. Using conditions (3.2.10) and (3.2.12) we 
find that the leading order term for the temperature can be written as 

Tö (x, ro) = (T(I) (x) +TT2) (x)+ (T(l) (x) - 71(2) (x)ro2 
. 

(3.2.15) 

Rearranging (3.2.11) and (3.2.13) gives 

I IT' o h(l) ')-- 
On an EDc aT° = kw (T f Tom) at -r° =2 

ff (o) 
_1 

rw(o) It (2) 
(2) a _ an eDC 8T° _ kw Irr(2) T,,, O) at ro = -2. 

Using (3.2.15) we can then write 

ry(1ý (Tflý �1ý) =Tw1ý -T, 
ý, 2ý and 

where Y(j) = 
hw(')sDC 

_ 
hwz)D,,, 

kw kw 

- . (2)(Tf2)-TW2))=Tw1)-Tw2>> (3.2.16) 
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We assume that the dimensionless quantity y(), i=1,2, is of order 0(1). 

From equations (3.2.16) we can write T. ') and T, (, 2)in terms of T f(1) and Tf(2) 

that is, 

Tfl)y(1) +Tl), y (2) + Tf2ý, y(2) T, W1 = 
. -(l) + , y(2) +. (l), y(2) 

(3.2.17 

T? )y(1) + Tf2) y(1) y(2) +T f2)7(2) 
(3.2.18 Tw21 

, y(l) + 7(2) + 7(1), y(2) 

Equations (3.2.17) and (3.2.18) can then be rearranged to give the following 

coupling terms2 

(2) T(1) - T(2) 
T(1) - TM = 

ry ff) 
fw y(1) + -, (2) +7 (1)x, (2) 

'(1) (T(1) - T(2)T(2) 
- T(2) Yff) 

Jw- (1) + y(2) + y(l), y(2) 

These coupling terms are substituted back into the fluid energy balance equations 
(3.2.4) giving 

ý1ý d2T ') ý1ý dT f(l) 
a6 dx2 - a7 dx 

(2) d2Tf2) (2) dT(2) 
a6 dx2 - a7 dx 

+ a81) (T(1) _T1) 

a91>7(2)(T(') - Tf2>) 

_=p 
-(l) +- (2) + y(')- (2) ý 

+ as2) (Ts 2) -T 
f2) 

(3.2.19) 

a(2)'Yý1> T(2) ) 

tf() 0.3.2.20 += 
y(1) + (2) + y(l)y(2) 

2The coupling terms are the terms containing both the fluid temperature T1' on the re- 

former side and the fluid temperature Tf2ý on the combustion side. They replace the terms 

T, (,; ) - Tft), i=1,2, in equations (3.2.4). 
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We now have a system of eight equations (3.2.1), (3.2.3), (3.2.5), (3.2.19), and 
(3.2.20) for the eight unknown quantities T f') T(') Y('), and Y(ti), i=1,2. This 

system is solved numerically using Femlab. Results of numerical calculations are 
presented in the next section. 

3.3 Numerical simulations 

3.3.1 Model parameters 

We use the following set of model parameters for the reaction rate and the con- 
stants (3.2.8) in the equations (3.2.1), (3.2.3), (3.2.5), (3.2.19) and (3.2.20) in 

the channels: 

ally = a12ý = 2.5 mol/(m3 s), a21ý = a22) = 0.5 kgcat/m3, 

a31) = a32) = 0.3 m2/s, a41) = a42) =2 m/s, 

a5 = a(2) =2 s-1 a6 = a(2) =3WmK 5566 
/( ýý 

a71ý = a72) = 0.4 W/(m2 K), a81) = a82) =2 W/(m3 K), 

a91) = 5.5 W/(m3 K), a92) =2 W/(m3 K), 

a10 = a10 = 0.7 W/(m K), a11) = -a(ll) = 430 J/mol, 

p(2) =1 mol/(kgcat S), 

ry(l) = 0.375, ry(2) = 1.091, 

T fly (0) =T (l) (0) = 800 K, T f2) (0) = T(2) (0) = 700 K, 

Yf 1) (0) = 0.3, Yf2ý (0) = 0.1, L= 20 m, 

i=1,2, mol/(kgcat s). 
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The reaction rate given above implies that the solid mole balance equations 
(3.2.1) can be rewritten as 

a(i)Y(i) (x) 
_f Ys 

a(') + a(')W (i)Yfi)' 
i=1,2. 

This representation is substituted into equations (3.2.3) and (3.2.5) and the sys- 
tem of six differential equations with the above constants is solved numerically. 
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Figure 3.2: Fluid temperature distributions along the channels for model pa- 

rameters. (Higher inlet condition = Reformer side, Lower inlet condition = 
Combustion side. ) 

The graphs for the fluid temperatures are presented in Figures 3.2(a) and 3.2(b). 

For both Figures the graphs with the higher inlet conditions correspond to the 

reforming reaction whereas the graphs with the lower inlet conditions correspond 
to the combustion reaction. We present the results for the fluid temperatures 

only. The solid temperature distributions follow the same trends and therefore 
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are not given here. The uncoupled case (a9') = 0, i=1,2, in each channel) is 

given for comparison. In the uncoupled case the temperature on the reformer 

side decreases and the temperature on the combustion side increases along the 

channels. In the coupled case, both temperatures quickly reach a similar value 

and continue close to this value throughout the channels. 

3.3.2 Industrial parameters 

We use the following set of industrial parameters' for the reaction rate and the 

constants (3.2.8) in the equations (3.2.1), (3.2.3), (3.2.5), (3.2.19) and (3.2.20) 

in the channels: 

DC = 0.0795 m, D,,, = 0.00159 m, 

km(l) = 0.0794 m/s, km2) = 0.070 m/s, 

F$ »=6.25 mol/s, FT(2) = 5.66 mol/s, 

avl) = a, (, 2) 
= 76.33 m-1, v, (l) = 2.47 m/s, 

vx2) = 2.24 m/s, A(' = A(2) = 0.00632 m2 

AM = 0.778 mol/(kgcat s), A(2) = 0.0794 mol/(kgca, t s), 

ý(1) = ý(2) = 0.65, Rg = 8.314 J/(mol K), 

pal) = pý2ý = 2355.2 kgýat/m3, (1- o(1)) = (1 - o(2)) = 0.395, 

EM = 36720 J/mol, E(2) = 1100 J/mol, 

De(r) = 0.0053 m2/s, Dý2ý = 0.0048 m2/s, 
CP') = 44 J/(mol K), Cpl) = 32 J/(mol K), 

k f(l) = 0.061 W/(m K), k f) = 0.054 W/(m K), 

3This list of parameters is based on experimental data taken from the literature. The details 

are given in Section 1.5.2. 

62 



Pf = p(2) = 400.4 mol/m3, ff 

h(l) = 1002.4 W/(m2 K), 

(OHR l)) = 2067 000 J/mol, 

E=0.02, 

hw(l) = 753.95 W/(m2 K), 

Uäl) = 538.73 W/(m2 K), 

kw = 1.5 W/(m K), 

19 1) = k(2) = 0.22 W/(m K), 

h fs = 900.34 W/(m2 K), 

(OHR2j) = -802,000 J/mol, 

äf) 
= 

a1) 
= 12.58 m-1, 

h(2) = 929.05 W/(m2 K), 

Ua2) = 622.78 W/(m2 K), 

L=12m, 

Yfl)(0) = 0.163, Yf2)(0) = 0.0836, 

T'(0) = Tf2)(0) = 733 K, T(1)(0) = 71 (2)(0) = 733 K, 

(-R)s(i) = 111(') (') = T(i)Y(i), i=1,2 mol/(kgcat s). 

From the above data we obtain the following 

ally 
1) a(3 
1) 

a(6 

a8 

a10 

a 
(2) 
i 
2) 

a(3 

2) a(6 

a(8 2) 

(2) 
aio 

= 2426.51 mol/(m3 s), a21) = 604.70 kg, a, t/m3, 

= 0.0053 m2/s, a41) = 2.47 m/s, a5' = 6.06 s-1, 

= 0.061 W/(m K), a71) = 43515.47 W/(m2 K), 

= 76513.19 W/(m3 K), a(')= 6777.22 W/(m3 K), 

= 0.22 W/(m K), ail = 206000 J/mol, -y(l) = 0.799, 

= 2136.21 mol/(m3 s), a22ý = 604.70 kgcat/m3, 

= 0.0048 m2/s, a42ý = 2.24 m/s, a52) = 5.34 s-1, 

= 0.054 W/(m K), a(2) = 28700.67 W/(m2 K), 

= 68722.95 W/(m3 K), a(g2) = 7834.57 W/(m3 K), 

= 0.22 W/(m K), a(2 )= 
-802000 J/mol, -y(2) = 0.985. 11 
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Here we use the Arrhenius reaction rate, in the form introduced in Section 2.3, 

that is, 

E(t) l 
(_R)(i0) -- 

(io)Ys(ti) 
= A(i)g RgT (0)/ Y(i), i=1,2, 

which consequently means that the solid mole balance equations (3.2.1) can be 

rewritten as 

a(i)y(i) 
Yýiý =1f1,2. (3.3.21) Y, 

alit + a(i)TW 

This relationship (3.3.21) between the concentrations is substituted into the fluid 

mole balance equation (3.2.3) and the solid energy balance equation (3.2.5), and 
the linear system is then solved numerically. The results for the fluid temperature 
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COUPLED CASE 

1600 (ag = 0) 1600 

1500 1500 

1400 1400 

1300 1300 

1200 1200 

1100 
ff 

1100 

1000 1000 

900 900 

000 000 

700 700 

600 600 

500 300 
02466 10 12 02466 10 12 

L(m) L(m) 

Figure 3.3: Fluid temperature distributions along the channels for industrial 

parameters. (Upper plot = Combustion side, Lower plot = Reformer side. ) 

as a function of x are presented in Figures 3.3(a) and 3.3(b). We can clearly see 
the effect of coupling on the temperature distributions along the channels for this 
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particular set of industrial parameters. It is also worth noting that due to the 
large difference in magnitudes of the coefficients calculated from the industrial 

data, a boundary layer effect is produced near the outlet of the reactor, where 
the zero heat flux conditions are not satisfied. In order to compensate for this 

discrepancy one needs to construct boundary layers at the outlet. This present 

chapter is concerned with the main trends of the temperature distributions along 
the channels. The construction and detailed discussion of the boundary layer 

effects is given in Chapter 5. 

For this industrial case, by substituting (3.3.21) into (3.2.3) and (3.2.5), it is 

possible to obtain the exact solution for the concentration Yf') (x), i=1,2. This 

implies that the forcing term, a(2)a(')ý(')Y(z), i=12 in equations 3.2.5 is a z ii () 

constant multiplied by a known function of x. One possible way of changing the 

temperature distributions shown in Figures 3.3(a) and 3.3(b) is to change this 
forcing term. The equations to solve for Yf') (x) have the form 

d2Yý2) dY(2) a(i)a()ý 
a32) (x) -a4z) dx 

(x) -a5Z 
ýý) 

Yýi) i=1,2. (3.3.22) 
dx2 

()(x)=o, 
f 

We assume, for convenience, that the pellets are spherical. 
The coefficients a1 and a5y i=1,2, depend upon the radius of the pellets r, 
that is, 

(z) 
_ 

k(,,,. ) a(') FT') (ti) al - (i. ) (i. ) a5 = 0)m va), i=1,2, 
vý Aý 

where km), the mass transfer coefficient between the fluid and the catalyst, and 

av) i=1,2, the surface area of pellets per unit bed volume, have the following 

representations (see Section 1.5 and Chapter 3 of [45]): 

D(') 3 

2rýZj 
(2 

+1.1 (SC(')) i13(2 
r(') l5/ 77(i) 

(()_ 47r(r(i))2n(i) = 4irn(z) 
3 

47rn(i) 
)Z1,2, 
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where (1 - q5(il) is the fraction of bed occupied by the catalyst pellet (the volume 
fraction of pellets), n() is the number of pellets in the bed, p(i) is the mass density, 

and Dý ff and Sc('), i=1,2, are the diffusion of methane and the Schmidt 

number, both discussed in detail in Section 1.5. To investigate the effect of 

changing the radius of the pellets on the solution Y1 (x), we shall assume that 

the volume fraction of the pellets remains constant but the surface area varies 

together with the radius. This implies that, for this particular set of industrial 

parameters, on the reformer side we have, 

(1) 
_ 

2.65 x 10-6 (2 + 4244.2 (r(1)) 5) a(1) = 
1.185 

(3.3.23) 
m r(1) v r(1) 

The last coefficient in (3.3.22), for the reformer side, can be written as a function 

of the radius of the pellets r(l) such that, 

1 

a(1) 
a2 ýJl> 

Y(1)(x) = N(1)(r(1ý)Yf1)(x), 5 (a(1) 1+a2l)gr(1» 

where km(l) and av(l) from (3.3.23) are substituted into a(, l) and a51) to give the 

exact representation of N(l) (r(1)) for the reformer side 

Nýlý (r(l)) = 
7.215 x 10'6 + 0.0153(r('))5 

2.52 x 10-3 + 5.348(r(1)) 1+1.14893 (r(1))2 

As the radius tends to zero, N(1)(r(')) can be approximated by 

Ný1ý (r(1)) -- 0.002863095238 - 0.004695765873 (r(1)) 6. 

This implies that the concentration will will not change significantly as the radius 
decreases and the surface area increases because N(')(r(')) is almost constant for 

small r(l). This, in turn, shows that the forcing term in equation (3.2.5), and 

therefore the graphs for the temperatures, will not change significantly as the 

surface area of the catalytic pellets is increased, provided the volume fraction of 
the pellets remains constant. Similar work was carried out for the combustion 

side and the same result was obtained. 
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3.4 Layered wall 

3.4.1 Geometry and governing equations 

In this section we look at the case when the wall consists of layers of different 

widths and different thermal conductivities. As an example, the three layered 

wall shown in Figure 3.4 is studied. The middle layer is introduced to model 

an additional thermal barrier between the two processes. This could be used 

as a device to reduce interactions between the channels in a sensitive region, 
for example, when endothermic reactions are high and remove too much heat 

from the catalytic combustion side, extinguishing the combustion reactions. The 

equations in the channels remain the same as before, namely (3.2.1) - (3.2.5), 

with the scaling given in Section 3.2.2, that is, To = y/(eDc). The boundary 

conditions (3.2.10) - (3.2.13) are set on 7-o = ±1. The equations inside the wall 

are 

V2T(o1) (x, To) = 0, xE (0, L), To E (d1,1/2), 

02T(oo) (x, To) = 0, x (0, L), To E (d2, di), 

72T(o2) (x, To) = 0, xE (0, L), 7-o E (-1/2, d2). (3.4.24) 

Here dl and d2 are such that -2 < d2 < dl < 2, see Figure 3.4. At the interfaces 

To = dl and To = d2 inside the wall we pose the ideal thermal contact conditions, 

T(oi) (x, To) = T(oo) (x, To), 7-o = dj, 

&T(oj) m(oo) j) 
&T 

O 
ß-0) _ 

0wo) 
ÖT 

(x, TO), To = dj 
r-1,2, 

00 

where kwý) 
,j=1,2, 

denote the thermal conductivities of each layer within the 

wall. Substituting the scaled coordinate into equations (3.4.24) gives 

Z, ool) (x, To) = Fi1) (x) + Fä1)(x)ro, To E (di, 1/2), 

To«)(» (x, 710) = Fi°) (x) + F2°) (x)7-o, ro E (d2, di ), 

To02) (x, 70 ) = Fie) (x) + F22) (X) To, To E (-1/2, d2), 
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Figure 3.4: Wall consisting of 3 layers of different widths and different thermal 

conductivities. 

where FP) i=1,2, j=0,1,2, are functions of x, which are determined from 

the boundary conditions. The boundary conditions associated with these three 

equations are 

at ro = 1/2: T(oi) = TO), 

at To = dl: Vol) = T(oo) (1) c? I'(ol) 
= k(o) 

m(o0) 
aTp aTO 

at To = d2: T (02) 
= T«)(», kw2) 

äT02) 
_ two) 

äTOO) , 00 

at T° = -1/2: T(02) = TJ2ý 
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These boundary conditions lead to the following set of equations: 

F(') (x) + 
F21) (x) 

2 

F, (') (x) + di F2(1) (x) 

(1)F21) (x) 

F(t) (x) + d2F22) (x) 

i (2) F(2) (x) 
w 

F(2) (x) 
_ 

F'22) (x) 

12 

= T2;, 1> 

= F«» (x) + d1F2°) (x), 

= kw°) F2°) (x) 

= Fl(0) (x) + d2F20) (x), 

= kwo) F2(O) (X» 

= Tý2>. w 

(3.4.25) 

The six equations in (3.4.25) are solved to find the six unknowns, Fziýl i ,= 
1,2, j=0,1,2, and consequently, the functions T(OS) j=0,1,2. In order to 

eliminate TO) and Tw2ý we analyse the remaining Neumann boundary conditions 

at ro = ±2. From the flux conditions given by equations (3.2.11) and (3.2.13), 

it follows that 

ryýl> (Tflý - Twl») - F21) and - ry(2) (T (2) 
- Twl' - F22> > 

where 

F21) -P (Twl) - Tw2) ), F22) = Q* (T(1) - T(2) ), (3.4.26) 

_ 
2kw°) kw 2) 

P* (2) (1) 
- 

(°) (1) (°) 
- 

(2) (°)(1) (2) ' 2dlkw (kw k)+ 2d2k (k k)+ law (few + kw ) 

_ 
2k(°) kl) 

2d1kw2)(kwl) - k(°)) + 2d21ew1)(k°) - kw)) 2 
-{-1ý°)(kl) + kw2)) 

= 
hz)eDC 

_ 
hw')Dw 

and W 'yýýj T 

Here D, DC are the thicknesses in metres of the wall and the channels, respec- 
tively. Equations (3.4.26) can be rewritten in the form 

T'- T(1) - 
Pik (T (l) - Tw2)), TI(2) -T (2) --Q (T ýl) 

-T 
ý2) ), 
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from which we obtain 

ý1ý _ 
(Q* + ry(2))ry(1)Tf1) + Py(2)Tf(2) 

TT" 
7(1)'y(2) + P*'y(2) + Q*-y(l) 

(3.4.27) 

ý2ý _ 
Q*_y(1ýT(1) + ('y(') + p), y(2)T(2) Tw 

7(1)1'(2) +P y(2) + Q*ry(l) 
(3.4.28) 

Subtracting (3.4.28) from (3.4.27) and rearranging gives 

k (2) (2) (1) 
- 

(2) 

T(1) - T(1) _w 
ry ýTf Tf 

fw Jry(1)ry(2) + k( 2), 
y(2) + k(l)-y(1) ' 

k(1) (l) T (l) 
-T 

(2) 

T (2) 
-T 

(2) wry ffý 
f Jýy(l), y(2) + k(2)ry(2) + k(l)-y(1) w 

where J is the only quantity which depends on the scaled widths of the layers 

and the thermal conductivity of the middle section of the wall, and it is given by 

k(o)(k»l) + k2ý)-2d2kw1)(kw2) - kw°ý)-2d1k2ý(k - k) 

2k0) W( 

In what follows we investigate how changing the structure of the layered wall 

affects the temperature distributions along the channels. We focus specifically 

on the coefficients multiplying the coupling term (T fl) -T 
f2) ). These coefficients 

have the following form 

_ 
a(')k(2)y(2) a(2)k(1) (1) 

[Rý 
Jy(l)y(2) + k(2 w W( 

)7(2) + kl)ry(1) 
ýcý 

Jy(1)y(2) + k( 2)y(2) + k(l)ry(i) 

where [R] denotes the reformer side and [C] denotes the combustion side. For 

the layered wall shown in Figure 3.4, the overall heat transfer coefficient has the 

following form, (compare with (3.2.14) for the unlayered wall), 

Dc) D, (, (» 1 -i Uäß) - (i) ++ 1' 2' 
w 2(°w h, w 
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where D(2), i=0,1,2, denotes the width of each layer within the wall (in metres), 

and U(, 1) and Ua2) are the overall heat transfer coefficients between the reformer 

channel and the middle of the adjacent wall and the combustion channel and the 

middle of the adjacent wall, respectively. The results of numerical calculations 

are presented in Figures 3.5 to 3.7. The aim is to show how the structure of the 

wall affects the coupling between the temperatures in the channels. We analyse 

three cases and the details are given in Sections 3.4.2 to 3.4.4. 

One particular feature of the present combustion/reforming system is that the 

temperature is obtained as a monotonic function of the distance parameter (see 

Figures 3.5 to 3.7). The same applies to the temperatures shown in Figure 

3.3 in Section 3.3.2. By no means does this characterise a general feature of 

conventional combustion systems, where critical points would be expected should 

similar experiments be carried out. In our particular case of combining catalytic 

combustion and steam reforming in a multi-channel reactor, the temperature- 

versus-distance behaviour is consistent with the results of the earlier published 

work (see, for example, [23], [45], [74], [78], [86], [94] and [96]). 

3.4.2 Three layers of equal widths but different thermal 

conductivities 

dl = _d2 =6 jowl) k(O) ý k(2) 

In this case the wall consists of 3 layers of the same width but different thermal 

conductivities. The quantities ry('), . y(') and J have the form 

'Y(1) = 
hw(1)eDc 

ruwl) 

3(°) 

1.199 hw2ýEDC 1.477 
ý1> , ry _ (2) k(2) kw w 

kw°)kwl) + law°>k(2) + kw')k(2)). 
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C 

6 

ix WALL 

c) k» = 1.5 W/mK, kw(o) = 5 W/mK, kw2ý = 10 W/mK 

d) kw) = 1.5 W/mK, kw°) = 0.8 W/mK, kw) = 0.2 W/mK 

e) kw') = 10 W/mK, Z) 
= 5 W/mK, 4)) 

= 1.5 W/mK 

f) k') = 0.2 W/mK, k? ) 
= 0.8 W/mK, k? ) 

= 1.5 W/mK 

Diagram 1: Geometry of the wall for Figures 3.5(c) to 3.5(f). 

The graphical results are displayed in Figure 3.5. The geometry and correspond- 
ing thermal conductivities for the graphs shown in Figures 3.5(c) to 3.5(f) are 
described in Diagram 1. Figures 3.5(a) and 3.5(b) correspond to the uncoupled 

and coupled cases for the unlayered wall, with k,,, = 1.5 W/(m K), and they are 

given here for comparison. Figures 3.5(c) and 3.5(d) show the temperature dis- 

tribution when the layer next to the reformer side has the same conductivity as 

the unlayered wall. Figures 3.5(e) and 3.5(f) show the temperature distribution 

when the layer next to the combustion side has the same conductivity as the 

unlayered wall. The difference in fluid temperatures T1 - T1 at the outlet, for 

different `mean' thermal conductivities, is given in Table 3.1. From Figure 3.5 

and Table 3.1 we conclude that an increase in `mean' thermal conductivity leads 

to an increase in the coupling between the channels, that is, a decrease in the dif- 

ference between the outlet temperatures T (2) 
- Tfl) . From Table 3.1 we can also 

see that, for the cases when the `mean' thermal conductivity is kept the same, if 

the layer next to the combustion side has the largest thermal conductivity, then 

we have an increase in the coupling. This is due to the fact that the heat transfer 

coefficient on the combustion side is larger than that on the reformer side. 
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R --ý C 

kwl), kw(O), 1l' W) 
W/(m K) 

`Mean' 

ký, 

W/(m K) 

Temperature difference 

T f2) 
- Tfl) 

at the outlet x= 12 m 
Non-conducting wall 0 867.04 K 

1.5,0.8,0.2 0.83 633.13 K 

0.2,0.8,1.5 0.83 602.87 K 

1.5,1.5,1.5 1.5 383.11 K 

10,5,1.5 5.5 297.69 K 
F 1.5,5,10 5.5 282.74 K 

Table 3.1: Results corresponding to Figure 3.5, which show the difference in the 

outlet fluid temperatures in the two channels when the wall has the geometry (3 

layers of equal width) and thermal conductivity as described in Diagram 1. 

3.4.3 Outside layers of equal widths and equal thermal 

conductivities 
2- 

dl = d2 +2=D, D dl - d2, l) = k(2) k(0) 

In this case the layer next to the reformer side and the layer next to the com- 
bustion side have the same widths and the same thermal conductivities. The 

width and thermal conductivity of the middle layer differs from those for the 

two outside layers. The thermal conductivity of the outside layers, k(l) and kw 

are such that k 01) 
= kw2ý = k, � = 1.5 W/(m K), the thermal conductivity of the 

unlayered wall. The quantities -y(l), 7(2) and J then have the form 

1 hwl)EDc 
-1.199 

hiö)eDC 1.477 kw ()_ 
(1) _ , ), (2) _ (2) = J= (o)(2Dlýw°>+kw(1-2D)). kw kw w %w 

The graphical results are displayed in Figure 3.6. The geometry and the corre- 

sponding thermal conductivities for the graphs shown in Figures 3.6(c) to 3.6(f) 

are described in Diagram 2. 
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To 

_ý 

kw°) = 10 117inK d) k;, » 
= 0.2 W/ni 

WALL 

-x WALL 

Diagram 2: Geometry of the wall for Figures 3.6(c) to 3.6(f). 

= 1.5 W/(m K), the same as for the unlayered wall. ) (For Figure 3.6, kw(l) = k2ý 

Figures 3.6(a) and 3.6(b) correspond to the uncoupled and coupled cases for the 

unlayered wall, with k,,, = 1.5 W/(m K), and they are given here for comparison. 
Figures 3.6(c) and 3.6(e) show the temperature distribution when kw°) is larger 

than k, (» and k2ý. Figures 3.6(d) and 3.6(f) show the temperature distribution 

when kw(O) is smaller than kw(l) and k, ý�2). Figures 3.6(c) and 3.6(d) are for the case 

when the middle layer is of normalised width 1/2, whereas Figures 3.6(e) and 
3.6(f) are for the case when the middle layer is of normalised width 10/11. The 

difference in fluid temperatures T f2) 
-T 

j1) at the outlet, for each of the cases 
described in Diagram 2, is given in Table 3.2. From Figure 3.6 and Table 3.2 it 

follows that the coupling effect is less pronounced when the thermal conductivity 

of the middle layer is smaller than that of the outer layers and more pronounced 
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Normalised width Temperature difference 

of the kwl) = lawý1 = kw T (2) 
- T(1) ff 

middle layer at the outlet x= 12 m 
1/2 k(°) < kw 690.93 K 

10/11 kw(O) < kw 772.09 K 

Unlayered wall 383.11 K 
(of normalised width 1) 

1/2 k(°) > law 309.00 K 
10/11 kü°> > kw 245.31 K 

Table 3.2: Results corresponding to Figure 3.6, which show the difference in the 

outlet fluid temperatures in the two channels when the wall has the geometry (3 

layers with outer layers of equal width and thermal conductivity) and thermal 

conductivity as described in Diagram 2. 

when the middle layer has a higher thermal conductivity than the outer layers. 

Also, from Table 3.2 and Figure 3.6 we conclude that if the middle layer has a 
lower thermal conductivity than the outer layers, increasing its width decreases 

the coupling. However, if the middle layer has a higher thermal conductivity 
than the outer layers, then increasing its width increases the coupling. 

3.4.4 Two-layered wall, both layers of equal widths but 
different thermal conductivities 

di = d2 = 0, k(1) -c kw2) 
w 

In this case the wall consists of two layers that have equal widths but different 

thermal conductivities. For the following numerical experiments we assume that 

the layer next to the reformer side has the same conductivity as the unlayered 

wall, that is, k'= 1.5 W/(m K). 
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The quantities ry(l), ̂ y (2) and J have the form 

hw»EDc 
_ 

1.199 
(1ý ýw 
W( w 

To 

hw FDC 
_ 

1.477 
_1 Q) k(2)l (2) (2) 2+w k/ 

ww 

k» 

- max 1 WALL 

kw2 

1 

c) kw2) = 10 W/mK d) k? ) = 0.2 W/mK 

Diagram 3: Geometry of the wall for Figures 3.7(c) and 3.7(d). 

(In Figure 3.7, k» = 1.5 W/(m K), the same as for the unlayered wall. ) 

The graphical results are displayed in Figure 3.7. The geometry and the corre- 

sponding thermal conductivities for the graphs shown in Figures 3.7(c) and 3.7(d) 

are described in Diagram 3. Figures 3.7(a) and 3.7(b) are the uncoupled and cou- 

pled cases for the unlayered wall, with kz1 = 1.5 W/(m K), and they are given 

here for comparison. In Figure 3.7(c) the layer next to the reformer side has a 
higher thermal conductivity than the layer next to the combustion side and vice 

versa for Figure 3.7(d). The difference in fluid temperatures T(2) - Tf1) at the 

outlet, for different `mean' thermal conductivities, is given in Table 3.3. From 

Figure 3.7 and Table 3.3 we conclude that an increase in the `mean' thermal 

conductivity leads to an increase in the coupling between the channels, that is, 

a decrease in the difference between the outlet temperatures T(2) - Tfl) 
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I'w2) 

W/(m K) 

`Mean' 

k, � 
W/(m K) 

Temperature difference 

Tf2) - Tfl) 

at the outlet x= 12 m 

Non-conducting wall 0 867.04 K 

0.2 0.85 660.56 K 

1.5 1.5 383.11 K 

10 5.75 293.13 K 

Table 3.3: Results corresponding to Figure 3.7, which show the difference in the 

outlet fluid temperatures in the two channels when the wall has the geometry (2 

layers of equal width) and thermal conductivity as described in Diagram 3. For 

all the examples in this case we take kwP = 1.5 W/(m K). 

3.5 Discussion of the results 

In this chapter we have analysed, using an accurate asymptotic technique, how 

the temperatures in the channels of a catalytic reformer are coupled across the 

thin conducting wall between the channels. We have described in detail how we 

obtain the coupling terms analytically, expanding the temperature in the wall 

asymptotically, and we have presented two numerical examples with the corre- 

sponding coupled and uncoupled cases for each example. The first example was 
for a set of model parameters with a model reaction rate, and the second example 

was for a set of industrial parameters, taken from previously published work on 

reactors of this type. We have also considered how the geometry and thermal 

conductivity of the wall affects the coupling between the channels. We have 

presented several numerical examples which show that an increase in the `mean' 

thermal conductivity across the wall results in a more pronounced coupling of the 

fluid temperatures, as expected. We have also shown that, if we keep the `mean' 

thermal conductivity the same, the coupling between the channels is increased 
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when the layer next to the combustion side has the highest thermal conductivity. 
Finally, for the case of a three-layered wall, we have shown that if the middle 
layer has a lower thermal conductivity than the outer layers, increasing its width 
decreases the coupling between the channels. However, if the middle layer has a 
higher thermal conductivity than the outer layers, increasing its width increases 

the coupling between the channels. 
In the next chapter we extend this technique and explore in more detail the 

effect of changing the properties of the connecting wall by including an air gap. 
Consequently, heat transfer via radition is also taken in account. We find the 

nonlinear coupling terms (nonlinear in T0(1) (x) and T'0 (x)) and we solve the 

coupled system numerically, presenting several examples. 
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Figure 3.5: The distribution of the fluid temperatures along the channels with 

the geometry and thermal conductivities described in Diagram 1. (Upper plot 

= Combustion side, Lower plot = Reformer side. ) 
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Figure 3.7: The distribution of the fluid temperatures along the channels with 
the geometry and thermal conductivities described in Diagram 3. (Upper plot 

= Combustion side, Lower plot = Reformer side. ) 
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Chapter 4 

Air gap in the wall 

4.1 Introduction 

It is of great importance to understand what would happen, not only if the wall 

connecting the channels where the reactions are taking place was layered, but also 
if there was a thin air gap inside the wall, see Figure 4.1. The air gap could be 

used to shift the main mechanism of heat transfer from conduction to radiation 

and thereby raise temperatures on the combustion side. This could be used as 

a self-regulating method of temperature control, which could be exploited to 

ensure that the reforming side does not act too much as a heat sink, which could 
in turn extinguish the combustion reaction. If too much heat is being transferred, 

then the surface temperature on the combustion side will fall and heat transfer 
by radiation would rapidly decrease. However, the combustion reactions would 

still be sustained. In the examples illustrated here the simulations are performed 

at higher temperatures to illustrate this principle. This chapter comprises of 
two parts: in the first part we assume that heat transfers across the air gap via 

radiation only. In the second part we then consider the `limit' case, as the width 

of the air gap approaches zero, and we include heat transfer via conduction, as 

well as radiation, across the air gap. In the remaining parts of the wall, the outer 
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Steam reforming reaction ýý' 
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70 
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T62) 
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Figure 4.1: An air gap inside the wall. 

x 

layers, heat transfers via conduction as before. We introduce local coordinates 

such that 
W li li 

To E (- 
2,2), 

i=1,2, 

i. e. the outer layers of the wall are of dimensionless width l1 and 12 as shown in 

Figure 4.1. The specific temperatures, at the interfaces between the air gap and 

the outer layers of the wall are denoted by T(1) and Tý2ý respectively, see Figure 

4.1, and at these interfaces, we set the radiation conditions, which are discussed 

in the following section. 
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4.2 Formulation of the problem 

Radiation 

Figure 4.2: Radiation between two finite plates of different temperatures. 

In general, radiation conditions across a surface can be explained by considering 
two plates of different temperatures TA and TB respectively, as shown in Figure 

4.2. The rate q of the heat flow via radiation across the surface S on plate TA 

has the form 

q= QE((TA)4 - 
(TB)4), 

where c is the emissivity (the emissive power of the surface emitting radiation) 
0<E<1, and a is the Stephan-Boltzman constant, a=5.670 x 10-8 W/(m2 K4) 

(see, for example, [23], [45] and [46]). 

Similar radiation conditions are posed at röl) = -l1/2 and Toe) = 12/2. In the 

outer layers of the wall the temperatures T(°'>, i=1,2, satisfy the steady state 
heat equation which, in the new local coordinates, takes the form 

72T °i) (x, T(i)) = 
a2T (01) 

+1 
a2T (ý) 

= 0, i=1,2, (4.2.1) äx2 ý2DC T(i)a 

where, as before, e denotes the ratio of the width of the wall to the width of the 

channel, e=D,, /DC. 

The temperatures T(°'), i=1,2, are expanded asymptotically in the following 

way: 

T(oi)(x, T(0i))=T(Oi)(xT0(i))+eT(Oi)(x, T0i))+62T2Oi)(x, T(i))+..., i=1,2. (4.2.2) 
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4.2.1 Part 1: Heat transfer across the air gap 'via radia- 
tion only 

Similar to the previous chapters we assume ideal thermal contact between the 

wall and the channels. Therefore, considering heat transfer across the air gap 

via radiation only, the full set of boundary conditions associated with the wall is 

T(01) = Twi) Q)a a(noi) 
= hwl)(Tfl) -T 

, ') ), at Tot) -2, (4.2.3) 

Vol) = T,, ('), kwl)aan(oi) =ac((T*2))4-(T(' )4), at Tol) =- 
2; (4.2.4) 

-T(o2) l T(02) = T(2), k 2) 
an =ae((Týl))4-(T(2))4), at Toe) =2; (4.2.5) 

aT(02) 
T(oa) Tw2), kw2) 

an = h2)(T f2) 
-Tw2) ), at Toe) 

2, 
(4.2.6) 

where k, (�) and h'), i=1,2, are the thermal conductivities and the heat transfer 

coefficients associated with the two outer layers of the wall, respectively. Sub- 

stituting (4.2.2) into (4.2.1) we find that the leading terms TOO')) i=1,2, of the 

temperatures are linear in Totiý, that is, 

E(oi) (xý r0(i)) = F(') (x)+ F(') (x)Tp''), i=1,2, (4.2.7) 

where F3') and F4y), i=1,2, are functions of x which are obtained from the 
boundary conditions (4.2.3) and (4.2.6), giving 

F(1) - 7'(1) - 
L, (1)H(1) F(1) _ , y(1)H(1)ý 
2 

F32) - Tý2) - 
12y(2)H(2), 

F(2) _ 
(2)H(2), 

2 

where, as before, 

D hwýý 
1,2, 
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and 

H(i) (x) = T(x) - T�(, ) (x), i=1,2. 

Substituting F3') and F4`), i=1,2, into (4.2.7) and rearranging, we obtain the 

following expressions for Töol) and Töoa): 

E0(O1) (xý 7-(1)) =T f(l) - H(1) [1 + -Y(l) 
(2 11 

- Tol) JJ ' 
(4.2.8) 

Tö02) (x To2)) =T( f2) - H(2) Iii + ßy(2) 
C2+ 

T° )) J . 
(4.2.9) 

The Dirichlet conditions in (4.2.4) and (4.2.5) are substituted into (4.2.8) and 
(4.2.9) to give 

T(l)(x) = T' - HW(1 +ry(l)ll), (4.2.10) 

T(2) (X) = T(2) - H(2)(1 +y 2)12). (4.2.11) 

Comparing the Neumann conditions in (4.2.3) and (4.2.4) and then in (4.2.5) 

and (4.2.6), we obtain the following 

-hw1)H(1ý _ ýE((7'*2))4 - (7(1))4), (4.2.12) 

h(2)H(2) _ 0, E((T(2))4 - (T('))4), (4.2.13) 

which gives a relationship between H(' and H(2), that is, 

H(2) = _h 
(1)h 

2)H(1). 
(4.2.14) 

Using this relationship along with the substitution of (4.2.10) and (4.2.11) into 
(4.2.12) gives the following fourth order equation for the function H(1): 

0= QE((Tfl) - H(1)B('))4 - (Tf2) + H(1)B(2))4) - h(l)H(l), (4.2.15) 

where the coefficients B(1) and B(2) are given by 

BM _ (1 +'Y(l)l1), B(2) = 
h, 

2) 1+7 (2)l2). (4.2.16) 
hw 
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4.2.2 Full system of equations 

For the numerical simulations in this chapter we again use the simplified form of 
the Arrhenius reaction rate as discussed in Chapters 2 and 3, that is, 

E(i) 

ý_R) (i0) = qi(io)y9(i) - , 
A(i)e RgT"r Y(i), i=1,2. 

This implies that the solid mole balance equation (3.2.1) can be written as 

a(i)Y(i) Y(2) 
a(') + a(i) () 'i=1,2. (4.2.17) 

,2 

Therefore, the full system of equations for the temperatures and the concentra- 
tions describing the mass and energy balances in the fluid and the solid phases, 
is 

d2Y(1) dY(Z) a(ti)a(')(') 
a3Z) 

f (x)-a4 z) f (x) -( Y( f`) (x) = 0, 
dx2 dx a(ti) + a(ý) ý, (i)) iz 

d2T (i) dT (i) 
asiý d2 

{x)-a7') df (x)+a$Z)(T(i)(x)-T(')(x))-a97)9(2)H(')=0, (4.2.18) 

(j)d2T(z) (a(2)aä2)aii qr(i) W (; ) 
a10 dx2 

ýx) -\ 
ali) +a2ý r($) / 

Yf (x) - as (7'3(Z)(x) -T(i)(x)) _ O' z =1'2' 

where 

Hý' _ (T fly 
- Twl) ) g(l) = 1, g(2) -- 

hw 1 

_ h(2) 

For the purpose of the numerical simulations in this chapter only, the value of 
the parameter AM (the pre-exponential factor on the reformer side), provided 
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by our colleagues in chemical engineering, was changed to 1832.35 mol/(kgca, t s). 
This was to give a clear indication of the effect on the temperature distributions 

of changing the parameters associated with the air gap. All other constants in 

TW a(p) to aii, i=1,2, and the boundary conditions at the inlet and the outlet 

are those given in Section 3.3.2. 

Equation (4.2.15) and system (4.2.18), together with the inlet and outlet bound- 

ary conditions, and industrial data for the coefficients B(), g(i) and aj('), i= 

1,2, j=1, ..., 11, is solved numerically to find the temperature and the con- 

centration distributions along the channels. We also obtain the results for the 
function HM, which show how the difference between the temperature of the 
fluid in the reformer channel and the temperature of the wall on the reformer 
side changes. (The graph for H(2) - the difference between the temperature of 
the fluid in the combustion channel and the temperature of the wall on the 

combustion side - is similar and therefore, we do not include it here. ) 

4.2.3 Numerical results and discussion 

Figures 4.3 - 4.6 show the numerical simulations for the temperature and concen- 
tration distributions in the case when there is an air gap inside the wall (across 

the air gap we consider heat transfer via radiation only). The corresponding 
coupled and uncoupled cases are presented for comparison. For each case, we 
also present the graph of the function HM which is monotonically decreasing. 
For each numerical simulation we notice that the graph for the temperature dis- 

tribution in the case when there is an air gap always lies between the coupled and 
the uncoupled graphs, as expected. Also, higher emissivity of the surfaces leads 

to a significant increase in the coupling between the channels (compare Figure 
4.3(a) and Figure 4.3(b)), whereas decreasing the width of the air gap shows only 
a very slight increase in the coupling (compare Figures 4.4(a) and 4.4(b)). This 

second observation can be explained as follows. 
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The function HM, which appears in the last term of the fluid energy balance 

equation, the second equation in (4.2.18), drives the coupling between the two 

channels. When the width of the air gap is changed, i. e. when ll and 12 are 

changed, the coefficients B(11 and B(2) (which depend linearly on ll and 12), also 

change. Our aim is to show that small perturbations in the widths ll and 12 

(which result in small perturbations in BM and B(2)) give a small perturbation 
in the function H(1). This would explain why the graphs in Figure 4.4(a) and 
4.4(b) look similar for different values of ll and 12. We can write equation (4.2.15) 

as a function, M say, of B(l), B(2) and H(l), such that 

0= M(B(1) 8(2) H(')) (4.2.19) 

where the function M is nonlinear in the three independent variables. We slightly 

perturb each of these variables and assume that at this perturbed point the 

solution still satisfies equation (4.2.19). Denoting the perturbations in BM, B(2) 

and HM as &B(' , 9B(2) and tHM respectively, we have 

0= M(B(l) + 9B(l), B(2) + 9B(2), H(' + eH(l)) 

Expanding about the original point (B('), B(2), H(')), up to and including terms 

of the order O(t), gives 

M(B(1) B(2) H(1)) + &B(1) 
am 

(B(1) B(a) H(1)) aB(1) , 

+9B(2) 
B 

2c 

) 
(B('), B(2)' H(l)) + eHýl) 

aH( 
) 
(B(1), B(2)' H(l)) = 0. (4.2.20) 

Computing the derivatives in equation (4.2.20) and rearranging we obtain the 
following expression for the perturbation in H(1 

(1) _ 
4H(')oc(&B(')(T(l)-H(1)B('))3+&B(2)(T(2)+H(')B(2))3) 

eH (4 2 21) - 
-4o- (B(')(T(l)-H(1)B(1))3+(T(2)+H(1)B(2))3)-hl) .. 

From (4.2.21) we deduce that if the changes in BM and B(2) are small, (if the 

widths of the outer layers 1 and 12 are changed slightly) then consequently the 
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change in H(' is also small and this is why we do not see a significant change in 

the graphs shown in Figures 4.4(a) and 4.4(b). 

In addition, we present the graphs for the fluid concentrations in all the figures. 

These contain the uncoupled and coupled fluid concentrations as well as their 

corresponding distributions for the air gap cases. We see from these graphs that, 

due to the particular physical parameters used in these numerical simulations, 
there is no significant difference between the results for the uncoupled and cou- 

pled fluid concentration distributions, which, in turn, leads to the conclusion that 

we do not notice a significant difference in the graphs for the concentrations when 

either the width or the emissivity of the air gap are changed. (Compare with 
the case shown in Figure 2.3, which was for the illustrative example with simple 

chemical reactions taking place in the channels. A similar effect was observed, 
that the coupling is more pronounced for the temperature distributions than for 

the concentration distributions. ) 

Figure 4.5 is presented to show what happens to the uncoupled, coupled and air 

gap cases for the temperature distributions when the inlet boundary conditions 
(in this case the conditions for T(1) and T(') are changed slightly. We set the 

modified conditions on the reformer side to be 

Tf1) (0) -- T(l) (0) = 500 K. 

Comparing Figure 4.4(a) and Figure 4.5(a) we see that the temperature distri- 

bution on the reformer side changes significantly as we lower the inlet condition. 
The same is true for the concentration distributions, which can be seen by com- 

paring Figure 4.4(c) and Figure 4.5(c). 

In addition, Figures 4.6 is presented to show what happens to the temperature 

and concentration distributions when the inlet boundary values for T fl) T(1) and 

y 2) are all decreased, that is 

T(1)(0)--T(')(0)=500K, Yf 2) (0) = 0.06. 
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Conclusions this time are that for the coupled, uncoupled and all the air gap 

cases, the temperatures on the reformer side and the combustion side are closer 
together in all the graphs and the concentration distributions on the combustion 

side all have a lower gradient than those in the cases with the original boundary 

conditions. This can be seen by comparing Figures 4.3 and 4.4 with Figure 4.6. 

Another important point to note here is that in this chapter on the air gap, we 

are introducing a new concept, different from those in the previous chapter where 

we had different layers of different widths and thermal conductivities within the 

wall. In all of the previous cases, the temperature distribution across each layer 

of the wall, to leading order, was linear in the scaled coordinate, i. e. in the 
layered wall in Section 3.4 we had 

' 
ooiý (xý To) = Fi (x) + F21) (x)To, To E (di, 1/2), 

Z, ooo) (x, To) = Fl(0) (x) + F2o» (x) To, To E (d2, di), 

Töoa) (x, To) = Fie) (x) + F22ý (x), -o, To E (-1/2, d2), 

where Fjý'W ,i=1,2, j=0,1,2, were determined from the boundary conditions. 
This lead to the coupling terms being of the form 

T (l) 
-T 

(l) 
_ 

kw 2)y(2) (T fl) 
-T 

f2)) 

fw Jy(1)., (2) + k(2)y(2) + k(l)y(1) 

T(2) - T(2) 
kw(l)y(l) (Tfl) - T(2)) 

fw Jy(1)7(2) + kw 
(a) 

7(2) + kw(1)y(1) 

with 
kw°)(kwl) + kw2ý)-2d2kw1)(kw2) - k(0))-2dlkw2)(kw°) - k(1» 

- 22 

For the case when dl = d2 = 0, that is, when the wall only consisted of two 
layers, setting the thermal conductivities of the layers to be the same lead to the 
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modified coupling terms having the form 

(2) (1) 
- 

(2) (1) (1) 
_ 

(2) 
T(1) - T(1) - 

ry (Tf Tf ) 
T(2) - T(2) -- 

'Y (ý'f ý'f ) 
fw- y(1) + y(2) + 'y(l), y(2) 'fw- .) (1) .. F. ) (2) + y(1)7(2) 

These coupling terms are identical to the coupling terms obtained for the unlay- 

ered wall discussed in Sections 3.2.1 - 3.3.2. For the air gap case, if we neglect 
heat transfer by conduction across the air gap, and assume heat transfer by ra- 
diation only, the coupling terms for the limit case (as the width of the air gap 

approaches zero) are obtained from the following nonlinear equation 

0= uE((Tfl) - H(')B('))4 - (T(2) + H(')B(2))4) - h(l)H(l), 

where the coefficients B(1 and B(2) are given by 

(1) hwl> (2) 
B(1) = (1 + ry2 ), B(2) 

h2) 
(1 

+ ry2 
I 

w 

Consequently, the coupling terms obtained from the limiting air gap case differ 

significantly from the coupling terms obtained for the case when there is no air 

gap, as discussed in Sections 3.2.1 - 3.3.2. This implies that, as the width of 
the air gap approaches zero, both conduction and radiation become important. 

Heat transfer via both radiation and conduction across the air gap is discussed 

in Part 2. 

4.2.4 Part 2: Heat transfer across the air gap via radia- 
tion and conduction 

As the distance between the outer layers approaches zero, heat will also be trans- 
ferred via conduction in the air gap. For conduction as well as radiation across 
the air gap, the model in Part 1 is modified as follows: 
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We denote by T (03) the temperature in the air gap, which satisfies the steady 

state heat equation, and we introduce local coordinates 

(3) Y (g) 13 13 

To 
EaDc 

To E 
2,2 a>1ý 

where l3 is the width of the air gap, which is of the order O(ea). Conditions (4.2.3) 

and (4.2.6) remain the same as before, on T' = l1/2 and Toe) _ -12/2, re- 

spectively. However, due to heat transfer via conduction, conditions (4.2.4) and 
(4.2.5), on Tol) -- -11/2 and Toe) = 12/2, respectively, become 

T(oi) = T(i) = T(o3)) kl) 
UP) 

w = 0, E((T(2))4-(T(1))4) + k3) 
U(03) 

ön an 

T(oa) = T(2) = T(o3) , 
k(2) 

ýnz) 
= 6E((T(l))4- (T(2))4) + 1ý(3) 

an 
03) 

Here kw3) is the thermal conductivity of the wall, where kw3ý = Ek(*) and k(*) is 

the same order of magnitude as kw(l) and kw2ý. Similar to Section 4.2, we find that 

T1l)(x) = T' )- H(l)(1 +ry(l)li), 

T(2) (X) = T(2) 
- H(2) (1 +ßi(2)12), 

and 

H(2) H(1). 

h(2) 

The following modified fourth order equation (compare with (4.2.15)) is used to 
find the function HM: 

0= QE((Tfl) - H(')B(1))4 - (Tf2) + H(1)B(2))4) - h(l)H(1) 

+(*) () 
- B(1) H(1)) - (T (2) (2)H(1) 

ýa-ýDc 
((T' 

ff +B )) a>1. (4.2.22) 

The last term on the right hand side of equation (4.2.22) becomes increasingly 

significant as the value of a increases, that is, as the width of that air gap 
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decreases. Therefore, as the distance between the outer layers approaches zero, 
heat transfer by conduction, as well as radiation, must also be taken into account. 

4.2.5 Numerical results and discussion 

Figure 4.7 is presented to show the effect on the solution HM, from equation 
(4.2.22), as the distance between the outer layers is decreased. On each graph 

we have presented two solutions for HM: the upper graph is for the case when 

we consider radiation only across the air gap, and the lower graph is for the case 

when we include conduction as well as radiation. It is clear from Figure 4.7 that 

as the width of the air gap approaches zero, the effect of heat transfer via con- 
duction becomes more significant and consequently must be taken into account. 
We emphasize this in Figures 4.8 and 4.9. Figure 4.8 shows the temperature 

distribution for the case when the width of the air gap is of the same order of 

magnitude as the widths of the outer layers. The difference between the cases 

when radiation only and when conduction and radiation are considered, is small, 
i. e. there is an error of approximately 4% in the outlet temperature. However, 

Figure 4.9 shows the temperature distributions in the limit case, as the width 

of the air gap approaches zero, for the two cases when radiation only and when 

conduction and radiation are taken into account. In the limit case, when the 

outer layers have the same width and thermal conductivity, we expect to obtain 
the same results as those for the unlayered wall (no air gap). Figure 4.9 shows 
that this is indeed the case: the temperature distributions, for the coupled (no 

air gap) case and that for the case when conduction and radiation across the 

limiting air gap are taken into account, are almost identical. If radiation only is 

considered, the error in the outlet temperature is significant, approximately 45%, 

which shows that, as the width of the air gap approaches zero, for an accurate 

analysis of the air gap, we must include heat transfer by conduction as well as 

radiation. 
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In the next chapter we return to the points raised in Chapter 3 about why it 

appears that the numerical solutions for the temperature distributions do not 

satisfy the zero flux condition at the outlet. In Chapters 2 to 4 we analysed the 

heat transfer across the wall, the coupling effect and the effect on the temperature 

and concentration distributions of changing the resistance (to the transfer of 
heat) of the wall. We also discussed the graphical representations of the solutions. 
In the following chapter we consider the full analytical solution in more detail, 

by constructing boundary layers near the inlet and outlet. We show that the 

numerical package used in Chapters 2 to 4 gives the limit solution, which holds 

for the main part of the channel. We also introduce the nonlinearity in the 

reaction rate term and construct the boundary layers accordingly. 
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Figure 4.3: Graphs showing the fluid temperature and concentration distribu- 

tions when the emissivity of the surfaces of the wall is changed. (Top two graphs: 
Upper plots = Combustion side, Lower plots = Reformer side. ) 
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Figure 4.4: Graphs showing the fluid temperature and concentration distribu- 

tions when the width of the air gap is changed. (Top two graphs: Upper plots 

= Combustion side, Lower plots = Reformer side. ) 
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Figure 4.5: Graphs showing the fluid temperature and concentration distribu- 

tions when Tfl) (0) and T1(O) are changed to 500 K. (Top two graphs: Upper 

plots = Combustion side, Lower plots = Reformer side. ) 

98 



a) Tf for air gap case (em. 0.9,11.12.0.4) 
1600 

1400 

1200 

1000 

600 

600 
coupled air gap uncoupled 

400 

200 

0 Modified B. C. 

-200 0246a 10 12 
L (m) 

c) Yf for air gap case (em-0.9, I1.12.0.4) 

0.15 

0.1 

} 
0.05 

Combustion 

Modified B. C. 0 

-0.05' 
0246a 10 12 

L (m) 

0(? e) HI for air gap case (em-0.9,11.12.0.4) 0 

-50 

2 

-100 
(Tf1 -Tw1) 

1600 
b) If for air gap case (em. 0.2,11.12.0.4) 

1400 

1200 

1000 

800 

600 
coupled air gap uncoupled 

400 

200 

00 0 Modified B. C. 

-200 02468 10 12 
L (m) 

I d) Yf for air gap case (em-0.2,11-12-0.4) 

0.15 

0.1 
Reformer 

} 
0.05 

Combustion 

0 Modified B. C. 0 

-0.05' 02468 10 12 
L (m) 

OqP HI for air gap case (em-0.2,11-12-0.4) 0 

2 
s 

_1 

(Tfl - Tw1) 

-150' -150' 02468 10 12 02468 10 12 

L(m) L(m) 

Figure 4.6: Graphs showing the fluid temperature and concentration distribu- 

tions when T fly (0) and T ")(0) are changed to 500 K and Yf 2) (0) is changed to 
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Figure 4.7: Graphs showing the increasing effect on the coupling term of heat 

transfer by conduction as the width of the air gap approaches zero. 
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Figure 4.8: Graphs showing the effect of conduction (as well as radiation) on the 

temperature distribution when the width of the air gap is of the same order of 

magnitude as the widths of the outer layers of the wall. 
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Figure 4.9: Graphs showing the effect of conduction (as well as radiation) on the 

temperature distribution when the width of the air gap approaches zero. 
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Chapter 5 

Asymptotic analysis of the 

equations associated with a 

catalytic reformer 

Our nonlinear coupled system of second order differential equations with constant 

coefficients, first introduced in Chapter 3, where i=1,2, is given below. This 

system represents reforming and combustion chemical reactions taking place in 

a catalytic reformer, where the reaction rate is taken in the Arrhenius form. 

As before, we pose Dirichlet boundary conditions at the inlet and Neumann 

boundary conditions at the outlet. 

5.1 Full system of equations 

Fluid mole balance equations 
d2 ti Y(') dY(i) 

a(i) f (x) = a(i) f (x) + a(')Y( x1 
al ) 

3 dx2 4 dx 5f()( 7). 
E(*) 

Jal 
+a2 2) 4(i)e RBTý(y)/ 
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Solid energy balance equations 

i 
(Tsi) (x) -T 

f2ý ýx)) a10 
ddx2 (x) = a82) dx 

-}- aýýýa(L)Y( x1 
a( ( (i 

fC)( 
_E(ý) 

l 

a, + a(')A(i), o 

(RT 

Fluid energy balance equations 

a61) 
d2T 2> (x) = a71) 

dT f (x) - a81) (TS 1) (x) -T f11) (x) ) 
dx dx 

(5.1.1) 

(1) y(2) (T (') (x) -T 
f2) (x)) 

() -E- a9 
y(1) + y(2) + y(1), y(2) 

), 5.1.2 

d2T 22) 

a(2ý (x) = a(2) 
dT f2) 

(x) 
- a(2) (T32) (x) 

- T(2) (x) ) 
dx dx f 

(2) (I Y(') (T' (x) -T 
f2) (x)) 

() - a9 
ry(1) + y(2) + y(1), y(2) 

where 

a(, l) = 2426.51 mol/(m3 s), a(21) = 604.70 kgca, t/m3, 

a31) = 0.0053 m2/s, a41) = 2.47 m/s, a51) = 6.06 s-1, 

a61) = 0.061 W/(m K), a(') = 43515.47 W/(m2 K), 

a81) = 76513.19 W/(m3 K), a(') = 6777.22 W/(m3 K), 

a10 = 0.22 W/(m K), a(, i) = 206000 J/mol, 7(1) = 0.799, 

A(') = 0.778 mol/(kgca, t s), E(1)/R9 = 4416.65 K-1, 
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a12) = 2136.21 mol/(m3 s), a(2) = 604.70 kgca, t/m3, 

a32) = 0.0048 m2/s, a42) = 2.24 m/s, a52) = 5.34 s-1, 

a62) = 0.054 W/(m K), a(2) = 28700.67 W/(m2 K), 

a82) = 68722.95 W/(m3 K), a(2) = 7834.57 W/(m3 K), 

)= 
-802000 J/mol, ry(2) = 0.985, a10 = 0.22 W/(m K), a(211 

A(2) = 0.0794 mol/(kgca, t s), E(2)/R9 = 132.31 K-1, 

and 

a(p) = 
1_"i a., Ft(') 

a(') _ ý(')p(') (1 - 0(i)), a(1) 3 
AC) vii) 

a(') = km a('), a(') - 1ý fý), a72) pf)Cp2)výZ) 

a9 Z) = Uäý)a1) a10 = 
s2)ß all = (A U(i) 

D(i), a()= v. 
(), 

I 
fsav2) 

, i=1,2, 

with the boundary conditions 

Yf 1) (0) = 0.163, Tfl) (0) _ 

Yf2) (0) = 0.0836, T f(2) (0) 

dY(1) dT(1) 

dx 
(12) - 0, 

dx 
(12) 

dY(2) dT(2) f (12) = 0, f (12) 
dx dx 

733 K, T(l) (0) = 733 K, 

733 K, T(2) (0) = 733 K, 

dT(1) 
0, 

dx 
(12)=0, 

dT (2) 
=0, dx (12)=0. 

(5.1.4) 

Due to large differences in the magnitudes of the coefficients involved in the 

above equations, we normalise this system (by dividing each equation by the 

coefficient which multiplies the second order derivative, and then multiplying 

each equation by a small parameter S, where S=7x 10-7). The normalised 

system of equations, in terms of S, has the following form: 

104 



Normalised boundary value problem 

Fluid mole balance equations 

8_ 
1) 

(x) = cý1) 
dYf 1) 

(x) + c(lly(l) (x)(1 x dx2 1 dx 2f( 
)' 

2 2 
6_ (x) = C(2) 

dYf 
(x) + C(2)Yf2)(x)(2(x). 

dx 1 dx 2 

Solid energy balance equations 

d2T31) 
_ 

(1) (1) (1) (1) (1) a 
dx2 

(x) = Mio (7S (x) - 7'f (x)) + c(l) Yf (x) 

d2T(2)(x)= (2)( (2)( (2) (2) (2) 
dx2 

c10 (Ts lx) - Tf (x)) 
- c11 Yf (x)(2(x). 

Fluid energy balance equations 

T f(2) x c(1) T (l) (x) S 
d2T f 

1) 
(x) - cdT f 

1) 
(x) + c(1) 1) (X) - c(1) dx2 6 dx 7f8 f()- s 

22 

Sd2T2ý (x) 
- c62) 

dTf 
(x) 

- c(2)T1 (x) + c82)Tf2) (x) 
- c9 

)T (2) (x), (5.1.5) 
dx dx 7 

where 

C(1) 

cal) + c(1) e- 

(Tr1) 

34 

C(2) (X)3 

c(2ý 

c(2) ý- c(2)e T(2 
) 

34 
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and 

41) 
= 0.0003262264, c21) = 0.0008004377, c31) = 2426.51, 

c41) = 470.4566, c51) = 4416.65, csl) = 0.49935 78525, 

c71) = 0.9078157705, c(l) = 0.0297955574, c91) = 0.8780202131, 

C(l) = 0.2434510591, 4i) 
= 1590.467009, (5.1.6) 

c(2) = 0.0003266667, c(2) = 0.00077875,42) = 2136.21, 
42) 

= 48.01318,42) = 132.31, c(2) = 0.3720457222, 

c(2) = 0.0315618333, 42) 
= 0.9224148889,42) = 0.8908530556, 

c(2 10 = 0.2186639318, ci2 = 5451.219518,5 = 0.0000007. 

For the normalised system the boundary conditions (5.1.4) remain unchanged. 

In order to solve the above singularly perturbed' system of equations (5.1.4) - 
(5.1.6) analytically, we first look at the linear problem by setting the tempera- 

tures in the reaction rates 2 as the temperatures at the inlet, similar to Chapters 

2 to 4. 

5.2 Singular perturbation - linear case 

To solve the linear problem analytically we use a method known in the literature 

as the compound asymptotic expansions technique (see, for example, [7], [55], 

[65], [67], [70], [83] and [90]). This method is used to solve singularly perturbed 

boundary value problems where the solution is written as a series in powers of 

the small coefficient (in this case 6). First, we solve the problem in the case when 

this small coefficient is zero. This is known as the limit solution. The next step 

1By singularly perturbed we mean that small coefficients appear in front of the highest 

order derivatives. 
2The reaction rates in the equations are present in the terms C1(x) and (2(x) and depend 

exponentially on the solid temperature. 
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is to compensate for any discrepancies at the boundaries caused by this limit 

solution, i. e. we construct boundary layers in the regions where there are rapid 

changes in the functions. We introduce the following notations 

Y(1) (x) = (Yfl) (x), y 2) (x), T l) (x), T 2) (x))T , 
Y(2) (x) = (T(l) (x), T(2) (x))T 

. 

Therefore, system (5.1.5) can be written as: 

5d2Y(1) (x) = DM 
dY(1) 

(x) + D(2)Y(1)(x) + D(3)Y(2)(x), (5.2.7) 
dx2 dx 

Sd2Y2) (x) = D(4)Y(1)(x) + D(5)Y(2)(x), (5.2.8) 
dx2 

where D(i) ,i=1, ..., 5, are all constant matrices of the form: 

C(, 
1) 0 0 0 C21) (1 000 

Dý1) -0 
c12) 0 0 

Dý2) -0 
c22)', 2 00 

0 0 C61) 0 '00 
c71) - c81) 

' 

0 0 0 c6(2) 00 
-c72) c82) 

0 0 

Dis) = 
0 1 

D(4) = 
c11 c1 0 -Clo 0 

9 

L 

0 ' C11 20 -c10 

-c92) 

c(1) 0 D(5) _ 
10 

0 C10 

and cýZ), i=1,2, j=1, ..., 11, are given explicitly in (5.1.6). 
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We now denote by Z the vector (Y(x)('), Y(x)(2))T. Using equations (5.2.7) and 
(5.2.8) we thus obtain the following overall equation for the system: 

d2 
SdZ (x) = Aýlý 

Z (x) + A(2) Z(x), (5.2.9) 

where 

A(l) 
DM 0 

00 

D(2) D(3) 
D(4) D(5) 

and AM, A(2> are 6x6 matrices. We assume that the solution of equation (5.2.9) 

has the form: 
12 

Z=1: Rw3 e' x, 

j=1 

where Aj are the eigenvalues of the differential system, wj are the corresponding 

eigenvectors of the differential system, and Rj, j=1, ..., 12, are constants which 

are determined from the boundary conditions (5.1.4). Substituting this solution 
into (5.2.9) gives 

[6I D(l) 0 D(2) 
-OO 

iýj 
- 

D(4) 

12 
E lZJwjeAiX 

j=1 

(5.2.10) 

where I is the 6x6 identity matrix. (A detailed explanation of the general 

solutions of homogeneous linear differential systems with constant coefficients 

can be found in Section 7.5 of [31]. ) 

We first consider the limit problem by setting S=0 in equation (5.2.10). For 

a non-trivial solution, we find the eigenvalues and eigenvectors of the remaining 

matrix, that is, we want this matrix to be non-invertible. 
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5.2.1 Limit problem 

Setting S=0 in equation (5.2.10) we denote the remaining matrix by P, 

-D(').. - D(2) -D(3) P= 
-D(4) -D(5) 

where Aj, j=3,... ' 6, denotes the eigenvalues of the limit problem of the differ- 

ential system. Setting the determinant of the above matrix P equal to zero, we 

obtain the following: 

0= (Ci' + C21)(1) X (C12>ýj + C22>(2 

-C1ý 
6 Aý 

- CM C(81) 7 

C(2) -C(2)ýý - C(2) 8 
x det 

176 C10 0 

0 c(2) io 

C91ý 0 

0 c(92) 

-clo 0 

0 -C 
(2) 

which, in turn, gives the following equation for A j, j=3, ... 5 6: 

0= . ýý(c11))ýý + c21)(c1 + C(2) (2)(C1ýj +C2), 

where 

Cl = C61) C62) 

C2 = C(1) (C8(2) 
- C9(2) )+ C6(2) (C71) 

- C91)). 

From (5.2.12) we obtain the four eigenvalues for the limit problem, 

2 

Ä3 =- 
C2 

= -0.14450, ä4 = -c2- (2) = -0.04391, Cl 1 Cl 

A5 = -c2(1) = -0.00115, 
ä6 = 0. 

Cl 

(5.2.1 2) 
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The four corresponding eigenvectors of the system, wj, j=3,... ' 6, are as follows: 

W3 = 

W4 = 

W5 = 

o 
0 0 

X(1) 0 
C61)ý3 + c71) C91) _ -0.7033536146 

1 1' 

calf -0.7033536146 
C(6l) 

ý3 
-}" C71) C91) 1 

1 

0 
C10.4(C1ý4 + C2) 

0 
(1) (1) (2)( 

89 11 2 -0.0000673279 1 
Cý1ý q+ 679 

1 
0.2641245090 

c8 1 
1 

+C C ý ý2 +C 0.2332100239 
4 l 3 4 

C81) C92) 

Clp A5(C1A5 + C2) 

(1) (1) (2) 
c9 c11 c7 ý1 0.0003609175 

00 
C(2) + C(2) - C(2) 890.9864566218 

C7 =1 
1 

C,! 2 C5ý5 + C6 0.9853524460 
(2) (1) 1 

C7 C9 

1 
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W6 = 

where 

0 
o0 

C(1) o 

(1) (1) 1 C7 - C9 

C8'ß 1 

C71ý - C91ý 1 

1 

c3 = C62> (C71> 
- C91> )+ C61> C82) 

C5 = C(61) ýC) 8 
- Cgs )+ C62) C71) 

C4 
- C82) (C71) 

- C91) )- C7) C81) 

Cg - C(71) 
�C(82) - 

C(92) )- C72) C81) 

Therefore, the solution of the limit problem is: 

6 

Z=1: 7Zjwjeýjx (5.2.13) 
j=3 

where wj, j=3,... ' 6, are given above and Rj, j=3,... ' 6, are constants which 

we determine from the Dirichlet boundary conditions (5.1.4) at the inlet, x=0, 
for the vector Z. When 8=0, the system of six differential equations becomes a 

system of four differential equations and two algebraic equations (which is why 

we obtain only four eigenvalues for the limit problem): 

1 

cl l) 
dYf 

(x) + cä1)Yf ')(X)(, (x) = 0, dx 
2 

ci2) 
dd 

(x) +cz2)Yf2)(x)(2(x) = 0, 
x 

dT(l) 
c(1) dx 

(x) + c7(1) 7, fl) (x) 
- c8(1) 7'f(2) (x) 

- c(1)T(')(x) = 0, 

dT(2) 
c6 dx 

(x) - c72) Tf1) (x) + c(2)T f2> (x) - C(2)Ts(2) (x) = p, 
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c( 10 S 
l) (T(1) (x) -T 

fl) (x)) + cii)1'f 1) (x) (i (x) = 0, (5.2.14) 

C(2) (T(2) (x) - Tf2i (x)) - cii)Y$ (x)c2(x) = 0. (5.2.15) 

Therefore, we satisfy the conditions at the inlet for the first four components of 
Z: Yfl), Yf2), Tfl) and Tf2), and thus find the constants 1Z3i 

..., 
7Z6. Using the 

eigenvectors above along with the inlet conditions in (5.1.4) we deduce that 

1Z3 = -540.01838, R4 = -1241.68521, 
R5 = 451.62672,1Z6 = 1149.35116. (5.2.16) 

By substituting Y$') (0), T f') (0), i=1,2 into equations (5.2.14) and (5.2.15) we 
find that, 

T(') (0) = 732.50132 K, T(2) (0) = 771.38606 K. (5.2.17) 

This implies that there is a boundary layer region near the inlet since the original 

conditions, T(y) (0) = 733 K, i=1,2, are not satisfied. In order to find these 

boundary layers we look at the full linear system, (5.2.9) and (5.2.10), when 6 

has the finite value 7x 10-7 and we denote by Q the full matrix. 

5.2.2 Boundary layer at the inlet 

When S is finite, we consider the full problem given in (5.2.10). To obtain a 

non-trivial solution we have 

Ja? - D(')A j- D(2) -D(3) det Q= det 3 
-D(4) Sý2 - Dý51 = 0. (5.2.18) 

7 

Equation (5.2.18) gives the following (compare with (5.2.11) for the limit case): 

0= (SAS 
- Cli)Aj - C21)(1) X (S\ý 

- C12)iýj - C22)(2) 

S, \ý-c6j-C71ý c8 c91ý 0 
C(2) Si1ý 

- C62)Aj - C82) 0 c(2) x det 
CM 10 0 Sad - c10 0 
0 c10 05 -ciöi 
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This gives twelve eigenvalues A j, j=1, ..., 12, of the differential system. Four of 

these eigenvalues are the roots of quadratic polynomials (the first two factors of 

the right hand side of the above equation): 

c1 - c(2))2 + 48c(2) 

A4 =11 2S 
2 ý2 

= -0.0439039012, 

c(1) - 
(c(11» + 45c21) 

S1 
a5 = 26 = -0.0011489254, (5.2.19) 

c(1) 1+ 
(c(1lý)2 + 4Sc2(i)a7 

= 
125 ý1 

= 466.0388848, 

c12) + (c12»2 + 4Sc22)(2 

A8 
25 = 466.7105706, 

and the other eight are the roots of the following polynomial 

A(C7\7 + C8)6 + C9 \5 + Clo, \4 + C11A3 + C12\2 + C13A + C14) _ 07 (5.2.20) 

where 

C7 = 64, C8 = -(S3 
(Cgs + Cgs ), 

C9 = (c61)c62) 
- 

S(c82) 10 
+C+ c71) + C10 )a2, 

C10 = (c(2)c(2)c(1)c(2)+c(1)c(2)+c(1)c(2)+C(1)c(1)c(2)c(1))j2, 
s C10 +C6 C8 +C6 C10 +C7 C6 +C6 C10 +C6 10 

ell = l*CS )C10) -C91)CI0 -C92)C10)+C71)C8 )+C71)C10) -C81)C72) + C8 )C10 

+ C10 C10 +C10 C7 1u C61)c62)C10 -C6 C62)C10 )S, 

C12 = (c(2)c(1)c(1) -} c(1)c(2)c(2) - c(1)c(2)c(2) - c(1)c(2)c(1) c(1)c(2)c(2) 69 10 69 10 68 10 68 10 -76 10 
(1) (2) (1) 

- 
(1) (1) (2) 

_ 
(2) (1) (2))6 

- c7 C6 C10 C6 C10 C10 C6 Clo Clo , 
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L'13 - 
(c(1)c(1)c(2) + c(1)c(1)c(2) - c(1)c(2)c(2) + c(1)c(2)c(2) + c(2)c(1)c(2) 9 C10 C8 C9 C10 10 C7 8 C10 C7 C9 C10 C7 C8 C10 

- c(2) c(1) c(2) +c(2) c(1) c(2) - c(1) c(2) c(1) - c(1) c(1) c(2) +c(2) c(1) c(1)8 10 10 9 10 10 78 10 7 10 10 78 10)6 

(1) (2) (1) (2) 
+ C6 C6 X10 C10 

C14 = (ß(1)c(2) c(2)c(1) c(1)c(2) + c(2)c(1))C(1)c(2) s 8- C6 9- C6 C9 C6 C7 1 10 10" 

Solving equation (5.2.20) numerically we obtain 

Al = -590.61404, A2 = -560.10445, 
A3 = -0.14450, A6 = 0, (5.2.21) 

A9 = 557.70998, \i() = 588.85575, 

A11 = 531496.3682, A12 = 713370.1786. 

We note that the eigenvalues of the limit problem, ýj, j=3,..., 6, (see Section 

5.2.1) are similar to the eigenvalues A,, j=3,..., 6, of the full system (the system 

generated from matrix Q above) as expected. The first two eigenvalues, Al and 
A2, are large and negative suggesting that these eigenvalues are associated with 
boundary layers at the inlet since they represent a solution that decays as x 
increases. The corresponding eigenvectors wl and w2 are 

o0 
00 

-0.0029837828 0.0000004438 
wl 

0.0000004454 
W2 

-0.0042895127 
1 0.0001458757 

-0.0000038176 1 

From w1, w2 and (5.2.17) we find the constants 1Z1 and R2, that is, 

Rl = 0.5042748792, R2 = -38.38605704. 

Therefore, the boundary layer 

Rlwle'ýll + 1Z2w2eA2x 
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compensates for the discrepancies in the boundary conditions at the inlet for 

the functions T31 and T(2). (We note that there are other terms in the vectors 

wl and w2 above but, when multiplied by 7Z1 and R2 respectively, they only 

result in a small insignificant error in the other four boundary conditions. ) The 

solution so far, which satisfies all the equations and the boundary conditions at 

the inlet, has the form 

62 

Z= ERjwjeýjx +E RjwjeAjx (5.2.22) 
j=3 j=1 

Limit solution + Boundary layer at the inlet 

5.2.3 Boundary layer at the outlet 

Differentiating (5.2.22) and evaluating its components at the outlet of the chan- 

nel, x= 12, gives the following non-zero values 

-0.0001847110 

-0.0021673151 
dZ 

(12) - 
21.99433120 

dx 21.76919076 

21.99489708 

20.77403902 

This shows that solution (5.2.22) produces discrepancies in all boundary con- 
ditions at the outlet, where we want zero flux in all functions. To compensate 
for these discrepancies we use the eigenvectors corresponding to the eigenvalues 
A7,..., A12, in (5.2.19) and (5.2.21) to form a boundary layer for Z at the outlet. 
The eigenvalues A7, 

..., 
A12 are large and positive, and therefore, they contribute 

to a decaying boundary layer near the outlet, which is represented in the form: 

12 

Boundary Layer at the outlet =E 7Zj wj eA1(x_12) . 
(5.2.23) 

7=7 
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This boundary layer solution decays as x moves away from the outlet. 
The eigenvectors for the large positive eigenvalues have the following form 

0.2242192966 

0 

1 
W7 

-0.0145476210 
0.8363006046 

-0.0477423151 

0 
0 

_ 
0.0000004707 

W9 
0.0042788681 

0.0000044545 
1 

0 
0 

0.0000004403 
w11 =1, 

0 

-0.0000011058 

0 
0.0006481304 
0.0000006575 

W8 
0.0051078795 

0.1759499685 

1 

0 
0 

_ 
0.0029792197 

w10 
0.0000004127 

1 

-0.0000037502 

0 
0 
i W12 = 

-0.0000003475 

-0.0000006834 
0 

Differentiating the sum of (5.2.22) and (5.2.23) and setting each derivative equal 
to zero at x= 12 gives the following values for the constants 1Z7, 

..., R12: 

R7 = 0.0000017677, R8 = 0.0071649313, 

R9 = -0.0432447976, Rio = -0.0373573516, 
Rll = -0.0000407963, R12 = -0.0000307408. 
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The overall analytical solution for the singularly perturbed problem given by 

(5.2.10) is thus of the form: 

62 12 

Z_ ýjwjeä; x + -RjWjea; x + , &jwjeA; (x-12) 
. 

(5.2.24) 
7=3 3=1 j=7 

Limit solution + Boundary layer + Boundary layer 

at the inlet at the outlet 

5.3 Results and discussion 

Figures 5.1 - 5.13 show the distributions of temperatures and concentrations 

along the two channels for the linear model. For each case, we present two graphs: 
the first shows the distribution for the limit case (described by (5.2.13)) and the 

second shows the distribution for the solution that includes the boundary layers 

(as described in (5.2.24)). We note that, in each case, the two figures are almost 
identical and this is due to the fact that the boundary layers are only associated 

with small regions close to the ends. For the fluid temperature given in Figures 

5.1 - 5.4, the boundary layer lies near the outlet of the channels only. Figures 

5.3 and 5.4 are presented to show how these temperatures behave in a magnified 

region near the outlet. Figures 5.5 - 5.9 show how the solid temperature changes 

along the channels. Since there are boundary layers at both the inlet and the 

outlet for this case, in both the reformer side and the combustion side, Figures 

5.7 - 5.9 are presented to show the behaviour in magnified regions near both 

ends. Figures 5.10 - 5.13 show the distribution of the fluid concentration. The 

boundary layer in this case only appears at the outlet and compensates for only 

a small error in the limit case; this is shown by the fact that, in order to see the 

change in the concentrations at the outlet, we need to use a small range for the 

vertical axes, see Figures 5.12 and 5.13. 

The analysis in the first three sections of this chapter shows why the graphical 
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results for the industrial examples given in Chapters 3 and 4 do not appear 
to satisfy the zero flux condition at the outlet. (The same would have applied 
for the Dirichlet conditions at the inlet in the graphs for the solid temperature 

distribution had they been presented. ) From the numerical package (in this case 

we used Femlab) we obtained the limit solution - the solution in the middle region 

of the channel. The numerical package does not, however, construct the boundary 

layers in the regions where the functions vary rapidly. Also, numerical packages 
had difficulties solving this nonlinear problem. Therefore in the following sections 

of this chapter we consider an asymptotic approximation for the solution of the 

nonlinear problem, following a similar method to the sections above for the main 

part of the channel. 
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Figure 5.1: Limit problem for the temperature of the fluid in both channels (see 
(5.2.13)). Upper plot = Combustion side, Lower plot = Reformer side. 
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Figure 5.2: Full problem (with boundary layers) for the temperature of the fluid 
in both channels (see (5.2.24)). Upper plot = Combustion side, Lower plot = 
Reformer side. 
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Figure 5.3: Boundary layer for the fluid temperature at the outlet of the reformer 

channel. 
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Figure 5.4: Boundary layer for the fluid temperature at the outlet of the com- 
bustion channel. 
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Boundary layer for Tf2 at the outlet (Linear) 
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Figure 5.5: Limit problem for the temperature of the solid in both channels (see 
(5.2.13)). Upper plot = Combustion side, Lower plot = Reformer side. 
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Figure 5.6: Full problem (with boundary layers) for the temperature of the solid 
in both channels (see (5.2.24)). Upper plot = Combustion side, Lower plot = 
Reformer side. 
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Figure 5.7: Boundary layer for the solid temperature at the inlet of the channels. 
(Upper plot = Combustion side, Lower plot = Reformer side. ) 
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Figure 5.8: Boundary layer for the solid temperature at the outlet of the reformer 
channel. 
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Figure 5.9: Boundary layer for the solid temperature at the outlet of the com- 
bustion channel. 
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Figure 5.10: Limit problem for the concentration of the fluid in both channels 
(see (5.2.13)). Upper plot = Reformer side, Lower plot = Combustion side. 
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Figure 5.11: Full problem (with boundary layers) for the concentration of the 

fluid in both channels (see (5.2.24)). Upper plot = Reformer side, Lower plot = 
Combustion side. 
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Figure 5.12: Boundary layer for the fluid concentration at the outlet of the 

reformer channel. 
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Figure 5.13: Boundary layer for the fluid concentration at the outlet of the 

combustion channel. 

Boundary laver for Yf2 at the outlet (Linear) 
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5.4 Singular perturbation - nonlinear case 
In this section we present an approximation to the nonlinear case. For the nonlin- 

ear problem the reaction rates depend on the solid temperature T3W (x), j=1,2. 

Here we use a matching procedure, that is, we obtain outer expansions using the 

original variables and then inner expansions, for magnified variables, in the re- 

gions where the functions change rapidly. Then the solutions are matched (see 

[59]). The method is used as follows: The channels are divided into three regions, 

and the equations are modified and solved separately for each region. For the 

matching we assume continuity of temperature along the length of the channel. 
We choose these regions in such a way that the boundary layers are taken into ac- 
count, that is, the first is the region close to x=0, associated with the boundary 

layer at the inlet, the second is the main part of the channel, the middle region, 

and the third is the region associated with the boundary layer at the outlet, the 

region close to x= 12. (Available numerical packages have difficulty in dealing 

with this nonlinear singularly perturbed problem in the entire channel, and give 

errors due to the small coefficients in front of the second order derivatives. ) 

5.4.1 Region 1: Boundary layer at the inlet 

Consider the region near the inlet x=0 

From the linear problem we recall that the functions which change rapidly near 
the inlet are T3(1) (x) and TS(2) (x). Since the other four functions behave smoothly 
and do not change significantly in this region, their derivatives are small and we 
can assume that their second order derivatives are negligible. Consequently, the 

system of six equations takes the form: 

dY(l) 
0= c(l) f (x) + c21ýY(1) (X) (1 x dx f O' 

z 
0= clz) 

dx 
(x) + c22)Yf2) (X)(2(X), 
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0= c6 
ddf 

(x) + c71)Tfl) (x) 
_C8 

)Tf2) (x) 
- Csl)T(1) (x), 

a 

0= c62) 
dd 

(x) - c72)T(l) (x) + c8(2)T1 (x) - c92)Ts(2) (x), 

d2T(1) (1) (1) (1) (1) (1) 
6 

dx2 
(x) = cio (7's (x) - 7'p (x)) + cii Yf (x)ýi(x), (5.4.25) 

d2T(2) (2) (2) (2) (2) (2) 
6 

dx2 
(x) = c10 (T (x) -Tf (x)) - c11 . 

(x)(2(x), (5.4.26) 

where 

_ 
c(1) (i(x) C1-3 _)l c3 + c4e- 

C 

Tell c=> / 

(2) 

(2(x) (i_ 3 

_)l c(2) -}- c(2)e-CT, 2'(X)) 
34 

and the constants cry), i= 1727 j= are given by (5.1.6). The first 

region is small (x =0 to x=0.015), and all functions except for T' (x) and 
T (2) (x) do not change significantly in this region. Therefore, we deal only with 

the equations for T9' (x) and T (2) (x) and we assume that all other functions are 

constant in this interval. Also since the region is small, we introduce a scaled 

variable of the form o =. The new functions which depend on the new variable 

are denoted here by T8', t. 
'(2) and ýj, i=1,2. Thus, in this new coordinate, 

equations (5.4.25) and (5.4.26) can be written as 

aý(1) ddQ2 (o) = c1 (Ts l) (0) - 733) + 0.163 cii) (i (, -o), 
a X32) dd 

2 
(L0) = C(2 10 (t 

2)(p) - 733) - 0.0836 c11 2(o), (5.4.27) 
P 
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where Tfz) and Yf2), i=1,2, are replaced by their values at the inlet. Each 

second order differential equation in (5.4.27) requires two boundary conditions. 
From (5.1.4) we have one condition for each function at the inlet. At the point 

o=0.015/V we assume that the conditions are the same as those obtained for 

the linear case (5.2.24) at x=0.015, that is, we say 

0.015/V) = 732.4889 and Ts2>(o = 0.015/x) = 772.7295. 

(Table 5.1 shows similar results for how T, (') and t('), i=1,2, change between 

x=0 and x=0.015 (or o=0 and o=0.015/V) so this assumption provides a 

good approximation for the values at the right end of this first region). 

Summary for the region near the inlet x=0: 

The functions Yfjl (x) and Tfjl (x), j=1,2, are approximated by constants for 

this small interval, x=0 to x=0.015. The nonlinear equations (5.4.27) are 

solved numerically for t, (1)(, ) and Ts 2i (o), together with the Dirichlet condi- 
tions at both ends. The results in Table 5.1 show the behaviour of the solid 
temperatures in the small region near the inlet. 

5.4.2 Region 2: Middle section 

Consider the middle part of the channel 

From the linear case, we know that the functions T(1) and T(2) have large deriva- 

tives in the region close to the inlet and all the functions have large derivatives in 

the region close to the outlet. As a consequence, the derivatives of (1 and (2 are 

also large in the regions close to the inlet and the outlet, since these functions 

depend upon T(1) and T82), respectively, that is 

(3) c ý(i) - 
(1 

-31,2. 

C39) + C47)e- 

(Teli)(x)) 
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x TS' (linear) 

(from (5.2.24)) 

7's 1ý (nonlinear) 

(from (5.4.27)) 

T2ý (linear) 

(from (5.2.24)) 

t(2) (nonlinear) 

(from (5.4.27)) 

0 733 733 733 733 

0.001 732.7766 732.7155 749.5521 749.8487 
0.002 732.6525 732.6247 759.0445 759.4434 

0.003 732.5834 732.5647 764.5048 764.7792 

0.004 732.5448 732.5332 767.6620 767.4850 
0.005 732.5230 732.5195 769.5040 767.2132 

0.006 732.5015 732.5109 770.5947 770.7631 

0.007 732.5033 732.5076 771.2563 770.0508 

0.008 732.4990 732.5054 771.6729 767.2717 
0.009 732.4961 732.5052 771.9494 766.2980 

0.01 732.4942 732.5034 772.1460 768.9262 
0.011 732.4928 732.5028 772.2969 771.6853 

0.012 732.4916 732.5020 772.4217 771.7927 

0.013 732.4906 732.5000 772.5316 771.6964 
0.014 732.4897 732.4998 772.6330 772.3012 
0.015 732.4889 732.4889 772.7295 772.7295 

Table 5.1: Comparison of the functions T(l), T(l), T82ý and t, (2) for the linear 

and nonlinear cases. 
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However, in the middle part of the channel - the region not associated with the 

boundary layers - all functions are smooth and continuous and their derivatives 

are small. As a consequence (1 and (2 do not change significantly in the middle 

region. For the particular industrial data used in this thesis, the derivative of the 

term (2, for example, is 0.01126 in the region x=0 to x=0.015 and 0.00012 in 

the region x=0.015 to x= 11. Therefore, as an approximation to the nonlinear 

case, for this second region, we assume that the system can be approximated as 
being linear, that is, we assume no Ts'i dependence on the terms (j, i=1,2, and 

we use the same method as before (see Section 5.2) for solving the linear system. 
We set `new' boundary conditions at the `new' left end (x = 0.015 instead of 

x= 0). Here Z satisfies the equation 

6d 
2Z 

= A(' 
dZ 

+ A(2)Z, (5.4.28) 
dx2 dx 

where the 6x6 matrices AM and A(2) are similar to those given in Section 5.2 

with (i and c2 modified accordingly to account for the `new' inlet conditions 

T3' (0.015) = 732.4889 K and T32> (0.015) = 772.7295 K. 

For the limit case, we obtain the solution in the form 

6 
Z=E KjWjeýi2, 

j=3 

where Kj, j=3,..., 6, are constants which we determine from the boundary 

conditions at x=0.015, and the limit eigenvalues A3, j=3, ..., 6, are computed 

as 

ä3 =- 
C2 

= -0.144501, Ä4 =- 
ý2 

(2) 
2= 

-0.0443098, ' Cl 

1 

A5 -- 
C2 

(1) = 0.001144, A6 = 0, (5.4.29) 
i 
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where, as before, 

Cl = C61> C62) 

C2 = C(1) (C(2) 
- C9(2) )+ C6(2) (C71) 

- Cgl)). 

The four corresponding eigenvectors are given by 

W3- 

0 
0 
8 

C 

C61)A3+C71ý -C91ý 

1 
Ci 

Cgl) ý3 + C71ý - C91ý 

1 

W5 = 

i W4 = 

Cip A5(C1i15 + C2) 
(1) (1) 2 

C9 C11 C7 c1 

0 

C(62)) 5+ C82) - C92) 
2) C(7 

1 

L'1i2+C5'5+c6 

c72) c91) 

1 

0 
(2 )- 

CIO ý4(ClA4 + C2) 

C81)C91)C11' 2 
1 

C6(1)ý4 + C71) - C91) 

C(8 
1) 

1 
L'1ý4+C3A4+C4 

(1) (2) 
C8 C9 

i W6 = 

0 
0 

C81> 

C(71) - C9 

i 
C8 

(1) (1) 
C7 - C9 

1 

I 

131 



Substituting the limit eigenvalues (5.4.29) and the constants (5.1.6) we have 

00 
0 -0.0000670589 

-0.7033536146 1 
W3 

1' 
W4 

0.2573909091 

-0.7033536146 1 

1 0.2263181478 

0.0003609297 0 

00 

0.9865134162 1 
W5 =1, W6 =1, 

0.9854138338 1 

11 

where Ci, i=1, ..., 6, are given in Section 5.2. Using the above eigenvectors 

together with the boundary conditions for the functions Yfj) and T fj) j=1,2, 

at x=0.015 we obtain the constants )C3, 
..., 

1C6: 

1C3 = -548.269683, K4 = -1247.493387, 
K5 = 451.619287, K6 = 1149.351165. (5.4.30) 

In this case, substituting these four constants into the functions for T31) (x) and 
T 82) (x) shows that the boundary conditions for the last two components of the 

vector Z are approximately satisfied. Therefore, to a satisfactory degree of ac- 

curacy, all the boundary conditions at the inlet are satisfied. 

Summary for the middle region: 
The analytical representations for the six components of Z in the middle region 
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of the channels between x=0.015 and x= 11 are 

Y(l)(x) = 0.00036K5 easx, 

y(2) (X) = -0.00007K4 eý4X, 

T, $' (x) -- -0.70335K3eA3X + K4eA4X + 0.98651K5eA5x + K6eA6x, 

T( f2) (x) = K3 e\3x + 0.25739K4 e'" + )C5 J5' + K6 eA6x, (5.4.31) 

-0.70335K36 
Ä3X + K46A4X + 0.98541K5J5X + KseA6x, 

Ts2) (x) = K3 e)3x + 0.22632K4 e)4x + )C5 e)5x + K6 e)6x, 

where the constants Kj and the eigenvalues j=3,..., 6, are all given explicitly 

in (5.4.29) and (5.4.30). 

5.4.3 Region 3: Boundary layer at the outlet 

Consider the region near the outlet x= 12 

From the linear case described in Section 5.2 we know that the limit problem 
does not satisfy the zero flux conditions at the outlet. The same applies to 

the nonlinear case. When the functions given by (5.4.31) are differentiated and 

computed at the point x= 12 we have the following 

-0.000184 

-0.002178 
dZ 

_ 
22.13786 

dx 
(12) 

21.83962 

22.13842 

20.83037 

So the solution at the outlet must compensate for this discrepancy. We assume 
that the solution is made up of two parts - one which depends on a slow variable 
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and compensates for the fact that we have taken a linear approximation in the 

middle of the channel, and the other which depends on fast variables and com- 

pensates for the discrepancy in the boundary conditions. We take this solution 
in the form 

Zr=Z+ZF7 

where Z depends on x and Z' depends on two scaled coordinates 

12-x 
cp= and 

12-x 
76 cp= 6 

The functions Y(') and T9('), i=1,2, depend on cp, and T(ti) i=1,2, depend on 

cp. The conditions on Z' are 

F 

Z`'=Z atx=11 and ddZx +ddx _0 atx=12. 

The full system of equations for the six components of Zr is written as 

d2Y(1)F c(1) dY(1)F 
6R11 + dý2 

(gyp) = cil) R1 -_ (w) 

+ c(1)(Y(1)(x) +Yf1)F(v))(1«P), (5.4.32) 

d2Y(a)F c(2) dY(a)F 
6822 + dp2 

(ýP) = ci2)Rä - 
d# (cP) 

+ c22)(Yf2)(x) + Yf2)F(cp))( (W) 
1 (5.4.33) 

2 (1)F (1) (1)F 

6R33 + 
5d d 

0) = c(1)R* - 
cý dTd 

cp) +c(1)(T f(I) (x) +T(l)F(ýP) ) 

- c(')(Tf2)(x)+T(f2)F(DP))-c9 (T(')(x)+Tsl)F(ýP), (5.4.34) 
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6Rä4 +1d2T 0) = cs2) R4 - 
c62) dT 

0) - c72)(T(l) (x) +T(l)F(O) ) 
6 o2 6 dc 

+ c(82)(T f2) (x) +T (2)F(p)) 
- e9 ((7,2) (x) +T (2)%P) (5.4.35) 

2Týi)F 
6R55 +dd 

p2 
W) = ciö(T(1)(x)+Tsl)F(ýP))-ciö(T')(x)+T(l)F(co)) 

+ cii)(Yfl)(x)+Yfl)F(ýP))ýi(ýP), (5.4.36) 

d2T ý2 (2) (2)( (2)F' (2) (2) (2)F 
6R66 + d2 ýP)=cio(7's x)+T (ýP))-cio(7'p (x)+Tf (ýP)) 

- cil)(Yf2)(x)+Yf2)FW))(2(ýO)' (5.4.37) 

where 

d2Y(') dY(l) d2Y(2) dYf2) 
Rai 

dx 
(x), R, 

dx 
(x), RL= 

d�2 
(x), R2 

dx 
(x), 

d2T (l) dT (l) d2T(2) dT (2) 
R33 

dx 
(x), R3 

dx 
(x), R44 - dx 

(x), R4 
dx 

(x) 

_ 
d2Ts1) 

(x), R55 dTs1) 
R5 = (x), R6 

d2T(1) 3 = (x), R6 = 
dTý1 (x), 

dx2 dx dx2 dx 

and 

/- 
(') c 

bi(d) 
3 

_ýý: 
) 

)' 
2=1,2. 

C32) + C4Zý e 

(Ts` 

(0.015)+TP F (DP)\ / 

All functions which depend on the slow variable x are known from the middle 

region, see (5.4.31), and are substituted into the above system. The system is 

difficult to treat numerically because we have two independent variables and a 
large difference in the coefficients for the fluid temperature equations (5.4.34) and 

135 



(5.4.35). We consider the leading order terms for these two equations, giving 

id 2T (1)F 
C(1) dT(1)F 

S d02 
(ýP) +Sd W) = 0ý 

1 d2Tf2)F X(2) dTf2)F 
6 dcp2 

(0) +5 dcp 
(0) =0. 

Consequently these two equations for TfiýF(cp) and Tf2ýF(cp) can be solved sepa- 

rately, with the conditions 

T(1)F (0 
_ 

1l 
SJ 

dTfl)F 
0' 

do 

(2)F, 
T1 

1 
' ý° S) 

dT f2)F 0, 
d� 

dT(1) 

0=o dx x=121 

= 
dTf2) 

=o dx 
I 
x=12' 

which gives 

Tf1)F(cO) _ -0.000031e-596.850 +0.00003 le-596846.8 , 
(5.4.38) 

and Tf2)F(cp) _ -0.000041e-444.68 + 0.000041e-444679.7 (5.4.39) 

Using the fact that cp = cp/VJ-, we thus substitute solutions (5.4.38) and (5.4.39) 

into the remaining system (5.4.32), (5.4.33), (5.4.36) and (5.4.37) to find the four 

functions Yfz)F and Tsi)F, i=1,2, whose boundary conditions are 

1 
76=) 

dY i)F 

dW 

Tsý)F (cp 
= 

11=0; 

-1/6-J 

dT, (i)F 

dcp 

= \/ f2> 
W=O dx x=12 

= 
dT3(z) ý L12 

W-o dx 

Summary for the region x= 11 to x= 12: 

The numerical results for the components of Zr, where Zr =Z+ ZF and Zr 

is the solution in the region near the outlet of the channels, are given in Figures 
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5.16,5.17,5.21,5.22,5.25 and 5.26. The solution at the outlet is a combination 

of the slow varying part Z, given by (5.4.31), and the fast varying part, given by 

the solution of the system (5.4.32) - (5.4.37). 

5.4.4 Results and discussion 

In Figures 5.14 - 5.26 we present the solutions in the two channels for the nonlin- 

ear model. The graphs show the temperature and the concentration distributions 

for the entire length of the channels, and the results for the magnified regions near 
the inlet and outlet separately. For each case, we have matched the three regions 
by assuming continuity in temperature and concentration along the channel. The 

solutions are a combination of the results given in Table 5.1, the functions given 
in (5.4.31), and the solution to the system (5.4.32) - (5.4.37). Figures 5.14 - 5.17 

show the distribution of the fluid temperature; Figures 5.14 and 5.15 show the 
full solution when we have constant fluid temperature in a small region near the 
inlet, the solution for the fluid temperature that is obtained from the modified 
limit problem in the middle section of the channel, and the change in the fluid 

temperature near the outlet. Figures 5.16 and 5.17 are presented to show this 

small change at the outlet in more detail in each channel. We present the re- 

sults for the solid temperature in Figures 5.18 - 5.22. Figures 5.20 - 5.22 show 
the boundary layer regions at the inlet and outlet in detail. Figures 5.23 - 5.26 

contain the distributions for the fluid concentration, which is approximated by 

a constant in the small region near the inlet, satisfies equation (5.4.31) for the 

middle section of the channel, and changes slightly in the region near the outlet, 
as shown in Figures 5.25 and 5.26. 
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Figure 5.14: Full problem (combination of the results in region 1, region 2 and 

region 3) for the temperature of the fluid in the reformer channel. 
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Figure 5.15: Full problem (combination of the results in region 1, region 2 and 

region 3) for the temperature of the fluid in the combustion channel. 
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Figure 5.16: Boundary layer for the fluid temperature at the outlet of the re- 
former channel. 
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Figure 5.17: Boundary layer for the fluid temperature at the outlet of the com- 
bustion channel. 
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Figure 5.18: Full problem (combination of the results in region 1, region 2 and 

region 3) for the temperature of the solid in the reformer channel. 
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Figure 5.19: Full problem (combination of the results in region 1, region 2 and 
region 3) for the temperature of the solid in the combustion channel. 
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Figure 5.20: Boundary layer for the solid temperature at the inlet of both chan- 

nels. Upper plot = Combustion side, Lower plot = Reformer side. 
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Figure 5.21: Boundary layer for the solid temperature at the outlet of the re- 
former channel. 
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Figure 5.22: Boundary layer for the solid temperature at the outlet of the com- 
bustion channel. 
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Figure 5.23: Full problem (combination of the results in region 1, region 2 and 

region 3) for the concentration of the fluid in the reformer channel. 
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Figure 5.24: Full problem (combination of the results in region 1, region 2 and 

region 3) for the concentration of the fluid in the combustion channel. 
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Figure 5.25: Boundary layer for the fluid concentration at the outlet of the 

reformer channel. 
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Figure 5.26: Boundary layer for the fluid concentration at the outlet of the 

combustion channel. 
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Chapter 6 

Modelling a fluid flow through a 

packed bed channel of a catalytic 

reformer 

6.1 Introduction 

The purpose of the present chapter is to model in more detail the fluid flowing 

through the packed bed - we describe how the fluid flows through a channel 
that is randomly packed with pellets, see Figure 6.1, where the pellets are cov- 

ered in a catalyst, which promotes the reaction taking place inside the channel. 
As before, we assume that the normalised thickness of the channel is e, where 

e= Dv, /Dc, and Dti, and DC are the widths (in metres) of the wall and the 

channel respectively. First, our aim is to obtain averaged or what is known in 

the literature as homogenised (see, for example, [11], [12] and [50]) equations of 

motion for a fluid with averaged (effective) properties flowing through an 'un- 

obstructed' channel. The model is such that the equations describe a real fluid 

flowing through a channel packed with pellets. To achieve this we consider two 

models: one that describes the real fluid (the properties of which we know) with a 
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Figure 6.1: Fluid flow through a bed packed with catalytic pellets. 

certain arrangement of pellets, and the other that describes a fluid with effective 

properties flowing in an unobstructed channel. We link the two models by as- 

suming that the average velocity predicted by either model is the same for every 

cross-section of the channel. We then use an asymptotic technique, expanding 

the velocity and the pressure, to obtain an expression for the leading order terms 

of the averaged velocity across the homogenised channel. This allows us to write 

the homogenised equations of motion, and thus specify the effective properties, 
in terms of the properties of the real fluid. 

6.2 Model 1: Real fluid, with a certain arrange- 

ment of pellets 

Let the normalised thickness of the packed channel be e. We assume that instead 

of having the pellets arranged as in Figure 6.1, they can be arranged to form N 

sub-channels of thickness Eai, i=1, ..., N, ai < 1, where the sub-channels are 

separated by horizontal layers of pellets. The fluid flows through the N sub- 

channels, i. e. the fluid passes between the layers, see Figure 6.2. 

The 2D velocity of the fluid in each sub-channel is denoted by 

Vi = 
(vi 

, v2i) ,i=1, ..., 
N. 
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Within each sub-channel the governing equations are the 2D Navier-Stokes equa- 
tions and the 2D continuity equation. Assuming constant density and zero body 

forces we have: 

* OPi(x, y) 
0, (6.2.1) -(vi(x, y) - 7)vi(x, y) + i) V vi (x, y) - (i) 

Pf Pf 

V" vi(x, y) = 0, (6.2.2) 
Eai Eail 

-oo<x<oo, yiE 
(--2 

,2/, 

where the viscosity ij* of the fluid in each sub-channel is small (r72 = E2rjti, i is of 

order 0(l)), and in each sub-channel p f) is the fluid density and Pi is the pressure 

of the fluid, i=1, ..., 
N. We introduce a scaled variable rZ in each sub-channel 

---0- 

y; 

Figure 6.2: Pellets arranged to form horizontal `obstacles' in the flow. 

such that 
ac ii 

Ti=E , TE -2,2 ,iN. 

We also assume non-slip boundary conditions (zero velocity) which, in the scaled 

variable, gives 

ai ai >=0. (6.2.3) Vi 
(X, 

2= vi 
(x, 

2 
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We expand the velocity and the pressure asymptotically as follows: 

V , 
(X, 7, ) =v 

o(x, 
rj)+v 

i(x, 
Ti)+E221i 

2)(x, 
Ti)+... 

P(x, Ti) =P(o)(x, Ti)+EP(l)(x, Ti)+E2P(2)(xýTi)+... N. (6.2.4) 

Rewriting the continuity equation (6.2.2) in terms of the scaled coordinate Ti 

gives 

övli 1 äv2i 
V, vi(x' Tj) ax 

(x' Ti" +e 
ÖT 

(x' Ti), i=1, 
..., 

N. (6.2.5) 
2 

Substituting the expansion for the velocity from (6.2.4) into (6.2.5) and the 
boundary conditions (6.2.3), for the first two terms of the asymptotic expansion 

of the velocity we obtain 

v2°) (x, Ti) - 0, (6.2.6) 

oi Övli 
(x, Ti) + 

Öv2i 
(x, Ti) = 0,2 = 1, 

..., 
N. (6.2.7) 

ax Th 

Rewriting equation (6.2.1) in terms of the scaled variable, and substituting ex- 

pansions (6.2.4) gives 

-hi 
0, (X, Ti)+Evi1)(X, Ti)+... ) (a' 

ax 
es 

aTi 

a22 

'i' 
1 02 

2I 
(vi(O) (x, Ti) + ev1l) (x, Ti) + 

... 
) 

Pf ax / 
ý aua - 

pýi) \ lx E CýTi 
(P(O) (x, Ti) + EPi(1) (x, Ti) + 

... 
) = o, Z=1, 

..., 
N. 

t 
Equating coefficients and using (6.2.6) we obtain, for the leading order term, 

1 OPP) 
Pf 
ýtiý (x, Ti) _ O, 

( aT1 
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which implies that i °) does not depend on i-i, i=1, ..., 
N. For the term of 

order 0(1) we have 

(o)( ävi°) (1) (1)( löv(0) (1) 
-2111 lx, Ti) Ox 

(x, Ti)e - v2ti (x, Ti/ ÖT 
(x, Tiý` 

a 

+ 11i a2v(0) 
(x T)e(') -1 

äPti(°) 
(x)e(l) -1 

öP(l) 
(x, 'r)e(2) =0 

Pf(i) &T2 Pf(i) Ox Pf(i) ÖTi > 

where e(j), j=1,2, are unit vectors parallel to the x- and y- axes. We therefore 

obtain the following relationships 

P(°) = P(°) 
(x), P(l) = Pill) (x), 

0 äv(0) äv(0)( 
v1 (x, Ti) 

li (x, Ti) -{- v2i) (x, Ti) 
li 

lx, Ti) 
ax CaTi 

ä2v(°) 1 dP(°) 
p f> äT? 

(x' Ti) + pO dx 
(x) = 0, i=1, ..., N. (6.2.8) 

a 

6.2.1 Linearised Navier-Stokes equation 

From the governing equations (6.2.1) and (6.2.2) we obtained equations (6.2.7) 

and (6.2.8). We assume that the velocity and any derivatives of the velocity 

are small, i. e. any product of v2 and its derivatives is negligible. This implies 

that the term [-(v;, (x, T1) " V)vi(x, rri)] in equation (6.2.1) can be neglected. As a 

consequence, equation (6.2.7) and the modified form of (6.2.8) are given by 

10 

Ti), 
ÖTi Ox 

ä2v(o) 1 dP"(o) 
77i dx 

Solving (6.2.9) gives 

0 
ni 

v1 ýxý Tiý _ 
xTit 

+ SA(x)Tr + SB (x), i=1, 
..., 

N. 

(6.2.9) 
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Here 
1 dP(°) 

Ai(x)=- z, i=1,..., N. 
71ti dx 

The functions S 1(x) and SB (x) are obtained from the non-slip conditions (6.2.3) 

on the boundaries of each sub-channel, giving 

: '-(x) 
vio)(x, rr) =g (4r - Ctii ), i= 1ý 

... ' 
N. 

Therefore, to leading order, the vertical component of the velocity in each sub- 

channel is zero and the horizontal component has a parabolic profile (compare 

with experimental studies on catalytic reactors by Hayes and Kolaczkowski [45], 

Zanfir [95] and Zanfir et al. [96]). Our objective is to compare the average 

velocities across the entire channel in the two models. The average velocity, 
denoted by v1(°) (x, Ti), i=1, ..., N, in each sub-channel, is 

1 fQi/2 A (x) A(x)avi°)(x, 
T) : -- $ 

(4T? - a? )dTi =-- 12 
(6.2.10) 

1 dPý°» 
Ai, (x) =-2 

77z dx 
(x), i=1, ..., N. 

The average velocity, across the entire channel denoted by V, is obtained from 

the following: 

Normalised width "V (x, Ti) =1"V (x, Ti) _ vi°ý (x, 7-i)ai. (6.2.11) 
i=1 

We assume that all sub-channels are of equal widths, with identical flow in each 

one of them. In what follows we use the notations 

Uli = 2Jý ai = a, Ai(x) = n(x), %i = ý, 

Therefore, equation (6.2.10) becomes 

v(x'TO _ -A(12a2, A(x) =i 
ýPý 

(6.2.12) 
7l 
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where the pressure gradient along the channel is negative. This gives the aver- 

age (flat) velocity profile across each sub-channel. This means that the average 

velocity across the entire channel, using (6.2.11), is 

N 

ýo)( NA(x) a3 1. v( 
\x, Ti) = 1v1 i (x, Ti)c = Ni(x, Tr)a =- 12 

(6.2.13) 
i=1 

giving 

V (x, Ti) 
NA (x)ä3 A(x) =1 

dP 
where 

dP 
< 0. 

12 dx dx 

6.3 Model 2: Homogenised fluid 

We now consider the flow of fluid through an infinite channel of thickness F. We 

assume that the flow in the channel is `homogenised', see Figure 6.3, in such 

a way that the Navier-Stokes equation of motion has an extra term to account 
for the presence of the pellets (see, for example, [3], [4], [12], [16], [24], [44] and 
[62]). The fluid is described as an incompressible Newtonian fluid. The governing 

Nkh, 

r', 

y 

1 

E ----s2 

Figure 6.3: `Homogenised' channel. 

equations are the continuity equation and the modified Navier-Stokes equation. 
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Here u= (ul) u2) represents the velocity in the `homogenised' channel: 

-(u(x, y) - 0)u(x, y)+ý102u(x, y)- 
OP(x, y) 

- 
u]*u(x, y) 

=0, (6.3.14) 
Pf Pf Pf i* 

0 V. u(x, y) = 0, (6.3.15) 
ýl 

-oo<x<oo, yE -2,21, 

where the viscosity q* and the permeability n* of the fluid are both assumed to 
be small (r7* = E2r), K* = E'2j, where i and r. are of order 0(1)), pf is the density 

and P is the pressure of the fluid. We introduce a scaled variable, T, such that, 

11 
T=TE 

(- 
2,2), 

We also assume non-slip boundary conditions (zero velocity) which in the scaled 
variable is 

( 1l 
_1 u\x' 2) = u(x, -2) = 0. (6.3.16) 

Similar to Section 6.2 we expand the velocity and the pressure asymptotically. 
Assuming small velocity and small velocity derivatives we obtain the following: 

u (x) T) = 0, p(0) = P(°) (x), P(i) = P(1) (x), U2 

äu1) au(0) 

19r 
(x' T) ax 

(xý T) 

ä2ui) 
(x, T) -1 ul°) (xý T) _1 

dP(°) 
(x) (6.3.17) äT-2 lc 77 d. 

Assuming that the pressure gradient is given (and negative), we write equation 
(6.3.1 7) as 

a (0) aaT2 
(x, T) - auto) (x, T) -- A(x), a=1 A(x) =11d 

(o) 
d 

(x), (6.3.18) 
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where a is a constant, and A(x) is a known function of x. 
For large a, the second term in equation (6.3.18) is dominant in the main part 

of the channel far from the boundaries, and for such a case we have 

(o) 
u1 (x, T) __ 

A(x) 
, 

A(x) _1 
dP 

(x) 
,a=1. 

(6.3.19) 
a i7 dx rb 

This directly corresponds to Darcy's law. (For a discussion on Darcy's law see 
Section 1.4.3. ) When a is large we have a singularly perturbed problem (with a 

small coefficient in front of the second order term), such that 

12 (o) as 
2 

(x, 7) - u10) (x, 7) _ 

A(x) 
(6.3.20) 

For a non-trivial solution the function in equation (6.3.19) is not enough on its 

own as the complete solution of (6.3.18) because it does not satisfy the boundary 

conditions (6.3.16). The solution of equation (6.3.20), regardless of the magni- 
tude of a, with the non-slip boundary conditions is 

u()(x, T) = -n(x) 
1- cosh( ýT)1 

(6.3.21) 
a Cosh a)J 

2 

This shows that away from the boundaries of the channel, to leading order, we 
have a flat velocity profile, corresponding to Darcy's law. Close to the boundaries 

the velocity changes exponentially in order to satisfy the non-slip conditions and 
the full result is given by (6.3.21). 

For Hartmann flow (see Section 1.4.2 and [22], [57] and [66]), that is, for the flow 

between parallel plates of a magnetic fluid, where the space between the parallel 

plates is long and thin, the solution of the system corresponds exactly to the 

solution we have derived here for the velocity in the homogenised channel, given 
by (6.3.21). For a large Hartmann number there is an exponential decay in the 

velocity and the induced magnetic field near the plates. This is equivalent to 

solution (6.3.21) when the constant a is increased. 
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Using equation (6.3.21) we write the expression for the average velocity I4°), such 

that, 

u(0) (x, T) = 

1/2 

u1O) (x, T)dT =J 

1/2 

- 

A(x) 

LL - 
cosh( ý-T) ] 

dT 

1/a 1/2 a cosh (2 ) 

=- 
A(x) {TCOSh()J_1/2 sinh(ýT) 1/2 

_ 
A(x) 

-x. (6.3.22) aa 77 dx 

In the scaled coordinate T, the thickness of the channel is 1. Therefore the 

average velocity across each cross-section for the `homogenised' channel is 

u1 (x, T) 1= -777 
dß(°) 

. 
(6.3.23) 

6.4 Link between Model 1 and Model 2 

Comparing (6.2.13) and (6.3.23) we can now write 

(0) NA (x) 
ii(O) (x, , r) 

- dP 
= V(x, T) 

12 a (6.4.24) 11 

and therefore, 

NA (x) ä3 
A(x) =1 

ýP. 
(6.4.25) 

77 12 dp(O) 
ax 

If we assume that the pressure gradient for the homogenised fluid is equal to that 

of the real fluid, i. e. 
dP(°) 

_ 
dP 

dx dx 

then equation (6.4.25) can be rewritten as 

ß_Nä3 
rý 12rß 

(6.4.26) 
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The quantities on the right hand side of equation (6.4.26) are given for the real 
fluid. Thus, we have computed the constant in Darcy's law. For the full solution 

we still need to compute the constant a. In order to find this constant we assume 

that the viscosity of the homogenised fluid is equal to that of the real fluid, that 

is, 

? 7i = 6271 = 62rß = 71* = 62n. (6.4.27) 

Using (6.4.26) and (6.4.27) we rewrite equation (6.3.21), the leading order term 

of the horizontal component of the `homogenised' velocity, as follows: 

) Nä3 dP cosh(yrr) 
ui (x) T) _-- 

[i_ ], (6.4.28) 
12rß dx cosh( /2) 

where 

=2V; NT& . 

We also find that the linearised form of the equation of motion for the 'ho- 

mogenised' channel (equation (6.3.14) without the [-(u(x, y) " V)u(x, y)] term), 

can be rewritten in terms of the given properties of the real fluid, such that, 

7ýV2U(x, r)-VP(x)ý*u(x'T) _0, 
2 Nä3 

12 

YE(-- 2'2)' 
( oo<x<oo). (6.4.29) 

Therefore equation (6.4.29) gives the final form of the linearised equation of 

motion with its solution, given by (6.4.28), in terms of known properties, which 
describes a flat velocity profile in the main part of the homogenised channel, with 

exponentially decreasing velocity at the boundaries. 

6.4.1 Extension to Model 1: 

Sub-channels of different widths 

In this section we generalise Model 1 (discussed in Section 6.2), to the case when 

sub-channels have different widths. We analyse the effect of this modification on 
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the constant in Darcy's law associated with the homogenised channel (discussed 

in Sections 6.3 and 6.4). We denote this constant in Darcy's law for the case 

when all the sub-channels are of equal width (compare with (6.4.26)) by 

(r. )- 
_ 

N&3 

77 12ý 
(6.4.30) 

We now assume that we have two sets of sub-channels: n sub-channels of width 
II and N-n sub-channels of width d (see Figure 6.4 for an arrangement of this 

type). Here 6 is the same as in the previous sections: the width of a sub-channel 
in the case when all the sub-channels are of equal width. 

-º -ý 

e EII 
ý 

ýý ý 

Figure 6.4: Pellets arranged to form horizontal `obstacles' in the flow (pellets of 
different sizes). 

We assume that all the sub-channels of equal width have identical flow in each 

one of them. 

Similar to Section 6.2 we obtain the following for the average velocities across 
the entire channel: 
Average velocity across a sub-channel of width U: 

z 
vn(x T) _ 

Än(12 Ü, 
An(x) =1 

dPn 
(6.4.31) 

ýn 
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Average velocity across a sub-channel of width ä: 

vä(x T) - -nä(12 
a2 A (x) = 

ädä, 
(6.4.32) 

where, as before, the pressure gradients are negative. 
Therefore, the average velocity across the entire channel, Vnä is, (compare with 
(6.2.11) and (6.2.13)), 

nN 
1 VIIjxýTý = 

Eia ? (x, T)fi ý'T11äýj)(x, T)Q'j 
i=1 j=n 

=n IIvn(x, T) -I- (N - n) ävä(x, T). (6.4.33) 

The viscosity and the pressure gradients are the same in every sub-channel, 

regardless of the width. Therefore, rin =rya = rý, An (x) = Aä (x) = A(x), and for 

the pressures, Pn = Pa = P. 

Thus, substituting (6.4.31) and (6.4.32) into (6.4.33) and rearranging we find 

that the averaged (flat) velocity profile across the entire width of the channel is 

given by 

Uri6 (X, 7) = 
A(x) 

(n(ä3 - II3) - Nä3), A(x) =1 
dP 

(6.4.34) 
12 r dx 

Now we compare the average velocity across the homogenised channel and the 

average velocity when there are sub-channels of different widths, by equating 
(6.3.23) and (6.4.34). We also assume that the pressure gradient for the ho- 

mogenised channel is the same as that for the real fluid, similar to (6.4.26), and 
we find that 

r, 
_1 (n(II3 -&+ Nä3 

. 77 12rß 
)) (6.4.35) 

This is the modified version of the constant involved in Darcy's law (compare 

with (6.4.30), the constant for the case when all the widths are the same. ) 
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From (6.4.35) we see that, provided the pressure gradient stays the same, if sub- 

channels of width ä are paired with sub-channels of a larger (smaller) width, then 

the constant in Darcy's law is larger (smaller) than the corresponding constant 
for the case when all the sub-channels are of equal width, that is 

For II>ä : 
77 

> (- i; 

77 
< 

(/\* 
. For fl <ä 

It is also worth noting that this particular work shows that the constant in 

Darcy's law is independent of the arrangement of the sub-channels: only the size 

of the sub-channels influences the constant in Darcy's law and the different sized 

sub-channels can be arranged in any arbitrary way. 

Similarly, for sub-channels of three different widths, say nj sub-channels of width 
Z, n2 sub-channels of width 'H, and N- (nl +n2) sub-channels of width ä, where 

the viscosity and (negative) pressure gradient are the same in every sub-channel, 

the constant in Darcy's law takes the modified form 

r. I 
12ýlnl(±3 - ä3) + n2(%3 - 

ä3) + Nä3). (6.4.36) 

The criterion for this constant to be the same as the constant in the case when 
the sub-channels are of equal width (see Section 6.2), is given below 

n1Z3 + n2 R3 = (ni + n2)&3. (6.4.37) 

Therefore, 

for Z>ä and 7-l >ä> (-) 
77 

for <ä and 7- <ä: 
71 

< 
(-) *; 
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and if equation (6.4.37) holds, for sub-channels of width d together with sub- 

channels of larger width and sub-channels of thinner width 

77 

6.4.2 Discussion of the results 

In this chapter we modelled the fluid flow through a packed bed channel and, for 

the 2D case, we obtained the homogenised equations of motion and the effective 

properties in terms of the known properties of a real fluid. We obtained an 

expression for the average velocity across the channel, which directly related 

to Darcy's law with an additional exponential term; this term corresponded 

to decaying boundary layers near the sides of the channel, in order to satisfy 

the non-slip boundary conditions. We also showed how this concept is directly 

related to Hartmann flow. We then discussed in detail the effect on the constant 
in Darcy's law of having different-sized pellets, and we showed that the change 
in this constant is independent of the arrangement of the layers of pellets. 
In the next chapter we consider the effect of time dependence on the 1D system 
discussed in the earlier chapters. We plot the temperature and concentration 
distributions along the channels at several different time intervals. We present 
the example associated with the industrial case described in Chapter 3 as well as 

additional simulations to show the sensitivity to the initial and inlet boundary 

conditions. 
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Chapter 7 

Time-dependent model 

The full time dependent system of equations for the temperatures and the con- 

centrations, which describes the energy and molar balances for the fluid and the 

solid phases is given below. 

7.1 Transient equations 

Fluid mole balance equations 

a2y(i) ay(i) a3 
(i) 

afxe 
a4 (x t) = a4 

afx 
(x t) 

' 

-I- a(ý')Yfz) (XI t) (1 
- 

ai ) 
5 Js EM 

alp) + a2ti)A(ti)e_ 
}Z9Ts(x, t)ý 

Fluid energy balance equations 

a2T(i) ý 
t) ) 

o (x, t) + a8(x, t) -7 
f2ý (x, a62> 5x2 (x, t) - a7') ä 

+ a9'')(T�(, ) (x, t) -T(Z) (x t»-0 , 
(7.1.1) 
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Solid energy balance equations 

(L1) 
a2T i) 

(x3 t) - a12 
0 (x, t) = a( (T(2) (x, t) - Tfyý (x, t» 

0X2 at 
8 

+ aW (z) Y(i) (x t) (1 
- 

alp) 

))' i all f 
a(i) + a22) A(Z) e RgTT (z, t) 

1 

Equation for the temperature inside the wall 

OT(') ai3 V2T °) (x, y, t) - a14 at 
(x) y, t) = 0. (7.1.2) 

The transient system of equations contains the time derivative in the equations 
for the solid temperatures but not in the equations for the fluid temperatures. 

The reason for this is that the speed of response of the fluid is several orders of 

magnitude higher than that for the solid (see, for example, [45]). Therefore the 

transient terms in the fluid phases are ignored and the corresponding equations 

are written in the steady state form. Inside the wall the temperature satisfies 
the heat equation. The industrial data used for the numerical simulations, the 

constants a(), i=1,2, j=1, ..., 14, and the coefficients in the reaction rates 

IE(t) 
A(')e RgT9ý 

7 
1P/ 

(x7 t) 

are given below. Inside the channels we have 

ail) = 2426.51 mol/(m3 s), a(') = 604.70 kg, at/m3, 

a31) = 0.0053 m2/s, a41) = 2.47 m/s, a51) = 6.06 s-1, 

a61) = 0.061 W/(m K), a(') = 43515.47 W/(m2 K), 

a(1) = 76513.19 W/(m3 K), a91) = 6777.22 W/(m3 K), 

a(' = 0.22 W/(m K), a(') = 206000 J/mol, 

a(1 = Pcatcpc2t = 118150 J/(m3 K), 

A(') = 0.778 mol/(kgca, t s), E(')/R9 = 4416.65 K'1, 
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a12) = 2136.21 mol/(m3 s), a(2) = 604.70 kgcat/m3, 

a32) = 0.0048 m2/s, a42) = 2.24 m/s, a(2) = 5.34 s-1, 

a62) = 0.054 W/(m K), a72ý = 28700.67 W/(m2 K), 

a82) = 68722.95 W/(m3 K), a92) = 7834.57 W/(m3 K), 

a(2 10 = 0.22 W/(m K), a12) = -802000 J/mol, 

a12 = PcatCj t= 
3037050 J/(m3 K), 

A(2) = 0.0794 mol/(kgcat s), E(2)/R9 = 132.31 K-1, 

and inside the wall we have 

(7.1.3) 

a13=kti, =1.5 W/(m K), a14=pwCp-=(79)(5.82)=459.78 J/(m3 K). (7.1.4) 

7.1.1 Boundary conditions 

The boundary conditions remain the same as those in the steady state case (see 

Chapters 3- 5): 

Yf') (0, t) = 0.163, T f(1) (0, t) = 733 K, T, (') (0, t) = 733 K, 

Yf2) (0, t) = 0.0836, Tf2) (0, t) = 733 K, T3 (0, t) = 733 K, (7.1.5) 

dYýl) dT(l) dT ' f (12, t) = 0, f (12, t) = 0, (12, t) = 0, 
dx dx dx 

dYýdTý2) dTs2) 
dx 

(12, t) = 0, 
dx 

(12, t) = 0, 
dx 

(12, t) = 0. 

7.1.2 Initial conditions 

This transient problem also requires initial conditions. In this chapter we con- 

sider only those solutions which have a uniform distribution at time t=0. For 
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convenience, we assume that the conditions at t=0 are the same as the condi- 

tions at x=0, that is, 

Yf' (x, 0) = 0.163, T f(1) (x, 0) = 733 K, T(1) (x, 0) = 733 K, 

Yf2) (x, 0) = 0.0836, Tf2ý (x, 0) = 733 K, T(2) (x, 0) = 733 K. 

7.2 Scaled variable and asymptotic approxima- 
tions 

Similar to Chapter 3, we introduce a dimensionless scaled variable To = y/(eDc). 
Here, as in the steady state case, the small parameter e denotes the ratio of the 

width of the wall to the width of the channel, e= Dz, /Dc, where D, � and Dc 

are 0.00159 m and 0.0795 m respectively (see Chapter 3). Thus, in the new 

coordinate, equation (7.1.2) can be written as 

at 
(x, Tot t) = 0, (7.2.6) 

ýa2 0) 
(x, To) + 

ý2ý2 

as 
2') 

(x, To) - a13 

) 

co 
11 

xE(0,12), roE 
(-272). 

We assume ideal thermal contact (continuity in temperature and heat flux) be- 

tween the wall and the channels, that is, 

at 7r0 =2: T (O) (x' 
2) 

gT(O) 1 
k 

ön \x' 2J 

= TWlý (xý, (7.2.7) 

= h(1) (T f(l) (x) - T(l) (x», (7.2.8 
w 

atrr°=-1: T(°) 
\x' 

) 

9T(°)( 1l 
w On \x' 2I 

= T(2) (x), (7.2.9) 

= h2)(Tf2)(x) -T(2)(x)), (7.2.10) 
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where k,,, is the thermal conductivity of the wall, h'), i=1,2, is the heat transfer 

coefficient between the fluid and the wall, and n is the outward normal. From 

(7.2.6) it follows that, for the leading order term for the temperature, we have 

aä a oo) 

2 
(x, To) = 0, xE (0,12), To E (-'), 

0 

since the constant a14/a13, multipying the time derivative, is of order 0(e-1). 

This implies that T0(°) is linear in To, as in the time independent case. Similar 

to Chapter 3, using conditions (7.2.7) and (7.2.9) we find that the leading order 

term for the temperature can be written as 

To°) (x, r0) =2 (T (1) (x) + 7l(2) (x)) + (T' (x) - TW2ý (x)) ro. (7.2.11) 

From (7.2.8), (7.2.10) and (7.2.11) it follows that 

_(1) (Tfl) -T 
(l)) =T, w1) -T,;, 2) and - 

(2)(T f2) 
-T, 2)) =T J1) 

-T, 2) 
> 

(7.2.12) 

where, 'Y(j) = 
hwk 

w 

DC 
= 

hýkw 
)i=1,2, which we assume to be of order 0(1). 

We use the relationships given in (7.2.12) to obtain the following coupling terms: 

(2) T(1) 
- 

T(2) 

T(1) - T(1) = 
ry (f f) (7.2.13) fw y(l) + y(2) + y(l). -(2) 

(i) (T(1) - T(2) 
T(2) - T(2) yff) (7.2.14) fw 

. 1(1) + . y(2) + . y(l), y(2) 

These coupling terms' are substituted back into the fluid energy balance equa- 

tions (7.1.1) giving 

d2T(1) dT(1) 
a(1) 

2- a(') f+ a(') (T(1) - T') 
dx 7 dx 

(2) (T(l) 
-T 

f2» 

- a9 
y(1) + 7(2) + y(1) y(2) = 01 (7., 2.15) 

'The coupling terms obtained here are the same as those obtained for the steady state case 
(see Chapter 3). 
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a(2) 
d2Tf2) 

aý2) 
dTf2) 

+ a(a) (T(z) - T(2) 
6 dx2 7 dx ssf 

(2) ry(1) (Tfl) - T(2) ) 
-F- a9 

ry(l) + f(2) +. y(')7(2) 
=. (7.2.16) 0 

We take the linear form of the Arrhenius reaction rate, introduced in Chapter 2, 

(_R1910ý 
= 

ýýýýe R9T y(i) (xf t), 

that is, we set the temperatures in the reaction rates to be the temperatures 

at the inlet. Consequently, the time dependent model describing the solid and 
fluid mass and energy balance equations is solved numerically and the results are 

presented in Figures 7.1 - 7.3. 

7.3 Discussion of the results 

We run the transient numerical simulations over a sufficiently large time interval 

until the solution evolves into a steady state. We present the temperature and 

concentration distributions for different times t within this interval. Figures 7.1 

and 7.2 show the coupled and uncoupled temperature distributions for different t 

between 0 and 3000 seconds. The steady state solution is obtained between 2000 

and 3000 seconds. For comparison we also present the solution from Chapter 3 for 

the corresponding time independent problem. The bottom two graphs in Figure 

7.2 are identical, which shows that, for the particular set of solutions considered, 

the solution of the steady state problem is exactly the solution that the transient 

problem evolves to. Figure 7.3 shows that the concentration does not change 

significantly over time. Again the solution of the time independent problem 
is presented to show that the transient problem evolves to the corresponding 

solution of the steady state problem. Another important factor to consider is 

the sensitivity of the solution to the initial and boundary conditions at the inlet. 
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Functions 

at t=0, 

x=0 

Original 

BCs and 
ICs 

Figures 

7.4c) and 
7.4d) 

Figures 

7.4e) and 
7.4f) 

Figures 

7.6c) and 
7.6d) 

Figures 

7.6e) and 
7.6f) 

T fl), T31) 733 K 550 K 850 K 733 K 733 K 

T (2) 
,T 

32) 733 K 733 K 733 K 720 K 850 K 

YM 0.163 0.163 0.163 0.163 0.163 

Yf2) 0.0836 0.0836 0.0836 0.0836 0.0836 

Table 7.1: Modified inlet boundary and initial conditions associated with Figures 

7.4 and 7.6. 

Functions 

at t=0, 

x=0 

Original 

BCs and 
ICs 

Figures 

7.5c) and 
7.5d) 

Figures 

7.5e) and 
7.5f) 

Figures 

7.7c) and 
7.7d) 

Figures 

7.7e) and 
7.7f) 

T fly T., (1) 733 K 733 K 733 K 733 K 733 K 

Tf2) T82) 850 K 733 K 733 K 733 K 733 K 

Yf M 0.163 0.1 0.2 0.163 0.163 

Y(2) 0.0836 0.0836 0.0836 0.06 0.15 

Table 7.2: Modified inlet boundary and initial conditions associated with Figures 

7.5 and 7.7. 
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For the original inlet boundary and initial conditions given in Sections 7.1.1 

and 7.1.2 we have shown that the temperature and the concentration profiles 
for the transient problem evolve to a steady state which is the same solution 

obtained from the corresponding time independent problem. We modify the inlet 

boundary and initial conditions according to Tables 7.1 and 7.2, and we present 

the graphs for each case when t is large, and the solution has reached its steady 

state. For the coupled temperature distributions in the numerical experiments 

mentioned above, a decrease in values for T f1) and T P) set at x=0, t=0 

results in a slight decrease in the coupling effect compared to that for the original 

conditions. The opposite is true for an increase in the values of T fl) and T (1) 

set at x=0, t=0 (see Figure 7.4). Figure 7.5 shows that slightly increasing 

or decreasing the values of Yf1) at x=0, t=0 has no significant effect on the 

temperature distribution. Decreasing (increasing) the values at the inlet for Tf2) 

and T(, '2) results in a slight decrease (increase) in the coupling effect (see Figure 

7.6). The temperature distribution is very sensitive to the conditions for the 

concentration on the combustion side (see Figure 7.7). Decreasing the boundary 

and initial condition at t=0, x=0 from 0.0836 to 0.06 results in a substantial 
increase in the coupling effect, and increasing the conditions from 0.0836 to 0.15 

gives a substantial decrease in the coupling effect. 

The main result in this final chapter is that, for the set of solutions in which the 

temperature at time t=0 is assumed to be uniform, the solution of the time 
dependent problem converges to that of the corresponding steady state problem 
for the industrial data and conditions given in (7.1.3), (7.1.4) and (7.1.5). The 

same is true when the initial and boundary conditions at the inlet are those given 
in Tables 7.1 and 7.2. This confirms that the results in Chapters 3-5 are valid 
for the physical problem. 
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1600 Coupled and uncoupled fluid temperature 1600 Coupled and uncoupled fluid temperature 
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1400 1400 

1200 1200 
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1600 Coupled and uncoupled fluid temperature 1600 Coupled and uncoupled fluid temperature 
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1400 1400 

1200 1200 
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coupled uncoupled coupled 

800 800 
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0 2468 10 12 0 2468 10 12 
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1600 Coupled and uncoupled fluid temperature 1600 Coupled and uncoupled fluid temperature 
att. 1000 secs att. 1500 secs 

1400 1400 

1200 1200 

uncoupled uncoupled 1000 1000 
coupled coupled 

600 800 

600 600 

0 2468 10 12 0 2468 10 12 

L(m) L(m) 

Figure 7.1: Uncoupled and coupled fluid temperatures at increasing time inter- 

vals between t=0 and t= 3000 seconds (Part 1): Upper plots = Combustion 

side; Lower plots = Reformer side. 
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Coupled and uncoupled fluid temperature Coupled and uncoupled fluid temperature 
1600 at t-2000 secs 1600 at t-2500 secs 

1400 1400 

1200 1200 
uncoupled Q uncoupled 

1000 1000 
coupled coupled 

800 8o0 
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Coupled and uncoupled fluid temperature Steady state solution from time independent model 
1600 at t-3000 secs 1600 

1400 1400 
STEADY STATE 

1200 1200 

uncoupled uncoupled 
p 1000 it: 1000 

coupled coupled 
800 80o 

600 600 

02468 10 12 02468 10 12 
L(m) L(m) 

Figure 7.2: Uncoupled and coupled fluid temperatures at increasing time inter- 

vals between t=0 and t= 3000 seconds (Part 2): the bottom right hand figure 

shows the corresponding steady state solution for comparison. Upper plots = 
Combustion side; Lower plots = Reformer side. 
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Ö24L 6m) 8 10 12 024L 
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Figure 7.3: Uncoupled and coupled fluid concentrations at increasing time inter- 

vals between t=0 and t= 3000 seconds; the bottom right hand figure shows 

the corresponding steady state solution for comparison. Upper plot = Reformer 

side; Lower plot = Combustion side. 

170 

L (m) 

Steady state solution from time independent model 
0.2 

0.15 

Coupled and uncoupled fluid concentration 
n+ f_f1 ear4 



a) Coupled fluid temperature at t. 3000 secs 
(original BCs and ICs) 

1600 

14001 

1200 

1000 

800 

Sol 

02468 10 12 

L (m) 

c) Coupled fluid temperature at t-3000 secs 
Modified conditions: Tf1(0). T91(0)-550K 

1600 

1400 

1200 

41 , 000 
slightly decreased coupling 

8o0 
Tf1(0) decreased 

600 

02468 10 12 
L (m) 

a) Coupled fluid temperature at t. 3000 secs 
Modified conditions: Tfl(0). Tsl(0). 850K 

1600 

1400 

1200 

0.1 

} 0. 

0.0 

0.1 

} 0. ' 

o. oi 

0.1 

ITf1(0) increased slightly increased coupling 

f= 100011 
0. 

Boo 
o. o 

600r 
l0 
02468 10 12 02468 10 12 

L(m) L(m) 

Figure 7.4: Coupled fluid temperatures and concentrations for the cases when 
the inlet boundary and initial conditions for T1' and T81) are modified. The case 

with the original boundary conditions is given for comparison. (These graphs are 
the temperature and concentration distributions that the transient cases evolve 
to. ) 171 
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Figure 7.5: Coupled fluid temperatures and concentrations for the cases when 
the inlet boundary and initial condition for Yf 1) is modified. The case with the 

original boundary conditions is given for comparison. (These graphs are the 

temperature and concentration distributions that the transient cases evolve to. ) 
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Figure 7.6: Coupled fluid temperatures and concentrations for the cases when 

the inlet boundary and initial conditions for T f2) and T32) are modified. The case 

with the original boundary conditions is given for comparison. (These graphs are 
the temperature and concentration distributions that the transient cases evolve 
to. ) 173 
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Figure 7.7: Coupled fluid temperatures and concentrations for the cases when 
the inlet boundary and initial condition for Yf2) is modified. The case with the 

original boundary conditions is given for comparison. (These graphs are the 

temperature and concentration distributions that the transient cases evolve to. ) 

174 

b) Coupled fluid concentration at t-3000 secs 
(original BCs and ICs) 



Chapter 8 

Conclusions and future work 

In this thesis we developed a mathematical model for a problem that engineers 
have faced for many years. Our model described a new design for a catalytic 

reformer -a reactor which is used in industry to produce hydrogen. Conven- 

tional combustion and reforming of methane is essential for this purpose, but 

the disadvantages of existing plants is that they are very large, and they cause 

substantial pollution through reactions with nitrogen in the air. The new de- 

sign consists of long adjacent channels with combustion and reforming reactions 
taking place in parallel rather than in series: heat exchange between the two 

processes takes place across thin conducting walls that separate the channels. 
The idea of combining catalytic combustion and reforming was first introduced 

in the early 1980's and since then many works of an experimental nature have 

followed, because the new design would overcome the problems caused by the 

existing reactors. 

In the work presented here, we have shown how one could use an asymptotic 

method to accurately describe the theoretical concepts associated with this new 

reactor. We analysed the heat transfer across a thin conducting wall, which 
resulted in a coupling of the two processes taking place in the adjacent channels. 
We have shown how the energy generated by the combustion reaction is used 
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to heat the rrfortnittg reaction. This is of great industrial importance for many 

rý :i ýýtt :: rt large fire? lbcox is no longer required to provide energy for the reforming 

react ion, tints reducing size and peak temperatures - polluting oxides of nitrogen 

are no longer produced. : Also, the difference between the outlet temperatures of 

the two reactions is reduced dramatically; this can remove problems associated 

Wit ii high temp Brature differences, for example, cracks in the reactor, hot and 

cold spots, regions of high pressure and breakdown of the reactor. 

The efft :t of t hei st ruct tire of the wall was investigated in Chapters 3 and 4 where 

We studied two cases: one where the wall was made of different layers of different 

Widths and thermal conductivities, and the other where the wall contained an air 

gap. Changing the structure of the wall can be used to provide thermal barriers, 

which rent real the atnottnt of heat transferred from one channel to the other. Ex- 

pe"rinirtttalists believe that having such thermal barriers is one of the key factors 

in avoiding failure of the system as it provides a tool to prevent the endothermic 

reaction from taking too tauch heat and consequently extinguishing the exother- 

tnir reaction. We have presented the results of numerical computations for the 

teiiiperature and concentration distributions along the channels: these results 
have indicated that, an air gap would be more efficient for the purpose of tem- 

perature control. as the train mechanism of heat transfer shifts from conduction 
to radiation. (we gave an asssessrnent of when this is the case), thus raising the 

temperature on the combustion side. We have shown that, in the limiting case, as 
the u"idt h of the air gap approaches zero, heat transfer via conduction, as well as 

radiation, also needs to be taken into account. Further work on this model could 
involve the analysis of air gaps where the air is at different temperatures, and 
the addition of heat transfer by convection as well as radiation and conduction 
iicro. ss t Iit gal). 

In this t hi i:; we gave it detailed description and a asymptotic approximation of 
the? solution including the boundary layer regions near the inlet and outlet of the 
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reactor. Numerical packages have difficulties in dealing with singularly perturbed 

boundary value problems and tend to only give the limit outer solution. In 

Chapter 5 we have shown that the limit outer solution is sufficiently accurate 

in the main part of the channel, but near the inlet and outlet, where functions 

change rapidly, additional boundary layer fields needed to be constructed. A 

future direction would be to develop a code that would generate the numerical 

solution along the entire length of the channel, automatically incorporating the 

limit outer solution, as well as the asymptotic approximation for the rapidly 

varying functions in the small regions near the ends. 

Although we have dealt with a simple model of the problem, where we first 

considered 1D equations in the channels and 2D equations in the wall, we have 

provided a sufficiently accurate analysis of the physical phenomenon associated 

with the design of this industrial reactor. We have shown how the temperatures 

are coupled and how this coupling can be controlled. In Chapter 6 we also 

analysed how one could model the structure of the pellets in the channels in 

more detail. We derived a direct relationship to Darcy's law for the main part 

of the cross-section of the channel, with exponentially decaying solutions near 

the walls. This is similar to Hartmann flow for fluids in a magnetic field. Future 

work could involve an alternative way of modelling the pellets which are packed 

randomly in the bed. Additionally, one could also model a catalytic plate reactor, 

where there are no pellets and the catalyst is present on the sides of the walls. 
The simplest model for such a case would include at least 2D equations, as the 

temperature profile would change across as well as along the channels. 

Finally, we considered the time dependent model and showed that for the set 

of solutions with uniform temperature distribution at time t=0, our steady 

state solutions were exactly those that the transient problem evolved to. Further 

work on the transient case would involve an investigation of how the temperature 

changes at the inlet, that is, when t=0, and how the heating up of the solid 
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phase would affect the result. Also, an increase in the dimensions of the system 
and a generalisation to multi-channel interactions could be considered. Addition- 

ally one could analyse the optimal design for the catalytic reactor, for example, 
how many channels are required and what is the best arrangement (combustion 

or reforming channels at the ends), how do certain parameters depend on tem- 

perature, flow rate etc. and how would this affect the results, and what is the 

optimal outlet temperature for the reactor to be most efficent. 
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