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Abstract 

Abstract 

Sedimentation and scour can be problematic for a number of engineering and 

environmental projects. Suspended sediment transport rates are hugely influential 

in these processes and as such it is essential that both accurate and cost effective 

engineering models are available. 

Although many such models exist in the literature, they can become expensive to 

use when applied to large areas or for long periods of time, since these situations 

often require a large number of computation points. A new approach to 

suspended sediment transport modelling has been shown by O'Connor et al 
(2001) to improve upon the efficiency of conventional methods. It is the aim of 

this thesis to present the details of this method and to perform a preliminary 
investigation into the viability of incorporating a parametric approach. 

The parametric approach is based on a Fourier series approximation to 1DV 

suspended sediment transport rates in the presence of tidal currents, the 

coefficients of which are the subject of the parameterisation. 

A conventional 2DV model for predicting tidal suspended sediment transport 

rates is used to assess the efficiency of both the parametric and non-parametric 

versions of the new method. Although only simplified situations are considered, 
it is shown that the new approach of O'Connor et al (2001) requires only 72% of 
the computation time used by the conventional approach whilst maintaining the 

same level of accuracy. The parametric approach improves on efficiency still 
further, requiring only 60% of the computation time; however, this is offset by an 
incurred error of the order 5%. 

It is concluded therefore that both parameterised and non-parameterised versions 

of the new approach offer much more efficient methods for calculating tidal 

suspended sediment transport rates. 
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Chapter 1: Introduction 

Chapter 1 

Introduction 

1.1 General Background 

Sediment transport has been important from an engineering perspective for 

centuries and perhaps never more so than now. The fear of global warming and 

the rising sea levels that it will bring suggest that the need for accurate and 

efficient models for predicting morphological changes will be very much in 

demand in the future. 

Rising sea levels mean that flood prevention is an area of major concern. 
Coastlines are often protected by naturally occurring structures such as near- 

shore sandbars; these structures dissipate wave energy before they reach the 

shore. Monitoring of such structures is essential in preventing both flooding and 

coastal erosion. 

Beach migration is another problem associated with coastal erosion. The 

changing environment not only affects wildlife, it can also have a devastating 

impact on the local economy. Many seaside communities rely on revenue gained 
from tourism and leisure industries based on the availability of sandy beaches or 
the presence of rare wildlife. 

In the present climate of environmental awareness, engineering models are often 

used to assess the impact of structures on areas of special interest, such as tidal 

mud flats, which may be the home of rare flora and/or fauna. Such is the case 

when choosing the site for a new power station, which relies on a local source of 

water for cooling purposes. This also highlights a problem associated with 
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sediment carried in suspension since this can cause blockages and possible 

damage to the cooling system of the power station. 

A more traditional use for sediment transport models is their application to the 

problem of dredging. Busy harbours and ports often require navigation channels 

to allow access to larger vessels. Such channels must be maintained by regular 

dredging, the frequency of which is dictated by the rate at which they refill. This 

in turn depends upon the sediment transport rate. 

Harbours and ports also require sea defences such as sea walls. The use of such 

structures alters the flow field in the region; this in turn can alter sediment 

transport rates, which will then have an impact on the neighbouring coastline. 

Sediment transport is also important for offshore structures such as oilrigs. 
Scouring can cause instability to the foundations of these offshore platforms and 
hence threaten the safety of workers. 

Knowledge of sediment transport can also be economically beneficial. Consider 

the case of deep-sea pipelines; these need to be covered with enough sediment so 

that they are not snagged by deep-sea trawlers. Instead of spending much time, 

effort and money on engineering projects to cover the pipelines, it is often 

possible to allow nature to perform the task. 

It can be seen that sediment transport plays an important role for a variety of 

applications. It is essential therefore, that there exist accurate and efficient 

engineering models capable of predicting sediment transport rates. 

1.2 Scope of the Present Study 

Sediment transport comprises two separate physical processes, bed-load 

sediment transport and suspended sediment transport. Bed-load is considered to 

represent those grains that maintain contact with the bed whilst moving with the 
flow. Suspended sediment transport concerns those grains that are carried up 
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from the bed and held in suspension whilst moving with the flow. This thesis 

concerns suspended sediment transport only. 

There are many different models used to predict suspended sediment transport 

rates. The complex processes involved in predicting suspended sediment 

transport means that assumptions are often made to allow simplification. This 

obviously limits the area of application for such a model but is seen as a 

necessary evil until techniques improve sufficiently. 

If large sediment grains are studied then it is often assumed that adjustments to 

local flow conditions are instantaneous and therefore negates the need for time 

dependence in the mathematical model. However, if the grain size is small, then 

time dependency must be retained. 

If the area of study is horizontally uniform then the number of dimensions 

considered in the model is reduced. Only a one-dimensional vertical (1DV) 

model is required for this situation. However, if the uniformity is in one 
horizontal direction only, then it is necessary to consider a two-dimensional 

vertical (2DV) model. If there is no uniformity at all in the system then it is 

necessary to use a fully three-dimensional (3D) model. 

It is also possible to use a depth-average model for some applications, this 

requires either a one-dimensional horizontal (1DH) model or a two-dimensional 
horizontal (2DH) model. 

Unfortunately, models that are applied to a large area, or consider a long period 
of time, often require a large number of computation points. Such models are 
very expensive to run. Even with the rapid advancement of computer processor 
speeds, it is necessary to seek out new methods that reduce computational costs 
but retain accuracy. 

This objective formed the main aim of the EPSRC funded COSMOD project 
(grant number: GR/L96967/01) involving the maritime research group at 
Liverpool University; headed by Professor O'Connor. The project evaluates a 
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new approach to suspended sediment transport modelling based on a Predictor- 

Corrector method derived by using a splitting technique on the original 

concentration equation. 

The objective is now to further improve upon the COSMOD project by 

undertaking a preliminary study into the viability of a parametric approach. As 

such, the parameterisation considers the more simplistic 2DV situation for fine 

grains where only tidal currents are present, it being assumed that the effect of 

waves and the expansion to three-dimensions will form the basis for further 

research projects, should the initial parameterisation prove viable. 

The aims of this thesis are therefore: - 

1) To present the details of a new theory proposed by O'Connor (1999) for a 
Predictor-Corrector method for calculating tidal suspended sediment 

transport rates. 
2) To produce a parameterised 1DV model that can be used in place of a 

numerical 1DV model in the new Corrector method. 
3) To investigate the accuracy and computational cost of the new parameterised 

Corrector method. 

1.3 Structure of the Thesis 

Chapter 2 begins by deriving the three-dimensional advection-diffusion equation 

since this forms the basis for most suspended sediment transport models. The 

chapter then proceeds by describing the conventional approach to 2DV 

suspended sediment transport modelling. The full mathematical derivation of the 

new method proposed by O'Connor (1999) is then presented so that the theory of 
both methods can be compared. 

A major problem associated with suspended sediment transport modelling is the 

prediction of bed form dimensions and hence roughness. The bed form 
dimensions can also be used to define the reference level for concentration 

1-4 



Chapter 1: Introduction 

calculations and as such have a large influence in determining transport rates. 

Chapter 3 therefore presents a discussion on available bed form models and 

describes the model used in subsequent chapters. 

Chapter 4 then describes the 1DV tidal suspended sediment transport model used 

in the new Corrector method. The chapter discusses all components of the model, 

presenting various methods found in the literature for the particle fall velocity, 

vertical diffusion coefficient and boundary conditions. The chapter also presents 

models for both the vertical and longitudinal flow velocities. The model includes 

a coordinate transform to increase the accuracy of the numerical solution, details 

of which are also given in chapter 4. The chapter concludes by performing tests 

to assess the validity of the proposed model. 

The thesis then proceeds to chapter 5 where details are given of how the 1DV 

model is incorporated into the new Corrector method. Details are also given of 

the boundary conditions imposed on the model and the numerical schemes used 

to solve it. 

A conventional 2DV suspended sediment transport model is then constructed in 

chapter 6 so that it can be used to test the relative accuracy and computational 

cost of the new Corrector method. The chapter includes details of the 

construction of the conventional model and also describes an analytical test used 
to prove the suitability of the model. 

Chapter 7 then presents a parametric approach to 1DV suspended sediment 
transport modelling. The parameterisation is based on the coefficients of the 
Fourier series approximation to the 1DV tidal transport rates. The coefficients are 
parameterised by relating them to non-dimensional groups obtained from the set 
of characteristic parameters defining the system. The chapter gives details of the 

regression analysis used to fit the parameter groups and also tests the 

parameterised model against results from the numerical 1DV model. 

Chapter 8 then proceeds to explain how the numerical 1DV model is replaced by 

the parameterised 1DV model in the new Corrector method. The chapter 
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describes how the parameterised 1DV model must first be modified for the 2DV 

system before it can be used in the new Corrector method. It is also shown that 

parameterisations for both the depth-average concentration and the transport due 

to fluctuations from depth-average values are required if the 1DV parameterised 

model is used in the new Corrector method. Details for both parameterisations 

are given in chapter 8. 

Chapter 9 then discusses both the accuracy and computational cost of the new 
Corrector method and the parameterised Corrector method relative to the 

conventional 2DV model. 

Chapter 9 also brings the thesis to its conclusion by providing recommendations 
for further research. 

1-6 



Chapter 2: Sediment Transport Theory 

Chapter 2 

Sediment Transport Theory 

2.1 Introduction 

The main aim of this thesis is to test the speed and accuracy of a parametric 

version of a new approach to suspended sediment transport modelling first 

proposed by O'Connor (1999). Before the parameterisation can be attempted, it is 

important to understand how the new approach differs from conventional 

models. The present chapter therefore presents the theoretical derivation of the 

new approach. 

If the model is shown to be quicker for a 2DV situation, then it is assumed that 

the method must be quicker still for a full three-dimensional model; this would 

need further investigation but is not within the scope of this thesis. Therefore 

only the 2DV situation is described herein. 

However, it is important to establish the fundamental equations upon which the 

theory is based, therefore the derivation of the 3D advection-diffusion equation 
for sediment concentration is given. This forms a foundation for the modelling 
theory presented later in the chapter. 

After presenting a brief description of dimensional modelling, details are given 

of the conventional approach to 2DV sediment transport modelling. 

Attention then turns to the derivation of the new approach. The new model is 

constructed from the three-dimensional advection-diffusion equation for 

sediment concentration. After first omitting the lateral dimension, the advection- 
diffusion equation is split into two equations so that the vertical and longitudinal 
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dimensions are separated. The vertical dimension is then coupled with a flow 

model to give 1DV transport rates at a series of spatial points. The longitudinal 

equation is then manipulated so that it becomes an equation with transport as the 

dependent variable rather than the sediment concentration. Essentially, the 

longitudinal equation is multiplied through by the depth-mean longitudinal flow 

velocity, then integrated over the water depth. The manipulated longitudinal 

equation is then used at all spatial points to correct the 1DV results for 

longitudinal effects. 

Only the theory is presented in this chapter; chapter 5 describes the method of 

solution whilst chapter 6 compares the new Corrector method with a 

conventional 2DV model. 

2.2 Derivation of the Advection-Diffusion Equation 

A brief derivation of the three-dimensional advection-diffusion equation is given 
below; for more details see Ippen (1966), also McDowell and O'Connor (1977). 

The derivation assumes that the substance concerned is a continuum, i. e. it has a 

continuous structure. This implies that molecular diffusion is negligible relative 

to the macroscopic effects of the turbulent mixing in the system. The derivation 

is then based on the principle of continuity applied to a fluid element when a 

mass is introduced into the system. - 

Consider a small fluid element with dimensions dx, dy and dz. Consider first 

the longitudinal dimension. A mass, with density p and concentration c, is 

introduced into the system where the longitudinal flow is assumed steady and has 

velocity u, as shown in figure 2.2.1. 

The flux across the exit wall of the fluid element is given by applying Taylor's 

series expansion: - 

flux out = pcu +ä(, ocu)dx dydz (2.2.1) 
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The net flux, equal to the rate of change of mass, is then given by: - 

(P'cuýClx dydz 
at 

(pc)dxdydz = pcudydz - peu +a 

a (pc)dxdydz =-a (pcu)dydzdx (2.2.2) 
at ax 

Since the argument described above can be applied equally to the lateral (y) and 

vertical (z) directions, then the full three-dimensional net flux is given by: - 

at 
a (PC) + ax 

(pcu)+ a 
(pýcv)+ a (Pcw) =° (2.2.3) 

yz 

where, 

v -Lateral flow velocity 

w -Vertical now velocity 

If the density gradients are neglected with respect to the concentration gradients 

then the density is eliminated from equation (2.2.3) to give: - 

ac 
+a (cu) +a (cv)+ (cw) =o (2.2.4) 

at ayz 

The instantaneous concentration and fluid flow velocity can be expressed as a 

combination of their time-average (overbar) and fluctuating (prime) components, 
i. e.: - 

c=C+C 

u=ü+u 

v=v+v 

w=w+w' 
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Substitution of these expressions into equation (2.2.4) and then taking the time- 

average value of each term gives: - 

+ c+c ü+u + c+c v+v +- c+c w+w 
at ax ay az 

(2.2.5) 

Equation (2.2.5) can be simplified by considering that the time-average of a 
fluctuating term is zero, also, the time-average of the product of a time-average 

and fluctuating term is zero. Thus, equation (2.2.5) becomes: - 

ac+aüc+avc+awc+auc+avc'+aw'c'=o 
(2.2.6) at ax ay az ax ay az 

The product of fluctuating terms can be modelled using an analogy with Fick's 

law of diffusion. The mass flux is proportional to the mean concentration 
gradient such that: - 

-, aE UC= -E f, x ax 

v'c' au -ýt. y ay 

Wc= -6 f. z az 

where, 

-of X -Longitudinal fluid diffusion coefficient 

-of ly -Lateral fluid diffusion coefficient 

e f, = -Vertical fluid diffusion coefficient 

McDowell and O'Connor (1977) suggest that if the mass concerned is sediment, 
then the diffusion model must be modified. This is achieved by using a sediment 
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diffusion coefficient, e31, which can be expressed in terms of the fluid diffusion 

coefficient via a proportionality coefficient, ß. Details are given in chapter 4. 

Thus, equation (2.2.6) becomes: - 

aý aaaa aýc a aý a aý 
at + ax uE+ ay vU+ aZ Wu= ax sJ'= ax + ay ýs'y ay + az ýs'z az 

(2.2.7) 

The sediment is assumed to travel with the same velocity as the flow in both the 

longitudinal and lateral directions. However, the particle velocity in the vertical 
direction must be modified for gravitational effects. This is achieved by 

incorporating the particle fall velocity, wf. Hence, dropping the overbar 

notation, the three-dimensional advection-diffusion equation for sediment 

concentration can be written as: - 

Dc a aý aý ac a ýt+x(cu)+a (cv)+-(c{w-wf})=- 6sß- +a-E,. 
y -+ a- CS, 

z- 
y aZ ax aX ay ay aZ az 

(2.2.8) 

2.3 Conventional 2DV Model 

2.3.1 Introduction 

The three-dimensional advection-diffusion equation, equation (2.2.8), can be 

used in conjunction with a model for the velocity flow field to yield sediment 
transport rates for the full three-dimensional situation. However, it is not always 
necessary to consider all three dimensions. There are four main dimensional 

models for calculating the sediment concentration: - 

3D -Fully three-dimensional 
2DV -Vertical and longitudinal 
2DH -Longitudinal and lateral 
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1DV -Vertical only 

The number of dimensions required is dependent on the region of application. 

For example, if the region is considered horizontally uniform then only a 1DV 

model is required. However, if there is non-uniformity in one of the horizontal 

directions then a 2DV model must be used. There have been numerous models 

proposed for each of the dimensional categories; see Van Rijn (1993) for an 

extensive review. 

2.3.2 Standard Solution Approach 

If the lateral dimension of equation (2.2.8) is omitted, then the 2DV advection- 
diffusion equation for sediment concentration is given by: - 

ac 
+a (cu)+ a (Cfw 

-wf 
}) 

=a 
ýs 

x 
ac 

+a es.: 
ac 

c2.3.1) 
ax az ax aX az az 

Following the operator splitting technique of O'Connor (1971), see also Verboom 

(1975), equation (2.3.1) can be replaced by two equations so that the dimensions 

are separated, see O'Connor and Nicholson (1997); i. e.: - 

ac i+a (w 
-w fýc =a es, Z 

ac 
(2.3.2) 

aZ aZ az 
Dc + DUC 

_a cs x 
aý (2.3.3) ät ax ax ax 

Equations (2.3.2) and (2.3.3) can now be solved by any appropriate numerical 

approach. The method of solution proceeds by first solving equation (2.3.2). This 

gives concentration values at an intermediate time step that are then used as the 

values for the previous time step in the solution of equation (2.3.3). This results 
in the solution of the 2DV sediment concentration field. Transport rates are then 
found by coupling the concentration field to the velocity flow field. 
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2.3.3 Boundary Conditions 

Equations (2.3.2) and (2.3.3) must be solved subject to surface, bed and lateral 

boundary conditions. 

Surface Boundary 

A simple zero concentration condition is applied at the water surface for reasons 

explained later in section 2.4.2. 

Bed Boundary 

One ingredient common to all models for sediment transport is their need for bed 

form information. In order to calculate the transport value, the sediment 

concentration equation must be solved and then coupled to the flow field. The 

flow field requires roughness values for its calculation. These roughness values 

are dependent on the bed forms present for the given regime. 

For those models involving the vertical dimension, the solution of the sediment 

concentration equation also requires a reference concentration, ca; this in turn 

depends on the given reference level, a, from which the calculations begin. This 

reference level also depends upon the dimensions of the bed forms present for 

the given regime, as will be seen in chapter 4. 

Lateral Boundary 

The condition applied at each lateral boundary, both inflow and outflow, is based 

on the assumption that the region of interest is such that longitudinal effects are 
influential. It is assumed therefore that both the inflow and outflow boundaries 

are such that only 1DV effects are present. 

2.4 New Corrector Method 

2.4.1 Introduction 

Although the conventional 2DV model can be used to predict suspended 

sediment transport rates, it can require vast amounts of computation time if the 
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model is applied over a large area with a large number of computational points. 

This often means that it is impractical to use in such conditions. The model 

described in the next section is designed so that the amount of computation is 

reduced and hence, crucially, the computational time is also reduced. 

2.4.2 Theory 

As with the conventional 2DV method, the advection-diffusion equation is split 

using the operator splitting technique to again give equation (2.3.2) and equation 
(2.3.3). However, instead of solving equation (2.3.2) and equation (2.3.3) in 

sequence, to give the concentration field, as in the conventional method, equation 
(2.3.2) is solved first but is then combined with the flow field to give 1DV 

suspended sediment transport values. The aim now is to manipulate equation 
(2.3.3) so that the 1DV transport values can be used instead of the concentration 

values. 

Consider equation (2.3.3). Multiply through by the depth-mean longitudinal flow 

velocity and then integrate over the water column, i. e.: - 

h Jii-dz+Jii---dz=f a- ah 
üa ýs. x 

ac 
c2.4.1ý 

Q at a ax a ax ax z 

Now consider just the first component of equation (2.4.1), i. e. part (i). 

acdz=h 
(2.4.2) Ja at Ja at 

Applying Leibnitz's Theorem to the right hand side of the above equation then 

gives: - 

acdz=ü a $cdz-ahch+äa ca (2.4.3) 
Q 

at ar 
p 

at ar 
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If the sediment concentration at the surface, Ch V is assumed zero and the reference 

level is independent of time; equation (2.4.3) then becomes: - 

Jhcfh cdz (2.4.4) 
a 

at at 
a 

Now writing the sediment concentration in terms of its depth-mean and 
fluctuating/dispersive components: - 

I =ýc 
a ('(c+c')dz 

(2.4.5) 
a 

at at ýa 

Since the integral of the fluctuating component of the sediment concentration is 

zero, then: - 

fuacdz=üa 
jcdz 

a at at a 

Jii-dz=ii-(h-a) h cc (2.4.6) 

a at at 

[Aside: Consider the transport rate: - 

h 

Tf. 
x =f ucdz 

a 

Split the velocity and sediment concentration into depth-mean and fluctuating 

components: - 

hh 

Ts, 
x = Jiidz+Ju'c'dz 

ao 
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T, = (h 
- a)ic c +Td; sp, x 

(2.4.7) 

where, 

h 
Tdisp, 

x =Jü c'dz -Dispersive transport' 
a 

Now differentiate with respect to time: - 

DT" 
-a 

(h - a)ü c+ 
aTdISP, 

x 
at ar at 

aT"., 
=a (h - a)ZF + (h - a)ZF au + aTdip. x at at at at 

This can now be used in equation (2.4.6)] 

Equation (2.4.6) can now be expressed as: - 

a (h _ ak = __ _ (h _ a)Fa _ 
aTd, SP. x (2.4.8) at at at at 

Now consider part (ii) of equation (2.4.1); applying Leibnitz's Theorem gives: - 

hu az = ii 
[a 

Jd z- 
äh 

chuh + 
Da 

caua (2.4.9) 
a 

ýZd 
xa ax ax ä 

Again, the sediment concentration at the surface is assumed zero. The reference 
level is assumed constant in the longitudinal direction. Therefore equation (2.4.9) 

simplifies to: - 

fh=ü 

-I u cdz (2.4.10) 

Q 
ax öx 

a 

2-10 



Chapter 2: Sediment Transport Theory 

It can be seen that the integral on the right hand side of equation (2.4.10) is 

simply that of transport; this leads to the following equation: - 

f 

ax 
(2.4.11) 

Q 
ix äx 

Now consider the final part of equation (2.4.1), i. e. part (iii). Applying Leibnitz's 

Theorem: - 

ha aý a ac ah ac as ac iresx 
= E- + 

ax ax a ax ax ax ax a 
(2.4.12) 

The sediment diffusion/mixing coefficient in the longitudinal direction is zero at 

the surface since the sediment concentration is assumed zero at the surface. 
Equation (2.4.12) therefore simplifies to: - 

Jhüa Es, X 
ac 

z= üah 6,, x 
ac 
-ýiz (2.4.13) 

Q 
a, X aX aX 

a 
aX 

The integrand on the right hand side of equation (2.4.13) has the same 
dimensions as transport. Since it contains the longitudinal sediment 
diffusion/mixing coefficient, it can be thought of as diffusive transport. 

h 

i. e. Tdff. 
X = -f Cs, x 

aC 
dz (2.4.14) 

a 
ax 

Thus, equation (2.4.13) can be written as: - 

h 
111-i E,, x 

ac 
z= -ü 

aTd'ff 
x (2.4.15) 

a 
ax ax ax 
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Collecting the new expressions for parts (i) - (iii), i. e. equations (2.4.8), (2.4.11) 

& (2.4.14), equation (2.4.1) can be written as: - 

aT 
_x+ ýc 

a ({i + a}T )=Z (h - a) 
ate` 

+ 
disp. x (2.4.16) 

at ax sýX at at 

where, 
Tdi, 

Q', x 
a= Ts, 

x 

It can be seen that the equation is now written in terms of transport rather than 

concentration. Equation (2.4.16) defines the Corrector method. 

As stated earlier, the new Corrector method has been designed so that the 

required amount of computation, and hence time, is likely to be reduced. 
However, testing is needed to determine the efficiency of the method. 

Conventional 2DV models work by first calculating the concentration at each 

vertical point and then performing calculations over the entire spatial plane for 

each of these vertical points in turn. The new Corrector method however, uses 

the transport value instead of the concentration and therefore has only one 

calculation over the spatial plane. This is perhaps best explained by use of a 
diagram, see figures 2.4.1 and 2.4.2. 

Figure 2.4.1 describes the sequence followed by the conventional 2DV method 
for calculating the concentration field. If the z -axis is divided into n equally 

spaced grid points, then equation (2.3.2) is solved so that the 1DV concentration 
is found at each vertical grid point i =1... n; shown by the left hand side of 
figure 2.4.1. The right hand side of figure 2.4.1 shows the solution of equation 
(2.3.3). The solution procedure starts at i =1 and solves equation (2.3.3) for all 

grid points on the plane shown in figure 2.4.1. Having now calculated the 2DV 

concentration values for i =1, the procedure then moves to i=2 where the 

method is repeated. This process is repeated for all vertical points i =1... n. 
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The procedure for the Corrector method begins with the same step as that used 

by the conventional method. The left hand side of figure 2.4.2 shows the solution 

of equation (2.3.2) to give 1DV concentration values. Instead of proceeding to 

the solution of equation (2.3.3), the Corrector method couples the 1DV 

concentration values with a flow velocity model so that 1DV transport values are 

obtained. The right hand side of figure 2.4.2 then shows the solution of equation 

(2.4.16). Since the transport involves the integral of the concentration values for 

i=1 ... n, there is only one calculation on the right hand side of figure 2.4.2. 

It can be seen therefore, that the Corrector method requires only one calculation 
to obtain the 2DV transport values from the 1DV values, whereas the 

conventional method requires n-2 calculations (since the concentration is 

assumed zero at the surface, i. e. i=n, and the reference concentration is given, 
i. e. C= ca at i =1). This reduction in calculation steps is designed to reduce the 

amount of time required for computation. 

2.5 Summary 

The basic mathematical equations used for modelling suspended sediment 
transport have been presented. The conventional approach to 2DV sediment 
transport has been described and the equations given. 

Since conventional 2DV models are expensive to run for large spatial domains, 

in terms of computer run time, a new method proposed by O'Connor (1999) has 
been described which has been designed to reduce the number of calculations 
required and hence reduce the computational time. This new method is 

constructed so that 1DV transport values are first calculated, then fed into an 
equation which corrects them for longitudinal effects. 

It is therefore necessary to first construct a 1DV sediment transport model. As 

stated in section 2.3.3, the 1DV model requires bed form information; the next 
chapter therefore describes the bed form model used in the 1DV model. 
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Figure 2.2.1: Conservation of mass for a small fluid element 
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Figure 2.4.1: Sequence of sediment concentration calculation for the conventional 2DV method 



Figure 2.4.2: Sequence of sediment concentration calculation for the new Corrector method 
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Chapter 3 

Bed Forms 

3.1 Introduction 

Bed forms are of paramount importance for sediment transport calculations since 

they greatly affect not only the roughness of the flow, but also influence the bed 

boundary condition, as stated in section 2.3.3. 

There are numerous types of bed forms that can be present at any given time; it is 

therefore necessary to first define those that are important in sediment transport 

calculations; this is done in section 3.2. 

Section 3.3 discusses the generation of each class of bed form. It is shown that 

the type of bed form present is dependent upon the local conditions, dictated, 

primarily, by longitudinal flow velocity and grain size. Using these values, it is 

possible to make distinctions between different bed form types. Section 3.4.1 

describes methods found in the literature. 

Having established which bed forms are present for the given conditions, it is 

possible to then find both the height and wavelength of the bed form. Section 

3.4.2 describes methods for determining dimensions of bed forms in steady flow, 

which assume the bed forms are in equilibrium, whilst section 3.5 discusses the 
limiting effect on the bed form dimensions due to tidal flow. 

The height of the bed form can then be used to determine the reference level for 

sediment transport calculations. Effective roughness values can also be 

determined form the bed form dimensions so that both initiation of motion and 
the longitudinal flow velocity profile can be determined. 
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3.2 Definitions 

A search through the literature reveals many terms that are used to describe bed 

forms. In essence, a bed form is any sedimentary deviation from a flat bed. These 

deviations come in many different shapes and sizes, from very small mini-ripples 

to large sand waves. 

The literature can be misleading however, since some authors use the term sand 

wave to describe any bed form, including ripples, mega-ripples, dunes, anti- 
dunes and larger structures. Yalin (1977) distinguishes between ripples, dunes 

and anti-dunes, stating that further classification causes confusion. 

The term dune can be used to describe any feature larger than a ripple; some 

authors describe mega-ripples as dunes, only of different length and height 

characteristics. As a general rule, ripples are those bed forms whose length is 

very much smaller than the local water depth whereas dunes have a length scale 

of the same order or larger than the local water depth. 

Bed forms may be described as either transverse or longitudinal. The former 

describes those bed forms whose crests lie perpendicular to the direction of the 
flow, whilst the latter describes those bed forms whose crests are parallel to the 
direction of the flow. Examples of longitudinal bed forms are notably ridges and 
ribbons. Transverse bed forms tend to be more diverse; classification often 
depends on individual authors. In general, transverse bed forms include ripples, 
mega-ripples, dunes, anti-dunes and sand waves. 

Each of these classes can be separated into different sub-classes. Ripples can be 

classified as straight, sinuous, catenary, linguoid or lunate, depending on the 

shape of their crest line. See Simons and Richardson (1961) for examples of 
different types of bed forms. 
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3.3 Generation of Bed Forms 

3.3.1 Ripples 

It would appear to be widely accepted that ripples are only dependent on 

sediment properties and are totally independent of the hydraulic conditions. 

Yalin (1977) suggests that ripples are caused by a discontinuity in the bed's 

surface, this induces an instability, which grows into the form of ripples. 

3.3.2 Dunes 

Unlike ripples, dunes are strongly dependent on the hydraulic conditions. 

According to studies by Velikanov (1955,1958), the presence of dunes is due to 

turbulence producing eddies that are of the same order as the flow depth. Using 

these studies Yalin (1977) explains that a discontinuity in the bed can lead to the 

disturbance of the turbulence structure which then produces the dune. 

3.3.3 Anti-dunes 

Yalin (1977) argues that the mechanism behind the formation of anti-dunes is the 

existence of a wave on the free surface caused by an original discontinuity in the 

bed. This leads to a change in the water depth along the free surface wave. Since 

the laws of continuity must be obeyed, this implies that the flow under the trough 

of the wave must be faster than that under the crest, since the depth is greater. 
Since the flow is faster, there is more erosion on the bed at this point. This leads 

to the formation of an anti-dune that is in phase, if not with the same amplitude, 

as the free surface wave. 
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3.4 Bed Forms in Steady Flow 

3.4.1 Classification 

The first step towards the inclusion of a bed form model in sediment transport 

calculations is to determine which bed forms are present for the given conditions. 

Fredsoe and Diegaard (1992) offer the following classification. At low flow 

velocities there is a small viscous sublayer above the bed. If this sublayer is 

larger than the diameter of the bed material then the hydraulic conditions are 
described as smooth, otherwise they are hydraulically rough. If the flow is 

hydraulically smooth at the moment when the critical velocity for motion of the 

sediment particles is reached then, according to Simons and Richardson (1961), 

ripples will be produced. If it is rough, then dunes will form. 

Yalin (1977) gives another classification where the type of bed form present is 

dependent on the Froude number. It is suggested that if the Froude number is less 

than one, then both ripples and dunes will be present; if the Froude number is 

greater than one then only anti-dunes are present. 

Yalin (1977) also discusses the possibility of different bed form classes existing 
together. It is argued that since the wavelength for dunes and anti-dunes are 

similar in magnitude, then it is not possible for them to coexist. 

On the possibility of the co-existence of ripples and anti-dunes, Yalin states that 
the two have never been observed together. It is therefore assumed that the two 
bed form types do not coexist. 

Ripples and dunes may coexist however, since there must be a transition period 
when ripples become dunes. After extensive experimental analysis, including 
data sets from numerous other authors, Yalin (1977) is able to define regions 
where each bed form can be said to exist. His classification is determined by the 
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value of the grain size Reynolds number, denoted by X, and the ratio of water 

depth to sediment diameter, denoted by Z. 

u'dso (3.4.1) 
v 

Z_ 
h 

d50 

where, 

u, -Bed shear velocity 

d50 -Median grain diameter 

V -Kinematic viscosity 
h -Water depth 

The classification is given by: - 

If X <_ 8 then ripples are present 

(3.4.2) 

If 8: 5 X <_ 24 then 
If Z is large (>_ 1000) then ripples and dunes are present 
If Z is small (<_ 700) then ripples or dunes are present 

Yalin admits that the limiting values of 1000 and 700 are only rough guides. It is 

also unclear as to which bed forms exist between these values. 

Van Rijn (1993) offers an alternative classification based on field and flume data. 

A non-dimensional bed-shear stress, T, and a non-dimensional grain parameter, 

D., are used to classify bed forms rather than the Froude number. The bed form 

classification of Van Rijn (1993) is shown in table 3.4.1. 

The symbols used in table 3.4.1 can be defined as follows, 

T= Zb - Zb, cr (3.4.3) 
rb, 

cr 
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Ddd 
(S 

_ 1)0 13 (3.4.4) 
" so 2 FV 

za -Effective/grain-related bed-shear stress 

zb, cr -Critical bed-shear stress 

d50 -Median grain diameter 

s -Relative density of the grain 

g -Acceleration due to gravity 

v -Kinematic viscosity 

At low values of both the dimensionless parameters T and D., only ripples are 

present. Van Rijn (1993) defines these ripples as mini-ripples; these are 

equivalent to the ripples described by Yalin (1977). As the bed-shear stress 

parameter increases these ripples become ripples defined as mega-ripples; their 

dimensions are slightly larger than those of mini-ripples. Unlike mini-ripples, 

which are a function of grain size only, mega-ripples are affected by the 

properties of the flow. 

During this period dunes also start to form. Dunes reach their maximum height 

relatively quickly then start to decay until they completely disappear in the 

transitional stage at which point sand waves take over as the dominating bed 

form. 

It can be seen that as the grain size increases then, even at small values of the 

bed-shear stress parameter, there are no ripples present 

3.4.2 Dimensions 

There are numerous different methods found in the literature for calculating bed 

form height and length. The models of Tsubaki and Shinohara (1954), Gill 

(1971), Yalin (1977), Ranga Raju and Soni (1976), Allen (1968) and Fredsoe 

(1982) are reviewed by Van Rijn (1993) who also describes a new bed form 
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model. The new model presents formulae for each of the bed form classes; 

namely ripples, mega-ripples, dunes and sand waves. 

The dimensions of ripples are given by the formula used by Yalin (1985): - 

Ar =50-200d5o (3.4.5) 

2r = 500 -1000 d50 (3.4.6) 

where, 
A, -Ripple height 

Ar -Ripple wavelength 

This would seem to be roughly equivalent to the model of Yalin (1977) which 

gives the ripple dimensions as: - 

Ar = 750d50 (3.4.7) 

2r =1000 d50 (3.4.8) 

Van Rijn (1993) gives the following formulae for determining the dimensions of 

mega-ripples: - 

L' 
=0.02(1-e-OAT 

X10-T) (3.4.9) 
h 

Ar = 0.5h (3.4.10) 

The dimensions of dunes are given by: - 

hd 
=0.11 

d5° 
0.3 

(1_e_05T25 
-T) (3.4.11) 

Ad = 7.3h (3.4.12) 
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where, 

Ad -Dune height 

Ad -Dune wavelength 

Finally, the dimensions of sand waves are given by: - 

As 
= 0.151- e-0-5(T-is) 

x1- Fr2) (3.4.13) 
h 

As =10h (3.4.14) 

where, 

AS -Sand wave height 

As -Sand wave wavelength 

Fr -Froude number 

Van Rijn (1993) compares the new model with those listed at the beginning of 

the section. It is shown that the models of Ranga Raju and Soni (1976), Tsubaki 

and Shinohara (1959) and Fredsoe (1980) all show an increasing bed form height 

as the mean velocity is increased whereas the model of Van Rijn shows a more 

realistic decreasing trend. 

Van Rijn (1993) also compares equations (3.4.9) and (3.4.11) with field data. It is 

concluded that the formulae given are tentative at best. This would suggest that 

more work is needed in this area. 

3.5 Tidal Bed Forms 

It is widely recognised that although large bed forms are present in tidal flows, 

they are generally smaller than their steady flow counterparts. The problem is 

primarily with tidal dunes since ripples adjust instantaneously to a change in 

flow, as shown by Terwindt (1971). Due to the reversing nature of tidal flows, 

bed forms do not reach their equilibrium (steady flow) dimensions. The flood 
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and ebb of the tide allows not only for growth of the bed form but also erosion; 

this must be taken into account when including a bed form model for tidal 

systems. 

O'Connor and Duckett (1989) present a model that accounts for tidal flow in a 

bed form prediction model for dunes. Using the suggestion of Jain and Kennedy 

(1971) that sand waves approach their equilibrium wavelength exponentially, the 

following model for the bed form wavelength is presented. 

A 
y=1-exp(-ao) 

where, 
A -Bed form wavelength 
Ae -Equilibrium/steady flow bed form wavelength 

h 
m 

a=106 

z 
b =1.291oglo 

y-7.13 

W. -Maximum tidal depth-average velocity 

t, -Tidal growth period 

h, 
� -Tidal mean water depth 

X=u. 
dSO 

-Grain Reynolds Number 
v 
2 

Y= ui 
-Grain Froude Number 

sgd so 

U* -Bed-shear velocity 
d50 -Median grain diameter 

g -Acceleration due to gravity 

S -Submerged relative density of grains 

v -Viscosity 

(3.5.1) 
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The expression for the parameter a was obtained by fitting equation (3.5.1) to 

field data, see Duckett (1984). 

The tidal growth period is defined as the time during a flood period for which the 

critical velocity for initiation of motion is exceeded, as shown in figure 3.5.1. 

This is expressed mathematically by the formula given below: - 

tý =2- 2tcr (3.5.2) 

where, 

t= 
LP 

sin-' 
u`r 

cr 21r ll 
m 

ücr -Longitudinal tidal depth-average flow velocity at initiation of motion 

W. -Maximum tidal longitudinal flow velocity 

tp -Tidal period 

O'Connor and Duckett (1989) suggest that the wavelength of the bed form is 

dictated by the properties of the Spring tide since this has the largest growth 

period. The height is then dependent on preceding tides in the Spring-Neap cycle. 
Equation (3.5.1) should therefore use values from the Spring tide to obtain bed 

form dimensions. 

The model is tested against data from two field sites and is shown to produce 
reasonable predictions for tidal bed form dimensions. 

3.6 Effective Roughness 

3.6.1 Introduction 

By using the bed form dimensions, it is possible to determine the effective 
roughness, k3. 

3-10 



Chapter 3: Bed Forms 

The effective roughness consists of two components, the first is the contribution 

made by the grain roughness generated by skin friction; the second is the 

contribution made by the form roughness generated by the presence of bed 

forms. The form roughness is the combined effect of the roughness due to the 

different types of bed forms present, which, in turn, depends upon the 

dimensions of each bed form. The effective roughness is therefore determined 

by: - 

ks = ks + k" (3.6.1) 

where, 
k, -Effective roughness height 

ks -Grain-related effective roughness 

k3 -Form-related effective roughness 

Once calculated, the effective roughness is used to predict bed-shear velocity, 

which is then used to determine the initiation of motion and the longitudinal flow 

velocity profile. 

3.6.2 Grain Roughness 

Van Rijn (1993) presents a review of existing techniques incorporating the work 

of Lyn (1991), Aguirre-Pe and Fuentes (1990), Kamphuis (1974), Gladki (1975), 

Hey (1979), Mahmood (1971), Wilson (1988,1989), Einstein and Chien (1955) 

and Winterwerp et al (1990). All models are based on a multiple of a grain 

percentile representing the top layer of the bed, either d84 or d9O . 

Based on the work by those authors listed above and also the data of Van Rijn 
(1982), Van Rijn (1993) proposes the following formulae to determine grain 

roughness: - 
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k, _ 
d° ; 0<1 

3W90 ; 9>_1 

where, 

k, ' -Grain-related effective roughness 

0-- u'2 
-Mobility/Shields parameter ((s 

-1)gdso 

U* = 
49-F 

-Bed-shear velocity C 

C =18log 
12 h 

-Chezy Coefficient 
s 

ü -Depth-average longitudinal flow velocity 

g -Acceleration due to gravity 

s -Relative density of the sediment particles 

d50 -Median grain diameter 

h -Water depth 

ks -Effective roughness height 

(3.6.2) 

It can be seen that the grain roughness is a function of the overall roughness, 

which in turn is a function of the grain roughness. It therefore requires an 

iterative solution process where the initial guess is taken as k, ' = 3dqO. 

3.6.3 Form Roughness 

According to Van Rijn (1993), the form-related roughness can be expressed in 

terms of bed height, steepness and shape. It is also proposed that the overall form 

roughness is simply a summation of effects due to the different bed form types 

present, i. e.: - 

k; = k: 
r + ksd +k ;5 

(3.6.3) 
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where, 

ks 
, -Form-related roughness due to ripples 

k, 
,d -Form-related roughness due to dunes 

ks 
, -Form-related roughness due to sand waves 

Ripples 

Based on analysis of field data, Van Rijn (1993) proposes the following formula 

to calculate the form-related roughness due to ripples: - 

ks 
r= 

20yr0, (3.6.4) 

where, 

ks 
r -Form-related roughness due to ripples 

rr -Ripple shape factor (=1 for ripples only, = 0.7 for ripples superimposed 

on dunes) 

Ar -Ripple height 

Ar -Ripple wavelength 

It is assumed that equation (3.6.4) is valid for both ripples and mega-ripples. 

Dunes 

Van Rijn (1993) also proposes the following formula for the prediction of form- 

related roughness due to dunes: - 

01 Ad» 

ks. d =1"lMdäd 1-e (3.6.5) 

where, 

ks d -Form-related roughness due to dunes 

yd = 0.7 -Dune shape factor 
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Ad -Dune height 

Ad -Dune wavelength 

Sand waves 
Van Rijn (1993) argues that since the length of a sand wave is much greater that 

its height, then the slope is relatively mild and hence will not invoke flow 

separation. It is concluded therefore that there is no contribution to the roughness 
by a sand wave, i. e.: - 

k, '3 =0 

3.6.4 Conclusion 

(3.6.6) 

Van Rijn (1993) uses the method described above to predict Chezy values based 

on dune dimensions. The results are then compared against the models of 
Engelund and Hansen (1967) and White et al (1979) for numerous field and 
flume data. It should be noted that the dune shape factor is set as unity for these 

tests. It is shown that the model of Engelund and Hansen produces better results 
for the flume tests whereas the model of Van Rijn is best for field data. 

It is concluded therefore, that the model of Van Rijn will be used herein to 

calculate the effective roughness. 

3.7 Summary 

By using the classification of bed forms as used by Van Rijn (1993), shown in 

table 3.4.1, it is possible to determine which bed forms are present for any given 
situation. 

Equations (3.4.7) - (3.4.14) are then used to calculate the height and wavelength 
of the bed form. However, these are steady-state dimensions that must then be 

modified via equation (3.5.1) to account for the limiting action of the flood and 
ebb of the tide. 
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Once the height of the bed form is calculated, it is then possible to determine a 

reference level for the sediment concentration calculations, as suggested in 

section 2.3.3. 

The effective roughness can then be calculated from the bed form dimensions via 

equation (3.6.1), thus allowing the longitudinal flow velocity profile to be 

determined. The effective roughness also enables calculations of the bed-shear 

velocity, and hence initiation of motion. 

The details of both the longitudinal flow velocity and the reference level for 

sediment concentration calculations are discussed in more detail in the next 

chapter, which describes the 1DV tidal sediment transport model. 
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Transport regime Particle size 

1<_D. _<10 D. >10 

0: 5 T: 5 3 Mini-ripples Dunes 

Lower 3<T <_ 10 Mega-ripples and 
dunes 

Dunes 

10 < T: 515 Dunes Dunes 

Transition 15 <T< 25 Washed-out dunes, sand waves 
Upper T >_ 25, Fr < 0.8 (symmetrical) sand waves 

T >_ 25, Fr >_ 0.8 Plane bed and/or anti-dunes 

Table 3.4.1: Classification of bed forms according to Van Rijn (1993) 

W 

üc 

Figure 3.5.1: Growth period on the flood stage of the tide 
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Chapter 4 

1DV Transport Model 

4.1 Introduction 

Chapter 2 described how the new Corrector method corrects 1DV sediment 

transport values for longitudinal effects. Although this should reduce 

computational time, the method can be improved still further by using a 

parameterised version of the 1DV sediment transport model. It can be seen that 

the 1DV model is essential therefore in achieving the aim of the project. The 

present chapter gives details of the proposed 1DV suspended sediment transport 

model. 

The model uses bed form information, given by the model described in the 

previous chapter, to determine concentration and velocity profiles. 

The concentration profile is found by solving the vertical split of the three- 

dimensional advection-diffusion equation. This is done via finite difference 

techniques once expressions have been determined for the sediment fall velocity, 

sediment diffusion coefficient and vertical flow velocity. The numerical 

approximation also requires boundary conditions before it can be solved, details 

of which are also presented. 

The longitudinal flow velocity profile is then described by a logarithmic profile 
that can easily be solved analytically. 

Tidal conditions are approximated by varying both the water depth and the 
depth-averaged longitudinal flow velocity with time. 
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The whole system is then transformed in the vertical coordinate so that more 

computational points will be in the near-bed region thus improving the accuracy 

of the numerical schemes. 

Transport rates are then calculated by using either the method of grain size 

fractions or by the use of a representative grain size. The actual transport integral 

is approximated by Simpson's rule for numerical quadrature. 

The 1DV sediment transport model is then compared to that of O'Connor and 
Nicholson (1997) for three data sets. 

4.2 Sediment Concentration Model 
As described in chapter 2, the sediment concentration can be modelled by the 3- 

D advection-diffusion equation. Considering only the vertical and longitudinal 

dimensions and applying the operator splitting technique given by O'Connor 

(1971), the 1DV concentration equation is given by: - 

(2.3.2) ac +a (W _ wf )c =a es. z 
aý 
aZ at az az 

If the vertical flow gradient is assumed negligible, i. e. slowly changing tidal 

velocity, and the particle fall velocity is independent of depth, then equation 
(2.3.2) reduces to: - 

2 

T= Es, Z 
a2+ as.: 

_w+wf 
ac 

zz az 

4.2.1 Boundary Conditions 

Two boundary conditions are necessary for the 1DV model, one prescribed at the 

water surface and one at a reference level located near the bed. 
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Surface Boundary 

A simple zero concentration condition is preferred at the water surface; this then 

allows the simplifications to Leibnitz's theorem used in the derivation of the new 

Corrector method as described in section 2.4. This is also consistent with the 

parabolic sediment diffusion coefficient described later in section 4.4. 

Bed Boundary 

The condition imposed on the bed boundary is more complex than that at the 

water surface. The first step is to establish the location of the bed boundary. This 

is defined as the reference level, from which sediment concentration calculations 

begin. Determining this reference level requires knowledge of the bed forms 

present, details are given later in section 4.6.2. 

Once the reference level has been determined then a reference concentration is 

imposed which assumes local equilibrium conditions. The choice of condition at 

the reference level is discussed in detail within section 4.6.3. 

4.3 Particle Fall Velocity 

4.3.1 Introduction 

When deriving the three-dimensional advection-diffusion equation in chapter 2, 

it was assumed that the sediment traveled with the same velocity as that of the 
fluid in the horizontal plane. It was also stated that this is not the case for the 

vertical dimension. A sediment grain carried into suspension feels the effect of 

gravitational forces that tend to bring the grain back to the bed. Other forces, 

such as drag, will oppose this motion. These effects are combined to describe the 

settling velocity of the grain, also known as the fall velocity. 

4.3.2 Spherical Grains 

A first principles approach is used by Van Rijn (1993) to determine an 
expression for the fall velocity of a spherical particle in a still fluid. Consider the 
fluid drag as given by Stokes Law, fd, and the gravitational force, fg , on the 

particle: - 
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Id = 2(caPwr)4(12) 

f9 =16 (Ps - P)gd 3 

where, 

wf -Fall velocity 

Cd -Drag coefficient 

p -Density of the fluid 

p3 -Density of the sediment 

d -Diameter of the grain 

g -Acceleration due to gravity 

Equating gives the following expression for the particle fall velocity: - 

_ 
4(s -1)gd 

0.5 
wf - (4.3.1) 

3Cd 

where, 

s= 
A 
P 

Van Rijn (1993) suggests the following relationship between the drag coefficient 

and the Reynolds number, Re: - 

_ 
24 

Cd 
Re 

where, 

Re= wfd 
v 

v -Viscosity of the fluid 

4-4 



Chapter 4: 1DV Transport Model 

Equation (4.3.1) then becomes: - 

(s -1)gd 2 
wf--; Stokes region (Re<1) (4.3.2) 

18v 

Gibbs et al (1971) describe extensive experimental analysis of the settling 

velocity for glass spheres of differing densities. The effects of temperature, 

salinity and sphere diameter on the settling velocity are considered. The results 

of these experiments lead to the construction of an empirical formula for the 

settling velocity of a sphere in water, given below. 

wf - 
-3y+ 9y2 +gr2p(p, -pXO. 015476+0.1984r) 

(4.3.3) 
p(0.. 011607 + 0.14881r) 

where, 

r -Radius of the sphere 

N. B: all units are in centimetres, grams and seconds. 

4.3.3 Non-spherical Grains 

Whilst the spherical approximation for the grain shape is adequate for small 
grains, it becomes less accurate for larger grains whose shape becomes more 
irregular. 

Van Rijn (1993) presents the following formula for non-spherical particles: - 

(s-1)gd2 

18v 

w_ 
l Oy 

1+ 
0.01(s -1)gd 3 o. s 

jd v2 

1.1[(s -1)gd ]o. s 

; 1<d<_100, um 

; 100 <d< 1000, un (4.3.4) 

;d >_ 1000pm 
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The models of Gibbs (1971) and Van Rijn (1993) are compared by Soulsby 

(1994) using 115 measurements of fall velocity for both natural sands and 

irregular shaped lightweight grains. The comparison also includes a model 

proposed by Hallermeier (1981) and a new empirical model determined by 

considering both viscous and bluff body drag. The new model proposed by 

Soulsby (1994) is shown below. 

wf =d 
so 

{10.362 
+1.049D; 

Y. 5 
-10.36 (4.3.5) 

where, 

D- 
{s-1}g Yd 

v2 
so 

The models of Van Rijn and Hallermeier are shown to give good agreement with 

the test data. However, the model of Soulsby is shown to give the best 

agreement. 

4.3.4 Hindered Settling 

When considering flows containing high concentrations of sediment, the 
interaction between the sediment grains should be included in the particle fall 

velocity. 

Due to the high concentration there will be many grains occupying a small space, 

each of which creates a drag. Since the grains are so close to each other, the drag 

caused by one grain will be felt by all nearby grains. This will lead to each grain 

experiencing an increase in drag that will slow its motion; this is known as 
hindered settling. 

Soulsby (1994) accounts for hindered settling by modifying the existing model 
for sediment fall velocity, i. e.: - 
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)0.5 
-10.36] (4.3.6) wf=y 

[(10.362 
+1.049 (1- c)4'' D. 

dso 

Van Rijn (1993) considers the model for hindered settling suggested by 

Richardson and Zaki (1954), 

W f. m = (i - c)r wf (4.3.7) 

where, 

w f, m -Grain fall velocity in a suspension 

wf -Grain fall velocity in a clear fluid 

c -Volumetric concentration 

y -Coefficient 

For grains in the range 50 - 500 µm, Van Rijn uses y=4. 

However, when Van Rijn compares the model with that of Oliver (1961), he 

concludes that the model of Oliver shows better agreement with experimental 
data than the model of Richardson and Zaki over the full test range. The model of 
Oliver is shown below: - 

Wf, m =(1-2.15)1-0.75C0.33).. f (4.3.8) 

4.3.5 Conclusion 

For the sake of simplicity, the effect of hindered settling is omitted from the 1DV 

model. However, any future work should look in more detail at the significance 
of the effect on the sediment concentration. 

Although fine sediments are considered in the present project, the results of 
Soulsby (1994) suggest that the spherical approximation for the particle shape 

may be too simplistic. It is concluded therefore that the fall velocity of the 

sediment particles is given by equation (4.3.5). 
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4.4 Vertical Diffusion Modelling 

4.4.1 Introduction 

Sediment diffusion is often modelled by relating it to the fluid diffusion, which 

describes the turbulence of the flow field. This in turn can be modelled by a 

number of different methods, the most common of which are the models based 

on kinetic energy and those that use a Fickian diffusion analogy. This section 

gives a brief description of the aforementioned methods so that an appropriate 

model for the vertical sediment diffusion coefficient may be determined. For a 

more detailed discussion, see Fredsoe and Deigaard (1992). 

4.4.2 Kinetic Energy Models 

k-Models 

The one equation approach, known as the k-model involves the use of a transport 

equation for the kinetic energy, k, of the system. The kinetic energy is defined to 

be, 

k= 
1 (u; 2 + v, 

2 + w, 
2 

2 
(4.4.1) 

where u, v' and w' are the time-averaged velocity fluctuations in the x, y and z 
directions respectively. 

The transport of the kinetic energy is defined by, 

ak d ak au 2k 32 
ät =ä `v' ät + '''ät C2 

'd 

diffusion production dissipation 

where, 

C2 =0.08 

ld = Kc2*25z = 0.213z 

v, -Eddy viscosity 

(length scale of turbulence) 

(4.4.2) 
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The Kolmogorov-Prandtl model is used to represent the eddy viscosity, 

Vt =ld (4.4.3) 

The boundary conditions for the system are given as: - 

UI 
30, 

t =0 ; 

k_ 
1v Du 

cl `öz 

ak 
dz 

k-e Models 

dzu 
-ý0 as z -- oo 

for z= 
30 

(i. e. local equilibrium) 

as z --4 0o (i. e. no flux at the upper boundary) 

The two equation k-c approach is an extension of the one equation k-model; the 

mixing length is now considered to be a function of both space and time. To 

ensure closure for this model it is necessary to include an equation that describes 

the transport of the dissipation, c. Thus the k model described previously is used 
in conjunction with the following equation for the dissipation, 

ae 
_av, 

de vý au 2 62 är -äZ ýo äz + c36 k äZ - C4 k 

where ßD, c3, c4, are experimentally obtained constants. 

The boundary conditions are given as: - 

c4 for z-30 

äe=0 
for z-o Z 

(4.4.4) 

4-9 



Chapter 4: 1DV Transport Model 

4.4.3 Fickian Diffusion 

It is also possible to model the time-averaged fluid turbulent fluctuation terms by 

using Fick's Law of diffusion. Simply stated, Fick's Law reads, 

Flux of solute mass « Gradient of solute concentration 

in a given direction in that direction 

This concept is expressed mathematically by the introduction of a diffusion 

coefficient, ej; i. e.: - 

c'i u =-Cf i° äxi 
(4.4.5) 

The negative sign indicates that the mass travels from regions of high 

concentration to regions of low concentration (i. e. sediment is transported 

upwards from the bed). The fluid diffusion coefficient has dimensions m2s'1, thus 

representing a characteristic velocity given by the shear stress, and a 

characteristic length given by the mixing length. 

For equation (4.4.5) to be valid, the fluctuating terms are assumed to act in a 

random manner. The particles collide so frequently due to the concentration that 

each particle quickly loses the memory of its previous motion, i. e. each particle 
follows a random path. 

4.4.4 Form of the Fluid Diffusion Coefficient 

The form of the fluid diffusion coefficient can be determined by considering 
Prandtl's mixing length theory. A brief discussion is given below; see Fredsoe 

and Deigaard (1992) for more details. 

Consider an eddy, of characteristic size 1, travelling up through the water 

column. As it travels there is an exchange of fluid and hence there is also an 

exchange of momentum. Continuity argues that the same amount of fluid 

4-10 



Chapter 4: 1DV Transport Model 

transported upwards must be transported downwards. The fluid discharge in each 

direction is given by pq , where q can be seen as a typical value of the turbulent 

fluctuation. 

When the fluid particles reach a new height in the water column they adapt to the 

new flow velocity, 

Change in velocity= i 
dz 

Consider the total momentum exchange per unit area, i. e., 

du_ 
pl dz -z 

where ti is an equivalent shear stress. 

Continuity also implies that q has the same magnitude as the horizontal velocity 

fluctuations. This in turn is related to the change in velocity to give the 

following, 

du 
ýrl äZ 

Thus, 

. _pl 2 du du 
PS 

du (4.4.6) 
dz dz f dz 

where, 

ef -Fluid momentum/diffusion coefficient 

(It must be noted that molecular terms have been neglected in the derivation of 
this term. ) 
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Assuming a logarithmic velocity profile, i. e.: - 

du 
_ 

u, (4.4.7) 
dz xz 

Also, from Reynolds' equations, 

z=pu; 1- z (4.4.8) 

Substituting gives, 

Ef=xzu. 1- h (4.4.9) 

Thus, following from the hydrodynamics, a parabolic distribution for the fluid 

diffusion coefficient is obtained. 

Although the use of a linear shear stress and a logarithmic velocity profile 

suggest a parabolic distribution for the fluid diffusion coefficient, Kerssens et al 
(1979) suggests the use of a parabolic-constant distribution. Based on the river 
data of Coleman (1970), the fluid diffusion in the lower half of the water column 
is modelled by the parabolic expression given by equation (4.4.9) whilst the 

upper half is described by a constant value, i. e.: - 

xu. hh l-h h 0.5 

. 6f = (4.4.10) 
0.25xu. h ; h>_0.5 

4.4.5 Sediment Diffusion Coefficient 

Equation (4.4.5) assumes that all quantities behave as momentum. However, 
McDowell and O'Connor (1977) suggest that this is not the case for sediment 
since sediment particles have greater inertia than fluid particles. It is suggested 
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that the sediment diffusion coefficient can be obtained from the fluid diffusion 

coefficient via a proportionality coefficient, P. 

Van Rijn (1984) includes the ý6 coefficient and also introduces a factor that 

accounts for the damping of the turbulence due to the presence of the sediment, 

. The formula is given below. 

Cf =ßOe1 (4.4.1 1) 

According to Van Rijn (1984), ß represents the difference between the diffusion 

of a fluid particle and a discrete sediment particle. A value for ßl3 is obtained by 

considering the ratio of the maximum values for the sediment and fluid diffusion 

coefficients, 

'"max 

of 
max 

To calculate e,.. x , 
Van Rijn uses data taken from a study of the Enoree river by 

Coleman (1970). The average value of e, in the upper half of the flow is used to 

represent the maximum value of the sediment diffusion coefficient. This gives 
the following empirical form for fi, 

ß=1+2 wf 
; 0.1<_ <1 (4.4.12) 

u. 

Carstens (1952) argues that ý8 should be less than unity since sediment particles 
do not respond fully to turbulent fluctuations. However, Singamsetti (1966) 

argues that 8 should actually be greater than unity since the centrifugal force for 

sediment particles is greater than that for the fluid particles and are therefore 
thrown further outwards from the centre of the eddy. This in turn increases their 

mixing length; i. e. diffusivity is increased. 
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To investigate these claims, Jobson and Sayre (1970) try to combine both 

concepts in one model. Both the velocity and the sediment diffusion coefficient 

are split into two components. The first component is taken as the tangent to the 

pathlines of the fluid particles in the immediate neighbourhood of the sediment 

particles. The second is the radial component, which is normal to the pathlines. 
By using this split it is possible to express the sediment diffusion coefficient as, 

es =E +e 

where, 

-F, -Component relating to the curvature of the pathlines, i. e. a measure of 

the centrifugal force. (Singametti) 

Ct -Component relating to the tangential component of the velocity 

fluctuations. (Carstens) 

It is argued that e, is similar to ef therefore the original equation, E, = fief 
, is 

valid when e is negligible, i. e. when turbulence is uniform over the entire flow 

field. Since e3 is always less than or equal to ef, if e=0 then this would 

suggest that 8<1. 

If, however, there are large eddies present then the turbulence cannot be assumed 
to be uniform. In this situation Ec, becomes large which implies that ,ß>1. 

Jobson and Sayre conclude that the value of ß is dependent on the conditions of 

the system. If strong vortices are present then ß>1, if not then 8<1. 

The 0 term in equation (4.4.11) expresses the damping of the turbulence by the 

presence of the sediment particles. A more detailed explanation is given by Van 
Rijn (1984) where it is described as a (free) fit-parameter that depends on the 
local concentration. If there is no turbulence damping, i. e. the sediment 
concentration is not large enough, then the 0-factor is set equal to unity. 
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4.4.6 Conclusions 

The kinetic energy models require the solution of partial differential equations; 

this can be problematic in itself. It is therefore concluded that a profile model 

based on a Fickian diffusion analogy shall be used in the present study. 

For the simple situations considered within this thesis it will be assumed that the 

effect of damping on the sediment diffusion is negligible. Also, since the 

sediments to be considered are fine particles, the sediment diffusion is assumed 

to be congruent with the fluid diffusion so that the sediment diffusion coefficient 

is given by, 

ES =lau., 1- (4.4.13) 

4.5 Vertical Flow Velocity 
Having now found expressions for the sediment fall velocity and the sediment 
diffusion coefficient, the only term remaining in Equation (4.2.1) is that of the 

vertical flow velocity. A simple formula is used that relates the vertical flow 

velocity to the rate of change of the water depth and the position in the water 

column from the zero velocity level, zo, i. e.: - 

w= 
ah Z- Lo (4.5.1) 
at hh 

The precise nature of this term is not considered important since the term is 

relatively small. 

4.6 Bed Boundary 

4.6.1 Introduction 

To ensure closure on the mathematical system, a boundary condition must be 

applied at the bed. However, the location of this boundary is somewhat 
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ambiguous. It would appear from the literature that two common methods exist 

for defining the reference level at which the bed boundary is located. The first 

method relates the reference level to the diameter of some percentile grain 

particle in the non-uniform distribution. The second relates to the bed forms 

present in the system. A brief description of some of those methods employed in 

the literature is presented in the next sub-section. 

Once the reference level has been established, it is then necessary to impose 

some condition at this boundary. Several methods for calculating the reference 

concentration are found in the literature, these are discussed in sub-section 4.6.3. 

4.6.2 Reference Level 

As stated earlier, the bed boundary condition must be applied at a given reference 

level, a. The literature reveals numerous methods for determining the reference 

level. An early approach, adopted by Einstein (1950), defines the reference level 

at a height of twice the diameter of the thirty-fifth percentile grain particle, i. e.: - 

a=2d35 

Engelund and Fredsoe (1976) also base their reference level on grain size. Here 

the reference level is defined at a height of twice the median grain diameter, i. e.: - 

a=2dso 

Smith and McLean (1977) define the reference level by, 

a=3dß 

Winyu and Shibayama (1994) use a value of one hundred times the grain 
diameter for the situation of uniformly distributed grains. 

An alternative method uses bed form height rather than grain diameter to 
determine the reference level. Nielsen (1986) defines the reference level to be at 
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the same level as the ripple crests. This can be seen to be similar to the method of 

Van Rijn (1984) who defines the reference level at a height that is equal to half 

the bed form height above the mean bed level. 

Van Rijn (1984) also notes that using a reference level that is too low can result 

in large errors in the concentration profile. After some experimental analysis, 

Van Rijn (1984) concludes that a minimum reference level should be imposed. 

The expression given relates the reference level to the water depth, h, i. e.: - 

a=0.0 Ih 

4.6.3 Reference Concentration 

Once the reference level has been determined, it is then possible to prescribe a 

concentration value at the bed boundary. There are many formulae found in the 

literature for determining the reference concentration, all of which assume 

equilibrium conditions at the reference level such that the flux upwards is equal 

to the flux downwards; i. e.: - 

aCa 

=Wf ca (4.6.1) 

aZ 

where, 

Ca -Reference concentration given at the reference level a 

It is possible to determine the reference concentration for suspended sediment by 

considering the reference level to be at the edge of the bed-load region. The 

reference concentration is then given by the bed-load concentration, cb . 

Einstein (1950) relates the bed-load concentration to a dimensionless bed-load 

transport rate. The relationship is described by the following formula, 

cb _19. (4.6.2) 
23.2 z" 
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where, It 
q. -Dimensionless bed-load transport rate 

zs -Dimensionless bed-shear stress associated with skin friction due to the 

grains 

Sternberg et al (1988) describes a model that considers excess Shields stress and 
is also related to the bed volume concentration. The model is also capable of 

considering non-uniform grain size since it divides the grain distribution into 

grain size fractions. 

Ca = 
i+bCbT 

(4.6.3) 
YO 

ib -Proportion of 0 -size grains in the bed sediment 

Cb -Bed volume concentration (= 1-porosity) 

YO -Empirical constant 

T -Excess bed-shear stress Zcr 

i -Effective/grain shear stress 

rcr -Critical shear stress 

By using linear regression on experimental data, Sternberg et al simplify 

equation (4.6.3) to give: - 

C° 
= 2.53 x 10'' T2 +3.63x106 (4.6.4) 

tbCb 

It is noted that this formula may over predict for cases of thermal stratification. 

Engelund and Fredsoe (1976) adopt a probabilistic approach. The method relates 
the concentration at the bed layer to the Shields parameter via the linear 

concentration at the bed, A.. 
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It must be noted that the reference level is defined at a distance above the bed 

equal to twice the grain diameter, i. e. the edge of the bed load region as described 

by Einstein (1950). 

The concentration at the reference level is given by, 

Cb _ 
0.65 

3 
(4.6.5) 

1+ Tb- 

The linear concentration is related to the Shields parameter via the following 

equation, 

0=9r, +6ßp+0.02750A 

where, 

9 -Shields parameter 

9c, -Critical value of Shields parameter 

,B -Dynamic friction factor 

s -Relative density of sediment 

p -Probability that the particles in a single layer of the bed 

are transported as bed load 

Van Rijn (1984) highlights some of the difficulties associated with using bed 
load values to predict a reference level concentration. It has the obvious 
disadvantage of predicting zero concentration at the reference level when there is 

no bed load transport when, in reality, this is not necessarily the case since 
sediment may still be held in suspension. 

An alternative method is proposed by Van Rijn (1984) that describes an 
empirically derived formula for the value of the concentration at the bed 

reference level. The formula relates the reference concentration to both a non- 
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dimensional shear-stress parameter and a non-dimensional grain parameter. The 

expression given by Van Rijn (1984) is shown below: - 

d Ti. s 
c, =0.015 

50 
0.3 

a D. 

where, 

(S - i)g D, = d50 
yZ -Dimensionless particle parameter 

T= - Tb, cr -Dimensionless bed-shear stress parameter rb, 
cr 

a -Reference level 

d50 -Median grain size 

a 
z6 = pg C, 

-Effective/grain bed-shear stress 

rb, 
cr = (Ps P)gd50ecr 

C' 18 log 
12h 
3dqO 

_U 
cr ecr - 

(s 
- 1)gd50 

_11ö U *, cr - G, 
u 

cr 

C =181og 
12h 
kf 

ks 

(4.6.6) 

-Critical bed-shear stress according to Shields 

-Grain-related Chezy coefficient 

-Critical Shields value 

-Critical bed-shear velocity 

-Chezy coefficient 

-Roughness height 

It must be noted that the expression for the reference level concentration, c., was 

obtained from analysis of equilibrium profiles which relies upon the assumption 
that the concentration at the bed adapts instantaneously to equilibrium 
conditions. 

4-20 



Chapter 4: 1DV Transport Model 

Garcia and Parker (1991) provide a useful comparison of several different 

methods of calculating the reference concentration. Predicted values from models 

by Einstein (1950), Engelund and Fredsoe (1976), Smith and McLean (1977), 

Itakura and Kishi (1980), Van Rijn (1984), Celik and Rodi (1984), also Akiyama 

and Fukushima (1986) are compared with experimental data. The analysis 

performed by Garcia and Parker shows that the model of Smith and McLean and 

also that of Van Rijn produce the best agreement with the test data. 

It must be noted that the comparison tests were carried out using a reference level 

of a=0.05h. This is not consistent with the reference level used in the original 

construction of each model. 

Garcia and Parker (1991) also propose a new empirical model based on the data 

used in the previous comparison. The model relates to grain shear velocity, 

particle fall velocity and the particle Reynolds number via the relationship, 

S 

E, _ 
Äu 

z5 
(4.6.7) 

1+03 Zu 

where, 

Z= u" Rn u 
wf 

p 

A=1.3x10"7 

UI* = jzb s -1 gd50 -Grain shear velocity 

wf -Fall velocity 

Rp -Particle Reynolds number 

n=0.6 

It is shown that this model gives better agreement to the observed data than the 

other models compared earlier. The authors do note however that this should be 

expected since this data was used to derive the new model. 
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4.6.4 Conclusion 

Since the present study concerns tidal currents, which can produce large tidal 

dunes, it seems reasonable to adopt the bed form reference level of Van Rijn 

(1984). This also avoids the complication associated with the trough region of 

the bed form considered when using a reference level of only a few grain 

diameters. The bed form level of Van Rijn (1984) is therefore used herein as the 

reference level for the 1DV model. 

The work of Garcia and Parker (1991) indicates that the model of Van Rijn 

(1984) provides the best method for calculating the reference concentration and 

hence is used herein. 

4.7 Longitudinal Flow Velocity 

Having now established expressions for all terms in equation (4.2.1) and defined 

the boundary conditions, it is possible to determine the concentration field. To 

enable sediment transport rates to be calculated, it is first necessary to determine 

the flow field. Since this project is only concerned with the 2DV situation, only a 

longitudinal velocity profile is required. 

Section 4.4.4 described how a linear shear-stress and a logarithmic velocity 

profile lead to a parabolic distribution for the fluid, and hence sediment, diffusion 

coefficient; the longitudinal flow velocity is therefore described by the following 

logarithmic profile: - 

u=U. In z (4.7.1) 
K 

To 

where, 

U -Longitudinal flow velocity 

u. -Bed-shear velocity 

K -von Karman's constant (= 0.4) 
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z° 30 -Zero velocity level 

z -Vertical coordinate 

4.8 Tidal Conditions 

4.8.1 Introduction 

In order to simulate tidal conditions, the 1DV model must be slightly modified. 

First, the depth-average longitudinal flow velocity is given a sinusoidal variation 

over a tidal period of 12.42 hours. In fact, if the flood and ebb stages of the tide 

are treated separately, then the variation is considered to be over only the flood 

stage. The ebb stage of the tide can then be modelled by a similar expression but 

with a slightly different period to allow for flood or ebb dominated tides. 

Second, the water depth is allowed to vary over a tidal period such that low tide 

is experienced at the start of the tidal cycle and high tide at the end of the flood 

stage. 

The reference level for the sediment concentration calculations must also be 

modified to allow for the change in bed form height during the tidal cycle. 

Since the depth-average longitudinal flow velocity now varies sinusoidally, it is 

also necessary to establish the conditions for initiation of motion. 

Each modification is discussed in the following sub-sections. 

4.8.2 Tidal Velocity 

For simplicity, the tidal depth mean velocity is assumed to vary sinusoidally over 
the tidal period. This can be described by the following equation. 

ü=W. sin 
up 
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where, 

rc -Depth-mean longitudinal tidal flow velocity 

üm -Maximum depth-mean longitudinal tidal flow velocity 

up -Twice the duration of the flood stage of the tide 

t -Time 

The period of the function is taken as twice the duration of the flood stage of the 

tide (up) rather than the actual tidal period. This allows the model to cope with 

either flood or ebb dominated situations. 

It should be noted that if there is no bias towards either flood or ebb stage of the 

tide, then the velocity period for the flood stage is equal to the actual tidal period. 

4.8.3 Tidal Water Depth 

If low tide occurs at time zero, high tide at half the velocity period, then the 

variation in the tidal water depth can be described by the following trigonometric 
function: - 

h=h�, --cos 
ü-t (4.8.2) 
P 

where, 

hm -Mean tidal water depth 

r -Tidal range 

up -Twice the duration of the flood stage of the tide 

4.8.4 Tidal Reference Level 

The reference level chosen in section 4.6 is defined at half of the bed form height 

above the mean bed level. During a tidal period, the bed form height, predicted 
by the method described in chapter 3, will change since the shear stress 
parameter will vary throughout the tidal cycle. This in turn leads to a different 

reference level at each stage of the tide; however, this can cause complications to 
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the assumptions made in simplifying the Corrector method as discussed in 

chapter 2. It is therefore preferable to use a constant reference level based on the 

maximum bed form height achieved over the tidal cycle. 

This is also more realistic since the dimensions of tidal dunes are set by the 

Spring tide conditions and do not change significantly during any individual tide 

during the Spring-Neap cycle, see chapter 3. 

4.8.5 Initiation of Motion 

Since the longitudinal flow velocity has a sinusoidal variation over the flood 

period, a note must be made concerning the initiation of motion. If the tidal 

velocity starts from zero and slowly increases towards its maximum value at 25% 

of the flood period, then there will be no sediment concentration in suspension 

until the critical value for the velocity is reached, i. e.: - 

ý: 
cr 

where, 
W -Depth-average longitudinal tidal flow velocity 

ücr -Critical depth-average longitudinal tidal flow velocity 

This condition can be translated to the equivalent expression: - 

0 >_ 9cr (4.8.3) 

where, 

u2 
0- = -Mobility/Shields value (s - l)gd50 

Ocr -Critical mobility/Shields parameter 

U. - 
V-9 

-Critical bed-shear velocity C 
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C =181og 
1h 

-Chezy coefficient 
s 

k3 -Roughness height 

The value of the critical mobility/Shields parameter can be determined via the 

parameterised equations of Van Rijn (1993), shown below. 

9r, =0.24D; -' for 1<D0 <_4 

Oc, = 0.14D; 0.64 for 4<D.: 5 10 

Brr = 0.04D; 0*1 for 10 < D. <_ 20 (4.8.4) 

B,, = 0.013D°. 29 for 20 < D, <_ 150 

Ocr = 0.055 for D, > 150 

4.9 Coordinate Transform 

Before sediment transport rates are calculated, the vertical coordinate, z, is first 

transformed. By transforming the coordinate system, it is possible to concentrate 

calculations in regions that are more significant, i. e. the near-bed region. This 

concentration improves the accuracy of the numerical approximation since 
distances between computation points in the z coordinate are reduced near the 

bed, whilst step sizes in the transformed coordinate remain constant. 

The transform used here is essentially that of O'Connor and Nicholson (1997). 

The transform suggested is based on a logarithmic function and is applied to a 
1DV suspended sediment transport model used to model tidal conditions. It 

should be noted that O'Connor and Nicholson (1997) include a transform on the 

sediment concentration; this has been omitted from the present study. 

The transform is given by: - 

z, =1-- 
1 

ýb -In ý= 
rý h 
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1 71a =a (4.9.1) 
a= -In 

Ala 
h 

where, 

z -Vertical coordinate 

h -Water depth 

a -Tidal reference level 

Applying this to equation (4.2.1) gives: - 

ac 
=A 

a, c +B 
ac (4.9.2) 

at az, 2 aZ, 

where, 
Cs, 

z 
222 'q h a 

aes, 
z 

ah 
a w+Wf +1Iz. at B=s. Z 

_Z 

ah2h/2 a77h 

The corresponding boundary conditions are now: - 
Surface: C=O at Z. =1 (4.9.3) 

Bed: C= Ca at Z. =0 (4.9.4) 

4.10 Numerical Solution 
The transformed sediment concentration equation, equation (4.9.2), together with 
the boundary conditions given by (4.9.3) and (4.9.4), are solved by first 

discretising the partial differentials using finite difference approximations. 

The approximations for the first and second order spatial derivatives are given by 

an implicit Crank-Nicholson scheme using central differences. The vertical 
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dimension is divided by 33 equally spaced nodes, as suggested by O'Connor and 

Nicholson (1997). The vertical step size is therefore given by: - 

Az. =1_1=0.03125 (4.10.1) 
ý ii -1 32 

where, 
ii -Number of vertical nodes (= 33) 

The temporal derivative is approximated by the weighted finite difference 

scheme proposed by Stone and Brian (1963). The difference between values at 

the present and previous time steps are weighted such that the current spatial step 

contributes two thirds of the overall value. A weight of one sixth is then assigned 

to both forward and backward spatial steps. 

The temporal step size is also taken from O'Connor and Nicholson (1997), i. e.: - 

At=0.1 

The number of iterations required is dependent on the duration of the flood stage, 

up . If the tide is neither flood nor ebb dominated then the model is run for half a 

tidal period, i. e. 6.21 hours, which requires 223561 iterations. 

The application of the finite difference approximations to equation (4.9.2) leads 

to a tri-diagonal solution matrix; this is solved using Gaussian Elimination. 

More details of the application and solution of the finite difference 

approximations to equation (4.9.2) can be found in Appendix B. 

4.11 Sediment Transport Rates 
The sediment transport rates in the longitudinal direction are given by: - 
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h 

Ts, 
X = 

Jucdz (4.11.1) 

Applying the coordinate transform described in section 4.9 gives: - 

I 

Ts, 
x = _h Qr 71Qi-Z. ucdz. (4.11.2) J0 

Since the z. coordinate is divided into equally spaced intervals, it is possible to 

use numerical quadrature to approximate the integral in equation (4.11.2). 

Let F =17. I-Z' uc 

Now, using Simpson's Rule for numerical quadrature: - 

I 
fFdz. 

= 
ý` [Fi=1 + Fi=� + 4(Ft=2 + FF=4 + ... + F'r=n-2) + 2(Ft=3 + Fr=s + ... + Fi=n-1)] 

0 

(4.11.3) 

where i is used as the vertical step counter such that: - 

Fi_1 = lJa 
1-0 

uc = 71auc 

F; 
_2 =17a i-Az. uc 

F. i=+ = 1a1-(r-i)nz. uc 

Fi=n-1 
-_ %a 

1-(n-2)Az. 
uc 

i-(n-i)nz. 

Therefore, by using numerical quadrature, it is possible to calculate sediment 
transport rates for the 1DV model. 
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4.12 Non-uniform Grain Distribution 

4.12.1 Introduction 

In actual field situations, it is usual for the bed material to consist of a mixture of 

grain sizes; this can prove problematic when calculating sediment transport rates. 

The literature reveals two methods for calculating sediment transport rates for 

non-uniform bed material; the first involves dividing the grain distribution into 

fractions, represented by d, where i% of the material has a smaller diameter. 

The sediment transport rate is then found by combining the contributions made 
by each grain size fraction. 

The second method is that proposed by Van Rijn (1993); it is based on finding a 

representative particle size for the grain distribution. The sediment transport rate 
is then found by running the model once only using the representative particle 

size for the suspended sediment. 

Both methods are described in the following sub-sections. 

4.12.2 Distribution of Grain Size 

In practical situations the distribution of material is usually determined by sieve 
methods. The material is fed through a series of sieves with ever decreasing mesh 
diameter. In such a manner the amount of each grain diameter can be calculated 

and hence the distribution found. 

Van Rijn (1993) suggests that, ideally, the distribution of grain sizes should 
follow that of a normal distribution when first converted to the 0 -scale. The 0- 

scale is defined by, 

(4.12.1) 0"" -1092(d) 

where d is the diameter of the grain measured in millimetres. 
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Thus, if the median diameter (d50) and the standard deviation (a) of the grains 

are known, then the distribution is given by: - 

ý-N(p ,o) 

where, 

=-log2(u) 

Qý =- log 2 (a) 

0.5 
(dd'jo, 

s 
+ 

dsa 
dso 

,u= d50 (since 0 is normally distributed) 

(4.12.2) 

Let Z be a variable such that it has the standardised Normal Distribution: - 

Z=0 
ým 

- N(0,1) (4.12.3) 

The probability of d, is defined by: - 

P(Z :5 d') 
100 

(4.12.4) 

The value for Z can be found from statistical tables; say Z=a, then, 

Z= 'u° =a (4.12.5) 
co 

-1og2 (di) + log2 (dso) 
=Q 

-loge(a) 

d, = Q°dso (4.12.6) 
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Hence, if Z=a can be found from the statistical tables, then the diameter of any 

grain can be calculated. 

Having established the distribution of the non-uniform bed material, it is now 

possible to calculate the transport rates for each fraction. 

4.12.3 Representative Grain Size 

Computing the transport rate for each grain size fraction can be very time- 

consuming if a large number of fractions are used. Van Rijn (1993) proposes the 

use of a representative grain diameter, which would replace the method of 

fractions. Instead of running a model for all fractions, the model would be run 

once only, using the representative grain size for the suspended sediment; thus 

saving much computer run-time. 

The representative grain size is derived by considering equilibrium transport 

rates in steady uniform currents. Two different bed material distributions were 

considered, d50 = 250 µm with or = 1.5 and 2.5, in mean flow velocities of 

0.5ms-1 and 1.5ms-1 and a flow depth of 10m. 

Based on these conditions, Van Rijn (1993) proposed the following equation for 

the representative particle size. 

[1+0.011(Q-1XT-25)] 
50 ; 0<T<25 

ds - d50 ;T Z25 

where, 

dJ -Representative grain size of suspended sediment 

d50 -Median grain size of bed material 

Q -Geometric standard deviation of bed material 
T -Dimensionless bed-shear stress parameter 

Van Rijn (1993) also suggests that ds can be approximated by 0.8d50 

(4.12.7) 
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4.13 Validation 

4.13.1 Introduction 

Before the 1DV model can be used in the Corrector method, it must first be 

tested and validated. Since no field data were available, the 1DV model was 

compared with the model of O'Connor and Nicholson (1997). 

4.13.2 Test Model 

The transport calculations given in the model of O'Connor and Nicholson (1997) 

use bed form data originally obtained from the bed form model of O'Connor 

(1992). These data take the form of Chezy values at different velocities during a 

tidal cycle. Since the aim is to test the validity of the numerical schemes used in 

the 1DV transport model rather than the bed form component, the 1DV model is 

modified so that it uses the same Chezy data and hence predicts the same bed 

form dimensions as O'Connor (1992). 

The Chezy data used by O'Connor and Nicholson (1997) is given at varying 

velocities during a tidal cycle; it was necessary therefore to interpolate between 

the given values so that values at each time step in the 1DV model could be 

determined. A simple linear interpolation scheme was used, the error being small 

since the time step of the model is only 0.1 seconds. 

O'Connor and Nicholson (1997) use the formula of Muir Wood and Fleming 
(1981) to determine the particle fall velocity; this formula is therefore also 

adopted in the 1DV model for the test cases. 

4.13.3 Test Data 

Table 4.13.1 gives the data sets taken from O'Connor and Nicholson (1997). 

Values for the tidal range (r), mean tidal water depth (hm ), maximum depth- 

average tidal longitudinal flow velocity (üm), median grain diameter (dso), 

standard deviation for the grain distribution (or) and the time given as twice the 
duration of the flood stage of the tide (up) are all shown. 
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Table 4.13.2 gives values for the variation of Chezy values through the tidal 

cycle as given by O'Connor and Nicholson (1997). 

The data is used to test both the method of fractions and the use of the 

representative particle size suggested by Van Rijn (1993). The method of 

fractions uses ten grain size fractions where each fractional grain diameter is 

given by: - 

ds- = dso a-1.6449 

d15 = d50o-1.0364 

d2s = dso0-0.6745 

d35 = d50Q-0.3853 

d45 = d50Q-0.1257 - 

d55 = dsoQ0. iu7 
- 

d65 = d50Q0.3853 

d75 = dsoQ 0.6745 

d85 = d50 Qi. o364 

d95= dSOQ 1.6449 

It is assumed that no grain size is smaller than 60 µm. 

The overall sediment transport rate is then given by: - 

io 
Ts. 

x = 0.12: T"X, i (4.13.1) 
i=1 

where, 

T"x,, -Transport rate given by the ith grain size fraction 
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4.13.4 Results 

It should be noted that the 1DV model has been coded using FORTRAN 90 and 

is run via The University of Liverpool's UNIX system. The model of O'Connor 

and Nicholson (1997) however, is run via a stand alone PC with 500MHz 

processor speed and 64Mb of memory, using a DOS based Quick Basic code. It 

is therefore expected that some computational differences may exist between the 

two codes. 

Figure 4.13.1 shows the comparison between the three models. It can be seen that 

the 1DV model shows an excellent agreement with the model of O'Connor and 

Nicholson (1997). The representative grain size method seems to give a 

reasonable first approximation but is somewhat inaccurate. 

The good agreement shown in all three test cases would seem to validate the 

lDV model when calculated via the method of grain size fractions. It is seen that 

although the method of representative grain size is much faster computationally, 

since the model is run once only, the loss in accuracy is unacceptable. It is 

acknowledged that this could provide a faster approach to non-uniform sediment 

transport rates but requires further research. 

4.14 Summary 

A 1DV sediment transport model has been constructed that can now be used in 

the new Corrector method described in chapter 2. 

Having chosen a logarithmic profile for the longitudinal flow velocity, a 

parabolic sediment diffusion coefficient is used to ensure theoretical consistency. 

A simple model based on the rate of change of the water depth is used to 
determine the vertical flow velocity. 

The fall velocity of the sediment particles is determined using the empirical 
formula of Soulsby (1994), which is based on experimental data for both natural 
sands and irregular shaped lightweight grains. 
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The reference level is taken at a height of half the bed form height above the 

mean bed level, as given by Van Rijn (1993). An empirical formula, also 

proposed by Van Rijn (1993), is used to prescribe the reference concentration at 

the bed boundary. This boundary concentration assumes that local equilibrium 

conditions prevail. A zero concentration is imposed on the surface boundary to 

ensure consistency with the simplifications to the Corrector method. 

The concentration field is solved by first transforming the vertical coordinate. 
The resulting system is then solved numerically by using a Crank-Nicholson 

implicit scheme for the spatial derivatives and the spatially weighted scheme of 
Stone and Brian (1963) for the temporal derivative. 

Tidal sediment transport rates are approximated by using Simpson's rule for 

numerical quadrature after first using ten grain size fractions to represent the 

non-uniform nature of the bed material. 

It can be seen that the 1DV sediment transport model described above has been 

validated by the good agreement shown with the model of O'Connor and 
Nicholson (1997). 

The next chapter describes how the 1DV sediment transport model is used in the 

new Corrector method. 
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Set r (m) hm (m) ii. (ms'') d5o (µm) Q up (s) 
4 3 10 2 200 1.7044 44712 
5 3 20 2 200 1.7044 44712 
6 9 10 2 200 1.7044 44712 

Table 4.13.1: Data sets used to compare the 1DV model with the model of O'Connor and 
Nicholson (1997) 

Data Set 4 
(ms) Chezy (accelerating) 

(moss ) 
Chezy (decelerating) 

(0.5s i 

0 50.3 50.3 
0.4 49.4 51.2 
0.6 55.3 56.5 
0.8 64.3 65.0 
1.0 75.3 75.7 
1.2 84.5 85.2 
1.4 84.6 85.7 
1.6 84.7 85.6 
1.8 85.0 85.4 
2.0 85.10 85.10 

Table 4.13.2a: Chezy values from O'Connor and Nicholson (1997) for tidal set 4 

ü Data Set 5 
(ms 1) Chezy (accelerating) 

(moss 1) 
Chezy (decelerating) 

(mo. 5s 1) 

0 55.3 55.3 
0.4 54.8 55.8 
0.6 59.0 59.7 
0.8 66.8 67.2 
1.0 76.9 77.1 
1.2 88.5 88.6 
1.4 91.1 91.7 
1.6 91.2 91.6 
1.8 91.3 92.5 
2.0 91.4 91.5 

fable 4.13.2b: Chezy values from O'Connor and Nicholson (1997) for tidal set 5 

it Data Set 6 
(ms ) Chezy (accelerating) 

(rmo. sst 
Chezy (decelerating) 

mo. 5st 
0 50.3 50.3 

0.4 46.9 52.6 
0.6 53.8 57.4 
0.8 63.5 65.5 
1.0 74.9 76.0 
1.2 82.9 85.8 
1.4 83.3 86.5 
1.6 83.6 86.3 
1.8 84.1 86.0 
2.0 85.1 85.1 

" avlu w. i. )., Lc: %-nezy values from U Lonnor and Nicholson (1997) for tidal set 6 
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Figure 4.13.1 a-c: Comparison of 1DV model with the model of O'Connor and Nicholson 
(1997) (OCN) and the representative grain size of van Rijn (1993) (VR) 
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Chapter 5 

New Corrector Method 

5.1 Introduction 

The aim of this chapter is to expand upon the mathematical theory presented in 

chapter 2, which gave the derivation of the new Corrector method proposed by 

O'Connor (1999). The new method works by first solving the 1DV model, then 

modifying these results using a spatial corrector. Unfortunately, this means that 

numerical error is introduced into the overall technique by the result of the 1DV 

computation. This method has already been tested by O'Connor et al (2001) and 

shown to improve upon the efficiency of conventional methods. 

An alternative approach is to use a parameterised version of the 1DV model in 

the hope that the efficiency may be improved still further. However, this is the 

subject of chapter 8; the present chapter is concerned with the details of the first 

approach. It is designed more as a practical guide to implementing the Corrector 

method; it describes how the results from the 1DV model from chapter 4 are used 
to produce a 2DV model. 

Recall that the new Corrector method is given by: - 

DT", 
+üa ({1 + a}TT. x) =F (h - a) 

au 
+ 

aTdisp. 
x (2.4.16) 

at ax at at 

where, 

a_ 
Tätg', 

x 
T"X 
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Essentially, the 1DV tidal sediment transport rates are fed into equation (2.4.16) 

so that they are then corrected for longitudinal effects; hence the name 

"Corrector method". 

To be able to implement the Corrector method, it is first necessary to understand 
how each term in equation (2.4.16) is obtained. The most important terms are 

detailed below. 

For more details see appendix A, which contains a diagram detailing the 

structure of the computer code. 

5.2 Depth-mean Concentration 

Chapter 4 describes how the 1DV model first calculates the sediment 

concentration profile when considering tidal transport rates. From this, it is quite 

easy to find the contributions to the profile of both the depth-mean and 
dispersive/fluctuating components of the sediment concentration. By using 
Simpson's rule for numerical integration, as described in chapter 4, the depth- 

mean concentration can be obtained from the equation described below. 

h 

c=1 j cdz (5.2.1) (h a) a 

5.3 Dispersive Transport 

Now that the depth-mean concentration has been determined, it is simple to find 

the transport due to depth-mean values, T. 

Consider: - 

h 

Tdm =f is cdz 
a 
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Tdm =uc 
(l1 

- Q) 

This is easily calculated since the depth-mean longitudinal flow velocity is given 
by the simple sinusoidal equation (4.8.1). 

From equation (2.4.7) it can be seen that the dispersive transport is then given 
by: - 

Tdisp, 

x =TT, x -T&n (5.3.1) 

where T,,., is the transport value obtained by the 1DV model. 

5.4 Diffusive Transport 

Recall from chapter 2 that the diffusive transport is defined by: - 

h 

x 
dz (2.4.14) Td fx =-f es, x ax 

a 

Since the sediment concentration profile is calculated by the 1DV model at each 
longitudinal grid point, the sediment concentration gradient in the longitudinal 
direction can be found by finite difference approximations. It only remains to 
determine a value for the sediment diffusion/mixing coefficient, c,, x . 

5.4.1 Longitudinal Sediment Diffusion Coefficient 

The literature reveals three main methods for dealing with the longitudinal 

sediment diffusion coefficient. The most common of these is to neglect the term 
altogether, it being argued that the variation in the concentration in the 
longitudinal direction is over a much larger length scale to those in the vertical, 
see Katopodi and Ribberink (1992). 
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O'Connor and Nicholson (1988) performed analytical and laboratory tests on a 

three-dimensional sediment transport model. They suggest that the flow field 

dominates the spreading process and therefore the values for the horizontal 

sediment diffusion coefficient are less important than modelling of the advection 

process. Use was made of both longitudinal and lateral diffusive coefficients, 

each set equal to depth-average values. 

Lin and Falconer (1997) use a similar argument when considering large estuaries. 
Since the vertical scale is much smaller than the horizontal scale, they suggest 
that the vertical sediment diffusion coefficient is an order of magnitude larger 

than its horizontal counterpart. Even so, they employ a method that sets the 
longitudinal sediment diffusion coefficient equal to a constant value over the 

water depth. This constant is set equal to the depth-average vertical sediment 
diffusion coefficient. 

Kim (1993) uses a third method that sets the horizontal sediment diffusion 

coefficient equal to the vertical sediment diffusion coefficient at each 
computational point when considering three-dimensional sediment transport. 

The influence of the longitudinal sediment diffusion coefficient is investigated by 

Van Rijn (1993) by means of scale analysis performed on the 2DV sediment 
concentration equation (equation (2.3.1)). Using a scale of 10m for the vertical 
distance, 100m for the longitudinal distance, lms" for the velocity, O. lms'1 for 

the fall velocity, O. 1m2s-' for both the vertical and longitudinal diffusion 

coefficients and 10000s for the time scale, Van Rijn obtains the following order 
of magnitude for each term in the equation: - 

f:: c 0(10-1) 
t 

U 
ac 

0(10) 

ac 
w 010) 

z 
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a o(io-Z) ax 

(--., 

x ax 

ýz 
(6,, 

z 
Lc 

= 0(10°) 

From the analysis of Van Rijn, it can be seen that the contribution of the 

longitudinal sediment diffusion coefficient is negligible compared with the other 

components of the equation. 

Although the method of O'Connor and Nicholson and that of Kim are both valid, 
Van Rijn's scale analysis shows that the longitudinal diffusive transport is 

negligible and is therefore omitted from subsequent calculations. Equation 

(2.4.16) then simplifies to: - 

aTs. 
x +ü 

aT"' 
=U (h - a) 

au 
+ 

aTa", 
x (5.4.1) 

at aX at at 

5.5 Boundary Conditions 

5.5.1 Introduction 

Before the boundary conditions can be discussed, it is important to first establish 
the structure of the solution domain. 

The bed is divided into k =1... kk grids in the longitudinal direction, each of 
equal length. Each grid contains sediment with different characteristics. Since the 

median grain diameter is different for each grid, it follows that the bed form 
dimensions, and hence roughness, will also be different for each grid. 

The size of the longitudinal grid is defined by the wavelength of the bed form 

given by the conditions within the first grid. The longitudinal direction is then 

non-dimensionalised by dividing through by the total length of all kk grids. 
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5.5.2 Surface Boundary 

Again, a zero concentration is assumed at the water surface. 

5.5.3 Bed Forms 

Although the topography of the system is complicated by the addition of the 

longitudinal dimension, the calculations for the bed form dimensions remain the 

same as those described in chapter 3. 

Each grid is considered independent of the others so that the bed form 

dimensions and roughness only depend upon the sediment and flow 

characteristics of the individual grid. 

5.5.4 Reference Level 

Since the bed form height differs for each grid, it is necessary to reconsider the 

reference level for the sediment calculations. In chapter three, the reference level 

was only considered at one spatial point in a tidal cycle; now there are kk spatial 

points each producing different bed forms. Previously, the reference level was 
defined at a height of half the bed form height above the mean bed level; this was 
based on the maximum height that the bed form. achieved over the tidal cycle. 
This is extended so that the maximum bed form height over the tidal period is 

found for each grid; the mean bed level over all kk grids is then used in 

determining the reference level, see figure 5.5.1. 

kk 
J: 

ak 

1.0. a= k=l 

kk 
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5.5.5 Inflow Boundary 

The inflow boundary, k =1, is positioned so that it has the same sediment and 
flow characteristics as the upstream grid. This means that the 1DV transport rates 

for the inflow boundary are the same as those given in the previous grid. 

5.5.6 Outflow Boundary 

The condition imposed on the outflow boundary, k= kk, is similar to that at the 

inflow boundary. Here the sediment and flow characteristics for grid k= kk are 
the same as those for the downstream grid. Again, this means that the 1DV 

transport rates are the same for the two grids. 

5.6 Numerical Solution 

Equation (5.4.1) is split into two parts by using the operator splitting technique, 

see O'Connor (1971) and Verboom (1975). 

DT", 
+ 

_T", 
=0 (5.6.1) 

at ax 
aT', 

x =c (h -a) 
au 

+ 
aTd 

SP. x (5.6.2) 
at at at 

This enables different numerical techniques to be used for each component of the 

split. Equation (5.6.1) is solved using the method of characteristic projection 
described by Yotsukura and Fiering (1964), see also O'Connor (1971), whilst 
equation (5.6.2) is solved using standard finite difference techniques. 

5.6.1 Commutability 

Since the Corrector method now involves two applications of the operator 
splitting technique, a note must be made on the commutability of the scheme. 
Nicholson (1983) discusses the commutability of the operator splitting technique 
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when applied to the 3D advection-diffusion equation for sediment concentration. 
He concludes that although the scheme does not satisfy the commutability 

condition, the error incurred is assumed negligible if the model can be verified 

satisfactorily. For this reason, no attempt has been made to rectify the error 

caused in using the operator splitting technique in the Corrector method. 

Hence, the Corrector method is implemented by first solving the 1DV model as 

given by equation (4.2.1), then solving equation (5.6.1) and finally by solving 

equation (5.6.2). 

5.6.2 Method of Characteristic Projection 

Characteristic Solution 

The solution of equation (5.6.1) can be found by first determining the 

characteristic solution. This is, essentially, the solution of an ordinary differential 

equation (o. d. e) determined by the original partial differential equation (p. d. e). 
The solutions of the o. d. e form characteristic curves, each determined by a 

unique initial condition (known as the Cauchy data). If the initial condition is 

known then the solution to the o. d. e, and hence the p. d. e, can be found, see Smith 
(1998). 

The characteristic solution for equation (5.6.1) is given by: - 

x=tit 

Projection 

The transport rate at each grid point is given by projecting backwards along the 
characteristic solution, into the matrix of solutions for the previous time step. 
Effectively, the advection process is reversed. The transport is projected 
backwards in the longitudinal direction by a distance defined by the time step of 
the computer code, At, and the depth-average longitudinal flow velocity. The 
transport rate is then found by using linear interpolation on the known transport 
values during the previous time step. It is acknowledged that the use of a linear 
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interpolation scheme may be less accurate than a higher order scheme. However, 

since the aim is to test the relative accuracy the different methods, it is assumed 

that, being common to both models, a linear scheme will suffice. 

The boundary conditions for the system are easy to implement since the 1DV 

values across the boundary are the same. 

The details of the interpolation are given in appendix C. 

5.6.3 Finite Difference Scheme 

Since equation (5.6.2) contains only time derivatives, a Stone and Brian (1963) 

finite difference scheme is used as an approximation. 

The boundary conditions for the finite difference scheme are more complex than 

those used in the projection method since these are no longer 1DV values. A 

weighted-average is introduced which gives a 70% bias towards values obtained 
from the grid with the same sediment and flow characteristics. 

This results in a tri-diagonal matrix that is solved using Gaussian Elimination. 
Again, details can be found in appendix C. 

5.7 Summary 

Details of how the new Corrector method uses the 1DV model described in 

chapter 4 to give 2DV suspended sediment transport rates have been presented. 

The chapter has also presented details of how each component of the new 
corrector method can be obtained. Methods for calculating the depth-mean 

concentration, dispersive transport and diffusive transport are all given. 
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It has also been argued that the contribution of the diffusive transport is 

negligible and is therefore omitted from the calculations of 2DV suspended 

sediment transport rates. 

The boundary conditions for the new Corrector method have been presented and 

are such that the same conditions used for the 1DV model are imposed at the 

surface and bed, whilst a weighted-average approach is used at both the inflow 

and outflow boundary. 

Having established the equations and boundary conditions for the 2DV system, 
details have then been given of the numerical techniques used in the calculation 

of the transport rates. 

Before the model can be tested, it is first necessary to establish the transport rates 

produced by the conventional approach, see section 2.3.2. This requires the 

construction of a conventional 2DV model; the next chapter describes such a 

model and presents a comparison between the two 2DV methods. 
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Chapter 6 

Validation of the Corrector Method 

6.1 Introduction 

Chapter 5 described a new approach for calculating 2DV tidal sediment transport 

rates; this chapter describes the methods used to test the new method. 

It is first necessary to construct a conventional 2DV model. Section 6.2 describes 

the theory by which the conventional model is derived. Essentially, by neglecting 

the lateral dimension, the three-dimensional advection-diffusion equation can 

then be split to produce a 1DV model and a 1DH model. When solved in 

sequence, these models produce 2DV values. Section 6.2 also discusses the 

numerical methods used to solve the conventional 2DV model. 

The hydrodynamics are then discussed so that the transport rates can be 

determined. These transport rates are then tested against the analytical model of 
Mei (1969) in order to validate the model. 

Once the conventional 2DV model has been validated, it is then used to test the 

new Corrector method. Section 6.5 discusses the accuracy and the computational 
time required for two test cases. 

6.2 Theory 

As described in chapter 2, if the lateral dimension of the three-dimensional 

advection-diffusion equation for sediment concentration, equation (2.2.8), is 

6-1 



Chapter 6: Validation of the Corrector Method 

omitted, then the 2DV advection-diffusion equation for sediment concentration is 

given by: - 

ac +a (cu) +a (C{W -Wf=a ac +a ac 
at ax -az f- ax sx ax TZ SZ äZ 

However, if the continuity equation is applied to the three-dimensional 

advection-diffusion equation before the lateral dimension is omitted, then the 
2DV version becomes: - 

Dc ac ac a aý a ac at +u ax + (w - ti`'f) äz - äx es. x äx + äZ ýs, Z aZ 

The operator splitting technique described by O'Connor (1971), see also 
Verboom (1975), is then applied to equation (6.2.1) so that the dimensions are 

separated, i. e.; - 

ac + (W -W ,) 
ac 

=-! . 631Z aý (6.2.2) at az aZ az 

ac DC a ac) 
at Tx ax ax 

j (6.2.3) 

It can be seen that the solution of equation (6.2.2) gives 1DV concentration 
values, whilst the solution of equation (6.2.3) gives 1DH concentration values. 
However, solved in sequence, they produce 2DV values. 

6.2.1 1DV Model 

The solution procedure starts with equation (6.2.2). This can be simplified to 
give equation (4.2.1) and therefore is solved by the same methods, as described 
in chapter 4. 
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Essentially, the equation is first transformed by using a modified version of the 

coordinate transform proposed by O'Connor and Nicholson (1997); this allows 

greater accuracy in the near bed region where the concentration is prevalent. The 

expressions given in chapter 4 for the particle fall velocity, vertical fluid velocity 

and vertical sediment diffusion coefficient are again used here. 

Applying a zero concentration at the water surface and using Van Rijn's 

reference level and reference concentration, the system is then solved using the 

numerical scheme proposed by Stone and Brian (1963) for the temporal 
derivative and an implicit Crank-Nicholson scheme based on central differences 

for the spatial derivatives. 

The solution of equation (6.2.2) gives a 1DV sediment concentration profile that 

accounts for vertical advection, vertical diffusion and particle settling. 

6.2.2 1DH Model 

Equation (6.2.3) is now split using the operator splitting technique so that the 

process of advection can be considered separately to that of diffusion, i. e.: - 

är+uaX=o (6.2.4) 

ac a ac (6.2.5) cs, x at ax 
( 

ax) 

Advection 
Since equation (6.2.4) is purely advection, it can be solved by the method of 
characteristic projection. This is of the same form as equation (5.6.1) and so has 

a similar characteristic solution, i. e.: - 

x=ut (6.2.6) 
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Note that this time the actual longitudinal flow velocity is required rather than 

the depth-average value. 

The interpolation method used to solve equation (6.2.4) is the same as that used 
in the solution of the new Corrector method, i. e.: - 

n Ci, k =Cikll+rs`Ctn- n- 
kl-Ctkl1) 

(6.2.7) 

For more details, see appendix C. It should be noted however, that the 
interpolation method for equation (6.2.4) must be applied at each vertical step, 
i. e. i=2... ii-1. 

The inflow boundary condition remains the same, i. e. since the 1DV values are 
the same at k=0 and k =1 then: - 

n= n-1 n-1 n-1 Ci, l - C1,0 + rx Ci, l - Ci, O 

i. e. cý1 =c, ý' =c; ý1 (6.2.8) 

As with the Corrector method, the outflow boundary does not cause a problem 
and is therefore given by: - 

cikx = Cl, rk -i + rx 
(c, 

r-cý 
kk-1) (6.2.9) 

Again, the interpolation method described can only be used if the following 

condition is satisfied: - 

AX 
u At 

where, 

u -Longitudinal flow velocity 

(6.2.10) 
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Ox -Longitudinal step size for numerical solution 

At -Temporal step size for numerical solution 

Diffusion 
By the arguments presented in section 5.4.1, the longitudinal sediment diffusion 

coefficient is assumed to be negligible; equation (6.2.5) is therefore omitted from 

the model. 

The 2DV concentration is therefore given by the solution of equation (4.2.1) and 

equation (6.2.4). 

6.3 Transport 

Having now obtained the sediment concentration field, it only remains to 

calculate the flow velocity in order to calculate the suspended sediment transport. 
The same logarithmic profile as described in chapter 4 is used for the 
longitudinal flow velocity, i. e.: - 

u= 
u- In z (4.7.1) 
K Zo 

Also, so that the tidal suspended sediment transport rates may be found, the 
depth-average longitudinal flow velocity is again given by the following 

sinusoidal expression: - 

lt = um sin 
up 

The 2DV concentration value is then multiplied by the corresponding 
longitudinal velocity value at each vertical step. The transport is then found by 

using Simpson's rule for numerical integration, as described in chapter 4. 
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6.4 Analytical Test 

6.4.1 Introduction 

Although the theory for the conventional 2DV model has been presented and the 

numerical solution described, it is important that the model be verified before it 

can be trusted. Unfortunately, no field data were available so a theoretical test is 

used instead. To enable an analytical solution, only simple situations can be 

considered using present techniques. Although these simple situations do not 

truly describe the field, they do, nonetheless, provide a useful guide to the 

verification of the numerical model. It is proposed therefore that the 2DV 

conventional model be tested against the analytic solution of the simplified 2DV 

sediment concentration equation as given by Mei (1969). 

6.4.2 Method of Mei 

The technique described by Mei (1969) is used to find an analytical solution to 

the model proposed by Apman and Rumer (1967). The concentration of sediment 
in a region of transition from an immobile bed to a sediment-laden bed is 

modelled by the steady-state version of the 2DV advection-diffusion equation. 
The bed is assumed to be always flat and horizontal. The flow depth is assumed 
independent of longitudinal distance. The flow is considered two-dimensional 

and steady. The second order derivative of the longitudinal sediment diffusion 

coefficient is assumed negligible. Hence, the 2DV advection-diffusion equation 
is now reduced to the following equation: - 

ac ac acs. 

X 
ac aEs. 

t 
ac a2C 

ux- wf 
Z= ax x+ aZ az 

+ . 6', 
Z aZ 2 

It is then assumed that both the velocity and sediment diffusivity are constant, 
thus allowing the further reduction: - 

ac ac a2C 

uax-wfT -E, aZZ Z 
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Now, normalising the sediment concentration with the reference concentration, 

the x and z coordinates with the water depth, the equation becomes: - 

az 

2+z 
az0 

= L\ 

ax, 

where, 

Z_wfh R_uh , _z , 
SZh'xh ES E 

/C 
C =- 

Ca 

(6.4.1) 

The boundary conditions are such that the concentration is equal to the reference 

concentration at the bed boundary and a no-flux condition is imposed at the 

surface boundary, i. e.: - 

Bed: CO, =1 

Surface: äcr 
,+ 

Zcr =0 
z 

; x'>O, z'=0 (6.4.2) 

; x>O, z=1 (6.4.3) 

Since the bed moves from a rigid bottom to a sediment-laden bottom, the 
following initial condition also applies: - 

Initial condition: c' =0; x=0 (6.4.4) 

Equation (6.4.1), together with conditions (6.4.2)-(6.4.4), is then solved by the 

use of a Laplace transform to give the following analytical solution: - 

1' 
c= -erfc 

R+ Z x+ 
e_zýýe cZ 

R_ Zx (6.4.5) 
22 x' 2R2 12 x' 2R 
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It should be noted that equation (6.4.5) is only an approximation of the Laplace 

transform for small 
R, i. e. within 10 -20 water depths from x=0. 

Results from equation (6.4.5) were compared by Mei to the numerical results of 

Apman and Rumer and were shown to be almost identical. 

Unfortunately, due to the simplifications to allow an analytical solution, some 

modifications must be made to the conventional model described in section 6.2 

in order to verify it with the analytical method. The modifications made are 
described in the next sub-section. 

6.4.3 Modified 2DV Model for Analytical Test 

Sediment Diffusion 

The analytical solution requires a constant value for the sediment diffusivity. The 

value used is therefore the depth-average value of the original parabolic 
distribution. 

Flow Velocity 

Again, the analytical method requires a constant value for the longitudinal flow 

velocity. The depth-average value from the logarithmic profile originally used is 

therefore used at each vertical step. 

The vertical flow velocity, w, is set equal to zero. 

Surface Boundary 

The conventional 2DV model described in section 6.2 uses a zero concentration 
condition at the surface; this must now be changed to a no-flux condition. Using 

the transform described in chapter 4, condition (6.4.3) can be written as: - 

ac 
_ 

wfybh 
C=o az. -0, 
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A simple backward difference approximation is used for the concentration 

gradient in the vertical direction, i. e.: - 

ac 
_ 

C. - - Cii_1 

äz. Az, 

The concentration at the surface is now given by the following equation: - 

Cu =w 
ftybh ZS 

(6.4.6) 
1- 

E, 

Obviously the solution matrix must be altered to accommodate this modification. 
The iterative process now works from i=2... ii rather than i=2... ii -1. 

Time dependence 

Since only the steady state is considered for the analytical solution, the tidal 

model is altered by considering values at maximum tidal velocity only. 

It must be noted that since the 1DV solution uses an implicit finite difference 

scheme in its solution, an iterative procedure must be used in order to find the 

steady state solution. 

Flow Depth 

Since the method of Mei does not include bed forms, a slight modification of the 

vertical coordinate is also necessary. The vertical coordinate, z, is simply shifted 
downwards by the value of the reference level. 

6.4.4 Results 

The modified version of the 2DV conventional model was coded into a 
FORTRAN 90 program. This was then run for two different tidal input sets, 
given in table 6.4.1. 
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The analytical model of Mei requires values for the complimentary error 

function; these were obtained by using the built-in function from Microsoft Excel 

97. These values were then read into a FORTRAN 90 code so that the analytical 

sediment concentration profile could be determined at each horizontal grid point. 

It can be seen from figure 6.4.1 that the modified conventional 2DV model 

shows good agreement with the analytical solution for data set 501. The slight 

inaccuracy shown at steps k=2 and k=3 could be due to the simplistic 

interpolation scheme used for the solution of the advection component. This 

could also be due to the implicit nature of the finite difference scheme used in the 

solution of the 1DV component. In either case, the difference is considered 

negligible. 

Figure 6.4.2 shows that the two models also agree well for data set 502. The 

discrepancy shown for k=3 is greatest near the surface where the concentration 
is much smaller and is therefore seen as negligible. 

The good agreement shown for both data sets validates the modified 

conventional 2DV model; it is therefore assumed that the original version of the 

conventional 2DV model is also validated. It is now possible to compare the 

conventional approach to 2DV sediment transport modelling with the new 
Corrector method. 

6.5 Comparison with the new Corrector Method 

6.5.1 Introduction 

Since the aim of the project is to produce a faster method for calculating 2DV 

sediment transport rates via the new Corrector method and subsequent 
parameterisation, it is necessary to first compare the speed and accuracy of the 

new Corrector method with the conventional approach to 2DV sediment 
transport modelling. 
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The first test must be to ensure that the 2DV effects are actually significant, i. e. 

significantly different to the 1DV values. Since only simple hydrodynamic 

situations are considered, this is achieved by varying the grain size distribution in 

the longitudinal direction. 

Having established that the 2DV results are different to the 1DV results, the 

conventional 2DV approach can then be tested against the new Corrector method 

to assess both the speed and accuracy of the new approach. 

6.5.2 Comparison with 1DV Results 

The first step in testing any new theory must be to apply it to a basic situation. 
Once proven to be acceptable, then testing may proceed to more complicated 

situations. Therefore, only a simple situation is considered here. It is assumed 
that the longitudinal depth-average tidal velocity does not alter in the 
longitudinal direction. The generation of horizontal effects is given through a 

variation in the median grain diameter and standard deviation of grain size 
distribution between longitudinal grid points. Again, the data sets used are those 

shown in table 6.4.1. 

Although nine grid points were used in total, the variation in grain size and 
standard deviation is such that the 2DV effects are only significant when there is 

a sudden increase in the median grain size between neighbouring grid points. 

Figure 6.5.1 shows the region of interest for data set 805. It can be seen that there 
is little difference between 1DV and 2DV sediment transport rates for the grid 
k=3, this is because the preceding grids contain the same grain distribution. 
Again, there is little difference at grid k=5 since this has the same grain 
distribution as its predecessor. However, there is a difference at grid k=4; this 
is due to the sudden jump from a distribution with median grain size of 150 

microns with standard deviation of 1.7044, to a median grain size of 250 microns 
with a standard deviation of 1.5. This is seen more clearly in figure 6.5.3a. Here, 
the difference between the 1DV and 2DV rates is plotted as a percentage for the 
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mid-tidal region, i. e. from 2hrs to 4hrs. It can be seen that there is a difference 

between the two models ranging between 2.5% and 4% during this time. 

Although this may not be considered to be a significant amount, it is sufficient to 

show that the 2DV effects, i. e. longitudinal advection, are contributing to the 

transport rates. 

The difference between 1DV and 2DV transport rates for data set 807 is shown 
in figure 6.5.2. There is little difference shown for the grid k =1; this is due to 

the boundary condition, which gives a bias towards 1DV values at the inflow 

grid. Grid k=3 also shows little difference; this is because it has the same grain 
distribution as the preceding grid. However, there is a difference shown for grid 
k=2. Figure 6.5.3b shows the percentage difference between the 1DV and 2DV 

rates during the mid-tide stage. It can be seen that the difference for this stage 

ranges between 3% and 7%. Again, this is sufficient to show that the longitudinal 

advection contributes to the transport rate. 

6.5.3 Comparison of 2DV Methods 

Accuracy 

Both the conventional 2DV model and the new Corrector model are run using the 
data sets given in table 6.4.1. Both models are coded using FORTRAN 90, and 

are run on The University of Liverpool UNIX system. The system uses four 

400MHz CPU's with 4Mb cache and 1Gb memory. 

Figure 6.5.4 shows the same computational grids as used for the comparison of 
1DV and 2DV values for data set 805. It can clearly be seen that both of the 

models give almost identical results for all grid points. Figure 6.5.5 shows that 
this is also the case for data set 807. 

The excellent agreement is better shown by considering the percentage difference 
between the two methods during the mid-tide stage. Figure 6.5.6 shows that the 
percentage difference for data set 805 is remarkably low. This should be 
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expected for grid points k=3 and k=5 since these are effectively 1DV values. 

However, grid k=4 also shows excellent agreement, with only 0.05% 

maximum difference during the mid-tide stage. 

Data set 807 shows similar results, as shown in figure 6.5.7. Again the agreement 

is extremely good for k =1 and k=3 since these are effectively 1DV values. 

However, the agreement remains extremely good for grid k=2, showing a 

maximum percentage difference of just 0.14% during the mid-tide stage. 

It is therefore concluded that the new Corrector method is sufficiently accurate 

that it may be used instead of the conventional 2DV model. 

Computational Speed 

Having examined the accuracy of the new Corrector method, it only remains to 

test the computational speed. Again the data sets given in table 6.4.1 are used. 

The time taken to complete the computation over half of the flood period for the 

nine longitudinal grid points is given in table 6.5.1. [The efficiency is defined as 

the ratio of the Corrector Method over the conventional method, expressed as a 

percentage. ] 

It can clearly be seen that the new Corrector method requires only 72% of the 

time used by the conventional 2DV model. This is significant in itself. However, 

if the model was applied to a much larger area, including the lateral dimension, 

then it is clear that the time saved by using the new Corrector method would be 

considerable. 

6.5.4 Conclusion 

By considering only a simple hydrodynamic situation where 2DV effects are 

given by a variation in grain size distribution in the longitudinal direction, it has 

been possible to examine the accuracy and computational speed of a new method 
for calculating tidal sediment transport rates. 
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For the two data sets used in the comparison, the difference between transport 

values predicted by the two methods is of the order of 0.1% during the mid-tide 

stage of the flood section of the tide. The difference between the two methods is 

therefore considered negligible. 

The new Corrector method requires only 72% of the time needed by the 

conventional 2DV model to calculate sediment transport rates for nine 

longitudinal computation points over half of a tidal cycle. If the area of 

application is increased, the lateral dimension included and the full tidal cycle 

considered, then the reduction in computation time will be dramatic. 

It is therefore concluded that the new Corrector method provides a much quicker 

method for calculating 2DV sediment transport rates without significant loss in 

accuracy. 

6.6 Summary 

The first part of this chapter concerned the construction of a conventional model 
for calculating 2DV tidal transport rates. The theory presented showed how the 

conventional model is based on the three-dimensional advection-diffusion 

equation. The 2DV model is obtained by first solving the 1DV model described 

in chapter 4, then solving for longitudinal effects, namely advection since the 
longitudinal diffusion is assumed negligible. 

The conventional 2DV tidal sediment transport model was then tested against the 

analytical model of Mei (1969). Some modifications were necessary since the 

analytical expression is only valid for certain simple situations. The conventional 
2DV model showed good agreement with the analytical expression, thus 

providing validation for the numerical model. 

Once validated, the conventional 2DV tidal sediment transport model was then 

used to test the new Corrector method. Both models were run for two different 
tidal data sets that generated longitudinal effects by varying the grain distribution 

I 

N 
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in neighbouring longitudinal computation grids. The difference in predicted 

values was remarkably small, of the order of 0.1%. It was also shown that the 

computational time required for the new Corrector method was only 72% of that 

used by the conventional 2DV approach. 

This chapter has therefore shown that the new Corrector method is capable of 

predicting 2DV tidal sediment transport rates to the same degree of accuracy as 
the conventional approach but requires much less time to do so. 

The next chapter uses a parameterised version of the 1DV model so that the 

computation time is reduced further still. 
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Input Set Conventional 2DV 

Hrs: min: s 

Corrector Method 

Hrs: min: s 

Efficiency (%) 

805 1: 29: 26.25 1: 04: 35.16 72 

807 1: 29: 09.26 1: 04: 25.99 72 

Table 6.5.1: Comparison of computational time required for the 2DV methods 
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Figure 6.5.4a-c: Comparison of conventional 2DV model with the new Corrector method 
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Figure 6.5.5a-c: Comparison of conventional 2DV model with the new Corrector method 
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Difference plot for mid-tide 
Set 805: k3 
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Figure 6.5.6a-c: Difference between conventional 2DV method and Corrector method 
during the mid-tide phase. 
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during the mid-tide phase. 
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Chapter 7 

Parameterisation of the 1DV Model 

7.1 Introduction 

The new Corrector method, described in chapter 5, has produced a much quicker 

way of calculating suspended sediment transport rates without significant loss of 

accuracy; however, it may be possible to improve the method still further. By 

employing a parameterised version of the 1DV model, it is hoped that the 

computation time for the new Corrector method will be further reduced. It is also 
important to assess the impact of the parameterisation on the accuracy of the 

model. This chapter therefore presents a preliminary investigation into the 

accuracy of a parametric version of the numerical 1DV model. 

The method of parameterisation replaces the complex system of governing 

equations by simple algebraic formulae. These formulae are based on non- 
dimensional parameter groups suggested by the physical properties of the 

system. By choosing an appropriate functional form for these parameter groups 
the physical properties of the system are retained. Thus, a system of equations 

requiring numerical methods for its solution can be reduced to a series of 
algebraic equations that can be solved analytically. 

Section 7.2 discusses available parametric models that are based on assuming a 
power law relation. However, since tidal sediment transport is periodic, it seems 
reasonable to assume the functional form of the parameterisation to be based on a 
Fourier Series approximation, details of which are given in section 7.3. The 

parameterisation is then concerned with replacing the coefficients of the Fourier 

series with formulae based on the non-dimensional parameter groups. 
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The functional form of each parameterisation is tested using regression analysis. 
The parameterised 1DV model is then tested against the numerical 1DV model 

for seven different tidal input sets. 

7.2 Power Law 

One of the main problems associated with parameterisation is determining the 
functional form that the parameterisation should take. Obviously the function 

should adhere to the same physical properties as the more complicated system, as 
far as possible. Properties such as maxima and limiting values shown by the 

system of equations should be replicated by the function used in the 

parameterisation. 

Van Rijn (1993) uses a simple power law function to parameterise the volumetric 

suspended load transport in rivers for steady flow. Van Rijn also states that this 

model is capable of giving a first estimate; this calls into question its accuracy for 

actual field application. The model is described by the formula given below. 

2.4 0.6 

"' = 0.0 12 
U- ü" dh0 

(7.2.1) 
s-l gd50 

where, 

qs, c -Volumetric suspended load transport (m2s'1) 

ücr -Critical depth-averaged velocity 
h -Water depth 

ü -Depth-average velocity 

D= 
(S - l)g Y 

v2 
d50 - Van Rijn particle parameter 

s- Relative density of the sediment particles 
g -Acceleration due to gravity 
d50 -Median grain size 

v -Kinematic Viscosity 
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O'Connor and Nicholson (1997) also use a power law concept to produce a 

parameterisation for current influenced estuaries. The suspended sediment 

transport rate (T, ) is first split into mean transport (Ts) and lag transport (AT3 ): - 

Ts = Ts 1t 
A2 

s (7.2.2) 

The parameterisation for the lag component is given as: - 

YOT, 
2 

Y=1 for X< Xý 

for Xc' 5X< Xo (7.2.3) 1n(Y)=1n(Y1 - 
1-Xrc 

Y_Yo 1-X 
m 

1 -Xo 

-where, 

for X? Xo 

X=u -Tidal stage defined in terms of velocity Um 

XC -X value at initiation of motion 

Yo -Value of equation 7.2.3 when X= Xo 

Yl -Value of Y when X =1 (i. e. at maximum velocity) 

Further parameterisations are presented for Yl, X', X0 and m in terms of non- 
dimensional groups, each raised to a power. 

The parameterisation of the mean transport is given as: - 

T_ AU+" 

where, 

(7.2.4) 
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T. - (.,, r, &7g d 

T' 
3 
50 

A. = exp(y) 

y= -5.5ln(E) 

u U+ =+ 
Ogd50 

1Og y 
E=d51 

va 

A -Submerged relative density of the grains 

p3 -Density of the sediment particle 

A value of n=3.5 is given for the particular field application considered. The 

model is shown to agree with analytical solutions and also produces good 

agreement with actual field data. 

It can be seen that the model is based on that of Van Rijn but has been modified 
to allow for tidal lag. 

Although the model produces good agreement with field data, O'Connor (1999) 

suggests that a better parameterisation may be found by using a Fourier Series 

approximation for tidal sediment transport rates. 

7.3 Fourier Analysis 

7.3.1 Theory 

By considering tidal sediment transport, one physical property is immediately 

obvious, i. e. the periodicity of the tide. One method used to approximate periodic 
functions is that of the Fourier Series. The Fourier Series uses an infinite sum of 
the trigonometric functions cos and sin, each with different amplitude and 
phase. 
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The Fourier Series approximation to a time dependent function F, which has 

frequency co and period T, is given below. 

F(t)=0.5ao +tan cos(nax)+> bn sin(narr) (7.3.1) 
n=1 n=1 

where the Fourier coefficients ao, a,, and bn are defined by: - 

ao=? fF(t)dt 
To 

T 

an =T 
JF(t)cos(n(tX)dt 

0 

b� _? fF (t) sin (n ax)dt To 

,..... ; n=1,2 

; n=1,2 ,..... 

7.3.2 Tidal Application 

The idea of using Fourier series to approximate tidal suspended sediment 

transport rates was proposed by O'Connor (1999). However, before a Fourier 

approximation can be determined, it is first necessary to make some basic 

assumptions. 

If flow reversal effects are ignored then the flood and ebb stages of the tide can 
be considered separately. In practice, the model is only run for the flood stage. If 

the flood stage is repeated, figure 7.3.1, so that it covers the entire tidal period, 
then equation (7.3.1) can be simplified. For this situation, only the even Fourier 

coefficients are present, James (1992). Again, the model is only run for the 

original flood period. 

The defining equations are now given by: - 

F(t)=0.5ao +ta2n cos(2ntrt)+Eb2n sin(2nax) (7.3.2) 
n=1 n=1 

7-5 



Chapter 7: Parameterisation of the 1DV Model 

with, 

4 
V2 

a2n =TJ F(t)cos(nwt)dt 
0 

4 
V2 

J F(t)sin(nar)dt ben =_ 
0 

;n=0,1,2,..... 

,..... ; n=1,2 

Since tides can be flood or ebb dominated, the time for the crossover is not 

always half of the tidal period. To allow the model to cope with this situation, 

twice the duration of the flood stage of the tide, up, is used as the period of the 

Fourier approximation. 

[N. B: up = tp for neither flood nor ebb dominated tides] 

The Fourier approximation to the tidal sediment transport rates during the flood 

stage of the tide is now given by: - 

00 M 

T, (t)=0.5ao +ta2n cos(2nar)+Eb2n sin(2n(x) (7.3.3) 
n=1 n=1 

u/ 

a2n =4 JTS (t)cos(nax)dt 
up 0 

u/ 

ben = -f T, (t)sin(nmt)dt 
up0 

where, 
2r 

up 

;n=0,1,2,..... 

,..... ; n=1,2 

Further simplifications can be achieved by considering the sediment transport 

rate when the depth-average tidal velocity during the flood stage is at its 

maximum, i. e. at time tm = 
up 
4 
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Tm =0.5ao +a2n cos(2nax. )+b2i sin(2nca. ) (7.3.4) 
n=1 n=1 

Simple manipulation gives an expression for ao :- 

0.5ao =T, n -la2n cos(2naxm)-Zb2n sin(2nWrtm) 
n=i n=t 

Substituting this expression back into equation (7.3.3) gives: - 

T, (t)=T, 
� +Za2n{cos(2nax)-cos(2nax, �)}+tb2n{sin(2n(tr)-sin(2narm)} n=1 n=1 

Now, 

2narm = 2n 2; r up 
= nir 

up 4 

sin(n)=0 Vn 

-1 ;n odd 
cos(nr) _ 

+1; n even 

Thus, the Fourier approximation for tidal sediment transport takes the form: - 

Ta\t)-Tm +a2n{cos(2no. r) +(-i)n- 1}+ib2n 
sin(2nar) (7.3.5) 

n=1 n=1 

7.3.3 Mean and Lag Transport 

O'Connor (1999) proposed that there are certain properties of the Fourier Series 

that support its use in the approximation for tidal sediment transport. 

Consider the mean transport rate (T, (t)). This is the average value of the 

transport rates given at the same velocity; t, is during the accelerating flood 

stage and t2 during the decelerating stage; figure 7.3.2. 
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i. e. Tf (t) = 
Ts (tl)+Ts 02 

(7.3.6) 
2 

Now substitute for T, (t1) and 7' 
s 
(t2) :- 

T, ýt) = T, 
� + O. 5 a2n 

{cos(2nox )+ 2(- 1)n-1 + cos(2n(t2 )} 
n=1 

+ 0.5E b2i {sin (2n ax, + sin (2n ax2 )} 
n=l 

If the flood stage is assumed symmetrical (i. e. no bias towards either accelerating 

or decelerating phase) then: - 

tz= u2 
-ti 

Now, 

cos(2nwt2)=cos 2na -t, ý2 
)I 

= cos(2n7t)cos 4 n; r tl + sin(2n; r)sin 4 wr t, 
UP up 

But, 

cos(2n7r) =1 do 

sin(2n r) =0 do 

--9 cos(2n ovt2) = cos(2n ax, 

Similarly, 

sin(2nar2) = -sin(2nax1 

Hence, 
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Tm +ja2n 
[cos(2nC11)+(-1)"'} (7.3.7) 

R=1 

Now consider the lag. This is defined as the difference between transport rates at 

the same velocity, i. e.: - 

OTs = T3 (t2) -Ts (t, ) (7.3.8) 

By a similar argument as the mean transport, the following equation is obtained 
for the lag: - 

AT, =-21: b2n sin(2n(r1) (7.3.9) 
n=1 

It is interesting to note that the mean transport is determined solely by the 'a' 

Fourier coefficients whilst the lag solely by the 'b' coefficients. This would seem 
to suggest that the Fourier Series shares the properties of the physical system and 
hence supports its use for predicting tidal sediment transport rates. 

Having shown that a Fourier Series can be used to predict sediment transport 

rates, it will be seen later that if T,,, , a2, a4, a6, b2 9 b4 , and b6 are parameterised, 

then the Fourier series approach can be used instead of the numerical 1DV 

model. 

7.4 Characteristic Parameters 

Having now established which terms require parameterisation, the next step is to 
determine which parameters should be used. Yalin (1977) suggests that these 
characteristic parameters are determined by the components defining the system. 

Yalin considers the case of a stationary, uniform, two-dimensional, two-phase 
flow for cohesionless grains of a specified geometry. The components defining 
the system are given as: - 
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(i) Fluid : defined by its density, p, and dynamic viscosity, p. 

(ii) Grains : defined by their density, p, , and diameter, d. 

(iii) Flow : defined by the flow depth, h, gravitational factor, y, , and bed- 

shear velocity, u.. 

where, 

Y, = g(PS - Pý 

g -Acceleration due to gravity 

N. B: Here, it is preferred that the kinematic viscosity, v, is used instead of the 

dynamic viscosity. 

The characteristic parameters for this situation are therefore given as: - 

P, v, P3, d"h, Y5, u, (7.4.1) 

Consider the situation where the grain is no longer of a specified geometry but is 

instead described by a sediment grain size distribution. The median grain 

diameter, d50 , must now be used instead of the parameter d. The geometric 

standard deviation of the grain size distribution, a, must also be added to ensure 
that the distribution is described in full. The set of characteristic parameters 
(7.4.1) now becomes: - 

p, v, p , d50, o, h, y,, u, (7.4.2) 

Now, applying the above to a tidal situation requires the addition of parameters 
that define the tidal conditions, i. e.: - 

r -Tidal range 
hm -Mean water depth 

W. -Maximum depth-average longitudinal tidal velocity 
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up -Twice the duration of the flood stage of the tide 

Since the water depth, h, is already part of the characteristic set, it must be 

replaced by h�, to allow for tidal conditions. Similarly, since the flow is defined, 

in part, by the bed shear stress, the value at maximum tidal velocity is used for 

the tidal situation. However, the bed shear velocity is influenced by many 

factors; this makes the control of any group containing this parameter virtually 

impossible in the coded model. It is therefore proposed that the maximum depth- 

average longitudinal tidal velocity be used as the characteristic parameter 

instead. The new, and final, set of characteristic parameters is therefore given 

by: - 

p, V, ps, d50, O", hm, Ya+um+r, up (7.4.3) 

Although the characteristic parameters have now been determined, it is more 

useful to parameterise in terms of non-dimensional groups since these are 
independent of units and they show the relative importance of the various 

parameters. The next section describes how these groups are formed. 

7.5 Parameter Groups 

Consider the quantity A, which must be determined for a given system. The 

value of A is given as a function of the characteristic parameters, i. e.: - 

A= fA(P, vPs, dso, a, hm, Ys, W, r, up) (7.5.1) 

Since there are ten characteristic parameters and only three dimensions (mass 
(M ), length (L) and time (T)), Buckingham's Pi Theorem states that there are 
seven non-dimensional groups that can be formed, i. e.: - 

A= WA(II,, II2,..., r'7) (7.5.2) 
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The seven non-dimensional groups are by no means unique but are determined 

by the choice of the three basic quantities. The basic quantities chosen for the 

characteristic set (7.4.3) are: - 

PýY3, dso (7.5.3) 

These are the same basic quantities as those used by Van Rijn (1993) in equation 
(7.2.1) and Yalin (1977) for steady flow conditions. 

Now, using the basic quantities (7.5.3), the base dimensions can be expressed 

as: - 

M=pd3 so 

L= dso (7.5.4) 

T=p2dyy, Y2 

The seven non-dimensional groups are then found by non-dimensionalising the 

remaining seven characteristic parameters, i. e.: - 

vp 
d sor, 

Ps r12 = 
pf 

P 
Q -i 1-13 =a 

hrn 
-i n4= 

hm 

dso 

um 5 U-2P 115 =m 
dsoY, 

up --ý n6 = 
up2r, 
ldso 

r -4 IZ 7=r d50 
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If the density ratio described by the third group is assumed to take the constant 

value 2.6 for all cases considered, then this group can be omitted from further 

analysis. After some simple manipulation and renumbering, the new set of 

groups becomes: - 

v -4 II1 = d50 
(S 

2 
)S 

(7.5.5) 
V2 

Q -ý II2 =Q (7.5.6) 

hm n3 = 
dso 

(7.5.7) 
hm 

- --> n4 = 
um 

(7.5.8) 
d-5-g -1 

2 

up -3 Its =U 
Ys (7.5.9) 
so 

r -ý II6 =r (7.5.10) 
dso 

[Aside: It should be noted that II, , II3 and 114 are essentially the same groups 

as used by Van Rijn in equation (7.2.1). ] 

7.6 Parameterisation Functions 

7.6.1 Introduction 

The form for each of the parameterisation functions is first estimated by 

considering the results of the numerical 1DV model. A database consisting of 

one hundred and eighty-nine data sets, each describing typical tidal conditions, is 

used to observe the effect of each of the six non-dimensional parameter groups 

on the chosen quantities Tn,, a2 , a4, a6 , b2 , b4 , and b6. The data sets are formed 

into sets of twenty-seven; each of these is then broken down into three sets of 

nine. These sets of nine are chosen such that the value of one of the groups varies 
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whilst the other five remain constant, thus clearly showing the effect of each non- 

dimensional group on each quantity to be parameterised. 

A functional form is then suggested based on both the observations and certain 

theoretical criteria, such as limits and maxima. 

The functional form is then tested using regression analysis by way of a least- 

squares estimator. 

7.6.2 Data 

The data sets cover a wide range of tidal conditions, summarised below. 

Tidal range (m): 

Mean water level (m): 

Maximum depth-average tidal velocity (ms"): 

Median grain diameter (µm): 

Velocity period (s): 

Standard deviation of grain size distribution: 

Kinematic viscosity (m2s'1): 

1<_r<_9 

9<_hr <_20 

1<_üm _<2 
150: 5 d50 <_ 250 

3500<_ up <_ 44712 

1.4: 5 a: 5 2.2 

v =1.39x10-6 

Table 7.6.1 gives full details of each of the one hundred and eighty-nine data sets 
used. 

Table 7.6.2 contains values for all of the quantities to be parameterised. 

The values of the six non-dimensional parameter groups for each data set are 
given in table 7.6.3. 

7.6.3 Functional Form 

Since the seven parameter groups are non-dimensional, the chosen quantities 
must also be non-dimensional. Several variations were tried; the best results were 

N' 
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obtained by non-dimensionalising Tm , a2, and a4 with their equilibrium values, 

as suggested by O'Connor (1999), and a6 , b2 , 
b4 , and b6 with the basic quantities 

given by (7.5.3). All relevant equilibrium values are given in table 7.6.4. 

Using equilibrium values has the advantage that limiting values are immediately 

apparent, i. e. Tm, a2 , and a4 should tend to their equilibrium values as time tends 

to positive infinity. This suggests that the functional form could be based on an 

exponential function. 

Figures 7.6.1 - 7.6.7 show the effect of each of the six parameter groups on the 

non-dimensional quantities to be parameterised. It can be seen from figure 7.6.1 

that the ratio of transport at maximum tidal velocity, T,., and equilibrium 

transport at maximum tidal velocity, T,,,, shows a possible correlation with 

fl , II2 and 113. The effect of the other groups seems negligible since the graph 

shows little change in the ordinate compared with the range of values shown on 

the abscissa. The same argument applies to both a2 and a4 when non- 

dimensionalised by their respective equilibrium values; as can be seen from 

figures 7.6.2 and 7.6.3. 

Figure 7.6.4 suggests that a6 non-dimensionalised by the chosen basic quantities 

may be correlated with 11 1, " and II4 . 

Figure 7.6.5 suggests that b2 non-dimensionalised by the chosen basic quantities 

can be correlated with all groups save II6 ; this group seems to have little effect. 

The same argument applies to b4 when non-dimensionalised by the chosen basic 

quantities, as can be seen from figure 7.6.6. 

Figure 7.6.7 shows that b6 non-dimensionalised by the chosen basic quantities 

can be correlated with II, A. 1-14 and IIS 
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Having now established which groups are influential for each parameterisation, it 

only remains to chose a functional form for these groups to take. In order to use 

the same functional form for each group in each parameterisation it is first 

necessary to manipulate one of the groups, i. e.: - 

1 (7.6.1) h12 =a II 2= Ina 

Using this new definition of fI2 Jt is proposed that the following functional 

forms should be used: - 

PTm 
=1- explore . 61 ri, 2n} (7.6.2) 

Tme 

Pal 
=1- exp{cff I16, I163 I ß' 

} (7.6.3) 
ate 

Pa4 
=1-explo I-8ºII22II33 } (7.6.4) 

a4e 

- Pah 
- CflA I3'IIä4 (7.6.5) 

PYsd50 

- Pb2 
= a3 A 1234 rl# =IIAn. 64IIS' (7.6.6) 4PY, d50 

Pb4 
= aIIAII? 'IIAII4 nA (7.6.7) 4PYsd50 

- Pbb 
= aII-A IA ri, 4IIS' (7.6.8) 

PYsd50 

where subscript e denotes the equilibrium value of the variable and prefix P 
denotes the parameterised version of the variable. It should also be noted that the 
value for each a and ß is different for each parameterisation, i. e. each of 
equations (7.6.2) - (7.6.8). 
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7.6.4 Estimation 

The a's and fl's in equations (7.6.2 - 7.6.8) are evaluated by using regression 

analysis with a least squares estimator on the output of the one hundred and 

eighty-nine different tidal data sets. 

Regression analysis cannot be performed on the parameterisation functions in 

their present state; some simple manipulation is required first. 

For example, consider the parameterisation of the transport at maximum 

velocity: - 

PT, 
� =1- exp{a3I, m II 22IT °' 

} (7.6.2) 
T. 

- 1_ 
ELM 

=exp{crný, II22II, 6'} 
Tme 

-3 In 1- 
ýTm 

=aIIArl, 211A 
,e 

-ý In In 1- 
LT-' 

=1nhIaTIArlAII3' 
1 

me 

-ý In In 1' "m 
=1n[a]+, 8, ln[II, ]+, 

2ln[r12]+ýB3ln[II3] T-- 

This is now in a form that allows multiple-linear regression analysis using a least 

squares estimator. A similar method is used for the other parameterisation 
functions. 
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7.7 1DV Parameterisation 

7.7.1 Analysis Variables 

The values obtained for the a's and ß's are shown in table 7.7.1. The table also 

includes values for several analysis variables; namely, r2, F-obs, mean % error, 

max % error, mean diff and max diff. 

The % error term for a variable x is defined by: - 

%error =100 xx- 
xpx 

where px is the value given by the parameterisation of x. 

The mean % error is therefore the average value of % error for all one hundred 

and eighty-nine data sets. Similarly, the maximum error for the one hundred and 

eighty-nine sets is given by max % error. 

The absolute difference between the actual value of variable x and its 

parameterised value has the units of transport and is defined by: - 

diff =Ix- pxl 

Again the terms mean and max refer to the one hundred and eighty-nine data sets 

used in the regression analysis. 

The correlation between the data and the proposed parameterisation function is 
described by the r2 term. If the parameterisation function is a good representation 
of the actual relationship, i. e. good correlation, then the r2 value will be close to 1 

(0<-r2? 1). 
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It is possible that a high r2 value could be produced by chance. This can be 

determined by considering the single tailed F-distribution. The regression 

analysis returns a value for F-obs (observed); if the good agreement is not due to 

chance then this must be greater than the critical F value (F,, ). Statistical tables 

provide a value for Fe, once the degrees of freedom have been determined. 

Let k= the number of independent variables (number of different groups) 

n= the number of data sets used (=189 ) 

Then the F-distribution has degrees of freedom given by: - 

V1 =k 

V2= n-(k +1) 

The critical F value for each of the parameterisations is therefore: - 
Fcr = 2.68 for T, 

n , a2, a4 and a6 

F,, = 2.29 for the parameterisation of b2 and b4 

F,, = 2.45 for the parameterisation of b6 

[It should be noted that the values stated above are actually for V2= 120 since 

this was the largest value available from statistical tables. This gives a slightly 
higher critical F value than for the cases considered here. However, if it can be 

shown that the observed F value is significantly greater than this value, it 

follows that it will also be greater for a smaller value. ] 

7.7.2 Results of Regression Analysis 

During the regression analysis, it became evident that slightly better results were 
obtained when the critical value of the depth-average longitudinal flow velocity, 
W, was introduced into 1I4 as used by Van Rijn in equation (7.2.1); i. e.: - 
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15oS s-1 

Table 7.7.2 gives the values for the critical depth-average longitudinal flow 

velocity and equation (7.7.1) for each of the sets used in the analysis detailed 

below. 

The following regression analysis is therefore performed on the functional forms 

given by equations (7.6.2) - (7.6.8), using the non-dimensional groups defined by 

equations (7.5.5), (7.6.1), (7.5.7), (7.7.1) and (7.5.9). 

Figure 7.7.1 shows the parameterised quantities plotted against the actual values 
from the numerical 1DV model. The bold line denotes a perfect agreement. 

The regression analysis of the parameterisation of the transport at maximum 

velocity, T,,., returns a high value for both r2 and F-obs (table 7.7.1b), 0.952 and 

1234.7 respectively. This suggests that the parameterisation function chosen is a 

good representation of the actual relationship as supported by the low values for 

the % error and difference terms. In fact, the maximum difference in actual 

transport terms is only 0.066199 kgm 2s'1. 

Good agreement is also shown for a2. Again the r2 value is close to 1 and the F- 

obs value well above the critical. The max diff term is again very small, only 
0.06602 kgm 2s"1. 

The parameterisation of a4 is only slightly worse. The r2 value is close to 1, the 

F-obs value, although less than before, is still well above the critical value. Again 

the maximum difference in terms of transport is very small, only 0.09923 
kgm-2s'1. 

The r2 value for a6 is a little lower than that for the previous parameterisations 
but is still relatively high. The F-obs value is much smaller than previous values 
mentioned, although it is still much greater than the critical value. However, the 
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error variables suggest that the parameterisation may need further improvement. 

The high value for max % error is somewhat misleading since the maximum 

difference in terms of actual transport is only 0.002946 kgm-2s"I. It must also be 

considered that the contribution made by a6 is relatively small compared to the 

contribution of the other mean Fourier coefficients and transport at maximum 

tidal velocity, as can be seen from table 7.6.2. 

When analysing the lag coefficients it must be considered that Tm and a2 are the 

main contributors to the overall transport. This said, the parameterisation of b2 is 

still remarkably good. An r2 value of 0.976 and F-obs of 1493.7 would seem to 

suggest that the model used is a valid one. This is supported by the low % error 

variables and max diff value of only 0.011463 kgm 2s'1. 

Again, the r2 value for the parameterisation of b4 is high, as is the F-obs value. 

The parameterisation is shown to produce good results by the low value for the 

analysis variables; the maximum difference between the predicted and 

approximated values is only 0.004305 kgm-2s'1. 

The parameterisation for b6 is similar to that of a6 in that the r2 value is 

relatively high but the F-obs value is much lower than for the other 

parameterisations, although still much greater than the critical value. The 

relatively high values for the % error variables would seem to suggest that the 
function used in the parameterisation might be improved upon. However, the 
difference variables suggest that the model does produce reasonable results. 

One further test of the regression analysis is to look for patterns in the residual 
plots. The residual is defined as the observed value minus the predicted value. 
Consider the parameterisation of the transport at maximum tidal velocity: - 

PTm 
=1- exp{a31 #81 11 A rj . 83 1 Tme (7.6.2) 

The regression analysis is actually performed on the transformed version, i. e.: - 
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In In i- 
)Tm 

=ln[a]+ß ln[II1]+ß21n[II2]+A 1n[n3] 
me 

The residual is therefore defined by: - 

residual =1n 1n 1- 
Tm 

- (1n[a]+ ß, ln[II1 ]+ ß2 ln[I12 ]+ /331n[I13 ]) (7.7.2) 
me 

Figures 7.7.2 - 7.7.8 show the residual plots for all seven parameterisations. The 

absence of any obvious patterns in the residual plots suggests that the assumption 

of normality inherent in using multi-linear regression is valid for the analysis 

performed above. 

Although the regression analysis has produced models that appear to 

approximate the actual relationships, they must be tested against independent 

data sets that were not used in the regression analysis. Seven such data sets are 

given in table 7.6.1b. The corresponding values of the quantities to be 

parameterised are given in table 7.7.3, non-dimensional group values in table 

7.7.4 and equilibrium values in table 7.7.5. 

Table 7.7.6 shows the results of using the parameterised expressions suggested 

above for the seven independent data sets. 

Although all values for the analysis variables are slightly higher for the 
independent sets, the parameterisations would appear to provide a good 
approximation for their respective variables. 

As stated earlier, it is preferable for the parameterisation to replicate the 

properties of the original system as far as possible. Consider the parameterisation 
of the transport due to depth-average values: - 
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PTm 
=1- exp{an'6, II2' IIß, } 

T. 

where, 

a=-1.388 A= 1.183 

, 
62= 0.832 

/83 = 0.206 

Consider: - 
d50 --4 00 i. e. III , II3 --4 00 

PTm 
-i 1- exp{ °°} Tme 

1.8. 
PT 

m 
-i 1 

Tme 

(7.6.2) 

This simply states that as the median grain size increases, the parameterised 
transport at maximum velocity will tend towards its equilibrium value. This is to 

be expected since larger particles are assumed to adjust instantaneously to flow 

conditions. It is a simple task to show that this is also the case for the 

parameterisations of a2 and a4. 

Consider now the power law function for a6 :- 

-Pa6 -CnAII; 'IIä4 (7.6.5) 
pysd50 

where, 

a=5.523e-11 ; A= -3.188 

A= -1.408 

, 
64= 1.925 
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Now, if d50 -4 oo then: - 

L. H. S of (7.6.5): -P a6 
--> 0 

PYS so 

R. H. S of (7.6.5): afl ri. 3f4 --* 034 

Essentially, as the grain size becomes infinitely large, there is no transport since 

the flow velocity is not sufficient to initiate motion. It is a simple exercise to 

show that the parameterisations for b2, b4 and b6 share the same property. 

Combining the parameterisations for the Fourier coefficients and the transport at 

maximum velocity, an approximation for the tidal suspended sediment transport 

rate (PT, (t)) is given by the model described below. 

33 

PT, (t)ý PTm +Pa2n{cos(2n02)+(-1)"-1}+2., Pb2n sin(2nwrr) (7.7.3) 
n=1 n=1 

7.7.3 Model Test 

Figure 7.7.9 shows a comparison between the numerical 1DV model and the 

parameterised version, equation (7.7.3), for six of the seven independent data 

sets. As can be seen, the parameterisation produces a good approximation for all 
sets. 

Figures 7.7.10 and 7.7.11 show the difference in accuracy between the mean and 
lag parameterisations respectively. They also show the difference in magnitude 
of the contributions to the overall transport value by the mean and lag. It can be 

seen that although the lag seems slightly inaccurate, the actual magnitude means 
that the difference is insignificant. 
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Chapter 7: Parameterisation of the 1DV Model 

7.8 Summary 

It has been shown that tidal suspended sediment transport rates can be accurately 

approximated using a Fourier series consisting of the first four mean coefficients 

and first three lag coefficients. 

These mean and lag coefficients have been parameterised using non-dimensional 

groups based on ten characteristic parameters obtained from the physical 

properties of the system. 

By carrying out regression analysis and performing comparison tests against 

independent sets, it is shown that the parameterisations for the variables 

T. , a2 , a4 , a6 , b2 , b4 , and b6 sufficiently reproduce the actual relationships. 

Comparison tests against output from the numerical 1DV model show that the 

parameterised model produces reasonable results. It is now possible to replace 
the 1DV model with the more simplistic parameterised version, i. e. equation 
(7.7.3). 

The next chapter describes how the 1DV parameterised model can be used to 

replace the 1DV model in the Corrector method. 
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Set r (m) hm (m) üm (ms ) d50 (m) up (s) a 

100 3 10 1 0.00015 44712 1.5 

101 3 10 1 0.00016 44712 1.5 

102 3 10 1 0.00017 44712 1.5 
103 3 10 1 0.00018 44712 1.5 
104 3 10 1 0.00019 44712 1.5 
105 3 10 1 0.0002 44712 1.5 
106 3 10 1 0.00021 44712 1.5 

107 3 10 1 0.00022 44712 1.5 
108 3 10 1 0.00023 44712 1.5 
109 6 15 1.5 0.00017 44712 1.7044 
110 6 15 1.5 0.00018 44712 1.7044 
111 6 15 1.5 0.00019 44712 1.7044 
112 6 15 1.5 0.0002 44712 1.7044 
113 6 15 1.5 0.00021 44712 1.7044 
114 6 15 1.5 0.00022 44712 1.7044 

115 6 15 1.5 0.00023 44712 1.7044 
116 6 15 1.5 0.00024 44712 1.7044 
117 6 15 1.5 0.00025 44712 1.7044 
118 9 20 2 0.00021 44712 2 
119 9 20 2 0.000215 44712 2 
120 9 20 2 0.00022 44712 2 
121 9 20 2 0.000225 44712 2 
122 9 20 2 0.00023 44712 2 
123 9 20 2 0.000235 44712 2 
124 9 20 2 0.00024 44712 2 
125 9 20 2 0.000245 44712 2 
126 9 20 2 0.00025 44712 2 
127 4 9 1.2 0.00022 44000 1.4 
128 4 9 1.2 0.00022 44000 1.5 
129 4 9 1.2 0.00022 44000 1.6 
130 4 9 1.2 0.00022 44000 1.7 
131 4 9 1.2 0.00022 44000 1.8 
132 4 9 1.2 0.00022 44000 1.9 
133 4 9 1.2 0.00022 44000 2 
134 4 9 1.2 0.00022 44000 2.1 
135 4 9 1.2 0.00022 44000 2.2 
136 7 16 1.7 0.00025 43000 1.4 
137 7 16 1.7 0.00025 43000 1.5 
138 7 16 1.7 0.00025 43000 1.6 
139 7 16 1.7 0.00025 43000 1.7 
140 7 16 1.7 0.00025 43000 1.8 
141 7 16 1.7 0.00025 43000 1.9 
142 7 16 1.7 0.00025 43000 2 
143 7 16 1.7 0.00025 43000 2.1 
144 7 16 1.7 0.00025 43000 2.2 
145 8 19 1.9 0.00023 38000 1.4 
146 8 19 1.9 0.00023 38000 1.5 
147 8 19 1.9 0.00023 38000 1.6 
148 8 19 1.9 0.00023 38000 1.7 
149 8 19 1.9 0.00023 38000 1.8 
150 8 19 1.9 0.00023 38000 1.9 

Table 7.6.1a: Data sets used in the regression analysis for the 1DV parameterisations 



Set r (m) hm(m) 
m 

(m-) d50 (m) up (s) ß 

151 8 19 1.9 0.00023 38000 2 

152 8 19 1.9 0.00023 38000 2.1 

153 8 19 1.9 0.00023 38000 2.2 

154 5 11 1 0.00015 44712 1.7044 

155 5 11 1.1 0.00015 44712 1.7044 

156 5 11 1.2 0.00015 44712 1.7044 

157 5 11 1.3 0.00015 44712 1.7044 
158 5 11 1.4 0.00015 44712 1.7044 

159 5 11 1.5 0.00015 44712 1.7044 

160 5 11 1.6 0.00015 44712 1.7044 
161 5 11 1.7 0.00015 44712 1.7044 
162 5 11 1.8 0.00015 44712 1.7044 
163 3 18 1.1 0.0002 39000 1.9 
164 3 18 1.2 0.0002 39000 1.9 
165 3 18 1.3 0.0002 39000 1.9 

166 3 18 1.4 0.0002 39000 1.9 
167 3 18 1.5 0.0002 39000 1.9 
168 3 18 1.6 0.0002 39000 1.9 
169 3 18 1.7 0.0002 39000 1.9 
170 3 18 1.8 0.0002 39000 1.9 
171 3 18 1.9 0.0002 39000 1.9 
172 8 14 1 0.00022 36000 1.6 
173 8 14 1.1 0.00022 36000 1.6 
174 8 14 1.2 0.00022 36000 1.6 
175 8 14 1.3 0.00022 36000 1.6 
176 8 14 1.4 0.00022 36000 1.6 
177 8 14 1.5 0.00022 36000 1.6 
178 8 14 1.6 0.00022 36000 1.6 
179 8 14 1.7 0.00022 36000 1.6 
180 8 14 1.8 0.00022 36000 1.6 
181 4 10 1.2 0.00017 37000 1.5 
182 4 11 1.2 0.00017 37000 1.5 
183 4 12 1.2 0.00017 37000 1.5 
184 4 13 1.2 0.00017 37000 1.5 
185 4 14 1.2 0.00017 37000 1.5 
186 4 15 1.2 0.00017 37000 1.5 
187 4 16 1.2 0.00017 37000 1.5 
188 4 17 1.2 0.00017 37000 1.5 
189 4 18 1.2 0.00017 37000 1.5 
190 6 11 1.6 0.00019 42000 1.8 
191 6 12 1.6 0.00019 42000 1.8 
192 6 13 1.6 0.00019 42000 1.8 
193 6 14 1.6 0.00019 42000 1.8 
194 6 15 1.6 0.00019 42000 1.8 
195 6 16 1.6 0.00019 42000 1.8 
196 6 17 1.6 0.00019 42000 1.8 
197 6 18 1.6 0.00019 42000 1.8 
198 6 19 1.6 0.00019 42000 1.8 
199 8 12 1.9 0.00021 44712 2 
200 8 13 1.9 0.00021 44712 2 
201 8 14 1.9 0.00021 44712 2 
202 8 15 1.9 0.00021 44712 2 

Table 7.6.1a contd.: Data sets used in the regression analysis for the 1DV parameterisations 



Set r (m) hm (m) 
m 

(ms ) d50 (m) up (s) a 

203 8 16 1.9 0.00021 44712 2 

204 8 17 1.9 0.00021 44712 2 

205 8 18 1.9 0.00021 44712 2 

206 8 19 1.9 0.00021 44712 2 

207 8 20 1.9 0.00021 44712 2 
208 3 10 1 0.00016 35000 1.6 
209 3 10 1 0.00016 36000 1.6 
210 3 10 1 0.00016 37000 1.6 

211 3 10 1 0.00016 38000 1.6 
212 3 10 1 0.00016 39000 1.6 
213 3 10 1 0.00016 40000 1.6 
214 3 10 1 0.00016 41000 1.6 
215 3 10 1 0.00016 42000 1.6 
216 3 10 1 0.00016 43000 1.6 
217 6 14 1.4 0.0002 36000 1.8 
218 6 14 1.4 0.0002 37000 1.8 

219 6 14 1.4 0.0002 38000 1.8 
220 6 14 1.4 0.0002 39000 1.8 
221 6 14 1.4 0.0002 40000 1.8 
222 6 14 1.4 0.0002 41000 1.8 
223 6 14 1.4 0.0002 42000 1.8 
224 6 14 1.4 0.0002 43000 1.8 
225 6 14 1.4 0.0002 44712 1.8 
226 8 19 2 0.00023 36000 1.7044 
227 8 19 2 0.00023 37000 1.7044 
228 8 19 2 0.00023 38000 1.7044 
229 8 19 2 0.00023 39000 1.7044 
230 8 19 2 0.00023 40000 1.7044 
231 8 19 2 0.00023 41000 1.7044 
232 8 19 2 0.00023 42000 1.7044 
233 8 19 2 0.00023 43000 1.7044 
234 8 19 2 0.00023 44712 1.7044 
235 1 10 1 0.00015 44712 1.7044 
236 2 10 0.00015 44712 1.7044 
237 3 10 0.00015 44712 1.7044 
238 4 10 0.00015 44712 1.7044 
239 5 10 1 0.00015 44712 1.7044 
240 6 10 1 0.00015 44712 1.7044 
241 7 10 1 0.00015 44712 1.7044 
242 8 10 1 0.00015 44712 1.7044 
243 9 10 1 0.00015 44712 1.7044 
244 1 15 1.5 0.0002 40000 1.6 
245 2 15 1.5 0.0002 40000 1.6 
246 3 15 1.5 0.0002 40000 1.6 
247 4 15 1.5 0.0002 40000 1.6 
248 5 15 1.5 0.0002 40000 1.6 
249 6 15 1.5 0.0002 40000 1.6 
250 7 15 1.5 0.0002 40000 1.6 
251 8 15 1.5 0.0002 40000 1.6 
252 9 15 1.5 0.0002 40000 1.6 
253 1 20 2 0.00022 38000 2.1 
254 2 20 2 0.00022 38000 2.1 

Table 7.6.1a contd.: Data sets used in the regression analysis for the 1DV parameterisations 



Set r (m) hm (m) 
m 

(ms 1) d50 (m) up (s) a 

255 3 20 2 0.00022 38000 2.1 
256 4 20 2 0.00022 38000 2.1 
257 5 20 2 0.00022 38000 2.1 

258 6 20 2 0.00022 38000 2.1 
259 7 20 2 0.00022 38000 2.1 
260 8 20 2 0.00022 38000 2.1 
261 9 20 2 0.00022 38000 2.1 
262 3 10 1 0.00015 36000 1.7044 

263 3.2 10.66667 1.032796 0.00016 37180.64 1.7044 
264 3.4 11.33333 1.064581 0.00017 38324.93 1.7044 
265 3.6 12 1.095445 0.00018 39436.02 1.7044 
266 3.8 12.66667 1.125463 0.00019 40516.66 1.7044 
267 4 13.33333 1.154701 0.0002 41569.22 1.7044 
268 4.2 14 1.183216 0.00021 42595.77 1.7044 
269 4.4 14.66667 1.21106 0.00022 43598.16 1.7044 
270 4.6 15.33333 1.238278 0.00023 44578.02 1.7044 
271 5 12 1.5 0.00017 35 000 1.4 
272 5.294118 12.70588 1.543487 0.00018 36014.7 1.4 
273 5.588235 13.41176 1.585782 0.00019 37001.59 1.4 
274 5.882353 14.11765 1.626978 0.0002 37962.83 1.4 
275 6.176471 14.82353 1.667157 0.00021 38900.32 1.4 
276 6.470588 15.52941 1.706389 0.00022 39815.75 1.4 
277 6.764706 16.23529 1.74474 0.00023 40710.6 1.4 
278 7.058824 16.94118 1.782266 0.00024 41586.2 1.4 
279 7.352941 17.64706 1.819017 0.00025 42443.73 1.4 
280 4 11 1.6 0.00015 35500 1.6 
281 4.266667 11.73333 1.652473 0.00016 36664.24 1.6 
282 4.533333 12.46667 1.70333 0.00017 37792.64 1.6 
283 4.8 13.2 1.752712 0.00018 38888.3 1.6 
284 5.066667 13.93333 1.800741 0.00019 39953.93 1.6 
285 5.333333 14.66667 1.847521 0.0002 40991.87 1.6 
286 5.6 15.4 1.893146 0.00021 42004.16 1.6 
287 5.866667 16.13333 1.937696 0.00022 42992.64 1.6 
288 6.133333 16.86667 1.981245 0.00023 43958.88 1.6 

Table 7.6.1a contd.: Data sets used in the regression analysis for the 1DV parameterisations 

Set r (m) hm (m) W. (ms) d50 (m) up (s) a 

1 3 10 1 0.00015 44712 1.7044 
2 3 10 1 0.0002 44712 1.7044 
3 3 10 1 0.00025 44712 1.7044 
4 3 10 2 0.0002 44712 1.7044 
5 3 20 2 0.0002 44712 1.7044 
6 9 10 2 0.0002 44712 1.7044 
7 3 20 1 0.0002 44712 1.7044 

Table 7.6.1b: Independent data sets used to test the 1DV parameterisations 
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Set üc 114 
100 0.40382 12.28676 
101 0.401608 11.94074 
102 0.399535 11.62435 
103 0.397576 11.33369 
104 0.395718 11.06543 
105 0.38651 10.94959 
106 0.388272 10.65502 
107 0.389955 10.3814 
108 0.391572 10.1263 
109 0.405466 21.18899 
110 0.403497 20.62904 
111 0.40165 20.11266 
112 0.39234 19.76956 
113 0.39415 19.26159 
114 0.395879 18.78931 
115 0.397546 18.34856 
116 0.399131 17.93641 
117 0.400654 17.54971 
118 0.396119 27.93624 
119 0.397001 27.59431 
120 0.397854 27.26442 
121 0.398708 26.94541 
122 0.399534 26.63717 
123 0.400333 26.33911 
124 0.401132 26.05029 
125 0.401903 25.77066 
126 0.402673 25.49936 
127 0.386658 13.841 
128 0.383623 13.89264 
129 0.380796 13.94075 
130 0.378146 13.98585 
131 0.375641 14.02848 
132 0.373264 14.06893 
133 0.371016 14.10718 
134 0.368881 14.14352 
135 0.366842 14.17 821 
136 0.41119 20.57427 
137 0.408104 20.62353 
138 0.405209 20.66975 
139 0.402483 20.71326 
140 0.399924 20.75412 
141 0.397509 20.79267 
142 0.395214 20.82931 
143 0.39304 20.86401 
144 0.390937 20.89758 
145 0.414135 24.72982 
146 0.411099 24.78035 
147 0.408246 24.82783 
148 0.405576 24.87227 
149 0.403059 24.91416 
150 0.400664 24.95402 

Set ui II4 
151 0.398422 24.99134 
152 0.396241 25.02764 
153 0.394213 25.06139 
154 0.398788 12.39046 
155 0.398646 14.4543 

- 156 0.398533 16.51753 
157 0.398454 18.58009 
158 0.398376 20.64261 
159 0.398338 22.70431 
160 0.398278 24.76646 
161 0.398251 26.82793 
162 0.39823 28.88927 
163 0.398602 12.51858 
164 0.398563 14.30408 
165 0.398534 16.0894 
166 0.398508 17.87467 
167 0.398489 19.65981 
168 0.398478 21.44481 
169 0.398481 23.22956 
170 0.398457 25.01479 
171 0.398475 26.79928 
172 0.393541 10.32038 
173 0.393362 12.02517 
174 0.393216 13.7294 
175 0.393102 15.43308 
176 0.393004 17.13649 
177 0.39293 18.83949 
178 0.392898 20.54178 
179 0.392846 22.24441 
180 0.392811 23.94675 
181 0.397692 15.53181 
182 0.401669 15.45482 
183 0.405239 15.38571 
184 0.40846 15.32336 
185 0.411409 15.26627 
186 0.414126 15.21367 
187 0.41665 15.16481 
188 0.41898 15.1197 
189 0.421176 15.07719 
190 0.385813 22.23383 
191 0.389807 22.16069 
192 0.393381 22.09525 
193 0.396605 22.03621 
194 0.39955 21.98228 
195 0.402284 21.93222 
196 0.404785 21.88642 
197 0.407147 21.84317 
198 0.409323 21.80332 
199 0.373879 26.58183 
200 0.377831 26.51299 
201 0.381363 26.45147 

Table 7.7.2: Extra data used in regression analysis 



Set 
i, 

n4 
202 0.384579 26.39546 
203 0.387507 26.34446 
204 0.390199 26.29757 
205 0.392681 26.25434 
206 0.395006 26.21384 
207 0.397173 26.17609 
208 0.399025 11.99228 
209 0.399037 11.99204 
210 0.399033 11.99212 
211 0.399029 11.9922 
212 0.399025 11.99228 
213 0.399036 11.99206 
214 0.399032 11.99214 
215 0.399028 11.99222 
216 0.399024 11.9923 
217 0.387466 18.07175 
218 0.387482 18.07146 
219 0.387474 18.0716 
220 0.387468 18.07171 
221 0.387482 18.07146 
222 0.387475 18.07159 
223 0.387469 18.07169 
224 0.387483 18.07144 
225 0.387481 18.07148 
226 0.405438 26.5389 
227 0.405442 26.53884 
228 0.405445 26.53879 
229 0.405448 26.53874 
230 0.405452 26.53867 
231 0.405425 26.53912 
232 0.405428 26.53907 
233 0.405431 26.53902 
234 0.405426 26.5391 
235 0.401917 12.32598 
236 0.400243 12.36048 
237 0.398465 12.39712 
238 0.396596 12.43564 
239 0.394608 12.47661 
240 0.39249 12.52026 
241 0.390227 12.5669 
242 0.387806 12.61679 
243 0.385188 12.67075 
244 0.401488 19.60629 
245 0.400353 19.62654 

Set üi, 114 
246 0.399172 19.64762 
247 0.397968 19.66911 
248 0.396696 19.69181 
249 0.3954 19.71494 
250 0.394037 19.73927 
251 0.392604 19.76485 
252 0.391126 19.79123 
253 0.403372 27.17052 
254 0.402498 27.18539 
255 0.401623 27.20028 
256 0.400716 27.21572 
257 0.399776 27.23171 
258 0.398804 27.24825 
259 0.3978 27.26534 
260 0.396795 27.28244 
261 0.395725 27.30065 
262 0.398461 12.3972 
263 0.398442 12.65835 
264 0.398414 12.89627 
265 0.398377 13.11428 
266 0.39836 13.31449 
267 0.390811 13.63394 
268 0.394246 13.7422 
269 0.397546 13.84392 
270 0.400729 13.93965 
271 0.406448 21.16998 
272 0.406421 21.39217 
273 0.406415 21.59622 
274 0.398712 21.92214 
275 0.402227 22.03243 
276 0.4056 22.1361 
277 0.40886 22.23356 
278 0.411981 22.32599 
279 0.415015 22.41317 
280 0.402949 24.67019 
281 0.40292 24.93447 
282 0.402913 25.17466 
283 0.402906 25.39455 
284 0.402876 25.59729 
285 0.395278 25.91969 
286 0.398747 26.0293 
287 0.402097 26.13196 
288 0.40533 26.22856 

Table 7.7.2contd: Extra data used in regression analysis 
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Mean % 
error 

Max % 
error 

Mean diff 
(k m 2s'1 

Max diff 
(k m 2s'' 

T. 3.305 7.919 0.022788 0.049675 

a2 2.848 6.027 0.019911 0.03874 

a4 6.168 15.359 0.037261 0.076979 

a6 31.961 65.595 0.00052 0.001492 

b2 11.855 20.1596 0.001493 0.005952 

b4 10.994 16.986 0.00077 0.002471 

b6 32.055 53.638 0.000169 0.000502 

Table 7.7.6: Effect of parameterisation on independent sets 



Figure 7.3.1: Period of the Fourier approximation 

ü 

t2 

Figure 7.3.2: Time at equal depth-average velocity 
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Chapter 8: Parameterised Corrector Method 

Chapter 8 

Parameterised Corrector Method 

8.1 Introduction 

As stated in chapter 1, one aim of this thesis is to introduce a parameterised 1DV 

suspended sediment transport model into the new Corrector method proposed by 

O'Connor (1999). Having described the new Corrector method in chapter 2 and 

presented details of how it incorporates a numerical 1DV model in chapter 5, it 

now remains to show how the parameterised 1DV model is used in the new 
Corrector method. 

Chapter 7 presented a parameterised 1DV model based on a set of ten 

characteristic parameters that defined the system. However, this model needs to 

be modified before it can be used in a 2DV system. Essentially, the 2DV system 

uses a different definition of the reference level for sediment calculations. This 

means that the reference level becomes an external factor defining the system 

and as such must be added to the list of characteristic parameters. Section 8.2 

gives details of the new characteristic set and the extra non-dimensional 

parameter group that it creates. 

Section 8.3 then describes the regression analysis used to fit the modified 1DV 

parameterisation to given data sets. 

The new Corrector method also requires the parameterisation of both the depth- 

mean concentration and the transport due to fluctuations from the depth-mean 

values. Section 8.5 describes the methods used to parameterise these terms. 
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Chapter 8: Parameterised Corrector Method 

Finally, the new parameterised Corrector method is tested against eight 

independent data sets in order to assess the accuracy and computational speed of 

the new approach. 

8.2 Modified 1DV Parameterisation 

Although Chapter 7 described a parameterised model that can be used in place of 

a numerical 1DV model, it requires modification before it can be applied to a 

2DV system. 

8.2.1 Characteristic Parameters 

The parameterisation described in chapter 7 assumes that the bed forms, and 
hence reference level, are calculated implicitly within the 1DV model. However, 

when considering a 2DV system, this is not the case. The reference level is 

defined as an average over the longitudinal scale (section 5.5.4) so that 

simplifications to the new Corrector method are justified, see section 2.4.2. It 

therefore differs from that predicted by the 1DV model. Effectively, the 

reference level is now an external parameter and as such must be added to the list 

of characteristic parameters defining the system. The set of characteristic 

parameters now becomes: - 

p, v+Ps, dsp, Qsh., r , U*m, r, up, a 8.2.1) 

where a is the given reference level. 

8.2.2 Parameter Groups 

Since there are now eleven characteristic parameters, there must be eight non- 
dimensional groups produced by Buckingham's Pi Theorem. 

Using the same set of basic quantities as used in chapter 7, i. e. p, y, and d50 " 
and following the same substitutions and manipulations, the same groups as 
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before are obtained with the addition of an extra group reflecting the influence of 

the reference level; i. e.: - 

II1 = dso 
(s Z)g (7.5.5) 

ý2 
In a 

(7.5.6) 

fl3 _ Aso 
(7.5.7) 

m 

na - 
um -uc (7.5.8) 

- dsog s-1 

H= UP2r, (7.5.9) 
Paso 

'6. r (7.5.10) 
dso 

And now, 

117 =a dso 
(8.2.2) 

Note that again the density ratio is assumed constant and hence is omitted from 

further analysis thus leaving only seven groups. 

8.2.3 Functional Form 

In order to investigate the influence of the reference level, it is necessary to add 

some new data sets to those used in chapter 7. The twenty-seven new data sets 

are shown in table 8.2.1. The new sets are based on three sets of tidal conditions 

where the reference level has been fixed externally. The new reference levels 

vary as much as ten times that predicted by the 1DV model. This is used to 

reproduce conditions where there is change in the median grain diameter in the 
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longitudinal direction. This can produce different bed form dimensions, and 

hence reference level, for the same hydrodynamic conditions. 

The effect of the reference level on each of the quantities to be parameterised is 

shown in figure 8.2.1. It can clearly be seen that group seven is influential for all 

quantities considered, indicated by the large variation in the values on the 

ordinate. It can also be seen that an exponential form similar to that seen in the 

previous chapter exists for the non-dimensional forms of the suspended transport 

at maximum velocity and the first two mean Fourier coefficients. Figure 8.2.1 

also suggests a power law relationship for the remaining Fourier Coefficients. 

The functional form for the parameterisations are therefore given by: - 

PT�, 
=1-exp{aII; 'II? ZIIý'IIA} (8.2.3) 

True 

Pat 
=1- exp{an 16, rl f, I II 19' } (8.2.4) 23 ate 

Pa4 
=1-exp{a3Ii6l11 11Arl '} (8.2.5) 37 a4e 

-Pa6 =, onA IA'II4'II,, 6' (8.2.6) 
PYsdso 

-Pb2 =a3iAn-82113114'11 1Lý' (8.2.7) 
PYsd50 

Pb4 
= CIIAIIAII3'IZ4'IIS'IIý' (8.2.8) 

PYsdso 

-Pb6 = a--n-11 ri 3n 
4411 

's q7 (8.2.9) 4PYsd50 

8.3 Regression Analysis 

8.3.1 Data 

As in chapter 7, regression analysis using a least squares estimator is applied to 
the one hundred and eighty-nine data sets given by table 7.6.1a and the new data 
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given in table 8.2.1. The values for the parameterisation quantities for the new 
data sets are given in table 8.3.1, equilibrium values in table 8.3.2 and non- 

dimensional group values in table 8.3.3. The values for the reference level and 

reference group, 117 , for the data sets given in table 7.6.1a are given in table 

8.3.4. 

8.3.2 Analysis Variables 

Again, the same analysis variables as used in chapter 7 are employed here. 

(i). Percentage error: - 

%error=100x x- px 
x 

where px is the parameterisation of the quantity x. 

(ii). The absolute difference between the actual value of variable x and its 

parameterised value (units are those of transport): - 

diff =Ix - pxl 

(iii). r2 value. A good correlation is shown by an r2 value approaching unity. 

(iv). The F-obs value. This should be significantly greater than the Fc, value if 

the fit of the proposed model is not due to chance. 

The degrees of freedom of the F-distribution are given by: - 

V1 =k 

V2= n -(k +1) 
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where, 
k= the number of independent variables 

n= the number of data sets used (216) 

The value of Fe, for each of the parameterisations is therefore: - 

Fc, = 2.45 for T. , a2, a4 and a6 

Fc, = 2.18 for b2 and b4 

Fcr = 2.29 for b6 

Again it should be noted that these values are taken for v2 =120 thus giving a 

larger value for Fc, than required. 

8.3.3 Results 

During the regression analysis, it became evident that a better parameterisation 

for b6 could be obtained by excluding fl . Equation (8.2.9) therefore becomes: - 

- Pb6 
= aIIA II3' II4' 1197 (8.3.1) 

4PY: d50 

It should be noted that F., = 2.45 for this version of the parameterisation of b6 . 

The results of the regression analysis are given in table 8.3.6. Table 8.3.6a gives 

the values for all of the a's and ß's used in the parameterisations whilst table 

8.3.6b returns values for all of the analysis variables. The parameterisations are 

shown graphically in figure 8.3.1 where the bold line denotes a perfect fit. 

It can be seen that the proposed parameterisation of the transport at maximum 

velocity shows good agreement with the actual values from the 1DV model. The 

high r2 and F-obs values signify that the parameterisation is a good representation 

of the actual relationship. Both error variables return very small values, which 
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shows that the parameterisation is accurate. This is also supported by the 

difference variables; the maximum difference is only 0.030199 kgm 2 s"1. 

Results for the parameterisation of a2 are very similar to those returned for T,,,. 

Again, high values for both r2 and F-obs imply that the functional form is valid. 

Low values for the error and difference variables show that the parameterisation 
is also accurate. The mean percentage error for all data sets is only 1.171%. 

The parameterisation for a4 also appears to be very good with errors of the same 

order as those obtained for the parameterisation of a2 . 

Some scatter for the parameterisation for a6 can be seen in figure 8.3.1. This is 

also evident in the analysis variables. The rz value has dropped to 0.832, which, 

combined with a low F-obs value, would seem to imply that the functional form 

used in the parameterisation may not be entirely adequate. However, the 

maximum difference in actual transport terms is only 0.002308 kgm 2 s'1, which 

would seem to suggest that the error is insignificant in the overall transport 

calculation. The large values returned by the analysis variables are mainly due to 

set 175 where the contribution of a6 can be seen to be negligible even though the 

error here is 1450.4%. (Removing this set would bring the maximum error down 

to a value of 211.8% and the average error to 24.63%. ) 

The parameterisation of the first lag coefficient, b2, also returns favourable 

results. Again, the percentage error terms are low. The maximum difference, in 
terms of actual transport, is only 0.006417 kgm s. 21 

Similar values are returned for the parameterisation of b4, suggesting that the 

parameterisation is both valid and accurate. 

The parameterisation for b6 would appear to fall short of fully describing the 

actual relationship since the r2 value is now only 0.866. This is supported by a 
low F-obs value; however, this is still greater than the critical value. The 
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maximum percentage error of 348.432% is somewhat misleading. The values for 

b6 are smaller in magnitude than all other values so a large % error is actually 

only a small difference in transport terms, shown by the low value for the 

maximum difference in actual transport terms, 0.001154 kgm-2s'1. 

Figure 8.3.2 shows the plot of residuals for II, . Again, the absence of any 

patterns supports the regression methods used here. 

The proposed parameterisations are also tested against the same seven 
independent sets as used in chapter 7, see table 7.6.1b. The results are shown in 

table 8.3.7. 

The results are, on the whole, only slightly worse than the regression results. The 

increase in mean values may be due to the fact that only 7 sets were used. An 

individual set is therefore more influential. The maximum variables provide a 
better test of the regression analysis. These are, in the most part, of the same 

order as those obtained by the regression analysis. 

It is therefore concluded that the parameterisations suggested by equations 
(8.2.3) - (8.2.8) and (8.3.1), together with the values from table 8.3.6a, should be 

substituted into equation (7.7.3) to provide a model that can now be used in place 

of the numerical 1DV model in the new Corrector method; i. e.: - 

PT, (t)= PTm +ZPa2n{Cos(2nax)+(-1)n-1}+ýPb2n sin(2nývt) (7.7.3) 
n=1 n=1 

8.4 New Corrector Method 

Chapter 2 gives details of the derivation of the Corrector method whilst chapter 5 
describes how it incorporates the use of a numerical 1DV model. If the 

parameterised version is substituted for the numerical 1DV model then problems 
arise in determining the value of certain terms in the Corrector model. 
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Consider: - 

DT"' 
+11 

aTs'x 
=c (h - a) 

au 
+ 

aTdýsp. 
x (5.4.1) 

at ax at at 

Chapter 5 also describes how the terms c and Td; 
sP, x are obtained from the 1DV 

equation. This is relatively simple since the 1DV concentration profile is 

calculated within the numerical 1DV model. If the parameterised version is used 

however, then the concentration profile is no longer calculated. Thus, a different 

method is required for evaluating these terms. 

Consider: - 

h 

T"X = Jucaz (8.4.1) 
a 

Split the velocity and concentration into their depth-average and fluctuating 

components: - 

h 
Tf, 

x 
=f 

(i 
-I- u')C + C)az 

a 

Simplification gives, 

hh 

TS, X =fi az +jü cDz aa 

i. e. Ts, 
x =Tdm +TdisPx (8.4.2) 

or Tdisp, 
X = Ts, 

x -Tam 
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where Tdm is the transport due to the depth-average components of the velocity 

and concentration. 

Also, 

h 

TT�=fücäz 
a 

Td,, = (h - a)üc 

Tdm 
(8.4.3) (h-a)u 

Therefore, if a parameterisation for Td, 
� can be determined then both c and 

Tdisp, 

x can be evaluated. 

8.5 Parameterisation of Transport due to Depth-mean 
Values 

Equation (8.4.2) suggests that a linear relationship may exist between the 

transport due to the depth-average values and the overall transport. In order to 

test this idea, the ratio of the two values (defined as the tidal ratio, a, ) is 

determined at a number of different stages in the tidal cycle for the data sets used 
in section 8.3. The results from two example sets are shown in figure 8.5.1. The 

bold line shows the fitted regression line. The absence of any significant scatter 

supports the linear model approach. Regression analysis is therefore performed 

on the model defined below. 

Td'" 
=a (8.5.1) r Ts, 

x 
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Since T,, 
x 

has already been parameterised, it only remains to parameterise the 

tidal ratio (Pa, ). The parameterisation is based on those groups used in section 

8.2.2; i. e. equations (7.5.5)-(7.5.10) and equation (8.2.2). However, during 

analysis it became evident that a better functional form could be achieved by 

using the exponential of II1; i. e.: - 

II, = exp 
1( 

d50 
1s )g )Y3 

(8.5.2) -V2 

Figure 8.5.2 shows the effect of each group upon the ratio of equilibrium tidal 

ratio, are , over the tidal ratio, a, . The equilibrium tidal ratio is defined by the 

following: - 

_ 

Tdme 
are 

Tse 

where, 

Tdmý -Transport due to equilibrium depth-average values 

T, 
e -Equilibrium transport 

(8.5.3) 

Again, equilibrium values are used so that limiting properties can be utilised. 
Figure 8.5.2 shows that the parameterisation should include II, , 112 and 117 

since only these groups show significant variance in the ordinate. The 

parameterisation function used is therefore given by: - 

Pa, 

arg 1- ew 
(8.5.4) 

where, 

w= _anýºn2Zný 
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The results of the regression analysis for the parameterised version of the tidal 

ratio (a, ) are shown in table 8.3.6. It is clear by the value of the analysis 

variables that the parameterisation is an excellent approximation. The mean % 

error indicates that the parameterisation is incredibly accurate, only 0.14% 

average error. The maximum % error is only 0.655%. The results from the 

independent sets (table 8.3.7) support the accuracy suggested by the regression 

analysis. The excellent agreement is shown graphically in figure 8.5.3; the bold 

line signifies perfect agreement. Figure 8.5.4 shows the residual plots for the 

proposed parameterisation. Again, the absence of any patterns validates the 

methods used in the regression analysis. 

It is also clear that the parameterisation tends to its equilibrium value. Consider 

the following: - 

d50 -> o n, -p co , II7 _1. 
00 

ßl A>o 

a<O 

Since n, is an exponential function, it will dominate the effect of fl7 ; 

therefore: - 

Pa, 1 
_1 

are 1- e-°° 

i. e. Pa, -+ are 

It is also clear that the parameterisation is only valid when the equilibrium value 

is non-zero. It is assumed that a zero value corresponds to zero transport, in 

which case the parameterisation is not applied. 

The parameterisation for the transport due to depth-average contributions (PTdm ) 

is therefore given by: - 
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PTdm = 
a" PT"., (8.5.3) 

1-ew 

This then leads to the following parameterisation for the depth-average 

concentration: - 

Pc = 
PTdm 

(h - a)ü 
(8.5.4) 

The parameterisation for the transport due to dispersive/fluctuating components 

is then given by: - 

PTd; 
sp, x = PTs, 

x - 
PTA� (8.5.5) 

Hence, the parameterised Corrector method is given by: - 

aPTs, 
X +ü 

äPTS, 
x = Pc (h - a) 

äu 
+ 

aPTd 
SP. x (8.5.6) 

at ax at at 

8.6 Results 

8.6.1 Accuracy 

The new parameterised Corrector model, equation (8.5.6), is compared against 

results from the conventional 2DV model for several test cases so that the 

accuracy of the new method can be assessed. In all cases the flow field is given a 

uniform depth-average value in the longitudinal direction but allowed to vary 

vertically according to the influence of the bed forms. Details of the data sets can 
be found in table 8.6.1. 

Both models were run using the same machine so that computation time can be 

compared. The UNIX system provided by the University of Liverpool was used 
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in all tests. The system uses four 400MHz CPU's with 4Mb cache and 1Gb 

memory. 

Nine horizontal grid points were used in all the test cases; k =1 being the inflow 

grid with k=9 as the outflow grid. 

Table 8.6.2 shows the percentage error during the mid-tide phase, 2- 4hrs, at 

each longitudinal grid point for each data set. Values for the full period are not 

given as errors of the order 1000% can occur during the beginning and end due 

to the small magnitude of transport being considered. It can be seen from the 

following test cases and accompanying figures that the interval containing the 

maximum tidal velocity produces the main error in terms of actual transport, 

rather than percentage error, and is therefore the main focus for analysis. 

Test Case 1: data set 600 

Figure 8.6.1 shows a comparison between the results obtained by the 

conventional model (2DV) and the new parameterised Corrector method (Param) 

at each of the nine horizontal grid points. It can be seen that the accuracy of the 

parameterised Corrector method is extremely good at each grid point. This is 

supported by figure 8.6.2, which shows the percentage error between the two 

models for the mid-tide region. Average error values during the mid-tide period 

are of the order of 1.5% for those grid points near the inflow boundary, whilst the 

error rises to 3% towards the outflow boundary. 

Test Case 2: data set 601 

This data set is essentially the same as set 600 except the sediment distribution 

has been altered. Here, the sediment particles are larger since the increment in 

the longitudinal direction is now ten microns rather than five. Again, the 

parameterised Corrector method is seen to give a good approximation to the 

conventional 2DV model as shown by figure 8.6.3. The main cause for the slight 

error would seem to occur near the outflow boundary where the sediment grain 

sizes are largest. This is supported by figure 8.6.4 where higher errors are shown 
for those grid points near the outflow boundary. Table 8.6.2 shows that the 
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average percentage error for the mid-tide region for each of the nine grid points 

is still remarkably low, in fact, errors are of order 1.5% near the inflow boundary. 

Test Case 3: data set 602 

This data set represents a change in standard deviation of the sediment grain 

distribution; otherwise it is the same as set 601. The parameterised Corrector 

method is seen to give a remarkably good agreement with the conventional 2DV 

model (figure 8.6.5). Table 8.6.2 shows that the average percentage error for 

each horizontal grid point is very low, ranging from 1.26% to 3.06%. It is 

interesting to note that the errors near the outflow boundary are considerably less 

than the corresponding errors for set 601. This would suggest that the wider 

range of particle size, due to the increase in standard deviation, causes the 

smaller grain particles to become more influential and hence negate the error 

incurred for larger grain sizes. 

Test Case 4: data set 603 

Data set 603 is identical to data set 602 except that now the mean water level has 

been increased. 

Figure 8.6.7 shows that again the overall parameterisation is accurate. However, 

the parameterisation for the transport at maximum velocity seems to slightly over 

predict and also shows a slight error in the lag near the outflow boundary. This 

error seems to be due to the larger particle sizes near the outflow boundary rather 
than any influence of the change in mean water depth since this parameter is 

common to all parameterised quantities bar the tidal ratio. 

Test Case 5: data set 604 

This data set represents an increase in grain size from that used in set 603. Table 

8.6.2 supports the theory that the parameterisation is less accurate for larger grain 
sizes. Near the outflow boundary it can be seen that the errors are slightly worse 
than the corresponding errors for set 603, although still less than 10%. 
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Test Case 6: data set 605 

Data set 605 represents a bed that has a different spread of sediment sizes in each 

horizontal grid. The standard deviation of the sediment particle size in each grid 

increases in the longitudinal direction so that the spread of sediment fraction 

sizes also increases. This represents a more challenging situation and therefore 

shows the flexibility of the parameterisation. 

It can be seen from figure 8.6.11 that the parameterised Corrector method 

produces a very good approximation for all of the -nine horizontal grid points. 
Table 8.6.2 shows that the average percentage error during the mid-tide period is 

low for all computational grid points, as low as only 1.42% for grid point k =1. 
The highest error occurs for the outflow boundary where both the standard 
deviation of grain size and median grain size are maximum; however, this is still 

very low (2.78%). 

Test Case 7: data set 805 

The parameterised Corrector method was also run for the data sets used to show 
the effect of the longitudinal component of the model, see chapter 6 and also 
table 6.4.1. It should be noted that both set 805 and set 807 are run with an 
increased maximum depth-average longitudinal tidal velocity, i. e. 2 ms". ý 

Figure 8.6.13 shows good agreement for all nine grid points of set 805. This is 

supported by the low values for the average error during the mid-tide phase as 
shown in table 8.6.2, only 1.86% for the last five grid points. 

Test Case 8: data set 807 

Figure 8.6.15 shows excellent agreement for set 807. Figure 8.6.16 shows that 
the parameterisation for the transport at maximum velocity is particularly good; 
typically only a 1.5% error. The overall error is also shown to very good for all 
computation points; table 8.6.2 shows values of the order 2%. 
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8.6.2 Computation Time 

The testing shown in the previous section shows that the parameterised Corrector 

method gives a very good approximation to the tidal transport rates for a variety 

of simple situations. The real purpose of using the parameterised version of the 

Corrector method is to reduce computation time without significant loss in 

accuracy; it therefore remains to show that the computation time has been 

significantly reduced. 

Table 8.6.3 gives the computation times for the data sets used in the previous 

section. [The efficiency is defined as the ratio of the Parameterised Corrector 

Method over the conventional method, expressed as a percentage. ] 

It can clearly be seen that the parameterised Corrector method is significantly 
faster than the conventional method. The new method requires approximately 
60% of the computational time used by the conventional method in all test cases. 

This is also a vast improvement on the non-parameterised Corrector method. 
Chapter 6 showed that the non-parameterised Corrector method requires 72% of 
the time used by the conventional 2DV approach, see table 6.5.1; this implies 

that the parameterised version provides a further reduction of approximately 10% 
in computation time for a system with only nine computation points. 

8.7 Summary 

The parameterised 1DV model presented in chapter 7 has been modified so that 
it may be used in a 2DV system. This has been achieved by including the 
reference level for sediment calculations as a characteristic parameter. The 

parameterisation is then based on the seven groups derived in chapter 7 plus a 
new group reflecting the influence of the reference level. 

Regression analysis shows that the parameterised model is both valid and 
accurate for all quantities parameterised and therefore suitable to be used in a 
2DV system. 
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One further parameterisation was performed in order to obtain values of the 

transport due to depth-mean values. The parameterisation is based on the fact 

that the ratio of transport due to depth-mean values and the actual transport rate 

remains approximately constant throughout the flood period. By parameterising 

this ratio and using the parameterised 1DV model described in section 8.2, it is 

possible to obtain the transport due to depth-mean values. From this, it is then 

possible to obtain both the depth-mean concentration and the transport due to 

fluctuations from depth-mean values. 

All parameterisations are then combined to form a new parameterised Corrector 

method. Results from eight independent data sets indicate that the new 

parameterised Corrector method retains most of the accuracy shown by the non- 

parameterised method. 

It has also been shown that the time required for computations is drastically 

reduced by using the new parameterised Corrector method, only 60% of the time 

taken by a conventional 2DV approach for nine computation points. It has also 

been shown that the new parameterised Corrector method requires 10% less 

computation time than the non-parameterised version for a system of nine 
longitudinal computation points. 
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Set r (m) hm (m) üm (ms) d5o (m) up (s) ß a (m) 

300 3 12 1 0.00015 44000 1.7044 0.00375 
301 3 12 1 0.00015 44000 1.7044 0.01125 
302 3 12 1 0.00015 44000 1.7044 0.01875 
303 3 12 1 0.00015 44000 1.7044 0.02625 

304 3 12 1 0.00015 44000 1.7044 0.03375 
305 3 12 1 0.00015 44000 1.7044 0.04125 
306 3 12 1 0.00015 44000 1.7044 0.04875 
307 3 12 1 0.00015 44000 1.7044 0.05625 
308 3 12 1 0.00015 44000 1.7044 0.06375 
309 6 17 1.6 0.0002 44712 1.9 0.01631 
310 6 17 1.6 0.0002 44712 1.9 0.048929 
311 6 17 1.6 0.0002 44712 1.9 0.081549 
312 6 17 1.6 0.0002 44712 1.9 0.114168 
313 6 17 1.6 0.0002 44712 1.9 0.146788 
314 6 17 1.6 0.0002 44712 1.9 0.179407 
315 6 17 1.6 0.0002 44712 1.9 0.212027 
316 6 17 1.6 0.0002 44712 1.9 0.244646 
317 6 17 1.6 0.0002 44712 1.9 0.277265 
318 9 20 2 0.00023 43500 1.8 0.069128 
319 9 20 2 0.00023 43500 1.8 0.207383 
320 9 20 2 0.00023 43500 1.8 0.345639 
321 9 20 2 0.00023 43500 1.8 0.483895 
322 9 20 2 0.00023 43500 1.8 0.62215 
323 9 20 2 0.00023 43500 1.8 0.760406 
324 9 20 2 0.00023 43500 1.8 0.898662 
325 9 20 2 0.00023 43500 1.8 1.036917 
326 9 20 2 0.00023 43500 1.8 1.175173 

Table 8.2.1: Extra data sets used in the regression analysis due to the change in reference level for 
the parameterised Corrector method 
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Set a (m) fl7 

100 0.0075 50 
101 0.008 50 
102 0.010158 59.75294 
103 0.012887 71.59444 
104 0.016127 84.87895 
105 0.020144 100.72 
106 0.024501 116.6714 
107 0.0295 134.0909 
108 0.035189 152.9957 
109 0.016082 94.6 
110 0.020364 113.1333 
111 0.025437 133.8789 
112 0.031546 157.73 
113 0.038393 182.8238 
114 0.046251 210.2318 
115 0.055192 239.9652 
116 0.065285 272.0208 
117 0.076589 306.356 
118 0.103304 491.9238 
119 0.112529 523.3907 
120 0.122296 555.8909 
121 0.132615 589.4 
122 0.143498 623.9043 
123 0.154954 659.3787 
124 0.166988 695.7833 
125 0.179608 733.0939 
126 0.192818 771.272 
127 0.03968 180.3636 
128 0.0398 180.9091 
129 0.03991 181.4091 
130 0.040014 181.8818 
131 0.040111 182.3227 
132 0.040203 182.7409 
133 0.04029 183.1364 
134 0.040372 183.5091 
135 0.040451 183.8682 
136 0.084536 338.144 
137 0.084682 338.728 
138 0.084818 339.272 
139 0.084946 339.784 
140 0.085066 340.264 
141 0.08518 340.72 
142 0.089222 356.888 
143 0.095211 380.844 
144 0.10051 402.04 
145 0.100756 438.0696 
146 0.102851 447.1783 
147 0.104634 454.9304 
148 0.106168 461.6 
149 0.107504 467.4087 
150 0.108681 472.5261 

Set a (m) n7 
151 0.109725 477.0652 
152 0.110662 481.1391 
153 0.111505 484.8043 
154 0.0075 50 
155 0.0075 50 
156 0.007923 52.82 
157 0.008853 59.02 
158 0.00977 65.13333 
159 0.010679 71.19333 
160 0.011582 77.21333 
161 0.012478 83.18667 
162 0.020529 136.86 
163 0.016571 82.855 
164 0.018644 93.22 
165 0.020691 103.455 
166 0.022718 113.59 
167 0.024731 123.655 
168 0.026731 133.655 
169 0.038164 190.82 
170 0.057079 285.395 
171 0.066765 333.825 
172 0.022378 101.7182 
173 0.026037 118.35 
174 0.029574 134.4273 
175 0.03303 150.1364 
176 0.036426 165.5727 
177 0.039775 180.7955 
178 0.043084 195.8364 
179 0.04636 210.7273 
180 0.073488 334.0364 
181 0.01122 66 
182 0.010802 63.54118 
183 0.010441 61.41765 
184 0.010123 59.54706 
185 0.009841 57.88824 
186 0.009587 56.39412 
187 0.009358 55.04706 
188 0.00915 53.82353 
189 0.00896 52.70588 
190 0.02946 155.0526 
191 0.02841 149.5263 
192 0.027492 144.6947 
193 0.02668 140.4211 
194 0.025956 136.6105 
195 0.025303 133.1737 
196 0.024711 130.0579 
197 0.02417 127.2105 
198 0.023675 124.6053 
199 0.096971 461.7667 
200 0.096181 458.0048 
201 0.095482 454.6762 

Table 8.3.4: Extra data used in regression analysis due to change in reference level 



Set a (m) 117 
- 202 0.094849 451.66T9 

203 0.094267 448.8905 
204 0.093723 446.3 
205 0.093208 443.8476 
206 0.092712 441.4857 
207 0.09223 439.1905 
208 0.008 50 
209 0.008 50 
210 0.008 50 
211 0.008 50 
212 0.008 50 
213 0.008 50 
214 0.008 50 
215 0.008 50 
216 0.008 50 
217 0.024101 120.505 
218 0.024755 123.775 
219 0.025409 127.045 
220 0.026061 130.305 
221 0.026713 133.565 
222 0.027364 136.82 
223 0.028014 140.07 
224 0.028663 143.315 
225 0.029773 148.865 
226 0.114379 497.3 
227 0.117418 510.513 
228 0.12045 523.6957 
229 0.123475 536.8478 
230 0.126493 549.9696 
231 0.129505 563.0652 
232 0.132508 576.1217 
233 0.135504 589.1478 
234 0.140618 611.3826 
235 0.0075 50 
236 0.0075 50 
237 0.0075 50 
238 0.0075 50 
239 0.0075 50 
240 0.0075 50 
241 0.0075 50 
242 0.0075 50 
243 0.0075 50 
244 0.025952 129.76 
245 0.026415 132.075 

Set a (m) 117 
246 0.026876 134.38 
247 0.027335 136.675 
248 0.027792 138.96 
249 0.028246 141.23 
250 0.028698 143.49 
251 0.029149 145.745 
252 0.029598 147.99 
253 0.101166 459.8455 
254 0.101446 461.1182 
255 0.101829 462.8591 
256 0.102283 464.9227 
257 0.102788 467.2182 
258 0.103333 469.6955 
259 0.103908 472.3091 
260 0.104507 475.0318 
261 0.105128 477.8545 
262 0.0075 50 
263 0.008 50 
264 0.009273 54.54706 
265 0.012385 68.80556 
266 0.01626 85.57895 
267 0.021184 105.92 
268 0.026911 128.1476 
269 0.033772 153.5091 
270 0.04191 182.2174 
271 0.013506 79.44706 
272 0.017919 99.55 
273 0.023387 123.0895 
274 0.030213 151.065 
275 0.038239 182.0905 
276 0.047812 217.3273 
277 0.059114 257.0174 
278 0.085473 356.1375 
279 0.116113 464.452 
280 0.009001 60.00667 
281 0.012385 77.40625 
282 0.016694 98.2 
283 0.028708 159.4889 
284 0.044213 232.7 
285 0.065045 325.225 
286 0.08432 401.5238 
287 0.10726 487.5455 
288 0.134314 583.9739 

Table 8.3.4 contd: Extra data used in regression analysis due to change in reference level 
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Set Average % error 
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 

600 1.42 1.52 1.67 1.84 2.06 2.32 2.64 3.10 3.64 
601 1.38 1.58 1.85 2.18 2.65 3.65 4.60 5.71 6.88 
602 1.26 1.40 1.77 2.08 2.32 2.62 2.72 2.88 3.06 
603 7.57 6.99 6.57 6.49 6.73 6.90 7.59 8.66 9.83 
604 5.85 6.26 6.72 7.21 7.72 8.24 8.81 9.39 9.99 
605 1.42 1.52 1.74 1.88 2.10 2.21 2.43 2.54 2.78 
805 6.96 6.96 6.96 2.86 1.86 1.86 1.86 1.86 1.86 
807 2.65 1.26 1.82 1.82 1.82 1.82 1.82 1.82 1.82 

Table 8.6.2: Average percentage error during mid-tide period for test data sets 

Input Set Conventional 2DV 

Hrs: min: s 

Parameterisation 

Hrs: min: s 

Efficiency (%) 

600 1: 26: 10.07 0: 46: 84.51 55 

601 1: 23: 04.05 0: 47: 01.39 56 

602 1: 23: 53.02 0: 47: 56.79 57 

603 1: 23: 17.66 0: 47: 98.81 58 

604 1: 23: 38.87 0: 50: 68.35 61 

605 1: 23: 40.05 0: 47: 01.39 56 

805 1: 29: 26.25 0: 49: 53.22 56 

807 1: 29: 09.26 0: 49: 56.92 58 

Table 8.6.3: Comparison of computational time required for the 2DV methods 
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Figure 8.5.1a&b: Relational test of transport (TS) against transport due to depth-average 

values (Tam). 
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Figure 8.6.1a-c: Comparison between parameterised Corrector (Param) and 
conventional 2DV (2DV) 
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Figure 8.6.1d-f: Comparison between parameterised Corrector (Param) and 
conventional 2DV (2DV) 
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Figure 8.6.1g-i: Comparison between parameterised Corrector (Param) and 
conventional 2DV (2DV) 
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Error plot for mid-tide: set 600 
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Figure 8.6.2a-c: Error between conventional 2DV method and parameterised Corrector 
method during the mid-tide phase. 



Error plot for mid-tide: set 600 
k4 

3.5 

3 

2.5 

2 

1.5 

1 

0.5 
OONM 

to tt a0 O r- C7 d' tC CO 
N CV NNNN co M co co M V) co 

time (hrs) 
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Figure 8.6.2d-f: Error between conventional 2DV method and parameterised Corrector 
method during the mid-tide phase. 



Error plot for mid-tide: set 600 
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Figure 8.6.2g-i: Error between conventional 2DV method and parameterised Corrector 
method during the mid-tide phase. 
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Figure 8.6.3a-c: Comparison between parameterised Corrector method (Param) and 
conventional 2DV (2DV) 
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Figure 8.6.3d-f: Comparison between parameterised Corrector method (Param) and 
conventional 2DV (2DV) 
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Figure 8.6.4a-c: Error between conventional 2DV method and parameterised Corrector 
method during the mid-tide phase. 
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Figure 8.6.4d-f: Error between conventional 2DV method and parameterised Corrector 
method during the mid-tide phase. 
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Figure 8.6.4g-i: Error between conventional 2DV method and parameterised Corrector 
method during the mid-tide phase. 
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Figure 8.6.6a-c: Error between conventional 2DV method and parameterised Corrector 
method during the mid-tide phase. 
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Figure 8.6.6d-f: Error between conventional 2DV method and parameterised Corrector 
method during the mid-tide phase. 
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Figure 8.6.6g-i: Error between conventional 2DV method and parameterised Corrector 
method during the mid-tide phase. 
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Figure 8.6.8a-c: Error between conventional 2DV method and parameterised Corrector 
method during the mid-tide phase. 
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Figure 8.6.8d-f: Error between conventional 2DV method and parameterised Corrector 
method during the mid-tide phase. 
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Figure 8.6.8g-i: Error between conventional 2DV method and parameterised Corrector 
method during the mid-tide phase. 
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Figure 8.6.10a-c: Error between conventional 2DV method and parameterised Corrector 
method during the mid-tide phase. 
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Figure 8.6.1Od-f: Error between conventional 2DV method and parameterised Corrector 
method during the mid-tide phase. 
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Figure 8.6.1Og-i: Error between conventional 2DV method and parameterised Corrector 
method during the mid-tide phase. 
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Figure 8.6.12a-c: Error between conventional 2DV method and parameterised Corrector 
method during the mid-tide phase. 
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Figure 8.6.12d-f: Error between conventional 2DV method and parameterised Corrector 
method during the mid-tide phase. 
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Figure 8.6.12g-i: Error between conventional 2DV method and parameterised Corrector 
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Figure 8.6.14a-c: Error between conventional 2DV method and parameterised Corrector 
method during the mid-tide phase. 
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Figure 8.6.14d-f: Error between conventional 2DV method and parameterised Corrector 
method during the mid-tide phase. 
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Figure 8.6.14g-i: Error between conventional 2DV method and parameterised Corrector 
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Chapter 9: Conclusions and Recommendations 

Chapter 9 

Conclusions and Recommendations 

9.1 Introduction 

The work presented within this thesis has been undertaken in order to satisfy the 

aims set out in chapter 1; i. e.: - 

1) To present the details of a new theory proposed by O'Connor (1999) for a 

Predictor-Corrector method for calculating tidal suspended sediment 

transport rates. 
2) To produce a parameterised 1DV model that can be used in place of a 

numerical 1DV model in the new Corrector method. 
3) To investigate the accuracy and computational cost of the new Corrector 

method 

These aims are based on the limitations faced by present methods when 

considering a large number of spatial computation points. If the area of study is 

considered uniform then only a 1DV model is required to calculate transport 

rates; however, spatial non-uniformity requires a 2DV or fully 3D approach. 
Standard methods for solving 2DV and 3D models are based on numerical 

solutions, which can be very demanding in computer run time if applied to a 
large number of computation points. It is necessary therefore to consider new 

methods for calculating sediment transport rates that reduce the computational 

cost without losing accuracy. 

Both the new parameterised Corrector method and the non-parameterised version 

can be seen to be such models. Their construction involved the use of several 
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other models, detailed in their respective chapters. This chapter begins by 

summarising those models used throughout the thesis. 

Attention is then focused on the main aims of the thesis. Section 9.3 presents a 

discussion of the final results and draws conclusions concerning the accuracy and 

computational cost of both the new parameterised Corrector method and the non- 

parameterised version. 

The results from both the new parameterised Corrector method and the non- 

parameterised version have raised the possibility that the methods might be 

improved still further and applied to more complicated situations. Ideas for 

further research are therefore discussed in section 9.4. 

9.2 Summary of Methods 

The new parameterised Corrector method is based on the results of several other 

models, all of which are described within this thesis. 

The process begins with the construction of a model that predicts bed form 

dimensions for tidal conditions, see chapter 3. The model applies a tidal limit, 

suggested by O'Connor and Duckett (1989), to the steady state predictions of 
Van Rijn (1993). The bed form dimensions are then used to calculate the 
hydraulic roughness of the system. 

Chapter 4 describes how the roughness values are then incorporated into a 1DV 

numerical model that predicts tidal suspended sediment transport rates. The 1DV 

model is given by the integral of the product of concentration and velocity values 
up through the water column. The concentration component uses a parabolic 
vertical sediment diffusion coefficient, the grain fall velocity of Soulsby (1994), 

the reference level and reference concentration of Van Rijn (1993) and a simple 
model for the vertical flow velocity based on the rate of change of the water 
depth. The concentration model is then discretised using the scheme proposed by 
Stone and Brian (1963) for the temporal derivative and a Crank-Nicholson 
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scheme for the spatial derivatives. The resulting set of simultaneous equations is 

solved using the method of Gaussian Elimination. The longitudinal velocity is 

given by a simple logarithmic profile. The model also incorporates a modified 

version of the coordinate transform suggested by O'Connor (1997). The 

integration is then performed using Simpson's rule for numerical integration. 

The 1DV model is of paramount importance since it provides the first component 

of both the conventional 2DV model and the new Corrector method. The details 

of the new Corrector method are given in chapter 2, thus satisfying the first aim 

of the thesis. Chapter 5 then describes how the new Corrector method 
incorporates the numerical 1DV model. The method consists of two components; 

the first is the predictor step, which is simply the 1DV model for suspended 

sediment transport rates. The second component is the new Corrector step. The 

new Corrector step is derived from a 1DH model obtained when the 2DV system 
is split into its vertical and longitudinal components. The equation defining the 

Corrector step is obtained by multiplying the 1DH equation by the depth-average 

longitudinal flow velocity, then integrating over the depth. 

The new Corrector method is then tested against a conventional 2DV model to 

assess its accuracy and computational cost. Essentially, the conventional 2DV 

model is the 1DV model with an added component that adjusts results for 

longitudinal advection. Details of both the construction of the 2DV conventional 

model and the test conditions are given in chapter 6. 

Parameterisation of the 1DV model is then based on the Fourier series 
approximation to the tidal suspended sediment transport rates. Chapter 7 shows 
how a parameterised 1DV model is constructed from ten characteristic 
parameters that define the system. The parameterisation fits a functional form to 
five non-dimensional parameter groups using regression analysis on the results 
from the 1DV numerical model. 

Chapter 8 then describes how this 1DV parameterised model is modified so that 
it may be used in place of the numerical 1DV model in the. new Corrector 

method. Essentially, the modification takes the form of the addition of an extra 
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characteristic parameter, or the associated non-dimensional group to be more 

precise, that accounts for the change in reference level for the 2DV system. 

Chapter 8 also presents details of the parameterisation for the transport rate due 

to depth-average values and how it is used, together with the modified 

parameterisation of the 1DV model, to produce a new parameterised Corrector 

method. 

It is seen therefore, that the thesis describes a number of models, i. e.: - 

i). A tidal bed form model. 
ii). A 1DV tidal suspended sediment transport model. 
iii). A conventional 2DV model for calculating tidal suspended sediment 

transport rates. 
iv). A new Corrector method. 

yv). A Fourier series approximation to tidal suspended sediment transport rates. 

vi). A parameterised 1DV model. 

vii). A parameterised 1DV model that can be used in a 2DV system. 

viii). A new parametric Corrector method. 

9.3 Conclusions 

The main aim of the thesis is to reduce computational costs by using a 

parameterised 1DV model in a new Corrector method for calculating 2DV tidal 

suspended sediment transport rates. The conclusions are therefore split into two 

sections; the first concerns the accuracy of the new approach, the second 

concerns the time required for computations. 

9.3.1 Accuracy 

New Corrector Method 

Chapter 6 presents the results of comparison tests between the conventional 2DV 

model and the new Corrector method. It is shown that the two methods are 
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almost indistinguishable for the two data sets used in the test. The difference 

between the predicted values of transport rates is shown graphically by figures 

6.5.6 and 6.5.7. It is clearly seen that the two methods are in good agreement. It 

is concluded therefore, that the accuracy of the new Corrector method is of the 

same order as the conventional approach to 2DV suspended sediment transport 

modelling for the range of conditions tested. 

Parameterised 1DV Models 

The regression analysis performed in chapter 7 shows the results of fitting 

exponential and power functions to the five non-dimensional groups obtained 

from the set of characteristic parameters. It is shown that most of the 

parameterised quantities are adequately reproduced. However, a6 and b6 both ask 

questions of the validity of the functional form suggested. The error in terms of 

actual transport rate is shown to be insignificant since these quantities are small 

in magnitude and are therefore not very influential in the overall 

parameterisation. 

Testing of the combined parameterisations, in the form of the parameterised 

Fourier series, shows good agreement with the results from the numerical 1DV 

model. All six of the test sets shown in figure 7.7.9 show good agreement. It is 

shown therefore that the accuracy of the parameterised 1DV model is only 

slightly less than that of the numerical approach. 

The modified parameterised 1DV model returns similar regression results as the 

non-modified approach. Again, only the parameterisations for a6 and b6 are 

questionable. However, the same order of magnitude argument applies. It is seen 

therefore that the error in the parameterised Fourier series due to these quantities 
is negligible. 

Parameterised Corrector Method 

The accuracy of the parameterised Corrector method relies upon the accuracy of 

each of the parameterised terms used in the method. It has already been stated 
that the accuracy of the parameterised 1DV model is slightly less than its 

numerical counterpart. However, the parameterised Corrector method also uses 
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parameterisations for both the depth-average concentration and the transport due 

to fluctuations from depth-mean values. These in turn depend upon the 

parameterisations for the 1DV transport rates and the parameterisation of the 

tidal ratio. 

Regression analysis for the parameterisation of the tidal ratio returns excellent 

results such that the maximum error between predicted and actual values is only 
0.655% for the data sets used in the analysis. This suggests that error incurred by 

the parameterisation for the tidal ratio is practically negligible. 

Tests described in chapter 8, comparing the new parameterised Corrector method 

with results from the conventional 2DV model, show that the two models are in 

reasonable agreement. For the eight test cases considered, the worst margin of 

error during the mid-tide phase is of the order 10%. This occurs for data set 604, 

which considers larger particle sizes. The overall margin of error is excellent 

with values as low as 1.26% for data set 807. It is shown therefore, that the error 
incurred by using the new parameterised Corrector method is of the order 10% or 
less for those situations considered. 

The error incurred by the parameterised Corrector method is predominately due 

to the parameterisation of the 1DV model since it has been shown that both the 

parameterisation for the tidal ratio and the new approach to 2DV transport rates 
do not produce significant error. 

9.3.2 Computational Cost 

The Corrector method has been constructed so that the number of calculations 
required to predict 2DV tidal suspended sediment transport rates is reduced. 
Essentially, the conventional approach calculates 1DV sediment concentration 
values at each longitudinal computation point. These values are then corrected 
for longitudinal effects at each vertical computation point. The new Corrector 

method begins with the same calculation for the vertical sediment concentration 
values at each longitudinal computation point. However, the next step is to 
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calculate the 1DV transport rate at each longitudinal computation point. The 

1DV transport rates are then corrected for longitudinal effects. Thus, only one 

calculation is required to correct for longitudinal effects rather than one 

calculation per vertical computation level as used by the conventional approach. 

New Corrector Method 

Chapter 6 compares the time required for both the conventional 2DV model and 

the new Corrector method for two simple test cases. It is shown that for the 

situation where only nine longitudinal computation points are used, the new 

Corrector method requires only 72% of the time used by the conventional model. 

Although this is significant in itself, if the model were expanded to include the 

lateral dimension and a larger number of horizontal computation points, then the 

reduction in the computational cost would be considerable. 

New parameterised Corrector Method 

Similar tests have been performed on the new parameterised Corrector method. 

Since the numerical solution procedure has been replaced by simple analytic 

expressions, the computational cost in calculating the 1DV tidal suspended 

sediment transport rates is greatly reduced. 

This is shown in the tests performed in chapter 8 where the computation time 

required for both the new parameterised Corrector method and the conventional 

2DV model are compared for eight data sets. It is shown that the new 

parameterised Corrector method requires only 60% of the computation time used 

by the conventional approach. 

It can be seen therefore, that the new Corrector method predicts 2DV tidal 

suspended sediment transport rates to the same degree of accuracy as the 

conventional approach but requires only 72% of the computation time for a 

simple situation. The parameterised Corrector method reduces the computation 

time still further, 60% of that required by the conventional approach and 10% 

less than that used by the non-parameterised version. However, this reduction in 

computation time is offset by an error of the order 10% or less. 
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9.4 Recommendations for Further Research 

Although the work presented in this thesis has satisfied all of the aims set out, it 

has also raised the possibility of further topics for research and indeed, further 

improvement to the presented work; ideas which, due to time constraints, were 

unable to be investigated in the present thesis. 

Further improvements to the accuracy and computational cost of the new 

parameterised Corrector method may be achieved by considering the following 

points: - 

1. A better insight into the functional relationship between the parameterisation 

quantities and the non-dimensional parameters groups, listed in chapter 8, 

may be achieved by the use of additional data sets. It should be noted 
however, that care must be taken when choosing data sets for the regression 

analysis since it is easy to produce a bias in the analysis. It is essential 

therefore that all combinations are represented proportionally. 
2. The parameterisation presented in this thesis requires the use of equilibrium 

values for the transport at maximum velocity and for the mean Fourier 

coefficients. Obviously, this requires the calculation of the equilibrium 

transport for each time step during the tidal cycle and then calculation of the 

Fourier series approximating the equilibrium tidal transport rates. If the 

parameterisation could be carried out without these values, perhaps using the 

basic quantities instead, then the time required for computation would be 

reduced still further. It is unclear how this would affect the accuracy of the 

parameterisation since the equilibrium values are used so that an exponential 
functional form may be considered. 

It should be remembered that the work presented in this thesis is designed as a 

preliminary investigation into the accuracy and computational cost of a new 

parameterised Corrector method for predicting 2DV tidal suspended sediment 
transport rates. It remains therefore to test the method for more complex 
situations. Possible areas for expansion are given as follows: - 
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1. The parameterisation should be expanded for more extreme tidal conditions, 

such as larger values for the median grain diameter and depth-average 

longitudinal flow velocity. 

2. Although flood or ebb dominated tides have been considered in the 

parameterisation, this should be expanded to include those tides where the 

flood phase, or ebb phase, is dominated by either the accelerating or 

decelerating stage. 
3. The model should also be expanded to account for flow reversal. 

4. As stated earlier, the reduction in computational cost would be even more 

dramatic if the lateral dimension was also considered. This appears to be 

obvious but still needs to be quantified. 
5. Only a simple flow field has been considered thus far. The validity of the 

new parameterised Corrector method should now be tested using a more 

complex flow pattern. 
6. Having shown the usefulness of the new parameterised Corrector method for 

tidal currents, the method should now be expanded to include the effects of 

waves. 
7. It should also be noted that a higher order interpolation scheme might be 

required for actual field application of either the new parameterised Corrector 

method or the non-parameterised version. A simple linear method was 

sufficient to show theoretically the relative accuracy between the new 

methods and the conventional 2DV approach. However, it may not be 

sufficient for field application. 
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Appendix A: Structure of Computer Models 

Appendix A 

Structure of Computer Models 

A. 1 Introduction 

The diagrams shown in this Appendix are designed to help clarify the models 
described in the thesis. The models concerned are: - 

1. The conventional 2DV model as described in chapter 6. 

2. The new Corrector method as described in chapter 5. 

3. The new parameterised Corrector method as described in chapter 8. 

All models are coded using FORTRAN 90 and are run on the UNIX system 

provided by the University of Liverpool. 
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A. 2 Conventional 2DV Model 

START 

Set parameter values 

Read input data 

Enter time loop I 

Calculate tidal descriptors: t, h, W 

Enter longitudinal loop 

Calculate bed form dimensions 

Calculate initiation of motion and reference level 

Set tidal values for bed form dimensions and reference level 

Exit longitudinal loop 

Exit time loop 

Non-dimensionalise longitudinal scale 

Set 2DV reference level 

A-2 



Appendix A: Structure of Computer Models 

Enter fraction loop 

Set initial values 

Enter time loop 

Calculate tidal descriptors, t, h, ü 

Enter longitudinal loop 

Calculate fraction grain size and fall velocity 

I Calculate roughness, bed-shear velocity and reference I 
concentration 

Enter vertical loop 

Calculate vertical coordinate, vertical diffusion coefficient, 
values for 1DV solution matrix and velocity profile 

Exit vertical loop 

Formulate solution matrix for 1DV concentration 

Solve matrix to give 1DV concentration values 

Exit longitudinal loop 
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Enter vertical loop I 

Enter longitudinal loop 

Calculate velocity profile 

Solve advection component 

Exit longitudinal loop 

Exit vertical loop 

Enter longitudinal loop 

Calculate bed-shear velocity and roughness 

Enter vertical loop 

Calculate velocity profile 

Exit vertical loop 

Calculate transport rates and write to output files 

Exit longitudinal loop 

Exit time loop 

Exit fraction loop 

Calculate overall values from fraction contributions 

STOP 
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A. 3 New Corrector Method 

START 

Set parameter values 

Read input data 

Enter time loop 

Calculate tidal descriptors: t, h, ti 

Enter longitudinal loop I 

Calculate bed form dimensions 

Calculate initiation of motion and reference level 

Set tidal values for bed form dimensions and reference level 

Exit longitudinal loop 

Exit time loop 

Non-dimensionalise longitudinal scale 

Set 2DV reference level 
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Enter fraction loop 

Set initial values 

Enter time loop 

Calculate tidal descriptors, t, h, 17 

Enter longitudinal loop 

Calculate fraction grain size and fall velocity 

I Calculate roughness, bed-shear velocity and reference I 
concentration 

Enter vertical loop 

Calculate vertical coordinate, vertical diffusion coefficient, 
values for 1DV solution matrix and velocity profile 

Exit vertical loop 

Formulate solution matrix for 1DV concentration 

Solve matrix to give 1DV concentration values 

Calculate 1DV transport rates 

Exit longitudinal loop 
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Appendix A: Structure of Computer Models 

A. 4 New Parameterised Corrector Method 

START 

Set parameter values 

Read input data 

Enter time loop 

Calculate tidal descriptors: t, h, W 

Enter longitudinal loop 

Calculate bed form dimensions 

Calculate initiation of motion and reference level 

Set tidal values for bed form dimensions and reference level 

Exit longitudinal loop 

Exit time loop 

Non-dimensionalise longitudinal scale 

Set 2DV reference level 
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I Enter fraction loop I 

Set initial values 

Enter time loop 

Calculate tidal descriptors, t, h, ü 

Enter longitudinal loop 

Calculate fraction grain size and fall velocity 

I Calculate roughness, bed-shear velocity and reference I 
concentration 

Enter vertical loop 

Calculate vertical coordinate, vertical diffusion coefficient and 
velocity profile 

Exit vertical loop 

Calculate equilibrium transport variables 

Calculate Fourier coefficients time step component 

Write equilibrium transport variables to output file 

Exit longitudinal loop 
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Exit time loop 

Calculate Fourier coefficient for grain fraction 

Exit fraction loop 

Calculate overall values from fraction contributions 

Calculate equilibrium tidal ratio 

Enter time loop 

Calculate tidal descriptors, t, h, W 

Enter longitudinal loop 

Calculate parameterised quantities 

Exit longitudinal loop 

Enter longitudinal loop 

Solve for advection process 

Exit longitudinal loop 

Set up matrix for non-advection longitudinal component 

I Solve matrix to give 2DV transport rates and write to output I 
files 
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Appendix B 

Numerical Solution of the 1DV 
Concentration Model 

B. 1 Introduction 

Chapter 4 described how the three-dimensional advection-diffusion model for the 

sediment concentration profile was derived from the principle of continuity. By 

considering only the vertical dimension and simplifying, the following equation 

was determined for the 1DV concentration: - 

z 

ýt = e5, 
Z 

a2+cs. 
Z 

-wi-w1 

Dc 
4.2.1) 

aZ az Dz 

The corresponding boundary conditions are given by: - 
c=0 at z=h 

C=Ca at z=a 

After applying the coordinate transform described in section 4.9, equation (4.2.1) 

becomes: - 

ac 
=A 

a2c 
+B 

ac 
(4.9.2) 

at az, 2 aZ, 

where, 

212h2 

a 
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ae,. L ah 
az -w+Wf +llz. Dr ez. = B= 

ýoh2,72 - ea%h 

The corresponding boundary conditions are now: - 
Surface: C=0 at Z. =1 

Bed: c=Ca at Z. =0 

(4.9.3) 

(4.9.4) 

The concentration profile is found by first discretising equation (4.9.2), then 

using finite difference techniques to approximate the derivatives. An implicit 

Crank-Nicholson scheme based on central differences is used to approximate 
both the first and second order spatial derivatives whilst the weighted-average 

approach of Stone and Brian (1963) is used to approximate the temporal 

derivative. 

The resulting tri-diagonal solution matrix is solved using Gaussian Elimination, 

as described by Smith (1998). 

The discretisation of the solution domain consists of dividing the transformed 

vertical dimension into equal sized computation grids, i =1 ... H. The bed 

boundary is denoted by i =1 whilst the surface boundary is denoted by i= ii . 

B. 2 Spatial Derivatives 

Both first and second order spatial derivatives are approximated using an implicit 

Crank-Nicholson scheme, therefore the stability of the scheme is assumed to be 

satisfactory. The implicit scheme uses values from both present and previous 
time steps, equally weighted, to approximate the concentration gradients. The 

approximations for the spatial derivatives are therefore given by: - 

nn n-I n-1 ac 

_1 
Ci+l - Ci-1 

+ 
Ct+l - Ct+l 

az, 2 2Az. 2Az. 
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a2C 1 Cn _ 2cn i- Cn Cn-1 _ 2Cn-1 + Cn-1 i+l i i-1 + i+l 1 t-1 (B. 2.2) 

az; 2 L1z; Oz: 

B. 3 Temporal Derivative 

The temporal derivative is approximated using the finite difference scheme 

proposed by Stone and Brian (1963). The scheme uses values for both the present 

and previous time steps and then applies spatial weighting. The temporal 

derivative is therefore approximated by the following scheme: - 

1 n-1 n n-1 ac 1n n- 2 cr+1 - cr+i 
+ cr - cr 

+1 cr-i - cr-i (B. 3.1) 
r6 or 3 er 6 et 

B. 4 Numerical Scheme 

Substituting the finite difference approximations for the derivative terms and 
discretising the coefficients, equation (4.9.2) becomes: - 

I(n 
n-1 n- n-1 n- n-1 

60t cý+i - cf+i + 4cß 4c, + cý- cr-I 

=-A. 2 

(c, ",, - 2c, + c" + Cn-1 _ 2Cn-1 + cn-1)+-ý, -(Cl+, 4n _ cn + Cn-1 _ Cn-1t i-1 Mt t-1 t-1 t+l t1 2J Oz Az, 

(B. 4.1) 

If r= 
At 

, then: - 

cr+l 1-3rA; -2 rAz, Bi +cr (4+6rA; +c 1 1-3rAr +2 thz, Br 

ci i 1+3rA; +3 rEiz. B; +ci-1(4-6rA; )+ci i' 
[1+3rA. 

-23 rAz. B; 

(B. 4.2) 
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Let: - 
at =1- 3rA,; -1.5rAz, B, a2, =1+3r4. +1.5rLz, Bi 

ý, =1-3rA1 +1.5rAz, B, 

yy =4+6rA 

Then equation (B. 4.2) reduces to: - 

ß2t =1 +3rA; -1.5rdz, B, 

y2, =4- 6rA; 

Q'1c + YC" +ßc = a2 c"-1 + %ý2 C"-1 .ý2 ßn-1 (B. 4.3) i+i iti i-1 r i+l itfJ i-1 

for i=1... ii. 

B. 5 Boundary Conditions 

B. 5.1 Surface Boundary 

Since a zero concentration is applied at the water surface, the calculation at i= ii 

is not required. This also simplifies the scheme for the calculation at i= ii -1, 
i. e.: - 

a cn +r 
-i 

ýi 
/ý cn =L Cn-1 +, y2. Cn 

1 +/'2 Cn-1 
u-1 ti it-1 ii-1 /'ii-1 ii-2 u-1 ii u-1 it 1 ti-1 ii-2 

But cü = cü"1 = 0, therefore equation (B. 7) reduces to: - 

i ii-lCn-1 
+ ßii-lCii-2 = Y2it-1 C! 

-1 
+ 

/ý' 
2ii-1 Cii 2 

(B. 5.2) 

B. 5.2 Bed Boundary 

Applying condition (4.9.4) to equation (B. 4.3) dispenses with the need for the 

calculation at i=1; it also simplifies the calculation for i=2, i. e.: - 

Q' Cn + Cn +ß Cn= .2 Cn-1 +2 
2C2"-1 + ß2 Cn-1 (B. 5.3) 2s YZ 2A CI 23Y2a2 1 
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Since ci = cä and similarly c, '=c: -', equation (B. 5.3) reduces to: - 

ac" + YCn +ß Cn = a2 Cn-1 + Y2 Cn- + {ý2 Cn-1 23222a 2C3 2C2 2a 

Thus, since the reference concentration for each time step is known, the 

numerical scheme for the calculation at i=2 is given by: - 

aic3"+ Y2c2" =a22 c3'+ Y22 CZ"-'+ß22 ca2 "-'- ß3c 
a" (B. 5.4) 

where the terms on the right hand side are all known. 

B. 6 Solution Matrix 

Combining equations (B. 4.3), (B. 5.2) and (B. 5.4) gives the following solution 

matrix: - 

Y2 a2 cn rhs2 

Y3 a3 c3 rhs3 

A Y, a, c; = rhs, (B. 6.1) 

n 
,, -2 Y�-2 a�-z c�-2 rhs�-2 

n 
,, -l Y�-i c�-i rhs�-i 

where, 
rhs2 = a22 C3-1 + y22Ci-1 + ß22Cä-1 

- 
ß2Ca 

n- n- 
11 + y2 jc -1 + fl21 ci-11 rhs, =3.. -2=a2, c+ 

rlts;; -1 = y2u-1 c -i + %3211-1 ci 
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B. 7 Gaussian Elimination 

Since the solution matrix (B. 6.1) is tri-diagonal, it is possible to use a simple 

iterative process to solve for the concentration values. The method of Gaussian 

Elimination, described by Smith (1998), is shown below. 

Stepl 

'11=Yi 

a, -, 
A 

it=i... ýj-t = Yr 

Step 2 

S2 = rhs2 

Si=2.. ii-1 = rhsi -ASi-1 
%i-i 

Step 3 

cii-1 -_ 

Sti-1 

%ii-1 

- 
Si - a; c, +l cr=ii-z... z - 

l%r 

It should also be noted that the Gaussian elimination technique must satisfy the 
following stability criteria: - 

(i) a, >0, 'B; >0 and y, >0 

(ii) Y, > ac-i + A+i 

(iii) r, >a, +ß1 
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Appendix C 

Numerical Solution of the Corrector 
Method 

C. 1 Introduction 

This appendix contains details of the numerical techniques used to solve the new 
Corrector method proposed by O'Connor (1999). The solution builds upon the 

1DV sediment transport rates, which are solved by techniques described in 

appendix B. 

It must be noted that the diffusive transport is neglected so that the new Corrector 

method is given by the equation described below. 

DT". 
+ 

IT,., 
_ (h _ Q) 

ai 
+ 

aTd'* 
P, x (5.4.1) T ax at at 

First, the operator splitting technique is applied to equation (5.4.1) to give: - 

aTs. X + aT3. x =0 at 
11ax 

__ = E(h - a) a+ aTdfsP. X (5.6.2) at at at 

The method of characteristic projection is used to solve the advection 
component, equation (5.6.1), whilst a Stone and Brian (1963) finite difference 

scheme is used to solve equation (5.6.2). 
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The tri-diagonal matrix obtained by the finite difference approximation to 

equation (5.6.2) is solved by the method of Gaussian Elimination described in 

appendix B. 

The discretisation of the solution domain consists of dividing the longitudinal 

direction into equal sized computation grids, k =1... kk. The inflow boundary is 

denoted by k =1 whilst the outflow boundary is denoted by k= kk. 

C. 2 Method of Characteristic Projection 

C. 2.1 Characteristic Solution 

Equation (5.6.1) can be solved by first determining its characteristics. By 

following the method described by Smith (1998), the following equation is 

obtained for the characteristic solution of equation (5.6.1): - 

x=üt 

C. 2.2 Projection 

(C. 2.1) 

Since equation (5.6.1) is purely advection, the solution can be found by simply 

reversing the advection process. The transport value for the present time level at 

grid point k, Tý k, is projected backwards along the characteristic solution to the 

previous time level, denoted by the superscript n -1, see figure C. 1. It should be 

noted that the previous time level refers to the previous split, i. e. the 1DV 

transport values. 

The new transport rate is then calculated by considering the point at which the 
characteristic intercepts the previous time line. This value is simply the 1DV 
transport that is then advected to the grid point k by equation (5.6.1). 
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S, k- 
AX 

Figure C. 1: Projection method used in the solution of the Corrector method 

If the distance of the intercept from the point Ts k 11 is given by: - 

dx-wAt 

Then the percentage of the whole distance between Ts"k'1 and T" where the 

intercept occurs, is given by: - 

Ax - WAt 
rx = Ox 

(C. 2.2) 

The new value of transport can now be given by considering the percentage 

difference between the actual values of T, k'1 and T'-' i. e.: - 11 s, k 

Ts k= Ts" 1 +r (i';; 
- T' ' (C. 2.3) 

The projection method can be seen to calculate the new transport rate by using a 
weighted-average approach. 
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C. 2.3 Boundary Conditions 

Inflow Boundary 

When k =1, the transport rate is given by: - 

s, 0-F Y T"l-1 - T" n-1 T"= T n-1 
s, l x s, s, 0 

But the inflow boundary has been chosen such that the 1DV transport rates at the 

inflow boundary, k =1, are the same as those in the upstream grid, i. e. k=0. 

Therefore, the transport rate at the inflow boundary is simply: - 

TSI =Tsý' =Ti' (C. 2.4) 

Outflow Boundary 

Since flow reversal is not considered in the Corrector method, the flow is always 
in the same direction. The outflow boundary therefore, does not pose a problem, 
i. e.: - 

T nix = T,, nk-k-I + rx 
(T Ts 

-iý 
(C. 2.5) 

It must be noted however that these equations only hold if the advection does not 

continue for more than one grid size. Therefore, the following condition is 

applied: - 

Ax -w At >0 (C. 2.6) 

Since the spatial step, Ax, and the time step, At, have already been set, then this 

places a restriction on the depth-mean velocity, i. e.: - 

ü <- 
Ot 

(C. 2.7) 
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C. 3 Finite Difference Scheme 

As stated earlier, a Stone and Brian (1963) finite difference scheme is used to 

approximate the time derivatives in equation (5.6.2). The discretisation of the 

time derivatives gives the following approximations: - 

aT T'n _Tn-1 T+n _T+n1 Tn _Tn-1 s, s 
1 

s, k+l s, k+1 +2 sk s, k +1s, k-1 s. k-1 

at 6 At 3 At 6 At 

aT " "-' T d___ 1 disp, k+l -Tdisp, k+l 

at 6 At 

T. n _7+n-1 2 disp, k disp, k 

3 At 

Tn _Tn-1 
+1 

disp, k-1 disp, k-1 )(C. 
3.2) 

6 

It should be noted that the derivative of the depth-mean longitudinal flow with 

respect to time does not require a finite difference approximation since it can be 

solved analytically, as given below. 

au 
_ 

2iimlt 
cos at öt up up 

(C. 3.3) 

The finite difference approximation to equation (5.6.2) is therefore given by: - 

1T nk+l 
-T 

nk+l 
+? 

Tsnk - Tsnk l+1T nk-1 
- Tsnk 11 

6 0t 3 At 6 0t 

.. ' Cklh-a)2lMm COS 
2-t 

-f' 
up up 

1 T"n _T"n-1 T"n _7"n-1 T"n _T+n-1 disp, k+l disp, k+l 2 disp, k disp, k dip, k-1 diap, k-1 
+6 

At +3 
Ot +6 

Ot 
(C. 3.4) 

Rearranging terms gives: - 

+4Ts" -4Tsn-1 +T' _T' 
1 

s, k+1 s, k+1 ,k ,ks, k-1 s, k-1 / 

= 60tAk + (Tdsp, 
t+i -TäýsP., t+i + 4TäýsP. k - 4Täs1, t +Tärsp, k-i - ý'isP, t-i) (C. 3.5) 
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where, 

Ak =Ck(h-a)2W'"; 
r 

cos 
2-t 

up up 

It must be noted that the terms T" , T, k1 and T, k', refer to values given in the 

previous split. These values are the transport values after applying equation 

(5.6.1) and hence, are known. Equation (C. 3.5) can now be arranged so that all 
known values are given on the right hand side: - 

TS k+t + 4T, "k +T "k_1 = rk (C. 3.6) 

where, 

rk =T5' +4T3 1 +Tn-'1 +60tAk + 

T^ -T^ +4T^ -4T^-1 +T^ -T^-1 
) 

disp, k+1 disp, k+1 disp, k disp, k disp, k-1 disp, k-11 

The terms involving Td; 
sp are obtained from the 1DV stage of the model and so 

are also known. 

C. 3.1 Boundary Conditions 

Inflow Boundary 

The finite difference scheme at the inflow boundary is found by substituting 
k =I into equation (C. 3.6). 

Tnn 
s, 2 +4Ts. 1 +Ts, o = ri 

where, 

rl = Ts, 2' + 4Ts ý1+ T5' + 6&tA1 + 

T" -T^-1 +4T" -4T^-1 +Tn _Tn-1 
l 

disp, 2 disp, 2 disp, 1 disp, l disp, 0 disp, 0 J 

Since the 1DV values are the same for k =1 as k=0 then r, simplifies to give: - 
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rl = T, "il + 4Ts ý' +T, "ý1 + 6AtA1 + 

+ (T "-T n-1 + 5T "- 5T' 1 disp, 2 disp, 2 disp, l disp, l 

There still remain terms on both sides of the equation which refer to the upstream 

grid, i. e. k=0. It is therefore necessary to introduce the following conditions: - 

ýi) Ti 
1 =OT 0+ 

(1- O)I 
2 

n1 
(l-e) 

--ý T"0 - Ts. i T0 
0 s. z 

n-1 n-1 n-1 (ii) T,, 1 = 6T, o+ 1- B)I'S. 

-ý Ts= 1Tn1(1-6)T"2' 
00 

By applying (i) and (ii), the value at the inflow boundary is found by taking the 

weighted-average of the values to either side. If 0=0.5 then the value at the 
inflow boundary is simply the mean of the values at grid points k=0 and k=2. 

However, the boundary condition is such that the sediment and flow 

characteristics are the same for both k=0 and k =1; it would seem reasonable 

therefore to assume that the transport rate at k=1 will be closer to that at k=0 

than the value at k=2 since the 1DV effects are dominant. Hence, a value of 
0=0.7 is used to produce the necessary bias. 

The finite difference scheme at the inflow boundary is therefore given by: - 

TS"2 1-1 
00)+T, 

" r , 1(4+ = (C. 3.7) . 

where, 

rl = T, "2' 1-1 
ee +Ts, ý' 4++ 6AtA1 + 
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+ 
(Td" 

-Td-sp', 2 di+5T"sp, l -5Tdisp"-' isp, 2 i, l 

Outflow Boundary 

The finite difference scheme at the outflow boundary is found by substituting 

k= kk into equation (C. 3.6). 

nnn Ts., +i +4Ts,, k +Ts, 
-1 - r, 

where, 

r, = T:,, k+1 + 4T; +Ts", k_1 + 6AtA, + 

+(T" -Td^-isp1kk+1 +4Td"isp, kk di -4Tn-1 +T" -T^-1 kk-1 disp, kk+1 sp, kk disp, kk-1 disp, 

Again, since the 1DV values are the same for k= kk +1 as k= kk then r, 

simplifies to give: - 

r, = Ts,, +l + 4T ", -l +T, "-_1 + 6AtA, k + 

+ 5T+n - 57+n-1 +T ;t_ T' ' 
disp, kk disp, kk disp, kk-1 disp, kk-1 

The following conditions, similar to those used for the inflow boundary, are now 
imposed on the outflow boundary. 

(i) Tnk= OTsnkk+l + (1- 6 kt-I 

n1n 
(1-e) 

n 
--ý Tsrk+l =0 TS, kk -0 Ts. rk-I 

T'n-1 = ý. n-1 +1-e n- 
s, kk s, kk+l s, kk-1 

--ý T "1 1 
T"-1 

(1- 0)T"-1 
s, kk+l =0s, kk 0 s, kk-1 
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Applying conditions (i) and (ii) gives the following finite difference scheme at 

the outflow boundary: - 

+ Ts-1 1-le0 +=r, (C. 3.8) Ts kk 4+1 --) 

where, 

r, =T; 4 4+-ýl +T" 1-lee +6AtA + 

+ 5T" -ST"-' +T" -Tn-1 disp, kk disp, kk disp, kk-1 disp, kk-1 

C. 3.2 Solution Matrix 

Combining equations (C. 3.6), (C. 3.7) and (C. 3.8) gives the following matrix: - 
0 

I 
0) 

(1 1 
9 J 

141 
Ts. 

l ri 

TZ r2 

141 Tk = rk 

" Tkk-1 rkk-1 

14T kk rkk 

1 

l-1-0' I 4+- 

(C. 3.9) 

This is now solved using the method of Gaussian Elimination for a tri-diagonal 

matrix, as described in appendix B. 
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