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ABSTRACT

A complete characterisation for structure borne sound source contains many elements 

(or parameters) and is not convenient for practical use. Thus, in this thesis the 

problem of providing a simplified characterisation for structure-borne sound source 

has been addressed. The starting point is that the purpose of the characterisation is to 

predict the vibrational power transmitted from the source into its support (the 

receiver) when installed. A ‘single figure’ characterisation has been proposed, i.e. the 

many elements needed for a full characterisation are contracted into two frequency 

dependent parameters, one representing the ‘active’ properties of the source (called 

‘si’) and the other representing its dynamic properties (called ‘S2’.). The average point 

mobility magnitude was chosen as dynamic property parameter, while three 

alternative forms for the active property parameter have been investigated. The power 

cannot be predicted exactly from these simplified characterisations, so whether the 

chosen pair ‘si’and ‘S2’ is good or not good, depends on the range of uncertainty in 

the predicted power.

A major part of the work is concerned with calculating % confidence limits for the 

three chosen parameters. Real structures cannot provide sufficient data to construct 

these bands, so one of the main novelties is to introduce the idea of ‘generic’ 

structures. Here different types of structural behaviour (for example rigid mass, 

strongly resonant behaviour etc.) are characterised by certain ‘rules’. The elements of 

the source characterisation are then varied randomly, but in accordance with these 

rules so as to produce data representing a large number of abstract, but plausible 

sources. When combined with similar ‘generic’ receiver structures the statistical



variance in the predicted power is found. These probability bands will provide insight 

into the global behaviour of the source after knowing the two parameters (si and S2).

Using the probability bands the active power emission from practical machines into 

various plate receiver structures was then calculated. The results show that the ‘single 

figure’ characterisations give better accuracy than some other methods which use 

more data. For low mobility receivers, the active parameter based on blocked force 

gives the best results, and can even be used on its own as a ‘source strength’ 

parameter to rank sources. This has practical application for example for machines 

installed on concrete floors. For matched cases (sources and receiver mobility of 

comparable magnitude), the active parameters based on the Characteristic Power of 

the source are most successful.

It was also found that, except for the case of rigid mass sources on stiffness receivers, 

the Characteristic Power of the source provides practical upper bound to the emission. 

This has potential application in many practical cases.
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CHAPTER 1

INTRODUCTION



Introduction

All machines generate vibration when run to achieve a specified task. The types of 

machines considered here are generally a combination of components which can 

perform the specified function, e.g. a fan used in building services includes the fan 

impeller, motor, fan belt, and frame etc., a washing machine includes motor, drum, 

and frame, and an engine on a ship could similarly be broken down into components. 

However, the components themselves are not usually of interest to the purchaser who 

buys the machine as a single unit. Rather it is the net effect of the machine that is 

important, and an increasingly important (usually unwanted) effect of machines is the 

noise they transmit to their surroundings. Vibrational energy from machines is 

transmitted into the media surrounding the machine, into the air, and into supporting 

structures, which are hence called ‘receiver structures’, e.g. the structure of a ship or a 

concrete floor supporting a fan. The vibrational energy subsequently propagates 

through the medium, from one medium into another (especially from solid structures 

into the air), and finally arrives in a human environment, e.g. a place of work or study, 

in the form of noise. Since it is almost always people who receive the noise, the main 

frequencies of interest are those defining the audible range for humans, i.e. 

20Hz~20kHz.

The noise emitted can be classified broadly as airborne, structure-borne, or fluid- 

borne. The concepts of airborne and structure-borne sound sources will now be 

clarified. Referring to figure (1-a): we assume that A is a machine that connects with 

nothing except air. If the noise at point B is due only to machine A then we can call 

the noise at point B ‘airborne’ noise. Correspondingly, machine A is defined as an 

‘airborne sound source’.
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Referring to fig(l-b): here machine A contacts with a solid structure C as well as the 

air. If the noise at point B is due to only machine A there is now not only airborne 

noise but also structure borne noise at point B. Machine A is not only an airborne 

sound source, but also a ‘structure-borne1 sound source.

The definitions ‘airborne’ and ‘structure-borne’ therefore correspond to the medium 

into which vibration energy is transmitted from the machine at the point of origin. 

This thesis is concerned with structure-borne sound.

Having defined noise at an arbitrary receiver point as airborne or structure-borne 

noise, the concept of ‘source’ must also be clarified. In figure (1-2), A is a motor, and 

C is a connected solid medium. If A is determined as a 'source', then the noise at B is 

called the sum of airborne and structure-borne noise. However, if A and C are 

considered as a whole, and this larger structure is considered to be the ‘source’, then it 

is an airborne noise source only. Hence, whether the sound is considered to be 

airborne or structure-borne in origin depends on how the source is ‘separated’ from its 

surroundings.

The acoustic consultant or noise control Engineer often needs to address noise 

problems at the design stage and make a prediction of sound levels in noise sensitive 

spaces, so ‘noise sources’ are naturally of interest. When considering the noise source 

the questions arises of which parameters of the source influence the resulting noise 

levels, in other words what kind of parameters ‘characterise’ the machine as a source 

of sound.
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In the case of air-borne sound, the influence of the source on the ‘noise level’ can be 

represented by one parameter, i. e the sound power. Hence, in the case of the air - 

borne noise, the sound power is a suitable physical parameter to characterise the noise 

source. However, since the paper ‘Urgent need for structure-borne sound source data

[1] was published twenty five years ago, the problem of characterisation for structure 

—borne sound sources still remains. There are several national and international 

working groups ( e.g. In 1980 the International Organisation for Standardisation (ISO) 

established the working group (ISO TC 43 SC 1/WG 22) concerned with the 

formation for standards for characterisation of structure—borne sound sources. 

Various approaches have been tried as now described.

Free velocity has been developed to an ISO standard [2]. Velocity is measured at the 

contact points of the yet to be installed machine while it is resiliently suspended and 

while it is operating normally. It is clear that two sources with the same free velocity 

at any contact point could give very different noise levels when installed, because the 

noise level is not only dependent on the 'active' properties (free velocity) but also on 

the dynamic properties (e:g. mobility) of the source. Even when two sources look the 

same or similar they may have very different dynamic properties as shown for 

example by Bernhard [3,4]. Another problem is that too much data is required for 

practical use when the source has many contact points.

The blocked force theoretically offers similar advantages in terms of simplicity, but 

has the same problems as above, i.e. two sources with the same blocked force could 

potentially give very different noise levels when installed. Both the free velocity and
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blocked force methods could be described as 'activity' methods, in that the parameter 

measured describes just the vibrational 'activity' of the source but not the dynamic 

properties. (In this context ‘dynamic’ properties are those of the inactive source, for 

example mechanical mobility, as distinct from ‘active’ properties which relate to the 

source in operation). An equivalent force was proposed [5-7], and can be understood 

as another activity method, but there are still the same problems as above.

The reception plate method [8] is to attach the vibrational source under test, through 

the proposed contacts and supports, to a passive structure such as a thin plate, the 

average response of which is then measured. However, even if the average response 

of the plate can be accepted as directly related to the radiated noise level, the average 

response itself is dependent strongly on the dynamic properties of both source and 

receiver, which could vary considerably in the general case [9].

Ohlrich proposed an equivalent power [10], i.e. surface source power. Based on his 

investigation this power value is insensitive to the receiver structure. However, this 

finding by itself does not prove that the surface source power is a good 

characterisation of the structure-borne sound source, for example the consumption of 

electric power of a source is insensitive to the installed environment, but is at best 

only weakly related to structure-borne sound.

In theory, the source mobility matrix and free velocity vector (or blocked force) at the 

contact points can be given as a complete characterisation. We can describe 

approaches based on this data set under the general heading of 'mobility methods'. 

Mobility methods can be seen as an extension of the free velocity (or blocked force)
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methods in that the free velocity (or blocked force) vector is supplemented by a 

dynamic description of the source through (usually) the mobility matrix. When these 

parameters are determined, the properties of the structure-borne sound source are 

determined. For example when a source is installed on the floor, the force at the 

connection points applied to the floor can be determined after knowing the floor 

mobility matrix, and finally, the sound pressure magnitude \p\ can be determined 

[11].

However, there is a practical problem in that the source mobility matrix and free 

velocity (or blocked force) vector for characterising structure-borne sound sources 

contain too many elements (each of which represents a physical parameter that must 

be determined). It is not convenient for practical use. Therefore, there is a need for a 

simplified characterisation of structure-borne sound sources. According to the above 

logical steps (source characterisation —» interface force —» sound pressure) it looks 

difficult to simplify the characterisation, because the ‘interface parameter’ is a 

complex force vector. However, there is one phenomenon that helps us to simplify: 

this is that the vibrational power transmitted from the machine into the supporting 

structure is a good indication of the seriousness of the structure-borne sound problem. 

Mathematically we can say that the structure-borne sound pressure magnitude can be 

expressed as:

\p \= m ,p) (i-i)

where P is the active power from the source into the supporting structure, while R is 

a set of parameters which depend on the surroundings of the installed source, and /  

is a monotonically increasing function with P .
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Even though equation (1-1) is not always strictly correct, it is still accepted in most 

studies [12-15]. Therefore, in this thesis, the problem of simplified characterisation of 

structure-borne sound sources is based on the principle that the active power emission 

is considered the ‘target quantity’. Consequently, a source characterisation is defined 

as a set of data that allows the emission to be predicted when combined with 

appropriate data to describe the receiver.

The mobility methods described above fulfil the requirement for a source 

characterisation and so will be the basic approach adopted. However, the search is not 

over, because the active power is still a function of the mobility matrix and free 

velocity vector, and the problem of how to contract so many elements still remains.

If the active power from the source into the receiver is insensitive to the receiver (as is 

usually the case for airborne sound sources), then the many elements can be 

contracted into one parameter for characterisation of the source, i.e. the active power 

emission from the source into a reference receiver (in the airborne case the 'reference 

receiver' is air at standard temperature and pressure, and the power is the sound 

power). However, unfortunately, it is generally found that for structure-borne sound 

sources the active power into the receiver is strongly dependent on both source and 

receiver.

Therefore, there is a theoretical problem in using one physical parameter to 

characterise the source. As discussed in chapter 2 even for idealised cases with one 

contact point and one dimension, we can still not characterise a structure-borne sound 

source by a single physical parameter. For example the free velocity strongly



influences the active power emission, but it cannot be the only parameter to 

characterise the source, since two sources with the same free velocity could give 

completely different power emission when installed, if they have different dynamic 

properties at the contact point. If we construct a new physical parameter by using free

a - A ,2
velocity and mobility, for example using the parameter s = f(Vsf,Ys) = \vsf\ /|rv|, again

two sources with the same S will in general give different active power emission 

when installed, because their dynamic properties differ. So, if free velocity is not 

adequate as a single parameter to characterise a source then by the same logic neither 

is ‘ S ’. It seems that it is necessary to keep the dynamic property parameters. For the 

case of single point and one dimension, it may be practical to keep all active and 

dynamic property parameters. However, for multiple-point cases (practical cases) the 

active and dynamic property parameters are too numerous for practical use. The work 

to contract or reduce these elements (characterisation data) is therefore important for 

practical cases.

It is obvious that reducing the characterisation data implies a ‘cost’ in terms of 

uncertainty in the predicted emission. One might think that the greater the reduction in 

the characterisation data the greater the ‘cost’ in accuracy. However, this is not 

necessarily the case: some ‘small’ data sets may be less ‘costly’ than other larger sets. 

Hence, it has practical meaning to find a set of characterisation parameters containing 

less data, while the ‘cost’ in terms of uncertainty is kept to a minimum. This thesis is 

therefore concerned with simplified characterisation of structure-borne sound sources 

with multiple contact points. The objective is to investigate the cost (in terms of 

uncertainty) of simplified source characterisations, in particular those consisting of a 

single ‘active’ and a single ’passive’ parameter.
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Chapter 2 reviews some basic concepts and gives a broad definition of source 

characterisation and source strength. Based on the definition, three alternative 

possible forms of source characterisation data are proposed. In Chapter 3, the case of 

multiple point contact is considered. The ‘single figure’ method for characterising the 

source is proposed, i.e. the many elements needed to fully characterise a source are 

collapsed into two parameters, one ‘active’ property (containing ‘strength’ 

information about the source) and one ‘dynamic’ property. This simplification 

inevitably implies a range of uncertainty in the predicted power, and the following 

chapters are dedicated to investigating this range. In Chapter 4, the concept of 

‘generic’ structures is proposed as a tool to investigate the range of uncertainty. Here, 

the properties of the mobility matrices and free velocity vectors for four types of 

source are derived together with the mobility matrices for four types of receiver. In 

Chapter 5, these ‘generic’ sources and receivers are combined and probability bands 

for the predicted power are evaluated. Three sets of results are produced, 

corresponding to the three alternative forms of source descriptor proposed. Chapter 6 

studies the prediction of active power from typical practical machines into various 

receiver types in order to validate this approach. Overall conclusions are given in 

Chapter 7.

9
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Figure 1-1 a: Air-borne noise source, b: Air-borne and structure-borne noise source.
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•*- wall
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Figurel-2 The noise at B is called air-borne noise, if  A and C are considered as a whole source. It is a 

sum o f air-borne and structure-borne noises when motor A  is only the noise source.
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2.5 Conclusion

L
12



2.1 Introduction

The first objective of this chapter is to review some basic concepts. Secondly, since 

there is some confusion generally about characterising structure-borne sources, the 

concepts of ‘source strength’ and ‘source characterisation’ are presented and 

compared.

The starting point for this chapter is that the vibration power emission from a source 

into a receiver is the quantity that best describes structure-borne excitation. This 

premise has been justified in Chapter 1, and has formed the basis for enough studies 

that it does not need further justification here.

2.2 The vibration power emission

The instantaneous vibrational power at a point and the ith direction is defined as the 

product of the instantaneous force and velocity vectors at that point (and direction) 

P,=F(t)V(t) (2-la)

The average over time can be written in the form of an integration over time:

p =y I  m v m  (2-ib)

If the force and velocity are assumed to have a harmonic time dependence

F(t) = F0 cos(cot + </>F) = Re\F0eJ*'eJ* }
V(t) = V0 cos (at + <f>v) = R e fo e ^ V " } ’

then the average power over a period can be written in two basic forms using either 

the cosine of the relative phase or the real part of the product:

P = \ F 0V0 cos{(/>f ~ A )  = \ Re(F.F*) = Re(F.F*) (2-3)
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where F = F0eJ*F = 42 F  and V = VQeJ*v = 42V  are complex force and velocity, and 

* denotes complex conjugate. The magnitude of F is the rms value of force F(t) ,

A

and the magnitude of V the rms value of velocity V (t). The product of the complex

force ( F ) and complex conjugate of the velocity( V ) is called the complex power 

emission. The real part of the complex power is the average active power over a 

period. Physically the real part represents power which propagates away from a point 

whilst the reactive power represents power which oscillates at the point with no time 

averaged net flow.

2.2.1 Single point drive

If the passive structure is driven only at one point and in one direction then the 

velocity can be expressed as:

V = FY - F I Z

where Y is the mobility and Z the impedance of the structure, which are dynamic 

properties of the structure and independent of the driving force. After introducing the 

mobility or impedance, equation (2-3) can be rewritten as (2-4)

P = ^ |F |2Re(T) (2-4a)

or

P = I |F |2Re(Z) (2-4b)

Since mobility and impedance are structural descriptors these equations highlight that 

the vibrational power is dependent on both the exciting structure as well as the 

‘activity’ of the source.

14



2.2.2 Multiple point drive

Consider a passive structure driven at N points and in J directions. The velocity can be 

expressed as:

(2-5)
n

where [Y™ ] is defined as follows

(2-6)

If the two vectors coincide in both point and direction the above is termed a point

mobility, whilst if the two vectors coincide in point only the mobility is termed a cross 

mobility. If the vectors are of different points but of the same direction it is called a

cross-transfer mobility

In general a mobility is complex and frequency dependent and is a function of the 

structure’s material properties as well as its geometry and boundary conditions. 

Analytical expressions for mobilities exist only for simple structures such as plates, 

beams and cylinders with classically described boundary conditions ie. free, simply- 

supported, clamped, guided [16-17]. For more complicated structures mobility must 

be obtained either experimentally [18] or using ‘numerical methods’[19],

The total power into the structure can be given by (2-7) 

i> = iR e[F ]-r[y” ]-,'[f:J (2-7)

where [F] is a column vector with NxJ element, [F™ ] is a matrix with NxJ rows and 

NxJ columns. T is the transverse.

transfer mobility and if both point and direction are different the mobility is termed a

15



Analogous to mobility functions are impedance functions. In general they are defined 

as the ratio of a resulting force to an applied velocity.

Z nm = F"
V ym 

j

s *  j  l (2-8)
v =o

It should be noted that the dynamic condition prescribed for a mobility measurement 

is that the other points are free (see equation 2-6) whilst for an impedance it is that the 

other points are blocked (see equation 2-8). So Z”m is not the inverse of Y™ but the

mobility matrix is the inverse of the impedance matrix i.e. [Y™ ]"’ = [Z™ ]. Therefore, 

the total power can be rewritten as the following:

P = ^  Re[F] *r [Z™ ] [V ] (2-9)

For experimental studies the mobility functions are therefore more convenient. Hence, 

to facilitate the use of experimental data the concept of mobility rather than 

impedance is used.

2.3 Single point unidirectional source-receiver system

When a machine source is put onto the supporting receiver, vibrational power flows 

through the contact points into the receiver structure. The power can be estimated by 

using Equation (2-3) or (2-4), but the force and the velocity are dependent on both 

source and receiver structures. For prediction of the power, enough information about 

the source and receiver is therefore needed. Machines generate vibration when in 

operation due to internal unbalance and other mechanisms which are complicated and 

generally unknown. Even if they were known, knowledge of the structure of the 

machine is still required. So in most practical cases, the whole source is considered as 

a ‘black box’ (this is widely accepted, see for example[8]), the inside details of which

16



are not of interest, while the activity and dynamics of the feet (proposed contact 

point(s)) only are considered.

The measure proposed for the source activity is the free velocity. It is defined as the 

velocity measured at the point of interest whilst the source is run under normal 

operating conditions but suspended in free space. In some practical cases a good and 

convenient approximation to free space can be used [20-21].

2.3.1 Vibrational power into the receiver

It is known that the power at the source-receiver interface is obtained from the

velocity and force at that point. From the point of view of the source, the velocity at

the interface of the source and receiver, vs>> can be written as the sum of the free

velocity due to internal vibration of the source VfS and the velocity due to the force

from receiver applied to the source Fs

Vs =Vs f+YsF s (2-10)

and from the point of view of the receiver

K = K F r (2-11)

where Ys is the point mobility of the source at the contact point, Yr is the point 

mobility of the receiver, and Fr is the force from the source applied to the receiver.

From continuity, Vr = Vs, and according to Newton’s principle Fs = -F r .

From equation (2-10) and (2-11), expressions for the force applied to the receiver

F. =
Y r+Y,

(2- 12)

and for the velocity,

17



=  v.V. = Sf

Y.+Y.
r (2-13)

are obtained.

The complex power at the interface is obtained by substituting into Equation 2-3:

Q = i K
2 I Y.+Y. 2 (2-14a)

The active power emission is the real part of the above:

P = R e (0  = 2 Re(Tr) 
\Y + Y\2r r  ' *s\

(2-14b)

Therefore the power transmission can be predicted from the velocity of the free 

source and the mobilities of the source and receiver.

From equation (2.14) the maximum power is imparted when the source and receiver 

mobilities have equal magnitude and are out of phase ie.;

Ys = -Yr (2-15)

In this case the power will be theoretically infinite, but in practice the real part of the 

mobility is always positive so expression (2-15) is not satisfied. For a given source the 

maximum active power transmission from source to receiver can be imparted when 

the receiver mobility is just the complex conjugate of the source mobility ie.;

This can be proved as follows.

Let Yr=xr+jyr Ys=xs+jys where xr, yr are the real and imaginary parts of the receiver 

mobility, and are real and imaginary parts of the source mobility. Equation (2- 

14b) can be rewritten as

1R e (0  = i
2 (* ,+ * ,) +(>’, * y ,) sf\ (2-15)

18



(2 -16a)

d R e (0  _ 1 ip |2 xr(ys + yr)2 
fyr 2' 5/1 ((xJ +xr)2+0'J +yr)2)2

(2-16b)

when xr=xs and yr=-ys the right hand side of equation (2-16) equals zero, so the active 

power transmission has reached a turning point, and from equation 2-14 this clearly 

corresponds to a maximum value.

2.3.2 Source characterisation and source strength

To be clear, first we will give a broad definition for source characterisation and source 

strength (here not limited to structure-borne sound source). If the physical parameter 

L is considered (L is called a ‘target quantity’), and it can be expressed as the 

following function.

where r x,r2,...rm are physical parameters dependent on the surroundings of the 

installed source, sx,s2,...sn are physical parameters independent of the surroundings 

of the installed source that can be determined before the receiver is known. We can 

call the physical parameters sx,s2,...sn a ‘full source characterisation’ in relation to

the target quantity L. For example, to calculate the cost of running an electrical 

appliance the electrical energy used per day is of interest. It can be expressed as:

L = tW (2-18)

where L is the electric energy, W is the electric power of the source, and t is the time 

for which it is used. The physical parameter W is called a full source characterisation 

with reference to the electric energy used. In this example the target parameter and 

source characterisation are different kinds of physical parameter: they have different

I  = /(J?,S) = / ( r „ r
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units, even though the electric power of the source is related to the electric energy 

consumption.

If equation (2-17) can be written in the following form;

where Sc. is a physical property of the source, and if the function is monotonically 

increasing with Sc, then the physical parameter Sc is a quantity describing the 

‘strength’ of the source.

In airborne sound a parameter of frequent interest is the power radiated from the 

surface of a source into the air. The power radiated can be written as;

wherer x,r2,...rm are physical parameters dependent on the environment surrounding 

the installed source, such as the density of air, the temperature of air and so on. In 

practice, the sound power radiated is insensitive to r x,r2,...rm, or in another words, the 

physical parameters r x,r2,...rm can be considered as constant. Therefore, in practical 

cases, expression (2-20) can be rewritten as;

The right side of expression (2-21) is a function of the source. The value of the 

function is denoted Wc, which can be measured without reference to any particular 

installation (this kind of data is called ‘available data’). So Wc can be considered as a 

strength characteristic. In this case equation (2-2la) can be rewritten as:

x,r2,...rm,sxs:■m,sxs2,...si ....sn) (2-20)

(2-2 lb)
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Equation (2-2lb) is a special case of equation (2-19). Now, if we consider as a target 

quantity the noise level at some position inside a room rather than the sound power 

inside the room, this problem will be more complex. However, it can be still written 

in the following form:

LP = f ( r vr2..rm,Ps) * f ( r vr2..rm,Wc) (2-22)

where r x,r2,...rm are parameters which are strongly dependent on the surroundings of

the installed source. So, the sound pressure at the position of interest is not only 

dependent on the source but also strongly dependent on ‘receiver’ parameters, such as 

the thickness of walls, the position of source, the distance between the source and 

‘receiver’, and absorption factor of the walls, and so on. Nevertheless Wc is still a 

‘source strength’ parameter with respect to the noise level at any position. It is also a 

quantity suitable for comparison of sources from an acoustic point of view, the best 

one having the lowest Wc, since by comparing sources it is assumed that they will 

work in the same surroundings. From the above example, it is shown that a quantity 

for describing a source by means of a ‘source strength’ can have different units to the 

target quantity. Whether a physical property of the source can be considered as the 

source strength is not a question of whether it has the same units as the target 

quantity, rather it depends on whether the relationship between the target quantity and 

the physical parameter of the source satisfies expression (2-19).

Now we return to the case of structure-borne sound. Here, the active power 

transmission from source to receiver is taken as the target quantity. Equation (2-14) 

illustrates that the target quantity is not dependent only on the source but is sensitive 

to the receiver. It cannot therefore be written in the form of equation (2-21) in general. 

This sensitivity to the receiver is an inevitable consequence of accepting the active
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power as the target quantity. It is completely futile to try to seek a physical parameter 

which is independent of the receiver in order to reduce this ‘sensitivity’. For example, 

consider a machine source ‘A’ on two different receivers where the active power from 

source ‘A’ into receiver ‘R l’ is PAm, while the active power from source ‘A’ into 

receiver ‘R2’ is PAR2. Let the power PARX be ‘x’ times the power PAR2. This factor ‘x’ 

is not changed no matter how we chose the physical parameters (independent of the 

receiver) characterising the source.

Mondot [ 22] rearranges the expression (2-14) into the following form; 

P = R e (0  = Re(S.C/ ) (2-23)

where S  depends only on source data, and has the following form:

S  =  -
sf (2-24)

Cf  describes the dynamic properties of the contact point between the source and 

receiver and is a function of the source and receiver mobility at the interface,

Y'Y
C f  =  '  r ~  (2-25)

It + 7 1

or in another form:

C / = - ^ L -  (2-26)
|1 + a\

where

a  = I I
ys

a e (2-27)

S  is called the ‘source descriptor’ and C^the ‘coupling function’.
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Mondot has conducted several simple experiments based on (equation2-23) and 

various other authors have discussed this formulation.

In the author’s opinion, from the point of view of estimating the power transmission, 

the introduction of the source descriptor and the coupling function cannot give any 

new content. Firstly, in order to estimate the transmission three sets of data are 

needed, (the variable a  cannot be provided as an independent variable):

I) source descriptor S

II) source mobility at the proposed point Ys 

HI) receiver mobility at the proposed point Yr.

Secondly, the source descriptor S is obtained based on the free velocity and source 

mobility, so the results of estimating the transmission by using equation (2-23) are 

exactly the same as with equation (2-14b), but using equation (2-23) is more 

complicated than using equation (2-14) (one more multiplication and one more 

division). Therefore, calculation of the power transmission cannot be simplified by 

the concepts of source descriptor and coupling function. It does not give a good 

reason for the introduction of the concepts of source descriptor and coupling function 

no matter how good is the agreement between the measured and estimated 

transmission by using equation (2-23).

The results of estimating the transmission based on equation (2-23) cannot indicate 

that the source descriptor S in equation (2-23) is a better quantity to describe the 

source structure than the square of free velocity. If we define the first item on the right 

hand side of equation (2-14) as a ‘source descriptor’ and the second as a ‘coupling 

function’ then equation (2-14) can be written in the form of equation (2-23), i.e.
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S still depends only on source data in equation (2-28), Cf  still describes the dynamic 

properties of the contact point between the source and receiver and is a function of the 

source and receiver mobility at the interface. The result of estimating the transmission 

using (2-28) is the same as with equation (2-23) without any assumption about the 

interface.

The results of estimating the transmission based on equation (2-23) cannot indicate 

that the source descriptor S in equation (2-23) can be considered a ‘source strength’ 

characteristic. In equation (2-23) the coupling function is not only a function of the 

receiver mobility, but also concerns another physical parameter of the source. 

Therefore, the power transmission cannot be written in the form of equation (2-19). 

However, the source descriptor S has some value in that it has the same units (power) 

as power emission, so it can give an idea of the relative importance of different 

components of excitation, for example forces and moments. Also, it will be seen later 

that in some cases the source descriptor S is more reliable than the free velocity or 

other parameters as a source strength parameter.

It is of interest to establish which of the ‘source descriptors’ in equation (2-23) or 

equation (2-28) (square of free velocity), or another parameter is better as a source 

strength characteristic.

In a similar manner to above it is possible to define various combinations of source 

descriptor, S and coupling function in which S depends only on source data and the

P  =  R e ( S .C f ) (2 -28)
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coupling function is a function of the source and receiver mobility at the interface. 

Some alternative forms will now be considered.

The power transmission can be rewritten in different forms:

P = R e (0  = Re

P = R e (0  = Re-

Yr +Ys

2 Rs(l'«) M
y . \ |i+«l'

,2 i i2
y,+ y. \y,\

= Re(r„)
|l + a\

sb

Y Y *
P = R e (0  = Re(-----

I yr + ys

fi
-) =

R  e ( T „ )  \a\

„  2

V fs

W  | !  +  a | !
Y  *
1 s

(2-29)

(2-30)

(2-31)

A A /

where the blocked force, Fsb = Vfs ¡Ys , has been introduced.

Equation (2-29), (2-30), and (2-31) can all be written in the following form: 

P = Rc(Sg.Cgf ) (2-32)

where Sg can be called a ‘general source descriptor’ and C ^  a ‘general coupling 

function’:

\Y,+Y,

sb

s *  = i r ; , c , = Y , r s ip t +Ys

for expression (2-29) 

for expression (2-30) 

for expression (2-31)

Alternatively, we can write:



R
2

For expression  (2 -29)
Re(r*) H

i ,2 > 1 i x
\Yr \ l + a|

i? = Re(7s ), / = 2 For expression (2-30)
|l + a\ 2 ’

For expression (2-31)

Expression (2-32) means the power transmission from source into the receiver can be 

expressed as the product of three terms. The first is dependent only on the receiver 

structure, and indicates the ability of the receiver structure to ‘absorb’ power. The 

third indicates the ‘ability’ of the source to deliver power, while the second item is 

here called a ‘link function’ and depends on both source and receiver. A general form, 

which includes the above definitions of Sg Cgf is as follows:

where x can be any number.

If the link function / is not sensitive to the variable a, in another words if the curve 

1(a) is flat and approximately equal to a constant y, then the emitted power can be 

rewritten as:

P = R fi  (2-35)

in which case S can be considered a source ‘strength’ characteristic since equation (2- 

35) has the same form as equation (2-19).
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If the ratio of the receiver to source mobility is small, then the link function can be 

approximated:

I |2
, \a \ | ,2/j = 2 « \a\ for expression (2-29)

|l + a|

l2 = — -—-  « 1  for expression (2-30)
|l + a|

\a\ , .
/3 = — — — y  » p| for expression (2-31)

|l + a\

This shows that l\ is highly sensitive to a, and h is proportional to a. Only the link

« 2
function h  is not sensitive to a. Therefore, only S 

characteristic for this case.

is a valid ‘source strength’

Consider the example of two sources, A and Al, whose mobility is much greater than 

that of the receiver (this is very common in practice). If the magnitude of the blocked 

force for source A is greater than that of source Al, then the power transmission from 

source A into the receiver will be greater that of source Al, i.e. a rank ordering of 

sources based on blocked force will correspond correctly to the emitted power when 

installed. However, if another source descriptor is used, for example

, it is possible that the power transmission2 / *
A 2 / •

S «L  = y  pa t Y‘ ypAi

from source A into the receiver will be less than that of source Al and an incorrect 

rank ordering could be obtained. Therefore, in this case the source descriptor in 

equation (2-30) (square of blocked force) is a more proper representation of the ability 

of the source to deliver power than the source descriptor in equation (2-31).

Similarly, if a  is much less than unity, the link functions are as follows:
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1 for expression (2-29)*.=■
\ a \

1 +  a \

12 =

a

for expression (2-30)

for expression (2-31)

h  and h are sensitive to a, but l\ is not. Therefore, only Sg = V.4 is a valid ‘source

strength’ characteristic for high mobility receivers.

Shown in Figure 2-1 is the ‘normalized active power’, (defined as the ratio of active 

power to the magnitude of the general source descriptor), plotted against \a\. Figure 2- 

la corresponds to equation (2-29) where the ‘source descriptor’ is taken as thé square 

of free velocity, figure 2-lb correspond to equation (2-30), where the ‘source 

descriptor’ is the square of the blocked force, and figure 2 -lc corresponds to equation 

(2-31) where the source descriptor has units of power. It can be seen from figure2-la 

that in the range of \a\ > 1 0  the coupling function curve is very flat, the eight lines for

various relative phase angles of the source and receiver are virtually indistinguishable. 

This means that if the magnitude of the. receiver mobility is over ten times that of the 

source mobility then two sources with the same free velocity will give the same power 

transmission from source to receiver irrespective of the source mobility. Over the 

same range, the normalized power in figure2 -lc has a slope, such that if two sources

have the same source descriptor N 7 M ’ the power transmission will be different,

when they have different mobility. This confirms the previous conclusion that the 

square of the free velocity is a more proper ‘source strength’ parameter that IfJ / k/  .
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The square of the blocked force is the worst of the three parameters for comparison of 

source ‘strength’ in this range (|« |> 10) because the coupling function in figure 2 -lb 

has the steepest slope.

For the case |a|<0.1 the opposite results are obtained, i.e. the square of the blocked 

force is the best and free velocity the worst parameter for comparison of sources. In 

the range of 0 .1<|a| <10 , the problem will be more complex, since none of the curves 

are flat.

Consider the points D and D1 on figures 2-1, which again represent two sources with 

different mobility. Their normalized active power is about ldB different in figure 2-la 

while in figure 2-lc the difference is about 5dB and in figure 2-lb it is about lOdB. So 

here, the square of free velocity is still the closest parameter to being a valid source 

strength characteristic. The points A and A1 represent another two sources with 

different mobility. Their normalized active power differs by 2dB, 7dB and lOdB in 

figures 2-la-c respectively. So here, the square of the blocked force is the best 

parameter to use as a source strength. Points B and B1 represent two sources which 

are well matched to the receiver. In figure2-lc the differences in normalized active 

power are 5dB, 2dB and 6dB, indicating that the source descriptor \vsf\lYs' is the best

one in this region.

By comparing a group of sources the receiver is considered fixed so the shape of the 

link function curve is the same as that of the coupling function.
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Any number of rearrangements of equation (2-14) can be made in theory, but not all 

of these are of practical use. For example, if we let x=4 in equation (2-34) then the 

corresponding general source descriptor will be written as :

S = 2-4 = Y\ V.
sf (2-36)

and the coupling function will be

Yr I a\x
(2_37)|7*| |l + a|

Again, here the source descriptor depends only on source data and the coupling 

function is a function of the source and receiver mobility at the interface. The power 

transmission can still written as the product of the source descriptor (equation (2-36)) 

and coupling function (equation (2-37)), without any assumption about the interface. 

The results of estimating power transmission based on the source descriptor 

(equation2-35) and coupling function (equation 2-36) is exactly the same as using 

equation (2-31). However, the definition in equation 2-36 cannot be used as a source 

strength because the corresponding ‘normalized power’ is sensitive to the variable a. 

Furthermore, its physical meaning is not clear so it does not give any new insight. 

Therefore, equation 2-36 is a valid, but not particularly useful form for the source 

descriptor.

2.4 Remarks and discussion

It has been argued that rearrangement of equation (2-14) so as to introduce the source 

descriptor and coupling function does not help in estimating the power transmission. 

Some authors [23] have taken good agreement between measured and predicted 

power as proof that a particular form of equation (2-14) is valid. This is a mistake
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however, since if the linearity assumption is satisfied then any combination of the 

same data will produce the same answer. It is argued above that it is the sensitivity of 

the ‘general normalized function’ (or link function) to a  that determines whether a 

particular form of source descriptor are useful.

2.5 Conclusion

A broad definition of source characterisation and source strength been introduced. 

The active power emission from the source into the receiver is considered the ‘target 

quantity’ i.e. the required solution to the structure borne-sound transmission problem. 

The characterisation of structure-borne sound sources, and the more restricted 

concept of source strength were discussed for the single point unidirectional case.

It has been shown that the active power emission can be expressed as the product of 

the ‘general source descriptor’ and the ‘general coupling function’ (or coupling 

function). The former depends only on source data and the latter is a function of the 

source and receiver mobility at the interface. Therefore, the general source descriptor 

cannot fully describe the source. It can be used neither as a source strength parameter 

to rank order sources, nor for predicting the power transmission without introducing 

assumptions, because the general coupling function involves another physical 

parameter of the source, namely its mobility. To predict the power emission, two 

source parameters are required, i.e. a full characterisation needs two quantities to 

describe the source. For convenience and clear physical meaning it is proposed that 

one of the two quantities is the source mobility, the other can then be one of three 

physical parameters: the blocked force squared, free velocity squared or magnitude of
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I A I 2
the source descriptor h r  /y ’ . These three quantities can be understood as the 

physical parameters that contain information about the ‘strength’ of the source.

A so-called ‘normalized active power’ was introduced which, when plotted against 

\a\, shows whether the corresponding general source descriptor can be used as a 

source strength characteristic or not. These curves may be helpful to establish the 

most suitable form of general source descriptor in a given situation.

2 .
In the range a  <0.1 the blocked force S = \Fsb I is the best form of general source

descriptor to use as a source strength characteristic, while in the range of a  > 1 0  the

free velocity is most suited, S = Vsf . The magnitude of the source descriptor in

equation (2-31), S = sf is relative good parameter to use as a source strength

characteristic when the magnitude of the source mobility is similar to that of the

receiver.
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Figure 2-la General normalised active power (for free velocity square) against \a\ for various A<|>, 
Re(KR)/|yR|2=0.01 (sN/m) from top to bottom curve:0.87c,0.771,0.67c,0.57i,0.47t,0.37i,0.27r,0.l7i.

A<|), Re(YR)=l ( m/sN) from top to bottom curve:0.87c,0.77c,0.67c,0.57c,0.47c,0.37t,0.27t,0.l7c.
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Figure 2-lc Normalised active power against \a\ for various A<(>, Re(Y/;)/|K/i| =0.1 ; 
from top to bottom curve:0.87t,0.77t,0.67r,0.5n,0.47t,0.37t,0.27i,0.l7r.
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CHAPTER3

SIMPLIFIED CHARACTERISATION OF MULTI-POINT

SOURCES

3.1 Introduction

3.2 The concept of simplification

3.3 ‘Single figure’ characterisation of sources

3.4 Mobility matrix eigenvalues

3.5 The choosing of ‘ s, ’ and ‘ s2 ’

3.6 Conclusion
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3.1 Introduction

Having dealt with single point contact in chapter 2, we now consider practical cases 

where the sources have multiple point connections with up to six degrees of excitation 

per point. For multi-component and multi-point connections the general equation for 

complex power from source into the receiver is:

Q = i t f  r  ([YR ]+[Ys ])-1,r [yr r  ([:yr ]+ [Ys ])-' [Vsf ] 

and the active power is

P = Re([Fs/ ]'T ([F, ] + [Ys ])-'*r [Yr ]*r ([F* ] + [Ys ])"' [Vsf ]

= [Vsf r  ([Yr ] + [Ys ])-'*r (Re[F, ])([F* ] + [Ys ])-> [Vsf ]

where \Vsf ] is the free velocity vector, [YR ] and [Fs ] are the complex mobility matrices

of the source and receiver respectively. If the machine has N contact points and six 

degrees of freedom, then 6N frequency dependent free velocity spectra and (6N)2 

source mobility spectra are required. When reciprocity is considered, the mobility 

matrix is symmetrical about the diagonal, and the total number of spectra of the 

source mobility reduces to 3N(6N+1). Therefore, a total of (3N(6N+1) +6N) data 

elements are needed to fully characteristic the source, and likewise the full 

characterisation of the receiving structure requires 3N(6N+1) mobility spectra. For the 

common case of N=4: the total spectra, required for the source will be 300 mobility 

and 24 free velocity spectra and for the receiver it will be 300 mobility spectra.

In most real cases it is impractical to obtain this amount of data. A common 

simplifying assumption [24-27] is the limitation of the analysis to one degree of 

freedom i.e. it is assumed that one degree of freedom dominates vibration. In this case 

the calculation of power requires N(N+l)/2 mobility matrices for the source, N free 

velocity spectra and N(N+l)/2 mobility matrices for the receiver. However, this is

(3-la)

(3-lb)
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still more than can realistically be handled in the majority of cases, so further 

simplification is needed.

In this chapter we first review some approaches to simplified characterisation of the 

source, with the aim of clarifying the concept of simplification, and of comparing 

these approaches to that introduced in later chapters. The second objective is to 

introduce the ‘single figure’ method for simplified characterisation of sources.

3.2 The concept of simplification

If the target quantity (equation2-17) can be approximately expressed by a reduced set 

of source parameters as:

L « f ( r \ , r \  ,...r', , j ' lt s'2 , $'3>....s'r ) (3-2a)

or if it can be bounded as

,...r', ,s 'lt j ' 2 ,s \....s 'r ) < L < f 2(r \ ,r '2 ,s \  s'2 ,s \ ....s 'r ) (3-2b)

where 5 ',, 5 '2 ,...s'r (r < ri) is the reduced set of source parameters, then this set can be 

considered a simplified characterisation of the source in relation to the target quantity.

3.2.1 Simplified source characterisation based on eigenvalues and eigenvectors

This approach was first suggested in [28], and was later developed in [29], The main 

points are recapitulated below in the context of ‘simplified characterisation’ as 

outlined above.

For N contacts and a single degree of freedom the active power can be rewritten as

p  = [Vsf r  (IYr 1+[Ys ])_1*r (M Y r ])([^  ] + [Ys ])-1 [VSf  ] (3_3)
= <f>'TD</)

where D is the diagonal matrix
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(3-4)
Vx

Vn

and 77, are the eigenvalues of Hermitian matrix H = ([7,?]+17s ])_1*r (Re[yfi ])([rfl ]+[Ks ])“' 

with units of mechanical impedance. ^ is an equivalent velocity vector, which can be 

expressed as:

i (3 -5)

in which [p\ is a unitary matrix ([/?][/?]r* = I) , the ith columns of which 

corresponded to the ith eigenvector of Hermitian matrix H  (assumed to be 

normalized).

Expanding the right side of equation (3-3) one obtains

(3-«>
1=1

Equation (3-6) maybe conceptually helpful, but it does not provide any practical 

advantages over the first relationship in equation (3-3), since all the complex free 

velocities must be known as well as the complete mobility matrix of the source and 

receiver in order to the calculate the eigenvalues and eigenvector. Therefore, equation 

(3-6) cannot be understood as more simple than the relationship in equation (3-3). 

Since [p\ is a unitary matrix, the following relationship is seen to exist between the 

equivalent vector and the free velocity:

¿ |r , | ’ = i w ’ (3-7)
/=1 (=1

By using equation (3-7) in equation (3-6) and remembering that the eigenvalues are 

all real and non-negative the power is seen to be bounded as follows

/=! /=! (3-*)
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Note that rjmin and rjmwi still concern the mobility matrix of the source and receiver,

so if N(N+l)/2 +1 source data and N(N+l)/2 receiver data are provided, a unique 

value for the active power cannot be obtained, only a range of possible values. So the 

result of the simplification is that the data needed for characterising the source is 

reduced (N-l complex spectra are reduced) and the ‘cost’ is obtaining an uncertain 

estimate of active power. .

We can further reduce the data for describing the source, although the ‘cost’ may be 

more: consider that the active power can be rewritten as:

P = F T'Re(YR)F  (3-9)

where F is the interface force vector caused by the interaction between the source and 

the receiver. This is given by

£  = ( f t  ]+ [r , ])-'*>  (3-10)

Similarly to equation (3-8) a strict lower bound for the transmitted power of equation 

(3-10) can be expressed as

P Z ^ ( Z \ f, ) (3-11)
(=1

where Zmin is the minimum eigenvalue of Re(F/;) with units of mobility. By using

equation (3-10) it follows that

(3-i2)
<=i

where

i ^ = ( [ ^ ]  + K ]X [^ ]  + [^])*r (3-13)

It is seen that Yrs is still a Hermitian matrix with non-negative eigenvalues, so we 

have the following relationship
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(3-14)

where is the maximum eigenvalue of matrix YRS and satisfies:

y f i i L  S + I'm | + J Z Z K  + t3'15)
V i*J

Combining equation (3-11), (3-14)and (3-15) we have

P>
(max|yfi>(7 + Ysu

(3-16a)

Equation (3-16) was derived by L Ji [18], but this equation still needs N(N+l)/2 +1 

spectra for characterising the source, which is the same as needed for equation (3-8). 

A modification will now be made to (3-16). Equation (3-15) can be rewritten as:

VIST <max|rM +rSJI\+ ¡ Z X K  +
V >*J

* max|rf l | + max|ys | + |2 ( S E l y^ | 2 + S E l ys^|2)
V <*J >*J

(3-16b)

so Equation (3-16) can be rewritten as

(3-16c)

{max|yfl,.| + max|FsJ +  + 2X Z | rs,j,-|2 ?
V >*J <*J

In equation (3-16c) the source is characterised by three real numbers: 

i) max| Ys ,, |
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«) ZZM
i*J

n . ,1
Hi) Zk

/=i

and the passive receiver structure by only three real numbers:

0 4nm 

ii) max|yR i,.|

i* j

The ‘cost’ of the simplification is that only the lower bound of the active power is 

obtained.

Using the general relationship *Ja2+b2 <a + b (a > 0,b > 0), then Equation (3- 

16c) can be rewritten as

JL, I * |2
y \

P ~ ---------------------, , ~j— , ,2 I (3-17)
{max|yfi,.| + max|ys>i<|+ + p S E l ^ l  Ÿ

V i*j V i*j

Now only two data need to be provided for a simplified characterisation of the source

n ,
o Zk<=i

ii)max|rs>„| + E X Z K J '
V ‘*J

Of course the ‘cost’ is more: the lower bound on the active power is more 

conservative.

3.2.2 Simplified characterisation based on effective mobility

Introducing the effective mobility the active power equation can be rewritten as [30-
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31]

V v l
P = Re(

where Y^nn is the source effective point mobility and Y^nn the receiver effective point 

mobility and can be expressed as :

The first term gives the direct contribution; the second term is the contribution from 

the other points. Ft is the interface force vector caused by the interaction between the

source and the receiver. Equation (3-18) does not provide any practical advantages 

over equation (3-3), since the effective mobility is unavailable without full knowledge 

of the forces. Obtaining the effective mobility is therefore no easier than obtaining 

active power directly, unless some simplifying assumption can be introduced. It must 

be clear that any assumption must be independent of the receiver, otherwise the 

effective mobility is unavailable data. Some possible assumptions are now examined.

a: Unit magnitude and zero phase.[32-33]

Based on this assumption the effective mobility is given by;

The advantages of this assumption are: i) it is simple and ii) the effective point 

mobility can be measured in a single test by using a special arrangement (see figure.

N  r

r s = y  + Y y  —nn *nn /  * rtm (3-19)

N

i= l '™  + I X  (3-20)

3-1).
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b: An alternative assumption is that, the contributions from the N-l contact points 

cancel . In this case the effective point mobility will simply reduce to the ordinary 

point mobility:

This is equivalent to assuming that the contact points are uncoupled [23]. This 

assumption is called the ‘point mobility only’ assumption.

c: Another estimate takes into account both the excitation of the system and its 

structural characteristics. The simplest assumption is that the force at a contact point 

is then given by;

V
F =b

Ys,n
(3-22)

where b is a constant (Fulford [34 ] used this form with b=l). In this case the effective 

point mobility is then given by;

YZ =Y + Ÿ Ynn *nn /  j r,

V Ysf,m  1 S,nn

Vm*n S*mm V" (3-23)

There is a significant difference between the last assumption (equation3-21) and the 

previous two. In the first two assumptions N free velocity and N effective point 

mobility spectra are required, i.e a total of 2N spectra for characterisation of source. 

However, in the last case 3N-1 spectra are required.

3.2.3 Simplified characterization of structure-borne sound sources based on 

poles of vibration

The concept of decomposing force, velocity and mobility onto a base of vibration 

‘poles’ was first introduced by Pinnington and Pearce [35-36]. As above, this work 

will be reviewed from the point view of simplification of the source characterisation.
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The active power for N=2pcontact points can be expressed as 

p  = [Usf r  {[Mp ] + [Mp ])-w  (Re[Mp M M Pr ] + [MP l ) '1 [Usf ] (3-24)

« p

where [C/i/]is the so-called polar free velocity vector, [M{.] is the polar mobility 

matrix of source and [MPR ] the polar mobility matrix of receiver. For example, for the

A

case of N=4 (see figure3-2a) the polar free velocity vector [Usf ] is written as follows.

[Usf] =

Usf,, V*> + »̂/.2 + ŝf, 3 + PSf, 4
_ 1 Kf,t + K f , 2 - K f , - K f A

Usf, ~ 4 K f j - K f a + K f j - K f A
UsfA Kf f - K f , 2 - K f , + K f A

(3-25)

A A A

Usf x is a ‘monopole’ free velocity, Usf 2 and Usf i are ‘dipole’ free velocities, and

A

Usf 4 is a ‘quadrupole’ free velocity. These names are based on the arrangement of the

contact points of figure 3-2a and the obvious analogy to simple acoustic sources.

The polar mobility matrix is:

(3-26)
4

where[O] is a ‘Hadamard matrix’:

[®]=

1 1
-1 -1

1 -1
-1 1

(3-27)

The polar mobility matrix is, in general, an NxN square matrix, and for geometrically 

symmetrical arrangements of the contact points it is diagonal. All field variables can 

be expressed on the polar basis, so force and velocity vectors, as well as mobility 

matrices all have equivalent polar forms. There follows a physical interpretation of 

the polar mobility matrix, which was not given in Pinnington and Pearce’s original 

paper, but is considered to be conceptually useful.
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Consider simultaneous excitation at four points with the four different phase 

arrangements shown in figure 3-2b. The magnitude of the four excitation forces are 

the same, Fx and F4 are in phase, F2 and F3 are in phase, but Fx and F2 are anti -  

phase. Consider the ratio:

_V\ Vi + v$ v4

16 F
(3-28)

where Vl,V2,V3,V4are the velocity responses at the four points of the excited 

structure. They can be expressed in terms of the ordinary mobility 

Vi = YUF + Yn (-F ) + T13 ( -F) + YUF  (3-29a)

V2 =Y2XF + Y22(-F )  + Y23(-F ) + Y24F  (3-29b)

V3 = Y3lF + Y32(-F ) + Y33(-F ) + Y34F  (3-29c)

V4 = Y4lF + Y42(-F ) + r43(-F) + Y44F  (3-29d)

Substituting (3-29a,b,c,d,) into (3-28) 

to
(3-30)

According to the relationship (3-26), R is simply equal to the element M 34 of the polar 

mobility . But from another point of view the four polar forces applied to the structure 

are as follows

P, = Fx + F2 + F3 + F4 = 0 (monopole term)

P2 = Fl + F2 -  F3 -  F4 =0 (dipole term) (3-31 a,b,c,d)

P3 = F, -  F2 + F3 -  F4 = 0 (dipole term)

P4 = F1 -  F2 -  F3 + F4 = 4F  (quadrupole term)

and the four corresponding polar velocity responses are:
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U2 = ^  Vx + V2 -  V3 -  V4 (dipole term) (3-32,a,b,c,d)

u 3 =~(V\ ~ v 2 + v 3 ~V4) (dipoleterm)

“  (K ~ V 2 ~ vz + V4 ) .(quadrupole term)

Therefore, R can be rewritten as

U:
(3-33)

16F othe r polar forces-0

Therefore, the element of the polar mobility matrix M ^  can be interpreted as the 

dipole velocity response to a quadrupole force excitation, with all other polar forces 

being zero. Here, the author calls the transfer polar mobility, in this case from 

quadrupole to dipole. Other elements have similar meaning, (see figure 3.2b). In 

symmetrical cases the polar mobility matrix remains diagonal and each element M pnn 

can be measured in a single measurement by another method (see figure3-l). For 

example M[\ = (F, +V2 + V3 +V4) / (F} +F2 + F3 + F4). In this case the polar

mobilities can be obtained by applying point forces independently, i.e. without the 

need for a special arrangement.

As with the effective mobility described in the previous subsection, use of the polar 

mobility matrix has no advantages over the normal NxN mobility matrix in terms of 

simplification unless some simplifying assumptions are introduced. The simplest 

assumption is that the transfer polar mobility elements can be ignored. Based on this
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assumption the active power can be rewritten in terms of the diagonal elements only

as :

p  = R=(S
\MRm + M S'„n

) (3-34)

So the simplification afforded in this case is that the data for characterising 

(describing) the source is reduced (now only 4 complex and 4 real spectra are 

needed). The ‘cost’ is obtaining an approximate active power, although in the case of 

symmetric source and receiver, Equation 3-34 is exact.

3.3 ‘Single figure’ characterisation of sources

The simplified characterisations of sources in section 3.2 result in formulations either 

that still require much data or give a large a range of uncertainty in the active power 

or both. The approaches in sections 3.2.2 and 3.2.3 require assumptions to be 

introduced, but these cannot be satisfied in many practical cases [34]. Perhaps more 

importantly it is difficult to know whether the assumptions are satisfied or not. 

Despite these simplifications, the amount of data required to characterise the source is 

still too much for many practical purposes, and furthermore does not provide insight 

into the global behaviour of the source, specifically, the ‘strength’ information of the 

source is obscured. For this reason it is hoped to be able to find a simpler formulation.

An alternative approach is here suggested called the ‘single figure’ approach, i.e. like 

the single point case, using one physical parameter s, as a source ‘strength’. Here 

5, contains information about the strength of the source but it is not a true strength 

parameter (as discussed in Chapter 2, see for example equations (2-19)), rather it is
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the active part of a source characterisation. We also need another physical parameter 

s2 to describe the structural dynamic properties of the source. Using s2 and a 

corresponding parameter r2 which describes the structural dynamic properties of the 

receiver we define a new parameter a z . Like the single point case, the normalised 

power emission due to 5, can be plotted against a * . Since some detail is lost in the 

reduction to an equivalent single point, the emission from source into the receiver will 

be a range, i.e. a plot of normalised emission versus a z is a ‘band’ rather than a 

single curve. This means that different sources with the same sl and s2 attached to a 

given receiver may not give the same emission. Here this band will be called the 

‘General normalised active power band’. If the ‘General normalised active power 

band’ is narrow, it means two sources with the same s, and s2 will emit 

approximately the same power into a given receiver, expressed as P «  / (P ,  s, s2).

Then, a rank ordering based on prediction is likely to be a good approximation to the 

true rank ordering when installed. Thus, we can say that the chosen parameters 5, and 

s2 are ‘good’ parameters for characterising the source. If the band is not only narrow 

but also ‘flat’, then, by analogy with the single point case in Chapter 2, 5, can 

considered as a good parameter to characterise source strength. In this case a rank 

ordering based purely on the source parameter si is likely to be a good approximation 

to the installed rank ordering based on emission.

In the single point case, it was shown in Chapter 2 that the blocked force squared, 

source descriptor magnitude |fs/2/ 1'*| or free velocity squared can be used as j ,, and

the point mobility was chosen as S2. The focus of this thesis is on ‘force’ sources, that 

is sources whose mobility is much greater than that of the receiver, and on ‘matched’
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sources, that is those whose mobility is comparable in magnitude to that of the 

receiver. In the former case, the blocked force squared proved to be a good strength 

characterisation for the single point case studied in Chapter 2. In the latter case, the

parameter |* V A ’| was a relatively good strength characterisation of source. It is

reasonable that in the multiple point case we should choose corresponding parameters 

for 5,.

Because of the above discussion it is necessary to know what is the range of 

uncertainty in the target value when using a single figure source characterisation. 

Hence, the following sections, (and indeed a large part of this thesis) are devoted to an 

examination of ‘uncertainty limits’ in the predicted power.

Consider again the power absorbed by a structure when excited by N applied forces. 

The power is given by equation (3-9) which can be rewritten as follows :

;=i

where

(3-3 5 a)

A = -^Y = ÀjXj + X2x] +---ÀNxl , (3-36a)
F

X,2 + JCj H---- X Ln = 1 (3-36 b)

here xi = J l ^ l2 /  F , and X is the 'generalised normalised power', (which may also

be viewed as an equivalent point mobility that accounts for excitation at all points 

[37]). It can be seen that X is bounded:

0 < Xmin <X< Amax (3-37)
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which means that the power into the receiver is between the band of maximum and 

minimum eigenvalues for a given unit total force (not knowing the force pattern). 

Thus, the maximum and minimum eigenvalues determine the upper and lower bound 

of the power, or the ‘100% probability bands’. Thus, we can gain insight into the 

width of the generalised active power band by examining the eigenvalues of the 

receiver mobility matrix, as described in the next subsection.

3.4. Mobility matrix eigenvalues

Figure 3-3 shows the four eigenvalues of the mobility matrix of a plate. They 

correspond to four eigenvectors, (for symmetrical cases, the four eigenvectors 

correspond to four poles: one monopole, two dipoles and one quadrupole, and each 

eigenvalue corresponds to the active power emission per unit polar force). One of 

them corresponds to the ‘maximum’ active power emission, i.e. if the applied force is 

proportional to the eigenvector ,then the active power emission per unit total force has 

the maximum value Amax Similarly, one of the four eigenvectors, corresponds to the 

‘minimum’ active power emission with value Xmm (the remaining two eigenvalues 

have intermediate values). The four eigenvectors describe an ortho-normal basis.

Several regimes are illustrated in Fig 3-3. At high frequency (when the model overlap 

is less than unity [38]) the eigenvalues are relatively close (the higher frequency 

indicates that the 'wavelength size' of the plate is greater. For very high frequency, the 

point mobility tends to one constant value, i.e. characteristic point mobility[39] and 

the transfer mobility tends to zero, so the eigenvalues converge to one value). This
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indicates a relatively well-conditioned system which is not highly sensitive to small 

changes in force pattern. Similar behaviour is expected for shells at high frequencies.

At low frequencies (below first resonant frequency), it is usually considered that the 

point mobility approximately equals the transfer mobility, i.e Y„ « Y:J. If this

condition is met, all except one of the eigenvalues are small (in the case of exact 

equality only one eigenvalue is non zero), and the ratio of maximum to minimum 

eigenvalue (the condition number) will approach infinity. This means the accuracy 

obtained from a single figure descriptor will be poor. However, this is not always 

correct, for example for many cases the receiver displays stiffness behaviour, where 

the condition number can be relatively low (see Chapter 4) no matter how low the 

frequency. Another factor influencing the condition number is the distribution of the 

points, for example when the points are close together, this ratio will be larger [40].

In the region of well-separated modes, the resonance peaks will be sharp. At 

frequencies close to resonance the mobility is dominated by the contribution of one 

mode so there is one dominant eigenvalue, and all others are significantly lower. The 

range between maximum and minimum will then be wide.

From the above we may remark that different types of behaviour are associated with 

wider or narrower ranges in the emission, and this is discussed at more length in 

Chapter 5.

However, by intuition, X cannot be a uniform distribution between Xmax and Xmm , so it 

is of interest to investigate its statistical distribution. In order to do so we need to
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make some assumptions about the forces, the obvious choice is to assume random 

force patterns, which is considered in the next section.

3.4.1 Random forces

Consider the simplest case of two contact points, illustrated in figure3-4. The 

normalised equivalent forces are subject to the restriction x,2 + x\ = 1 which describes 

a unit circle as shown, and which represents all possible spatial patterns of the applied 

forces. It is assumed that the probability distribution around this circle is uniform, i.e. 

that all spatial patterns are equally likely. The structure itself, and the position of the 

applied forces is assumed fixed, so the eigenvalues in equation 3-36 are assumed 

known. Equation 3-36 then describes an ellipse of constant shape, but of a size that 

varies with X . The probability that X is less than a given value X0 is the proportion 

of the unit circle circumference that fits inside the ellipse, that is:

Probability(X <XQ) = ~ ,  where tan^ = J —— (3-38)
2 n  y Aj -  Xq

For example, the probability is 100% for the ellipse that just encloses the circle, and 

0% for that which just fits inside the circle. This result can be extended to three and 

more dimensions. For n contact point the normalised equivalent forces are subject to 

the restriction x2 +x\  + ---X2 =1 which describes a unit n dimensional super-sphere. 

Any set of forces corresponds to a point q(x],x2,- -xn) on this super-sphere. It is still 

assumed that the probability distribution on this super-sphere is uniform. To calculate 

the probability distribution, the following co-ordinate transforms were used: 

x, = cos#, 

x2 = sin#,cos#2
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x3 = sin, sin 02 cos 03

x„_, = sin#, sin#2 • • -sin^n_2 cos0„_, (3-39)

xn = sin 9X sin 92 • • • sin 9n_2 sin Gn_x

9X,92-- -9„_x are the co-ordinates of the point q in the super-sphere co-ordinate system, 

although for more than 2 dimensions a numerical evaluation is required.

In figure 3-5 is shown an example of the probability bands calculated in this way for 

the plate featured in figure 3-3. The 90% probability band is defined to exclude the 

highest 5% and lowest 5% of estimates, and similarly for other values. It is seen that 

at high frequency the band is only 3-4dB wide.

Within the band A has a distribution with long tails (on a linear scale), so that the 

bands become much narrower as the probability is decreased. For example, at lower 

frequencies the 68% band (which excludes the highest and lowest 16% of estimates, 

and is equivalent to one standard deviation for a normal distribution [41]) has only 

one fifteenth the width of the 100% probability band ( i.e. Amax /  Amin = 15 A,_16 /' /l1_84).

3.4.2 Force Patterns due to connection with other structures

In real cases, the applied forces do not display a uniform random distribution, but 

arise due to contact with other structures. The exciting structure will have its own 

characteristics, and we imagine that these will result in certain force patterns being 

preferred over others. In this section we investigate probability distributions for 

structures excited by other structures. The investigation is carried out using 

simulations with idealised structures for which analytical solutions exist.
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Examples are given in figures 3-6 and 3-7, of a beam and plate, excited by another 

beam.1 One of the causes of uncertainty is the position at which the ‘source’ beam is 

itself excited. This can be examined statistically by solving the system many times, 

with the position of the initial excitation gradually moved from one end to the other. 

Each solution gives a different force pattern, and therefore different power 

transmission. However, all these force patterns are expected to be conditioned to some 

extent by the characteristics of the beams and therefore likely to show less variation 

than a uniform random choice.

Results confirm this speculation. Figure 3-6 shows 90% probability bands for an 

infinite beam excited by a finite source beam. As before, the 90% band is defined to 

exclude the 5% highest and 5% lowest of estimates. The 90% band is significantly 

narrower than the range of Amax and XmiD. It is also seen that the average eigenvalue 

provides a reasonable estimate of the centre of the band.

Shown in figure 3-7 are results for another system. Here the receiver is a simply 

supported plate. It is still seen that the 90% band is significantly narrower than the 

range of Amax and Xmin ’

A further difference between figures 3-6 and 3-7 is that the overall level of power 

transmitted into the finite plateis significantly less than that into the infinite beam.

1 Note that although analytical solutions for the mobility of beams are found in the literature, these tend 
to be given as an infinite series of modal functions[42], which is not convenient for computation when 
the series converges slowly. In other cases, the solutions are not suitable for arbitrary forcing and 
response points. In order to avoid these problems the author has derived a full set of closed form 
solutions for beams with typical classical boundary conditions which are given in appendix A.
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This is because the infinite beam receiver has a higher average point mobility real 

part.

3.5 The choice of ‘ 5, ’ and ‘ s2 ’

The examples in the above section show that for the given total force the

active power into the receiver is still uncertain. Especially in the case of high 

condition number, the range of uncertainty of the power is large. However, the 

probability that the power achieves the minimum and maximum limits,

! “ d , respectively), tends to zero. In most cases, the variation

range of X is much narrower than the range [Amm, Amax ]. Therefore, it is logical to 

choose the total blocked force, defined as

(3-40)

as the physical parameter s, in the multi-point case, .i.e. to let CF play the role of

A 2
blocked force squared in the single point case.

The ratio of average point mobility magnitude is chosen as or1 :

<3-4»

i.e. average point mobility magnitude of source is chosen as s2 and that of the receiver 

as r2.

As for the physical parameters which play the role of the magnitude of the source

descriptor Vsf !Y* in the single point case, two parameters have been chosen. The

first is the Characteristic Power as proposed by Moorhouse [43] which is defined as :
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CP1 = w sA ' T[Ysr ' T[vsf] (3-42)

It can be understood as the extension of Mondot and Petersson’s source descriptor to

the multiple point case. For a single point the source descriptor V.4 / Y can be

understood as four times the power from the source into a ‘mirror’ receiver (a passive 

receiver identical to the source), while equation (3-32) has the same physical meaning 

for the multiple-point case.

The second parameter is defined as :

(3-43)

Although the physical interpretation is unclear, it collapses to the source descriptor for

a single point, because the magnitude of 4 / Y* can be written as

2 , 2 2
/Y = V (3-44)

The complimentary parameter, a z is chosen as above.

Once the physical parameters 5,, a z have been chosen, it remains to study the 

corresponding properties of the ‘General normalised active power band’. This will be 

conducted in the following chapter.

3.6 Conclusion

Several approaches for simplifying the characterisation of sources have been 

considered.The eigenvalue approach, although conceptually useful, results in either 

too much data to characterise the source or too large a range of uncertainty of the 

active power or both. The effective mobility approach and the polar approach allow
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some simplification which will inevitably result in some loss of accuracy. It remains 

to be seen what level of 'cost' is expected in practical cases.

The ‘single figure’ method for characterising the source has been proposed. This 

method can be thought of as representing the source and receiver contact as a kind of 

single equivalent point. This analogy is not exact because the mobilities and field 

variables for a single point are complex quantities, while only real data is used in the 

single figure method. Three alternative physical parameters: CF (net blocked force), 

CPI (characteristic power) and CP2 (another descriptor with units of power) defined 

by equation (3-40), (3-42), and (3-43) have been chosen as 5, which contains source

strength information. a z , which corresponds to the mobility ratio a in the single 

point case, is defined as the ratio of mean point mobility magnitude of receiver and 

source, as given by equation (3-41).

The ‘single figure’ representation has the conceptual advantage that the parameters 

‘sum up’ the global behaviour of the source. Such an approach is attractive to 

practitioners who currently lack any method for calculating structure-borne sound. 

Some range of uncertainty is likely to be accepted in return for a simple, workable 

framework that gives some engineering insight. However, it is important that the 

range of uncertainty be quantified, which is the objective of the following chapters.
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Figure 3-1 Measurement set up for effective mobility (unit magnitude, zero phase
force ratios ) and polar mobility ( symmetric case)
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Figure 3-2a A structure excited at four points
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Mfi =V\ fP\ =(Vi +V2 +y3 +V4)/16F 
M£i =U2/Pi = (FX+F2- F 3- F 4)/16F 
M l i =U3/Pi = {FX- F 2+F3- F 4)/\6F 
Mh =U4/Pi = (FX -V 2 — F3 +V4)I\6F

Mn =Ui/P2 = (FX+F2+F3+F4)/16F 
M p22 = U2IP2 =(Fx+F2- F 3- F 4)I\6F  
Mh = U3/P2 =(FX- F 2+F3- F 4)/16F 
Mh =U4/P2 =(Vi-y2 - y 3+v4)/i6 F

Mh = UX/P3 = (FX+F2+F3+F4)/16 F  
M p3 = U2/P3 =(FX+F2- F 3- F 4)/\6F 
M h = U3 / P3 = (F, - V2 + F3 -  V4 ) /16F  
M p3 = U4 / P3 = (Fi - V2 -  V3 + V4 ) /16F

Mh = UX IP4 ={FX +F2 +F3 +F4)/16F 
M[4 =U2/P4 =(Fx+F2- F 3- F 4)/16F 
M p4 =U3 / P4 =(Fx- F 2 +F3-  F4)/16F

M h  =U3/P4 =(FX ~F2+F3 + F4)/16F 

Figure 3-2b Force arrangement to obtain the polar mobility matrix
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Figure 3-3 Mobility matrix eigenvalues for a simply supported plate

60



X 
(m

/s/N
)

Figure 3-4 Representation o f equation 3-36 for 2 contact points

Figure 3-5 Probability bands for the plate illustrated in figure 3-3: — (dark), max. and 
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CHAPTER 4

CONSTRUCTION OF GENERIC SOURCES AND RECEIVERS

4.1 Introduction

4.2 Mass controlled region

4.3 Stiffness-like structures (source and receiver)

4.4 Single mode resonant structure (source and receiver)

4.5 Off-resonant structure (source and receiver)

4.6 Infinite plate receiver

4.7 Semi-infinite plate

4.8 Source free velocity

4.9 Construction of the generic source and receiver data

4.10 Example: Steps for construction of generic sources and receivers

4.11 Conclusion
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4.1 Introduction

To obtain the ‘general normalised active power band’ it is necessary to obtain estimates 

of emission for a statistically significant number of different sources on a given receiver. 

A range of source mobilities is required, such that a 1 covers the required range (from 

low to high mobility sources), and for each given value of a z enough cases are required 

to allow the statistical confidence bands to be evaluated. To find a sufficient quantity of 

data using practical examples is not practicable. A more efficient method of building up 

the required data is required, so an alternative, non-classical method is proposed here 

which is now described.

The proposed method is to generate a large quantity of mobility matrices and free 

velocity vectors at random, and then to select only those which could legitimately belong 

to a practical structure. For example, the real parts of the diagonal elements of all 

mobility matrices are positive, so matrices not conforming to this ‘rule’ are rejected as 

‘unphysical’. Thus, ‘random’ is not pure random, since there are inherent properties of 

practical structures which place constraints on the value that a particular element may 

take. Five fundamental types of behaviour have been identified for which appropriate 

constraints (rules) can be developed. These are mass-like, stiffness-like, single mode 

resonant, off-resonant and quasi infinite (beams or plates). This approach allows us to 

generate a large number of data sets to represent each of these fundamental types of 

behaviour. The resulting data sets can be described as ‘generic’, since if sufficient 

samples are taken then they represent all possible sources (or receivers) of that type.
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It should be appreciated that any structure can be viewed as a combination of these 

behaviour types occurring over different frequency ranges. Indeed, the idea of 'generic' 

does not here mean generic to a class of machines, like fans, motors etc, but rather is 

taken to apply to any machine operating in a frequency range where the behaviour 

conforms to one of the above types.

Figure 4-1 shows the parameter S2 (average point mobility magnitude) of a structure 

illustrating the above five types of behaviour with increasing frequency. fa is the 

frequency of the first trough, and for /  < f a / 2, the structure can be considered a mass -  

like structure, fb is first peak, and for f a/ 2 < f < f b/2  the structure can be

approximately considered stiffness-like. If the peak point is 'sharp' the structure can be 

considered to approximate a single mode resonant structure. There is no precise 

definition of 'sharp', but experience suggests that such behaviour is rare in real structures, 

and a reasonable guide is that the peak should be at least a factor 102 greater than the next 

trough point. fc is a point at which fluctuations in S2 due to resonance become 

insignificant. The usual criterion for the onset of quasi-infinite behaviour is the frequency 

at which the modal overlap equals unity, but this cannot easily be applied to a measured 

mobility curve. A practical working measure of this point is when the resonant 

fluctuations reduce to below approximately 1 .OdB. Above this frequency the structure is 

considered as an infinite (plate) structure. For other frequency ranges not covered above, 

the structure is considered 'off-resonant'.

66



In the first part of this chapter we consider the inherent properties of the different types of 

source and receiver, and derive ‘rules’ for constructing generic matrices. In the latter part 

we consider how to construct generic sets of data for source mobility, source free velocity 

and receiver mobility

4.2 Mass controlled region

At lower frequencies, elements of the mobility matrix for free structures are either in 

phase or anti-phase, and their magnitude reduces with frequency by 1/©. The behaviour 

of a source in this frequency region is like a rigid mass, so this type of source is called 

here a ‘mass-like’ source. This section does not generally apply to receivers since they 

are generally fixed rather than free, so a region of mass-like behaviour is not seen.

It is noted for mass-like sources that if one point mobility reduces with frequency by 1/© 

then other points must show the same decrease. For example figure 4-2a shows a rigid 

mass structure, the mobility magnitude at point 1 is different with that at point 2, but they 

display the same reduction with increasing frequency. Figure 4-2b shows another 

structure, which is constructed of a rigid body and a thin beam. The mobility magnitude 

at point 1 reduces with frequency by 1/©, but the relationship of mobility magnitude with 

frequency at point 2 is not the same. Therefore, figure 4-2b cannot be called a mass-like 

source. If the proposed contact point 2 be removed to point 2' then it can still be called a 

mass-like source. For example, figure 4-3b, c shows the mobility of the structure from 

figure 4-3a at point B and A. The mobility at point B and at point A is given by:
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y  b = [y ft (B, Cl) y  Jh (B, C 2) y fi (B, B)] (4-la)
y (5, c i ) 
y (b ,C2)

= [>W ( 4  Cl) ^  (A C2) y rigid (A, A)] [Yft+Y&ï*
y  rigid (B ,c  1) 
y  rigid {B,CT) (4-1 b)

where y jb (5, Cl) yfb(B,C2) are the transfer mobilities of the free beam from the drive 

point B to Cl, C2, andy^iB,B) is the point mobility of the beam at point B. The 

corresponding mobilities for the rigid body are yrigid(A, Cl) yrigid(A,C2) yrigid(A, A ) . Y/b is 

the mobility matrix of the free beam for points Cl and C2, and Yrigid the corresponding

matrix of the rigid body. Figure 4-3b, c shows that the structure can be considered mass

like only up to 3Hz, even though the point mobility at point A has rigid body behaviour 

over the whole frequency range. In most cases, real structure-borne sound sources can be 

idealised as rigid masses in the lower frequency range.

4.2.1 Generic mobility matrix of a mass-like source

The elements of the mobility matrix of a mass-like source can be given by [44]:

Y„ = jam (1 +
xixj y i y j ,

-)+■ (4-2)
yy

where Yu is the point mobility (for i = j ), and the transfer mobility from the ith point to

the jth point (for i * j ), co is the excitation frequency, x, and y, are the position of ith
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point with respect to the centre of gravity and Ixx Iyy are the moments of inertia around 

the x and y axis, respectively.

Introducing the radii of inertia,

p ‘ = ^  (4-3)
m

P —  (4.-4)
m

equation (4-2) is rewritten as (4-5)

-  / xix i y,y,Y, = — (1 + - ^ +  ^ 7 -). (4-5)
com

For the single point case the mobility has no positive imaginary part. For the multi-point 

case the mobility still has ‘no positive imaginary part’, in the sense that every eigenvalue 

of the imaginary part of the mobility matrix is non positive. (This result can be used to 

check measurement results to determine the frequency range over which the rigid mass 

idealisation applies.) This can be proved as follows: for the N point case the mobility 

matrix is given by:

Y==:̂ - A  = ^ - ( A l +A2 +A3) (4-6) 
com com

where

1 ... 1

4  =

l ... l
(4-7)
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A2 —

A., =

x , x , x , x „

2
P x

2
P x

x „ x x X n X n
2

P x
2

/>*

T i T i
2

P y

2

y n y x
2 2

P y

(4-8)

(4-9)

Equation (4-6) indicates that matrix A is the sum of three matrices, each having unit rank.

The eigenvalues can given by

A / 1 = n X2 ' =---A„a' =0 for matrix A] (4-10)

V 1 + + A2a> = - - - V 2 =0 for matrix ̂  (4-11)
Px Px Px

^  + + ¿2a> = . . .A /3 = 0 for matrix 4  (4-12)
Py Py Py

This means that for any vector (¡> = (^,, <f>2, ) the following equation is satisfied:

</>A(/)T = x A'\(pA'\ + V k 4ll + - K a' W \  + V 2k ' 2| + ^ 2 (Px + ■ \<PX

+ V 3k 5 + W >0

(4-13)
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Equation (4-13) indicates that every eigenvalue of matrix A is positive, i.e. the 

eigenvalues of the imaginary part of the mobility matrix Y (equation 4-5) are non positive 

in general.

For three points, matrix A is full rank, unless the points are on the same line. The 

determinant of matrix A will be zero for three collinear points. This result will be used in 

chapter 5. To prove it here a physical method is considered. Let three forces be applied at 

the three points. The corresponding velocity at these three points can be given by

\

VV3 J
am

f f x '
Î2 (4-14)

The net force and moments due to the three forces is given by

f x + f t + f > = F
-  t / i * l  + f 2X2 + / 3* 3  ) = M y C4 ' 1 5 )

( / i T i  + / 2 T 2  + f 3 yi) = M x

and the area of the triangle enclosed by the three points is given by:

1 1 1

A = *1 x2 x3

T, y 2 y 3

The area will be zero when the three points lie on one line. In this case there is a non zero 

solution / , ,  / 2, f 3 in equation (4-12) which satisfies:

f\ + Ï2 + f i  ~ 0
- ( / l * l  + / 2 * 2  + / 3 * 3 )  =  °  ( 4 - 1 7 )

( / 1T1 + / 2T2 +/3T3) = °
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This means that the velocity at any point of the rigid body is zero, i.e. the non trivial 

solution / u / 2 , /3  makes the left of equation (4-14) to be zero, so the determinant of A 

must be zero.

For four points, which is most common, the determinant of A will be zero, i.e at least one 

of the four eigenvalues will be zero. This result will be used as a check on measurement 

results: there are always errors in practical measurements, and the minimum eigenvalue 

of A is likely to be negative even with a very small error, but if more than one eigenvalue 

is negative, it could be that the error is too large, or that it is unreasonable that the source 

be idealised as a rigid mass.

4.2.2 Relationships between elements of the matrix (phase and magnitude)

The phase of the point mobility of a rigid body is always n/2 and the transfer mobility is 

either tc/2 or -nil. The relationship between the magnitudes of the elements is more 

complex, being dependent on the position and the radius of gyration px py,. Now we 

introduce two new variables a, /?,, defined as

X,a, s - ! -  
Px

(4-18)

A -  —
Py

(4-19)

For a rigid rectangular body, I xx and I yy are given by 

I B = I]V= ^ ( L 2 + H t ) (4-20)
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where the L defines the base length and H the height of the body. So pxand py are given 

by

, , > „ > ± ( £ > 4 / / ’) (4-21)

The point and transfer mobility normalised by l/jcom are then given by

y>yj
y v = 1 +

X X

(L2 + H 2)/12 (L2 + H 2) / 12
= 1 + a ta J +p,0J (4-22)

where

x,,
a i -  i-----------------

V( £ 2 + H 2 ) / 12
(4-23a)

x ja, ~ .-----------------
■J(L2 + H 2 ) / \ 2

(4-23b)

» -  y.
y ] ( L2 + H 2) / l 2

(4-23 c)

ft -  y ‘
J y j ( L 2 + H 2 ) / \ 2

(4-23 d)

In theory the x n Xj,y  ,and y ] can vary in the range of (-L/2-L/2 ), but in practical

cases the centre of gravity is within the area of the polygon enclosed by the contact 

points.

Consider as an example a four point case (see figure 4-4) where the contact points are 

located within the following ranges
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Xj, Xq (0 ~L/2) Ti, y 2 (O-L/2)

> 3̂ (0 —L/2) y 4 (0—L/2)

Then, a  lies within the range 0  —  ■
J l 2+ H 2

Setting H=L, a, varies in the range 0 ~ V3/2 , and the other parameters can be similarly 

obtained.

Though the above results are obtained in the case of a rigid rectangular body, the range of 

the parameter ai for the other shapes is likely to be similar in practical cases. Consider a 

practical motor. Here a cylinder or shell model is used to represent the motor.(see 

figure4-5). The moment of inertia around x and y axes should be somewhere between a 

solid cylinder and a thin shell. For the cylinder case the moment of inertia around x and y 

is given by

(4.24)

I » = h . m ,1 + h , mD2 (4'25)

where R are radii, 1 the length and D the diameter of the cylinder. For the shell model the 

moment of inertia around x and y is given by 

/ „  = mR2 (4-26)

I  = J -m l2+ -m D 2. (4-27)
*  12 8

So we have for the cylinder model
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X,a ,
D

12 16

R
(4-28)

For x, « 70mm y, « 60 R « 60mm l « 140mm D = 2R = 120mm we get for the cylinder 

model a, »1.4, and for the shell model a, »1 /?, «1.2. Similarly we get for the cylinder

model a 2 « -1 fi2 «1.2, a 3 « -1 /? 3 « -1.2, ar4 «1 /? 4 « -1.2. So, although the range of 

variables a,and/?,can be very large in theory, only the range of[0~±1.5] will be 

considered for constructing a 'generic' mass-like source mobility, which represents the 

most common practical cases.

In practical cases, the polygon constructed by the four points often forms a rectangle, so 

we can always choose a co-ordinate system whose x axis and y axis is parallel with both 

edges of this rectangle. In this co-ordinate system we have for a rectangle: 

x, = x4 x2 = x3 y, =y 2 y 4 = y 3 or a, = a 4 ,a 2 = a 3 = fi2 ,J3A = /?3.

Therefore, the mobility matrix of many mass-like bodies with four mount points can be 

given by following expression

model a 2 « -1 .4  fi2 «1.4 a 3 « -1.4 fi3 « -1.4 a 4 «1.4 fi4 « -1 .4 , and for the shell
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(1 +  a xa x + p xp x 1 +  a xa 2 +  P XP 2 1 +  a xa 3 + P x P 3 1 +  a xa 4 + p xp A

1 \  +  c c xa 2 + p xp 2 1 +  a 2 a 2 +  P 2 P 2 l  +  a 2 a 3 + P 2 P 2 \  +  a 2 o c 4 + p 2 p 4

j a m 1 +  a xa 3 + p xp 3 \  +  c t 2 a 3 + p 2 p 3 1 + o c3o c 3 + P 2 P 2 l  +  a 3 a 4 + P 3 P 4

{ l  +  a xa 4 + p xp 4 1 +  (Z2(Z4 +  P 2 P 4 l  +  a 3 a 4 + p 3 p 4 \  +  a 4 a 4 + p 4 p 4 )

jam

r l + a xa x+/3x/3x 
\ + a xa 3 + /?,/?, 
l + « ,« 3 +P\P3 
.1 + a x<xx + p xp 3

l + a xa 3+ p xp x 
\ + a 3a 3 + P 2P 2 

\ + a 3a 3 + pxp 3 
l + a 3a x + pxp 3

l + a , ^  + p xp 3 
\  +  a 3 a 3 + p xp 3 

1 +  cx3oc3 + P 2 P  2 

\  +  a 3 a x + p 3 p x

l + a xa x + p xp 3' 
1 + a 3a x + p xp 3 
l + a 3a x + p 3p x 
l + a xa x +P3P3y

(4-29)

4.3 Stiffness-like structures (source and receiver)

At frequencies above the mass regime the mass-like source model cannot be used. 

However, if the frequency is still not above the first resonance, the source can be model 

as ‘mass+spring’, see figure4-6. In this case, the mobility can be expressed as

^ 1 j<°
jcoM K

(4-30)

where M is the mass of the machine and K is the local stiffness of the mount footing 

It is clear from this equation that the system will experience an anti-resonance at the 

frequency

co 0= (4-31)

Sufficiently below this frequency the mass is dominant (mass-like source) whilst above, 

the stiffness term will dominate. The point mobility can then be given by 

Y«jco/K if ©0 « ©  (4-32)
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In this region of frequency the source can be considered as a ‘stiffness-like’ source. 

However, it is not enough simply to describe the mobility matrix of the machine. In order 

to derive generic matrices later we need to know the relationships between the point and 

transfer mobility in the stiffness controlled range. Hence, the properties of stiffness-like 

systems are discussed in the following sections (see also[34] for an analyse of stiffness 

behaviour).

4.3.1 String

The string is not a practical element of most machines, but it is used here to give insight 

into stiffness-like behaviour, which will be applied to more practical systems later on. 

Consider a homogeneous string of length 1 and rigidly supported at both ends (see figure

4-7a). The differential equation for transverse motion of the string under sinusoidal point 

excitation of angular frequency co is

d2w sco2 -  f 0— r  + -----w = ^ -
dx2 T T

S ( x - x Q) (4-33)

where T is the tension of the string, e is the mass per unit length, xo is the excitation co

ordinate. According to equation (4-33) w must be a solution of the homogeneous

d2w sco2
equation

dx2
+ ■w = 0 for all appropriate values of x except at the point x=xq, where

it must have a discontinuity of the slope of Jy j  . It must also satisfy the boundary

conditions at the two ends of the string. So the solution for the equation (4-33) can be 

given by:

[w (x) = A cos kx +Bsmkx 0 < x < x 0 <l
w =<̂  (4-34)

[ w+ (x) = a cos kx + bsmkx 0 < x0 < x <1
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Twhere k = oi/c is the wave number and c = J — is the speed of wave propagation.

The four as yet unknown quantities (A, B, a, b) can be determined from the force balance 

at the point x = x0 and the boundary conditions at the two ends, they are 

w_(0)= 0 (4-35a)

w+(/) = 0 (4-3 5b)

w_(x0) = w+(x0) (4-35 c)

(4-35d>ox ox

Using equation (4-35a)~ (4-35 d) we get the final solution 

/ .*  •w_(x) =
T sin kl

/o*

sin k ( l - x 0)smkx  0 < x < x 0 <l

(4-36)

w+ (x) = ---------sinkx0 sink(l~x)  0 <x0 <x<l
T sin kl

From the above equation we can get the point mobility and transfer mobility from the 

drive point x0 to the response point x . They are

Y = jod w //0 =<
- sin k ( l - x Q) sin kx 0 < x < x 0 <l

T sin kl
-sinfoc0 sink{l - x }  0 < x0 < x < l

(4-37)

T sin kl

If — —> 0 equation (4-37) simplifies to Equation (4-38) 
c

Y =

î y Q - x 0)y  0 < x < x0 </

J0* x° y  -  x) 0 < x0 < x < l

(4-38)

T l
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In this case the point m obility  o f  the string is o f  the form o f  a stiffness controlled m obility

with stiffness K = ----------- (K is independent of excitation frequency). This result give
Q - x 0)*o

us the idea that the mobility in the stiffness range can be obtained by using a force with 

angular frequency ©=0, i.e. a static force. The static solution for the same string, (see 

figure 4-7b) can be solved based on the force balance to get the displacement of the 

string:

f 0 = r(sinor + sin ft) » T(tana + tan ft)

= r (WQo) + wQo)) (4-39)
*o l - x 0

from (4-39) we have got

“<*.) = 7  y  ( '- * . )  (4-40)

Further, we can get the displacement at any point on the string 

f  x
w(x) = x t m a  = - x0) 0 < x< x 0 <l (4-41a)

w(x) - ( l  -  x) tan ft = fo_^o 
T l

( l - x ) 0 < x 0 <x<l  (4-41b)

Therefore, we can get the mobility in the stiffness range from the string displacement 

equations (4-4la) and (4-4lb)

Y = j a  w //0 =

Y -(7 -* o )y  0 <x <x0 < l

^ X° ( l - r )  0 < x 0 < x < /

(4-42)

T l

The above solution is the same form as equation (4-38). Of course, we can solve equation 

(4-33) with boundary condition (4-35) in the case of letting co=0, and we will get same
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results. This shows that the stiffness-controlled mobility can be obtained by solving the 

static problem, then multiplying the displacement by jco. This idea is applied to beams 

and plates in the following sections.

4.3.2 Beams

Now we consider a beam (see figure4-8a) simply-simply supported at both ends. 

According to the above, the static solution can be used in the stiffness range. The 

differential equation for transverse motion of the beam under sinusoidal point excitation 

of angular frequency co=0 is

= /»£(*-*„) (4-43)
O X

where B is the bending stiffness. The boundary conditions at both ends and force balance 

condition at the excitation point x=xo is given by following equations: 

w(0) = w(l) = 0
d2w ■ _ d 2w, (4-44)
etc2 ^=° ~ etc2 'x=/ ~~

w(x0 + 0) -  w(x0 -  0) = 0

dw(x0 + 0) dw(x0 -  0) _ 
8x dx

ö2w(x0 +0) ô2w(x0 -0 )
dx2 dx2

(4-45 a) 

(4-45 b)

(4-45 c)

d3w(x0 + 0) d3w(x0 -  0) _ -  f Q 
dx3 dx3 B

(4-4 5 d)

A closed form solution can be obtained:
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1

w = <
6BI

1
6 Bl

x ( l - x 0)[l - x  - ( ! - X 0 )  ]

x0( / -x ) [ /2 - x 02 - ( / - x ) 2]

6 Bl
g(x,x0)

0 < x < x0 < / 

0 < x0 <x<l (4-46)

 ̂ 2 ^
x ( / - X 0)[/ -X — (/ — X£T0) ] 0 < x < x 0 </

g(x0,x) = -
x0( l - x  )[l2 - x 2 - ( l - x ) 2] 0 < x0 < x < /

(4-47)

and the mobility in the stiffness range is hence given by:

Y = jo)g(x0x)/6Bl  (4-48)

Now, we give an example to support the statement in section 3.4.1 that the condition 

number of a stiffness-like structure is low no matter how low the frequency. Consider the 

ratio of point mobility (where the excitation point is at x0 = / / 8) and transfer mobility

from x0 t o x ( x  = / /8 ) .  From equation (4-46) we can get that the ratio is about 3.16.

Therefore, no matter how low the frequency, the point mobility does not approximately 

equal the transfer mobility. In this case, the ratio of maximum to minimum eigenvalue of 

the mobility matrix for these two points x0, x is less than 2, not infinite.

From equation (4-46) we know that the transfer mobilities are in phase with the point 

mobility because the function g(x0,x) is always real and positive.

This result is intuitively correct. When a simply-simply supported beam is subject to a 

static force, the displacement at each point on the beam should have the same sign. 

However, there are some cases where the phase between the point mobility and transfer
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mobility is opposite in the stiffness range (see figure(4-8b)). This is a beam free at both 

ends and simply supported at two other points P and Q. When a static force is applied 

between P and Q, the displacement on the free ends should have the opposite sign to that 

at the drive point. So, by the using static force idea, we get the result that point mobility 

and transfer mobility are in phase or out of phase.

4.3.3 Plate

In many practical cases, the mobility matrix behaviour of the source or receiver is like 

that of a plate with different boundary conditions. The specifics of the machine or 

receiver as a whole need not be considered. Although the dynamics of plates has been 

considered extensively in the literature, the main concern has been with the natural 

frequencies of the plate rather than the forced response. In the stiffness region the 

relationship between the point mobility and transfer mobility cannot be expected to be as 

simple as for a beam. However, the static force idea can be used to establish some rules. 

Consider a thin orthotropic plate. It is assumed that the plate motion satisfies the equation 

of the classical theory of thin plate bending. If the transverse force on the plate is 

harmonic q(x,y)exp(icot), this equation is:

A
d4w 

1 dxA
+ 2D, d4w d4w

'3^2*. 2 + A - T T -W ® W = <1 (4_49)ox oy oy

where w(x,y)exp(icot) is the transverse displacement of the plate, m is the surface

E\, 2h 3mass, A ,, A2, A3 is the corresponding rigidity of the plate and given by A, 2 =
12(1- v xv )
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A  = A 2 +  2 A , A 2 =  A v2 =  A v l A  =  G/23 / 1 2 ,  in w hich  £, 2 is Y oung ‘s m odulus,

v, 2 the Poisson’s ratio, h the plate thickness and G the shear modulus.

It is common that the plate is isotropic, so equation (4-49) can be rewritten as equation 

(4-50)

d4w d4w d4w 'D(—r  + 2—=—r- + — ~)-mo)2w -  q (4-50)
Vcbc4 dx2dy2 dy4) H V ^

A solution for the forced motion of the plate is obtained by both equation (4-51) and the 

prescribed boundary conditions. For completeness the well-known classical boundary 

conditions are repeated here: at an edge x=a: 

l)clamped 

w =  0

—  = 0 (4-51)
dx

2) simply supported 

w = 0

d2w
dx2

=  0 (4-52)

3)free

d2w
dx2

d2w+ v — -  = 0

d3w d2w
+ ( 2 - v ) --- r- = 0

dx3 dy2

(4-53)

(4-54)
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An exact solution of the wave equation can only be obtained in a plate where at least one 

pair of opposite edges is simply supported. Nevertheless, we can obtain useful 

information about the stiffness region despite this restriction.

The solution for equation (4-50) can be expressed in the following form:

Y = joL f M r ^ M
M  o)n -co2

where is the nth mode function, (a real function), r and r0 are the drive point and 

response point respectively, M is the total mass of the plate and co2 = con2( 1 + jrf) is the 

square of the complex natural frequency for mode n with loss factor q, and co is the 

angular frequency of the driving force. Letting co 2 -> 0 and we can get the mobility in 

the stiffness range:

____ L®Y  =
M t t  w ;

_ Y
+  COn2

( 6)
M(l + jrj )SK,oJ

g(r,r0)
n=0 (On

(4-57)

The functiong(r,r0) cannot be obtained in most cases, but despite this we still can 

deduce the following useful properties pertaining to the stiffness region.

a- g(r> ro) is a real function because the mode function and the co„ are real

b. when g(r,r0)is positive the transfer mobility will be in phase with the point

mobility and if g(r, r0) is negative, they will be of opposite phase

c. the real part of the mobility matrix is the same as the imaginary part except for a 

positive constant multiplier
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d. every eigenvalue of the real part of the matrix must be positive, so every 

eigenvalue of the imaginary part of the matrix is positive too. Note that for the 

single point case the stiffness mobility has a positive imaginary part, and for the 

multi-point case it also has a ‘positive imaginary part’, even if some transfer 

mobilities are negative. This contrasts with the mass case where all eigenvalues 

were non positive.

We can also deduce that in the following cases the mobility will be inversely proportional 

with the rigidity of the plate D in the stiffness range:

i) the plate is simply supported on all four edges

ii) the plate is clamped on all four edges

iii) the plate is simply supported on the some edges and clamped on the remaining edges. 

This can be shown using the static force idea, from which the mobility in the stiffness 

region can be given by:

Y = jaw '

where w'is static displacement per unit force which satisfies equation (4-58)

d4w d4w d4wD { V ^  + 2 ^ ^  + - - T ) = 5 { x - x Q) d ( y - y 0) (4-58)
8x4 8x2dy2 dy4

and boundary conditions i) or ii) or iii). The boundary conditions i) ii) iii) are independent 

of the rigidity of the plate D, so it is easy to understand from equation (4-56) that the 

static displacement W should be inversely proportional to the rigidity of the plate D. This 

relationship does not strictly apply if some edges are free, because the free boundary 

condition contains Poisson’s ratio v which concerns rigidity of the plate D. However, it
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still can be said that the mobility is inversely proportional to the third power of plate 

thickness and Youngs modulus E. An example is now given

The rectangle OABC (see fig 4.9) is a S-S-F-F plate. When the driving force / 0 is applied 

at point B, the static displacement at point P (x,y) can be given by [45]

w '=
foxy

2(1 - v ) D ’
(4-59)

so the mobility in the stiffness range can be expressed as:

Y = jvxy = 6/flny(l + v) (4 60)
2(1 -  v)D Eh3  ̂ ;

When D is increased with an increase of Poisson ratio v, the mobility also increases. 

Therefore, the mobility is no longer inversely proportional to the rigidity of the plate D.

4.4 Single mode resonant structure (source and receiver)

The mobility of any continuous structure can be given by the modal expansion;

( « I )M  t^(On (1 + Tjj)-(o2

In the case of co = (on the system is resonant, and if con is well away from other natural 

frequencies, is not large and the loss factor r| is small, then equation (4-61) can be 

approximated by equation (4-62)

, 1 &(*/)&(*>) (4-62)

The mobility matrix for m points can then be written as:

86



(4-63)[ Y ] Mrjo)n

<Pn(X

</>n(XJ<l>n(Xl)

A(*2M,(*2)

0n(O 0 n(x2)

The mobility matrix in equation (4-61) has a rank of unity. This kind of resonance is here 

called a ‘single mode’ (or ‘idealised’) resonance. For a system with low loss factor, its 

mobility matrix can be approximated as equation (4-63) at the first few resonant peaks.

4.5 Off-resonant structure (source and receiver)

The above idealised model applies only at, or very close to the resonance peaks. 

However, most of the frequency range is ‘between peaks’, where the response is due to 

several modes, and the simple single mode model described above does not apply. At 

these frequencies the structure is here called an ‘off-resonant’ structure. The same label 

can be used at higher frequencies where individual resonances are no longer distinct. Off- 

resonant behaviour is characterised by ‘weaker’ relationships between the elements of the 

mobility matrix than for all the previous idealised cases. The elements are not limited by 

particular equations or rules, so have more a random character.

The same can be said to apply in the transition regions between mass-like behaviour, 

stiffness-like behaviour and the first isolated resonance peaks. Thus, these regions will 

also be categorised as ‘off-resonant’. Hence, within the context of constructing generic 

mobility matrices, ‘off-resonant’ behaviour is seen to occupy much of the frequency 

range.
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4.6 Infinite plate receiver

The mobility of an infinite plate is a useful tool for approximate modelling of damped or 

large building structures. Using polar co-ordinates the infinite plate mobility can be 

written

Yv = K, (H i2) {krv) -  H <2) (-jkrv)) (4-64)

wherek = coi1 m"/ D is the wave number, (D = Ehi /12(1 - v 2) is the bending stiffness 

and m"is the mass per unit area, Y„ = 8VDm" is the characteristic mobility and / / 02is a

Hankel function of the second order. The relationship between the Hankel function and 

the Bessel function of the first and second kind (Neuman) function is :

Hq2)(z) = J0(z)~  jN 0(z)

Asymptotic values of the mobility can be used to give:

Ytj = Yx (H^2) (krtj)  — H^2) {-jkrtJ)

->7«, I— e--'(to- jr/4) when k r^o o
\nkrv

i(fe-ff)2 - E b , ?  - ( ln 2 - ^ ) ] }  k r ^ O

where Sy is the Euler number, given by 

8y = 1 + 1 / 2  + --- + M k - \n k  & —» oo.

The magnitude of the function (H ^2> (kr y ) -  H ¡i2) {- jkr i})) is less than unity and 

decreases with kry .(see fig(4.8)), so the mobility matrix for m points can be expressed as:
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1

[Y] =
1

SyjDm"
H f\k r 2l) - H ^ { - j k r 2l)

H ?\kru ) - H ? \ - jk r n ) -  H ^\krlm) - H ^ ( r j k r J

(4-65)

4.7 Semi-infinite plate

The free edge of a semi-infinite plate is an important case to describe sources. However, 

it was found that the only existing solutions were given in terms of unsolved integrals 

[46-47]. In order to facilitate development of rules for generic matrices the author has 

solved some of these integrals and presented a closed form solution for the case of a free 

edge. This is presented in reference [48] and is given in a more expanded form with some 

discussion in appendix B. These solutions are not specifically used in the following, 

although the details are given for reference.

4.8 Source free velocity

Free velocity data is needed to obtain the general normalised active power band. The 

definition of free velocity was stated in Chapter 2. The free velocity which corresponds to 

the above types of source structures is addressed in this section.

4.8.1 Free velocity for mass -like source

In the mass controlled region the machine is as a rigid body. The free velocity at mount 

point i can be written as

<4 - 6 6 >
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where v]f  j is the contribution of the translation of the rigid body, vjf  i and Vxfi are the

contributions of rotations about the x and y axis respectively. The phase relationship is 

(for the four point case considered in figure 4-4)

9 (^ ,.)  = 9 (Vlfa ) = e (V ^ )  = G (V;fA) (4-67)

9(Vs},) = 9(Vs}a)

9<y* ) = o ( y * ) ± x

9 < y } j  = 9 (y } A)

9 (K h )  = 9(K f, 4 )

0(K/,i ) = e(v^i )±x

9 < y } j= 9 < y $ j

(4-68a)

(4-68b)

(4-68c)

(4-69a)

(4-69b)

(4-69c)

If the free velocity is only due to an internal force /„ , this can be decomposed into a

force f e, applied at the centre of gravity, a moment about the x axis, mx and a moment 

about the y axis, my . Here, the force f e is either in phase with the moment or of opposite

phase. In this case the phase of the free velocity between the two mounts is either in 

phase or opposite phase. However, if the free velocity is due to many internal forces or 

moments and their phase relationship is complex, then the phase of the free velocity 

between two mounts may be neither in phase nor anti-phase. This result may be not 

recognized in some reference literature [34], Consider a simple example. The force at the 

drive point is shown in figure 4-10. The phase of these two forces is different and given 

by:

A = f> e Jm
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f l  = /oej(Ot+7U 13

The resulting velocities at points 1 and 2 are then

K/,1 = S r  (2  ̂ 1 t y * 16 + 2 sin(^ / 6 ) T 7 T7  eJ2*'''3 (4-70)jcoM
ab

i Jm

foy  -  J o
ysf, 2 - (2  cos(;r / 6 )ey,r/6 -  2  sin(;r / 6 )

jcoM
ab

I / M
0 j°*)eJ0* (4-71)

where M is the mass of the rigid body and I its moment of inertia. The relative phase is

ab _en*n

- )  (4-72)
cos(;r / 6)eJ*7 6 + sin(;r / 6 )

6  (11 , ) -  S (IV ,) = tan ' 1 (----------------------------  1 < M
cos {n / 6)eJ* -  sin(;r / 6 ) ab

I / M
Jlirll

It is clear, these two points are neither in phase nor opposed phase.

The relationship of the velocity magnitude among the mount points is complicated. It is 

dependent on the internal force distribution of the machine source, on the structure of the 

machine and on the position of the mount points. However, there are still some 

relationships due to the fact that the determinant of the mobility matrix of the four points 

is zero. This means that one row of the matrix can be linearly expressed by the other three 

rows. For example, if the fourth row can be expressed as:

(r„ yn ya r» )=«,(!;, ^  ^  y„ y„ y j  4
+ai{yn ŷ i yn 4̂ )

then the free velocity K a can be expressed as:

^s/,4 =  a \ V Sf ,  1 + a 2 Vsf,2 + a 2 ^ s f , 3 (4-74)

Hence, the free velocity of the four mount points is not independent. A common example 

is of four points at the comers of a rectangle, then a, = 1 a2 = - 1  a3 = 1 i.e.
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(4-75)v  + V
V sf,4 ^  r  sf,2 K f . + K f ,  3

4.8.2 Free velocity for stiffness source

In the stiffness controlled region the machine no longer moves as a mass controlled 

source and wave behaviour can occur within the machine structure. As such both the 

magnitude and phase of the free velocity are dependant upon the details of the machine. 

The magnitude and phase relationships between the elements of the velocity vector 

cannot be limited by some generic equation or rule.

4.8.3 Free velocity for off-resonant source

Like the stiffness source, the wave behaviour in the off-resonant source dictates that 

generalised magnitude and phase relationship between the elements of the velocity vector 

cannot be determined

4.8.4 Free velocity for single mode resonant source

The mobility can be written as

Y . . . . .  1 ( 4 . 7 6 )
,J M  rj(on

so if the internal forces F01,F0 2,-- F0 i , are applied at the points *01 ,x0 2 ■■■xo k respectively, 

then the free velocity at point j can be expressed as

) + F,.2««*.,.) + - F , ,M x „ ))Mrjcon

and the free velocity vector can be given by

(4-77)
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M tjû)„
( Â , l  ÿ n  (*0 ,1  )  +  Â ,2  fin  (^O.l )  "l Â , i ^ «  (*0 ,1  ) )

<P„ (*l)
(/>„ (*2>

f  (* J

(4-78)

4.9 Construction o f the generic source and receiver data

Having outlined the different types of behaviour in the source and receiver structures, we 

are now in a position to construct ‘generic’ sources and receivers.

4.9.1 Sources

4.9.1.1 Construction of mass-like source mobility

An expression for the mobility matrix of mass-like sources for four points is given by 

equation 4-29 which can be rewritten as the following expression:

Y = AsZ[y] (4-79 a)

where [y] is

b ]  = (

T
1

1
[1 1 1 i]+ «2

«3
1 «4.

[a1 « 2  « 3 '  « 4 ]  +

A
A
A
A .

[A A  A  A l) (4-79b)

and is called the basic matrix. % = - j  is called the ‘type factor’, because it depends on 

the type of structure as will be seen later. As is a real number (here the author has named it 

the size factor), or, and /?, depend upon
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i) the positions of the contact points,

ii) the radii of inertia around the x and y axis.

According to the results of section 4.2, for practical cases, the magnitude of a , , A is

limited to the range 0-1.5. For a general mass-like source it is simply suggested therefore 

that a statistical description be made by assuming that the corresponding 

variables ax, A  A  a 4 have a uniform distribution in the range of 0-1.5 and, a 2, 

a 3, /?3, j84 have a uniform distribution in the range of 0  — 1.5.

Furthermore, if the polygon constructed by the four contact points is a rectangle, 

ax =  a 4 a2 =  a3 /? , =  A  A  =  A  s o  there only four independent terms.

4.9.1.2 Off-resonant source mobility

The relationship between the elements of the mobility matrix for an off-resonant source 

are ‘weak’. The mobility matrix can be expressed as 

m  = AsX[y\ (4-80)

where As is the mean value of the magnitude of each element of the mobility matrix 

(here it is still called the size factor). % = 1 is again called the type factor, [y] is the 

normalised mobility matrix, here also called the ‘basic matrix’. According to the results 

of Fulford [34], the magnitude distribution of the elements of the mobility matrix is a 

loglOnormal distribution, i.e. zy = Iogl0|-yi/(x,,x/)| is a normal distribution ( z:j is a loglO

function of the magnitude of y v). If so, the following approximation for the standard 

deviation of zy, ( <r ), applies [49]
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Z max Z ™n = l Q g l O

y[N
y* i 4 n (4-8 la)

Figure 4-11 shows the results of cr calculated from measured mobilities of a typical fan. 

The solid line represents equation (4-8la) and the dashed line is obtained from equation 

(4-8 lb)

The two lines are close. This result provides some evidence that it is reliable to assume z 

to have a normal distribution. Secondly, figure 4-11 shows thatcr is less than 0.85 for this 

typical structure. Fulford plotted the value of 7max / 7mjn (it equals ymax / ymin) for some 

practical fans, and found a similar range of the standard deviation. So it is assumed that, 

for off-resonant sources, logl0 |y| has normal distribution with a mean zero and a 

standard deviation in the range of 0~0.85, and that the phase has a uniform distribution in 

the range of -n/2~n/2 for diagonal elements (the real part of diagonal elements must be 

positive) and 0~2n for off-diagonal elements.

4.9.1.3 Stiffness source mobility

The mobility of a stiffness like structure is given by equation (4-56). It can be rewritten 

as the following expression:

j Mo)(\ + r j j ) h  (0„2l(o2 (4-82a)
= Asy ij(xl xj ) e ^ l2-Ar“̂

The mobility matrix is now expressed as :
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m  = AsZ[y\ (4-82b)

Similar to the off-resonant source, the 'size factor' As is the mean value of the magnitude 

of each element of mobility matrix, % = eJi*l2~Arctgri) is again the type factor and [y] is 

the normalised mobility matrix (or ‘basic matrix’). It is further assumed that for stiffness 

sources Vyhas zero phase and loglOjy]has a normal distribution with a mean zero and a 

standard deviation in the range of 0-0.85.

4.9.1.4 Single mode resonant source mobility

The mobility of a resonant structure is given by equation (4-63). It can be rewritten as the 

following expression:

Y * A sX[y] (4-83 a)

where the basic matrix in this case is

¡ y ]  = 1h ( X2) *,(*„)] (4-83b)

As is a real number (still called size factor) and the type factor % = 1.

Here it is assumed that the real numbers $,(*,) have a loglOnormal magnitude 

distribution, i.e. Iogl0 |^„| has a normal distribution with a mean zero (assumed to have 

been normalised) and a standard deviation in the range of 0-0.85.

To summarise section 4.8.1, for any type of source the mobility is written as AsXs[ys], 

[y5 ] will be constructed by random functions within certain constraints which have been
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defined for each  structural type. T w o numbers still need to be determ ined, A s and, for

stiffness sources, the loss factor rj. This will be addressed in chapter5.

4.9.2 Construction of the Free velocity vector

4.9.2.1 Mass source

For mass-like sources the free velocity depends on the internal force distribution. The 

free velocity vector can be written as

T «1 A
V -  J a

toM^'
1
1

A

+ A>
a2
a3

A+ /3 A
A

1 «4. La J

(4-84)

where

h ~ fl + f l  "I fek j2 ~ f\ae,\, + f i ae,7 _l fkae,k > h ~ + fïPe,2  ̂ fkAe,k

in where f , is the ith internal force , ae i = xe i / px , J3e i = yei / py, xei, y e j are co-ordinates

of the ith internal force .

Equation (4-84) can be rewritten as (4-85a)

M - coM

T ’« 1" ’A"

+ Â + / , ) ( £
l A a7 A

l
+ k2

a3 + 3̂
/ z
A

l A4. A .

) = ~ j V M  (4-85a)

where K
coM (A + + /j ) is a real number and

[v] = (*j

T V A '
l A

+ k2
cc2 A

+ L A
l Z a3 j

A
1 A4. .A .

(4-85b)
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is called the basic free velocity vector. The column vector

[ax a2 a3 a4J and[/?, fi2 J33 /? 4 ]7 must correspond to the vectors in equation

(4-79) used to construct the mobility matrix. The magnitude of the complex number

A A A

kx,k2,k3 is in a range of 0~land satisfies:

+ (4-86)

A A A

It is assumed that the phase of these complex numbers kx,k2,k3 has a uniform distribution

in the range of 0~2 u, and that the magnitude is a uniform distribution in the range of 0~1 

which is limited by equation (4-86).

4.9.2.2 Construction of free velocity for stiffness source and off-resonant source

The free velocity vector will be written as:

(4-87)
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where |f0| is the mean magnitude. Like the assumption of source mobility distribution, it

is assumed that v, has a loglOnormal magnitude distribution. The standard deviation of 

the corresponding normal distribution is determined still by equation (4-81). Here the 

standard deviation will be chosen in the range of 0~0.85The phase is not deterministic 

and a uniform distribution is assumed.

4.9.2.3 Single mode resonant source

For a single mode resonant source the free velocity distribution is determined by the

98



corresponding single mode resonant source mobility, i.e. the free velocity is given by

[V] A  (*2) ( 4 -8 8 )

<t>n(Xm)

The vector \(f)n(x,)(j>n{x2) " ' (t>n(xm)]r must be the same as the corresponding vector in 

equation (4-83b).

4.9.3 Construction of receiver mobility

Similar to the source the receiver mobility matrix can be written as the product of a size 

factor type factor and basic mobility matrix, i.e. [Yr ] = Arx r [yr ].

4.9.3.1 Off- resonant, stiffness and single mode resonant receiver mobility

Here the receiver mobility relationships are the same as those for the source. The same 

statistical descriptions are therefore proposed, i.e. for off-resonant receivers the 

corresponding y u have a uniform phase distribution in range of -n/2~n/2 for i = j  and

0~27i for / * j , and log 10 |y| has a normal distribution with a mean zero and a standard 

deviation in the range of 0-0.85. For stiffness-like receivers the correspondingytJhave 

zero phase and a logl0 |>jhas a normal distribution with a mean zero and a standard 

deviation in the range of 0-0.85. For single mode resonant receivers the corresponding 

log 10 |^„ j has a normal distribution with a mean zero and a standard deviation in the 

range of 0-0.85.
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As for sources, the determination ofAr and loss factory, which concerns stiffness 

receivers will be addressed in chapter5.

4.9.3.2 Infinite plate receiver

For infinite plate receivers the mobility matrix is

[Y] = Arx \ y ]

where the type factor is % = 1 > and Ar is a real number. The diagonal elements for the 

basic matrix [y] are unity, and off-diagonal elements depend on the variable kry. Here, 

the variable kry is considered only in the range of 0.1-100, and is chosen to be uniform

on a log scale.(This range was chosen as it gives condition numbers similar to those 

found for real structures.).

However, two restrictions can be introduced which narrows the choice of valid values:

1) for stability reasons, the distances between support points are usually of the same 

order, so it is here assumed that the distance between two points is not greater than 5 

times that between any other two points.

2) there are A = C”_3 = n\ /((« -  3)!-3!) triangles (C " : Combination symbol) for n contact

points, and for any triangle the sum of the two sides must be greater than the length of the 

third side. For example, between any three points there exist three transfer mobilities. 

Once values for kr are established for any two of these elements then kr for the third 

element is not fully independent but is bounded because of the above relationships.
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4.10 Example: Steps for construction of generic sources and receivers

To be clear, the steps for construction of the mobility matrix for off-resonant structures 

(four point case) are now described as an example. The input data required is the standard 

deviation, which from above lies anywhere in the range 0-0.85.

1. A value for the standard deviation cr is chosen at random from within the range 0-0.85 

using the 'random' function from Matlab*.

2. Ten numbers ztj are generated at random using a mean value of unity and the above 

chosen standard deviation cr.

3. Ten matrix elements | |  are calculated from the equation zjj = logl0|jyy | .

4. Ten phase angles 0 are generated at random from within the range 0~27t.

5. Ten complex data ytJ = |_yy|(cosi? + j  sin d) are assembled into the lower half of a 4x4 

symmetric matrix.

6. The eigenvalues of the real part of the matrix are checked, and if each is positive the 

matrix is chosen, otherwise it is rejected

7. The above steps are repeated until a sufficient number of valid matrices is obtained.

* Because the standard deviation does not apply to a uniform distribution, the author used 

the expression cr = 0.15 * (randn( 1,1) + 0.45 and the relationship 0 < cr < 0.85. randn( 1,1) 

is one random data chosen from a normal distribution with mean zero and variance one.

4.11 Conclusion

In order to obtain the general normalised active power band the ‘source replacement
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method’ will be used in Chapter 5, that is where a number of different sources are 

combined with a given receiver to produce a statistical distribution for the power 

emission (normalised to one of the three chosen source parameters). However, before 

such an analysis can be conducted, appropriate statistical input data is required which has 

been the focus of this Chapter. The approach adopted has been to construct ‘generic’ 

statistical sources and receivers. The ‘generic’ matrices are based on the inherent 

properties of the mobility matrices and free velocity vectors for different types of 

behaviour. Four types of source, i.e. mass-like source, stiffness source, single mode 

resonant source and off-resonant source and four types of receiver, i. e. stiffness receiver, 

single mode resonant receiver, off-resonant receiver and infinite plate receiver have been 

considered.

For any source and receiver the eigenvalues of the real part of the mobility matrix are 

non-negative. For mass-like sources the mobility matrix has the form of equation (4-79), 

and the free velocity has the form of equation (4.85). The elements of the vectors [a, ] and

[/?, ] have a uniform distribution in the range of 0-1.5 or 0— 1.5. For stiffness sources 

the mobility matrix has the form of equation (4-82), and the elements of the basic 

mobility matrix have zero phase and a loglOnormal magnitude distribution. The free 

velocity has the form of equation (4-87), and the elements of the vector have a 

loglOnormal magnitude distribution and uniform phase in range of 0~2n. For single 

mode resonant sources, the mobility matrix has the form of equation (4-83), and source 

free velocities have the form of equation (4.88). The elements of the vector [(¡>} have a 

loglOnormal magnitude distribution and zero or n phase. For off-resonant sources the
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mobility matrix has the form of equation (4-80). The elements of the basic mobility 

matrix have uniform phase distribution in range of -n/2~n/2 for diagonal elements and in 

the range of 0-27T for off-diagonal elements and have a loglOnormal magnitude 

distribution. The free velocities have the same distribution as a stiffness source.

For a stiffness receiver, single mode resonant receiver and off-resonant receiver, the 

mobility matrix has the same properties as the corresponding source. In addition, infinite 

plate receivers were considered, for which the diagonal elements of the basic matrix [y] 

are unity and off-diagonal elements depend on the variable krtJ, considered only in the 

range of 0.1-100.
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F ig u re  4-1 Illustrating the five types o f behaviour with increasing frequency.

F igure  4-2a A rigid body structure
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F ig u re  4-3a A structure constructed o f  a rigid body and thin 
beam

F igure  4-3b Point mobility at position B

Figure 4-3c Point mobility at position A

Rigid body
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Figure 4-4 A rectangular rigid body with four contact points which are located within 

the four quadrants respectively

x

Figure 4-5 A motor modelled as a cylinder or shell
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Figure 4-6 A model for a source mount point at low frequency

fo

Figure 4-7a A string rigidly supported at both ends

y

Figure 4-7b Under static force the Shape of a string rigidly 
supported at both ends
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Figure 4-8a A beam simply supported at both ends

y

Figure 4-8b Under static force the Shape of a beam 
rigidly supported at both ends

y

Figure 4-9 A S-S-F-F plate

108



m x = a f x

Figure 4-10 A rigid body excited by two internal forces with different phase
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Figure 4-1 la Standard deviation for a typical fan .(^equation 4-8la); 
(~,equation4-81b).

Figure 4-1 lb  Ratio o f a  and o'
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CHAPTER 5

GENERAL NORMALISED ACTIVE POWER BANDS FOR 

COMBINATIONS OF GENERIC SOURCES AND RECEIVERS

5.1 Introduction

5.2 Procedure for getting the general normalized active power band

5.3 Combination of mass-like sources with various receivers

5.4. Combination of stiffness sources with various receivers

5.5 Combination of off-resonant source on various receivers

5.6 Combination of single mode resonant source on various receivers

5.7 Example

5.8 Conclusion
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1 Introduction

In this chapter, the general normalised active power band will be calculated and 

plotted for the various possible combinations of generic mobility matrices and free 

velocity vectors developed in chapter 4. This is done for different choices of the 

source descriptor parameters s\ and S2, namely: the blocked force parameter, CF, the 

characteristic power and its approximation, CPI and CP2 respectively. From the plots 

of general normalized active power band, we can see if the chosen parameters ^ and 

s2 provide tolerable range, and whether can be accepted as a source strength 

parameter. We also develop the method for predicting active power from a source into 

the receiver which will be used in Chapter 6. Furthermore, the general normalized 

active power band will give insight into the global behaviour of the source.

5.2 Procedure for getting the general normalized active power band

1. According to chapter 4, a receiver basic matrix [ y j  is constructed by using the 

Matlab ‘random’ function. This basic matrix is multiplied by a type factor %r and a 

positive real number Ar , to form the receiver mobility matrix.

2. The source free velocity is formed from a basic free velocity vector, multiplied by 

an arbitrary positive real number V0. A group of basic matrices for the source is

formed using the same method as above. Each basic matrix, times type factor %r and 

a suitable positive real number As, forms a source mobility matrix. Here, a suitable 

positive real number means that it is chosen so as to make each source mobility 

matrix have the same a 1 (see equation (3-42) which is the definition fo ra1), i.e. As 

satisfies the following relationship:

A ,= A r A (5-1)
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where

A - ^ S k « l / S k « l  <5-2>

a 1 is considered mainly in the range of [10 3,10] in this thesis. For a given a z , the 

general normalized active power from a group of sources into the receiver can be 

calculated. Similar to the method in chapter3, a statistical description of the general 

normalized active power band can be expressed in terms of percentage confidence 

limits. Here the width of the 90% confidence limit is defined as the ‘band width’ 

(Note that this is a different concept to frequency bandwidth often used in acoustics). 

There are still two points needing consideration.

i) The influence of the number Ar on the general normalized active power band.

The active power can be rewritten as

p  = [Vsf r ( f t  ] + [Ys ])-'*r (R e ft ] ) ( f t  ] + [Ys ])-* [Vsf ]-ii

([Vrf f  (A,Z, \yr \ +A,Z, f t  ])"ri (M ArZr f t  W ArZr f t  l +¿sZs f t  ] )"  f t  ])
v-1  *T

= a : k ( [ v ^  r  ( Z r  \yr ] + [y, ] r " T  (Rear, [yr W x r \yr ] + ^ x s \y. ] ) _1 [vs/ ])
(5-3)

and the source parameters CF, CPI, CP2 defined in chapter 3 can be rewritten as,

CF = a :2 ( [ v J T(Axs[ys] r " T( * z s[yJ  r 'h v l) (5-4a)

CP1 = A-1 (5-4b)

cpi = a;1 |f0|2 [vJ/]*r[vI/] x [VtfFiAz.ly,] )_,[vf/]) (5-4c)

From the above equations it can be shown that the general normalized active power 

PI CF is proportional to Ar , in other words the value of Ar influences the ‘level’ of 

the general normalized active power band P /C F , while it has no influence on the
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general normalized active power P / CP\ and P / CP2. In this chapter we have more 

interest in the shape of the general normalized active power band, rather than its

‘level’. For convenience, let^4r equal unity. The value of has no influence on the

three general normalized active power bands, so let F0 equal unity too.

ii) Determination of loss factor 77 in stiffness source and receiver structures 

The loss factor 77 in stiffness sources and receivers has still not been determined. For 

stiffness sources the type factor is %s = ej{*l2~Arctg’1'>, and since many sources are 

made of metal, which has inherently low damping, so x s ~ j  is used. In any case, the 

loss factor rj in stiffness sources has no influence on the general normalized active 

power. For stiffness receivers the fourth term (Re(^fr[y J) in equation (5-3) can be 

expressed as

= (5-5)
1 + 77

therefore, the loss factor has an influence on the ‘level’ of the three general 

normalized active power bands. Similarly to above, the shape is of more interest, so 

here we define the loss factor as an arbitrary realistic value 77 = 0 .1 .

5.3 Combination of Mass-like sources with various receivers

Four contact points are considered. Here we meet some problems at first since the 

mobility matrix is not of ‘full rank’, i.e. the determinant of the matrix is zero. 

Therefore, CPI is mathematically meaningless, but in physical terms CPI for a rigid 

body is 2co times kinetic energy. Reference [50] gives an interpretation for it in the 

case of two points where it is easily understood, because the determinant of the matrix
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is non zero. An interpretation is now given for the case of three points on a line for 

which the determinant of the mobility matrix is also zero.

Consider three points on the x axis (see figure 5-1). CPI can be expressed as:

- - 1
x . x . X , X ,

1 + 1+ 12 1 +
p l p 2 p 1

/  A SV
v s f , 1

/ a a a \*
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K f ,2 ( - jc o M )
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1 +  - ^ -
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where xj, X2 and xj are the co-ordinates of points 1,2,3 (the reference point is at the 

centre of the mass). In this case the determinant of the mobility matrix is zero (see 

chapter 4) but if we rewrite expression 5-6 in the following form, it will be seen to 

have a close relationship with kinetic energy:
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(5-7)

If here 4>i is chosen in the following form:



X 2 -X, 0
X ,  -  X , x2 -X,

1 -1 0
* 3  X 2 x, — x2 1
x2 -x , x2 -x ,

2̂ — 1̂
T*

then the expression (5-7) becomes expression (5-8)

X 2 ^ s f , \  X \ ^ s f , 2

CP\ = X 2 ^ s f , \  x y s f , 2 V Sf ,  2 V t f ,  1

1 0 0

0 (x2 - x , ) 2 0
P2

0 0 0
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x2 -x ,

v* * -v* *
1
0

(- jcoM)

\
A A 2 A A 2

-  jcoM X 2 ^ s f ,  1 ~ X \ ^ s f , 2 + -jcoMp2 0x0
x2 -x , x2 -x , 0

7

(5-8)

The sum of the first and second terms on the right side of equation (5-8) is simply 2© 

times kinetic energy, and the last team is mathematically meaningless, but here can be 

understood as zero. This result extends to mass-like sources with any number of 

contact points and degrees of freedom.

The numerical calculation of CPI (and CF) for the rigid body case can also be treated 

by using SVD [51] (Singular Value Decomposition).

5.3.1 Combination of mass-like source with stiffness-like receiver

5.3.1.1 General normalized active power band for CF

The stiffness receiver was obtained from the random function of Matlab. The 

condition number was 28dB (the condition number is the ratio of maximum to 

minimum eigenvalues of the real part of the mobility matrix). The many different
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sources (here referred to as a source group) were ‘attached’ to the receiver in turn. In 

the range of a<0.2 (see figure 5-2a) the band width is only about lOdB and the band 

is flat, and in the range of a>0.2 the band width is more complex in its variation with 

a. The band is strongly sloping in this range. There are two peaks at a=0.5 and a=2 

where the corresponding band width is 20dB. The position of these peaks is not like 

the single point case where a maximum always occurs at a= l. This can be explained 

as follows.

Consider two symmetric connection points for simplicity, where a symmetric mass

like source is placed symmetrically on a symmetric stiffness receiver. The active 

power emission from source into the receiver is given by:

P = Re(
(S, W y ;* + y;**v..

A

v\J Sf,2 J
112

y R  , y S  y R  , y S
V 1 2  -M2 M l  "t" - ' l l
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y R  y R  

. M 2  M l .

y r + y s f ^ + f 5^-1- ' l l  ^  - ' l l  -1 12 ' M 2  
y R , y<S y / ?  , y S  

\ J \2 ^  1 \2  / 11 "*■ J 11

V f  *• \V
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J v )

(5-9)

where YR F,R are the point and transfer mobility of the stiffness receiver, and 

Fj2 are the point mobility and transfer mobility of the mass like source. 

Equation 5-9 can be simplified by using a Hadamard matrix:

P = Re(-
Y r + Y r- ' l l  ^ ' 1 2

\vR + Yr + + Ys I- ' l l  + M 2  ^ ' l l  + i 12

yR _yR
■ 'l l  I 12

l y S   y R  i y S   y S  I
• ' l l  M 2  ■*" - ' l l  ^ 1 2

v  - Vysf, 1 vsf, 2

(5-10)

Now we consider the first term o f the above equation:

F,,' + YX2 can be rewritten F,f + F,f = - j Y R where F+s is real and positive and

Y\i + En = — -—  Y R, where Y R is real and positive. Thus, the phase of F,f + F,f is
(1 + W)

opposite to Y r + Fjj when the loss factor is small, so there are large peaks when:
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= \Y‘l-i 11 + f r I ^ •'12 (5-11)

Equation (5-11) can be rewritten as (5-12)

Y
l + %

Y r■ 'l l

y r■ 'l l

y r 
i + ^ §  

Yxî
a

Y r 
l + ~ (5-12)

For mass-like sources the transfer mobility phase is the same or opposite as that of the 

point mobility, and for a stiffness receiver the transfer mobility phase is the same as 

the point mobility in most cases. If the transfer mobility phase for the source is

Ynopposite to that of the point mobility, then -1 < —  < 0, so from equation (5-12) we

have a z <1. If the transfer mobility has the same phase as the point mobility and

y « S  y / ?
M 2  >  M 2
y S  y  Æ
■ ' l l  M l

, then from equation (5-12) we have a 1, >1. The second term of equation

(5-10) gives similar results, so the position of the peak of the general normalised 

active power is not at a 1 =1 only.

The results of figure 5-2a indicate that in the range of a s <0.1, the active power 

emission from different sources with the same CF into the receiver is similar. It is 

effectively the same as the band width. However, when 10>aI >0.1 the active power 

emission from different sources with same CF in to the receiver varies significantly 

(about 42dB), which is considerably more than the band width.

Figure 5-2b shows the result with a stiffness receiver chosen by the same method as 

above, but this time with a condition number of about lOdB. The shape of the band is 

similar to Figure5-la, but there are three peaks in this figure. In the range of a z <0.1 

the band is narrower than that in figure5-2a, which is due to the smaller condition 

number. The presence of three peaks maybe can be explained: for four contact points
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there are only three independent modes of vibration. Consider the symmetrical case 

for simplicity. The active power emission can expressed in the following form:

Q = R e(ClSl + C2S2 + C3S3 + C4S4) (5-13)

One term in equation (5-13) is zero, and any of the remaining three terms will appear 

as a peak at some point.

5.3.1.2 General normalized active power band for CPI

See figure 5-3a. The General normalized active power band for CPI, source and 

receiver are similar to figure 5-2a. The band width is similar to the band for CF (about 

lldB) in the range of a 1 <0.1. but is not flat. The range of variation of the general 

normalized active power is about 33dB in the range of 0.001<az <0.1, which is 

considerably wider than the band width. The corresponding range is about 35dB. in the 

range of 0 .1< a I <1 0 .

Figure 5-3 b. shows the General normalized active power band for CPI with a 

receiver with a lower condition number. The source and receiver is the same as Figure

5-2b. In the range of 0.00 l<ors <0.1 the band width is smaller (about 6 dB) than the 

above case due to the smaller condition number, but the range of the General 

normalized active power is still about 28dB in this range. In the range of 0.1<«I <10, 

the range of variation is about 30dB. (The width of the band at lower a  is reduced 

according to the receiver condition number, but the shape and hence overall range is 

similar to figure 5-2a.)

5.3.1.3 General nomalised active power band for CP2

Figure 5-4 a, b shows the corresponding results for CP2 which are very similar to 

those for CPI.
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5.3.2 Combination of a mass like source with single mode resonant receiver

5.3.2 .1 General normalized active power band for CF

A single mode resonant receiver matrix was constructed by using the rules described 

in chapter 4. The column vector from which the mobility matrix is constructed was 

generated at random. A group of mass-like sources was then ‘connected’ to the single 

mode resonant receiver. Here the condition number of the receiver is infinite.

Figure 5-5 shows the general normalized active power band for CF. The form of the 

bands is quite different to the previous plots (and following plots). The most striking 

point is that the power is very low, in fact it is zero except for 'numerical noise' from 

the calculation. (These numerical errors caused some negative values which are not 

plotted). It is not clear physically why the power into an isolated resonance should be 

zero, after all, it is usually considered that a resonance is an efficient 'absorber' of 

energy. The author has conjectured an explanation as follows.

Let [A] be an n by n matrix with rank n-1 (representing the mobility matrix of the 

mass source), and let [5] and [C] be column vectors (where [B] represents the free 

velocity vector of the source, and [C] represents the mode shape vector of the single 

mode receiver). If the matrix [A B] has the same rank as matrix [A] (which is the 

case for the mass sources with four contact points considered in Chapter 4), and the 

rank of matrix [A + CC7’] is n (where [CCr*] represents the single mode receiver 

mobility matrix), then we have:

[B]T' [A + CC7" r 17" [CCr' ][A + CCT' r 1 [5] = 0 (5-14a)

[Cf* [A + CCT' r ir* [CCr'][A + CCT* ]-' [C] = 1 (5-14b)
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The first equation represents the power into the receiver. (The physical interpretation 

of the second is not clear, but it is given for mathematical interest.) If the above 

conjecture (equation5-14a) is right, the power from a rigid body source with four 

points into a single mode resonant receiver is zero. However, if the rank of matrix 

[A + CC7 *] is less than n, then equation (5-14a) is meaningless. If here SVD is used 

to treat the left side of equation (5-14a), then the power from a rigid body source with 

four contact points into the receiver is non zero as shown in the following example.

Consider a symmetric single mode resonant receiver, for example. Its mobility matrix

is given by:

Yr = 0,

l0i.

(01 01 01 01) = 0f

f l 1 1 0  

1 1 1 1

V

1 1 1 1
1 1 1 1 /

(5-15)

If the matrix of the mass source is symmetric too, then the active power emission 

from the mass to this receiver can be given by

where Y? is the point and transfer mobility, and Vsf J is the free velocity of the mass

source. Therefore, the active power emission cannot be zero when both source and 

receiver are exactly symmetrical.

A further example of a system for which the sum of the source and receiver matrices 

is not full rank is where the receiver is symmetric, but the mass source group is not 

symmetric. This case was solved numerically and results are given in Figures 5-6 a, b, 

Again, this shows that the active power emission is not zero.
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The single mode resonant receiver model used above suggests that strongly resonant 

receiver structures may have a lower ability of power absorption when the source is 

mass-like. This result was not expected on physical grounds. However, single 

resonances do not occur in real physical cases, so we must consider the possibility 

that the zero power is due to the idealised model, and would not occur in real cases. 

To investigate this a real system has been solved and in the following results the 

receiver data is taken from a plate resonance with low loss factor, rather than the 

idealised single mode theory.

Figure 5-7 shows a SSSS plate (as a receiver). Its properties are: density 

p  = 2.87 x 10 ̂  kg / m ̂  and Poisson’s ratio v = 0.3, Young’s modulus 

E = 2*1010N / m2. For loss factor two cases were considered: case 1, 77, =0.0001, 

and case 2 rj2 = 0.001. The mobility matrix was calculated by using thin plate theory. 

Figure 5-8 shows the maximum and minimum eigenvalues together with the mean 

eigenvalue (note that the mean eigenvalue is equal to the mean point mobility) for 

both loss factors.

The general normalized active power band for CF is plotted in figure 5-9. The 

elements of the real part of the mobility matrix for case one are almost ten times that 

for case two. It would normally be considered that the less damped receiver has more 

ability to absorb power, but here the opposite is the case: the sharper the peak, the 

lower the power, and the absorption of power for case one is only one tenth of that for 

case two. Because the behaviour of case one is closer to an idealised single mode 

resonant receiver than that of case two, so the active power emission becomes
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smaller. If we assume that this trend continues indefinitely as the damping is reduced, 

then the trend is towards zero power which agrees with results from the idealised 

model above.

Figure 5-10a,b shows results for the plate CPI (results for CP2 were essentially the 

same and are not shown). The width of the band is similar to the above case, but the 

band is not flat, and the power increases almost proportionally to a £ . In practice, 

cases with such a condition number are not common. The aim of giving the above 

example is to indicate that strongly resonant receiver structures may have a lower 

ability of power absorption when the source is mass-like.

5.3.3 Combination of mass like source with an off-resonant receiver

This system was constructed as before, with a group of mass-like sources attached to 

an-off-resonant receiver. The off-resonant receiver matrix was constructed by 

'random' generation of the elements as described in Chapter 4.

5.3.3.1 General normalized active power band for CF

See figure. 5-1 la. The condition number for the receiver matrix was 27dB. Over most 

of the range, the band width is about 9dB. There is a small peak at a s «l, so in this

range the band is wider, at about 13dB. The band is ‘flat’ in the range of a 1 <0.1, so 

that the ratio of maximum to minimum power is the same as the band width. 

However, in the range of a 1 >0.1 it is no longer flat, and so there is a wide variation 

from maximum to minimum power of about 30dB for 0.1<aI <10.
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See Figure 5-1 lb: the group of sources is the same as above but the receiver has a 

condition number of lOdB. The shape of the general normalized active power band 

for CF is similar to the previous case, but the width of the band is narrower due to the 

smaller condition number. The band width is about 6 dB over the whole range. The 

band is also more flat than the first case in the range of a I <l. There is a range of 

power of 22dB in the range of 0.1<aL <10 for CF.

5.3.3.2 General normalized active power band for CPI and CP2

Results for CPI are plotted in figure 5-12. Results for CP2 were very similar and are 

not shown. Figure 5-12a: the source and receiver are the same as in figure 5-1 la. Over 

the whole range the band width is similar to that for CF, but is not ‘flat’ in the range 

of a 1 <0.1. The ratio of maximum to minimum power in the range of 0.1<as <10 is 

about 20dB.

For Figure 5-12b the receiver was the same as fig 5-1 lb. The shape of the coupling 

function CPI is similar to figure. 5-12a, but the band width is narrower due to the 

smaller condition number. The variation range of general normalized active power for 

CPI is 15dB in range of 0.1<as <10. This is less by about 7dB than the 

corresponding figure for CF over the same range, indicating less sensitivity of CPI to 

a z .

5.3.4 Combination of mass like source with infinite receiver

The infinite receiver matrix was constructed by using the rules developed in chapter 4. 

A group of mass like sources were combined with this receiver to form the mass-on- 

infinite receiver system.
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5.3.4.1 General normalized active power for CF

Figure 5.13a.The receiver matrix was chosen from the Matlab ‘random’ function, 

assuming a condition number of 26dB. In most of the range the width of the coupling 

function band is about lldB, the band is very ‘flat’ in the range of or1 <0.5. In the 

range of a L>\ the band is no longer flat. In the range of a 1 <0.5 the General 

normalized active power band for CF is about lldB, which is about the same as the 

band width, while the range of the general normalized active power is about 22dB and 

wider than the band width.

Figure 5-13b. The group of sources is the same as in Figure5-13a and the receiver is 

another plate for which the condition number is lOdB. The shape of general 

normalized active power band for CF is similar to Figure5.13a, but the band width is 

narrower due to smaller condition number, over most of the range it is less than 7dB. 

The variation range of general normalized active power for CF is less than 6 dB in the 

range of a 1 <0.3. while in the range of 0.3<az <10. it is 28dB, and larger than the 

band width due to the slope.

5.3.4.2 General normalized active power band for CPI and CP2

Fig 5-14a shows results for CPL Results for CP2 were very similar and are not 

shown. The receiver is the same as in fig.5-13a. Over the whole range the band width 

is similar to figure 5-13a, but the band is sloped and the range is 30dB. In the range of 

0.3<as <10 it is about 14dB.
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Figure5-14b.The receiver is same as figure 5-13b, and as before the shape is similar to 

5-14a but with a narrower bandwidth due to the smaller condition number. The 

variation is 14dB in the range of 0.1<az <10, which is 13dB less than for CF.

5.4. Combination of stiffness sources with various receivers

In practical cases the condition number for stiffness sources is not large, because the 

distance between the mount points is usually of the same order as the size of the base 

plate of the source for stability reasons. For sources with ‘flange bases’ the condition 

number in the stiffness range tends to be low because the transfer mobility is low [34]. 

Figure 5-15b plots the cumulative distribution for the condition number of 215 plate 

sources operating in a stiffness controlled regime. The plate, a rectangular plate with 

SSSS supports is shown in figure Figure5-15a, where ABCD was modelled as the 

base plate of a source, while various positions of the rectangle described by the four 

mounts points 1, 2 ,3 ,4 were considered as the contact points to the receiver. It shows 

that about 99 percent of the condition numbers were less than 25dB. Most condition 

numbers were between lOand 15 dB. For this reason, a rule that the condition number 

is less than 25dB was added when constructing the stiffness sources.

5.4.1 Combination of stiffness source with stiffness receiver

5.4.1.1 General normalized active power band for CF

Figure5-16a. The receiver condition number is 20dB. The band width is about 9dB in 

the range of a s <10_1 and quite flat. Above this frequency, the band is not flat and 

becomes more and more wide. In the range of 10'1< a I <10 the range is about 38dB. 

This range is partly because the band widens with the increase of a 1, and partly 

because the band is more and more sloped.
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Figure5-16b The receiver condition number is 13dB, and the source group is the same 

as above. As expected, the lower condition number for the receiver gives a narrower 

band with a width less than 7dB in the range of a 1 <1 O'1. The band has a slight slope 

in the range of O.SxlO'^a1 <10"'. Again, above this frequency the band widens. The 

range is 8 dB in the range of a 1 <1 O'1. The variation range is about 37dB in the range 

of 0 .1< a s <1 0 .

5.4.1.2 General normalized active power band for CPI and CP2

Figure5-17a. The stiffness receiver is the same as for Figure5-16a. The band width 

varies with a z . In the middle range of a 1 the band is narrowest and is flattest. For 

a s <10' 1 the range for CPI is 26dB, which is 16 dB larger than that for CF. On the 

other hand, for 10'1< « s <10 the range for CPI is lOdB which is 28dB less than for CF 

over the same range.

Figure5-17b. the stiffness receiver is the same as for figure5-16b. The shape of the 

band is similar to that in figure5-17a.

Results for CP2 were very similar and are shown in figure5-18.

5.4.1.3 Discussion for stiffness sources

Some important and interesting results arise for the combination of stiffness on 

stiffness systems. In the case where the average point mobility magnitude of the 

source is much greater than that of the receiver, the general normalized active power 

band for CF is not only flatter but also narrower than that for CPI. This result
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indicates that CF is better than using CPI as a source strength characterisation, even 

when the different sources have the same average point mobility magnitude. 

However, in the matched region the results are the opposite. This is different from the 

single point case, where if the different sources have the same mobility, the rank 

ordering for CF and CPI are identical.

5.4.2. Combination of stiffness source on single mode resonant receiver

The single mode resonant receiver matrix was constructed by using the same method 

as in section 5.3. Figure5-19 a, b, c plots the three general normalized active power 

bands.

5.4.2.1 General normalized active power band for CF

Figure5-19a. In the range of <0.1 the band width for CF is about 19dB, and the 

band is flat. In the range of 0.1<as <10 the band is not flat and the band width 

changes slowly with a s . This phenomenon could be anticipated from figure 5-16 and 

figure5-20, where the larger the receiver condition number the slower the variation of 

band width. The range of the General normalized active power is about 50dB, it is 

much bigger than the band width due to the slope of the band.

5.4.2.2 General normalized active power band for CPI

Figure5-19b. In the range of O.OOKa1 <10 the band width shows a small change with 

a z , decreasing from 22dB to 17dB over the range. In range of 0.001<as <0.1 the 

band is wider than that for CF due to the slope. In the range of 0.1 < a 1 <10 the band is 

a little narrower than General normalized active power band for CF. The band is still
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sloped, but less strongly than that for CF. The range in active power is 30dB for 

0.1 < a z <10, this range is 20dB less than that for CF.

Conclusions for CP2 are similar, Figure5-19c.

5.4.3 Combination of stiffness source with off-resonant receiver

Figure5-20~5-22 shows three General normalized active power bands where figure a 

and b correspond to condition numbers for the off-resonant receiver of 27dB and 

lOdB respectively. These three figures are similar to those for the combination of 

stiffness source and stiffness receiver shown in Figures 5-16-5-18. The band width 

for 0.001<a2 <0.1 depends mainly on the condition number of the receiver. In the 

range of 0.1<az <10. the bands for CPI and CP2 of figure 5-17-5-18 (stiffness case) 

are slightly narrower and flatter than that of figure 5-21-5-22 (off resonant case).

5.4.4Combination of stiffness source with infinite plate receiver

Similarly, figures 5-23-5-25 show three bands, where Figure a and b correspond to 

23dB and lOdB condition number of the infinite plate receiver respectively. The 

properties of the bands are similar to those for the combination of stiffness source 

with off-resonant receiver.

5.5 Combination of off-resonant source on various receivers

The off-resonant sources were chosen from random functions of Matlab and the 

chosen receiver is similar to section 5.4.

Figure5-26~5-35 shows three General normalized active power bands. The properties 

of the General normalized active power band are similar to those for the combination 

of stiffness source on any receiver, except that the curves are shifted slightly to the 

right.
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5.6 Combination of single mode resonant source on various receivers

As for the mass like source, the SVD (Singular Value Decomposition) method was 

used the mobility matrix for the single mode resonant source is not full rank. In this 

case the relationship between the CF and CPI and CP2 are simply:

C/>1 = C F 2 X »  (5-17)

CPl = CP2 (5-18)

Therefore, the width of the three General normalized active power bands is the same.

5.6.1 Combination of single resonant source with stiffness receiver

Fig5-36~5-37 shows the general normalised active power band for CF and CPI, The 

stiffness receiver matrices are the same as those in section 5.5.1. In comparison with 

the previous section, here the band has 'moved' obviously to the right. (The range of 

the plot has been extended to a s =100 to show this).

Figure5-36 shows that the 'flat' part of the band for CF extends to a 1 =1 or more, but 

the band width in the 'flat part' is wider than that for other types of source. Figure5-37 

shows that the maximum for CPI appears in the range of a 1 =3-30.

5.6.2 Combination of single resonant source with off-resonant receiver and 

infinite plate

Figure5-38~5-41 shows the general normalised active power band for CF and CPI. 

The corresponding receiver matrices are the same as that in section 5.5.1. The 

properties of the corresponding band are similar to that in Figure5-36~5-37. The shift
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to the right seen in Figure5-38~5-39 (off-resonant receiver case) is here not so 

obvious.

5.7 Example

In this section an example of a real system is presented, which has been arbitrarily 

chosen to consist of a stiffness source on a stiffness receiver.

Figure5-42a shows a small SSSS plate which is the modelled source and figure5-42b 

shows another larger SSSS-plate which is the modelled receiver. The small plate is 

called the source plate and the larger plate the receiver plate. The physical constants 

for the two plates are the same: density p  = 2.87 xlO*kg/ m3, Poisson’s ratiov = 0.3, 

Young’s modulus E = 2 x 1010 N  / m , loss factor 77 = 0.05. The geometrical parameters 

of the source and receiver plate including the mount positions are shown in Figure5- 

42a, and Figure5-42b respectively. Now we consider three cases where the source 

plate is:

1) 5cm,

2) 2cm,

3) 5mm.

The source plate free velocity was obtained by the following method: an excitation 

force couple was applied to the source plate at a random position. A number of free 

velocity vectors were then combined with the mobility matrix to describe a source 

group. When the source is connected to the receiver plate, the General normalised 

active power can be obtained.

Before showing the numerical results, it can be shown that, when the source plate and 

the receiver plate are stiffness controlled, the General normalised active power for
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CPI is independent of frequency and for CF it is proportional to frequency. This 

result can be proved by the following development. The active power emission is 

given by:

P = Re([*V f  ftT* ] + [Ys ])-ir* t o  ] + [Ys ])-' [Vsf ]) (5 -19)

A

where [F^] is the free velocity vector, [Tfi] is the receiver mobility matrix, [Ts ] is the 

source mobility matrix, and T* indicates complex conjugate.

For stiffness controlled source and receiver, the mobility matrix can be rewritten as 

follows

K , 1 = 7 ^  O'*] 
1 + 77

(5-20a)

K ] = T ^ T - \ y s \ 
1 + 77

(5-20b)

where co is angular frequency, and [yfl]and [ys ] are functions of position and 

independent of frequency. The free velocity vector can be rewritten as

17./ ] = T ^ T -  W l ' i  ] = <!>[»,,] (5-21)
1+ 77

1 CO Awhere —---- F(co) = O is a function of the angular frequency, excitation force and
1 + 77

position while [v^] is a function of the mount and excitation position, and

independent of frequency. Combining the above, the General normalized active power 

for CPI can be given:

p  !\CP\\ = Re([K„ f  ([K, ] + K  ])-"■• ftr, f c  ] + irs ])-' [f„ ]) i \c p \\

= R*<[ V  r  i y ,  ]+ \ys i t ”" “  b ,  M y ,  1+ f a  l)-1 [ v  l) / [ v  Y  F —  <ty* ])"' K J1 + ry l + ty
(5-22)
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Since frequency does not appear in this equation the general normalized active power 

for CPI is independent of the frequency. Similar to the above, the General normalized 

active power for CF can be given

P /|CF| = Re([Fs/ r  ([K„ ] + [7S ])-,r'  (f YR ]XU„ ] + [rs ])-' [Vsf ]) /|CF|

= R*[ v  f  ([/, ]+[ys r r' ([y, Mr, ]+[ys ])'' [v„ ]) /ly, T  lys Y'T' í>s ])"' [ v  ]1 + r¡j J ‘ 1
(5-23)

which is proportional to frequency.

We now consider case 1), where the sum of the point mobility magnitude of the small 

plate and the receiver plate is plotted in Figure 5-43a. When the frequency is less than 

100 Hz, the source plate and receiver plate are stiffness controlled. The ratio of

average point mobility magnitude a L~2.

Figure5-44 gives twenty straight lines, each corresponding to one excitation, or say 

corresponding to a particular source. Figure5-44a and b are the General normalized 

active power for CPI and CF respectively plotted against frequency. Twenty lines for 

Figure5-44a are in the range of 8dB, while twenty lines for Figure5-44b are in the 

range of 15dB. These results coincide with figure5-16 and figure5-17, where the 

General normalized active power band for CPI is narrower than that for CF when 

a 2 *2.

For case 2), the sum of the point mobility magnitude of the source plate and receiver 

plate is plotted in Figure5-43b. Again, below 100 Hz the source and receiver plates 

are stiffness controlled, with a 2 «0.1. Similarly to case 1, twenty lines of the General 

normalized active power for CPI and for CF are plotted in figure5-45a and 5-45b. 

Now the range of the twenty lines for CPI and for CF are comparable. Again, this
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result coincides with figure5-16 and figure5-17, where the General normalized active 

power band for CPI and CF are comparable when a 1 «0.1.

Mobilities for case 3) are plotted in Figure5-43c. In the range of frequency below 

25Hz both source and receiver plates are stiffness controlled, with a z «0.005. 

Similarly to the above case, twenty lines of the General normalized active power for 

CPI and for CF are plotted in figure5-46 and 5-46b. Now the range for CPI is wider 

than that for CF. Again this result agrees with figure5-16 and figure5-17, where the 

General normalized active power band for CPI is wider when «0.005.

This section shows that although the generic structures used earlier in this Chapter to 

derive the general normalised active power bands are 'artificial' constructions, the 

results obtained are in agreement with those from 'real' structures. This goes some 

way towards validating the approach, and further validation will be reported in 

Chapter 6.

5.8 Conclusion

Three general normalised active power bands (for CF, CPI and CP2) have been 

studied for combinations of different source and receiver types.

In all cases the results for CPI and CP2 were similar, and it is not necessary to discuss 

these two parameters separately. Thus, we have two broad approaches in which the 

active source properties are characterised by blocked force (CF) or characteristic 

power (CP1/CP2).

Conclusions relating to each source type are as follows.
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• For mass-like sources the band widths are similar. The flat range of the band 

for CF extends to a E =0.1 or more, so in the range of a 1 <0.1, using CF as a 

source strength parameter to characterise sources is better than using CPI (or 

CP2). For the matched case (0.1<as <10), the general normalised active 

power bands are more complicated. In the case of stiffness receivers there are 

several peaks and the bands are wide. In the case of off-resonant and infinite 

plate receivers, the bands for CPI, and CP2 are relatively 'flat', so using either 

as a source strength is better than using CF. However, if the receiver is sharply 

resonant the band is not flat, in other words the power is still dependent on the 

mobility ratio.

• For stiffness sources the band width for CF and CPI (CP2) are no longer 

similar. In the range of az <0.1 the band for CF is still flat and narrower than 

for CPI and CP2, so in this range using CF as a source strength is better than 

using CPI or CP2. However, in the matched region, the bands for CPI and 

CP2 are relatively flat and relatively narrow by comparison with CF. 

Therefore, in the matched region using a power quantity as a source strength is 

more reasonable than using blocked force.

• For off-resonant sources the band properties are similar with those for stiffness 

sources, and the conclusions are the same.

• For single mode resonant sources, the band widths are the same. There is a 

deterministic relationship between CF, CPI, CP2 (given by equation (5- 

17,18). The 'flat' range of the band for CF extends well into the matching 

region, to a s «1 or more. So, for this case CF may be a better source strength 

parameter than CPI (or CP2) even for matched sources and receivers. Overall, 

the strongly resonant behaviour is less significant in terms of high power flow
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than might have been expected. Furthermore, this type of source appears to be 

uncommon, in fact is almost non-existent in practical cases.

Thus, it is generally found that for low mobility receivers the blocked force approach 

is favourable, whereas in the matched region the characteristic power approach is 

usually preferable. This is because the band of uncertainty for CF is relatively narrow 

for all receiver types below to a 1 <0.1, typically the 90% probability bands are less 

than 12dB wide in all cases except strongly resonant receivers or sources, and less 

than about 8dB in many 'typical' cases. Furthermore, since the bands are flat, the 

power is almost independent of the mobility ratio, and CF can therefore reasonably be 

considered as a ‘source strength’ parameter. In the matched region, the situation is 

more complicated as might be expected, but the band for CPI or CP2 are as flat or 

flatter, and as narrow or narrower than for CF in all cases except single mode resonant 

sources, (and this case is inherently unlikely in that a sharp resonant peak extends 

over only a very narrow range of frequencies).

For sources commonly used in building services the source mobility is generally one 

or several decades bigger than that of the supporting floor. Also, concrete floors tend 

to have relatively high loss factor, so the condition numbers for concrete floors are not 

high, lOdB is very typical [40]. Therefore, good results should be obtained by using 

CF to rank machines to be installed on concrete receiver structures.

For receivers of similar material to the source (steel sources on steel receivers is a 

common example) it is likely that the mobilities will be matched, at least over certain 

frequency ranges. The power approach is then likely to be most advantageous. Here, a

136



wider range of uncertainty is expected, although in every case except mass sources 

and very strong resonant receiver, the band widths do not exceed 13dB. There is also 

more sensitivity to mobility ratio.

There is one additional potential advantage with the power approach: except for mass

like sources combined with stiffness or off-resonant receivers the 90% probability 

band never exceeds CPI or CP2. Thus, CPI (or CP2) may be considered as practical 

upper limit for the active power emission. This will be quite reliable unless the source 

is mass-like. This could be of significant practical value, and provides further grounds 

to suggest that sources destined for ‘matched’ sources and receivers should be ranked 

in terms of characteristic power.

There is no significant difference between CPI and CP2 therefore since CP2 is much 

simpler to implement it is preferred over CPI as a practical working method.
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Figure 5-1 Rigid body source with three collinear points
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Figure 5-2 General normalised active power bands for CF for a combination of mass source
on stiffness receiver. Pairs of curves show probability bands:... 90%;-.-.-70%;—50%, solid
line is median value Top: condition number 28dB. Bottom: condition number lOdB.
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Figure 5-3 General normalised active power bands for CPI for a combination of mass source
on stiffness receiver. Pairs of curves show probability bands:... 90%;-.-.-70%;—50%, solid
line is median value Top: condition number 28dB. Bottom: condition number lOdB.

140



Em
is

si
on

/C
P

2 
E

m
is

si
on

/C
P

2
M a s s  s o u rc e  on stiffness  rece iver (a )

101 ------------ .— ................................................ .— ............................... ................. .— ............................

10'3 10'2 10'1 10° 101

Figure 5-4 General normalised active power bands for CP2 for a combination of mass source
on stiffness receiver. Pairs of curves show probability bands:...90%;-.-.-70%;—50%, solid
line is median value Top: condition number 28dB. Bottom: condition number lOdB.
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F igure  5-5 General normalised active power bands for CF for a combination o f mass source 
on single mode resonant receiver. Probability bands:...90% ;-.-.-70% ;— 50%, solid line is 
median value. (Negative values not shown)
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F ig u re  5-6 General normalised active power bands for CF (top)and CPI (bottom) for a 
combination o f mass source on symmetry single mode resonant receiver. Pairs o f  curves 
show probability bands:...90% ;-.-.-70% ;— 50%, solid line is median value.
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Figure 5-8 Mobility real part eigenvalues for a sharp resonance, a : loss factor r|=0.0001; 
b: loss factor r|=0.001, solid line mean eigenvalue; dashed line max and min.eigenvalue.
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Figure 5-9 General normalised active power bands for CF for a combination of mass source
on very sharp resonant receiver. Pairs of curves show probability bands:...90%;-.-.-70%;—
50%, solid line is median value Top: condition number 90dB. Bottom: condition number
70dB.
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F igure  5-10 General normalised active power bands for CPI for a combination o f mass 
source on very sharp resonant receiver. Pairs o f  curves show probability bands:... 90%;-.- 
70% ;— 50%, solid line is median value Top: condition number 90dB. Bottom: condition 
number 70dB.
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Figure 5-11 General normalised active power bands for CF for a combination of mass source
on off-resonant receiver. Pairs of curves show probability bands:. ,.90%;-.-.-70%;—50%,
solid line is median value Top: condition number 27dB. Bottom: condition number 10 dB.
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Figure 5-12 General normalised active power bands for CPI for a combination of mass
source on off-resonant receiver. Pairs of curves show probability bands:... 90%;-.-.-70%;—
50%, solid line is median value Top: condition number 27dB. Bottom: condition number 10
dB.
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F ig u re  5-13 General normalised active power bands for CF for a combination o f mass source 
on infinite-plate receiver. Pairs o f  curves show probability bands:...90% ;-.-.-70% ;— 50%, 
solid line is median value Top: condition number 26 dB. Bottom: condition number 11 dB.
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F ig u re  5-14 General normalised active power bands for CPI for a combination o f  mass source 
on infinite-plate receiver. Pairs o f curves show probability bands:... 90% ;-.-.-70% ;— 50%, 
solid line is median value Top: condition number 26 dB. Bottom: condition number 11 dB.
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F ig u re  5-15a Model for a stiffness source with four contact points

F ig u re  5-15b Cumulative distribution function for condition number o f 
stiffness source
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Figure 5-16 General normalised active power bands for CF for a combination of stiffness
source on stiffness receiver. Pairs of curves show probability bands:... 90%;-.-.-70%;—50%,
solid line is median value Top: condition number 20dB. Bottom: condition number 13dB.
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Figure 5-17 General normalised active power bands for CPI for a combination of stiffness
source on stiffness receiver. Pairs of curves show probability bands:... 90%;-.-.-70%;—50%,
solid line is median value Top: condition number 20dB. Bottom: condition number 13dB.
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Figure 5-18 General normalised active power bands for CP2 for a combination of stiffness
source on stiffness receiver. Pairs of curves show probability bands:... 90%;-.-.-70%;—50%,
solid line is median value. Top: condition number 20dB. Bottom: condition number 13dB.
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F ig u re  5-19 General normalised active power bands for CF(top),CPl (middle) andCP2(bottom) 
for a combination o f stiffness source on single mode resonant receiver. Pairs o f curves show 
probability bands:...90% ;-.-.-70% ;— 50%, solid line is median value
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Figure 5-20 General normalised active power bands for CF for a combination of stiffness
source on off-resonant receiver. Pairs of curves show probability bands:... 90%;-.-.-70%;—
50%, solid line is median value Top: condition number 27dB. Bottom: condition number lOdB.
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Figure 5-21 General normalised active power bands for CPI for a combination of stiffness
source on off-resonant receiver. Pairs of curves show probability bands:... 90%;-.-.-70%;—
50%, solid line is median value Top: condition number 27dB. Bottom: condition number lOdB.
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Figure 5-22 General normalised active power bands for CP2 for a combination of stiffness
source on off-resonant receiver. Pairs of curves show probability bands:... 90%;-.-.-70%;—
50%, solid line is median value Top: condition number 27dB. Bottom: condition number lOdB.
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Figure 5-23 General normalised active power bands for CF for a combination of stiffness
source on infinite-plate receiver. Pairs of curves show probability bands:... 90%;-.-.-70%;—
50%, solid line is median value Top: condition number 23dB. Bottom: condition number lOdB.
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F ig u re  5-24 General normalised active power bands for CPI for a combination o f  stiffness 
source on infinite-plate receiver. Pairs o f  curves show probability bands:... 90% ;-.-.-70% ;— 
50%, solid line is median value Top: condition number 23dB. Bottom: condition number lOdB.
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Figure 5-25 General normalised active power bands for CP2 for a combination of stiffness
source on infinite-plate receiver. Pairs of curves show probability bands:... 90%;-.-.-70%;—
50%, solid line is median value Top: condition number 23dB. Bottom: condition number lOdB.
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Figure 5-26 General normalised active power bands for CF for a combination of off-resonant
source on stiffness receiver. Pairs of curves show probability bands:.. ,90%;-.-.-70%;—50%,
solid line is median value Top: condition number 20dB. Bottom: condition number 13dB.
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F ig u re  5-27 General normalised active power bands for CF for a combination o f off-resonant 
source on stiffness receiver. Pairs o f  curves show probability bands:... 90% ;-.-.-70% ;— 50%, 
solid line is median value Top: condition number 20dB. Bottom: condition number 13dB.
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F ig u re  5-28 General normalised active power bands for CP2 for a combination o f off-resonant 
source on stiffness receiver. Pairs o f  curves show probability bands:... 90% ;-.-.-70% ;— 50%, 
solid line is median value Top: condition number 20dB. Bottom: condition number 13dB.
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F ig u re  5-29 General normalised active power bands for CF(top),CPl (middle) andCP2(bottom) 
for a combination o f off-resonant source on single mode resonant receiver. Pairs o f curves show 
probability bands:.,.90% ;-.-.-70% ;— 50%, solid line is median value
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Figure 5-30 General normalised active power bands for CF for a combination of off-resonant
source on off-resonant receiver. Pairs of curves show probability bands:...90%;-.-.-70%;—50%,
solid line is median value Top: condition number 27dB. Bottom: condition number lOdB.
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Figure 5-31 General normalised active power bands for CPI for a combination of off-resonant
source on off-resonant receiver. Pairs of curves show probability bands:... 90%;-.-.-70%;—50%,
solid line is median value Top: condition number 27dB. Bottom: condition number lOdB.
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Figure 5-32 General normalised active power bands for CP2 for a combination of off-resonant
source on off-resonant receiver. Pairs of curves show probability bands:... 90%;-.-.-70%;—50%,
solid line is median value Top: condition number 27dB. Bottom: condition number lOdB.
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Figure 5-33 General normalised active power bands for CF for a combination of off-resonant
source on infinite-plate receiver. Pairs of curves show probability bands:... 90%;-.-.-70%;—
50%, solid line is median value Top: condition number 23dB. Bottom: condition number lOdB.
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Figure 5-34 General normalised active power bands for CPI for a combination of off-resonant
source on infinite-plate receiver. Pairs of curves show probability bands:... 90%;-.-.-70%;—
50%, solid line is median value Top: condition number 23dB. Bottom: condition number lOdB.
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O ff-reso n an t s o u rc e  on infinite rece iver (a )

Figure 5-35 General normalised active power bands for CP2 for a combination of off-resonant
source on infinite-plate receiver. Pairs of curves show probability bands:... 90%;-.-.-70%;—
50%, solid line is median value Top: condition number 23dB. Bottom: condition number lOdB.
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S in g le  m o d e  re s o n a n t s o u rc e  on  s tiffn e s s  re c e iv e r  (b )

Figure 5-36 General normalised active power bands for CF for a combination of single mode
resonant source on stiffness receiver. Pairs of curves show probability bands:... 90%;-.-.-70%;—
50%, solid line is median value. Top: condition number 20dB. Bottom: condition number 13dB.
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Figure 5-37 General normalised active power bands for CPI for a combination of single mode
resonant source on stiffness receiver. Pairs of curves show probability bands:...90%;-.-.-70%;—
50%, solid line is median value. Top: condition number 20dB. Bottom: condition number 13dB.
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Figure 5-38 General normalised active power bands for CF for a combination o f single mode 
resonant source on off-resonant receiver. Pairs o f curves show probability bands:...90%;-.-.- 
70%;— 50%, solid line is median value.Top: condition number 27dB. Bottom: condition number 
1 ldB.
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S in g le  m o d e  re s o n a n t s o u rc e  on  o ff-re s o n a n t re c e iv e r (a )

Figure 5-39 General normalised active power bands for CPI for a combination o f  single mode 
resonant source on off-resonant receiver. Pairs o f curves show probability bands:...90%;-.-.- 
70%;— 50%, solid line is median value.Top: condition number 27dB. Bottom: condition number 
1 ldB.
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Figure 5-40 General normalised active power bands for CF for a combination of single mode
resonant source on infinite-plate. Pairs of curves show probability bands:...90%;-.-.-70%;—
50%, solid line is median value Top: condition number 25dB. Bottom: condition number lOdB.
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Figure 5-41 General normalised active power bands for CPI for a combination of single mode
resonant source on infinite-plate. Pairs of curves show probability bands:...90%;-.-.-70%;—
50%, solid line is median value Top: condition number 25dB. Bottom: condition number lOdB.
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Figure 5-42 a: a SSSS plate as a source, thickness is 5cm for case 1; 2cm 
for case2, 0.5cm for case 3. b: a SSSS plate as a receiver, thickness is 
0.20m
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Figure 5-43 Diag-mobility (sum of point mobility magnitude ) of source plate (-) and 
receiver plate(~).Top: the thickness o f the source plate is 5cm.Middle: the thickness 
of the source plate is 2cm.Bottom the thickness o f the source plate is 0.5cm
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Figure 5-44 General normalised active power for CPI (top) and CF(bottom) for a
combination of a 5cm thickness plate in stiffness frequency range on another plate in
stiffness frequency range. Each line correspond to a random excitation position.
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Figure 5-45 General normalised active power for CPI (top) and CF(bottom) for a
combination of a 2cm thickness plate in stiffness frequency range on another plate in
stiffness frequency range. Each line correspond to a random excitation position.
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Figure 5-46 General normalised active power for CPI (top) and CF(bottom) for a
combination of a 0.5cm thickness plate in stiffness frequency range on another plate in
stiffness frequency range . Each line correspond to a random excitation position.
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CHAPTER 6

VALIDATION WITH REAL STRUCTURE-BORNE 

SOUND SOURCES
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6.2 Prediction equations

6.3 Prediction for a real fans on various plate receivers

6.4 Conclusion



6.1 Introduction

It can be said that most important aim of characterising a source is to enable the active 

power emission from source to receiver to be predicted. The question therefore arises 

of how to predict the active power emission by using Si and S2. From chapter 5 we can 

see that the 'general normalised active power band' has a width, so that for given si 

and s2, the power into the receiver has a 'range'. Using the median line of the general 

normalised active power band to approximately predict the active power emission is 

proposed in this chapter. The probability that the true general normalised power lies 

on one side or other of the median line is fifty percent, so using the median line to 

predict power emission should be a good choice. (Another obvious choice would be to 

use the mean, but this is not discussed further).This approach, which can be applied 

using CF, CPI or CP2, is here called the 'single figure' prediction method. In this 

chapter the 'single figure' prediction method is tested by applying it to some practical 

machines on various plate receivers. Some other simplified characterisations which 

were described in chapter 3, namely the 'poles' method and the effective mobility, are 

applied to the same cases to establish the relative 'cost' of various forms of 

simplification.

6.2 Prediction equations

Observing the general normalised power band in chapter 5, in most cases the equation 

for the median line can be approximately expressed in the following form:

( ^ t)—  *XRe(K,,,)-------- 1 lfi i p . (6-1)
CF 1 + (a I //?,)A
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(6-2a)

(6-2b)

Therefore, the following equations for prediction of the active power emission are 

proposed:

R « .S R e(n „ )
1 + ( a E / /?,)^2

12A I fa x C F

EReC^,,) (as / yg,)/ 
11^,1 ll + t a 2 //?,) Pi I 2̂3- / /?4 xCRl

^ ZReQV,) ( ^ /A ) \ ; . / f t x C j , 2

(6-3)

(6-4a)

(6-4b)

where Z Re(Y/;„ ) is the average point mobility real part, while E  7* (V | is the average

point mobility magnitude. Equation 6-3 can be understood as an extension of equation 

(2-30), while equation 6-4 is an extension of equation (2-31). For single point contact, 

the results of prediction by using equation (2-30) and by using equation (2-31) are the 

same. But for multiple points, the results of prediction by using equations 6-3 and 6-4 

are different. The /?,(/ = 1,2,3,4) are called the ‘adjustment factors’ which are 

obtained according to median line of the general normalised active power bands in 

chapter 5. For the single point case, the adjustment factor can be understood as unity.

186



It is noted that some information about the real part of the mobility matrix of the 

receiver is required.

For the limiting case ZRe(Kfi>„) =0, the predicted solution by using equation 6-3 and 6- 

4 is zero, which agrees with the exact solution. It can be proved as follows: when 

IR e(YRJi) equals zero, then we have

SA ,.,=E R e(rM) = 0 (6-5)

where XR l are the eigenvalues of the real part of receiver matrix. All eigenvalues must 

be non negative, so the only possible solution to equation (6-5) is that all eigenvalues 

are zero (and it can be shown this means that the whole real part of the matrix equals 

zero). This means the active power emission equals zero, no matter what the 

imaginary part of the receiver mobility matrix.

6.3 Prediction for real fans on various plate receivers

Based on the above analysis, several examples are now given. The case studies 

presented in the rest of this chapter comprise typical practical fans upon various plate 

receivers. In all cases the mobilities and free velocities of the fan were obtained from 

archive measured data, and the mobilities of the various plate receivers were 

calculated using thin plate theory.

6.3.1 Fan A on various receivers

Casel: Fan A attached to a low mobility infinite plate.

In this case the infinite plate receiver has a low mobility in comparison to that of the 

source. The material and geometric properties of the plate are: Young’s modulus
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E=2.0*1010 N/m2, density p=2.3*103 kg/m3 Poisson‘s ratio v=0.3, loss factor r|=0.01, 

and thickness 0 .10m, i.e. it has the characteristics of a 100mm thick concrete plate.

The sum of the point mobility magnitudes for FanA Z|Tm | and for infinite plate 

receiver E|TW;„| are shown in figure 6 -la, and the average point mobility

magnitude a z in figure 6 -l.b. It is suggested that the source can be considered as an 

off-resonant sourceover the whole frequency range: there are no significant regions of 

stiffness or mass behaviour, and the resonant peaks are not isolated. Even if one were 

to consider the peaks as 'single mode' resonance behaviour, the number of data points 

is statistically insignificant as a proportion of the whole frequency range.

For off-resonant sources we choose Pi=0.5 p2=0 .9 5  P3=0 .9  P4=l in expression (6-1), 

Pi=0.6 P2=0 .9 5  P3=0 .9  P4=l in expression (6-2a), and Pi=0.6 P2=0 .9 5  P3=0 .9  P4=1.5 

in expression (6.2b). These values have been obtained by substituting values into 

equation 6-1 and 6 -2  until agreement was obtained with the median line of the 

appropriate general normalised active power band from Chapter 5. These values are 

suitable for stiffness receivers, off-resonant receivers and infinite plate receivers, in 

fact for all types of receiver except single mode resonant. For single mode resonant 

receivers we choose Pi=0.3 p2=l P3=l -1 in expression (6-1) and expression (6-2), and 

P4=3 in expression (6-1) and (6-2b), and P4=3 for expression (6-2a). Figures 6-2~6-5 

show a comparison of the two curves. The dark solid line is the median line from the 

general normalised active power band in chapter 5. The light solid line is the result of 

calculation based on equation 6-1 and 6 -2  and using the above values.
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Since the real fan is a physical structure, the eigenvalues of the real part of the 

mobility matrix should be positive. If the minimum eigenvalue is positive, then all 

others must also be positive, but if it is negative then at least one eigenvalue is 

negative, so the mobility data is 'unphysical'. Therefore, we can use the minimum 

eigenvalue of the real part of mobility to check if the mobility matrix is physical or 

not.

Figure 6 -6  shows the minimum eigenvalues of the real part of the source mobility 

matrix. The value is negative over about 35 percent of the whole frequency range. 

This is unphysical, and is due to measurement errors, so the following study will not 

consider frequency ranges where the data is unphysical. Frequencies at which 

negative eigenvalues occur are called ‘not considered frequencies’, and otherwise, 

‘considered frequencies’.

In order to compare the results of prediction by different methods (equations), the 

cumulative distribution function y= F(x)=P(X<x) is introduced. Here ‘P’ means 

probability (note the difference with italic letter'P' used to denote power). X  is 

defined by the following expression.

X  = 10 log Ppr-ed‘~l—  (6 -6 )
^\rue

Figure 6-7a shows the true active power emission together with the prediction from 

equation 6-3. The two curves are in close agreement. In figure6-7b the predicted 

active power normalised by the true power is shown. For all frequencies the error
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does not exceed a factor of ±5. Ninety percent of the predicted active power lies 

between true+3dB and true-1.5dB.

Figure 6 -8a shows the true active power emission and prediction from equation 6-4a 

(CPI). The two curves are not close like in figure 6-7a. For most frequencies the error 

does not exceed a factor ±6.5 (see figure 6 -8b) and 90 % of the predicted active power 

lies between true+5dB and true-4.5dB (see figure6 -8c).

Figure 6-9a shows the corresponding results from equation 6-4b (CP2). The 

agreement is similar to the above case, and 90 % of the predictions lie between 

true+4.5dB and true-4dB (see figure6-9c).

In Figure 6 -10a are shown the true active power and that predicted from the effective 

mobility (only point mobility assumption). The prediction shows poor agreement with 

the true value, and the 90 % limits are true+5.5dB and true-8.5dB, (see figure6-10c).

Figures 6-11 are similar to 6-10, except that the unit magnitude, zero phase force ratio 

assumption is made for the effective mobility. The agreement is worse than any of the 

previous methods, with 90% limits of true+lOdB and true-20dB, (figure6 -l lc).

Figure 6 -12a shows the corresponding results for the poles method. The agreement 

with the true power is no better than when using CPI and CP2 (equation 6-4) and 

considerably better than for the effective mobility method. The 90 % limits are 

true+4dB and true-7dB, (figure6-12c).
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To summarise, using CF (Equation 6-3) gives the best accuracy in predicting active 

power out of the above six prediction methods. Effective mobility gives the worst 

accuracy even though more source data is required. The results of prediction by using 

CPI (Equation 6-4a) and CP2 (Equation.6-4b) are similar; and their cumulative 

distribution functions are close, see figure 6-13a.

It was expected that the blocked force characterisation would work best in this case 

because the ratio of average point mobility magnitude a s is less than 0.1. For such 

values, the general normalised active power band for CF is narrower than that of CPI 

and CP2 as shown in Chapter 5, while the width for CP land CP2 is similar. Thus, 

these results were broadly expected from Chapter 5. Therefore, prediction of active 

power by using CF is more accurate than by using CP land CP2. This is different for 

the single point case where all three parameters give identical results.

In order to evaluate the effect of the adjustment (3, Figure 6-13b lists the results of 

cumulative distribution functions corresponding to /?, = /?2 = /?3 = 1. The curves for

CPI and CP2 move to the left, which means that there is a tendency for 

underestimation, while the curve for CF does not obviously change.

Case2: FanA attached to an infinite plate of matched mobility 

This case study consists of the above fan attached to an infinite plate of matched 

mobility. The plate material is the same as above and the thickness is 9mm. The sum 

of the point mobility magnitude for FanA l |r v7| and for the thin infinite plate receiver

Z|K/ii„| are shown in figure 6-14a. The average point mobility magnitude a 1 is shown 

in figure 6-14.b. For most frequencies a 1 is between 0.2 and 3.
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In figure 6-15a the true active power is compared to that predicted by using CF 

(equation 6-3). The two curves are not so close as for case 1. In figure 6-15b the 

prediction power normalised by the true active power is shown, and 90 % of the 

predicted values are between true-4.5dB and true+4.8dB (see figure6-15c).

Figure 6-16a shows the true active power and that predicted by using CPI (equation

6-4a). The two curves are quite close, the prediction proving to be more accurate than 

for case 1 (see figure 6-16b). 90 % of predicted values are between true-3.0dB and 

true+1.5dB as shown in figurel0-16c.

Again, the results obtained by using equation 6-4b (CP2) are similar to those from 

equation 6-4a (CPI), and only the cumulative distribution functions have been shown 

in figure 6 -2 0 a.

In figure 6-17 are shown corresponding results from using effective mobility (only 

point mobility assumption). The accuracy is better than that for easel, but is still 

worse than the results in figures 6-16. The 90 % margins are true-2.2dB and 

true+3.2dB.

Figure 6-18 shows the results from using the effective mobility (unit magnitude, zero 

phase force ratio assumption). The prediction is poor, with 90 % of the predicted 

active power between true+5dB and true-6 dB.
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Results from the poles method are given in Figure 6-19. The accuracy is similar to 

using equation 6-4 with 90% margins of true+1.8dB and true-2.8dB, see figure6-19c.

To summarise, the effective mobility (with unit magnitude, zero phase force ratio 

assumption) gives the worst results. The point mobility assumption gives better 

results, in fact better than by using CF, but the best results are from CPI , CP2 and the 

poles method. As for the previous case, the results of prediction by using CPI and 

CP2 are similar, the two cumulative distribution functions being close (see figure 6 - 

20). This can be explained by the results of Chapter 5; the average point mobility 

magnitude ratio a 2 is between 0.2 and 3. In this range, the general normalised active 

power bands for CPI and CP2 are similar and narrower than that for CF, so equation 

6-3 is expected to give worse results than equation 6-4.

Figure 6-20b lists the results of cumulative distribution functions corresponding to 

Px= P2 = P3 = 1 . The curve for CP land CP2 moves to the left, indicating a tendency 

for underestimation, while that for CF moves to the right, giving a tendency for 

overestimation.

Case3: FanA attached to a lower mobility SSSS plate

This case study is of fanA upon a lower mobility SSSS plate receiver (simply 

supported all round). The physical properties of the plate are the same as above and 

the geometric parameters are shown in figure 6-21. The sum of the point mobility 

magnitude for FanA ( Z|fv,| ) and for the plate (l|yM| ) are shown in figure 6-22a, and

the average point mobility magnitude ratio a 2 is shown in figure 6-22b. In all the 

‘considered frequency range’ a 2 lies between 0 .0 0 land 0 .1.
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The true and predicted active power by using equation 6-3 is shown in figure 6-23a. 

The two curves are not in close agreement as was the case for a thick infinite plate 

receiver (easel), since here the condition number for the finite receiver mobility 

matrix is larger. The 90 % margins are true-4dB and true+4dB, (see figure.6-23c).

Figures 6-24 shows the results from equations 6-4a. The 90% margins are true-6.5dB, 

+7.0dB. The results by using equation 6-4b are similar to those from equation 6-4a, so 

as above only the cumulative distribution functions have been shown in figure 6-26a.

The prediction using effective mobility with unit magnitude zero phase force ratio 

force assumption is shown in figure 6-25. The prediction is the poorest, with 90 % 

margins of true-28dB, +9dB. About 12% of the predicted values are negative (shown 

by the dotted line). This is not physical and arises since the equation for prediction 

itself has a conflict. This is the main reason why these results are poor. In fact, the 

same problem also occurred in the two previous cases, but was not highlighted since 

only a few values were negative.

The prediction using the effective mobility (only point mobility assumption) is poor, 

while results from the poles method are not generally better than for equation 6 - 

4.(only the cumulative distribution functions have been plotted for these two cases)

Again, using CF for predicting the active power gives the best results. Effective 

mobility gives poor results, while results for CPI and CP2 are similar. The poles 

method is no better than that of using CPI and CP2 in this case. The comparison of

194



cumulative distribution functions is shown in figure 6-26a. Figure 6-26b shows the 

cumulative distribution functions which correspond to /?, = = /?3 = 1. The results

are similar to case 1, and no further discussion is required here.

Case4: Fan A attached to a matched SSSS plate

This case study is the fan A upon a SSSS plate receiver whose mobility is of a similar 

magnitude to that of the source. The physical parameters and geometry of the SSSS 

plate are the same as Case 3, except that the plate thickness is 7mm. The sum of the

point mobility magnitude for F an A Z|Tsv,| and for the thin SSSS plate receiver Z|Tæ„|

are shown in figure 6-27a. The average point mobility magnitude ratio a 2 is shown in 

figure 6-27b, showing that for most ‘considered’ frequencies the a1 are between 0.1 

and 1 0 .

Figures 6-28 to 6-31 list the results of prediction by using equations (6-3), (6-4), 

effective mobility and poles method. The blocked force method, (Equation 6-3) gives 

90% margins of ±5.5dB. The characteristic power, CPI gives better accuracy: -3.5dB, 

+2.5dB, and as before, the results from CP2 are similar, (still only cumulative 

distribution function have been plotted). Effective mobility (point mobility 

assumption) is no better than CPI or CP2 (still only cumulative distribution function 

have been plotted), with 90% margins o f -2.5, +4.5, while the unit magnitude, zero 

phase force ratio assumption, again gives the worst results, (not been plotted). The 

poles method gives the best results: -2.7, +2dB.

Figure6-31b shows the cumulative distribution functions corresponding to 

P\ ~ Pi ~ Pi = 1 • The conclusions are similar to case 2 .
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Case3 and Case 4 show again that in the case of lower mobility receivers, using CF 

for prediction is better than using CPI and CP2, while in the case of matched mobility 

receiver the opposite is the case. These results can be explained by using the general 

normalised active power bands given in chapter 5. In other words, these cases provide 

a practical validation of the conclusions of Chapter 5 which were based on 'abstract' 

structures.

6.3.2 Prediction o f active power from fan B into finite plate receiver.

Fan B is another typical practical fan. The sum of point mobility magnitude Z|Tt „ | is

shown in figure 6-3 2a. The minimum eigenvalue is negative over about 50% of the 

whole frequency (see 6-33). Below 100Hz there are no positive eigenvalues. This is a 

region of mass-like behaviour, but the curve in this frequency range deviates from that 

of a pure mass-like source. Therefore, the data is of suspect quality in this frequency 

range which is not therefore considered. From 100Hz to 400Hz fan B shows stiffness

like behaviour, and above 400Hz it can be considered as an off-resonant source.

For stiffness sources the same adjustment factors are used as for off-resonant sources, 

except that Pi is slightly changed to Pi=0.45. (The adjustment factors for off-resonant 

sources can also be used for single mode resonant sources, although no such 

behaviour was present in this case).

Case5 Fan B attached to a lower mobility SSSS plate

The properties of the plate assumed are as follows: Young’s modulus E=2.0*1010
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N/m2, density p=2.3*103 kg/m3, Poisson‘s ratio v=0.3, loss factor r|=0.02, and the 

geometric parameters are shown in figure 6-34. The thickness of the plate is 0.09m. 

The sum of the point mobility magnitude | for the SSSS plate receiver are

shown in figure 6-32a. The average point mobility magnitude ratio a 1 is shown in 

figure 6-3 2b.

Figures 6-35 to 6-40 give the results of prediction by using expression 6-3, 6-4, 

effective mobility and poles method. In the stiffness range, prediction by using CF 

(equation 6-3) looks better than other methods, and CPI and CP2 give similar results. 

These results are consistent with chapter 5. The effective mobility and poles method 

proved to be less accurate than CPI and CP2 for this case. The cumulative 

distribution function for this frequency range was not plotted as there was insufficient 

data.

In the off-resonant range (above 400Hz), the prediction by using CF is still the best 

one with 90% probability limits of -2.5dB, +3dB, and effective mobility (unit 

magnitude, zero phase force ratio assumption) is still worst. Conclusions are generally 

consistent with case3 (see figure 6-41).

Case 6  Fan B attached to a matched SSSS plate

The SSSS plate receiver is steel with physical properties: Young’s modulus 

E=1.8*10n N/m2 , density p=7.8*103 kg/m3, Poisson‘s ratio v=0.3, loss factor 

r|=0.01. Geometry is shown in figure 6-42. The sum of point mobility magnitude for 

Fan B, T\YSJi\ and for the thin plate receiver are shown in figure 6-43a. The
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average point mobility magnitude ratio a 1 is shown in figure 6-43b and lies in the 

range 0 .1- 1 0 , i.e. the structures are 'matched'.

Figures 6-44 to 6-45 give the results of prediction by using different methods. In the 

stiffness range the prediction by using CF (equation 6-3) is poorer than using CPI and 

CP2. This is consistent with the results of chapter 5. The results by using effective 

mobility are not worse than that of using CPI and CP2. In this example the 

relationship between points on the source in the stiffness range is relatively weak, 

especially for sources with flange bases [34] (like fanB). Also, for thin plate receivers 

the transfer mobility is less than the point mobility, and these two factors mean that 

the assumption of uncoupled points is likely to work reasonably well. The poles 

method gives better results.

However, in the off-resonant range, the prediction by using the effective mobility 

(unit magnitude, zero phase force ratio assumption) is still the worst, while the 

prediction by using CF (equ.6-3) is the next worst. The poles method is slightly better 

than using CPI and CP2 (equ.6-4). In this case, prediction by using effective mobility 

(only point mobility assumption) is not worse than that of using CP land CP2.

6.3.3 Prediction for a motor on various receivers

The motor example includes regions of mass-like behaviour which has not been 

considered up to now. Figure 6-47 shows the sum of point mobility magnitude for 

typical motor in the frequency range of 10~300Hz (solid curve). From 100 Hz the 

solid curve begins to bend, and deviates from ideal mass behaviour (dotted line) 

above 150Hz. Thus, the motor can be considered as a mass source at frequencies
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below 150Hz. For a mass source the real part of the mobility should be small (it is 

zero for an ideal mass), but in the range of 10~50Hz the real part is not small (see 

dashed curve) due to measurement errors (the lower the frequency the more the 

measurement error). Therefore we consider only the frequency range of 50-150Hz.

For a mass source we choose Pi=j (32=1 03=1 p4=l in expression (6-1) and (6-2) when 

the receiver is an infinite plate, but for other receiver types the prediction equations 

will be more complex. For off-resonant receivers it is seen from figures (5-12-5-12) 

that a sensible approximation to the median line can be made with two straight lines, 

that is by the following:

P*-{
Z R e(rM )xCF

lR e(T /? w) / |a s |2 xCF

(g s <1)

(a 1 >1)
(6-7)

£  Re(F„ a ) _ y
g 1 xCPl ( gL <l)

y\Y I■H *.«l
£  Re(F„ ) _ _

R’" / a z xCP\ (g£ >l)
s | r „ , J

(6-8a)

ZR e(^,„) g 1 xCP2 g s <1

ZRe(F*-i2 / „ s x rP 2  a z >l
Z\yJ

(6-8b)

For stiffiiess receivers, equation 6-7 and 6-8 can be used in the range g 1 < 0.1, but in 

the matched case the prediction based on general normalised active power is difficult 

as illustrated by figures 5-2~5-4. Such predictions are also difficult for receivers for 

which the mobility curve displays high, sharp peaks (approximated as single mode
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resonant structures), because the sharper the peak, the greater the adjustment factors 

P3 and P4 .

Case 7 Motor on infinite plate

Figure 6-48 shows the prediction normalised by the true active power for the motor on 

an infinite plate. (The sum of the point mobility magnitude for the infinite plate

receiver E|TS (/1 are shown too in figure 6-47). The solid line (curve) was obtained

using CF (equation6-3), and the dotted and dashed lines using CP land CP2 (equation 

6-4a,b) respectively. Results from all methods except the poles method show an error 

in the shape of the spectrum. The range of error is similar for CF, CPI and CP2 which 

coincides with the properties of the corresponding general normalised active power 

band in chapter5, where the widths of the three bands are similar. However, CF over 

predicts which may possibly be explained as follows. The prediction equation is based 

on the median line of the corresponding general normalised active power band. 

However, for ideal mass sources the rank is not full, so the matrix inverse does not 

formally exist, and CF cannot therefore be determined for a given free velocity. To 

avoid this problem, the. SVD method has been used to obtain CF and hence the 

general normalised active power band. This method effectively sets CF to a minimum 

solution[51]. Therefore, using the median equation may overestimate the active power 

from a practical mass source into a receiver. Curves from other methods give less 

accurate results except for the 'polar' method where the agreement is good.

In the above examples, the sources are practical machines. Although data was 

available for a number of cases, none has been found with sharp resonance peaks. 

Therefore, it has not been possible to validate the single mode resonance model. In
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this case the relationships between CF, CPI, and CP2 are simple (see equation 5- 

17-18), and equations 6.3 and 6.4 become a single equation. For equation (6-4a) we 

can choose the adjustment factors P2 =P3=P4=1, but it is difficult to determine Pi. Pi is 

highly sensitivity to receiver parameters, for example condition number. Therefore, 

we may expect difficulties in avoiding bias errors if this type of behaviour is 

prominent in other situations. However, it was found in Chapter 5 that CPI forms an 

effective upper bound to the power, which may provide sufficient information in 

some cases.

6. 4 Conclusion

The prediction of active power from typical practical machines into various receiver 

types has been studied. Here, the input data to the predictions is from real structures, 

in contrast to Chapter 5, where ‘abstract’ data in the form of generic sources and 

receivers were used. In general, the results from real structures have been found to 

validate the generic results from Chapter 5 and therefore endorse the general approach 

used.

For practical fans, off-resonant behaviour is found to occupy most of the frequency 

range. Predictions based on the single figure parameters CF, CPI and CP2 are on the 

whole more accurate than those based on the effective mobility method, even though 

the latter uses more data. The poles method gives slightly lower accuracy than CPI 

and CP2 in the case of low a 1 , but is slightly better in the matched case. Therefore, 

compared with the effective mobility method, using CPI or CP2 combined with the 

average point mobility magnitude to characterise the source not only reduces the 

amount of data for characterisation but is also more reliable in terms of accuracy.
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Compared with the poles method, using CPI or CP2 combined with the average point 

mobility magnitude to characterise the source there is little ‘cost’ in accuracy but the 

characterisation is simpler. In the case of lower a s the blocked force parameter CF 

was consistently the best characterisation. However, in the matched case it is worse 

than other methods except the effective mobility method with the assumption of unit 

magnitude, zero phase force ratios. Therefore, using three data CF, CPI (or CP2) and 

average point mobility magnitude for characterisation of source will have better 

accuracy than using only two data.

For stiffness-like sources, the above results are still valid for lower az , while in the 

matched case the prediction by using CPI or CP2 is slightly more ‘costly’ in accuracy 

compared with the poles method and is comparable for the effective mobility method.

For mass-like sources the poles method is more reliable than any of the ‘single figure’ 

prediction methods.
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Figure 6-3 Comparison of median and calculation (off-resonant source on stiffness
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Figure 6-4 Comparison o f median and calculation (off-resonant source on infinite plate)
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Figure 6-5 Comparison of median and calculation (off-resonant source on
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Figure 6-9a,b,c. Prediction by using CP2 for fanA attached to a lower mobility infinite plate
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Figure 6-10a,b,c. Prediction by using effective mobility(only point mobility assumption) for fanA
attached to a lower mobility infinite plate
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Figure 6 -lla ,b ,c . Prediction by using effective mobility(unit magnitude, zero phase force ratios)
for fanA attached to a lower mobility infinite plate
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Figure 6-12a,b,c. Prediction by using poles for fanA attached to a lower mobility infinite plate
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F igure  6-13a Comparison o f cumulative distribution function (easel)

F igu re  6-13b The effect o f adjustment factor
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F ig u re  6-14a A sum o f point mobility magnitude for fanA and matched mobility infinite
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Figure 6-14b A average point mobility magnitude ratio of matched mobility infinite plate to fanA
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Figure 6-15a,b,c. Prediction by using CF for fanA attached to a matched mobility infinite plate
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Figure 6-16a,b,c. Prediction by using CPI for fanA attached to a matched mobility infinite plate
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Figure 6-17a,b,c. Prediction by using effective mobility(only point mobility assumption) for fanA
attached to a matched mobility infinite plate
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Figure 6-18a,b,c. Prediction by using effective mobility(unit magnitude zero phase force ratios)
assumption) for fanA attached to a matched mobility infinite plate
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Figure 6-19a,b,c. Prediction by using poles for fanA attached to a matched mobility infinite plate
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F ig u re  6-20a Comparison o f cumulative distribution function (case2)

F igu re  6-20b The effect o f  adjustment factor
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Figure 6-21 FanA on the ssss-plate
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F ig u re  6-22a A sum o f  point mobility magnitude for fanA and lower ssss-plate

F ig u re  6-22b A average point mobility magnitude ratio o f  lower ssss-plate to fanA
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Figure 6-23a,b,c Prediction by using CF for fanA attached to a lower mobility ssss-plate
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Figure 6-24a,b,c. Prediction by using CPI for fanA attached to a lower mobility ssss- plate

226



PC
xI

 
N

or
m

al
is

ed
 a

ct
iv

e 
po

w
er

 e
m

is
si

on
 

A
ct

iv
e 

po
w

er
 e

m
is

si
on

 (
w

)

Figure 6-25a,b,c. Prediction by using effective mobility(unit magnitude, zero phase force ratios)
for fanA attached to a lower mobility ssss- plate
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Figure 6-26a Comparison o f  cumulative distribution function (case3)

x

Figure 6-26b The effect o f adjustment factor
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Figure 6-27a A sum o f point mobility magnitude for fanA and matched ssss-plate

Figure 6-27b A average point mobility magnitude ratio for matched ssss-plate to fanA
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Figure 6-28a,b,c. Prediction by using CF for fanA attached to a matched ssss- plate
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Figure 6-29a,b,c. Prediction by using CPI for fanA attached to a matched ssss- plate
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Figure 6-30a,b,c. Prediction by using poles for fanA attached to a matched ssss- plate
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Figure 6-31a Comparison o f cumulative distribution function (case4)

x

Figure 6-31b The effect o f  adjustment factor
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Figure 6-32 FanB on the ssss-plate (thickness is 0.09m)
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Figure 6 -3 3 a  A  sum o f point mobility magnitude for fanB and lower mobility ssss-plate

Figure 6 - 3 3 b  A  average point mobility magnitude ratio o f  lower mobility ssss-plate to fanB
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Figure 6-34 Minimum eigenvalue o f real part o f  the mobility for fanB
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Figure 6-35a,b,c. Prediction by using CF for fanB attached to a lower mobility ssss- plate
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Figure 6-36a,b,c. Prediction by using CPI for fanB attached to a lower mobility ssss- plate
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Figure 6-37a,b,c. Prediction by using CP2 for fanB attached to a lower mobility ssss- plate
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Figure 6-38a,b,c. Prediction by using effective mobility (only point mobility assumption) for fanB
attached to a lower mobility ssss- plate
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Figure 6-39a,b,c. Prediction by using effective mobility (unit magnitude, zero phase force ratios)
for fanB attached to a lower mobility ssss- plate

241



F
M

 
N

or
m

al
is

ed
 a

ct
iv

e 
po

w
er

 e
m

is
si

on
 

A
ct

iv
e 

po
w

er
 e

m
is

si
on

 (
w

)

-2

F re q u e n c y (H z )

1 ------------------- T-

0.8

0.6

0.4

0.2

0 --------- ---- -
-15 -10

/

-5 0 5
(dB)

10 15

Figure 6-40a,b,c. Prediction by using poles for fanB attached to a lower mobility ssss- plate
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Figure 6-42 FanB on the ssss-plate (thickness is 4mm)
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Figure 6-43a A sum o f  point mobility magnitude for Fan B and matched ssss-plate

F re q u e n c y (H z )

Figure 6-43b A average point mobility magnitude ratio of matched ssss-plate to fanB
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Figure 6-44 Prediction by using CF (a),CP 1(b),CP2(c) for fanB attached to a lower mobility 
ssss- plate
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F igure  6-45 Prediction by using effective mobility (a: only point mobility assumption ),(b: unit 
magnitude zero phase force ratio), and poles (c) for fanB attached to a matched mobility ssss- plate
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F igure  6-46a Comparison o f  cumulative distribution function( caseô)
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Figure 6-47 A sum o f  point mobility: solid line is magnitude for motor (dark) and for 
infinite plate (light),dashed line is real part for motor , dotted line is for a ideal rigid body.

F igure6-48 Prediction for motor attached to infinite plate
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CHAPTER7

CONCLUSIONS



Conclusions

A complete characterisation for multiple-point-connected structure-borne sound 

sources contains too many elements (or parameters). It is not convenient for practical 

use. In this thesis, simplified characterisations have been researched, particularly 

those reduced to a single ‘active’ and a single ‘dynamic’ parameter.

The active power emission from a source into a receiver is sensitive to the receiver. 

This cannot be changed no matter how we choose the parameters to characterise the 

source. Whether the source parameters (Sc) can be used as parameters to rank a 

number of sources or not, depends on whether equation L = f { r x,r2,...rm,Sc) can be 

satisfied. (This equation can be interpreted as stating that a higher value of (Sc) always 

leads to a higher value of the target quantity for sources installed on the same 

receiver)

Both the ‘active’ and dynamic parameters strongly influence the active power from a 

source into a receiver, so it is not possible to describe this influence by a single source 

parameter. The ‘single figure’ method was introduced to simplify characterisation of 

structure borne sources, i. e. the many elements needed for a full characterisation were 

collapsed into two parameters, one representing the ‘active’ property, which contains 

information about the ‘strength’ of the source (called ‘sf)  and another representing 

the dynamic property (called ‘S2’.). In theory, there is an infinite number of pairs of 

valid parameters ‘s f  and ‘S2’. In this thesis, the average point mobility magnitude was 

chosen as the dynamic property parameter, while three alternative forms for the 

‘active’ property parameter were investigated. These are ‘CF’ (based on blocked 

forces and with units of force squared), ‘CPI’ and ‘CP2’ (which are both based

251



around the idea of ‘characteristic power’, and have units of power). Whether the 

chosen ‘sj’and ‘S2’ is ‘good’ or ‘not good’ has been shown in the corresponding 

‘general normalised active power band’. The general normalised active power band 

provides insight into the global behaviour of the source after knowing these two 

parameters (si and S2).

In order to obtain the ‘general normalised active power band’ a ‘replacement method’ 

has been adopted where practical structures are replaced by ‘generic’ structures. 

These generic structures are represented by randomly varied ‘generic’ matrices, which 

are based on the inherent properties of the mobility matrices and free velocity vector 

for different types of behaviour. This approach was necessary in order to provide 

sufficient data for statistical analysis of all the possible combinations of source and 

receiver types.

The properties of the mobility matrix and free velocity for four types of source (mass

like source, stiffness source, single mode resonant source, and off-resonant source) 

and four types of receiver (stiffness receiver, single mode resonant receiver, off- 

resonant receiver and infinite plate receiver) have been considered. For example, the 

imaginary part of the mobility matrix for a mass source has non-positive eigenvalues, 

and the free velocity vector has some relationship with the mobility matrix. For the 

case of a non-full rank mobility matrix, the mobility matrix ( [K]) and corresponding 

augmented matrix (([K, Vsf ]) have the same rank. For the stiffness source and receiver,

the real part and imaginary part are the same except for a constant multiplier. Matrix 

elements were randomly varied within these constraints in order to produce a 

statistical set of generic matrices. This 'generic structures’ approach is one of the main
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novelties of this work. The 'rules' of behaviour, formulated as a 'means to an end', can 

also be considered a useful outcome in that they provide some insight into the 

different types of behaviour.

The three kinds of ‘general normalised active power bands’ for combinations of 

different types of source and receiver have been plotted.

a) For high mobility sources, the general normalised active power band for CF are 

relatively flat while those for CPI and CP2 are sloped. Furthermore, the variation 

for CF is significantly less than for CPI and CP2. This means that using CF as 

source strength parameter will be more advantageous than using CPI or CP2, 

even if each source has the same average point mobility magnitude. This 

phenomenon is different to the single point case where all three forms are 

identical, which emphasises that the choice of parameter is important for multiple 

point contact.

b) When the source and receiver mobilities are matched, the general normalised 

active power bands for CF, CPI and CP2 are more complicated as might be 

expected. Overall, the power based descriptors CPI and CP2 have advantages 

over CF in this case. However, the situation is less clear-cut than for the ‘high 

mobility source’ case described above. For stiffness and off-resonant sources 

(which applies to a large proportion of practical cases) the general normalised 

active power bands for CPI and CP2 are relatively flat and narrow compared with 

that for CF. This means that using CPI or CP2 as a strength parameter will be 

more reliable than using CF, in other words a rank ordering based on CPI or CP2 

will be more stable than one based on CF. However, for mass-like sources on
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stiffness receivers, the three bands are all wide (up to 30dB) and none are flat. 

Thus, for mass-like sources, the single figure approach could lead to potentially 

large errors, and a more complete description, such as the polar mobility 

description is desirable.

Both CPI or CP2 can be considered as an practical upper limit of the active power 

from a source into the receiver. This result is not always correct, but in most cases it 

will be quite reliable, unless the source is mass-like and the receiver mobility 

magnitude matches that of the source. This result may be useful for practical cases, 

particularly when it is not necessary to know the active power emission accurately, 

but just the approximate upper limit. The only case where this limit is exceeded is for 

mass sources on spring receivers. We can speculate, based on theory for a single 

mass-spring system, that the power will not exceed CPl/r|, where r| is the loss factor 

of the receiver. This appears to agree with results of Chapter 5, although further work 

would be required to confirm this.

Some examples have been shown of using the general normalised active band power 

band (‘single figure’ prediction method) to predict the active power emission from 

practical machines into plate receivers. Compared with the effective mobility method, 

the ‘single figure’ prediction method achieves a better effect in accuracy, whilst 

requiring less data. Compared with the polar mobility method the ‘single figure’ 

prediction method pays a slight ‘cost’ in terms of uncertainty in matched cases, 

particularly for mass-like sources. However, perhaps surprisingly, the uncertainty in 

CF is less than all other descriptors, even those using more data.
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The parameters describing the activity of structure-borne sound sources has been 

contracted into a single data (si) in the ‘single figure’ method. In many practical 

cases, the source and receiver properties will be known with sufficient accuracy to 

place the installation in either the 'high mobility source' or the 'matched' category. For 

example, for building service machinery, the source is often to be installed on a 

concrete floor where the mobility is much smaller than that of the source, and the 

condition number is relatively low. In this case si can be used as a source strength 

parameter to rank the source.

In this thesis the receiver mobilities chosen have a condition number less than 30dB, 

except for single mode resonance receivers. This is likely to be a ‘worst case’ for 

practical structures in which loss factors lower than 0.01 are relatively rare because of 

energy loss into connected structures. It is possible that condition numbers could 

exceed 30dB around resonant peaks for structures with lower damping (from 

experience this could occur if a peak in S2 is a factor 102 greater than the next trough). 

In this case the corresponding ‘normalised active power band will be slightly wider 

than shown in Chapter 5. However, we can conclude that the bands shown in Chapter 

5 are not limited to cases of high damping, but cover most practical situations.

A final comment concerns the relative merits of simplified and full source 

characterisations. On one hand, more data means that less restrictive assumptions 

have to be made and the predicted emission should in theory be more reliable. 

However, on the other hand with more data there is more possibility that the data set 

contains errors which will lead to errors in the predicted emission. Indeed, it is often 

found, even in cases where a full set of measured data is available, that the errors in

255



the predicted power emission are significant, possibly even of similar order to those 

produced here with far less input data. Single figure descriptors will always give a 

range of uncertainty. However, their reliability is considerably increased when the 

likely errors are known and understood, and it is hoped that this thesis has contributed 

in some measure to this. Perhaps the most important advantage of the single figure 

approach however is that it gives some insight into the problem of structure-borne 

sound emission.
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APPENDIX A FORCE MOBILITY OF HOMOGENEOUS BEAM

A.l The general form force mobility solution

For a homogeneous beam (see figureA-1) the force mobility from excited point x0 to an 

arbitrary point x on beam is given by:

YvF =Aekx +Be~kx +CeJkx + De~jkx x < x , (Al -1 )

YvF = ae1“ + b e ~kx + ceJkx + de~Jkx x0 <x

Where k = 4co(jn0 / B )V4 is wave number. B = El is the bending stiffness of beam.

The eight as yet unknown quantities (A,B,C,D,a,b,c,d,) can be determined from continue 

and force balance condition at the excitation point and the ends supporting boundary 

conditions. Basing on the continue and force balance condition at the excitation point 

the four expression for solving unknown quantities (A,B,C,D,a,b,c,d,)was given by 

following

A - a - ^ e - *  
ABk3

(A 1-2)

4  B e

ABk3
C - c  =

D - d  = - j - d ß , e +Jkx° 
ABk3
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Four of the remaining expressions for solving unknown quantities are dependent upon 

the ends boundary condition.

A.1.1 Four of the remaining expressions based on boundary condition

a ) Infinite beam

a = 0

c = 0

B = 0;

D = 0

b) A semi-infinite beam with simply supported at the one end (extending from x=0 to

x=+°c);

a = 0

c = 0

A + B + C-\-D — 0

A + B - C - D = 0

c) A semi-infinite beam with guided supported at one end(extending from x=0 to x=+oc);

a = 0

c = 0

A - B  + j C - j D  = 0

A -  B -  jC  + JD = 0

d) A semi-infinite beam with free supported at one end(extending from x=0 to x=+oc);

a = 0
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c = 0

A + B - C - D = 0 

A - B -  jC  + jD  = 0

e) A semi-infinite beam with clamped supported at one end (extending from x=0 to 

x=+oc);

a = 0 

c = 0

A + B + C + D = 0 

A - B  + jC  -  jD  = 0

f) A finite beam of length

For finite beam of length the four of the remaining expressions do not list

A.2 Force mobility

A.2.1 Infinite and semi infinite beam

a) Infinite beam

7if=  ® -  je
r 4Bk3

JC0|

b) A Semi-infinite with simply supported at one end

Y  —  03 (  Ì 0 - k(xa+x) _  Ì 0 - k(x0-*) 4 . 0 - J k(xo-x) _ 0 - M * o + x) '

CO

r-F "  4B k3 Ue
k(x,>+x) _  - - k ( x - x 0) ~xo) _  a -jk(x„+x)■je v °'+e - e >)

x < x0 

x0 <  X
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c) A  Sem i-in fin ite beam  w ith guided supported at one end

Y = ( -  -*(«+') _ + e~M*o-*) + e-M*«+*)\ x < xQ
vF 4Bk3

=  _  j e -H x -x0) +  e - M x  - * „ )  + e ~jk(x0+x ) ,  X > X 0

vF 4BA3  ̂ J

d) A Semi-infinite beam with free supported at one end

f ,  = ß>
4M 

<y

( - y e " •*<-*b-Jr) +  g -* (*o+ .r) 4_ o -jk(x0-x) _  -a -jk(x„+,r)+ e -  je~'KI-x“+x> + (1 -  j)(e-jkxe^" + e“-** e"*)) x<x,

f vF = -7W7T(-Je~k(X' Xo) +e-k(Xo+x) +e~Mx ~Xo) -  je~Mx°+x) + ( l-  j)(e~Jkxe '1“0 +e~jkx°e-kx)) x < x 04 Bk

e) A Semi-infinite beam with clamped supported at one end

- y e
-ß (x0+x) -  (1 -  j){e~Jkxe + e~Jkx°e~b )) x<x0y  _  ^  f  j e - k(*o-x) +  e ~Hx„+x) +  e -jk(x„-x)

vF 4M 3

f v,- = - ^ { - j e ' Kx-Xa) + e~k(x°+x) + e jk(x ~H) -  j e-jk(x"+x) -  (1 -  j ) + e ' ^ e ^ ) )  x < x 0

A.2.2 Finite beam of length 

a Simply-simply

Closed form solution

=
_ -  jco , sinh Ax sinh A (/-x0) sin kx sin k(l -  x0)

lvF in L j^25AJ sinh A/ sin A/
0 < x < x„

^  _ -  jco ^sinh kx0 sinh A(/ -  x) sin Axn sin k(l -  x)
/ „ F  —  ------ V
vF 2Bk3 v sinh A/

Infinite series expressions 

2 jco ^  cpn (x0 )<p„ (x)

sin A/

M  Z t co2n ~c°

x0 < X < /

where <pn(x) = s in ^~ -x
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ß n = n®r, = ( ß«K}2 
1 ’

B_
m0

b Guided-guided

Closed form solution

_ -ja> coshkxcoshk ( l - x 0) coskxcosk(l-x0) 
vF 2Bk3 sinh&/ sin kl

_ -  j(o cosh kx0 cosh k ( l - x )  cos kxQ cos k ( l - x ) 
vF 2B k3 smhkl + sin kl

Infinite series expression

2 j û ) ^ ç n(x0)<pn(x) t 1 
M  o)2n -co1 jcoM

0 < x < x0 

x0 < x < /

where $?n(x) = cos *ß«
l

x

0>n = (
ßn* . 2 

l ’
B_
m0

ß n =n

c Free-free

Closed form solution

YvF = - ^ 3- ( / ,  (x0 )Si 0 ) + f ! (*o )g2 00 ) 0 < x < x 0
fC

YvF = r f e -  (/, OOg, C*o) + f 2 00g2 Oo)) x0 < x< l2*d K

where

/ ,  (x) =  cosh kx -  cosh k {l  -  x) cos kl -  sinh k {l -  x) sin kl

-  cos kx +  cos k ( l  -  x) cosh kl -  sinh kl sin k ( l  -  x)
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/ 2 (x) =  sinh Ax + sinh k ( l  -  x )  cos kl -  sin  kl cosh k ( l  -  x)

-  sin  kx + sinh kl cos k ( l  -  x) -  cosh kl sin k ( l  -  x)

g x (x) = -(sin kx + sinh kx) / 2(1 -  cosh kl cos kl) 

g 2 (x) = (cos kx + cosh kx) / 2(1 -  cosh kl cos kl)

Infinite series expression

„  jO> ^  <P„(Xo)<Pn(x) , 1 n ,2yf3,  I  ̂2-s/3 l ^
yvF = 7 7 2 , ----- 2----- — + ̂ - r j ( 1+—M  “ i co. - a  jcoM I 2 1 2

where q>„ (x) = cosht^y2- x) + cosily2- x) + bn (sinht^y2- x) + sint^y2- x))

bn = -(cosh(icpn ) -  cos(n p „  )) /(sinh(7r/?„ ) -  sm {n /3 n ))

/?„ is root of equation cosh(/?;r) cos(/?;r) -1 = 0. fio=0 is root of this equation too, the 

correspondent model solution is second term of the expression of the mobility 

/?, =1.5056, fi2 = 2.4997,•••,/?„ » «  + 1/2

d Clamp-clamp

Closed form solution

yvF = (/1  (*0 )#i (*) + f i  (*o )g2 (x)) 0 < x < x0
ZxJ fv

YvF = r & r  (/, (*)£, (x0 ) + f 2 (x)g2 (x0)) x0 < X  < /
J*Jtj K

where

f x (x )  =  cosh kx -  cosh k ( l  -  x ) cos kl -  sinh k ( l  -  x ) sin kl

+ cos Ax -  cos k ( l  -  x )  cosh kl + sinh kl sin k ( l  -  x )
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gj (x) = (sin kx -  sinh Ax) / 2(1 -  cosh kl cos kl)

g 2 (*) = -(cos Ax -  cosh Ax) / 2(1 -  cosh kl cos kl)

Infinite series expression

Y y  Vn (XQ (x)

where <pn (x) = c o sh (^ -  x) -  cos(-^- x) + b„ (sinh(-^- x) -  s in ( ^ -  x))
l l

b„ = -(co sh (^„) -  c o s (^ n)) /(sinh(^0„) -  sin(;r/?„))

f 2 (x )  = sinh Ax + sinh k ( l  -  x ) cos kl -  sin kl cosh k ( l  -  x )

+ sin kx -  sinh kl cos k ( l  -  x )  + cosh kl sin  k { l  -  x )

is root of equation cosh(/frr) cos(/?;r) -1 = 0.

/?, =1.5056, p 2 = 2A 991,--,pn * «  + 1/2

e Clamp-free

Closed form solution

y„ = </, (*0)«. w +/i (*. )gj (*» o < x < x0

y,F = S P  w  W i ' ^ }+/2 ^ )) *«s  s  1

where

/ , ( x )  = cosh Ax + cosh A ( / -  x )c os  A/ + sinh k ( l  -  x)s in k l

+  cos kx +  cos k ( l  -  x )cosh  k l  -  sinh k l  sin A(/ -  x )
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g, (x) = (sin kx -  sinh kx) / 2(1 + cosh kl cos kl)

g2 (x) = -(cos kx -  cosh kx) / 2(1 + cosh kl cos kl)

Infinite series expression

f 2 (x) = sinh kx  -  sinh  k (l  -  x) cos kl + sin kl cosh k ( l  -  x)

+ sin kx + sinh kl cos k (l  -  x) -  cosh kl sin k ( l  -  x)

bn = -(cosh (tcP„ ) + c o s (^ n)) /(sinh(^0„) + sin (nfin))

J3n is root of equation cosh(/frr) cos(/?;r) + 1 = 0.

bn = -(co sh (^„) + )) /(sinh {nPH) + sin {nfi„))

f  Clamped-simply

Closed form solution

jo) y . (pn (x0 )(pn (x) 
M t t  ft)2 -ft)2

Kf = r = 7 j  (/i (*0 )*i (x) + f 2 (x0 )Si (*))

YvF = (/, (x)g, (x0) + f 2 (x)g2 (x0)) x0 < x < /

where
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f x (x) = cosh kl sin k(l -  x) -  cos kl sinh k(l -  x) 

f 2 (x) = sinh kl sin k(l -  x) -  sin kl sinh k(l -  x) 

g i (x) = (sin kx -  sinh kx) /(cosh kl sin kl -  sinh kl cos kl) 

g 2 (x) = ( - cos kx + cosh kx) /(cosh kl sin kl -  sinh kl cos kl) 

Infinite series expression 

Y j o y ^ P„(x0)<P„(x)
M  t i  o)n -co

(pn (x) = cosh(^y-  x) -  cos(~~—- x) + bn (sinh(^2- x) -  sin (-^ - x)) 
l l  / /

bn = -(co sh (^„ ) -  cos(^/?„)) /(sinh(^„) -  s in (^ „ ))

P„ is root of equation cosh(/?;r) sin (/fa) -  sinh(yQn) cos {fin) = 0. 

Px = 1 .2 4 9 -, = 2.2500,•••,/?„ « n  + I/4

g Clamped-guided

Closed form solution

yvF = (/i (*o )g\ (*) + f i  (*o )g2 (*)) 0 < x < x0 < /2 B k

YvF = (/i (*)gi (*o) + f i  (*)g2 (*„)) 0 < x0 < X < /

f x (x) = cos A/ cosh &(/ -  x) -  cosh cos k{l -  x) 

f 2 (x) = sin kl cosh k(l -  x) + sinh kl cos k(l -  x) 

g x (x) = (cosh kx -  cos kx) /(cos kl sinh kl + sin kl cosh kl)
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g 2 (x ) = (sinh kx -  sin  kx) /(cos kl sinh kl + sin kl cosh kl)

Infinite series expression

Y _  j a f ' <Pn(xo)<Pn(x) 
vF \ i k  col-CO2

(pn (x) = c o sh C ^  x) -  cos(——- x) + bn (s in h (^ -  x) -  s in ( ^ -  x)) 

bn = -(sinh(n/3n) + sin(;r/?„)) /(cosh(;r/?„) -  cos(np„))

P„ is root of equation cosh(/?;r) sin (fin) + s in h (^ )  cos (fin) = 0 . 

/?, = 0.7528, p 2 = 1.7500, •••,#, » « - 1 / 4

h Free-guided

Closed form solution

YvF = ~ T J  (/i (*o )S, (x) + f 2 (x0 )g2 (x)) 0 < x < x0 < 1 
2 Bk

YvF = (/i (x)gt (x0) + f i  (*)g2 (*»)) 0 < x0 < x < /

f x (x) = cos kl cosh k(l -  x) + cosh kl cos k(l -  x) 

f 2 (x) = sin kl cosh k(l -  x) -  sinh kl cos k(l -  x) 

g, (x) = (cosh kx + cos kx) /(cos kl sinh kl + sin kl cosh kl) 

g 2(x)= (sinh kx + sin kx) /(cos kl sinh kl + sin kl cosh kl)

Infinite series expression



jcoM

bn = -(sinh(>/?„ ) -  sin(^/?„ )) /(cosh (nPn ) + cos(/r/?„ ))

/3n is root of equation cosh(#r) sin(/?;r) + sinh(/?;r) cos(#r) = 0. # = 0  is root of this

equation too, the correspondent model solution is second term of the expression of the 

mobility

#=0.7528 , p 2 =1.7500,•••,#, « « - 1 / 4  

i Simply-guided

(/i 0 )g i (*o ) + f l  (x)g2 (*„)) o < x0 < x < /
2 Bk

f x (x) = cos kl cosh k(l -  x)

/ 2 (x) = cosh kl cos k(l -  x) 

g, (x) = sinh kx / cos kl cosh kl 

g 2 (x) = -  sin x /(cos A:/ cosh kl) 

Y 0 im * ^  ,(*)

( / l  ( * o  ) # i  ( * )  +  / 2  ( * 0  ) g 2 ( * ) )  0  <  X  <  x 0 <  l2 Bk
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<P„ O )  =  s i n ( - ^ -  x)

. 2  | ^  f P n n \ 2  I ^
= R - )mn l Vmn

fi„ is root of equation cos {fin) = 0 /3n = n - l / 2 .

j Free-simply

Closed form solution

YvF = (/i (*o )#i (*) + f i  (*0 )S2 (*)) 0 < x < x0 < /2Bk

Y vf  =  T ^ r  (/i (*)#i (*o ) + f i  (*)g2 M )  0  < x 0 < x < l  IBk

where

f i  (x) ^ sin kl sinh k(l -  x) + sinh kl sin k(l -  x)

f 2 (x) = cos kl sinh k(l -  x) + cosh kl sin k(l -  x)

g, (x) = -(cosh Ax + cos Ax) /(cosh kl sin kl -  sinh kl cos kl)

g 2 (x) = (sin Ax + sinh Ax) /(cosh kl sin kl -  sinh kl cos kl)

Infinite series expression

Y  _ y 1 (*o )<P» O) , 1 V3 (/ -x 0) V?(/ - x )  

vF M col ~ <°2 1 1

(P„ (*) = cosh(^y- x) + costly2- x) + bn (sinh(^y- x) + s in (~ -  x)) 

b„ = -(cosh {kJ3„ ) + cos (np„)) /(sinh(^„) + s in (^ „ ))
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P„ is root of equation cosh(/?;r) sin(/?;r) -  sinh(/frr) cos(/?;r) = 0 -Pn=0 is root of this

equation too, the correspondent model solution is second term of the expression of the 

mobility

#  = 1 .2 4 9 -, J32 = 2.2500,•••,/?„ « « +1 /4
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Figure A-l A homogeneous beam excited by a transverse force



APPENDIX B A CLOSED FORM SOLUTION FOR MOBILITY OF AN EDGE-

EXCITED,SEMI-INFINITE PLATE

B.l Differential equation and boundary condition

For a thin elastic plate of constant thickness h, the transverse motion under sinusoidal 

excitation of angular frequency © satisfies the following differential equation:

(DV4 -a )2m")w = 0 (B-l)

where D = Eh3 /12(1—v̂2) is the bending stiffness, E is Young's modulus, v is Poisson’s ratio, 

and m" is the mass per unit area. (The notation used throughout this appendix is consistent 

with both Eichler and Kauffmann).

Consider a semi-infinite plate (see FigureB-1). The plate occupies- oo<y<oo x<0 with a free 

edge at x=0 except for the area \y\ < a where it is excited by an arbitrary load. The transverse

force, normal and tangential moments at the edge are related to the plate displacement by the 

boundary conditions

- D 4 - & " + Q - v ) - ^ 7 * i  = N ~  = f(y) (B-2)dx dx o y . dy

-D [^-T w + v ^ - T w] = m{y) (B-3)
dx2 dy2

where N is the distribution of the transverse force per unit length, H  is the distribution of the 

normal moment per unit length, f ( y )  is the externally applied force per unit length and m(y) 

the externally applied tangential moment per unit length.

277



B.2 Point mobility matrix

The point mobilities at x=0 y=0 are of interest, and can be obtained by 

letting f ( y )  = N -d H /d y  = Fz5 (y )~ M n8 '(y) and m(y) = M ,5(y) and solving for the 

velocity and angular velocity at x=0 y=0

X '
Q, = id)

dw/dy
-dw/dx - M

X '
M,

J z _ w X

where Q„is the normal angular velocity, Q, the tangential angular velocity andFz the 

transverse velocity. Y is the point mobility matrix and can be expressed as:

Y = {m"D) X/*
0 0

0 y a ,F ,k

0
yy.F . .

(B-5)

the elements of the matrix are expressed in terms of a non-dimensional wave number p as:

Re(Tn„W„ ) _ t p 2M p)M +\p )  f  + 2p,2 " n Det(p) y
(B-6)

W v  Ï 2 PV r p2dp 2 t'M+(P W J ( p ) p 2dp
det(p) A  Det(p)

(B-7)

, 2  r'Ml(p)M+2(p)M_\p)dp 2p_(p,)p+(p,) 
= A  Det(p) + y

(B-8)

i  Del(p) + p y j, det(;0 ) (B-9)

Re0 V ,> =  n f De*p) +
-  [p_ (p, )M+ (p, ) + P+ (p, )M_ (p)] -

(B-10)
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Im0 v , )  = Ì W (p )m + (p )-M+ (P)M- (;?)] n df.' ‘ n * Det(p)

- - P V  r M+(p)M_(p) + p_(p)M+(p)
it

dp
det(p)

dp

lm(y„iF_) = - P V [  - ± - - ± ^ i t _ \ p X  
‘ ‘ it Jl det(p) i t Jo

dp

(B-11)

(B-12)

(B-13)
det(p) it Jo' T ' Det(p)

wherepx(p) = y¡ \ -p 2 p±(p) = -Jp2 +1 ,p  should be understood as real integration variable

To be clear, here and from now on the Authors distinguish the square root symbol in the real 

field from square root symbols in the complex field.

‘ y f  ’ indicate square root in the real field , the function 4x  should be understand single

value function pc must be real positive.

‘( )1/2’ indicate square root in the complex field , function(w) l/2 is multiple-value

function, the value of function can be determinate after choosing a single-value branch .

For example the square root o f ‘-3 ’is written as (-3 )1/2 not V-^3 ,In this appendix

4 - 3  should be understand as meaningless. The value of the function (-3 )1/2 = V3/or

(-  3)1/2= -  4 l i  depends on how a single-value branch is chosen.

M ± (p) a 1 ± (1 -  v)p2 det(p) = ju- (p)M + 2 (p) -  p+ (p ) M _ 2 (p)

Det(p) = p,2 (p)M + 4 (p) + p+ 2 (p)M_4 (p)
=  2[—(3 + v)(l -  v)3 p 8 + 2(1 -  3v)(l -  v)p4 +1]

= -2(3 + v )( l-v )3(p4 — P,4)(Pi4 + P 24)

(B-14)

(B-15)

Px ( \ -3 v  + 2yjv2 + (1 -v ) 2 ) / (1 -v)2(3 + v)]
1 / 4

(B-16)
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P 2 = (3 v + 2 j v 2+ ( l - v ) 2 -1)/(1 -  v ) 2 (3 + v)
1 / 4

(B-17)

p t is one root of det(p) on the real axis and lies between 1 and [4 (2^2-1)/7 ] ' /4 for 

0< v  <0.5 [47].

The integration variable,/» should be understood as a real integration variable and P V stands 

for principle value in Eqs.(B-7),(B-9),(B-ll),(B-13) (there is one simple pole at /> = /», 

between land oc on the real axis). 1 jy  is the residue of the function l/det(p) at the simple

pole p  = Pi ■ It can be expressed as:

- -  lim P ~ Pl (A ) + /<+(/>i)M-2 (^ i) (b . 18)
r p̂ p' det(p) 8(3 + v)(l- v f P l i P i  + P24)

The second form on the right hand side of Eq. 18 differs from Kauffmann’s (although it is 

still equivalent) and is used in the following proofs. Expressions (B-6)-(B-13) can be 

obtained directly from Eq.s (47)-(52) of Kaufmann’s paper[47] or from Eq.s (18)-(25) of 

Eichler’s paper[46] in the case of ka—»0, but are repeated here for completeness.

Eichler and Kaufmann both evaluated numerical results for the point mobility but 

Kaufmann's, with greater computing power available, are more accurate[47]. From his 

numerical results for Poisson’s ratio v= 0.3, he conjectured that following relations might be 

satisfied for all values of Poisson’s ratio, (0  <v<0.5.)

Im Ov,) = o , Reijw ,)= ImOw,) » Re(Tn„M„) = Re(vn,M,)

These relations are formally proved in the following section.
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It will now be shown that the above conjectures can be proved and most elements of the point 

mobility matrix can be expressed by closed form expressions instead of integration formulae.

Some definition of symbols is needed before completion of the proof.

F(z)dz stands for integration on the complex plane z, the real and imaginary axes of which

are denoted x and y. z^x+yi is a complex integration variable, and x and y  real integration 

variables. T is the contour of integration on the complex plane z.

B.3 Proof for the conjectures and closed form expressions point mobility

a. Proof of \m(yV Ft) = 0

To prove that Eq. (B-13) is equal to zero we consider the following integral around a closed 

contour T:

f det(z) = £_(z)M+2(z ) -£ +(z)M_2(z) (B-19)
Jr det(z)

whereM ±(z) = l± ( l - v ) z 2 and ju±(z) is a single-valued branch formed by the square root 

with a positive real part of the multiple-valued function (z2 ± 1) 1/2 [52]. The contour of 

integration T is shown in FigureB-2 in which Tci and TC2 are semi-circles of radius e. The 

integrand is analytic within T , so the integral should be zero .i.e

f dJ —  = 0 (B-20)
Jr det(z)
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and this in tegration can be rew ritten as:

ir ddb) d Z = ir ,+ Jr„ +Jr, + L  +Jr, + L  + Jr. d d h  <b = l , + I „ + I 2 + ¡ck + h +  h i  + >det( z)
(B-21)

The sub integrals in (21) are now evaluated. To evaluate/,, we rewrite in terms of Det(x) :

\ jul (x)M+ (x)dx  ̂ 'rju+(x)M_ (x)dx | p' f  dx 
1 J - Det(x) '  -Det(x) j det(x)

, (B-22)

//,(x) =  VI-X2 ju± ( x ) s y l x 2 ±1

M ± (x) = 1 ± (1 -  v)x2 and det(x) = n_ (x)M+ 2 (x) -  /u + {x)M_2 (x)

W  A
P\+e

det(x)

To evaluate I3 let iy replace z so that we have

dy
i(Pi+e)f dz R_  fJ

:R det(z) "  J
P\+£

0f dz -  ì  VJ
K P i-e)

det(z) 0 Det(y)
■ + i

P\~e dy
~ Det(y) f det(.y)

while

lim(/c, +1 c2) = Res — 1 + Res J .  ) = 0
det(p,) de t (//?,)

lim I CR =  0

because: if R > max(l,l /(I -  v), -1 /— —^ —-r^ ) l,4.(--------------- r ) ,/8)

f —Jr>„ Aa.itdet(z)

(3 + v )( l-v ) 3 

24V2 nR

(3 + v )( l-v )J

2|(3 + v)(1- v)3||R |2 2R

(B-23)

(B-24)

(B-25)

(B-26)

(B-27)

(B-28)

282



so adding the non-zero integrals, h , h ,  I 3 , 14 som e term s cancel leaving

lim f - L - d z  = 2{PV J” {
R-*  co ■*r det(z) Jl det(x) Jo

dx fi //+ (x)M_ (x)dx
Det(x)

) = 0 (B-29)

Comparing Eq.s (B-29) and (B-13) shows that the imaginary part of the point mobility is 

identically zero, in other words that edge mobilities, like the point mobility of an infinite 

plate, are pure real.

b Proof of R e(yn ^ ) = Im(y n ^ )

The proof follows similar lines to the above and proceeds by considering the integral:

_ f M- (z)M+ (z) + Ji+ (z)M_ (z) dz
r det(z)

(B-30)

The single valued branch and contour of integration is selected as above. Again, according to 

the residue theorem, this integral is zero around the contour and can be expressed as a sum of 

integrals (denoted by the same symbols as above for simplicity) i.e.

° = l r + lr + l r + i  + i r + jr + l  F ( z ) d z  = / , + / „ , +  + I a  + / ,  + +  h  (B-31)
J r ,  •,i ci W12 ■ »cm J i 3 J r c2 J r 4

By rewriting the integrand of (B-30) in terms of Det(z) we get

1 jut2( x ) M + \ x ) - M +2(x ) M _ \ x )  , fi 2 ^ ( x ) M +( x ) p +(x)M_(x)  ri>,-s ju_(x)M+(x) + p +(x)M_(x)
Det(x) 0 Det(x) ;* +f

W
R JLl_ (x)M+ (x) + JU+ (x)M_ (x)
P\+e det(x)

dx

det(x)
(B-32)

(B-33)

dx

To evaluate I3 let iy replace z giving

, . cR M - ( y W +(y)+M+(yW _(y)  J . r
/ 3 =H  --------------T 7 r \------------- dy = il2JPl+e det(y)

(B-34)
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(B-35)

/  r12»\ (y)M + O K  (y)M . Q) , |
4 •*) Det(y)

i f1 A 2 O W +3 O) -  M+\y)M -\y) d ,. O W + O) + m+ <y)MSy) ,
J° Det(y) ■'1 det(y)

while lim / r„„ «->» rc*

lim 7r = -;ri£—>o lcl

lim I r = - n£-> 0 ‘c2

=  0

(p, )M+ (p, ) + ju+ Cp, )M_ (p, )
r

/*- P i  ( P i  ) + p + (Pi ) M _  ( p l )

r

(B-36)

(B-37)

(B-38)

so

lim f F(z)dz = (1 + i) f f*\2 ' (*) ~ M+ '  P  W - J (•*) ~ K  P )  (X)M - (x)±
«-»» Jr rW rk
e-yO

o + o p y j [

Det(x)

------------- — — -------------¿fc -  ̂  (1 +.i)[/z+ (p, )M_ (p, ) + //_ (p, )M+ (p, )] -  = 0
det(x) y

(B-39)

Multiplying both sides of Eq. (B-39) by factor 1/0(1+ /) shows that the difference of Eq.s

(B-10) and (B-l 1) is zero, thereby proving that the phase of the cross mobility is constant at 

n/4 irrespective of the Poisson’s ratio.

c . Real part of point force mobility

To evaluate the real part of the point mobility we proceed by considering the integral:

J ^ - f r  +
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where fi_ (z) is a single-valued branch formed by the square root with a positive imaginary 

part of the multiple-valued function (z2 - 1)1/2.

The contour of integration T is shown in FigureB-3. The integrand is analytic within T except 

at three simple poles: (z, = ipx z2 = p 2eml4 z3 = p 2eim/4 ), where p2 is defined in Eq.s

(B-17).

Expression (B-40) can be rewritten as

Jr F(z)dz - Jn + | r_: + fr_ + Jr> + k + fr< + fro_ F(z)dz = 7, + /„  + /, + /, + /„ + /, + /, (B-41)

|-(a>î ) -  p _ ( x ) M +\ x )  ±  _  r* - /u_(x)M  2(x )  ^  
•>-« D e t ( x )  Jpi+r D et(x )

(B-42)

h - r .
1 - p_(x)M+2(x) J . rop x(x)M+(x)

Det(x) Ì
(
1 Det(x)

2 .

■dx =

. ^ Pl(x)M+(x) ^  rp,-c p_(x)M+ (x) ^  
■’o Det(x) Det(x)

i t>FM M M dx+ M-(xW px) ̂  .
3 Jo Det(x) J' Det(x) 2

where mean complex conjugate

r" ,
'p\ +£ Det(x)

(B-43)

(B-44)

(B-45)

while lim /, =mpXP\)M+(P\)I^K (B-46)£-> 0

A, = 2(3 + v)(l- v)3px (p* + p2 ) (B-47)

lim/^ =^r//_(/?1)M+2(p1)/4A1 (B-48)
£-*0

lim 1CR = 0 (B-49)
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According to the residue theorem the value of the integral is given by the sum of the residues 

of the poles with .

f F(z)dz =2^z'(ResF(z,) + ResF(z2) + ResF(z3)) J r (B-50)

ResF(z,) = p+{px) M 2{px)/A A, (B-51)

ResF(z2) = {a + + i(l -  v) /722) V ”3/4)/4A2 (B-52)

A2 = 2(3 + v)(1 -v)/>23(/?,4 + p 24) (B-53)

where a = (-¡yj\ + p24 - 0 V2/2 , p = ( ^ \  + p2a +7)V2/2 are the real and imaginary parts of 

(p 22i - l ) V2 respectively

ResF(z3) = -  (-«  + ,ffi)(l -  /(I -  v)p22)2e’tiV*)/ 4A2 (B-54)

Note that ResF(z2)is the complex conjugate of ResF(z3)

Finally, we obtain

2 fl LI, ( x ) M ,  2(x) , -v/2 3m/ /
~  J0 — ^  —  Re(^ -  a  + (^ + a)/)/, (p2e /4 )/A2) + (p+ (p1 ) f x {ipx ) - p . ( p l)/, (/>, )/2A,

(B-55)

The second term of Eq. (B-55) is zero since /?, is a root of det(/?), so that substitution of Eq.( 

B-55) into Eq. (B-12) yields:

Re(>V f ) = Re (^ -  a  + (/? + a ) i ) f x (/?2 g3̂ 4 ) /a 2 ) + — (B-56)
1 1 2 y

Thus, the real part of the force mobility at an edge varies from the infinite plate value by a 

simple function of Poisson’s ratio.
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d Real part of the point normal moment mobility

First we must rewrite the first term in Eq.(B-6):

eix2/Jx{x)M+ \x)dx  _ r'
Det(x) ~ J°-2(3 + v)(l-v)3(x4- p 14)

+£

( l -v)2p1(x)x2dx

ft(»)[(l -  (1 -  v)2/>2 V  + 2(1 -  v)x4]dx 
Det(x)

(B-57)

The first term on the right hand side of Eq. (B-57) can be obtained directly:

P - ( P i )r l (1 — v)2 y l \ - x 2 x 2dx ( \ - v y
-  (2  -  -

io -  2(3 + v)(l -  v )3 (x4 -  p x 4 ) 4(3 + v)(l -  v)3 P i  P i  ^ 2
(B-58)

The second term can be obtained using the same method as described above for the real part 

of the force mobility and is given by:

^ R e [G 9 - a  + (/} + a ) i ) f 2 ( p ^ ) /a 2] + [ p , ( p , ) / 2 ( i p , ) - p _ ( p , ) / 2( p , )]/2A, (B-59)

Where f 2 (z) s  [1 -  (1 -  v)2 p 24 ]z2 + 2(1 -  v)z4 

It is noted that p2 satisfies the following expression

(B-60)

[-(3 + v)(l- v)3 (~p24)2 + 2((1 - 3v)(l- v)( -p24) +1] = 0 (see Eq.(B-15)) (B-61)

From Eq. (B-61) we have one of the following two relationships:

[1 -  (1 ~ v) 2 p 24 ](/? + a) = 20 ■- v)p2 \ p - a )  (B-62)

[1 -(1 -v )2 p 2* - a )  = -2(1 - v ) p 2 {a + ft) (B-63)

For the caseO < v < 0.5 ,(1 -(1 -  v)2 p 2 ) > 0 while 2(1 -  v)p22 >0 and a  + j3>0, f 5 - a >  0 

so only relationship (B-62) is correct. Hence, the first term of Eq. (B-59) is zero. The
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remaining second term of Eq. (B-59) together with Eq. (B-58) are substituted into (B-57), 

and the resulting expression into Eq.(B-6) to give:

R f iO w )  =
. 0 ~ v)2 n  M-(Px) , q„2 1

2A, 4(3 + v)(1 -v)3( p x p x } Px y
(B-64)

Again, the mobility at an edge varies from the infinite plate value by a closed form function 

of Poisson’s ratio.

e. Proof of Re(^nnWn) = R e O ^ )

We proceed by taking the difference between Eq.s (B-6) and (B-8):

2 fi//,(x)(M_2(x )-4 (l-v )x 4)i& ,  ̂ , , , X1 „ 2 I
-----------— —  ------------ + 2 — 2p x -

Det(x) y y
R e ( ^ , ) - R e ( ^ )  = - J

(B-65)

the first term of Eq. (B-65) is

—  Re[(^ -  a  + {fi + a)i) f3 (p ) /a 2 ] + |> + (/?, ) / 3 ((p,) -  p_ (/?, ) / 3 (p, )]/2A, (B-66)

where / 3 (z) = [1 -  (1 -  v)z2 ]2 -  4(1 -  v)z4 (B-67)

Inserting (B-67) into (B-66) then into (B-65) and using the formulation (B-18) for 1/y, only 

one term remains:

J  2 34/ /
\  Re[(£ ~a)  + (0 + a)i) f3 (p 2e A )/A 2 (B-68)

We now prove that this remaining term is zero. Evaluating Eq. (B-68) gives:
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(B-69)
y - R e ( ( A - a )  + W + a ) 0 0  + ' ( l -v ) /> 22) i + 4 ( l - v ) p 2, ) / A 2

- 2 ^ ^ ( l - v ) p 2! + 4 ( l - v ) p 2' ] / A 2
2 { P - a )

Using Eq. (B-62) and rearranging, the numerator of Eq.(B- 69) is rewritten:

4 l  ( P - a )

2 l - ( l - v ) V
[_(3 + V)(l -  v)3 (■- p 24 )2 + 2((1 -  3v)(l -  v)( -p2 4 ) +1] = 0 (B-70)

Note that Eq. (B-61) is used again. The results follows:

R e O v J -R e t l 'o ,« ,)  (B-71)

This proves that the real parts of the normal and tangential moment mobility are equal. This 

would be expected for an infinite plate because of circular symmetry but why it should be so 

for an edge-excited plate is not clear. It should be noted that the imaginary parts of the normal 

and tangential mobility are not identical (proof not given), even though they both numerically 

tend to infinity.

B.4 Comparison of exact value with published numerical values

Point mobilities have been evaluated from Eq.s (B-29) (B-56) (B-64 ) and (B-71), and are 

compared with Kauffmann's numerical values in Table 1.

Table I Comparison of point mobility for edge-excited semi-infinite plates, v=0.3

Realpart Imaginary part

Kauffmann)/(this paper ) Kauffmann/this paper

yanMn 0.21644/0.21645 oo/oo

yniMi 0.21644/0.21645 oo/oo

yVtFt 0.46196/0.46198 -5.97xl0'7 / 0
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It is seen that Kauffmann’s numerical results agree closely with the exact values.

According to Eq. (B-5) the force point mobility was given by

Yw =8 Y ~ y VtFt = J n ( m " E h 3y V2y l l - v 2y V!Fi] (B-72)

Figure4. a shows the edge mobility normalized by the infinite plate mobility 

g = YVF ¡Y ^  = 8y ViFi versus Poisson’s ratio v. This curve corresponds to that from Figure 2 of

reference[53] for y, = 1, and the shapes of both curves are almost the same. The normalized 

mobility is a monotonically increasing function of the Poisson’s ratio v, but the range of 

possible values is relatively narrow. The mobility at a free edge of a plate is therefore a factor 

of between 3.2 and 4.2 higher than that at an interal point far from any edges. The 

corresponding factor for a beam is 4.

FigureB-4.b shows the mobility normalized by Y0 =J\2(m" Eh3)~u2 

g] = vl -  v 2 y v versus Poisson’s ratio v. It is seen to increase with the increase of Poisson’s

ration v.This is unexpected .because one would expect bending stiffness to increase with 

Poisson’s ratio v, and hence mobility to decrease as for an infinite plate. Here the opposite is 

the case which is a result of using boundary conditions Eq. (B-2).
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Figure B -l Semi-infinite plate

y

Figure B-2 Contour of integration for evaluation o f the imaginary part o f the point force mobility

291



y

Figure B-3 Contour of integration for evaluation of the real part of the point force 

mobility

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Poisson’s ratio

Figure B-4 The mobility normalised (a) by infinite plate (b)by Y0
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