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Abstract 

Catrin Tudur Smith 
Individual Patient Data Meta-analysis with Time-to-Event Outcomes 

Aims 
This thesis concerns the meta-analysis of time-to-event data, investigating methodology 
for both aggregate and individual patient data, and comparing the two approaches. 
Methods 
Meta-analysis may be based on either aggregate data or individual patient data collected 
from the original authors of each trial. An extension to a current aggregate data based 

approach is reviewed and methods for assessing the proportional hazards assumption 
proposed. Comparisons of treatment effect estimates from aggregate and individual 
patient data based meta-analyses are summarised. Three approaches to meta-analysis 
with individual patient data are reviewed and contrasted with each other theoretically 
and with simulated data. Models for investigating heterogeneity with individual patient 
data on time-to-event outcomes are reviewed and extended to incorporate random 
effects. A comparison of methods for exploring heterogeneity with aggregate or 
individual patient data is undertaken. Methodology for indirect comparisons are 
explored and extended to facilitate the analysis of totality of evidence. Several individual 
patient data based systematic reviews comparing anti-epileptic drugs with respect to 
time-to-event outcomes are used throughout to illustrate methods and motivate further 
research questions. 
Results 
An aggregate data approach is found to be difficult to apply in practice when time-to- 
event data are considered. One particular method based on Kaplan-Meier curves is 
investigated empirically and found to be unreliable. Comparisons of treatment effect 
estimates from aggregate and individual patient data based meta-analyses indicate that 
results obtained from the two analyses differ, but in no consistent direction across 
reviews. For analyses with individual patient data, simulated data indicate that the 
stratified Cox model and inverse variance weighted average of trial level Cox model 
estimates perform favourably and are to be preferred to the stratified log-rank analysis 
when the underlying treatment effect is large, hazards are proportional and there is no 
heterogeneity in effects across trials. For smaller treatment effects, all three methods 
perform well but further investigation is required. The methodology and facility to fit 

random effects Cox regression models are presented. Simulated data indicate that the 
estimate of treatment effect is more likely to be biased when there is a greater degree of 
heterogeneity particularly for treatment effects close to the null. The stratified Cox 
model with random treatment effects is found to be the least computer intensive 
random effects model making this an attractive approach. Empirical results of 
investigating heterogeneity are compared between models based on aggregate data and 
individual patient data with a more thorough explanation of heterogeneity obtained 
from the latter model. Using a totality of evidence approach, important clinical results 
are obtained for comparisons of anti-epileptic drugs that have not previously been 
undertaken within an RCT setting, and precision improved for those that have. 
Conclusions 
Individual patient data should be used whenever possible to reliably study patient 
characteristics and investigate heterogeneity in meta-analysis with time-to-event 
outcomes. The approach presented for a totality of evidence analysis, incorporating 
covariate main and interaction effects, highlights a further advantage of individual 
patient data. 
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CHAPTER 1 

Introduction 

1.1. Systematic reviews 

Evidence-based medicine is the conscientious, explicit, and judicious use of current best 

evidence in making decisions about the care of individual patients [1]. Systematic 

reviews of research studies are a very useful tool increasingly used in health care related 

areas to improve the evidence base. In particular, a systematic review including two or 

more randomised controlled trials is considered by many to be the 'best possible' source 

of evidence about the effects of treatments. A systematic review is an overview of 

primary studies using explicit, systematic and reproducible methods which aim to limit 

bias and random error. The ability to condense large amounts of information into more 

manageable and informative parts is of particular benefit to health care professionals 

endeavouring to keep up to date with new developments in evidence-based medicine. 

The general approach for preparing a systematic review is to formulate the question of 
interest, develop and follow a strategy for locating and selecting studies, assess the 

quality of each study believed to be suitable, collect or extract relevant data from each 

study, summarise the results from each study either qualitatively or quantitatively, 
interpret, summarise and disseminate findings. A protocol should be developed early in 

the review process to outline review objectives, questions of interest, proposed review 
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methods for identifying and selecting studies and steps for collecting and analysing the 

data. Development of a protocol is important to avoid bias being introduced by 

decisions that are influenced by the data [2]. 

The Cochrane Collaboration was established in 1993 to assist researchers and health 

care professionals in making well informed decisions in clinical practice by preparing, 

maintaining and promoting the accessibility of systematic reviews of the effects of 

healthcare interventions. The Cochrane Collaboration consists of approximately 50 

'Collaborative Review Groups', each interested in a particular area of health care and 

each responsible for preparing and maintaining systematic reviews in that area. The 

Cochrane Library [3] is an electronic library produced and distributed quarterly 

including a database of systematic reviews prepared by the Cochrane Collaboration, 

other relevant databases and other sources of useful information. Systematic reviews 

undertaken by the Cochrane Collaboration are extremely valuable as they are regularly 

updated to incorporate new evidence. 

A systematic review may be undertaken to provide a summary of the available evidence 

for any type of study design. This thesis will only address issues related to systematic 

reviews of randomised controlled trials (RCTs) as this individual study design will 

generally provide better evidence for intervention effects compared to other study 

designs since the process of randomisation ensures comparability of patients in terms of 

measurable and un-measurable factors. 

1.2. Meta-analysis 

Meta-analysis is the statistical procedure used to quantitatively summarise the results of 

several studies that have been designed to answer similar clinical questions. As the 

precision of a treatment effect estimate largely depends on the number of patients, a 

meta-analysis that draws on patients in many studies will have more power to detect 

small but clinically important results compared with any individual study identified as 

eligible. In general, a meta-analysis will consist of calculating a pooled treatment effect 

estimate, which is basically a weighted average of individual trial results, and appropriate 

confidence interval. 
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There are numerous ways in which bias can be introduced in reviews and meta-analyses 

of controlled clinical trials [2]. The quality of individual trials included in the meta- 

analysis is extremely important and an adequate assessment of different quality 

components should be undertaken prior to meta-analysis. Potential biases relate to 

systematic differences in patients characteristics at baseline (selection bias), unequal 

provision of care apart from the treatment under evaluation (performance bias), biased 

assessment of outcomes (detection bias), and bias due to exclusion of patients after they 

have been allocated to treatment groups (attrition bias) [2]. These biases threaten the 

validity of individual trials and hence meta-analysis. Other examples of types of bias 

relate to reporting biases such as publication bias and language bias. Egger et al [2] 

describe in-depth details of several such biases which reviewers and researchers should 

be aware of prior to undertaking or interpreting any systematic review and meta- 

analysis. The process should therefore involve an adequate investigation into potential 

sources of bias and an assessment of how robust the results may be to modifications in 

any assumptions made. 

If a meta-analysis is considered appropriate within a systematic review, an estimate of 

treatment effect, for example an odds ratio for binary data, and corresponding measure 

of variation from each study are usually required. This information will sometimes be 

provided directly in the trial report, but more often, summary data for each treatment 

group will be extracted and used to calculate the relative treatment effect estimate and 

measure of variation for each study. This summary information relating to the relative 

treatment effect is termed aggregate data (AD) from here on. Although this level of 
information will be adequate in many situations, in others it may be necessary to collect 
individual patient data (IPD) from each study in order to calculate the estimates of 
interest. Further discussion about the advantages and disadvantages of using IPD will be 

given in Chapter 3. 

1.2.1. Measures of treatment effect within individual trials and meta- 
analysis 

For dichotomous data (i. e. data that can be categorised into a good or bad outcome for 

each patient e. g. dead or alive), the odds ratio, relative risk and risk difference are 

commonly used measures of treatment effect. Although the odds ratio is generally 
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thought to be harder to interpret compared to the risk difference or relative risk, the 

measure has desirable mathematical properties relating to its sampling distribution and 

its suitability for modelling [4]. In some situations, the risk difference can be more 

informative than the odds ratio or relative risk as it reflects the baseline risk as well as 

the change in risk with the intervention [5]. However, if the baseline event rate varies 

across trials, the risk difference is not usually appropriate. Each measure has advantages 

and disadvantages and the choice of which to use will depend on the example under 

consideration and the clinical questions being addressed. As issues surrounding meta- 

analysis of binary data are not considered here, the reader is referred to Deeks [6] for a 

comprehensive discussion of choosing a suitable summary statistic. 

For continuous data (i. e. a numerical result for each patient e. g. systolic blood pressure) 

the difference in mean response in one treatment group compared to another (often 

referred to as the mean difference) is a commonly used measure of treatment effect for 

an individual study. Provided the outcome is measured on the same scale in each study 

in a meta-analysis, these results can be pooled to give a 'weighted mean difference'. If 

the outcome is measured on different scales in different studies (e. g. different scales to 

measure pain), the 'standardised mean difference' (an unitless summary measure) is 

sometimes used. 

This thesis addresses issues surrounding the meta-analysis of time-to-event data (i. e. the 

time taken from some origin to a pre-defined end point of interest e. g. time to death 

after surgery) and is largely motivated by examples from epilepsy where time-to-event 

outcomes, such as time to seizure, are common. Time-to-event data are frequently 

summarised by the hazard function which is defined as the instantaneous event rate for 

an individual not experiencing the event to some time t. A treatment effect summarised 

as a hazard ratio (I-IR) is simply the ratio of hazards of the event of interest at any time 

for an individual on the experimental treatment relative to an individual on the standard 

treatment. The hazard ratio is the appropriate measure of treatment effect for failure 

time data as censoring, whereby the event of interest is not observed for a particular 
individual, and the time taken to achieve the event, are both properly allowed for with 

this measure. If only aggregate data (AD) are available, specific methods exist which 

enable the log hazard ratio (log(HR)) and its variance to be estimated in an individual 

trial. Further details of methods for extracting and estimating summary statistics to 
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undertake meta-analysis of aggregate time-to-event data are given in Chapter 2. Methods 

for meta-analysis of individual patient time-to-event data are discussed in Chapter 3. 

1.2.2. Pooling results 

The main objective when undertaking a meta-analysis is to obtain an estimate of the 

overall treatment effect pooled across J included studies. By pooling the relative 

treatment effect estimates from each individual study the 'within' study randomised 

comparison between treatment and control group is maintained. This is an important 

property of meta-analysis as it ensures that the advantage of a randomised controlled 

trial is maintained i. e. that there are no systematic differences in measurable or un- 

measurable characteristics between patients in the treatment groups that are compared. 

The general approach to meta-analysis involves calculating a weighted average of 

individual trial treatment effects. Different methods exist to undertake these calculations 

and will depend on the type of data under consideration and what assumptions the 

meta-analyst is willing to make regarding the consistency of included trial results. Two 

common assumptions are made and are usually approached by considering two 

alternative models for meta-analysis; the fixed effect and random effects models. 

Fixed effect approach 

In the fixed effect approach, an assumption is made that the true treatment effect is 

homogenous (i. e. fixed) across studies and that each study is estimating the same 

common underlying treatment effect denoted 0. In other words, we assume 

9, =8? =... =6j =... =61 =B 

where Oj is the treatment effect in trial j Any variability in treatment effect 

estimates between studies is assumed to be due to sampling variability. In order to 

account for the differing precision of treatment effect estimates in each study, a 

weighted average is used to estimate the pooled treatment effect given by, 
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J 

Ewjej 
8= '-l 

1 
(1.1) 

Ewi 
j=1 

6 

where w, is the weight associated with the jth trial. Various methods are available to 

calculate w1 but these will not be discussed here. For a detailed description the reader is 

referred to Whitehead and Whitehead [7], Berlin et al [8], Yusuf et al [9], Hedges and 

Olkin [10]. Any choice of weight will provide an unbiased estimate of the pooled 

treatment effect, however w, is usually taken to be the inverse of the variance of the 

treatment effect estimate in each trial as it provides the most precise estimate of the true 

treatment effect [11] i. e. 
1 

Wi 
v! 

where v1 = var(B, ). By further assuming that 

9, 
-N(O, v, ) 

and that the weights wj are known, a confidence interval for 0 can be calculated using 

the result that 

6 
'-N(O, 1/Lw1) 

i=i 

and an approximate 95% confidence interval for 0 is given by 

B ±1.96 
1 

ýj=1wl 

Random effects approach 

In a random effects meta-analysis the studies are regarded as a random sample from a 

population of possible treatment evaluations that can be used to estimate the mean 
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treatment effect and corresponding variance for the population [12]. It is commonly 

assumed that the treatment effect estimates (9) follow a N(O , vi) distribution, and 

the true underlying treatment effects 6j are themselves a sample of independent 

observations from a N(O, 'c) distribution, where 0 is the overall average treatment 

effect and r2 expresses the degree of variability between trial effects. 

An estimate of the variability in treatment effect estimates across studies (r2) is 

incorporated into the model as an additional source of variation, which can result in a 

wider confidence interval for the estimated pooled effect. As the marginal distribution 

of 9, is given by, 

6 
'- N(e, v, +z2) 

and v, and r2 are assumed to be known and equal to their estimated values, weights 

given by 

._1 
2 Wi 

wi +T 

are used in a random-effects model using the general formula (1.1) for calculating 0 

with w, replaced by wj . 

1.3. Heterogeneity 

Statistical heterogeneity in meta-analysis can be defined as variation in the true 

underlying treatment effect between studies. A test for heterogeneity (or test of 

homogeneity) can be used to detect if the variation between study results is greater than 

that expected due to chance alone. Potential sources of statistical heterogeneity are, 

(i) differences in clinical features (clinical heterogeneity, or clinical 
diversity) such as baseline characteristics or interventions used, 

(ii) differences in methodological features such as randomisation 

methods or blinding, 

(iü) differences in characteristics that have not been recorded or are 

simply not known. 
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Although a meta-analysis combines information from studies addressing the same (or 

very similar) clinical question, it is likely that some differences will exist between these 

studies. Interpreting a 'fixed effect' meta-analysis in the presence of heterogeneity can be 

misleading as the confidence interval is too narrow in terms of extrapolating the results 

to future trials or patients, since the extra variability between the results is ignored [13]. 

It is therefore important that heterogeneity is recognised and potential sources are 

explored so as to increase the clinical relevance of the conclusions drawn and the 

scientific understanding of the studies reviewed [13]. 

1.3.1. Detecting and quantifying heterogeneity 

The extent of heterogeneity in meta-analysis can affect the interpretation of an overall 

pooled estimate. Problems of interpretation will depend on how substantial the 
heterogeneity is, since this determines the extent to which it might influence the 

conclusions of the meta-analysis [14]. 

Many formal hypothesis tests, which assess the evidence for heterogeneity are available, 

the most popular of which is Cochran's chi-square test [15] more commonly referred to 

as the 'Q test' which takes the form 
J 

Q=zw, (e, -e)2 
Under the null hypothesis of homogeneity, the Q statistic has an approximate x2 

distribution with J-1 degrees of freedom (df). For a detailed description of alternative 

test statistics and a discussion of the advantages and disadvantages of each, the reader is 

referred to Gavaghan et al [16], Takkouche et al [17], Hardy and Thompson [11]. These 

formal tests of homogeneity suffer from the disadvantage that they have low power, 

particularly when data are sparse [18], [19] and statistical heterogeneity may fail to be 

detected. To allow for this, a cut-off significance level of 0.10 is recommended rather 
than the conventional 0.05 value. Higgins and Thompson [14] have recently proposed a 

selection of three statistics to quantify the degree of heterogeneity and its impact on 

meta-analysis. In contrast to the commonly used Q statistic, the summary measures they 

propose do not depend on the number of trials in the meta-analysis. They conclude that 



CHAPTER 1 Introduction 9 

two statistics, which they refer to as H and I2, are particularly useful summaries of the 

impact of heterogeneity and they recommend that one or both should be presented in 

published meta-analyses in preference to the usual test for heterogeneity [14]. The 12 

statistic describes the percentage of total variation across studies that is due to 

heterogeneity rather than chance and is calculated as 

I2 = loop -df % 
Q 

Negative values of I2 are set to zero so that I2 lies between 0% and 100% where a value 

of 0% indicates no observed heterogeneity, and larger values show increasing 

heterogeneity. 

1.3.2. Investigating heterogeneity 

If heterogeneity in the treatment effect between studies is evident, a strategy is needed 

for exploring potential sources, which should be specified a priori to avoid over 

exploring the data and to limit the potential for spurious findings. The extent of this 

exploratory analysis will depend mainly on the availability of data and the number of 

trials included in the meta-analysis. Furthermore, the possibility of obtaining several 

different explanations for heterogeneity means that such investigations are not always 

straightforward. 

A popular approach is to undertake subgroup analyses in which the effect of treatment 

is examined in pre-specified and clinically important subgroups. Subgroups can either be 

defined at the trial level, in which all patients in a trial appear in only one subgroup, or at 

the patient level, in which some patients in a trial appear in one subgroup and other 

patients from the same trial appear in another subgroup. Although relatively 

straightforward, subgroup analyses have several limitations and should always be 

interpreted with caution. A particular problem for subgroup analyses using AD is that 

many studies may not present results for the subgroups of interest. This may be because 

the subgroups were not examined or alternatively, it may be that the results obtained 

were not significant and therefore were not reported. Hahn et a! [20] discuss the 

potential for bias introduced by the selective reporting of subgroup analyses within 
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individual studies. Gelber and Goldhirsch [21] and Yusuf et al [22] discuss more general 

problems associated with subgroup analyses in more detail. 

Following detection of heterogeneity and an investigation into possible causes, many 

reviewers adopt a random effects approach to incorporate the additional unexplained 

between trial variation into the model. A common criticism of the random effects 

approach is that more imprecise estimates from smaller studies are given more weight 

compared to the corresponding fixed effect approach. As the degree of heterogeneity 

between studies increases, this discrepancy also increases. Many researchers criticise the 

actual assumption made in a random effects model that the trials involved are 

considered a random sample from some hypothetical population of trials as this 

contradicts the underlying principle that a meta-analysis undertaken as part of a 

systematic review should incorporate all available trials that address the question of 
interest. On the other hand, the assumption of a common underlying treatment effect 

made by the fixed effect approach may be considered as overly restrictive since trials 

included inevitably encompass a substantial variety of specific treatment regimens, types 

of patients, and outcomes [13]. The choice between a fixed effect and random effects 

approach to meta-analysis should be made by the individual meta-analyst and is not the 

focus of this thesis. In the author's opinion, a selection of factors that may cause 
heterogeneity require careful thought prior to analysis and should always be considered. 

1.4. Publication Bias 

Publication bias is a common problem in meta-analysis which arises when unpublished 

studies or outcomes are not identified or not included in the analysis and the reason for 

this is related to their results. As research with statistically significant results is more 
likely to be published compared to research with non-significant results, combining only 

published studies can lead to an over-optimistic conclusion [23], [24]. The potential for 

publication bias can be minimised by adopting a comprehensive search strategy that 
includes sources of unpublished studies and foreign language journals. In addition, 

contact should be made with experts in the field and pharmaceutical companies or 

manufacturers (if appropriate), and relevant journal/conference abstracts should also be 

hand-searched. Several methods exist to detect the potential presence of publication 
bias and to compensate for this in the analysis. These issues will not be addressed in this 
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thesis but it should be noted that the availability of individual patient data may be useful 

to overcome the problem of unreported outcomes if the required data are provided. 

1.5. Discussion and structure of the thesis 

A meta-analysis within a rigorous systematic review can be very informative and is 

considered by many as providing the highest level of evidence in medical research. 

Although much of the methodology surrounding meta-analysis has been well 

researched, many issues remain unresolved. The main focus of the remaining Chapters 

of this thesis is to evaluate, develop and compare methods for meta-analysis with time- 

to-event outcomes. The main motivational example consists of a suite of systematic 

reviews and meta-analyses based on IPD which compare alternative drugs for epilepsy. 

Although an IPD approach is regarded as the "yardstick" against which other forms of 

systematic review should be measured [25], the additional demand imposed on 

resources mean that the majority are based on AD. In many situations an AD approach 

may be the only option and it is important to establish the reliability of such results 

when compared to IPD. In Chapter 2, methods for estimating summary treatment 

effect measures for time-to-event outcomes based on AD are discussed with particular 

emphasis on improving a current method and assessing the value and reliability of 

general AD approaches with this type of data. This leads into Chapter 3 where 

commonly used methods for meta-analysis with IPD for time-to-event outcomes are 
described and explored. Individual meta-analysis results for the collection of epilepsy 
drug trial systematic reviews are described in Chapter 4. 

The additional resources required for an IPD approach may be justified if the IPD can 
be fully exploited by investigating potential prognostic factors and including a thorough 

investigation of possible sources of heterogeneity. In Chapter 5, methods for modelling 
heterogeneity with AD or IPD are described. Alternative random effects models, and 

programs for fitting these models, based on IPD are developed and extended. An 

assessment of how models based on AD or IPD compare in terms of exploring 
heterogeneity is also undertaken as this must be considered when deciding whether the 

extra investment required for an IPD approach to meta-analysis is worthwhile. In 

Chapter 6, the available IPD for several clinically related systematic reviews of epilepsy 
drug trials is fully exploited by considering methodology for indirect comparisons that is 
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extended to facilitate the simultaneous analysis of all available evidence from these 

reviews in what is termed here as the totality of evidence analysis. The final chapter provides 

a summary of preceding chapters, some concluding remarks and discussion of future 

research ideas. 



CHAPTER 2 

Aggregate data meta-analysis with time-to-event 
outcomes 

An aggregate data (AD) meta-analysis uses summary statistics either extracted directly 

from trial reports or requested from the authors of unpublished articles. An alternative 

approach is to request individual patient data (IPD) from authors, resulting in a more 

rigorous meta-analysis, particularly when dealing with time-to-event outcomes. 

However, due to the increase in time and resources required, or the unavailability of 

data, most meta-analyses are based on AD. Furthermore AD can be very useful if a 

preliminary analysis is required before deciding whether collecting IPD is worthwhile or 

if conducting a meta-analysis as part of safety monitoring during a new trial. Further 

discussion about the practicalities and benefits of using IPD will be given in Chapter 3 

and the reader is referred to Stewart and Clarke [26] for an in-depth description of the 

IPD meta-analysis process. 

2.1. Time-to-event data 

Time-to-event data, or survival data, are frequently encountered in medical research and 

arise when data relating to the time taken from some origin to the event of interest are 

collected e. g. time from surgery to death, or time from start of treatment to first seizure. 
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Two common features of time-to-event data are (i) data are typically skewed, and (ii) 

data are frequently censored, whereby the event of interest (e. g. death) is not observed 

for a particular individual. Consequently, standard statistical methods for dealing with 

continuous data cannot be used to analyse time-to-event data. 

The assumption of non-informative censoring is made throughout this thesis. That is, 

the actual time to an event for an individual is independent of any mechanism which 

causes that individual's time to event to be potentially censored. 

2.1.1. Survivor function and hazard function 

The survivor function S(t) and hazard function h(t), defined below, are the functions most 

commonly used to describe time-to-event data. 

The survivor function is defined as the probability that the event is not observed between 

the time origin and some time t. In other words, the probability that the time to an 

event is greater than or equal to t, 

S(t) = P(T z t) =1- F(t) 

where t is the actual time to an event of an individual, T is the random variable 

associated with the time-to-event, and F(t) is the distribution function of T given by, 

r 
F(t) = P(T < t) = ff(u)du 

u=0 

wheref(u) is the underlying probability density function of T. 

The hazard function is defined as the probability that the event occurs instantaneously at 

time t, conditional on not having the event up to that time. 

h(t)= 
P(tST<t+StITZt 

bim 
at 
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2.2. Methods of analysis of time-to-event data 

The analysis of time-to-event data requires specialist methods that take censoring and 

the data structure into account. Some of the most common approaches of analysis, 

which are considered throughout this thesis, are described below with further details 

and discussion provided in later sections and Chapters. 

Non-parametric methods 

The most common non-parametric approaches for estimating the survivor function for 

a single sample of survival times are the Kaplan-Meier [27] and actuarial, or life-table, 

methods with results typically summarised graphically. The actuarial method is 

particularly well suited for grouped data where the number of events and number of 

censored observations within a particular interval of time may be the only available 
information. For ungrouped data, in which the actual event times are available, the 

Kaplan-Meier estimate is most appropriate [29]. 

When interest centres on comparing the time-to-event experiences of two or more 

groups, a particularly informative summary may be achieved from plotting estimates of 

the survivor function for each group on the same graph. The log-rank test [28] is a non- 

parametric procedure for assessing the evidence against the null hypothesis of no 

difference in the time-to-event experiences between two or more groups of individuals. 

From a clinical perspective, a summary of treatment effect and measure of precision is 

usually required. Examples of possible measures of treatment effect include the hazard 

ratio, difference in median survival times, difference in crude event rates and the 

difference in survival estimates at fixed time points. The hazard ratio, with underlying 

assumption that the hazard at time t for a patient in one group is proportional to the 
hazard at the same time for a patient in another group, takes both censoring and time to 

an event into account and is the most appropriate measure of treatment effect for this 

type of data. Further details for estimating the hazard ratio non-parametrically are given 
in section 2.3 and 3.2. Each of the remaining possible measures suffers from at least one 
disadvantage compared to the hazard ratio. It may not be possible to calculate the 

median survival time in one or both groups if the survivor function remains greater than 
0.5, therefore the difference in median survival times cannot always be calculated. The 
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difference in survival estimates at a fixed time point has an interpretation which is 

appealing to clinicians since it summarises how much greater or smaller is the 

probability of surviving beyond certain clinical milestones for one group compared to 

another. However, information on the whole time scale is not taken into account and 

since later parts of the time scale contain less information, precision of this treatment 

effect measure will depend on the time point considered. The difference in crude event 

rates ignores information on censoring as well as ignoring the whole time scale and is 

therefore even less appealing. 

Semi-parametric method 

To examine relationships between time-to-event experiences of individuals and their 

clinical characteristics, a modelling framework may be adopted. The most commonly 

used approach is the semi-parametric proportional hazards model proposed by Cox 

[30]. The assumption that the hazard of an event at any given time for an individual in 

one group is proportional to the hazard at the same time for an individual in a different 

group is referred to as an assumption of proportional hazards and underlies this method 

of analysis. Since no distributional assumptions are imposed upon the time-to-event 

distribution of individuals, the model is a semi parametric model and will be referred to as 

the Cox regression model in remaining Chapters. One particular advantage with this 

approach is that an estimate of the hazard ratio and appropriate confidence interval may 

be obtained directly from results of fitting this model to the data. 

Parametric methods 

If the assumption of a particular probability distribution for the data is valid, inferences 

based on such an assumption will be more precise and estimates of hazard ratios will 

tend to have smaller standard errors compared to a model without the distributional 

assumption [29]. Fully parametric models assume a specific baseline distribution for the 

survival times and the effect of covariates on the baseline function is also fully specified. 
Commonly used distributions include the exponential, weibull, log-logistic and log- 

normal distribution. Although fully parametric models may offer advantages in terms of 

efficiency, they involve stronger assumptions and require an assessment of the 

appropriateness of the chosen distribution. Due to these added complications, models 



CHAPTER 2 Aggregate data meta-analysis with time-to-event outcomes 17 

making further distributional assumptions will not be considered further in the current 

thesis but could certainly offer some advantages over the more flexible but potentially 

less efficient semi-parametric model. 

The log hazard ratio rather than hazard ratio is used as a measure of treatment effect for 

meta-analysis of time-to-event data because the hazard ratio can take values between 

zero and infinity with a different interpretation for values between 0 and 1, or 1 and 

infinity. As this scale is not symmetric, a log transformation of the hazard ratio is taken 

to transform the measure to a symmetric scale (around zero) ranging between minus 

infinity and infinity. Methods for extracting and estimating the log hazard ratio and its 

variance from individual studies to enable a meta-analysis to be undertaken will be 

described in the following sections. 

2.3. Estimating the log hazard ratio and its variance using aggregate 
data 

At a very basic level, if an estimate of the log hazard ratio (log(HF )) and its variance 

(var(log(HRý)) are presented in the manuscript of each trial j (j=1,.. J) in a systematic 

review, undertaking a meta-analysis can be straightforward provided that a clear 
description of the end-points are given. Furthermore, if these summary statistics are not 

reported directly, several methods are available to allow estimation using alternative 

types of AD e. g. the log-rank test p-value and number of events. However, the 

presentation, quality and consistency in reporting of time-to-event data analysis in the 

literature is diverse. Altman et al [31] undertook a systematic review of survival analyses 

published in cancer journals and found that the majority of papers gave an unclear 
description of at least one study end point, almost half of the papers did not summarise 
length of follow-up, and the results of log-rank and multivariate analyses were 
frequently only summarised using a p-value. In addition, they found that many papers 

presented survival curve plots but the quality of these plots was poor. 

A description of methods for estimating log(HR) and its variance using AD is given by 

Parmar et al [32], who also propose a specific approach using Kaplan-Meier survival 

curves. In one particular example comparing the length of survival for women with 

advanced breast cancer randomised to different treatments, the authors note that the 

method using Kaplan-Meier survival curves to estimate log(HRý) and its variance 
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appears to perform reasonably well except in a few cases. The methods proposed by 

Parmar et al [32] for estimating log(HPý) and its variance within each trial are described 

in the following sections. A further modification to the approach based on published 

survival curves is reviewed in this thesis (published by Williamson, Tudur Smith et al in 

Statistics in Medicine [33]). The modified approach incorporates additional information 

from the 'numbers at risk'. Two separate studies are used in section 2.4 to illustrate and 

compare results obtained from the two survival curve based methods of estimation 

whilst in section 2.5, the practicality, reliability and value of the AD meta-analysis with 

time-to-event outcomes are investigated using two further empirical examples of meta- 

analysis (published by Tudur, Williamson et al in JRSSA [34]). 

2.3.1. Direct method 

Usually, no further estimation is required if log(HRy) and its variance are quoted directly 

in the trial manuscript. Authors may report the coefficient of treatment effect and 

variance (more usually the standard error) estimated from a Cox proportional hazards 

model. These parameters correspond directly to estimates of log(HR) and its variance 

(or standard error). However, interpretation can be difficult if the results of multivariate 

Cox regression models are reported as each study will rarely adjust for the same 

covariates in the model. 

2.3.2. Indirect method 1: Estimating var(log(HRj)) from a confidence 
interval 

If an estimate of 1og(HIý) is reported without its variance or standard error but rather 

with a (1-(x)100% confidence interval denoted here by (LLIM,, ULIM), an estimate of 

var(log(HN) can be obtained using 

2 
_(- 

LLIM, 
(2.1) var(log(HR )) 

ULIM 

2(D -' 1-a, l2 

where (D-1 is the inverse cumulative probability for the normal distribution. 
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2.3.3. Indirect method 2: Estimating log(HR1) and its variance using the 
quoted p-value of the log-rank test 

The p-value of the log-rank test is frequently quoted without the log-rank test statistic 

being given [31]. Provided the total number of events across both treatment groups 

(O, ) is given, this information along with the quoted (to at least 2 decimal places) two 

sided p-value (p, ) can be used to estimate log(HR) and its variance as described below. 

As described by Parmar et al [32], the following standard results are used to estimate 

log(HR) 

ee 1og(HR1) _ 
Ol _ El 

Vli 

°ej - Eej 
= (D-I (1- pj / 2) 

Vrj 

where the subscript e denotes the experimental treatment group, and V, ý denotes the 

approximation to the variance of the log-rank statistic for trial j It follows 

that 

1og(HR, ) = 
(D-' (1- pj / 2) 

(2.2) FVIi 

with 

var(1og(HR, )) =1 (2.3) 
Vli 

Three different estimates for Vj are given by, 

Vy = 
04 (2.4) 
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V. - 
OjRejR`' 

(2.5) 
º! - (Ref + Rcf) z 

Vli = 
°ö°`J 

(2.6) 
J 

where Oej and Oj denote the observed number of events for the experimental and 

control group whilst Red and Rcj denote the number randomised to the experimental 

and control group. The two approximations (2.4) and (2.5) are identical if there are 

equal sample sizes in both groups of the study (Rey = Rcj), whilst approximations (2.4) 

and (2.6) are identical if the number of events in each group are equal (O,, j = Oct ). 

Collette et al [35] have investigated the three approximations for Vj by simulation of 

meta-analyses of 10 trials. They conclude that all three approximations provide very 

close estimates to the overall individual patient data log-rank variance. In particular, 

approximation (2.6) is the most precise for trials with a low percentage of censoring, 

and (2.5) is preferred for trials with unequal sample sizes. 

2.3.4. Indirect method 3a: Estimating log(HR1) and its variance from 
survival curves 

Survival curves are frequently presented to display the results of a time-to-event analysis 

graphically. The information summarised within the plotted survival curves may be 

extracted and used to estimate log(HR) and its variance. The method is briefly described 

here but further details are given by Parmar et al [32]. 

For each trial the time axis of each survival curve should be split into non-overlapping 
intervals such that the event rate within each interval is relatively small. An estimate of 

survival probability for each treatment group at each specified time-point should be read 

off the published curves. The number of patients at risk is estimated for each time 

interval by using an expression involving the estimated number of events and censored 

observations, whereby the number of events during an interval is estimated using an 

expression involving the extracted survival probabilities and estimated number at risk, 

and the number of censored observations during an interval may be estimated by 

assuming a model for censoring during the interval. For the assumption that patients are 



CHAPTER 2 Aggregate data meta-analysis with time-to-event outcomes 21 

censored at a constant rate across the entire follow-up period, the minimum and 

maximum follow-up times are required. This information may be provided directly in 

trial reports or estimated from other sources such as the article publication date. 

The log hazard ratio and its variance are estimated within each interval, denoted by 

subscript i, using the following expressions 

log(HR) = log 
de' (t) /net (t) 
d,,, (t) l ný, (t) 

var(log(HR, )) =1-1+1-1 d 
et net d 

ci na 

where de;, dc, denote the number of deaths estimated within an interval for 

experimental and control group respectively and net, % denote the estimated number at 

risk for each group. An overall estimate of log hazard ratio and its variance for a 

particular trial may finally be estimated by calculating an inverse variance weighted 

average of interval-specific estimates. Parmar et al [32] give further detail and description 

of relevant expressions for estimating the required quantities. 

2.3.5. Indirect method 3b: Estimating log(HRj) and its variance from 
survival curves and numbers at risk 

To estimate the number of events and number at risk for method 3a, some assumption 

about the pattern of censoring across the period of follow-up is required, for example 

an assumption of constant censoring during the trial. The numbers at risk are often 

quoted below a survival curve plot or indeed within the text of a trial publication. 

Pocock et al [36] undertook a review of publications quoting survival analyses and found 

that where there was variable length of follow-up almost all trials presenting survival 

curves had also presented numbers at risk somewhere near the plot or in the text of the 

trial report. The availability of numbers at risk at various time points provides additional 
information on the censoring pattern within a trial. Including this information would 

mean that strong assumptions about censoring patterns across the entire follow-up 
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period would not be needed. This is what the following method proposes (published by 

Williamson, Tudur Smith et al in Statistics in Medicine [33]). 

Suppose the numbers at risk nk I...... nk, p 
for each treatment group k (k=1,2), are given 

either on the survival curve or in the text of a report at each of p time-points 

tj ,...., tP respectively. Survival probabilities should be read off the curves at ti ,...., tp and 

are denoted by sk 
1,...., sk p. 

By definition, let to = 0, sk o=1, nk o= the number 

randomised in treatment group k. 

The general method is to estimate the log hazard ratio and its variance within each time 

interval [t, 
_l, 

t, ), i=1, ..., p and to combine these estimates using an inverse variance 

weighted average across intervals. For this approach, estimates of both the number of 

events and the number at risk during the interval are required. 

Following the actuarial approach [37] in which censoring is assumed to be constant 

within each time interval, but not necessarily across intervals 

Sk j= Sk 
, i-1 

1- 
dk 

,1* (2.7) 

nk, 1-1 - 
(Ck /2) 

(2.8) nk 1= nk, r-1 - 
dk Ck, i 

where dk 
,= number of events in [t, 

-,, 
t, )and ck, ,= number censored in [t, 

_1 , 
t, ) . 

Rearranging (2.7) and (2.8) gives 

" 
(ak, 

1-1 
+nk, 

i)(Sk, i-1 -Sk, i) dk. i = (2.9) (Sk, 
1-1 

+ Sk, l 

" 
2\nk, 

1-1 Sk, i - nk, iSk, l-1 / 
l (Sk, 

i-1 
+Sk, d 
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n" _' 

(nk, 
I-1 

+ nk,, )Sk,, 
-1 (2.11) 

k, I "" (Sk, 
1-1 

+ Sk,! ) 

where nk is the number at risk during the interval The method assumes that 

censoring is uniform over the intervals defined by the numbers at risk. 

For an individual trial, the log hazard ratio and its variance within each interval 

[ti_1, t) are then estimated using one of the following sets of formulae. 

log(HR), =log 
d ., / n2,, 

Ld11I 
ni, 

For (2.13)-(2.14) below, 

log (HR), = 
d2, 

i- e2, 

vi 

var(log(HR), ) =1_1+1_1 (2.12) 
d2,, n2,, dt 

, n,,, 

var (log (HR), ) =1, where 
vi 

d2,, +d,,, 
º4 

** 

(e2 + 
(nz, 

, v, _, el r) 
* 

n, *,, ) 

*"2 (n2, , + n1 ) 

(2.13) 

(2.14) 

Approximation (2.13) and (2.14) are identical if the number at risk during an interval are 

equal for both treatment groups. Approximation (2.14) can also be written as 

v; = e2,, * e, , /(e2., + e, *, ) where e2 19 ei, are commonly crudely estimated by dZj, d; ,. 
However, as this additional estimation in the approximation is not necessary here, it will 

not be considered further. 

C2, i _ (d2,, +d,,, ) .* n2, I+ ni,, 

The overall estimates for the jth trial are then calculated from 
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P 
Z w, log(HR), 

log(HR j) p Ewl 

1=1 

and var(log(HR, )) =p1 
ý wi 

where w, -1 = var(log(HR), ). 

2.4. Comparison of methods based on survival curves 

Two studies for which individual patient data are available are used to compare 

estimates obtained from the two approaches based on survival curves (method 3a and 

method 3b) because frequently a meta-analyst will only have survival curves to work 

from. 

2.4.1. Example 1 

The first example is a randomized controlled trial [38] including 466 patients with 

epilepsy taken from a systematic review of five randomized controlled trials comparing 

two anti-epileptic drugs, carbamazepine (CBZ) and sodium valproate (VPS) [39]. One of 

the outcomes of interest is time to first seizure following randomisation. The Kaplan- 

Meier survival curves with number of patients at risk and survival probabilities at each 

time point, generated using individual patient data since curves were not presented in 

the published manuscript, are summarised in Figure 2.1. 

Table 2.1 shows how the results differ depending on the formulae used for calculating 

the log hazard ratio and its variance within an interval (2.12,2.13,2.14), whether 

numbers at risk are used (method 3a versus 3b), whether survival probabilities are read 

off the survival curve rather than calculated directly, the range over which probabilities 

are taken and the effect of varying interval widths. For indirect method (3a), Parmar et al 

[32] propose using expression (2.12) for approximating the log hazard ratio and variance 

within an interval. However, the alternative approximations given by (2.13) and (2.14) 

could be used and are explored in more detail for examples 1 and 2. 

In this trial, patients were censored quite heavily early on. The assumption of constant 
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censoring across the entire follow-up period (method 3a) has led to the numbers at risk 

being overestimated for the earlier times (Figure 2.2) and hence the variance is 

underestimated. The estimate of log(HR) is slightly closer to the IPD estimate when the 

assumption of constant censoring is made, whereas the estimate of SE(log(HR)) based 

on numbers at risk is closer to the IPD results. For both approaches (method 3a and 

3b), the estimate of SE(log(HR) is most precise using estimators (2.13) and (2.14) based 

on the log-rank observed and expected number of events. 

The effect of using survival probabilities read off the survival curve rather than 

calculated exactly is found to be minimal in this example. As the range over which 

probabilities are taken increases, estimates of log(HR) decrease substantially away from 

the IPD value whilst the SE(log(HR)) decreases only slightly. As interval lengths are 

decreased, the estimate of log(HR) increases towards the IPD estimate, whereas the 

estimate of SE(log(HR)) increases above the IPD estimate. 



CHAPTER 2 Aggregate data meta-analysis with time-to-event outcomes 26 

Figure 2.1. Example 1: Kaplan-Meier estimates of time to first seizure of 466 
patients with epilepsy treated with sodium valproate (VPS) or carbamazepine 
(CBZ) in a single randomized controlled trial [38]. 
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Table 2.1. Example 1: Comparison of estimates of overall log(HR) and 
SE(log(HR)) (pooled across intervals) 

Method log(HR) SE(log(HR)) 

Individual patient data 0.206 0.1162 

Method 3a Estimators 

Survival probabilities (2.12) 0.1689 0.0854 

from IPD results every (2.13) 0.1674 0.1086 

90 days up to 3 years' (2.14) 0.1678 0.1091 

Method 3b 
Estimators 

Survival probabilities 
(2.12) 0.1610 0.0906 

from IPD results every 
(2.13) 0.1638 0.1169 

90 days up to 3 years 
(2.14) 0.1640 0.1170 

and numbers at risk 

Method 3b 

Survival probabilities read off figure 1 every 90 0.1581 0.1170 

days up to 3 years and numbers at risk 2 

Method 3b 

Survival probabilities (a) 2 years 0.1640 0.1170 

and numbers at risk (b) 3 years 0.1640 0.1170 

from IPD results every (c) 5 years 0.1346 0.1158 

90 days up to: 

Method 3b 
(a) every 30 days 0.2071 0.1173 

Survival probabilities 
(b) every 60 days 0.1859 0.1172 

and numbers at risk 
(c) every 90 days 0.1640 0.1170 

from IPD results up to 
(d) every 180 days 0.1496 0.1164 

3 years? 
' Censoring rate assumed constant across follow-up period from 365-2190 days 

2 Expression (2.14) used to estimate log hazard ratio and its variance within each interval 
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Figure 2.2. Example 1: Comparing actual and estimated numbers at risk for CBZ 

group (similar pattern for VPS group). 
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2.4.2. Example 2 

The second example illustrates the estimation of log hazard ratio and its standard error 

from a life-table summarizing the survival experience of males and females with cerebral 

palsy born between 1966 and 1984 in the Mersey region [40]. Since data have been 

continually accrued for this cohort, an up-dated life-table has been used in the 

calculations that follow. Estimates of log hazard ratio and standard error are displayed in 

Table 2.2 in addition to the results obtained from IPD for comparison. 

In contrast to example 1, censoring is heavier towards the end of this study. From 

reading the manuscript, the period of follow-up would appear to be from 0-27 years. 
The assumption of constant censoring across this entire follow-up period (method 3a) 

has led to the numbers at risk being underestimated for the earlier times (Figure 2.3) 

resulting in the variance being overestimated. 

The estimates of log(HR) are closer to the IPD estimate when numbers at risk are 
incorporated (method 3b) using estimators (2.13) and (2.14). In fact, estimator (2.12) is 

particularly poor compared to (2.13), (2.14) and the IPD estimate and would require 
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further theoretical exploration of these alternative estimators to establish a potential 

explanation for this discrepancy. If numbers at risk are not included, the estimates are 

substantially poorer. The estimates of SE(log(FIR)) are more precise in all cases using 

(2.13) and (2.14), based on the observed and log-rank expected number of events. The 

availability of IPD in this example allowed us to identify that in fact no censoring had 

occurred before 9 years. The last row of Table 2.2 includes the estimates obtained from 

assuming constant censoring (method 3a) across the period 9-27 years. As expected, by 

reducing the period over which uniform censoring is assumed, the SE(log(HR)) 

decreases and the estimated numbers at risk pattern (Figure 2.3) is then similar to the 

pattern observed in Example 1 (Figure 2.2), resulting in the variance being 

underestimated compared to the approach incorporating numbers at risk. 
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Table 2.2. Example 2: Comparison of estimates of overall log(HR) and 
SE(log(HR)) (pooled across intervals) 

Method log(HR) SE(log(HR)) 

Individual patient data 0.1321 0.1696 

Method 3a 

Without numbers at risk' 
Estimators 

(2.12) 0.0167 0.1908 

(2.13) 0.1664 0.1696 

(2.14) 0.1693 0.1711 

Method 3b 

Incorporating numbers at risk 
Estimators 

(2.12) 0.0129 0.1854 

(2.13) 0.1414 0.1667 

(2.14) 0.1441 0.1683 

Method 3a 

Without numbers at risk2 
Estimators 

(2.12) 0.0217 0.1792 

(2.13) 0.1788 0.1584 

(2.14) 0.1819 0.1597 

Censoring rate assumed constant across period from 0-27 years. 
Z Censoring rate assumed constant across period from 9-27 years. 
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Figure 2.3. Example 2: Comparing actual and estimated numbers at risk for 

males (similar pattern for females). 
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2.5. Reliability of methods for aggregate data meta-analysis 

Parmar et al [32] have examined 209 randomised comparisons in advanced breast cancer. 

In 62 of these comparisons, insufficient AD were available to enable the log hazard ratio 

and its variance to be estimated for the end-point of interest. For 48 comparisons, either 

direct or indirect methods (indirect method 1, indirect method 2) and the method 

proposed based on survival curves (indirect method 3a) could be employed to estimate 

log(HRý) and its variance. This enabled a comparison to be made between direct or 

indirect based estimates with those obtained from survival curves (method 3a). In the 

comparisons examined the authors believe the survival curve estimate of log(HPý) 

(method 3a) appears to perform reasonably well except in a few cases suggesting that 

overall there was no evidence of systematic bias in the survival curve estimate. On the 

other hand, estimates of var(log(HPý)) obtained from direct or indirect approaches 

appeared to be underestimated by the survival curve approach (method 3a). In particular 
it appears that this discrepancy increases as the actual variance increases. Parmar et al 
[32] suggest that this underestimation is due to the uniform censoring assumption that is 

made when adopting the survival curve approach. The method proposed in section 

2.3.5 (method 3b) utilising numbers at risk attempts to improve estimation by 
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overcoming the need for this assumption. There is clearly a need to examine further 

examples of meta-analysis to compare results between different aggregate data based 

approaches (methods 1,2,3a and 3b). A comparison and investigation into the 

practicality, reliability and value of AD meta-analysis with time-to-event outcomes is 

undertaken in the next section. 

2.5.1. Examples 

Evaluation and comparison of AD based methods is undertaken using two examples of 

meta-analysis from different clinical fields. In the first example, only AD were extracted 
from randomised trials comparing the effectiveness of TIPS (transjugular infra-hepatic 

portosystemic shunt) and ES (endoscopic sclerotherapy) in the treatment of variceal 
bleeding. In the second example, IPD were available for some but not all trials 

comparing palliative chemotherapy versus supportive care in colorectal cancer. 

Example 3: Aggregate data MA proposed 

In this example IPD were not collected initially due to resource constraints. Khan et al 
[41] identified eleven randomised controlled trials suitable for inclusion in a systematic 

review to compare the effectiveness of TIPS (experimental group) and ES (control 

group) for the treatment of variceal bleeding, one of the most frequent and severe 

complications of chronic liver disease. Several outcomes were examined in the review, 
but time to death, the primary outcome, is the only end-point considered here. 

Example 4: IPD available for some trials 

The colorectal cancer collaborative group [42] included thirteen randomised controlled 

trials in a systematic review of the benefits and harms of palliative chemotherapy 
(experimental group) compared with supportive care (control group) for patients with 
locally advanced or metastatic colorectal cancer. Individual patient data were sought 
from all trialists, but for various reasons data were only obtained for seven trials. Again, 

several outcomes have been examined in this review but only time to death is 

considered here. 
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2.5.2. Data extraction 

In order to examine the reliability of the estimated summary statistics, as much as 

possible of the following information was extracted from the published manuscript (or 

sought from authors) of each trial: 

i) log(HR) or HI. and corresponding variance, standard error or confidence 

interval if quoted directly 

ii) coefficient of treatment effect and corresponding variance from an adjusted or 

unadjusted Cox proportional hazards model 
iii) log-rank test statistic and corresponding p-value 

iv) total number randomised and total number of deaths 

v) actuarial or Kaplan-Meier survival curve probability estimates at 6 month 

intervals 

vi) whether numbers at risk were given on survival curve or in text 

vii) minimum and maximum follow-up times 

Tables 2.3 and 2.4 summarise the information available in the trial reports of examples 3 

and 4 respectively. Several reports in both examples presented results adjusted for a 

variety of different covariates. A number of trials indicated that a Cox proportional 

hazards model had been fitted but a treatment coefficient and standard error was only 

presented in one trial. Similarly, although a log-rank test was performed in most trials, 

the test statistic was not quoted in any. The general quality of published survival curves 

varied. Survival probabilities were extracted with attention to accuracy, although results 

are obviously approximate. Where information for minimum and maximum follow-up 

times could not be extracted or approximated, indirect method 3a could not be used. 
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Table 2.3. Example 3: Summary of information available in each trial. 
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de 2.4. Example 4: Summary of information available in each trial. 
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2.5.3. Estimation of summary statistics 

Tables 2.5 and 2.6 show the estimates of log(HP. ) and its standard error for each trial 

derived from the methods described earlier (section 2.3) for each example respectively. 

Example 3 

Insufficient information was given in the abstract of trial 9,10 and 11 to estimate 
log(HR) and its variance. Comparing estimates from direct and indirect methods was 

not possible as only one adjusted direct estimate was given. The agreement between 

estimates from indirect methods 2 and 3 is varied with no particular pattern to the 

direction of differences. For trial 8, estimates from indirect method 2 and method 3b 

suggest a significant benefit for TIPS, whilst estimates from indirect method 3a 

incorrectly suggest there is no significant difference between the two groups. Some of 

the intervals chosen for indirect method 3a did not contain any events, which may 

explain the result obtained. 

There was generally good agreement between the three estimates given by (2.4), (2.5) 

and (2.6). Since the amount of censoring was relatively large in each trial, and the sample 

size in both treatment groups were approximately equal, the estimates obtained using 

approximation (2.4) were used in the meta-analysis as recommended by Collette et al 

[35]. The estimates obtained using indirect methods 3a or 3b differed somewhat, and 

were certainly less consistent with each other than the estimates obtained from indirect 

method 2. 

Example 4 

IPD were available for trials 1,4,6,7,8,9 and 10. There is generally good agreement 
between the IPD estimates and those obtained from indirect method 1 or 2. Less 

agreement is seen between IPD estimates and those obtained using indirect method 3a 

but method 3b performs much better and estimates from this approach are closer to 

IPD estimates. 
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Table 2.5. Example 3: estimates of log(HR) and corresponding standard error 

Trial Direct Indirect 1 Indirect 2 Indirect 3 

Adjuste Unadjusted Adjusted 2.4 2.5 2.6 3a 3b 

d 

1 -0.2001 -0.2001 -0.2009 -0.7807 
0.6030 0.6031 0.6056 0.6918 

2 0.3272 0.3276 0.3277 0.1441 0.2095 

0.4851 0.4857 0.4859 0.4821 0.5177 

3 0.2203 0.2083 

0.3934 0.4193 

4 0.0198 -0.6349 0.0645' -0.6143' 
0.5002 0.5409 0.6674 0.4999 

5 0.9957 0.9960 1.0321 0.9730 

0.4588 0.4590 0.4756 0.4138 

6 0.0920 0.2086 0.2086 0.2088 0.2133 -0.1846 
0.4879 0.4170 0.4170 0.4174 0.4369 0.4346 

7 0.2469 -0.1579 -0.2025 
0.6051 0.4128 0.5004 

8 -1.8326 -1.4028 -1.4054 -1.7681 -0.4490 -1.3035 
0.5194 0.6033 0.6036 0.6770 0.7480 0.6372 

9 

10 

11 

Estimate obtained from an adjusted Kaplan-Meier survival curve. 
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Table 2.6. Example 4: estimates of log(HR) and corresponding standard error 

Trial IPD Indirect 1 Indirect 2 Indirect 3 

Unadjusted Adjusted 2.4 2.5 2.6 3a 3b 

1 -0.4338 -0.5108 -0.4708 -0.4710 -0.4740 -0.3267 -0.3339 
0.2159 0.2207 0.2170 0.2170 0.2177 0.1811 0.2221 

2 

3 

4 -0.5964 -0.5365 -0.5587 -0.6391 -0.6020 
0.1646 0.1631 0.1439 0.1536 0.1490 

5 0.0252 0.0253 0.0252 0.0884 -0.0058 
0.2480 0.2484 0.2482 0.1669 0.2471 

6 -0.7985 
0.4903 

7 -0.7841 -0.7929 -0.7940 -0.7932 -0.6110 -0.7554 
0.2939 0.2748 0.2750 0.2748 0.2274 0.3425 

8 -0.4303 -0.4620 
0.2871 0.3429 

9 -0.2217 -0.2485 -0.3285 -0.2417 -0.2417 -0.2417 -0.1590 -0.2178 
0.1533 0.1655 0.1792 0.1597 0.1597 0.1597 0.1196 0.1519 

10 -0.3305 -0.4005 -0.3247 -0.3248 
0.1631 0.1526 0.1356 0.1664 

11 -0.9567 -1.0762 -1.0335 -0.7723 
0.3481 0.3693 0.3619 0.2729 

12 0.2469 0.1753 

0.1030 0.1615 

13 -0.2743 
0.2805 
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There was also good agreement between the three estimates given by (2.4), (2.5) and 
(2.6) with slight discrepancies in trial 4 and 11. The percentage of censoring was 

relatively low in each trial, therefore estimates obtained using approximation (2.6) were 

used in the meta-analysis as recommended by Collette et al [35]. However, twice as many 

patients were randomised to chemotherapy in trial 11, therefore the estimates obtained 

using approximation (2.5) were used. Study recruitment periods and dates of study 

termination were provided in four trials. Further methods for calculating Fm; 
m and Finax 

such as using date of publication were required for trials 4,5,10,11 and 12 as sufficient 
information was not given in the manuscript. Although survival probabilities could be 

obtained, Fm; 
m and Finax could not be estimated for trial 2 or 3, hence indirect method 3 

could not be used to estimate log(HR) and its variance in this case. 

2.5.4. Meta-analysis 

In these examples, estimates of log(HRý) and its variance to be used in each meta- 

analysis were chosen according to the following hierarchy. Unadjusted direct estimates 

are given priority, but in their absence unadjusted estimates obtained from indirect 

method 1 were used. If indirect method 1 was not appropriate for a particular trial, the 

estimates obtained using indirect method 2 were used. Finally if these estimates were 

not available, the estimates obtained from applying indirect method 3 were used with 

priority given to method 3b which uses additional information regarding the numbers at 

risk. 

Example 3 

The meta-analysis using unadjusted estimates is displayed in Figure 2.4. Overall there is 

insufficient evidence to suggest that a treatment difference is present between TIPS and 
ES, although in the clinical opinion of the review author, important clinical differences 

with respect to mortality cannot be excluded. 
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Figure 2.4. Example 3: Meta-analysis of unadjusted results 

SNdy Hazard Ratio (9xed) Weight Hazard Ratio (fixed) 
log(Hezard Ratio] (SE) 95% CI % 95% CI 

1 -0.2001 (0.6030) 9.11 0.82 10.25, 2.671 

2 0.3272 (0.4851) 12.53 1.39 (0.54, 3.591 

3 0.2083 (0.4193) 16.77 1.23 10.54, 2.901 

4 0.0198 (0.5002) 11.79 1.02 (0.38, 2.723 

5 0.9957 (0.4588) 14.00 2.71 (1.10, 6.65) 
5 0.2086 (0.4170) 16.95 1.23 (0.54, 2.79) 

7 -0.2025 (0.5004) 11.77 0.82 10.31, 2.181 

5 -1.4028 (0.6033) 4--Fý 8.10 0.25 (0.08, 0.80) 

1otd(95%CI) 100.00 1.10 10.79, 1.55) 
Test hx heterogeneity: Ch(- 11.01. d) "7 (P " 0.14), P" 30 4% 
Test for overall e118ct Z"0 58 (P " 0.55) 

0.1 0.2 0512 

hwun TPS Favour ES 
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The test for heterogeneity revealed no statistically significant evidence for heterogeneity 

between trials (chi-square=11.01, df=7, p=0.14). The funnel plot (Figure 2.5) shows 

that the smaller trials indicate a potential benefit for TIPS (experimental group), whilst 

the larger trials indicate a potential benefit for ES (control group). This pattern is 

consistent with the pattern observed when publication bias is present and therefore may 

be a potential problem for this example. However, interpreting funnel plots can be very 
difficult and subjective, particularly when the number of trials is small as in this 

example. Exploring publication bias is not dealt with further in this thesis. 
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Figure 2.5. Example 3: Funnel plot using unadjusted estimates 

SE 

Hazard Ratio (fixed) 

Example 4 

Trials were grouped according to whether chemotherapy was administered regionally or 

systemically. As a combination of IPD and AD were available, three meta-analyses were 

undertaken as follows. 

i) Figure 2.6 displays the meta-analysis using AD only, which is based on 9 trials, 

1114 randomised patients and 1000 deaths. 

ü) Figure 2.7 displays the meta-analysis using IPD only, which is based on 7 trials, 

866 randomised patients and 753 deaths. 

iii) Figure 2.8 displays the meta-analysis using IPD for the 7 trials where they were 

available and AD for 4 other trials where no IPD were available but AD 

estimates could be extracted from reports. This analysis is based on 1196 

randomised patients and 1073 deaths. 

All analyses suggest that the risk of death in the treatment group is significantly reduced 
in both the systemic and regional subgroups. 
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Figure 2.6. Example 4: Meta-analysis using AD estimates only 

Study 
or subcategory lo0(Hazard Ratoj (SE) 

Hazard Ratio (axed) 
95% CI 

Weight 
% 

Hazard Ratio (fixed) 
95% Cl 

01 Systemic 
11 -1.0762 (0.3693) -ýý 3.15 0.34 10.17, 0.70) 
12 0.1753 (0.1615) - It- 16.46 1.19 10.87, 1.64] 
13 -0.2743 (0.2005) 5.46 0.76 (0.44, 1.32] 
4 -0.6020 (0.1490) t 19.34 0.55 (0.41, 0.731 
6 Not eatinuble 
9 -0.2485 (0.1655) 15.68 0.78 (0.56, 1.081 

Subtotal (95%CI) 60.09 0.75 (0.63, 0.881 
Test for heterogeneity: ChP " 17.28. df "4 (P " 0.002), P" 70 9% 
Test for overall effect: Z"3.45 (P " 0.0006) 

02 Regional 
1 -0.5108 (0.2207) -e- 8.82 0.60 (0.39, 0.92) 
10 -0.4005 (0.1526) t 18.44 0.67 (0.50, 0.901 
5 0.0252 (0.2482) 6.97 1.03 (0.63, 1.673 
7 -0.7932 (0.2748) --ý- 5.69 0.45 10.26, 0.781 
a Not eetleoble 

Subtotal (95%CI) 39.91 0.67 (0.54, 0.821 
Teat for heterogeneity: Chi' " 5.23. df "3 (P " 0.16). P" 42 6% 
Test for overall effect Z" 392 (P 4 0.0001) 

Total (95%CI) 100.00 0.71 (0.63, 0.9L) 
Test for heterogeneity: Chl' " 23.25, dt "8 (P "0 003). P" 55.5% 
Test for overall effect: Z"5.15 (P < 0.00001) 

0.1 0.2 0.5 125 10 

Favours treatment Favours control 
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There is significant evidence of heterogeneity in the systemic group (p=0.002) but not in 

the regional group (p=0.16) when AD estimates are used (Figure 2.6). However, when 

only IPD estimates are used (Figure 2.7) there is no significant evidence of 
heterogeneity (p=0.18 systemic, p=0.61 regional). When both IPD and AD estimates 

are used (Figure 2.8), there is significant evidence of heterogeneity in the systemic group 
(p=0.004) but not in the regional group (p=0.32). The relatively large trial 12, with 

results in the opposite direction to other trials, appears to be the main cause of 
heterogeneity. There is no evidence for heterogeneity when only IPD estimates are used 
(Figure 2.7) as trial 12 is not included in this analysis. 
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Figure 2.7. Example 4: Meta-analysis using IPD estimates only 

Study Hazard Ratio (Oxad) Weight Hazard Ratio (fixed) 

or sub-category Iog(Haard Ratloj (SE) 95% Cl % 95% Cl 

01 Systemic 
11 Not estimable 
12 Not sstimabl. 
13 Not sstlsbls 
4 -0.5964 (0.1646) -F- 22.19 0.55 (0.40, 0.76) 
6 -0.7985 (0.4903) 2.50 0.45 (0.17, 1.101 
9 -0.2217 (0.1533) 25.58 0.00 (0.59, 1.001 

Subtotal(95%CI) 41111. 50.26 0.66 (0.53, 0.821 
Test for heterogeneity: COP " 3.42, dt "2 (P " 0.18), P" 41.5% 
Test for overall effect: Z"3.80 (P - 0.0001) 

02 Regional 
1 -0.4330 (0.2159) 12.89 0.65 (0.42, 0.991 

10 -0.3305 (0.1631) 22.59 0.72 10.52, 0.99) 
$ Not "stimsbls 
7 -0.7841 (0.2939) --ýý 6.96 0.46 10.26, 0.01) 
6 -0.4303 (0.2871) 7.29 0.65 10.37, 1.14) 

Subtotal (95%CI) . 49.74 0.65 (0.52, 0.80) 

Test for h"tsrogensity: ChP " 1.82. df "3 (P " 0.61), P" 0% 
Test for ovsnll effect: Z"3.96 (P < 0.0001) 

Total (95% CO 100.00 0.65 (0.56, 0.761 

Test for heterogeneity: COP " 5.25, df "6 (P " 0.51), P" 0% 
Test for overall effect: Z"5 49 (P 40 00001) 

0.1 0.2 0.5 125 

Fnoum M. tmeM Fsvoum control 

Figure 2.8. Example 4: Meta-analysis using IPD and AD estimates 

Study 
or sub-category Iog(Hrard Ribo) (SE) 

Hazard Redo (Axed) Weight Hazard Ratio (fixed) 
95% CI % 95% Cl 

01 Systemic 
11 -1.0762 (0.3693) 3.04 0.34 (0.17, 0.701 
12 0.1753 (0.1615) 15.91 1.19 (0.87, 1.641 
13 -0.2743 (0.2805) 5.27 0.76 10.44, 1.32) 
4 -0.5964 (0.1646) t 15.32 0.55 (0.40, 0.761 
0 -0.7985 (0.4903) 1.73 0.45 [0.17, 1.181 
9 -0.2217 (0.1533) 17.66 0.80 [0.59, 1.08) 

Subtotal (95%CI) 56.92 0.76 (0.64, 0.89) 
Test for heterogeneity: ChP " 17.55, dl "5 (P "0 004), P" 71.5% 
Test for overall effect: Z"3.31 (P " 0.0009) 

02 Regional 
1 -0.4338 (0.2159) 1.90 0.65 (0.42, 0.99) 
10 -0.3305 (0.1631) 15.60 0.72 10.52, 0.99) 
5 0.0252 (0.2482) 6.74 1.03 10.63, 1.671 
7 -0.7841 (0.2939) 4.80 0.46 (0.26, 0.81) 
0 -0.4303 (0.2871) 5.03 0.65 10.37, 1.14) 

Subtotal (95%C9 41.08 0.70 10.57, 0.851 
Test for heterogeneity: ChP "4 70, dt "4 (P " 0.32), P" 14 9% 
Test for overall effect: Z"3.58 (P " 0.0003) 

Total (95%CQ 100.00 0.73 (0.65, 0.93) 
Test for heterogeneity: Chi' " 22 05. dl " 10 (P " 0.01), P" 55 8% 
Test for overall effect: Z"4 83 (P 40 00001) 
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Figure 2.9. Example 4: Funnel plot using IPD and AD unadjusted estimates 

SE 

Hazard Ratio (fixed) 

The funnel plot in Figure 2.9 using a combination of IPD and AD estimates displays 

some evidence of asymmetry suggesting that some bias may be present. In particular, it 

may be that small trials favouring control treatment (supportive care) have not been 

published. Investigating potential sources of heterogeneity and publication bias is 

beyond the scope of this investigation. The reviewers are currently trying to contact the 

authors of trials 2 and 3 but the abstracts suggest that treatment is significantly superior 
in trial 2 but no difference is evident in trial 3. 

In this example, there is good agreement between the meta-analysis based on AD alone 

(Figure 2.6) and that based on both AD and IPD (Figure 2.8). This similarity is mainly 
due to the following: 

(i) The number of trials, patients and events are very similar in both analyses. The 

latter analysis includes two additional trials (trials 6 and 9 with a total of 82 

randomised patients) for which IPD but not AD estimates were available. 
(ü) The AD methods based on survival curves, which are likely to be less reliable, 

were only used in two trials (trial 12 and 13). As no IPD were available for these 

trials, the same estimates were used in both analyses. 
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The meta-analysis based on IPD alone (Figure 2.7) and that based on both AD and IPD 

(Figure 2.8) do not agree quite so well. This is mainly because the latter analysis includes 

4 additional trials (320 events, 330 randomised patients) for which AD but not IPD 

were available. 

Using a combination of AD and IPD has been useful here as (i) the number of trials, 

patients and events included in the analysis could be maximised (ii) heterogeneity in the 

systemic subgroup was highlighted which may not have been recognised if only IPD 

were used, and (iii) we have gained increased confidence in the results obtained in the 

regional subgroup. 

2.6. Assessing the assumption of proportional hazards 

If the relative effect of two treatments changes over time, and the trials included in a 

meta-analysis vary in terms of the length of follow-up, this will introduce heterogeneity 

which may be evident from graphical tests that detect bias [43]. Methods for assessing 

the proportional hazards (PH) assumption using IPD have been proposed [44]. The 

capacity to detect violations of the PH assumption if only aggregate data were available 
for each trial would be valuable to meta-analysts. Several methods for detecting such 

violations based on aggregate data are now developed and applied to five randomised 

trials included in the systematic review comparing CBZ and VPS [39]. If the PH 

assumption is deemed appropriate for a particular trial, one might expect it to be 

approximately appropriate for all trials if the treatments under comparison are expected 

to behave in a similar way across different trial settings considered in the meta-analysis. 
The principle of meta-analysis suggests that this would be the case for the majority of 

situations. The assumption may not be realistic if variation across trials introduces some 
differential effect on one or other treatments such that hazards are no longer 

proportional within a particular trial. This would suggest an underlying time varying 

covariate with a differential effect across trials that would induce non-proportional 
hazards in a selection of trials. This work has been published by Williamson, Tudur 

Smith et al in Statistics in Medicine [33]. 
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2.6.1. Overall log(HIý estimate only available for each study 

If the relative effect of two treatments does not remain constant over time, one would 

expect the 1og(HP, ) estimates from trials with differing periods of follow-up to vary. 

Informally, one could assess plots of the log(HR) against length of follow-up. The 

effect of average follow-up period on the estimate of the treatment effect could be 

investigated using meta-regression, a procedure which is described in more detail in 

Chapter 5. This test is likely to have low power in most situations as the number of trials 

in a meta-analysis may be small and there may be little variation in the overall follow-up 

time across trials. 

For time to first seizure examined in the CBZ/VPS meta-analysis [39], the test for 

heterogeneity in treatment effect between trials was non-significant using IPD 

(x2(4)=5.89, p=0.21) and no obvious trend was evident between the treatment effect 

estimate and the summary measure of follow-up for each trial. 

2.6.2. Log cumulative hazard plot (log-log plot) 

A plot of the log cumulative hazard versus time (log-log plot) is a standard graphical 

tool, which can be used to indicate a violation of the PH assumption using IPD. The 

logarithm of the survival time is plotted against the estimated log cumulative hazard 

(log[-log(s(t))]). If the plotted curves for the two treatment groups are approximately 

parallel, the PH assumption is reasonable. Estimated survival probabilities sk 1....., sk P 

at specific time points t, ....., t,, extracted from published survival curves can be used to 

produce an approximate log cumulative hazard plot as a crude method of assessing the 

plausibility of the PH assumption. 

A log cumulative hazard plot for each trial in the CBZ/VPS systematic review using 

IPD is displayed in Figure 2.10. The corresponding log cumulative hazard plots using 

aggregate data (survival probabilities read off Kaplan-Meier curves at 200-day intervals) 

are displayed in Figure 2.11. 

In this example, although the plots using IPD (Figure 2.10) are difficult to interpret as 

the curves are generally quite close together, they suggest that the assumption of PH 
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may be invalid in at least 3 trials (De Silva 1996 [45], Verity 1995 [46], Mattson 1992 

[38]). 

Broadly speaking, the plots produced using aggregate data (Figure 2.11) show similar 

patterns in that two trials favour CBZ (R. ichens 1994 [47], Mattson 1992 [38]), two trials 

tend to favour VPS (De Silva 1996 [45], Verity 1995 [46]) and neither drug is particularly 
favoured in one trial (Heller 1995 [48]). The interpretation is made difficult in this 

example as the survival curves are generally quite close together. Furthermore, the time- 

points at which survival probabilities are read off need to be chosen carefully with the 
first time-point chosen close to the origin (7 days in this example) to avoid missing 

potentially important information. On the whole, this approach may not be particularly 

useful and may lead to incorrect interpretations. 
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Figure 2.10. Log cumulative hazard plots using individual patient data (IPD) for 

five trials included in CBZ/VPS systematic review. 
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Figure 2.11. Log cumulative hazard plots using aggregate data (AD) for five trials 

included in CBZ/VPS systematic review. 
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2.6.3 Estimate of log(HIO available for different time intervals 

If an estimate of the log hazard ratio and its variance are available for a number of 

separate intervals within each trial, an estimate of log(HR) pooled across trials can be 

calculated for each interval. If the assumption of PH is reasonable one would expect the 

pooled estimates of log(HR) to remain approximately constant when plotted against 

time. 

To investigate the assumption of PH in such a way, or if the results extracted from 

survival curves for several trials are to be pooled together to form an overall survival 

curve [32], then intervals defined by the same time-points t1....... t,. ' need to be used for 

all trials. As numbers at risk are unlikely to be reported at the same time points for each 

trial, a further modification to the method described in section 2.3.5 (method 3b) is 

required and now described in order to utilise this information. 

Using the notation introduced in section 2.3.5, suppose survival probabilities 

sk 
j,...., sk P are read off the curves at time points t1 ,...., tp where numbers at risk 

nk, 1 ....., nk, p are given. Within each time interval [t, 
-,, 

t, ) (i=1 ... p) the method 

described in section 2.3.5 is used to obtain estimates of dk is ek. ,, and nk. 

Furthermore, suppose survival probabilities sk, l',.... , sk, r' are read off the curves at 

required time points t1....... t, ' that are necessarily identical for each trial. Within each 

time interval (1=1 ... r) estimates dk, 1', 
ck. 

1', and nk. I' are required to 

calculate log(HR) and its variance. 

For the sub-interval [t1_1, t, '), where t, _1' < tß_1 < tl' < ti, it can be shown that 

Sk l'((Ck, +2dk, )*(s; 
11 -Sk, l-1)-(sk, iCk, i))+(sk, lSk, l-1Ck, 1) 

2.15) 
0.5 

Ski I (Sk 
!- Sk, i-1) 
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" 
[5;, 

' 
' ((25;, 

Eflk, I_1) - ; 
�'-i 

(a;, + 2flk, )) 
- 

(sklskllckiý 

(2.16) 
Sk, 1 

(Sk,, 
- Sk, i-1) 

For the sub-interval [t, ', t, ), it can be shown that 

dk, c[l., i» 

0.5 
- 

Sk, l1 
ý(C* 

! 
i-Zdk 

i)(s ,, 
-Sk, l')+(Sk, l-1Ck, l)) -(Sk, lsk, i-1Ck, 

) (2.17) 

Sk II 
(Ski 

-Sk, 1-1) 

"__ Sk, l1(sk, 1(2nk, º-1 - Ckl)-2sk 1_IYlk, 
)-(Sk, 

isk, l-1Ck, iý (2.18) 

Sk, l 
(Sk, 

l -Sk, 1-1) 

The estimated number at risk at time point t1' is then given by 

nk, 1 = nk, l-1 -dk. Qi-1.! ')) -Ck. ([i-1. /')) 
2.19) 

Finally for the interval the log(HR) and its variance can be approximated 

using the following estimates 

dk., = dk. cu-ý. ý->» +dk. c[1-ý. 1» (2.20) 

Cg, l = Ck. (II-1'. º-1)) 
+Ck. QI-1.1)) 

(2.21) 

Ytk, I = nk.! -1 
I 

Ckj, 

-22.22 
'* 

The estimate log(HR)1'p0O1ed pooled across trials for each interval [t, 
_1', 

t1'), (estimated 

using an inverse variance weighted average) or its exponential can be plotted against 

time. 
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A formal significance test could be applied as follows. The null hypothesis of 

proportional hazards for the effect of treatment can be described by 

Ho : log(HR)1'pooled =1og(HR)x'pooled = ... = log(HR)r'pooled = ep 

A where 9p denotes the overall pooled log hazard ratio across j trials. A suitable test 

statistic, similar to the usual test of homogeneity of summary statistics across trials, is 

r 
Q-Z w/ 

pooled 
I1og(HR)1 

pooled - 
ep 

l-1 

where 

wl , 
pooled = var(1og(H )' 

pooled 
) _I 

Under the null hypothesis, Q -, ýý 1 asymptotically. The power of this test is likely to be 

low as the alternative hypothesis is general and an alternative test for trend in the log 

hazard ratios with time may be more appropriate although not considered further here. 

The above approach pools the within interval estimates across all trials, an approach 

which assumes that each trial is estimating similar hazard rates and that the pattern with 

time is similar across trials. This assumption may be explored further by examination 

and visual comparison of the individual within trial plots of log hazard ratios and 

confidence interval across all intervals. 

For the trials in the CBZ/VPS example, estimates of log(HR) and its variance obtained 

using the method described above agree well compared to corresponding estimates 

obtained from directly incorporating numbers at risk for the intervals of interest. 

Figure 2.12 shows a plot of the hazard ratio within each interval [t, 
_1', 

t, ') pooled across 

trials against time for the CBZ/VPS example using intervals of 90 days within each trial. 
In this plot, the estimated hazard ratio appears to remain fairly constant as time 
increases although the variation increases towards the end of the time scale where there 
is much less information and this is reflected in the increase in confidence interval 
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width. AQ value of 16.21 (11 degrees of freedom) provides no statistical evidence 

against this observation (p=0.13). Similar analyses were undertaken using interval widths 

of 30 days over ranges of 0-1080 days and 0-720 days resulting in Q values of 34.24 (35 

degrees of freedom, p=0.51) and 25.17 (23 degrees of freedom, p=0.34) respectively. 

These results suggest that assuming proportional hazards may not be unreasonable in 

this example. 

Figure 2.12. Hazard Ratio pooled across trials within each interval (90-day) 
plotted against time for 5 trials in CBZ/VPS systematic review 
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2.7. Discussion 

Methods for undertaking meta-analysis with time-to-event outcomes using aggregate 

data extracted from trial reports or made available from trialists are accessible but their 

value is limited by the lack of accurate reporting of suitable data. As an example, the p- 

value quoted for the log-rank test should be reported to at least 2 decimal places and 

care is required when interpreting the direction of effect for the log hazard ratio which 

may not always be obvious especially when the two treatment groups have similar 

effects on the outcome (Tudur et al. [34]). The approaches based on extracting survival 

probabilities from published survival curves may be particularly prone to bias 

introduced by inter-reader variability extracting data, highlighting the importance of 

having at least two independent reviewers to undertake data extraction. The quality of 

published survival curves are likely to vary considerably. Some improvement in data 

extraction accuracy may be gained by enlarging the published plots or using specialist 

software developed for this purpose. The current author has not examined the accuracy 

of estimates extracted electronically which may be interesting to investigate in future. 

The survival curve based approach that ignores information from numbers at risk 

(method 3a) requires some assumption to be made about the pattern of censoring 

across the entire follow-up period. Less severe assumptions are made in the approach 
incorporating numbers at risk (method 3b) which improves accuracy of estimates for 

the empirical examples examined herein. Further empirical examples are required to 

validate these observations, particularly in comparison to results obtained from 

individual patient data. However, such comparisons are likely to be complicated by a 

number of differences between the data used in IPD and AD analyses [49]. In addition, 
for many empirical examples IPD may be sought for the very reason that AD are 

unavailable from trial reports. A pragmatic comparison of results from these approaches 

may therefore be limited and a simulation study may be useful to help quantify bias and 

complement empirical results. In practice, the biases are likely to vary according to 

example and reviewers should be made aware of potential pitfalls with AD meta-analysis 

of time-to-event outcomes. The author is of the opinion that for AD based meta- 

analyses, data should be extracted to enable as many of the methods as possible for 

estimating log hazard ratio and its variance to be utilised and compared. This would 

allow consistency to be explored and could identify potential areas for concern. If 

estimates from all approaches are available the author would recommend that the 
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hierarchy of indirect method 1, indirect method 2, indirect method 3b and indirect 

method 3a be used for choosing which estimate to use for meta-analysis. 

One advantage of collecting IPD for meta-analyses involving time-to-event outcomes is 

the potential to examine the underlying assumption of proportional hazards which 

underpins the interpretation of the hazard ratio. Methods for assessing this assumption 

using aggregate data have been proposed in this chapter. Evidence for non-proportional 

hazards was not detected by assessing the extent of variability in treatment effect 

according to length of follow-up. This formal statistical test of homogeneity has low 

power when the number of trials is small, as in the example used for illustration. A log 

cumulative hazard plot can be constructed using aggregate data although this may be 

difficult to interpret, in a similar way to the difficulty of interpretation in a single survival 

study. A further graphical display of the estimated hazard ratio pooled across trials 

within contiguous intervals, and a statistical test similar to the chi-square test of 

homogeneity, failed to demonstrate non-proportional hazards. To improve estimation, 

the time-points in each trial should be chosen such that the number of events are non- 

zero for each trial within a particular interval. Results should also be interpreted with 

caution as the choice of interval width could potentially alter conclusions. Furthermore, 

the power of the test is likely to be low as the alternative hypothesis is general. A more 

specific alternative hypothesis such as a linear trend with time may be more suitable. 

More in-depth exploration of the proposed approaches for assessing proportional 

hazards with AD is required to assess reliability. If the assumption does not hold or 

there are clear clinical reasons to expect the relative effect to change with time the 

availability of IPD will be particularly beneficial as models that do not require making 

the PH assumption may be explored and may be more appropriate. The availability of 

IPD provides greater flexibility to further explore alternative model structures. 

It is clear that further evidence is needed to establish in which situations and areas of 
health care an IPD approach is most beneficial and, conversely, to characterise when an 
AD approach will be reliable. Specific issues relating to IPD analyses are detailed in 

following sections. Williamson, Marson, Tudur et al [49] have undertaken a review of the 

empirical evidence related to the comparison of IPD and AD meta-analyses, concluding 
that more evidence is needed. However larger scale IPD projects may not always be 

feasible or the data may not be available and the AD based methods outlined in this 
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chapter may be particularly valuable in these situations. In terms of calculating an overall 

pooled hazard ratio and confidence interval, the present author is of the opinion that an 

aggregate failure time data meta-analysis will be adequate under the following 

conditions: the outcome is well and consistently defined across trials, the AD presented 
in all included trials consists of a direct estimate of log hazard ratio and its variance, SE 

or confidence interval; the within-trial analyses include data for all randomised 
individuals following an intention to treat approach; a clear description is provided of 

the model adopted, covariates included, and direction of treatment comparison. 
Deviations from these conditions are likely to introduce some bias, and should be 

highlighted when interpreting the results and drawing conclusions from AD based meta- 

analyses. 



CHAPTER 3 

Individual patient data meta-analysis 

Systematic reviews which include a meta-analysis of individual patient data (IPD) have 

been described as the 'yardstick' against which all systematic reviews should be 

measured [25]. An approach of this kind can be resource intensive as the process of 

requesting, collecting, organising and cleaning data to ensure a standard format, can be 

lengthy and expensive compared with the traditional approach based on extracting data 

from trial reports or supplied by authors of unpublished articles. Although an IPD 

approach may require greater resources compared with an aggregate data approach, 

there are several advantages particularly in systematic reviews that focus on time-to- 

event outcomes. As described in Chapter 2, limitations of reporting suitable aggregate 
data for time-to-event outcomes often preclude an aggregate data meta-analysis of this 

type of outcome. Having IPD from each trial permits the standardisation of outcome 
definitions and the possibility of analysing previously unreported outcomes. If multiple 

outcomes are of interest but only a subset are reported in a particular trial, it could be 

that arriving at the original decision of which outcomes to report was based on 

presenting the most significant. Without IPD, the trial in question would be excluded if 

aggregate data for the outcome were not reported and this is likely to introduce bias to 

the meta-analysis. Further advantages include the possibility of undertaking a more 

complete and updated analysis as follow-up data collected after the original trial 

publication can be included in the meta-analysis and re-analyses based on all randomised 
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patients to achieve an intention to treat analysis can be undertaken with IPD. In 

addition, the availability of IPD allows more thorough data validation and quality 

assessments to be undertaken. Many further benefits such as identification of further 

unpublished trials can also be gained as a result of collaborating with original trial 

authors in the relevant clinical field. The practicalities, advantages and disadvantages of 

undertaking meta-analyses based on IPD are described in detail by Stewart and Clarke 

[26], Clarke et al [50], and the Early Breast Cancer Trialists' Collaborative Group [51]. 

Although IPD meta-analyses are considered the gold-standard, it is important to 

establish circumstances in which such an approach is worthwhile and warrants the extra 

investment of time and money that is inevitably required. However, the empirical 

evidence comparing the main meta-analysis results and clinical interpretations obtained 

from systematic reviews using AD compared with IPD, is largely inconclusive with 

respect to establishing how much gain is to be achieved with IPD. This is mainly 

because various sources of bias are introduced at different 'levels making a 

straightforward comparison problematic. For example, a 'gold-standard' AD meta- 

analysis would require the correct AD to be reported accurately and completely for 

every eligible trial. However, in practice, an AD approach may be more susceptible to 

publication bias, within study selective reporting bias, and biases associated with 

inaccurate or incomplete reporting of the required data, which hinders a comparison of 

`gold-standard' AD and IPD meta-analyses. In most circumstances, such a comparison 

would require using IPD to generate AD. Obtaining additional follow-up information is 

likely to be more successful for certain end-points that are commonly examined in 

particular clinical areas. For example, time to death analyses are common in cancer trials 

and information on whether a patient has died following the end of a clinical trial can be 

collected through ONS, making up to date analyses possible. On the other hand, seizure 

data following the end of trial in epilepsy patients is rarely collected reliably which is 

likely to prevent `further follow-up' analyses in these trials. Comparisons between IPD 

and AD may therefore differ according to specific clinical areas. Further differences in 

outcome definition, patient exclusions imposed by original authors, and restricted 

reported data make a pragmatic comparison between AD and IPD difficult to interpret. 

Such biases and differences are likely to be inconsistent across meta-analyses making 

overall conclusions hard to reach. 
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Alternative methods for IPD meta-analysis of time-to-event outcomes have been 

established and utilised in practice. Two-stage methods, that involve using the IPD to 

estimate the treatment effect and variance within trial as the first stage then pooling 

across trials as the second stage, are the most commonly used approach to analysis 

(Mark Simmonds, personal communication). Examples of two-stage methods for time- 

to-event outcomes include calculating an inverse variance weighted average of within 

trial log hazard ratios or a stratified Log-rank analysis. In particular, the stratified log- 

rank analysis is the method of analysis adopted by the SCHARP software, a freely 

available package for undertaking IPD meta-analysis developed at the Medical Research 

Council's Cancer Trials Unit in collaboration with the Istituto di Ricerche 

Farmacologiche. In the authors opinion, there is a need to compare such approaches to 

ascertain whether the most appropriate techniques are adopted and highlight potential 

areas where methods may be preferred. Common methods for meta-analysis are 

compared in later sections using simulated data. 

3.1. Comparison of IPD and AD based meta-analysis 

A review of systematic reviews which have included a comparison of the main treatment 

effect results from IPD and AD meta-analyses has been undertaken (published by 

Williamson, Marson, Tudur et al in JECP [49]). Inclusion criteria for this review were 

systematic reviews of randomised controlled trials that include both an IPD meta- 

analysis and a comparative AD meta-analysis. The primary end-point of interest in each 

review, as defined by the original reviewers, was examined. Electronic databases 

MEDLINE, BIDS, The Cochrane Database of Systematic Reviews and The Cochrane 

Review Methodology Database were searched. Proceedings from the Cochrane 

colloquium and Oxford Symposium on Systematic Reviews were reviewed for all years. 
Experts in the field were contacted and asked to identify further unpublished studies. 
Seven published systematic reviews meeting the inclusion criteria were identified where 

the main treatment effect could be estimated from a meta-analysis of the literature 

(MAL) and meta-analysis of individual patient data (MAP). One further unpublished 

comparison could be included using available data from the systematic review of 

monotherapy trials comparing CBZ and VPS for epilepsy. Results for the comparison 

of main treatment effect from MAL and MAP approaches are displayed in Table 3.1. 
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Table 3.1. Empirical evidence of the comparison between meta-analysis 
methods. Table entries relate to the pooled treatment effect and 95% confidence 
interval. HR=Hazard Ratio, s diff= difference in survival probabilities at 30 

months, OR=odds ratio, RR=relative risk 

Condition, Outcome, Gold standard IPD Literature-based 

Intervention (MAP) (MAL) 

Epilepsy, time to withdrawal of HR=0.97 (0.79,1.18) HR=1.02 (0.67,1.56) 

treatment, Carbamazepine versus N=1195 N=705 

Sodium Valproate [49] 

Ovarian cancer, time to death, non- HR=0.93 (0.83,1.05) OR=0.714 (0.52,0.96) 

platinum single versus platinum sdiff=0.025 sdiff=0.075 

combination chemotherapy [52] N=1329 N=788 

Lung cancer, time to death, HR=0.86 (0.78,0.94) OR=0.65`P (0.57,0.77) 

chemotherapy versus chemotherapy N=2140 N=1911 

plus radiotherapy [53] 

Breast cancer, time to death, ovarian OR=0.76 (0.65,0.88) OR=0.86 (0.68,1.07) 

ablation versus control [54] N=1746 N=1644 

Non-small cell lung cancer, time to HR=1.15 (1.04,1.27) HR=1.09 (0.98,1.22) 

death (Parmar et al. personal N=2145 N=1927 

communication) 

Colorectal cancer, time to death, HR=0.65 (0.56,0.76) HR=0.74 (0.66,0.84) 

palliative chemotherapy versus N=866 N=1196 

supportive care [34] 

Myocardial infarction, death, ACE OR=0.93 (0.89,0.98) OR=0.93 (0.89,0.98) 

inhibitor versus control [55] N=98496 N=96669 

Recurrent miscarriage, livebirth, RR=1.12 (0.97,1.31) RR=1.29 (1.03,1.60) 

immunotherapy versus control [56] N=379 N=202 

Odds ratio rather than hazard ratio estimated from published survival curves. Both were 
translated into difference in survival probabilities 
9 Sub-optimal MAL in that non-randomised patients were included 

The level of statistical significance, and estimate of the treatment effect obtained from 

the two approaches varied but the differences were not consistent across reviews. In 

two reviews a significant result was observed using MAP but a non-significant result 

obtained using MAL. A conflicting pattern was seen in one further review with MAL 

suggesting a significant difference not identified by MAP. Agreement from both 
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approaches in terms of statistical significance were obtained for the remaining reviews 

examined. The treatment effect was greater using MAL in three reviews, greater for 

MAP in three further reviews and similar or equal estimates from both approaches in 

two reviews. This review of empirical comparisons indicates that different results and 

conclusions may be obtained from the two approaches to meta-analysis but no 

systematic pattern of differences can be established. Differences between approaches 

may be explained by differences in method of analysis, publication bias, exclusion of 

patients, and follow-up. Williamson, Marson, Tudur et al [49] propose that the following 

specific analyses should be undertaken when comparing AD and IPD to overcome 

these difficulties. Firstly, a meta-analysis of literature based AD (MAL) would represent 

the least resource intensive approach. Secondly, IPD from the same trials using identical 

patient and follow-up information would provide a ̀ method of analysis' comparison. To 

further quantify the effect of publication bias, any unpublished trial results obtainable 
from adopting an IPD approach should be incorporated. The effect of patient exclusion 

in published analyses can be assessed by using IPD to reinstate any originally excluded 

patients. The impact of further follow-up can be examined by including this additional 

level of data before undertaking a `gold-standard' IPD analysis (MAP, meta-analysis 

based on individual patient data) incorporating all available trials and patients mentioned 

previously. These analyses provide a range of comparisons between the least (MAL, 

meta-analysis of the literature) and most (MAP) resource-intensive approaches. 

Further empirical evidence with more specific comparisons are needed in order to 

establish whether the extra investment needed for IPD over and above AD is 

worthwhile. A systematic review of empirical comparisons for the main treatment effect 
[57] is currently underway within the Cochrane Collaboration. Until further evidence is 

available, the decision of whether the extra investment required for IPD analyses is 

worthwhile remains a decision in which several factors should be considered. 
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Several statistical methods are available for the analysis of time-to-event data for a single 

randomised controlled trial. The remaining chapters of this thesis will primarily consider 

the log-rank analysis and Cox proportional hazards model as these popular methods are 

widely accepted as standard for the analysis of time-to-event data. These general 

approaches are also likely to be the most readily accessible to researchers undertaking 

meta-analysis of this type of data. 

3.2. Log-rank analysis 

In an individual trial involving a time-to-event outcome, the log-rank analysis proposed 

by Mantel and Haenszel [28] is a common non-parametric approach for comparing the 

time-to-event experiences of two or more groups of individuals. For two treatment 

groups A and B, the general procedure entails ordering the distinct event times t(k) 

(k=1,2,..., r) across all groups and recording at each time the number of events for each 

group, denoted dA(k) and dB(k), and the number at risk for each group, denoted nA(, k) 

and nB(k) . At each event time t(k) ,a 2x2 table may be constructed as follows: 

Group Number of events Number of non events Number at risk just before 

at t(k) at t(k) t(k) 

A dA(k) nA(k) -d A(k) nA(k) 

B dB(k) nB() -d B(k1 nB(k) 

Total d(k) n(k) - d(k) n(k) 

The null hypothesis of no difference in the time-to-event experiences of individuals in 

the two groups implies independence of event status and group in the table above. 

Furthermore, as dA(k) follows a hypergeometric distribution, the expected value and 

variance of dA(k) is given by 

nA(k)d(k) nA(k)nB(k)d(k)(n(k) -d(k)) 
eA(k) 5 VA(k) 

2 n(k) 17(k) (f(k) 
-1) 
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Evidence against the null hypothesis can be assessed by combining across all r event 

times, the difference between observed and expected numbers of events under the null 
hypothesis. The log-rank statistic given by 

ULR= 
[dA(k) 

- eA(k)] (3.1) 
k=1 

has an approximate normal distribution with expected value of zero and variance 

VLR _ VA(k) (3.2) 
k=1 

2 

It follows that _ N(0,1) and therefore u- x1 which provides a measure of Vie VLR 

the extent to which the observed time to event experiences in the two groups deviate 

from those under the null hypothesis of no difference, with large values indicating 

greater evidence against the null hypothesis. The approach assumes that the times to 

event for individuals are independent and identically distributed although no particular 
distribution is assumed. Further assumptions are that individuals are a random sample 
from the population of interest, any censoring that occurs is random, and the 

distribution of censoring times is independent of the time-to-event for individuals in the 

sample. 

Now consider a meta-analysis. In order to preserve the randomisation within each trial 

in a meta-analysis involving IPD, a log-rank analysis stratified by trial is used to obtain 

an overall estimate of the hazard ratio and confidence interval. If the subscript j denotes 

trial, where j=1... J, the general procedure is to obtain the log-rank statistic and its 

variance for each trial, denoted U. and V. respectively, and sum these values over 

all trials included in the meta-analysis. To the author's knowledge, this approach was 
first described for undertaking meta-analysis of time-to-event individual patient data by 

the Early Breast Cancer Trialists' Collaborative Group [51] and is noted to be of 

maximal statistical sensitivity for the detection of modest treatment effects. An estimate 

of the typical treatment effect is given by summing the log-rank statistic over trials and 
dividing by the sum of the log-rank variance across trials (3.3) with variance for the 

treatment effect estimated by the reciprocal of the sum of the log-rank variance across 
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trials (3.4). In the 1990 manuscript, this treatment effect is called a "typical log odds 

ratio" but is referred to as the pooled log hazard ratio (ß ) in this thesis. 

J 

E um 
/ LR = 'J1 (3.3) 

VLRJ 
j. 1 

var(, 6LR) =j1 (3.4) 
Y VM 
J=1 

The estimate of ßLR is described as the "one-step" estimator since it is equal to the first 

step from a log(hazard ratio) of zero towards the maximum likelihood estimator in the 

Newton-Raphson iterative procedure. It is also referred to as the Peto estimator as it 

was first described by Yusuf, Peto et al [9]. Berry et al [58] note that the Peto estimator 

was originally proposed within the context of meta-analysis where the parameter of 

interest is an odds ratio rather than a hazard ratio. 

3.3. The Cox proportional hazards model 

The semi-parametric proportional hazards model proposed by Cox [30] is easily the 

most widely used regression model for the analysis of failure time data as there is no 

requirement to make any parametric assumption regarding the baseline hazard rate. The 

model is written in terms of hazard functions such that for the ith individual, i=1,2,..., n, 

in a single trial with covariate value x, , the hazard function at time t is written as 

', (t) = )o (t) exp( ,) (3.5) 

If x, is an indicator variable representing treatment group membership such that xi =1 

for patients on the experimental treatment and x, =0 for patients on control treatment, 

AO (t) is the hazard function for an individual on control treatment and is often referred 

to as the baseline hazard function whilst the hazard for an individual on experimental 
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treatment is given by O (t) exp(, 8) . The regression coefficient 8 is estimated by 

maximising the logarithm of the likelihood function given by 

log L(ß) _ 8, fix! - log exp(ßx, ) (3.6) 
! =1 ! eR(t, ) 

where 8, is a censoring indicator variable which takes the value 0 if the time to event 

for the jib individual is censored and unity if the event of interest was observed, and 

R(t) represents the risk set, the set of individuals at risk of the event just prior to time 

ti . 
As the likelihood function does not directly use the actual failure times of individuals 

the function is not a true likelihood function and is referred to as the partial likelihood 

function. Maximisation of the partial log likelihood function (3.6) is undertaken using 

the Newton-Raphson numerical procedure such that an estimate of 63 at step (h+1) of 

the iterative procedure is given by 

Nh+l - 
ßh +I- l (, Bh)U(/h 

i 
where U(, 8) =8 

1o8ý (ß) 
and 1(, ß) =-S 

l(5ýL(O) 
. 
An initial value of zero is usually 2 

taken and the iterative procedure is considered to have converged when the difference 

in partial log-likelihood function is sufficiently small. The standard error of ß is 

approximated by 

Since meta-analysis of individual patient data involves combining individual patient 

responses across each trial, whereby patients within a trial are assumed to be more alike 

than patients from different trials, the structure of the data are naturally hierarchical with 

patients treated as level-1 units and trials as level-2 units. This 2-level hierarchical structure 

is adopted for the models considered throughout this paper. Recent advances in the 

meta-analysis of IPD have explored models for the analysis of binary data [59], 

continuous data [60], and ordinal data [61], using a hierarchical modelling approach. 

Bayesian and non-bayesian hierarchical models have been developed for time to event 

outcomes, and their application is particularly noticeable in the literature of multi-centre 
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clinical trial analysis [62], [63], [64], [65]. Although the hierarchical data structure is the 

same for meta-analysis of IPD and a multi-centre clinical trial, the number of level-1 units 

(patients within each trial/centre respectively) and level-2 units (trials/centres) is often 

quite different. Typically, meta-analyses are based on small numbers of trials with many 

patients, whereas multi-centre clinical trials include many centres with relatively few 

patients in each. 

Alternative hierarchical formulations of the proportional hazards regression model can 

be used for meta-analysis and for detecting and exploring possible sources of 

heterogeneity. Assuming a fixed treatment effect across trials and fixed trial effect, two 

formulations of the Cox model are possible for undertaking meta-analysis as described 

by Williamson [90] and Whitehead [88]. These fixed effect models for the meta-analysis 

of trials comparing two treatments are reviewed and described in the following sections. 

Further details regarding models assuming random effects are deferred to Chapter 5. 

3.3.1. Cox regression model with trial indicator variables and fixed 

treatment effect 

For the ith individual in the jth trial (i=1... nß , j=1... J ), the hazard function at time t is 

written 

Atf (t) = to (t) exp(ßoj + ß1x1,, ) (3.7) 

where the fixed parameter ßoß indicates trial membership (with /30, constrained to equal 

zero) for all individuals in the jth trial and xl, ý is a treatment indicator variable. In this 

model, the hazards within all trials are assumed to be proportional to the same common 

baseline hazard function 2 (t) . The fixed parameter /31 indicates the log hazard ratio of 

the event in experimental group relative to the control group, which is assumed to be 

identical across trials. Parameter estimates are obtained by maximising the partial log 

likelihood using the Newton-Raphson procedure as described earlier. However, since 

construction of the risk set involves ordered event times for all individuals from all 

trials, this model does not strictly compare patients from experimental and control 

groups within the same trial, an underlying desirable property for meta-analysis. The 

restrictive assumption that the hazards are proportional to a common baseline hazard 
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function makes model (3.7) unappealing for undertaking meta-analysis as different 

settings and patient populations are likely to give rise to different baseline hazard 

functions. A less restrictive assumption of proportional hazards within each trial, rather 

than overall, can be achieved using a stratified Cox regression model. 

3.3.2. Cox regression model stratified by trial with fixed treatment effect 

In this model, the hazard function for the ith individual in the jth trial is written as 

Au (t) = Aoj (t) exp(Q1x1y) (3.8) 

where A. ot is the baseline hazard function in the jth trial. In model (3.8), the restriction of 

overall proportional hazards across trials is removed and hazards are only assumed to be 

proportional within each trial. The log likelihood for this model is equal to the 

summation of each trial log likelihood (equation (3.6)) constructed using only ordered 

event times for individuals from within each trial. The disadvantage of model (3.8) is 

that a direct estimate of the trial effect is not produced but this is not considered to be 

critical for meta-analysis as the effect of trial in isolation is rarely of interest. As with 

model (3.7), the fixed parameterß1 of model (3.8) indicates the log hazard ratio of the 

event in experimental group relative to the control group, which is assumed to be 

identical in each trial. 

As models (3.7) and (3.8) assume a common treatment effect across trials, no allowance 

is made for residual heterogeneity in these models. Alternative assumptions and 

corresponding models are described in Chapter 5. 

3.4. Inverse variance weighted average 

An alternative approach for meta-analysis is to estimate the log hazard ratio and its 

variance within each trial and compute the usual inverse variance (IV) weighted average 

of estimates across trials. Either the log-rank analysis or Cox regression model may be 

used to estimate the within-trial log hazard ratio and its variance at the initial step of this 

approach. As the log-rank analysis and Cox model can produce different estimates of 
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log hazard ratio, the N weighted averages may also differ depending on choice of 

method adopted to estimate the within-trial log hazard ratios and their variance. 

The IV weighted average estimate of log hazard ratio and its variance are given by 

J 

vi 
Qiv = i=ý (3.9) 

2: 1/vi 

i=4 

var(ß, v) =J1 (3.10) 
z1/vi 

j_1 

where ý3ý and v, are the log hazard ratio and its variance estimated from within the jth 

trial. 

3.5. Comparison of methods 

Since a number of methods are available for undertaking meta-analysis of time-to-event 

outcomes with IPD, an understanding of the behaviour of these methods is required to 

enable a choice to be made about which method is most appropriate. The following 

sections provide a summary of how these approaches compare to each other 

theoretically and in section 3.6 a small simulation study is undertaken to provide further 

insight. To the author's knowledge, an investigation and comparison of these methods 
for meta-analysis has not been undertaken previously. A further choice of whether to 

assume fixed or random effects is not considered until the fifth Chapter. 

3.5.1. Log-rank analysis versus Cox regression model 

Standard survival analysis text books (such as that by Collett [29]) note the close 

connection between the Cox regression model and log-rank analysis. Using previous 

notation introduced in section 3.2 for a single trial with two treatment groups, Collett 

[29] describes the close connection as follows. 
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If xi is an indicator variable which is unity for individuals allocated treatment group A 

and zero for individuals allocated treatment group B, the Cox regression model for 

analysis of a single trial is given by expression (3.5). When there are no tied event times, 

the regression coefficient, 8 is estimated by maximising the logarithm of the likelihood 

function in equation (3.6). For individuals in treatment group B, the variable x, is given 

value zero and the log-likelihood function (3.6) can therefore be re-written as 

log L(ß) = dAQ - 10g{n exP(ß) +n} 
E 

A(k) e(k) k=1 

where dA is the total number of events in treatment group A and the summation is 

taken over k=1,2,..., revent times. 

One test of the null hypothesis that ß=0 is the score test which is based on the test 

statistic 

UZ (0) 
I(0) 

which follows a chi-squared distribution with one degree of freedom under the null 

hypothesis. In the above expression, 

U(ß) =S 
log L(ß) 

_ A(k) expo) 
8ß k1 

ldA(k) 
nA(k) exp( )+n 

B(k) 

and 

1 66) _-SZ 
log L(ß) 

= a(k) eXP(ß) 
Sß 2 

k. 1 
(nA(k) exp( )+ nB(k)) 2 

which are referred to as the efficient score and information function respectively. When 

P=O, these quantities are given by 

U(O) 
r 

dA(k) - 
nA(k) 

k=, nA(k) + nB(k) 

and 
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1(0) 
nA(k)nBck> 

_2 k=1 
(11A(k) + fB(k) ) 

which are equivalent to expressions for ULRand VV of the log-rank test (equation (3.1) 

and (3.2) respectively) when there are no ties (i. e. d(k) =1). 

As described in section 3.2, the one-step estimator of the log(haZard ratio) ßLR is given by 

ULR /V with variance equal to 1/V. From the above standard results, U(O) = ULR 

and 1(0) =V, and it follows that the estimate of (3 from the first iterative step of the 

Newton Raphson procedure for maximising the Cox partial log likelihood function is 

equivalent to the log-rank one-step estimator as described in the literature ([9] and [51]). 

Following from these results, it would seem that if the true value of [3 is some distance 

from zero, the maximum likelihood estimator (ßML) for the Cox regression model and 

the log-rank one-step estimator (ß ) will differ. This can be seen by assuming 

convergence is reached for the maximum likelihood estimator at step (h=H+1) of the 

iterative procedure such that 

IML =A +I_1(/h)U(/'h 

H 

=1-' (O)U(O) + 21-' (A )U(fth ) 
h=1 

_ 
LR, 

+YI-'('h)U(/ýh) /' 
h-1 

H 

The estimates %3, yß and / will be most similar as Z P' (/ h )U(/3h) tends towards 
h=I 

zero. 

3.5.2. Stratified log-rank analysis versus an IV weighted average 

The Early Breast Cancer Trialists' Collaborative Group [51] note that summing the 
logrank statistic and variance across trials (leading to a stratified Log-rank analysis) 
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effectively leads to the results of each trial being given a `weight' in the overall 

assessment that depends appropriately on the amount of statistical information 

provided by it. This can be shown explicitly as follows. If within-trial log-rank analyses 

are used for estimating ff and vt then for the jth trial 

ULN 
andvj=1 Vi VLRi 

which can be inserted into equation (3.9) and (3.10) for the inverse variance weighted 

average which can be written as 

U`R' ±ULRJ 2: 
(VV 

ijw = 
J_ J_J .i Qivý - (3.11) 

Z VLRj Viii 
J=1 i=1 

11 
var(ßw(LR) _, _, (3.12) 

y1=l I/ vi Eß_1 V LRJ 

where U. and VLjV are the log-rank statistic and variance within the jth trial. Equation 

(3.11) and (3.12) are the expressions for the one-step estimator of log hazard ratio ßßR 

and its variance ((3.3) and (3.4) respectively) from the stratified log-rank analysis and 

these two methods for meta-analysis are shown to be equivalent. If individual log-rank 

analyses are not used for every trial to estimate the log hazard ratio 9j and its variance 

v, (equation (3.9)), the methods may not be equivalent. 

3.5.3. Stratified Cox regression model versus an IV weighted average 

A connection between the stratified Cox regression model and IV weighted average 

estimates of log hazard ratio and its variance is now derived. If j separate Cox regression 

models each with a single treatment indicator variable are used to estimate the within- 

trial log hazard ratio 8, and its variance v,, the IV weighted average across trials 
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(denoted j6, v(ML)) based on these estimates may not necessarily be similar to the 

corresponding maximum likelihood &L estimate from a stratified Cox model (one Cox 

regression model including all data stratified by trial). This can be shown as follows. 

For the jth study, the estimate of ß at step h+1 of the Newton Raphson iterative 

procedure is given by ßh+1(j) = ßh(j) +I; ' (fth(j))Uj (fth(j)) with variance 

Vh+I(f) =1J 1(Qn+i(j)) 
" At the first iterative step, 

ß, 
(iß =0+ If' (0)U j (0) 

and the IV weighted average estimate across all trials would be estimated by 

ýQI(i)/VI(i) ýQI(i)"1i(Qý 
J)) 

ýJ- (0)Ui(0). li(lßA 
(3.13) f1V = ß! 

V(ML), - 
J=1J 

- 
i=' 

J- 
J=, 

J 

I(A) 

Y, 1IVl(i) >ý1J(Qi(i)) Lli(Qi(i)) 

J. 1 i=1 i=I 

with variance 

A 

var(QJv(, ), ) _I (3.14) 

Under the assumption that each trial estimates a moderate treatment effect, ß1 -- 0 

for allj and I, (ftI(J)) Ii (0) 
. It 

follows that 

JJ 
z1' (0)Uf (0). I, (0) z U, (0) 

QIV(ML)1 i=1 
J= 

j1 (3.15) 
1 Ij (0) E Ij(0) 
J=1 1.1 
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var(J JV(ML), ) 
r1 (3.16) 

2: II (O) 
=1 

Now consider the stratified Cox model. The log likelihood for this model is equal to the 

sum of log likelihood terms from each individual trial such that 

log L(ß) _Z log L, (/3) . It follows that 
j 

i=1 
JJ 

U(ß) _ZUj (Q) and I (j6) _Z Ij (ß) 
j-1 J. 1 

At the first iterative step of the Newton Raphson procedure under the stratified Cox 

model, 
J 

zUj(0) 

X31= O+ I-' (O)U(O) = i1 (3.17) 
Ij (0) 

J"l 

v, = l-' (ý3, ) I-' (0) _1 (3.18) 

1I, (°) j.. 1 

which are equal to equations (3.15) and (3.16). Therefore, under the assumption that 

each individual trial estimate of log hazard ratio is close to zero, the IV weighted average 

of trial estimates from the first iterative step ((3.15) and (3.16)) will be approximately 

equal to corresponding stratified Cox model estimates ((3.17) and (3.18)). 

At the second iteration, ßI(f) +I (A(j))U 
j 

(/ 
1(, )) and V2(j) Ij (182(j) The 

IV weighted average estimate across all trials is given by 

JJ 
L, 82(j) I V2(J) 

Z ß2(j) 
"1.02(j)) 

ft/V(ML)2 

,/-J 2: 1/V2(i) T 1JC&(f)) 
j_I j_I 
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with variance 

var(Qiv(ML)z) =r1 
1: li(ßz(i)) 
J. 1 

Replacing ß2(i) by j62(j) = I; ' (O)U1(0) + ii -I (A(i) )Ui (Au)) 

JZ 

LIA' 
(O)U; (O)II 02(J)) 

+ II' (31(J))Uj (A(J))I; 02(1))] 

J'l ß/V(ML)2 
-J 

ZIJ(ß2(i)) 
! =1 

If convergence is achieved at the second iterative step then Ij 02(j)) Ij (ý(3ýýýý) and 

[I; '(O)U; (O)1J (Ai) +r'(Q1(i))Uf(/ 1(J))1J(AuA 
/ý ý=1 ß'v(ML)2 

'"J 

1; (Acn) 
J=1 

which simplifies to 

{i' (O)U; (O)I; (/ )] 
Puio. 

'JA 
131V(MC)2 '' 

J (3.19) 
I1(Ac>>) 

J=1 J=l 

with variance 

var(OIV(ML)2) ' 
,, 

1^ 
(3.20) 

j-1 

74 

At the second iterative step of the Newton-Raphson procedure under the stratified Cox 

model, 

Q2= A+1-'(/ 
1)U(A) 
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which from (3.17) may be written as 

r 

Uj (0) 
Qz - ýr +1-ý(ýliý)U(ý3ý) (3.21) 

2: Ii (0) 
j1 

with variance 

V2 J1 
(3.22) 

j. 4 

75 

The IV weighted average log hazard ratio (3.19) and its variance (3.20) are 

approximately equal to corresponding estimates from the stratified Cox model (equation 

(3.21) and (3.22) respectively) under the assumption that individual trial estimates are 

similar to each other and close to zero (i. e. assumption of homogeneity across trials and 

small treatment effect). If such assumptions are reasonable, I, (ß1(j)) s: e Ij (0) and 

LU; (0) ZUJ(ßi(t)) LUi(0) 

l', V(ML), '� J+Jm2J 
E1I(0) 111(Q1(J)) 1I1(0) 
, =1 , =1 j. 1 

/ý 
1 

V r(ß! V(ML)2)'� 
2: II (O) 
i-I 

which are approximately equal to equations (3.21) and (3.22) under the assumption 

that /31 0. A similar argument would apply if the Newton-Raphson procedure required 

further iterations to reach convergence. However, further iterations might indicate that 

the estimate of log hazard ratio is further from zero. 
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Deviations from the assumptions outlined above would result in different estimates for 

the IV weighted average log hazard ratio and variance compared with the stratified Cox 

model. 

3.6. Simulation study 

As indicated above by these theoretical results, a stratified Cox model, stratified log-rank 

analysis and IV weighted average may yield different estimates of pooled log hazard 

ratio and its variance under certain conditions. There is a clear need to investigate and 

compare the results and this is done with a small exploratory simulation study. As the 

stratified log-rank analysis estimates are equivalent to the IV weighted average of 

individual within-trial log-rank estimates (section 3.5.2), only the stratified log-rank 

analysis will be examined in the simulation study. 

Although several factors could impact on parameter estimation for different methods of 

meta-analysis, this initial simulation study considers only the impact of underlying 

treatment effect, denoted by A, and underlying between trial variability in treatment 

effect, denoted by r2 . In Chapter 5, a simulation study is undertaken to compare the 

behaviour of both fixed and random effect Cox regression models for meta-analysis and 
for exploring heterogeneity. As will be described in Chapter 5, the random effect Cox 

models require a large amount of computing time for parameter estimation and this 

restriction largely influenced the choice of simulation parameters to investigate in that 

particular simulation study. For consistency, and to allow comparisons to be made 
between results of the current simulation study with those in Chapter 5, a deliberate 

decision was made to ensure that the same simulation parameters and random number 

generator seeds were used in the current simulation study. 

To allow different levels of between trial variation, the data are simulated under a model 

with random trial and random treatment effects that will be described in Chapter 5 

(model 5.5 RE/RE). The model for the ith individual (i-- 1,..., n) in the jth trial (/ 1,... ý, 

presented here to facilitate understanding of the simulation, is given by 

Au (t) =4 (t) exp(boj+ß, ßx,; ) 
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ßßj =ßl+b11 
boj - N(O, a') 
blj - N(O, z2) 

cov(bol, b, j) =0 

where x,, represents treatment group membership coded as ±'/z, A is the average log 

hazard ratio for a population of possible treatment effects, and b1 is the deviation of 

the log hazard ratio in the jth trial from this population average, random quantities that 

are assumed to follow a Normal distribution with mean zero and variance z2 which is a 

measure of the between trial variability in treatment effect i. e. a measure of the degree of 

statistical heterogeneity. The random quantities bot represent the deviation in the jth 

trial of the risk from the average of the two treatments and these random effects are 

assumed to follow a Normal distribution with mean zero and variance a2 representing 

the variation in baseline risk across trials. 

Within each trial, the random quantities bob and bl, are each generated from a Normal 

(0, Q Z) and Normal (0, r 2) distribution respectively. For each trial, the control group and 

experimental group log hazard rates are calculated as 

log(cj) = login +boy -1/2(ß, +b, 
j) 

log(AEJ) = logAo +boj +1/2(J31 +b, j) 

where AO =1 in these investigations and /1 is a fixed simulation parameter representing 

the underlying average log hazard ratio. 

In order to reflect varying magnitudes of underlying average treatment effect, and 

varying degrees of statistical heterogeneity, values of 0,0.1,0.5 and 0.9,1.5 and 1.9 (note 

that 1.5 and 1.9 are not examined in the simulation study of Chapter 5) are chosen for 

the parameter, 8, and 0,0.1,0.5,0.9 for the parameter r2. Values of 0,0.1,0.5 forß1 

represent hazard ratios of 1,1.1,1.6, chosen to reflect a range of plausible values that 

may commonly be encountered in meta-analysis whilst values of 0.9,1.5 and 1.9 

represent hazard ratios of 2.5,4.5, and 6.7 and were chosen to explore patterns for 
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examples with more extreme treatment effects. Values of 0,0.1,0.5 and 0.9 for the 

parameter r2 represent clinically plausible values of minimal, moderate and a more 

extreme degree of heterogeneity required to adequately explore the effect of increasing 

heterogeneity. 

The hazard rates in each group are used to generate a potential exponential failure time 

for each individual in each trial. A potential censoring time for each individual is 

generated from a uniform distribution on [t2-tl, t2], where t2 indicates the time of 

analysis for a trial and [O, tl] denotes the accrual period for the trial with patient entry 

times assumed to be independent uniform random variables on this interval. For 

simplicity, t2=2 and t1=1 are explored throughout but future investigations could 

examine alternative values in order to control and examine the impact of amount of 

censoring. Finally, a censoring indicator and corresponding `time to event' are obtained 
for each individual where, 

(i) time to event = potential failure time, 

censoring indicator =1 if potential failure time 5 potential censoring time 

(ii) time to event = potential censoring time, 

censoring indicator =0 if potential failure time > potential censoring time. 

In each meta-analysis situation, the between trial variability in baseline risk is assumed to 

be zero (i. e. a2 =0) in these initial investigations which is actually equivalent to 

simulating data under model (5.3) of Chapter 5 which includes a fixed trial effect and 

random treatment effect. Furthermore, if the between trial variability is assumed to be 

zero (i. e. r2 =0), the model is equivalent to model (3.7) described earlier which includes 

fixed trial and treatment effects. The above simulation framework (under model 5.5) 

was chosen, rather than assuming a fixed trial effect, as it allows different values of 

a2 to be easily explored in the future if required. 

Data are generated for 40 individuals in each of two treatment groups in each of 5 trials. 
Although a meta-analysis of 5 trials may not be representative of all IPD meta-analyses, 

especially those undertaken to compare therapies for treating cancer, this number does 

accurately reflect the number of trials included in IPD meta-analyses of drug trials in 

epilepsy as described in the next chapter. In fact, a recent systematic review (Mark 
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Simmonds, personal communication) revealed that IPD based meta-analyses typically 

include less than 10 trials. However, larger within-trial sample sizes should ideally be 

examined but due to the computing time required to fit multiple Cox regression models 

including random effects (described in Chapter 5), larger sample sizes are not explored. 
As an example of the restrictions imposed, the model with random trial and random 

treatment effects (RE/RE) using data from the CBZ/VPS meta-analysis in chapter 5 

took 42 hours, 6 minutes to fit using a Pentium II processor 400Mhz, 128 MB system 

RAM. For the same reason, the number of repetitions of each meta-analysis is 

constrained to 100 throughout. A simulation study based on a small number of 

repetitions does require careful interpretation as the simulated data may not be 

representative of results from a larger (e. g. based on 1000 repetitions) simulation study. 

In particular, with only 100 repetitions the random error is much greater and the results 

and conclusions should therefore only be considered as exploratory. 

For each set of simulation parameters, the mean of the estimated log hazard ratios was 

calculated along with the coverage over all 100 simulations. Coverage is defined as the 

percentage of 95% confidence intervals that contain the true underlying value of log 

hazard ratio. 

Simulation Results 

With no heterogeneity between trials (z2 =0), the stratified Cox model, stratified log- 

rank analysis and N weighted average approach, estimate the true log hazard ratio 

accurately and with approximately 95% coverage when the true treatment effect is less 

than or equal to 0.9 (Table 3.2, Figure 3.1 and Figure 3.5). For larger treatment effects 

the stratified log-rank analysis tends to overestimate the log hazard ratio with coverage 

of less than 95% whereas the stratified Cox model and N weighted average estimate the 
log hazard ratio accurately and with coverage of approximately 95%. 

A similar pattern for treatment effect is seen when the underlying heterogeneity 

parameter r2 is 0.1 (Table 3.2, Figure 3.2) with slightly less agreement between the 

stratified Cox model and the IV weighted average at higher values of log hazard ratio, 

although the discrepancy is minimal. On the other hand, coverage values are much 

worse for all three approaches (Figure 3.6) compared to corresponding values when 



CHAPTER 3 Individual patient data meta-analysis 80 

r2 =0 reflecting the need for an approach that correctly takes into account the 

additional level of variability. The low coverage values for all values of treatment effect 
indicate that when there is some heterogeneity that is not appropriately accounted for in 

the analysis, the 95% confidence interval for the log hazard ratio will contain the true 

value less than 80% of the time with even less coverage for the stratified log-rank 

analysis. 

As the degree of heterogeneity increases further (z2 =0.5), the log hazard ratio is 

underestimated on average for all three methods (Table 3.2, Figure 3.3). When the true 

log hazard ratio is less than or equal to 0.5, similar estimates are obtained from the three 

methods with slightly less bias for the stratified Cox model. For larger values of 

treatment effect the least biased estimate is from a stratified log-rank analysis and the IV 

weighted average the most biased. Coverage is very poor (<60%) for all models and all 

values of log hazard ratio (Figure 3.7). 

As the degree of heterogeneity increases further (r2 =0.9) a more striking but similar 

pattern of bias and underestimation of the log hazard ratio is seen (Table 3.2, Figure 3.4) 

compared to patterns when r2 =0.5. However, there is a greater degree of bias with this 

larger value of r2 and the bias increases more severely as the true value of log hazard 

ratio increases. Coverage is again extremely poor (<53%) for all models and all values of 

log hazard ratio (Figure 3.8). 



81 

Table 3.2. Mean log hazard ratio (standard deviation) and coverage for 
parameter combinations in 100 simulated meta-analyses of 5 trials. 
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Figure 3.1. Mean overall log hazard ratio estimated in 100 repetitions of 5 trial meta- 
analyses with underlying heterogeneity parameter r2 =0. 
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Figure 3.2. Mean overall log hazard ratio estimated in 100 repetitions of 5 trial meta- 
analyses with underlying heterogeneity parameter r2 =0.1. 
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Figure 3.3. Mean overall log hazard ratio estimated in 100 repetitions of 5 trial meta- 
analyses with underlying heterogeneity parameter r2 =0.5. 
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Figure 3.4. Mean overall log hazard ratio estimated in 100 repetitions of 5 trial meta- 
analyses with underlying heterogeneity parameter r2 =0.9. 
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Figure 3.5. Coverage (percentage of 95% confidence intervals for the log hazard ratio 
that contain the true value) over 100 repetitions of 5 trial meta-analyses with underlying 
heterogeneity parameter r2 =0. 
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Figure 3.6. Coverage (percentage of 95% confidence intervals for the log hazard ratio 
that contain the true value) over 100 repetitions of 5 trial meta-analyses with underlying 
heterogeneity parameter r2 =0.1. 
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Figure 3.7. Coverage (percentage of 95% confidence intervals for the log hazard ratio 
that contain the true value) over 100 repetitions of 5 trial meta-analyses with underlying 
heterogeneity parameter .2 =0.5. 

, 00 

m 
80 
70 
so 
50 

40 

m 
is 

0 01 os os is +o 
Taw be hard M1o 

-4--N Poold -a Mtmd Co. --a -strýeM7 bpnnk 

Figure 3.8. Coverage (percentage of 95% confidence intervals for the log hazard ratio 
that contain the true value) over 100 repetitions of 5 trial meta-analyses with underlying 
heterogeneity parameter r2 =0.9. 
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In summary, when there is no heterogeneity, the stratified Cox model and IV weighted 

average will give similar estimates and are to be preferred to the stratified log-rank 

analysis when the underlying treatment effect is larger than 0.9. For values less than 0.9, 

all three methods perform well. Similar patterns in bias are seen as the degree of 
heterogeneity increases slightly but coverage values decrease quite dramatically. The bias 

increases and coverage decreases with further increases in the heterogeneity parameter 

particularly for larger treatment effects. The low coverage values highlight the need for 

models that appropriately account for the between trial variation. However, these 
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simulations are based on only 40 patients per treatment group in each trial. Further 

simulations with a larger number of patients and repetitions are required to establish 

more specific guidelines on choice of method. 

3.7. Discussion 

Individual patient data based meta-analyses with time-to-event outcomes are increasingly 

common but the literature regarding different methods for analysis and how they might 

compare is scarce. This Chapter has addressed a selection of approaches that assume a 

fixed treatment effect, namely the inverse variance weighted average of trial estimates, 

the stratified log-rank analysis and the stratified Cox regression model. Further 

discussion regarding random effects alternatives are provided in the fifth Chapter of this 

thesis. 

The close connection between estimates from the log-rank test and Cox regression 

models have been noted elsewhere [29], [51]. Further theoretical results presented in this 

thesis indicate the equivalence of a stratified log-rank analysis and IV weighted average of 

log-rank estimates, and the connection between stratified Cox model estimates with 

those obtained from calculating a weighted average of within-trial Cox model estimates. 

These latter two Cox model based approaches are expected to provide similar estimates 

for modest treatment effects that are similar across trials. 

The simulation study, although limited in terms of the number of trials, patients and 

repetitions examined, suggests that these theoretical results may apply in small studies. 

The results further suggest that when there is no heterogeneity, the stratified log-rank 

analysis may be best avoided for estimating larger treatment effects and all methods 

appear inadequate for increasing levels of heterogeneity. Future extensions to the current 

simulation study should also include presentation of IZ statistics to give an indication of 

proportion of variation due to heterogeneity rather than chance. 

A simulation study was undertaken by Greenland and Salvan [66] to examine the Peto 

one-step estimator of odds ratio in meta-analysis based on binary outcome data. They 

note that the one-step estimate will be asymptotically unbiased under the null hypothesis 

but will become increasingly biased as the trial level estimates of odds ratio get further 

from the value of 1. They further note that from numerical exploration the bias in the 
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pooled estimate of odds ratio can be positive or negative. The direction of bias for the 

stratified log-rank pooled estimate explored in the simulation study of this chapter also 

support their observations. Any bias in the one-step estimator is noted to be negligible in 

meta-analysis of randomised trials with small treatment effects and a reasonably large 

numbers of events [66]. 

All three methods of analysis are straightforward to implement using standard statistical 

software. The specialist software package, SCHARP, developed specifically for IPD 

meta-analysis by the MRC Clinical Trials Unit, Meta-analysis Group utilises the stratified 

log-rank approach described in detail by the Early Breast Cancer Trialists' Collaborative 

Group [51]. Two-stage methods such as an IV weighted average or stratified log-rank 

analysis, are the most commonly adopted approach to analysis (Mark Simmonds, 

personal communication). Possible reasons for the popularity of a stratified log-rank 

method might include availability of the SCHARP software package and the 

attractiveness of a non-parametric method. The stratified log-rank analysis is also noted 

to be of maximal statistical sensitivity for the detection of modest treatment effects [51]. 

A systematic review of IPD meta-analyses currently underway (Mark Simmonds, 

personal communication) could provide valuable information regarding how often the 

stratified log-rank analysis is used under these conditions. 

The results presented in this Chapter may be useful to reviewers undertaking IPD meta- 

analysis as they highlight that different estimates and conclusions may be drawn from 

different approaches, a fact that should be considered at the protocol development stage 

for the review. However, further simulation and empirical work is required to make 

specific recommendations regarding choice of method. One further note to consider 

would be the availability of data. If IPD are not available for all included trials, there may 
be scope to extract AD for those trials without IPD. The analysis of all trials where a 

mixture of IPD and AD are available could not be undertaken using a fully stratified Cox 

regression model. On the other hand, if IPD are available for all included trials, the 

stratified Cox regression model may be advantageous since it extends easily to 

incorporate covariate data to enable exploring heterogeneity and factors for explaining 
heterogeneity in meta-analysis. 



CHAPTER 4 

Monotherapy drugs for Epilepsy: Meta-analyses 
based on individual patient data 

In the current Chapter, the methodology available for undertaking meta-analysis of 

individual patient time-to-event data are illustrated with IPD from monotherapy drug 

trials in epilepsy. Some of the practicalities and arising issues are highlighted. 

4.1. Introduction 

Epilepsy is one of the commonest neurological conditions in the United Kingdom with 

an estimated 400,000 people in England and Wales affected by the condition [67]. 

Epilepsy is a condition in which people have seizures that occur when there is a 

disturbance in the normal electrical activity of the brain. Seizures are stereotyped attacks, 

the features of which depend upon which part of the brain is involved. They may 

involve abnormal sensations, movements, and are most commonly recognised when the 

individual has a convulsion. There are more than 30 types of seizures that fall into two 

general categories, partial and generalized. In partial seizures, at the start of the seizure, 

the abnormal electrical discharge is limited to one area of the brain, whereas in 

generalized seizures the whole of the cerebral cortex is involved from the outset. 

Following a diagnosis of epilepsy, it is important to consider treatment with an anti- 

epileptic drug as they are associated with remission of seizures in 60-70% of those 
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treated. Anti-epileptic drugs (AEDs) are usually initially administered as single drug 

therapies, referred to as monotherapy. If seizures remain uncontrolled despite an 

appropriate maintenance dose, the patient may either withdraw from initial drug and 

receive a different drug taken as monotherapy, or stay on initial drug but receive 

additional anti-epileptic drug(s) in combination, referred to as either polytherapy, add-on 

therapy, adjunctive therapy or combination therapy. Anti-epileptic drugs can also cause 

side-effects that may be intolerable to the patient resulting in withdrawal from that 

particular drug. These patients may subsequently be tried on an alternative monotherapy 

treatment. 

The National Institute for Clinical Excellence published the following guidelines [67] for 

the clinical management of epilepsy 

" Adults with epilepsy should be treated with just one anti-epileptic drug where 

possible. If the first drug does not prevent seizures, another can be tried. 

" Adjunctive or combination therapy should only be considered when attempts at 

monotherapy have not resulted in seizure freedom. 

"A careful assessment of the risks and benefits of treatment with individual 

AEDs should be undertaken, particularly in relation to women of childbearing 

potential. 

"A person who has a seizure for the first time should be seen by an epilepsy 

specialist as soon as possible, to find out exactly what type of epilepsy he or she 

has, so that the best treatment can be started. 

" Treatment should be reviewed at regular intervals. 

The epilepsy clinician is faced with a decision of prescribing one of several and-epileptic 
drugs, some of which are thought to work better for one type of epilepsy than another, 

or for some people better than others [68]. For example, Valproate is the treatment of 

choice for generalized seizures and Carbamazepine the treatment of choice for partial 

seizures [69], [70] although there is little in the way of evidence from randomised 

controlled trials to support it [39], [70]. Up until 1973, four standard anti-epileptic drugs 

were thought to be effective in treating epilepsy (Phenobarbitone, Phenytoin, 

Carbamazepine, Valproate). Between 1989 and 2000, a series of `new' anti-epileptic 
drugs have been identified and seven are currently licensed in the UK (Gabapentin, 
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Lamotrigine, Levetiracetam, Oxcarbazepine, Tigabine, Topiramate and Vigabatrin). Due 

to advances in drug regulation procedures, the new AEDs have been subjected to 

careful clinical evaluation prior to licensing, where they have been assessed in the first 

instance as add-on therapy within randomised placebo controlled trials [711, [681. As 

drug regulation procedures were less scrupulous at the time of licensing the older 

`standard' AEDs, randomised evidence from comparisons between standard AEDs and 

placebo controls is not available. Nevertheless, these `standard' AEDs are accepted as 

clinically effective and remain a viable choice in practice. 

4.2. Epilepsy data 

The choice of appropriate anti-epileptic drug for a particular patient should be based on 

clinical judgement and evidence from randomised controlled trials. To summarise the 

current best available evidence from randomised controlled trials, the effects of four 

`standard' (Carbamazepine (CBZ), Valproate (VPS), Phenytoin (PHT), Phenobarbitone 

(PHB)) and two `new' anti-epileptic drugs (Oxcarbazepine (OXC), Lamotrigine (LTG)), 

when used as monotherapy in patients with partial seizures or generalized seizures, have 

so far been examined in eight separate Cochrane systematic reviews [39], [72], [73], [74], 

[75], [76], [77], [78]. 

For each review comparing two drugs, denoted AED 1 and AED 2 for convenience 

below, the following general review methods were adopted. 

Objectives 

To compare the efficacy and tolerability of AED 1 and AED 2 when used as 

monotherapy in patients with partial onset seizures or generalised onset tonic-clonic 

seizures. 

Types ofstudies 

1. Randomised controlled monotherapy studies comparing AED 1 and AED 2. Studies 

may be double, single or unblinded. . 
2. Studies using either quasi (e. g. by date of birth) or adequate methods of 

randomisation. 
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Types ofparticipants 

1. Children or adults with partial onset seizures (simple partial, complex partial, or 

secondarily generalising tonic-clonic seizures) or generalised onset tonic-clonic seizures. 

2. A new diagnosis of epilepsy, or a relapse following anti-epileptic drug withdrawal, or 

who have failed on other therapies. 

Types of interventions 

AED 1 or AED 2 monotherapy. 

Types ofoutcomes 

(i) time to withdrawal of allocated treatment due to inadequate seizure control or 

intolerable adverse effects; participants achieve this outcome if allocated treatment is 

withdrawn for poor seizure control, adverse effects, non-compliance (assumed to reflect 

a patient's intolerance to drug or perceived ineffectiveness in terms of seizure control) 

or if additional add-on treatment is initiated (i. e. allocated treatment has failed). The 

outcome is censored if treatment was withdrawn because the individual achieved a 

period of remission or if the individual was still on allocated treatment at the end of 

follow-up. It is a combined outcome reflecting both efficacy and tolerability and is an 

outcome to which the individual makes a contribution. It is the primary outcome 

measure recommended by the Commission on Antiepileptic Drugs of the International 

League Against Epilepsy [79] 

(ii) time to 12 month remission from seizures; individuals achieve this outcome if a 

continuous period of 12 months is experienced without any seizures and is a particularly 

important outcome for adults as the application of a UK driving license requires a 

seizure free period of at least 12 months 

(iii) time to first seizure; individuals achieve this outcome as soon as the first seizure 

occurs after randomisation. A number of pharmaceutical industry based trials that 

examine this particular outcome ignore any seizures that occur within the first 6 weeks 
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following randomisation. This approach is adopted to allow drug dose to stabilise after 

the initial titration period. Since each systematic review and analyses presented in this 

thesis adopt an intention to treat approach, in order to evaluate the treatment policy, all 

seizure data collected from date of randomisation are used in calculations regardless of 

titration period. 

Search strategy for identification of studies 

1. MEDLINE (See search strategy for Epilepsy Group specialist register of RCTs). 

2. The latest edition of the Cochrane Library (See search strategy for Epilepsy Group 

specialist register of RCTs). 

3. Contacting manufacturers of AED 1. 

4. Contacting manufacturers of AED 2. 

5. Contacting original investigators of relevant trials found and experts in the clinical 

area 

Individual patient data 

Due to the lack of uniformity across trials in reporting these outcome measures, the 

desire to investigate time-to-event outcomes and examine treatment-covariate 

interactions, individual patient data (IPD) were requested from the authors of identified 

and eligible randomised trials. 

Original trial authors were contacted asking whether they would collaborate with an 

IPD meta-analysis, and whether data from their trial could be made available. The 

response was favourable, and we proceeded to ask for the following participant data for 

each randomised patient within each trial: unique patient identifier, date of 

randomisation, drug allocated and dose, dates of follow-up, dates of dose changes, dates 

of all seizures (any type) post randomisation or seizure frequency data, date of treatment 

withdrawal, reason for treatment withdrawal, degree and methods of blinding, method 

of generation of randomisation list and method of concealment of randomisation. No 

independent prognostic factor studies in newly diagnosed patients had been undertaken. 

However, previous related studies [80], [81], [82], [83], [84], [85] in patients with epilepsy 
indicated that eight patient covariates may have a prognostic effect. These were, age, 
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sex, presence of neurological signs, seizure type at randomisation, number of seizures 

prior to randomisation, time from first ever seizure to randomisation, EEG results and 
CT/MRI results. These covariate data were requested for each randomised patient in 

each trial. 

For each trial where IPD were supplied, a series of data validation assessments were 

performed and included (i) range and consistency checks with missing data, errors and 
inconsistencies identified and followed up with a nominated individual, (ii) trial details 

were cross checked against any published report of the trial and all possible results from 

the trial reports were reproduced using the provided IPD, (iii) review of the 

chronological randomisation sequence with missing allocation numbers followed up 

with the nominated individual, (iv) balance of prognostic factors were checked, taking 

account of factors stratified for in the randomisation procedure. 

The outcome time to 12 month remission was calculated from the date of 

randomisation to the estimated date the individual had first been free of seizures for 12 

months. The outcome time to first seizure was calculated from the date of 

randomisation to the date that a first seizure following randomisation was estimated to 
have occurred. If seizure data were missing for a particular visit, these outcomes were 

censored at the previous visit. These outcomes were also censored if the event of 
interest did not occur, an individual died, or follow-up ceased prior to the occurrence of 

the event of interest. 

For a number of trials, seizure data were provided in terms of the number of seizures 

recorded between clinic visits. Linear interpolation was applied to approximate the dates 

on which seizures occurred. For example, if an individual recorded four seizures 
between two clinic visits that occurred on 01/03/90 and 01/05/90 (interval of 61 days), 

then date of first seizure would be approximated by dividing the 61 day period into five 

equal length segments and calculating the estimated date of first seizure as 13/03/90. 

Analysis 

The analysis was by intention to treat and included all randomised patients as far as 
possible, analysed in the treatment group to which they were allocated, irrespective of 
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which treatment they actually received. Log-rank analyses, stratified by trial were 

employed to obtain study-specific and overall estimates of hazard ratios (with 95% 

confidence intervals). Information provided by the stratified log-rank analyses were used 

to investigate the main effect of drug and to assess evidence for heterogeneity in drug 

effect between trials [511. Clinical heterogeneity was assessed by reviewing the 

differences across trials in characteristics of randomised patients. 

A summary of IPD available from all eligible RCTs and the comparisons examined in 

each review is given in Table 4.1 with a brief description of trial characteristics in Table 

4.2. Summary data for the covariates of interest in each trial are provided in Table 4.3. 
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Table 4.1. Systematic reviews and availability of outcome data for 
monotherapy comparisons VPS: Valproate, CBZ: Carbamazepine, PHT: 
phenytoin, PHB: phenobarbitone, LTG: Lamotrigine, OXC: Oxcarbazepine. 
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Table 4.2. Characteristics of trials included in eight IPD systematic reviews of 
anti-epileptic drugs 

Trial Age Seizure requirements Previous Blinding 

(years) AED 

1. Heller 1995 z16 z2 TC seizures or partial seizures Untreated Open 

t secondary generalisation in 

preceding year 

2. De Silva 1996 3-16 z2 TC seizures or partial seizures Untreated Open 

± secondary generalisation in 

preceding year 

3. Mattson 1985 18-70 Simple or complex partial or Untreated Double 

secondarily generalised TC or under blind 

seizures treated 

4. Mattson 1992 18-70 Complex partial, secondarily Untreated Double 

generalised TC seizures, or both or under blind 

treated 

5. Richens 1994 >16 Z2 generalised TC seizures or Untreated Open 

partial seizures ± secondary 
(98%) 

generalisation in previous 6m 

6. Verity 1995 5-16 Z2 generalised TC seizures or Untreated Open 

partial seizures ± secondary or seizures 

generalisation in previous 6m had 

recurred 
7. Brodie 1995a Z13 Z2 partial seizures or generalised Untreated Double 

TC seizures in previous 6 months blind 

8. Brodie 1995b z13 Z2 partial seizures or generalised Untreated Double 

TC seizures in previous 6 months blind 

9. Reunanen 1996 >12 Z2 partial ± generalised TC Untreated Open 

seizures in previous 6 months or recurrent 

epilepsy 
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Trial Age Seizure requirements Previous Blinding 

(years) AED 

10. Ramsay 1992 Newly diagnosed primary Untreated, Open 

generalised TC seizures with z2 or seizure 

seizures within 14 days of starting free 

study without 

AED for 2 

years 
before 

recent 

seizures 

11. Craig 1994 >60 Z1 unprovoked generalised TC - Open 

seizure or ; >-2 partial seizures 

12. Turnbull 1985 >16 Z2 TC and partials seizures in Untreated Open 

previous 3 years and last seizure 

within 3 months. 

13. Placencia 1993 2-60 ; ->2 afebrile seizures (excluding Untreated Open 

generalised absence or or 

myoclonus) in previous year previously 

treated 

14. Brodie 1999 Z65 Z2 seizures of any type in Untreated Double 

previous year blind 

15. Bill 1997 15-91 Z2 partial seizures or generalised Untreated Double 

TC seizures in preceding 6 blind 

months 

16. Guerreiro 1997 5-17 Z2 partial seizures or generalised Untreated Double 

TC seizures in preceding 6 blind 

months 

17. Pal 1998 2-18 Z2 unprovoked seizures in Untreated Open 

preceding year in previous 

3 months 

18. Barrera 2001 2-83 Z2 seizures in previous 6 months Newly Open 

with at least one partial seizure or diagnosed 

secondarily generalised TC seizure or currently 

in previous 3 months untreated 
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Table 4.3. Availability of patient covariate data across trials 
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CHAPTER 4 Monotherapy drugs for epilepsy 

4.3. Meta-analyses of epilepsy data 

100 

A log-rank analysis, stratified by trial, was the method used for the meta-analysis of each 

outcome within each systematic review of anti-epileptic drugs described in the previous 

section. The pooled hazard ratio and its 95% confidence interval and the test for 

homogeneity in treatment effect for each outcome within each review are presented in 

Table 4.4 with individual graphical displays for each comparison and each outcome 

summarised in Figure 4.1 (CBZ: VPS), Figure 4.2 (PHT: VPS), Figure 4.3 (CBZ: PHB), 

Figure 4.4 (CBZ: PHT), Figure 4.5 (PHB: PHT), Figure 4.6 (PHB: VPS), Figure 4.7 

(CBZ: LTG), and Figure 4.8 (PHT: OXC). 

Standard AED versus standard AED 

For the comparison between standard AEDs CBZ and VPS, the log-rank analyses 

suggest that the drugs could have similar effectiveness for the outcome time to 

withdrawal (Figure 4.1), with HR and 95% CI 1.03(0.84 to 1.25), but clinically important 

values for hazard ratios in favour of either drug are included within the confidence 

interval and equivalence cannot be established. There are non-significant trends to 

suggest that CBZ may be more effective at reducing the time taken to achieve a period 

of 12 month remission and prolonging the time taken to experience first seizure, with 

hazard ratios and 95% CI of 1.14(0.98 to 1.34) and 0.92(0.81 to 1.06) respectively. The 

two standard drugs VPS and PHT appear to have similar effectiveness for all outcomes 

but the 95% CI are too wide to establish equivalence as clinically important differences 

cannot be excluded (Figure 4.2). For the comparison between CBZ and PHB (Figure 

4.3), there is evidence to suggest that time to withdrawal due to adverse effects or poor 

seizure control is significantly shorter for PHB with HR and 95% CI of 0.68(0.52 to 

0.89). The drugs have similar effectiveness for time to 12 month remission and a non- 

significant trend suggesting that PHB may be better at reducing time to first seizure with 

hazard ratios and 95% CI of 1.16(0.86 to 1.55) and 1.17(0.95 to 1.45) respectively. The 

two standard drugs CBZ and PHT appear to have similar effectiveness for all outcomes 

but the 95% CI are again too wide to establish equivalence as clinically important 

differences have not been excluded (Figure 4.4). For the comparison between PHB and 

PHT (Figure 4.5), time to withdrawal due to adverse effects or poor seizure control is 

significantly shorter for PHB with HR and 95% CI of 1.62(1.22 to 2.15). The drugs 

have similar effectiveness for time to 12 month remission and a non-significant trend 
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suggesting that PHB may be better at reducing time to first seizure with hazard ratios 

and 95% CI of 0.90(0.68 to 1.19) and 0.84(0.68 to 1.05) respectively. For the final 

comparison between `standard' AEDs, time to withdrawal due to adverse effects or 

poor seizure control is again significantly shorter for PHB when compared to VPS with 

HR and 95% CI of 1.79(1.04 to 3.07). The two drugs PHB and VPS have similar 

effectiveness in terms of time taken to achieve a period of 12 month remission or first 

seizure with hazard ratios and 95% CI of 0.89(0.60 to 1.31) and 1.04(0.72 to 1.52) 

respectively (Figure 4.6). 

New AED versus standard AED 

Two new AEDs, LTG and OXC, were compared with a standard AED in two separate 

reviews [78], [77]. The results for the comparison between CBZ and LTG (Figure 4.7) 

suggest that withdrawal is significantly more likely with CBZ with a non-significant 

trend suggesting that time to first seizure is shorter for LTG. The hazard ratios and 95% 

CIs for these two outcomes are 1.72(1.29 to 2.29) and 0.86(0.69 to 1.08) respectively. 

These results indicate that LTG is generally better tolerated than CBZ but may not be as 

effective in terms of controlling seizures. For the comparison between PHT and OXC 

(Figure 4.8), time to withdrawal is significantly shorter with PHT (HR and 95% CI of 

1.64(1.09 to 2.47)) indicating a clinical advantage for the newer drug OXC. In terms of 

achieving a period of 12 month remission or time to first seizure, the CIs for hazard 

ratios are wide and equivalence cannot be inferred with hazard ratios and 95% CIs of 

0.92(0.62 to 1.37) and 1.08(0.83 to 1.40) respectively. Both comparisons of standard 

versus new AEDs suggest improved tolerability with newer treatments. 

Heterogeneity 

The chi-square test (Table 4.4 and relevant figures) suggests evidence against the null 

hypothesis of homogeneity in treatment effect across studies for the comparisons 

between CBZ and VPS (time to 12 month remission), CBZ and PHB (time to 

withdrawal), PHB and PHT (time to withdrawal), CBZ and LTG (time to withdrawal), 

and PHB compared to VPS (time to withdrawal). 
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For the comparison between CBZ and VPS (time to 12 month remission) there is 

evidence of qualitative heterogeneity with inconsistency in the direction of treatment 

effect between trials. Due to a prior beliefs about the potential for an interaction between 

treatment and epilepsy type for this comparison, an investigation of patient level 

covariates to provide a potential explanation for heterogeneity are explored in more 

detail within Chapter 5. 

For the outcome time to withdrawal, there is evidence for heterogeneity in every 

comparison involving the drug PHB. Discussions with epilepsy neurologists suggest 

there is likely to be a strong clinical bias against PHB due to concerns over side effects 

and its tolerability. These clinical prejudices could have an important influence on the 

patient/clinicians decision to withdraw from PHB, particularly in trials that involve 

children. Consequently, blinding could play an important role in meta-analysis of time- 

to-withdrawal with more extreme treatment effects (that do not favour PHB) 

anticipated in unblinded studies. For the three comparisons involving PHB, only one 

trial (Mattson 1985 [86]) used double-blinding (Table 4.2). The heterogeneity for these 

comparisons appears to be caused by the De Silva 1996 [45] trial, the only trial that 

recruited children only. The publication for this trial report states the following 

"Because of the well-known behavioural and cognitive side-effects of PHB in children, 

the inclusion of this drug was the subject of much deliberation. We eventually decided 

to include the drug because it is used extensively world wide and because comparative 

data with other anti-epileptic drugs are lacking. However, six of the first ten children 

assigned this drug had unacceptable side-effects, so no further children were assigned 

PHB. " Further exploratory analyses of factors causing heterogeneity in these particular 

reviews are not undertaken in this thesis primarily due to limitations of the data. 

For the outcome time to withdrawal and the comparison between CBZ and LTG, there 

is mild evidence for heterogeneity (chi-square=6.54 (3), p=0.09, Figure 4.7) with the 

most extreme result in favour of LTG seen in a trial conducted in elderly patients 

(Brodie 1999 [87]). An age by treatment interaction or interaction effects between study 
drugs and other prescribed treatments could provide an explanation for heterogeneity. 

However, as trial results agree in terms of favouring LTG with overlapping confidence 

intervals across trials, factors for heterogeneity are not explored further in this thesis. 
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Table 4.4. Pooled hazard ratio and 95% CI from stratified log-rank analysis, 
and test of homogeneity of treatment effect 
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CHAPTER 4 Monotherapy drugs for epilepsy 

Figure 4.1. Graphical display of meta-analysis comparing CBZ to VPS 

Review. Epilepsy monottrerapy, comparisons 
Comparison: 01 CBZ compared to VPS 
Outcome, 01 Time to aühdrawal 

Study Hazard Ratio Weight Hazard Ratio 
or subcategory 95% CI % 95% Cl 

De Silva 1996 9.41 0.97 (0.51,1.831 
Haler 1995 8.97 0.07 (0.45,1.68) 
Mattson 1992 42.27 1.03 (0.76,1.40) 
Rlchena/994 23.77 1.29 (0.06,1.921 
Verity 1996 15.57 0.03 (0.50,1.371 

Total (95%Cl) 100.00 1.03 10.64,1.25) 
Total events: 202 (CBZ). 197 (VPS) 
Teat for heterogeneity. CM " 213, df .4 (P " 0.71), P" % 
Teat for overall effec :Z"0.20 (P "0 76) 

0.1 0.2 0.5 125 10 

Favours; CBZ Favours VPS 

Review. Epilepsy monomeraq comparisons 
Comparison: 01 CBZ compared to VPS 
Outcome, 02 Time to 12 month remission 

Study Hazard Ratio Weight Hazard Redo 
or sub-category 95% CI % 05% Cl 

De Silva 1996 13.25 0.79 (0.51,1.22) 
Heller 1995 11.32 1.07 (0.67,1.721 
Mattson 1992 -t- 23.43 1.46 (1.05,2.031 
Verity 1995 24.46 0.04 (0.61,1.161 
Richens1994 -11111- 27.54 1.50 (1.11,2.031 

Total (95% Cl) 100.00 1.14 (0.98,1.341 
Total events: 394 (CSZ). 373 (VPS) 
Test for heterogeneity: Chi- " 11.75. df "4 (P "0 02), P 66.0% 
Teat for overall! effect: Z" 166 (P " 0.09) 

0.1 0.2 0.5 125 10 

Favours VPS Favours CBZ 

Review. Epilepsy monotherapy comparisons 
Comparison: 01 CBZ compared to VPS 
Outcome: 03 Time to Ind seizure 

Study Hazard Ratio Weight Hazard Ratio 
of sub-category 95% CI % 95% C1 

De Sitve 1996 10.40 1.18 (0.70,1.791 
Haler1995 9.90 1.02 (0.67,1.571 
Mattson 1992 34.79 0.81 (0.65,1.021 
Rlchens1994 22.92 0.79 10.59,1.041 
Venty1995 21.91 1.13 10.05,1.501 

Total (95%CI) 100.00 0.92 (0.61.1.061 
Total events: 429 (CBZ). 435 (VPS) 
Test for heterogeneity: CM "5 69, df "4 (P "0 21), P" 2.1% 
Test for overall affect Za1.16 (P " 0.24) 

0.1 0.2 0.5 125 10 

Favours CBZ Favours VPS 

104 
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Figure 4.2. Graphical display of meta-analysis comparing PHT to VPS 

Review. Epilepsy monotherapir comparisons 
Comparison: 02 PMT compared to VPS 
outcome: 01 Time to wthdrw. a 

study Hazard Ratio Weight Hazard Ratio 

or sub-category 95% Cl % 05% CI 

De S&NS1990 25.60 0.66 10.44,1.733 

Helier 1995 23.75 0.59 (0.29,1.191 

Ramsey 1992 16.31 1.65 10.71,3.673 

Tumbu11985 34.34 1.43 10.90,2.571 

Total (95%CI) . 4111 1111. 100.00 1.05 10.74,1.471 

Told «sms: 68 (PHT), 69 (VPs) 
Teat for heterogeneity: CM " 5.03. Of "3 (' " 0.17). P" 0 3% 
Test for overall effect Z"0.25 (P "0 50) 

0.1 02 0.5 125 10 

Faoun PHT PNOuw VPS 

Review. Epilepsy monotMiapy comparisons 
Comparison: 02 PHT compared to VPS 

Outcome: 02 Time to 12 month remission 
Study Hazard Ratio Weight Hazard Ratio 

or subcategory 95% CI % 95% Cl 

Craig 1994 9.04 0.96 10.39,2.471 

De Silva 1995 42.95 1.02 (0.67,1.56) 

Heller 1995 39.45 0.99 (0.63,1.531 

Turnbull 1985 8.55 1.43 (0.55,3.71) 

Total (95% Cl) 100.00 1.03 (0.76,1.361 

Total events: 158 (PHT). 147 (VPS) 
Test frt htler00eneiy: Ch' "0 52, df eS (P " 0.92), P"% 
Teat for overall effect: Z" 022 (P "0 83) 

0.1 0.2 05 125 10 

Fevoun VPS Favour PHT 

Review: Epilepsy moootherapy comparisons 
Comparison: 02 PHT compared to VPS 
Outcome: 03 Time to Brat sem" 

Study Hazard Ratio Weight Hazard Ratio 

or sub-category 95% Cl % 95% CI 

Craig 1994 23.14 0.73 (0.47,1.131 
De Silva 1998 24.21 0.63 10.54,1.281 
Hehr 1995 25.91 1.15 (0.76,1.73) 
Ramsey1992 11.41 1.42 (0.76,2.651 
Turnbull 1985 15.33 1.00 (0.58,1.701 

Total (95% Cl) 4 0. 100.00 0.96 10.76,1.191 
Total events: 162 (PHT), 189 (VPS) 
Test for heterogeneity: CW " 4.24. df a4 (P "0 38), P" 6% 
Test for overall effect Z"0.39 (P " 0.70) 

01 0.2 0.5 125 10 

Favours PHT Favours VPS 
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Figure 4.3. Graphical display of meta-analysis comparing CBZ to PHB 

Review. Epilepsy mondhsrepy, compansorn 
Comparison: 03 CBZ compared to PHB 
Outcome: 01 Time to wOMrawal 

Study Hazard Ratio Weight Hazard Ratio 

or sub-category 95% Cl % 95% Cl 

Do SING 1996 4 4.93 0.15 (0.05,0.511 
Holler1995 19.01 0.69 10.37,1.29] 
Mattbon 1985 -f- 62.32 0.66 10.47,0.92) 
Placenda 1993 14.74 1.28 10.60,2.571 

Total(95%CI) 41. 100.00 0.68 (0.52,0.891 
Total events: 112 (CBZ). 123 (PHB) 
Teel for heterogeneity: ChP " 9.20. dl "3 (P "0 03), P" 7.4% 
Test for overall efed: Z"2 83 (P " 0.005) 

0.1 0.2 0.5 125 10 

Favours COZ Favours PHB 

Review: Epilepsy monotherapy comparisons 
Comparison: 03 CBZ compared to PHB 
Outcome: 02 Time to 12 month remission 

Study Hazard Ratio Weight Hazard Ratio 
or sub-category 95% CI % 95% Cl 

Do Silva IM 15.42 1.05 10.50,2.211 
Heiler 1995 35.75 1.24 (0.76,2.011 
Mattson1985 34.06 1.48 (0.89,2.43] 
Placenda 1993 14.77 0.62 10.29,1.33] 

Total (95%CI) 100.00 1.16 [0.86,1.55] 
Total events: 163 (CBZ). 117 (PHS) 
Teat for heterogeneity: ChP " 362, dl "3 (P "0 31). P" 7.1% 
Test for overall effect: Z"0 97 (P " 0.33) 

01 02 05 125 10 

Favours PHS Favours CBZ 

Review: Epilepsy monWMrapy comparisons 
Comparison: 03 CBZ compared to PHB 
Outcome. 03 Time to Or st seizure 

Study Hazard Ratio Weight Hazard Ratio 
of sub-category 95% Cl % 95% Cl 

D6 Silva IM 9.61 1.32 (0.66,2.611 
Heller 1995 24.64 0.97 (0.63,1.491 
Mattoon 1985 44.53 1.21 [0.60,1.60) 
Placenaa 1993 21.22 1.29 10.61,2.071 

Total(95%Cl) 100.00 1.17 10.95,1.451 
Total events: 214 (CM. 151 (PHB) 
Teri for Mt. ro06r": CN' " 1.09. cg "3 "0.76), P 
Ted for overall eted :Z"1 45 (P " 015) 

0.1 02 05 125 10 

Favours CBZ Favour PHB 

106 



CHAPTER 4 Monotherapy drugs for epilepsy 

Figure 4.4. Graphical display of meta-analysis comparing CBZ to PHT 
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Figure 4.5. Graphical display of meta-analysis comparing PHB to PHT 
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Figure 4.6. Graphical display of meta-analysis comparing PHB to VPS 

Review: Epilepsy monotherapy Comparisons 
Comparison: 08 PHB compared to VPS 
Outcome: 01 lime to withdrawal 

Study Hazard Ratio Weigtd Hazard Ratio 

or sub-category 95% Cl % 95% Cl 

De Silva 1986 -U p 22.28 4. e3 11.53.15.221 

Heller 1995 77.72 1.34 10.73,2.49) 

Total (95% Cl) 100.00 1.79 11.04,3.07) 

Total evens: 30 (PHB). 36 (VPS) 
Teil for heterogeneity: CM " 3.70. df "I (P " 0.05), P" 72.9% 

Test for Overall effect: Z"2.10 (P "0 04) 

01 0.2 os 12a 
Fwoun PH8 Favoun VP8 

Review: Epilepsy monotherapy comparisons 
Comparison: 08 PHB compared to VPS 
Outcome: 02 Time to 12 month remission 

study Hazard Ra9o Wd9M Hazard Ratio 

or sub-category 95% Cl % 95% CI 

Do Silva 1990 30.06 0.66 (0.42,1.751 

Heller 1995 69.94 0.90 (0.57,1.441 

Total(95%Cl) . 14 OP 100.00 0.99 10.60,1.31) 

Total events: 46 (PHS), 84 (VPS) 
Test far heterogeneity: CW " 002, df "1 (P "0 90). P" % 
Teal for overall effect: Z"0 59 (P " 0.56) 

0.1 02 0.5 125 10 

Favours VPS Favours PHB 

Rwiew: Epilepsy monothempy Comparisons 
Comparison: 06 PHB Competed to VPS 
Outcome: 03 Time to %r at seizure 

Study Hazard Ratio Wer bt Hazard Ratio 

of cub-Magory 95% G% 05% Cl 

De Silva 1995 24.06 0.92 10.43,1.961 

Heller1995 15.14 1.09 (0.70,1.601 

Total (95% Cl) 100.00 1.04 10.72,1.521 

Total events: 49 (PHB). S5 (VPS) 
Ted for heterogeneity CM " 0.14, df "1 (P " 0.70). P 
Teal for overall effect: 2.022 (P "0 33) 

0.1 0.2 05 12S 10 

Fevaura PHB Fevowe VPS 



CHAPTER 4 Monotherapy drugs for epilepsy 

Figure 4.7. Graphical display of meta-analysis comparing CBZ to LTG 

Review. Epilepsy monot erapy companions 
Compenson: 06 CBZ compared to LTG 
Outcome: 01 Time to rntadrewal 

Study Hazard Ratio Weight Hazard Ratio 

or sub-category 95% G % 95% CI 

Barrens2001 - As- 40.57 1.30 10.63,2.03) 
Brodie 19958 23.63 1.35 (0.75,2.431 
Brodie 19955 --t- 16.86 2.37 11.18,4.761 
Brodie1999 -i- 18.97 3.23 31.67,6.221 

Total (95% Cl) 100.00 1.72 11.29,2.291 
Total events: 102 (CBZ). 107 (LTG) 
Test for hetewpeneiH: Chf " 854, df "3 (P "0 09). F" 54.1% 
Test for overall . faut Z"3.72 (P "0 0002) 

0.1 0.2 05 125 10 

Favours CBZ Favours LTG 

Review. Epilepsy monotberapy, comparisons 
Comparison: 06 CBZ compared to LTG 

Outcome: 02 Time to that seizure 

Study Hazard Redo Weight Hazard Ratio 
or subsategory, 95% CI % 05% G 

Brodie 19954 18.69 0.69 (0.41,1.151 
Brodie 1995b 22.10 0.92 (0.58,1.47] 
Brodle 1989 20.76 1.11 (0.69,1.611 
Reunanen 1986 36.45 0.81 10.56,1.15] 

Total (95% Cl) 100.00 0.86 10.69,1.081 
Total events: 125 (CBZ), 219 (LTG) 
Teal for heterogeneity: CM "2 01, Of "3 (P " 0.57), F 
Tagt for overall effect. Z"1.31 (P " 0.19) 

0.1 0.2 05 125 10 

Favours CBZ Favours LTG 

110 



CHAPTER 4 Monotherapy drugs for epilepsy 

Figure 4.8. Graphical display of meta-analysis comparing PHT to OXC 
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4.4. Comparison of stratified log-rank analysis with Cox model 

The original Cochrane protocol for each review of epilepsy monotherapy trials stated 

that log-rank analyses stratified by trial were to be used for primary analyses. As 

described using simulated data in Chapter 3 of this thesis, the results of failure time 

meta-analysis with IPD may differ according to the method of analysis adopted. To 

assess robustness of results and provide empirical evidence, a comparison of stratified 

log-rank and stratified Cox model analyses are undertaken for each outcome from each 

review in the current section. The stratified Cox model results are displayed in Table 4.5. 

For the outcome time to withdrawal there is agreement in estimates of hazard ratio and 

95% confidence interval limits for comparisons CBZ: VPS, PHT: VPS, CBZ: PHB, and 

CBZ: PHT. Values of the absolute log hazard ratio and 95% confidence limits are close 

to the value of 0.5 examined in the simulation study and the agreement between 

estimates is in keeping with results of the simulation study for this parameter value. 

There are discrepancies between the two approaches to meta-analysis for the 

comparisons PHB: PHT, PHB: VPS, CBZ: LTG, and PHT: OXC. The magnitude of 

treatment effect from a stratified log-rank analysis (Table 4.4) is greater for each of these 

comparisons, except PHT: OXC, and the degree of discrepancy between stratified log- 

rank and stratified Cox model results increases as the magnitude of effect (or confidence 

interval limits) increases as suggested by the simulation study. 

For the outcome time to 12 month remission, there is much less agreement between 

results obtained from the two approaches with narrower confidence intervals from 

stratified Cox model analyses (Table 4.5). Since hazard ratios are close to 1 and there is 

only evidence for heterogeneity across trials within one comparison (CBZ: VPS), the 

discrepancy observed between methods are not entirely consistent with the simulation 

study results of Chapter 3. One factor not considered in the simulation study was the 

possibility of tied event times which can frequently occur with time-to-event data. Tied 

event times are an important issue for analysis of the outcome time to 12 month 

remission since a large proportion of patients achieve an immediate period of 12 

months remission from seizures, hence the time to event for these individuals is 365 

days. This may provide an explanation for the observed discrepancy between stratified 
log-rank and stratified Cox model analyses and should be explored in more detail by 
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Table 4.5. Pooled hazard ratio and 95% CI from Cox proportional hazards model 
stratified by trial (using Efron method for handling ties) 

Outcome 

Time to Time to 12 month Time to first 

withdrawal remission seizure 

Comparison Events / Total Events / Total Events / Total 

examined* HR (95% CI) HR (95% CI) HR (95% CI) 

399 / 1200 767 / 1225 864 / 1225 
CBZ: VPS 

1.03 (0.84,1.25) 1.14 (0.99,1.32) 0.92(0.81,1.06) 

137 / 495 303 / 514 371 / 639 
PHT: VPS 

1.05 (0.75,1.47) 1.04 (0.83,1.31) 0.96 (0.78,1.18) 

235 / 676 280 / 684 365 / 677 
CBZ: PHB 

0.68 (0.52,0.89) 1.08 (0.84,1.38) 1.17 (0.94,1.45) 

196 / 546 289 / 551 362 / 545 
CBZ: PHT 

0.99 (0.75,1.31) 1.01 (0.80,1.27) 1.10 (0.89,1.35) 

211 / 499 260 / 562 351 / 592 
PHB: PHT 

1.61 (1.21,2.12) 0.94 (0.73,1.22) 0.84 (0.68,1.05) 

66 / 170 130 / 178 134 / 178 
PHB: VPS 

1.75 (1.03,2.95) 0.91 (0.62,1.33) 1.05 (0.72,1.52) 

209 / 1032 DATA NOT 344 / 741 
CBZ: LTG 

1.68 (1.27,2.21) AVAILABLE 0.86 (0.69,1.08) 

PHT: OXC 91 / 480 170 / 308 229 / 472 

1.65 (1.08,2.52) 0.92 (0.68,1.24) 1.08 (0.83,1.40) 

* First AED compared to second AED with HR>1 indicating that the event of interest is more 
common for the first AED 
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extending the previously described simulation study. The issue of tied event times will 

be discussed in more detail in Chapter 5. 

For the outcome time to first seizure, the point estimate of hazard ratio and limits for 

the 95% confidence interval are identical for each comparison using stratified log-rank 

and stratified Cox regression model analyses. For this outcome, there is no evidence for 

heterogeneity across individual trial results within each comparison (Table 4.4) and the 

estimates of hazard ratio do not deviate substantially from the null value. These results 

are consistent with the simulation study results of Chapter 3. 

4.5. Missing Data 

For various reasons IPD may not be available from all trials identified as eligible. For 

the epilepsy monotherapy reviews, the percentage of IPD (number of patients for 

whom data are available as a percentage of total number of eligible patients) obtained 

varies between 53% and 100% across these reviews (Table 4.1). The most common 

reasons why IPD were not available for a particular trial included lost or destroyed data, 

no seizure data recorded, and unwillingness of the trialist to collaborate. For two trials 

([48] and [45]), data for reason and date of withdrawal from treatment were not 

computerised. The data were however extracted independently from study case report 

forms by two reviewers (Paula Williamson, Anthony Marson). The five reviews that 

obtained less than 90% of IPD are likely to be more prone to bias compared to the 

reviews which include over 90% of the data available for eligible patients. Missing data 

for individual patients could threaten the validity of meta-analysis results and 

conclusions particularly if trialists are more willing to provide IPD based on the 

statistical significance of original results or their personal concerns about quality of the 

trial methodology. 

For the epilepsy reviews, eligible trials for which IPD were not provided were examined 

to determine whether aggregate data could be extracted to allow estimation of summary 

statistics required to undertake meta-analyses for the time-to-event outcomes of interest. 

For the majority of trials there were insufficient reported data and these trials did not 

contribute to overall analyses. As insufficient aggregate data is often a reason for the 

initial decision to collect IPD, this situation is likely to be common in systematic reviews 
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of IPD. Some level of data could be extracted for two small trials but sensitivity analyses 

including these results with trials providing IPD made very little difference to meta- 

analysis results and conclusions. Further details may be found in the full report of each 

systematic review. 

The author would recommend that in the absence of IPD, aggregate data should be 

extracted and sensitivity analyses undertaken to check that the trial results for which 

IPD are not available are consistent with trial results where IPD are available. If 

inconsistencies are identified, this may indicate the potential for bias within the set of 

IPD trials. If sufficient AD for the outcome of interest are not available to allow such 

sensitivity analyses, it may be possible to assess robustness of results in terms of other 

outcomes. However, due to the potential for within-study selective reporting of 

outcomes this approach may not be particularly helpful. Missing data in IPD reviews is 

certainly an area that requires further research. A systematic review of IPD reviews to 

assess factors such as reasons for missing IPD, strategies for dealing with missing IPD 

and an assessment of the potential for bias introduced by missing data would be 

particularly helpful. 

4.6. Discussion 

For the epilepsy reviews explored within this chapter, individual patient data were 

essential due to the unavailability of sufficient aggregate data and inconsistencies across 

trials in defining the time-to-event outcomes of interest. The overall result for each 

comparison explored in each review are presented in this thesis with further detail 

regarding clinical interpretation and implications provided in the following Chapters and 

within the full text of each review which are obtainable from the Cochrane library. 

The entire process of collecting IPD generally involves greater resources and time 

compared to the process of extracting aggregate data. The time involved is likely to 

depend on a number of factors. Clearly, as the number of eligible trials increases so will 

the resources required. The publication date of included trials could have some impact 

as the authors and trialists of older trials may be harder to trace, and may be more likely 

to have lost or destroyed the data. The chances of obtaining data in a suitable 

computerised format may also be less likely for older trials. For some of the epilepsy 

monotherapy trials the original individual patient data were only available as hard copy 
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and required data to be computerised by the review team. For two further trials, 

computerised data were only available in the format of a non-standard computerised 

database that required additional software and time for database tuition. Data cleaning, 

and the process of defining each time-to-event outcome, involved a substantial length of 

time due to the complexities of the data involved and different methods for recording 

seizures across trials. This aspect of the IPD process may be more time consuming than 

in other therapeutic areas, such as cancer, where the outcome is time to death. However, 

for the latter example, the collection of additional follow-up information is likely to 

introduce further demands on resources. Additional follow-up data collected after trial 

closure was rarely an issue in the epilepsy monotherapy trials. As the time and resources 

required to undertake a systematic review with IPD is likely to vary according to 

example, this issue should be considered in the overall evaluation of whether IPD is 

worthwhile. As a future research project, a simple survey involving authors of 

completed IPD reviews to enquire about costs, length of time taken, and where the 

majority of time was required would be particularly useful. 

It is possible, and quite likely, that data are not available for every individual from every 

trial in a systematic review and meta-analysis based on IPD. For example, data for an 

entire trial may have been lost or destroyed, or follow-up information for the outcome 

of interest may not have been collected for a subset of individuals within a particular 

trial. Data may therefore be missing at the individual patient level or at the trial level. 

Analyses based on such incomplete data may be biased in a similar way to analyses that 

are based only on published information (publication bias) or non-intention to treat 

analyses. The available individual patient data as a proportion of patients from eligible 

trials varied in each of the epilepsy reviews examined and could threaten the validity of 

results if the proportion of missing data are extensive. However, since aggregate data 

were also not available for the outcomes of interest in the trials that did not provide 

IPD, the IPD based analyses encompass the entire currently available data. Further 

research is required to explore these issues in more detail. 

For some systematic reviews, both IPD and AD may be available and an overall meta- 

analysis required. On a simple level, this may be achieved by combining IPD and AD 

estimates using an inverse variance weighted average. This approach is appealing as it is 

simple to implement and is useful for comparing the degree of contribution of each trial 
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by examining respective weights. Furthermore, trial estimates based on potentially less 

accurate AD approaches, such as the survival curve approach, may be down-weighted in 

the overall meta-analysis, or sensitivity analyses undertaken if there are particular 

concerns regarding any of the AD based estimates. A more complex approach may be 

possible by including both levels of data in a single multi-level model or by adopting a 
hierarchical Bayesian approach. 
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CHAPTER 5 

Modelling Heterogeneity 

Studies included in a meta-analysis will usually differ in terms of methodological 

characteristics, design features, clinical procedures and characteristics of included 

patients. These factors, as well as some unknown characteristics, can contribute to 

variability in the treatment effect between studies in a meta-analysis. This variation in 

treatment effect is termed statistical heterogeneity but is more commonly referred to as just 

heterogeneity. As an example, suppose there is variation in the participant age groupings of 

studies in a meta-analysis comparing an experimental treatment with a standard control. 

If the experimental treatment has increased benefit for older participants, the underlying 

age by treatment interaction could manifest itself as a treatment by study interaction 

(statistical heterogeneity) such that the treatment effect is different across trials. 

Exploring heterogeneity during the meta-analysis process is extremely important as an 

interpretation of overall results in the presence of statistical heterogeneity can be 

misleading as the incompatibility of effects could indicate incompatible populations 

from which relating an overall combined analysis to specific populations would be 

difficult. A sensible investigation of sources of heterogeneity should increase both the 

scientific and the clinical relevance of the results of meta-analyses [13] and discovering 

potential explanations for statistical heterogeneity can be clinically informative. In the 

example described above, detecting the presence of heterogeneity and exploring 

potential causes may result in discovering some evidence for an age by treatment 
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interaction to be confirmed in further trials. This information may be valuable for 

deciding whether future patients from certain age groups would benefit more from the 

experimental treatment than others; valuable information for treatment policy decision 

making and for the individual patient. 

Regression modelling is a popular approach for investigating heterogeneity between 

studies and to assess the effect of important characteristics. If IPD are available, patient 

as well as study level characteristics may be included in the regression model and 

relationships with treatment and the impact on heterogeneity can be investigated [88]. 

With AD, study level characteristics are included in the model and relationships with the 

relative treatment effect in a trial are examined. Alternative model structures and 

approaches for parameter estimation are available and differ depending on whether 

fixed or random treatment effects are assumed and whether IPD or AD are used in the 

model. In the meta-analysis literature the term meta-regression is used to refer to this 

general class of models. Although investigating heterogeneity is possible with both AD 

and IPD, a simulation study undertaken by Lambert et al [89] showed that the statistical 

power of meta-regression using aggregate binary data was dramatically and consistently 

lower than that of the corresponding IPD analysis with little agreement between the 

parameter estimates obtained from the two methods. They conclude that IPD is 

required for a reliable exploration of heterogeneity. Although meta-regression with 

aggregate data can be useful, the approach has limitations for exploring patterns 

between treatment effects and patient characteristics. In this case, the meta-regression 

model is based on using trial-level averages of individual characteristics such as the 

mean age of participants in a trial, rather than age of individuals in the trial. This has 

implications for interpretation because relationships with patient averages across trials 

may not be the same as the relationship for patients within trials [126] and can only be 

reliably explored with IPD. 

General aggregate data meta-regression models are suitable for time-to-event outcomes 
if an estimate of the log hazard ratio and its variance and suitable aggregate covariate 
data are available for each trial. With IPD, the fixed effect Cox regression models 
described in Chapter 3 can be used to detect and explore heterogeneity in meta-analysis. 
Potential causes of heterogeneity in the meta-analysis of epilepsy trials comparing CBZ 

and VPS were investigated using a Cox regression model with fixed treatment effect and 
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fixed trial indicator variables by Williamson et a! [90]. The basic aim of the modelling 

approach to exploring heterogeneity is to try and explain what may cause incompatible 

treatment effects across trials by incorporating covariates (trial or patient level) into the 

model. However, the included covariates may not provide an adequate explanation and 

there may be variation left unexplained, called residual heterogeneity which can be 

allowed for by adopting a random treatment effects approach. For aggregate data, 

random effects meta-regression models are already developed and can be easily fitted 

with appropriate software [91]. Individual patient data offer greater flexibility for meta- 

analysis and improve the potential to investigate and explain heterogeneity thoroughly. 

When IPD are available, meta-analysis can be undertaken using a hierarchical 

framework. Several such models have been described previously for the meta-analysis of 

binary [59], continuous [60], and ordinal outcomes [61]. The gap identified in the 

literature describing suitable models for analysing time-to-event data and modelling 

heterogeneity motivated much of the work undertaken in the current chapter. 

In the general assessment of how meta-analyses based on AD and IPD compare, there 

is clearly a need to include a comparison between results and conclusions obtained from 

exploring heterogeneity using these two data types. However, many factors could 

potentially contribute to an overall difference between analyses using AD and IPD [49], 

[52]. For instance, IPD may include additional follow-up information for some patients, 

authors may have excluded certain patients in the AD presented in a study report, or 
AD may not be available for the patient characteristics of interest thus limiting the 

investigation into sources of heterogeneity. Such potential differences within the overall 

patient-level data set could introduce a further level of complexity to the comparison 
between AD and IPD heterogeneity investigations. To enable a comparison of 

methods would require that the models be based on exactly the same data, which could 
be accomplished by generating suitable AD from the IPD. An alternative more 

pragmatic comparison would examine explorations based on available IPD compared 

with AD extracted from trial reports. 

This chapter has two aims. The first aim is to develop and extend the current 

methodology for fitting alternative random effects Cox proportional hazards models 

that would be appropriate for meta-analysis and exploring heterogeneity with IPD. 

These alternative models are compared using simulated and empirical data. The second 
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aim is to apply existing methodology for exploring heterogeneity with AD in order to 

compare empirically results and conclusions drawn from IPD and AD based 

investigations. 

5.1. Exploring heterogeneity with individual patient data using the 
Cox model 

The `fixed effect' Cox models described in Chapter 3 (model 3.7 and 3.8) can be used 
for undertaking meta-analysis and for detecting and exploring possible sources of 
heterogeneity. A large body of literature is available discussing the general issue of 

`heterogeneity' (in terms of variability between individuals or groups of individuals) and 

random effects models for the analysis of failure time data. See for example [92], [93], 

[94], [95]. In this setting, the random effect is a continuous variable that describes excess 

risk or frailty for distinct categories, such as individuals or families [96]. The principle 
behind these frailty models is that individuals have different frailties, and that those who 

are most frail will die (if the event of interest is death) earlier than the others [92]. In the 

context of meta-analysis, since interest is usually focused on heterogeneity in treatment 

effects across trials rather than heterogeneity at the individual level, standard frailty 

models are not entirely appropriate. However, since the data structure of meta-analysis 

is similar to that of a multi-centre clinical trial the literature in this latter area is relevant 

to meta-analysis. Alternative random effect formulations of the Cox proportional 
hazards model suitable for exploring heterogeneity in meta-analysis are proposed in the 

following sections. The models differ in how they accommodate for the effects of both 

trial and treatment. 

5.1.1. Fixed trial and treatment effect (FE/FE) 

The Cox model with fixed trial effects represented by indicator variables and fixed 

treatment effect described in Chapter 3 (model 3.7) can be used to assess the 

assumption of homogeneity in treatment effect across trials by including treatment-trial 
interaction indicator variables such that 

-ZU (t)=Ao(t)eXP(ß0 +ßlxiY +lß2jxzY) (5.1) 



CHAPTER 5 Modelling Heterogeneity 122 

where x2. =1 if the ith individual belongs to the experimental treatment group of the jth 

trial (with %321 constrained to equal zero) and x2, =0 otherwise. A formal test for 

treatment-trial interaction (i. e. statistical heterogeneity) can be obtained by comparing 

the value -2*log(likelihood) of models (3.7) without interaction terms, and (5.1). Under 

the null hypothesis of no heterogeneity, this statistic follows approximately a chi-square 
distribution on J-1 degrees of freedom where j denotes the total number of trials. 

Further covariates may also be included in the linear predictor of models (3.7) and (5.1) 

and potential explanations for heterogeneity in treatment effect can be explored by 

inspecting the importance of the treatment-trial interaction after inclusion of important 

clinical factors which may include treatment-covariate interactions. 

5.1.2. Stratified by trial with fixed treatment effect (SFE/FE) 

Model (3.8), described in the third chapter, is also suitable for assessing the evidence for 

heterogeneity in the treatment effect across trials by fitting a stratified model with trial 

specific treatment effects such that 

Au (t) = Aj (t) exp(Qiixi;; ) (5.2) 

A formal test for heterogeneity can be obtained by comparing the value -2*log(likelihood) 

of models (3.8) and (5.2). Under the null hypothesis of no heterogeneity, this statistic 
follows approximately a chi-square distribution on J-1 degrees of freedom. 

Residual heterogeneity is not allowed for in the above models that assume treatment 

effect is fixed across trials. 

5.1.3. Fixed trial effect and random treatment effects (FE/RE) 

The third model considered appropriate for modelling heterogeneity (or undertaking 

meta-analysis) includes random treatment effects and does make allowance for residual 
heterogeneity. The hazard function for the ith individual in the jth trial is written as 
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, to (t) = AD (t) exp(ßo j+ ß1x1) (5.3) 

Ai =ßl+b13 

b1 - N(O, z2) 

where the fixed parameters / 01 (with ßo1 constrained to equal zero) indicate the trial 

membership for all individuals in the jth trial. The coefficient A can be interpreted as 

the average log hazard ratio for a population of possible treatment effects, and b1, is the 

deviation of the log hazard ratio in the jth trial from this population average. The 

random quantities big are assumed to follow a Normal distribution with mean zero and 

variance r2 which is a measure of the between trial variability in treatment effect i. e. a 

measure of the degree of statistical heterogeneity. This model suffers from the same 
limitation as model (5.1), that the hazards are assumed to be proportional to the same 

common baseline hazard function A0. An alternative formulation that does not require 

such an assumption is given by model (5.4). 

5.1.4. Stratified by trial with random treatment effects (SFE/RE) 

In this stratified version of model (5.3) the hazard function for the ith individual in the 

jth trial is written as 

(t) = Aj (t) exp(ß1 jx1; ij) (5.4) 

fJ =Q1+blj 

bl; - N(O, 2) 

where A. j is the baseline hazard function in the jth trial. As with model (3.8), the 

stratified model with fixed treatment effect, the hazards are only assumed to be 

proportional within each trial. The parameters A and bl j are interpreted in a similar 

way to parameters of model (5.3). 
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5.1.5. Random trial effects and random treatment effects (RE/RE) 

In the final model considered in this thesis the hazard function for the ith individual in 

the jth trial is written 

2 (t) = Au (t) exp(bo; + ßl x1) (5.5) 

ßßi = Q1 + bli 

boy - N(O, a2) 

b11- N(O, C2) 

cov(boj, b, 1) =0 

The coefficient /1 is interpreted as the average log hazard ratio for a population of 

possible treatment effects, and bf is the deviation of the relative treatment effect in the 

jth trial from this population average. The random quantities bob represent the deviation 

in the jth trial from the overall underlying baseline risk and these random effects are 

assumed to follow a Normal distribution with mean zero and variance a2 representing 

the variation in baseline risk across trials. In the example used for illustration in later 

sections of this Chapter, the meta-analysis includes only 5 trials, and the covariance 

between bot and b11 is therefore assumed to be zero. A coding structure oft'/z is used 

for the treatment indicator variable xis in order to impose equal between-trial variances 

in the hazard function for the experimental and control group. Under this treatment 

coding structure, the random quantities boj represent the deviation in the jth trial of the 

risk from the average of the two treatments. Further discussion regarding the covariance 

structure in models with random trial and treatment effects for binary outcomes is given 
by Turner et al [59] and general remarks about treatment coding in random effects 

models are given in section 5.3 of this thesis. The inclusion of random trial effects 

assumes that the trials included in the meta-analysis are a random sample from a larger 

population of trials. Such an assumption may not be appropriate in the context of meta- 

analysis due to the underlying principle that all relevant trials are identified and included 

in the meta-analysis. 
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The FE/FE model makes an assumption of proportional hazards across trials such that 

the hazards of event in each trial are proportional to the same common underlying 

hazard function Ao (t) . In the authors opinion this assumption that baseline hazards 

should have the same pattern with time is too restrictive and unnecessary for meta- 

analysis. The SFE/FE model only assumes proportional hazards within each trial which 

is a more realistic assumption for meta-analysis particularly if dealing with an active 

control group where variation in factors such as dose and timing could introduce 

variation in the baseline hazards. For the assumption of a fixed treatment effect the 

current author would advocate the use of a SFE/FE model for meta-analysis. In terms 

of models assuming random treatment effects the FE/RE model assumes hazards are 

fixed and proportional across trials, the SFE/RE model assumes hazards are fixed and 

proportional within trial and the RE/RE model assumes hazards are random effects but 

proportional across all trials. Following the same argument as for models assuming fixed 

treatment effects, the restrictive assumption of proportional hazards across all trials 

would lead the author to advocate use of the SFE/RE model for meta-analysis 

assuming random treatment effects. 

5.2. Parameter estimation 

For the unstratified fixed effect proportional hazards model FE/FE (model 3.7), the 

maximum likelihood estimates of the parameters are obtained, using numerical 

methods, by maximizing the usual partial log-likelihood function given by 

ni 

log L(ß) =jZ 80 ray - log Z exp(rj, ) 

P 

for individuals i (i =1,..., nj) within trial j (j =1,..., J) where 17; ß = ßk xkY, 8; ý is a 
k=1 

censoring indicator taking the value unity if a failure occurs at time t, and zero 

otherwise, and 93;, represents the risk set at time ti, . For the stratified model SFE/FE 

(model 3.8) the overall log-likelihood is equal to the sum of within trial partial log- 

likelihood terms such that 
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log L(ß) = 
Ij 

11 77 1- log 2: exp(i7, ) 
j-1 1=1 IeR, 

11 

Standard statistical software packages (e. g. SAS, S-plus, STATA) capable of analysing 

time to event data can be used to fit the fixed effect models FE/FE (model 3.7 and 5.1) 

and SFE/FE (model 3.8 and 5.2). A Cox regression model with random effects can be 

fitted using the frailty option of the coxph function within the S-plus (or R) software 

package. This function uses the penalized partial likelihood approach with variance of 

random effects based on an approximate REML equation. Further discussion regarding 

the computational algorithm is given in the technical report written by the authors of 

the function [97]. Such a model with random effects defined by shared frailty for each 

trial equates to a Cox model with random trial effects in the context of the models 

described in section 5.1 (model with random trial effects and fixed treatment effect not 

shown). However, to the authors' knowledge, no facility is currently available to extend 

this model to include random treatment effects. As the model with random trial effects 

and fixed treatment effect is not examined in this thesis the frailty option of coxph is not 

considered further. A brief examination of alternative software packages that fit a Cox 

proportional hazards model with some form of random effect revealed that none could 

accommodate fitting a stratified Cox model including a random treatment effect 

(SFE/RE). 

Yamaguchi and Ohashi [62] describe an approach to estimate the parameters of a 

proportional hazards regression model including random centre and random treatment 

effects (equivalent to model RE/RE (5.5) of the present chapter with trial defined as 

centre) to analyse data from a multi-centre clinical trial. The approach they outline 

(summarised below using similar notation) is an extension of the method described by 

McGilchrist and Aisbett [98] and McGilchrist [99]. The approach involves firstly 

maximising the penalized partial likelihood 1 =11 +12 to obtain Best Linear Unbiased 

Predictor (BLUP) estimators of %3k and buj, u=0,1. The two likelihood components 

1, and 12 are given by 
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by r10 -log exp%II) 
l=l J=I IEýRy 

L', 12=- 1 IJ1og2rO 
+ 

buj 
2 

y. 0,1 j=1 
eu 

where 00,0, are equivalent to o2and r2 in the notation used for model (5.5) and 

P 

? 7; ij _E Qk xkY+ b01 + b1 
Jx1 j in the random trial, random treatment effect model. 

k=1 

Letting 

Q= (ß,, ß2,..., ßp), bo = (bo, bo2,..., bor) , b, = , bu,..., b, j) 
17 = 07; 

277;,..., 77J), %j = l17lj217211..., 77njiY 

and 77=X/3+boZo+b, Z, 

where X, Zo and Zl are design matrices for 83, bo and bi 
. The Newton-Raphson 

iterative procedure for maximizing 1i + 12 is 

1ß(5+" ß(5) 0 1x'l 
boy+I) =boss -V -' 6osI' bos) +Vz 

dl 

bl(s+» bl5, 
[ocsr' 

b? Zl 
dj 

VII y2 V13 X' 000 

V=I V21 V22 V23 = ZO - dd 

zrid11 

ý[XZo Zl]+ 0 605-I 0 
[v3, "32 V33 [z; j 00 e'S)-II 

All A12 A13 

V-1 = A21 A22 A23 
A31 A32 A33 

where: 1 is a1 x1 identity matrix; V11 I and All are pxp; VIZ, V13, A, 2 and A13 are px1; 

V21, V31, A21 and A31 are 1xp; V22, V230 V32, V33, A22, A23, A32 and A33 are 1x1 matrices. 
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The superscript (s) indicates the solution after s iterations. The restricted maximum 

likelihood (REML) estimator 6� (u=0,1) given the estimated 63, bo, bl is given by 

b(s+)"b(a+t) 
a(s+l) =uu 

� uj -Bs) trace(A�+2., +i) 

with covariance matrix for the estimated ß given by A11 and the asymptotic variance of 

estimated 6� is 20 [J 
- 28, E-'trace (A�+Z.,, 

+Z)+0-2 , trace (Au2+2. 
u+2 

)J. The estimation 

process for fitting the above model was programmed by [62] using the SAS IML 

procedure and the code was kindly made available by Professor Takuhiro Yamaguchi. 

Similar code is presented in Appendix A. 3 for the analysis of five RCTs comparing 

carbamazepine and valproate for the treatment of epilepsy. 

5.2.1. Software Development 

As suitable software is currently unavailable for fitting the suite of Cox models with 

random effects that are of interest here (FE/RE (model 5.3), SFE/RE (model 5.4)) and 

to meta-analysis in general, the approach described above and SAS IML code is 

extended and adapted in this thesis to allow estimation of required parameters. For 

model FE/RE (5.3), the modifications required relate to the linear component 7 7,, 

P 

such that i_ PkxkY + b1 xly , and the second log likelihood component becomes, 
k=1 

1i 
12 =- 

[J1o27roi b 
Z 2 ;., 9, 

ßcs+ý, ßc5, o X dl, 
bý 

Lb, 
[01()_ibl(s)] 

Z, dj 

V' V I2 [x][ 
- 

d211 
X Z+ 

00 
V21 V22 Z; d rid rý 1ý0 olw I 
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V_1 = 
Ali Ail 

An A22 

where: I is a 1x1 identity matrix; V,, and All are pxp; V2 and A12 are px1; 

V2, and AZ, are 1xp; V22 and A22 are 1x1 matrices. The REML estimator 6, given 

the estimated 8 and b, is 

eis+t) _tt tJ- 01(')-l trace(A22 ) 

with covariance matrix for the estimatedß given by A,, and the asymptotic variance of 

estimated 6, is 202[j - 20 'trace (A22) +01 Ztrace (A22 )11. 

In the above formulation of the likelihood for the FE/RE model, the 11 component is 

constructed over ordered event times for all participants in all trials. For the 

corresponding model stratified by trial, SFE/RE (5.4), only ordered event times within a 

trial are used to define the partial log likelihood for that particular trial therefore the 

parameter estimation procedure for model FE/RE (5.3) is further modified by 

redefining 

S, ? T, - log exp(7I, ) 
JAI ICI Ie9 

, 

P 

where, within the jth trial, 77, = , 
8kxki is the linear component for the i'th patient, 5, 

k=1 

is a censoring indicator taking the value unity if a failure occurs at time t, and zero 

otherwise, and 91, represents the risk set at time t, and is constructed from the set of 

individuals still at risk of the event in the jth trial. 

The adapted SAS IML code for fitting these random effects models is included in 

Appendix A (A. 1 for FE/RE and A. 2 for SFE/RE). As already mentioned, the original 

code supplied by Professor Yamaguchi was used to fit a random centre, random 

treatment (RE/RE) model in their 1999 paper. The example they used for illustration 

was a cancer clinical trial of 174 patients from 16 centres with the number of patients 
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within a centre ranging from 4 to 24. In the meta-analysis examples of interest, we have 

few `centres' with much larger numbers of patients within each centre and consequently 

the estimation procedure can take a large amount of computing time. 

5.3. Treatment coding 

In trials comparing experimental and control treatments, the covariate representing 

experimental treatment group membership is traditionally coded as 1 whilst the control 

group takes the value 0. For trials comparing two active treatments, one treatment may 
be taken as a reference group and coded 0 whilst the other might take the value 1. In 

either case, if the treatment codes are switched, the value of the relative treatment effect 

remains unchanged in a model fitting both trial and treatment as fixed effects. However, 

for models containing random treatment effects, the interpretation of variance 

components will depend on the treatment coding values adopted and could potentially 

alter conclusions made regarding the overall treatment effect. The log hazard rate for 

the ith individual in the jth trial for each treatment group assuming two alternative 

treatment coding approaches within each trial are summarised below. 

Group FE/RE Model SFE/RE Model RE/RE Model 

A log(. 
i(t))=1o00(t)) 

logRj(t))=log&j(t)) log(A,,, (t))=1o00(t)) 

x,, y =1 +ß+/+b1 j +ß, +bf +bol +ß, +b, j 
B log(A, (t))=logg (t)) log(.. % (t))=1og(Aaj(t)) log(A, Y(t))=1og(O(t)) 

x, U =0 +ßaj +bof 

A log(A, (t))=1og(o(t)) logg (t))=1ogQ. (t)) log(A, (t))=1og(o(t)) 

x,, =1/2 +ßoß+1/2ß, +1/2b j +1/2ß +1/2b, ß +b01+1/2/3, +1/2bi 

B log(A, (t))=1og(O(t)) log(. j(t))=1og(Oj(t)) log(A, (t))=1ogQ (t)) 

xl;, =-1/2 +301-1/213, -1/2b, ß -1/2ß1-1/2b, ß +b01-l/2ß, -1/2b, ß 

For each model, under the assumption of normality for the b, f's, the variability in log 

hazard rate across trials for treatment A is greater than the variability in log hazard rate 

across trials for treatment B if treatment A is coded as x11=1 and treatment B as 
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X14 =0. If treatment codes are switched, the variability across trials for treatment B is 

greater than the variability across trials for treatment A. 

For each model, under the assumption of normality for the b, j's, the variability in log 

hazard rate across trials for treatment A is equal to the variability in log hazard rate 

across trials for treatment B if treatment A is coded as x,, =1/2 and B as x,, =-1/2. If 

treatment codes are switched, the variability across trials remains unchanged. 

The decision of which treatment coding structure to adopt should ideally be made prior 

to analysis as the interpretation of the between trial variability parameter will differ 

accordingly. Provided the trials included are clinically and methodologically similar, for 

meta-analyses comparing an active treatment with placebo, the assumption of greater 

between trial variability in log hazard rate for the active treatment group may be 

appropriate. For meta-analyses of trials comparing two active treatments, the 

assumption of equal variability in log hazard rates for each group would seem more 

appropriate. 

In some situations, depending on the approach used for parameter estimation, the 

treatment coding adopted could theoretically alter estimates and conclusions. For 

example, the between trial variability in log hazard rates for the treatment group coded 

as zero is not modelled in the 0/1 coding approach but is modelled using values of 

±1 /2. Parameter estimates could alter between these two approaches if the between trial 

variability in log hazard rates is non-negligible for this treatment group. A brief 

examination of meta-analysis of binary outcomes using the random treatment effect 

logistic regression model (fitted using MLWIN) revealed that the relative treatment 

estimates and their standard errors changed with different treatment coding structures. 

Similar treatment coding issues in the random trial, random treatment effect model have 

been discussed previously [59], [60]. 

The estimation approach for the fixed trial, random treatment effect Cox models 
(FE/RE, SFE/RE) adopted in this thesis is unaffected by the choice of treatment 

coding. This is because, the procedure consists of maximizing the sum of two 

components (1=11+12), the first of which is the standard log partial likelihood of the 
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Cox model conditional on fixing the random effect (11), and the second component 

(12) is the log likelihood of a normally distributed variable. As the second component 

does not depend upon the value of x,,, the parameter estimates are identical regardless 

of treatment coding used. 

5.4. Handling Ties 

In the analysis of time-to-event outcomes, tied event times occur when the time to some 

event is identical for two or more individuals. The partial likelihood for the Cox model 
described in previous sections is developed under the assumption of continuous (i. e. 

untied) data [96]. For situations where there are a number of tied event times, the partial 
likelihood requires some adjustment. Two commonly used approaches for handling ties 

are the Breslow [100] and Efron [101] approximations. 

The original SAS IML code supplied by Takuhiro Yamaguchi used the Breslow method 
for handling ties. As the Efron approximation generally produces results that are much 

closer to the exact partial likelihood in the presence of tied event times [29], the SAS 

IML code was adapted to facilitate the use of Efron's approximation for handling ties. 

The basic procedure is described below and the adapted SAS IML code for each 

random effects (FE/RE, SFE/RE, RE/RE) model using Efron's approximation is 

given in Appendix B (8.1, B. 2, B. 3). 

For an individual trial with untied data, i. e. distinct event time for each individual, the 

partial likelihood function is a product over r ordered event times denoted by subscript 

k =1,2,... r . Each individual who experiences an event at some time tk, contributes a 

term 

exp(rlk ) 
1: exp(77, ) 

1EsEk 

to the partial likelihood function. Letting v(m) = exp(tIm), the situation of tied event 

times is illustrated by Therneau and Grambsch [96] as follows. Suppose five individuals 

are included in a trial and the first two individuals have tied event times, assumed to 
have occurred because the time to an event is often not recorded precisely enough, e. g. 
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time to death recorded in days instead of days, hours and minutes. If the time data had 

been recorded more precisely, the first two terms would be either 

w(1) w(2) 
y'(1)+yr(2)+ v(3)+ t'(4)+yr(5) w(2)+ v(3)+ v(4)+ u(5) 

or 

V/(2) VG) 
yr(1)+ v(2)+ v(3)+ v(4)+yr(5) yr(2)+ yr(3)+ v(4)+ t«5) 

but we do not know which. 

The two approaches to handle tied event times differ in how they accommodate these 

alternative possibilities for defining the risk set. The approximation proposed by 

Breslow uses the complete sum for both denominators and the first two terms of the 

partial likelihood would therefore be 

V(1) V(2) 
yr(1)+yr(2)+yr(3)+V(4)+ ii(5) v(l)+V(2)+V(3)+V(4)+V/(5)) 

The Breslow approximation is the simplest approach to program and the most efficient 

method when there are no ties. However, the approach produces a conservative bias 

with estimated regression coefficients that are too close to zero in absolute value [96] 

because individuals experiencing an event are included more than once in the 

denominator of the partial likelihood. 

The approximation proposed by Efron uses the average denominator in the second 

term giving a likelihood contribution of 

V(1) VV(2) (V/(l)+V(2)+V/(3)+V(4); 

V(5) 0.5yr(1)+ 0.5yi(2)+ t'(3)+w(4)+yr(5) 

which is to be preferred particularly as the number of tied event times increases. 
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5.5. Example: CBZ-VPS monotherapy trials using IPD 

The effects of two anti-epileptic drugs, Carbamazepine (CBZ) and Sodium Valproate 

(VPS) when used as monotherapy in patients with partial onset seizures or generalized 

onset seizures were assessed in a systematic review and meta-analysis of randomised 

controlled trials [39]. As described in previous chapters, due to the lack of uniformity in 

reporting of outcome measures, the desire to investigate time to event outcomes and the 

need to examine treatment-covariate interactions, IPD were requested and obtained for 

1225 patients from 5 trials accounting for 83% of individuals randomised in 8 eligible 

trials. Information for five clinically important patient characteristics (age at 

randomisation, sex, seizure type (generalized onset or partial onset), number of seizures 

prior to randomisation and time from first seizure to randomisation) are also available 
for each trial. The effect of three further covariates (EEG, CT/MRI scan, Neurological 

signs) cannot be investigated due to an unacceptable amount of missing data (Table 4.3, 

Chapter 4). 

Illustration of the models described in section 5.1 is undertaken with the meta-analysis 

of two outcomes, time to 12 month remission and time to first seizure post- 

randomisation. The former outcome relates to the time taken to reach a period of 12 

months free from seizures. Due to the fact that many individuals (29%) achieved an 
immediate seizure free period of 12 months (i. e. time to 12 month remission is 12 

months), the occurrence of tied event times is a further issue for consideration for this 

outcome that is dealt with by using Efron's approximation for handling ties. The 

Kaplan-Meier survival curves summarising the time-to-event experience for each 

treatment group within each trial are displayed in Appendix C. 

The original Log-rank analysis stratified by trial suggested statistically significant 

evidence for heterogeneity in the treatment effect between trials for the outcome time 

to 12 month remission (x24=11.75, p=0.02, Table 4.4) but evidence for statistical 

heterogeneity was not detected for time to first seizure (X24=5.89, p=0.21, Table 4.4). 

Parameter estimates and standard errors obtained from applying the models described 

in section 5.1 for both outcomes are summarised in Table 5.1. Since tied event times are 

not of concern for the outcome time to first seizure, the Breslow method for handling 

ties is used for all models. Similar parameter estimates are expected if the Efron method 
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is adopted. For the outcome time to 12 month remission, where event times are 

frequently tied, the Efron approximation is adopted throughout. For both outcomes, 

parameter estimates from FE/FE and SFE/FE models agree well with each other. 

For time to 12 month remisrion, all five models agree in the direction of treatment effect and 

suggest a trend toward favouring CBZ. Compared with the appropriate fixed treatment 

effect model, the models with random treatment effects (FE/RE, SFE/RE, RE/RE) 

have a different parameter estimate of /1 and larger standard error due to the allowance 

made for heterogeneity in these models. The parameter r2 is intuitively not very well 

estimated in this example due to the small number of trials and this is reflected by the 

large standard error for estimates of z2. The point estimates of this parameter are close 

to zero and do not appear to reflect the evidence found for significant heterogeneity 

obtained from the first two models (p=0.021 and p=0.023 for FE/FE and SFE/FE 

respectively). However, the increase in standard error for ß1 observed by introducing 

random treatment effects suggests an important amount of heterogeneity is present. 

For time to first seizure, all five models agree in the direction of treatment effect. There is 

insufficient evidence for heterogeneity (p=0.18 and p=0.21 for FE/FE and SFE/FE 

respectively). On comparison with the results for time to 12 month remission, this is 

reflected in smaller estimates of z2 in the models that include random treatment effects 
(FE/RE, SFE/RE, RE/RE). For this reason, making allowance for heterogeneity has 

less of an impact and similar estimates of ß1 are obtained for all models with less of an 

increase in standard errors. 
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Table 5.1. Parameter estimates (standard error) for time to 12 month remission 
and time to first seizure obtained using alternative hierarchical formulations of 
the Cox regression model (5 trials, 1225 individuals) 

Model (3, (VPS) tiZ 62 

Time to 12 month 

remisrion* 

FE/FE -0.137 (0.073) 

SFE/FE -0.132 (0.073) 

FE/RE -0.103 (0.126) 0.0498 (0.056) 

SFE/RE -0.098 (0.125) 0.0484 (0.055) 

RE/RE -0.099 (0.126) 0.0510 (0.056) 0.0155 (0.016) 

Time to first 

sei cure 

FE/FE 0.087 (0.068) 

SFE/FE 0.079 (0.068) 

FE/RE 0.067 (0.089) 0.0146 (0.028) 

SFE/RE 0.061 (0.087) 0.0131 (0.027) 

RE/RE 0.067 (0.090) 0.015 (0.028) 0.019 (0.019) 

FE/FE: Fixed trial indicators and fixed treatment effect, SFE/FE: stratified by trial with fixed 
treatment effect, FE/RE: Fixed trial indicators with random treatment effects, SFE/RE: 
Stratified by trial with random treatment effects, RE/RE: Random trial and random treatment 
effects. *Using Efron's Approximation for handling ties " Using Breslow's Approximation for 
handling ties 

As evidence for heterogeneity is identified for the outcome time to 12 month remission, 

potential explanations are explored by investigating the importance of clinically relevant 

patient characteristics. To do this covariates which are identified as statistically 

significant from univariate analyses are included in a model with treatment. All 

interaction with treatment terms are subsequently included and finally, any non- 

significant terms are omitted from the model. A model which includes a term describing 

type of epilepsy, age, log(number of seizures) and an age-treatment interaction is 

obtained for the outcome time to 12 month remission. Alternative model selection 

strategies (backward elimination, forward selection, stepwise selection) were also 

adopted and each produced the same final model. The parameter estimates and standard 
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errors obtained from including these terms in each of the models under investigation are 

displayed in Table 5.2. 

Table 5.2. Parameter estimates (standard errors) for `time to 12 month remission' 
using alternative hierarchical formulations of the Cox regression model (using 
Efron's approximation) allowing for patient-level covariates (5 trials, 1183 
individuals) 

Estimates (SE) 

Model ßl tiz a2 Age Epilepsy Log(sez) Age 

(VPS) type *VPS 

(partial) 

FE/FE 0.151 - - 0.005 -0.189 -0.192 -0.009 
(0.129) (0.003) (0.088) (0.031) (0.004) 

SFE/FE 0.162 - - 0.005 -0.186 -0.192 -0.009 
(0.129) (0.003) (0.088) (0.031) (0.004) 

FE/RE 0.150 0.008 - 0.005 -0.188 -0.192 -0.008 

(0.141) (0.028) (0.003) (0.088) (0.031) (0.004) 

SFE/RE 0.163 0.006 - 0.005 -0.185 -0.192 -0.009 
(0.139) (0.027) (0.003) (0.088) (0.031) (0.004) 

RE/RE 0.158 0.007 0.026 0.006 -0.167 -0.188 -0.009 
(0.140) (0.028) (0.026) (0.003) (0.086) (0.031) (0.004) 

The effect of age is included as the actual age (in years) of each individual in all models 

considered. For the models that assume fixed treatment effects (FE/FE and SFE/FE), 

parameter ß, is interpreted as the log hazard ratio comparing VPS to CBZ for two 

individuals aged zero with the same epilepsy type and same number of seizures before 

randomisation. For the models that assume random treatment effects (FE/RE, 

SFE/RE and RE/RE), parameter (3, is interpreted as the average log hazard ratio 

comparing VPS to CBZ for a population of possible log hazard ratios for two 

individuals aged zero with the same epilepsy type and number of seizures before 

randomisation. A more relevant clinical interpretation could be achieved by using 

centering. For example, the average age (across all trials) of 31 years could be subtracted 

and this centered covariate included instead of actual age. Parameter (31 would then be 
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interpreted as the log hazard ratio comparing VPS to CBZ for two individuals aged 31 

with the same epilepsy type and number of seizures before randomisation. 

In all models the log hazard ratio is allowed to vary according to age due to the 

inclusion of an age by treatment interaction term. However, for the fixed treatment 

effect models (FE/FE and SFE/FE) the pattern according to age is assumed to be 

identical across trials whereas for the random treatment effects models, the pattern 

according to age is allowed to vary across trials with this additional level of variability 
incorporated into the model. In models that include an age by treatment interaction 

term, the random quantities b, j represent deviations in the jth trial from the average log 

hazard ratio according to age whilst r2 is a measure of between trial variability in the 

treatment effect according to age. 

Having allowed for patient-level covariates (covariate main effects modelling the 

variability in baseline hazards and the interaction with treatment effect modelling 

variation in treatment effects), the test for heterogeneity in models with fixed treatment 

effect FE/FE and SFE/FE, are no longer statistically significant (p=0.40 and p=0.44 

respectively) and suggest that the included covariates explain the heterogeneity in 

treatment effect across trials. Furthermore, in support of these results, the estimate of 

z2 for FE/RE, SFE/RE, and RE/RE models has decreased after allowing for 

covariates. As the variables age at randomisation and number of seizures before 

randomisation were not recorded for 42 out of 1225 individuals, the parameter 

estimates displayed in Table 5.2 are based on a subset of 1183 individuals. To enable a 

comparison of parameters before and after inclusion of these covariates, each 

corresponding model excluding patient level covariates were fitted to the same subset of 

1183 individuals (Table 5.3). 
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Table 5.3. Parameter estimates (standard error) for time to 12 month remission 
fitted to a subset of data (5 trials, 750 events, 1183 individuals) 

Model P1 (VPS) tiZ a2 

Time to 12 month 

remission* 

FE/FE -0.115(0.073) 
SFE/FE -0.112(0.074) 
FE/RE -0.085(0.121) 0.044(0.051) 

SFE/RE -0.081(0.120) 0.043(0.051) 

RE/RE -0.082(0.121) 0.044(0.052) 0.015(0.016) 

*Using Efron's Approximation for handling ties 

On comparison of parameter estimates from Table 5.3 and 5.2, the percentage change 

in r2 suggests that inclusion of age, epilepsy type, log(number of seizures), and an age by 

treatment interaction has explained 82% of the heterogeneity (FE/RE), 86% (SFE/RE) 

and 84% (RE/RE) for each model respectively. The estimate of a2 in the model with 

random trial and treatment effects (RE/RE) has increased following inclusion of 

patient-level covariates. From a clinical perspective, the age by treatment interaction 

suggests that older patients taking CBZ are more likely to experience a period of 12 

month remission from seizures, hence a better clinical outcome, whilst younger patients 

fare better on VPS. In general, this change in direction of effect occurs at around the 

age of 18. There is evidence that individuals are unlikely to be diagnosed with 

generalized epilepsy beyond the age of between 25 and 30 years [102]. The interaction 

between age and treatment may be viewed as a surrogate for an interaction between type 

of epilepsy and treatment since there is strong clinical belief, which is unsupported by 

the data for this outcome, that CBZ is better for partial seizures whilst VPS is better for 

generalized [69]. Further detail regarding the clinical implication of these results are 

given by Marson et a! [39] and Williamson et al [90]. 

5.6. Simulation study 

In order to examine the reliability of the estimates from the different models for a meta- 

analysis with only 5 trials, and to gain insight into the behaviour of the models 
investigated, a small simulation study was undertaken. To allow different levels of 
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between trial variation, the data are simulated under a model with random trial and 

treatment effects (RE/RE) as described in section 3.6 of the third chapter. For each set 

of simulation parameters, the mean of the estimated log hazard ratios was calculated 

along with the coverage over all 100 simulations. Coverage is defined as the percentage 

of 95% confidence intervals that contain the true underlying value of log hazard ratio. 

The simulation study results (Table 5.4) indicate that the average absolute bias and 

spread of the A1 parameter increases for all models as the underlying degree of 

heterogeneity increases, but is similar across models for a given value of r2. The 

average absolute bias and spread of the estimate of /31 are marginally smaller for the 

stratified models compared to corresponding un-stratified models (SFE/FE compared 

to FE/FE and model SFE/RE compared to FE/RE) for no treatment effect. For a 

fixed value of underlying heterogeneity (z2 = 0.1), as the true value of 6, increases, the 

average bias in the estimate ofß1 tends to decrease with little effect on coverage values 

for all models. For all models coverage for the log hazard ratio is 95% when there is no 

heterogeneity and the true underlying log hazard ratio is zero. As the degree of 

heterogeneity increases, coverage values for the two fixed treatment effect models 

(FE/FE and SFE/FE) decreases quite substantially. For the random treatment effect 

models (FE/RE, SFE/RE and RE/RE), coverage values are smaller when there is some 
degree of heterogeneity but values remain fairly stable for increasing heterogeneity. In 

conclusion, the estimate of the log hazard ratio is more likely to be biased for larger 

values of underlying heterogeneity with extremely poor coverage for fixed treatment 

effect models. 

For a fixed underlying value of / 1, the average absolute bias in the estimate ofr2is 

minimal for all models (FE/RE, SFE/RE, RE/RE) with no systematic pattern for 

increasing values of true underlying heterogeneity. However, the increasing spread as 

the true value of r2 increases indicates that estimates of r2 are more likely to be biased 

when the true value is greater. Coverage for this parameter is poor when the underlying 

value is zero indicating poor variance estimation when r2 = 0. For a fixed underlying 

value of r2 the bias in estimating this parameter and coverage values do not appear to 

be affected by increasing underlying values for/31 regardless of model chosen. 
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Finally, for the model including random trial and random treatment effects (RE/RE), 

the bias in estimating o eis unaffected by increasing underlying values of ß1 or r2. 

Coverage values are less than 75% for all scenarios. 

The epilepsy example involves larger patient numbers than this simulation study. As the 

estimate of r2 in the example is fairly close to zero, particularly when covariates are 

included in the model, the simulation study provides additional reassurance that the 

parameter estimates obtained from the meta-analysis of the five epilepsy trials are 

reasonably reliable. 



Table 5.4. Mean (standard deviation) and % coverage values of 
parameter estimates from 100 simulated meta-analyses of 5 
trials (40 individuals per group) 
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5.7. Exploring heterogeneity with aggregate data 

Investigating heterogeneity and the influence of prognostic factors in a regression 

ression used to framework is commonly undertaken using AD and the phrase meta-re 

describe these models. Associations between the relative treatment effect and study- 

level characteristics are examined by fitting a regression model with study-level estimates 

of treatment effect as the response and summary measures of study-level characteristics 

e. g. average age, as explanatory variables. Consequently, although individual studies may 

have used randomization, the strength of this process is lost and these approaches are 

subject to many of the biases that occur with observational studies. Furthermore, if 

aggregated patient-level characteristics, such as mean age, are under investigation such 

approaches are subject to ecological bias which arises when results based on aggregate data 

are incorrectly assumed to apply at the individual level. Nevertheless, meta-regression 

models with AD can be useful for investigating the extent to which study-level 

characteristics might explain heterogeneity but there is a need to investigate how these 

results might compare to models based on IPD. A brief outline of the AD methods is 

given below but a discussion of assumptions and further details of the models are 
described in depth by Thompson and Sharp [91]. The methods are illustrated by 

Thompson and Sharp using binary data, but the general concepts can be extended to 

situations where continuous or time-to-event outcomes are of interest. 

5.7.1. Weighted regression with no allowance for residual heterogeneity 

The first model using AD assumes the observed log hazard ratio in each trial (logHRý) is 

independently normally distributed such that 

log HRf - N(a + ftcj, vf) (5.6) 

where v, is the variance of the log hazard ratio in the jtb trial. The parameter 6 is 

interpreted as the change in log hazard ratio per unit change in covariate x, and a is 

the log hazard ratio for a covariate value of zero. To account for the assumption that 

the variance of the log hazard ratio from each trial are not equal (sampling variability), a 

weighted regression with weights defined by the reciprocal of the variance is used. This 

model is fitted using standard statistical software for weighted regression with the 



standard errors of regression coefficients corrected through division with the square 

root of the mean squared error (MSE). This correction is necessary as standard 

statistical software packages usually fit the model log HRH - N(a + /. c1, v ja') rather 

than model (5.6) as required, where a2 is the mean squared error. 

5.7.2. Weighted regression incorporating residual heterogeneity 

The first meta-regression model (5.6) corresponds to a fixed effect model as between 

trial variability is not accounted for. This model can be extended to incorporate 

heterogeneity that remains unexplained by the covariates fitted through inclusion of an 

additive between study variance component t2. This random effects meta-regression 

model may be written as follows 

log HR, -N(a+ßx , v, +z2) (5.7) 

An explicit estimate of T2 is required as the weights used in the regression are given by 

the inverse of the sum of the within and between study variance components. The 

Moment Estimator (MM), Maximum Likelihood estimate (ML), Restricted Maximum 

Likelihood estimate (REML) and Empirical Bayes estimate (EB) methods of estimating 

tie have been proposed and are described in detail by Thompson and Sharp [91]. 

5.8. Example: CBZ-VPS monotherapy trials using AD 

For the CBZ-VPS time to 12 month remission meta-analysis examined in section 5.5 

the original potential explanation of heterogeneity obtained using IPD (Table 5.2) 

motivated the question as to whether the same explanation of heterogeneity and clinical 
interpretations would have been obtained had the IPD been unavailable. However, for 

this particular example appropriate AD to allow such an assessment could not be 

extracted from trial reports and the IPD were therefore used to generate AD. The 

resulting AD for the outcome 'time to 12 month remission and the 5 patient factors of 
interest, are summarized in Table 5.5. 



Table 5.5. CBZ-VPS example: Aggregate data generated from IPD 
for each trial 
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Table 5.6. Parameter estimates (SE) from univariate meta-regression 
models using AD 
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As only 5 trials are available multivariate models using AD are not investigated. 

Furthermore, with so few trials, there is an increased probability of finding a statistically 

significant result as further covariates are explored and analyses should therefore be 

interpreted with caution. Model (5.6) was fitted using the regress command and (5.7) 

using the metareg command of STATA version 8.2. The parameter estimates and 

corresponding standard errors obtained from fitting each univariate model are 

summarised in Table 5.6. 

As residual heterogeneity is not accounted for in model (5.6) the SEs of each regression 

coefficient are smaller compared to model (5.7). There is generally reasonable agreement 

between the estimated regression coefficients from alternative models using AD. 

All models provide strong evidence for a significant effect of mean age and 

mean(log(time from first ever seizure)) with identical regression coefficients and 

standard error across all models. The results suggest that VPS may be more effective in 

trials with younger patients on average, whilst CBZ may be more effective in trials with 

an older average age with the change in direction of effect occurring at around mean age 

of 19 years. VPS appears more effective in trials recruiting patients with a shorter 

interval between first seizure and randomisation on average whilst CBZ more effective 

in trials with larger intervals on average. For model (5.7), the between trial variability 

parameter t2 is estimated to be zero for all estimation procedures when either of these 

variables are included suggesting that all of the heterogeneity may be explained by 

considering these trial-level averages of patient level covariates. This is further 

supported by noting that the parameter estimates and standard error for random effects 

models (5.7) are precisely equal to those of the fixed effect model (5.6) after including 

these covariates. 

Evidence to suggest a relationship between treatment effect and any other aggregated 

covariate examined in this investigation is much weaker, with non-zero estimates of tie 

indicating that some residual variability remains unexplained by the effect of each 

aggregate level covariate. For model (5.7) comparing the change in tie with 

corresponding null models as a measure of the proportion of variation explained gives 

quite different values depending on the estimation approach. However, as estimation of 

t2 is poor when the number of included trials is small, as in this case, the reliability of 
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these results is questionable and care is required for interpretation. In this example with 

5 trials, estimates of tie for all covariates are smaller using ML compared with MM, 

REML and EB approaches. Thompson et al. [91] suggest that the maximum likelihood 

approaches are preferable but due to the downward bias of the estimate of tie using ML, 

they suggest that an REML estimate will be most appropriate in practice. 

5.9. Exploring heterogeneity with IPD or AD 

Parameter estimates obtained from models using IPD (section 5.5) or AD (section 5.8) 

may be compared to provide an empirical evaluation of meta-regression analyses using 

both types of data. In the CBZ-VPS example, AD were generated from IPD and the 

comparison is therefore slightly artificial and reflects a comparison of methods rather 

than results that might be seen in reality. 

Since meta-regression models with AD are used to explore relationships between trial 

level covariates and trial level relative treatment effects, comparisons can only be made 

with IPD based models in terms of treatment by covariate interactions rather than 

covariate main effects. The ability to examine and adjust for covariate main effects is 

one advantage of having IPD. To compare models using IPD and AD the following 

approach is taken. For each IPD model with fixed treatment effect (FE/FE, SFE/FE) 

and the stratified Cox model with random treatment effects (SFE/RE), the main effects 

of treatment and the covariate of interest are included in a model with the 

corresponding treatment by covariate interaction variable (results of these models are 

displayed in Table 5.7). 

Results 

The first point to note is the AD null model result assuming fixed treatment effect 
(model 5.6, table 5.6) gives exactly the same parameter estimate and standard error 
(-0.132(0.073)) as the SFE/FE Cox model using IPD (Table 5.7). This agreement occurs 

because the AD estimates of log hazard ratio and SE (Table 5.5) have been generated 

from IPD using a separate Cox model for each trial. The fixed effect AD meta- 

regression model (5.6) without covariates is equivalent to a simple Inverse Variance 

weighted average of trial level estimates. As stated in Chapter 3, assuming a fixed 
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treatment effect, the IV weighted average of Cox model estimates can give very similar 

pooled results to the those of the stratified Cox model under certain conditions. For 

conditions similar to the current example, the simulation study with underlying values of 

'[Z=0 or 0.1 and log hazard ratio close to 0.1 (Figures 3.1,3.2,3.5,3.6 in Chapter 3) 

indicate particularly good agreement between these two approaches. 

For models that assume random effects without considering the effect of covariates, 

parameter estimates and standard errors for meta-regression analyses using AD (model 

5.7, Table 5.6) are similar to the three random effects models based on IPD (Table 5.1) 

which use REML for estimating [Z. The AD model results based on a ML approach for 

estimating t2 are most similar to IPD estimates obtained from the FE/RE Cox model 

although the AD standard error and estimate of tie are smaller than corresponding IPD 

estimates. The three remaining AD approaches (MM, REML, EB) agree well with IPD 

estimates from SFE/RE and RE/RE Cox model results. 

The only treatment by covariate interaction identified as statistically significant by the 

Cox models using IPD appears to be between treatment and age (Table 5.7). The results 

suggest that individuals over the age of approximately 18 years have a better clinical 

outcome with CBZ. Very similar numerical results and clinical conclusions are drawn 

from the AD models (Table 5.6) after considering this particular covariate with both 

approaches estimating tie to be equal to zero. The AD models measure the relationship 

between log hazard ratio and mean age across trials whereas the IPD models measure 

within trial relationships (averaged across trials) between treatment and age and are 

therefore measuring different quantities. 

Based on the IPD Cox model results, there is insufficient evidence to suggest that any 
further interactions exist between treatment and each of the covariates under 

consideration (Table 5.7). Estimates of tie that are close to that of the model without any 

covariate effects (null model in table 5.7) suggest that inclusion of these variables do not 

provide a sufficiently adequate explanation for heterogeneity. The AD model results 

agree to some extent in terms of the statistical significance for three covariates 

proportion female, proportional partial, and mean(log(number of seizures)). However, 

for mean(log(time from first ever seizure)), the AD models suggest evidence of a 

relationship (p=0.013) with an estimate for TZ equal to zero which might suggest that 
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this aggregate level variable can provide an explanation for statistical heterogeneity. As 

the safer IPD approaches failed to detect an overall within study relationship, the AD 

result is likely to be spurious. This highlights the potential for misinterpretation that can 

arise when associations with averages across trials are examined. 

Assuming the AD generated from IPD had been available for each trial, one could have 

reached the conclusion that statistical heterogeneity could be explained by either the 

effect of age or time from first ever seizure. These two aggregate variables are highly 

correlated with longer average intervals from first ever seizure observed in trials with a 

greater average age. As data are available for a maximum of five trials, models including 

more than one covariate were not examined. Furthermore, as the false-positive rate 

increases as more characteristics are explored, these models that examine 5 

characteristics with only 5 trials should be interpreted very cautiously. The availability of 

IPD allowed a thorough investigation into the main effects of each covariate (Table 5.2) 

which was not possible using meta-regression of AD. However, for the full SFE/RE 

model described in section 5.5 (Table 5.2, based on 750 events and 1183 individuals due 

to missing covariate values) there is a small amount of residual heterogeneity 

(tie=0.006(0.027)) with 86% of the heterogeneity explained by including the main effects 

of age, epilepsy type, log(number of seizures) and an interaction between treatment and 

age. Let this model be referred to as model (1). The IPD model (SFE/RE) that includes 

the main effect of age and an interaction with treatment term (Table 5.7, based on 764 

events and 1218 individuals) suggests that 100% of the heterogeneity can be explained 

by these variables alone. Due to a small amount of missing covariate data these two 

alternative models are based on different subsets of the original data for 1225 

individuals which makes a comparison of models difficult. As a sensitivity analysis, the 

variables treatment, age and their interaction term were fitted to the same subset of IPD 

for 1183 individuals used in model (1). The results based on this subset of data (Table 

5.8) are not substantially different to the original (Table 5.7) but do suggest that a small 

amount of residual heterogeneity remains unexplained (i2=0.003(0.024)) by these 

variables using this data. In summary, the age by treatment interaction appears to 

explain the heterogeneity across trials but the variables epilepsy type and log(number of 

seizures) are also clinically important. 
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Table 5.7. Parameter estimates (SE) from Cox proportional hazards 
models with main effect of treatment, covariate and corresponding 
interaction term using IPD 

N 

ý ý ° Ln ýý 
. o000 °oöööö 

00 ýt M r+ o 
ý V ýh M ýt 

C) 000 
o0o0 

L 
w" bý 
vý F 

.0 
yr 

.z 
m 

0 V 

ö eý 
ýt 

MTV' M 

OOOÖ 
11 11 11 11 11 
ýýaaa 

q 
ooo crý N 

00 
0Öoo 

o ýr e Le) oo 
ööööö 
N !1 Gý V lý 
- . -+ MN 

99999 

^ry Ö 00 ÖÖ 
00 00 M Le) s c? OOO 
Ov00Ö Oel 

ý ýn ýt ý Lr1 
pÖMNÖ 

N V. - NN 
M V^ M 

ýÖÖOO 
II II II II II 

a o. a. / 
is, 

c Lq qN o0 

C) le, LA 00 
O. i00 21 < 
NOO 00 . - 
r+ v- Ln N 00 

IIIII 

v" in 00 00 M v'f 
OOOp 

pOýOvdOv 

C) . -ý to rr tf) 
0MNO 

C3 oooo 

p OO C Op 
Cn l- ä 00 Ln CO CC, NpM 00 

M- 00 MMNM 00 " eY wg NOOOp . --ý cy000p ÖpÖ Cý Öp9p999p 

aý 
cý ... 
cý 
0 V 

Iz 

ýy 
äc 

O vii W 
v 4" 
bpy ýO 

y -n v 
to ý' 

ö 
.ý 

_.. 

JDUö ö 

I Wvý ö 
,4 

q 

z 

Le) 00 ºn Ln .C 00 tn 00 Ln in 1.0 co 
cd 

N . -+ NN 00 
NN (N N C, N . -+ NN0 0 

NNNN -I 
cs 

a+ 
aO 

ý-r rr . --ý e"a ý-r 
\\\\\\ 

00 . -r - e-+ .ý 
\\\\ý. n 

FI t0 NNNN 
V%VV u1 

r- dNNNN 
w Ln VVVV tr) Ln r- r- 

W w 
w 

ý w w 

q, e6 ön 
a Lo %C Le) c, 

CD CD 
ýööööö No GO G1 M 

aNaaa 
9000Ö 

en"N 
Ö 

-4 
p 00 00 M tf) 
pOOOO 

ýp 
OvOýOvOý 

.ýO l- M r- 
ef) ýt " L1 

pOMNO 
X99 9 

NN 
i[1 ' 

Ö OvOOvp 
00 p \o G1 ºn 
ÖNÖÖÖ CD 

999Ö 

aý N 
äoaý ýö ý 

UNU 

fl) 

Wö 
,ý 

ä z 

to 00 tl Uli V 
N-NN o0 00 
NNNN r+ 00 

V Vr 1,0 N 
t- t- t- t- r- Lri 

9 
W 

w 



CHAPTER 5 Modelling Heterogeneity 154 

The issue of missing data are not confined to meta-analysis and are often faced in 

individual trials if trying to develop the prognostic models where covariate values may 

be missing for some individuals. Issues of missing data are not considered in detail here 

but could present potential problems for investigating heterogeneity with IPD. The 

degree of missing data for the five covariates of interest is not considered a significant 

problem for this example. 

For this particular empirical comparison involving a small number of trials, but still 

reflective of many meta-analyses in practice, the results suggest that conclusions from a 

meta-regression using AD can agree with results from IPD models if there is evidence 

for a within study treatment by covariate interaction and sufficient between trial 

variation for the aggregate value of the covariate. Departures from this condition could 

mean that meta-regression results using AD are unreliable. Furthermore, failure to find 

an effect in an AD based analysis is not evidence of a lack of effect [89]. Berlin et al 

[103] have undertaken similar comparisons of meta-regression analyses based on IPD or 

AD with an empirical example of 5 trials. Their investigations revealed that the AD 

meta-regression analyses failed to detect the importance of a particular covariate, panel 

reactive antibodies (PRA), included as the percentage above or below a particular cut- 

off value. In contrast, the IPD based models revealed a clinically important and 

statistically significant difference between the effect of treatment among patients whose 

PRA value was above or below the chosen cut-off. These results show another means 
by which AD and IPD based meta-regression analyses could potentially differ. The 

authors recommend that IPD should be used whenever feasible [103]. 

A meta-regression using AD from trial reports was not possible as suitable data were 

not available therefore undertaking a meta-analysis and investigation of potential sources 

of heterogeneity would simply not have been feasible. In this example, the IPD have 

proved to be extremely valuable. 
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Table 5.8. Sensitivity analysis: Parameter estimates (SE) from Cox proportional 
hazards models with main effect of treatment, covariate and corresponding 
interaction term using IPD using subset of data for 1183 individuals 
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5.10. Discussion 
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In any meta-analysis it is important to evaluate heterogeneity. The availability of IPD 

allows patient level covariates to be evaluated as potential causes of heterogeneity 

(treatment effect modifiers) using a regression framework with either fixed or random 

effects. Current literature in the area of meta-analysis with IPD have not addressed the 

analysis of time-to-event IPD using random effects Cox regression models. In this 

chapter a number of hierarchical formulations of the Cox model potentially suitable for 

undertaking meta-analysis of individual patient failure time data have been described 

and developed. In particular, random effects Cox regression models with suitable SAS 

programs for fitting these models have been developed and explored using empirical 

and simulated data. 

A semi-parametric Cox regression model, which does not require making any parametric 

assumptions regarding the distribution for the survival times or baseline hazard 

function, has been assumed throughout. This attractive feature of the semi-parametric 
Cox model makes it a flexible approach that is commonly undertaken for the analysis of 
failure time data. However, if the assumption of a particular probability distribution for 

the data is valid, a more powerful analysis may be achieved by considering parametric 

models. Furthermore, parametric models may offer particular computational advantages 
for fitting models that include random effects and have made a noticeable contribution 

to the genetic epidemiology literature. See for example Scurrah et al [128] for a 
discussion of Generalized Linear Mixed Models, or Zahl and Harris [129] for an 

application of shared frailty models for the analysis of cancer incidence rates in twins. 
The use of different parametric models will be explored as a future research project. 

Trial effects can be allowed for either by the inclusion of fixed effects using indicator 

variables, by stratification, or through the inclusion of random effects. For the fixed trial 

effect model the likelihood is constructed using ordered event times from all trials, 

whereas the likelihood from the stratified model is a summation of likelihood terms 
from each individual trial. The latter model is therefore more appropriate for meta- 

analysis as the within trial structure is maintained in the likelihood construction. 
However, if many trials are included in the meta-analysis, unstable estimates may be 

produced using fixed trial effect or stratified models. The model with random trial 

effects assumes that the trials in the meta-analysis are a random sample of trials from a 
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larger population of trials. This may not be reasonable since an assumption that 

underpins meta-analysis undertaken within a systematic review is that all relevant trials 

are identified and included in the analysis. Although this has not been investigated in 

detail here, O'Quigley and Stare [104] have recently concluded using simulations that the 

random effects model (random trial effects) only provides modest efficiency gains for 

group sizes (i. e. number of individuals per trial in the meta-analysis context) of five or 

more compared to the stratified model. For moderate to large numbers of very small 

groups, of sizes two or three, they conclude that the efficiency gains of the random 

effects model is far from negligible and there is a strong case for using this model rather 

than a stratified model. In the epilepsy example, with at least 100 individuals in each of 

five trials, the current author would consider the stratified models (SFE/FE or 

SFE/RE) to be the most appropriate. In particular, the stratified Cox model with 

random treatment effects (SFE/RE) is the least computer intensive of the random 

treatment effect models making this an attractive approach. 

The EM algorithm can be used to estimate parameters in the Cox models that include 

random effects. However, the partial penalized likelihood approach has been the focus 

in this chapter as it has been noted that the EM algorithm is slow and variance estimates 

require further computation [97]. Alternative software packages (e. g. MLWIN and 

STATA) may provide the ability to fit the unstratified random effects models examined. 

However, earlier investigations using these software packages indicated that the 

computing time required was likely to be problematic for the analysis of the epilepsy 

data set. Attention has therefore focused on extending the estimation approach and SAS 

IML code originally described by Yamaguchi & Ohashi [62] to fit a random trial, 

random treatment effect model. Further modifications were also made to allow use of 

the Efron approximation which proved to be important in the example from epilepsy 

where tied event times occurred for the remission outcome. The resulting collection of 

programs for fitting the random effects models presented can potentially be extended 

further to incorporate additional random effects and non-zero random effect covariance 

structures. Unfortunately, the computing time required to fit the random effect models 

is likely to be restrictive in many situations and will depend on the number of trials, 

patients and events in the meta-analysis. For the two epilepsy examples, the analysis of 

time to first seizure outcome with 864 (71%) events took considerably longer than the 

analysis of time to 12 month remission with 767 (63%) events. 
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Choosing suitable values to represent the treatment covariate is a further important 

consideration required for the random treatment effect models to ensure that variability 

across trials in the hazard rate of both treatment groups is incorporated if appropriate. 

Although the estimation approach adopted here was unaffected by choice of treatment 

coding, the issue is likely to be a problem for other estimation procedures or other 

outcome types and further work is required to investigate the implications and extent of 

this problem. 

Although computationally intensive, the simulation study provided an insight into the 

behaviour of the models investigated. Further work could be undertaken to examine 

other parameter values, such as non-zero values of the underlying between trial 

variability parameter QZ , and alternative factors such as censoring pattern and 

proportionality of hazards that may influence the behaviour of these models. 

Formal statistical tests of the evidence for heterogeneity in treatment effect across trials 

were examined in models which include fixed trial and treatment effects only. Although 

formal statistical tests are available for random effects failure time models, the 

performance of such tests was not the primary focus here and they were therefore not 

examined. Further details are given by Walker and Babiker [105], Gray [106] and 

Therneau and Grambsch [96]. 

The example from epilepsy provided the original motivation to investigate and apply 

alternative models to undertake a meta-analysis and explore heterogeneity using 

individual patient failure time data. In some situations where trials agree in outcome 
definition and the reporting of suitable data, aggregate approaches are likely to be less 

resource intensive but potentially more restricted. A pragmatic comparison of results 

using IPD versus results using extracted AD was not possible for this example as 

sufficient data were unavailable directly from trial reports. Such a limitation commonly 

arises in meta-analysis and often prevents any reasonable investigation into sources of 
heterogeneity. As the AD used for comparison were constructed from the IPD, the AD 

results represent the "best possible" results obtainable using this data type. One 

advantage of having IPD is the ability to examine main effects of covariates. For the 

epilepsy example, the clinical interpretation obtained from the final Cox regression 
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models would not have been discovered without IPD. The current author would 

recommend that for investigating heterogeneity, the model selection strategy should 

involve examination of all pre-specified clinically important treatment by covariate 

interactions, rather than exploring interactions only if the corresponding main effect is 

found to be significant. However, although unlikely in many meta-analysis situations, 

independent validation of interaction effects is ideally required therefore inferences 

should be made cautiously. 

Further comparisons between IPD and AD and a systematic assessment of the 

empirical evidence are needed in order to provide guidelines of how, and in which 

situations, IPD is most beneficial for meta-analysis and meta-regression. A systematic 

review of empirical comparisons for the main treatment effect [57] and an international 

collaborative effort to perform empirical comparisons of meta-regressions Qesse Berlin, 

personal communication, ESTEEM project) are currently being planned. The 

comparison and discussion presented in this paper can be added to this growing body of 

empirical evidence evaluating the benefits of using IPD or AD. The current author 

agrees with the recommendations of Berlin et al [103] and Lambert et al [89] that IPD 

should be used whenever possible to reliably study patient characteristics and investigate 

heterogeneity. This recommendation is especially important when the number of trials 

in the meta-analysis is small and AD approaches are likely to become increasingly more 

uncertain. Furthermore, if time-to-event outcomes are of interest, IPD can be extremely 

valuable due to limitations reporting appropriate summary data. 



CHAPTER 6 

External evidence and indirect comparisons 

6.1. Introduction 

Meta-analyses using small numbers of trials that directly compare two treatments of 

interest are common and estimates of the relative efficacy parameter and heterogeneity 

parameter are often imprecise in such situations. Incorporating external evidence, 
defined here as relevant evidence relating to a particular comparison of treatments that 

can be obtained from outside the usual source of evidence (i. e. randomised controlled 

trials that provide a direct comparison of treatments), could potentially improve the 

precision in estimating the parameters of interest. In some cases there may be no 

evidence available from randomised controlled trials that directly compare the 

treatments of interest. For example, trials may have been undertaken to compare a 

number of active drugs with placebo but no trials comparing the active drugs with each 

other. The examination of external evidence may be the only viable option to gain some 
knowledge of how the active treatments of interest compare. 

Although there are many types of external evidence, this thesis will only consider 

external evidence from randomised controlled trials that indirectly compare the 

treatments of interest. As an example, suppose that the treatment effect for a 
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comparison of two drugs A versus B is of primary interest. An estimate of this 

treatment effect can be obtained indirectly by using external evidence from randomised 

trials that compare drug A versus C, and trials that compare drug B versus C. Such an 

indirect comparison can be valuable in situations where direct comparisons either do 

not exist (i. e. no trials directly compare A versus B), comprise a limited amount of data, 

or are unlikely to ever be examined in future trials. 

Several drugs or therapies are often available in clinical practice to treat a particular 

medical condition. Although a meta-analysis within a systematic review provides a 

summary of the available evidence, the results conventionally relate to a direct 

comparison of only two drugs, commonly referred to as a pair-wise or head-to-head 

comparison. To accommodate an overall summary of the evidence concerning multiple 
drugs, several meta-analyses of pair-wise comparisons may be examined alongside each 

other within the same systematic review. For example, Marson et al [107] conducted a 

systematic review to examine a series of comparisons of active drugs used as add-on 

therapy versus placebo. Six individual pair-wise comparisons were analysed (Gabapentin 

(GBP) versus placebo, Lamotrigine (LTG) versus placebo, Tigabatrin (TIG) versus 

placebo, Topiramate (TPM) versus placebo, Vigabatrin (VGB) versus placebo and 
Zonisimide (ZNS) versus placebo) with an estimate of treatment effect and 95% 

confidence interval presented alongside each other. Although 'formal' analyses 

comparing individual active drugs e. g. GBP versus LMT, were not undertaken, the 

overlapping CIs within each comparison led to the conclusion that there was 
insufficient evidence to support a difference between any of the active drugs. Informal 

indirect comparisons are often made by authors or researchers interpreting the results 
for themselves. However, as the indirect comparisons between active drugs are not 

themselves based on randomised evidence, there may be substantial diversity across 

trials and between patient populations that could contribute to misleading conclusions if 

inappropriate methods are used. There is a need to recognise such limitations and either 

present formal analyses of indirect evidence or indicate reasons against making such 

comparisons. 

The indirect comparison of treatments using external evidence can be formally 

examined and, if appropriate, incorporated into the meta-analysis using both frequentist 

and bayesian frameworks. Relevant methods based on both aggregate and individual 
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patient data will be reviewed and described in following sections with application of 

some frequentist methods to examples from epilepsy. The novel IPD methods for 

estimating indirect comparisons with time-to-event outcomes presented in this chapter 

are further compared with aggregate data based results where appropriate. Examples 

taken from the systematic reviews of epilepsy data described in Chapter 4 are used to 

illustrate relevant methods. In order to highlight different aspects of indirect 

comparisons and how they may be valuable, some examples used for illustration have 

been altered slightly and may not reflect true clinical results. 

The eight reviews of monotherapy trials in epilepsy each consider a direct pair-wise 

comparison of two AEDs of interest. The total of six AEDs examined across eighteen 

RCTs in these reviews provide a network of interrelated direct and indirect evidence. 

Furthermore, the availability of IPD for each of these trials presents a unique 

opportunity to fully explore this entire body of evidence which is referred to in this 

thesis as the totality of evidence. The models for exploring indirect comparisons with 

individual patient failure time data proposed in this chapter are further extended to 

allow the totality of evidence analysis to be undertaken. To the author's knowledge, 

models for analyses involving indirect evidence, IPD and time-to-event outcomes have 

not been proposed elsewhere. Furthermore, the `new' clinical results presented will be 

valuable to the epilepsy clinician in practice. 

6.2. Overview of methods for indirect comparisons 

A project commissioned by the HTA has been undertaken by Glenny, Altman et al 

(personal communication). The project aims, outlined in the report, were to survey the 

frequency of use of indirect comparisons in systematic reviews and evaluate the 

methods used in their analysis and interpretation, identify alternative statistical 

approaches for the analysis of indirect comparisons, assess the properties of different 

statistical methods used for performing indirect comparisons, carry out empirical work 

comparing direct and indirect estimates of the same effects within reviews. They 

identified 349 meta-analyses from electronic searching of the Database of Abstracts of 
Reviews of Effectiveness (DARE), a database containing abstracts of quality assessed 

systematic reviews. Thirty-six (10%) of these reviews included indirect comparisons, 

thirteen of which also included a direct comparison of the interventions of interest. The 
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method used for indirectly comparing interventions was classified by the report authors 

as ̀ naive' or `adjusted'. They define the naive approach as pooling data across treatment 

arms, thereby ignoring the fact that the studies are RCTs. The adjusted indirect 

comparison is a general term they use to describe a number of approaches that adjust 

the comparison of the interventions of primary interest by the results of their direct 

comparison with a common intervention (or control group). This approach is preferred 

to the naive approach as the advantages of randomisation within a trial are preserved. 

Of the reviews they identified that examine indirect comparisons, 25 (69%) used an 

adjusted approach and 11 (31%) used the naive approach to make such comparisons. 

Of the 13 reviews that examined both direct and indirect comparisons, the two 

approaches gave similar results in terms of the direction of effect (but not necessarily 

the magnitude) in 8 meta-analyses but different results were obtained in 3 meta-analyses, 

and uncertainty regarding agreement in the last 2 reviews. 

Within the HTA report, a separate systematic review of indirect comparison 

methodology identified ten publications [108], [109], [110], [111], [112], [113], [114], 

[115], [116], [117] describing some aspect of methodology for undertaking indirect 

comparisons with data from randomised controlled trials and a further 3 publications 

[118], [119], [120] addressing similar issues for uncontrolled studies. 

The general method proposed by Bucher et al [108] for the indirect comparison of 

binary outcome data was employed by Fisher et al [114] to estimate the effect of a new 

drug compared to placebo when placebo controlled trials were considered unethical. 

The same approach was applied by Packer et al [117] whilst Hasselblad and Kong [116] 

describe the application of the approach proposed by Bucher et al [108] to other effect 

measures (risk differences, relative risk and hazard ratios). Hirotsu and Yamada [113] 

discuss a method for estimating odds ratios from direct and indirect evidence, a method 

which Glenny et al. (personal communication) note is equivalent to the Bucher approach 

using inverse variance weighting. The Berkey et al [109] publication describes a 

generalised least squares model for the joint meta-analysis of more than one outcome 

such that not all trials included need to have reported each outcome. The method also 
facilitates inclusion of multiple treatments and does not require that all trials assess all 

treatments. Hasselblad [111] describes the use of a logistic regression model for binary 

outcomes. Gleser and O1kin [115] describe a fixed effect regression model approach for 
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the simultaneous analysis of trials comparing one or more treatments with a control. 

They describe how relative treatment effects (risk difference and odds ratio) and their 

confidence intervals can be calculated by fitting each treatment effect as the response in 

a weighted least squares analysis with appropriate allowance made for covariance if the 

control group within a trial is used more than once. The final two publications identified 

[112], [110] discussed the analysis of indirect evidence with or without direct 

comparison within a Bayesian framework. 

The HTA report concludes that only two basic valid approaches can be applied using 

standard software, the adjusted indirect comparison proposed by Bucher et al [108] and 

multiple (logistic) regression. They note that the regression approach has the ability to 

make adjustments for other variables that might help explain some of the heterogeneity 

within and between groups of trials making the same comparisons. They also note that 

for the adjusted indirect method, the random effects analysis is a safer option to allow 

for the potential for heterogeneity in at least one of the sets of trials used in the indirect 

comparison. 

The existing methodology for indirect comparisons has mostly focused on estimation 

using aggregate binary data. One publication [116] describes the Bucher et al [108] 

approach in relation to estimates of the log hazard ratio from Cox proportional 

regression models (aggregate data) but results from trials involving more than two 

treatments are not considered. A separate publication by the same author [111] 

describes a regression approach (logistic regression) for undertaking indirect 

comparisons with individual patient binary data. A small section of a publication by 

Higgins et al [60] extends a random treatment effects regression model with IPD for the 

analysis of continuous outcome data from trials with 3 treatment arms. However, to the 

author's knowledge, there are no publications that address methods for undertaking 
indirect comparisons with IPD when time-to-event outcomes are of interest. In the 

current Chapter, existing approaches for aggregate data are described and a Cox 

regression model is adopted to allow appropriate analysis with IPD. The model is used 

to estimate the treatment effect for indirect comparisons, combine direct and indirect 

evidence and accommodate trials with more than two treatment groups. Where possible, 

corresponding analyses using aggregate data are presented for comparison. 
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6.3. Indirect aggregate data comparisons with time-to-event data 

The approach described by Bucher et al [108] for indirect comparisons using aggregate 
binary data preserves randomisation within a trial by utilising the within-trial effect 

measure (log odds ratio in the 1997 publication) and its variance. If the comparison of 

treatment A versus B is of primary interest, an estimate of the indirect log odds ratio 

(logORA: emdirect) and its variance can be obtained using external evidence from two 

separate trials, one that directly compares treatment A versus C (log ORA C) and another 

that directly compares treatment B versus C (log ORB. c). This can be achieved using the 

following expressions, 

log ORA. B indirect = log ORA. C - log ORB. c (6.1) 

var(log ORA. B indirect )= var(log ORAL) + var(log ORB: C) (6.2) 

The indirect estimate is unbiased in large samples if there is no interaction between 

covariates defining subgroups of patients and the magnitude of the treatment effect 

[108]. The variance of the indirect estimate (A versus B) is equal to the sum of variances 

(6.2) since the two odds ratios (A versus C and B versus C) are estimated from separate 

studies and are thus statistically independent [108]. 

If multiple trials are available comparing A versus C and B versus C, standard meta- 

analyses can be undertaken for each comparison separately with logORA: c, logOR8: c, 

var(log ORA: c ), and var(log ORB c) in (6.1) and (6.2) replaced by corresponding pooled 

estimates obtained from each meta-analysis. This method implicitly assumes 
homogenous treatment effects across trials within each comparison. 

The approach described by Bucher et al [108] can be extended to time-to-event outcome 
data by utilising the log hazard ratio and its variance for each comparison such that 

log HRA B ind recr =1og HRA. C - log HRB: C (6.3) 
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var(log HRae 
indirect) = var(log HRA. c) + var(log HRB: C) (6.4) 

This method will be referred to as the aggregate data indirect approach (AD-indirect) in 

remaining sections. 

Hasselblad and Kong [116] write down expressions (6.3) and (6.4) assuming that the 

two log hazard ratios and their variances are estimated from a Cox proportional hazards 

model and this will also be assumed in remaining sections of this thesis. However, the 
log hazard ratio extracted from each trial report may well be estimated from alternative 

approaches such as Kaplan-Meier curves or a Log-rank analysis. In fact, the empirical 

results from Chapter 2 of this thesis revealed that the latter methods are more likely to 
be reported than Cox regression coefficients. 

Glenny et al (personal communication) note that four times as many similar sized trials 

are needed for the indirect approach to have the same power as directly randomised 

comparisons. Suppose for one trial, the estimated treatment effect 9 has variance Q2. 

For a meta-analysis of 2J trials of the same size and assuming a common true treatment 

effect, the variance for the pooled treatment effect (6poo1ed) using an inverse variance 

weighted average would be given by 

1_1_ a2 Väi(eýled) _ f2. J1 l/ Qj 2J(1 / Qz) 2J 

Now suppose that j trials compare treatment A to C and j different trials compare 
treatment B to C, with an assumption of equal variances. For each comparison, the 

variance for the pooled treatment effect using an inverse variance weighted average is 

given by a2 / J. The expected variance for the treatment effect comparing treatment A 

to B, estimated indirectly is given by the sum of the variances for the A versus C and B 

versus C comparisons, 

a2 a2 2a2 
JJJ 
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Therefore, it can be seen that one directly randomised trial is as precise as an indirect 

comparison based on four randomised trials of the same size. They note that this 

relation will be approximately true when 0 is estimated from j trials of varying sizes. The 

result also depends on the assumption of equal variances for the three pair-wise 

comparisons considered. 

If multiple trials contribute to each pair-wise comparison, the pooled meta-analysis 

results for each comparison may be obtained from either a fixed or random effects 

model. The indirect comparison results based on pooled estimates from random effects 

models incorporates the additional variation across trials within each comparison. This 

may lead to a larger estimate of indirect variance if the within comparison trial estimates 

vary more than expected due to chance. 

An alternative formulation of the approach described by Bucher et al [108] can be 

obtained within a meta-regression framework. Each relative treatment effect (log odds 

ratio for binary data or log hazard ratio for time-to-event data) is fitted as the dependent 

variable in a model with indicator variables representing each comparison. A weighted 

regression is used to account for sampling variability. A similar approach has been 

described previously by Gleser and O1kin [115] for the meta-analysis of categorical data 

from trials with multiple treatment groups and a common control arm. The general 

method could be used to analyse direct and indirect comparisons together as well as 

incorporating multiple related treatment effects from within the same study by 

appropriate allowance for covariances. Although they describe the model assuming 

common effects across studies, the model could theoretically be extended to assume 

random treatment effects. However, the standard random effects meta-regression 

framework for aggregate data described in Chapter 5 may not be entirely appropriate for 

this as the estimate of between trial variability from such an approach would relate to 

the variability across all trials from both sets of trials contributing to the indirect 

comparison. For this application the heterogeneity across trials would require estimation 
for each comparison separately as heterogeneity across all trials, regardless of treatment 

comparison, would be somewhat meaningless. A more complex multi-level model could 

accommodate such an analysis. 
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6.4. Indirect individual patient data comparisons with time-to-event 
data 

Hasselblad [111] describes how a logistic regression model may be used for the meta- 

analysis of trials involving multiple treatment arms for categorical or continuous 

aggregate data. A multilevel model to accommodate trials with 3 treatment arms has 

been described by Higgins et al [60] for the analysis of continuous outcome data. The 

model assumes random treatment effects and could be applied to accommodate the 

analysis of indirect and direct data together. A similar model to that described by 

Higgins et al [60] can in principle be tailored to accommodate other types of outcome 

measures assuming either random or fixed treatment effects. Extending these principles 

to model time-to-event outcomes with individual patient data is undertaken in sections 

6.4,6.6.2 and 6.7. To the current authors knowledge this has not been undertaken 

elsewhere previously. 

Consider three treatments A, B and C with no trials directly comparing A and B, but 

two sets of independent trials comparing A with C or B with C. For the indirect 

comparison of failure time data, the stratified Cox proportional hazards models 

described in Chapters 3 and 5 could be extended to include two treatment indicator 

variables x1, and x2; ß to represent treatments A, B and C. The treatment coding 

structure assumed below codes treatment A as x, y =1, x2, ß =0, treatment B as 

x1U = 0, x2y =1 and treatment C as x, = 0, x2y =0. 

Using notation described previously, the Cox proportional hazards model stratified by 

trial for a fixed treatment effect analysis may then be written 

.Z=A, �(t) exp(ß1xl +ß2z2; ) (6.5) 

where ß1 is the common log hazard ratio among trials for the direct comparison of 

treatment A to C and /32 for the direct comparison of treatment B to C. 

Model (6.5) assumes a common relative effect across trials within each comparison but 

due to the trial stratification, the baseline hazard function corresponding to the hazard 
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of event for individuals on treatment C, is allowed to vary across trials. Following the 

same underlying principle as Bucher et al [108], the log hazard ratio for the indirect 

comparison of treatment A to B is given by the difference in relative effects between the 

direct comparison of treatment A to C and the direct comparison of treatment B to C, 

log HRA: 
Bindirect = A- 

/'2 (6.6) 

The set of trials directly comparing A to C only contribute to the estimation of 

parameter /ßi in model (6.5) and trials directly comparing B to C only contribute to the 

estimation of, 62. In fact, due to the likelihood construction of the stratified model, if 

two separate Cox models, each with a single treatment indicator variable, were fitted 

using the two independent sets of trials, the corresponding estimates of log hazard ratios 

and standard errors would be expected to be identical to those obtained from model 

(6.5). As the two sets of trials are independent it follows that/1 and /32 are independent 

and the standard error for the indirect log hazard ratio comparing A to B is given by 

SE(log HRA. 
Bindirect) = SE(ß, )2 + SE(ß2) 2 (6.7) 

This indirect estimate of standard error will, by definition, be greater than either of the 

individual direct log hazard ratio standard errors reflecting the fact that uncertainty 

surrounding the indirect estimate correctly incorporates uncertainty from both sources 

of evidence. Further discussion and implications for non-independent parameters is 

given in sections 6.6.2 and 6.7.2. 

If the log hazard ratio for each comparison is allowed to vary across trials through a 

random effects analysis, the model may be written as 

',; if = 'Zo j (t) exP(ß1j xi y+ 
ß2; z2; ) (6.8) 

ßi, = ß1 + b1! 
/2l = ß2 + b21 
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where iß1 and /32 are the average log hazard ratio for a population of possible treatment 

effects of A versus C and B versus C respectively. The parameters bl J and b2, are 

deviations of the log hazard ratio in the jth trial from the relevant population average. 

We further assume that 

b11 
NN 

0' zl 0 
b2i 00 z2 

without allowance for covariance between bl, and b2j to reflect that independent 

sources of data are used for estimation of the two average log hazard ratios and the 

heterogeneity parameters. Therefore, for the case when only 2-arm trials are included, 

each trial would only contribute to the estimation of eitherAj or, 82i. It follows that the 

average log hazard ratio for the indirect comparison of treatment A to B is given by f 1- 

ß2 with SE equal to SE(ß1)Z +SE(ß2)Z . The heterogeneity parameter associated 

with the indirect log hazard ratio is given by zl + iZ which may be interpreted as a 

measure of variation in the population of indirect treatment effects. 

To distinguish approaches for estimating the log hazard ratio and variance indirectly 

using aggregate data or IPD, the above two approaches based on IPD are referred to as 

IPD-indirect approaches. 

Parameter estimation of model (6.8) is undertaken by extending the approach outlined 
in Chapter 5 for the estimation involving a single treatment indicator variable (model 

5.4, SFE/RE in Chapter 5). 

6.5. Assumption of no interaction between treatment and covariates 

The AD-indirect approach is valid if it is reasonable to assume that the relative 

treatment effects used for computing the indirect estimate are consistent across 
different trial settings. Consider two separate independent trials that are used to estimate 

an indirect comparison of treatment A versus B. If treatments A and C were compared 
in trial setting 1, whilst treatments B and C were compared in trial setting 2, one would 
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be required to assume that the two relative effects would be similar in both trial settings. 

The indirect estimate could thus be applied to both settings. This assumption is similar 

to the frequently made assumption of common treatment effect across trials in a fixed 

effect meta-analysis. If considerable variation were identified between the two trial 

settings, the assumption may be less realistic. Furthermore, if the relative treatment 

effects were expected to differ according to a patient characteristic (i. e. treatment- 

covariate interaction), the indirect estimate may be invalid. Baker and Kramer [121] 

illustrate the dangers of interpreting a simple indirect comparison if there is an 

underlying interaction between treatment and a binary variable. They consider the case 

in which trial settings differ according to the variable. Similar graphical methods are 

used below to illustrate dangers, describe what could happen if trial settings involved 

similar values of the characteristic under consideration, and discuss how limitations of 

the simple AD-indirect method may be overcome using IPD. 

Example 1. Underlying treatment-covariate interaction and trial settings vary 

according to the covariate 

Suppose that treatments A and C were compared in trial setting 1 (represented by Al 

and C1, Figure 6.1) which included patients with covariate value X, and treatment B was 

compared to C in trial setting 2 (represented by B2 and C2, Figure 6.1) which included 

patients with covariate value Y. Figure 6.1 demonstrates that the log odds of a particular 

event and the relative treatment effects are greater for patients with covariate value Y 

compared to X (a quantitative interaction). 

Since the relative treatment effect for A versus C can only be estimated for patients with 

covariate value X (trial setting 1) whilst the relative effect for B compared to C can only 

be estimated for patients with covariate value Y (trial setting 2), the underlying 

interaction cannot be identified in this example and an AD-indirect estimate of relative 

effect (A versus B) would be inaccurate and difficult to interpret as it cannot be applied 

to either setting. The corresponding IPD-indirect method would also suffer from the 

same problem, highlighting the need to examine comparability of characteristics and, if 

possible, assess whether the assumption of no interactions is reasonable. It may not be 

possible, as in this example, to formally assess the evidence for an interaction therefore 

it is important to discuss with clinicians and review literature regarding interactions in 
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previous related RCTs to consider whether there are any clinical reasons to expect 

relative effects to differ according to clinical factors. 

Figure 6.1. Example 1: Illustration of treatment-covariate interaction 

with indirect comparison where trial settings involve different covariate 

values 

109 

odds of 
event 

Trial B2 , "'ý/' setting 1 

C2 

-ý , Trial 

C1 setting 2 

XY 

Covariate 

Treatment 
-c 
-- B 

---- A 

Example 2. Underlying treatment-covariate interaction with similar range of 

covariate value in different trial settings 

Suppose treatment A and C were compared in trial setting 1 (represented by A1X, A1Y, 

C1X and C1Y, Figure 6.2) which included patients with covariate values X and Y, whilst 

treatment B was compared to C in trial setting 2 (represented by B2X, B2Y, C2X and 

C2Y, Figure 6.2) which also included patients with covariate values X and Y. 

The relative treatment effects for A versus C and B versus C can be estimated for 

patients with covariate value X and Y. However, since the relative effects differ 

according to this covariate value, a simple indirect estimate unadjusted for the 

interaction should be avoided. For a binary covariate, the AD-indirect comparison of A 

versus B could be estimated within each subgroup defined by the covariate value. This 

would require suitable aggregate data to be presented for each subgroup within both 

trials. The AD-indirect comparison would be difficult to estimate for a continuous 

covariate. The IPD-indirect comparison could be estimated for both a binary or 

continuous covariate by including a suitable interaction term in the regression model. 
Furthermore, a more thorough investigation of the evidence for interactions between 
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treatment and covariate values, with the possibility to adjust for multiple interactions, 

can be undertaken with IPD. In situations where interactions exist, the AD-indirect 

method for indirect comparison is likely to be very limited. 

Figure 6.2. Example 2: Illustration of treatment-covariate interaction with 
indirect comparison where trial settings involve similar covariate values 
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6.6. Combining indirect and direct evidence 

Treatment 
-c 
-- B 
---- A 

Evidence may be available for the direct comparison of treatments A versus B in 

addition to indirect evidence estimated from the comparisons of A versus C and B 

versus C. It may be sufficient to summarise and estimate the indirect comparison and 

contrast with the direct comparison to explore consistency. In some situations, it may 
be appropriate to combine both sources of evidence to obtain an overall estimate of 

effect. This may be particularly attractive if there is limited or inconclusive direct 

evidence or if further clinical trials providing a direct comparison are unlikely. However, 

careful consideration should be given to determine whether a combined analysis is 

appropriate within a particular setting. Issues to consider, such as comparability of 

patients and clinical heterogeneity, should be similar to those examined prior to any 

meta-analysis. 
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6.6.1. Aggregate Data 

The indirect treatment effect estimated using the AD-indirect method, denoted 

log HR, , may be combined with the direct treatment effect, denoted log HRD 
, 

by 

calculating an inverse variance weighted average given by 

log HRD 
+ 

log HR, 

log var(log HRD) var(log HR, ) 
g `°'"b`"ea = 

var(log HRD )-' + var(log HR, )'' 

with variance for the combined estimate given by 

var lo HR 
1 

(g rnmbined) - 
var(log HRo)"' + var(log HR, )-' 

This approach will be referred to as AD-combined to distinguish from AD-indirect 

results. Either a fixed or random effects model may be assumed for combining the 

direct and indirect estimate, the latter making allowance for heterogeneity between 

sources of direct and indirect evidence. However, as there would only be two data 

points in a random effects analysis, the estimation of variability between sources of 

evidence is likely to be imprecise. 

6.6.2. Individual patient data 

Data from both sources of direct and indirect evidence may also be accommodated in 

an individual patient data regression model, referred to here as the IPD-combined 

approach. For the IPD-indirect approach, the regression coefficients and variance 

components of models (6.5) and (6.8) are independent when the two sets of trials 

contributing to the indirect comparison are 2-arm trials independently comparing either 
A with C or B with C. The additional incorporation of individual patient data from one 

or more trials that provide a direct comparison of treatments A and B introduces further 

complexity. Recall that /1 and 832 are the log hazard ratios comparing treatments A to C 

and treatments B to C respectively. The set of trials that directly compare A with B 

contribute to estimating both of these parameters which are therefore no longer 

independent. For the fixed effect model (6.5) the IPD-combined estimate of log hazard 
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ratio for treatment A compared to treatment B is given by f3. -132. To account for non- 

independence of regression coefficients the covariance between these parameters 

cov(ß1, ß2) is estimated and the standard error of the IPD-combined log hazard ratio is 

given by SE(ß1)2 + SE(/32 )2 -2* cov(ß1, ß2). For the random effects model (6.8), 

inclusion of direct evidence further creates dependence between the heterogeneity 

parameters Ti andr which can be modelled by assuming the following structure 

1b1 
-N 

(0' zi n12 
b2 R°)k2 zz 

where r, describes heterogeneity for the IPD-combined log hazard ratio comparing 

treatment A to C, r describes heterogeneity for the IPD-combined effect comparing 

treatment B to C, and z2 + z2 - 2112 for the IPD-combined effect comparing A to B. 

Parameters of the IPD-combined model assuming fixed relative treatment effects are 

easily estimated using standard statistical software. For the IPD-combined model 

assuming random treatment effects, the parameter estimation procedure adopted for the 

IPD-indirect model (based on the approach outlined in Chapter 5) could theoretically be 

extended to accommodate the non-zero covariance structure for the correlated random 

effects. Further research is required to enable this procedure to be implemented but the 

computational aspects are beyond the scope of this thesis. An alternative IPD-combined 

approach that is more straightforward, particularly if assuming random treatment 

effects, involves analysing both sources of evidence (direct and indirect) using two 

separate stratified Cox regression models with the combined log hazard ratio and its 

variance estimated using an inverse variance weighted average. Similarly, results from 

trials where only AD are available may be combined with results of IPD based analyses 

using an inverse variance weighted average provided the AD and IPD sources of 

evidence are independent. Alternatively, a single multi-level model or hierarchical 

Bayesian framework may allow all data to be analysed simultaneously with the latter 

approach incorporating uncertainty surrounding parameters of the model which would 
be particularly beneficial for examples involving small numbers of trials. 
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As described in Chapter 3, the stratified Cox regression model for standard meta- 

analysis can produce different results to the inverse variance weighted average of within- 

trial estimates obtained from separate Cox models. There is therefore a possibility that 

the IPD-combined estimates based on a single stratified Cox model (including all direct 

and indirect IPD together) may not always be consistent with the inverse variance 

weighted average of direct and indirect evidence. 

6.7. Incorporating trials with more than two treatments 

Trials with multiple treatment groups provide an additional level of information in the 

analysis of indirect comparisons as they give an insight into the association between 

alternative pair-wise treatment effects from within the same population. As these trials 

provide both direct and indirect evidence from within the same population they increase 

confidence in the underlying assumption that different clinical questions relating to each 

pair-wise comparison are clinically relevant within the same population. 

A trial with H treatment groups can provide up to (2) Hl pair-wise comparisons which are 

not independent if one treatment group is common to each comparison. For example, 
in a 3-arm trial comparing treatments A, B and C, the relative effects of A versus C and 
B versus C are not independent as patients included in group C are used in both 

calculations. 

6.7.1. Aggregate Data 

The AD-indirect method implicitly assumes that each trial contributes information from 

two treatment groups only as the dependence between relative treatment effects from 

within the same study would not be accommodated. The AD-indirect method could in 

theory be extended to incorporate multiple treatment arm trials, for example a 3-arm 

trial, by including the covariance between relative effects derived from within the same 
trial for estimating the variance of the indirect comparison. The indirect log hazard ratio 

would be estimated using expression (6.3) and the variance given by 
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var(log HRA: B indirect) = var(log HRAC) + var(log HRB: c ) 

-2* Cov(log HRA: c , log HRB: c ) 

However, it seems highly unlikely that the results of a 3-arm trial would be presented as 

treatment effect parameters for only two pair-wise comparisons, their variances and the 

covariance between them. Extending the AD-indirect method to incorporate multiple 

treatment trials is most likely of limited value and will not be considered further. 

6.7.2. Individual patient data 

If IPD are available from a multiple treatment arm trial, inclusion of data for estimating 

the indirect comparison would, by definition, also include data for the direct 

comparison and these cannot be disentangled. The multiple treatment arm trial can be 

incorporated into the IPD-combined model described in section 6.6.2 as appropriate 

recognition is made for the dependence structure by estimating the covariance between 

regression parameters. 

6.8. Illustration of methods 

6.8.1. Indirect evidence from trials with two treatments 

To illustrate methods described in preceding sections the comparison between VPS and 
PHT is chosen as the primary comparison for the outcome time to 12 month remission. 
Trials comparing VPS with CBZ and trials comparing PHT with CBZ are defined as the 

external indirect evidence for this primary comparison. Two trials (De Silva 1996 [45] 

and Heller 1995 [48]) compare CBZ, VPS and PHT within the same population but for 

simplicity and to illustrate results when only 2-arm trials are involved, the VPS arm of 

these two trials are excluded, thus data from both trials only contribute to the 

comparison between CBZ and PHT. The indirect evidence therefore comprises 3 trials, 
551 patients, 289 events for the PHT versus CBZ comparison De Silva 1996 [45], Heller 

1995 [48], Mattson 1985 [86] and 3 trials, 1000 patients, 598 events Mattson 1992 [38], 

Richens 1994 [47], Verity 1995 [46] for the VPS versus CBZ comparison. 
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Meta-analysis results, using a Cox model stratified by trial, for both pair-wise 

comparisons (Table 6.1) suggests that time to achieve a period of 12 month remission is 

similar for PHT when compared with CBZ (HR 95%CI: 0.99(0.79,1.25)) with no 

evidence for heterogeneity across the 3 trials included in that comparison. For the 

comparison between VPS and CBZ, time to achieve 12 month remission is significantly 

shorter for CBZ (HR 95%CI: 0.83(0.70,0.97)). However, evidence for heterogeneity 

across the 3 trials suggests that the fixed effect model may be unreasonable and after 

allowing for heterogeneity, the result is no longer statistically significant (HR 95%CI: 

0.84(0.60,1.16)). 

Table 6.1. Pair-wise comparisons from separate stratified Cox models with fixed 

or random treatment effects 

Fixed effect model Random effects model 

logHR HR logHR HR tiz 
HR>1 (SE) (95%CI) (SE) (95%CI) (SE) 

Comparison favours 

PHT: CBZ PHT -0.0076 0.99 -0.0076 0.99 0 

3 trials, 289 events, 551 (0.1193) (0.79,1.25) (0.11931) (0.79,1.25) 

patients 

VPS: CBZ VPS -0.1905 0.83 -0.17827 0.84 0.0625 

3 trials, 598 events, (0.0824) (0.70,0.97) (0.16617) (0.60,1.16) (0.0828) 

1000 patients 

The aim for this illustration is to estimate the hazard ratio and 95% CI for the indirect 

comparison between VPS and PHT using the external evidence from the 3 trials 

comparing PHT to CBZ and 3 separate trials comparing VPS to CBZ using approaches 
described in sections 6.3 and 6.4. 

Aggregate data 

If sufficient aggregate data were available in original trial reports to allow estimation of 
log hazard ratios and their standard errors, the AD-indirect approach (expression 6.1 

and 6.2 or the random effects alternative) could be used to estimate the log hazard ratio 

and standard error for the indirect comparison of VPS: PHT. In this example from 
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epilepsy, sufficient aggregate data were not available therefore the estimates generated 

from IPD (Table 6.1) are used to illustrate the AD-indirect calculations. Clearly, without 

IPD, further calculation and exploration of AD-indirect methods could not be 

undertaken for this example. Recall that the indirect evidence may be estimated by 

log HRMTH. 
ind reit = log HRVPs: 

csz - log IIRPHT: 
CBZ 

var(log HRvps: Pf! d,,,, ) = var(log HR, s: coz) + var(log HR puT: cez ) 

Under the assumption of a fixed effect of treatment across trials within each pair-wise 

comparison, 

AD-indirect fixed 
log HRvps: PH'diºeýr = -0.1905 - (-0.0076) = -0.1829 
var(log HRvps: 

P, 7; �d� �) = 0.08242 + 0.11932 = 0.0210 

whilst assuming random treatment effects across trials within each pair-wise 

comparison, 

AD-indirect random 

log HRvps: 
p, 'mdrect = -0.17827 - (-0.0076) = -0.17067 

var(log HRvps: 
pHT�drei, ) = 0.166172 + 0.1193' = 0.0418 

Individual patient data 

Both fixed effect (model 6.5) and random effects (model 6.8) Cox models stratified by 

trial are adopted to estimate the indirect comparison of VPS versus PHT with individual 

patient data (IPD-indirect with fixed or random effects). In model (6.5) and (6.8), the 

treatment coding structure adopted is such that x1 =1 for treatment group VPS, 

X2Y =1 for treatment group PHT, with CBZ taking value zero for both variables. 
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Parameter estimates and standard errors from the stratified Cox model based on the 

indirect evidence are shown below with an illustration of the calculations involved to 

estimate the treatment effect and standard error for the indirect comparison. 

Under the assumption of a fixed effect of treatment across trials within each pair-wise 

comparison (model 6.5), 

logHR, s: caz = ßA =-0.1910, SE(fl, )=0.0824 

log HRp,, 
T. cßz =, 82 = -0.0076, SE(ß2) = 0.1193 

IPD-indirect fixed 

log HRVPS: 
PHTindirect = Pl - ß2 

= -0.1910 - (-0.0076) = -0.1834 
var(log HRvPS: 

PHTind rect) = var(/l) + var(/2 ) 

= 0.08242 +0.1193' = 0.0210 

Under the assumption of random treatment effects across trials within each pair-wise 

comparison (model 6.8), the following results are obtained 

log HRypscez = ßl = -0.17827, SE(ßl)=0.16616, 

i; = 0.0625, SE(i; ) = 0.0828 

log HRpsT... 
cBZ = 

QZ 
= -0.0076, SE(ß2) = 0.1193, 

r2 =O 

IPD-indirect random 

log HRvrs: PHrind re« =A- lßi 
= -0.17827 - (-0.0076) = -0.17067 

var(log HRVPS: pJf d reit) = var(A) + var(/ 2) 
=0.16616 2 +0.11932 =0.0418 

Tz z ^z VPS: PHTind rect = Tl +TZ 

=0+0.0625 = 0.0625 
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Direct evidence comparing VPS and PHT 

In this example so far, interest has focused on estimating the indirect comparison of 

VPS to PHT using external indirect evidence. For the outcome time to 12 month 

remission, 124 events and 287 patients from two additional independent trials Turnbull 

1985 [122] and Craig 1994 [123]) provide direct evidence for the pair-wise comparison 

between VPS and PHT. Results from fitting a Cox regression model stratified by trial to 

this direct evidence are displayed in Table 6.2. 

Table 6.2. Direct pair-wise comparison between VPS and PHT from a Cox 

model stratified by trial with fixed or random treatment effects 

Fixed effect model Random effects model 

HR>1 logHR HR logHR HR T2 
Comparison favours (SE) (95%CI) (SE) (95%CI) (SE) 

VPS: PHT VPS -0.0868 0.92 -0.08665 0.92 0 

2 trials, 124 events, 287 (0.1804) (0.64,1.31) (0.18041) (0.64,1.31) 

patients 

The overall hazard ratio suggests a slight non-significant trend toward favouring PHT 

(HR 95%CI: 0.92(0.64,1.31)) but this result is inconclusive as clinically important results 

cannot be excluded from the wide confidence interval. There is no evidence of 

heterogeneity between the two trials reflected by an identical random effects result and 

an estimate of zero for the between trial variability parameter tie. 

Summary and comparison of indirect and direct results 

Estimates of the hazard ratio and 95% confidence interval for the indirect comparison 
between VPS and PHT are summarised in Table 6.3. For comparison, the indirect 

estimates for the other two comparisons are also displayed. Hence, the two trials directly 

comparing VPS: PHT and three trials directly comparing VPS: CBZ are used to estimate 

the indirect comparison of PHT: CBZ, whilst two trials comparing VPS: PHT and 3 trials 

comparing PHT: CBZ provide the indirect evidence for the comparison between 

VPS: CBZ. Detailed calculations for these two comparisons are summarised in Appendix 

D (section D. 1. and D. 2). 
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The hazard ratios estimated from direct evidence for each pair-wise comparison (Table 

6.1 and Table 6.2) agree well with the corresponding indirect comparison (Table 6.3). 

Good agreement is seen across all three comparisons with overlapping confidence 
intervals (direct versus indirect) and qualitatively similar results. 

For each comparison and assumption of either fixed or random treatment effects, the 

AD-indirect results are exactly equal to the IPD-indirect results. This is because the two 

sets of trials included in the IPD-indirect stratified Cox model are independent, hence 

regression coefficient estimates and standard errors are equivalent to those obtained 

from fitting two separate stratified models to each set of trials. As the latter estimates 

(Table 6.1 and Table 6.2) are used in the AD-indirect calculations, the results are not 

surprisingly equivalent. In practice, the AD-indirect and IPD-indirect results are unlikely 

to be equivalent due to differences in terms of included patients and methods of analysis 

that inevitably occur when comparing AD and IPD results [49]. 

The indirect evidence comparing VPS: PHT (Table 6.3) includes over seven times as 

many events and five times as many patients compared to the corresponding direct 

evidence (Table 6.2). The 95% CI for the indirect HR is thus narrower than the direct 

result. For the PHT: CBZ the indirect evidence consists of just over twice as many 

events and patients compared to the direct evidence. For the VPS: CBZ comparison, 

more patients and events are included in the direct evidence analysis. Since four times as 

many similar sized trials are needed for the indirect approach to have the same power as 

directly randomised comparisons (Glenny et al., personal communication), the 95% CIs 

for the direct hazard ratio are each narrower than the indirect evidence for these two 

compansons. 
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Table 6.3. Estimates for each indirect comparison using AD or IPD with fixed or 
random effects 
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6.8.2. Combining direct and indirect evidence 

If both direct and indirect estimates of hazard ratio are available for each comparison, 

these may be combined to obtain an overall summary of both sources of evidence. 

Aggregate data 

For each comparison, the indirect log hazard ratio and its variance estimated using an 

AD-indirect approach (Table 6.3) can be combined with the relevant corresponding 

direct estimate (Table 6.1 and Table 6.2) using an inverse variance weighted average of 

both sources of evidence. To illustrate, consider the comparison between VPS and PHT 

assuming fixed effects within comparison and between sources of evidence. The 

combined estimate, denoted log HRVPS. Pfncomb, fed may be calculated as 

log HRVPS: 
PHTdirect + 

log HRVPS. 
-PHTindirect 

_ 
var (log HRý, 

PS: PHTdirect) var (log HRgS: 
PHnndirect log HRVPS: 

PHTcombined = 

var(log HRVPS: PHTd, rect 
)-' + var(log HRvPS: 

PHTindjrect ) 

-0.0868 -0.1829 
0.0325 0.0210 

= -0.1452 1/0.0325 + 1/0.0210 

Väi(log HRVPS: 
PNfcombrned) -1 

var(log HRvrs: PHTd, recr)-' + var(log HRVPS. y ,, d�ecr)-' 

=I=0.0128 1/0.0325 +1/0 0210 

In addition to assuming either fixed or random effects within each set of trials that 

contribute to the indirect estimate, it is also possible to adopt either a fixed or random 

effects model for pooling both sources of evidence. The latter approach incorporates 

additional variability between both sources of evidence. 
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Individual patient data 

When IPD are available, a combined analysis of direct and indirect evidence can be 

achieved by including all data in one stratified Cox regression model with appropriate 

recognition of covariance as described previously. Alternatively, the indirect estimate 

(IPD-indirect assuming either fixed or random treatment effects) and direct estimate 

could be combined using the inverse weighted average approach. Again, a fixed or 

random effects model may be assumed for pooling both sources of evidence. 

Results are given in Table 6.4 using the inverse variance weighted average method for 

combining aggregate data estimates or IPD estimates assuming either fixed or random 

effects within each pair wise comparison. The result from fitting a single stratified Cox 

model with fixed treatment effects for the analysis of direct and indirect evidence is also 

included for comparison. 

The combination of direct and indirect results (Table 6.4) incorporates additional 
information leading to an improvement in precision compared with the direct evidence 

considered in isolation (Table 6.1 and Table 6.2). The greatest improvement in precision 

occurs for the VPS: PHT comparison with minimal improvement for both other 

comparisons. This is because the indirect evidence for the VPS: PHT comparison is 

more precise than the direct evidence and therefore contributes more to the combined 

analysis. 
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Table 6.4. Combining direct and indirect evidence from 2-arm trials 
Inverse variance weighted method FE stratified 

AD-indirect and direct IPD-indirect and direct Cox model 
including 

Combining Combining Combining Combining 
indirect and 

FE RE FE RE 
Comparison* direct 

estimates estimate? estimates estimates 
evidence 

VPS: PHT 

-0.1456 -0.1234 -0.1456 -0.1234 -0.1456 logHR(SE) 
(0.113) (0.135) (0.113) (0.135) (0.113) 

0.86 0.88 0.86 0.88 0.86 
HR(95%CI) 

(0.69,1.08) (0.68,1.15) (0.69,1.08) (0.68,1.15) (0.69,1.08) 

PHT: CBZ 

-0.0331 -0.0237 -0.0331 -0.0237 -0.0332 logHR(SE) 
(0.102) (0.107) (0.102) (0.107) (0.102) 

0.97 0.98 0.97 0.98 0.97 
HR(95%CI) 

(0.79,1.18) (0.79,1.21) (0.79,1.18) (0.79,1.21) (0.79,1.18) 

VPS: CBZ 

-0.1783 -0.1471 -0.1783 -0.1471 -0.1787 logHR(SE) 
(0.077) (0.132) (0.077) (0.132) (0.077) 

0.84 0.86 0.84 0.86 0.84 
HR(95%CI) 

(0.72,0.97) (0.67,1.12) (0.72,0.97) (0.67,1.12) (0.72,0.97) 

* hach based on 6 trials, iUll events, 1535 patients. HK>1 tavours first drug in comparison 

FE: Fixed treatment effect across trials, RE: Random treatment effects across trials 

4 Random treatment effects assumed across trials that provide direct evidence and each set of 

trials contributing to the indirect comparison 

As noted previously, there is good agreement between direct (Table 6.1 and Table 6.2) 

and indirect results (Table 6.3) across all three comparisons in this example. Adopting 

either a fixed or random effects model for pooling direct and indirect results using an 
inverse variance weighted average gave identical estimates of hazard ratio and 95% 

confidence interval. Although there are only two data points to consider, estimates of I2 

(section 1.3.1) statistic equal to zero for all comparisons suggest that any variability 
between sources of evidence can be explained by chance. These results add further 

support to the argument of compatibility and suggest that combination of sources of 



CHAPTER 6 External evidence and indirect comparisons 187 

evidence is not unreasonable for this example although clinical factors should also be 

considered. 

Although the combined estimates based on AD and IPD methods are identical in this 

example, estimates generated from IPD have been used in the AD calculations therefore 

such good agreement is unlikely to reflect reality. Also, in this example, the stratified 

Cox model with direct and indirect evidence gives identical results to the IV weighted 

average. As noted in Chapter 3, these two methods can differ under some circumstances 

although not in the above example. 

6.8.3. Including trials with three treatments 

The example used in section 6.8.1 and 6.8.2 was somewhat artificial as two trials, De 

Silva 1996 [45] and Heller 1995 [48], randomised patients to one of three drugs CBZ, 

VPS and PHT but data for the VPS arm was excluded from both trials to ease 

interpretation and illustration of methods. Multiple drugs are sometimes compared 

within the same clinical trial and such information should be fully utilised when 

considering all the evidence. In the present section, data from all drug groups (CBZ, 

VPS or PHT) in all eight trials (1095 events, 1948 patients) are included in a single 

stratified Cox regression model with two treatment indicator variables x,,, x21 

representing three treatments as described in section 6.8.1 (assuming fixed treatment 

effects). As data from within the same trial contribute to the estimation of both 

regression parameters, the covariance between these parameters should be estimated 

and used for calculating the standard error for the VPS: PHT comparison. Due to the 

dependence between estimates from a 3-arm trial, a combined analysis based on 

aggregate data is not considered for reasons described previously. 

Due to the inclusion of additional data, the results of fitting a stratified Cox regression 

model including all 2-arm and 3-arm trials comparing CBZ, VPS and PHT (Table 6.5) 

indicate further improvement in precision compared with previous combined results 

(Table 6.4). 
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Table 6.5. Results from a single fixed effect stratified Cox regression model 
including all data from 3-arm trials and 2-arm trials 

Comparison HR>1 Regression logHR (SE) HR (95%CI) 

favours parameter 

VPS: PHT VPS A-, 82 -0.08377' 0.92 (0.76,1.12) 

(0.0990) 

PHT: CBZ PHT ß2 -0.0544 0.95 (0.78,1.15) 

(0.09873) 

VPS: CBZ VPS A -0.1382 0.87 (0.76,1.00) 

(0.07011) 

1 log hazard ratio is calculated from ditterence between log hazard ratios of Y1-i1: LIJL and 

VPS: CBZ comparisons A-132. The standard error is given by 

4(0.098732+0.070112-2*0.00243) where cov(A, ß2) =0.00243. 

6.8.4. Summary of illustration 

In this illustration, the AD-indirect results are equal to the IPD-indirect results since the 

AD-indirect methods use aggregate data generated from IPD. An empirical example 

using real aggregate data extracted from trial reports should be examined to gain further 

insight into a comparison of results from both approaches. 

There is good agreement between indirect and direct estimates in this example adding 

support to the clinical justifications for including results in a combined analysis. 

Four times as many similar sized trials are needed for the indirect approach to have the 

same power as a directly randomised comparison and precision of the indirect result will 

therefore vary by example. For the three comparisons examined here, precision was 

greater for the indirect log hazard ratio compared to the direct for the VPS: PHT 

comparison leading to the greatest improvement in precision for the combined estimate. 

Realistically, inclusion of a 3-arm trial can only be undertaken with IPD but this 

improved precision further for all three comparisons. 
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6.9. Totality of evidence in epilepsy trials 

As described in Chapter 4, IPD are available for 4496 patients randomised within 18 

RCTs that examine the effect of 6 different AEDs summarised in Table 6.6. These trials 

provide direct evidence for eight comparisons with respect to the outcomes time to first 

seizure and time to withdrawal (CBZ-VPS, CBZ-PHT, CBZ-PHB, VPS-PHT, VPS- 

PHB, PHT-PHB, CBZ-LTG, PHT-OXC) whilst hazard ratios and confidence intervals 

can be estimated using direct evidence for seven comparisons with respect to the 

outcome time to 12 month remission (no data for the direct comparison CBZ-LTG). 

The pooled results, using stratified Cox proportional hazards models, for each 

comparison and each outcome were estimated in Chapter 4 (Table 4.5). This is the 

traditional approach to meta-analysis, summarising the available evidence for each pair- 

wise comparison in turn. 

Further evidence is integral to this data set and should be utilised if possible. The 

relationship between the six AEDs in terms of number of trials and patients (maximum 

possible overall) contributing to each direct pair-wise comparison is summarised in 

Figure 6.3. 

Figure 6.3. Relationship between AEDs from each direct comparison (maximum 
number of trials and patients available for analysis for each comparison) 

2 trials, 480 

patients PHT OXC 

5 trials, 669 4 trials, 599 
patients 3 trials, 552 patients 

patie is 

VPS PHB 
2 trials, 17 8 

patients 

4 trials, 685 
5 trials, 1265 patients 

patients 
CBZ LTG 

5 trials, 1213 
patients 
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Table 6.6 Number of patients randomised to each drug, pair-wise 
comparisons examined and IPD availability for each outcome across 
each trial 
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The trials under consideration provide the capacity to calculate indirect pair-wise 

comparisons (refer to Figure 6.3). Different levels of evidence are therefore available for 

the fifteen possible pair-wise comparisons as summarised below. 

Evidence available Pair-wise comparison 
CBZ-VPS 

Direct and indirect evidence CBZ-PHT 
CBZ-PHB 
VPS-PHT 
VPS-PHB 
PHT-PHB 

Direct evidence alone CBZ-LTG 
PHT-OXC 
CBZ-OXC 

Indirect evidence alone PHB-OXC 
VPS-OXC 
LTG-OXC 
PHB-LTG 
PHT-LTG 
VPS-LTG 

The indirect evidence may be obtained from multiple sources rather than from only two 

sets of pair-wise comparisons with a common treatment (refer to Figure 6.3) as 

considered previously. For example, the indirect evidence for CBZ-VPS may be 

obtained from the following comparisons: CBZ-PHT and VPS-PHT; CBZ-PHB and 
VPS-PHB, each of which may in turn be estimated from more than one source of 

evidence. This complex structure of direct and indirect evidence is referred to from here 

onwards as the totality of evidence. 

6.9.1. Motivation for exploring totality of evidence 

The joint analysis of all six drugs from 18 trials to summarise the current total evidence 
for monotherapy in epilepsy provides the primary motivation for considering the totality 

of evidence analysis. This analysis requires the assumption that patients are reasonably 

similar across trials in that individuals entered into each trial would be expected to be 

eligible for entry into remaining trial settings. If patients were hypothetically switched 
from one trial to another, the relative treatment effects in each trial should be assumed 

to remain approximately equal. Patients enrolled into the monotherapy trials are 

considered to be similar in terms of their epilepsy (Table 4.2, Chapter 4). Most have a 
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newly diagnosed epilepsy and treatment with either of the AEDs taken as monotherapy 

would be considered appropriate for such patients. Some trials did in fact include more 

than two AEDs (Table 6.6) adding further support to the assumption that these 

comparisons are reasonable in this population of patients. The availability of IPD 

provides additional justification for exploring the totality of evidence as uniform 

outcome and event definitions are used across all trials. Further justification of the 

appropriateness of such an analysis comes from the fact that the protocols used in each 

original systematic review of pair-wise drug comparisons were identical in terms of 

clinical questions addressed, outcomes considered, assessment of trial eligibility and 

review methodology. 

Secondly, the unavailability of IPD, or indeed any data, directly comparing some AEDs 

would lead us to consider the next best level of available evidence. As an example, 

although the comparison between VPS and LTG would be clinically informative, 

individual patient data from RCTs that directly compare these AEDs are not currently 

available. The totality of evidence summary could provide the best evidence for these 

comparisons, particularly since multiple sources may contribute to the indirect 

companson. 

The third motivation for exploring indirect comparisons in the epilepsy monotherapy 

trials is to strengthen conclusions from direct comparisons. This is particularly 

important for comparisons where the direct evidence available is scarce e. g. PHB-VPS 

or where there is limited potential for undertaking further studies to provide additional 

direct evidence. CBZ and VPS are considered first line treatments for epilepsy in 

Europe and the USA, with VPS the treatment of choice for generalized seizures and 

CBZ the treatment of choice for partial seizures [69], [124]. Although there is 

insufficient evidence from RCTs to support these clinical beliefs, this apparent 

consensus in treatment policy greatly restricts the prospect of conducting further RCTs 

directly comparing these AEDs. It is important therefore to examine other sources of 

evidence. 

To enable the above issues to be addressed, the totality of evidence from all patients and 

trials are analysed in the following sections. Due to the complexity and interdependence 

of pair-wise comparisons within the epilepsy monotherapy trials, these analyses are only 
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undertaken using individual patient data with an assumption of fixed treatment effects. 

Only the evidence from randomised controlled trials are included as this would 

represent a summary of the best available evidence. Indirect comparisons are based on 

relationships between relative treatment effects. Although indirect comparisons are not 

themselves based on randomised evidence, if the relative treatment effects are estimated 

from randomised controlled trials, they would provide better evidence for the indirect 

comparison than would be estimated from observational studies. For this reason, 

observational studies have not been considered although could easily be included in a 

similar way to RCTs. 

6.9.2. Exploring treatment main effects using totality of evidence 

The Cox proportional hazards model stratified by trial with fixed treatment effect is 

adopted for the analysis of totality of evidence including all patients from all treatment 

groups in all trials. The model is a simple extension of the Cox model described for 

combining direct and indirect evidence or trials with more than 2 arms. The effects of 

six AEDs are of interest and may be represented in the Cox proportional hazards model 

by five dummy variables. Choosing OXC (arbitrarily) as the baseline drug, the following 

totality of evidence model assuming fixed treatment effects, is fitted 

,u=t (t)exp(ßlx�r; +ß2xzU +/33x3 +ßaxar; +ß5xs, ) (6.9) 

with the following dummy variable coding structure 

Dummy variable 
Treatment xly xZY x3l x4> xsºi 

CBZ 1 0 0 0 0 

PHB 0 1 0 0 0 

PHT 0 0 1 0 0 

VPS 0 0 0 1 0 

LTG 0 0 0 0 1 

oxc 0 0 0 0 0 
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Estimates of the hazard ratio and its standard error for each pair-wise comparison based 

on the totality of evidence may be obtained as described in section 6.6.2 and 6.7.2. For 

example, the hazard ratio and 95% confidence interval for the comparison CBZ to 

OXC based on the totality of evidence is given by exp(ß1 ±1.96* SE(ßl )) . For the 

comparison between CBZ and VPS, the hazard ratio is given by 

HRcaz: v, S = exp[(ßi - Qa )l 

with standard error 

SE(Ql -Q4)= SE(ß1)2 + SE(J 4)2 -2*cov(fil, ßa) 

The parameter estimates and standard errors for model (6.9) with respect to each 

outcome are recorded in Appendix E (Table E. 1.1, Table E. 1.2, Table E. 1.3). As a 

worked example, consider the comparison between CBZ and VPS for the outcome time 

to first seizure (Table E. 1.1). 

A 

A=0.088 Q4=0.157 

var(, 61) = 0.024788 var(%34) = 0.02479 cov(ß1, %34) = 0.022716 

HRcBz. vpS = exp[(ß, - X34)] = exp[-0.0690] = 0.93 

SE(HRcaz: vr) = SE(Q1 -ß4) = 
VSE(Q1)2 

+SE(Q4)2 -2*cov(ft>>/ 4) 

= 0.02478 8+0.02479 -2*0.022716 
= 0.064389 

HRcBz: vps (95%C1): exp[(-0.0690) ±1.96* 0.0643 89] = 0.93(0.82,1.06) 

Estimates of the hazard ratio and 95% confidence interval based on totality of evidence 

are summarised in Table 6.7, Table 6.8, and Table 6.9 for all comparisons and each 

outcome. In Chapter 4, individual stratified Cox proportional hazards models with a 

single treatment indicator variable (fixed effect) were fitted to each direct comparison 
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for each outcome (Table 4.5). These results are reproduced in Tables 6.7,6.8,6.9 to 

allow comparison with totality of evidence results. 
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Table 6.7. Time to first seizure: Analysis of totality of evidence and direct 

evidence for comparison 

DIRECT EVIDENCE 

TOTALITY OF 

EVIDENCE 

Comparison 

HR>1 

favours 

Number 

of trials 

Events 

/Total HR (95% CI) HR (95% CI) 

cbz-oxc OXC 0 - 1.09 (0.80,1.49) 

phb-oxc OXC 0 - 0.93 (0.66,1.29) 

pht-oxc OXC 2 229/472 1.08 (0.83,1.40) 1.08 (0.83,1.40) 

vps-oxc OXC 0 - 1.17 (0.86,1.59) 

ltg-oxc OXC 0 - 1.27 (0.87,1.86) 

cbz-phb PHB 4 365/677 1.17 (0.94,1.45) 1.18 (0.97,1.44) 

cbz-pht PHT 3 362/545 1.10 (0.89,1.35) 1.01(0.86,1.19) 

cbz-vps VPS 5 864/1225 0.92 (0.81,1.06) 0.93 (0.82,1.06) 

cbz-ltg LTG 4 344/741 0.86 (0.69,1.08) 0.86 (0.69,1.08) 

phb-pht PHT 4 351/592 0.84 (0.68,1.05) 0.86 (0.70,1.05) 

phb-vps VPS 2 134/178 1.05 (0.72,1.52) 0.79 (0.64,0.98) 

phb-ltg LTG 0 - 0.73 (0.54,0.99) 

pht-vps VPS 5 371/639 0.96 (0.78,1.18) 0.92 (0.78,1.09) 

pht-ltg LTG 0 - 0.85 (0.65,1.13) 

vps-ltg LTG 0 - 0.92 (0.71,1.19) 



CHAPTER 6 External evidence and indirect comparisons 198 

Table 6.8. Time to 12 month remission: Analysis of totality of evidence and direct 

evidence for comparison 

DIRECT EVIDENCE 

TOTALITY OF 

EVIDENCE 

Comparison 

HR>1 

favours 

Number 

of trials 

Events 

/Total HR (95% CI) HR (95% CI) 

cbz-oxc CBZ 0 - - 0.96 (0.67,1.37) 

phb-oxc PHB 0 - - 0.90 (0.61,1.32) 

pht-oxc PHT 2 170/308 0.92 (0.68,1.24) 0.92 (0.68,1.24) 

vps-oxc VPS 0 - - 0.84 (0.59,1.20) 

cbz-phb CBZ 4 280/684 1.08 (0.84,1.38) 1.06 (0.85,1.33) 

cbz-pht CBZ 3 289/551 1.01(0.80,1.27) 1.04 (0.86,1.26) 

cbz-vps CBZ 5 767/1225 1.14 (0.99,1.32) 1.14 (0.99,1.31) 

phb-pht PHB 4 260/562 0.94 (0.73,1.22) 0.98 (0.78,1.24) 

phb-vps PHB 2 130/178 0.91 (0.62,1.33) 1.07 (0.84,1.36) 

pht-vps PHT 4 303/514 1.04 (0.83,1.31) 1.09 (0.90,1.33) 

Data for direct comparison CBZ-LTG unavailable for this outcome 



CHAPTER 6 External evidence and indirect comparisons 199 

Table 6.9. Time to withdrawal: Analysis of totality of evidence and direct 
evidence for comparison 

DIRECT EVIDENCE 

TOTALITY OF 

EVIDENCE 

Comparison 

HR>1 

favours 

Number 

of trials 

Events 

/Total HR (95% CI) HR (95% CI) 

cbz-oxc OXC 0 - 1.61 (0.99,2.62) 

phb-oxc OXC 0 - 2.35 (1.43,3.86) 

pht-oxc OXC 2 91/480 1.65 (1.08,2.52) 1.65 (1.08,2.52) 

vps-oxc OXC 0 - 1.51 (0.92,2.47) 

ltg-oxc OXC 0 - 0.96 (0.55,1.68) 

cbz-phb PHB 4 235/676 0.68 (0.52,0.89) 0.69 (0.53,0.88) 

cbz-pht PHT 3 196/546 0.99 (0.75,1.31) 0.98 (0.77,1.24) 

cbz-vps VPS 5 399/1200 1.03 (0.84,1.25) 1.07 (0.89,1.28) 

cbz-ltg LTG 4 209/1032 1.68 (1.27,2.21) 1.68 (1.27,2.21) 

phb-pht PHT 3 211/499 1.61(1.21,2.12) 1.43 (1.10,1.85) 

phb-vps VPS 2 66/170 1.75 (1.03,2.95) 1.56 (1.17,2.07) 

phb-ltg LTG 0 - 2.45 (1.68,3.55) 

pht-vps VPS 4 137/495 1.05 (0.75,1.47) 1.09 (0.85,1.40) 

pht-ltg LTG 0 - 1.72 (1.19,2.46) 

vps-ltg LTG 0 - 1.57 (1.13,2.19) 
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Totality of evidence: Statistical interpretation 

For each outcome and pair-wise comparison there is good agreement between totality 

of evidence and direct evidence based results (Tables 6.7,6.8,6.9). Due to the inclusion 

of additional data, the confidence intervals obtained from the totality of evidence model 

are each narrower, or the same width, compared with the corresponding confidence 

interval obtained from a model that includes only direct evidence for that particular 

comparison. For the comparisons between CBZ-LTG and PHT-OXC, the estimates 

and confidence intervals are unaffected by including totality of evidence since these 

pair-wise comparisons cannot be obtained indirectly from other trials (refer to Figure 

6.3). 

The totality of evidence analysis has most noticeable effect in terms of improving 

precision for the CBZ-PHT and PHB-VPS comparisons for time to first seizure (Table 

6.7), PHB-VPS comparison for time to 12-month remission (Table 6.8) and PHB-PHT, 

PHB-VPS, PHT-VPS for time to withdrawal (Table 6.9). This may be explained by 

recognising that for these pair-wise comparisons the number of individuals and events 

within the trials providing direct evidence is smaller relative to those providing indirect 

evidence. 

By using the totality of evidence, hazard ratios and 95% confidence intervals are 

estimated for pair-wise comparisons of AEDs that have no direct evidence from 

randomised controlled trials (Table 6.7,6.8,6.9). Although these findings are clinically 

helpful as a summary of the current available evidence, they require cautious 

interpretation as the results are based solely on indirect evidence. Additional reassurance 
is gained from the fact that the totality of evidence results agree well with direct 

estimates where data are available for comparison. 

Direct evidence for the PHB-VPS comparison suggests a statistically non-significant 
difference between PHB and VPS for the outcome time to first seizure. The totality of 

evidence for this comparison suggests a statistically significant clinical advantage in 

favour of PHB. Since confidence intervals are estimated for multiple comparisons using 

the same data there is increased possibility of obtaining a spurious result which should 
be considered in an overall clinical interpretation. The presentation of 99% confidence 
intervals for the totality of evidence results may be more appropriate. 
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Totality of evidence: Clinical interpretation 

Time to first seizure 

The totality of evidence analysis suggests that time to first seizure is not statistically 

significantly different for OXC when compared to CBZ, PHB, PHT, VPS and LTG. 

Since confidence intervals for each hazard ratio are wide, clinically important differences 

in favour of either drugs cannot be excluded and equivalence cannot be concluded. 

Although results are not statistically significant for pair-wise comparisons with CBZ, the 

evidence suggests that PHB may have an increased length of time before first seizure 

(clinically better), VPS and LTG have a shorter length of time compared to CBZ and 
PHT a similar length of time to CBZ. 

The totality of evidence suggests that PHB is clinically better for the outcome time to 

first seizure compared with PHT, VPS and LTG. For the latter two pair wise 

comparisons the 95% confidence intervals do not include unity but these results are 
based either on indirect evidence alone (PHB-LTG) or on limited direct evidence (PHB- 

VPS) and should therefore be viewed with caution. 

For remaining pair-wise comparisons with PHT the totality of evidence suggests a trend 

toward favouring PHT compared to VPS or LTG although neither result is statistically 

significant. 

Finally, although there may be a slight trend in favour of VPS compared to LTG, there 
is no evidence of a statistically significant difference between the dugs and since this 

comparison is based entirely on indirect evidence conclusions should be viewed 

cautiously. 

Time to 12 month remission 

There is no evidence for a statistically significant difference between OXC and CBZ, 

PHB, PHT or VPS for this outcome but 95% confidence intervals are too wide to 

conclude equivalence amongst each pair-wise comparison. 
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When compared with CBZ, the two drugs PHB and PHT may have similar 

effectiveness but confidence intervals include clinically important differences and are 

again too wide and to conclude equivalence. When compared with VPS, the evidence 

suggests that the time taken to achieve a period of 12 month remission may be shorter 

with CBZ although the confidence interval includes unity. 

PHT and VPS have similar effectiveness when compared with PHB but equivalence 

cannot be concluded due to the wide confidence interval for the hazard ratio for both 

pair-wise comparisons. 

There is no evidence for a statistically significant difference between PHT and VPS for 

this outcome. 

Time to withdrawal 

The totality of evidence analysis suggest that the time before withdrawal due to adverse 

events or poor seizure control is significantly longer for OXC compared to PHB or 

PHT, with a suggestion, although not statistically significant, to favour OXC when 

compared to either CBZ or VPS. OXC and LTG have similar effectiveness but clinically 

important results cannot be excluded from the wide confidence interval hence 

equivalence of these two drugs should not be concluded. Direct evidence is only 

available for the PHT-OXC pair-wise comparison. 

Time to withdrawal is significantly longer for CBZ compared to PHB. There is no 

evidence for a statistically significant difference between CBZ and PHT or VPS for this 

outcome but equivalence cannot be concluded. Time to withdrawal is significantly 
longer for LTG when compared to CBZ. 

For this outcome, the evidence in favour of PHT, VPS or LTG when each are 

compared to PHB is statistically significant although the latter pair wise comparison 

(PHB-LTG) does not include direct randomised evidence. 
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There is no evidence for a significant difference between PHT and VPS whilst both 

drugs are significantly worse than LTG although these two results are based entirely on 

indirect evidence. 

Clinical conclusions for totality of evidence analysis 

The overall trends from the totality of evidence analysis suggest that PHB may be the 

most effective drug in terms of the outcome time to first seizure whilst LTG is least 

effective. For the outcome time to 12 month remission, comparisons with LTG cannot 

be made. Since none of the results from pair-wise comparisons are statistically 

significant and confidence intervals are wide for many, conclusions regarding the best 

and worst drug cannot be drawn. OXC and LTG are most favoured for increasing time 

to withdrawal and hence indicating better tolerability whilst PHB is least favoured. 

However, pair wise comparisons with OXC are mostly based on indirect evidence and 

should be viewed cautiously. These results highlight the need for randomised controlled 

trials providing direct comparisons with LTG and OXC. The largest randomised trial 

(SANAD) in epilepsy is currently underway and will provide evidence for a direct 

comparison between CBZ-OXC, CBZ-LTG and LTG-OXC. 

6.9.3. Exploring the interaction between treatment and epilepsy type 
using totality of evidence for time to first seizure 

As described in section 6.5, an interaction between treatment and a covariate can 

complicate or invalidate the interpretation of an indirect comparison. The unadjusted 

totality of evidence results presented in section 6.9.2 are based on a Cox model 

including main effect of treatment terms with an underlying assumption that the relative 

treatment effect for each comparison (all fifteen comparisons) is similar across all 

covariate values. For the epilepsy monotherapy comparisons, this assumption is 

clinically unlikely since there are strong beliefs that some AEDs have different effects 
for generalised and partial epilepsy, i. e. a treatment by epilepsy type interaction. The 

clinical anticipation of the underlying interaction motivated further investigation of the 

effect of epilepsy type upon the totality of evidence results. The following strategy was 

adopted for the outcome time to first seizure. 
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Step 1. For each direct evidence pair-wise comparison, separate Cox models (stratified 

by trial with fixed treatment effect) including treatment indicator variable and 

the main effect of epilepsy type were examined. 

Step 2. For each direct evidence pair-wise comparison, separate Cox models (stratified 

by trial with fixed treatment effect) including treatment indicator variable, main 

effect of epilepsy type, and a treatment-type interaction term was examined. 

Step 3. The totality of evidence model (model 6.9) was fitted with a common main 

effect of epilepsy type represented by dummy variable xbf which takes the value 

of one for partial epilepsy and zero for generalised epilepsy. 

,;; = 2, oß(t)exp(ßlxlij 
+ß2x2 

, 
+ß3x3ij +ß4x4U +ß5x5rj +N6x69 ) (6.10) 

Step 4. The totality of evidence model (model 6.9) was fitted with a common main 

effect of epilepsy type x6iý plus five terms representing interaction between 

treatment and epilepsy type, 

, 
Zu = Aoj (t) exP(ß x, + ß2x2, + ß3x3 

j+ 
ß4X 

4j+ /'sxs U+ 
ß6z6!, 

/ý ß10 /ý 
6.11) 

+ß7x7U +ß8x8 +/'9x9 +x10! 
9 

+ß11x11, ) 

where, for partial epilepsy 

Dummy variable 

Treatment x79 xsY z9; ß x1ou xily 

CBZ 1 0 0 0 0 

PHB 0 1 0 0 0 

PHT 0 0 1 0 0 

VPS 0 0 0 1 0 

LTG 0 0 0 0 1 

oxc 0 0 0 0 0 

To investigate the statistical significance of terms added to a Cox regression model, 

analyses of nested models should be based on the same data. For 60/3785 patients 

across all trials (31 of whom had an event), data on type of epilepsy were not available. 
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These patients are excluded in the following models for consistency hence the main 

effect of treatment models may differ slightly to previously reported results in Table 4.5 

and Table 6.7. These exclusions are not considered to introduce much bias as 98% of 

the data are retained. 

In a standard Cox model, the change in the value of -2logL (log-likelihood ratio 

statistic) due to adding variables x(p+, ), , x(p+2)y,..., x(p+q); i, to a model including variables 

x,,, x2,,..., xp, provides a test of the null hypothesis that the q parameters 

ß 
+>>QP+2,., ', QP+q are all zero. For the totality of evidence analysis, the change in - 

2logL for a model including all interaction with treatment variables (model 6.11) 

compared to the model without (model 6.10) provides an overall test for the null 
hypothesis that all interaction terms are zero. To explore whether the hazard ratio for 

individual pair-wise comparisons are different for partial and generalised epilepsy in a 

totality of evidence analysis, the individual interaction term relating to that comparison 

should be excluded and the change in -2logL for the reduced model should be 

compared to that of fitting a model with all interaction terms (model 6.11). For example, 

the difference in -2logL between model (6.11) and a model omitting variable x7ß would 

provide a test for Ho : /37 = 0, i. e. that the hazard ratio CBZ: OXC is the same for 

partial and generalised epilepsy. For comparisons that do not involve the baseline drug 

OXC, the model can be re-parameterised using a different drug as the baseline. Values 

of -2logL, change in -2logL on omitting each individual interaction with treatment 

term, and corresponding p-value for each pair-wise comparison are summarised in 

Appendix E (Table E. 2.4). 

Results: Exploring interactions between treatment and epilepsy type 

Parameter estimates and values of -2logL for models exploring the main effect of 

epilepsy type and interaction with treatment using only direct evidence (step 1 and step 
2) are recorded in Appendix E (Table E. 2.1). Corresponding parameter estimates from 

the totality of evidence analysis (step 3 and step 4) are also summarised in Appendix E 

(Table E. 2.2 and Table E. 2.3). The hazard ratio and 95% confidence intervals calculated 
from these parameter estimates are summarised in Table 6.10. The p-value for an 
interaction between treatment and epilepsy type is recorded in Table 6.10 for each 
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comparison from the analysis of direct evidence only and for totality of evidence. The p- 

value is presented to enable results in terms of statistical significance to be contrasted 
between direct and totality of evidence analyses. A more detailed summary of the 

calculations involved with values of -2logL are given in Appendix E (Table E. 2.1 for 

direct evidence, Table E. 2.4 for totality of evidence). 

Statistical interpretation 

For the outcome time to first seizure, there is evidence for a statistically significant 
interaction between treatment and epilepsy type for individual direct evidence 

comparisons between CBZ-PHB and CBZ-VPS. Although not statistically significant 

there are also trends to suggest that the hazard ratio may differ between partial and 

generalised epilepsies for the direct comparison between PHB-VPS and PHT-VPS. As 

interactions with treatment are found for individual direct comparisons, the totality of 

evidence analysis also incorporates terms for interactions between treatment and 

epilepsy type. 

Comparison of the adjusted direct and adjusted totality of evidence results indicate 

generally good agreement across pair-wise comparisons, with improved precision for the 

hazard ratio within each epilepsy type subgroup. 

In this example, the p-value for a treatment-type interaction in the adjusted totality of 

evidence analysis is smaller compared to the adjusted direct analysis except for the CBZ- 

PHB pair-wise comparison. Evidence for a statistically significant treatment-type 

interaction is suggested for eight comparisons (VPS-OXC, LTG-OXC, CBZ-PHB, 

CBZ-VPS, CBZ-LTG, PHB-PHT, PHB-VPS, PHB-LTG) in the totality of evidence 

analysis. For three of these comparisons, the evidence for an interaction comes from 

indirect comparisons only and should be interpreted with caution. 
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Table 6.10. Analysis of totality of evidence for time to first seizure 
adjusted for epilepsy type and type by treatment interaction terms 
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Table 6.10. Analysis of totality of evidence for time to first seizure 
adjusted for epilepsy type and type by treatment interaction terms 
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Clinical interpretation 

There is insufficient evidence for an interaction between treatment and epilepsy type for 

the CBZ-OXC, PHB-OXC and PHT-OXC comparisons. When OXC is compared to 

VPS or LTG, comparisons which are based entirely on indirect evidence, the totality 

adjusted result suggests that patients with partial epilepsy would benefit more from 

OXC whilst for generalised epilepsy the patterns of effect are less clear but suggest that 

VPS may be better than OXC whilst there is insufficient evidence of a difference 

between LTG and OXC. 

For pair-wise comparisons with CBZ, the adjusted totality results suggest that for the 

CBZ-PHB comparison, PHB is better for partial epilepsy with similar effects for both 

drugs with generalised epilepsy; for the CBZ-PHT comparison, the two drugs have 

similar effects for partial epilepsy whilst PHT is favoured for generalised epilepsies; for 

the CBZ-VPS comparison, CBZ is better for partial seizures and VPS is better for 

generalised seizures; for the CBZ-LTG comparison, CBZ is better for partial seizures 

but both drugs have similar effects for generalised seizures. 

For remaining pair-wise comparisons involving PHB, patients with partial epilepsy have 

a better clinical outcome with PHB compared to PHT, VPS and LTG. For these pair- 

wise comparisons patients with generalised epilepsy have a better clinical outcome with 
PHT, VPS or LTG but the confidence intervals for the latter subgroup are wide. 

There is no evidence for an interaction between treatment and epilepsy type for the 

PHT-VPS, PHT-LTG and VPS-LTG comparisons. 

Conclusions for totality of evidence analysis adjusted for interactions between 
treatment and epilepsy type 

The totality of evidence analysis utilises evidence from direct and indirect comparisons. 
Since interactions between treatment and epilepsy type were anticipated clinically and 
identified statistically using the direct pair-wise comparison evidence, the totality of 

evidence analysis requires appropriate adjustment to be made for these interactions. 
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The confidence intervals for hazard ratios estimated within each epilepsy type subgroup 

are narrower for the totality of evidence adjusted analysis. The adjusted analysis allows 

the clinical effect of drugs to be compared separately for patients with partial and 

generalised epilepsy in terms of pair-wise comparisons that have not been undertaken 

previously. For these comparisons, the totality of evidence adjusted analysis provides 

the best summary of the current available evidence and highlights the need for direct 

randomised evidence to confirm patterns identified. In some cases however, a 

randomised controlled trial providing the best level of direct evidence may never be 

undertaken and clinicians will need to make informed decisions based on the currently 

available evidence and their clinical knowledge. The adjusted interpretations are more 

useful clinically due to strong beliefs that certain drugs may be better for one or other 

epilepsy type. 

The availability of IPD for this example allowed a thorough investigation into whether 

interactions exist and the opportunity for incorporation into the totality of evidence 

analysis. Such analyses could not be undertaken with aggregate data for this example. In 

practice, IPD is likely to be required for similar analyses in other areas. 

6.10. Discussion 

External evidence from indirect comparisons can play an important role in clinical 

research and may be particularly valuable if evidence from a direct randomised 

comparison either does not exist, comprises a limited amount of data, or is unlikely to 

ever be examined in future trials. Several methods exist to allow such an analysis but 

only methods which make the most of the power of randomisation within each trial and 

maintain the within trial structure by stratification or comparing relative effects across 

trials have been considered in this thesis. Nevertheless, evidence from an indirect 

comparison will always be limited by the fact that differences across trials in patient mix 

could bias indirect treatment effects and caution is required when interpreting indirect 

evidence. Since an indirect comparison is not itself a randomised comparison it suffers 
from many of the disadvantages associated with observational data. It may be argued 

that evidence from observational studies should be considered when exploring indirect 

comparisons. However, since the methods considered within this thesis maintain the 

within trial structure and power of randomisation, the pair-wise comparisons estimated 
from randomised evidence are likely to be less biased than those obtained from 
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observational studies. Therefore, the indirect comparison estimated from randomised 

evidence is likely to be less biased than an indirect comparison estimated from 

observational data. 

In principle, estimates of indirect treatment effect may be obtained using aggregate data 

but limitations of reporting adequate data for time-to-event outcomes is likely to impose 

restrictions for this approach. Although estimates of indirect comparison based on 

aggregate data agree very well with results using IPD in the examples examined, such 

agreement is unlikely to occur in practice as the AD-indirect comparison calculations 

utilised IPD generated estimates. 

In addition to overcoming the problem of inadequate aggregate data, the availability of 
IPD ensures that outcome definitions can be standardised across trials contributing to 

the indirect comparison and also facilitates the most in-depth investigation of 

consistency in clinical characteristics across trials which can increase confidence with 

interpretation and generalisability of results. A further limitation with AD-indirect 

methods is the necessary assumption that relative effects are consistent across covariate 

values. This assumption can be explored more thoroughly with IPD and if appropriate, 

adjustments can be made to reflect the validity of such an assumption. 

In some situations, combining direct and indirect estimates may be clinically justifiable 

and the combined estimate may be achieved using an inverse variance weighted average 

of both sources of evidence. To reflect increased uncertainty around the indirect 

comparison relative to the direct comparison, proportionately less weight could be 

applied to the former value. A sensitivity analysis approach applying different weightings 
between 0 and 100% could provide a range of scenarios to evaluate. However, as four 

times as many similar sized trials are needed for the indirect approach to have the same 

power as directly randomised comparisons (Glenny et al, personal communication), the 
indirect evidence is already implicitly `down-weighted' to a certain extent. 

Several pair-wise comparisons involving 6 anti-epileptic drugs have been explored in 

separate systematic reviews of randomised controlled trials using IPD. Each systematic 

review provides the best level of evidence currently available for each direct 

comparison. This is the traditional approach to meta-analysis. From a clinician or 
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patient's perspective, the results of pair-wise comparisons between alternative AEDs 

can be difficult to interpret in isolation if there are multiple treatment options available. 
In this thesis, patients from each treatment group in each trial from these original 

systematic reviews were included in an overall analysis of the totality of evidence. This 

analysis provided evidence for pair-wise comparisons that had not been previously 

undertaken in a randomised controlled trial setting and also improved precision for 

comparisons where direct evidence was also available. This totality of evidence analysis 

was felt to be clinically appropriate as the original systematic reviews used identical 

protocols, trial and patient inclusion criteria and review methodology. The patients 
included in the monotherapy trials were clinically similar and treatment with any of the 
AEDs would be considered appropriate. 

The totality of evidence analysis presented here simultaneously incorporates direct and 

indirect evidence from trials with 2 or more treatment groups. The model assumes each 

relative treatment effect is a fixed effect but can in principle be extended to incorporate 

random treatment effects with appropriate recognition of covariance terms if necessary. 

This totality of evidence analysis is considered reasonable for the epilepsy monotherapy 

trials due to identical review protocols and trial/patient inclusion criteria used for each 

pair-wise comparison. The model itself does not allow for the possibility that different 

sources of indirect evidence may produce inconsistent estimates of treatment effect to 

each other or indeed compared to the direct evidence. The potential problem of 

inconsistency is unlikely to be an issue for this example due to trial similarities and the a 

priori clinical justifications for undertaking the combined analysis. A recent publication 

by Lumley [125] describes an approach for meta-analysis of a network of treatment 

comparisons from 2-arm trials with continuous or binary data. For example, an indirect 

estimate of treatment effect between A and B could be estimated from the sets of trials 

comparing A with C or B with C but also from two further sets of trials comparing A 

with D and B with D. The approach allows the degree of agreement between these 

sources of indirect comparison to be quantified and incorporated into the model. Their 

approach was not considered in this thesis and the authors note that the model would 

require further extensions to handle multi-armed trials correctly. 

The totality of evidence analysis presented in this chapter is novel in terms of the clinical 
results and in the application of a stratified Cox model for the combined analysis of 
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direct and indirect evidence for patient level time-to-event data. Ades [127] describe an 

approach for the analysis of mixed pair-wise comparisons for categorical data, 

combining information from different studies on different, but structurally related 

outcomes within a Bayesian framework. Higgins and Whitehead [112] also describe an 

approach for combining aggregate level categorical data from indirect and direct 

comparisons within a Bayesian framework. Although the analyses presented in this 

thesis are undertaken within a classical framework, there are potential benefits to a fully 

Bayesian analysis which can incorporate uncertainty surrounding parameter estimates 

which would seem particularly attractive in this setting. 

With an increasing number of meta-analyses of pair-wise comparisons of treatments in 

different clinical areas, the approach to summarising the totality of evidence is likely to 

be useful in other fields. However, careful consideration is required to evaluate whether 

such an analysis would be appropriate. If patients are clinically diverse across trials, the 

totality of evidence analysis may be difficult to apply to a particular population of 

patients. Although the robustness of an indirect comparison cannot be assessed without 

direct evidence, such a summary is important as it represents the current available 

evidence and may highlight the need for high quality randomised evidence directly 

comparing the AEDs of interest. The indirect evidence could also be used to provide 

the parameters required for sample size calculation in future RCTs. 

This chapter has addressed some important issues associated with indirect comparisons 

and in particular how IPD may provide additional benefits. From a clinical perspective, 

the totality of evidence analysis adjusted for interactions between treatment and epilepsy 

type requires further application to the outcomes time to 12 month remission and time 

to withdrawal. From a methodological perspective, further work is required to extend 

the computation capabilities of the stratified Cox model with random treatment effects. 

This will enable multiple, non-independent random effects to be fitted within the same 

model which would be the appropriate random effects model to facilitate inclusion of 

trials with more than two treatments or for the combined analysis of both direct and 

indirect evidence. This would also be the appropriate model for a random effects totality 

of evidence analysis which would estimate and incorporate between trial variability 

within each comparison. 



CHAPTER 7 

Concluding remarks and further work 

Meta-analysis undertaken as a component of a rigorously conducted systematic review is 

a valuable tool for clinicians, researchers, consumers, and for policy making. The 

analysis may be based on either aggregate or individual patient data. Although the latter 

IPD approach is often more costly, time consuming and elaborate, an increasing 

number of meta-analyses are adopting this approach as it is well recognised as the gold- 

standard [25]. A recent systematic review (Mark Simmons, personal communication) 

revealed that IPD based meta-analyses are dominated by reviews that consider time-to- 

event data in the primary analysis. Limitations of suitably reliable data often preclude the 

use of an aggregate data approach when considering time-to-event outcomes. The 

availability of IPD enables thorough investigation of sources of heterogeneity and can 

be valuable for undertaking multiple indirect comparisons. The main aim of this thesis 

was to summarise issues, contribute to the development of methodology, and attempt 

to establish evidence relating to the comparison between IPD and AD based 

approaches to meta-analysis of time-to-event outcomes. 

7.1. Methodological conclusions 

Undertaking an AD meta-analysis of time-to-event outcomes can, in theory, be 

straightforward provided an estimate of log hazard ratio and its variance can be 

extracted from publications or obtained from original trialists. A further requirement is 
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that the calculation of length of time, end-point and censoring status should be clearly 
defined and consistent across all trials. For example, in epilepsy trials the outcome time 

to first seizure may be defined as time from randomisation to first seizure or, time from 

end of 6 week drug titration period to first seizure. 

In practice, estimates of log hazard ratio and its variance are not often presented 

directly. Methods exist to approximate the log hazard ratio and its variance using other 

summary data related to the log-rank test and survival curves [32] that may be presented 

more frequently. The survival curve approach has been extended by Williamson, Tudur 

et al [33] to incorporate data related to the number at risk which are often quoted within 

the trial report. This approach was developed to overcome the assumption of constant 

censoring across the entire follow-up period, an assumption required for a previously 

proposed survival curve method [32]. The examples examined suggest that the 

incorporation of numbers at risk can improve approximation but the usefulness of this 

approach will clearly rely on availability of the required data. A review of survival 

analyses reported in cancer journals pre-1995 revealed that whilst 88 per cent of articles 

presented survival curves, only 8 per cent included the numbers at risk on the figures 

[31]. A more recent review of clinical trials published in four general medical journals 

(Lancet, New England Journal of Medicine, British Medical journal, journal of the 

American Medical Association) between July and October 1999 [36] found that almost 

all trials presenting survival plots where there was variable length of follow-up had 

presented numbers at risk (Tim Clayton, personal communication). For two aggregate 

data reviews in colorectal cancer and liver surgery examined in this thesis, 3 out of 4 

trials presenting survival curves also quoted numbers at risk. Pocock et al [36] make a 

specific recommendation that numbers at risk should be displayed when presenting 

survival curves. Both AD approaches based on survival curves [32], [33] require careful 

extraction of probabilities from published curves that may introduce bias. In the 

absence of direct estimates of log hazard ratio and its variance, the present author would 

recommend that survival curves be used as a last resort with preference given to the 

approach incorporating numbers at risk if data are available. Sensitivity analyses are a 

useful tool to explore the impact of assumptions made with the methods for 

approximating the individual trial log hazard ratio and its variance. 
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The aggregate data methods based on extracting the log-rank test p-value are more 

reliable than survival curve approaches for the examples examined. However, the 

reliability of this approach will depend on the level of accuracy in reporting the relevant 

aggregate data. For example, the p-value should be reported to at least 2 decimal places 

and a log-rank test p-value quoted as 'NS' is not useful. As a further note of caution 

with this approach, the direction of effect may not be obvious from a p-value 

(particularly if the treatments have a similar effect) and other sources of data such as a 

published survival curve should be examined for clarification. 

Underlying the interpretation of a hazard ratio is an assumption that hazards are 

reasonably proportional across time. The assumption can be assessed using three 

alternative aggregate data based methods that were proposed in this thesis (published by 

Statistics in Medicine [33]). The method of exploring whether individual trial estimates of 
log hazard ratio vary according to trial summary measure of follow-up is attractive due 

to its simplicity but would only indicate evidence against the assumption if there were 

evidence for statistical heterogeneity and sufficient variability in the summary measure 

of follow-up across trials. Constructing log cumulative hazard plots are feasible but their 

interpretation is subjective and made particularly difficult when the curves are close 

together, indicative of small treatment effects. The final method of exploring interval 

based estimates of log hazard ratio is reasonably straightforward but the test proposed is 

likely to have low power as the alternative hypothesis is general. The methods were 
illustrated using a meta-analysis of 5 randomised controlled trials. Ideally, further 

examples are required to explore the reliability of these methods and the author would 

recommend that interpretation of results should be undertaken cautiously. 

Meta-analysis with individual patient data will involve several important stages. As a 

minimum, the process would require data acquisition, possibly some data entry, data 

cleaning, manipulation and validation prior to undertaking the analyses of interest. For 

the IPD reviews of epilepsy monotherapy trials examined throughout this thesis, the 

complexity of the outcome data meant that a substantial amount of time was required 
for programming of the outcomes. Examples of these complexities include different 

approaches for recording seizure dates across trials, and definitions of endpoint for the 

outcome time to withdrawal. In other clinical areas, the programming of outcomes may 

not be as time consuming and detailed. 
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A fixed effect meta-analysis of individual patient time-to-event data may be undertaken 

using a number of alternative methods. The stratified log-rank analysis, stratified Cox 

model, and inverse variance weighted average of Cox model estimates were reviewed 

and compared in this thesis. The simulation study revealed that similar results were 

obtained using the three methods for meta-analysis in the absence of heterogeneity and 

for moderate treatment effects. For larger effects, the stratified Cox model and IV 

weighted average gave similar estimates and are to be preferred to the stratified log-rank 

analysis. In the presence of heterogeneity, the performance of all three methods was 

poor. Most published reviews of individual patient failure time data, including reviews 

of epilepsy monotherapy trials, adopt the stratified log-rank approach to analysis. Re- 

analysis of the epilepsy meta-analyses using stratified Cox regression models indicate 

patterns of differences consistent with those suggested by the simulation study. The 

empirical comparison of methods further suggested that the occurrence of tied event 

times could be an important factor in terms of choice of method for analysis. Further 

simulations with a larger number of patients and repetitions and further empirical 

comparisons are required to establish more specific guidelines on choice of method. 

Other methods that may be considered by reviewers would be an analysis of all data 

ignoring the effect of trial (using an overall log-rank analysis or Cox model) or a Cox 

regression model adjusted for trial effects using indicator variables as described in 

Chapter 5. However, since the benefit of within-trial randomisation is effectively 

ignored with both approaches, they are not considered appropriate for meta-analysis in 

the opinion of the present author. It should be noted that the Cox regression model 

may not be an appropriate choice if the assumption of proportional hazards is violated. 

Furthermore, if the time-to-event data follow a particular parametric distribution, a 

more powerful analysis may be achieved by assuming a particular form of probability 
distribution for the data. However, since fewer assumptions are made with a semi- 

parametric Cox model and estimates are likely to be conservative, this approach is 

expected to be sufficient for the majority of situations. 

Exploring clinical, methodological and statistical heterogeneity is an important aspect of 

the meta-analysis process and possible factors for heterogeneity should be given careful 

consideration during protocol development. Factors which could modify the treatment 

effect may be explored using regression models with either aggregate or individual 
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patient data. For time-to-event outcomes, the aggregate based meta-regression models 

are reasonably straightforward provided that sufficient data may be extracted for trial 

level treatment effects and trial level covariates. The limitations of AD meta-regression, 

apart from the potential lack of suitable data and restrictions related to the number of 

trials, are well documented [91], [126], [103]. Issues to consider are that associations 

derived from meta-regressions are observational, and have a weaker interpretation than 

the causal relationships derived from randomized comparisons [126], and the approach 

is subject to ecological bias which arises when results based on aggregate data are 

incorrectly assumed to apply at the individual level. Thompson et al [126] further note 

that data dredging is the main pitfall in reaching reliable conclusions from meta- 

regression which can only be avoided by the pre-specification of covariates. 

The availability of individual patient covariate data allows heterogeneity to be explored 

more thoroughly and avoids potential ecological bias that may exist with aggregate level 

analyses. These analyses may be undertaken by fitting a Cox regression model assuming 

either fixed or random treatment effects. Trial effects may be recognised by 

incorporating indicator variables, stratification, or adopting a random trial effects 

approach. Including trial indicator variables (fixed effect) assumes that each within-trial 

hazard rate for each treatment group is proportional to a common baseline hazard 

function. However, since trials included in a meta-analysis are likely to vary in terms of 

clinical characteristics this assumption is rather restrictive. The Cox model stratified by 

trial requires that only the hazard rates for treatment groups within each trial are 

proportional over time. Furthermore, since the stratified model only uses individuals 

within a trial to define each risk set in the likelihood construction, the stratified 

approach is more in keeping with the principle of maintaining randomisation within 

meta-analysis. The main disadvantage with the stratified model is that no direct estimate 

of the importance of the strata effect is produced and that the precision of estimated 

coefficients may be diminished if there are a large number of strata [96]. Since most IPD 

meta-analyses are based on fewer than 10 trials (Mark Simmonds, personal 

communication) and the importance of trial effects per se are not generally of interest in 

meta-analysis, the author would recommend using the stratified Cox regression model. 
The appropriateness of the final approach allowing for random trial effects is somewhat 
less clear as the underlying assumption, that individuals recruited into different trials are 

a random sample from a wider collection of populations, is difficult to relate to the 
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concept of meta-analysis. Higgins et al [60] believe the assumption of random trial 

effects is a degree less plausible than that of random treatment effects since it is likely 

that treatment effects will be more similar than trial populations across trials in a meta- 

analysis. In the context of proportional hazards models, O'Quigley and Stare [104] 

conclude that for group sizes (trial sample size) of five or more, the model 

corresponding to a random trial effects model examined in this thesis provides no more 

than modest efficiency gains when compared to a stratified model. On the other hand, 

for moderate to large numbers of very small groups, of sizes two or three, the efficiency 

gains of the random effects model can be far from negligible [104]. However, since 

most meta-analyses do not involve a large number of small trials with two or three 

patients, it would seem that the stratified model would be most appropriate for the 

majority of situations. 

Allowance for residual heterogeneity, heterogeneity of treatment effects left unexplained 
by any included covariates, may be achieved by fitting random treatment effects. The 

development of methodology for incorporating random treatment effects within a Cox 

model required extending previously reported [62] concepts and a computer program 

for parameter estimation. The resulting collection of programs for fitting Cox models 

with random treatment effects were also adapted to incorporate the Efron method for 

handling ties which is considered a better approximation [96] particularly for the 

outcome time to 12 month remission examined in epilepsy reviews of monotherapy 

trials. 

Indirect comparisons are useful where direct comparisons either do not exist, comprise 

a limited amount of data, or are unlikely to be examined in future trials. Investigating 

methodology for indirect comparisons was very much motivated by the reviews of 

epilepsy monotherapy trials each of which considered a pair-wise comparison of anti- 

epileptic drugs. The totality of evidence analysis was felt to be clinically appropriate as 

the original systematic reviews used identical protocols, trial and patient inclusion 

criteria and review methodology. Careful consideration should be given to these facts 

before undertaking similar analyses in other areas. The trials and comparisons explored 

within these epilepsy reviews form a network of direct and indirect evidence which 

represents the totality of evidence currently available for monotherapy comparisons. An 
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improvement in precision for the relative treatment effects is gained from the totality of 

evidence analysis with good agreement between direct evidence and totality of evidence 

results in the epilepsy example. Moreover, as the analysis is based on a wider selection 

of patient populations, the results may be seen to apply to a wider population. The 

model also provided estimates of hazard ratio and 95% confidence intervals for pair- 

wise comparisons for which direct randomised evidence are not available. Although this 

represents the best current evidence for these particular comparisons, the results require 

careful interpretation due to the nature of an indirect comparison that should be 

regarded with similar concerns as evidence from observational studies. The fixed effect 

stratified Cox model is possibly over-simplistic for the totality of evidence analysis, as it 

makes no allowance for residual heterogeneity of the treatment effects. However the 

approach to parameter estimation based on the penalized partial likelihood adopted in 

this thesis would require further modification to allow for the covariance structure 

between correlated random effects. Since confidence intervals for hazard ratios related 

to each pair-wise comparison would be as wide, or wider, from a random treatment 

effects approach, the fixed effect analysis results including the totality of evidence 

presented in this thesis should be viewed only as a preliminary guide. A further note of 

caution should be given to the potential for spurious results due to multiple 

comparisons. This issue was not addressed in detail but could be partially overcome by 

presenting 99% confidence intervals for the totality of evidence analysis. 

7.2. Aggregate data compared to individual patient data 

There is no doubt that an IPD approach to meta-analysis is the gold-standard method 

that will provide the best summary of evidence and the most flexibility, particularly if 

considering time-to-event outcomes. However, if the extra effort and strain on 

resources and time were to only provide minor advantages over and above what may be 

achieved with aggregate data, the IPD approach may not be worthwhile in some 

settings. Empirical evidence relating to different aspects of the comparison between 

aggregate and individual patient data approaches is required to enable reviewers to make 

decisions about which approach may be appropriate if the choice were available. 

However, when trying to compare methods, there are a number of issues to address 

which can complicate the general assessment and will likely vary according to example. 

This thesis has attempted to explore some of these issues to contribute some knowledge 

to the growing body of evidence concerned with this question. The final decision of 
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which approach to use will very much depend on the example under consideration, 

availability of data and resources. 

An aggregate data approach with time-to-event data can usually be undertaken quite 

quickly which can be useful to provide estimates for sample size calculations or as part 

of the data monitoring process for a randomised trial, or for a preliminary assessment of 

whether collecting IPD would be worthwhile. Provided the reported aggregate data 

were based on all randomised patients and definitions of the end-point and censoring 

procedures were consistent across trials, the AD and IPD (assuming same follow-up) 

approaches should provide similar estimates of overall treatment effect. The degree of 
discrepancy would depend on method of approximation or analysis with most 

uncertainty surrounding the reliability of aggregate data approaches based on published 

survival curves. If the majority of the evidence from an aggregate data approach were 

only from survival curves, the author is of the opinion that IPD would be worthwhile. 
i 

Most AD meta-analyses of time-to-event outcomes would differ to corresponding IPD 

based analyses in terms of included patients, amount of follow-up and included trials 

and reviewers should assess the potential impact of these factors. For example, if AD 

were only available from a small portion of eligible trials, or if the AD were based on 

data with a high proportion of patient exclusions, an IPD approach would be worth 

considering particularly for the former case in which meta-analysis may not be possible. 
The empirical examples examined in this thesis indicate that results from each approach 

will be varied and identifying a specific pattern of bias that can be attributed to the 

aggregate data approach is complex, if not impossible for the comparison of treatment 

effect. 

Individual patient data can bring further advantages apart from the capacity to re-instate 

previously excluded patients, overcome the potential for within study selective 

reporting, incorporate additional follow-up data or the ability to identify or include 

unpublished studies. One particular advantage is the potential for exploring prognostic 
factors and sources of heterogeneity. With AD, exploring potential source of 
heterogeneity is problematic due to data limitations, potential for ecological bias, and 

problems of interpretation. Recent publications [103], [89] have recommended that IPD 

should be used whenever possible to reliably study patient characteristics and investigate 
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heterogeneity. The empirical comparison examined in this thesis supports these 

recommendations. 

The individual patient data available for the epilepsy reviews of monotherapy trials were 

particularly valuable for exploring indirect comparisons and the totality of evidence 

analyses. IPD provides much more scope for these analyses with the potential to include 

covariate data, explore consistency of evidence and investigate the potential for 

interactions between treatment and covariates which could invalidate the interpretation 

of evidence from indirect comparisons. Such in-depth analyses would not have been 

possible without IPD. 

Further empirical evidence for the comparison between AD and IPD approaches in 

terms of main treatment effects and meta-regression analyses will be collected in due 

course with two separate research projects currently underway [57], (Jesse Berlin, 

personal communication, ESTEEM project). 

7.3. Areas for further research 

Several areas for further research that are of particular interest to the author have been 

identified in the process of producing this thesis. Additional empirical evidence 

comparing the survival curve approach with and without incorporating numbers at risk 
for estimating log hazard ratio and its variance would be useful. Further simulated data 

based on a larger numbers of patients and repetitions are required to reliably explore 

and compare alternative methods of meta-analysis with particular emphasis on Cox 

regression models for estimating the overall treatment effect and heterogeneity 

parameter. The suite of programs for fitting random effects Cox models presented in 

this thesis are extremely valuable but their usefulness may be limited in practice as a 
large amount of computing time may be required to obtain parameter estimates. Further 

improvements to the estimation process may be achievable and should be explored in 

more detail. The potential impact of tied data in terms of discrepancy between estimates 
from stratified log-rank analyses and stratified Cox models was highlighted for the 

outcome time to 12 month remission in the epilepsy example. Standard theoretical 

results for the connection between the Log-rank and Cox regression model described in 

section 3.5.1 are valid when there are no tied event times. Further modifications to the 
likelihood function are required to facilitate the occurrence of ties and explore the 



CHAPTER 7 Concluding remarks and further work 223 

connection between these methods under these conditions. The occurrence of ties may 
be a problem in other reviews with time-to-event outcomes, and this should be explored 
further. Expanding the current simulation study to explore varying degrees of ties will 

allow the impact on estimation to be evaluated. The resulting information could be 

linked with data from current IPD reviews to evaluate how much of a problem ties may 

be in practice. Either way, it is clear that to adequately explore this issue and potentially 

adjust analyses accordingly, IPD is essential. The theory and facility to fit a Cox 

regression model with multiple random treatment effects requires investigation. This 

model would allow the totality of evidence analysis to be explored with the assumption 

of random treatment effects which would incorporate any between trial variability in 

relative effects and is perhaps a more realistic analysis. Further advantages may also be 

gained from adopting a Bayesian approach to the analysis. From a clinical point of view 
in relation to the epilepsy reviews included in this thesis, the totality of evidence analyses 

require further work in terms of exploring treatment-covariate interactions for the 

outcomes time to withdrawal and 12 month remission as well as exploratory analyses of 

other factors. Finally, the models considered throughout, for the analysis of individual 

patient failure time data are each based around the semi-parametric Cox regression 

model. Further research is required to investigate the potential benefits of other models 

such as an accelerated life model, or models that assume some parametric distribution 

for the data. 
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APPENDIX A 

SAS programs for fitting random effects Cox models 
using the Breslow method for handling ties 

A. 1. Cox model with fixed trial indicator variables and random 
treatment effects (FE/RE) using Breslow method for handling ties 

/* data contains variable id (observation number), sastime (time-to-event), censor 
(censoring variable for time-to-event), treat (treatment indicator variable), no1001- 
no1005 (indicator variables representing 5 included trials) */ 

proc sort data=data; 
by sastime descending censor; 

run; 
data data; 
set data; 
dif= sas time-lag(sastime); 
atrisk= (dif^=0); 
run; 
data datal; 

set data; 

where censor= 1; 
keep id sastime censor; 

run; 
data data2; 
set data; 
where censor=0; 
keep id sastime censor; 

run; 
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data data3; 
set datal; 
keep sastime censor; 

proc transpose data=data3 out=data4; 
by sastime; 
var censor; 

data censor; 
set data4; 
censor=sum(of coil-co1357); 
keep sastime censor, 

run; 

data data6; 
set censor data2; 

proc sort data=data6; 
by sastime; 
data data7; 
set data6; 
keep sastime censor; 
proc transpose data=data7 out=data8; 
by sastime; 
vat censor; 
data data9; 

set data8; 
/*CHANGE SO THAT RANGE IS THE NUBER OF COLUMNS PRINTED*/ 
/*OFF IN DATA8 */ 
censor=sum(of coil-coil3); 
keep sastime censor; 

run; 
data datalO; 

set data9; 
keep sastime; 
data data; 

merge data datalO; 
by sastime; 

run; 

POINT X 

/* Program for analysis of epilepsy data */ 

proc iml worksize=100000; 

cc1=5; /* number of trials */ 
cc2=1225; /* total sample size 

use data; 
read all into P; 
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d=P[, 3]; /* vector indicating censoring (censor) */ 
set=P[, 10]; /* vector indicating number at risk (atrisk) */ 

use data6; /* vector indicating ties 
read all into H; 
t=H [, 3]; 

nn=nrow(t); 
*-------------- --------- 
j=t[1]; 
if j>1 then 
do; 
ttO=repeat(O, j-1,1); 
tt1=j//tt0; 
end; 
else ttl=j; 

* ----------------------* 
do q=2 to nn; 
j=t[q]; 
if j>1 then 
do; 

tt0=repeat(O, j-1,1); 
tt2=j//ttO; 
end; 
else tt2=j; 
ttl=ttl //tt2; 
end; 

TIES=diag(ttl); 
X=P[, l] (I P[, 6: 9]; 
Z1=P[, 5: 9]#P[, 1]; 

/* design matrix (fixed effects) */ 
/* design matrix (random effects interaction) */ 

/* vector of fixed effects */ 
variable= {'treat', 'no1002', 'no1003', 'no1004', 'nol OO5'}; 
fixnum=5; /* number of fixed effects */ 
initbeta=j(fixnum, 1,0); /* vector of initial values for beta */ 
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/* random effects */ 
initul=j(ccl, 1,0); /* vector of initial values for variance for interaction 

compo= {'thetal'}; /* variance component of frailty */ 
inithel=l; /* interaction */ 

prelike=0; 
iterate=0; 
dif= 10000; 
L=O; 

do k=1 to 5000 until(dif<le-6); /* convergence criterion */ 
iterate=iterate+l; 

prelike=L; 
newbeta=initbeta; 
newul=initul; 

/* change estimate */ 
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newthel=inithel; 

/* parameter estimation */ 
eta=X*newbeta+Z1*newul; /* systematic component */ 
wl=exp(eta); 
W=diag(wl); 
WW=diag(set); 
do i=1 to cc2; 
if WW[i, i]=1 then WW[i, i: cc2]=1; 
end; 

w2=WW*wl; 
do kk=1 to cc2; 
if w2[kk]=0 then w2 [kk] = 10000; 
end; 

al =ttl /w2; 
A=diag(al); 
M=WW'; 
BB=M*A*j(cc2,1,1); 
B=diag(BB); 

L11=d-W*M*A*j(cc2,1,1); /* derivative of partial likelihood */ 
AA=diag(set/w2); 
L12=W*B-W*M*TIES*AA*AA*M'*W; /* second derivative of likelihood */ 
XZ1=X'//Z1'; 
XZ2=X Z1; 
V=XZ1*L12*XZ2; /* covariance matrix 

L1=(d#(eta-ttl#log(w2)))'*j(cc2,1,1); /* log-likelihood */ 

/* update the estimate */ 
para=newbeta//newul; 
qq= (newul /newthel); 

q j(fixnum, 1,0)//qq; 

RR1=I(ccl)/newthel; 
RR2=j (fixnum, fixnum, 0); 
R=block(RR2, RR1); 

V=V+R; /* covariance matrix 

L=L1 

-0.5# (ccl #log(newthel)+(newul'*newul /newthel)); 

if prelike>L then newpara=para+0.5#(-ginv(V)*q+ginv(V)*(XZ1*L11)); 
else newpara=para-ginv(V)*q+ginv(V)*(XZ1*L11); /* updated parameter */ 

initbeta=newpara [l : fixnum, ]; 
initul =newpara [fixnum+1: flxnum+ccl, ]; 

invV=ginv(V); 
All=invV[1: fixnum, l: fixnum]; /* covariance matrix of beta */ 
A22=invV [fixnum+l: fixnum+ccl, fixnum+l: fixnum+ccl]; 
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inithel=initul'*initul /(ccl -trace(A22)/newthel); 

dif=abs(prelike-L); 
difx=prelike-L; 
paradif=newpara-para; 

end; 

/* S. E. of beta */ 
varbeta=vecdiag(A11); 
sebeta=sgrt(varbeta); 

/* S. E. of theta (REML estimate) 
inithevl=2#(inithel ##2)/ 

(ccl-2#trace (A22)/newthel+trace(A22**2)/(inithel ##2)); 
sethel=sqrt(inithevl); 

/* print */ 
vname= {'estimate', 'se'); 

estsel=initbeta sebeta; 
estse2=inithel sethel; 
reset noname; 
print, 'fixed effects',, estsel [rowname=variable colname=vname]; 
print, 'variance of random effects (interaction)',, estse2[rowname=compo 
colname=vname]; 

interterms = {'no 1001', 'no 1002', 'no 1003', ' no 1004', 'no 1005') ; 
print, 'frailty (interaction)',, initul [rowname=interterms]; 

quit; 

A. 2. Cox model stratified by trial with random treatment effects 
(SFE/RE) using Breslow method for handling ties 

/* data contains variable id (observation number), sastime (time-to-event), censor 
(censoring variable for time-to-event), treat (treatment indicator variable), no1001- 
nol005 (indicator variables representing 5 included trials), hospno (variable representing 
trial number with values 1-5) */ 

proc sort data=data; 
by hospno sastime descending censor; 

run; 

data data; 
set data; 
dif= sastirre-lag(sastirre); 
atrisk=(dif^=0); 

run; 
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data data; 
set data; 
by hospno sastime descending censor; 
if first. hospno then if atrisk=0 then atrisk=1; 
run; 

data datal; 
set data; 
where censor=l; 
keep id hospno sastime censor; 

run; 
data data2; 
set data; 
where censor=0; 
keep id hospno sastime censor; 

run; 

data data3; 

set datal; 
keep hospno sastime censor; 
proc transpose data=data3 out=data4; 
by hospno sastime descending censor; 
var censor; 

run; 
proc print; 
run; 
data censor; 
set data4; 
censor= sumo f coil -co1115); 
keep hospno sastime censor; 

run; 

data data6; 
set censor data2; 

proc sort data=data6; 
by hospno sastime; 
run; 

data data7; 
set data6; 
keep hospno sastime censor; 

proc transpose data=data7 out=data8; 
by hospno sastime; 
var censor; 
run; 

data data9; 
set data8; 
censor=sum(of coil-co18); 
keep hospno sastime censor; 
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data datalO; 

set data9; 
keep hospno sastime same; 

data data; 
merge data datalO; 
by hospno sastime; 

run; 

data datahosp; 
set data; 
run; 

/* analysis of epilepsy data */ 
proc iml; 

cc1=5; /* number of trials 
cc2=1225; /* total sample size */ 
nnl=122; /* number in each trial 
nn2=103; 
nn3=288; 
nn4=246; 
nn5=466; 

nnla=122; /* cumulative number in each trial */ 

nn2a=225; 
nn3a=513; 
nn4a=759; 
nn5a=1225; 

use datahosp; 
read all into P; 
hosp=P[, 4]; /* vector indicating trial */ 

d=P[, 3]; /* vector indicating censoring (censor) */ 
dl =P[l: nnl a, 3]; 
d2=P[nnl a+1: nn2a, 3]; 
d3=P [nn2a+I : nn3a, 3]; 
d4=P [nn3a+l : nn4a, 3]; 
d5 =P [nn4a+ l: nn5 a, 3]; 

set=P[, 131; 
setl=P[1: nnla, 13]; /* vector indicating number at risk (atrisk) 
sett=P [nnl a+1: nn2a, 13]; 

set3=P [nn2a+1: nn3a, 13]; 
set4=P [nn3a+1: nn4a, 13]; 
set5=P[nn4a+1: nn5a, 13]; 

230 

/* sorting out ties in each trial */ 
use data6; /* vector indicating ties */ 
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read all into H; 
t=H [, 3]; 
nn=nrow(t); /* number of rows oft */ 

*---------------------- - *; 
j=t[1]; /* dealing with the first observation */ 
if j>1 then 
do; 
ttO=repeat(O, j-1,1); 
ttl =j//tt0; 
end; 

else ttl =j; 
* ----------------------- *. 
do q=2 to nn; 
j=t[9]; 
if j>1 then 
do; 
ttO=repeat(O, j-1,1); 
tt2=j//tt0; 
end; 
else tt2=j; 
ttl=ttl//tt2; /* vector with cc2 entries */ 
end; 

tl=ttl[1: nnla]; /* trial 1 */ 
t2=ttl[nnla+l: nn2a]; /* trial2 */ 
t3=tt1 [nn2a+l: nn3a]; 
t4=tt1 [nn3a+1: nn4a]; 
t5=tt1 [nn4a+1: nn5a]; 

TIES1=diag(tl); 
TIES2=diag(t2); 
TIES3=diag(t3); 
TIES4=diag(t4); 
TIES5=diag(t5); 

X=P[, 1]; /* design matrix trial (fixed effects) */ 
X1=P[1: nnl a, 1]; /*trial P/ 
X2=P[nnla+l: nn2a, 1]; /* trial 2 */ 
X3 =P [nn2 a+ l: nn 3 a, 1 ]; 
X4=P [nn3 a+l : nn4a, 1 ]; 
X5=P[nn4a+1: nn5a, 1]; 

Z1=P[, 8: 12]#P[, I]; /* design matrix (random effects interaction) */ 
Z11=P[l: nnl a, 8: 12] #P[1: nnl a, 1]; 
Z12=P[nnl a+l: nn2a, 8: 12] #P[nnl a+l: nn2a, 1]; 
Z13=P[nn2a+l: nn3a, 8: 12] #P[nn2a+l : nn3a, 1]; 
Z14=P[nn3a+l: nn4a, 8: 12] #P[nn3a+l : nn4a, 1]; 
Z15=P[nn4a+l: nn5a, 8: 12] #P[nn4a+1: nn5a, I]; 

/* fixed effects */ 
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variable= {'treat'}; /* vector of fixed effects */ 
fixnum=l; /* number of fixed effects */ 
initbeta=j(fixnum, 1,0); /* vector with initial values of beta */ 

/* random effects */ 
frailty= {'nol001', 'nol002', 'nol003', 'no1004', 'no1005'}; 
initul=j(cc1,1,0); /* initial value of deviations */ 

compo= {'thetal'}; 
inithe1=1; /* initial value for random effects variance */ 

prelike=0; 
iterate=0; 
dif=10000; 
L=O; 

do k=1 to 500 until(dif<le-6); 
iterate =iterate+ 1; 
prelike=L; 

/* convergence criterion */ 

newbeta=initbeta; /* change estimate */ 

newel =initul; 
newthel=inithel; 

/* parameter estimation */ 
eta1=X1 *newbeta+Z11 *newul; 
eta2=X2*newbeta+Z12*newul; 
eta3=X3*newbeta+Z13*newul; 
eta4=X4*newbeta+Z 14*newul; 
eta5=X5*newbeta+Z 15*newul; 

/* systematic component 
/* systematic component 
/* systematic component 
/* systematic component 
/* systematic component */ 

w1 a=exp(etal); 
w2a=exp(eta2); 
w3a=exp(eta3); 
w4a=exp(eta4); 
w5a=exp(eta5); 

Wl b=diag(wl a); 
W2b=diag(w2a); 
W3b=diag(w3a); 
W4b=diag(w4a); 
W5b=diag(w5a); 

WW=diag(set); 
WW1=diag(setl); 
WW2=diag(set2); 
WW3=diag(set3); 
WW4=d. iag(set4); 
WW5=diag(set5); 
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do i=1 to nnl; 
if WWI [i, i]=1 then WW1 [i, i: nnl]=1; 

end; 
w21=WW1*wla; 
do kk=1 to nnl; 
if w21 [kk]=0 then w21 [kk]=10000; 
end; 

a11=tl/w21; 
AA1=diag(a11); 
M1=WW1'; 
BB1=M1*AA1*j(nn1,1,1); 
BI=diag(BB1); 
L111=d1-W1b*M1*AA1*j(nn1,1,1); /* derivative of partial likelihood */ 
AAA1=diag(setl /w21); 
L121=Wib*B1-W1b*M1*TIES1*AAA1*AAA1*Ml'*Wlb; /* second derivative */ 
/***************************/ 
do i=1 to nn2; 

if WW2[i, i]=1 then WW2[i, i: nn2]=1; 
end; 
w22=WW2*w2a; 
do kk=1 to nn2; 
if w22[kk]=0 then w22 [kk] = 10000; 
end; 

a12=t2/w22; 
AA2=diag(a12); 
M2=WW2'; 
BB2=M2*AA2*j (nn2,1,1); 
B2=diag(BB2); 
L112=d2-W2b*M2*AA2*j(nn2,1,1); /* derivative of partial likelihood */ 

AAA2=diag(set2/w22); 
L122=W2b*B2-W2b*M2*TIES2*AAA2*AAA2*M2'*W2b; /* second derivative */ 
/***************************/ 
do i=1 to nn3; 
if WW3[i, i]=1 then WW3[i, i: nn3]=1; 

end; 
w23=WW3*w3a; 
do kk=1 to nn3; 
if w23[kk]=0 then w23 [kk] = 10000; 
end; 

a13=t3/w23; 
AA3=diag(a13); 
M3=WW3'; 
BB3=M3*AA3*j (nn3,1,1); 
B3=diag(BB3); 
L113=d3-W3b*M3*AA3*j(nn3,1,1); /* derivative of partial likelihood */ 
AAA 3= diag (s e t3 /w23); 
L123=W3b*B3-W3b*M3*TIES3*AAA3*AAA3*M3'*W3b; /* second derivative */ 
/***************************/ 
do i=1 to nn4; 
if WW4[i, i]=1 then WW4[i, i: nn4]=1; 

end; 



A. 2. Cox model (SFE/RE) using Breslow method for handling ties 234 

w24=WW4*w4a; 
do kk=1 to nn4; 
if w24[kk]=0 then w24[kk]=10000; 
end; 

a14=t4/w24; 
AA4=diag(a14); 
M4=WW4'; 
BB4=M4*AA4*j(nn4,1,1); 
B4=diag(BB4); 
L114=d4-W4b*M4*AA4*j(nn4,1,1); /* derivative of partial likelihood */ 
AAA4=diag(set4/w24); 
L124=W4b*B4-W4b*M4*TIES4*AAA4*AAA4*M4'*W4b; /* second derivative */ 
/***************************/ 
do i=1 to nn5; 
if WW5[i, i]=1 then WW5[i, i: nn5]=1; 

end; 
w25=WW5*w5a; 
do kk=1 to nn5; 
if w25[kk]=0 then w25 [kk] = 10000; 
end; 

a15=t5/w25; 
AA5=diag(al5); 
M5=WW5'; 
BB5=M5*AA5*j (nn5,1,1); 
B5=diag(BB5); 

L115=d5-W5b*M5*AA5*j(nn5,1,1); /* derivative of partial likelihood */ 
AAA5=diag(set5 /w25); 
L125=W5b*B5-W5b*M5*TIES5*AAA5*AAA5*M5'*W5b; /* second derivative */ 
/***************************/ 

L11=L111//L112//L113//L114//L115; 
L12=block(L121, L122, L123, L124, L125); 

XZ1=X'//Z1'; 
XZ2=X II Zl; 
V=XZ1*L12*XZ2; /* covariance matrix */ 

L1=(dl # (etal-tl #log(w21)))'*j (nnl, 1,1)+(d2#(eta2- 
t2#log(w22)))'*j (nn2,1,1)+(d3# (eta3-t3#log(w23)))'*j (nn3,1,1)+(d4# (eta4- 
t4#log(w24)))' *j (nn4,1,1) 
+(d5#(eta5-t5#1og(w25)))'*j(nn5,1,1); /* log-likelihood */ 

/* update the estimate */ 
para=newbeta//newul; 
qq=(newul /newthel); 
q=j(fixnum, 1,0)//qq; 

RR1=I(ccl)/newthel; 
RR2=j (fixnum, fixnum, O); 
R=block(RR2, RR1); 
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V=V+R; /* covariance matrix */ 

L=L1-0.5#(ccl #log(newthel)+(newul'*newul /newthel)); 

if prelike>L then newpara=para+0.5#(-ginv(V)*q+ginv(V)* (XZ1 *L1 1)); 
else newpara=para-ginv(V)*q+ginv(V)* (XZ1 *L1 l); 

initbeta=newpara [1: fixnum, ]; 
initul=newpara[fixnum+l: fixnum+ccl, ]; 

invV=ginv(V); 
All=invV[1: fixnum, l: fixnum]; /* covariance matrix of beta */ 
A22=invV [fixnum+l: fixnum+ccl, fixnum+l: fixnum+ccl]; 

inithel=initul'*initul /(ccl-(trace(A22)/newthel)); 

dif=abs(prelike-L); 
difx=prelike-L; 

paradif=newpara-para; 

end; 

/* S. E. of beta */ 
varbeta=vecdiag(A11); 
sebeta=sgrt(varbeta); 

/* S. E. of theta (REML estimate) */ 
inithevl=2#(inithel ##2)/ 

(ccl -2#trace(A22)/newthel+trace(A22**2)/ (inithel ##2)); 

sethel=sqrt(inithevl); 

/* print */ 
vname= {'estimate', 's e' }; 

estsel=initbeta sebeta; 
estse2=inithel Iý sethel; 
reset noname; 
print, 'fixed effects'�estsel [rowname=variable colname=vname]; 
print, 'variance of random effects (interaction)',, estse2[rowname=compo 
colname=vname]; 

interterms= {'no1001', 'no1002', 'no1003', 'no1004', 'no1005' ); 

print, 'frailty (mteraction)',, initul [rowname=interterms]; 

quit; 
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A. 3. Cox model with random trial effects and random treatment 
effects (RE/RE) using Breslow method for handling ties 

This program is similar to the original program supplied by Takuhiro 
Yamaguchi which has been adapted and extended in this thesis to fit other 
models of interest in meta-analysis of individual patient time-to-event data 
(Appendix Al, A2, BI, B2, B3). 

/* data sorting steps are same as Appendix A.. 1 up to POINT X 

/* Program for analysis of epilepsy data */ 

proc iml; 

cc1=5; /* number of trials */ 
cc2=1225; /* total sample size 

use data; 
read all into P; 

d=P[, 31; /* vector indicating censoring (censor) */ 

set=P[, 12]; /* vector indicating number at risk (atrisk) */ 

use data6; /* vector indicating ties 
read all into H; 
t=H [, 3]; 
nn=nrow(t); 

j=t[1]; 
if j>1 then 
do; 
ttO=repeat(O, j-1,1); 
ttl =j//tt0; 

end; 
else ttl=j; 

do q=2 to nn; 
j=t[q]; 
if j>1 then 
do; 

ttO=repeat(O, j-1,1); 
tt2=j//ttO; 
end; 
else tt2=j; 
ttl =ttl //tt2; 
end; 

TIES=diag(ttl); 
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X=P[, 1] ýý P[, 4: 5]; /* design matrix (fixed effects) */ 

ZO=P[, 7: 11]; /* design matrix (random effects baseline) */ 
Z1=ZO#P[, 1]; /* design matrix (random effects interaction) */ 

/* fixed effects */ 
variable= {'treat'}; /* vector of fixed effects */ 
fixnum=l; /* number of fixed effects */ 
initbeta=j(fixnum, 1,0); /* vector of initial values */ 

/* random effects */ 
frailty= {'no1001', 'no1002', 'no1003', 'no1004', no1005'}; /* vector of frailty */ 
inituO=j(cc1,1,0); /* initial value of variance for baseline */ 
initul=j(cc1,1,0); /* initial value of variance for interaction */ 

compo= {'thetaO', 'thetal'}; 
initheO=1; /* baseline */ 
inithel=l; /* interaction */ 

prelike=0; 
iterate=0; 
dif= 10000; 
L=O; 

/* variance component of frailty */ 

do k=1 to 500 until(dif<le-6); 
iterate= iterate+ 1; 
prelike=L; 

newbeta=initbeta; 
newu0=initu0; 
newul=initul; 
newtheO=initheO; 
newthel=inithel; 

/* convergence criterion */ 

/* parameter estimation */ 
eta=X*newbeta+ZO*newuO+Z1*newul; /* systematic component */ 

wl=exp(eta); 
W=diag(wl); 

WW=diag(set); 
do i=1 to cc2; 
if WW[i, i]=1 then WW[i, i: cc2]=1; 
end; 

w2=WW*w1; 
do kk=1 to cc2; 
if w2[kk]=0 then w2[kk]=10000; 
end; 
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al=ttl/w2; 
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A=diag(al); 

M=WW'; 
BB=M*A*j(cc2,1,1); 
B=diag(BB); 

L11=d-W*M*A*j(cc2,1,1); /* derivative of partial likelihood */ 
AA=diag(set/w2); 

L12=W*B-W*M*TIES*AA*AA*M'*W; /* second derivative */ 

XZ1=X'//ZO'//Z1'; 
XZ2=X II ZO I 1Z1; 
V=XZ1*L12*XZ2; /* covariance matrix 

L1=(d#(eta-ttl#log(w2)))'*j(cc2,1,1); /* log-likelihood */ 

para=newbeta//newu0//newul; 
qq=(newuO/newtheO)//(newul /newthel); 

q=j(fixnum, 1,0)//qq; 

RRO=I(ccl)/newtheO; 
RR1=1(ccl)/newthel; 
RR2=j (fixnum, fixnum, 0); 
R=block(RR2, RRO, RR1); 

V=V+R; /* covariance matrix 

L=L1 - 0.5 
#(cc1 #log(newtheO#newthel)+(newu0'*newu0/newtheO+newul'*newul /newthel)); 

if prelike>L then newpara=para+0.5#(-ginv(V)*q+ginv(V)*(XZ1*L11)); 
else newpara=pars-ginv(V)*q+ginv(V)*(XZ1*L11); /* updated parameter */ 

initbeta=newpara [1: fixnum, ]; 
inituO=newpara [fixnum+l : fixnum+cc l , 

]; 
initul =newpara[fixnum+l +ccl : fixnum+ccl #2, ]; 

invV=ginv(V); 
A11=invV[1: fixnum, l: fixnum]; /* covariance matrix of beta */ 
A22=invV [fixnum+l : fixnum+ccl, fixnum+l: fixnum+ccl]; 
A33=invV [fixnum+l +ccl : fixnum+ccl #2, fixnum+l +ccl : fixnum+ccl #2]; 

initheO=inituO' *inituO/ (cc l -trace (A22) /newtheO); 
inithe 1 =initul '*initul /(cc1-trace (A33)/newthel); 

dif=abs(prelike-L); 
difx=prelike-L; 
paradif=newpara-para; 

end; 

/* S. E. of beta */ 
warbeta=vecdiag(A 11); 
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sebeta=sgrt(varbeta); 

/* S. E. of theta (REML estimate) */ 
inithevO=2# (initheO# #2)/ 

(cc l -2 # tra ce (A22) /newtheO+ tra ce (A22* * 2) / (initheO ## 2)); 
s ethe0= sgrt(inithevO); 
inithevl=2# (inithel ##2)/ 

(cc l -2# trace (A33) / newthe l +trace (A 33 ** 2) / (inithe l ##2)); 
sethel=sgrt(inithevl); 

/* print */ 
vname= ('estimate', 'se'); 

estsel=initbeta II sebeta; 
estse2=(mitheO II setheO)//(inithel II sethel); 
reset noname; 
print, 'fixed effects',, estsel [rowname=variable colname=vname]; 
print, 'variance of random effects (baseline, interaction)',, estse2[rowname=compo 
colname=vname]; 
print, 'frailty (baseline)',, inituO[rowname=frailty]; 
print, 'frailty (interaction)',, initul [rowname=frailty]; 

quit; 
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APPENDIX B 

SAS programs for fitting random effect Cox models 
using the Efron method for handling ties 

B. 1. Cox model with fixed trial indicator variables and random 
treatment effects using Efron method for handling ties 

/* data contains variable id (observation number), sastime (time-to-event), censor 
(censoring variable for time-to-event), treat (treatment indicator variable), nol001- 
no1005 (indicator variables representing 5 included trials) */ 

proc sort data=data; 
by sastime descending censor; 

run; 

data data; 
set data; 
dif= sas time-lag(s astime); 
atrisk=(dif^=0); 

run; 

data datal; 
set data; 
where censor=l; 
keep id sastime censor; 

run; 
data data2; 
set data; 
where censor=0; 
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keep id sastime censor, 
run; 

data data3; 
set datal; 
keep sastime censor, 

proc transpose data=data3 out=data4; 
by sastime; 
var censor; 

data censor, 
set data4; 
censor=sum(of coil-co1357); 
keep sastime censor; 

run; 

data data6; 
set censor data2; 

proc sort data=data6; 
by sastime; 
data data7; 
set data6; 
keep sastime censor; 
proc transpose data=data7 out=data8; 
by sastime; 
var censor; 
data data9; 

set data8; 

censor=sum(of coil-coil3); 
keep sastime censor, 

data datalO; 
set data9; 
keep sastime same; 
data data; 
merge data datal0; 
by sastime; 

run; 

POINT X 

/* Program for analysis of epilepsy data */ 

proc iml; 

cc1=5; /* number of trials */ 
cc2=1225; /* total sample size */ 
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use data; 
read all into P; 
d=P[, 3]; /* vector indicating censoring (censor) */ 
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set=P[, 12]; /* vector indicating number at risk (atrisk) */ 

use data6; /* vector indicating ties 
read all into H; 
t=H [, 3]; 
nn=nrow(t); 

j=t[1]; 
if j>1 then 
do; 
ttO=repeat(O, j-1,1); 
tt1=j//tt0; 

end; 
else tt1=j; 

do q=2 to nn; 
j=tjqJ; 
if j>1 then 
do; 
ttO=repeat(O, j-1,1); 
tt2=j//ttO; 
end; 

else tt2=j; 
ttl=ttl//tt2; 

end; 

/* creating vector for efron 

if j>1 then 
do; 

efronO=1; 
pos0=0; 

pos0a=0; 
do k=1 to j-1; 

efron2=6-k)/j; 
pos2=k; 

pos2a=j-(k+l); 
efronO=efronO//efron2; 

pos0=pos0//pos2; 
pos0a=posOa//pos2a; 

end; 

end; 
else do; 

efronO=j; 
pos0=0; 

pos0a=0; 
end; 

do q=2 to nn; 
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j=t[9]; 
if j>1 then 
do; 
efron2=1; 
pos2=0; 

pos2a=0; 
do k=1 to j-1; 

efron1=6-k)/j; 
posl=k; 
posla=j-(k+l); 

efron2=efron2//efronl; 
pos2=pos2//posl; 

pos2a=pos2a//posla; 
end; 
end; 
else do; 

efron2=j; 
pos2=0; 
pos2a=0; 

end; 
efronO=efronO//efron2; 
pos0=pos0//pos2; 
pos0a=posOa//pos2a; 
end; 

X=P[, 1] P[, 8: 11]; /* design matrix (fixed effects) */ 

Z1=P[, 7: 11]#P[, 1]; 

/* fixed effects */ 
variable= {'treat', 'nol002', 'nolOO3', 'nolOO4', 'nolOO5'); 
fixnum=5; /* number of fixed effects */ 
initbeta=j(fixnum, 1,0); /* vector of initial values */ 

initul=j(ccl, 1,0); /* initial value of variance for interaction */ 

compo= {'thetal'}; /* variance component of frailty */ 
inithel=l; /* interaction */ 

prelike=0; 
iterate=0; 
dif= 10000; 
L=O; 

do k=1 to 500 until(dif<le-6); /* convergence criterion 
iterate= iterate+ 1; 
prelike=L; 

newbeta=initbeta; /* change estimate 
newul=initul; 
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newthel=inithel; 

/* parameter estimation */ 
eta=X*newbeta+Z1*newul; /* systematic component */ 

wl=exp (eta); 
W=diag(wl); 
WW1=d. iag(efron0); 

do i=1 to cc2; 
if WW1 [i, i]=1 then WW1 [i, i: cc2]=1; 
if WW1[i, i]<1 then if WW1[ii]>0 then do; 

vat=WW1 [i, i]; 
s=posO[i]; 

sa=pos0a[i]; 
if i ^= cc2 then do; 

WW1 [i, i-s: i+sa]=val; 
if i+sa ^= cc2 then do; 

WW1 [ii+sa+l: cc2]=1; 
end; 

end; 
if i=cc2 then do; 

WW1 [i, i-s: i+sa]=val; 

end; 
end; 

end; 

setefs=j(cc2,1,. ); 

setefsl=j (cc2,1,. ); 
do i=1 to cc2; 

setef=set[i]; 
setefl=set[i]; 
if efronO[i]<1 then if efronO[i]>O then do; 

setef=efronO[i]; 
setefl=l; 

end; 
setefs[i]=setef; 
setefsl [i]=setefl; 

end; 

WW2s=diag(setefs); 
do i=1 to cc2; 
if WW2s[i, i]=1 then WW2s[i, i: cc2]=1; 
if WW2s[i, i]<1 then if WW2s[i, i]>0 then do; 

vat=WW2s [i, i]; 
s=posO[i]; 

sa=pos0a[i]; 
if i ^= cc2 then do; 

WW2s[i i-s: i+sa]=vat; 
if i+sa ^= cc2 then do; 

WW2s[i, i+sa+l: cc2]=1; 
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end; 

end; 
if i=cc2 then do; 

WW2s [i, i-s : i+ s a] =vat; 
end; 

end; 
end; 

M2s=WW2s'; 

w2a=WW2s*wl; 
do kk=1 to cc2; 
if w2a[kk]=0 then w2a[kk]=10000; 
end; 

ala=setefsl/w2a; 
As=diag(al a); 
AAs=diag(d/w2a); 
M1 =WW1'; 

BB1=M1 *AAs*j(cc2,1,1); 
B1=diag(BB1); 

L11=d-W*M1*As*j(cc2,1,1); /* derivative of partial likelihood */ 

TIES2=diag(d); 

L12=W*B1-W*M1*TIES2*AAs*AAs*M1'*W; /* second derivative */ 

xz1=X'//Z1'; 
XZ2=x I Z1; 
V=XZ1*L12*XZ2; 

L1=(d#(eta-log(w2a)))'*j(cc2,1,1); /* log-likelihood */ 

/* update the estimate */ 
para=newbeta//newul; 
qq= (newul /newthel); 

q=l (fixnum, 1,0) / /qq; 

RR1=I(ccl)/newthel; 
RR2=j (fixnum, fixnum, O); 
R=block(RR2, RR1); 

V=V+R; /* covariance matrix */ 

L=L1 - 0.5 #(cc1#log(newthel)+(newul'*newul/newthel)); 

if prelike>L then newpara=para+0.5#(-ginv(V)*q+ginv(V)*(XZ1*L11)); 
else newpara=para-ginv(V)*q+ginv(V)*(XZ1*L11); /* updated parameter */ 



B. 2. Cox model (SFE/RE) using Efron method for handling tics 246 

initbeto=newpara[1: fixnum, ]; 
initul=newpara[fixnum+l: fixnum+ccl, ]; 

invV=ginv(V); 
All=invV[1: fixnum, l: fixnum]; /* covariance matrix of beta */ 
A22=invV [fixnum+l : fixnum+ccl, fixnum+ l : fixnum+ccl]; 
inithe 1= initu 1'* initul / (c cl -trace (A22) / newthe 1); 

dif=abs(prelike-L); 
difx=prelike-L; 
paradif=newpara-para; 

end; 

/* S. E. of beta */ 
varbeta=vecdiag(A11); 
sebeta= sqrt(varbeta); 

/* S. E. of theta (REML estimate) */ 
inithevl=2# (inithel ##2)/ 

(ccl -2# trace (A22) /newthel +trace(A22**2) /(inithel ##2)); 

sethel=sqrt(inithevl); 

vname= {'estimate', 'se'}; 

estsel=initbeta sebeta; 
estse2=inithel sethel; 
reset noname; 
print, 'fixed effects',, estsel [rowname=variable colname=vname]; 
print, 'variance of random effects (interaction)',, estse2[rowname=compo 
colname=vname]; 

interterms = {'no 1001', 'no 1002', 'no 1003', 'no 1004', 'no 1005' }; 

print, 'frailty (interaction)',, initul [rowname=interterms]; 

quit; 

B. 2. Cox model stratified by trial with random treatment effects using 
Efron method for handling ties 

/* data contains variable id (observation number), sastime (time-to-event), censor 
(censoring variable for time-to-event), treat (treatment indicator variable), no1001- 
no1005 (indicator variables representing 5 included trials), hospno (variable indicating 
trial number 1-5) */ 

proc sort data=data; 
by hospno sastime descending censor; 
run; 
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data data; 
set data; 
dif= sas time-lag(s astime); 
atrisk= (dif^=0); 
keep id sastime censor treat hospno 

eptype sex 
nolOOl nol002 nol003 nol004 nol005 
atrisk; 

run; 

data data; 
set data; 
by hospno sastime descending censor; 
if first. hospno then if atrisk=0 then atrisk=l; 
run; 

data datal; 
set data; 
where censor=l; 
keep id hospno sastime censor; 

run; 

data data2; 
set data; 
where censor=0; 
keep id hospno sastime censor; 

run; 

data data3; 
set datal; 
keep hospno sastime censor; 

proc transpose data=data3 out=data4; 
by hospno sastime descending censor; 
var censor; 

run; 
data censor; 
set data4; 

censor=sum(of co11-co1115); 
keep hospno sastime censor; 

run; 
proc print data=data4; 

run; 

data data6; 
set censor data2; 

proc sort data=data6; 
by hospno sastime; 
run; 

data data7; 
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set data6; 
keep hospno sastime censor; 

proc transpose data=data7 out=data8; 
by hospno sastime; 
var censor; 
run; 

data data9; 
set data8; 
censor=sum(of coll-col8); 
keep hospno sastime censor; 
data datalO; 
set data9; 
keep hospno sastime same; 

data data; 
merge data data 10; 
by hospno sastime; 

run; 
data datahosp; 
set data; 
run; 

/* analysis of epilepsy data */ 
proc iml; 

cc1=5; /* number of trials */ 
cc2=1225; /* total sample size 
nn1=122; /* number in each trial */ 
nn2=103; 
nn3=288; 
nn4=246; 
nn5=466; 

nnla=122; /* cumulative number in each trial */ 
nn2a=225; 
nn3a=513; 
nn4a=759; 
nn5a=1225; 

use datahosp; 
read all into P; 
hosp=P[, 4]; /* vector indicating trial */ 

d=P[, 3]; /* vector indicating censoring (censor) */ 
dl =P[l: nnl a, 3]; 
d2=P [nn1 a+ l : nn2a, 3]; 
d3=P [nn2a+1: nn3a, 3]; 
d4=P [nn3a+1: nn4a, 3]; 
d5 =P [nn4a+ 1: nn5 a, 3]; 
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set=P[, 13]; /* vector indicating number at risk (atrisk) 
set1=P[1: nnla, 13]; 
set2=P [nnl a+l : nn2a, 13]; 

set3=P[nn2a+1: nn3a, 13]; 

set4=P[nn3a+1: nn4a, 13]; 
set5=P[nn4a+1: nn5a, 13]; 

/* sorting out ties in each trial */ 
use data6; /* vector indicating ties 
read all into H; 
t=H [, 3]; 
nn=nrow(t); /* number of rows oft */ 

*----------------------- *. 
j=t[1]; /* first observation */ 
if j>1 then 
do; 
ttO=repeat(O, j-1,1); 
ttl=j//tt0; 
end; 
else ttl=j; 
*------------------------- 
do q=2 to nn; 
j=t[q]; 
if j>1 then 
do; 
ttO=repeat(O, j-1,1); 
tt2=j//tt0; 
end; 
else tt2=j; 

ttl=ttl//tt2; /* vector with cc2 entries */ 
end; 

/* creating vector for efron 
*------------------------ 
j=t[1]; 
if j>1 then 
do; 

efronO=1; 
pos0=0; 

posOa=0; 
do k=1 to j-1; 

efron2=0-k)/j; 
pos2=k; 

pos2a=j-(k+l); 
efronO=efronO//efron2; 

posO=posO//pos2; 
pos0a=posOa//pos2a; 

end; 

end; 
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else do; 
efronO=j; 

pos0=0; 
posOa=0; 

end; 
*--------------- -------- 
do q=2 to nn; 
j=t[q]; 
if j>1 then 
do; 
efron2=1; 
pos2=0; 

pos2a=0; 
do k=1 to j-1; 

efronl=o-k)/j; 
posl=k; 

posla=j-(k+l); 
efron2=efron2//efronl; 

pos2=pos2//post; 
pos2a=pos2a//posla; 

end; 
end; 
else do; 

efron2=j; 
pos2=0; 

pos2a=0; 
end; 

efronO=efronO//efron2; 
posO=posO//pos2; 
pos0a=posOa//pos2a; 
end; 

efron0l=efronO[1: nnla]; /* trial 1 */ 
efron02=efronO[nnla+1: nn2a]; /* trial 2 */ 
e fron03 =e fronO [nn2a+ l : nn3 a]; 
efron04=efronO [nn3a+1: nn4a]; 
efron05=efronO [nn4a+1: nn5a]; 

pos0l=posO[1: nnla]; /* trial 1 */ 
pos02=posO[nnla+l: nn2a]; /* trial 2 */ 
pos03=posO [nn2a+1: nn3a]; 
pos04=posO [nn3a+1: nn4a]; 
posO5=posO[nn4a+1: nn5a]; 

posOal=pos0a[1: nnla]; /* trial 1 */ 
posOa2=pos0a[nnla+l: nn2a]; /* trial 2 */ 
posOa3=pos0a[nn2a+1: nn3a]; 
posOa4=pos0a [nn3a+1: nn4a]; 
posOa5=pos0a[nn4a+l : nn5a]; 

/* design matrix (fixed effects) */ 
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X1=P[1: nnla, l]; /* trial 1*/ 
X2=P[nnla+l: nn2a, 1]; /* trial 2 */ 
X3=P[nn2a+1: nn3a, 1]; 
X4=P[nn3a+1: nn4a, 1]; 
X5=P[nn4a+1: nn5a, 1]; 

Z1=P[, 8: 12]#P[, 1]; /* design matrix (random effects interaction) */ 
Z11=P[1 : nnl a, ß: 12] #P [1: nn1 a, 1]; 
Z 12=P [nn l a+ 1: nn2a, 8: 12] #P [nnl a+ l : nn2a, 1 ]; 
Z13=P [nn2a+1: nn3a, 8: 12] #P [nn2a+1: nn3a, 1]; 
Z14=P[nn3a+1: nn4a, 8: 12]#P[nn3a+1: nn4a, 1]; 
Z15=P[nn4a+1: nn5a, 8: 12]#P[nn4a+1: nn5a, 1]; 

/* fixed effects */ 
variable= {'treat'}; /* vector of fixed effects */ 
fixnum=l; /* number of fixed effects */ 
initbeta=j(fixnum, 1,0); /* vector of initial values */ 

/* random effects */ 
frailty= {'no 1001, 'no 1002', 'no 1003', 'no 1004', ' no 100 5' }; 
initul=j(cc1,1,0); /* initial value of variance for interaction */ 

compo= {'thetal'}; 
inithel=l; 

prelike=0; 
iterate=0; 
dif=10000; 
L=O; 

/* interaction */ 

do k=1 to 500 until(dif<le-6); /* convergence criterion 
iterate= iterate+ 1; 

prelike=L; 

newbeta=initbeta; 
newul=initul; 
newthel=inithel; 

/* parameter estimation */ 
etal =X1 *newbeta+Z 11 *newul; 
eta2=X2*newbeta+Z 12*newul; 
eta3=X3*newbeta+Z 13*newul; 

eta4=X4*newbeta+Z 14*newul ; 
eta5=X5*newbeta+Z 15*newul; 

wla=exp(etal); 
w2a=exp(eta2); 
w3a=exp(eta3); 
w4a=exp (eta4); 

w5a=exp(eta5); 

251 
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Wl b=diag(wl a); 
W2b=diag(w2a); 
W3b=diag(w3a); 
W4b=diag(w4a); 
W5b=diag(w5a); 

WW=diag(set); 
WW 1=diag(setl); 
WW2=diag(set2); 
WW3=diag(set3); 
WW4=diag(set4); 
WW5=diag(set5); 

/* trial 1 */ 
WW11=diag(efron0l); 

do i=1 to nnl; 
if WW11 [i, i]=1 then WW11 [i, i: nnl]=1; 
if WW11[i, i]<1 then if WW11[i, i]>0 then do; 

vat=WW11 [i, i]; 

s=pos01 [i]; 
sa=posOal [i]; 
if i ^= nnl then do; 

WW11 [i, i-s: i+sa]=val; 
if i+sa ^= nnl then do; 

WW11 [i, i+sa+l: nnl]=1; 
end; 

end; 
if i=nnl then do; 

WW11 [i, i-s: i+sa]=val; 

end; 
end; 

end; 

setefs=j(nnl, 1,. ); 

setefsl=j(nnl, l,. ); 
do i=1 to nnl; 

setef=setl [i]; 

setefl=setl [i]; 
if efron0l [i]<1 then if efron0l [i]>O then do; 

setef=efron0l [i]; 
setefl=l; 

end; 
setefs[i]=setef; 
setefsl[i]=setefl; 

end; 

WW2sl=diag(setefs); 
do i=1 to nnl; 
if WW2s1[ii]=1 then WW2s1[i, i: nnl]=1; 
if WW2s1 [ii]<1 then if WW2s1 [i, i]>0 then do; 
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vat=WW2sl [i, i]; 

s=pos01 [i]; 

sa=posOal [i]; 
if i ^= nnl then do; 

WW2s1 [i, i-s: i+sa]=val; 
if i+sa ^= nnl then do; 

WW2s1 [i, i+sa+l: nn1]=1; 
end; 

end; 
if i=nnl then do; 
WW2s1 [i i-s: i+sa]=vat; 

end; 
end; 
end; 

M2s1=WW2s1'; 

w2a1=WW2s1*wla; 
do kk=1 to nnl; 
if w2al [kk]=0 then w2a1 [kk]=10000; 
end; 

ala=setefsl/w2al; 
Asl=diag(a1 a); 
AAsl =diag(dl /w2al); 
M11=WW11'; 

BB11=M11 *AAs1 *j (nnl, 1,1); 
B11=diag(BB11); 

L111=d1-W1b*M11*As1*j(nn1,1,1); /* derivative of partial likelihood */ 

TIES21=diag(dl); 

L121=Wlb*B11-W1b*M11*TIES21*AAs1*AAs1*M11'*W1b; /* second derivative 
*/ 

/* trial 2 */ 
WW12=diag(efronO2); 

do i=1 to nn2; 
if WW12[i, i]=1 then WW12[i, i: nn2]=1; 
if WW12[i, i]<1 then if WW12[i, i]>O then do; 

vat=WW12[i, i]; 
s=pos02[i]; 

sa=posOa2[i]; 
if i ^= nn2 then do; 

WW1 2 [i, i-s: i+sa] =val; 
if i+sa ^= nn2 then do; 

WW1 2 [i, i+ s a+ 1: nn2] =1; 
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end; 
end; 
if i=nn2 then do; 

WW 12 [i, i-s: i+sa] =val; 

end; 
end; 

end; 

setefs=j(nn2,1,. ); 
setefsl=j (nn2,1,. ); 
do i=1 to nn2; 

setef=set2[i]; 
setefl=set2[i]; 
if efron02[i]<1 then if efron02[i]>O then do; 

setef=efron02[i]; 
setefl=l; 

end; 
setefs[i]=setef; 
setefsl [i]=setefl; 

end; 

WW2s2=diag(setefs); 
do i=1 to nn2; 
if WW2s2[ii]=1 then WW2s2[i, i: nn2]=1; 
if WW2s2[i, i]<1 then if WW2s2[i, i]>O then do; 

vat=WW2s2[i, i]; 
s=pos02[i]; 

sa=posOa2[i]; 
if i ^= nn2 then do; 

W W2s2 [i, i-s: i+sa] =val; 
if i+sa ^= nn2 then do; 

WW2s2[i, i+sa+l: nn2]=1; 
end; 

end; 
if i=nn2 then do; 

W W2s2 [i, i-s: i+sa] =val; 
end; 

end; 
end; 

M2s2=WW2s2'; 

w2a2=WW2s2*w2a; 
do kk=1 to nn2; 
if w2a2[kk]=0 then w2a2[kk]=10000; 
end; 

ala=setefsl /w2a2; 
As2=diag(ala); 
AAs2=diag(d2/w2a2); 
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M12=WW12'; 

BB12=M12*AAs2*j(nn2,1,1); 
B12=diag(BB12); 

L112=d2-W2b*M12*As2*j(nn2,1,1); /* derivative of partial likelihood */ 

TIES22=diag(d2); 

L122=W2b*B12-W2b*M12*TIES22*AAs2*AAs2*M12'*W2b; /* second derivative 

*/ 
/* trial 3 */ 
WW 13=diag(efronO3); 

do i=1 to nn3; 
if WW13[i, i]=1 then WW13[i, i: nn3]=1; 
if WW13[i, i]<1 then if WW13[i i]>O then do; 

vat=WW 13 [i i]; 
s=pos03[i]; 

sa=posOa3[i]; 
if i ^= nn3 then do; 

WW1 3 [i, i-s: i+sa] =val; 
if i+sa ^= nn3 then do; 

WW13 [i, i+sa+l: nn3]=1; 
end; 

end; 
if i=nn3 then do; 

WW1 3 [i, i-s: i+sa] =val; 
end; 

end; 
end; 

setefs=j(nn3,1,. ); 
setefsl=j (nn3,1,. ); 
do i=1 to nn3; 

setef=set3[i]; 
setefl=set3[i]; 
if efron03[i]<1 then if efron03[i]>O then do; 

setef=efron03[i]; 
setefl=l; 

end; 
setefs[i]=setef; 
setefsl [i]=setefl; 

end; 

WW2s3=diag(setefs); 
do i=1 to nn3; 
if WW2s3[i, i]=1 then WW2s3[i, i: nn3]=1; 
if WW2s3[i, i]<1 then if WW2s3[i, i]>O then do; 

vat=WW2s3[i, i]; 
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s=pos03[i]; 
sa=posOa3[i]; 
if i ^= nn3 then do; 

W W2s3 [i, i-s: i+s a] =vat; 
if i+sa ^= nn3 then do; 

WW2s3 [i, i+sa+l: nn3] =1; 
end; 

end; 
if i=nn3 then do; 

WW2s3[i, i-s: i+sa]=vat; 
end; 

end; 
end; 

M2s3=WW2s3'; 

w2a3=WW2s3*w3a; 
do kk=1 to nn3; 
if w2a3[kk]=0 then w2a3 [kk] = 10000; 
end; 

al a=setefs 1 /w2a3; 
As3=diag(ala); 
AAs3=diag(d3/w2a3); 
M13=WW13'; 

BB13=M13*AAs3*j(nn3,1,1); 
B13=diag(BB13); 

L113=d3-W3b*M13*As3*j(nn3,1,1); /* derivative of partial likelihood */ 

TIES23=diag(d3); 

L123=W3b*B13-W3b*M13*TIES23*AAs3*AAs3*M13'*W3b; /* second derivative 
*/ 

/* trial 4 */ 
WW14=diag(efronO4); 

do i=1 to nn4; 
if WW14[ii]=1 then WW14[i, i: nn4]=1; 
if WW14[i, i]<1 then if WW14[i, i]>O then do; 

vat=WW 14[i, i]; 
s=pos04[i]; 

sa=posOa4[i]; 
if i ^= nn4 then do; 

WW1 4 [i, i-s : i+ s a] =val; 
if i+sa ^= nn4 then do; 

WW14[i, i+sa+l: nn4]=1; 
end; 
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end; 
if i=nn4 then do; 

WW14[i, i-s: i+sa]=vat; 

end; 
end; 

end; 

setefs=j(nn4,1,. ); 
setefsl=j (nn4,1,. ); 
do i=1 to nn4; 

setef=set4[i]; 
setefl=set4[i]; 
if efron04[i]<1 then if efron04[i]>O then do; 

setef=efron04[i]; 
setefl=l; 

end; 
setefs[i]=setef; 
setefsl [i]=setefl; 

end; 

WW2s4=diag(setefs); 
do i=1 to nn4; 
if WW2s4[i, i]=1 then WW2s4[i, i: nn4]=1; 
if WW2s4[i, i]<1 then if WW2s4[i, i]>O then do; 

vat=WW2s4[i, i]; 
s=pos04[i]; 

sa=posOa4[i]; 
if i ^= nn4 then do; 

W W2s4 [i, i-s: i+sa] =vat; 
if i+sa ^= nn4 then do; 

WW2s4[i, i+sa+l: nn4]=1; 
end; 

end; 
if i=nn4 then do; 
WW2s4[i, i-s: i+sa]=val; 

end; 
end; 

end; 

M2s4=WW2s4'; 

w2a4=WW2s4*w4a; 
do kk=1 to nn4; 
if w2a4[kk]=0 then w2a4[kk] = 10000; 
end; 

ala=setefsl/w2a4; 
As4=diag(ala); 
AAs4=diag(d4/w2a4); 
M14=WW14'; 
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BB14=M14*AAs4*j(nn4,1,1); 
B14=diag(BB14); 

L114=d4-W4b*M14*As4*j(nn4,1,1); /* derivative of partial likelihood */ 

TIES24=diag(d4); 

L124=W4b*B14-W4b*M14*TIES24*AAs4*AAs4*M14'*W4b; /* second derivative 
*/ 

/* trial 5 */ 
WW15=diag(efronO5); 

do i=1 to nn5; 
if WW15[i, i]=1 then WW15[i, i: nn5]=1; 
if WW15[i, i]<1 then if WW15[i, i]>O then do; 

vat=WW15[i, i]; 
s=pos05[i]; 

sa=posOa5[i]; 
if i ^= nn5 then do; 

WWI 5 [i, i-s: i+sa] =val; 
if i+sa ^= nn5 then do; 

WW15[i, i+sa+l: nn5]=1; 
end; 

end; 
if i=nn5 then do; 

WW1 5 [i, i-s: i+s a] =vat; 
end; 

end; 
end; 

setefs=j(nn5,1,. ); 
setefsl=j (nn5,1,. ); 
do i=1 to nn5; 

setef=set5[i]; 
setefl=set5[i]; 
if efron05[i]<1 then if efron05[i]>0 then do; 

setef=efron05 [i]; 

setefl=l; 
end; 
setefs[i]=setef; 
setefsl [i]=setefl; 

end; 

WW2s5=diag(setefs); 
do i=1 to nn5; 
if WW2s5[i, i]=1 then WW2s5 [i, i: nn5] = 1; 
if WW2s5[i, i]<1 then if WW2s5[i, i]>0 then do; 

vat=WW2s5 [i, i]; 
s=pos05[i]; 
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sa=posOa5 [i]; 
if i A= nn5 then do; 

W W2s5 [i, i-s: i+s a] =vat; 
if i+sa A= nn5 then do; 

WW2s5[i, i+sa+l: nn5]=1; 
end; 

end; 
if i=nn5 then do; 

W W2s5 [i, i-s: i+sa] =vat; 
end; 

end; 
end; 

M2s5=WW2s5'; 

w2a5=WW2s5*w5a; 
do kk=1 to nn5; 
if w2a5[kk]=0 then w2a5 [kk] = 10000; 
end; 

ala=setefsl/w2a5; 
As5=diag(ala); 
AAs5=diag(d5/w2a5); 
M15=WW15'; 

BB15=M15*AAs5*j(nn5,1,1); 
B15=diag(BB15); 

L115=d5-W5b*M15*As5*j(nn5,1,1); /* derivative of partial likelihood */ 

TIES25=diag(d5); 

L125=W5b*BI5-W5b*M15*TIES25*AAs5*AAs5*MI5'*W5b; /* second derivative 
*/ 

L11=L111//L112//L113//L114//L115; 
L12=block(L121, L122, L123, L124, L125); 

XZ1=X'//Z1'; 
XZ2=X II Z1; 
V=XZ1*L12*XZ2; /* covariance matrix */ 

/* log-likelihood */ 
L1= (dl # (etal-log(w2al)))'*j (nn1,1,1)+(d2#(eta2-log(w2a2)))'*j (nn2,1,1) 
+(d3# (eta3-log(w2a3)))'*j (nn3,1,1)+(d4# (eta4-log(w2a4)))' *j (nn4,1,1) 
+ (d5 # (eta5-log(w2a5)))'*j (nn5,1,1); 

para=newbeta//newul; 
qq= (newul /newthel); 
q=j(fixnum, 1,0)//qq; 
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RR1=I(cc1)/newthel; 
RR2=j (fixnum, fixnum, 0); 
R=block(RR2, RR1); 

V=V+R; /* covariance matrix 

L=L1-0.5# (ccl #log(newthel)+(newul'*newul /newthel)); 

if prelike>L then newpara=para+0.5#(-ginv(V)*q+ginv(V)*(XZ1*L11)); 
else newpara=para-ginv(V)*q+ginv(V)*(XZ1*Lll); /* updated parameter 

initb eta = newp ara [1: fixnum, ]; 
initul =newpara [fixnum+1: fixnum+ccl, ]; 

invV=ginv(V); 
All=invV[l: fixnum, l: fixnum]; /* covariance matrix of beta */ 
A22=invV [fixnum+l : fixnum+ccl, fixnum+l: fixnum+ccl]; 
inithel=initul'*initul /(cc1-(trace(A22)/newthel)); 

dif=abs(prelike-L); 
difx=prelike-L; 
paradif=newpara-para; 

end; 

/* S. E. of beta */ 

varbeta=vecdiag(A11); 
sebeta=sgrt(varbeta); 

inithevl =2#(inithel ##2)/ 
(ccl -2#trace(A22)/newthel +trace(A22**2) /(inithel ##2)); 

sethel=sgrt(inithevl); 

vname= {'estimate', 'se! ); 

estsel=initbeta sebeta; 
estse2=inithel ý sethel; 
reset noname; 
print, 'fixed effects',, estsel [rowname=variable colname=vname]; 
print, 'variance of random effects (interaction)',, estse2[rowname=compo 
colname=vname]; 
interterms = {'no 1001', 'no 1002', 'no 1003', 'no 1004', 'no 100 5' }; 
print, 'frailty (interaction)'�initul [rowname=interterms]; 

quit; 

B. 3. Cox model with random trial effects and random treatment 
effects using Efron method for handling ties 

/* data sorting steps are same as Appendix B.. 1 up to POINT X */ 
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/* Program for analysis of epilepsy data */ 

proc iml; 

cc1=5; /* number of trials */ 
cc2=1225; /* total sample size 

use data; 
read all into P; 
d=P[, 3]; /* vector indicating censoring (censor) */ 

set=P[, 12]; /* vector indicating number at risk (atrisk) */ 

use data6; /* vector indicating ties 
read all into H; 
t=H [, 3]; 

nn=nrow(t); 
*------------------------ 
j=t[1]; 
if j>1 then 
do; 
tt0=repeat(O, j-1,1); 
tt1=j//ttO; 

end; 
else tt1=j; 
*------------------------ 
do q=2 to nn; 
j=t[q]; 
if j>1 then 
do; 
tt0=repeat(O, j-1,1); 
tt2=j//ttO; 
end; 

else tt2=j; 
ttl =ttl //tt2; 

end; 

/* creating vector for efron 
*------------------- ----- *. 
j=t[1]; 
if j>1 then 
do; 

efronO=1; 
pos0=0; 

pos0a=0; 
do k=1 to j-1; 

efron2=0-k)/j; 
post=k; 

pos2a=j-(k+l); 
efronO=efronO//efron2; 

posO=pos0//pos2; 
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end; 

end; 
else do; 

efronO=j; 
pos0=0; 

pos0a=posüa//pos2a; 

pos0a=0; 
end; 
*------------------------ 
do q=2 to nn; 
j=t[9]; 
if j>1 then 
do; 
efron2=1; 
pos2=0; 

pos2a=0; 
do k=1 to j-1; 

efronl=o-k)/j; 
posl=k; 
posla=j-(k+l); 

efron2=efron2//efronl; 
pos2=pos2//post; 
pos2a=pos2a//posla; 

end; 
end; 
else do; 

efron2=j; 
pos2=0; 

pos2a=0; 
end; 

efronO=efronO//efron2; 
posO=posO//pos2; 
pos0a=posOa//pos2a; 
end; 

X=P[, 1]; /* design matrix (fixed effects) */ 
ZO=P[, 7: 11]; /* design matrix (random effects baseline) */ 
Z1=ZO#P[, 1]; /* design matrix (random effects interaction) */ 

/* fixed effects */ 
variable= {'treat'}; 
fixnum=l; /* number of fixed effects */ 
initbeta=j(fixnum, 1,0); /* vector of initial values */ 

/* random effects */ 
frailty= {'no 1001', ' no 1002', 'no 1003', 'no 1004', 'no 1005' }; 
initu0=j(cc1,1,0); /* initial value of variance for baseline */ 
initul=j(cc1,1,0); /* initial value of variance for interaction */ 
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compo= {'thetaO', 'thetal'}; /* variance component of frailty */ 
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initheO=1; /* baseline */ 
inithel=l; /* interaction 

prelike=0; 
iterate=0; 
dif=10000; 
L=O; 

do k=1 to 500 until(dif<le-6); /* convergence criterion 
iterate= iterate+1; 
prelike=L; 

newbeta=initbeta; 
newuO=inituO; 
newul=initul; 
newtheO=initheO; 
newthel=inithel; 

/* parameter estimation */ 
eta=X*newbeta+ZO*newuO+Z1 *newul; 
wl=exp(eta); 
W=diag(wl); 

WW1=diag(efron0); 

do i=1 to cc2; 
if WW1 [ii]=1 then WW1 [i, i: cc2]=1; 
if WW1 [i, i]<1 then if WW1 [i, i] >0 then do; 

va1=WW1 [i, i]; 
s=posO[i]; 

sa=pos0a[i]; 
if i ^= cc2 then do; 

WW1 [i, i-s: i+sa]=val; 
if i+sa ^= cc2 then do; 

WW1 [i, i+sa+l: cc2]=1; 
end; 

end; 
if i=cc2 then do; 

WW1 [i, i-s: i+sa]=val; 

end; 
end; 

end; 

setefs=j(cc2,1,. ); 

setefsl=j (cc2,1,. ); 
do i=1 to cc2; 

setef=set[i]; 
setefl=set[i]; 
if efronO[i]<1 then if efronO[i]>O then do; 

setef=efronO[i]; 
setefl=l; 
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end; 
setefs[i]=setef; 
setefsl [i]=setefl; 

end; 

WW2s=diag(setefs); 
do i=1 to cc2; 
if WW2s[i, i]=1 then WW2s[i, i: cc2]=1; 
if WW2s[i, i]<1 then if WW2s[i, i]>0 then do; 

vat=WW2s [i, i]; 
s=posO[i]; 

sa=pos0a[i]; 
if i ^= cc2 then do; 

W W2s [i, i-s: i+sa] =val; 
if i+sa ^= cc2 then do; 

end; 
WW2s[i, i+sa+l: cc2]=1; 

end; 
if i=cc2 then do; 

W W2s [i, i-s: i+sa] =val; 
end; 

end; 
end; 

M2s=WW2s'; 

w2a=WW2s*wl; 
do kk=1 to cc2; 
if w2a[kk]=0 then w2a[kk]=10000; 
end; 

al a=setefsl /w2a; 
As=diag(ala); 
AAs=diag(d/w2a); 
M1=WW1'; 

BB 1=M1 *AAs*j (cc2,1,1); 
B1=diag(BB1); 

L11=d-W*M1*As*j(cc2,1,1); /* derivative of partial likelihood */ 

TIES2=diag(d); 

L12=W*B1-W*M1*TIES2*AAs*AAs*M1'*W; /* second derivative */ 

XZ1=X'//ZO'//Z1'; 
XZ2=X II ZO II Zl; 
V=XZ1*L12*XZ2; /* covariance matrix */ 

L1=(d#(eta-log(w2a)))'*j(cc2,1,1); /* log-likelihood */ 
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para=newbeta//newuO//newul; 
qq=(newu0/newthe0)//(newul /newthel); 
q=j (fix num, 1,0) // qq; 

RRO=I(ccl)/newtheO; 
RR1=I(ccl)/newthel; 
RR2=j (fixnum, fixnum, 0); 
R=block(RR2, RRO, RRI); 

V=V+R; /* covariance matrix 

L=L1 - 0.5 
#(ccl #log(newtheO#newthel)+(newu0'*newuO/newtheO+newul'*newul /newthel)); 

if prelike>L then newpara=para+0.5#(-ginv(V)*q+ginv(V)*(XZ1*L11)); 
else newpara=pars-ginv(V)*q+ginv(V)*(XZ1*L11); /* updated parameter */ 

initbeta=newpara[1: fixnum, ]; 
inituO=newpara[fixnuin+l : fixnurn+ccl, ]; 
initul=newpara[fixnum+l+ccl : fixnum+ccl #2, ]; 

invV=ginv(V); 
All=invV[1: fixnum, l: fixnum]; /* covariance matrix of beta */ 
A22=invV [fixnum+l: fixnum+ccl, fixnum+l: fixnum+ccl]; 
A33=invV [fixnum+l+ccl : fixnum+ccl #2, fixnum+l +ccl : fixnum+ccl #2]; 

inithe0=inituO' *initu0 / (cc 1-trace (A22) /newtheO); 
inithel=initul'*initul /(ccl -trace(A33)/newthel); 

dif=abs(prelike-L); 
difx=prelike-L; 
paradif=newpara-para; 

end; 

/* S. E. of beta */ 

varbeta=vecdiag(A11); 
sebeta=sqrt(varbeta); 

/* S. E. of theta (REML estimate) */ 
inithevO=2# (inithe0# #2) / 

(ccl-2#trace(A22)/newtheO+trace (A22**2)/ (initheO##2)); 
s etheO= sgrt(inithevO); 
inithevl=2# (inithel ##2)/ 

(ccl -2# trace(A33) /newthel +trace(A33**2)/ (inithel ##2)); 
sethel=sgrt(inithevl); 

/* print */ 
vname= {'estimate', 'se'); 

estsel=initbeta sebeta; 
estse2=(inithe0 setheO)//(inithel sethel); 
reset noname; 
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print, 'fixed effects',, estsel [rowname=variable colname=vname]; 
print, 'variance of random effects (baseline, interaction)',, estse2[rowname=compo 
colname=vname]; 
print, 'frailty (baseline)',, inituO [rowname= frailty]; 
print, 'frailty (interaction)',, initul [rowname=frailty]; 

quit; 
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APPENDIX C 

Kaplan-Meier survival curves for CBZ-VPS analyses 
examined in Chapter 5 
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APPENDIX D 

Calculations for indirect comparisons relating to 
Chapter 6 

D. 1. Calculating indirect comparison for PHT: CBZ 

Aggregate data 

log HRPHT: 
CBZ ndirect = log HRPm.:, 

S - log HRCBZ 
vrs 

AAA 

var(log HRP,, T: CBZ, nd, rect) = var(log HR pm.. vps) + var(log HRcez: vps ) 

Under the assumption of a fixed effect of treatment across trials within each pair-wise 
comparison, 

AD-indirect fixed 

log HRPHT. 
cazinairect = 0.0868 - (0.1905) = -0.1037 

var(log HRPJT. CBZmd reit) = 0.18042 + 0.08242 = 0.0393 



D. I. Calculating indirect comparison for PHT: CBZ 

whilst assuming random treatment effects across trials within each pair-wise 
comparison, 

AD-indirect random 
A 

log HRPE,,. caz,,, areýý = 0.08665 - (0.17827) = -0.09162 
var(log HR 

pHT: caz. d.. = 0.180412 + 0.166172 = 0.0602 

Individual patient data 
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In model (6.5) and (6.8), the treatment coding structure adopted is such that x1 =1 for 

treatment group PHT, x2, =1 for treatment group CBZ, with VPS taking value zero for 
both dummy variables. 

Under the assumption of a fixed effect of treatment across trials within each pair-wise 
comparison, 

logHRpt,,.. vps = ß, = 0.08665, SE(Q, ) = 0.18041 

log HRcez: VPS = ßz = 0.19049, SE(2) = 0.08243 

IPD-indirect fixed 
A 

log HRPJ, T. cazV, arecI _ ßl - ß2 

= 0.08665 - (0.19049) = -0.10384 
AA var(log IIR 

pJIT: CBZ nd rear) = var(A) + var(ß2 ) 

= 0.180412 + 0.082432 = 0.0393 

Under the assumption of random treatment effects across trials within each pair-wise 
comparison, the following results are obtained 

log HRPf17.. 
VPs =A=0.0866, SE(ßl) = 0.18041, 

zi =0 

log HRcaz: 
vrs = ßi = 0.1783, SE02) = 0.1662, 

iZ = 0.0625, SE((Z) = 0.0828 
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IPD-indirect random 
log HRPrfr: cßZind, rect _ 11- Qz 

= 0.0866 - (0.1783) = -0.0917 

var(log HR p f, l': CßZmd, rect) = var(ß, ) + var(/2 ) 

= 0.180412 + 0.1662' = 0.0602 

2 ^2 2 
T PHT: CBZindirect =Tj +r2 

=0+0.0625 = 0.0625 

D. 2. Calculating indirect comparison for VPS: CBZ 

Aggregate data 

log HRvps 
cazinaimcr =log HRVPs, PHT - log HRcaz: PHT 

var(log HRvps: 
caz.. di, cl) = var(log HRVPs, PHr + var(log HRcez: pHT ) 

Under the assumption of a fixed effect of treatment across trials within each pair-wise 
comparison, 

AD-indirect fixed 

log HRVPs: 
caz d�eCt = -0.0868 - (0.0076) = -0.0944 

Var(log HRvps: cez. d��) = 0.18042 + 0.11932 = 0.0468 

whilst assuming random treatment effects across trials within each pair-wise 
comparison, 

AD-indirect random 

log HRVPs: 
cBZmdirect =-0.08665 - (0.0076) = -0.0943 

var(log HR,, 
ps: cez na�act) =O. 1804 l' + 0.1193' = 0.0468 
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Individual patient data 

In model (6.5) and (6.8), the treatment coding structure adopted is such that xl, =1 for 

treatment group VPS, x2ij =1 for treatment group CBZ, with PHT taking value zero for 

both dummy variables. 

Under the assumption of a fixed effect of treatment across trials within each pair-wise 
comparison, 

log HR 
, S. Pm. = ßl = -0.08682, SE(ß, ) = 0.18041 

A logHRCBZ. PHT = P2=0.00755, SE(QZ) = 0.11931 

IPD-indirect fixed 

log HRvps: CBZmdIrecr = ßi - Qz 

_ -0.08682 - (0.00755) = -0.09437 

var(log HRVps: CBZundirecr = var(ßl) + var(ß2 ) 

= 0.180412 +0.11932 = 0.0468 

Under the assumption of random treatment effects across trials within each pair-wise 
comparison, the following results are obtained 

A 

log HRyps p,,,. = 
ß, 

= -0.0866, SE(Q1) = 0.1804 1, 

i2 =0 

log HRcßz"r 
n. = ß2 = 0.0076, SE(O2) = 0.1193, 

A2 
'c2=0 

IPD-indirect random 

log HRVPs: 
cazi, dt ecr = Ql -)62 

= -0.0866 - (0.0076) = -0.0942 

var(log HR 
vrs: PHT,, d,, Yct) = var(ß, ) + var(/ 2) 

= 0.180412 +0.11932 = 0.0468 

T 
2VPS: 

PHTu+direct = Tl T2 

=0 
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APPENDIX E 

Parameter estimates for totality of evidence relating 
to Chapter 6 

E. 1. Totality of evidence model exploring treatment main effects 
(model 6.10) 

Table E. 1.1 Time to first seizure: Parameter estimates, standard errors and 
variance-covariance matrix from Cox model stratified by trial including totality 
of evidence (17 trials, 2130 events, 3785 total) 

Variance-covariance matrix 
Estimate 

Parameter (standard 
error) A (cbz) X32 (phb) /33 (pht) X34 (vps) 1ßs (ltg) 

A (cbz) 0.088 (0.157) 0.024788 
/32 (phb) -0.078 (0.169) 0.021372 0.028434 
/33 (pht) 0.078 (0.132) 0.017529 0.017529 0.017529 
/34 (vps) 0.157 (0.157) 0.022716 0.020646 0.017529 0.02479 
X35 (ltg) 0.237 (0.194) 0.024788 0.021372 0.017529 0.02272 0.03776 

-2logL 21215.580 

changeO, df, 6.85,5 

-value p=0.23 
0 Change compared to null model without treatment indicator variables 
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Table E. 1.2. Time to 12 month remission: Parameter estimates, standard errors 
and variance-covariance matrix from Cox model stratified by trial including 
totality of evidence (12 trials, 1430 events, 2728 total) 

Variance-covariance matrix 
Estimate 

Parameter 
(standard 

error) A (cbz) X32 (phb) iß3 (pht) ß (vps) 

A(cbz) -0.045 (0.182) 0.033259 
ß2 (phb) -0.106 (0.195) 0.029015 0.03803 
X33 (pht) -0.086 (0.154) 0.023794 0.02379 0.023794 

X134 (vps) -0.176 (0.183) 0.030900 0.02829 0.023794 0.03342 

-2logL 13079.385 
changeO, df, 3.95,4 

-value p=0.41 
0 Change compared to null model without treatment indicator variables 

Table E. 1.3. Time to withdrawal: Parameter estimates, standard errors and 
variance-covariance matrix from Cox model stratified by trial including totality 
of evidence (15 trials, 1070 events, 3830 total) 

Variance-covariance matrix 
Estimate 

Parameter 
(standard 

error) / 1(cbz) 632 (phb) /33 (pht) iß4 (vps) /35 (ltg) 

A(cbz) 0.478 (0.247) 0.06091 

x(32 (phb) 0.855 (0.253) 0.05432 0.06418 
/33 (pht) 0.501 (0.216) 0.04648 0.04648 0.04648 
ß4 (vps) 0.414 (0.251) 0.05745 0.05303 0.04648 0.06301 
ß5 (ltg) -0.039 (0.284) 0.06091 0.05432 0.04648 0.05745 0.080632 

-2logL 11279.256 
change, df, 29.51,5, 

p-value P<0.0001 
0 Change compared to null model without treatment indicator variables 
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E. 2. Totality of evidence model exploring effect of epilepsy type 

Table E. 2.1. Direct evidence: Exploring main effect of epilepsy type and 
interaction with treatment for the outcome time to first seizure (results exclude 
patients with missing epilepsy type) 

Terms included in model 
Treatment Treatment + Treatment + type 

Comparison Parameter type + treatment* type 
pht-oxc 
2 trials Trt (pht) 0.070(0.133) 0.046(0.133) -0.098(0.264) 

227 events Type (partial) 0.363(0.155) 0.271(0.209) 
468 total Type*Trt 0.195(0.306) 

-2logL 2314.268 2308.497 2308.088 

changeO, df, 0.28,1, 5.77,1, 0.41,1, 
p-value p=0.60 p=0.02 p=0.52 

cbz-phb 
4 trials Trt (cbz) 0.157(0.110) 0.173(0.110) -0.301(0.211) 

365 events Type (partial) 0.396(0.146) 0.005(0.204) 
676 total Type*Trt 0.632(0.243) 

-2logL 3238.227 3230.852 3224.182 

change4, df, p- 2.05,1, 7.38,1, 6.67,1, 
value p=0.15 p=0.01 p=0.01 

cbz-pht 
3 trials Trt (cbz) 0.093(0.106) 0.106(0.106) 0.069(0.212) 

362 events Type (partial) 0.690(0.149) 0.666(0.191) 
545 total Type*Trt 0.050(0.244) 

-2logL 3231.833 3210.833 3210.421 

change, df, p- 0.77,1, 21.37,1, 0.04,1, 

value p=0.38 p<0.001 p=0.84 

cbz-vps 
5 trials Trt (cbz) -0.08(0.068) -0.09(0.068) 0.140(0.120) 

864 events Type (partial) 0.503(0.085) 0.676(0.114) 
1225 total Type*Trt -0.339(0.146) 

-2logL 8593.508 8558.785 8553.387 
changeO, df, p- 1.35,1, 34.72,1, 5.40,1, 

value p=0.24 p<0.001 p=0.02 

cbz-ltg 
4 trials Trt (cbz) -0.163(0.119) -0.211(0.119) -0.023(0.214) 

315 events Type (partial) 0.663(0.125) 0.758(0.156) 
686 total Type*Trt -0.267(0.256) 
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Terms included in model 
Treatment Treatment + Treatment + type 

Comparison Parameter type + treatment*type 

-2logL 3014.089 2983.900 2982.818 

changeO, df, 1.90,1, 30.19,1, 1.08,1, 

-value =0.17 p<0.001 p=0.30 
phb-pht 
4 trials Trt (phb) -0.170(0.113) -0.164(0.113) 0.044(0.222) 

351 events Type (partial) 0.474(0.150) 0.579(0.181) 
592 total Type*Trt -0.274(0.254) 

-2logL 3089.253 3079.157 3077.999 

changcO, df, 2.27,1, 10.09,1, 1.16,1, 
p-value p=0.13 p=0.001 p=0.28 

phb-vps 
2 trials Trt (phb) 0.045(0.189) 0.007(0.189) 0.244(0.251) 

134 events Type (partial) 0.531(0.177) 0.716(0.221) 
178 total Type*Trt -0.510(0.366) 

-2logL 1018.065 1009.238 1007.280 
change, df, 0.06,1, 8.83,1, 1.96,1, 

p-value p=0.81 p=0.003 p=0.16 

pht-vps 
5 trials Trt (pht) -0.043(0.105) -0.088(0.105) 0.032(0.149) 

371 events Type (partial) 0.872(0.114) 0.991(0.156) 
639 total Type*Trt -0.235(0.209) 

-2logL 3192.808 3133.542 3132.282 

changeO, df, 0.16,1, 59.27,1, 1.26,1, 

p-value p=0.68 p<0.001 p=0.26 
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Table E. 2.2. Totality of evidence: Exploring main effect of epilepsy type and 
interaction with treatment for the outcome time to first seizure (17 trials, 2099 
events, 3725 total excluding all patients with missing epilepsy type) 

Terms included in model 
Parameter Treatment Treatment + Treatment + type 

type + treatment*type 

ßl (cbz) 0.080 (0.158) 0.062 (0.158) -0.013 (0.224) 
ß2 (phb) -0.086 (0.169) -0.116 (0.169) 0.053 (0.254) 
P3 (pht) 0.070 (0.133) 0.034 (0.133) -0.232 (0.218) 
N (vps) 0.149 (0.158) 0.141 (0.158) -0.200 (0.223) 
PS (ltg) 0.243 (0.198) 0.267 (0.198) -0.046 (0.268) 

P6 (partial) 0.562 (0.055) 0.274 (0.209) 
(37 (partial*cbz) 0.133 (0.228) 
P8 (partial*phb) -0.216 (0.272) 
P9 (partial*pht) 0.361 0.239) 
ßio (partial*vps) 0.530 (0.232) 
ßl, (partial*ltg) 0.483 (0.261) 

-21ogL 20854.289 20746.423 20725.387 

changeO, df, 6.954,1, 107.866,1, 21.036,1, 

p-value p=0.22 p<0.001 p<0.001 

4 Change in -2logL compared to the previous model without the additional 
parameter(s) under consideration 
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Table. E. 2.4. Totality of evidence model including treatment + epilepsy type + 
treatment*type interactions (model 6.11) 
Entries in table are values of -2logL for model 6.11 excluding individual interaction 
with treatment terms along with the change in -2logL, df and p-value, compared to the 
model including all interaction terms (model 6.11 for which -2logL=20725.387) 

Comparator dru 
cbz oxc phb pht s 

oxc 20725.727 
0.34,1, - 

=0.56 
phb 20728.607 20726.018 

3.22,1, 0.63,1, - 
=0.07 =0.43 

Baseline pht 20727.892 20727.620 20733.164 
drug 2.51,1, 2.23,1, 7.78,1, - 

=0.11 =0.14 =0.005 
vps 20734.695 20730.356 20738.581 20726.644 

9.31,1, 4.97,1, 13.19,1, 1.26,1, - 
=0.002 =0.03 =0.0003 =0.26 

ltg 20729.231 20728.749 20734.191 20725.775 20725.450 
3.84,1, 3.36,1, 8.80,1, 0.39,1, 0.06,1, 
p=0.05 p=0.07 p=0.003 p=0.53 =0.80 
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