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Abstract

Machine Condition Monitoring (MCM) is an area that is gaining increasing im-

portance in manufacturing industry. The increased drive for efficiency and respon-

siveness by companies means that their manufacturing plants must be available

and reliable if the company is to be able to compete in the modern marketplace.

The last fifty years have seen a gradual increase in the degree of importance which

is attached to both predictive and preventative maintenance. Modern systems

are seeing the introduction of artificial intelligence, remote sensing, and data ab-

straction and fusion on a very large scale. This thesis investigates some of the

different techniques - both available and emerging, that are coming to the fore.

Artificial Neural Networks (ANNs) are an area that has seen much develop-

mental work carried out in the MCM arena. Most works have been concerned

with the use of a standard preprocessing technique - the FFT. Various different

alternative methods of preprocessing have been advanced, and a comparison is

carried out between different methods of feature extraction, and their impact on

the classification performance of three different neural networks; the Multilayer

Perceptron (MLP), Radial Basis Function (RBF) network, and the Probabilistic

Neural Network (PNN). The performance of each with the different feature ex-

traction techniques is compared, with good accuracy results (95-100%) for the

experimental data used.

Support Vector Machines are a recent development in the field of statistical

xiii



learning theory; showing much promise on classification tasks, as yet they have

seen little application in MCM type problems. One of the problems that faces

the use of the SYMs in MCM is the lack of large amounts of training data. Two

different modifications to the standard SYM are proposed, which yield very good

results (99 - 100%) in the multiclass fault characterisation problem.

Genetic Algorithms are a technique which has gained acceptance in problems

requiring optimisation with an extremely large search space. GAs are used in

combination with the MLP and SYM classifiers to determine whether the per-

formance of the classifiers can be improved further, and made more robust by

the removal of those features which confuse the classifiers, causing performance

to deteriorate. Using the GA with the ANN, the reduced feature set allows the

MLP to reach 100% accuracy using only 6 inputs from a possible 156, while

the SYM is capable of achieving 100% classification using only 4 inputs out of

156, significantly reducing the computational complexity of the problems while

increasing the accuracy.

xiv
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Chapter 1

Introduction

1.1 Motivation

Machine Condition Monitoring (MCM) is an area which is gaining increasing

acceptance within the manufacturing industry. Greater manufacturing efficiency

has created a demand for more efficient, reliable, and effective techniques to mon-

itor the health of machinery. In large scale activities such as power generation, or

the petrochemical industry, unplanned downtime can be extremely costly, with

extremely high losses being recorded on an hourly basis. Various techniques have

been developed over the last fifty years, with varying degrees of complexity and

success in the approach to problems posed by MCM.

One of the areas which has seen most interest recently is the development of

unsupervised or partially autonomous systems which are capable of performing

everyday monitoring tasks without requiring the presence of skilled personnel for

supervision. This has created a demand for the integration of artificial intelli-

gence into everyday systems. Artificial intelligence itself is a very popular area,

with many different techniques, systems, and approaches being developed and

investigated currently. There is a distinct need for evaluation of many of these

1
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novel techniques in the MCM arena and for an assessment of their usefulness for

further study and development. This has been the aim of the work carried out in

this thesis, to investigate the possibility of certain approaches and techniques that

have not been used widely or are currently under development, and determine

the potential usefulness in this field.

The Probabilistic Neural Network (PNN) is an artificial neural network (ANN)

which has been in existence for some time; however, its usage within MCM has

been limited, with most researchers using multilayer perceptron (MLP) or radial

basis function (RBF) networks for classification. It was decided to perform a

comparison between the three network types in order to try and determine the

usefulness of the PNN for MCM applications.

Support Vector Machines (SVMs) belong to a very new and vigorous area of

research in the neural network community at present. They have been shown to

achieve some of the highest results recorded on benchmark classification tests [1].

Much research has been carried out in pattern classification; however, as far as

the author is aware, very little investigation has been carried out to test the

usefulness of the SVM in MCM applications and to determine how robust the

SVM is when faced with problems of small training sets. This is one of the main

problems with all classifiers in the MCM arena, as training data can be extremely

hard to come by, and a successful technique capable of handling these problems

would be extremely useful.

One of the greatest challenges facing human operators of large and complex

plant is the problem of data overload. Modern control and monitoring systems can

have hundreds of different sensors and alarms. When a problem does arise, it can

be very difficult to determine what is actually happening, as several, or even tens

of alarms are triggered. Forms of data abstraction which can take large amounts

of data, and refine the raw contents into a small quantity of useful information
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are needed. The abstraction process allows the operators or supervisory system to

understand better what has happened, and is attracting a lot of research interest

at present. However, one of the problems of data abstraction is determining which

data streams provide useful information, and which are erroneous or uncorrelated

with the problems of interest. Research on feature selection has been carried out

quite widely, and yet little application of this has been made in the MCM area,

with system integrators usually using the experience and knowledge of human

experts to select inputs. However, using human intuition to govern the selection

procedure will only detect those relationships that the human is aware of. A form

of automated feature selection may be able to find more accurate correlations in

other data streams that had not been previously considered. This work attempts

to address some of these areas, to try and determine the applicability of some of

the novel techniques developed over the last few years in the MCM arena.

1.2 Original Contribution

The original contributions believed to be made in this work are:

• A comparison of the performance of the probabilistic neural network with

the multilayer perceptron and radial basis function networks, with a variety

of different statistical and spectrally based features.

• An evaluation of the performance of a conventional multiclass support vec-

tor machine with condition monitoring data, and assessment of the problems

inherent in the use of the conventional SVM.

• The creation and evaluation of two modified kernels for the SVM, which

take better account of the distribution of data within feature space, and the

relative proportions of the data with regard to the normalised dataspace.
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These show a marked improvement in the classification performance over

that of the conventional kernel.

• An evaluation of GA based feature selection with ANNs, and an investiga-

tion of the impact on classification performance of different datasets before

and after feature selection .

• An evaluation of the performance of the SVM after feature selection, and

demonstration that all three SVMs used in this thesis are capable of perfor-

mance equivalent to, and in some cases better than that of, the best ANN

available after feature selection. Furthermore, it is also demonstrated that

feature selection allows the SVM to deal successfully with small quantities

of training data.

1.3 Organisation

This thesis is broken into seven separate chapters. Chapter 1 deals with the in-

troduction, motivation and organisation of the thesis. Chapter 2 provides a short

historical background of condition monitoring, and a brief overview of the dif-

ferent statistical, signal processing, classification and feature selection techniques

that are used within the different areas that this thesis deals with. Chapter 3

provides an overview of the data sources used in the experiments, along with a

brief examination of the characteristics of the different data. The pre-processing

carried out on the data prior to being used for the experiments is also detailed.

Chapter 4 is a comparison of the performance of three different ANN types with

the data prepared earlier. Chapter 5 introduces the SVM, and introduces two

modified kernels for use with multiclass data; these are then evaluated with the

data prepared earlier. Chapter 6 examines the impact of feature selection on
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the performance of both ANN and SVM based classifiers, and evaluates the im-

pact of feature selection on the robustness of the classifiers. Chapter 7 presents

conclusions and further work, on the basis of the work carried out in this thesis.

1.4 Publications

Journal Papers

• McCormick A C, Nandi A K, and Jack L B. Digital Signal Processing

Algorithms in Condition Monitoring, International Journal of Comadem,

Vol 1, No.3, pp 5-14, 1998.

• McCormick A C, Nandi A K, and Jack L B. Application of Periodic Time

Varying Autoregressive Models to the Detection of Bearing Faults. Pro-

ceedings of The Institute of Mechanical Engineers, Part C(6), Vol. 212, pp.

417-428, 1998.

• McCormick A C, Nandi A K, Jack L, Diagnosis of Rolling Element Bearing

Faults using Radial Basis Function Networks, Applied Signal Processing

(1999), 6:25-32.

• Jack L, Nandi A K, Genetic Algorithms for Feature Selection in Machine

Condition Monitoring with Vibration Signals, lEE Proceedings on Vision,

Image and Signal Processing, Vol 147, No.3, pp. 205-212, 2000.

Conference Papers

• Jack L B and Nandi A K, Feature Selection for ANNs using Genetic Al-

gorithms in Condition Monitoring, Proceeding of the 7th European Sym-

posium on Neural Networks (ESANN99), D-Facto, Brussels, pp. 313-318,
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1999.

• Jack L B and Nandi A K, Genetic Algorithms for Input Selection in Condi-

tion Monitoring, Proceedings of Comadem 99, Coxmoor Publishing, Oxford,

pp. 381-388, 1999.

• Jack L B and Nandi A K, Genetic Algorithms for Input Selection in Condi-

tion Monitoring, Proceedings of QRM 2000, University of Oxford,pp. 145-

150, March 30-31, 2000, Published by the Institute of Mechanical Engineers.

• Jack L B and Nandi A K, Comparison of Neural Networks and Support Vec-

tor Machines in Condition Monitoring Applications, accepted for Comadem
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Chapter 2

Preliminaries

2.1 Machine Condition Monitoring

Machine Condition Monitoring (MCM) is an area of engineering that is gaining

acceptance and importance in many parts of manufacturing industry. Modern

day production plants are expected to run for 24 hours a day, seven days a week.

Lost production due to unexpected failure of machinery is regarded as a serious

and high cost problem. In order to ensure that production runs successfully,

industry has created a demand for techniques that are capable of recognising

both the development and severity of a fault condition within a machine system.

Machine Condition Monitoring was developed to meet this need.

Condition monitoring itself is a fairly recent development, being able to trace

its roots back to the late 1950s and early 1960s. However, the very earliest

developmental work was carried out during the second world war.

7
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2.1.1 Historical Background

Pre World War II

Prior to W.W. II, most manufacturing was done with relatively simple machines;

this made the machines easy to repair and fairly reliable, as a result, downtime

was a not a big issue as the level of automation that existed in many industries

was relatively small, and so manufacturing yields were correspondingly lower.

Generally speaking, there was no use of diagnostic or monitoring techniques for

detecting faults. When a machine broke down it was repaired, with servicing

being carried out on the basis of the number of hours running, or miles covered,

etc. The overall emphasis was on fault repair, not prevention. This made for

a very reactive system, forcing large plants to carry high stocks of spares as a

contingency measure. This also meant that large quantities of money were tied

up in material assets, such as spare parts for the machines.

World War II

World War II marks the beginning of condition monitoring [2]. The reduction

in the skilled labour force during the war combined with the demand for higher

production quantities, meant that attention was focused on the failure point of

the manufacturing process, and also of the reliability of machines. The increasing

complexity of machines - aero engines being one of the driving examples, led the

military to investigate the causes of failures in the engines, as one of the big

problems at the time was trying to keep as many warplanes in the air, and keep

them as reliable as possible in long raids. This led to a demand for some type of

monitoring in the systems, to try and provide warning of a failure, so that action

could be taken to repair the damage.

The emphasis on detection was simple at this stage, with the use of techniques
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that looked for physical signs of distress, such as wear debris, and led to the use of

magnetic sump plugs, and other simple devices. Most of the work done here was

concerned with examining the lubrication medium for signs of distress in the form

of metallic fragments and chips that occur during fatigue. The use of boroscopes

for in-depth examination of items like gearboxes was also introduced around this

time. No attempt was made to examine simple physical manifestations of the

problems, such as vibration, and detect problems that way. For the first time,

engineers began to look for signs of failure and try to avoid catastrophic failure

where possible, however the response was still a very much reactive system; me-

chanics would attempt to find the damaged components in order to replace them,

without attempting to find the underlying cause of the problem.

Post World War II

In the aftermath of WW II, as the military demobilised many of the ideas that

had been pioneered by organisations such as the US Air Force, the Office of

Naval Research, and the British Ministry for Aircraft Production, began to find

uses in the commercial and industrial worlds. Among the earliest of the "early

adopters" were the US railways, who converted most of their fleets from steam

to diesel haulage in the years following the war. This led to a drive to improve

the reliabilty of the locomotives, which were expected to run on intense long

haul schedules within the US. While the military had been mainly concerned

with the detection of metallic particles in the lubrication oil, the railways were

also interested in the condition of the lubricating oil itself, and added tests that

checked the quality of the oil; this was a further move toward a more preventative

agenda in maintenance, with more attention being focused on repair as the fault

develops, rather than after a catastrophic failure.
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At this time, many new techniques were developed for monitoring and diagno-

sis; however the emphasis on these was in increasing the sensitivity of detection,

not with assessment of condition or in actually trying to determine the cause of

the problem. As mechanisation increased, the cost of buying plant and also the

cost of maintenance as a fraction of the total running cost of the plant increased

significantly; as a result, management started to take a greater interest in finding

ways of reducing the maintenance costs, and maximising the life of production

plant.

The Modern Era

With the introduction of computers into manufacturing environments, this opened

up many new areas for the analysis and monitoring of systems; suddenly, it be-

came to monitor the systems automatically, and on a larger scale than had been

hitherto possible. Increased computational capacity meant that new methods of

analysis, which were computationally intensive (and up until then, impractical)

were now feasible for use in a working environment. The development of the

science of Tribology, studying the cause of mechanical fatigue and failure, con-

tributed a lot towards better understanding of the root causes of many problems,

and as a result, to find new techniques that were more capable of detecting and

gauging the severity of faults. The 1960s and 1970s saw the introduction of vibra-

tion studies on a widespread basis, as engineers realised that they could monitor

the health of a machine by examining its physical behaviour characteristics, and

gain a lot of information from this. Perhaps one of the biggest contributions to-

wards this end was the development of the Fast Fourier Transform (FFT), which

for the first time, gave a computationally practical way of calculating the fre-

quency spectrum of machine vibrations. Additionally, the new computers helped

the development of artificial intelligence, and this began to to make an impact
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in maintenance and condition monitoring, in the form of expert systems, which

were pioneered by locomotive manufacturers to help maintenance fitters target

problems from symptoms. The development of neural networks has also opened

up many areas of research that are pertinent to condition monitoring, as pattern

recognition algorithms readily transfer into the MCM arena. One of the biggest

problems for MCM however, is the fact that most pattern recognition algorithms

are based around the assumption that it is possible to provide examples of all

the likely cases that a system will see. Unfortunately, this is not the case with

MCM, and so specialised approaches have had to be developed.

New management techniques, such as Just In Time (JIT), gave rise to the

situation where minimal spares were held in house in an attempt to reduce money.

This however places a greater burden on the maintenance sections, as the lack

of spares held in house means that a greater emphasis on the early detection of

problems is required. The problem is further compounded by the fact that one

JIT factory going down can stop the production in other factories, as they rely

on the output of the first plant. Problems of this nature are pushing industry

towards a drive for zero downtime, which in turn is causing condition monitoring

to become ever more complex and widespread.

Modern MCM systems are moving towards a holistic approach; commonly,

a manufacturing line will have a number of different sensors feeding back into

a SCADA (Supervisory Control And Data Acquisition) system, which monitors

the performance of the system, and looks for problems. Traditional methods

have been based around the use of two basic approaches; the use of single fea-

ture threshold performance measures that give a very general indication of the

existence of a fault bu~ no indication of the nature of the fault, or alternatively

the use of frequency derived indicators which, while often extremely reliable, can

be time consuming to compute and require a detailed knowledge of the internal
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components of a machine and their relative speeds in order to make a good clas-

sification of the fault. Figure 2.1 gives an approximate overview of the evolution

of MCM techniques over the last 50 years.

The challenge is now to develop improved algorithms and supervisory func-

tions that are capable of providing information, rather than data, to operators.

Techniques such as neural networks, data fusion, genetic algorithms and expert

systems all have their parts to play in this. Research has been carried out into

the use of artificial neural networks for fault diagnosis, and the results are promis-

ing [3-8]; however many of the input features used require a significant computa-

tional effort to calculate, and work is ongoing to try and improve the performance

of the systems. Work is, and has been ongoing in the areas of data fusion [8-10],

genetic algorithms [11,12] and expert systems [8,13-16].

2.2 Feature Extraction Algorithms

2.2.1 Statistical Features

In order to describe some of the statistical features used, it is necessary to intro-

duce the basic concepts of probability and statistics. these are covered in much

greater depth in many books (e.g. [17,18]) on statistics and random processes;

however for convenience the basics are summarised below.

Statistical Preliminaries

P(X) is the probability of an event X occurring. This can also be expressed in

experimental terms as:

. Nx
P(X) = lim N

N--'too
(2.1)
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where N x represents the number of occurrences of X, and N represents the total

number of occurrences measured. The probability that the event X lies within

the interval [-00,00] is P(X) = 1; however the probability that X will lie below

a threshold value x, defines a function, F(x).

F(x) = P(X ~ x) (2.2)

F(x) is known as the cumulative probability distribution function. F(oo) =
P(X ~ 00) = 1, while correspondingly F(-oo) = P(X ~ -00) = O. The

cumulative probability distribution function shows how X is distributed over the

range of possible values. A simpler definition of the distribution of X over it's

range, is to take the derivative of F(x), creating the Probability Density Function

(PDF), f(x):

f(x) = dF(x)
dx

(2.3)

The PDF shows how the random variable is distributed about the range of pos-

sible values, and indicating whether the values concentrate about one or more

areas.

The PDF allows an expectation operator to be defined:

E{x} = /_: x f(x)dx (2.4)

This gives the expected, or mean value of the random variable x. The expectation

operator is used to define the statistical moments of a random variable. The

expectation operator is the basis for several different statistical measures used

here; most notably statistical moments and variance/standard deviation.
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The nth order moment of x is defined:

(2.5)

This is useful when x is stationary and ergodic. For sampled data, the moments

can more easily be estimated using:

(2.6)

The variance of a random variable x can be calculated:

(2.7)

where a is the standard deviation of x. The standard deviation/the variance

can be used as a measure of how "wide" a distribution is, and can be used as a

characteristic of the signal.

The characteristic function of a random variable x , Y (s), can be expressed in

terms of it's PDF, f(x), by the equation:

Y(s) = i:f(x)e8X dx (2.8)

Differentiating Y(s) n times, it can be seen that

(2.9)
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and therefore

(2.10)

So, the nth derivative of Y(O) gives the nth moment of the random variable - which

gives rise to the alternative name of the characteristic function - the moment

generating function.

Taking the natural logarithm of the characteristic function generates the sec-

ond characteristic equation of the random variable.

\lI (s) = In Y (s ) (2.11)

The cumulants, C~, of a random variable x is defined as:

(2.12)

These can also be expressed as combinations of some of the lower order moments.

The first four moments are defined as follows:

C(1) m(1) (2.13)x x

C(2) m~2) _ (m~l))2 (2.14)x

C(3) m(3) - 3m(2)m(l) + 2(m(1})3 (2.15)x x x x x

C(4} m(4) - 3(m(2})2 _ 4m(3)m(1} + 12m(2}(m(1})2 _ 6(m(1})4 (2.16)x x x x x x x x
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2.2.2 "Conventional" Indicators

Before the (relatively recent) widespread availability of significant computing

power for use in condition monitoring, a number of statistically based perfor-

mance measures were introduced, and these provided single figure assessments

of the condition of rolling element bearings. These were comparatively simple to

calculate, and gave an indication of whether a bearing was in a state of distress, or

within normal operating parameters. These are not generally capable of discrim-

inating between different failure types however, and can only show the degree of

distress that a bearing is under. Probably the three most common measurements

used are shock pulse, crest factor, and kurtosis.

Shock Pulse

Whenever there is metal to metal contact in the bearing, its causes a high fre-

quency shock pulse to propagate through the bearing, activating the transducer.

Shock Pulse (SP) analysis relies on a specialised transducer, which has a reso-

nant frequency of 32-36kHz. This resonant frequency is too high to be excited

by the usual low frequency energy contained within a normal signal from a roller

bearing. This then produces a signal showing the impact of the balls against the

defect. By examining the average or carpet values of the signal, and the peak

values of the signal, information can be gleaned about the state of lubrication of

the bearing, and also the likelihood of the existence of a defect. This classification

is not capable of distinguishing between different fault conditions of the bearing

however, just the existence of a fault condition.



CHAPTER 2. PRELIMINARIES 18

Crest Factor

The Crest Factor (CF) is a commonly used performance index, intended specifi-

cally for the detection of bearing faults. Simply, the CF is the ratio of the peak

magnitude within a time series, divided by the RMS value of the signal. Signals

that have a relatively small high frequency content, but containing large spikes,

will cause relatively high numbers to be generated. This works well in the early

stages of a fault developing, as the degree of damage to the bearing does not

generate a large high frequency component, however as the degree of damage

increases, the high frequency component of a vibration signal increases, and as a

result the RMS value increases, causing the CF value to decrease. If the bearing is

only checked on a periodic basis, there is a risk that the actual warning provided

by CF may be missed.

Kurtosis

Kurtosis is a commonly used measure of damage. Two different definitions are

commonly used:

'V(m) _
14 - (2.17)

(4)
(c) _ Cx _ (m) _ 3

"14 - (C~2)r- "14 (2.18)

These two definitions produce different values for the same signal. For a zero

mean, Gaussian signal, equation 2.17 will give a value of three, while equation

2.18 will give a value of zero. The kurtosis value emphasises the length of the

"tails" of a distribution. Signals which exhibit lots of sharp impacts - such as



CHAPTER 2. PRELIMINARIES 19

those that occur when the rolling elements of a bearing strike a defect, will have

high kurtosis values, while signals with little or no "spike" content will have low

values.

2.2.3 Spectral Features

Many of the problems that occur in MCM have frequency components that can

often identify them, as certain parts of machines will spin at speeds that are

multiples of the base rotation frequency of the machine. If the construction of the

machine is known, then it is possible to calculate the different rotational speeds

of different parts of the machine, and as a result, by examining the frequency

spectrum of the machine, the nature or location of the fault may be identified.

The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) forms the cornerstone of spectral pro-

cessing used commonly in signal processing. The transform provides information

about any sampled signal, returning complex frequency spectra that can in turn

be used to calculate both the phase and magnitude spectra of a signal. The DFT

is defined by the equation 2.19. Each one of the frequency bins created as a

result of this process has a resolution of ~, where is is the sampling frequency.

Applying a DFT directly to a time series causes large peaks to be generated at

both ends of the spectrum; this is caused by the assumption that the signal is pe-

riodic, and any discontinuities in the signal cause the large peaks to be generated

to compensate for this. In order to alleviate this problem, a window is applied to

the data, that ensures that the beginning and end of the time sequence start at

zero.
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N-l
X(k) =L x(n)e-j27rkn/N

n=O

(2.19)

Calculating the DFT is a fairly computationally intensive job, however Cooley

and Tukey's Fast Fourier Transform [19] (FFT), proposed in 1965, opened up the

field of simple spectral analysis. This method, and its variants, are still found

commonly in use today.

Power Spectrum

The power spectrum is a development of the DFT. The DFT returns a complex

answer to a real valued problem, and examining the individual components it is

hard to make sense of the what is actually happening within a signal. The power

spectrum calculates the average of the magnitude of the DFT, and is defined:

Sxx(k) = E{X(k)X*(k)} (2.20)

where X*(k) is the complex conjugate of X(k). This is probably the most common

spectral technique used. By examining the peaks, harmonics can be spotted in

the spectrum, and from this the frequencies of interest can be calculated, and

then related back to the faulty components. However, in many cases it can be

difficult to distinguish harmonic peaks within a spectrum, dependent upon the

degree of noise present in the raw data, and the number of other vibration sources

in the location where the data was sampled.
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Cepstrum Analysis

Cepstrum Analysis was originally proposed by Bogert et al around 1963 [20], and

used for work in seismic echo detection . Later applications developed in speech

and ECG related areas [21,22], and over time, the technique came to be used in

vibration analysis and monitoring.

Cepstrum analysis can be expressed as the inverse FFT of the logarithm of

the power spectrum of the vibration signal, as shown in equation 2.21. This

process creates another spectrum, which when read, gives an indication of the

presence of harmonics in the power spectrum. Peaks in the Cepstrum correspond

to the existence of harmonics in the power spectrum, with the quefrency giving

the period of the separation between the harmonics in the frequency domain,

while harmonics on the Cepstrum plot (known as rahmonics) would indicate the

existence of several different harmonics which are a multiple of the frequency of

interest.

(2.21)

The Cepstrum is used fairly commonly in vibration monitoring because it is

often the case that the power spectra taken from a machine can be extremely

noisy, due to vibration coming from external influences, such as other machines

operating on the same area. Thus, it can be very difficult to determine what

parts of the signal constitute harmonics and what is noise in the power spectrum,

and cepstrum analysis provides a quick way of isolating the harmonic frequencies

present in the signal.
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Higher Order Spectra

The power spectrum does not provide any information about the correlation be-

tween different frequencies of the spectrum; while it can show what proportion

of a signal comes from a given frequency band, it provides no information about

the interactions between multiple frequencies in the signal; many of the faults ex-

hibit characteristic harmonies, whieh have a constant phase relationship between

them.

Bispectral analysis is a development of the power spectrum, where the au-

tocorrelation of the signal E{x(t)x(t + T)} can be used to highlight the contri-

butions of single frequencies to the power of the signal, through the use of the

T parameter. The bispectrum and trispectrum extend this further, by looking

at the correlations between multiple frequencies within a signal, and showing

any relationships that may exist between the different frequency components of

the signal, particularly phase relationships. The bispectrum can be calculated

relatively easily through the equation:

B(h, h) = E{X(h)X(h)X*(h + h)} (2.22)

where X(f) is the Fourier transform of x(n) at a given frequency f. Correspond-

ingly, the trispectrum can be calculated along similar lines:

T(f!, 12, h) = E{X(fdX(h)X(h)X*(h + 12 + h)} (2.23)

Space here precludes a comprehensive explanation for the motivations behind

the use of the higher order spectra, however [23-25] cover the theoretical basis

for the use of higher order spectra. Several experimental results have also been

published [26-29] on the use of the bi and trispectrum in condition monitoring,
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and also one of its derivatives, bicoherence [30], which is a normalised form of the

bispectrum, and can provide more informative results than the raw bispectrum.

2.2.4 Time-Frequency Distributions

Fourier, or frequency, analysis examined thus far is based upon the assumption

that the system being dealt with is running in a steady state, with a periodic sig-

nal content; this is one of the fundamental assumptions behind Fourier analysis.

However, there are many situations where a system is not running in a steady

state, or the objects of interest are only of a short duration. In this sort of situa-

tion, traditional Fourier analysis does not meet the requirements, and alternative

strategies have been developed to allow examination and analysis of the signals.

As an example, consider the case of a machine rundown, where the machine

may be taken from a steady state running condition, and stopped. As the machine

moves from the steady state through to a stop, there maybe areas of interest in

the rundown cycle that it would be desirable. However, due to the fact that the

speed of the machine is decreasing to halt, meaningful frequency analysis is very

difficult, as the frequency of a periodic fault will vary as the speed varies. There is

no adequate way to examine when an event occurred during the rundown period,

as a straightforward FFT will only show that something has occurred (assuming

of course that it is possible to distinguish from the general machine related noise

during the rundown). An FFT taken over the whole period of the rundown will

not give any useful information of this nature.

Short Time Fourier Transform

As a means of dealing with this, the Short Time Fourier Transform (STFT)

began to be used. However, by breaking the long time period into a series of
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smaller time windows taken consecutively, it is possible to create a "waterfall"

diagram, that shows the frequency content of the signal at different periods in

time, giving an indication of the how the frequency content of the signal changes.

However, the shorter time windows mean that the frequency resolution of the

FFT will decrease markedly, and it becomes much more difficult to distinguish

exactly at what frequency a problem is. There is a trade off between the size of

the time windows used (which governs the time resolution of the analysis), and

the frequency resolution (which is governed by the size of the window used in the

FFT).

Wigner- Ville Distribution

The development of the Wigner Ville distribution can be traced back into the

early 1930s; the basic ideas were developed in the field of quantum statistical

mechanics where there was a problem that was mathematically analogous to time

frequency distributions. Wigner first proposed what is now commonly recognised

as the Wigner- Ville distribution in 1932 [31]. This work was developed by Ville

into what would now be recognised as modern time frequency analysis [32]. In

similar way to the Fourier transform, which decomposes a signal into its frequency

components, the Wigner- Ville distribution describes a signal content in terms of

both frequency and time. It is expressed as:

W(t w) = ~ f x(t - '!.. )e-jrwx(t + '!.. )dr
'2~ 2 2 (2.24)

However, the Wigner- Ville distribution is not without problems in itself; one of

the worst of these is the introduction of so called "artifacts" into the distribution ,
in areas of the time axis where it would be expected that there would be no

frequency content [33]. To counter this, a modified version was proposed by Choi
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and Williams [34], which has become more widely used. It reduces the effect of the

artifacts by the use of a kernel to minimise the cross terms. The Choi- Williams

distribution is defined:

P. (t w) = _1_ J J 1 e-[(u-t)2/(4T
2
/U)]-jTWx(u - ~)x(u + ~)dudT

cw, 47r3/2 PTa- 2 2

(2.25)

where a is constant.

The Wigner- Ville distribution has been used in the diagnosis of faults of ro-

tating machines [35,36], robotic arms [37], and particularly in the analysis of

gearbox faults [38-40]. It is however, computationally expensive to perform, and

this perhaps hampers its wider use.

Wavelets

Wavelets [41,42] are a comparatively recent development in the domain of time-

scale analysis. One of the fundamental assumptions behind Fourier analysis is

that any periodic signal can be decomposed into a number of different sine and

cosine functions with an infinite period. This works very well for steady state

signals, however as discussed earlier, this is often not the case in real life. The

Fourier transform works on the basis that a signal can be localised in terms of

frequency; the wavelet transform works on the basis that signals can be localised

in both frequency and time. Rather than use continuous signals of infinite dura-

tion, the wavelet transforms uses a signal with finite duration, usually short. By

moving this wavelet in time, it is possible to imitate the occurrence of "events" in

the signal, and by stretching and compressing the wavelet, it is possible to model

different frequencies, thus decomposing a given signal in terms of frequency and

time.
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Mathematically, a wavelet is a function of short duration that is localised

both in time and frequency. One of the basic requirements for a waveform to be

regarded as a wavelet 3, is that it should have a zero average when integrated:

f: 3(t)dt = 0 (2.26)

Translation (shifting the wavelet in time) and dilation (stretching/compressing)terms

are introduced:

1 (t - u)3u,s(t) = Vs3 -8- (2.27)

where u represents the time shift, and 8 is the scaling factor that is to be used on

the wavelet. By correlating the function of interest with the wavelet, and using

translation as necessary, it is possible to create the Wavelet Transform of the

signal:

Wf(U,8) = f: f(t) )s3* (t ~ u) dt (2.28)

Wavelets have a similar tradeoff to the STFT, however it works in a slightly

different fashion. As the wavelet becomes more and more tightly compressed

(i.e. reduced in scale), the frequency resolution decreases in the higher frequency

range, while the time resolution increases. This is basically the same as the

STFT, however due to the way that the decomposition is made, the frequency

resolution at the lower frequencies is better than the STFT, along with the time

resolution at high frequencies; this tends to be of more use in condition moni-

toring, as many of the specific frequencies of interest tend to be relatively low

in large machines, however the high frequency components that exist tend to be

noise, where high frequency resolution is not so important, more the presence and
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intensity of the noise. The STFT by contrast offers constant time and frequency

resolution throughout the range of its measurement.

Wavelets have been used in many different areas of condition monitoring,

with applications in gear fault detection and rotating machinery diagnosis [43-

46], machining processes [47], electrical machines [48] and automated packing

machines [49]. A number of papers have also been published regarding the general

use of wavelets in condition monitoring, as there are certain factors regarding the

most suitable choice of the correct wavelets for a given application [48,50].

2.3 Genetic Algorithms

2.3.1 The Genetic Algorithm

Genetic or evolutionary algorithms can trace their development back to 1970s,

with the publication by Holland of his book [51], and a Ph.D. thesis by DeJong,

one of his students [52]. Most of the current work in the field of evolutionary

algorithms is derived from these works. A Genetic Algorithm (GA) models the

process of evolution as it takes place in nature; utilising the the process of natural

selection to find the best or optimal solution to a problem without requiring any

prior knowledge on the task in hand; it is for this reason that GAs are regarded

as belonging to a class of "weak methods", due to the fact that the GA makes

few assumptions on the problem being dealt with. GAs are most commonly used

for optimisation type problems in an engineering context, as they are able to

find optimal solutions to high dimensional problems relatively quickly. Space

here only allows a general overview of the operation of a GA, along with all the

possibilities available; a good general introduction to genetic algorithms is given

in [53-56].
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The simple GA, as proposed by Goldberg [55], follows the basic form shown in

fig 2.2. As can be seen, the algorithm starts with an initial randomly generated

population. This is evaluated using the fitness function, and each member of the

population is checked to determine whether it satisfies the stopping criteria. If

no member does this, then the best members of the population are selected; the

selection criterion will depend on the nature of the problem in question.

Having selected the best members of the current population, these are used as

the parent members of the new population. The parents undergo a process known

as crossover, where portions of each of the two parents are mixed, producing

two new members of the population, in the same way that male and female

chromosomes are mixed during reproduction. Finally, members undergo a process

of mutation, where selected portions of the genome will be changed according

to random chance; this mimics the variation that occurs in nature. This fresh

population is used for the next generation; none of the parents are used in the

next generation, only children.

Several other types of genetic algorithm have been proposed, which allow

some of the parents to be kept in a population (incremental GA and the steady

state GA), and also algorithms that utilise several populations working in paral-

lel, with cross fertilisation between the different populations (Deme GA). Space

here prevents their discussion, but [57-59J cover the various different possibilities

available for use at the present time.

2.3.2 The Genome

The GA has a number of components that are analogous to the components of

genetic organism; the primary component of a genetic algorithm is the genome,

which mimics the properties of DNA in a cell. The genome is an encoded set
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Figure 2.2: Basic form of a genetic algorithm

of instructions which the genetic algorithm will use to construct a new model

or function. The encoding for the genome will vary depending upon the type

of application that is required; in some cases a binary encoding (with ones and

zeros representing the presence or absence of a component) will be sufficient,

whilst in others an encoding composed of real or floating point numbers may be

used instead.

Many different genome types are commonly in use now, including binary

strings, where the genome is composed solely of Os and Is, real number genomes,

where the genome elements can take either floating point or integer numbers are

commonly used. 2D and 3D genomes can also be used, dependent on the prob-

lem, while lists, string genomes and tree genomes are also used. Genomes can

also be variable length or fixed length, and in the case of tree genomes, the pos-

sibilities are much more varied. For some problems, it may also be necessary to

combine different genome types to create a new form; perhaps a combination of
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real and floating point numbers, or a binary and string genome. The nature of the

problem will determine this, but the genome should be capable of allowing full

representation of all the reasonable possibilities without allowing the creation of

genomes that are impossible to evaluate; if this is impossible, then the evaluation

function should be constructed in such a way as to penalise these.

2.3.3 Genetic Operators

There are two main genetic operators used in all GAs; crossover, or recombination,

and mutation or perturbation. The use of these mechanisms is fundamental to

the operation of the GA, and the choice of different methods for each can alter the

performance of the GA dramatically, dependent upon the problem in question.

Crossover

The crossover operation occurs when the elements of two parent genomes are com-

bined together to form two new members, in the same manner as cross-breeding

occurs. In this way the child genomes created should have some characteristics

of both parents. Dependent on the composition of the genome that is being used

in the GA, the crossover techniques can be very different.

Each different genome has different types of mutation; for array type genomes,

there is the single point crossover, where one break is made in each of the two

parent genomes, and portions are swapped; this can be performed for fixed length,

where the genomes are broken at the same point, or for variable length they may

be broken in different places, and then recombined. There is also a multiple point

crossover, and a uniform crossover, where multiple crossovers take place, on an

element by element basis. For tree genomes, there is a crossover function where

a whole portion of the subtree may be exchanged. The Probability of Crossover
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Pc governs the likelihood that a crossover will take place on a given genome.

Before
1 2

After
a b

Crossover
Operation

Figure 2.3: The crossover process

Mutation

Mutation is used to model the natural variation that occurs during breeding.

A change due to mutation in nature tends to be small, and will not cause a

major change to function of the organism in question. This applies for a natural

organism, where there are many millions of elements in the chromosome, and the

error rate in the natural copying mechanisms is extremely low. Correspondingly,

the Probability of Mutation, PM, is usually very small in GA problems, of the

order of PM = 0.001. This however is much larger than that in nature, but the

error rate will be correspondingly higher, as the GA will commonly be operating

on a much smaller scale of genome, and so the probability required to change a

value will have to be much higher if a change is to take place within a reasonable

period of time.

The manner in which mutation takes place varies, dependent upon the actual

genome type in use. For binary genomes, bit flipping functions are used, while for
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Before After

Figure 2.4: The mutation process

real valued genomes, several different possibilities exist. [57,58] give an overview

of several different mutation functions, dependent upon the genome in use.

2.3.4 Selection Functions

A number of different selection functions can be used to determine which members

of the population are to be used for crossover and mutation. At one end of

the spectrum, there are purely stochastic techniques, such as uniform selection,

where the selection is carried out on a random basis. Other techniques are also

commonly used which increase the likelihood of selection on the basis of a high

fitness value; roulette wheel selection and tournament selection are both examples

[59] of this type of behaviour. There are several different selection techniques,

however space here precludes there inclusion; [57,58] both give overviews of several

different types of selection function.
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2.3.5 Fitness and Objective Functions

The fitness and objective functions are the parts of the GA which determine

the performance of a given genome during the evaluation stage. The objective

function is used to evaluate the genome, and the score returned by the objective

function may be modified by the fitness function, which might also combine the

output of the objective function with other parameters indicating such desirable

qualities in the solution as size or speed, that would be considerations in the over-

all performance of the solution rather than just the pure objective performance.

The actual composition of the fitness function is as problem dependent as the

genome encoding. If the fitness function is unable to adequately evaluate and

rate the performance of a genome, then the GA will be unable to find an optimal

solution to the problem. Hence, careful thought has to be given to how the fitness

function will be calculated, and what properties the function will actively try and

promote in the genome.

2.4 Feature Selection Algorithms

Feature selection is a process that can make a very real difference to the perfor-

mance of a classifier network. The pattern recognition and classification process

can be broken down into two sections; that of feature extraction, and the other

being the actual classification process. Many different classification algorithms

are available, and there are also many different ways of generating preprocessed

features for the classifiers; however, there is no easy way of deciding which features

will be the most useful for a given classifier, or the minimum number required to

meet a task.

It is possible to generate hundreds of different features for use by a classifier,

however it is much more difficult to determine which features actually impart
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useful information to the classifier, and which are confusing the classifiers by

providing data that is either spurious or uncorrelated with the different classifi-

cations. Feature selection provides a mechanism to determine which features are

providing useful information and select them, while removing those features that

are confusing the classifier, and impairing performance.

Feature selection algorithms can basically be broken down into two main

types; filter approaches and wrapper approaches. Filter approaches attempt to

select features on the basis of correlation between the different features, with-

out testing the subsets on a classifier. The wrapper approach, as defined by

Kohavi [60] uses the classifier to evaluate the suitability of the feature subset.

This is the approach that will be discussed here. Three types of feature selec-

tion process are available for the wrapper approach [61];complete, heuristic and

random.

Complete feature selection carries out a complete search on the basis of the

evaluation function used. A complete search will always find the optimal result;

however it may find the optimal result in fewer evaluations than an exhaustive

search would require. It should be emphasised that a complete search algorithm

does not have to be exhaustive [61],although an exhaustive search will always be

complete. The branch and bound technique is an example of a solution which is

complete but not exhaustive, due to it's ability to backtrack.

Heuristic feature selection involves the use of a systematic approach or strat-

egy towards finding an optimal combination. Examples of this include Sequential

and Generalised Sequential Forward Selection, Sequential and Sequential Gener-

alised Backwards Selection.
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Random feature selection generates the features at random, with any con-

certed selection strategy. Examples of this type of selection include Genetic Al-

gorithms and Synthetic Annealing

2.4.1 Branch and Bound Methods

Branch and Bound (BAB) methods are one of the oldest methods used for feature

selection. BAB works on the principle of monoticity, where it is assumed that if

two subsets (A and B) of features are evaluated, where A C B, then the "score"

of the smaller subset will be less than that of the larger set. This takes no

account of the fact that one of the inputs may provide no useful information, and

diminish classifier performance by it's inclusion, and as such is flawed, however it

is included here for information. BAB works by building a "tree" structure (see

fig 2.5), which contains all the different permutations of feature combinations.

Starting with a "root" which contains N features, N - 1 branches are created

on the next level, where each branch has had one variable eliminated from the

feature set. This process continues down through several levels of the tree, where

each branch of the tree eliminates one variable from the branch the level above,

until the desired number of features are reached. Repetition is prevented by only

allowing the elimination of values greater than the value eliminated in the level

above. This means that the tree has more branches at one side than at the

other. Evaluation of the tree is started from the end of the tree with the smallest

number of branches (the rightmost branch in fig 2.5), and the search proceeds

along the sub-branches. Assuming that the desired number of features is three,

the search would start at {1,2,3}, setting the result to the best value. The search

then proceeds to {1,2,4,5}, continuing down into the sub-branches only if it's

evaluation is higher than that of {1,2,3}. If not, then evaluation carries on to the
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next level 1 branch, and the search process again attempts to proceed into the

level 2 sub-branches. Assuming that none of the level 1 branches have a higher

evaluation than {1,2,3}, the selection process will terminate; otherwise the search

will proceed into the corresponding level 2 sub-branches, testing all the branches

from the node above. Any beating the highest value will be set to the new high

value. [62,63] contains a fuller explanation of the technique in a feature selection

context.

2.4.2 Sequential & Generalised Sequential Forward Selec-

tion

Sequential Forward Selection (SFS) is performed by evaluating the classification

success of every feature from the feature set on an individual basis. Having

evaluated all individual features, the best feature is kept, and then evaluated in

combination with all the remaining features, repeating the procedure until the

desired accuracy or number of features are achieved. Generalised Sequential For-

ward Selection (GSFS) works along similar lines, although rather than starting

with one feature, a subset of 9 features is the starting the point, and a number

of features are added at a time. The algorithm tests all different possible com-

binations of r features, meaning that (N - g)/r additions have to be evaluated.

This can be much more computationally demanding than SFS, as the classifiers

are correspondingly larger.

One of the major drawbacks of SFS is that by adding features on an individual

basis then the selection method takes no account of any correlations between, .

different features in the dataset, and is unable to take advantage of this in any

way. GSFS is an attempt to work around this by adding groups of features at

once, and trying to find the interactions between them. However, the strategy
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can be very slow when the number of possible features increases, or if features

are added in small increments.

2.4.3 Sequential & Generalised Sequential Backwards Se-

lection

Sequential Backwards Selection (SBS) is a very similar idea to SFS, however,

rather than starting with no features, the algorithm starts with the full feature

set, and removes features one at a time, testing all features individually and

selecting the one which causes he greatest drop in performance when it is in-

cluded in the featureset. Generalised Sequential Backwards Selection (GSBS) is

analogous to GSFS, although (like SBS) starting with the full set of features, and

removing them in groups. This is also much more computationally intensive than

SBS, although like GSFS, it can produce better results as it allows the relation-

ships between different groups of features to manifest themselves, and allows the

classifier to exploit them.

2.4.4 Principal Components Analysis

Principal Components Analysis (PCA) was first proposed in 1901 [64], and has

become very widely used in the ANN community for dimensionality reduction. In

basic terms, PCA can be thought of as a rotation, or transformation, of the axes

on which data is originally presented to new axes which maximise the variance

of the points in feature space. After transformation, fewer dimensions may exist

than was originally the case, as any dimensions which were not independent will

be eliminated (i.e have zero values). This can be used to improve the separability

of different classes of data. The transformation uses linear combinations of the

original axes to produce a set of new independent axes, which are orthogonal in
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all dimensions, but rotated in feature space.

peA can simply be carried out by calculating the eigenvalues of the covariance

matrix of the data [63,65]. Reordering the eigenvalues in terms of magnitude,

and multiplying the original data matrix with the eigenvalue matrix transforms

the data onto the new axes. In the case where one or more of the eigenvalues is

small or close to zero, it is possible to remove the corresponding rows from the

matrix, and reduce the dimensionality of the data without removing a significant

part of the information content. This allows data to be transformed easily, as

any new data can also be transformed onto the same axes by multiplying by the

eigenvalue matrix. One cautionary note exists with peA however; through the

use of the transformation matrix, the original number of features still have to

be calculated, so if the desire is actually to reduce the number of inputs to the

classifier, or reduce the amount of preprocessing required, then peA does not

satisfy this requirement.

2.5 Summary

This section has provided an overview of the historical developments of some of

the techniques in the field of condition monitoring. A short review of probability

theory and statistics was made, leading into the definition of some of the different

statistical measures used in this thesis. Some of the commonly used performance

measures were examined, and spectral, higher order spectral and time-frequency

analysis were also examined. An introduction to the general principles of GAs was

made, and a review of some other feature selection techniques were also covered.



Chapter 3

Experimental Data, Sampling

and Feature Extraction

All of the work contained in this thesis has been performed on raw vibration

time-series data taken from two machines. This chapter describes the two dif-

ferent machines that suffered "damage", and gives an overview of the different

characteristics of the fault types.

3.1 Data Sources

3.1.1 Bearing Faults

The work presented in this thesis is based around experimental results performed

on vibration data taken from two test rigs, both of which can be fitted with

a number of interchangeable faulty roller bearings. This is used to represent

the type of problems that can commonly occur in rotating machinery. Rolling

element, or ball bearings are one of the most common components in modern

rotating machinery (see figure 3.1); being able to detect accurately the existence

40
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and severity of a fault in a machine can be of prime importance in certain areas

of industry, as in many cases the machine may be safety or emergency related.

Ball, roller, and needle bearings are widely used in many applications that have

low to medium speed, and light to relatively high duty ranges. They are not used

in extremely heavy duty, or high speed applications, as other bearing types such

as journal bearings can serve this better.

Inner Race

Rol Elements

Figure 3.1: A typical roller bearing, showing different component parts

A rolling element bearing consists of a number of components: the inner race,

which is normally fixed to the shaft; the outer race, which would normally be

placed in a bearing housing of some description; the rolling elements themselves,

of which the number will vary, dependent upon factors such as the degree of bear-

ing loading and the metallic composition of the elements (Le. softer metals will

require more balls to spread the load evenly without suffering deformation). The

last major component is the cage, which is commonly made from either plastic

or metal, and is used to separate the elements equally about the bearing. This is

very critical to the operation of the bearing, as if the elements become unequally

distributed about the bearing then serious, and even catastrophic failure may oc-

cur, as during certain parts of the cycle of rotation, there will be no load-bearing

elements available to support the weight of the shaft, and distortion and damage
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may result.

Damage normally occurs to bearings through the course of operation. Inade-

quate lubrication, the ingress of dirt and grit into the raceways, vibration/impact

in the raceways, excessive loading, misalignment, and even excess lubrication can

all be factors in the failure of a bearing. Faults can occur in each of the four main

components, giving rise to four different faults.

3.1.2 Machine A

Machine A was a small vibration test rig loaned to the University of Strathclyde

by Weir Pumps Ltd. of Cathcart, Glasgow. The machine (see figure 3.2) is

approximately 1m long, and consists of a one inch thick, mild steel bedplate, to

which are fixed two bearing blocks, and a 12V DC electric motor (variable speed).

Drive from the motor is carried to the shaft by means of a small flexible coupling,

which can accommodate some limited radial and axial misalignment.

The shaft consisted of silver steel, 1/2" in diameter, to which were fixed two

RHP 1017-1/2 bearings, using grub screws. These were seated in the bearing

housings, and the receptacles are radiused in order to allow the bearings to swivel

in the housings, taking up a certain degree of radial misalignment. The bearings

are secured to the shaft by means of two grub screws, rather than a machined

key, but this has sufficient grip for such a small diameter shaft under relatively

low loading. One of the bearing blocks was spot faced, drilled and tapped to ac-

cept the mounting of two accelerometers, mounted perpendicular to each other.

Unfortunately, it was impossible to have the accelerometers mounted on the ver-

tical and horizontal axes, however they are mounted at approximately 10° to the

vertical, and the actual vertical and horizontal movements can be calculated by

simple trigonometry.
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"Damage": Induced Faults

Due to the time-scale of the research project, there was insufficient time avail-

able to create bearings with faults that had been derived under actual running

conditions. Instead, faults were induced in the bearings for machine A, under

workshop conditions.

Inner Race Fault

The inner race fault was created by removing first the cage, moving the elements

to one side of the bearing, and removing the inner race. A groove was then cut

in the raceway of the inner race, using a small grinding stone, and the bearing

was reassembled.

Outer Race Fault

The outer race fault was created by removing the cage, pushing all the balls to

one side, and then inserting a small grinding stone, and cutting a small groove in

the outer raceway.

Rolling Element Fault

The rolling element fault was induced by using an electrical etcher to mark the

surface of one of the balls, simulating corrosion. This gave what was probably

the most pronounced of the faults, as the etcher increased the diameter of the

ball slightly, and this made for tighter clearances than would usually occur.

Cage Fault

The cage fault was simply created by removing the plastic cage from one of the

bearings, and cutting away a section of the cage, so that two of the balls were
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free to move, and not held at a regular spacing, as would normally be the case.

the effect of this was fairly minor at the loading that the bearing was put under,

and as a result, this makes the fault relatively difficult to distinguish from the

normal condition.

3.1.3 Machine B

The data for machine B was supplied by Dr. Keith Worden of the University of

Sheffield, and taken in Poland by Prof. C. Cempel and Mr. M. Tabaszewski, both

of the Poznan Technical University, who recorded the data. Machine B employs

slightly larger bearings than machine A, with a shaft diameter of 20mm, rather

than the 12.5mm of machine A. The machine consists of a drive unit, connected

to a shaft supported by two bearings, type 6204. The shaft was loaded by means

of a large flywheel. One of the two housings holds the faulty bearing, and an

accelerometer was mounted vertically on the bearing housing.

Fault Conditions

Four fault conditions exist for machine B, along with one normal condition. These

are: a broken outer race (i.e. outer race fault), a broken cage, with one element

loose, a damaged cage with 4 elements loose (both cage faults), and a bearing

with a badly worn ball (i.e. Rolling Element Fault).

3.2 Sampling and Data Acquisition

3.2.1 Machine A

Signal conditioning was carried out using Bruel and Kjeer charge amplifiers, which

fed the acceleration output direct to the ADC. A low pass filter in the ADC card
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had a cutoff frequency of 18.3kHz. Sampling on machine A was carried out

using a Loughborough Sound instruments DSP32C card, fitted with dual ADCs,

which recorded the output from the accelerometers; a daughterboard connected

to the card through the DSPlink2 interface was used to sample the one pulse per

revolution signal. Sampling was carried out on the two vibration channels and

the once per pulse signal simultaneously, taking place at a frequency of 48kHz,

for a period of 40 seconds.

The machine was run at a series of different speeds (sixteen in total), and

ten samples were taken at each speed. This gave a total of 160 examples of each

condition, and a total of 960 raw datafiles to work with.

3.2.2 Machine B

Sampling for machine B was carried out using a Bruel and Kjeer analyser. Data

was sampled at a rate of 16.384 kHz, running at a constant speed. For the

five fault conditions, between ten and twelve examples of each condition were

recorded, giving a total of 56 datafiles to work with.

3.3 Source Data

3.3.1 Machine A

Six different conditions are used within the experiments conducted for this ma-

chine. Two normal conditions exist: one bearing in a brand new condition (NO),

while another is a bearing in slightly worn (NW) condition. There are four fault

conditions:- inner race fault (IR), outer race (OR) fault, rolling element (RE) fault,

and a cage fault (CA).

Each of the fault conditions has different characteristics, with the inner and
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outer race faults having a periodic signal; the rolling element fault mayor may

not be periodic, dependent upon several factors including the degree of damage

to the rolling element, the loading of the bearing, and also the track that the ball

describes within the bearing. The cage fault tends to exhibit a random behaviour,

again dependent upon the degree of damage and bearing loading.
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Figure 3.3: Machine A: Acceleration orbit plots for the six different conditions.

500

•

Figure 3.3 shows the acceleration orbit plots for the six different cases. As

can be seen, the two normal bearings have a fairly similar profile, both occupying

an elliptical region in the acceleration space. Understandably, the vertical accel-

eration is greater than the horizontal, although the normal bearing describes a

slightly smaller ellipse than that of the worn bearing; again this would be consis-

tent with slightly larger clearances on the worn bearing. The inner race fault has

vertical and horizontal components that are much larger than those of the two

o

-500

normal bearings. The much greater acceleration here would be accounted for by
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the the impact of the element against the defect on the inner race of the bearing,

with the resultant bounce as the element strikes the defect, and rebounds into the

outer race. It is interesting to note that the distribution in acceleration space is

once again elliptical, although this time the ellipse is skewed. The outer race fault

also seems to show some mild skewness, but the magnitude of the acceleration

is much more like that of the two normal bearings. The main obvious difference

between the normal bearing plots and that of the OR is that the OR plot has

a slightly "spikier'' appearance than that of the normal cases, with the spikes

appearing along an axis, that would correspond to the radial location of the fault

on the outer race. The cage fault has the smallest magnitude of all the different

signals, producing a very localised and almost circular plot. This is in marked

contrast to that of the two normal bearings. The rolling element fault shows the

most distinctive characteristics of all the different conditions. The plot is skewed,

but at a larger magnitude than any of the other conditions; additionally, it can

be seen that the plot is not localised in the same way as the other conditions.

The RE fault describes a rather more erratic course than the other conditions,

and this is due to a large part to the rotation and twisting action of the ball

as it moves around the raceways. The twisting action means that the damaged

portion of the element will only come into contact with the load carrying parts

of the bearing at certain times, and as a result, this means that the fault may

appear erratic.

Examining the actual vibration plots on a time series basis (figure 3.4), again,

a number of different characteristics are obvious.

Visually, four of the signals seem quite similar; the two normal conditions

look similar, although the worn normal bearing seems to be a bit noisier than the

new normal bearing. The outer race fault, and cage fault also appear to be very

similar to the normal conditions, in terms of magnitude, and also noise. It would
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Figure 3.4: Machine A: Vibration plots for the six different conditions.

be difficult to determine accurately which condition was which, solely by means

of the vibration signals. The inner race fault is very easy to distinguish, by means

of the long spikes present in the signal, as is the rolling element fault, which is

discernible due to the the large magnitude fluctuations. It is also interesting to

note that the rolling element faults is not entirely periodic, although this may

be explained by the way that the ball rotates in the raceways, spinning both in

the direction of travel around the shaft, and also (dependent upon any thrust

action along the shaft) in the direction of the shaft axis. This gives the elements

a twisting, spinning motion that means that the defective portion of the element

may not always make contact with the load-bearing portion of the raceways on

a once per revolution (of the element) basis.

Figure 3.5 shows the histograms of the raw vibration signals. Of the three plots

(figures 3.3 - 3.5), this plot allows the different conditions to be distinguished more
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Figure 3.5: Machine A: Histograms for the six different conditions.

easily. As can be seen, by examining the two normal conditions, it is possible to

distinguish between the values of the histograms around the centre bins, with the

normal bearing having a slightly higher magnitude around the centre bins than

the worn normal bearings. The worn bearing also shows slightly longer "tails" on

the distribution as well, making it easier to distinguish. The Outer race fault is

now easy to distinguish, as the distribution has a high magnitude about the centre

of the distribution that is markedly larger than that of any of the other three

conditions that there was confusion over in the vibration plots. The cage fault

is slightly harder to distinguish, appearing very similar to the normal condition,

although the distribution appears more even than for the normal condition. The

inner race fault is relatively easy to distinguish due to the extremely large values

in the tails of the distribution, caused by the spikes that the fault generates.

In the same way, the rolling element fault is also fairly easy to distinguish, as
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the magnitude of the outside edges of the tails are .extremely large, while the

distribution about the centre is fairly small and fiat, characteristics that are

relatively simple to detect.

3.3.2 Machine B

Examining figure 3.6, the form of the vibration signals for the five different condi-

tions can be seen. The normal condition has the smallest magnitude of vibration,

although two of the other conditions, namely the bearing with the worn element,

and the bearing with 4 elements lose, exhibit raw vibration characteristics which

might make them comparatively difficult to distinguish between. The cage fault

with one loose element has a larger noise component than the other three, and so

this stands out slightly from the normal, cage( 4), and worn element bearings, but

it may still prove difficult to spot. The outer race fault is the easiest condition to

distinguish by eye, as the regular spikes caused by the elements hitting the defect

are of a much larger magnitude than any of the other signals; additionally, none

of the other signals have the same amount of noise present in them. Training the

classifier to spot the outer race fault should be comparatively easy; distinguishing

between some of the other conditions may prove much harder.

The vibration plots provide a visual indication of the different signals that are

received; however, this does not say a lot about how the statistical properties of

the signals will compare; by examining the histograms of the different signals, it

is possible to see the different distributions of the signals. Figure 3.7 shows the

histograms of the signals in figure 3.6, and from this it is possible to see much

more clearly how the different signals compare.

As can be seen, it is a simple matter to distinguish between the normal (NO)

bearing, outer race (OF) fault, and the other three conditions. It is however much
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Figure 3.6: Machine B: Raw Vibration plots for the five different conditions.
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more difficult to distinguish between the two cage faults (CAl and CA4), and

the worn (WO) rolling element, as the histograms appear very similar. This will

make things difficult for the classifiers to characterise the different conditions. It

should be possible to characterise the fault/no fault case, but a lot more difficult

to successfully characterise between the different fault conditions.

3.4 Feature Extraction

The feature extraction stage of the pattern recognition process is one of the

most important stages in the pattern recognition process. The purpose of fea-

ture extraction is twofold; firstly, feature extraction is an attempt to reduce the

dimensionality of the data presented to the classifier, without diminishing the

content presented in the data. Secondly, feature extraction is intended to turn

raw data into information, that the classifier can use more usefully. The vibration

data as sampled will consist of several hundreds, if not thousands of data points.

To train a classifier to deal with this data will require a very large training time,

and also make a network extremely complex; it will also make the generalisation

of the network fairly poor, as so many input factors will make it difficult for the

classifier to determine useful relationships between inputs, and consequently, to

generalise effectively. This effect, known as the curse of dimensionality, can be

dealt with using a number of techniques, however, feature extraction is one of the

simplest and most effective.

3.4.1 Machine A

Having sampled the data as described in 3.2, a number of different forms of

preprocessing were used as shown below. Part of the emphasis in attempting

to use different feature extraction techniques was to investigate the effect of the
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different techniques on the classifier performance. This is examined in more detail

in later chapters.

Plain Statistics

A number of different statistical features were taken based on the moments and

cumulants of the vibration data. Higher order spectra have been found to be

useful in the identification of different problems in condition monitoring [29J. A

good introduction is given in [17,25J. For each of the basic preprocessed signals,

a set of eighteen different moments and cumulants were calculated. The format

of the values is shown in equation 3.1. The cumulants are defined in equations

2.13 - 2.16.

As two dimensional information exists for vertical and horizontal movement,

it was decided to calculate values based upon the the equivalent polar positions,

and values calculated on this basis are given the subscript z, defined in equation

3.2.

[
(1)mx

(1)my

C(3)(1) C(2)(2) C(1)(3) C(4)
xy xy xy y

(1)mz
(3.1)

(3.2)

This was applied to the sampled vibration data, and the results were saved in

a 18 x 960 matrix.
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Signal Differences and Sums

In an attempt to highlight both high and low frequency features, it was decided

to apply simple calculations that would emphasise the high and low frequency

content of the raw signals. The differences will increase in value wherever high

frequency changes take place, while the sums of the signal will help to emphasise

the low frequency content of the signal. This is useful in the context that several

of the fault conditions exhibit "spikes" as characteristics of the balls striking the

defects; taking differences will hopefully accentuate this effect among the signals

containing spikes, and allow them to be easier to characterise simply. Equally,

the summation should also allow those conditions with a greater proportion of

lower frequency noise to be characterised more easily.

Taking the original vibration signals, the derivative of each vibration signal

was calculated according to equation 3.3, and then the statistical parameters

given in equation 3.1 were calculated from the modified signals, and saved in

another 18 x 960 matrix. This process was then repeated using the integral of

the vibration signal (calculated according to equation 3.4, where mx represents

the mean value of the sequence x), creating yet another 18 x 960 matrix.

d(n) = x(n) - x(n - 1) (3.3)

i(n) = {x(n) - m~l)} + i(n - 1) (3.4)

High and Low Pass Filtering

Much like the signal differencing and summation, there is much useful information

contained in the high and low frequency bands of the spectrum. Rolling elements
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have a natural resonant frequency that can be relatively high, and this can be

used to detect faults, as the balls will resonate when striking a defect [66]. By

using high pass filtering to remove the low frequency content of the vibration

signal, it becomes much easier to locate and detect these resonant peaks, and

use them for defect detection and classification. Low frequency content of the

signal will also contain useful information about the signal, that may also be

obscured by the high frequency content of the signal (particularly in the case of

those conditions that create lots of spikes, and it can be difficult to determine

what is happening in the lower frequency bands.

The signals were passed through an eighth order Butterworth HR high pass

filter with a cut off frequency of 129 Hz; the statistical values of equation 3.1 were

then computed, and the results saved in a 18 x 960 matrix. The process was then

repeated using a low pass filter with the same cut-off frequency, creating another

18 x 960 matrix.

Spectral data

Spectral data has been one of the most effective forms of feature extraction used in

condition monitoring. As many of the machines monitored are rotational, many of

the faults that exhibit themselves are frequency related. Where the construction

of these machines is also known, it is a comparatively simple matter to calculate

the frequencies at which certain defects would be likely to occur. However, to

read frequency plots, identify harmonic peaks, and give confident diagnoses of

problems is a skilled task, and requires experience. Spectral information is still

very useful for providing information for classifiers, and as a result, it was used

as one of the methods of preprocessing here.

For each of the two channels sampled, a 32-point FFT of the raw data was

carried out, and 33 values were obtained for each channel. These were then stored
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as a column vector of 66 values, which was used as the input data set for the given

data sample. The full input data set formed a 66 x 960 data set.

Target data

For each given vector in the input datasets, a corresponding vector was created in

a second matrix containing the target information used during the neural network

training. This information reflected the actual condition of the machine. This

then gave, for the six conditions, a 6 x 960 matrix containing the target data. This

is all the input information assembled to train the networks. A second matrix

was created with only two categories, containing fault/no fault classification.

3.4.2 Machine B

The second data set contains vibration data measured on one axis only. This

reduces the number of statistical possibilities that may be used for pre-processing

the data. In this case, it was decided to use only spectral processing on this

data set. The fact that the data was sampled at the frequency of 16.384 kHz

means that a lot of the higher frequency information that was contained in the

vibration signal for machine A will not be present in that for machine E, and so

the possibilities for doing different forms of preprocessing were further reduced.

Spectral Features

Spectral features were generated by taking a simple 32 point FFT of the data,

averaged over the length of the data (2048 points). This was then placed in a

33 x 56 matrix.
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Target data

Once again, two matrices were created, consisting of a 2 x 56 matrix, for the

fault/no fault case, and a 5 x 56 case, for the five class problem.

3.4.3 Normalisation

Prior experience (for example, see [3]) with training neural networks had indicated

the significance of normalisation to both the speed and success of training. Prior

to commencing the training run for the neural network, all the data in the input

data set was normalised on a row by row basis. Rows were normalised according

to the formula:

CTx
(3.5)

where m« is the mean value of the row vector x, and CTx is the standard deviation

of the row vector x.

3.5 Summary

This chapter has discussed the two different machines used as data sources for

the experiments carried out later in the thesis, methods of data acquisition, and

preprocessing the data for use by the classifiers. A short discussion of some of the

characteristics of the different data was also given, showing some of the different

characteristics of the data that are obvious visually.



Chapter 4

Artificial Neural Networks

One of the biggest problems in MCM is actually diagnosing the fault. Vibration

experts are needed to examine spectral plots, and a fairly high degree of skill and

experience is required. The increasing reliance on remote management systems

also means that some automatic way of diagnosing and characterising a problem

is attractive in these circumstances, as no-one has to be sent out to examine

equipment. Pattern recognition and classification algorithms fit these needs very

well; however, it is often the case that traditional statistically based pattern

recognition techniques cannot adequately deal with some of the problems that

the MCM arena creates. Probably the largest of these is the (general) lack of

availability of training data. This can make it extremely difficult to use statistical

indicators reliably, as these require large quantities of training data in order to

use them successfully.

The nonlinear properties of ANNs makes them ideal for applications such as

machine condition monitoring, where the training data is very often relatively

sparse, yet the network will have to generalise to a certain extent. Several ap-

plications have demonstrated that a neural network has successfully recognised

60
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and classified different faults in a variety of different condition monitoring ap-

plications [3-8]. A good general introduction to Neural Networks is provided by

Haykin [65] and also Rojas [67].

4.1 Basic Principles

In this chapter, the performance of three different types of ANN are considered;

the Multi Layer Perceptron (MLP), Radial Basis Function network (RBF), and

Probabilistic Neural Network (PNN). Each of the three networks takes a different

approach to the way in which they partition the data into separate classes. Fig

4.1 compares the ways in which the three ANNs characterise the feature spaces

in which they work.

00 0
o 0 o 0• o 0

o 0
o• •• •••• o 0

MLP Separation

o

00 0
o 00 0QoOoo

~OO

o

RBF Separation

o 0
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o
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Figure 4.1: The different separation methods of MLP, RBF and Probabilistic
neural Networks

As can be seen, each technique uses a different approach to partitioning the

feature space in order to make a classification. The MLP creates partitions that

use a series of linear separators to create a classification region. The RBF function

attempts to enclose clusters of data points using a hypersphere (which corresponds

to a circle in two dimensions, centring the hypersphere at the centroid of the

cluster of data points. If the RBF is unable to satisfactorily enclose the data with

one hypersphere, then more are added as necessary, until the error falls below a
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predetermined level. The PNN, rather than attempt to find one hypersphere,

creates a series of hyperspheres, one around each data point in the training set,

with the user specifying the desired radius of the hypersphere. The spheres

converge to create a partitioned volume in feature space.

4.1.1 The Multi Layer Percept ron

The Multi Layer Percept ron (MLP) is probably one of the most common reali-

sations of neural networks in use today. The MLP is composed of a number of

neurons, which all share the same general form:

(4.1)

where the neuron has N inputs. There is a weight ui, for each input Xi, and

one bias term b which can be used to offset the sum of the inputs. y is the

output of the neuron. The MLP used in this case consists of one hidden layer

and an output layer (see fig 4.2), the hidden layer having a logistic activation

function (equation 4.2), whilst the output layer uses a linear activation function

(equation 4.3). Other configurations were tested during initial stages of the work,

using different numbers of hidden layers and also different activation functions,

however, the configuration above was found to give the best results for the data.

1
cp(v) = 1+ exp( -v) (4.2)

cp(v) = v (4.3)
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Input Hidden Layer Output Layer

Figure 4.2: Basic structure of an MLP

where v is the sum of the weighted outputs (equation 4.1). The size of the hidden

layer is very important to the operation of the neural network, and particularly

it's generalisation properties. If the hidden layer is too small, then the network

will find it extremely difficult to partition the data into different classes, and the

performance will be extremely poor. If the hidden layer is too large, then the

network begins to learn too much of the specific details of the training set (Le.

the network becomes overtrained), and the generalisation of the network will be

extremely poor, with the MLP only responding correctly to the training examples

it has already seen. The size of the output layer is determined by the number of

outputs required, with one output for each classification.

Training

Training of the network is carried out using a back-propagation algorithm with

adaptive learning and momentum, and the network is trained using one third of



CHAPTER 4. ARTIFICIAL NEURAL NETWORKS 64

the data set as training data, and the remaining two thirds split equally between

the test and validation sets. Training is terminated by means of the validation

set, when the performance of the validation set begins to deteriorate rather than

improve.

The backpropagation algorithm, proposed by Rumelhart et al and Werbos

independently [68,69], works by using the error values that occur during training

to determine what adjustments should be made to the weights of the neuron. The

normal measure of the error after a forward pass is to calculate the instantaneous

error of the network, e(n) (equation 4.4).

1 Co

e(n) = 2"Le~(n)
q=i

(4.4)

The instantaneous error is composed of the error at each of the nodes of the

output, eq(n).

eq(n) dq(n) - Yq(n)

dq(n) - 'Pq (v(n)) (4.5)

where dq(n) is the desired target value, and Yq(n) is the actual output of the

neuron. For a given instantaneous error value, it is possible to calculate a corre-

sponding weight adjustment:

(4.6)
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where:

oeq(n)
owqp(n)
oeq(n)
o<pq(n)

oeq(n) o<pq(n) ovq(n)
o<pq(n) ovq(n) owqp(n)

-1

(4.7)

(4.8)

o<pq(n)
ovq(n)
ovq(n)
owqp(n)

(4.9)

(4.10)

Combining these different expressions gives an expression for weight update in

the weights of the output layer of neurons of a network.

oc(n)
owqp(n)

-eq( n )<p'(vq(n) )yP

-oq(n)yp

(4.11)

(4.12)

This gives a generalised expression for the weight update carried out during back-

propagation:

(4.13)

where 'f} is the learning rate, oq(n) is the local gradient, which varies dependent

upon the position of the neuron within the network, and yp(n) is the input p to

the neuron. The values of oq(n) for neurons in the output (q) and hidden (p)
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layers of a two layer network are:

Co

ip'(vp(n)) L 8q(n)wqp(n)
q=l

(4.14)

(4.15)

A more comprehensive derivation of backpropagation can be found in [65].

Backpropagation is a gradient descent algorithm, and provides a relatively

quick way of finding a minimum in space; however it is not always the case that

the minimum found is the actual global minimum. It is common to find that the

training algorithm becomes stuck in a local minimum; to reduce the likelihood

of this happening, several different strategies were developed; a momentum term

was added, which attempts to cause the hill descent algorithm to oscillate about

the local minimum, and pushes the search out of the local minimum [70]. Another

strategy which has also proved useful is to vary the learning rate of the training

algorithm [71]. The algorithm attempts to keep learning rate as high as is possible.

If the error after modification increases beyond a pre-defined limit, then the

changes are discarded, the learning rate is decreased, and the process repeats

until modification is found that effects gradient descent (rather than ascent). This

allows the learning algorithm to take as large steps as are possible, and decreases

the search time required to reach the global minimum. When momentum and

adaptive learning are combined in the one algorithm, this makes a very robust

training algorithm, and this has been used for all training of MLPs in this thesis.

Backpropagation is not the only training algorithm used for MLP training, as

there exists another series of approaches known as quasi-newton [72], which uses

the second-order derivatives to calculate the gradient descent, and can be between

10 and 100 times faster at training MLPs [73], requiring significantly fewer steps

to reach the global minimum. However, these methods can require large amounts
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of memory, and as a result, it was decided to use backpropagation based training.

MLPs have found wide use in MCM applications; they are probably the most

common type of ANN based classifier used in this type of application. Examples

of use of the MLP in MCM include [3,5,7]

4.1.2 The Radial Basis Function Network

Radial Basis Function (RBF) networks have a similar structure to that of the

MLP, however they differ from the MLP in one fundamental way. The activation

function of the hidden layer is a Gaussian spheroid function (equation 4.16), that

measures how close an input vector is to the centre on which the neuron has been

placed in feature space. The output of the activation is Gaussian, with the value

returned by the activation reflecting how near a data point is to the centre of

the neuron. Points closest to the centre return the highest activation values, and

those furthest away return little or no value from the neuron. In this way, the

output layer can effectively choose which neuron is closest to the input vector,

and use this information to determine what class the data point should belong

to.

y(x) = exp ( _llx 2~~1I2) (4.16)

The centre positions of neurons are chosen by calculating the centroid c of a

cluster of data points in space. This centroid defines the centre vector, while the

radius of the hypersphere is set by the (J' value of the activation function. This can

be varied to enclose more or less of the local data points as appropriate. Training

of the RBF network uses the simple algorithm below:

1. Train network for one neuron
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2. Simulate Network

3. if error < goal then exit; else continue

4. Find input vector with greatest error

5. Add neuron centred on vector with greatest error

6. Retrain weights on output linear layer

7. Go to 2

For a more detailed coverage of RBF networks, [63,65,74] all have compre-

hensive treatment of RBF networks. There have been various applications of

RBF networks in MCM; [75,76] both detail some of the advantages in using RBF

networks for MCM tasks.

4.1.3 Probabilistic Neural Networks (PNN)

The PNN and the RBF network are very similar, in that they both use a two

layer network with a Gaussian spheroid activation function in the first layer of

the network. The output layer is different however, as the linear output layer

used by the RBF is replaced with a competitive layer in the PNN, which will

only allow one neuron to fire, with all others in the layer returning zero. The

size of the hidden layer also differs markedly between the different networks; the

RBF network uses only as many neurons as are required to cover feature space,

while the PNN assigns one neuron for each input in the training set, making

for a (potentially) large hidden layer. Indeed, the large hidden layer (and the

consequent computational penalty) was one of the reasons that PNN were not

developed until the late 1980s, when the original development stages had taken
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places during the late 1960s [77]. Figure 4.1 shows the difference between the

RBF method of enclosure and that of the PNN.

The PNN can be a Bayesian classifier, approximating the PDF of a class

through the use of Parzen windows [78]. Figure 4.3 shows how this achieved

by superimposing Gaussian distributions on each other in feature space. The

Creating the Parzen Window
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Figure 4.3: Creation of a Parzen Window

generalised expression for calculating the value of a Parzen approximated PDF

at given point x in feature space is:

(4.17)
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where p is the dimensionality of the feature vector, NA is the number of examples

of class A that the network was trained on (i.e. that form the centres c.), The Cl

parameter is the "spread" of the Gaussian function, and can be used to control

how smooth the Parzen distribution is. This can have a significant impact on

how well the PNN generalises, as if the spread value is too small, then there

will be gaps in feature space that should "belong" to a given class, but the

functions will not cover them. Varying the spread parameter introduces overlap

between the functions, improving the coverage of the PNN, and consequently the

generalisation. Figure 4.4 shows the effect of varying the spread parameter in a

two dimensional scenario. As can be seen, the medium value of Cl is optimal, as
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Figure 4.4: The effect of varying the spread ( Cl.) parameter on the PNN's coverage
of feature space.

it allows coverage of the area in feature space without accidentally partitioning

members of the other class in the boundary, as happens in the large Cl diagram.

For each class, it is possible to create a Parzen approximated PDF. There will

also be a corresponding value hA for the relative frequency of the class within the

whole training set. Using this information for each class, the PNN calculates the

probability that a given sample x belongs to a given class A as:

(4.18)
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This expression is evaluated using the corresponding values of f(x) and h for

each different class. The class which returns the highest probability is judged to

be the correct classification.

Some work using PNNs in MCM has been carried out; [79-81] are all examples

of the use of a PNN in monitoring of machines.

4.2 Experiments

In an attempt to compare the different classifiers, a number of different experi-

ments were carried out, using several of the different datasets that were discussed

in chapter 3. A total of seven different datasets were used in the comparisons:

• Machine A

- Plain Statistics (18 features)

- Statistics of high and low pass filtered signals (36 features)

- Statistics of signal sums and differences (36 features)

- Spectral Only (66 features)

- Combined Statistics (90 features)

- Combined Statistical and Spectral (156 features)

• Machine B

- Spectral Features (33 features)

Each of these datasets was tested using both a dual class (fault/no fault) target,

and a multi-class target, where the classifier was asked to differentiate between

the different fault categories relevant to the machine in question.
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Training of the classifiers was carried out using the different training algo-

rithms detailed in the earlier sections, and training was allowed to run until the

standard termination terms of the different algorithms were reached. For the RBF

and PNN, iterative algorithms were used in an attempt to find the optimum value

of width/spread for each, and maximise performance.

4.3 Results: Statistical, Spectral and Combined

Datasets

In the tables given on the following pages, in all cases the values given are the best

results achieved using the different classifiers, after varying relevant parameters

as necessary.

4.3.1 Dual case: Machine A

Table 4.1 shows the results for the dual class problem using the plain statistics

(18 features) dataset. Both the MLP and RBF performed well on this dataset,

achieving results in excess of 98% on the test data. The MLP performed best,

managing 99.9% on the training set, and 99.5% on the test set. The Fault Not

Recognised (FNR) rate was very low at 0.5%, with no false alarms. The RBF

was only slightly worse, managing 99.2% on the training set and 98.5% on the

test set. The FNR rate is lower than that of the MLP, at 0.1%, while the False

Alarm (FA) rate was 1.4%. In some respects this network would actually be the

more attractive of the two, as in MCM terms, not recognising the existence of a

fault is more significant than a false alarm, as it would imply that damage was

being done to the machine while the operator thought the machine was working

acceptably. The PNN performs poorly in comparison to the other two classifiers,
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managing only 83.3% on the training data, and 83.2% on the test set. While

the generalisation properties of the network are good, the performance is poor,

and proportions of the the FNR rate (16.8%) are very close to the percentage

breakdown of each class within the the dataset (16.66%). This would therefore

suggest that one of the categories is being completely misclassified by the PNN.

Determining which one of the fault categories is causing this problem is unfortu-

nately impossible, as no breakdown of the fault categories is made by the testing

algorithm.

No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 18 99.9 99.5 0.5 0.0
RBF 18 99.2 98.5 0.1 1.4
PNN 18 83.3 83.2 16.8 0.0

Table 4.1: Dual class: comparison of classification performance with the plain
statistics dataset (18 features)

Table 4.2 compares the three classifiers for the high and low pass filtered

dataset. Once again, the performance of the MLP and RBF is high, with both

classifiers scoring in excess of 98% on the unseen test set data. The MLP has the

best overall performance, with a training success rate of 99.6%, and a test success

rate of 99.0%. The FNR rate is low, at 1%, while there have been no false alarms

at all. The RBF performance is only marginally less than the MLP, reaching

99.1% on the test set, and 98.8% on the training set. The RBF has a good FNR

rate of 1.1%, and a small FA rate of 0.1%. The PNN has a much higher success

rate for the high and low pass filtered data than the plain statistical data, as the

performance on the PNN has risen to 97.4% on the training data, and 96.8% on

the test data, which is a more creditable level than the results with the plain

statistical set. There is a slightly higher FNR rate than the other two classifiers

of 3.2%, however there are no false alarms.



CHAPTER 4. ARTIFICIAL NEURAL NETWORKS 74

No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 36 99.6 99.0 1.0 0.0
RBF 36 99.1 98.8 1.1 0.1
PNN 36 97.4 96.8 3.2 0.0

Table 4.2: Dual class: comparison of classification performance with the high and
low pass filtered dataset (36 features)

The results for the signal sums and differences dataset are shown in table 4.3.

Both the RBF and MLP networks perform well, with the RBF having the best

performance at 99.1% and 98.4% on the training and test sets respectively. The

MLP performance is comparable, at 98.8% for the training set, and 98.1% for

the test set, with an FNR rate of 1.9%, and no false alarms. The PNN is the

worst performer again, with a training success rate of 83.3% and a test success

of 83.2%. The FNR rate is 16.8%, with no false alarms. The confusion matrix

for the test set with the PNN was examined, to try and determine what the

problem was. Table 4.4 shows the classification breakdown on a per-class basis.

As can be seen, 25% of the fault (FA) category are being classified as normal

(NO). There are four fault sub-conditions that make up the fault category, so it

would appear that one of the categories is being completely misclassified by the

PNN. The reasons for this drastic problem are not immediately clear, but it may

be that either the cage fault or outer race fault is being classified as normal, as

reference to figures 3.3 and 3.5 shows that the two classes appear very similar to

the normal conditions.

Table 4.5 shows the results of experiments performed with the spectral dataset,

consisting of 66 features. Performance of all three classifiers on this dataset is very

high, with the MLP and RBF achieving in excess of 99% on the test set, while

the PNN manages to reach 96.5% on the test set. The best overall performer

is the RBF network, which manages 99.9% success on the training data, and
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No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 36 98.8 98.1 1.9 0.0
RBF 36 99.1 98.4 1.6 0.0
PNN 36 83.3 83.2 16.8 0.0

Table 4.3: Dual class: comparison of classification performance with the signal
differences and sums dataset (36 features)

Classification Success (%)
Actual Condition
NO FA

'"Ij~
Cl.l.8

NO 100 25> ............. .......
Cl.l'"lj
U ~til 0

FA 0 750...0

Table 4.4: Classification results for dual class PNN, using signal sums and differ-
ences.

99.8% on the test data. The FNR rate is 0.1%, which corresponds to 1 mistake

in 960 cases, while the FA rate is also 0.1%, which is a very high classification

performance. The MLP is only slightly worse, managing 100% on the training

set, and 99.0% on the test set. The FNR rate is slightly higher than that of the

RBF, reaching 1%, however there are no false alarms. The PNN manages 98.8%

on the training set, and 96.5% on the test set, which is slightly lower than the

performance achieved with the high and low pass filtered dataset (table 4.2). The

FNR rate is 3.4%, and the FA rate is low at 0.1%.

No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 66 100 99.0 1.0 0.0
RBF 66 99.9 99.8 0.1 0.1
PNN 66 98.8 96.5 3.4 0.1

Table 4.5: Dual class: comparison of classification performance with the spectral
dataset (66 features)
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Table 4.6 shows the results of the combined statistical dataset, which groups

all the features from the plain statistics, high and low pass filtered statistics, and

signal sums and differences datasets, consisting of 90 features. The RBF is the

best overall performer, managing 99.3% on the training set, and 98.5% on the

test set, with an FNR of 1.5%, and no false alarms. The MLP performs well,

managing 98.9% on the training set, and 97.6% on the test set, however the FNR

rate (2.3%) is slightly higher than that of the RBF, and the FA rate is low at

0.1%. The PNN also performs well, reaching 97.7% and 95.7% on the training

and test data respectively." However, due to the lower accuracy of classification,

the FNR rate is higher at 4.3%, although there are no false alarms.

No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 90 98.9 97.6 2.3 0.1
RBF 90 99.3 98.5 1.5 0.0
PNN 90 97.7 95.7 4.3 0.0

Table 4.6: Dual class: comparison of classification performance with the combined
statistical dataset (90 features)

The results for the full combined dataset, consisting of the three different

statistically based datasets and the spectral dataset (a total of 156 features) is

shown in table 4.7. The RBF is the highest overall performer, managing to achieve

100% on both the test and training sets. Both the MLP and PNN have relatively

high performances as well, with the MLP managing 99.4% on the training set,

and 97.5%on the test set. The FNR rate for the MLP is 2.5%, and no false

alarms were generated. The PNN reaches 98.3% on the training set, and 95.1%

on the test set, however the lower classification success values mean that the FNR

rate is slightly higher, at 4.8% and the FA rate is 0.1%.
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No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 156 99.4 97.5 2.5 0.0
RBF 156 100 100 0.0 0.0
PNN 156 98.3 95.1 4.8 0.1

Table 4.7: Dual class: comparison of classification performance with the combined
statistical and spectral dataset (156 features)

4.3.2 Dual Case: Machine B

Table 4.8 shows the results for the dual class problem with the spectral data from

machine B. As can be seen, all three classifiers manage to achieve 100% on both

the training and test data, which would suggest that the fault data and the normal

condition data are well separated in feature space. This would suggest that

even with the limited number of samples available, it should still be possible to

determine whether a vibration signature was a fault or normal condition, although

the possibility of actually discriminating between fault conditions is much more

difficult to guarantee.

No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 33 100 100 0.0 0.0
RBF 33 100 100 0.0 0.0
PNN 33 100 100 0.0 0.0

Table 4.8: Dual class: comparison of classification performance with the machine
B dataset (33 features)

4.3.3 Multiclass: Machine A

Using the six-class target set, MLP, RBF and PNN were trained, and the best re-

sults were recorded for each of the six different datasets available for Machine A.

Tables 4.9 to 4.17 show the results for each of the six different datasets with the
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different classifiers, in an attempt to give a comparison of how each of the class i-

fiers performs with the different datatypes, and how the generalisation properties

of each network vary with the data.

Table 4.9 shows the results achieved with the smallest dataset, consisting of

18 features. As can be seen, there is a marked difference in the performance

of the different classifiers on multiclass data. The MLP is the most successful

of the three, with a success rate of 99.2% on the training data, and 98.2% on

the unseen test data. This is reflected in the relatively low FNR level of 0.8%,

and a false alarm rate. The poorest performer by contrast is the RBF network,

which while achieving 100% on the test set, only manages to achieve 70.6% on

the unseen test set. The FNR rate is a high 20.7%, although the FA rate is

quite acceptable at 0%. The PNN does not perform as well as the other two on

the training set, achieving only 94.8% on the training set after training, however

the generalisation properties of the PNN are significantly better than that of the

RBF, as it manages a success rate of 91.1% on the unseen test set, with a FNR of

5.1%, and a FA rate of 0.3%. This is reasonable successful as a classifier, however

it is interesting to speculate why the RBF performance is so poor. To examine

further, the confusion matrix was examined (see table 4.10) for the unseen test

set, to try to determine where the performance was so poor.

No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 18 99.2 98.2 0.8 0.0
RBF 18 100 70.6 20.7 0.0
PNN 18 94.8 91.1 5.1 0.3

Table 4.9: Multiclass: comparison of classification performance with the plain
statistics dataset (18 features)

As can be seen, in three of the categories (NO, NW and OR), the network

is performing very well, achieving a full 100% classification within the category,
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Classification Success (%)
Actual Condition

NO NW IR OR RE CA
NO 100 0 36.9 0 23.8 1.8
NW 0 100 43.7 0 29.3 0.6

-0'::: IR 0 0 0.6 0 0 0
Q.).S:>..., OR 0 0 1.3 100 0 0..............
Q.)-O

RE 0 0 0 0 25 0u .:::
~ 0
0..0 CA 0 0 17.5 0 21.9 97.6

Table 4.10: Classification results for RBF, using plain statistics data only.

with a fourth (CA) achieving 97.6% accuracy. The worst performing category is

the inner race (IR) fault, in which the classification success is only 0.6%, which

is exceedingly poor. The rolling element (RE) fault also has a poor classification

success of 25%. Examining the confusion matrix, it can be seen that most of the

errors in classifying the IR and RE fault conditions are misclassified as the two

normal conditions and the cage fault condition.

Table 4.11 shows the results of training the ANNs with the high and low

pass filtered data. As can be seen, the generalisation performance of all three

classifiers is much stronger than the performance on the plain statistics data set,

however, there is still a fair degree of variation in the success rate. The MLP

reaches a success rate of 98.6% on the training data, and a level of 96.5% on

the unseen test data. The FNR and FA on the test set are relatively good, with

2.1% of faults not recognised, while there are no false alarms. The RBF has

the second best performance, reaching 100% on the training data, and also a

much higher rate (relative to that of plain statistics) of 95% on the unseen data.

The false alarm rate is 0% again, while the FNR is 2.1% which is significantly

lower than that of the RBF with the plain statistics dataset; This would suggest

that there is information in the high and low pass filtered signals which allows

the RBF centres to be placed in different locations in feature space and hence
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perform much more successfully in terms of classification performance; the higher

dimensionality of the feature space will improve things in this respect. The PNN

also enjoys a higher performance, managing 97.5% on the training set, and 92.9%

on the test set. The PNN has the higher FNR value, at 3.6%, and an FA rate of

1%, which is higher than the other two classifiers. This is probably caused by the

fact that there are insufficient vectors in the training set to build a good Parzen

approximated PDF, and the PDF of some of the other classes is higher in areas

where the training data was relatively sparse for a given class.

No. Training Test Fault Not False Alarm
Features Perf (%) Perf(%) Recognised (%) Rate (%)

MLP 36 98.6 96.5 2.1 0.0
RBF 36 100 95.0 0.2 0.0
PNN 36 97.5 92.9 3.6 1.0

Table 4.11: Multiclass: comparison of classification performance with the high
and low pass filtered dataset (36 features)

Table 4.12 shows the results for the dataset using signal sums and differences.

The performance of this dataset is generally slightly worse than that of the high

and low pass filtered data but better than that 'of the plain statistics. Once again,

the MLP has the best overall performance, achieving 98.4% on the training set,

and 96.7% on the test set. The FNR rate is relatively low, at 1.9%, while there

have been no false alarms. The RBF by contrast manages 100% on the training

set, and 94.2% on the test set, although there is a higher FNR rate of 3.3%, which

might suggest that there is a similar problem to that seen with the plain statistics

dataset. The PNN has a high training success rate of 99%, but a low success rate

on the test data of only 80.3%. The FNR rate is significant, at 10.4%, although

there have been no false alarms at all. This behaviour seemed unusual, and it

was decided to examine the classification matrix (Table 4.13).

On examining the matrix, it was once again apparent that there was confusion
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No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 36 98.4 96.7 1.9 0.0
RBF 36 100 94.2 3.3 0.0
PNN 36 99.0 80.3 10.4 0.0

Table 4.12: Multiclass: comparison of classification performance with the signal
differences and sums dataset (36 features)

Classification Success (%)
Actual Condition

NO NW IR OR RE CA
NO 58.8 16.9 20 0 10.6 14.4
NW 16.2 81.9 0 0 0 6.8

"0'::: IR 0 0 78.8 0 0 0
Q).8

OR 0 0 0.6 100 0 0>...,.~ ."""'"Q)"O
RE 0 0 0.6 0 89.4 0u .:::

I-< 0~o CA 25 1.25 0 0 0 78.8

Table 4.13: Classification results for PNN, using signal sums and differences.

between the two normal conditions and the fault conditions, and also between the

cage fault and the normal conditions. A significant number of the fault conditions

were misclassified as normal conditions, although interestingly, predominantly

as the new normal bearing (NO), and not the worn normal bearing. This is

probably accounted for by the fact that the normal conditions are concentrated

in a very tight area, as shown by the plots of the bearing vibrations (Fig. 3.4).

With more training vectors located at or near the origin of acceleration, then the

Parzen approximation of the normal conditions about the origin would be higher

than that of the fault conditions; this would tend to make the PNN classify the

vectors as either one of the normal conditions or the cage fault, as there would

be relatively few training vectors for the fault conditions around the origin, while

there are a significant number of training vectors (and hence Gaussian centres)

for the other classes.
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Table 4.14 shows the results for the spectral dataset; this is probably the

dataset for which all three classifiers have the best performance. The RBF is the

highest performing classifier, managing to achieve 100% on the training set, and

99.5% on the test set. The MLP is slightly worse, managing 100% again on the

training set, and 98.8% on the test set. The best performance of the PNN occurs

on this dataset, achieving 98.9% on the training set, and 96.6% on the test set;

there is a moderate FNR value of 2.3%, however there are no false alarms at all.

It is interesting to note that all three classifiers perform well with this dataset;

the probable cause of this is that discrimination between classes is relatively easy

in the spectral data. The FFT was a low resolution process, containing only 32

bins; this would suggest that there is a high likelihood that spectral lines will

lie in either one or two bins, and remain relatively static for a given condition.

These static properties make it relatively easy to position Gaussian centres in

feature space, without the same confusion problems that occurred with some

of the statistically based datasets. The spectral data is easily separable, and

advantages of this are shown in the results achieved.

No. Training Test . Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 66 100 98.8 0.7 0.0

RBF 66 100 99.5 0.1 0.0
PNN 66 98.9 96.6 2.3 0.0

Table 4.14: Multiclass: comparison of classification performance with the spectral
dataset (66 features)

Table 4.15 shows the results with the combined statistical dataset of 90 fea-

tures. As can be seen, the performance on the statistical dataset is slightly poorer

than that of the spectral dataset (Table 4.14). Once again, the RBF network is

the best performer, with classification success rates of 100% and 97.1% for the

training and test sets respectively. The MLP performs well, with success rates of
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98.9% and 96.8% respectively. The PNN is the poorest performer, at 98.0% on

the training set, and only 90.2% on the test set. This is a relatively poor level

of performance. There are a lot of faults (5.2%) being misclassified as normal

conditions, which is of concern. Table 4.16 shows the breakdown of the confusion

matrix. As can be seen, most of the misclassification is taking place with the

normal (NO) condition, which seems to be misclassifying several different fault

categories as normal. This is probably due to the hypothesis raised earlier, re-

garding the high number of Gaussian centres belonging to one class in an area

of feature space. There has also been some misclassification between the normal

and cage fault (CA) condition, with 10.6% of the normal data being classified as

cage fault. Again, this is probably due to the position of cage fault vectors in

close proximity to the normal data.

No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 90 98.9 96.8 2.6 0.0
RBF 90 100 97.1 0.8 0.0
PNN 90 98.0 90.2 5.2 1.8

Table 4.15: Multiclass: comparison of classification performance with the com-
bined statistical dataset (90 features) .

Table 4.17 shows the results for the combined statistical and spectral dataset;

this is the largest of the datasets, containing a total of 156 features. It might be

hoped that this dataset, would have the best performance, as there is a combina-

tion of both the statistical and spectral results, and it might be the case that the

combination of the two data types would improve the classification success fur-

ther. Unfortunately, this does not seem to be the case, as while the performance

is good, it is not any better than the spectral dataset. The best performance

is the RBF network, which manages to achieve 100% on the training set, and
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Classification Success (%)
Actual Condition

NO NW IR OR RE CA
NO 79.4 5 11.3 0 8.8 6.2
NW 10 95 0 0 0 5

"O~ IR 0 0 86.8 0 0 0Q.).S
OR 0 0 0.6 100 0 0:>.....,.............

Q.)"O
RE 0 0 1.3 0 91.2 0u ~

~ 0o..u CA 10.6 0 0 0 0 88.8

Table 4.16: Classification results for PNN, using combined statistical features.

99.1% on the test data, while the MLP manages a slightly lower 99.8% on train-

ing, and 97.0% on the test set. The PNN has what is overall the second best

performance in all the datasets, reaching 99.0% on the training set and 93% on

the test set. Once again the PNN has a moderately high FNR rate of 5.3%, but

no false alarms.

No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 156 99.8 97.0 2.3 0.0
RBF 156 100 99.1 0.1 0.0
PNN 156 99.0 93.0 5.3 0.0

Table 4.17: Multiclass: comparison of classification performance with the com-
bined statistical and spectral dataset (156 features)

4.3.4 Multiclass: Machine B

Table 4.18 shows the performance of the classifiers for the spectral dataset for

machine B. As can be seen, the levels of performance differ rather markedly from

the datasets for machine A, with none of the performance values exceeding 95%

on the test set. The MLP is the worst performer of the three classifiers, although

achieving 100% on the training set, on the unseen test set, the classifier only

manages 76.8%, with a relatively low FNR rate of 1.8%, and a FA rate of 0.0%.
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This suggests that any confusion that takes places is within the fault categories

themselves. The RBF has the second highest performance, reaching 100% on the

test set, and 89.3% on the test set. The FNR and FA are both 0%, which means

that all the confusion must be taking place within the fault categories. The PNN

by contrast, is the highest performing of the three classifiers, managing 100% and

94.6% on the training and test sets respectively. It is interesting to note that

in this particular case, the PNN approach with Parzen windows appears to offer

the best solution of the three approaches where it has tended to be the poorest

performing classifier in the multiclass data from machine A.

No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 33 100 76.8 1.8 0.0
RBF 33 98.2 89.3 0.0 0.0
PNN 33 100 94.6 0.0 0.0

Table 4.18: Multiclass: comparison of classification performance with the machine
B dataset (33 features)

Examining the results for the MLP (Table 4.19), a number of things are

evident. As can be seen, most of the confusion is occurring between the fault

categories - particularly the two cage faults (CAl and CA4). This is not entirely

unexpected, as the two faults are similar in nature, and it may prove quite difficult

to discriminate between them on the basis of data provided. It may be the case

that some features are "obscuring" the information provided by other features,

or indeed it may be the case that there is not sufficient information contained in

the current features to allow better discrimination.
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Classification Success (%)
Actual Condition

NO OF CAl CA4 WO
NO 100 0 0 8.3 0

"T:l>=l OF 0 100 0 0 0Q).S
CAl 0 0 91.6 8.3 16.6>....,

01"""'4 ......

Q)"T:l
CA4 0 0 8.3 58.4 41.7U >=l

r-. 0
~O WO 0 0 0 0 41.7

Table 4.19: Classification results for MLP, using spectral features of machine B.

4.4 Discussion

The results given have shown how the three classifiers deal with different pre-

processed data. Each one appears to have different strengths and weaknesses,

dependent upon the data set which is used to train the network. For the dual

class problems, where the classifiers are asked to partition the data into fault/no

fault cases, the overall performance of the three classifiers is good, but the PNN

seems to have problems detecting one of the fault classes, and persistently con-

fuses the classification with one of the normal conditions (Tables 4.1 and 4.3).

This is of concern, however there is a question as to why this is happening, and

what exactly the problem is.

It seems strange that the other two classifiers, when confronted with the

datasets in question, are able to train the training set to classify the data in

excess of 99%, but the PNN is only capable of 83.3% on the same training set.

One possible explanation is through the use of the Parzen approximated PDF.

In the two-class case, we have a number of different conditions that are sub

groups of each of the fault and no fault classes. The no fault class has two nor-

mal conditions, which are very tightly clustered in feature space. The cage fault

(which belongs to the fault class) is also tightly clustered about the same point

in feature space (as shown in figure 3.3). Through the basic principle of the
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Parzen approximated PDF, where individual distributions are superimposed on

each other, then if there are twice as many examples belonging to one class in

one area as there are of another class, then the PDF of the more frequent class

will be the larger of the two, and as a result, will be much more likely to fire than

the correct PDF when a fault class vector is presented to the network. This is a

fundamental problem with the PNN. Obviously, there is insufficient information

contained in the preprocessed data to allow the PNN to separate the data ade-

quately in feature space. This effect can also be seen in the multiclass results,

although the effect is lessened, as there are the same number of examples from

each class and as a result, the imbalance between different classes is much less, '
making the performance of the PNN better in the multiclass scenario. However,

it may be possible to improve the performance of the PNN by introducing some

form of weighting function that will take account of any imbalance in the number

of training samples available for each class, and improve performance in the re-

spect. It is interesting to note that in the multiclass experiments using the data

from machine B, the PNN scored the highest of the three classifiers in terms of

generalisation performance.

The RBF and MLP both seem to be fairly robust classifiers, although the

RBF classifier seems to be slightly more erratic than the MLP, as evidenced

by the results in the multiclass cases, where the RBF scores highly in training

set (usually of the order of 99-100%), and then the performance drops off to a

much greater extent than the MLP, which might have a slightly lower training

success, but seems to generalise slightly better. Perhaps the worst example of this

behaviour in the multiclass case is the plain statistical data (Table 4.9), where

the performance of the RBF is 100% on the training data, and only 70.4% on the

test data.

One possible cause may be that the width parameter of the RBF is causing a
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problem, in that to be able to find a width value that manages to enclose all of

each individual fault class (which is most likely to be separated in feature space),

this forces the radius of the sphere enclosing the normal conditions to become

so large that it starts to enclose some of the data points belonging to the other

conditions, and this causes the misclassification. There is evidence to support

this in Table 4.10, as misclassification is consistently happening in the normal

conditions, and they are misclassifying fault conditions as normal conditions.

This problem is difficult to address, as it is a simple matter to allow different

neurons to have different width values, but it is much more difficult to train the

network, as there are many more parameters that influence the performance of

the network, and it is difficult to determine just how to set the correct width for

a given neuron.

The MLP is perhaps the most suitable choice for a robust classifier in problems

of this type. While the performance may not always be as high as some the RBF

classifiers, the generalisation performance over all the different datasets seems to

be more consistent than the other two classifiers. The MLP also offers advantages

from the point of view that it is also the most compact in terms of network layout,

and hence requires less computation after training has taken place.

4.5 Summary

This chapter has covered the basic principles of three different types of ANN:

the MLP, RBF and PNN. The basic principles behind each of the different net-

works was presented, and the results of experiments performed using a two-class

fault/no fault target dataset, and a multiclass dataset, which asks the classifiers

to characterise different fault conditions. Experiments were run using data from

two different machines, and it was seen that there are problems in using the PNN
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with some types of training data. This requires further work to clarify whether

this is the case indeed. The performance of the RBF was evaluated, and it was

determined that certain problems exist with the RBF, due to using a standard

width parameter for all neurons. The MLP was found overall to be the most

consistent classifier of the three considered, and gave the best generalisation per-

formance with all the datasets. For this reason, it is believed to be the best choice

for most MCM classification problems. The data from machine A was found to

be easy to classify in both the dual case and multiclass scenarios, however the

data from machine B was very easy to classify in the dual class case, however the

generalisation performance was found to be much poorer in the multiclass case.

The reasons why the PNN should outperform both the MLP and RBF with the

multiclass data from machine B are unclear, but it may be the case that for data

with very limited datasets available for training, the PNN can outperform other

classifiers.



Chapter 5

Support Vector Machines

5.1 Support Vector Machines

Support Vector Machines (SVMs) can trace their roots back to statistical learning

theory, as introduced by Vapnik [82] in the late 1960s. It was not until the early

1990s that the techniques used for SVMs began to emerge and become practical

with the increased computing power available. While multiclass SVMs have now

been developed [83,84], the simple SVM solves a binary problem - in that data

exists on one side or other of a hyperplane. The hyperplane is defined by a number

of support vectors, which are a subset of the training data available for both cases,

and is used to define the boundary between the two classes. The use of the support

vectors allow complex boundaries to be created, and through the minimisation of

a quadratic programming problem, the margin of separation between each class of

data is maximised. Space here prevents the detailed explanation of the principles

of an SVM, however a number of good tutorial papers exist [1,85,86], and these

cover the basic principles well.

In simple terms, the SVM can be thought of as creating a line, or hyperplane

between two sets of data. If we imagine a two dimensional case, the action of the

90
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SVM can be shown easily. In Figure 5.1, a series of data points for two different

classes of data are shown, black circles (class A) and white squares (class B). The

SVM attempts to place a linear boundary between the two different classes, and

orientate it in such a way that the margin (represented by the dotted lines) is

maximised. In other words, the SVM tries to orientate the boundary in such a

way as to ensure that the distance between the boundary and the nearest data

point in each class is maximal. The boundary is then placed in the middle of this

margin between the two points. The nearest data points are used to define the

margin, and are known as support vectors (represented by the gray circles and

square). Once the support vectors have been selected, the rest of the dataset is

not required, as the support vectors contain all the information needed to define

the classifier.

Mathematically, the SVM can be defined comparatively easily. The explana-

tion that follows is an overview of the functioning of an SVM; for a more detailed

explanation, it is suggested that one of the several excellent tutorials available is

consulted.

For any point that lies on the boundary line, we can write:

(w.x) + b = 0 (5.1)

where w is a vector that defines the boundary, x is an input, or data vector,

and b is a scalar threshold value. At the margins, HI and H2, where the support

vectors are situated, the equations for class A and B respectively are:

(w.x) + b = 1 (5.2)



CHAPTER 5. SUPPORT VECTOR MACHINES 92

\

\ 00 0 0
\ 0H{

\

\0 0\

\
\ B\ H2Cl \ 0 0\

Support 0

Vectors 0

e 0
\
\

e e II 0
\ \

\ .\ 0\
\

A e \ \e\ \e \
\

Margin \
\ W

\ "-.__) \
\

\
\
\ \
\ \
\
\

-b \
\

IWI \ \\.. \origin y=o

Figure 5.1: Separation of two classes by SVM
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and

(w.x)+b= -1 (5.3)

wand b may have to be scaled for this to be the case. Therefore, as the support

vectors correspond to the extremities of the data for a given class, anything that

belongs to class A will conform to the equation:

(w.x) + b 2:: 1 (5.4)

and

(w.x) + b:::; -1 (5.5)

respectively for class B. Combining these two functions, a decision function can

be created to determine whether a given data point belongs to class A or B. This

is defined as:

f(x) = sign ((w.x) + b) (5.6)

In trying to find the best boundary between our data sets, we are in effect trying

to find a solution of w which allows this. It can be shown [86]that the solution is

of the general form w = l:i=l aix i, where x i are the support vectors that have

been kept from training. Substituting this into equation 5.6, we get:

f(x) = sign (2:: ai(x.xi) + b)
i

(5.7)
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A case has been constructed for a linear boundary in two dimensions; how-

ever, there will be cases where the linear boundary in input space will be unable

to separate two classes properly. This at first seems a large problem, however,

by transforming the data into a higher dimensional space, it is possible to create

a hyperplane that allows linear separation in t~e higher dimension (which corre-

sponds to a curved surface in the lower dimensional input space). In SVMs, this

is achieved through the use of a transformation, q,(x), which transforms the data

from an N dimensional input space into Q dimensional feature space:

(5.8)

where x E JRN and S E JRQ. Figure 5.2 shows the effect that this transformation

has on some fictitious dataset, and how the separability of the data changes after

the transformation. Substituting the transformation into equation 5.7, this gives:

j(x) = sign (2:ai(q,(x ).q,(x i)) + b)
i

(5.9)

Making transformations into higher dimensional space is relatively computa-

tionally intensive, in order to perform a dot product on the results. A kernel can

be used to perform this transformation and the dot product in one step if the

transformations that are allowed are restricted to those which can be replaced by

an equivalent kernel function. In this way, it is possible to reduce the computa-

tional load, but retain the effect of the higher dimensional transformation. The

kernel function, K(x, y) is defined as:

(5.10)
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substituting into equation 5.9, we get the final basic form of the SVM:

f(x) = sign ('E O!iK(X, Xi) + b)
i

(5.11)

O!i is used as a weighting factor to determine which of the vectors in the input are

actually support vectors (i.e. O!i > 0), while others may have a lesser importance.

Input vectors with a corresponding O!i = 0 are not support vectors and may be,

for all intents and purposes, discarded. The kernel used for the experiments in

this paper is the RBF kernel, defined by the equation:

(5.12)

The width of the RBF function, 0', can be determined by an iterative process

that selects the optimum width on the basis of the full datasets.

5.1.1 Multiclass SVMs

The SVM that we have just explored only cover's the binary case - i.e a two

class problem. For multiclass problems, there are two options available; using a

multiclass SVM, where the single output gives several possible output levels [83],

or to use several SVMs in parallel; this is the method that has been selected for

this particular application, where each SVM is used to recognise one category

against all others, and the maximum output over all the categories is taken to be

the correct classification.
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5.2 Training

Training of SVMs is one of the areas attracting the most attention within current

SVM research. SVM theory [1] states that the training of an SVM is carried out

by maximising the quadratic form

(5.13)

subject to the constraints

I

LCI'.iYi = 0,
i=l

(5.14)

Various different techniques are available for maximising the quadratic; how-

ever all algorithms proposed tend to be very intensive computationally, with

consequent penalties in training time. Vapnik's original approach was to treat

the problem as a straightforward Quadratic Programming (QP) problem. How-

ever, the QP problem is such that it involves solving N x N dimensional matrices,

where N is the number of examples in the training set. As the training set in-

creases in size, so does the awkwardness of the problem. For the datasets from

machine A, which contains 960 examples, this means that the matrix to be solved

contains 921,360 elements. This has the potential to become a significant prob-

lem with larger datasets. Several approaches have been advanced to try and deal

with the QP problem in a more tractable manner; Vapnik proposed a technique

now known as "chunking" [87], where a series of sub-problems using a subset

of the matrix ate solved. After solving each problem, all the rows and columns

of the matrix corresponding to those values of Cl'.i which are zero are removed

from the matrix, and replaced with new rows and columns which have still to be

solved. The new matrix is solved, and the algorithm repeats until the remaining
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QP problem contains all the values that correspond to the support vectors (i.e.

non-zero solutions of a). This is then solved to give the final solution. Osuna et

al [88] proposed a different method of solving this problem, in which a series of

subproblems are solved, with the matrix always a fixed size. After every itera-

tion, a set number of rows and columns are removed, and replaced with other a

values which have yet to be solved. By repeating this process until all values have

been determined, the solution to the problem converges. All of these approaches

require the use of a QP solving package, which is a numerical solver working by

iteration. Platt [89] proposed the Sequential Minimal Optimisation algorithm

(SMO), which rather than solving multiple instances of the QP problem using

an iterative numerical process, solves the a values analytically, in pairwise steps.

This allows the optimal a values to be found in a single step, at the cost of many

solutions being calculated in order to solve the problem. However, the speed

with which the analytical solution can be calculated means that calculating a

large number of analytical solutions is invariably faster than calculating a smaller

number of numerical steps. Indeed, figures have been recorded which show that

SMO can be up to 1200 times faster [89] than the chunking type algorithms, with

a linear SVM. Further improvements to SMO have been proposed [90], which

improve training speed further.

Unfortunately, the algorithms mentioned above work on the assumption that

the training data used is statistically representative of the likely set of values that

will be encountered. The very nature of condition monitoring means that it is

extremely unlikely that it will be possible to get hundreds if not thousands of

examples of different types of failure. As a result, it is very difficult to generate

a training set that is statistically representative of the real life fault conditions

that are likely to be encountered, and as such this is a fundamental problem in

using these training methods for SVMs. Generalisation of SVMs can be controlled
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through the application of a measure known as the Vapnik- Chervonenkis (VC)

dimension [91], which can be used to describe the maximum number of points

that can be correctly classified for all possible different binary classifications.

However, the VC dimension is difficult to evaluate in most practical cases [92].

It would be preferential to carry out training using a validation set so as to

allow the training to stop when the generalisation began to deteriorate, as it is

comparatively simple to use the performance of the validation set to monitor

the generalisation performance of the SVM. Due to the nature of the training

data, and also the limited number of training examples available for training

with machine B, it was decided to use a technique which allowed the use of

a validation set to monitor the generalisation performance of the SVM during

training.

In order to train the SYM using a validation set, the Kernel Adatron (KA)

[93,94] algorithm was used, which uses gradient ascent to maximise the La-

grangian given in equation 5.13. This process was found to work well, with

good generalisation. This gives a performance comparable to traditional SVM

solutions, without having to utilise expensive QP packages in order to carry out

the optimisation. The algorithm also scales better than the QP packages as the

size of the training set increases [93].

5.2.1 Kernel Parameter Selection

One of the big problems in SVMs is the selection of the value of a kernel param-

eter that will allow good performance. The kernel parameter can make a huge

difference to the performance of the SYM on the task in question, however one

of the largest problems is that there is (as yet) no analytical way to determine

the optimum value of the kernel parameter for a given problem; the selection of
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values is still very much regarded as an art, in the same way that selecting the

size of the hidden layer in an ANN is still an empirical task.

Using the Gaussian RBF kernel detailed in equation 5.12, there is only one

parameter to be selected. The a parameter of the Gaussian kernel determines

the "width" of the function. This can be thought of as a hypersphere, with the·

a value determining the radius of the hypersphere. It is a comparatively simple

process to select the best parameter value using an iterative process, such as [95]

to try and find the optima] generalisation performance. For the multiclass case,

the problem is more complex, as there are several SVMs running in parallel,

and each has a width parameter. The interaction between the different width

parameters is complex, as dependent upon the separation of each class in space,

training the different SVMs for the best performance in each category and then

assuming that they will correctly separate the different classes correctly does not

always work.

Two main problems occur in trying to allow the SVMs to choose different

width parameters for each class; one is a problem of overlap between classes, and

another is the problem of the variance of different features in different classes.

The datasets used vary in dimension between 18 and 156. Obviously, for each

dataset there will be features that for one class have little or no variance, while

other features will have a large variance within the same class. Due to the nature

of the spherical Gaussian function, the kernel has a constant diameter in all

dimensions, which means that those features with a large variance will dominate

the search for an optimal value of kernel parameter, tending to give the sphere a

radius large enough to enclose those features with the large variance. This causes

problems with those features having a smaller variance because the sphere that

is generated may be so large as to enclose data points from another class in one

of the dimensions with less variance.
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While the whole training dataset is normalised to have zero mean and a stan-

dard deviation of one, within each feature different classes will have different

standard deviations that are less than one. It would be feasible to normalise the

data on the basis of one feature, making the variance of the other classes much

greater than one, however the question of which feature is the correct one to

use in order to normalise the dataset arises. Additionally, not having a dataset

normalised to one over the whole range of the dataset increases the training time

drastically. However, as there is a degree of correspondence between the standard

deviation of the Gaussian distribution and the a value of the Gaussian kernel, it is

fair to assume that there will be some correspondence between the standard devi-

ation of the data for each class and the value of the kernel parameter required for

good classification performance. If we could assume that the distribution of each

class was Gaussian in nature, we could use a value of three times the standard

deviation directly, knowing that statistically, it will catch 99% of all the training

data. In practice, we must determine a scale factor to apply to the standard

deviation of the data, that will allow good performance on classification.

Using the standard deviation creates a problem with regard to what value

to use, since for a multidimensional input vector, each input feature will have a

different standard deviation value for a given class. Table 5.1 shows the standard

deviations for each of the first five input features of the combined statistical data

set taken from machine A, on a class by class basis. As can be seen, examining

the a values for a given class, there is a fair degree of variation between the

different features. How can a value be selected that will allow good discrimination

amongst all features? One approach is to calculate the standard deviation of all

the members of a given class for each feature (ai) in the input vector x. The

individual standard deviations form a vector, B; our averaged value can then be



CHAPTER 5. SUPPORT VECTOR MACHINES 102

Class 0"1 0"2 0"3 0"4 0"5
NO 0.144 0.248 0.196 0.015 0.020
NW 0.118 0.235 0.009 0.010 0.011
IR 0.126 1.266 0.534 0.584 1.099
OR 0.095 0.158 0.017 0.016 0.014
RE 0.558 0.320 1.466 0.536 0.459
CA 0.113 0.262 0.008 0.007 0.033

Table 5.1: Standard deviations of the first five input features for all six classes of
the plain statistical data for machine A

found by taking the norm of this vector:

O"av = 11811 (5.15)

This averaged value can then be used directly in the kernel equation 5.12

The second approach is to modify the kernel function in order to allow different

widths for each feature to be incorporated, allowing the creation of a hyperellip-

said, rather than a hypersphere, which will incorporate the relative widths of each

of the different features in the classification bounds. The modified kernel is of the

form shown in equation 5.16. For each feature-in the training set, there is now a

corresponding width parameter, O"k· The value of O"k is scaled by a scaling factor

v, which varies the size of the hyperellipsoid, while maintaining the proportions

of the data in all dimensions.

(5.16)

Various different approaches have been advanced towards this problem, as the

variance of a class within a feature is very much a problem with real datasets.

Chapelle and Vapnik [96] proposed a method which rescales the data using the
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eigenvalues of the covariance matrix of the training data, which is slightly differ-

ent from the multiclass case which is faced here. Scholkopf et al [97] have also

proposed an approach that is slightly more complex, but uses the same general

principle. Amari and Wu [98] have also proposed another scaling technique which

increases the spatial resolution near to the boundary by applying a magnifying

factor at, or close to the support vectors. This is a two stage process, involving

training the SVM twice, and so there are drawbacks to this technique. All of

these different techniques are based around the fundamental principle that the

training data supplied for one class is representative of that class, allowing the

kernel scaling and parameters to be selected without the use of a validation set;

unfortunately, due to the fault conditions present in the MCM data and the na-

ture of the faults (which can be very erratic in nature), no guarantees can be

given as to whether the training data is representative of the likely state of the

machine during these fault conditions. For this reason, kernel selection has been

carried out using a validation set, and monitoring the performance over two sets.

5.3 Experiments

In order to compare the performance of the different SVMs a series of experi-

ments were carried out on four different datasets; from machine A, the combined

statistics, spectral, and the combined statistical and spectral datasets were used,

while the single spectral dataset from machine B was also used. Three different

types of SVMs were trained for each dataset; the "constant width" SVM, where

the standard kernel function was used, and the kernel width parameter was kept

fixed over all classes of the classifier, the "averaged width" SVM where the kernel

parameter was averaged on the basis of the standard deviations within a class

(equation 5.15), and the "specific width", where the kernel parameters are set
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using the standard deviations (equation 5.16). For the constant width SVM, the

training algorithm was allowed to iterate over different values of 0- in order to try

and find the best performance for each dataset. For the averaged width kernel,

different scaling factors between 1 and 9 were applied to the kernel parameter, in

order to examine what impact the scaling factor had on the performance of the

SVM. For the "specific width" kernel, the SVM was trained with different scaling

values ranging between 1 and 9, with the best value selected. Performance was

measured using the classification success on the unseen test set.

Experiments were carried out using both the two class fault/no fault target

data, and the multi class target data, where the SVM also attempts to characterise

the nature of the fault. As a comparison, the performance of the MLP on the

same datasets is also considered.

5.4 Results

5.4.1 Dual Case: Machine A

Table 5.2 shows the results for the experiments carried out using the spectral

data from machine A. As can be seen, the results are a mixed bag. The MLP

classifier has a robust performance, achieving 100% on the training set and 99%

on the test set. The FNR value is low at 1%, and there are no false alarms. The

constant width SVM has the worst performance, managing 98.2% on the training

set, but only 89.4% on the test set. The FNR value is relatively high at 9.0%,

while there are also a number of false alarms (1.6%). The averaged width SVM

performs better overall, having a better generalisation performance, with 93.8%

on the training set and 91.5% on the test set. The FNR rate is low at 0.3%,

however there is a high FA rate of 8.2%. The specific width SVM has the best
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performance of the three SVMs tested, managing 96.6% on the training set, and

93.9% on the test set. The FNR rate is again low at 0.2%, while the FA rate is

moderate, at 5.9%. It is interesting to note the switch between the proportions

of the FNR rate and FA rate between the three different types of SVM. Where

the SVM uses the constant width, the FNR is high while the FA is low, but when

the averaged and specific width SVMs are trained, the FA becomes high, while

the FNR is very low. This can probably be explained in terms of the different

ways that the different SVM approaches work.

No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 66 100 99.0 1.0 0.0
SVM
(const. width) 66 98.2 89.4 9.0 1.6
SVM
(av. width) 66 93.8 91.5 0.3 8.2
SVM
(sp. width) 66 96.6 93.9 0.2 5.9

Table 5.2: Dual Class: comparison of classification performance with the spectral
dataset (66 features)

The constant width SVM uses the same diameter of sphere for each class of

data in the classifier, while the other two approaches try and set the sphere size

proportional to the variance of the different classes. Fundamentally, the problem

is caused by the fact that the two different classes are nonseparable, and there

is a degree of overlap between the two clusters. In the constant width SVM,

the fault data has the larger variance of the two classes, and in order to allow

the SVM to enclose the fault data with a sphere, the normal class sphere has to

increase to a size which is disproportionately large in terms of the variance of the

data in feature space. As this increase in size happens there is an area of overlap
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between the two spheres where some of the fault data falls closer to the centre of

the normal sphere than the fault sphere, and as a result will be classified wrongly

as normal conditions.

The averaged and specific width SVMs work in the opposite fashion. As the

fault data has a much larger variance, the fault sphere has a large diameter,

although the variance is probably large in only a few dimensions. This forces the

enclosures to encompass a portion of the normal class, which in turn causes the

normal conditions to be enclosed as faults.

The results for the experiments using the combined statistical datasets are

shown in table 5.3. Once again the MLP is the highest performing of the different

classifiers, managing 98.9% on the training set, and 97.6% on the test set. The

FA rate is 0%, and the FNR, rate is 2.3%. The averaged width SVM is the worst

overall performer in this case, only managing 81.4% on the training set, and 80.4%

on the test set. The FNR is significant at 19.0%, while the FA rate is lower at

0.6%. The constant width SVM performs slightly better, managing 99.4% on the

test set, and 84.9% on the test set. The FNR rate is 12.6%, while the FA rate

is 2.5%. The specific width SVM has the best performance of the three SVMs,

managing to reach 85.6% on the test set, and 85.5% on the training set. The

generalisation performance is good, however the FA is high at 14.1%, while the

FNR rate is low at 0.3%.

It is interesting to note that the same switch in the proportions of the FNR and

FA rates occurs again between the three SVMs. This is likely to be caused by the

same problem as detailed earlier. The overall SVM performance on this dataset

is very poor, and it is interesting to compare the difference in the performances

of the ANN and the SVMs. Why can the ANN manage to classify the data with

such a high degree of success, while the SVMs cannot? Even the specific width

SVM, which might be expected to have the best performance of the different
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No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 90 98.9 97.6 2.3 0.0
SVM
(const width) 90 99.4 84.9 12.6 2.5
SVM
(av. width) 90 81.8 80.4 . 0.6 19.0
SVM
(sp. width) 90 85.5 85.6 0.3 14.1

Table 5.3: Dual Class: comparison of classification performance with the com-
bined statistical dataset (90 features)

SVMs, only manages a comparatively poor partition of the data. One possible

explanation is that there is a greater degree of overlap between the two classes

than there was with the spectral data, and so the separation of the different

classes is more awkward with the SVMs.

Table 5.4 shows the results for the experiments run using the combined sta-

tistical and spectral dataset. As can be seen, once again the MLP has the overall

best performance, managing 99.4% on the test set and 97.5% on the test set.

The FNR rate is low at 2.5%, and there are no false alarms. Of the three SVMs,

the averaged width SVM performs the worst, managing only 81.7% and 79.1%

on the training and test sets respectively, with a low FNR value of 0.3%, and a

higher FA rate of 20.6%. The constant width SVM performs better, managing

99.8% on the training set, but only 85.3% on the test set, coupled with a FNR

rate of 12.9%, and a false alarm rate of 1.8%. The best performing SVM was

the specific width, which while only managing 90.3% on the training set, has the

highest classification success rate at 86.9% on the unseen test set. Once again

the FNR value is low at 0.3%, while the false alarm rate is 12.9%.
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No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 156 99.4 97.5 2.5 0.0
SVM
(const. width) 156 99.8 85.3 12.9 1.8
SVM
(av. width) 156 81.7 79.1. 0.3 20.6
SVM
(sp. width) 156 90.3 86.9 0.3 12.8

Table 5.4: Dual Class: comparison of classification performance with the com-
bined statistical and spectral dataset (156 features)

5.4.2 Dual Case: Machine B

Table 5.5 shows the results for the experiments run with the spectral data from

machine B. As can be seen, all the classifiers manage to achieve 100% accuracy

on both the test and training sets, which would suggest that the fault data and

the normal data is well separated in feature space, making it easy to classify

correctly.

No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 33 100 100 0.0 0.0
SVM
(const. width) 33 100 100 0.0 0.0
SVM
(av. width) 33 100 100 0.0 0.0
SVM
(sp. width) 33 100 100 0.0 0.0

Table 5.5: Dual Class: comparison of classification performance with the spectral
dataset from machine B (33 features)
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5.4.3 Multiclass Case: Machine A

Table 5.6 shows the results for experiments carried out using the spectral dataset

with the six class target data. As can be seen, the performance level of the

different classifiers is much closer with the six class data than the dual class data.

The worst performance comes from the constant width SVM, which achieves

99.4% on the training set, and 90.3% on the test set, with a FNR rate of 9.0%,

and an FA rate of 0.5%. This level of performance is comparable with that of

the constant width SVM with the dual class target data. The MLP manages to

reach 100% on the training set, and 98.8% on the unseen test set. There is a

low FNR rate of 0.7%, and there are no false alarms. The two modified SVMs

manage to beat the MLP however; the averaged width SVM manages 100% on

the training set, and 99.0% on the test set, with a low FNR rate of 0.4%, and

an even lower FA rate of 0.1%. The specific width SVM manages to better this

performance, reaching 100% on the training set, and 99.2% on the test set, with

no false alarms, and an FNR rate of 0.6%. The performance of the SVMs on the

multiclass data is much higher than that using the dual class data.

No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 66 100 98.8 0.7 0.0
SVM
(const. width) 66 99.4 90.3 9.0 0.5
SVM
(av. width) 66 100 99.0 0.4 0.1
SVM
(sp. width) 66 100 99.2 0.6 0

Table 5.6: Multiclass: comparison of classification performance with the spectral
dataset (66 features)

Table 5.7 shows the results for the combined statistical dataset. The specific
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width SVM has the highest performance of the classifiers, managing 100% on the

training set and 99.2% on the test set. The FNR is low at 0.8%, and there are

no false alarms. The worst result comes from the constant width SVM, which,

while managing 100% on the test set, only manages 80.7% on the test data. The

FA rate is low at 1.0%, however the FNR rate is high, at 17.5%. The averaged

width SVM manages 100% on the training data and 96.5% on the test data, with

a FNR of 2.2%, and a false alarm rate of 0.5%. The MLP has the second highest

performance, managing 98.9% on the training set, and 96.8% on the test set.

There are no false alarms, although the FNR rate is 2.6%.

No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 90 98.9 96.8 2.6 0.0
SVM
(const width) 90 100 80.7 17.5 1.0
SVM
(av. width) 90 100 96.5 2.2 0.5
SVM
(sp. width) 90 100 99.2 0.8 0.0

Table 5.7: Multiclass: comparison of classification performance with the com-
bined statistical dataset (90 features)

The confusion matrix for the constant width SVM is shown in table 5.8. The

inner race fault and the rolling element faults have suffered badly as a result

of these classification problems, and the inner race fault only manages a level

of 30% accuracy on it's own data, while the rolling element fault classification

accuracy falls to 70.6%. This is of concern, however the most likely cause is due

to the equal sizes of the different hyperspheres. The two normal conditions are

highly localised in feature space" and it is likely that in order to enclose the

bulk of the fault categories with the hypersphere, the radius for the normal cases
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Classification Success (%)
Actual Condition

NO NW IR OR RE CA
NO 90.6 0.6 66.9 0 29.4 5.0
NW 3.1 99.4 0 0 0 3.8

"1:l~ IR 0 0 32.5 0 0 0Q).g
OR 0 0 0.6 . 100 0 0:>...,

'Q) ~
u ~ RE 0 0 0 0 70.6 0I-< 0~o CA 6.3 0 0 0 0 91.2

Table 5.8: Classification results for the constant width SVM, using the combined
statistical data.

is much larger than what is actually required to enclose the data; as a result,

the normal spheres start to enclose data from the other classes. There is also a

lesser degree of misclassification between the cage fault and the normal condition,

however this only amounts to 6.3% of the normal (NO) category, and no other

misclassifications are made in favour of the cage (CA) fault, giving rise to the

lower false alarm count.

Table 5.9 shows the results for the combined statistical and spectral dataset.

The specific width SVM has the best performance, managing 100% on the training

set, and 99.4% on the test set. The FNR rate is extremely low at 0.5%, and there

are no false alarms. The second best performance comes from the averaged width

SVM, which achieves 100% on the training set, and 97.9% on the test set. The

false alarm rate is small at 0.1%, while the FNR rate is slightly higher at 0.7%.

The MLP manages 99.8% on the training set, and 97.0% on the test set, with no

false alarms, and a FNR value of 2.3%. The worst performance of the classifiers

comes from the constant width SVM, which while managing 100% on the training

set, manages only 84.2%, with a relatively high FNR rate of 15.1%, and a small

FA rate of 0.5%.

Examining the confusion matrix for the constant width SVM (not given here)
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No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 156 99.8 97.0 2.3 0.0
SVM
(const. width) 156 100 84.2 15.1 0.5
SVM
(av. width) 156 100 97.9 . 0.7 0.1
SVM
(sp. width) 156 100 99.4 0.5 0.0

Table 5.9: Multiclass: comparison of classification performance with the com-
bined statistical and spectral dataset (156 features)

shows the misclassification problem to be the same as that for the spectral data,

with a large proportion of the mistakes being caused by the excessive diame-

ter of the hyperspheres belonging to the two normal classes. Table 5.10 shows

the confusion matrix for the specific width SVM, showing the breakdown of the

misclassifications made. As can be seen, the first four categories are classified

perfectly, and a very small proportion (2.5% in total) of the rolling element fault

are misclassified, while only 1.2% of the cage faults are misclassified . Examin-

ing the misclassifications, it can be seen that the majority of misclassification is

caused by the normal condition, suggesting that either the data is not entirely

separable, or that the scaling factor applied (scf=9) is slightly too large. Unfor-

tunately, the results for scale factor of 8 are slightly worse, suggesting that there

is some degree of inseparability in the data.

5.4.4 Multiclass Case: Machine B

Table 5.11 shows the results for the multiclass experiments run using the data

from machine B. The best results comes from the specific width SVM, which

manages 100% on the training set, but only 87.5% on the test set. Despite



CHAPTER 5. SUPPORT VECTOR MACHINES 113

Classification Success (%)
Actual Condition

NO NW IR OR RE CA
NO 100 0 0 0 1.9 1.2
NW 0 100 0 0 0 0

"'Cl'::: IR 0 0 100 0 0.6 0
Q).S

OR 0 0 0 100 0 0>....,
_1"""'4.1"""'4

Q)"'Cl
RE 0 0 0 0 97.5 0u .:::

~ 0
0...0 CA 0 0 0 0 0 98.8

Table 5.10: Classification results for the specific width SVM, using the combined
statistical data.

the low accuracy, the number of misclassifications between the fault and normal

categories is low, with no false alarms and a low FNR of 1.8%, indicating that

most of the misclassification is occurring between the different fault conditions.

The constant width SVM has the second highest performance, again managing

100% on the training set, and 85.7%. Interestingly, the FNR rate and the FA rate

are both zero, indicating again that all the confusion is occurring within the fault

classes. The averaged width SVM has a training success rate of 100%, with a test

success of 83.9%. Once again the FNR is 1.8%, while the FA rate is 0%. The MLP

has the worst performance of all the classifiers, managing 100% on the training

set, but only 76.8% on the test set. despite this poor score, the misc1assification

between the fault and normal classes is no worse than the averaged or specific

width SVMs, with an FNR of 1.8% and no false alarms.

The results of all the classifiers on the unseen test set are poor, with no

classifier managing to exceed 88% on the unseen test set, while all manage 100%

on the training set. This would suggest either that the training data is insufficient

to allow the classifiers to build up a good model for generalisation, or that the

features used contain insufficient information in them to allow good discrimination

between the different fault conditions.



CHAPTER 5. SUPPORT VECTOR MACHINES 114

No. Training Test Fault Not False Alarm
Features Perf (%) Perf (%) Recognised (%) Rate (%)

MLP 33 100 76.8 1.8 0.0
SVM
(const. width) 33 100 85.7 0.0 0.0
SVM
(av. width) 33 100 83.9. 1.8 0.0
SVM
(sp. width) 33 100 87.5 1.8 0.0

Table 5.11: Multiclass: comparison of classification performance with the spectral
dataset from machine B (33 features)

Classification Success (%)
Actual Condition

NO OF CAl CA4 WO
NO 100 0 8.3 0 0

'Ij>=i OF 0 100 0 0 0~ ..§ CAl 0 0 75 8.3 0• .....t 01""""1Q)'Ij
CA4 0 0 8.4 66.7 16.7U >=i,_.0~o WO 0 0 8.3 25 83.3

Table 5.12: Classification results for the averaged width SVM, using spectral
features of machine B.

Table 5.12 shows the classification breakdown for the averaged width SVM

(the MLP having been covered in section 4.3.4 and Table 4.19). Most of the

misclassifications occur among three of the four fault categories, with the outer

race fault being easy to characterise. It is interesting to note that with the CA4

fault, the majority of misclassifications are not with the CAl class (8.3%), but

rather the worn (WO) class (25%). The CAl data seems to be the most widely

distributed about the different classifications, with mistakes being attributed to

the normal (NO - 8.3%), CA4 (8.4%) and worn (WO - 8.3%) classes. The WO

class also has some mistakes, with 16.7% being classified as belonging to the CA4

class.
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5.4.5 Support Vectors

Examining the number of support vectors used in the different SVMs can give

a lot of information about how the vectors are actually used, and also give an

indication of the complexity of the data in the transformed feature space. Where

the boundary is complex, a lot of support vectors will have to be used, while less

vectors imply that the boundary is relatively easy to define, and consequently

that the performance will be relatively good. Taking as an example the results

from the combined statistical and spectral dataset, tables 5.13 and 5.14 show the

different numbers of support vectors required by each class for the three different

SVM types considered. As can be seen, the number of support vectors varies

considerably between both different classes and the different types of SVM. With

the dual class data, the constant width SVM uses the same number of support

vectors to define the boundary; this is to be expected, as both classifiers are

trying to find the same boundary in kernel space using hyperspheres the same

size, and so to define the boundary both use the same number of support vectors.

It is interesting to note that the averaged width SVM uses substantially less

vectors to define the boundary for the fault case than the no fault case, using

only 116 vectors for the fault case, but 532 for the no fault case. The scaling

factor that the algorithm selected is also large, at scf=9. This would suggest that

in order to enclose the no fault data, more support vectors are required because

the average width enclosure is not enclosing as large a volume as the constant

width hypersphere. The specific width SVM uses more support vectors (709)

than the averaged width SVM (648), but less than the constant width SVM

(934). The increase in the number of support vectors required by the specific

width is probably due to the ellipsoid nature of the enclosure. The narrowness of

the function in certain dimensions means that more support vectors are required
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to cover the same space as one averaged function, depending upon the difference

between the averaged standard deviation and the standard deviation in that

dimension. It is also interesting to note that the scaling factor selected by the

algorithm was the largest, at scf=9.

In the multiclass case, the effect of the three different SVM types on the

number of support vectors is different. The constant width SVM uses a similar

number of support vectors to create the partition for each class, varying between

442 and 500. This behaviour is slightly different from the dual class case, as in

the dual class case, the data being partitioned by each SVM is identical, and so

the boundary is also identical; however in the multiclass case, the dataset for each

class changes, as each individual one is partitioned from all the others present.

This explains why a different number of support vectors are required for each to

partition the data correctly for all three types of SVM. As can be seen from the

different values for the IR and RE faults, both the averaged and specific width

SVMs require a substantially lower number of support vectors than the constant

width SVM does for the same class, implying that the hyperplane is actually

much simpler when the size of the enclosures is allowed to vary in proportion to

the data itself. In the case of the IR and RE faults, comparing the orbit plots

(figure 3.3), it can be seen that the two faults are very distinct from the other fault

conditions; they probably occupy very different positions in feature space from

the other conditions, and as a result, it will be fairly straightforward to define a

boundary between the different cases and the rest of the data. It is interesting

to note that again the averaged SVM uses the lowest number of support vectors

(2503) to carry out the classification, although in this case the specific width

SVM uses the greatest number of support vectors (3185). In the multic1ass case

the specific width SVM requires a larger number of support vectors than the

other SVMs for the same reasons as the dual class SVM . Once again, the scaling
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factors chosen by the algorithms for the averaged width and specific width SVMs

are relatively large, at 8 and 9 respectively.

Generally speaking, the total number of support vectors increases as the com-

plexity of the SVM increases; the specific width SVM requires more support

vectors than the constant width or averaged width SVMs to cover the same area

of feature space, due to the narrower enclosure used. The averaged width SVM

requires the least support vectors as it is able to take advantage of the differ-

ent sizes of the classes in feature space, and turn this to its advantage by using

less support vectors, at the cost of an slightly lower classification success due to

misclassification caused by the constant diameter hypersphere.

No. Support Vectors (J Scaling
No Fault Fault Total Value Factor

SVM
(const. width) 467 467 934 1.1 -
SVM
(av. width) 532 116 648 - 9
SVM
(sp. width) 595 114 709 - 9

Table 5.13: Dual Class: Number of support vectors used by each SVM in classi-
fying the combined statistical and spectral data, with (J or scaling factor values,
as relevant.

No. Support Vectors (J Scaling
NO NW IR OR RE CA Total Value Factor

SVM
(const. width) 500 458 442 442 442 485 2769 1.0 -
SVM
(av. width) 602 565 102 425 134 675 2503 - 8
SVM
(sp. width) 784 634 177 582 247 761 3185 - 9

Table 5.14: Multiclass: Number of support vectors used by each SVM in classi-
fying the combined statistical and spectral data, with (J or scaling factor values,
as relevant.
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Figure 5.3: Classification performance for different values of (Y with the constant
width SVM in multiclass case.

5.4.6 Width Parameters and Scaling Factors

Figures 5.3, 5.4 and 5.5 show the impact of different width and scaling factors

upon the performance of the three different types of SVM, for the three datasets

associated with machine A, in the six-class case, and the five-class case from

machine B.

Figure 5.3 shows the performance of the constant width SVM for varying

value of width value (Y. As can be seen, there is a great deal of variation in the

results, dependent upon the value of (Y. In all three cases, the best performance

of the constant width SVM occurs when (Y is between approximately 0.5 and 1.5;

once the upper value is exceeded, then performance drops off rather quickly. The

spectral data from machine B behaves differently; best performance occurs when

(Y is between 1 and 2.5. In the case of the two datasets containing statistical data,

the performance drops to approximately 66%, which examination of the results

shows to be caused by the two normal conditions being classified as cage faults.
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Performance of Averaged Width SVM with different datasets
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Figure 5.4: Classification performance for different scaling values with the aver-
aged width SVM in multiclass case.

Performance of Specific Width SVM with different datasets
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Figure 5.5: Classification performance for different scaling values with the specific
width SVM in multiclass case.



CHAPTER 5. SUPPORT VECTOR MACHINES 120

All of the fault conditions are classified correctly. In the case of the spectral data

from machine A, the result converges to approximately 50%, which is caused by

the cage fault again incorrectly classifying the two normal conditions and the

outer race fault all as cage faults. The performance of the machine B spectral

data drops to approximately 35%, caused by fault conditions being classified as

normal conditions.

Figure 5.4 shows the variation of classification performance with the scaling

factor value. As can be seen, the performance of the averaged SVM is much less

dependent upon the value of the scaling factor than the constant width SVM is

with regard to the kernel parameter value. For values of scaling factor in the

interval 3-5, the performance is high for all three datasets. For the machine B

dataset, the performance remains fairly constant for scale factor values of between

2 and 9, peaking around values of 4 or 5.

Table 5.5 shows the variation of classification performance with scale factor for

the specific width SVM. As can be seen, the specific width SVM is very insensitive

to variation of the scaling factor on all the datasets from machine A, with all three

datasets improving classification (and converging at approximately 99%) as the

scaling factor is increased. Machine B however peaks at scf=4, and then falls

away to a level of around 67% at scf=9. The poor performance by the machine B

dataset at large scale factor values is caused by the normal condition classifying

a large number of the fault conditions as normal. This problem would be likely

to occur if the data was very tightly clustered together with the fault conditions,

and the normal condition possessed a larger variance. If the different closures

were in similar areas of hyperspace, then there would be interplay between the

different hyperellipsoids, causing the misclassification.

It is interesting to note that the constant width SVM records the highest

performance of the three classifiers for the spectral dataset from machine B. The
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Figure 5.6: The effect of different scaling values upon enclosure for both the
averaged and specific width kernels

reason for this is the way in which the different kernels interact with each other

when the data is non separable. Where two closures intersect, there will be a

conflict between the two enclosures. In the case of the constant width SVM, the

intersection between the different spheres will be an equal split; however, in the

case of the modified kernels, the boundary between the two classes will actually

be a curved surface, as the different sizes of the enclosures mean that the smaller

enclosure has a greater influence than the larger, and as a result, the boundary

changes. This relationship is complex, and requires further work to determine

what is happening.

To illustrate the effect of the different enclosure types, figure 5.6 shows the

different ways in which the two modified SVM kernels enclose data. The effect

of different scaling factors is shown as well. As can be seen, at scf= L, both

different functions are unable to enclose any significant part of the data, and as
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a result, the performance of the classifier is poor, as a significant proportion of

the data (represented by the black dots) is being missed by the enclosure; these

ideas have been verified by the experimental data. When scf=3, both different

functions enclose a much larger proportion of the data; however, the averaged

width kernel has also enclosed a fairly significant proportion of data from another

class represented by the black crosses inside the sphere. The ellipsoid by contrast,

manages to enclose a larger proportion of the correct data, without any enclosure

of the data from the other class, due to the variation of width in each dimension.

While this example is in three dimensions, this is the effect reproduced in the

higher dimensions of the dataset, and explains to a large extent why the averaged

width SVM shows the fall off in the performance of the statistical data, as the

statistical data seems to be clustered closer together than the spectral data.

5.5 Discussion

In general, the multiclass results are better than the dual class results, with

the SVM managing to equal or outperform the MLP on the multiclass datasets.

However, that result in itself raises questions as to why the SVMs perform so

well on the rnulticlass data, but relatively poorly on the dual class data, while

the MLP maintained a fairly consistent level of performance with all the data

from machine A in both dual and multiclass experiments. Much of the problems

in the dual class case probably stems from the way that the different classes are

distributed in feature space. If it is the case that the normal cases are located in

the middle of the fault clusters, then that would explain the lower performance of

the dual class data, as the hypersphere enclosing the fault class will span the no

fault class. Figure 5.7 shows how this might happen in practice. In the dual class

case, as the fault (class 2) function is superimposed on the no fault case (class
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Dual Class Case Multi Class Case

Figure 5.7: The different enclosure mechanisms at play in the dual and multiclass
cases

1), then the likelihood of misclassification is much higher. In the multiclass case,

where each condition is localised in space, enclosing each of the different fault

categories (3-6) is distinct from the other data, while the two normal categories

(1 & 2) are also distinct in the same space as was occupied by class 1 in the dual

class case.

In this respect, it would seem that the SVM is much more adept at classifying

the multiclass type problem; however, much of the problems that arise in the

dual case scenario are caused by the overlapping of clusters in feature space.

Some of the features being used in the feature extraction stage are forcing the

data clusters to overlap. If some technique could be used to determine which

feature are providing useful information, and reject those features which cause

overlapping clusters to be created, then the classification performance could be

improved further, which would help the performance on the dual class problem

significantly.
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The averaged width and specific width SVM seem to be fairly robust classi-

fiers, certainly more robust than the constant width SVM. While not as good at

the dual class problem for the reasons discussed earlier and as a result perhaps

not as well suited to the fault/no fault problem, SVMs would appear to have

something to offer in terms of improved performance over the MLP in the mul-

ticlass case. Even with the multiclass data from machine B, which falls short of

90% performance on unseen data, the SVM still manages to return a score that

is better than the performance (Table 4.18) of the best MLP, and approximately

equal to the RBF neural network in terms of performance, although less than the

PNN. This lower performance on the multiclass dataset from machine B may well

be caused by either insufficient information in the features extracted from the raw

data, or one or more features providing information that misleads the classifier,

causing overlap within the different clusters. A process of feature selection will

determine to what extent the overlap is an issue.

The choice of the best SVM for a classification task is a compromise decision;

for multiclass work, there is a tradeoff between accuracy and computational com-

plexity. The averaged width SVM uses less support vectors to achieve a better

performance than the constant. width SVM, however the specific width SVM is

capable of beating the performance of both SVMs, at an increased computational

cost during training and operation. The decision to use one or other would de-

pend on the requirements of a user - Le. best overall performance no matter the

computational cost, or best performance for minimal resources.

5.6 Summary

This chapter has introduced the use of the SVM as a classifier for bearing faults.

The basic concepts behind the support vector machine were introduced, along
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with an overview of the different training mechanisms currently available. A dis-

cussion of the significance of the kernel, along with some of the problems that

make MCM problems ill posed was raised, and as a result, two modified kernels

were proposed that improve the generalisation of the networks significantly, at the

cost of additional computational complexity. The modified kernels were shown to

perform well in a range of multiclass problems, on terms which are comparable

with MLP based classification, and in several cases, exceeding the performance

of the MLP. On dual class problems, the MLP continues to have a better perfor-

mance than that of the SVM, although a hypothesis has been advanced which

explains the nature of the problem, and the distribution of data within feature

space.



Chapter 6

Feature Selection

Feature selection techniques for classification are intended to meet a number of

needs simultaneously [99]:

• To reduce the cost of extracting features.

• To improve classification accuracy.

• To improve the reliability of the estimate of performance.

With the large number of different features that are being considered in some of

thedatasets used here (i.e. up to 156 features), calculating the features can be a

time consuming task; obviously, being able to calculate only those features needed

for classification is much preferable. The problem is determining which features

provide information, and which provide uncorrelated data that only serves to

confuse the classifier.

Genetic Algorithms (GAs) provide an ideal mechanism for feature selection

in high dimensional spaces. Using Darwinian evolutionary principles, the GA is

able to search quickly through a large number of possible solutions, and arrive at

an answer in a much quicker time than many other comparable feature selection

126
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algorithms. A recent survey [99] showed that for many dimensional data (> 50),

the GA is one of the most efficient feature selection techniques available.

The use of GAs for feature selection has been known for some time [100,101].

As a technique, the GA has been shown to be extremely robust, and providing

good accuracy without requiring any prior knowledge.

6.1 Motivation in Condition Monitoring: Why

is Feature Selection Useful?

There are many potential advantages to be gained by performing feature selection

on an MCM type problem. Modern MCM and supervisory systems can have any

number of inputs, ranging from tens up to hundreds of channels. A lot of this

data creates an information overload condition for the operators, and very often

it is difficult to gain an overview of the whole system, and determine exactly what

is happening. Using feature selection in conjunction with classifiers allows the

classifiers to act as a data abstraction layer, interpreting the raw data to provide
,-

information that can be digested easily, and used to make meaningful assessments

of the condition of thesystem. Using an automatic feature selection strategy can

find relationships between different parameters that might not be intuitive to

the casual observer. The complex interrelationships of the different channels can

allow machine condition to be ascertained more reliably than is possible by human

operators, and allows further high level integration with supervisory systems such

as expert systems, which can provide wide-scale monitoring of the machine system

as a whole, rather than the sub-assemblies that the classifiers monitor.

The advent of small silicon based accelerometers and velocimeters combined

with modern classifiers lend themselves to the creation of small integrated chips
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that may be incorporated directly into the fabric of a machine, giving it the ability

to return information to either an internal control system or an external moni-

toring system. However, one of the main problems facing the use of classifiers in

an on-board system is that the amount of computation required should be small.

To be feasible, the classifier must be relatively compact, in order that a small,

cost effective processing unit may be used. Feature selection provides a means

to reduce the computational workload required for classification by reducing the

number of features needed for classification.

6.2 General Comments

The GA used in this experiment is a simple GA, as proposed by Goldberg [55].

The experiments are programmed in C++, using the GAlib library [59] available

over the internet. The genome class used to implement the form above is the

GARealAlleleSetArray, which allows the use of bounded string values, with user

defined step sizes.

The GA uses a population size of 10 individuals, starting with randomly

generated genomes. This is a tradeoff between a comprehensive, broad search

through a large population, and achieving the desired target within a reasonable

computation time. An elitist population model is used, meaning that the best

individual in the previous population is kept in the new population, and this

prevents the performance of the GA worsening as the number of generations

increase, meaning that once performance reaches a certain point, it should not

deteriorate below that level.
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6.3 Feature Selection & Encoding

The GA controls feature selection through the values of the genome. The classifier

function used to train the network is written to accept a genome of one of the

standard forms given below, and return the "score" of the classifier with that

combination of features.

6.3.1 ANN Genome

For the ANNs, a simple genome string was used. For a training run requiring

N different inputs to be selected as a subset of Q possible inputs, the genome

string would consist of (N + 1) real numbers. Each of the first N numbers (x)

in the genome is constrained as 0 ::; x ::; (Q - 1), whilst the last number, (x), is

constrained to lie within the bounds 2 ::; x ::;S, where S is the maximum number

of neurons allowable in the first layer (a predetermined value). This means that

any mutation that occurs will be bounded within the limits set at the definition

of the genome. This arrangement is shown in (6.1).

Xl

X2

X3 o ::; X < Q-1
(6.1)

XN

XN+1 } 2::;x::;S
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6.3.2 Constant Width SVM

For the constant width SYM, a slightly different genome was used. For a require-

ment of a system with N inputs, the genome string is still (N + 1) units long.

However, for the SYM, the last value of the genome represents the o-width value

of the Gaussian function, rather than the number of hidden neurons. This was

bounded between 0.1 and 2.0, with a step-size of 0.1 for these examples.

6.3.3 Averaged Width SVM

Two different genome strings were used; for the dual class SYMs a genome string

that only specified the features to be tested was used, with the scaling factor

fixed at scf=S. For the multiclass case, a slightly modified version of (6.1) was

used. The last value of the genome string determines the scaling factor applied

to the (I value, and this was allowed values between 1 and 9, in integer steps.

6.3.4 Specific Width SVM

Once again, two different genome strings wereused; for the dual class case, the

scale factor was fixed .at scf=3, and the features only (i.e. no determination of

scaling factor) were selected by the GA, while in the multiclass case, the same

modified string as the averaged width SYM was used. The last value of the

genome string determines the scaling factor applied to the a value, and this was

allowed values between 1 and 9, in integer steps.

6.3.5 Mutation Operation

The mutation operator used is real Gaussian mutation, with a probability of

mutation equal to 0.2. For an allele string a, and using a probability of mutation
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Pm E [0, 1], the mutation operation can be expressed as:

(6.2)

where a~ represents the modified allele member, Xi E [0,1] is a randomly sampled

uniformly distributed variable, 'l/Ji is a randomly sampled Gaussian distributed

variable with 0 mean and a standard deviation of 1. Values of amin and amax

represent the bounding limits of the allele values; if a value exceeds one of the

limits, then it will be set to the maximum or minimum as relevant. The value of

0.2 was chosen after a number of trials which showed that the value of Pm was

high enough to allow a good traverse of feature space without compromising of a

convergence to a good solution.

6.3.6 Crossover

The crossover operator used is the uniform crossover, with the probability of

crossover set to 0.75. If there are two strings, as,i and aR,i, and given a probability

of crossover Pc E [0, 1], then the crossover operation for each individual element,

ai may be expressed as:

If < I l;Xi > 0.5"( _ Pc =} ai =
. aR,i , Xi:::; 0.5

(6.3)

where ,,(,X E [0,1] are both randomly sampled uniformly distributed variables.

No crossover will take place if"( > Pc.

The Pc value was set high after initial exploratory work showed that a value

of 0.75 gave good rate of change to the population. Due to the nature of the
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data, a high rate of crossover was desired in order to ensure that the comparison

of different features traverses feature space relatively quickly.

6.4 Fitness Function

The fitness function used in the GA simply returns the number of correct classifi-

cations made over the whole dataset. No direct penalisation is made for incorrect

classification here, just that the classification score will be correspondingly lower.

The validation set is used to provide some form of evaluation of the generalisa-

tion properties of the network. While the performance could be rated on only

the performance of the validation or training sets, it was felt that this would give

an inadequate measure of the performance of the GA on unseen data, as this

will be the scenario that will be encountered most often in real life. Due to the

nature of the machine system, it is not always easy to choose training data that

is completely representative of likely characteristics of the fault data, and so the

performance of the GA/classifier is measured over the test set in order to allow

the GA to be more representative in it's selection of features.

More complex forms of fitness function, either involving incorrect classifica-

tions or sum squared error or other factors could be used, to determine the per-

formance of each network trained, however the performance achieved using this

comparatively simple fitness function shows that they are not needed to achieve

good results in this application.

6.5 Training

Training was carried out using first the ANN and then the same experiments were

repeated with the SVM using constant width Gaussian functions, where the (J'
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parameter is found by iteration to one decimal place, using the aav parameter,

with a range of different scaling factors from 1 to 9, and also the specific width

kernel, again with scaling parameters from 1 to 9. Three different datasets from

machine A were used for the dual class case, one consisting all the statistical

data (90 features), one with only spectral data (66 features), and a combined

dataset (156 features), consisting of both statistical and spectral features. For

all four classifiers, training was stopped when the performance on the validation

set dropped in relation to that of the training set. This sequence of events was

repeated for the single dataset for machine B.

For the multiclass case, time constraints meant that it was only possible to

test the combined statistical and spectral dataset from machine A, and the single

spectral dataset from machine B. These were tested with all three SVM kernels,

and also the MLP. In both cases, the GA was allowed to select a range of input

sizes, from 4 to 12 inputs, as a subset of the total dataset.

6.5.1 ANN Training

The ANNs were trained using the backpropagation algorithm with adaptive learn-

ing and momentum. Training was stopped through use of a validation set, with

the stop occurring when the performance on the validation set started deterio-

rating rather than improving. The ANNs were trained for various different sizes

of hidden layer, from 2 to 15 neurons, and the best one was selected.

6.5.2 SVM Training

Training of the SVM is carried out using the Kernel Adatron (KA) algorithm [93].

KA has been shown to be a relatively fast way of training SVMs, with a speed

comparable to that of Platt's SMO technique [89]. The advantage that the KA



CHAPTER 6. FEATURE SELECTION 134

algorithm offers is that it allows the use of a validation set to stop training, and

thus maintain good generalisation. The SMO technique by comparison, finds a

global minimum solution without the use of a validation set, and this can mean

that the generalisation performance is slightly worse than that of the KA algo-

rithm. Research in this area is still progressing, and other training methods and

modifications are being developed, which may be more computationally efficient

and simpler to implement [90,102].

SYMs were created using the kernel function described in equation 5.12, a

values were for the constant width SYM, limited to one decimal place. For the

averaged width training runs, the a values were determined using equation 5.15,

and various scaling values were used, ranging between 1 and 9 in integer steps.

A similar procedure was used for the specific width kernel (equation 5.16), with

scaling values between 1 and 9 permitted.

6.5.3 GA Training

Having trained the ANNs and both different forms of SYM with all the available

datasets, training runs were then carried out using the GA to select different

combinations of input features for each classifier, in an attempt to improve per-

formance by selecting the most important feature set for a given classifier. Each

selection method was run until the population converged; for the ANN, 40 genera-

tions was found to be sufficient, while the SYM, which seems to be more sensitive

to changes, a total of 60 generations were used, with a population size of 10

members. The experiments were then repeated for each of the different datasets.
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6.6 Results: Genetic Algorithm with ANN

Initial work using GA based feature selection was carried out using only the MLP

classifier. Various experiments were carried out in an attempt to determine what

was an acceptable number of generations to run the algorithms for. To this end,

a series of experiments were carried out, running for 20, 40 and 60 generations

in total, using all six datasets from machine A. The MLP was selected for use as

previous work had shown it to be the most robust (and compact) classifier from

those considered in chapter 4.

6.6.1 Genetic Algorithm with ANN after 20 Generations

Table 6.1 shows a comparison between the results generated after a run of 20

generations using the combined genetic algorithm ANN program (GAl ANN),

and the stand-alone ANN program. The table shows specific results for the MLP

considered with each dataset covered in chapter 4, and compares these against

the best result achieved using the GAl ANN system. The third subset of columns

show the mean performance and the range of performances achieved, expressed

as percentage accuracies.

On examining the results on a like for like basis, it can be seen that all

cases have a success rate in excess of 92.0%, and the best GAl ANN solution has

a markedly higher classification rate than the equivalent "straight" ANN. The

number of inputs selected in each case is significantly smaller than the complete

feature sets used in each set, the selected features are subsets of the original

datasets, and thus any information available to the small GAl ANN is also avail-

able to the larger one.

Examining the results for the mean performance, it can be seen that every sin-

gle result achieved a higher performance using the GAl ANN than the stand-alone
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ANN. This is also borne out by the performance range figures, which show that

in all cases, the inputs selected by the GAl ANN provide a superior performance

to an ANN using all available inputs. As can be seen, the spectral dataset, which

had the highest performance improves from 97.0% (using 66 inputs) to 99.7%

(using only 8 inputs). This means that out of the total of 960 examples, only

three have been misclassified, using only one eighth of the inputs. Interestingly,

the high/low pass filtered data has undergone the largest improvement in its

performance, jumping from 83.1% to 97.7%. This compares well with the other

results. The fact that the high/low pass data is able to reach a value in excess of

97% implies that the information contained within the feature set is sufficient to

allow accurate classification, without the need for extraneous information. Ad-

ditionally, the number of inputs required to achieve this level of accuracy is one

fifth of that used by the straight ANN.

Examining the classifications of the spectral feature set (tables 6.2 and 6.3)

after 20 generations, a number of things can be seen. The classification of the

network has improved markedly in that there are only a few mistakes. All faults

are now classified as faults, and all normal conditions are classified correctly.

While the actual classification between some of the fault conditions is not yet

entirely right, the fact that there are no errors being made in the classification

of faults as normal and vice versa is perhaps the most helpful criterion in the

selection of condition monitoring systems.

Looking at the results for the high and low pass filtering (tables 6.4 and

6.5), the improvement in the classification from the straight ANN (table 6.4) is

very evident. Four of the six conditions achieve 100% accuracy, while one of the

other two categories (rolling element fault - RE) has remained as accurate, and

the other (cage fault - CA) has deteriorated slightly. The only fault condition

which is being confused with the "normal" conditions is the cage fault, and this
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is the same problem as before. It may be that the spectral information by itself

is insufficiently detailed to allow discrimination between these conditions at the

lower speeds of rotation.

6.6.2 Genetic Algorithm with ANN after 40 Generations

Table 6.6 shows the performance of the different feature sets after running un-

der the GA for 40 generations. The results are again an improvement over the

previous set (table 6.1). The mean performance of every set has increased from

the values achieved after 20 generations. Five of the six datasets have their best

performance in excess of 97.5%.

The feature set using all the available training data has managed to achieve

an accuracy of 100%, indicating accurate classification. This is achieved using

only six inputs out of the possible 156. Using 9 neurons in the hidden layer, a

relatively small network has been created that fulfils the criteria set earlier on.

A network of this size would be ideal for a real-time implementation on a small

chip or micro controller.

6.6.3 Genetic Algorithm with ANN after 60 Generations

Table 6.7 shows the results after running experiments through to 60 generations

and these still show a degree of improvement over the shorter runs. In almost all

cases, the algorithms had converged by 60 generations. Comparing the results for

60 generations, it can be seen that the performance of the best networks for each

dataset remained similar, except that it improved for the statistics only case.

In four cases (statistics only, differencing/summing, spectral and all data),

the mean performance of the feature sets improved, while in the other two (all

statistics and high pass/low pass), the mean performance differed by no more
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Classification Success (%)
Actual Condition

NO NW IR OR RE CA
NO 98.8 a a a a 12.5
NW a 100 a a a.6 a

~~ IR a a 98.8 a a aCl).S
OR 1.2 a 1.2 . 100 a 2.5>...,..........

Cl)~

RE a a a a 99.4 au ~
I-< 0ceo CA a a a a a 85.0

Table 6.2: Classification results for straight ANN, using spectral data only.

Classification Success (%)
Actual Condition

NO NW IR OR RE CA
NO 100 a a a a a
NW a 100 a a a a

~~ IR a a 98.9 a 1.1 aCl).S
OR a a a 100 a a>...,...........

Cl)~

RE a a 1.1 a 98.9 au ~
I-< 0ceo CA a a a a a 100

Table 6.3: Classification results for GA/ ANN after 2a generations, using spectral
data.

Classification Success (%)
Actual Condition

NO NW IR OR RE CA
NO 22.5 a a a a' a.6
NW 61.9 100 1.3 a 1.3 la

~~ IR a a 88.8 a a aCl).S
OR a a 2.5 100 a.6>..., a..........

Cl)~

RE a a a.6 a 98.1u ~ aI-< 0ceo CA 15.6 a 6.8 a a 89.4

Table 6.4: Classification results for straight ANN, using high pass/low pass data.
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Classification Success (%)
Actual Condition

NO NW IR OR RE CA
NO 100 0 0 0 0 4.4
NW 0 100 0 0 0 6.9

""'Cj~ IR 0 0 100 0 1.9 0
Q.).9

OR 0 0 0 100 0 0.6>~............
Q.)""'Cj

RE 0 0 0 0 98.1 0u ~
1-0 0
&:0 CA 0 0 0 0 0 88.1

Table 6.5: Classification results for GA/ ANN after 20 generations, using high/low
pass data.

than 0.2%.

Once again, the feature set containing all the data is capable of reaching 100%

accuracy, although it achieves this using a larger network (7 inputs and 15 neurons

in the hidden layer) than that found for 40 generations (6 inputs and 9 hidden

neurons). This is probably partially due to an inadequacy of the fitness function,

in that there is no penalty term for larger sizes of hidden layer. Incorporating

this into the fitness function would allow better results in this respect.

6.7 Results: GA and SVM

Having conducted a series of successful experiments with the ANN, it was decided

to use the GA in conjunction with the SVM, in an attempt to determine whether

the feature selection could improve the robustness of the classifier, and also hope-

fully improve the performance in the dual class case with data from machine A,

which was shown to be very poor in section 5.4.1. For the dual class experiments,

the GA was allowed to control the inputs selected for the SVM. Additionally,

for the constant width SVM, the GA was allowed to select the width parameter.

For the averaged and specific width experiments, the scaling factor was fixed at
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scf=3.

For the multiclass case, the GA was allowed to select the inputs and the

kernel parameter - which meant the GA had control of the width parameter for

the constant width SVM, and also set the scaling factor values for the averaged

and specific width SVMs. Unfortunately, time constraints meant that it was

not possible to conduct an exhaustive evaluation of the effect of allowing the

GA control of kernel parameters with both datasets, and so it was decided to

attempt an experiment on each dataset. This makes it difficult to draw direct

comparisons between the performance of the different techniques, however it acts

as a preliminary investigation.

6.7.1 Dual Class Results: machine A

Examining the results from table 6.8, it can be seen that the performance with

the spectral dataset is high, with the ANN classifier achieving results of 99%

for the unseen test set without the use of feature selection. Again, the constant

width SVM has the poorest generalisation performance, achieving 98.2% on the

training set but only 89.4% on the test set. Th~ averaged width SVM has good

generalisation performance, with scores of 93.8% for the training set and 91.6%

for the test set. The specific width SVM has the best performance of the SVMs

without feature selection, managing to reach 96.6% on the training set, and 91.6%

on the test set. After feature selection, it can be seen that the performances on

the unseen test sets have all increased. The best performance is that of the

GAjANN, which using only 9 inputs, manages 100% on both the training and

test sets. The GA with constant width SVM offers a training success of 99.9%

and the test set performance of 98.6% using only 4 features from the possible 66.

The performance of the averaged width SVM rises to 99.3% on training data,
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Classifier No. Training Test
Inputs Success (%) Success (%)

ANN 66 100 99.0
GA/ANN 9 100 100
SVM (const. width) 66 98.2 89.4
GA/SVM (const. width) 4 99.9 98.6
SVM (av. width) 66 93.8 91.6
GA/SVM (av. width) 7 99.3 99.1
SVM (sp. width) 66 96.6 93.9
GA/SVM(sp. width) 5 98.9 99.1

Table 6.8: Dual Class: Performance with spectral dataset from machine A (66
features).

Classifier No. Training Test
Inputs Success (%) Success (%)

ANN 90 98.9 97.6
GA/ANN 12 99.9 100
SVM (const. width) 90 99.4 84.9
GA/SVM (const. width) 6 99.5 98.1
SVM (av. width) 90 81.8 80.4
GA/SVM (av. width) 4 97.9 97.4
SVM (sp. width) 90 85.5 85.6
GA/SVM(sp. width) 5 98.5 97.7

Table 6.9: Dual Class: Performance with combined statistical dataset from ma-
chine A (90 features).

and to 99.1% success on the unseen test set, using only 7 inputs. The specific

width SVM performance rises to 98.9% on the training set, and 99.1% on the test

set after feature selection, using only 5 inputs. All these performance levels are

very high, and certainly after feature selection, the SVM would appear to offer a

comparable level of performance to the ANN.

Examining the results from table 6.9, a number of things can be seen. Firstly,

examining the results of the standalone ANN and SVMs, the contrast between the

performance of the three different SVM classifiers is very obvious. The constant

width SVM is the most inconsistent performer, with a good training performance
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Classifier No. Training Test
Inputs Success (%) Success (%)

ANN 156 99.4 97.5
GAjANN 4 100 100
SVM (canst. width) 156 99.8 85.3
GAjSVM (canst. width) 4 100 98.6
SVM (av. width) 156 81.7 79.1
GAjSVM (av. width) 6 98.2 99.2
SVM (sp. width) 156 90.3 86.9
GAjSVM(sp. width) 5 99.1 99.5

Table 6.10: Dual Class: Performance with combined dataset (156 features).

of 99.4%, however this is offset by the poor performance on the unseen test

set of 84.9%, indicating a high degree of overtraining on the training set. The

ANN generalises well, achieving 98.9% on the training set and 97.6% on the

test set. The averaged width SVM achieves only 81.8% on the training set, and

80.4% on the test set, the worst performance of all the classifiers. The specific

width SVM reaches 85.5% on the training set and 85.6% on the test set. The

reason for the poor performance of the two modified SVMs is not immediately

apparent. After applying the GA for feature selection, all the performance levels

rise, in some cases quite dramatically. The GAj ANN manages to achieve success

levels of 99.9% and 100% on the training and test sets respectively, using only 12

inputs out of the possible 90 in the feature set. All three SVM classifiers show

strong improvements when run with GA feature selection, as well as display very

good generalisation performance. The best performer of the SVMs after feature

selection is the constant width SVM, which reaches 99.5% and 98.1% on the

training and test sets respectively, using only 6 inputs. The specific width SVM

is close behind, managing 98.5% and 97.7% respectively with 5 inputs, while the

performance of the averaged width SVM is also high at 97.9% for the training set

and 97.4% for the test set, using 4 inputs.
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Table 6.10 shows the performance of the different classifiers in the combined

statistical and spectral dataset, consisting of a total of 156 features. As can be

seen, the performance of the standalone classifiers is slightly poorer than their

performance on the purely spectral dataset, which might seem counter-intuitive

at first, but the higher number of features combined with the information from

the statistical set may be confusing the classifiers slightly. The constant width

SVM performs well on the training set (99.8%), but suffers again on generalisation

performance, managing only 85.3%. The specific width SVM has a performance

level that has lower training success than the constant width SVM, but higher

success on the test set, scoring 90.3% and 86.9% respectively. The averaged width

SVM has the poorest performance, scoring 81.7% on the training set, and only

79.1% on the test set. This might suggest that some of the the statistical data

has a very high variance within a feature, or alternatively that there is a high

degree of overlap between the values of certain features between the two classes,

fault and no-fault. This would confuse the classifier.

After feature selection, much of the confusion dies away. The performance

of the GAl ANN rises to 100% on both datasets, but now using only 4 features

rather than the nine required for the purely spectral dataset, which indicates that

the statistical dataset does contain some useful information, and this supplants

several of the features required for the spectral dataset. The constant width SVM

with GA jumps to 100% on training data and 98.6% on test data, using only

4 features out of the 156 available. This is the highest performance it achieves

over the three datasets from machine A. The averaged width SVM with GA

performance on the training set is 98.2%, and achieves 99.2% on the test set.

This uses only 6 features out of the possible 156. The specific width SVM has

the highest performance of the SVMs, managing 99.1% on the training set, and

99.5% on the test set, using only 5 inputs. This compares very well with the
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Classifier No. Training Test
Inputs Success (%) Success (%)

ANN 33 100 100
GA/ANN 4 100 100
SVM (const. width) 33 100 100
GA/SVM (const. width) 4 100 100
SVM (av. width) 33 100 100
GA/SVM (av. width) 4 100 100
SVM (sp. width) 156 100 100
GA/SVM(sp. width) 4 100 100

Table 6.11: Dual Class: Performance with machine B dataset (33 features).

ANN in terms of performance.

6.7.2 Dual Class Results: Machine B

Table 6.11 shows the results of the different classifiers on the dataset from machine

B. As can be seen, all the classifiers successfully manage to achieve 100% accuracy

on both the training and test sets. Feature selection only serves to reduce the

number of features required for correct classification. As can be seen, using only 4

features from the set of 33, all the different classifiers are able to classify between

fault and no fault conditions correctly.

6.7.3 Multiclass Results: Machine A

Table 6.12 shows the results of feature selection with the SVMs. For comparison,

the performance of the ANN after feature selection is shown (which has already

been covered earlier in this chapter). As can be seen, the performance with the

dataset from machine A is high with all classifiers after feature selection. Perhaps

the biggest improvement in performance comes from the constant width SVM,

which jumps from a level of 84.2% on the unseen test set, using 156 inputs, to

98.2% after feature selection, using only 9 inputs. While the constant width
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Classifier No. Training Test
Inputs Success (%) Success (%)

ANN 156 99.8 97.0
CA/ANN 6 100 100
SVM (const. width) 156 100 84.2
CA/SVM (const. width) 9 100 98.2
SVM (av. width) 156 100 97.9
CA/SVM (av. width) 4 100 99.9
SVM (sp. width) 156 100 99.4
CA/SVM(sp. width) 4 100 100

Table 6.12: Multiclass: Performance with combined dataset (156 features).

SVM has the largest jump in performance, it is not the best performer of the four

classifiers after feature selection. The averaged width SVM manages 100% and

99.9% on the training and test sets using only 4 inputs, while both the specific

width SVM and the ANN manage 100% on both the training and test sets, the

SVM using 4 inputs, while the ANN uses 6 inputs. These results show that using

feature selection, the SVM can become as robust and accurate as an ANN for an

application of this nature.

6.7.4 Multiclass Results: Machine B

Table 6.13 shows the results of experiments conducted using the spectral dataset

from machine B. Feature selection has improved the performance of each of the

classifiers over their performance with the full datasets. However, no classifier

manages to achieve 100% accuracy on the unseen test set. The best performance

on the test set is 96.4%, achieved by the ANN, which uses 10 inputs of a possible

33; this classifier only achieves 92.9% on the training set however. All others

manage 100% on the training set, whether they have feature selection. or not.

The best performance of an SVM is achieved by the specific width SVM after

feature selection, which reaches 94.6% on the test set, using 12 inputs. This
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Classifier No. Training Test
Inputs Success (%) Success (%)

ANN 33 100 76.8
GAjANN 10 92.9 96.4
SVM (const. width) 33 100 85.7
GAjSVM (const. width) 12 100 92.9
SVM (av. width) 33 100 83.9
GAjSVM (av. width) 8 100 92.9
SVM (sp. width) 33 100 87.5
GAjSVM(sp. width) 12 100 94.6

Table 6.13: Multiclass: Performance with machine B dataset (33 features).

is comparable to the best result managed by a standalone ANN using the full

dataset, where the PNN also managed to reach 100% on the training set and

94.6% on the test set. The performances of the constant and averaged width

SVMs were identical, managing a performance of (100% on the training set and)

92.9% on the test set, an increase of 7.2% in the case of the constant width, and

9.0% in the case of the averaged width SVM.

6.7.5 Support Vectors: Machine A

Table 6.14 shows the breakdown of the number of support vectors for the three

different SVMs, when classifying the combined statistical and spectral dataset in

the dual class case. In all three cases, after using feature selection, the number of

support vectors required to define the classification boundary is much less than

that required by the standalone classifiers without the benefit of feature selection.

The greatest reduction in the number of support vectors occurs with the specific

width SVM, which sees a reduction of 40% on the number of support vectors

required to build the classifier from 709 to 420 vectors. This decrease in the

number of vectors is accompanied by an increase in performance on the unseen

test set of 12.6%, and a reduction in the number of inputs from 156 to 5. The
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reduced dimensionality of the dataset means that the GA is able to select features

that create a much simpler boundary in feature space, meaning that the SVM

requires less vectors to define the boundary, and the robustness of the classifier

improves as a result.

It is interesting to note the number of support vectors used to define the

boundaries in the two class problem. Using the constant width SVM after fea-

ture selection, the SVM requires 431 vectors to create the correct partition for

the fault data; this is a slight improvement over the 467 required when the full

dataset is used. The number of vectors used for the fault and no fault classes is

identical for the constant width SVM. However, for the averaged width SVM, the

SVM without feature selection uses only 116 vectors to define the fault boundary,

compared with 109 after feature selection has take place. This no fault category

uses 532 vectors for the no fault class before feature selection, but only 395 after

selection. Before feature selection, the specific width SVM uses a similar number

of support vectors to the averaged width SVM. However, after feature selection,

the number of vectors required to define both boundaries falls dramatically, with

only 42 vectors being required for the fault class, compared to the 114 used be-

fore feature selection. The no fault class also sees a significant reduction in the

number of vectors required, falling from 595 to 378 vectors.

Table 6.15 shows the breakdown of the support vectors in the multiclass clas-

sifiers, using the combined statistical and spectral datasets. In general terms, the

behaviour of the multiclass SVMs after feature selection mirrors that of the dual

class classifiers after feature selection. In all cases, the number of support vectors

required to create the classifier has decreased. The greatest decrease comes from

the specific width SVM, which uses less than half of the support vectors origi-

nally required after feature selection has been carried out, using only 1542 vectors

rather than the 3185 required when the full dataset was used. The performance
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No. Support Vectors (J Scaling
No Fault Fault Total Value Factor

SVM
(const. width) 467 467 934 1.1 -
GAjSVM
(const. width) 431 431 862 0.2 -
SVM
(av. width) 532 116 648 - 9
GAjSVM
(av. width) 395 109 504 - 3
SVM
(sp. width) 595 114 709 - 9
GAjSVM
(sp. width) 378 42 420 - 3

Table 6.14: Dual Class Machine A: Number of support vectors used by each SVM
after feature selection in classifying the combined statistical and spectral data,
with (J or scaling factor values, as relevant.

has also improved marginally (see table 6.12). It is interesting to note that the

GA has not chosen the maximum scaling factor permitted, which was where the

best performance was reached when feature selection was not used. It is also

interesting to note that the width parameter of the constant width SVM is small

in both cases, meaning that the classifier is acting more like a nearest neighbour

classifier rather than enclosing the data completely.

Examining the number of support vectors used by the different classes, it is

interesting to note that the inner race (IR) and rolling element (RE) faults both

require significantly less support vectors to define their boundaries than any of

the other classes when the two modified kernels are used. The IR fault uses 71

vectors for the averaged SVM after feature selection, while the specific width SVM

uses 63, against the 408 used by the constant width SVM after feature selection.

The RE fault uses 408 vectors for the constant width SVM, 32 for the averaged

width SVM, and only 23 for the specific width SVM, however still manages to
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achieve 100% classification accuracy. This implies that the boundary for these two

classes is easy to define, and also distinct from the other classes spatially within

feature space. The specific width kernel seems to require less vectors to define

the boundary after feature selection, and this is caused by the hyperellipsoidal

enclosure, which will be enclosing more of the training data points with one vector

than a support vector using a spheroid enclosure from the averaged dataset. By

removing the garbage features, this works much more effectively than when using

the full dataset, as the removal of the high variance features mean that the points

can be enclosed much more simply, requiring less support vectors.

Generally speaking, the lower dimensionality of feature space after feature

selection means that the boundaries are much simpler to construct than in the

high dimensional feature space. Where a large number of support vectors are still

being used even after feature selection implies that the boundary is complex, and

in order to allow the boundary to be defined accurately, many vectors must be

used. Figure 6.1 shows a representation of how a relatively complex boundary

might appear. An easier boundary, such as that used on the IR and RE faults

would be a much smoother curve, meaning that fewer support vectors are required

to define it.

Figure 6.1: A complex boundary requiring many support vectors
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No. Support Vectors (J Scaling
NO NW IR OR RE CA Total Value Factor

SVM
(const. width) 500 458 442 442 442 485 2769 1.0 -
GA/SVM
(const. width) 396 375 408 408 408 399 2394 0.2 -
SVM
(av. width) 602 565 102 425 134· 675 2503 - 8
GA/SVM
(av. width) 389 347 71 432 32 451 1722 - 2
SVM
(sp. width) 784 634 177 582 247 761 3185 - 9
GA/SVM
(sp. width) 422 295 63 391 23 348 1542 - 5

Table 6.15: Multiclass Machine A: Number of support vectors used by each SVM
after feature selection in classifying the combined statistical and spectral data,
with (J or scaling factor values, as relevant.

6.8 Discussion

Feature selection would appear to offer a great many improvements over manual

methods of selecting features for classifiers in this type of situation. In every

example, using feature selection with a classifier. has produced a result that is at

least as good as or better than what the standalone classifier is able to achieve.

Additionally, the robustness of the classifier also tends to improve, through the

removal of "garbage" features which are confusing the classifier by retaining mis-

leading information and reducing the effectiveness of the classifier. Reducing the

number of features required for classification also lessens the computational needs

of the process, making the classifier simpler and cheaper to implement, as any

hardware requirements for an embedded system will be reduced as a result.

The SVM classifier improves greatly in terms of reliability, generalisation,

and robustness after feature selection. This is due in the main to the removal of

features that have a large variance within a class. By selecting features which
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tend to have little variance within a class, the GA is able to create SVMs which

define a boundary around data which will stay comparatively stable when faced

with new data. The presence of data which contains a lot of outliers in the

training set will cause the SVM training algorithm to orientate the hyperplane

incorrectly with regard to real data. By selecting those features which vary little

in a class, but are separable from different classes, the GA lessens the risk of

this happening. It is possible to use a slightly different form of SVM, which can

take into account nonseparable data through the use of "slack variables" [1,85],

and this can define the boundary correctly. This approach might improve the

generalisation performance significantly; unfortunately time did not allow this to

be checked.

By contrast, the ANN tends to be fairly robust whether feature selection is

used or not; feature selection tends to improve the accuracy of classification, but

the generalisation properties of the network tend to remain fairly constant before

and after feature selection, with respect to the fact that the network tends to

perform equally well on the training and test sets.

Using feature selection allows the dual class SVM to improve, recording very

high performances on the data used here, and a significant improvement over the

performance on the standalone datasets. In the multiclass case, the performance

also improves to the point where the SVM is capable of matching or exceeding

the performance of the MLP on the same data.

Perhaps the largest drawback to using the feature selection system is in the

time it takes to perform training of the classifiers as part of the feature selection

process. For the multiclass case, using the GAin conjunction with the SVM, the

run time of the experiments was approximately 14 days, which is a long time to

wait for results. By contrast, the slowest GAl ANN combination took about 9

days. However, the performance gains made through employing feature selection
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mean that the computational costs are justified, or would be in a production,

rather than research environment.

6.9 Summary

This chapter. has introduced the use of a specific feature selection strategy for

classifiers in the MCM context. It has been shown to be a successful approach,

providing significant improvements in the performance of all classifiers used, while

also managing to reduce the number of inputs required to achieve good classifi-

cation performance by up to a factor of 39.

Using GA based feature selection, it has been shown that feature selection is

a valid and useful technique in condition monitoring, and can provide extremely

high levels of performance using very few inputs, reducing the computational

workload required to preprocess data, while maintaining or improving perfor-

mance.

It has been shown that both the SVM and the MLP are suitable for reli-

able classification tasks after feature selection has been undertaken, and that the

performance of the two classifiers is comparable after feature selection has taken'

place.
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Conclusions

This thesis has examined the application of a number of different classification

techniques in condition monitoring, and evaluated the usefulness of the techniques

on the basis of the data available. The use of artificially intelligent techniques

in the field of MCM is well established, however there is still much scope for

the evaluation of new techniques. The goalposts are moving constantly, and

research offers many possibilities for the use of new algorithms that may offer

improvements over current approaches. Small improvements in reliability and

efficiency are still attractive in MCM; a 1% improvement in the running efficiency

of the large electric motors used in sewage pumping (approx. 4.5MW) can recoup

the cost of manufacturing the motor in the space of a month [103].

ANN are in general robust classifiers; of the three ANN classifiers tested, all

performed reasonably well, however, the MLP was found to be the most robus,

with the best combination of desirable characteristics in terms of performance,

generalisation, and compact size. The PNN is inferior to both the RBF and

MLP for all cases except that of the data from machine B, where there are

only 56 training patterns, and as a result there is little data for the training

algorithms for the MLP and RBF to work with. The Parzen approximation is

156
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probably a better solution for problems of this nature, as the sparse training

data will improve the performance of the Parzen approximation in areas where

there is overlap, and the PNN will act more like a nearest neighbour classifier.

Whether this means that PNN is ideal for problems of this nature requires further

work and investigation. The RBF offers fairly .good performance, however there

are also disadvantages, as the classifier seems slightly less robust than the MLP,

and can be erratic. Additionally, the problem of finding a suitable value of kernel

parameter can make a huge difference to the performance of the network. Overall,

the MLP seems to be the most robust and compact ANN for use, which makes it

ideal for use in MCM applications. There are also issues with the MLP, but they

are mainly concerned with the choice of the number of neurons in the hidden

layer of the network.

The SVM shows good performance with the modified kernels; however at the

same time, the SVM seems to be much more sensitive to un-correlated data, and

as a result can be less robust than the ANNs, with poor performance. A process

of feature selection would solve this problem, and increase the performance of the

classifier. The results from chapter 6 back this up. There are additional issues

with the SVM, however much of this is concerned with the assumption that

the training data given is statistically representative of the likely distribution

of data within feature space; this is not always the case with MCM data. The

modified kernels proposed seem to reduce the impact of this problem on the

performance of the SVM, particularly in cases where there is overlap between

different classes of data. Again, feature selection is capable of reducing much

of the problems associated with this. Of the two modified kernels, both achieve

similar performance results, although there is a tradeoff; the averaged kernel offers

good performance, but is less computationally complex than the specific width

kernel, which gives a higher performance at the cost of increased computation.
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Performance of the SVM is good, however it is not quite as high as the MLP

unless feature selection is used.

The experiments carried out with feature selection have shown the usefulness

of the technique as an approach for optimising classification performance in the

MCM area. The automated nature of the selection is also an advantage, as it

allows the algorithm to find correlations between features itself, without precon-

ceived ideas of the "best" choice of inputs for the classifier. The advantages of

feature selection in this context are threefold; firstly, reducing the number of in-

puts required for the classifier reduces the amount of pre-processing that has to

take place prior to classification taking place, reducing the computing burden;

secondly, reducing the number of inputs to the classifier simplifies the classifier,

and also tends to improve the performance of the classifier by removing redun-

dant features which do not contribute to the overall solution. Thirdly, the reduced

feature set selected will tend to be more robust, due to the smaller variance of

the features chosen on a per class basis (i.e. data for each class is tightly lo-

calised in feature space, and does not tend to be subject to outliers). This makes

the combination of classifier and feature selection attractive to many different

areas, as the compact nature of the resultant classifier, combined with the high

performance achievable makes it ideal for embedded applications where the com-

puting resources available are small and computationally simple applications are

needed, due to cost considerations. Using the GA for feature selection offers fur-

ther advantages with the classifiers, as it is possible to allow the parameters of

the classifier to be selected by the GA, allowing a (near) optimal solution to be

found in one step. This allows the selection process to examine as many different

features as are available, and select the best set of features required, without

requiring any further supervision from an operator.

Using feature selection with the SVMs creates highly robust and accurate
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classifiers which are able to perform comparably with that of the best ANNs even

after feature selection. Removing the erratic features from the dataset greatly

improved the performance of the SVM.

There is scope for further work on the basis of the work carried out thus far.

The effectiveness of the two modified SVM kernels proposed needs to be evalu-

ated on a broader range of non MCM problems. Examination of the classifier

performance on some standard benchmarking problems would be a worthwhile

exercise. An evaluation of the performance of the PNN after feature selection

would also be worthwhile, as removing the features which are inseparable among

the classes may improve the performance of the PNN significantly; unfortunately,

time did not allow this work to be carried out. The performance of the different

ANNs with other small size training sets (50-100 members approx.) could be

investigated further, to determine whether the performance of the PNN with the

multiclass data from machine B is unique to that dataset, or a general character-

istic of the classifier.

With regard to feature selection, work remains to be done with other feature

selection algorithms, to evaluate whether other alternative approaches may offer

advantages not offered by the GA; additionally, it would also be interesting to

try and apply the combined pre-processing/feature selection/classifier approach

to problems from other areas than MCM, as there are many similarities with

speech recognition and medical monitoring applications. The feature selection

approach is of use in any area where classification has to be performed, and the

features best suited to the problem in question are unknown.

The work carried out so far has been based around experiments performed

on recorded data; it would be of interest to determine whether the "optimal"

set of inputs chosen by the GA in the laboratory are capable of dealing with

data in a real working environment, with all the different external noise sources
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that are present, and other faults. Talking to industrial contacts has made it

plain that one of the biggest problems remains in the detection of faults when

there are no examples available of what a fault looks like. Work is required

to develop techniques which are capable of detecting deviation from normal on a

reliable basis, and this is an exceedingly ill defined problem within a classification

context.
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