Studies on Larvae of Decapod Crustacea from the Central Red Sea.

Thesis submitted in accordance with requirements of the University of Liverpool for the degree of Doctor in Philosophy
by

> Ali Al-Aidaroos , M.Sc.

To my father, in the memory or my mother, wife and childern

Abstract

Plankton samples were taken at fortnightly intervals from January 1986 to June 1987 at six stations 20-50 km north of Jeddah, Saudia Arabia : three in a mangrove area (Zanban village), two outside the mangrove area (Thuwal village) and one off Obhor Creek. Larvae of decapod Crustacea (excluding the Brachyura) were identified as far as possible and descriptions are given of the anomuran larvae encountered. Studies were made on seasonal variations in the numbers of larvae and on differences in occurrence and abundance between the stations.

Eighty nine species of Alpheus larvae were distinguished, largely using differences in chromatophore pattern. Only two species of adult Alpheus are recorded from the central Red Sea. Thirty seven unnamed species of Anomura were distinguished on morphological characters and these are described and figured. The anomuran larvae belong to the following families: Upogebiidae (4 species), Callianassidae (7 species) , Laomediidae (2 species) , Galatheidae (7 species), Porcellanidae (6 species), Paguridae (4 species), Diogenidae (7 species), and the Diogenidae are made up of the following genera: Diogenes (2 species), Calcinus (2 species), Dardanus (2 species), Clibanarius (1 species). Ten genera of Macrura, belonging to seven families, are also listed.

Descriptions are given of the complete larval development of Coenobita scaevola (Forskål) (Coenobitidae) and Dardanus tinctor (Forskål) (Diogenidae), based on laboratory rearing. Comparisons are made with the larvae of related species. The presence of a central teison spine in zoea III and all subsequent zoeal stages is a feature of all known coenobitid larvae, although it does not occur in other larvae of the Anomura (sensu stricto) (i. e. excluding the Thalassinidae).

The concentration of decapod larvae over the 18 months at the different stations was fairly similar, averaging about 1190/1000 m^{3}. The most common anomuran larvae were those of the Diogenidae, with Diogenes avarus Heller the most common in the mangrove area and the unnamed species Calcinus a the most common off Obhor Creek. Larvae of Alpheus spp. and Harpilius spp. made up a large percentage of the decapod larvae, especially at the stations outside the mangrove area and off Obhor Creek. Larvae of Galatheidae , Paguridae and Callianassidae were conspicuously more abundant in the night samples than in the day samples.

During the eighteen months of sampling at the six stations, decapod larvae tended to be more common in summer, particularly in June. More sampling would be required to establish whether this is a regular annual feature .

In the beginning thanks to God for my success in carrying out this work. I wish to express my deep gratitude and cordial thanks to Dr. D. I. Williamson for suggesting the topic in the first place, for his constructive criticism during the preparation of the manuscript, and his deep concern when I was doing my field work in Jeddah, Saudi Arabia. It is in fact my honor to work under his supervision, during which I learned from him many things on the identification of decapod larvae.

I would like to thank Dr. R. G. Hartnoll for his comments on the manuscript, also Prof. T. A. Norton for his kind treatment during my stay in the Isle of Man, and Mr. C. D. Bridge for the preparation of the photographs.

I am also very much obliged to all the staff members and the boat men in the department of Marine Biology, Faculty of Marine Science, King Abdulaziz University, who helped and gave me so much valuable assistance during the field work. I wish to express my sincere thanks to Prof. S. M. Saifulla for his valuble advice and encouragement during this study. I have never forgotten the advice of Dr. A. S. Mandura for his encouragement to continue my Ph.D degree immediately after I obtained my M.Sc degree .

Especial thanks to Dr. S. Y. Hong for his constant advice, particulary in the rearing of decapod larvae during my preliminary work. It is my pleasure to thank all my collegues especially, Clemente Graziano, Simi Steingrimsson, Adnan Salama and Hishamuddin Omar, for their help in various ways during this study.

Finally, I would like to express my deep thanks to my father for his constant praying during this study, and I am very grateful to my wife for her moral support in making this work possible.

Contents

AbstractAcknowledgements .
Chapter 1. General Introduction 1
Historical review 5
Chapter 2. Larval development of the land hermit crab Coenobiti scaevola (Forskål) (Crustacea : Anomura : Coenobitidae), reared in the laboratory
introduction 10
Materials and Methods 11
Results .
Development and duration of the larvae 12
Descriptions
First zoea 13
Second zoea 15
Third zoea 17
Fourth zoea 18
Fifth zoea 20
Sixth zoea 21
Seventh zoea 23
Megalopa 24
Discussion 27
Chapter 3. Larval development of the hermit crab Dardanus tinctor(Forskål) (Crustacea : Anomura : Diogenidae), reared in the laboratory.
Introduction 32
Material and Methods 33
Results.
Development and duration of the larvae 33
Descriptions
First zoea 34
Second zoea 36
Third zoea 38
Fourth zoea 39
Fifth zoea 41
Sixth zoea 42
Seventh zoea 44
Megalopa 45
Discussion 48
Chapter 4. A description and discussion of Alpheid and Anomuranlarvae from plankton samples in the Central Red Sea
Introduction 52
Caridea
Alpheidae
Alpheus SpD.
Introduction 53
Methods 55
Results 55
Discussion 58
Anomura (Including Thalassinidae).
Upogebiidae
introduction 60
Results 61
Discussion 62
Callianassidae
introduction 64
Results and Discussion 65
Laomediidae
Introduction 68
Results 69
Discussion 70

Galatheidae

Introduction 72
Results 73
Discussion 75
Porcellanidae
Introduction 77
Results 78
Discussion 78
Paguridae
Introduction 81
Results 82
Discussion 83
Diogenidae
Diogenes spp.
Introduction 84
Results 85
Discussion 87
Calcinus spp.
Introduction 90
Results 90
Discussion 91
Dardanus spp.
Introduction 92
Results and Discussion 92

Clibanarius spp.

Introduction 94
Results 95
Discussion 97
List of macruran larvae identified from the plankton samples, from central Red Sea 98
General discussion 100
Chapter 5. The seasonal occurrence of decapod larvae in various habitats in the Central Red Sea coastal area of Saudia Arabia
Introduction 104
Material and Methods 104
Results 107
Discussion 116
Chapter 6. General discussion and conclusions 121
References 127

CHAPTER ,

GENERAL INTRODUCTION

The Red Sea is a long narrow basin, dividing Asia and Africa, extending north-west to south-east between 30° and 12° north, 34° and 43° east (Fig. $1^{\text {) }}$. The name of the Red Sea is usually attributed to the existence of a planktonic unicellar flagellate called Trichodesmium erythraeum Ehrenb. , which has a red pigment, and in some seasons, in some regions, can became sufficiently dense to colour the water red. There are, however, other possible reasons for the name. One is the existence of coral reefs of red colour ; another claims that at one time the Red Sea was a lake bordering Eritrea, and Eritrea means red land (Behairy et al, 1982) .

The total length of the Red Sea is 1932 km . The average width is 280 km , greatest towards the south, between Mousoa and Jizan, at 340 km and least in the southern entrance to the Bab-Al-Mandab, at 27 km . In the north of the Red Sea there are two branches, the Gulf of Suez and the Gulf of Al-Aqaba. The total length of the Gulf of Suez is 250 km , the average width 32 km , and the depth $55-80 \mathrm{~m}$. The Gulf of Al-Aqaba is 150 km in length, and the average width is 16 km . It is a deep basin, up to 1300 m in the north, separated from the Red Sea by a barrier of $250-300 \mathrm{~m}$ (Behairy et all 1982).

In the period from May to Septemper, the prevailing wind is from the north-north-west along the entire basin. From October to April the north-north-west wind stops in the region $20-22^{\circ} \mathrm{N}$ and to the south of latitude $20^{\circ} \mathrm{N}$ the prevaling wind is south-south-east. The surface currents follow the direction of the prevailing winds (Morcos, 1970).

The surface temperature of the water ranges from 25-32. C in the south, and 21.3-27.9 C in the north (Halim, 1969). The intermediate layers, down to 300 m , are homothermal, with a temperature of about $21.7^{\circ} \mathrm{C}$. The deep water of the Red Sea is at about $21.5^{\circ} \mathrm{C}$, which is warmer than in any other marine basin (Morcos , 1970).

The Red Sea is one of the most saline marine environments in the world. The salinity ranges from 39.2-41 ppt., decreasing gradually from north to south. A layer of minimum oxygen is present at $300-600 \mathrm{~m}$, with very low values of $0.4-0.6 \mathrm{ml} \mathrm{O}_{2} / \mathrm{L}^{-1}$ (Morcos, 1970).

The Red Sea has an uneven bottom, with many sea mounts, some rising to near surface, and many islands. Corals grow well in the Red Sea and reefs are scattered along the coastal zone. This is attributed largely to the high and fairly even temperature (Behairy et al, 1982).

Decapod larvae are one of the most important groups in the zooplankton community, because they are usually sufficiently numerous to form an important link in the food chain and many are the larvae of commercial species. Identification of this group is necessary to give a complete understanding of the area investigated . For this reason any addition to our knowledge of the decapod larvae is very important, whether it concerns identification of the species or temporal and spatial variations in density.

The first alm of the present work was to provide a record of the larvae of Decapoda present in the central Red Sea, identifying them as far as possible. Some specimens from the plankton samples can be identified directly to species and others to genera, but many can be identified only to families or larger groups. During the work, some species were hatched or reared in captivity to describe the larvae and to follow the life history of the species, including the number and duration of stages. In a few selected genera, including some very rich in species, the number of species was determined from the larvae for comparision with records of adults from the same area. The second aim of this study was to investigate seasonal differences in the occurrence and density of decapod larvae and to compare records from different ecological areas.

Regular samples were therefore taken at several stations along the open coast, mostly over corals, and also from a shallow mangrove area, partly cut off from the open sea and with a muddy bottom.

The importance of this study lies in the fact that no detailed work on the identification of the decapod larvae from this area has been done before. The identifications and records provided by the present study will form a good basis for monitoring possible future changes in the fauna of the mangrove area and will provide a basis for comparision with other areas of the Red Sea.

Historical Review

The Red Sea has attracted the attention of scientists since the early 18 th century, and expeditions have been devoted to the study of this area. The Danish Expedition under the leadership of P. Forskall (1775) was the first to collect specimens from this area. It was followed by other expeditions, such as the ' Pola ' ($1895-96$; 189798),' Valadivia' (1898 - 99), ' Ammiraglio Magnaghi' (1923 - 24), the ' Cambridge Expedition' ($1933-34$), but in all these works the plankton received little attention.

The main contribution to the study of the decapod larvae of the Red Sea is due to individual scientists. Santucci (1927 , 1929) worked chiefly on material collected from the ' Ammiraglio Magnagni' in various parts of the Red Sea.Gurney(1927,1936,1937a,b,1938a,b,c) studied material from the Gulf of Suez and from Al-Ghardaqa , Egypt . Gohar \& Al-Kholy (1957) , Al-kholy ($1959,1961,1963$), Al-kholy \& Fikry Manmoud (1967 a,b) and Al-kholy \& El-Hawary (1970) also worked from Al-Ghardaqa. Williamson (1970) and Seridji (1986) reported on collections from the Gulf of AI-Aqaba , although descriptions of larvae listed in Seridji's paper have not yet been published. A few other publications, primarily concerned with larvae from other areas, include some species from the Red Sea. All these publications include accounts of larvae from plankton collections, and in some cases the identifications are uncertain. References to descriptions of identified larvae (other than Brachyura) covered by these reports are listed in Table 1.

Table 1. Identified decapod larvae (other than Brachyura) from the Red Sea described in previous publications

Penaeidea

Metapenaeus SD., Lucifer hanseni Gurney , 1927
Metapenaeus stebbingi

\qquad
Gurney, 1927; Al-Kholy \&
El-Hawary, 1970
Sergestes sp. Al-Kholy \& Fikry Mahmoud. 1967b
Penaeus trisulcatus, P. japonicus
P. semisulcatus, Metapenaeus philippil Al-kholy \&
El-Hawary, 1970
Caridea
Palaemon elegans Gurney, 1927
Chlorotocella sp., Processa aequimana,
Processa Sp. , Nikoides dana Gurney, 1937a
Alpheus audouini Gurney, 1927. 1938C
Alpheus pacificus Gohor \& Al-Kholy,1957
saron marmoratus Al-Kholy, 1961
Alpheus ranay Al-Kholy, 1961

- Mipheus ventrosus Al-Kholy, 1961; Gurney, 1938C
A ipheus microstylus Al-Kholy, 1963
Fericlimenes (Harpilius) spp. Al-Kholy, 1963;
Williamson , 1970
HiDnolvte SD.
\qquadAl-Kholy \& Fikry Manmoud, $1967 a$
Synaloheus biunguiculatus Al-Kholy \& Fikry
Mahmoud, 1967b
Rhynchocinetes spp. , Eretmocaris sp.,
Hippolyte sp. , Processa sp. , Palaemon sp. ,
Saron sp. , Alpheus spp. Williamson, 1970
Thalassocaris crinita, T. obscura Williamson , 1970 ;
Menon \& Williamson,1971
Anomura
Diogenes pugilator Gurney, 1927
upogebia savignyi Gurney , 1937a
Callianassa 5pp. Gurney , 1937b ; Al- kholy \& Fikry Mahmoud1967a; Williamson, 1970
Galathea longimana Gurney, 1938a
Porcellana inaequalis, Petrolisthes sp. Gurney, 1938a
petrolisthes rufescens Gohor \& Al-Kholy, 1957
Galathea sp. Al-kholy, 1959
Hippa adactyla, Dromia sp. Al-Kholy , 1959
? Pachycheles sp. Williamson, 1970
StenopodideaStenopus nispidus, Stenopodidae Gurney, 1936 ;Williamson, 1970, 1976
Palinura*
Palinuridae ($P 1$), Palinuridae ($P 2$) .
Scillaridae (S1). Thenus orientalis Santucci, 1927
Scyllarides latus Santucci, 1929
Panulirus penicillatus
scyllarus thioriouxi Al-Kholy, 1961* Williamson (1988) has recently suggested that the Palinura shouldbe removed from the Decapoda

Figure 1. Map of the Red Sea, showing the location of Jeddah, Saudia Arabia

CHAPTER 2

LARVAL DEVELOPMENT OF THE LAND HERMIT CRAB COENOBITA SCAEVOLA (FORSKAL, 1775)(CRUSTACEA : ANOMURA : COENOBITIDAE), REARED IN THE LABORATORY.
(This chapter in press in Journal of Natural History, 1988,

INTRODUCTION

The hermit crabs of family Coenobitidae are among the most conspicuous and characteristic elements of the terrestrial fauna of tropical marine beaches and atolls. The members of this family have become adapted for life on land, but the larvae are liberated into the sea (Provenzano, 1962). Many species live in burrows or rest in shaded areas among coastal vegetation during the daytime and then scatter along the coast at night.

There are few previous descriptions of coenobitid larvae. There is only a brief account of the stage 1 zoea of coenobita periatus H . Milne Edwards from the Maldive and Laccadives (Borradaile, 1903), and Yamaguchi (1938) described the first stage and megalopa of C. rugosus H. Miine Edwards from Kikai Island, southern Japan Provenzano (1962) followed all the larval development of the Caribbean species \mathcal{C}. clypeatus (Herbst) in the laboratory, and Reese \& Kinzie (1968) described all the larval development of the Indo-Pacific species Eirgus latro (L.). Shokita and Yamashiro (1986) described all the larval stages of \mathcal{C}. rugosus and C. cavipes Stimpson from Ryukyu Island, southern Japan.
C. scaevola (Forskal, 1775) is the only species represented in the Red Sea, and is abundant in the Jeddah region (Lewinsohn, 1969). The purpose of the present study is to provide a description of the complete larval development of c. scaevola based on laboratory rearing

MATERIALS AND METHODS

An ovigerous female was collected at night on 17 April 1987 from the shore in Jeddan, Saudi Arabia. It was kept in an aquarium in the laboratory, provided with sand at one end and water at the other to allow the female to shed her larvae in the water. The first zoeas were obtained on 21 April 1987 and reared at a temperature of $25^{\circ} \mathrm{C}$, salinity 38-39 ppt . Individual larvae were placed in 70 glass beakers of about 100 ml capacity containing filtered sea water (Millipore $0.45 \mu \mathrm{~m})$. A further 200 larvae were reared in mass culture in a glass beaker of about 2 L capacity .

Newly hatched Artemia nauplii were added as food . Larvae were examined daily for exuviae and dead specimens, and living specimens were transferred to freshly filtered sea water to which were added newly hatched Artemia nauplii . Larvae and exuviae were preserved in 5\% sea water formalin. Appendages were dissected and drawn from temporary mounts in this medium .

Drawings were made with the aid of a camera lucida, and measurements by using an ocular micrometer. Total length was measured from the tip of the rostrum to the posterior border of the telson exclusive of the telson processes. Length of carapace was measured from rostral tip to the posterio-lateral margin of the carapace. Lengths are given as average values for each larval stage, based on at least 10 specimens when sufficient material was available. The range is usually $\pm 10-15 \%$ of the mean value .

RESUL TS

Development and duration of the larvae .

Coenobita scaevola passed through seven zoeal stages and one megalopa before reaching the first crab stage (Table 2). The number of days required to complete the larval development in the laboratory at $25^{\circ} \mathrm{C}$ is approximately 47 days .
(Table 2) : Duration of each stage and survival of larvae .

Stages Duration (mean and ranges) (days) No. at beginning

Zoea I	$11.5(9-14)$	70
Zoea II	$9.0(7-11)$	57
Zoea III	$8.5(7-10)$	39
Zoea IV	$9.5(7-12)$	38
Zoea V	$9.5(7-12)$	30
Zoea VI	$9.5(8-11)$	18
Zoea VII	$9.5(9-10)$	3
Megalopa	-	2

First Zoea
(Figs.2A, 3A, 4)

Size- CL: 1.12 mm (average)
TL: 2.40 mm (average)

Colour - Orange-red under both eyes and on posterior margin of carapace, yellow on posterior margin of telson

Carapace (Figs.2A, 3A) - Rostrum broad at base, curved slightly downward distally, Posterio-lateral margins of carapace smooth and devoid of spines.

Eyes (Fig. 2A, 3A)-Immobile.

Antennule (Fig. 4A) - Uniramous, with 3 terminal aesthetascs of varying size and 3 plumose setae of varying size; 1 long subterminal plumose seta.

Antenna (Fig. $4 B$) - Endopod with 2 terminal and 1 subterminal plumose setae, the subterminal about $1 / 3$ length of other two ; exopod with 10 plumose setae on inner and distal margin and strong outer distal spine; a strong serrated ventral spine on protopod at base of exopod

Mandible (Fig. 4C) - A simple process with irregular teeth, not differentiated into incisor and molar regions.

Maxillule (Fig. 4D) - Coxal endite with 6 setae ; basial endite with 2 strong spines, each with several denticles, and 2 setae ; endopod 3 -segmented, 3 rd segment with 3 setae and 2 nd with 1 seta.

Maxilla (Fig. 4E) - Proximal lobe of coxal endite with 7 setae, distal lobe with 4 setae ; proximal lobe of basial endite with 5 setae, distal lobe with 4 setae; outer lobe of endopod with 3 setae (innermost very short), inner lobe with 2 setae ; scaphognathite with 5 plumose setae .

First Maxilliped (Fig. 4F) - Basis with hooked process at proximal end of inner face and $2,3,2$ setae more distally on this face; endopod 5 -segmented with $2 / 0,2 / 0,1 / 0,2 / 0,4 / 1$ inner/outer plumose setae, also fine hairs on segments $2,3,4$; exopod with 4 natatory plumose setae.

Second Maxilliped (Fig. 4G) - Basis with 1,2 distal setae on inner face ; endopod 4 -segmented with $2 / 0,2 / 0,2 / 0,4 / 1$ inner/outer plumose setae, also fine outer hairs on segment 3 ; exopod with 4 natatory plumose setae.

Third Maxilliped (Fig. 4H) - Endopod a small lobe ; exopod a long lobe.

Abdomen (Fig. 2A, 3A) - 6 somites; 2nd somite with prominent curved medio-dorsal spine, 3 rd and 4th somites with much smaller medio-dorsal spines, 5th somite with large medio-dorsal spine and large lateral spines each of similar length to dorsal spine on second somite, 6th somite fused with telson.

Telson (Fig. 41) - Triangular in form with concave median notch; 7 pairs of marginal processes : outermost a stout spine, 2nd a fine hair and 3 rd to 7 th plumose setae.

Second Zoea

(Figs. 2B, 3B,5)

> Size-CL: 1.53 mm (average)
> TL: 2.73 mm (average)

Carapace (Fig. 2B, 3B) - Almost unchanged .

Antennule (Fig.5A) - Peduncle with 3 terminal aesthetascs and 3 plumose setae of variable size , 1 long subterminal seta and 3 small outer plumose setae.

> Antenna (Fig.5B) - Similar in form to first stage .

> Mandible (Fig.5C) - Corneous teeth present .

Maxillule (Fig.5D) - Coxal endite unchanged in form and setation; basial endite with 4 strong spines, each with several denticles, and 2 setae ; endopod unchanged in form and setation.

Maxilla (Fig. 5E) - Coxal endite, basial endite and endopod unchanged in form and setation ; scaphognathite with 7 plumose setae.

First Maxilliped (Fig.5F) - Basis with 1 small seta near hook and 2, 3,2 larger inner setae; endopod 5 segmented with $2 / 1,2 / 1,1 / 1$, $2 / 0,4 / 1$ inner/outer plumose setae; exopod with 6 natatory plumose setae.

Second Maxilliped (Fig.5G) - Basis unchanged in setation; endopod 4 segmented with $2 / 0,2 / 1,2 / 1,4 / 1$ inner/outer plumose setae ; exopod with 6 natatory plumose setae.

Third Maxilliped (Fig.5H) - Endopod unchanged; exopod with 5 natatory plumose setae.

Abdomen (Fig.2B, $3 B$) - Dorsal spine on second abdominal somite somewhat more prominent, that on fifth somite rather shorter.

Telson (Fig.5I) - An inner pair of smaller plumose setae added, to give 8 pairs of posterior marginal processes .

Third zoea
(Fig. 2C, 3C, 6)

> Size - CL: 1.53 mm (average)
> TL: 3.13 mm (average)

Carapace (Fig.2C,3C) - Unchanged .

Antennule (Fig.6A) - Now consisting of peduncle and 2 unsegmented rami, 3 short outer distal plumose setae on peduncle; 3 plumose setae on short inner ramus; 3 aesthetascs all of about same length, 1 long and 2 short plumose setae on large (outer) ramus

Antenna (Fig.6B) - Endopod with 1 terminal aesthetasc ; exopod with 11 plumose setae .

Mandible (Fig.6C) - With additional small teeth.

Maxillule (Fig.6D) - Coxal endite with 7 setae ; basial endite and endopod unchanged in setation.

Maxilla (Fig.6E) - Coxal endite and basial endite unchanged in setation ; endopod with 3 terminal setae and 2 subterminal ; scaphognathite with 8 plumose setae .

[^0]Second Maxilliped (Fig.6G) - Unchanged in form and setation.

Third Maxilliped (Fig.6H) - Endopod unchanged in form ; exopod with 6 natatory plumose setae .

Abdomen (Fig.2C, 3C) - Dorsal abdominal spines more distinct ; 6th abdominal somite now with medio-dorsal spine .

Uropod (Fig.61) - Unsegmented, endopod unarmed, about half length of exopod ; exopod with 8 natatory plumose setae.

Telson (Fig.61) - Now with short median plumose seta, to give $8+1+8$ processes; processes 1 to 3 and 5 to 8 unchanged, 4th process a large fused spine.

Fourth Zoea
(Fig.2D,3D,7)

Size-CL: 1.53 mm (average)
TL: 3.80 mm (average)

Carapace (Fig.2D,3D) - Unchanged.

Antennule (Fig.7A) - 4 short outer distal plumose setae on peduncle; 4 plumose setae on short ramus; 3 aesthetascs all of about same length, 1 long and 2 short plumose setae on long ramus

Antenna (Fig.7B) - Endopod unchanged ; exopod with 13 plumose setae.

Mandible (Fig.7C) - With additional small teeth .

Maxillule (Fig.7D) - Coxal endite with 8 setae ; basial endite with 6 strong spines, each with several denticles, and 2 setae ; endopod unchanged

Maxilla (Fig.7E) - Proximal lobe of coxal endite with 8 plumose setae and distal lobe unchanged ; proximal lobe of basial endite unchanged and distal lobe with 5 setae ; endopod unchanged ; scaphognathite with 12 plumose setae .

First Maxilliped (Fig.7F) - Basis unchanged ; endopod unchanged except for additional inner seta on 1st segment, to give formula 3/1; exopod unchanged.

Second Maxilliped (Fig. 76) - Unchanged in setation.

Third Maxilliped (Fig.7H) - Endopod with small seta, exopod with 7 natatory plumose setae .

> Abdomen (Fig.2D, 3D) - Unchanged in form .

Uropod (Fig.71) - Endopod and exopod articulated with protopod; endopod longer with 4 or 5 plumose setae; exopod with 10 plumose setae and strong outer distal spine.

Telson (Fig. 71) - Unchanged in form.

Fifth Zoea
(Figs.2E,3E,8)

> Size - CL: 1.98 mm (average)
> TL: 4.16 mm (average)

Carapace (Fig.2E, 3 E) - Unchanged.

Antennule (Fig.8A) - Unchanged except one additional plumose seta on large (outer) ramus.

Antenna (Fig.8B) - Endopod with 1 long and 2 short aesthetascs; exopod with 15 plumose setae .

Mandible (Fig.8C) - Unchanged in form .

Maxillule (Fig.8D) - Unchanged in setation.

Maxilla (Fig.8E) - Unchanged in setation .

First Maxilliped (Fig.8F) - Unchanged in setation.

Second Maxilliped (Fig.8G) - Basis and endopod unchanged ; exopod now with 7 natatory plumose setae.

Third Maxilliped (Fig.8H) - Endopod unchanged; exopod now with 8 natatory plumose setae

Abdomen (Fig.2E, $3 E$) - unchanged in form .

Uropod (Fig.81) - Endopod with 6 or 7 plumose setae; exopod with 11 plumose setae .

Telson (Fig.81) - Unchanged in form except central process now of similar length to processes 5 to 8 .

Sixth Zoea
(Figs.2F,3F,9)

> Size - CL: 2.30 mm (average) TL: 4.64 mm (average)

Carapace (Fig.2F, 3F) - Unchanged .

Antennule (Fig.9A) - Unchanged in setation.

Antenna (Fig.9B) - Unchanged in setation .

Mandible (Fig.9C) - Unchanged in form .

Maxillule (Fig.9D) - Unchanged in setation .

Maxilla (Fig.9E) - Unchanged in setation except scaphognathite with 13 plumose setae and now with unarmed posterior projection.

First Maxilliped (Fig.9F) - Unchanged in setation .

Second Maxilliped (Fig.9G) - Basis and endopod unchanged; exopod now with 8 natatory plumose setae .

Third Maxilliped (Fig.9H) - Unchanged in setation .

Abdomen (Fig.2F, 3F) - Unchanged in form .

Uropod (Fig.91) - Endopod with 7 plumose setae; exopod with 13 plumose setae.

Telson (Fig. 91) - Unchanged.

Seventh Zoea
(Figs.2G,3G, 10)

Size - CL: 2.34 mm (average) TL: 5.19 mm (average)

Carapace (Fig.2G,3G) - Unchanged.

Antennule (Fig.10A) - Unchanged except 1 additional plumose seta on the large (outer) ramus.

Antenna (Fig.10B) - Endopod unchanged; exopod now with 16 plumose setae.

Mandible (Fig. IOC) - Unchanged in form

Maxillule (Fig. 10D) - Coxal endite unchanged in setation ; basial endite now with 7 strong spines each with several denticles, and 2 setae ; endopod unchanged.

Maxilla (Fig. IOE) - Unchanged in setation except distal lobe of basial endite now with 6 setae .

First Maxilliped (Fig. 10F) - Unchanged in setation.

Second Maxilliped (Fig. 106) - Unchanged in setation .

Third Maxilliped (Fig. 10 H) - Unchanged in setation.

Legs (Fig. 26) - Bud-like; unsegmented.

Abdomen (Fig.2G,3G) - Medio-dorsal spine on 2nd abdominal somite larger

Pleopods (Fig.20) - Small biramous buds on somites 2 to 5 .

Uropod (Fig. 101) - Endopod with 8 plumose setae; exopod with 14 plumose setae .

Telson (Fig. 101) - Unchanged in form.

Megalopa
(Fig.11)

> Size - CL: 1.44 mm (average)
> TL: 3.95 mm (average)

Carapace (Fig.11A) - Shorter than abdomen, with prominent blunt rostrum.

Eyes (Fig. 1 1 A) - Length of eyestalks less than twice width, eye reaches to base of ultimate segment of antennular peduncle

Antennule (Fig.11B) - Peduncle 3-segmented with short setae ; rami still unsegmented: inner with 5 short setae, outer with 7 aesthetascs.

Antenna (Fig.11C) - Flagellum with 7 segments each with a few setae, distal segment with long terminal seta.

Mandible - Damaged during the dissection

Maxillule (Fig.1ID) - Coxal endite with 9 setae ; basial endite with many spines and 5 setae; 3 plumose setae on outer side of basis; endopod terminating in long plumose seta.

Maxilla (Fig. 1 IE) - Proximal lobe of coxal endite with about 18 marginal setae and about 5 submarginal, distal lobe with 7 setae ; proximal lobe of basial endite with 7 setae, distal lobe with 12 setae; endopod unsegmented without setae ; scaphognathite with 49 plumose setae.

First Maxilliped (Fig.11F) - Basis with 2 large setose inner lobes ; endopod unsegmented ; exopod with about II lateral plumose setae.

Second Maxilliped (Fig.11G) - Basis with 3,2 setae ; endopod 3-segmented, distal segment with 7 setae, many inner and outer setae on segments ; exopod long, with 7 plumose setae and 3 distal setae.

Third Maxillined (Fig.11H) - Basis with 2 setae; endopod 5-seamented with numerous setae ; exopod with 2 small terminal setae

First leg (Fig. 111) - Right and left equal ; propodus twice as long as broad, with scattered setae.

Second and Third legs (Fig. $1 / J, 1 \mid K$) - Similar , carpus about equal in lenath to propodus.

Fourth leg (Fig. 1 IL) - Carpus and merus with few setae propodus with 4 corneous spines and few setae, dactylus short with long seta and a few short setae.

Fifth leg (Fig. 1 IM) - Propodus with a few corneous spines and long curved setae.

Abdomen (Fig. 11 A) - Somites with 1, 2, 2, 2, 2, 1 median dorsal spines, also pair of dorso-iateral spines on somite 1.

Pleopods (Fig. 1 IN) - On somites 2 to 5 similar: endopod a simple lobe with 2 curved spines, exopod with 9 natatory plumose setae

Uropod (Fig. 110) - Endopod with 13 plumose setae and 5 blunt corneous spines; exopod with 25 plumose setae, 2 small setae and 4 blunt corneous spines

Telson (Fig.110) - Subquadrangular, somewhat broader than long, with 9 plumose setae on posterior margin, 3 small setae on one side and 2 setae on other in specimen examined, 4, 2, 2, 2, spines on dorsal surface.

DISCUSSION

There has been some argument about the name of the species of Coenobita which occur in the Red Sea. The debate was summarised by Lewinsohn (1969), who gave a full bibliography and demonstrated that adult specimens from the Red Sea show a number of relatively small but consistent differences from C. rugosus H. Milne Edwards from the Indian ocean and west Pacific. The present work follows Lewinsohn in the use of the name Coenobita scaevola (Forskall, 1775) for the Red Sea species, which was originally described under the name Cancer scaevola

Zoeas of C. scaevola differ in minor characters from described larvae of other species of this genus. Those of four species of Coenobita have been described, C. perlatus, C. rugosus, C. cavipes and C. clypeatus. The description of the newly hatched larva of C. perlatus by Borradaile (1903) is too brief to permit detailed comparision. The first stage of C. scaevola is very similar in general appearance to the first stage of C. rugosus as illustrated by Yamaguchi (1938) , but there are some differences.

In C. rugosus, the antennule bears a different number of setae, the antennal scale has an additional seta at the proximal end of the inner margin and the endopod is shown as segmented, although this may be erroneously represented by Yamaguchi. The maxilla and second maxilliped have minor differences in setation from C. scaevola. In the megalopa stage the long ramus of the antennule is segmented in C. rugosus but unsegmented in C. scaevola; the antennal flagellum of C. rugosus has 7 segments, compared with 5 in C. scaevola. Most of the megalopal appendages of C. rugosus are not illustrated by Yamaguchi and therefore no detailed comparision between the two larvae can be made .

Recently Shokita et al (1986) have published full descriptions of the larval development of C. rugosus and C. cavipes Stimpson. The larvae of these two species are very similar and differences are confined to the appendages, which show minor differences in setation. These authors compared their larvae of C. rugosus with those described by Yamaguchi (1938) and pointed out a number of differences. They suggested that the larvae described by Yamaguchi might have belonged to C. purpureus, the adults of which have frequently been confused with C. rugosus. Confirmation is, however, required of several points in the description of larvae of C. rugosus by Shokita et al. In zoea I, the numbers of setae stated to occur on the endopod of the antenna and on the endopods of the first and second maxillipeds differ not only from those given here for C. scaevola but also from those of other known coenobitid larvae, and the 3 setae shown on the scaphognathite of the maxilla would be unique among
anomuran larvae. In the megalopa, c. rugosus has 6 segments in the antennal flagellum, compared with 5 C. scaevola, and the two species differ in the number of plumose setae on the exopods of the pleopods. Whichever description is correct, the larvae of C. rugosus appear to show minor differences from those of C. scaevola.
C. scaevola and C. clypeatus (described by Provenzano, 1962) are easily distinguished in the zoeal stages by the medio-dorsal spine on the 5th abdominal somite, which is shorter than the lateral spines in C. scaevola but longer in C. clypeatus. In all other zoeal stages C. clypeatus is distinguished by the presence of a dorsal rostral carina. C. clypeatus is longer than \mathcal{C}. scaevola in all stages, and the appendages show some differences in setation. Provenzano obtained the megalopa of C. clypeatus after 5 or 6 stages, but in the present study the megalopa of C. scaevola was obtained after 7 stages. It is possible that the different laboratory conditions of temperature and salinity are the reason for the difference in the numbers of stages. Temperature and salinity were $25^{\circ} \mathrm{C}, 38-39 \mathrm{ppt}$. in the present study while they were $29^{\circ} \mathrm{C}, 33-36 \mathrm{ppt}$. for C. clypeatus.

The only other genus of the Coenobitidae is Birgus. Larvae of B. latro, the only species of this genus, have been described by Reese and Kinzie (1968). This spcies has two submedian spines on the posterior dorsal margin of the fifth abdominal somite and the other somites are without spines. This is the main character which distinguishes B. latro from the species of Coenobita.

MacDonald, Pike \& Williamson (1957) and Pike \& Williamson (1960) grouped the Coenobitidae with the Diogenidae in the superfamily Coenobitoidea, while other hermit-crabs were grouped in the superfamily Paguroidea. The early zoeal stages of the known larvae of Coenobita resemble those of the Diogenidae rather than the Paguroidea in having three setae on the antennal endopod. The occurrence of median dorsal abdominal spines in the zoeal stages of Coenobita is a character shared with many Diogenidae but no known Paguroidea (Paguroidea usually have a small pair of median dorsal spines but not a single median spine). There are, however, two submedian dorsal spines on the fifth abdominal somites in the zoea larvae of B. latro, the only other genus of the Coenobitidae (Reese and Kinzie, 1968). The presence of a median telson spine in the later zoeal stages of the Coenobitidae seems to distinguish this family from all other known larvae of the Anomura (sensu stricto), although it is a common feature of larvae of the Thalassinoidea.

Figure 2. Coenobita scaevola (Forskảl), lateral view of zoeal stages.

A, first stage; B, second stage; C, third stage; D, fourth stage $; E$, fifth stage $; F$, sixth stage $; G$, seventh stage Scale bar $=0.5 \mathrm{~mm}$.

Figure 3. Coenobita scaevola (Forskảl), dorsal view of zoeal stages. A, first stage ; B, second stage; C, third stage; D, fourth stage ; E, fifth stage $; F$, sixth stage $; G$, seventh stage Scale bar $=0.5 \mathrm{~mm}$.

Figure 4. Coenobita scaevola (Forskall), first zoea
A, antennule ; B, antenna; C, mandible; D, maxillule; e, maxilla; F, first maxilliped ; G, second maxilliped ; H, third maxilliped; 1 , telson. Scale bars (from top): (1) $1=0.5$ mm ; (2) $A, B, F, G=0.2 \mathrm{~mm}$; (3) $C-E, H=0.2 \mathrm{~mm}$.

Figure 5. Coenooita scaevola (Forskål), second zoea .
A, antennule; B, antenna; C, mandible; D, maxillule ; E, maxilla; F, first maxilliped; G, second maxilliped; H, third maxilliped; 1 , telson. Scale bars (from top): (1) A, $B, F-H=0.2 \mathrm{~mm}, \mathrm{I}=0.5 \mathrm{~mm} ;(2) \mathrm{C}-\mathrm{E}=0.2 \mathrm{~mm}$.

Figure 6. Coenobita scaevola (Forskal), third zoea A, antennule; B, antenna; C, mandible; E, maxilla; F, first maxilliped; G, second maxilliped; H, third maxilliped; 1, uropod and telson. Scale bars (from top): (1) A, B , $\mathrm{F}-\mathrm{H}=0.2 \mathrm{~mm}, \mathrm{I}=0.5 \mathrm{~mm}$; (2) $\mathrm{C}-\mathrm{E}=0.2 \mathrm{~mm}$.

Figure 7. Loenooita scaevola (Forskål), fourth zoea
A, antennule; B, antenna; C, mandible ; D, maxillule; E, maxilla; F, first maxilliped; G, second maxilliped; H, third maxilliped; 1, uropod and telson. Scale bars (from top):
(1) $A, B, F-H=0.2 \mathrm{~mm}, I=0.5 \mathrm{~mm} ;(2) C-E=0.2 \mathrm{~mm}$.

Figure 8 , Coenobita scaevola (Forskål), fifth zoea.
A, antennule ; B, anttena; C, mandible; D, maxillule $; E$, maxilla ; F, first maxilliped; G, second maxilliped ; H, third maxilliped; 1 , uropod and telson. Scale bars (from top): (1) $A, B, F-H=0.2 \mathrm{~mm} ;(2) C-E=0.2 \mathrm{~mm}, \mathrm{I}=0.5 \mathrm{~mm}$.

Figure 9 . Coenobita scaevola (Forskål), sixth zoea. A, antennule ; B, antenna; C, mandible; D, maxillule $; E$, maxilla; F, first maxilliped ; G, second maxilliped ; H, third maxilliped; 1 , uropod and telson. Scale bars (from top):
(1) $\mathrm{A}, \mathrm{B}, \mathrm{F}-\mathrm{H}=0.2 \mathrm{~mm}$; (2) $\mathrm{C}-\mathrm{E}=0.2 \mathrm{~mm}, \mathrm{I}=0.5 \mathrm{~mm}$.

Figure 10. Coenobita scaevola (Forskål), seventh zoea
A, antennule; B, antenna; C, mandible; D, maxillule E, maxilla; F, first maxilliped; G, second maxilliped; H, third maxilliped; 1 , uropod and telson. Scale bars (from top): (1) A,B,F-H $=0.2 \mathrm{~mm}$; (2) $C-E=0.2 \mathrm{~mm}, 1=0.5 \mathrm{~mm}$.

Figure 11. Coenobita scaevola (Forskål), megalopa.
A, dorsal view; B, antennule; C, antenna; D, maxillule; E, maxilla; F, first maxilliped; G, second maxilliped ; H, third maxilliped; I, first leg ; J, second leg ; K, third leg; L, fourth leg; M, fifth leg; N, second pleopod; 0 , uropod and telson. Scale bars (from top): (1) B,C,G-N=0.2 mm;
(2) $0=0.5 \mathrm{~mm}$; (3) $A=1 \mathrm{~mm}, F=0.2 \mathrm{~mm}$; (4) $E=0.2$; (5) $D=0.2 \mathrm{~mm}$.

CHAPTER 3

LARVAL DEVELOPMENT OF THE HERMIT CRAB DARDANUS TINCTOR (FORSKAL, I775)
(CRUSTACEA : ANOMURA : DIOGENIDAE) REARED IN THE LABORATORY.

INTRODUCTION

The hermit crab genus Dardanus is represented by 3 species in the Jeddah region according to Lewinsohn (1969). From my collection of adults, D.tinctor (Forskål, 1775) appears to be more common than the others in this region. It is found among corals and has the habit of encouraging Calliactis anemones to settle on its gastropod shell (Vine, 1986).

Although over 40 species of Dardanus have been described (Provenzano, 1963) with distributions extending throughout all the warmer seas of the world, there are few previous descriptions of Dardanus larvae. Pike and Williamson (1960) described the first zoeal stage of D. arrosor (Herbst), and Kurata (1968) reared the same species to the megalopa, but none of these authors described the mouth parts of the larvae. Dechance (1962) distinguished between different unnamed species of Dardanus larvae from the Indo-Pacific, but gave very brief descriptions. Provenzano (1963) described the megalopa stage of D. venosus (H. Milne-Edwards), and Nayak and Kakati (1978) described the first zoea stage of D. setifer (H. Milne-Edwards) .

The purpose of this study is to describe the complete larval stages of D.tinctor reared in the laboratory and to compare these with other known Dardanus larvae .

An ovigerous female was collected on 5th April 1987 from a depth of about 5 m by traps. On 13 April larvae hatched, and rearing methods were the same as for Coenobita scaevola.

RESUL TS

Development and duration of the larvae

Dardanus tinctor passed through seven stages and one megalopa before reaching the first crab (Table 3). The number of days required to complete the larval development in the laboratory at 25° C is approximately 41 days .

Table 3 : Duration of each stage and survival of larvae .

Stages	Duration (mean and range) (days)	No. at beginning
Zoea I	$8.5(8-9)$	70
Zoea II	$4.5(4-5)$	68
Zoea III	$5.0(4-6)$	62
Zoea IV	$5.0(4-6)$	53
Zoea V	$5.5(4-7)$	44
Zoea VI	$6.0(5-7)$	37
Zoea VII	$8.5(8-9)$	18
Megalopa	-	6

Descriptions

First Zoea

(Fig. 12A,B,13)

$$
\begin{array}{r}
\text { Size }-\mathrm{CL}: 1.24 \mathrm{~mm} \text { (average) } \\
\text { TL : } 2.33 \mathrm{~mm} \text { (average) }
\end{array}
$$

Colour - Orange-red along middle of carapace, all abdomen and part of telson on ventral side.

Carapace (Fig. 12A,B) - Rostrum broad at base, narrow at end ; with cuticle scaly.

> Eyes (Fig. 12A,B) - Immobile .

Antennule (Fig.13A) - Uniramous, with 3 terminal aesthetascs of varying size, 2 short and one long plumose setae ; 1 long subterminal plumose seta.

Antenna (Fig. 13B) - Endopod with 2 terminal and 1 subterminal plumose setae, the subterminal seta about $1 / 3$ length of other two ; exopod with 10 plumose setae on inner and distal margin ; a strong serrated ventral spine on protopod at base of exopod ; fine hairs along the outer margin.

Mandible (Fig.13C) - A simple process with irregular teeth, without differentiation into incisor and molar regions.

Maxillule (Fig.13D) - Coxal endite with 6 setae ; basial endite with 2 strong spines, each with several denticles and 2 setae ; endopod with 2 setae.

Maxilla (Fig. 13E) - Proximal lobe of coxal endite with 6 setae , distal lobe with 3 setae ; proximal lobe of basial endite with 5 setae, distal lobe with 4 setae; Outer lobe of endopod with 2 setae, inner lobe with 2 setae ; scaphognathite with 5 plumose setae .

First Maxilliped (Fig. 13 F) - Basis with hooked process at proximal end of inner face, 1 small seta near hook and $2,3,2$ setae more distally on this face; endopod 5-segmented with 3/0, 2/0, 1/0, 2/0, 4/1 inner / outer plumose setae, also fine outer hairs on segments $1,2,3$ and 4 ; exopod with 4 natatory plumose setae .

Second Maxilliped (Fig. 13G) - Basis with 1,2 inner setae more distally on this face; endopod 4-segmented with $2 / 0,2 / 0,2 / 0,4 / 1$ inner / outer setae, also fine outer hairs on segments 2,3 ; exopod with 4 natatory plumose setae .

Third Maxilliped (Fig. 13H)-A small lobe .

Abdomen (Fig. 12A,B) - Surface of cuticle scaly, 5th abdominal somite with short lateral spines.

Telson (Fig. 131) - Triangular in form with concave median notch; 7 pairs of marginal processes : outermost a stout spine, 2nd a fine hair and 3rd to 7th plumose setae ; longitudinal ridges on dorsal surface.

Second Zoea

(Fig.12C, 14)

$$
\begin{array}{r}
\text { Size }-\mathrm{CL}: 1.47 \mathrm{~mm} \text { (average) } \\
\text { TL : } 2.72 \mathrm{~mm} \text { (average) }
\end{array}
$$

Carapace (Fig. 12C) - Almost unchanged .

Antennule (Fig. 14A) - Peduncle with 3 terminal aesthetascs and 2 plumose setae, 2 long subterminal plumose setae and 4 small outer plumose setae.

Antenna (Fig. 14B) - Endopod unchanged; exopod with 12 plumose setae.

Mandible (Fig. 14C) - A few more minute corneous teeth.

Maxillule (Fig. 14D) - Coxal endite unchanged in setation ; basial endite with 4 strong spines, each with several denticles and 2 setae ; endopod unchanged in setation.

Maxilla (Fig.14E) - Proximal lobe of coxal endite unchanged, distal lobe with 4 setae ; basial endite and endopod unchanged ; schaphognathite with 7 plumose setae .

First maxilliped (Fig.14F) - Basis with 1 small seta near hook and 2,3 and 3 setae; endopod with $3 / 0,2 / 1,1 / 1,2 / 1,4 / 1$ inner/outer plumose setae ; exopod with 6 natatory plumose setae .

Second Maxilliped (Fig.14G) - Basis unchanged; endopod with $2 / 0,2 / 1,2 / 1,4 / 1$ inner / outer plumose setae ; exopod with 6 plumose natatory setae.

Third Maxilliped (Fig. 14H) - Endopod absent ; exopod a lobe with 5 natatory plumose setae.

Abdomen (Fig. 12C) - Unchanged in form .

Telson (Fig.141) - An inner pair of smaller plumose setae added, to give 8 pairs of posterior marginal processes.

Size-CL : 1.47 mm (average)
 TL: 3.40 mm (average)

Carapace (Fig.12D) - Unchanged .

Antennule (Fig.15A) - Now consisting of peduncle and 2 unsegmented rami, 4 short outer distal plumose setae on peduncle; 4 plumose setae on short inner ramus; 3 aesthetascs all about same length, 2 long and 2 short plumose setae on large outer ramus .

Antenna (Fig.15B) - Endopod with 1 terminal aesthetasc ; exopod with 14 plumose setae and hairs along outer margin.

Mandible (Fig. 15C) - With additional small teeth.

Maxillule (Fig. 15D) - Unchanged in setation .

Maxilla (Fig.15E) - Proximal lobe of coxal endite with 7 setae , distal endite unchanged ; basial endite and endopod unchanged ; scaphognathite with 11 plumose setae .

First Maxilliped (Fig. 15F) - Unchanged in setation .

Second Maxilliped (Fig. 156) - Unchanged in setation .

Third Maxilliped (Fig. 15H) - Endopod a lobe on inner side of basis with short plumose setae ; exopod with 6 natatory plumose setae.

Abdomen (Fig. 12D) - Unchanged in form .

Uropod (Fig. 151) - Unsegmented ; endopod unarmed ; exopod with 10 natatory plumose setae .

Telson (Fig. 151) - Slightly wider posterioly than anteriorly; outer process of stage I and II now completely absent ; original 4th process now a fused spine .

Fourth Zoea
(Fig.12E,16)

```
Size - CL : 2.04 mm ( average )
    TL : 4.03 mm ( average )
```

Carapace (Fig. 12E) - Unchanged .

Antennule (Fig.16A) - Unchanged in setation with additional short plumose seta on the middle region of the peduncle.

Antenna (Fig.16B) - Endopod unchanged ; exopod with 16 plumose setae

Mandible (Fig. 16C) - With additional small teeth .

Maxillule (Fig. 16D) - Coxal endite unchanged ; basial endite with 5 strong spines, each with several denticles; endopod unchanged .

Maxilla (Fig.16E) - Unchanged in setation.

First Maxilliped (Fig.16F) - Unchanged in Setation.

Second Maxilliped (Fig. 16G) - Endopod unchanged ; exopod with 6 long and 2 short natatory plumose setae .

Third maxilliped (Fig. 16H) - Unchanged in setation.

Abdomen (Fig. 12E) - Unchanged in form .

Uropod (Fig. 161) - Endopod and exopod articulated with protopod; endopod with 6 plumose setae ; exopod with 12 plumose setae and strong outer distal spine.

Telson (Fig. 161) - Unchanged in form .

Fifth Zoea

(Fig.12F,17)

Size $-\mathrm{CL}: 2.24 \mathrm{~mm}$ (average)
TL: 4.22 mm (average)

Carapace (Fig.12F) - Unchanged .

Antennule (Fig.17A) - Unchanged in setation except one additional plumose seta on large (outer) ramus and one additional short plumose seta on the middle region of the peduncle.

Antenna (Fig.17B) - Endopod with 2 terminal aesthetases ; exopod with 17 plumose setae .

Mandible (Fig. 17C) - Unchanged in form .

Maxillule (Fig.17D) - Coxal endite with 7 setae, basial endite and endopod unchanged in setation.

Maxilla (Fig. 17E) - Unchanged in setation.

First Maxilliped (Fig. 17F) - Unchanged in setation .

Second Maxilliped (Fig. 176) - Endopod unchanged; exopod now with 8 equal natatory plumose setae .

Third Maxilliped (Fig.17H) - Endopod unchanged; exopod with 6 long and 1 short natatory plumose setae

Abdomen (Fig. 12F) - Unchanged in form .

Uropod (Fig. 171) - Endopod with 7-8 plumose setae; exopod with 14 plumose setae

Telson (Fig. 171) - Unchanged in form.

Sixth Zoea
(Fig.12G,18)

$$
\begin{array}{r}
\text { Size }-\mathrm{CL}: 2.52 \mathrm{~mm} \text { (average) } \\
\text { TL : } 4.76 \mathrm{~mm} \text { (average) }
\end{array}
$$

Carapace (Fig.12G) - Unchanged .

Antennule (Fig.18A) - Unchanged in setation except long (outer) ramus now with 4 aesthetases, 3 long and 2 short plumose setae.

Antenna (Fig. 18B) - Unchanged in setation.

Mandible (Fig. 18C) - With additional small teeth .

Maxillule (Fig. 18D) - Unchanged in setation.

Maxilla (Fig. I8E) - Proximal lobe of coxal endite with 11 setae, distal lobe unchanged ; proximal lobe of basial endite with 6 setae, distal lobe with 5 setae; endopod unchanged ; scaphognathite with 12 plumose setae and now with unarmed posterior projection, 4 plumose setae at base of proximal projection.

First Maxilliped (Fig.18F) - Endopod unchanged in setation ; exopod with 7 natatory plumose setae .

Second Maxilliped (Fig. 18 g) - Unchanged in setation .

Third Maxilliped (Fig.18H) - Endopod unchanged; exopod now with 7 equal natatory plumose setae .

Abdomen (Fig. 126) - Unchanged in form .

Uropod (Fig. 181) - Endopod with 9 plumose setae ; exopod with 16 plumose setae .

Telson (Fig.181) - With additional pair of inner plumose setae, to give $9+9$ processes.

```
Size - CL : }3.52\textrm{mm}\mathrm{ ( average )
    TL : 5.85 mm ( average )
```

Carapace (Fig. 12H) - Unchanged .

Antennule (Fig.19A) - Small (inner) ramus with 6 plumose setae; long (outer) ramus with 3 long and 2 short plumose setae and 9-10 aesthetascs ; proximal part of peduncle with 2 plumose setae, middle part with 2 plumose setae and basal part with 4 plumose setae.

Antenna (Fig.19B) - Endopod unchanged; exopod with 18 plumose setae.

Mandible (Fig. 18C) - Unchanged in form .

Maxillule (Fig.19D) - Coxal endite with 9 setae ; basial endite and endopod unchanged .

Maxilla (Fig.19E) - Proximal lobe of coxal endite with 13 setae, distal lobe unchanged ; proximal lobe of basial endite with 7 setae and distal lobe with 5 setae ; endopod unchanged ; scaphognathite with 13 plumose setae and 4 plumose setae at base of proximal projection.

First Maxilliped (Fig.19F) - Endopod unchanged ; exopod with 9 natatory plumose setae .

Second Maxilliped (Fig. 19G) - Endopod unchanged ; exopod with 9 natatory plumose setae.

Third Maxilliped (Fig. 19H) - Endopod with 2 short setae, exopod with 8 natatory plumose setae.

Pleopods (Fig.12H) - Small biramous buds on somites 2-5.

Uropod (Fig. 191) - Endopod with 11 plumose setae ; exopod with 16 plumose setae .

Telson (Fig. 191) - Unchanged in form .

Megalopa
(Fig. 20)

```
Size - CL: 1.76 mm ( average )
    TL : 4.96 mm ( average )
```

Carapace (Fig. 20A) - Shorter than abdomen, with prominent blunt rostrum.

Eyes (Fig. 20A) - Length of eyestalks less than twice width .

Antennule (Fig. 20B) - Peduncle 3-segmented with short setae ; rami segmented, inner (shorter) ramus of 4 segments with short setae, outer (longer) ramus of 7 segments with numerous long setae.

Antenna (Fig. 20C) - Flagellum with 14 segments, distal segment with seta ; small vestigial exopod with 2 short setae .

Mandible palp (Fig. 20D) - paddle-like with 12 terminal setae and 2 setae at proximal end.

Maxillule (Fig. 20E) - Coxal endite with 8 spines and 12 setae ; basial endite with 13 spines and 10 setae ; endopod with 1 seta.

Maxilla (Fig. 20F) - Proximal lobe of coxal endite with about 34 setae and distal lobe with 9 setae; proximal lobe of basial endite with 12 setae and distal lobe with 12 setae; endopod unsegmented without setae ; scaphognathite with about 49 plumose setae .

First Maxilliped (Fig. 20G) - Endopod unsegmented, with short terminal seta ; exopod with 6 natatory plumose setae ; epipod blade-like with 10 plumose setae .

Second Maxilliped (Fig. 20H) - Endopod of 4 segments with short setae ; exopod with 8 natatory plumose setae .

Third Maxilliped (Fig. 201) - Endopod of 5 segments with numerous short setae; exopod with 8 natatory plumose setae .

First Leg (Fig. 20J) - Right and left chelipeds equal ; dactyl about $1 / 3$ length of merus

Second and third Legs (Fig. 20K, L) - Similar, dactylus shorter than propodus, with some spines

Fourth and fifth Legs (Fig. 20M,N) - Chelate, with numbers of setae

Pleopods (Fig. 200) - On somites 2-5, similar: endopod a simple lobe with 2 curved spines ; exopod with 9 natatory plumose setae

Uropod (Fig. 20P) - Endopod with 16 long, 1 short plumose setae and 4 blunt corneous spines; exopod with 21 long, 3 short plumose setae and 9 blunt corneous spines

Telson (Fig. 20P) - Ovoid, about twice as long as broad, with 12 plumose setae on posterior margin

DISCUSSION

This is the first description of the larvae of D. tinctor (Forskål,1775) and, as noted in the Introduction, it is the first complete account of the larval development of any species of the genus Dardanus. Kurata (1968) , however, established the number of zoeal stages in D.arrosor and gave figures of the antennule, antenna and telson in each stage . Unpublished figures by Dr . D.I. Williamson of all the appendages of zoeal stages $1-V$ and the megalopa of this species have also been made available to the author, and it is therefore possible to compare the larvae of D.tinctor and D. arrosor in some detail. Similarities between the larvae of the two species include the number of zoeal stages (D.arrosor can pass through either 7 or 8), the lack of distinct chromatophores and the general shape of the rostrum, carapace and telson.

The larvae of D. tinctor are, however, only about $3 / 4$ the length of those of 0 arrosor in each stage ; in the zoeal stages, the rostrum is shorter, extending beyond the antennal scale by only about half the length of the scale as opposed to the full length; and there was no dorsal carina at the base of the rostrum. The lateral spines on the 5th abdominal somite are smaller in 0 . tinctor, and the outermost telson process, which becomes reduced to a small spine in D. arrosor, disappears entirely in 0 . tinctor. The antennal exopod bears the same number of setae in both species in zoeal stages I and II, but D. arrosor bears one more in zoea 111 , increasing to 5 more in zoea VII

In those stages which can be compared, D. arrosor has one more seta than D. tinctor on the coxal endite of the maxillule and also on the distal lobe of the coxal endite of the maxilla; it also has one more seta on the exopod of maxilliped 3 in stages IV and V. The inner setae on the endopods of maxillipeds 1 and 2 also show specific differences : on maxilliped 1 there are $2,2,1,2$ in 0 . arrosor , 3, 2, 1, 2 in D. tinctor ; on maxilliped 2 there are 2, 1, 1 in D.arrosor , 2 , 2,2 in D. tinctor .

Nayak and Kakati (1978) described the first zoea of D. setifel and noted that the surface of the cuticle was without scales in the larvae they examined. Seridji (1987) (unpublished data) described D. callidus (stage III), which has a very long rostrum and long lateral spines on the 5th abdominal somite, It also shows differences from D. tinctor in the setation of most of the appendages. The megalopa of D.venosus was described by Provenzano (1963), and the features of the three known species in this stage are compared in Table 4.

Table 4. Comparision of megalopas of D. tinctor, D. arrosor, and D. venosus

	D. tinctor	D. arrosor	D. venosus
Mandible : setae on palp	14	19	18
Maxillule : coxal endite :			
spines + setae	$8+12$	$14+?$	$15+23$
basial endite :			
spines + setae	$13+10$	$26+?$	$35+8$
Maxilla : setae on endites	$34,9,12,12$	$19,4,15,21$	$19,4,15,21$
setae on scaphognathite	about 49	about 115	about 100
First maxilliped:			
setae on exopod	6	19	17

Second maxilliped :
setae on exopod
8
12
14

Third maxilliped:
setae on exopod
8
15
15

Pleopods

hooks on endopod	2	5	$3-5$
setae on endopod	0	3	$3-5$
setae on exopod	9	14	12
Telson : terminal setae	12	15	17

Appendage setation is mostly similar in D. venosus and D. arrosor, but both show great differences from D. tinctor .

Figure 12. Dardanus tinctor (Forskål), lateral view of zoeal stages.
A, first stage; B, dorsal view of first stage; C, second stage ; D, third stage $; E$, fourth stage $; F$, fifth stage $; G$, sixth stage ; H, seventh stage. Scale bar $=0.5 \mathrm{~mm}$.

Figure 13. Dardanus tinctor (Forskål), first zoea .
A, antennule ; B, antenna ; C, mandible; D, maxillule $; e$, maxilla ; F, first maxilliped; G, second maxilliped ; H, third maxilliped; 1 , telson. Scale bars (from top): (1) A, B, F, $\mathrm{G}=0.2 \mathrm{~mm}, \mathrm{I}=0.5 \mathrm{~mm} ;(2) \mathrm{C}-\mathrm{E}, \mathrm{H}=0.2 \mathrm{~mm}$.

Figure 14. Dardanus tinctor (Forskål), second zoea.
A, antennule ; B, antenna; C, mandible; D, maxillule $; E$, maxilla ; F, first maxilliped; G, second maxilliped ; H, third maxilliped; 1 , telson. Scale bars (from top): (1) A, B, F, $G=0.2 \mathrm{~mm}, \mathrm{I}=0.5 \mathrm{~mm}$; (2) $\mathrm{C}-\mathrm{E}, \mathrm{H}=0.2 \mathrm{~mm}$.

Figure 15. Dardanus tinctor (Forskall), third zoea . A, antennule ; B, antenna; C, mandible; D, maxillule $; E$, maxilla; F, first maxilliped; G, second maxilliped; H, third maxilliped; 1 , uropod and telson. Scale bars (from top) : (1) $=0.5 \mathrm{~mm} ;(2) \mathrm{A}, \mathrm{B}, \mathrm{F}-\mathrm{H}=0.5 \mathrm{~mm}$; (3) $\mathrm{C}-\mathrm{E}=$ 0.2 mm .

Figure 16. Dardanus tinctor (Forskål), fourth zoea.
A, antennule ; B, antenna; C, mandible; D, maxillule $; E$, maxilla ; F, first maxilliped ; G, second maxilliped ; H, third maxilliped; 1 , uropod and telson. Scale bars (from top): (1) $\mathrm{I}=0.5 \mathrm{~mm}$; (2) $\mathrm{A}, \mathrm{B}, \mathrm{F}-\mathrm{H}=0.5 \mathrm{~mm}$; (3) $\mathrm{C}-\mathrm{E}=0.2 \mathrm{~mm}$.

Figure 17. Dardanus tinctor (Forskå), fifth zoea.
A, antennule; B, antenna; C, mandible ; D, maxillule $; E$, maxilla ; F, first maxilliped; G, second maxilliped ; H, third maxilliped; 1 , uropod and telson. Scale bars (from top):
(1) $I=0.5 \mathrm{~mm}$; (2) $A, B, F-H=0.5 \mathrm{~mm}$; (3) $C-E=0.2 \mathrm{~mm}$.

Figure 18. Dardanus tinctor (Forskål), sixth zoea.
A, antennule; B, antenna; C mandible; D, maxillule ; E, maxilla; F, first maxilliped; G, second maxilliped; H, third maxilliped; 1 , uropod and telson. Scale bars (from top): (1) $A, B, F-H=0.5 \mathrm{~mm}, C-E=0.2 \mathrm{~mm} ;(2) I=0.5 \mathrm{~mm}$.

Figure 19. Dardanus tinctor (Forskål), seventh zoea .
A, antennule ; B, antenna; C, mandible; D, maxillule $; E$, maxilla; F, first maxilliped; G, second maxilliped ; H, third maxilliped ; 1, uropod and telson. Scale bars (from top):
(1) $A, B, F-H=0.5 \mathrm{~mm}, C-E=0.2 \mathrm{~mm}$; (2) $1=0.5 \mathrm{~mm}$.

Figure 20. Dardanus tinctor (Forskål), megalopa.
A, dorsal view; B, antennule; C, antenna; D, Mandible palp; E, maxillule; F, maxilla; G, first maxilliped; H, second maxilliped; 1 , third maxilliped; J, first leg; K, second leg; L, third leg; M, fourth leg ; N, fifth leg; 0 , second pleopod; P, uropod and telson. Scale bars (from top): (1) $A=1 \mathrm{~mm} ;(2) P=0.5 \mathrm{~mm}$; (3) J-L=1 mm; (4) $B, C, G-1, M-0=0.5 \mathrm{~mm}$; (5) $E, F=0.5 \mathrm{~mm}$; (6) $D=$ 0.2 mm .

CHAPTER 4

A DESCRIPTION AND DISCUSSION OF ALPHEID AND ANOMURAN LARVAE FROM PLANKTON SAMPLES IN THE CENTRAL RED SEA.

INTRODUCTION

Comparatively few decapod larvae in collections from the Red Sea can be assigned to named species, but many can be assigned to families or genera, and specific differences between larvae of the same genus are often apparent. The larvae of a number of families and genera in the present collections were sorted to species and specific numbers allocated. In several groups the numbers of species determined from the larvae were very much greater than the numbers previously recorded from the area as adults, but in others the larval records indicate smaller numbers of species than those which have previously been recorded. Examples of both these situations are given in the present chapter, which concerns investigations into the number of species in the genus Alpheus (Caridea) and in several families of the Anomura.

Lengths are given as average values for each larvae, based on at least 10 specimens when sufficient material was available. The range is usually $\pm 10-15 \%$ of the mean value. The locations of stations, frequencies of sampling and distribution of the commoner species are given in chapter 5 .

Alpheidae (Caridea)

Alpheus spp.

introduction

Alpheid shrimps have attracted the attention of many scientists from several points of view, including their habit of burrowing in the sea bed, the sound production of males and the fact that some live commensally with different species of gobiid fish (Vine, 1986).

The Red Sea is known to be extremely rich in alpheid species (Gurney, 1938C). Banner \& Banner (1981 , 1983) listed records of 95 species and subspecies of adult Alpheidae, including 49 species of Alpheus, from the Red Sea and Gulf of Aden, and 143 species of Alpheidae from the western Indian Ocean including the Red Sea.

[^1]Lebour (1932) found that, in the laboratory, larvae of A. glabel (Olivi) (= A. ruber H. Milne-Edwards) hatched with stalked eyes , usually characteristic of stage 11 and later stages, but with 7+7 telson setae, as in a normal stage I larva. Such larvae moulted to produce forms with the usual characters of stage III larvae. The youngest specimens of this species obtained from the plankton had all the characters of typical stage II caridean larvae. Knowlton (1973) found that, in the laboratory, A. heterochaelis Say could hatch either as a typical stage I or stage II larva and that stage I, when it occurred, was of much shorter duration than the subsequent stages .

Larvae of five named specles of Alpheus have been previously described from the Red Sea . A. audouini Coutiere was described from the Suez Canal (Gurney, 1927) and from Al-Ghardaqa (Gurney, 1938c). The other species, all from Al-Ghardaqa, are A. ventrosus Herbst (described by Gurney, 1938c and Al-Kholy, 1961), A. pacificus Dana (by Gurney, 1938c and by Gohar \& Al-Kholy, 1957) , A. rapax Forsk (by Al-Kholy, 1961) and A. microstylus Bate (by Al-Kholy, 1963). In addition, Williamson (1970) described late larvae of 37 unnamed species from plankton samples from the Gulf of Al-Aqaba , distinguishing them only on external morphological characters as the chromatophores were no longer distinguishable.

Methods

Larvae of Alpheus were sorted from plankton samples and preserved in approximately 2% formaldehyde in sea water. In distinguishing species, much use was made of the distribution of chromatophores. As the chromatophores fade in preserved material, larvae had to be examined within 7-10 days of capture. Chromatophore patterns are shown in the results on standardised dorsal views of typical Alpheus larvae (Fig. 21-28). These diagrams do not show other specific morphological characters. The total length of each larva, the ratio of rostral length to eye length and the shape of the eyes was also recorded. Drawings of rostra and eyes are given for only a minority of species. The larvae were given specific numbers, each with the prefix CRS (for Central Red Sea).

Attempts were made to rear larvae captured by pipette from plankton samples. Some were isolated in small bowls and fed on either Rotifers or Artemia nauplii. In addition, about 100 larvae were placed in a 2 litre beaker and fed on Artemia nauplii. All rearing experiments were at a controlled temperature of $25^{\circ} \mathrm{C}$.

Results

No Alpheus larvae were seen with typical characters of a stage 1 caridean larva (sessile eyes and $7+7$ telson setae). The great majority of the larvae were in stage 11 and the drawings and measurements all relate to this stage .

The most common chromatophores were red spots, but some larvae (e.g. CRS 52) had diffuse pigment and a number had elongated chromatophores, often on the posterior part of the carapace. A few had very big red chromatophores (e.g. CRS 13). Yellow chromatophores scattered along the body occurred in CRS 60 and a few other species. All species had a single red spot chromatophore on the distal antennular peduncle and another on the inner side of the eye stalk. Most had a red chromatophore on the anterior part of the telson, but some had none (e.g. CRS 5) and some had two (e.g. CRS 55). In many species the posterior telson was unpigmented (e.g. CRS 1), but some had two chromatophores in this region (e.g. CRS 7), others four (e.g. CRS 2). A very large chromatophore occurred in the middle of the telson in CRS 21.

Each larva was assigned to one of four categories depending on the length of the rostrum in relation to that of the eyes (Fig. 29): (A) rostrum at least $1 / 2$ length of eye (e.g. CRS 20), (B) about $1 / 3$ length of eye (e.g. CRS 31), (C) about $1 / 4$ length of eye (e.g. CRS 34) and (D) less than $1 / 4$ length of eye (e.g. CRS 61). Category ' B ' was the most common (Table 5).

It was found possible to distinguish 10 groups depending on eye shape, assigned to categories E-N (Fig. 30). For example, the anterodorsal region of the eye was pointed in CRS $12(E)$, produced into a rounded prominence in CRS $20(\mathrm{H})$ and into a larger rounded prominence in CRS $13(\mathrm{~N})$, while the eye of CRS $41(\mathrm{~K})$ was almost round. The most common type of larval eye resembled that of CRS 16
(F) and CRS 82 (1), both of which should a small rounded prominence but the cornea is wider in F (Table 5).

The total length of Alpheus larvae in stage 11 ranged from 1.76 mm (CRS 78) to 3.36 mm (CRS 50) , with an average of 2.44 mm (Table 5).

Of the 89 species distinguished, CRS 20 was the most common in the mangrove area. It occurred in about 21% of the total samples, was restricted to February and March, when it occurred in all samples, of ten in very large numbers. CRS 46 was the most common in the Obhor creek. Many species occurred as only a single specimen. CRS 20 is probably the same species as that from the Gulf of Aqaba numbered NRS 28 by Williamson (1970), although the chromatophore pattern of NRS 28 is not known. None of the larvae can be assigned to a named species with any certainty.

In the rearing experiments all the isolated larvae died within a few days. Of the 100 larvae reared in mass culture, 10 survived for six months, seven died during the seventh month, and the remaining three were killed at the end of the seventh month, having reached a length of approximately 10 mm .

Discussion

The relatively small range of morphlogical characters is consistent with assigning all the 89 species to the same genus, although the possibility that some belong to other alpheid genera cannot be entirely eliminated. Larvae of Athanas were encountered and were fairly easily distinguished from those assigned to Alpheus .

It has been assumed in this work that the larval chromatophore pattern is consistent for each species. This assumption is supported by the consistent and distinct chromatophore patterns found by Lebour (1932) in the larvae of A. glaber and A. macrocheles in British waters and by the fact that chromatophores have provided reliable specific characters in the larvae of all decapod groups that have been investigated, including the Brachyura (Lebour, 1928), Diogenidae and Paguridae (Pike \& Williamson, 1960) and Penaeidae (Mair, 1979). As 89 species have been distinguished as larvae in the present work and only 49 have been recorded from the Red Sea as adults, it must be inferred that there are nearly as many undescribed adults in the area as have been described. This reflects the considerable difficulties encountered in trying to sample small benthic shrimps in a community dominated by corals and the relative ease and efficiency of taking plankton samples in the overlying waters.

Figure 21. Chromatophores patterns on standardised views of typical Alpheus larvae (stage II) CRS 1-CRS 12.

Key to shape and colour of chromatophores in Alpheus larvae CRS 1 - CRS 89
(•) Red chromatophores.
(-) Elongate Red chromatophores
(*) Diffuse Red chromatophores.
(*) Yellow chromatophores.

1

7

4

8

Figure 22. Chromatophores patterns on standardised views of typical Alpheus larvae (stage II) CRS 13-CRS 24.

CRS 18 and CRS 24 have the same chromatophore pattern but differ in length of rostrum (see Table 5).

Figure 23. Chromatophores patterns on standardised views of typical Alpheus larvae (stage II) CRS 25 - CRS 36

Figure 24. Chromatophores patterns on standardised views of typical Alpheus larvae (stage II) CRS 37 - CRS 48.

Figure 25 . Chromatophores patterns on standardised views of typical Alpheus larvae (stage II) CRS 49 - CRS 60.

Figure 26. Chromatophores patterns on standardised views of typical Alpheus larvae (stage II) CRS 61 - CRS 72.

Figure 27. Chromatophores patterns on standardised views of typical Alpheus larvae (stage II) CRS 73 - CRS 84.

73

74

79

78

Figure 28 . Chromatophores patterns on standardised views of typical Alpheus larvae (stage II) CRS 85-CRS 89.

Figure 29 . Length of rostrum in relation to eyes of Alpheus larvae A, rostrum at least $1 / 2$ length of eye $; B$, rostrum about $1 / 3$ length of eye $; C$, rostrum about $1 / 4$ length of eye $; D$, rostrum less than $1 / 4$ length of eye. Scale bar $=0.5 \mathrm{~mm}$

A

C

B

D

Figure 30 . Different eye shapes ($E-N$) encountered in Alpheus larvae. Scale bar $=0.5 \mathrm{~mm}$

Table 5. Alpheus species, CRS 1 -CRS 89. Total length, length of rostrum compared with eye length (categories A-D) and eye shape (categories E-N).

ANOMURA (INCLUDING THALASSINIDEA)

Thalassinidea
 Upogebiidae

Introduction

This family is usually regarded as consisting of the single genus Upogebia Leach, although some authors have recognised Gebicula Alcock and Calliadne Strahl as subgenera of Upogebia or as separate genera. Most species of Upogebia live in burrows in the substratum, but Usavigni Strahl lives inside a sponge in a smooth-walled canal which does not open to the surface. Development of this Red Sea species was described by Gurney (1937a), but it hatches as a juvenile and there is no planktonic larval phase. No named larvae of Upogebia have been described from the Red Sea, but Seridji (1986) recorded the larvae of three unnamed species from the Gulf of Aqaba, northern Red Sea .

Species of Upogebia recorded from the Red Sea as adults are Upogebia darwini(Miers) , U. ancylodactyla De man , U. cargadensis Borradaile, U. savignyi(Strahl), U. pseudochelata Tattersall, U. carinicauda (Stimpson) (Sakai, 1984).

European larvae of Upogebia have the rostrum shorter than the antennal scale, the telson develops a small median spine in stage II and there are no abdominal spines (Williamson, 1957). The absence of abdominal spines, however, is not a generic larval character Gurney (1938 b) ascribed to Upogebia a larva from the Great Barrier

Reef with dorsal spines on abdominal somites 2-5, and Ngoc-Ho (1981) described larvae of U affinis (Say) and two other (unnamed) species from the Gulf of Mexico all with a pair of large lateral spines on the 5th abdominal somite and a pair of small dorsal spines on the posterior border of the 6 th somite in stage III and later stages. She also mentioned, but did not describe, larvae ascribed to upogebia from the Red Sea with a small median spine on the posterior border of the 6th somite in stage III and later stages. European species for which information is available pass through three or four zoeal stages (Gurney, 1942), Mexican species through five (Ngoc-Ho, 1981).

Results

Larvae of four species from the present collections are regarded as belonging to Upogebia and they have been given the specific letters A-D. They are illustrated in Fig. 31 and the main distinguishing characters are given in Table 6 . Each larva has an anal spine, and larva B, which is in stage III, has a median dorsal spine on the posterior margin of somite 6 and a small median telson spine .

Table 6. Comparision of larvae of unogedia from the present collection.

| A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |

Total length (average) in mm (stage) 2.85(1) $2.69(111) 2.30(1) 2.73(1)$
$\begin{array}{lllll}\text { Length rostrum/A2 scale } & 1 & 1 / 2 & 3 / 4 & 1 / 2\end{array}$
Dorsal denticles on somites $3,4,5$ none 5 none
Lateral spines on somites $3,4,5$ none none none

Discussion

Larva A (Fig. 31 A) resembles Gurney's (1938 b) larva from the Great Barrier Reef in having a relatively long rostrum and lateral spines on abdominal somites 3-5 but it differs in having dorsal denticles on these same abdominal somites.

Larvae B (Fig. 31B) in stage 111, is clearly in the last zoeal stage, as shown by the large rudiments of legs and pleopods. Larva D (Fig. 310), in stage 1, already has large leg rudiments and small pleopod buds. There may be only two zoeal stages in this species. Larvae A and C (Fig. 3IC), both in stage 1 , show similar development of the thoracic appendages to the stage 1 larvae of Mexican species, described by $\mathrm{Ngoc}-\mathrm{Ho}$ (1981), which pass through five zoeal stages. Ngoc-Ho commented on the similarity of the larvae of the three species of Upogebia which she described from the Gulf of Mexico but noted that there did not appear to be any general world-wide tendency for closely related species of Upogebia to occur in the same region. This is certainly true of the Red Sea, where the
larvae of this genus show a wide range of abdominal armature and different species may show direct development or pass through an estimated two, three or five zoeal stages.

Figure 31. Upogebia larvae, lateral view A, Uoogebia $A($ stage I $) ; B$, Upogebia B (stage III) ; C, Upogebia C(stage I); D, Upogebia D (stage I). Scale $\mathrm{bar}=0.5 \mathrm{~mm}$.

Callianassidae

Introduction

The generic name Callianassa Leach is here used in a broad sense to include all the known Callianassidae (excluding Upogebiidae).

Gurney (1937b) arranged the species of Callianassa into two types on larval characters. Species of type 1, represented by the subgenera Callianassa, Chearmus Bate and Trypaea Dana, pass through five zoeal stages and have a large dorsal spine on the 2nd abdominal segment. Species of type 2 , represented by the subgenus Callichirus Stimpson, pass through only two zoeal stages; the spine on the second somite is shorter and the telson is very broad and convex with many marginal processes. Gurney (1937b) described larvae of three species of type 2 from the Red Sea and Williamson (1970) described one larva of type 1 , apparently of the subgenus Callianassa.

Seridji (1986) recorded the larvae of four unnamed species of Callianassa from the Gulf of Aqaba, and Al-Kholy and Fikry Mahmoud (1967a) described the larval stages of one unnamed species of Callianassa from Al-Ghardaqa , Egypt . The larva described by Williamson resembles the Al-Kholy and Fikry Mahmoud larvae, but the spine on the 2 nd abdominal somite is longer in the latter.

Species of Callianassa recorded from the Red Sea as adults are C. jousseaumei Nobili, C. calamani Nobili, C. amboinesis Deman and C. loouvieri Nobili (De Man , 1928 ; Holthuis, 1958). Gurney (1937 , 1942) commented that in some cases it is difficult to decide whether a larva should be assigned to the Callianassidae or the Axildae. He regarded the presence of an exopod on leg 5 in the late zoeal stages of the Axiidae as the only reliable distinguishing character. Kurata (1965) regarded the presence of a dorsal spine on the second abdominal somite as an essential character of all larvae of Callianassa and assigned similar larvae without such a spine to Axius .

Results and Discussion

Seven species of larvae from the present collections are ascribed to Callianassa, although in some cases it is not possible to rule out the possibility that they may belong to the Axiidae. The larvae, given the specific letters A-G, are illustrated in Figs. 32 and 33 and the main diagnostic characters are listed below.

Larva A (stage I) (Fig. 32A) - CL: 1.34 mm (average), TL: 3.26 mm (average) . 2nd abdominal somite with long dorsal spine reaching to about posterior margin of 3rd somite. 3rd, 4th and 5th abdominal somites with small dorsal spine. Teison median spine very short (Fig. 33A).

Larva B (stage I) (Fig. 32B) - CL: 1.92 mm (average) , TL: 4.32 mm (average) . 2nd abdominal somite with long dorsal spine, $3 / 4$ length of 3 rd somite. 3rd , 4th and 5th abdominal somites with dorsal spines longer than A. Telson median spine very long (Fig. 33B).

Larva C (stage I) (Fig. 32C) - CL: 1.66 mm (average) , TL: 3.81 mm (average) . 2nd abdominal somite with long dorsal spine, $1 / 2$ length of 3 rd somite. 3 rd, 4th and 5 th somites with dorsal spines similar to A. Telson median spine very long, as in B (Fig. 33C) .

Larva D (stage I) (Fig. 32D) - CL: 1.92 mm (average) , $\mathrm{TL}: 4.16$ mm (average) . 2nd abdominal somite with long spine, $1 / 2$ length of 3rd somite. 3rd, 4th and 5th somites with dorsal spines a little longer than A. Telson median spine shorter than B (Fig. 33D) .

Larva E (stage I) (Fig. 32E) - CL: 1.44 mm (average) , TL: 3.30 mm (average) . 2nd, 3 rd , 4th and 5th abdominal somites with equal spines. Telson median spine short, as in A (Fig. 33E) .

Larva F (stage I) (Fig. 32F) - CL : 2.40 mm (average) , TL : 5.28 mm (average) . 2nd abdominal somite without spine. 3rd and 4th abdominal somites with dorsal spines and the 5th with long lateral spines. Telson median spine long, as in B (Fig. 33F).

Larva G (stage II) (Fig. 32G) - CL: 1.92 mm (average) , TL: 4.16 mm (average) . 2nd abdominal somite without spine. 4th and 5th
abdominal somites with lateral spines. Telson median spine long, as in B (Fig. 336) .

The telsons of all these larvae resemble that of Gurney's type I (Gurney, 1937b), but, if the distinction employed by Kurata (1965) is correct, species F and G should belong to the family Axiidae. As the larvae are all in the early zoeal stages it is impossible to say whether an exopod would eventually develop on leg 5.

Figure 32. Callianassidae larvae, lateral view
A, Larva A (stage 1) ; B, Larva B (stage 1) ; C, Larva C (stage I) ; D, Larva D (stage I) ; E, Larva E (stage I) ; F, Larva F (stage I) ; G, Larva G (stage II). Scale bar $=0.5$ mm

Figure 33. Callianassidae larvae, telsons
A, Larva A (stage I) ; B, Larva B (stage I) ; C, Larva C (stage I) ; D, Larva D (stage I) ; E, Larva E (stage I) ; F, Larva F (stage I) ; G, Larva $G($ stage II). Scale bar $=0.5$ mm

Laomediidae

Introduction

The Laomediidae are burrowing decapods, macrurous in form (Wear \& Yaldwyn, 1966). The known adults of the family make up the genera Laomedia de Haan , Naushonia Kingsley, Jaxea Nardo, Axianassa Schmitt and Laurentiella LeLoeuff \& Intes. Publications on laomediid larvae are listed by $\mathrm{Ngoc-Ho}(1981$). Larvae of Laomedia, Naushonia and Jaxea are known either from hatching in the laboratory or rearing to identifiable juveniles. Ngoc-Ho (1981) ascribed a series of larval stages from the Gulf of Mexico to Axianassa, and other larvae described by Menon (1933) from India may belong to the same genus. No genus has been suggested for larvae, apparently all of the same species, described by Gurney (1938D) from the western Atlantic, the Great Barrier Reef and Samoa. No larvae have been ascribed to Laurentiella. There are no previous full descriptions of laomediid larvae from the Red Sea but Seridji (1986) recorded the larvae of one unnamed species of Naushonia from the Gulf of Aqaba.

The described larvae of the family all have highly modified mandibles in which the left is drawn out into a long sickle-shaped spine. There is also a tendency for the head to be elongated between the antenna and the mandibles to give the appearance of a ' neck '. This feature is well marked in larvae of Laomedia and Jaxea, only slightly developed in Naushonia and absent in the larvae ascribed to

Axianassa. There is also a tendency for the telson of the early zoeal stages to be broad and sickle-shaped, a feature most pronounced in larvae of Jaxea, rather less developed in larvae of Laomedia and Naushonia and again absent in the larvae ascribed to Axianassa.

Results

Larvae of two species are described in the present study, Naushonia sp. and Laomodiidae CRS (Central Red Sea). The latter could not be identified to any genus of this family. Larvae are illustrated in (Fig. 34).

Naushonia sp. (TL: 1.81 mm , stage I) (Fig. 34E). One larva was seen in the plankton collections, and the modification of the mandibles was clear without dissection. Rostrum small, slender, upturned at end. Abdominal somites without pleural spines, but somite 5 with a small papilliform process ventrally on either side. Telson deeply hollowed in middle .

Laomodiidae CRS (TL: 2.12 mm (average) , stage 1) (Fig. 34A). Rostrum broad at base narrowing into sharp distal part . Abdominal somites 2-4 with pleural spines, somite 5 with lateral spines. Mandibles asymmetrical : the left a long curved spine (Fig. 34B) , the right with cutting part pointed and molar part forked (Fig. 34C).

Discussion

The present larva of Naushonia sp. (Fig. 34E) closely resembles those described by Gurney (1938b) from Samoa and the Great Barrier Reef and undoubtedly all these larvae belong to the same species; also Seridji's larva from the Gulf of Aqaba show many similarities . One adult species of Naushonia has been recorded from the Somilia coast of the Red Sea; this is N. perrieri Nobill. The larvae probably all belong to this species, as suggested by Gurney \& Lebour (1939) .

Laomediidae CRS (Fig. 34A) closely resembles Laomediidae D.I described by Gurney (1938b) from the western Pacific, the Great Barrier Reef and Samoa, although Gurney's larva is rather larger (2.4 mm in stage 1) and the rostrum and pleural spines are shorter. Laomediidae D.I has a very small median telson spine in the late zoeal stages and it is probable that such a spine is also present in the late zoeal stages of Laomediidae CRS. Both larvae probably belong to the same genus, although it is still not possible to suggest what this genus might be. The form of the mandibles and pleural spines leaves no doubt that they belong to the Laomediidae . Larvae from the Gulf of Mexico, resembling Laomedilidae CRS in most respects but lacking pleural spines, were ascribed to Axianassa by $\mathrm{Ngoc}-\mathrm{Ho}$ (1981). Larvae from India, originally ascribed to the Upogebiinae by Menon (1933), probably belong to the same genus as Ngoc-Ho's larva, although the presence of appendices internae on the pleopods of the postlarvae does not agree with the suggestion that they belong to *Axianassa. Laomediidae CRS seems likely to be the larva of an
undescribed species of the Laomediidae, but it is not yet possible to say whether or not it belongs to a named genus

Figure 34. Laomediidae, lateral view .
A, Laomediidae CRS (Central Red Sea) ; B, left mandible of Laomediidae CRS ; C, right mandible of Laomediidae CRS; D, telson of Laomediidae CRS ; E , Naushonia 5 S . . Scale bars (from top): (1) $B, C=0.1 \mathrm{~mm}$; (2) $A, D, E=0.5 \mathrm{~mm}$

(Anomura s. s.)
 Galatheidae

Intoduction

Several species of this family are confined to deep water, and some are commensal with different organisms (Vine , 1986) Lewinsohn (1969) gave descriptions of 15 species of adult Galatheidae from the Red Sea, belonging to the genera Galathea (11 species), Munida (3 species) and Bathymunida (1 species) .

Seridji (1986) recorded from the northern Red Sea (Gulf of Aqaba) larvae of five unnamed species of Galathea and one unnamed specis of Munida, but descriptions of these larvae are not yet published. Only two Galathea larvae have previously been described from the Red Sea, both from Al-Ghardaqa, Egypt. These are G. longimana Paulson, described by Gurney (1938a) and Galathea sp. by Al-Kholy (1959) .

The following distinguishing features of Galathea and Munide are from Gore (1979).

Galathea spp.

1-Rostrum acute, expanded proximally often from stage II.
2-Carapace postero-lateral margin usually spinulate .
3-Antennal scaphocerite broad or flattened.

4- Telson triangular, not deeply bifurcate in early stages, becoming more elongate in later stages.

Munida spp.

1- Rostrum elongate, needle-like, spinulate on distolateral margin and tip in early stages, but may be unarmed in late stages.

2- A serrated postero-lateral carapace margin with noticeable posterior spine.

3-Antennal scaphocerite elongate, thin or even noticeably aciculate, often spined, basal segment with a single ventral spine in first stage.

4- Telson originally deeply bifurcate in early stages of development . Also Williamson (1957) mentioned that larva of the family Galatheidae are distinguished by having the postero-lateral margins of carapace denticulate and usually with a spine .

Results

Larvae of seven species were recorded in the present study and given the specific letters A-G. The larvae are illustrated in Fig. 35, and the main distinguishing features are listed below. In each case the length and breadth of the rostrum refer to the part which extends beyond the eyes. All species have a pair of lateral spines on the posterior margins of both the 4th and 5th abdominal somites.

Larva A (Fig. 35A). Zoea 1, TL : 2.35 mm (average) . Dorsal posterior margins of somites 4 and 5 each with a continuous row of denticles between lateral spines. Rostrum smooth, about 5 times as long as broad. Dorsal part of posterior margin of carapace without spinules. Length of spine on antennal scale only about $1 / 4$ width of scale.

Larva B (Fig. 35B) . Zoea II, TL: 1.75 mm (average) . Dorsal posterior margins of somites 4 and 5 each with a pair of small spines. Rostrum with lateral serrations ; length less than twice breadth. Short length of dorsal posterior margin of carapace without spinules . Length of spine on antennal scale about half width of scale. In all the remaining species the dorsal posterior margins of somites 4 and 5 are smooth.

Larva C (Fig. 35C) . Zoea III , TL : 3.17 mm (average) . Rostrum with lateral serrations, about 4 times as long as broad. Only about 4 dorsal spinules at base of each posterior carapace spine, remainder of margin between spines smooth. Length of spine on antennal scale about equal to width of scale .

Larva D (Fig. 35D) . Zoea I, TL : 2.00 mm (average) . Rostrum smooth, about 6 times as long as broad. Continuous row of spinules on dorsal posterior margine of carapace. Spine on antennal scale much longer than width of scale. Lateral spines on 4th abdominal somite small. Outermost telson spine long.

Larva E (Fig. 35E). Zoea I, TL : 2.00 mm (average). Rostrum smooth, about 8 times as long as broad. Only 4 or 5 dorsal spinules at base of each posterior carapace spine, remainder of margin between spines smooth. Spine on antennal scale slightly longer than width of scale .

Larva F (Fig. 35F) . Zoea 1, TL: 1.82 mm (average) . Rostrum smooth, about 5 times as long as broad. Only short length of dorsal posterior margin of carapace without spinules. Spine on antennal scale much longer than width of scale. Eyes very large : length of eye greater than distance from posterior eye to tip of carapace spine.

Larva G (Fig. 356) , Zoea I , TL: 3.00 mm (average)) Rostrum with lateral spinules on anterior third, remainder smooth; about 14 times as long as broad. continuous row of spinules on dorsal posterior margin of carapace. Antennal scale parallel-sided for most of length; setae on distal $3 / 4$ of inner margin, spinules along entire length of outer margin ; terminal spine longer than width of scale.

Discussion

None of the larvae correspond to previously published descriptions. Larvae A - F almost certainly belong to different species of Galathea but G belongs to a different genus (Fig. 35) . G resembles larvae of Munida in having spinules on the anterior part of the rostrum, and larvae of some species of Munida have spinules on the distal part of the outer margin of the antennal scale. The shape of
the antennal scale of G is, however, unlike that of any previously described galatheid larva, and no other described larva has spinules along the entire outer margin of the scale. The carapace spines and outermost telson spines of G are similar to those of some species of Galathea and much less developed than in Munida larvae. G seems likely to belong to a genus of the Galatheidae for which no larva has previously been described. It is suggested that it may well belong to Bathymunida, which is known to be represented in the Red Sea by B. polae Balss (Lewinsohn, 1969).

Figure 35. Galatheidae, dorsal view
A , Larva A (stage I) ; , Larva B (stage II) ; C Larva C
(stage III) ; D, Larva D (stage I) ; E, Larva E (stage I) ; F,
Larva F (stage I) ; G, Larva G (stage I). Scale bar = 0.5
mm

Porcellanidae

Introduction

Larvae of the Porcellanidae are very distinctive, having the rostrum much longer than the body, long posterior carapace spines extending bevond the telson and the telson tending towards an ovoid shape (Williamson, 1957 ; Wear , 1964). Greenwood (1965) gave a table to distinguish the larvae of Petrolisthes, Porcellana and Pisidia, but larvae have also been described from species of folyonyx, Pachycheles, Petrocheles Euceramus, Neopisosoma and Megalobrachium.

Lewinsohn (1969) gave descriptions of 13 species of adult Porcellanidae from the Red Sea, belonging to the genera Petrolisthes (8 species), Pachycheles (1 species), Pisidia (1 species) and Polyonyx (3 species). Seridji (1986) recorded 4 larvae of Porcellanidae from Gulf of Aqaba, northern Red Sea : these are Pisidia inaequalis (Heller), Pachycheles sp. , Polyonyx sp. and Petrolisthes sp. . Larvae ascribed to Petrolisthes sp. and identified larvae of Pisidia inaequalis described by Gurney (1938a) (the latter as Porcellana inaequalis) from northern Red Sea, Petrolisthes rufescens (Heller) described by Gohar and Al-Kholy (1957) from Al-Ghardaqa, northern Red Sea, and a larva ascribed to the genus Pachycheles Stimpson by Williamson (1970) from northern Red Sea are the only other larvae of this family described from the Red Sea.

Results

Larvae of six different species were recorded in the present study and given specific letters A-F (Fig. 36). They were distinguished by the morphological features, tabulated in Table 7.

> Table 7 . Comparision of larvae of six species of Porcellanidae in stage 1 .

	A	B	C	D	E	F
Length of rostrum(average) (mm)	2.56	5.92	4.48	4.06 (bro.*)	7.63	
Length of carapace(average) (mm)	1.25	1.60	1.44	1.38	1.05	1.80
Length of carapace spines (mm)	0.51	1.37	1.98	1.98	2.59	1.87
Denticles on ventral carapace	-	-	+	-	-	-
Abdominal somites with spines	5	4,5	5	5	5	4,5

* indicates broken rostrum .

Discussion

The characters given in the (Table 7) distinguish all the larvae, but C and D are similar except for the presence of denticles on the ventral carapace margin in the former larva (Fig. 36C, D). The telson is also of similar form in C and D, but in D it is slightly narrower, the central prominence is more convex and the four short setae on this prominence are more widely spaced (Fig. 37C,D). C and D appear to be the larvae of two closely related species of the same genus .

In larva F the outermost telson process, normally a simple spine, is replaced by two partly fused spines of unequal length (Fig. 37F). Such a structure has not previously been described in a porcellanid larva.

Larva A (Fig. 36A) is very simiar to the larvae of Pisidia inaequalis described by Gurney (1938a) from Al-Ghardaqa, on the Egyptian coast of the Red Sea. There are, however, some small differences. The 6th abdominal somite is serrated in Gurney's larvae but not in larva A, and the central telson prominence bears 2 setae in Gurney's larvae but 4 in larva A. In spite of these differences, it seems likely that larva A is P. inaequalis. This species is known to be common throughout the Red Sea and there are no conf irmed records of other species of this genus from the area (Lewinsohn, 1969).

Although the telson of larva E (Fig. 37 E) is less elongated than that of larva A, it is of the same general form. Knight (1966) pointed out that the larvae of Porcellana, Pisidia and Polyonyx show similarities, including a narrow telson, which distinguish them from other known porcellanid larvae . No species of Porcellana are known from the Red Sea, but larva E may well belong to one of the three species of Polyonyx which have been recorded.

The features of larvae B , C , D and F are consistent with ascribing them to the genus Petrolisthes. They do not include P. rufescens, whose larval telson lacks a central prominence (Al-Kholy, 1963), but it is not possible to say which of the seven
other species of the genus recorded from the Red Sea are represented in the larval collection.

Figure 36 . Porcellanidae, lateral veiw.
A, Larva A (stage I) ; B Larva B (stage I) ; C Larva C (stage I) ; D, Larva $D($ stage I) ; $E ; \operatorname{Larva} E($ stage $I) ; F$, Larva F (stage I) ; G, Larva $G($ stage 1$)$. Scale bar $=0.5$ mm

Figure 37. Porcellanidae, telsons.
A, Larva A (stage I) ; B, Larva B (stage I) ; C, Larva C (stage I) ; D, Larva D (stage I) ; E, Larva $E($ stage 1$) ; F$, Larva F (stage 1); G, Larva $G($ stage I). Scale bar $=0.5$ mm.

Paguridae

Introduction

In general the pagurids are scavengers and are found in a wide range of habitats, particulary among the corals (Vine , 1986) . Lewinsohn (1969) recorded from the Red Sea waters the following adult pagurids: Ploypaguropsis (1 species), Pagurus (4 species), Nematopagurus (3 species), Catapagurus (1 species), Cestopagurus (3 species) and Anapagurus (1 species).

One of the species of Pagurus closely resembles P. prideaux Leach from the Mediterranean and northern Europe and is recorded by Lewinsohn (1969) as Pagurus cf. prideauxi. Larvae have been described for P. prideauxi (e.g. MacDonald et al, 1957) but not for the other Red Sea species of paguridae . Larvae have not been described for any species of Ploypaguropsis , Nematopagurus, Catapagurus or Cestopagurus. Seridji (1986) recorded from the Gulf of Aqaba, northern Red Sea, four larval species of Pagurusand one of Anapagurus, but these are not identified to named species.

The larval stages of the family Paguridae are well-known from different regions of the world, and many authors have described different species belonging to this family. For instance, MacDonald, Pike and Williamson (1957) described the larvae of eight species of Paguridae from British waters with morphological keys for identification, also Pike and Williamson (1960) described nine
species of Paguridae, in addition to three unknown species, from the Bay of Naples, again with a key to species.

General morphological characters of the family Paguridae, from Pike and Williamson (1960) , are as follows:

1-Rostrum smooth, narrow and tapering.
2- Carapace with a pair of posterior spines (but it is now known that these spines are absent in at least one species).

3- The 5th abdominal somite usually with a pair of lateral spines, somites 2-5 usually each with a pair of small dorsal spines. 4- From stage III the 4th telson process becomes broad and fused to the telson.

The zoeal stages of Anapagurus have the same general form as these of Pagurus, but differ in that the posterior margin of the 5th abdominal somite has only very small lateral spines or none. The 5th abdominal somite, and in some species the 4th somite also, is without pleopods in stage IV.

Results

Larvae of four species of Paguridae were collected in the present study and they were given the specific letters A-D. The larvae are illustrated in (Fig. 38) and the main points of distinction are listed in Table 8.

Table 8. Comparision of larvae of Paguridae from present collection.

	A	B	C	D
Total length in mm(average)(stage)	$1.89(1)$	$1.77(11)$	$3.57(111)$	$1.91(1)$
Post-carapace spine /rostrum	$1 / 20$	$1 / 7$	$1 / 4$	$1 / 6$
Dorsal abd. Spines on somites	$3,4,5$	4,5	none	$3,4,5$
Lateral abd. spines on somites	$3,4,5$	4,5	5	$3,4,5$
Sizes of lateral spines	$5>4$	$5>4$	5 long	$5=4$

Discussion

Larvae A and B (Fig. 38A, B) are fairly typical of the genus Pagurus. Larva C (Fig. 38C) is less typical of this genus in having no abdominal spines other than the large laterals on somite 5 , but similar armature occur in the larvae of the Brazilian species Pagurus criniticornis (Dana) described by Hebling \& Brossi-Garcia (1981). Lateral spines on the 5th somite are common in larvae of Pagurus but not large as shown in larva C. Larva C may, therefore, belong to another species of Pagurus or to a species of Nematopagurus, Catapagurus or Cestopagurus . Larva D (Fig. 38D) is fairly typical of the genus anapagurus.

Figure 38 . Paguridae, lateral veiw and telsons
A, Larva A (stage I) ; B, Larva B (stage II) ; C Larva C (stage III); D, Larva D (stage I). Scale bar $=0.5 \mathrm{~mm}$.

Diogenidae

Diogenes spp.

introduction

Diogenes avarus Heller lives in sandy areas of the eulittoral. This species burrows into the sand when the tide ebbs and becomes active when the tide floods back. Many of these crabs use the shell of the gastropod Nassa arcularia for their protection (Vine , 1986) . Lewinsohn (1969) gave descriptions of 4 species of adult Diogenes from the Red Sea, D. avarus, D. costatus Henderson, D. gardinerı Alcock and D. denticulatus Chevreux \& Bouvier .

Seridji (1986) recorded from the northern Red Sea (Gulf of Aqaba) larvae of two unnamed species of Diogenes. The larvae of D. pugilator (Roux) have been described by many authors from different regions, Gurney (1927) from the northern Red Sea (Suez Canal); Menon (1937) from Madras ; MacDonald, Pike and Williamson (1957) from British waters ; Pike and Williamson (1960) from the Mediterranean Sea (Bay of Naples). Lewinsohn (1969) , however, has questioned the records of D. pugilator from Red Sea and Indian ocean.

Sarojini and Nagabushanam (1968) described the zoeal larval stages of D. bicristimanus from India. Sankolli and Shenoy (1975) described the larval development of D. avarus also from India . Nayak and Kakati (1977) studied the metamorphsis of 0 . diogenes (Herbst)
fromi Japan , and Eaba and Fukuda (1985) studied the larval development of D. nitiolmanus Terao, also from Japan. Larvae of this genus are distinguished by having three setae on the endopod of the antenna, and one of these setae is very minute and subterminal. Also these larvae are very small compared with other genera in the same family

Results

Larvae of two species of Diogenes were collected in the present study and they were given the specific letters A (Fig. 39) and B (Fig. 41). Some specimens of species A were reared in the laboratory from stage 3 to the megalopa (Fig. 40).

Diogenes A (Fig. 39), stage 1

Size - TL: 1.27 mm (average) .

Carapace (Fig. 39A) - Rostrum upturned at the end, posterior margin rounded

Antennule (Fig. 39B) - Uniramous, with one long subterminal plumose seta, 3 terminal aesthetascs and 2 plumose setae.

Antenna (Fig. 39C) - Endopod with 3 plumose setae, 3rd very minute; exopod with 10 plumose setae and strong outer distal spine ; a strong ventral spine on protopod at base of exopod.

Maxillule (Fig. 39D) - Coxal endite with 6 setae ; basial endite with 2 strong spines, each with several rows of denticles, and one seta; endopod of 2 segments : proximal segment fused to basis, with one inner seta; distal segment with 2 terminal setae .

Maxilla (Fig. 39E) - Proximal lobe of coxal endite with 5 setae, distal lobe with 4 setae ; proximal lobe of basial endite with 4 setae, distal lobe with 3 setae; endopod unsegmented, with 2 setae Scaphognathite with 5 plumose setae .

First Maxilliped (Fig. 39F) - Basis with 1, 3, 2 setae ; endopod 5 -segmented with $3 / 0,2 / 0,1 / 0,2 / 0$ and $4 / 1$ inner / outer plumose setae; exopod with 4 natatory plumose setae .

Second Maxilliped (Fig. 396) - Basis with 1, I setae; endopod 4-segmented with $2 / 0,2 / 0,2 / 0$ and $4 / 1$ inner $/$ outer plumose setae; exopod with 4 natatory plumose setae.

Third Maxilliped (Fig. 39H) - One rudimentary ramus, denticulate at end.

Abdomen (Fig. 39A) - 3rd, 4th and 5th somites with medio-dorsal spines, 5th somite with pair lateral spines slightly longer than medio-dorsal spine.

Telson (Fig. 391) - Traingular with medain posterior notch, processes $7+7,5$ th process longest .

Diogenes B (Fig. 41), stage I

Generally similar to Diogenes A, but total length 1.45 mm (average) and medio-dorsal abdominal spines confined to somite 5 .

Discussion

Diogenes avarus Heller and D. pugilator Roux are two closely related species which have often been confused in the past . Lewinsohn (1969) made a detailed comparision between adults of D. avarus from the Red Sea and D. pugilator from the Mediterranean. He showed that D. avarus is very common throughout the Red Sea but there are no authenticated records of D. pugilator from this region. Diogenes A (Fig. 39A) is regarded as being the larva of D. avarus because it is common in the coastal regions north of Jeddah where adults of D. avarus are common and because the larvae show a close general resemblance to larvae of D. pugilator, as described by MacDonald et al (1957) from the Irish Sea and Pike \& Williamson (1960) from Naples. Diogenes A differs from the larvae of D. pugilator in having only 2 setae on the endopod of each uropod (as opposed to 3 or 4) in the last zoeal stage and in having no spines on the chelipeds in the megalopa. It should be noted, however, that megalopas from Naples had more and larger spines on the chelipeds than megalopas from the Irish Sea. In both these characters, the larvae from the Suez Canal which Gurney (1927) ascribed to 0. pugilator agree with larvae from the Jeddah region rather than those from Naples or northern Europe but they differ from Diogenes A in
having only a shallow central notch in the telson. It seems likely, nowever, that Gurney's specimens were realy D. avarus rather than D. pugilator. D. pugilator from the irish Sea was reported to pass through five zoeal stages, but the same species from Naples passed through only four, as did Diogenes A when reared in the laboratory in the present work.

The larvae from Madras, southern India, which Menon (1937) ascribed to D. pugilator apparently did not have spines on the chelipeds of the megalopa, as would be expected in this species. The identification of the Indian larvae which Sankolli \& Shenoy (1975) described under the name 0 . avarus must also be questioned because they differ from Diogenes A in the setation of several of the appendages, particularly the maxilla.

It was noted by MacDonald et al (1957) that, while the majority of larvae of D. pugilator had medio-dorsal abdominal spines on somites 3-5, a few lacked spines on somites 3 and 4. The lack of spines on somites 3 and 4 is given above as the main character separating Diogenes B (Fig. 41) from the much commoner Diogenes A, and it may be argued that, in view of the observations on D. pugilator, this may not be a specific difference. Diogenes B is, nowever, slightly larger than Diogenes A in stage I and the eye is larger, and it is therefore regarded as belonging to a distinct species. From the records of adults given by Lewinsohn (1969). Diogenes B seems most likely to belong to D. gardineri Alcock, but Lewinsohn also records D. costatus Henderson from the southern Red Sea and
mentions doubtful records of D. denticulatus Chevreux \& Bouvier from Aden and the Perim Islands, at the southern entrance to the Red Sea.

Figure 39. Diogenes $A=$ avarus Heller.
A, lateral view; B, antennule ; C, antenna; D, maxillule; E, maxilla; F, first maxilliped ; G, second maxilliped; H, third maxilliped; 1, telson. Scale bars (from top): (1) $A, I=0.5 \mathrm{~mm} ;(2) B-H=0.2 \mathrm{~mm}$.

Figure 40 . Diogenes $\mathrm{A}=$ avarus Heller . Megalopa stage . Scale bar $=0.5 \mathrm{~mm}$.

Figure 41 . Diogenes B.
A, lateral view (stage I) ; B, antenna; C telson. Scale bars (from top) : $A, C=0.5 \mathrm{~mm} ; B=0.2 \mathrm{~mm}$.

Calcinus spp.

Introduction

Lewinsohn (1969) gave descrpitions of 2 species of adult Calcinus from the Red Sea, C. latens (Randall) and C. rosaceus Heller ; the former species has been recorded from the Jeddah region and other parts along the Saudia Arabian coast. Pike and Williamson (1960) described the larvae of C. ornatus from the Mediterranean Sea (Bay of Naples). Provenzano (1962) gave descriptions of the larval stages of C. tibicen from the western Atlantic ocean. Only one unnamed species of larva has previously been recorded from the northern Red Sea (Gulf of Aqaba) by Seridji (1986) , but a full description of this larva is not yet published.

The generic features of Calcinus larvae are as follows: Antenna with 3 setae, one shorter than the others, which is a feature of all larvae of the Diogenidae . A pair of prominent submarginal postero-lateral spines on the carapace, which is unknown in other genera of the Diogenidae. A medio-dorsal and pair of lateral spines on the fifth abdominal somite.

Results

Larvae of two species in stage I were recorded in the present study and given the specific letters A and B. Both have a TL: 1.93 mm (average), and both are very similar in most features. The only
difference found was in the medio-dorsal spines on the abdominal somites, larva A having dorsal spines on the 5th abdominal somite only, whereas larva B has dorsal spines on the 3rd, 4th and 5th abdominal somites. The spine on the 3 rd segment is very small. The larvae are illustrated in (Fig. 42), but the appendages were not dissected

Discussion

Seridji mentioned in her description of the Calcinus sp. that the larva from the northern Red Sea is very similar to the larva of C. tibicen rather than C. ornatus .

Larvae A and B (Fig. 42A,C) have the medio-dorsal spine on the 5th somite similar in length to the pair of lateral spines. In C. tibicen the medio-dorsal spine is longer than the pair of lateral spines, whereas in C. ornatus the medio-dorsal spine is shorter than the laterals.

Larvae A was the more common of the two species, and was very common in some samples. This larva may be C. latens, which is known to occur in the Jeddah region from Lewinsohn's records. Larva B may then be tentatively referred to C. rosaceus .

Figure 42 . Calcinus spp.
A, Larva A, lateral view (stage 1) ; B, telson of larva A;
C, telson of larva B; D, Larva B, lateral view (stage I).
Scale bar $=0.5 \mathrm{~mm}$

Introduction

Lewinsohn (1969) described adults of three species of Dardanus from the Red Sea: D. tinctor (Forskål), D. lagopodes (Forskål) and D. woodmasoni (Alcock). Larvae have not previously been described for any of these species, but larvae of D. tinctor were reared in the laboratory during the present work and are described in Chapter 3 Two larval unnamed species of Dardanus were recorded from the northern Red Sea (Gulf of Aqaba) by Seridji (1986). Zoea larvae have been described for D. arrosor (Herbst), from the Mediterranean (Pike \& Williamson, 1960) and Japan (Kurata, 1968), and for 0. setifer from India (Nayak \& Kakati, 1978) , and unnamed larvae have been ascribed to this genus by Dechancé (1961).

Results and discussion

The Known larvae of Dardanus and those ascribed to the genus all have a longitudinal ridge on either side of the medio-dorsal line of the telson and all except D. setifer have a scaly cuticle. Both these characters occur in the larvae of the two species of Dardanus encountered in the present study. These were originally given the specific letters A and B, but species A is now known to be D. tinctor.

Dardanus B in stage 1 is illustrated in (Fig. 43A), and the more important differences between it and D. tinctor (Fig. 12A,B) are as follows :

1-Size - D. tinctor has TL : 2.33 mm (average) in stage I whereas Dardanus B has TL : 2.63 mm (average) in stage 1 .

2- Antenna - Antennal scale in D. tinctor without terminal spine and with fine hairs on outer margin (similar to that described by Dechancé , 1962 , Fig. 3d). Antennal scale of Dardanus B (Fig. 43B) with small terminal spine and without fine hairs on outer margin (similar to that described by Dechancé , 1962 , Fig. 3c).

3-Lateral spines on 5th abdominal somite much longer in Dardanus B (Fig. 43C) than in D. tinctor .

Dardanus B could belong to either D. lagopodes or D. woodmasoni.

Figure 43 . Dardanus B. (stage 1).
A, Dardanus B, lateral view ; B, antenna ; C, telson . Scale bars (from top): (1) $A=0.5 \mathrm{~mm}, B=0.2 \mathrm{~mm}$; (2) $B=0.5 \mathrm{~mm}$

Clibanarius sp.

Introduction

Five species of this genus have been recorded from the Red Sea by Lewinsohn (1969) : C. Iongitarsus (de Haan), C. striolatus Dana, C. signatus Heller, C. carnifex Heller and C. virescens (Krauss) . Of these C. signatus and C. carnifex are much more common than the others. One larval unnamed species of Clibanarius was recorded from the northern Red Sea (Gulf of Aqaba) by Seridji (1986).

The larval stages of several species have been studied. From Indian waters, for instance, larvae of C. Iongitarsus were described by Khan and Natarajan (1981a), C. signatus and C. virescens by Tirmizi and Siddiqui (1979) , C. clibinarius by Khan et al (1981), C. olivaceus by Khan and Natarajan (1981b) and C. infraspinatus by Shenoy and Sankolli (1977). Pike and Williamson (1960) described C. erythropus from the Mediterranean Sea (Bay of Naples). Brossi-Garcia and Hebling (1983) studied the larval stages of C. antillensis from Brazil.

The main generic features of Clibanarius, from Shenoy and Sankolli (1977) , are as follows:

1-Rostrum broad and blunt, may be acute at tip only in some, and reaching beyond the antennule and antenna.

2- Antennale scale without a terminal spine, endopod with 3 setae .

3- Telson broad and triangular with a deep median notch edged with fine hairs on the posterior margin. The ist telson process is generally blunt, finger-like and situated slightly laterally

Results

Larvae of one species of Clibanarius were collected in the present study. This larva closely resembles that of \bar{C}. signatus. It is illustrated in (Fig. 44).

Size - TL: 1.96 mm (average) (stage 1).

Carapace (Fig. 44A,D) - Rostrum broad and rounded at tip.

Antennule (Fig. 44B) - With 4 terminal aesthetascs and 2 short plumose setae, one subterminal plumose seta.

Antenna (Fig. 44C) - Endopod with 3 plumose setae , 3rd about 1/2 length of others ; exopod with 11 plumose setae and without terminal spine ; a strong ventral spine on protopod at base of exopod.

Mandible (Fig. 44E) - Many spines of varying size on distal margin

Maxillule (Fig. 44F) - Coxal endite with 6 setae and one simple seta ; basial endite with 2 strong spines and 2 setae ; endopod $2-s e g m e n t e d$ with 2 terminal setae and 2 inner setae on segment 1 and 2 .

Maxilla (Fig. 44G) - Proximal lobe of coxal endite with 6 setae, distal lobe with 3 setae ; proximal lobe of basial endite with 3 setae, distal lobe with 4 setae ; endopod with 2 terminal setae and 2 subterminal setae ; scaphognathite with 5 plumose setae .

First Maxilliped (Fig. 44H) - Basis with 1, 2, 2, 2 setae ; endopod 5-segmented with $1 / 0,2 / 0,1 / 0,2 / 0,4 / 1$ outer / inner plumose setae ; exopod with 4 plumose setae .

Second Maxilliped (Fig. 44I) - Basis with 1, 2 setae; endopod 4-segmented with $2 / 0,2 / 0,2 / 0,4 / 1$ outer / inner plumose setae; exopod with 4 plumose setae .

Third Maxilliped (Fig. 44J) - Uniramous, lobe-like .

Abdomen (Fig. 44A) - Without dorsal and lateral spines .

Telson (Fig. 44K) - Triangular in form, with a deep notch on median posterior margin and with fine hairs. The 1 st telson process finger-like and situated laterally.

Discussion

Of the 5 Clibanarius species recorded by Lewinsohn from the Red Sea, larval descriptions of Clibanarius signatus and C. Iongitarsus are already known. Larvae of C. longitarsus, with the rostrum pointed at the end, differ from the present larvae (Fig. 44), whereas larvae of C. signatus, described by Tirmizi and Siddiqui (1979) from Pakistan, agree in many features with the present larvae and show only minor differences in setation. It is possible that the larva described here belongs to C. signatus and that species shows minor regional variations

Figure 44. Cibonarius sp. (stage 1)
A, lateral view ; B, antennule ; C, antenna; D, rostrum; E, mandible ; F, maxillule; G, maxilla; H, first maxilliped; !, second maxilliped; J, third maxilliped; K, telson. Scale bars (from top): (1)B,C,H-J=0.2 mm ; (2) E-G= 0.2 mm ; (3) $\mathrm{A}, \mathrm{D}, \mathrm{K}=0.5 \mathrm{~mm}$.

List of macruran larvae identified from the plankton samples, from central Red Sea.
(Macrura - Natantia)
(Penaeidea)

Family: Penaeidae (Protozoea, Mysis larvae and postlarvae)

Family: Sergestidae
Sergestes sp.
(Caridea)

Family: Alpheidae
Alpheus spp.
Athanas sp.

Family: Palaemonidae
Harpilius spp.
Palaemon sp.

Family: Hippolytidae
Saron sp.
Lysmata sp.
Family: PasiphaeidaeLeptochela Sp.
Family: Processidae
Processa aequimana
Family: Pandalidae
Family: Oplophoridae
(Macrura - Reptantia)
Family: Scyllaridae
Family : Stenopodidae
Stenopus hispidus
Family: Nephropidae

The checklist of species of Alpheidae reported from the Red Sea (Banner \& Banner, 1981) was based mostly on collections made by Tel Aviv University and Hebrew University of Jerusalem in the Gulf of Aqaba and the southern Red Sea. The 95 species of Alpheidae listed include 49 species of Alpheus, of which the geographical distribution is as follows: Gulf of Aqaba, 26 ; Gulf of Suez , 5 ; northern Red Sea, 2 ; central Red Sea, 2 ; southern Red Sea, 14. These figures might be taken to indicate that the richest area for species of Alpheus is the Gulf of Aqaba, followed by the southern Red Sea, but they would probably be more correctly interpreted as reflecting the relative intensities of collection in the different areas. Very litle collection has taken place in the central Red Sea, between 17° and $23^{\circ} \mathrm{N}$.

The 89 species or subspecies of Alpheus (Table 9), distinguished in the present work by the distribution of larval chromatophores, is in most marked contrast to the 2 species of adults recorded from the same region, but it emphasises the inadequacy of the collection of adults. Williamson (1970) , working with preserved material and therefore unable to use chromatophore patterns, identified 37 species of Alpheus larvae from 14 plankton samples from the Gulf of Aqaba. This figure compared with the 26 species of adults taken in many samples from the same region, again illustrates that the planktonic larvae of this genus are very much easier to sample than the adults, most of which live in association with corals.

The number of some species of Thalassinidea distinguished as larvae in the present work is also greater than the number of species distinguished as adults by different workers in the Red Sea (Table 9), although there is no review of records of adult Thalassinidea from the Red Sea comparable to that of Alpheidae (above) and Anomura (below). Adults of this group tend to burrow into the substratum and are therefore difficult to collect, particularly among corals.

The number of species of anomuran larvae collected (Table 9) is only about half the number of species of adults from the Red Sea listed by Lew insohn (1969). In the case of Calcinus, the numbers derived from larvae and adults are the same, but more species have been recorded as adults in all the other genera and families investigated. These results are not unexpected for groups in which the adults can be caught in conventional nets, dredges and traps and for which the adult records relate to the collections of different workers over many years covering much of the Red Sea while the larval records are all from one person working in one area for 18 months. As an adult, Calcinus protects its abdomen in crevices in rocks and corals and is therefore less mobile and more difficult to collect than most anomurans. Further collections of adults and larvae may well reveal more species of this genus in the Red Sea.

In contrast to the Red Sea, there is almost complete agreement in the numbers of decapod species recorded as adults and larvae in the Irish Sea and fairly close agreement in the Mediterranean (D.I. Williamson, personal communication). This is partly to be explained
as the result of more people working on adult and larval Decapoda in both the Irish Sea and the Mediterranean compared with the Red Sea, but it also reflects the fact that, in most families, the Red Sea is richer in species than either of these other regions.
Table 9. Numbers of species recorded as adults (previous records for the Red Sea) and larvae (present work for region north of Jeddah).

Eamily or genus
 species as adults
 species as larvae

Alpheidae
Alpheus spp. 49 89
Upogebiidae 6 4
Callianassidae 4 7
Laomediidae 1 2
Galatheidae 13 7
Porcellanidae 13 6
Paguridae 13
Diogenidae
Diogenes 4 2
Calcinus 2 2
Dardanus 3 2
Clibanarius 5 1

CHAPTER 5
 THE SEASONAL OCCURRENCE OF DECAPOD LARVAE IN VARIOUS HABITATS IN THE CENTRAL RED SEA COASTAL AREA OF SAUDI ARABIA.

Introduction

Several studies have been made on the variation and vertical distribution of the general Zooplankton in the Red Sea. Most of this previous work on the decapod larvae has been taxonomic or morphological in character and does not provide any information on the seasonal occurrence or ecology of these larvae (Halim, 1969). Near (1980) gave some general information on the variation in percentage composition of decapod larvae on the coast of Sudan, central Red Sea.

In the present work it was possible to study not only the variation in total number of decapod larvae, but also the variation in number of several species or groups at six stations. Several of the stations were located in a mangrove area, which, although not extensive , is important as a nursery area for fish and appears to be rich in larvae of Crustacea and other invertebrates.

Materials and Methods

Fortnightly samples were taken at six stations. Stations 1-3 were in the region of Zanban village (Fig. 45), about 50 km north of Jeddah. These three stations adjoin a mangrove area, about 5 km long, with station 1 (water depth 3 m) at the inner (blind) end of the Creek, station 2 (water depth 3 m) near the densest concentration of mangroves in the middle of the patch, and station 3 (water depth 5 m) at its outer end. In the mangrove area the average monthly temperature ranged from 22.1 to $33.6^{\circ} \mathrm{C}$ and salinity was between 38
and 40.8 ppt. (parts per thousand) (Table 10). Stations 4 and 5 were in the region of Thuwal village (Fig. 45), with station 4 (water depth about 18 m) about 6 km west of station 3 , outside the mangrove area, and station 5 (water depth about 18 m) a further 1 km west, exposed to the open sea. The average temperature at stations out of the mangrove area was 22.2 to $32.5^{\circ} \mathrm{C}$ and the salinity was between 38.2 and 40.5 ppt. (Table 10). Station 6 (water depth about 55 m) was in the open sea just off Obhor Creek, about 20 km north of Jeddah and 30 km south of stations 1-5 (Fig. 45). The monthly temperature ranged from 23.5 to $31^{\circ} \mathrm{C}$ and salinity was between 38 and 40 ppt . (Table 10). The bottom at station 2 was sandy mud, at stations 1 and 3 there was more sand, and at stations 4-6 there was coarser sand with clay. Scattered corals occurred near all sampling stations .

Plankton samples were taken with nets of mouth-diameter 0.5 m , mesh $300 \mu \mathrm{~m}$, towed at a depth of approximately 1 m for 15 minutes. The quantitative representation of the organisms recorded are expressed in numbers per thousand cubic meters, calculated from tows of approximately 643 m . Material was preserved in 5% formalin (2% formaldehyde). Surface salinities were taken with a hand refractometer, and surface temperatures were also recorded. Samples were taken between 0700-1200 h, with an additional sample on each occasion from station 6 at midnight. Sampling was continued over the 18 months January 1986 to June 1987.

In the laboratory, samples were divided with a Folsom plankton splitter into $1 / 2,1 / 4,1 / 8$ or $1 / 16$ of the original sample, and the
decapod larvae from the whole sample or from one of these fractions were separated for identification and counting under a stereoscopic microscope. Lucifer and larvae of Brachyura were not included Larvae were assigned to families or smaller taxa, and particular attention was paid to anomuran larvae .

An analysis by nonparametric multiple comparision using the Tukey-test (Zar, 1984) was performed to test if the abundances were significantly different between different sampling stations.

Figure 45 . Location of sampling stations ($1-6$)

Table 10. Mean monthly surface water temperature ($\mathrm{T}^{\circ} \mathrm{C}$) and salinity
(ppt. = parts per thousand) at the study stations, from January
1986 to June 1987

	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	Jun.
Teperature																		
Station 1	23	25	28	29.5	28	32	34	33	30	30.5	26	22	23	25.5	27	27		
Station 2	23.5	24.5	27	28	28	31.5	33	33	32.5	31	26.5	21.5	23	25.5	24.5	26.5	28.5	30.5
Station 3	24	25	27	28.5	29	31.5	34	33	32	30.5	26.5	23	24	25.5	23	24	28.5	30
Station 4	25.5	26	27	28	29	31.5	33	30	30	31	27	24	24.5	25.5	22	26.5	28	30
Station 5	25	25	27	28.5	28.5	31.5	32	32	30	31	26.5	24.5	24.5	25.5	22.5	26	28	30
Station 6	26	25.5	26.5	28	27.5	29.5	30	31	29	29.5	25	24.5	25	25.5	23.5	26.5	26	28
Salinity																		
Station 1	38	39.5	40.5	39	41	41	40	38	40	41.5	42	40.5	40.5	40.5	39.5	40.5	41	40.5
Station 2	38	39	40	38.5	41	40.5	39	39	40	40.5	41	40.5	40.5	40.5	39	39.5	41	40.5
Station 3	38	38.5	40	39	40	40	38	40	40	40	40	40	39.5	40	39	39.5	40.5	40.5
Station 4	38.5	38.5	39.5	38.5	39	40	38	40	39	39.5	39.5	40	40	40	39.5	39	39.5	40
Station 5	39.5	38	39	38.5	39	40	38.5	39	39	39	40.5	41	40.5	40	39.5	39.5	39.5	40
Station 6	39.5	38	40	39.5	40	40	40	40	40	40	40	40	39	38	40	39.5	39	39.5

Results

Staion 1

Peaks in total decapod larvae occurred in June, September and November 1986 and a much bigger peak in February and March 1987 (Fig. 46). The three peaks in 1986 were mostly due to Diogenes avarus, which made up 68,62 and 43%, respectively, of the total decapod larvae and reached a maximum abundance of $1232 / 1000 \mathrm{~m}^{3}$ in June (Table 18). Alpheus spp. (26%) (Fig. 47) and Harpilius spp. (21%)(Fig. 48) also made appreciable contributions to the third peak, in November 1986. The large peak in February 1987 consisted mostly of Aloheus spp., which made up 90% of the total decapods and reached $5184 / 1000 \mathrm{~m}^{3}$ (Fig. 47) (Table 18). By the following month (March 1987) the numbers of the total decapod larvae had decreased only slightly, but Diogenes avarus had now become the most common species, accounting for 55% of the total, with $2720 / 1000 \mathrm{~m}^{3}$ (Table 18).

Diogenidae were the most common anomuran larvae (Table 11), represented by Diogenes avarus in high density, which occurred at this station in all months (Fig. 49) . Minimal concentrations of Laomediidae occurred in most months, while Upogebia E, the only representative of the Upogebiidae recorded at this station, was restricted to the months of January, February and March in both years (Fig. 49).

Table 11 : Differences in abundance between anomuran families at station 1 (Nonparametric multiple comparison using Tukey test).
$R=$ Mean ranks ; $S E=$ Standard error ; $Q=$ Studentized range .
Comparison DifferenceR1-R2 SE Q Qtable Conclusion

Diogenidae vs	$40.5-17.2=23.3$	5.01	4.65	2.394	Significant Upogebiidae

Diogenidae vs $\quad 40.5-24.8=15.7 \quad 5.01 \quad 3.13 \quad 2.394 \quad$ Significant
Laomediidae
difference

- Diogenidae more abundant than Upogebiidae and Laomediidae .

Station 2

Peaks in total decapod larvae occurred in June and October 1986 and January 1987 (Fig. 46). The two peaks in 1986 were mostly due to Harpilius spp. which made up 28 and 52%, respectively, of the total decapod larvae and reached a maximum abundance of $1968 / 1000 \mathrm{~m}^{3}$ in October (Fig. 48 , Table 19). Hippolytidae (28%) and Penaeidae (20\%) also made appreciable contributions to the peak in June 1986 and Alpheus spp. (31\%) in October 1986 (Fig. 47). The peak in January 1987 consisted mostly of Hippolytidae, which made up 53\% of the total decapod larvae and reached $1344 / 1000 \mathrm{~m}^{3}$ (Table 19).

Diogenidae were the most common anomuran larvae at this station (Table 12), represented by Diogenes avarus, which occurred in all
months except February and March 1986 and February 1987. In addition to Diogenes avarus, small numbers of Calcinus A and Dardanus tinctor occurred in March 1986 and May 1987 (Fig. 50). Small numbers of Laomediidae occurred at this station, with peaks in March and October 1986 ; while Upogebia D, the only representive of the Upogebiidae recorded at this station, had peaks in February and October 1986 and January 1987 (Fig. 50).

Table 12: Differences in abundance between anomuran families at station 2 (Nonparametric multiple comparison using Tukey test).

Comparison DifferenceR1-R2 SE Q Qtable Concolusion

Diogenidae vs $\quad 38.2-22.7=15.5 \quad 5.05 \quad 3.07 \quad 2.394$ Significant Upogebildae difference
$\begin{array}{llllll}\text { Diogenidae vs } & 38.2-21.5=16.7 & 5.05 & 3.31 & 2.394 & \text { Significant }\end{array}$ Laomediidae difference

- Diogenidae more abundant than Upogebiidae and Laomediidae .

Peaks in total decapod larvae occurred in June, September and December 1986 and in February and April 1987 (Fig. 46). The two peaks in June and December 1986 were mostly due to Harpilius spp., which made up 48% and 43%, respectively, of the total decapod larvae (Fig. 48) and reached a maximum abundance of $752 / 1000 \mathrm{~m}^{3}$ in June (Table 20). The peak in September 1986 was mostly due to Alpheus spp., which made up 67% of the total decapod larvae (Fig. 47). Alpheus spp. (34%) also made appreciable contributions to the peak in December 1986. The peaks in February and April 1987 were mostly due to Alpheus spp., which made up 93% and 57%, respectively, of the total decapod larvae (Fig. 47).

There were no significant differences between the abundance of the Diogenidae and Upogebiidae at this station (Table 13); on the other hand, Laomedildae were less abundant. Diogenes avarus was the most common species among the Diogenidae and occurred in all months with the exception of February , March and September 1986 and February 1987 (Fig. 51) ; small numbers of Dardanus tinctor and Calcinus A occurred in April and May 1986. Upogebia C and D, the two species representing the Upogebildae, occurred in small numbers in some months, and also small numbers of the Laomediidae occurred in some months (Fig. 51) (Table 20) .

Table 13 : Differences in abundance between anomuran family at station 3 (Nonparametric multiple comparison using Tukey test).

Comparison Difference R1-R2 SE Q Qtable Conclusion

Diogenidae vs	$37.3-28.1=9.2$	4.98	1.85	2.394	No significant
Upogebiidae					
difference					

- Laomediidae significantly less abundant than Upogebiidae and Diogenidae

Station 1
Station 2
Station 3

Figure 47 . Density variation (monthly means) of , Aloheus larvae per $1000 \mathrm{~m}^{3}$ at stations 1,2 and 3 , from January 1986 to June 1987

Figure 48. Density variation (monthly means) of Harpilius larvae per $1000 \mathrm{~m}^{3}$ at stations 1,2 and 3 , from January 1986 to June 1987.

Figure 49 . Density variation (monthly means) of the most common anomuran families per $1000 \mathrm{~m}^{3}$ at stations 1, from January 1986 to June 1987

Figure 50 . Density variation (monthly means) of the most common anomuran families per $1000 \mathrm{~m}^{3}$ at stations 2 , from January 1986 to June 1987

Figure 51 . Density variation (monthly means) of the most common anomuran families per $1000 \mathrm{~m}^{3}$ at stations 3, from January 1986 to June 1987

Stations 4 and 5

The monthly abundances of decapod larvae were significantly different at stations 4 and 5 (Table 14), being more abundant at station 5 with an average value over the 18 months of $1421 / 1000 \mathrm{~m}^{3}$ (Table 22) compared with $576 / 1000 \mathrm{~m}^{3}$ at station 4 (Table 21) Peaks in total decapod larvae occurred in March, June and August 1986 and February and May 1987 at both stations (Fig. 52). All these peaks were due mainly to the appearance of a high numbers of Alpheus spp. and Harpilius spp. . The Alpheus spp. at station 4 in March, June and August 1986 made up 41,23 and 59%, respectively, of the total decapod larvae (Fig. 53), while Harpilius spp. made up 23, 41 and 24\%, respectively (Fig. 54) . Alpheus spp. at station 5 made up 54,46 and 43%, respectively, of the total decapod larvae (Fig. 53) ; while Harpilius spp. made up 28,34 and 50%, respectively (Fig. 54).

Diogenidae were the most common anomuran-larvae at both stations (Table 15) (Fig. 55, 56), represented by Diogenes avarus, Calcinus A and Dardanus tinctor. The average concentrations over the 18 months of the three species at station 4 were $34 / 1000 \mathrm{~m}^{3}$, $11 / 1000 \mathrm{~m}^{3}$ and $4 / 1000 \mathrm{~m}^{3}$, respectively, and at station 5 they were $39 / 1000 \mathrm{~m}^{3}, 65 / 1000 \mathrm{~m}^{3}$ and $17 / 1000 \mathrm{~m}^{3}$, respectively Porcellanidae were represented by Pisidia inaequalis in station 5 , with average concentrations over the 18 months of $21 / 1000 \mathrm{~m}^{3}$ (Fig. 56). The highest concentration of Pisidia inaequalis was in June, and smaller numbers occurred in most months. Callianassidae were represented by Callianassa A at station 5, with average numbers over
the 18 months of $20 / 1000 \mathrm{~m}^{3}$ (Fig. 56). The highest densities of Callianassa A at station 5 were in June and August.

Table 14 : Differences in abundance between decapod larvae at stations 4 and 5 (Nonparametric multiple comparison using Tukey test).
(Number in brackets indicates number of station).

Comparison	Difference R1-R2	SE Q Qtable	coclusion
Decapod larvae (5)	$413-253=160$	44.693 .582 .772	Significant
vs Decapod larvae (4)			difference

- Decapod larvae more abundant at station 5 than at station 4.

Table 15 : Difference in abundance between anomuran families at station 4 and 5 (Nonparametric multiple comparison using Tukey test).
Comparison DifferenceR1-R2 SE Q Qtable Conclusion

Diogenidae (4) $\quad 38.3-24.3=14$	4.87	2.87	2.394	Significant difference	
vs Upogebiidae (4)					
Diogenidae (4) $\quad 38.3-19.9=18.4$	4.87	3.78	2.394	Significant difference	
vs Laomediidae (4)					
Diogenidae (5) vs	$42.9-18.9=24$	5.16	4.65	2.394	Significant
Callinassidae (5)				difference	

Diogenidae (5) vs $\quad 42.9-20.7=22.2 \quad 5.16 \quad 4.30 \quad 2.394$ Significant
Porcellanidae (5)
difference

- Diogenidae was most common family at both stations 4 and 5 .

Figure 53 . Density variation (monthly means) of Aloheus larvae per $1000 \mathrm{~m}^{3}$ at stations 4 and 5 , from January 1986 to June 1987

Figure 54. Density variation (monthly means) of Harpilius larvae per $1000 \mathrm{~m}^{3}$ at stations 4 and 5 , from January 1986 to June 1987

๑-..----○ Station 5

Figure 55 . Density variation (monthly means) of the most common anomuran families per $1000 \mathrm{~m}^{3}$ at stations 4 , from January 1986 to June 1987

Figure 56 . Density variation (monthly means) of the most common anomuran families per $1000 \mathrm{~m}^{3}$ at stations 5 , from January 1986 to June 1987

๑------- Porcellanidae
$A---\Delta$ Callianassidae

Station 6

decapod larvae showed peaks in abundance in February and May 1986 and a much bigger peak in June 1987 (Fig. 57). The peaks were due mainly to the appearance of a high numbers of Alpheus spp. (27% of total) (Fig. 58), Calcinus A (25% of total) and Harpilius spp. (20% of total) (Fig. 59). These genera were usually present in any collection at this station throughout the year, in contrast to other genera (Table 23).

Diogenidae were the most common anomuran larvae (Table 16) (Fig. 60) with an average of $362 / 1000 \mathrm{~m}^{3}$, of which Calcinus A made up the majority (average $287 / 1000 \mathrm{~m}^{3}$). Diogenes B, Dardanus B and Clibanarius sp . occurred at this station in small numbers Porcellanidae appeared in all months (average $78 / 1000 \mathrm{~m}^{3}$), and Callinassidae (average $41 / 1000 \mathrm{~m}^{3}$) in some months (Fig. 60) (Table 23).

Some anomuran larvae were more abundant in the midnight samples than during the day time, for instance Galatheidae, Paguridae and Callianassidae (Table 16) (Table 24) .

Table 16 : Differences in abundance between anomuran larvae at station 6 (Nonparametric multiple comparison using Tukey test).

- (6 mn) indicates mid-night sample at station 6

Comparison Difference R1-R2 SE Q Qtable Conclusion

Diogenidae (6) 40.2-22.4=17.8 $\quad 5.14 \quad 3.46 \quad 2.394 \quad$ Signifficant vs Porcellanidae (6) difference

Diogenidae (6) $\quad 40.2-19.9=20.3 \quad 5.14 \quad 3.95 \quad 2.394 \quad$ Significant vs Callianassidae (6) difference

Calcinus $A(6) 39.0-21.4=17.7 \quad 4.91 \quad 3.60 \quad 2.394 \quad$ Significant vs Dardanus tinctor (6) difference Calcinus A (6) 39.0-21.4=17.6 $4.91 \quad 3.58 \quad 2.394 \quad$ Significant vs Diogenes avarus (6) difference

Galtheidae (6 mn) $23.4-12.3=11.1 \quad 3.45 \quad 3.22 \quad 1.960 \quad$ Significant vs Galatheidae (6) difference

Paguridae (6 mn) $21.8-15.2=6.6 \quad 3.00 \quad 2.20 \quad 1.960 \quad$ Significant vs Paguridae (6) difference

Callinassidae (6mn) 20.9-13.7=7.2 $\quad 3.34 \quad 2.16 \quad 1.960 \quad$ Significant vs Callinassidae (6) difference

- Diogenidae more common than Porcellanidae and Callinassidae
- Galcinusa more common than Dardanus tinctor and Diogenes avarus
- Galatheidae, Paguridae and Callianassidae more abundant in the mid-night samples than daytime samples.
Figure 57 . Density variation (monthly means) of decapod larvae per
January from station
at
1986 to June 1987

Figure 58 . Density variation (monthly means) of Aipheus larvae per $1000 \mathrm{~m}^{3}$ at station 6 , from January 1986 to June 1987

Figure 59 . Density variation (monthly means) of Harpilius larvae per $1000 \mathrm{~m}^{3}$ at station 6 , from January 1986 to June 1987

Figure 60 . Density variation (monthly means) of the most common anomuran families per $1000 \mathrm{~m}^{3}$ at station 6 , from January 1986 to June 1987

Discussion

Results from stations $1-5$ all agreed in showing peaks in abundance of decapod larvae in June 1986 which were not repeated in June 1987. At station 6 there was no peak in June 1986, although there was one in the previous month, and there was a large peak in June 1987.

Studies in other years at station 6 (off Obhor Creek) have shown a major peak of phytoplankton in December-February and a smaller peak in June -August (Skaikh et al, 1986). During December-February the surface water cools and overturns resulting in nutrients becoming available to permit a bloom of diatoms. In June-August the water is stratified and diatoms numbers are low but blue green algae, including Trichodesmium, are able to utilize atmospheric nitrogen and the excretory products released by them become available to dinoflagellates which then produce a secondary bloom in summer (Weikert, 1987).

Peaks of Copepoda in May and July-August (Al-Aidaroos, 1984) and peaks in abundance in June by various groups of Red Sea zooplankton have been noted by several workers, including Near (1980 : decapod larvae in the Dongonab, Sudan Coast). Al-Aidaroos (1984: larvae of bottom invertebrates in Obhor Creek, near Jeddah) and Al-Ghamrawy (1982: zooplankton off the Jeddah Coast), while Ponomareva (1968) stated that water originating from the upper layers of the Red Sea could be recognised by its high plankton content
in June. The two hermit crabs reared in the present work were both carrying eggs in April and May, and other workers in the same region have also noted large numbers of ovigerous crabs and shrimps in the same months (personal communications), which would tend to produce peaks of larvae in June .

Although there are variations from year to year, the summer period seems to be generally the most productive for zooplankton in the Red Sea. The results in this present work of decapod larvae showed considerable variation from month to month. The density tended to increase and reached a maximum in June in most stations, but high densities were also noted in some winter months. These winter peaks were largely due to single species of Alpheus or Harpilius.

Workers in the Red Sea (Near, 1980; Halim, 1969) and in other tropical areas (Moore, 1949; Wickstead, 1958) have noted that different groups of zooplankton tend to have their peaks of abundance in different months, and this is also true for the present results, in spite of the tendency for an overall peak to occur in June. Thus, Alpheus spp. showed high concentrations at most of the stations in February 1987, although no other group showed a peak at this time, and Alpheus CRS 20 was taken only in February and March of both 1986 and 1987.

The average numbers of decapod larvae at the different stations were not significantly different, except at station 4 , where there were fewer larvae. However marked differences in the composition of
the samples at the different stations frequently occurred. Thus the most common species of Alpheus in the mangrove area in February and March of both years was CRS 20, while CRS 46 was more common in Obhor Creek. Larvae of Diogenes avarus were also more common in the mangrove area, while Calcinus A, Porcellanidae, Galatheidae and Callianassidae were more abundant in Obhor Creek. These differences no doubt reflect differences in the distribution of the corresponding adults. There were similarities in the patterns of decapod larvae at the three stations in the mangrove area, but even within this restricted area samples from station 2 often showed considerable differences from those taken at stations 1 and 3 on the same morning.

It is interesting to note that, while Coenobita scaevola is one of the most common species of decapod along the coasts in the Jeddah region, only two larvae of this species were taken during the whole 18 months of sampling. This case appears to be comparable to that of Palaemon elegans, one of the most common intertidal prawns in the Isle of Man, whose larvae have not been found in coastal plankton from that region (Salman, 1981).

Table 17: Differences in abundance between anomuran larvae at different stations. (Nonparametric multiple comparison using Tukey test).

| Comparison | Difference $\mathrm{R1} 1-\mathrm{R2}$ | SE | Q | Qtable | Conclusion |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Calcinus A (6) vs $\quad 36.3-30.5=5.8 \quad 5.07 \quad 1.14 \quad 2.394$ No significant
CalcinusA (5) difference

Calcinus $A(6)$ vs	$36.3-15.7=20.6$	5.07	4.06	2.394	Significant
CalcinusA (1)					
difference					

Calcinus(5) vs $\quad 30.5-15.7=14.8 \quad 5.07 \quad 2.92 \quad 2.394 \quad$ Significant
Calcinus(1) difference

Porcellanidae (6)	$41.6-26.9=14.7$	4.87	3.02	2.394	Significant vs Porcellanidae (5)
			difference		

Porcellanidae (6) 41.6-14.0=27.6 $4.87 \quad 5.67 \quad 2.394$ Significant
vs Porcellanidae (1) difference
Porcellanidae (5) $\quad 26.9-14.0=12.9 \quad 4.87 \quad 2.65 \quad 2.394$ Significant
vs Porcellanidae (1) difference
Galatheidae (6) $\quad 34.3-30.0=4.3 \quad 4.87 \quad 0.88 \quad 2.394$ No significat
vs Galatheidae (5) difference
Galatheidae (6) $\quad 34.3-20.1=14.2 \quad 4.87 \quad 2.92 \quad 2.394 \quad$ Significant
vs Galatheidae (1) difference

Galatheidae (5) $\quad 30.0-20.1=9.9 \quad 4.87 \quad 2.03 \quad 2.394$ No significant vs Galatheidae (1)
difference continue

- Diogenes avarus more common at station 1 than at stations 5 and 6 .
- Calcinus A more common at stations 5 and 6 than at station 1.
- Porcellanidae more common at station 6 than at stations 5 and 1 .
- Galatheidae and Callianassidae more common at station 6 than at station 1.

Monthly mean numbers of all the families of decapod larvae studied in this present work are recorded for all stations in Tables 18-24, to summarise the density variations of these larvae.
Table 18. Numbers (monthly means) per $1000 \mathrm{~m}^{3}$ of macruran and
January
Pr. $=$ Protozoea $; \mathrm{M}=$ Mysis $; \mathrm{Al}=$ Alpheus $; \mathrm{At} .=$ Athanas $;$
$\mathrm{H} .=$ Harpilius $;$ P. $=$ Palaemon; Di. $=$ Diogenes $; \mathrm{Da}=$ Dardanus
$\mathrm{Cl}=$ clitanarius; $\mathrm{Ca}=$ Calcinus
** Unidentified larvae ($\mathrm{me}=$ megalopa $)$

E6S！	bbcl	ヤヤ6	9181	10967	26LS	$b 8 ¢ 1$	26L1	10952	ZL9	70S1	921	096	$b 281$	Z｜E1	096	乙L乙	981	692	12701
－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	e8plwoda
－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	espldodydan
－	－	\sim	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	eripodouals
2	－	－	－	ZE	－	－	－	－	－	－	－	－	－	－	－	－	－	－	aep！Je\｜AJS
6	91	91	－	－	－	－	－	821	－	－	－	－	－	－	－	－	－	－	－ow eunuouv＊＊
－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	aep！2！q0ue03
L	b9	－	－	Z2	－	－	－	－	91	－	－	－	－	8	－	8	－	－	＇8J＊28plue6010
－	－	－	－	－	\rightarrow	－	－	－	－	－	－	－	－	－	－	－	－	－	15 \％2ep！uә6010
乙	－	－	－	乙乏	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－80＊28pIU260！0
795	892	9£乏	098	0乙L乙	－	－	b82	8801	261	826	$b 2$	809	乙とて！	918	809	06	$\checkmark て$	\checkmark 亿	＇10 \％2＾p！uә60！0
－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	eeplanbed
－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－．	28p！uellojiod
－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	8	28p！2478189
62	乙乏	－	ZL	－	乙乏	b9	8	08	てい！	79	－	－	－	乙®	－	$\triangleright 乙$	－	－	erp！！pawoe7
1	－	91	\cdots	－	－	－	－	－	－	－	－	－	－	\sim	－	－	－	－	zepisseuelles
81	－	－	8	乙¢	952	－	－	\sim	－	－	－	－	－	－	－	8	－	91	erp！！q2б̃odn
－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	eeplutssejeyl＊＊
－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	aepldoydojdo
11	96	－	－	96	－	－	－	－	－	－	－	－	－	－	－	－	－	－	aepllepued
8 l	ヤ乙て	96	882	9501	－	$8 乙 1$	－	－	－	乙®	－	96	$\square \square 1$	091	952	－	－	8	eeplssajodd
－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	\rightarrow	－	erplerydised
99	－	821	－	OZS	－	8乙1	乙L	\cdots	－	－	8	8乙1	てい1	08	－	8	－	91	2ep！1 1 10dd！
乙1	－	－	－	－	－	－	Z61	－	－	－	－	－	－	－	－	－	91	8	d＊eepluowarjed
LعZ	08	9 11	898	78	OZ，	878	26S	ヤヤS	261	952	乙L	22	96	981	69	Ot	91	95	H＊aep！uourajed
$\boldsymbol{\Sigma}$	－	－	－	－	－	－	－	－	－	91	－	－	－	Ot	－	－	－	－	
287	乙乏	911	OZL	9SZ	16815	912	tbs	959	091	8乙1	$\nabla 9$	－	091	Z乏	Z乏	OCl	08	OZ1	IV＊aepioydiv
－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	aep！psa6．as
8	－	－	－	－	－	－	－	¢9	－	87	－	Z®	－	－	－	－	－	8	W＊2rploruad
$\square 1$	Z乏	－	－	－	－	－	－	－	－	乙乏	8	$\square 9$	08	8	－	ち乙	－	－	ddmaeplasu2d
206edən	＇unf	Kew	－JdV	－JEW		－UET	． 380	－AON	770	．das	－ 6 n 7	＇in	＇unp	AEW	$\cdot 10 \mathrm{dv}$	＇JEW	qaj	－uer	Allued

Table 19 . Numbers (monthly means) per $1000 \mathrm{~m}^{3}$ of macruran and
anomuran families at station 2 , from January
1986 to June 1987

0 0 0 0 0 4 4	\cdots	$\xrightarrow{9}$	1	\cdots	∞	$\left\|\begin{array}{c} m \\ 0 \\ M \end{array}\right\|$	$\underline{0}$	\cdots	N	N	N	1	1	\bar{n}	－	∞	N	\cdots	1	$\begin{aligned} & N \\ & N \end{aligned}$	1	1	0	1	1	1	1	1	1	$\underline{10}$
$\stackrel{\text { ¢ }}{5}$	$\left\|\begin{array}{l} \infty \\ 0 \\ \infty \end{array}\right\|$	N	1	∞	1	$\begin{aligned} & \infty \\ & \infty \end{aligned}$	1	1	∞	N	1	1	1	1	∞	0	1	∞	1	\mathbf{N}	1	1	0	1	1	1	1	1	1	¢
交	1	1	1	m	1	$\begin{aligned} & \mathbf{N} \\ & \mathbf{n} \end{aligned}$	$\begin{aligned} & \nabla \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \end{aligned}$	\mathbf{V}	1	1	1	1	1	1	1	1	1	1	$\begin{array}{\|l\|} \hline 8 \\ 8 \end{array}$	∞	1	8	1	1	1	1	t	1	＋
－	1	1	1	$\begin{aligned} & N \\ & 0 \\ & n \end{aligned}$	1	$\frac{N}{m}$	1	1	1	$\underset{\sim}{N}$	1	1	1	1	1	N	1	1	1	$\mathbf{5}$	1	1	1	1	1	1	1	1	1	\％
辰	1	1	1	$\frac{N}{m}$	1	$\underset{N}{\nabla}$	∞	N	N	$\begin{aligned} & N \\ & M \end{aligned}$	$\begin{gathered} N \\ M \end{gathered}$	1	1	8	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	¢
逘	1	1	1	$\begin{aligned} & \hline 8 \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	1	5	∞	1	1	1	1	1	1	$\left\lvert\, \begin{aligned} & N \\ & N \end{aligned}\right.$	1	∞	∞	1	1	1	1	1	1	1	1	1	1	1	1	\％
¢ ¢ ¢	1	1	1	$\left\lvert\, \begin{aligned} & \infty \\ & \underset{N}{N} \end{aligned}\right.$	1	$\begin{gathered} 8 \\ \mathbf{N} \end{gathered}$	1	$\begin{aligned} & \text { F } \\ & \text { N } \end{aligned}$	1	$\mathbf{0}$	1	1	1	$\underset{\sim}{N}$	1	1	1	1	1	$\begin{aligned} & N \\ & \mathbf{N} \end{aligned}$	1	1	1	1	1	1	1	1	1	8 0 12 N
$\left\|\begin{array}{l} \dot{u} \\ 0 \\ 0 \end{array}\right\|$	$\begin{array}{r} \pi \\ 0 \end{array}$	$\left\lvert\, \begin{gathered} N \\ N \end{gathered}\right.$	1	$\begin{array}{\|l} \infty \\ \infty \\ \underset{N}{\infty} \end{array}$	1	$\begin{gathered} 0 \\ 0 \\ \cdots \end{gathered}$	∞	0	1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	1	1	$\left\|\begin{array}{l} N \\ N \end{array}\right\|$	1	1	1	1	1	$\left\lvert\, \begin{gathered} N \\ N \end{gathered}\right.$	1	1	1	1	1	1	1	1	1	N
$\left\|\begin{array}{l} 2 \\ \frac{2}{2} \end{array}\right\|$	0	∞	1	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ m \end{array}$	∞	$\begin{aligned} & 0 \\ & m \\ & m \end{aligned}$	0	∞	1	0	1	1	1	1	∞	1	1	1	1	$\begin{aligned} & 8 \\ & \infty \\ & 0 \end{aligned}$	1	1	1	1	1	1	1	1	1	8 8
－	0	$\begin{aligned} & 5 \\ & 0 \end{aligned}$	1	N	1	$\begin{array}{\|l\|} \hline \infty \\ 0 \\ 0 \end{array}$	1	1	1	1	1	1	1	$\left\lvert\, \begin{aligned} & \infty \\ & \mathbf{N} \end{aligned}\right.$	1	$\begin{aligned} & 6 \\ & \mathbf{N} \\ & \hline \end{aligned}$	1	$\underline{0}$	1	$\left\lvert\, \begin{aligned} & 0 \\ & \infty \end{aligned}\right.$	1	1	1	1	1	1	1	1	1	S M
$\left.\left\lvert\, \begin{array}{l} \dot{a} \\ \dot{N} \\ \dot{s} \end{array}\right.\right]$	10	∞	1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\stackrel{\infty}{\infty}$	1	1	1	1	1	1	1	$\underline{0}$	1	6	1	1	1	8	1	1	1	1	1	1	1	1	1	\％
家	1	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	1	$\frac{\infty}{\nabla}$	1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & N \\ & N \end{aligned}$	1	1	1	1	1	1	1	$\underline{\square}$	1	1	1	$\begin{aligned} & \square \\ & 0 \end{aligned}$	1	1	1	1	1	1	1	1	1	O N
$\stackrel{\square}{5}$	$\underline{0}$	N	1	N	1	0	1	$\underline{0}$	1	$\underline{0}$	1	1	1	1	1	∞	1	1	1	$\begin{aligned} & \mathbf{~} \\ & \mathrm{M} \end{aligned}$	1	1	1	1	1	1	1	1	1	\％
$\stackrel{\dot{c}}{5}$	8	$\left\lvert\, \begin{aligned} & \mathbf{N} \\ & \mathbf{N} \end{aligned}\right.$	1	$\underset{N}{N}$	0	$\begin{aligned} & \infty \\ & \underset{N}{n} \\ & \hline \end{aligned}$	1	$\begin{aligned} & \infty \\ & N \\ & M \end{aligned}$	1	0	1	1	1	1	1	1	1	∞	1	8	1	1	1	1	1	1	1	1	1	N
	$\underset{N}{\nabla}$	$\underset{N}{N}$	1	8	0	0	$\underline{\square}$	8	1	$\underset{\sim}{\infty}$	1	1	1	1	1	∞	1	1	1	0	1	1	1	1	1	1	1	1	1	∞ m \sim
$\frac{5}{2}$	∞	ㅇ	1	$\begin{aligned} & 0 \\ & 10 \end{aligned}$	∞	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	1	$\underset{N}{N}$	$\boldsymbol{\infty}$	1	1	1	1	1	1	1	1	1	1	$\|8\|$	1	1	1	1	1	1	1	1	1	N N
$\mid \dot{c}$	$\underset{N}{N}$	1	1	$\begin{array}{l\|} \hline \\ m \\ m \end{array}$	1	8	$\underset{N}{N}$	∞	1	1	1	1	1	1	1	0	1	1	1	1	1	1	N	1	1	1	1	1	1	
葛	N	N	1	$\begin{array}{\|c\|} \hline \mathbf{N} \end{array}$	1	N	∞	∞	∞	1	1	1	1	$\stackrel{N}{N}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	$\frac{0}{\infty}$
$\stackrel{\substack{0}}{\substack{\circ}}$	∞	1	1	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	1	N	∞	∞	1	1	1	1	1	\％	1	1	$\underset{N}{*}$	$\underline{0}$	1	$\underline{0}$	1	1	1	1	1	1	1	1	1	¢
$\left\{\begin{array}{l} \lambda \\ \underline{\bar{E}} \\ \dot{\sim} \end{array}\right.$					Alpheidae＊At．					Processidae		0 $\frac{0}{2}$ $\frac{0}{0}$ $\frac{1}{0}$ $\frac{0}{9}$						0 $\stackrel{0}{0}$ \bar{E} $\stackrel{0}{0}$ 0 0 0 0	$\begin{aligned} & 9 \\ & \frac{8}{\mathbf{8}} \\ & \hdashline \mathbf{5} \\ & \mathbf{8} \\ & 0 \end{aligned}$						－อس E．Jnulu ${ }^{2}$＊＊			0 $\frac{0}{0}$ 0 0 $\frac{2}{5}$ $\frac{0}{2}$ $\frac{0}{2}$		$\stackrel{5}{0}$

Table 20. Numbers (monthly means) per $1000 \mathrm{~m}^{3}$ of macruran and
rom January
3
per
station
at
anomuran families
1986 to June 1987

Table 21 . Numbers (monthly means) per $1000 \mathrm{~m}^{3}$ of macruran and
station 4 , from January
amilies at
1986 to June 1987

$\left\lvert\, \begin{aligned} & \frac{0}{8} \\ & 0 \\ & 0 \\ & 0 \\ & \frac{9}{8} \\ & \hline \end{aligned}\right.$	12	m	1	$\bar{\sim}$	M	$\begin{aligned} & N \\ & \underline{O} \end{aligned}$	1	0	M	10	\sim	1	－	앙	V	－	0	\cdots	1	\cdots	V		19	1	\％	1	1	1	1	¢	
$\stackrel{\dot{y}}{\boldsymbol{y}}$	\bullet	\bigcirc	1	$\stackrel{M}{m}$	1	$\frac{0}{N}$	1	8	1	$\underline{-}$	1	1	1	1	$\underline{\square}$	1	1	1	1	8	1	1	1		1	1	1	1	1	¢	
$\left\|\frac{\lambda}{\mathbf{m}}\right\|$	1	1	1	$\frac{8}{7}$	1	$\begin{aligned} & \mathbf{J} \\ & 0 \end{aligned}$	1	N	1	1	\pm	1	1	1	1	$\underset{\sim}{\infty}$	1	1	1	N	1	1	8		1	1	1	1	1	－	
$\frac{\dot{2}}{2}$	1	1	1	$\begin{array}{\|c\|} N \\ \end{array}$	1	\bigcirc	1	$\underset{N}{N}$	1	\mathbb{N}	∞	1	1	\％	1	은	1	∞	1	ㅇ	1	1	$\underset{\sim}{\text { N }}$	1	1	1	1	1	1	N	
$\begin{array}{\|c\|} \dot{\mathbf{C}} \\ \dot{\Sigma} \\ \hline \end{array}$	∞	1	1	0	1	$\underset{m}{N}$	∞	N	1	∞	1	1	1	$\underline{\square}$	1	1	1	∞	1	$\underline{\square}$	1	1	N	1	1	1	1	1	1	¢	
$\left\|\begin{array}{l} \dot{0} \\ \stackrel{0}{4} \end{array}\right\|$	1	1	1	$\begin{array}{\|l\|} \hline \mathrm{F} \\ \hline \end{array}$	1	$\begin{aligned} & 0 \\ & \mathbf{N} \\ & \mathrm{~N} \end{aligned}$	1	1	1	1	1	1	1	1	1	1	$\overrightarrow{0}$	1	1	1	g	1	1	，	1	1	1	1	1	N	
亥	，	1	1	N	1	J	1	\％	∞	1	1	1	1	1	∞	1	1	1	1	1	1	1	1	1	1	1	1	1	1	\％	
$\begin{array}{\|c\|} \hline \dot{0} \\ \dot{0} \\ \hline \end{array}$	1	1	1	0	1	\|l		1	0	\bigcirc	1	1	1	1	1	1	1	1	1	1	N	1	1	$\underline{\square}$	1	1	1	1	1	1	$\frac{N}{10}$
$\begin{aligned} & 0 \\ & 0 \\ & 2 \end{aligned}$	∞	$\underline{\square}$	1	－	1	$\underset{~}{\mathbf{F}}$	1	$\underline{\square}$	1	1	1	1	1	1	1	1	1	1	1	－	1	1	1	1	1	1	1	1	1	$\stackrel{0}{\square}$	
$\dot{\ddot{\circ}}$	$\underset{N}{N}$	∞	1	N	1	\％	1	1	1	1	1	1	1	1	1	$\left\lvert\, \begin{gathered} N \\ \mathbf{N} \end{gathered}\right.$	1	$\underset{N}{N}$	1	$\stackrel{N}{N}$	1	1	1	1	1	1	1	1	1	¢ \cdots m	
$\begin{array}{\|c} \dot{0} \\ \dot{0} \end{array}$	$\underline{\sim}$	1	1	0	∞	응	1	∞	1	1	1	1	1	∞	1	1	1	∞	1	足	1	1	∞	1	$\left\lvert\, \begin{array}{r} 0 \\ 0 \end{array}\right.$	1	1	1	1	7 N	
$\frac{9}{4}$	$\begin{gathered} \mathbf{0} \end{gathered}$	1	1	$\begin{array}{\|c\|} \hline \infty \\ \mathbf{0} \\ \hline \end{array}$	1	$\frac{\infty}{寸}$	1	$\left\|\begin{array}{c} \mathbf{0} \end{array}\right\|$	1	1	1	1	1	$\dot{\mathbf{0}}$	1	1	1	$\overrightarrow{0}$	1	1	1	1	$\begin{aligned} & 7 \\ & 0 \end{aligned}$	1	1	1	1	1	1	¢	
$\frac{3}{3}$	$\left\|\begin{array}{l} \tilde{0} \end{array}\right\|$	∞	1	$\left\lvert\, \begin{gathered} 8 \\ \hline \end{gathered}\right.$	\bigcirc	\％	1	$\left\lvert\, \begin{aligned} & \mathrm{O} \end{aligned}\right.$	1	$\|N\|$	1	1	1	1	1	1	1	1	1	$\underline{\square}$	1	1	∞	1	1	1	1	1	1	$\frac{N}{N}$	
$\begin{aligned} & \dot{5} \\ & \\ & \hline \end{aligned}$	\％	1	1	$\stackrel{\sim}{\sim}$	∞	$\left\lvert\, \begin{gathered} N \\ N \end{gathered}\right.$	1	\％	\bigcirc	1	1	1	1	∞	∞	1	∞	1	1	$\left\lvert\, \begin{array}{\|c\|} \hline 8 \end{array}\right.$	∞	1	∞	1	1	1	1	1	1	8	
$\begin{array}{\|c\|} \hline \boldsymbol{\omega} \\ \boldsymbol{\Sigma} \end{array}$	1	1	1	$\underline{\square}$	∞	∞	1	1	1	1	1	1	1	1	∞	1	1	1	1	1	1	1	1	1	1	1	1	1	1	V	
$\begin{aligned} & \dot{6} \\ & \frac{6}{c} \end{aligned}$	1	1	1	1	1	∞	1	1	1	1	1	1	1	1	∞	1	1	1	1	∞	1	1	1	1	1	1	1	1	1	$\underset{\sim}{\sim}$	
$\stackrel{\dot{c}}{\mathbf{\Sigma}} \mathbf{\Sigma}$	1	1	1	$\left\|\begin{array}{l} 0 \\ 0 \\ \sim \\ N \end{array}\right\|$	$\mid \underline{0}$	$\begin{aligned} & \infty \\ & 0 \end{aligned}$	1	$\underline{\square}$	1	1	1	1	∞	$\underset{\sim}{\alpha}$	1	$\underline{\sim}$	1	1	1	∞	1	1	∞	1	1	1	1	1	1	足	
$\dot{\stackrel{\rightharpoonup}{2}}$	1	1	1	$\stackrel{\sim}{\sim}$	1	N	1	∞	∞	1	1	1	∞	∞	∞	1	1	1	1	1	1	1	1	1	1	1	1	1	1	N	
$\dot{-1}$	$\underline{\sim}$	1	1	－	1	N	1	N	1	∞	1	1	1	$\underline{\square}$	∞	1	\bigcirc	∞	∞	∞	1	1	1	1	1	1	1	1	1	∞ \sim N	
$\stackrel{\text { chen }}{\substack{\text { E／}}}$			$\begin{aligned} & \dot{0} \\ & \stackrel{0}{n} \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$							Processidae	$\begin{gathered} \stackrel{0}{0} \\ \stackrel{0}{\sqrt{n}} \\ \stackrel{\rightharpoonup}{5} \\ 0 . \end{gathered}$													$\begin{array}{\|l\|} 0 \\ \stackrel{0}{0} \\ \stackrel{0}{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	＊＊Anomura me		$\begin{aligned} & \mathbf{0} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$			－	

Table 22 . Numbers (monthly means) per $1000 \mathrm{~m}^{3}$ of macruran and
from January
Numbers (monthly means) per 1000
anomuran families at station 5
986 to June 1987

$\left\lvert\, \begin{aligned} & \frac{0}{2} \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \frac{1}{4} \end{aligned}\right.$	1	∞	－	$\begin{aligned} & 0 \\ & 8 \\ & 0 \end{aligned}$	~ 8	$\stackrel{O}{寸}$	－ 8	Oin	N	N	10	1	N	\cdots	아	V	\cdots	－	m	$\stackrel{N}{\mathrm{~N}}$	N	1	40	1	$\stackrel{\square}{2}$	－				V
$\begin{array}{r} \dot{5} \\ 5 \end{array}$	∞	1	1	8	\pm	－	8	\％	$\underline{-}$	1	¢	1	1	∞	1	1	$\stackrel{\square}{\square}$	$\underline{-}$	1	1	∞	1	∞	1	1	1			1	京
$\begin{array}{\|l\|} \hline \boldsymbol{x} \\ \boldsymbol{v} \\ \hline \end{array}$	1	1	1	$\underset{\sim}{\underset{N}{N}}$	18	∞	N	N	1	1 －	$\underline{\square}$	1	1	\bigcirc	\therefore	N	\bullet	$\underline{\square}$	1	N	1	1	$\left\|\begin{array}{l} \infty \\ 0 \\ \text { N } \end{array}\right\|$	1	1	1			1	$\stackrel{N}{N}$
$\begin{array}{\|l\|} \hline \frac{2}{4} \\ \hline \end{array}$	1	1	1	$\frac{N}{N}$	18	J	0	\because	\cdots	∞	1	1	10	$\infty \quad \infty$	$\infty \quad \infty$	∞	1	1	1	∞	1	1	\％	1	1	∞			1	\％
$\begin{array}{\|l\|} \hline \dot{\mathbf{N}} \\ \hline \mathbf{\Sigma} \\ \hline \end{array}$	1	1	1.	8	$1 \stackrel{\square}{N}$	N	11	11	1	11	1	1	1	11	18	$\underset{N}{\top}$	1	∞	1	1	1	1	\bigcirc	1	1	∞			1	O
$\begin{array}{\|l\|} \hline \dot{\varrho} \\ \stackrel{\rightharpoonup}{0} \\ \hline \end{array}$	1	1	\bigcirc	$\begin{aligned} & \mathrm{O} \\ & \hline \end{aligned}$		N	110	00	\bigcirc	$1 \pm$	0	1	18	81	1	1	1	N	1	$\underline{\sim}$	1	1	N	1	1	1			1	$\stackrel{0}{\square}$
	1	1		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\underset{\sim}{N}$	$\underset{\sim}{N} \simeq$	0 ¢	\％ 0	8	1	1	1	1	11	$\stackrel{\infty}{*}$	¢	1	1	$\mid N$	$\stackrel{\square}{-}$	1	1	N	1	1	1			1	－
$\begin{array}{\|l\|} \hline \dot{8} \\ \dot{0} \\ \hline \end{array}$	1	1		$\begin{array}{\|l\|} \hline 5 \\ n \end{array}$		$\begin{array}{l\|l} \hline \mathbf{N} & 1 \\ \text { N } \end{array}$	18	81	1	11	1	1	1	$1 \pm$	\bigcirc	\％	18	O	\bigcirc	$\underline{-}$	$\stackrel{\sim}{0}$	1	8	1	\％	1			1	－
豪	1	8	\％	8	18	8	$\underset{\sim}{N}$		N	11	1	1	10	$\underline{0} 1$	N	N	10	¢	1	$\begin{array}{\|c} \mathbf{0} \end{array}$	1	1	1	1	0	1			1	芯
$\stackrel{\rightharpoonup}{\dot{O}}$	1	∞	S	$\left\|\begin{array}{c} \mathbf{N} \\ \mathbf{N} \end{array}\right\|$	N	－	1 \％	\％ 1	11	11	＇	1	1	$\infty 1$	N	N	1	∞	1	N	1	1	$\stackrel{\otimes}{0}$	1	∞	1			1	8
$\begin{array}{\|c\|} \dot{0} \\ \dot{0} \end{array}$	1	1	N	$\begin{array}{\|c\|c} \hline 0 & \\ \hline & 1 \\ M \end{array}$	$1 \pm$	81	11	1	1	11	1	1	1	\cdots	N	11	1	1	1	N	N	1	1	1	1	1			1	\％
$\left\|\begin{array}{l} 0 \\ \frac{3}{4} \end{array}\right\|$	1	1	S	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right\|$	$1 \underset{\sim}{N}$	$\underset{\sim}{\alpha} \mid 1$	11	1	1	11	1	1	1	N	$\underset{\sim}{N}$	11	1	1	1	1	1	1	®	1	1	1			1	¢
$\overline{3}$	1	1	－	$\frac{0}{N}$	1N	${ }_{0}^{\sim}$	18	O．	1	11	1	1	1	＇	11	5	$\mathbf{~}$	1	1	\％	N	1	1	1	1	1			1	N N N
$\stackrel{\dot{5}}{\stackrel{c}{5}}$	1	N		$\begin{aligned} & \mathrm{U} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$1 \frac{N}{N}$	$\frac{\square}{V}$	$\underset{\sim}{\aleph}$		N ${ }^{\text {N }}$	11	11			8	81	1	1.	8	1	$\frac{\infty}{\sim}$	¢	1	1	1	1	1			1	N 0 \sim \sim 0
$\begin{array}{\|c\|} \hline \frac{\lambda}{\omega} \\ \hline \end{array}$	1	∞	$\xlongequal{2}$	$\underset{\sim}{N}$	1	11	11	11	$1 \underset{\sim}{\sim}$	N	11	1		10	号 1	1	1	1	1	$\stackrel{\square}{0}$	$\underset{N}{\mathbf{N}}$	1	$\stackrel{J}{\sim}$	1	∞	1			1	N
$\begin{aligned} & \dot{2} \\ & \frac{2}{4} \end{aligned}$	1	1	$1{ }^{\circ}$	$\stackrel{O}{\mathrm{~N}}$	－$\stackrel{0}{\circ}$	N0	0 ）	O	N1	11	1	1		01	11	1∞	∞	∞	1	1	1	1	O	1	1	1			1	N
$\begin{gathered} \dot{5} \\ \Sigma \end{gathered}$	1	1	\％	0 0 \sim	，$\frac{N}{\sim}$	N	11	1 ¢	\％ 1	11	1	M		1	1	$1 N$	N	N	1	1	1	1	N	1	∞	1			1	N
$\left.\begin{array}{\|l} 0 \\ 0 \\ \mathbf{0} \end{array} \right\rvert\,$	1	1	¢	$$	$\begin{array}{l\|l} \hline 8 & \infty \\ 0 & \\ N \end{array}$	－	$0 \left\lvert\, \begin{aligned} & 0 \\ & \hline \end{aligned}\right.$	51	11	11				∞	N	N	O	1	1	$\underline{\square}$	1	1	N	1	1	∞			1	$\underset{\sim}{\sim}$
$\dot{\boldsymbol{\omega}}$	∞	1	δ	$\underset{\sim}{N} \mid \underset{N}{N}$	＋	8	$\begin{aligned} & \mathrm{m} \\ & \hline \end{aligned}$	号 1	11	1∞				11	1	∞			∞	1	∞	1	∞	1	1	1			，	员
$\stackrel{\underset{\rightharpoonup}{\bar{E}}}{\stackrel{\rightharpoonup}{4}}$	Penaeidae* Pr.	$\left\lvert\, \begin{aligned} & \Sigma_{0} \\ & \mathbf{0} \end{aligned}\right.$																								$\begin{gathered} \frac{0}{0} \\ \stackrel{C}{0} \\ \bar{N} \\ 0 \\ 0 \end{gathered}$			－	＂

Table 23 . Numbers (monthly means) per $1000 \mathrm{~m}^{3}$ of macruran and
anomuran families at station 6 , from January
1986 to June 1987 .

京	－	N	a	$\frac{N}{m}$	m	$\stackrel{\underset{N}{N}}{\substack{2}}$	N	－	F	－	∞	1	∞	V	$\bar{\nabla}$	N	a	\cdots	N	m	$\bar{\nabla}$	N	$\left\|\begin{array}{l} \infty \\ 0 \\ N \end{array}\right\|$	N	N	1	1	1	－	9
$\stackrel{5}{5}$	1	1	1	$\begin{array}{\|l\|} \hline 0 \\ \infty \\ \infty \end{array}$	1	N	1	1	1	1	$\underset{\sim}{\infty}$	1	$\underset{\sim}{\infty}$	1	$\frac{N}{i n}$	$\left\|\begin{array}{l} \dot{0} \\ \infty \\ m \end{array}\right\|$	1	$\frac{N}{i n}$	1	1	$\frac{N}{n}$	1	［题	1	1	1	1	1	1	$\frac{N}{\square}$
$\begin{array}{\|l\|} \hline \underset{\omega}{\infty} \\ \mathbf{\Sigma} \end{array}$	1	1	1	\mid	1	$\begin{array}{\|l\|} \hline 0 \\ \stackrel{p}{n} \\ \hline \end{array}$	1	N	1	1	1	1	1	$\underline{\sim}$	N	1	1	$\mathbf{0}$	1	$\|\%\|$	1	1	8	1	1	1	1	1	1	$\frac{0}{\infty}$
$\begin{array}{\|c\|} \hline \frac{0}{4} \end{array}$	1	1	\bigcirc	$\stackrel{\circ}{0}$	19	\％	1	N	\bigcirc	1	∞	1	1	1	$\underline{\square}$	1	$\underline{\sim}$	\％	1	$\underline{\sim}$	$\underset{\sim}{\nabla}$	1	$\frac{0}{N}$	1	1	1	1	1	1	员
$\dot{\mathbf{c}} \dot{\mathbf{\Sigma}}$	1	1	1	$\begin{array}{\|c\|} \hline \\ \mathbf{n} \\ m \end{array}$		0	1	令	1	1	1	1	1	1	1	1	$\mid \infty$	5	1	$\underline{\sim}$	1	1	$\begin{aligned} & \hline \infty \\ & 0 \\ & \hline \\ & \hline \end{aligned}$	1	1	1	1	1	1	N
$\|\stackrel{\dot{Q}}{\stackrel{i}{2}}\|$	1	1	1	$\frac{\infty}{寸}$	1	$\stackrel{N}{\mathrm{~N}}$	1	q	1	1	1	1	1	1	1	$\left\|\begin{array}{c} N \\ M \end{array}\right\|$	$\|\mathbb{N}\|$	$\text { } \mathbf{O}$	1	1	1	1	$\begin{aligned} & \square \\ & \infty \\ & M \end{aligned}$	1	$\underline{\square}$	1	1	1	1	－
$\stackrel{\stackrel{1}{5}}{\stackrel{1}{9}}$	1	1	0	\％	1	\％	1	$\underline{\sim}$	∞	∞	∞	1	∞	1	1	1	1	N	∞	1	1	1	1	1	1	1	1	1	1	¢
$\left\|\begin{array}{l} \dot{0} \\ 0 \end{array}\right\|$	1	$\underline{\sim}$	1	$\mid 8$	1	$\underset{\infty}{\square}$	1	角	∞	1	1	1	1	1	1	1	8	1	∞	مٌ	1	1	∞	1	1	1	1	1	1	N \sim
$\begin{array}{l\|} \hline 0 \\ 0 \\ 2 \end{array}$	∞	∞	$\underline{\square}$	\％	∞	$\left\|\begin{array}{l} \infty \\ \infty \\ \infty \end{array}\right\|$	1	∞	1	1	1	1	1	1	∞	1	1	$\|\underset{N}{N}\|$	1	$\|\mathbb{N}\|$	1	1	∞	1	∞	1	1	1	1	－
$\ddot{8}$	∞	∞	∞	$\left\lvert\, \begin{aligned} & \mathbf{N} \\ & \mathbf{N} \end{aligned}\right.$	1	$\begin{aligned} & 0 \\ & N \\ & N \end{aligned}$	1	∞	1	1	1	1	1	1	$\left\lvert\, \begin{array}{r} \mathbf{0} \\ \hline \end{array}\right.$	$\mathbf{0}$	∞	$\underline{\sim}$	1	10	1	1	N	1	1	1	1	1	1	8
$\left\|\begin{array}{c} \dot{0} \\ \stackrel{\rightharpoonup}{0} \end{array}\right\|$	1	1	1	$\left\|\begin{array}{l} 0 \\ 0 \end{array}\right\|$	1	N	1	∞	1	1	1	1	1	1	∞	1	10	$\underset{N}{N}$	∞	∞	1	1	N	1	1	1	1	1	1	2
号	1	1	1	$\begin{array}{\|c\|} \hline \\ 0 \\ \sim \\ \hline \end{array}$	1	$\begin{array}{\|c\|} \hline \infty \\ \stackrel{0}{2} \end{array}$	1	$\left\|\begin{array}{c} 0 \\ 0 \end{array}\right\|$	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	¢
$\stackrel{\square}{3}$	1	1	1	$\frac{0}{6}$	$\stackrel{N}{M}$	N	1	1	1	1	！	1	1	1	1	1	N	$\underset{N}{N}$	1	1	N	1	$\left\lvert\, \begin{aligned} & \infty \\ & \underset{N}{N} \end{aligned}\right.$	1	1	1	1	1	1	$\stackrel{\square}{\square}$
$\stackrel{5}{3}$	1	1	1	$\begin{aligned} & 0 \\ & 8 \\ & 9 \end{aligned}$	1 ¢	8	1	1	$\underline{0}$	1	1	1	1	1	$\underset{N}{N}$	1	1	$\left\lvert\, \begin{array}{r} \mathrm{G} \end{array}\right.$	1	$\underline{\sim}$	1	1	$\underline{\sim}$	1	1	1	1	1	1	N
$\stackrel{\lambda}{\boldsymbol{\omega}}$	1	1	1	$\frac{0}{1}$	1	$\begin{array}{\|l\|} \infty \\ 8 \\ 0 \end{array}$	1	\mathbf{j}	1	1	1	1	1	$\left\lvert\, \begin{gathered} \pi \\ 0 \end{gathered}\right.$	$\mid \vec{~}$	1	$\begin{aligned} & \mathbf{\infty} \\ & \underset{N}{2} \end{aligned}$	$\|N\|$	1	1	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & N \\ & N \end{aligned}$	$\left\lvert\, \begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}\right.$	$\|\underset{N}{N}\|$	1	1	1	1	1	\％ 8
$\left\lvert\, \begin{gathered} \dot{6} \\ \frac{6}{4} \end{gathered}\right.$	1	1	1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	1	$\left\|\begin{array}{c} N \\ N \\ N \end{array}\right\|$	1	1	∞	1	1	1	1	1	1	1	∞	I	1	1	$\underline{\square}$	1	$\begin{aligned} & 0 \\ & 9 \\ & \hline \end{aligned}$	1	1	1	1	1	∞	N
$\begin{gathered} \dot{6} \\ \frac{5}{\sigma} \end{gathered}$	，	1	$\underline{\square}$	$\begin{array}{\|c\|} \hline \stackrel{0}{\mathrm{~N}} \\ \hline \end{array}$	1 N	N	1	∞	1	1	1	1	1	1	1	1	∞	$\vec{\nabla}$	1	1	1	∞	－	1	∞	1	1	1	∞	－
$\begin{aligned} & \dot{0} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	1	1	1	$\left\|\begin{array}{l} 0 \\ \underset{\sim}{N} \\ \mathbf{N} \end{array}\right\|$	∞	$$	N	$\begin{array}{\|l\|} \hline 8 \\ \hline \end{array}$	∞	∞	1	1	1	1	1	∞	1	$\begin{aligned} & N \\ & N \end{aligned}$	1	∞	$\begin{array}{\|c\|} \hline \end{array}$	1	$\begin{aligned} & 0 \\ & \end{aligned}$	1	1	1	1	1	1	W
$\|\underset{\substack{\infty}}{\stackrel{\rightharpoonup}{\omega}}\|$	1	∞	1	N	1	O	∞	N	1	1	1	1	1	1	1	1	1	∞	$\underline{\square}$	1	1	1	∞	1	1	1	1	1	1	N \sim
λ $\stackrel{\rightharpoonup}{\bar{E}}$ $\stackrel{\rightharpoonup}{\omega}$ 									$\left\lvert\, \begin{gathered} \mathbf{8} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{~} \\ \frac{\mathbf{0}}{\mathbf{n}} \\ \mathbf{0} \\ \mathbf{0} \end{gathered}\right.$	$\left\|\begin{array}{c} \mathbf{8} \\ \frac{0}{n} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$		0 0 0 0 0 0 8		$\begin{array}{\|c} 0 \\ \mathbf{0} \\ \vdots \\ \hline \mathbf{0} \\ \hline 0 \\ 0 \\ \hline \mathbf{0} \\ \hline \end{array}$					0 0 0 0 0 0 0					0 0 \vdots 0 0 0 0 0	＊＊Anomura me．			$\left\|\begin{array}{l} 0 \\ \mathbf{0} \\ 0 \\ 0 \\ \frac{0}{6} \\ \frac{0}{2} \\ \mathbf{0} \end{array}\right\|$		－

Table 24. Numbers (monthly means) per $1000 \mathrm{~m}^{3}$ of macruran and
1985 to June 1987

哭	V	$\stackrel{\sim}{\sim}$	N	$\frac{a}{\infty}$	m	$\left\|\begin{array}{c} \infty \\ 0 \\ 0 \end{array}\right\|$	a	$\frac{19}{-}$	N	1	V	1	N	＝	$\left\|\begin{array}{l} \mathbf{n} \\ \mathbf{N} \end{array}\right\|$	$=$	令	$\underline{\square}$	O	$\stackrel{\sim}{\square}$	8	\cdots	$\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & \underline{m} \end{aligned}\right.$	\％	0			－	M
$\stackrel{5}{5}$	1	1	1	$\begin{aligned} & 7 \\ & \hline \\ & \infty \end{aligned}$	1	$\begin{aligned} & 8 \\ & \underset{N}{0} \\ & \hline \end{aligned}$		1	1	1	$\begin{aligned} & 0 \\ & \stackrel{0}{2} \end{aligned}$	1	1	1	－	$\frac{N}{N}$	－	1	$\left.\begin{aligned} & \infty \\ & 0 \\ & \end{aligned} \right\rvert\,$	1	$\left\|\begin{array}{l} \infty \\ 0 \\ م \end{array}\right\|$	1	$\begin{array}{\|l\|} \hline 8 \\ \mathbf{~} \\ \mathbf{0} \end{array}$	1	1				1 8 0
$\frac{\lambda}{\mathbf{N}}$	1	1	1	$\begin{aligned} & n \\ & n \\ & 0 \\ & n \end{aligned}$	1	$\begin{aligned} & 8 \\ & \underline{8} \end{aligned}$	1	$\stackrel{0}{\stackrel{0}{N}}$	\％	1	1	1	1	1		$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\frac{0}{\mathrm{~N}}$	1	$\begin{aligned} & 0 \\ & N \\ & N \end{aligned}$	$\underset{\sim}{\infty}$	1	$\stackrel{\infty}{\underset{\sim}{\sim}}$	$\left\lvert\, \begin{gathered} 0 \\ \infty \\ 0 \\ 0 \end{gathered}\right.$	1	$\begin{aligned} & 0 \\ & \stackrel{N}{N} \\ & \hline \end{aligned}$				8 8 N
$\left\lvert\, \frac{\dot{4}}{\frac{0}{4}}\right.$	1	1	1	$\begin{aligned} & \underset{N}{\alpha} \\ & \underset{N}{2} \end{aligned}$	1	$\left\|\begin{array}{l} \mathbf{J} \\ 0 \\ M \end{array}\right\|$	1	1	1	1	1	1	1	$\underset{\sim}{\mathbf{\infty}}$	$\begin{array}{\|c} \mathbf{N} \\ \mathrm{N} \\ \hline \end{array}$	$\stackrel{\infty}{N}$	$\left\|\begin{array}{l} \mathbf{\infty} \\ \mathbf{m} \end{array}\right\|$	1	$\stackrel{\infty}{\infty}$	$\frac{N}{i n}$	1	1	$\begin{aligned} & \text { Q } \\ & \underset{N}{2} \end{aligned}$	1	$\stackrel{\infty}{\infty}$				 0 0 0
$\begin{gathered} \dot{\mathbf{c}} \\ \mathbf{\Sigma} \\ \hline \end{gathered}$	1	1	1	$\frac{N}{N}$	1	$\begin{aligned} & 0 \\ & \hat{n} \end{aligned}$	1	1	$\left\|\begin{array}{c} 0 \\ \stackrel{0}{n} \end{array}\right\|$	1	1	1	1	1	$\underset{\sim}{\mathbb{N}}$	1	$\left\|\begin{array}{l} 0 \\ 8 \\ \infty \end{array}\right\|$	$\stackrel{\propto}{\underset{\sim}{\otimes}}$	足	$\underset{\sim}{\alpha}$	1	1	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	1	$\stackrel{\otimes}{\text { ® }}$				\％
$\dot{\dot{\circ}}$	1	1	1	$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	1	$\begin{aligned} & \mathbf{\infty} \\ & m \end{aligned}$	\mathbb{N}	1	$\left\|\begin{array}{l} \infty \\ 0 \\ \underset{N}{2} \end{array}\right\|$	1	1	1	1	1	1	1	$\left\|\begin{array}{c} \mathbf{N} \\ \infty \\ M \end{array}\right\|$	1	1	1	1	1	$\begin{array}{\|l\|} \hline 8 \\ \text { N } \\ \text { N } \end{array}$	1	N				N N M
$\stackrel{\dot{\omega}}{\mathbf{\omega}}$	∞	1	1	$\frac{\pi}{9}$	1	∞	1	\pm	N	∞	1	∞	1	1	∞	0	\bigcirc	1	∞	N	1	∞	\％	1	11	∞	1		\％
$\left.\begin{array}{\|c} \dot{0} \\ 0 \\ 0 \end{array} \right\rvert\,$	1	1	1	$\frac{6}{8}$	1	$\left\|\begin{array}{l} n \\ n \\ m \end{array}\right\|$	1	$\left\|\begin{array}{l} \infty \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{aligned} & 0 \\ & \infty \\ & m \end{aligned}$	1	1	1	1	1	1	1	N	1	$\|\underset{\infty}{ }\|$	$\underset{\sim}{\alpha}$	1	1	1	1	N		1		¢
$\begin{array}{\|l\|} \hline \frac{2}{2} \\ 2 \end{array}$	1	\％	\bigcirc	$\left.\frac{N}{i n} \right\rvert\,$	1	io	1	∞	1	1	1	1	1	1	1	1	N	1	1	$\begin{aligned} & 0 \\ & \mathbf{m} \\ & m \end{aligned}$	1	1	$\stackrel{\text { ® }}{\sim}$	1	¢		1	1	∞ ∞
Hig	$\mathbf{\nabla}$	1	1	$\left.\begin{array}{\|l\|} \hline \infty \\ 0 \\ 0 \end{array} \right\rvert\,$	1	$\underset{\sim}{N}$	1	$\frac{\mathrm{J}}{\mathrm{~J}}$	1	1	1	1	1	$\mathbf{~}$	$\mathbf{8}$	$\stackrel{p}{\sim}$	1	0	1	$\stackrel{\sim}{\sim}$	1	1	$\stackrel{\infty}{\text { ® }}$	1	슬	1	1	1	翤
$\begin{gathered} \dot{0} \\ \dot{\sim} \end{gathered}$	1	1	1	$\begin{aligned} & \infty \\ & \hline 8 \\ & \hline \end{aligned}$	1	$\left\|\begin{array}{l} \mathrm{J} \\ \infty \\ \mathrm{~N} \end{array}\right\|$	1	$\stackrel{\infty}{\infty}$	1	1	1	1	1	1	1	$\left\|\begin{array}{l} 0 \\ 10 \\ \end{array}\right\|$	1	1	1	®	1	1	$\begin{aligned} & \mathbf{D} \\ & \infty \\ & M \end{aligned}$	1	11	1	1		N 0 0 0 \sim \sim
$\begin{aligned} & 9 \\ & \frac{8}{4} \end{aligned}$	1	1	$\begin{gathered} 0 \\ \stackrel{0}{\mathrm{~N}} \end{gathered}$	$\left\|\begin{array}{l} \infty \\ 0 \\ \end{array}\right\|$	1	$\begin{array}{\|c} \hline \\ \mathbf{N} \\ \mathbf{o} \end{array}$	1	$\left\|\begin{array}{l} \infty \\ \underset{N}{N} \end{array}\right\|$	1	1	1	1	1	1	$\left\|\begin{array}{l} 0 \\ \stackrel{N}{N} \end{array}\right\|$	1	呙	1	1	$\begin{gathered} 0 \\ \stackrel{N}{N} \end{gathered}$	1	1	1	1	11	1	1	1	F S N
$\overline{5}$	1	$\left\lvert\, \begin{aligned} & 0 \\ & \stackrel{0}{N} \\ & \hline \end{aligned}\right.$	1	$\left\|\begin{array}{l} \mathbf{g} \\ \infty \\ m \\ m \end{array}\right\|$	1	$\left\lvert\, \begin{aligned} & \mathbf{8} \\ & \underset{N}{2} \end{aligned}\right.$	1	$\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & 1 \end{aligned}\right.$	1	I	1	1	1	1	$\left\|\begin{array}{l} 0 \\ 0 \\ \end{array}\right\|$	1	$\begin{aligned} & \mathbf{o} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	1	1	N	1	1	$\stackrel{\infty}{\mathbf{8}}$	1	11	1	1	1	N \sim \sim 0
5	1	1	1	$\frac{N}{N}$	1	$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$	1	$\begin{aligned} & \mathbf{O} \\ & \mathbf{N} \end{aligned}$	1	1	1	1	$\begin{aligned} & \infty \\ & \stackrel{n}{n} \end{aligned}$	1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & \text { 이N } \end{aligned}$	1	1	1	8	1	0	1	11	1	1	1	N
$\underset{\text { ® }}{\boldsymbol{\omega}}$	1	$\stackrel{\infty}{\underset{\sim}{\infty}}$	1	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \\ & \hline \end{aligned}$	18	$\begin{aligned} & 0 \\ & \mathbf{y} \end{aligned}$	1	$\stackrel{\infty}{\text { ¢ }}$	1	1	1	1	1	1	$\underset{\sim}{N}$	1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	1	$\stackrel{\infty}{N}$	$\begin{aligned} & 0 \\ & \sim \\ & \sim \end{aligned}$	¢	N	$\begin{aligned} & \infty \\ & N \\ & N \end{aligned}$	8	11	1	1	1	\％
$\dot{8}$	1	1	1	N N \sim	18	$\begin{aligned} & N \\ & N \\ & \sim \end{aligned}$	$\left\|\begin{array}{c} N \\ m \end{array}\right\|$	$\stackrel{O}{\mathcal{N}}$	∞	1	1	1	$\left\lvert\, \begin{gathered} \infty \\ \underset{\sim}{2} \end{gathered}\right.$	18	\approx	∞	$\begin{aligned} & \infty \\ & \stackrel{8}{寸} \end{aligned}$	N	8	1	ס	$\boldsymbol{\nabla}$	0	¢	$\begin{gathered} 8 \\ N \end{gathered}$	1	1	1	\％
$\stackrel{\dot{c}}{\stackrel{i \pi}{\Sigma}}$	1	1	$\underline{\square}$	N	$\bigcirc 0$	$\underset{\infty}{\infty}$	1	$1 \times$	∞	1	1	1	$\underline{\square}$	10	∞	1	\％	∞	$\underline{\square}$	1	1	1	$\stackrel{\square}{\text { ¢ }}$	1	\bigcirc	1	1	0	尔
$\stackrel{\dot{8}}{0}$	1	1	1	$\left\|\begin{array}{l} \infty \\ 0 \\ \sim \end{array}\right\|$	N	$\left\|\begin{array}{c} \mathrm{N} \\ \mathrm{~N} \end{array}\right\|$	0	$\begin{aligned} & \infty \\ & \sim \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\alpha}{\alpha} \end{aligned}$	1	1	1	\because	1	1	1	－	$\stackrel{\sim}{\square}$	1	$\underline{8}$	$\underline{\square}$	1	$\stackrel{O}{\underset{\sim}{N}}$	1	11	1	1	1	［
	1	1	V	N	$1 \pm$	$\frac{\mathbf{V}}{\mathbf{x}}$	80	$\underline{\square}$	\bigcirc	1	1	1	${ }^{1}$	1	1	1	\bullet	$\stackrel{\sim}{0}$	1	1	1	1	1	1	11	1	1	1	－ 0
E									0 0 0 0 0 0 0	0 0		Oplophoridae							Paguridae								$\left\|\begin{array}{l} \dot{0} \\ \frac{0}{2} \\ \frac{c}{c} \\ \frac{0}{2} \\ \frac{0}{2} \end{array}\right\|$		－

Chapter 6

General Discussion and Conclusions

Larval identification is important not only for taxonomy but also for all those branches of biology which taxonomy subserves; for instance, the results of quantitative ecological research would be incomplete if larval forms had to be neglected because they could not be identified (Gordon, 1955). A number of decapods are important as commercial species, and effective management of the fishery for such species is impossible without a thorough knowledge of the larval life-history. Other species are important, either as adults or larvae, as the food of fish, and again it is very desirable that the larvae should be identified and their distribution known.

Larvae of decapod crustaceans have been the subject of a great deal of work in different parts of the world, and in some regions, such as the Irish Sea and the English Channel, practically all decapod larvae which are encountered can be linked with named adults. In the central Red Sea, on the other hand, larvae of decapod Crustacea have received very little attention and the fauna of adult decapods is very imperfectly known. The present study is a first attempt to provide records of decapod larvae from the central Red Sea. It was undertaken with the realisation that one man, in the time available, could not hope to provide a complete record or cover all groups of decapods, but it provides a basis for further studies by any workers with the opportunity and an interest in the subject. The work has concentrated on larvae of the caridean genus Alpheus, which are particularly abundant in the area, and on larvae of the Anomura. In most cases it has not been possible to link the larvae with named species of adults, but within these groups, it has usually been
possible to identify to genera and to study the number of species in each genus occurring as planktonic larvae in the area.

Usually the only way to obtain firm identifications of the larvae is to hatch them from identified ovigerous females in the laboratory or to rear planktonic larvae through metamorphosis to the adult phase. It is not realistic to contemplate doing this for all the decapods of the central Red Sea, but in selected cases hatching or rearing can be invaluable in establishing specific identifications and in determining the larval characters of genera or families. Larvae of the hermit crabs coenobita scaevola and Dardanus tinctor, obtained from ovigerous females and reared through all their larval stages in the present work, provide examples of successful rearing experiments, and it is hoped that more will be added in the future. With full and accurate descriptions obtained in this way, it is then possible to identify planktonic larval material with assurance and study the natural distribution and breeding periods of the species (Costlow et al , 1970).

In distinguishing the many species of Alpheus larvae encountered in the present work, great use was made of the distribution of chromatophores in fresh material. In the past, the method has been used by a number of other workers studying the larvae of several different groups and has proved extremely effective in cases where the morphological differences between larvae of different species is not well marked. It was also shown in the present work that it is possible to rear in the laboratory Alpheus
larvae taken from plankton samples, with high survival in the later larval and juvenile stages. This means that in selected cases it should be possible to rear larvae of known chromatophore pattern to identifiable adults.

The results showed considerable variation from month to month in the numbers of decapod larvae, but in many cases it is not yet possible to say how much of this variation is a regular seasonal feature. There are indications of two main seasons: summer, from March to October, and winter, from November to February. The summer season, with its higher water temperatures, was generally the more productive for decapod larvae, but high densities were also noted in some winter months in 1987 . These winter peaks were largely due to single species of Alpheus or Harpilus, and these larvae may have been carried by the wind driven circulation from other areas.

The records of some larvae showed clear and consistent differences between stations, probably reflecting the distributions of the corresponding adults. Diogenes avarus larvae were much more common in the mangrove area and larvae of Calcinus A were more common at the station off Obhor Creek, suggesting that the adults could be collected in these respective regions to provide material for laboratory rearing. Most of the species of decapod larvae were more common in the night samples than by day, suggesting that they carry out regular vertical migrations. Particularly clear evidence of such vertical migration was provided by larvae of the anomuran familes

Galatheidae, Paguridae and Callianassidae, and by larvae of the Sergestidae (Penaeidea) and of the caridean genus Leptochaela.

In the present study the larvae of the Thalassinidea have been included in the Anomura, although there is no general agreement among workers on decapod Crustacea whether they should be included or excluded. They were, for example, included in the Anomura by McLaughlin (1980), who considered mainly adult characters, but excluded by Gurney (1942), who considered chiefly larval characters. The larvae of the two groups are linked by having the second telson process reduced to a fine hair, a character which occurs elsewhere only in the Stenopodidea.

Until quite recently it could be claimed that the presence of a central telson spine in the larvae of many families of the Thalassinidea provided a clear distinction from larvae of the Anomura, which are usually stated to have no central telson spine. It now emerges, however, that all known larvae of the anomuran family Coenobitidae, including that described in the present work, have a central telson spine in zoea III and all subsequent zoeal stages (Al-Aidaroos and Williamson, in press). This is comparable to the occurrence of a central telson spine in zoea II and all subsequent zoeal stages in the thalassinid family Upogebiidae .

The only other larval character separating the Thalassinidea and the Anomura is the occurrence of exopods on some of the legs in most larvae of the former group but in none of the second. Exopods
do, however, occur on some of the legs in larvae of some genera of the Dromiidae. The affinities of this family, in which the adults are clearly brachyuran but the larvae clearly anomuran, are discussed by Williamson (1988). In conclusion, however, it may be said that the better understanding of coenobitid larvae, to which this work has contributed, makes it more difficult to separate the Thalassinidea and the Anomura on larval characters.

References

Al-Aidaroos, A.M., 1984. Studies on the zooplankton community with special reference to Copepda North of Jeddah, Saudi Arabia. A thesis submitted for the obtainment of M.Sc. degree. King Abdulaziz University .

Al-Aidaroos , A.M. and Williamson , D . I ., in press . Larval development of the hermit crab Coenobita scaevola (Forskal, 1775) (Crustacea : Anomura : Coenobitidae) reared in the laboratory. Journal of Natural History, London .

Al-Ghamrawy, M. S., 1982. Studies on the ecology and biology of Penaeid shrimp in the region of Jeddah, Saudi Arabia. A thesis submitted for the obtainment of Ph.D. degree . University College of Wales, Bangor .

Al-Kholy, A. A., 1959 . Larval stages of three Anomuran Crustacea from the Red Sea. Publication of the Marine Biological Station, Al-Ghardaga, 10: 83-90.

Al-Kholy, A. A., 1961. Larvae of some Macruran Crustacea from the Red Sea . Publication of the Marine Biological Station, Al-Ghardaca, 11: 72-86.

Al-Kholy, A. A., 1963. Some larvae of Decapod Crustacea

 from the Red Sea. Publication of the Marine Biological Station, Al-Ghardaga, 12: 159-176.Al-Kholy, A. A. and Fikry Mahmoud, M., 1967 a . Some larval stages of Callianassasp. and Hippolytesp. Publication of the Marine Biological Station, Al-Ghardaga, 14:55-67.

Al-Kholy, A. A. and Fikry Mahmoud, M., 1967b. Some larval stages of Sergestes sp. and Synalpheus biuguiculatus (Stimpson). Publication of the Marine Biological Station, Al-Ghardaga, 14: 167-175.

Al-Kholy, A. A. and El-Hawary , M. M., 1970. Some Penaeids of the Red Sea. Bulletin of the Institute of Oceanography and Eisheries : 340-377.

Baba, K. and Fukuda, Y., 1985. Larval development of the hermit crab Diogenes nitidmanus Terao, 1913 (Crustacea: Anomura : Diogenidae) reared in the laboratory. Memoirs of the Eaculty of Education Kumamoto University Natural of Science, 34:5-17.

Banner, D.M. and Banner, A.H., 1981. Annotated checklist of the Alpheid shrimp of the Red Sea and Gulf of Aden. Zoologische Verhandelingen, 109:99 pp. .

Banner , D.M. and Banner, A.H., 1983. An annotated checklist of the Alpheid shrimp from the western Indian Ocean. Iravaux et Documents de L'orstom, 158 : 164 pp .

Behairy, A. A., Al-Kholy , A . A., Hashem , M. T. and El-Sayed, M. K. , 1982. A report on the environment and Fisheries in the coastal area between Jeddah and Yanbu. Journal of Eaculty of Marine Science, 2:1-47.

Borradaile, L. A., 1903. Land Crustaceans . In: J. S. Gardiner, Ihe Fauna and Geography of the Maldive and Laccadive Archipelagoes, (4) 1:64-100.

Brossi-Garcia, A.L. and Hebling, N.J. 1983. Desenvolvimento pós-embrionario de Clibanarius antillensis Stimpson, 1859 (Crustacea, Diogenidae), em laboratório. Boletim de Zoologia Universidade de Såo Paule, 6:89-111.

Costlow, J.D.J. and Bookhout, C. G., 1970. Marine larvae - The neglected link in biological resources. Proceedings of the Symbosium on Hydrobiolegy, (8): 228-239.

Dechancé, M., 1961. Nombre caractéres des stades larvaires dans le genre Dardanus (Crustacé Décapode Paguride). Comote Rendu de LAcadémie des Sciences, 253: 529-531.

Dechancé, M. ,1962. Remarques Sur les premiers stades larvaires de plusieurs espéces Indopacifiques du genra Dardanus (Crustacés Décapodes Pagurides). Bulletin du Muséum National D'Histore Naturelle, (2) 34, 82-94.

Forskål, P, 1775, Descriptiones animalium avium, piscium, amphibiorum, insectorum, vermium, quae in itinere orientali observavit: $1-12,1-x x x i i: 1-164$.

Gohar , H. A. and Al-Kholy, A. A., 1957. The larvae of four Decapod Crustacea from the Red Sea. Publication of the Marine Biological Station, Al-Ghardaga, 2: 177-202.

Gordon, 1., 1955. Importance of larval characters in classification. Nature. 176:911-912.

Gore, R.H. 1979. Larval development of Galathea rostrata under laboratory conditions, with a discussion of larval development in the Galatheid (Crustacea Anomura) U.S. Fishery Bulletin, (4) 76:781-806.

Greenwood, J.G., 1965. The larval development of Petrolisthes elongatus (H . Milne Edwards) with notes on breeding Crustaceana, (3) 8: 285-307.

Gurney, R., 1927. Zoological results of the Cambridge Expedition to the Suez Canal. Report on the larvae of the Crustacea Decapoda. Iransactions of the Zoological Society of London , 22: 231-286.

Gurney, R. , 1936 . Larvae of Decapod Crustacea . Part 1.Stenopidae . Discovery Report, 12: 231-286.

Gurney, R ., 1937 a . Note on some Decapod Crustacea from the Red Sea. Part I: The genus Processa. Part II: The larvae of Upogebia savignyi Stranl. Proceedings of the Zoological Society of London, B107: 85-101.

Gurney, R. , 1937 b. Note on some Decapod and Stomatopod Crustacea from the Red Sea. Part IV. The larvae of Callianassa. Proceedings of the Zoological Society of London, B 107:319334.

Gurney, R , , 1938a . Note on some Decapod Crustacea from the Red Sea. Part VII: The larvae of Porcellana inaequalis Heller and Petrolisthes? 5p. . Part VIII : The larvae of Galathea longimana Paulson. Proceedings of the Zoological Society of Lenden , B 108: 80-83.

Gurney , R ., 1938b . Larvae of Decapod Crustacea . Part V . Nephropsidea and Thalassinidea. Discovery Reports, Cambrige, 17: 291-344.

Gurney , R. 1938c . The larvae of the Decapod Crustacea Palaemonidae and Alpheidae. Scientific reports of the Great Barrier Reef Expedition, No.16, 1-60.

Gurney, R . and Lebour , M. V., 1939. The larvae of the Decapod genus Naushonia. The Annals and Magazine of Natural History , (11) 3: 609-614.

Gurney, R., 1942. Larvae of Decapoda Crustacea . Ray Society, London , 306 pp. .

Halim, Y., 1969. Plankton of the Red Sea. Oceangraphy and Marine Biology Annual Review, I: 231-275.

Hebling, N. J. and Brossi-Gacia, A.L., 1981. Desenvolvimento pós-emb rionário de Pagurus criniticornis (Dana, 1852) (Crustacea , Paguridae), em laboratório. Revista Brasileira Biologia, (4) 41: 765-779.

Holthuis, L. D., 1958 . Contribution of the knowledge of the Red Sea. Crustacea Decapoda from the Northern Red Sea (Gulf of Aqaba and Sini peninsula) , 1. Macrura. II. Hippidea and Brachyura (Dromiacea, Oxystomata and Grapsoidea). Bulletin Sea Fisheries Research Station Israel , (8) 17:1-54.

Khan, S. and Natarajan, R , , 1981a. Laboratory rearing of larval stages of the estuarine hermit crab Clibanarius longitarsus (De Haan) (Decapoda : Anomura) . Indian Journal of Marine Sclences, 10:74-81.

Khan , S. and Natarajan, R ., 1981b. Metamorphosis of estuarine nermit crab clibanarius olivaceus Henderson in the laboratory (Crustacea : Decapoda: Anomura), Mahasagar - Bulletin of the National institute of Oceanography, (4) 14: 265-276.

Khan, S. A., Sundaramoorthy , S., Thomas , M., Kannupandi , T and Natarajan, R., 1981. Laboratory reared larval stages of the marine hermit crab Clibanarius clibanarius (Herbst) (Decapoda: Anomura). Proceedings of the Indiana Academy of Science , (2) 90: 225-236.

Knight , M. D. 1966. The larval development of Polyonyx quadriungulatus Glassel and Pachycheles rudis Stimpson (Decapoda Porcellanidae) cultured in the laboratory Crustaceana, (1) 10: 75-97.

Knowiton, R. E., 1973 . Larval development of the snapping shrimp Alpheus heterochaelis Say, reared in the laboratory. journal of Natural History, Lendon, I: 273-306

Kurata, H. 1965 . Larvae of Decapod Crustacea of Hokkaido 9 Axiidae, Callianassidae and Upogebiidae (Anomura) . Bulletin of the Hokkaido Regional Fisheries Research Laboratory, $30: 1-$ 10.

Kurata, H., 1968 . Larvae of Decapoda Anomura of Arasaki, Sagami Bay - II. Dardanus arrosor (Herbst) (Diogenidae). Bulletin of the Tokai Regional Fisheries Research Laboratory, 56: 173180.

Lebour, M. V., 1928. The larval stages of the Plymouth Brachyura. Proceedings of the Zoological Society of London, 1928: 473560, pls. 1-16.

Lebour, M. V., 1932. The larval stages of the Plymouth Caridea. IV: The Alpheidae. Proceedings of the Zoological Society of London: 463-469.

Lewinsohn, Ch., 1969. Die Anomuren des roten meeres (Crustacea Decapoda: Paguridea, Galatheidae, Hippidea) Zoologische Verhandelingen, 104:1-213.

MacDonald, J. G., Pike, R . B . and Williamson, D.I., 1957. Larvae of British species of Diogenes, Pagurus, Anapagurus and Lithodes (Crustacea , Decapoda) . Proceedings of the Zoological Society of London, 128:209-257.

Man, J.G.DE, 1928. The Thalassinidae and Callinassidae collected by the Siboga-Expedition with some remarks on the laomediidae Siboga Expedition, $39 \mathrm{ab}: 187 \mathrm{pp}$.

Mair , J.MCD. 1979. The identification of postlarvae of four species of Penaeus (Crustacea : Decapoda) from the Pacific coast of Mexico. Journal of Zoology, London, 188: 347-351.

McLaughlin, P A. A. 1980 . Comparative morphology of recent Crustacea. W. H. Freeman and Company San Erancisce: 177 pp.

Menon, K., 1933. The life histories of four species of Decapod Crustacea from Madras. Bulletin of the Madras Goverment Museum, (3)3:1-45.

Menon, P. G. and Williamson, D. I . , 1971. Decapod Crustacea from the International Indian Ocean Expedition the species of Thalassocaris (Caridea) and their larvae. Journal of Zoology, London, 165: 27-51.

Moore, H.B., 1949. The zooplankton of the upper waters of the Bermuda area of the north Atlantic. Bulletin of the Bingham Oceanographic Collection, 12:1-97.

Morcos, 5. A., 1970. Physical and Chemical Oceanography of the Red Sea. oceanography and Marine Biology Annual Review, 8 : 73 202.

Nayak, V.N. and Kakati, V. S , 1977. Metamorphosis of the hermit crab Diogenes diogenes (Herbst) (Decapoda, Anomura) in the laboratory. Indian Journal of Marine Sciences , 6:31-34.

Nayak, V.N. and Kakati , V.S., 1978. Occurrence of the hermit crab Dardanus setifer (H. Milne-Edwards) (Decapoda , Anomura) at Karwar with a description of the first zoeal stage . Journal of the Bombay Natural History Society, (2) 75 : 286 291.

Near , D.H. 1980. Coastal plankton fauna of the Red Sea . Proceedings Symposium Coastal and Marine Environmental Red Sea, Gulf of Aden, West Indian Ocean , 11:561-581.

Ngoc-Ho , N., 1981. A taxonomic study of the larvae of four thalassinid species (Decapoda, Thalassinidea) from the Gulf of Mexico. Bulletin of the British Museum (Natural History) , Zoology, (5) 40: 237-273.

Pike, R.B.and Williamson, D.1., 1960. Larvae of Decapod Crustacea of the families Diogenidae and Paguridae from the Bay of Naples . Pubblicazioni della Stazione Zoologica di Napoli , 31 : 493-552.

Ponomareva, L. A., 1968. Quantitative distribution of zooplankton in the Red Sea as observed in the period May - June 1966 oceanology, (8)2:240-242.

Provenzano, A.J.Jr., 1962. The larval development of the tropical land hermit coenobita clypeatus (Herbst) in the laboratory Crustaceana , 4: 207-228.

Provenzano, A.J.Jr., 1963. The Glaucothoë stage of Dardanus venosus (H . Mile-Edwards) (Decapoda: Anomura) . Bulletin of Marine Science of the Gulf and Caribbean, (1) 13; 11-22.

Reese, E . and Kinzie, R . , 1968. The larval development of the coconut or robber crab Birgus latro (L.) in the laboratory Crustaceana, Suppl 2 : 117-144.

Sakai, K., 1984. Some Upogebiidae (Crustacea, Decapoda) in the collection of the Rijksmuseum van natuurlijke historie, Leiden . Zoologische Medelingen Leiden, (10) 58 : 149-162.

Salman, D.S., 1981. Distribution and taxonomy of larvae of coastal Crustacea. A thesis submitted for the obtainmend of Ph.D. degree . University of Liverpool .

Sankolli, K. N. and Shenoy, S., 1975. Laboratory culture of the hermit crab Diogenes avarus Heller (Crustacea, Decapoda, Anomura). Bulletin of the Department of Marine Science University of Cochin, (2)I:293-308.

Santucci, R., 1927. Fillosomi del Mar Rosso com osservazione geografica. Memoria III. Atti Istituto Idrografia Region Marina , xi, bis: 1-14.

Santucci, R., 1929. Ulteriori notizie sui fillosomi del Mar Rosso con speciale riguardo allo sviluppo post-embrionale di Scyllardes latus. Memoria ix. Atti Istituto Idrografia Region Marina, xi, bis.: 1-8.

Sarojini, R and Nagabushanam, R., 1968 . Larval development of Diogenes bicristimanus in the laboratory. Journal of the Marine Biological Association of India (11) 10: 71-77.

Seridji, R., 1986 . Larves de crustacés décapodes des eaux jordaniennes du golfe d'Agaba. Vie Marine, $7: 1-13$.

Shaikh, E. A., Roff, J. C. and Dowidar, N.M., 1986 Phytoplankton ecology and production in the Red Sea off Jeddah, Saudi Arabia. Marine Biology, 22: 405-416.

Shenoy, S and Sankolli, K. N., 1977. laboratory culture of the nermit crab Clibanarius infraspinatus Hilgendorf (Crustacea, Decapoda, Anomura). Proceedings of the Symposium on Warm Water Zooplankton, National Institute of Oceanography, G0a : 660-670.

Shokita, S . and Yamashiro, A ., 1986. Larval development of the land hermit crabs, Coenobita rugosus H . Milne Edwards and C. cavipes Stimpson reared in the laboratory. Galaxea, (2) 5 : 267-282.

Tirmizi, N.M. and Siddiqui, F. A., 1979. The larval development of Clibanarius signatus Heller and C. virescens (Krauss) (Decapoda: Diogenidae) under laboratory conditions. Pakistan Journal of Zoology, (2) 11 : 239-261.

Vine , P., 1986 . Red Sea Invertebrates .Immel Publishing . 224 pp.

Wear, R.G. 1964 . Larvae of Petrolisthes novaezelandiae Filhol, 1885 (Crustacea, Decapoda, Anomura). Iransactions of the Boyal Society of NewZealand, Zoology, (18) 4: 229-244.

Wear, R.G. and Yaldwyn, J. C., 1966. Studies on Thalassinid Crustacea (Decapoda, Macrura Reptantia) with a description of a new Jaxea from New Zealand and an account of its larval development. Zoology Publication from Victoria University of Wellington, 41:1-27.

Weikert, H., 1987 . Plankton and the pelagic environment: pp. $90-$ 111. In Edwards, A. J. and Head, S . M. (editors) Key Environments Red Sea . Pergamon press . 441 pp . .

Wickstead, J.H., 1958. A survey of the larger zooplankton of Singapore. Journal du Conseil International pour Lexploration de la Mer, 23: 341-355.

Williamson, D. 1., 1957. Crustacea Decapoda: larvae . I.General . Fiches d'identification du Zooplancton, 67:1-7.

Williamson, D.I., 1970. On a collection of planktonic Decapoda and Stomatopoda (Crustacea) from the East coast of the Sinai Peninsula, Northern Red Sea. Bulletin of Sea Fisheries Research station, Haifa, 56:1-48.

Williamson, D. I., 1976. Larvae of Stenopodidea (Crustacea, Decapoda) from the Indian Ocean. Journal of Natural History, London, 10: 497-509.

Williamson, D.1., 1988. Evolutionary trends in larval form. Symposium of the Zoological Society of london, 59: 11-25.

Yamaguchi, S., 1938. Spawning and development of Coenobita rugosus. La Bultene scienca de La Facultato Terkultura, Kjusu Imperia Universitato Fukuoka, Japanuje, (2)8: 163-177.

Zar, J. H. 1984. Biostatistical Analysis. Prentice-Hall, Inc, , Englewood Cliffs, N. J. 718 pp.

[^0]: First Maxilliped (Fig.6F) - Unchanged in form and setation

[^1]: Knowlton (1973) summarised available information on modes of development in the Alpheidae. It appears that extended larval development, with about 9 zoeal stages, occurs in most species of Alpheus, although two species are known in which larval development is abbreviated to three or less zoeal stages. Extended larval devlopment also occurs in those species of Athanas which have been investigated and the small egg size of known species of Alpheopsis and Leptalpheus is characteristic of extended development. In Synalpheus, however, nearly half the known species have abbreviated or direct devlopment.

