
THE

o F A

IMP L E MEN TAT ION AND USE

LOG I C BAS E D A P PRO A C H T 0

ASS 1ST RET R I E V A L FRO M A

R E L A T ION A L D A TAB A S E

Thesis submitted in accordance with the requirements of the

Uni versi ty of Liverpool for the degree of IX>ctor in Fhilosophy

by Perry Jones

MAY 1988

As the use of database systems has become more widespread there have

been increasing demands for easier and faster access to the stored

infonnation. Enhanced processing power and improved networking

capabilities have brought this potential closer to the user than

ever before, but many of those who can now benefit fram these

extensive infonnation sources are not computer experts and may make

only infrequent use of computer systems.

A user who is not a computer speciaiist finds input in a fonnal

language, however well defined, sufficiently repugnant to discourage

him from using the system [King 1977]. To enable full advantage to

be gained fram the opportunities available we need to provide

intelligent front ends (IFE) [Bun:iy 1984] to cater for those who are

unfamiliar with the computer system, or who are inexperienced or

infrequent users of the database structure.

To facilitate the provision of such lFE we have considered the

application of a logic based representation of the domain. By

providing the system with a better urrlerstanding of the domain we

are able to shift more of the burden of retrieval specification from

the user onto the system.

I would like to sincerely thank my supervisor Professor Michael

Shave for his continued help and encouragement. I am also indebted

to the members of staff in the department of Computer Science at

Liverpool university for their assistance.

I would like to acknowledge the funding support given to me by the

science and Engineering Research Council of Great Britian.

To my parents,

Marie and Derek

1.1 - The demands made on information systems 1
1.2 - Naive users 3
1.3 - The impact of the relational database model 5
1. 4 - The cost benefit ratio in database use 6
1.5 - The need for a user assistant 11
1. 6 - An overview of the thesis 12

OIAPI'ER 2 - cm:RYING A DNrABASE SYSTEM 14

2.1 - The demands on interactive query languages 14
2.2 - The barriers to querying encountered by naive

users 17
2.2.1 - SQL 18
2.2.2 - (pEL 19
2.2.3 - RAPIDE 20
2.2.4 - Query by example 22

2.3 - Dedicated retrieval systems 23
2.4 - strategies for interactive systems 25

2.4.1 - Natural language systems 25
2.4.1 - Limited language systems 26
2.4.3 - Prorrpted / Menu driven systems 27
2.4.4 - Graphical systems 29

2.5 - A review of current DIMS query interfaces 30
2.5.1 - RENDEZVOUS 31
2.5.2 - PLANES 33
2.5.3 - ROoor / INTELLEcr 34
2.5.4 - RABBIT 36
2.5.6 - IRUS 37
2.5.7 - IR-NLl 38
2.5.8 - TEAM 39
2.5.9 - A Robust Portable Natural Language

Interface 40
2.5.10 - HERCULES 41
2.5.11 - QPROC / NEL 43
2.5.12 - TQA 45
2.5.13 - BAROQUE 46

2.6 - Summary 47

rnAPI'ER 3 - USING EXPERT SYS'l»1S 'lO ENHANCE IWI'ABASE MANAGEMENr
SYS'l'.EM> 50

3. 1 - The relevance of expert systems 50
3 .2 - Enhancinj the data retrieval process 52

3.2.1 - Simplifying the mapping process 53
3.2.2 - Reducing formal syntax 58
3.2.3 - Inference to simplify query specification 58
3.2.4 - Mixed initiative dialogue 60
3.2.5 - Providing explanations 61
3.2.6 - Handling ambiguity 62

3.3 - Using logic to represent relational database
views 64
3.3.1 - Simple view definition 65
3.3.2 - Equal opportunity interaction 66
3.3.3 - Procedural view definition 69
3.3.4 - Recursive view definition 69

3.4 - Enhanced user facilities 70
3.4.1 - Meta-level querying 70
3.4.2 - Understanding a user request 71
3.4.3 - Handling negation and null values 73

3.5 - SUmmary 76

aIAPI'ER 4 - REPRESENI'ING '!HE SEMANrICS OF DI\TA 77

4.1 - The need for greater semantic content in
database design 78

4.2 - The User Model 80
4 . 2.1 - Prilnary and subset obj ects 81
4.2.2 - Non referenced objects 83
4.2.3 - Corrposite objects 86
4.2.4 - Relationships between objects 87

4.3 - Relational Database Design 90
4.3.1 - The entity-relationship model 90

4.4 - Modelling user concepts in a relational
structure 96
4.4.1 - Diagrammatic user model syntax 97
4.4.2 - Rationalisation 99
4.4.3 - Unification 101
4.4.4 - Duplication removal 104
4.4.5 - Constructing the relational model 107

4.5 - The effect of greater semantic representation
on query specification 109

4.6 - SUmmary 111

5.1 - Approaches to constructing a combined system 112
5.2 - Maintenance of component independence 114
5.3 - Architecture for a multi-user unified system 116
5.4 - The incorporation of domain data into the

architecture 118
5.5 - The camrnunication link 122
5.6 - Approaches to implementing the cormnunication

link 123
5.7 - Loose coupling 124

5.7.1 - The snapshot 124
5.8 - Tight coupling 125

5.8.1 - Predefined all-tuple retrieval 126
5.8.2 - Semi-dynamic querying 129
5.8.3 - FUlly dynamic querying 133
5.8.4 - Comparison of dynamic interfaces in

PLl and Prolog 138
5.8.5 - Comparison of the implementations of

interfaces 139

5.9 - '!he need for traffic control when using the
communication link 140
5.9.1 - Poorly specified database management

systems calls 142
5.9.2 - Repeated database management systems

calls 145
5.10 - Enhancement of the dynamic communication link

using Prolog 147
5.10.1 - The example queries 148
5.10.2 - The timing of the DIM> calls 150
5.10.3 - The binding of assigned variables 153
5.10.4 - Comparing the bound and the nonnal

DBMS call 155
5.10.5 - '!he effect of predicate order on DBMS

access time 157
5.10.6 - The birrling method for retrieval from

larger relations 158
5.11 - Comparison of timings for different coupling

strategies 160
5.12 - Summary 163

aJAPI'ER 6 - INI'ERFACE SPEITFICATION 164

6.1 - A generalised user interface shell 164
6.2 - An analysis of the tasks to be perfo:nned by the

shell 165
6.3 - Representing the user view infonnation 170

6.3.1 - Representing ilTIplied Scope 171
6.3.2 - Representing ilTIplied connections 173
6.3.3 - Representing composite object

epressions 177
6.4 - Representing the database model 179

6.4.1 - Representing relations 180
6.4.2 - Attribute definition 181

6.5 - Representing the domain translation semantics 183
6.5.1 - Translating ilTIplied connections 183
6.5.2 - Recognising object descriptions 184

6.6 - Query formulation 185
6.7 - summary 187

aIAPI'ER 7 - '!HE APPLICATION OF '!HE 1Nl'.ERFACE SHEIL 188

7.1 - Ibrnain querying 188
7.2 - Database querying 190

7.2.1 - User request ru1alysis 191
7.2.2 - Condition / restriction identification 193

7.3 - Query Formulation 197
7.3.1 - Fonning the query predicate head 198
7.3.2 - Fonning the query predicate bcx:1y 198

7.4 - Query evaluation 205
7.5 - The need for mixed dialogue 206

7.5.1 - '!he user profile 207
7.6 - SUmmary 209

8.1 - SUmmary 210
8.1.1 - How an expert system can help 210
8.1.2 - Cormecting an interface front end to

a DBMS 212
8.1.3 - Specifying an expert system front end 214

8.2 - Future inprovements of the interface shell 215
8.2.1 - Improving the system's response 215
8.2.2 - Improved meta-level querying 216
8.2.3 - Providing semantic integrity 217
8.2.4 - Improved binding techniques 219

8.3 - A new generation of expert database system 221
8.3.1 - semantic query optimisation 221
8.3.2 - Fuzzy values / intuitive queries 223
8.3.3 - Data redundancy 226
8.3.4 - Inferring knowledge from data 227
8.3.5 - An inproved expert system envirornnent 229

8.4 - Conclusion 230

REFERENCES 231

APPElIDICES

A
B
C
D
E
F
G
H
I

246
247
248
251
253
255
256
257
260

rnAPrER - 1

1.1 - '!he d.emarrls made on info:rmation systems

Computer art is one of the few computing activities for which the

output has its own intrinsic value. The value of most other

computing activities is derived only from the value which someone or

some organisation can gain from their use. SUch is the case with the

storage of information in a database, where the value to be derived

is only that from the application of the data. Thus the raison

d'etre for database systems is to provide a service for the benefit

of the end user. Enhanced processing power and improved networking

capabilities have made this service, and the benefits which can be

gained from it, more widely available to the user than ever before.

The benefits which can be derived from the use of a database

management system are fully described by Date [Date 1986]. We

briefly summarise these advantages as:

The data can be shared

Standards can be enforced

Integrity can be maintained

Redundancy can be reduced

Inconsistency can be avoided (to some extent)

Conflicting requirements can be balanced

1

As in::iividuals and organisations become more aware of the benefits

to be gained from the available information sources, so their

demands for irrproved productivity from the information systems

increase. The tam "producti vi ty" describes the value which can be

derived by an enquirer from the reply he receives. The productivity

is therefore dependent on several factors

ease of availability

If the costs of obtaining information are greater than the

benefits to be derived from having the information, then

an individual would choose not to access the database and

so the benefits that an organisation can gain from its

database system are reduced.

quay time

'!his is measured from the time of the enquirer needing the

information through to the time a final reply is received.

Quay time is an important perfonnance factor in a situa

tion where out of date information is useless

quality and usefulness of the reply

'!he database may hold the required information but not in

a fonu suitable for the enquirer. For example, a database

might respond to an enquiry with a vast mass of statistics

about a subject when all the user wanted was a simple

interpretation of the data. This problem is referred to as

"information overload" [Wiederhold 1986].

2

1.2 - Naive users

Many of the users who can now benefit from these extensive infonna-

tion sources are not computer experts and may make only infrequent

use of computer systems in general or database systems in

particular .

SUch users foon an important proportion of the new class of database

end users. '!hey can be described briefly as naive or casual database

users. '!he tenn "naive user" will be used in this thesis as a foon

of shorthand to include all members of this new category of users.

cuff [CUff 1984] characterises these users as:

casual users do not work regularly and frequently with the
system. '!hey tend to forget details about it and to retain only
a few simple concepts.

'!hey tend to make errors easily. '!he more opportunities for
error the more errors are made.

'!hey may not know or remember how the database is organised. A
casual user should not need to know how to navigate through
relations, or to talk about relation or attribute names.

Often casual users will have little or no programming skill.

casual users tend to forget to fill in all the details of what
they want from a database query.

What evidence there is on the matter suggests that casual users
do not foon complex queries. Although the evidence is hardly
conclusive, it lends credence to the view that many casual
users will wish to pose only queries that could be stated
simply in English. More complicated problems will be tackled,
if at all, through consecutive simpler queries.

3

Enabling the naive user to access an information system directly

eliminates the need for a database expert to act as an intennediary

between the user arrl the system. This improves the availability of

the system, arrl reduces the time taken for a user to receive the

information he requires. Direct access of database systems by such

naive users can significantly improve the overall prcxluctivity that

an organisation can derive from its stored information. However, to

be able to access a system directly a naive user has to be given

some fonn of formal training in the use of that system. The cost of

providing such training for naive users is high and may outweigh the

available benefits.

In an extreme case a "naive user" may be totally inexperienced in

the use of computers, and therefore require training in all aspects

of the systems, that is the computer system, the database management

system and the specific database model. In other cases only one or

two of these aspects may be unfamiliar. The time taken to educate a

user is not only the time for the initial training period but also

includes time for any necessary repetitive relearning. This is very

relevant for naive users who use the system so infrequently that

they tend to forget many of the details relating to its use and so

may require continual retraining. SUch retraining may be in the fonn

of self instruction where the user may consult training or reference

manuals.

4

1.3 - 'lhe inpact of the relational database m:xlel.

An important development which has had major consequences in

simplifying to some extent the use of database systems is the

relational database model. It was hoped that the relational database

model with its "structural simplicity" [Codd 1982] and its easy to

understand visual conceptualisation would enable enquirers to access

the database system directly and thereby improve the availability of

the infonnation and the benefits from its use. writing about the

introduction of the relational database Codd [Codd 1983] stated that

"in many cases, end users can now handle their own problems
by direct use of the system instead of using applications
programmers as mediators between them and the system."

It is true that the relational model is easier for the user to

comprehend than complicated network models. However, serious

difficulties remain for naive users, who are still required to

possess an understanding of the syntax of relational systems and

their query languages, and of the cornposi tion of the particular

relational model used in the application. Relational databases,

unlike network databases, shield their users from the details of

storage mechanisms. Hence there is no need for the user to

"navigate" a relational database in the sense in which this tenn has

been used in the past. Nevertheless a detailed level of

understanding is required if users are to specify their queries in a

fonnal query language and to direct their queries through the

structures of the relational model.

5

Raj inikanth and Bose [Raj inikanth & Bose 1986] attribute many of the

problems encountered with the use of the relational model to its

limited functionality and state

"llie two main limitations of the relational model are its
semantic scantiness and lack of any kind of deductive
capability"

It is our aim to simplify the retrieval process by augmenting the

relational model with new features which incorporate additional

semantic knowledge. llie use of the semantic knowledge helps to

alleviate the existing limitations of the relational model, and also

reduces the complexity involved in using the system and the need for

the naive user to have prior knowledge of the system before using

it.

1.4 - '!he rost benefit ratio in database use

As we have already stated, a major constraint on the expansion of

information systems and on the benefits which can be derived from

them is the need for user training. The time required to train a

user (Tt) can be considered some function f t of the time (Et) that

has elapsed since the user last issued a request, combined with the

user's overall computer literacy (Cl) and the complexity involved in

using the system (Sc). Thus:

Tt = ftC Et, CI, Sc)

6

Obviously the greater the elapsed time the more likely it is that

the naive user has forgotten the previous training and so will

require more retraining.

The cost of training a user (Tc) is comprised of the actual costs

incurred for providing training (Ac), plus the costs incurred from

the loss of productivity while the user is being trained (lp). The

value of Tc is also proportionally effected by the time taken to

train a user. Thus:

Tc = f (Tt, Ac, lp) c

Asstnning we have a measure of the gross absolute benefit (Ab) or

improvement in an individual's perfonnance due to the use of the

infonnation extracted from the system then we can define the

Marginal Query Benefit (MQB) as the net benefit for a single query

and the Aggregate Query Benefit (AQB) as the st.nmna.tion of the MQB.

Thus:

M;:2B = Ab - Tc

AQB = LMQB

We can illustrate the typical nature of these functions in the form

of the follOVJing two graphs

7

ABSOIlJI'E BENEFrr AND TRAINING cnsT PER QUERy

Relative value
per query

High

o -+~---
number of queries executed

figure - 1.1

AGGREX::ATE AND MARGINAL QUERy BENEFrr

Benefit

High

MQB~e

o~--~--------~-------=======~---
number of queries executed

figure - 1.2

8

In figure 1.1 the shape of the training cost cmve (Tc) represents

the notion that, as a user uses the system more, the relative cost

of training him for an individual query becomes less. The shape of

the absolute benefit cmve (Ab) in figure 1.1, shows the initial

increase in absolute benefit that a user can derive from querying

the system as he becomes more experienced in the use of the system.

'!he shape of the Ab cmve shows also that the absolute benefit the

user can derive per query, may diminish if the system becomes so

accessible that the user begins to issue requests which lack

necessity and so have a lesser benefit value.

rue to the initial training costs there is inevitably a brief period

when the net aggregate query benefit is negative. For frequent users

of the database who issue a high number of queries, the marginal

benefit easily outweighs the marginal cost and so the MQB is

positive. However, for naive users who execute a low number of

queries the relatively high cost of training may outweigh the query

benefit so there is a possibility that the MQB will be negative.

The marginal query benefit cmve (MQB) and aggregate query benefit

curve (AQB) shown in figure 1. 2 are drawn from the typical Tc and Ab

curves illustrated in figure 1.1. When the AQB is positive then

there is a corresponding positive benefit to be gained from the use

of the information system. However, if the AQB is negative then the

costs of providing training outweigh the benefits to be gained. This

implies the existence of a break even point (BEP). The lower the

9

value of the BEP the more beneficial it is to train naive users, an:!

the greater the value which can be gained from using the database.

The total benefit for an organisation is the surrnnation of these

aggregate benefits for its members. To improve the overall benefit

of the system we therefore need to increase the MQB. By raising each

MQB curve we also raise the AQB curve which correspondingly reduces

the value of the BEP

There are two roain approaches to increasing the value of the MQB.

The first approach attempts to increase the absolute benefit by

irrproving the quality or usefulness of the reply. This has the

effect of raising the Ab curve (figure 1.1) which correspondingly

raises both the MQB an:! AQB curves (figure 1.2). The second approach

is to reduce the cost of training. The cost of training can be

reduced by reducing the time required to train users, which itself

can be reduced by simplifying the complexities involved in using the

system. Reducing the cost of training causes the Tc cw::ve (figure

1.1) to be lowered which has the effect of raising both the MQB an:!

AQB cw::ves (figure 1.2).

In this thesis we will concentrate on the latter aspect, but it will

be shown that the technique used to eliminate certain complexities

for the user will also enable the database system to reflect more

clearly the seroantics of its data.

10

1.5 - 'Ihe need for a user assistant

Sophisticated software, which acts as an assistant to the enquirer,

can be used to shield the user from the complexities encountered

when using an information system. Such software is conunonly referred

to as an intelligent front end (HE) [Bundy 1984]. The provision of

intelligent front ends reduces the complexity of using database

systems and correspondingly simplifies the training required for

naive users.

An HE for a database system helps the user to fonnulate his

queries. It creates a conceptual stepping-stone which allows stage

translations or the refinement of a user's request into a formalised

query (see figure 1.3).

USER

refinement
process

formalised
query

<'--------i> I lFE 1,,-,> I DATABl\SE

figure 1.3

The IFE assumes nruch of the responsibility for the specification of

the retrieval. This reduces the complexity of using the system (Sc)

and hence simplifies query specification, decreases training time

(Tt), and allows greater benefit to be gained from using the

database system.

11

To facilitate the provision of such user assistants we have

considered the use of a logic based representation of the domain.

SUch a representation provides the system with a better

"understanding" of the domain semantics. Using this representation

we are able to create domain specific interfaces which shift much of

the burden of retrieval specification from the user onto the system.

1. 6 - An overview of the thesis

In this chapter we have outlined briefly the benefits and costs of

enabling naive users to retrieve information directly. In chapter

two we outline in detail the problems encountered by such naive

users, giving specific examples relating to current database

management systems. We also describe several of the systems which

have been proposed to assist users in the retrieval of information.

In chapter three we describe how the application of a logic based

representation of the domain can help to alleviate many of the

problems previously outlined.

In chapter four we identify the user view and the general concepts

of a user view which we wish to represent. 'Ibis chapter also shows

how the incorporation of greater semantic representation in the

design of the relational model can siIrplify the task of the user

assistant.

12

Chapters five, six and seven report on the practical work that has

been carried out to implement a user assistant which invokes a logic

based representation of the domain se.nantics. Chapter five outlines

the practical ways of connecting an rFE to a database management

system, chapter six describes the internal architecture on an rFE

and chapter seven reviews the operation and user dialogue of the

user assistant.

Finally, chapter eight summarises the implementation of the user

assistant and outlines the ways in which this system can be im

proved. We conclude the chapter by considering the long tenn

improvements to both database systems and. expert systems which can

be derived from the coupling and combination strategies outlined in

this thesis.

13

rnAPI'ER - 2

WERYING A mTABASE SYSTEM

A variety of query systems are available for the retrieval of

infonnation from databases. Many of these systems offer powerful and

flexible facilities which can be skillfully exploited by experienced

and regular users. HOINever, the scope and complexity of these

systems have caused considerable difficulties for naive users when

querying database management systems and have thus created barriers

to the accessibility of database systems. '!his chapter describes

these problems and reviews several systems which have been proposed

to help alleviate these problems by simplifying the retrieval

process. First, the general characteristics of such systems are

reviewed, then each system is described individually in depth.

Finally the problems which we believe are still outstanding for the

naive user are discussed, along with the difficulties associated

with the implementation of such retrieval systems.

2.1 - 'IDE DFNANLS 00 INl'ERACl'lVE ~ IANGUAGES

The standard, most efficient method for retrieving infonnation from

a database is for a user to specify his request in a fonnal query

language. All current database management systems provide fOnnal

interactive que:ry languages. These languages are designed to be used

by the three classes of database user, namely the database

14

administrator (DBA), the application progranuner and the ern user.

'Ihese languages must pennit the expression of all of the system

operations that the members of each of the user groups may wish to

perfonn. 'Ihese languages can therefore be considered as being "all

things to all men".

The query language can generally be used either interactively or by

embedding the conunand statements in a high-level programming

language such as enroL, PI/lor PASCAL. It is more usual for

applications prograrmners and database administrators (DBA) to use

the embedded fonn of the language and for ern users to use the

interactive fonn.

The query languages must provide the users with the ability to

express all of the basic database manipulation tasks. These tasks as

described by Date [Date 1986] are:

Adding new files

Inserting new data into existing files

Retrieving data into existing files

Updating data into existing files

releting data into existing files

Removing existing files

The provision of such basic tasks is imperative for the successful

operation of any database management system, both for the mainte

nance as well as the querying of the database system. Languages

15

which provide full manipulative facilities can be considered as FUll

query lanJ1.lCl<JE!S. These query language are formally defined and have

a rigidly enforced syntax which ensures that the specification of a

task is not ambiguous.

The specification of an operation in these Full languages may be

quite complex and so the user is required to undergo fonnal training

in the use of the system. As stated in section 1.4 such training

diminishes the benefits to be derived from the use of the database

system.

The function of these languages is quite satisfactory for the

purpose of mass data management or regular standard operations that

tern to be perfonned by DEAs , applications progranuners or end users

who are skilled in the specification of queries. However, for

infrequent or inexperienced users the conplexity involved in speci

fying query operations creates barriers to retrieval, even when the

task to be perfonned appears simple and straightforward. As stated

by King [King 1977]

Ita user who is not a computer specialist finds input in a
fonnal language, however well defined, sufficiently repugnant
to discourage him from using the system"

16

2.2 - 'mE BARRIERS 'lO ~ EN<XUNl'ERED BY NAIVE USERS

Naive users attempting to express their queries in a fom VJhich the

system will understand are faced with two main problems. The first

is the need to specify a query strictly in accordance with the

syntax of the database query language. The second is the requirement

that the user must be aware of the actual "relational composition"

[iliff 1984] of the database mcx1el. This is required to enable the

user to navigate the relational structures to resolve his query.

'!his navigational process is equivalent to a semantic match • i. e.

the user is matching his interpretation of the world against the

relational model. The explicit semantic information for the domain

is not represented in the relational model, instead it is held

implicitly in the relational structures. A further problem is that a

real world situation may frequently have more than one possible

relational representation.

These restrictions can easily be illustrated by considering the

specification of a simple example query VJhen translated into the

query languages of several of the currently available database

systems.

17

2.2.1 - SQL

SQL [Im 1984 DATE 1986] is now widely regarded as the starrlard

query language for relational database systems. Retrieval using SQL

is based on the SEIEcr conunand. By considering the following

apparently trivial query we are able to illustrate the problems

encountered by naive users when using this language.

Fetch the rorres of all the students \o.bo are t:aug}1t by Prof Smith.

When coded in SQL for the relational mcx:lel given in Appendix A this

is expressed as:

SElEcr STITIE, SFIRSTNAME, SSURNAME FROM S'IUDENT WHERE
SNUM ill (SEIECl' S'IUDENT

FRCM ATI'END
WHERE

CDURSE ill (SEIEcr mOE
FROM CDURSE
WHERE

IECIURER = (SEIEcr muM
FROM IECIURER
WHERE

IJI'ITLE = I PROF I
AND

I.SURNAME = I SMITH I)))

As with all of the interactive query languages the user is required

to know the syntax of the language for query expression and be fully

aware of the relational model. The problem of semantic navigation or

semantic matching of the query to the relational structures can be

seen if we explicitly represent the irrplicit semantics of the

nesting structure for the coded SQL cornrrarrl.

18

student is taught by a PROF SMrlli if
(student atterrls course

(course given by lecturer
(lecturer name is PROF SMITH)))

It should not be the responsibility of the naive user to navigate

the database stl:uctures. Query language specifications can obviously

become vastly more corrplex when navigating through anything other

than a trivial "toy" mcx:iel.

'lhe use of facilities such as 'UNION' although imperatively useful

for data retrieval can also increase the complexity of the query

expression, thereby increasing the level of difficulty for query

specification by the naive user.

2.2.2 - WEI..

c;:..m:L [stonebraker 1980, Epstein 1981] is the query language used by

the rnGRES database system. In QUEL the basic retrieval function is

the RE'IRIEVE command. Reconsider the previous query

Fetch the names of all the students v.ho are taugpt by Prof Smith.

'Ibis query can be coded in QUEL for the relational mcx:iel given in

Apperrlix A as:

19

RANGE OF S IS SIUDENT
RANGE OF A IS ATl'END
RANGE OF C IS muRSE
RANGE OF L IS IECIURER
REI'RThVE (S.STITIE, S.SFIRS'INAME, S.SSURNAME)
WHERE

S.SNUM = A.S'IUDENT AND
A.muRSE = C.CODE AND
C.IECIURER = L.I.NUM AND
L.LTITlE = "PROF" AND
L.!SURNAME = "SMITH"

Again the enquirer is responsible for expressing the query in a fom

which corresponds to relational structures. The semantic navigation

of the database structures is if anything more difficult in QUEL

than in SQL as the simple user notion that "a S'IUDENT attends a

CXXJRSE" requires the obscure specification

S.SNUM = A.SIUDENT AND A.muRSE = C.mDE.

QUEL like all of the other full query languages gives us great

flexibility in expressing our queries but this power is wasted on

the simple queries of the naive user.

2.2.3 - RAPIDE

RAPIDE [r.cx;ICA 1984] is not a full query language as it only sup-

ports interactive retrieval, insertions, updates and deletions. To

illustrate the complexity of using RAPIDE we will reconsider our

previous example query. This query when coded in RAPIDE becomes:

20

SFARClI S'lUDENl'
SEARClI ATl'END S'lUDENT = S'lUDENT. SNUM

SFARClI mtJRSE CDDE = ATI'END. mtJRSE
SEARClI IECIURER muM = mtJRSE. IECIURER AND

LTITIE = 'PROF' AND I

SHOW S'lUDENT
ENI'SFARClI

ENI'SEARClI
ENI'SFARClI

ENI'SEARClI
EXEaJrE

!SURNAME = 'SMI'lH'

" I" is the line continuation marker

A naive user would find extreme difficulty in expressing queries in

this fOnTI, as once again the user is responsible for both structur-

ing the retrieval request and understanding the data model. The

responsibility for the user to control the execution of the request

is greater with RAPIDE than with the other full query languages.

When executing a nested loop where a file appears in both an inner

and outer loop then it is the user who must ensure that the re-

trieved tuples do not over write each other. Such system activities,

although necessary to ensure correct retrieval, unnecessarily

complicate the retrieval process and prevent naive users from having

direct access to the system even though such interactive systems

have been designed for end user access.

21

2.2.4 -~ by example

Query by example (QBE) [Zloof 1977] is both a full query language

am a user interface system. QBE with its graphical form attempts to

simplify the retrieval process am removes many of the syntactic

restrictions which are common to the other languages.

As with all the interactive que:ry languages QBE comes in two fonus

the first is the familiar two-dimensional tabular form with the

skeleton representation of the tables. '!he second form of QBE is a

linear one which can be inserted into other programming languages

such as PIll am APL [Bontempo 1984].

Applying our previous example que:ry to the QBE system we gain the

following screens

I~I =1 S~I ~I~I
P. P. P. SN

1 ATffiID 1.:00 I:E 1

laImE 1::1 ::-1

22

However, even for this fairly simple example quet:y the user still

needs to have a considerable knowledge of the syntax of the quet:y

expression. In addition the user is still required to have a full

UJ'rlerstanding of the relational model of the database. If he wishes

the user can obtain infonnation defining the relational structures

but this does not include the semantic interpretation of the struc

tures.

In surrnnary all database systems require comprehensive query languag

es so that they may function correctly. These query languages

although available for interactive use by the end users are still

corrplex enough for the users to require a degree of fonnal training.

SUch training needs to include instruction both in the expression of

syntactically correct queries which confonn to the query language

syntax, and also in semantically correct queries that confonn to the

semantics which are represented by the relational structures of the

database model.

2.3 - DEDICATED RErnIE.VAL SYS'I'EMS

To simplify the retrieval process and so reduce the need for the

fonnal training of users, specialised systems have been developed

which are in general dedicated to the retrieval task am ignore the

other five manipulative tasks. These retrieval systems can be

categorised by their architecture or alternatively by their inter

facing strategy. The latter aspect is described in section 2.4.

'Ihese systems are either enclosed self-contained retrieval systems

23

which have their own internal database, or the retrieval system is a

user front errl interface which "sits" on top of an extenlal database

management system and shields the user from many of the complexities

which arise when directly accessing the database.

Self-contained retrieval systems lose many of the benefits associat

ed with using a database management system [Date 1986] '!he main

advantage of using a self-contained system is that it greatly

simplifies prototype development. However, the srra11 size of the

database can create a false impression of the system's perfonnance.

'Ibis often occurs when the retrieval system deperrls on perfonning a

full search of the entire contents of the database every t:ilne it

parses a query. '!his activity would rerrler such systems useless if

applied to a large exten1al database.

'!he motivation bel1i.rrl the development of these dedicated retrieval

systems is to simplify database usage and so increase the accessi

bility of database systems for naive users. To design and maintain

two entirely separate systems, one for the experienced user and a

second for the non-experienced user would clearly be wasteful and

lose nn.lch of the benefit to be gained from increased use of the

stored infonnation [King 1977]. Also the duplication of data would

eliminate many of the advantages of having a centralised database.

A single system which can cater for both experienced and naive users

can also be wasteful. Such waste is caused by the additional pro

cessing perfonneci by the system to understand an experienced user's

24

query, where the user is content with and efficient at expressing

his queries in a powerful and flexible formal query language. '!his

wastage can be eliminated if the experienced user is given the

option to access the database system either via the user assistant

or the database's own query language.

2.4 - strategies for interactive systems

As we stated above dedicated retrieval systems can also be

categorised by the interfacing strategy they adopt. '!here are

several possible strategies for interaction with the user, which

fall into four major categories: natural language; limited language;

prorrpted or menu driven and graphical.

2.4.1 - Natural lanJUage systems

'!he optimal interface system would be one where the user could enter

his query in the form that he conceptualises it. Kurmnel [Kl.nmnel

1979] translates lakoff's [lakoff 1971] statement

"all thinking which takes place in the human mind
functions in Natural language".

'Iherefore it might be thought that to understand natural language is

to understand the "natural logic" and meaning of the words. Yet such

systems which purport to understand natural language, (Eliza

[Weizenbarnn 1966]), are exceedingly shallow in their understanding

of the underlying meaning.

25

For most database systems the domain of interest is very limited in

relation to the real world as a whole. Hence there is less need for

a query system to provide full natural language capabilities. As

Wallace [Wallace 1984] states

"a::nnputers can rope with so few of the functions of natural
language that nobody has ever dared claim to have written a
real natural language understanding system"

When we refer to natural language understanding systems for database

systems we are really referring to limited language understanding

systems [Kelly 1977].

2.4.2 - Limited l~ systems

All of the fears expressed about the over expectation of system

perfonnance by the system's users [Gevarter 1983] will hopefully be

allayed if the interfacing system functions "responsibly". This

means that a system which encotmters a term or phrase which it does

not understand should not siInply ignore the unknown item and contin-

ue its attenpt to translate the language fragments that it does

recognise. Instead the system should gracefully rej ect the query or

ronsul t the user for further explanation to help it understand the

offerrling term or phrase. It is not a responsible course of action

for the system to assume that an item it does not reccx:Jl1ise has no

iInportance and so can be ignored in the query translation. Therefore

to function responsibly the system must be able to recognise what is

outside its domain of knowledge and take the appropriate action.

26

All of the systems outlined in section 2.5 although referred to as

natural language systems are in fact limited language system.

2.4.3 - PraIpted / ~ driven systems

systems adopting this type of interaction strategy have great

potential for small applications. This type of interaction uses only

a fraction of the time and processing power required for natural

language systems and so is ideal for use on systems with very

limited resources. In CUff's [CUff 1984] justification of menu-based

query systems he cites the problems of a natural language system as

outlined by ~varter [Gevarter 1983]

1 It encourages an unrealistic expectation of the system's power

2 The linguistic limitations of such a system are not as well
defined as they are with a fonnal language. They can appear
sporadically am unexpectedly, when the system rejects an
unknown word or a grammatical construction, or when it lacks
backgrotmd knowledge. '

3 NL's riclmess often makes sentences ambiguous. One has to rely
on the implementation being prepared to consider all possibili
ties, a situation that does not arise with a fonnally-defined
language.

4 Because much of the vocabulary and knowledge that people want
to use when querying a particular database roay be specific to
it, an NL system has to be partly recast for each domain of
discourse.

5 There are several technical problems, such as anaphora and
ambiguity, requiring effort in areas that do not concern more
fonnal systems. If it is to have an acceptable interface, an NL
system is inherently more complicated to implement If too much
of this burden is put back subtly on to users (as, for in
stance, in lengthy attempts to remove ambiguity via dialogue) ,
they roay react against it.

27

It is inp:>rtant to remember these points when considerin;J natural

larguage systems. We have already mentioned the oonoem about aver

expectation by users of the system.

'!he concem shcMn about the inherent problem of ambiguity in natural

larguage is justified if such lanJUages are to be used to specify

queries. To counter this problem the system should recognise an:i

resporrl "responsibly" if it encounters an ambiguously specified

query. It is inp:>rtant to rerneJnber that wilen attenptin;J to urrler

starrl natural lanJUage we are also attenptin;J to urrlerstarrl a user's

own concepts as he perceives them [Iakoff 1971]. If the concepts in

the users cxmm.mication are ambiguous then it is of benefit to the

user if the system enters same form of clarification dialogue web
will make the user aware of the ambiguities an:i hopefully enable

them to be resolved. '!his would be the natural action if the user

were camm.micatin:.:J with another person.

'!he formal structures of a menu-based que:yin;J system severely

restrict the systems flexibility for representinl a user's query.

HcMeVer, this restriction helps eliminate arty system representation

of ambiguous queries, an:i can alleviate the need for the user to

krloW the urrlerlyin;J mcx1el structure. '!his silrple rigid IOOde of

queryin;J seriously limits the flexibility of query expression for

the user.

As we have previously stated the domain of the database is limited

but the caobinations of data objects to be retrieved an:i the

28

urnerstarrling and expression of connections between objects is

enonnous. '!bus when dealing with so many possible combinations the

expression of queries, other than trivial ones, can become ct.nnber

some when using this simple rigid mode of querying.

To partially overcome these difficulties a number of systems have

been developed to combine natural language fragments in menu-based

systems [Tennant 1983, iliff 1984].

2.4.4 - Gra{hlcal syst.eJIs

Probably the best known graphical query system is Query By Example

(QBE). As with menu-based systems QBE also eliminates the possibili

ty of ambiguous query expression. As we outlined in section 2.1, QBE

is a full query language retrieVal system so unlike the menu-based

systems it provides for a greater degree of query expression. Also

like all the other full query languages QBE requires the users to

know the artificial syntax imposed by the system and to possess an

urnerstanding of the structures of the relational model. QBE

achieves its increased expressive power over menu-based systems at

the expense of increasing the syntactical complexity of query speci

fication. Queries with other than trivial retrieval constraints

require a considerable degree of syntax urnerstanding if they are to

be resel ved correctly. Consider the query

29

fetch all eIJllloyee narres for employees in the roy departIrent \J1o earn IIDre than
10,000 or \Iho work in the hardware departIrent an:! earn IIDre than 20,000

(Sl, Dl) - « lCXXX>, roY) or (20000, HAJID.JARE »

This is a fairly simple query but the difficulty arises as the

expression does not conform to the simple one dimensional retrieval

constraint that QBE is so good at harrlling. once queries become

anything other than trivial then their expression becomes as cornpli

cated as in any traditional type of progranuning language.

2.5 - A REVIEl'l OF ClJRRENl' oms QUERY INl'ERFACES

Many practical implementations of the retrieval systems categorised

in sections 2.3 arrl 2,4 have been developed. By considering several

of these implementations, or proposed implementations, we are able

to identify the ways in which these systems simplify the retrieval

process. We are also able to identify the restrictions enforced by

each system an::l the effect of such restrictions on both the perfor

mance and implementation of the systems.

30

2.5.1 - RENDEZVOUS

Rendezvous was originally outlined by Codd [Codd 1974] at lIM San

Jose, california, although, the development quoted by Bates [Bates

1986] is from an lIM research report dated 1978. Rendezvous high

lighted the needs of casual users for natural language type inter-

faces for relational database systems.

Rendezvous attempted to create a natural language dialogue based on

clarification rather than the dialogues of the earlier natural

language systems such as Eliza [Weizenbaum 1966] and SHURDIlJ

[winograd 1971]. Each of these systems involved the user in a

dialcgue which, although providing a medium for the exchange of

infonnation, did not "pursue" the unknown or ambiguous infonnation

so as to fully clarify the user's input. Codd described the dialogue

of Eliza as a "stroking dialcgue", and that of SHURDIlJ as a "con-

tributive dialcgue". To explain these classifications of dialogue

Codd used the following example statement

I went to a dcMntown dealer yesterday and bougPt a very expensive car. After
wards, I felt I should rot have done it.

'Ihen described the different dialogue responses

I am sorry you have feelings of regret. What will you do rv::Ml

aNI.RIBUTIVE: I also bougJ:1t a car recently and discovered it has a very hi~
gas consunption.

CIARIFICATICN: A dcMntown dealer? \oJhich one, and what do you rrean by 'very
expensive' ?

31

'!he task of clarification is vitally important in retrieval systems

as the system must ensure that it fully understands the user's

request if it is to adequately answer it. HCMever unnecessaty use of

the clarification dialogue may mislead the user into believing that

there exists an alternative. To illustrate this consider the follow-

ing example of a dialogue involving clarification.

USER: Is the course OlCS tal.lJ?Pt by Prof Greere?

SYSTEM: Wch Prof Greere do you rrean
1 Prof Abraham Greere
2 Prof Benjamin Greere

USER: Prof Abraham Greere

SYSTEM: No Prof Abraham Greere does not teach course
OlCS

Such clarification dialogue gives a degree of credibility to the

alternative that the course OICS is taught by Prof Benjamin Greene.

When a clarification dialogue is used it implies that there is a

need for clarification due to the positive existence of an alterna-

tive.

From a sample dialogue of a user session in Rendezvous the system

appears very capable of handling the complex language structures of

the users' queries, although the examples were nm on a trivial

model.

'!he system lacks any fonn of back-tracking and so seems unable to

identify am cope with ambiguous queries which have more than one

correct parse.

32

No reference is made to the system's understanding, representation

or translation of user concepts. We are therefore led to believe

that the system can not handle such user concepts as subsets or

structured objects. The system appears to represent only the rela

tional database model.

As no reference is made to the domain representation it is therefore

difficult to estimate the systems transportability between different

domains and database models.

2.5.2 - PIANES

PIANES (Pro;Jralllffied IANguage Enquiry system) [Waltz 1977] was devel

oped at the University of Illinois. The system is a limited language

front en:! interface which consults an extracted portion of a navy

aircraft maintenance database. The system was developed for

"nonhierarchic record-based databases".

PIANES natural language understanding capability is based on an

augmented transition network (AW). 'Ihe system incorporates the

sem:mtic model information with the language specification. SUch

grammar representations where the domain is represented in the

grammar are known as semantic granurars [Wallace 1984]. '!hey make

both the language understanding and the system itself dependent on a

single model, and such dependency makes it difficult to transfer the

systems to other different dornains. 'IhUS PlANES using a semantic

grammar is dedicated to the single model of aeroplane maintenance

33

records. Later systems (Intellect, '!QA, TEAM) deliberately separate

the domain specific infonnation from the general language infonna

tion, thereby making it easier to transport the systems to different

domains.

For such a limited domain the systems inability to handle ambiguous

query parses was not exposed. PIANES once having found a correct

parse would assume it to be correct and would not search for alter

native correct parses.

Planes incorporates a spelling checker to recognise unknown words.

From the example dialogue the system appeared to recognise all words

that were stored in the database. This tends to suggest that the

system perfonned an entire search of the database contents, or the

contents of the database were prepared in some fom of inverted

file.

2.5.3 - mror / 1Nl'ELI.H:r

ROror (and the later commercial version Intellect) [Harris 1984, IEM

1983, A.I Corp 1980] is a limited language front end system. It

allows enquirers to express queries in "nonnal English" as "No

training is needed as Intellect speaks your language" [lIM 1983].

The system's main strength is in its natural language understanding

capability. It has an excellent understanding of mathematical

funCtions and aggregates and the system provides a facility for

handling anaphora. Anaphora is the use of words relating to earlier

34

words am in the tenus of query dialogue systems this relates to the

urrlerstarrling of pronouns am the specification of a query based on

a previous query. e.g.

USER: \Jho teaches the course OlCS
SYSTEM: Prof Arthur Smith
USER: How old is he
SYSTEM: 55

'!hus "he" is an anaphoric reference to "the person who teaches

01CS".

As a front end system Intellect interfaces with several current

database management systems although the efficiency of such connec

tions is not discussed in the literature. According to Tennant

[Tennant 1981] the early ROroI' system used a process of inverted

files to recognise am match strings to database tenns. In respect

of time, such an exhaustive search technique may prove costly when

applied to a large database.

The system is claimed to be easily transportable between dorna.ins.

However the representation of the domain semantics as perceived by

the user is not described. 'Ihe system does separate the dorna.in

information from the language understanding infornation, which

supports its claim for transportability. When the dorna.in semantics

are not embedded in the language description then the resulting

system is more flexible and more transportable. However the separa

tion of the semantics from the language can lead to a loss in

semantic understanding. It is stated [Wallace 1984] that the

35

Intellect system can not distinguish between the two questions "Who

sold a car?" and "Who was sold a car?"

'!his shows the need for access to the semantic infonnation when

performing a query parse, the required serrantic infonnation being

SELlER sold OBJEcr

BUYER was sold OBJECl'

Although the language understanding conponent needs access to the

semantic infonnation, such serrantic infonnation does not have to be

combined with the language infonnation. Both infonnation sources can

be kept separate and so avoid the transportability problems associ

ated with semantic granmars. systems such as Intellect which are

generalised for many dorrains do not have the serrantics in the

grammar. Instead they require sophisticated methods for harrlling the

verb phrases.

'!he literature makes no reference to how the system identifies or

reacts to queries which are ambiguous.

2.5.4 - RABBIT

Rabbit [TaU 1982] was developed at Xerox PARC. Rabbit is a

menu-based system with natural language fragments and can be consid

ered self-contained. The system attempted to introduce a new mode of

querying. '!his new retrieval process was based on the human

36

cognitive process of "iterative refinement by analogyll. The process

described in RABBIT as IIretrieval by refonnulation" offers users

instances of an answer whidl a user can accept or reject. If a user

rejects an offering then "the system tries to encourage the user to

articulate what is wrong with the instance presented". The system

then proceeds to make further offerings based on the users respons-

es.

Rabbit is implemented in the Smalltalk progranuning language. The

system uses the KIr-ONE knowledge representation language to define

the conceptual scructure of the domain. '!he system does not inter

face with an actual database management system instead it simply

uses the KIrONE instances.

2.5.6 - mJS

mJS (Infonnation retrieval using the RUS language parser) [Pates

1983] was developed at BEN laboratories Massachusetts. IRUS is a

limited lanJUage system. IRUS high-lights the need for independence

of the interfacing system from both the domain mcx:lel and the data

base system. The system adlieves this independence by using an

intermediate language to represent the internal parse of the query

This language is known as MRL (Meaning Representation language).

From the textual examples shown we can conclude that the system

recognises every tenn that is stored in the database. This either

means that the system operates on a small enough database so as it

37

can store it internally or it perfonns an entire search of the

database.

Unlike most of the other systems IRUS does not confinn its correct

translation of the user query by offering a paraphrased version of

the users query instead it directly proceeds to parse it. Para

phraSed queries are helpful and reassuring for the naive user.

2.5.7 - m-NLI

IR-NLI (Infonnation Retrieval Natural Language Interface) [Guida

1983] developed at the University of Udine Italy. The system is a

limited language front end system. Although initially designed for

on-line database interaction, the proposal for the first stage

implem:mtation had restricted interactive activity with the extemal

database. '!his made the system more reminiscent of a self-contained

retrieval system. '!he proposed system was "conceived for off-line

use without interaction with the database" and so uses the "snapshot

method" (see section 6.7.1) for data extraction.

The system was useful in natural language interface development as

it addressed the major problem of "meaning urrlerstanding". The

system attempted to identify the underlying user goals of the query

an:! distinguished between the surface comprehension, that only aims

at representing the literal content of the language expression, and

the deep comprehension that captures the goals and intentions which

lie behi.rrl the utterances. The understanding of the underlying

38

tooaning is immensely beneficial as it allows the recognition of a

semantic context which can be used to improve the systems ability to

urrlerstarrl natural language.

2.5.8 ~

TEAM (TranspOrtable English Access database Manager) [Grosz 1983] is

a natural language system. Implemented in Interlisp with a Prolog

database, it can be considered a self contained system. TEAM at-

t:eIrpted to overcorre the problem that, as Grosz remarked,

"natural language interface systems have used techniques that
make them inherently difficult to transfer to new domains ani
databaseS"

To achieve transportability, TEAM separates the operational infonna

tion for language, domain am database model. '!his simplifies the

process of changing or restnlcturing the database model. By main

taining a separate language corrponent, transfer between domains is

also sbnplified.

PurSUing the indeperrlence ideal TEAM has its own in-built domain

~ledge acquisition routines. 'Ibis provides partial automation of

the process of transferring the system between domains.

39

2.5.9 - A ~ fbrtable Natw:al Ian:Juage Interface

Developed by Ginsparg [Ginsparg 1983] at Bell Laboratories and

ilnpleroented in Franz Lisp, this system is aimed at iIrproving the

problems of irrleperrlence and portability. Unlike TEAM the irrlepen

dence is fran a particular database rather than a domain model.

'!he natural language urrlerstanding component of the system uses

semantic nets. '!he system demonstrates a characteristic not shown by

other systems of dividing the query into distinct "concepts". These

concepts can be executed separately. '!his allows the system to

isolate and report on any false concepts or assumptions ll'ade by the

user, e.g.

Does supplier X supply parts for projects located in loman

'!he system is able to respond

there are ro projects located in loroon.

'!he system has identified that the user query is based on the

asstllTPtions that there exists a supplier X and that there exist

projects \Vhich are located in london. If the system ignores such

user assumptions and siIrply gives the response NO, '!hen the system's

apparent recognition of the assumption, that projects are based in

loooon, is given a degree of credibility. '!he use of sub concepts,

though vastly iIrproving the user interactions, IPake interfacing to

an external database management system more complicated, as the

40

system itself has to receive curl act upon the intennediate results

generated by the queries of the sub concepts.

'!he external database interface component (DPAP), which is also

written in Franz Lisp, is designed to generate a query in an "aug

m:mted relational fonn". '!his query can then be translated into the

database management systems own query language. We are unsure about

the use ani soope of this system as the only reference to a "real

database" is one that has been "abstracted" from an on-line system.

'!his appears to suggest that the system does not interact with a

database on-line curl so vastly silnplifies the execution of the sub

concept queries,

2.5.10 - HERCULES

HERCIJIES (Heuristic Retrieval; a Casual User Language System) [CUff

1984] was developed at Essex University. The system which is ilnple

m:mted in ULISP, is a menu-based system which has natural language

fragments.

'!he system gives the user a framework in which to place his natural

lanJl..lage query fragments. '!his silnplifies the task of natural

lanJl..lage urrlerstanding as the conditions or statements are already

associated with database tenus which the system understands. The

system explicitly depicts all facts known about an entity type. This

includes all attribute curl connection names. By explicitly depicting

41

all of the possible connections the system eliminates the need for

the user to navigate the database.

As with all menu-based systems one is limited by the physical size

of the screen, am. so although it worked well for the very small

example database we remain sceptical about the application of

menu-based systems to the querying of larger am more corrplex

toodels. Menu-based systems lack the superior expressive paver of

natural language systems. 'Illis limited ability for query expression

causes difficulty when a query links distinct corrlitional clauses in

serre convoluted expression involving "am" am "or". Consider the

following query

fetch the narres of people ~ are either over 50 years old and lOOrk in the toy
depart::rJalt or are urder 20 years old and lOOrk in the furniture departmant

SUch queries are difficult, if not impossible, to express in systems

which enforce a framework or structure for the expression of que- .

ries. D.lff identifies this limitation am states

"HERClJIES is poorly equipped in its present fonn to harrlle
problems that need to connect leaves by a Boolean OR"

'Ihis problem is not specific to HERCULES, as QBE suffers from a

similar problem. To specify such queries in QBE the enquirer is

required to explicitly state the connections between the constraint

lA leaf is a page or pane of a menu which represents an entity

42

clauses. To specify such ronnections the user nust possess a good

un::lerstalxlir of the larguage syntax (see section 2.4.4).

2.5.11 - QIroC / NEL

QFHJC (an:! later NEL) [Wallace 1983, Wallace 1984, West 1986] was

developed in association with ICL am the BEe. QProC is a self-con

tained limited larguage system. NEL was the Qmoc system applied to

an external database management system.

QFHJC was a den¥:>nstrator to show how a Prolog system COUld be used

to decxxie arrl represent user queries. '!he system· s laJl';JUage urrler

st:.arrl.inJ cxmponent fonns an inteJ:nal. logic representation usirxJ what

are tenned Descriptions arrl Q.lalifiers (D & Qs). '1hese representa_

tions isolate the users inten:ied meanin;J. '!he system can hardle very

curt query requests.

~ system has two min weaknesses. First, the system is unable to

deal with an'biguoos parses. 'lllat is, it stops when it fin::ls a

correct parse. Secorxlly, the system performs a potentially disas

t.rcxJs action by ignorin;J unknown terms an:! proceedirq to translate

the fragrrents of the queIy which it does unierst:.aOO. Although,

before execut.irq the translated quel:y the system does report that it

has ignored certain tenns.

NEL was developed to OVer<:x:lre the limitations of Qmoc. As rutlined

by West [west 1986]

43

"A major limitation of QPROC was that the database itself had
to be implemented in Prolog and so only small toy applications
could be implemented"

NEL instead used the ICL database management system Queryrnaster as

the back-en::l database. NEL was used to fonnulate "LIST" cornrnards for

the database system. Unlike QPROC, NEL is unable to scan the entire

contents of the database to match items specified in user queries

with items actually stored in the database. Instead the user is re-

quired to specify all of the words, which he believes are stored in

the database, in quotes. e.g.

Tell Ire the custarers for the county of 'DEVCN'

The NEL system shows its understanding of a user request by display

ing a coded Queryrnaster conunand. Although an improvement on the

totally obscure internal D & Q representation given by QPROC, it

still confronts the user with an lU1familiar expression representa-

tion am the user is given no opportlU1ity to agree or disagree with

the proposed parse.

Both systems are unable to handle any fonn of aggregation.

Regarding the transportability of the NEL system, this requires a

knowledge engineer to prepare both the database for the natural

language enquiry and the NEL internal data model.

44

2.5.12 - ~

'IQA (Transfonnational Question Answering system) [Damerau 1985] is

a natural language front end system applicable to external SQI..r-like

databases. 'IQA is designed to make systems more transportable by

simplifyin:J the customization required when transferring an inter

face system to a new domain. 'IQA uses a customization program which

is run by the DBA to detennine certain essential infonnation not

contained in the database tables, such as synonyms ani permissible

subjects for verbs used in queries. 'IQA improves its transportabili

ty by usin:J database-independent transfonnational rules, instead of

the more common semantic nets. As we have previously outlined a loss

in semantic representation can occur when not using semmtic net

works. 'IQA does partially suffer from this problem ani Darnerau

outlines the work still unresolved ani states a need for inheritance

infonnation to overcome the loss of the semantic representation

provided by an is-a link. Damerau believes the solution to this

problem will be achieved by using some fonn of superset-subset

feature.

45

2.5.13 - BAIWJE

~ (Browse am Query) [Motro 1986] '!his an interfacing system

which uses an artificial language. It is aimed at naive users who

wish to browse through a relational database. '!he system does have a

separate query mode whereby user can query the database using the

fonnal underlying relational query language. The system uses a

semantic network to represent the entire database am users are able

to traverse this net. The browse system is limited to only four

cornrnands, called:

What is it?

What is known about it?

What is the connection?

Any others like it?

such a browsing system is very useful as it allows the user to have

access to the stored data am the semantic infonnation described in

the semantic representation. '!he system traverses the semantic net

so as to offer further infonnation relating to an object or entity.

SUch a mode of dialogue is similar to the "contributive dialogue"

[Codd 1974].

'!he facility "like" which attempts to find connections between

objects, simply matches object values and has no relevance to or

recognition of the true semantic connections between the objects.

Motro states the reason for this simplification is due to the

46

problem of the "connection trap". Motro then proceeds to attribute

this problem to the limited semantic representation capability of

the relational model.

2.6 - SUMMARY

We began this chapter by outlining the needs of the experienced

database user and how these needs have resulted in database query

languages becoming flexible and powerful tools for expressing

queries. We then proceeded to consider the problems encountered by

naive users when using such query languages and this illustrated the

need for the provision of dedicated retrieval systems, which attempt

to reduce the COITq?lexity involved in querying a database.

'!hese dedicated retrieval systems were considered in general and we

concluded that the front end limited language type of interface had

the most potential. Such systems captured the benefits of using a

database management system, and offered the simplest mode of inter

action for naive users. The gains in simplification of query expres

sion from the menu-based systems were outweighed by their deficien

cies in expressing anything other than trivial user queries.

An ilnportant aspect, not included in most of the systems we have

described, is the need for retrieval systems to perfonn

meta-queries. That is, to be able to query their own semantic

infonnation. '!he use of semantic infonnation is an ideal rnethcxi for

47

explaining to the naive user, in the tenus and phrases he

urrlerstaOOs, what is actually represented in the database.

Considering the implementation aspects of the systems reviewed we

fourrl a major problem to be the trade off between semantic represen

tation of the domain and system transportability. '!he use of seman

tic nets or semantic granunars allows the system to achieve a greater

understanding of the meaning of the user's request. However, because

the semantics are so embedded in the language understarrling, these

systems become dependent on a single domain and require a vast

effort to alter them for use on another domain. Conversely, the more

generalised systems although easy to change to different domains

have only a shallow understanding of the semantic meaning. What is

required is a detailed representation of the semantic meaning of the

modelled situation. This needs to be stored in a form of knowledge

module which is totally isolated from the representations of the

language understanding module, the module containing the relational

database structure infornation and the actual item values stored in

the database system.

'!be problems of implementing dedicated retrieval systems and the

performance of such systems could be alleviated with better tech

niques for the fornal representation of the sernantic concepts which

a user haS about the model. By combining the expanding technologies

of the expert system community with the existing database management

systems we are able to represent explicitly nnlch of the semantic

information for the domain. In particular, it is easy to maintain

48

separation of the knowledge modules in a :rule-based envirornnent as

the logic predicates are already distinct.

Before we start considering the implementation of such a combined

system we need to consider in detail the ways in which such a

combination can be errployed to assist the interaction between users

am database systems.

49

0W'l'ER - 3

US~ EXPERr SYSTEMS TO ENHANCE IlI\Tl\BASE MAN1\GElr1FN1' SYSTEMS

We have stated several of the problems associated with querying

databaseS an:i have described several systems that have been proposed

to simplify the process of retrieval. When considering the proposed

systems we identified the need for them to possess an urrlerstarrling

of the semantics of the domain. However, improving a system's

ability to represent the semantic infonnation of a domain had an

adverse effect on the system's transportability. In this chapter we

consider how these two problems can be reconciled by using an expert

system as an "interface assistant" between the user arrl database

system. We outline, in detail, the improvements to the user

interaction that can be derived from such an interface assistant. We

then describe the simplification of query expression am ilrproved

functionality that can be derived by expressing queries an:i user

views in a logic form as compared with the use of a relational form.

3.1 - 'IRE RE[EVANCE OF :EXPERl' SYSTEMS

In this chapter we consider the use of expert systems arrl more

specifically the use of logic to represent the merlel. The task we

are proposing corresponds well to the definition of an expert system

given by Feigenbatnn [Feigenbatnn 1982]

50

"An Expert. System is an intelligent computer program that uses
knowledge and inference procedures to solve problems that are
difficult enough to require significant human expertise for
their solution."

In this case the "knowledge" is the domain knowledge describing the

database model in tenus of the real world and the "inference

procedures" are the method of interpretation of the description.

'!his process of interpretation can be used to relax the fonnality of

the query language.

D'Agapeyeff [1983] states the more formal description given by the

British Computer society's Expert Systems specialist group

"An ,Expert System' is regarded as the embodiment within a
computer of a knowledge-based component from an expert skill in
such a form that the machine can offer intelligent advice or
take an intelligent decision about a processing function. A
desirable additional characteristic, which many would regard as
fundamental, is the capability of the system on demand to
justify its own line of reasoning in a manner directly
intelligible to the enquirer."

Interpreting this quotation in respect to the tasks we are trying to

perform, the "expert skill" is the task of translating the user

query into the DIMS query language, and the "intelligent advice" is

the user query expressed in the DEMS query language. The "additional

characteristic" of explanation will also be outlined in this

chapter.

51

3.2 - ENlWfCING 'llIE DATA REIRIEVAL ~

'!he initial effects of using expert systems will be felt in the area

of user interaction with the database anq in particular with the

simplification of query specification for naive database users.

'!he conventional mode of connmmicating with a database system can be

considered to be that of master to slave. The database management

system is merely a dtnnb slave retrieving data objects as explicitly

specified by the user. The database management system has no power

for inference nor the ability to take the initiative in any

t ' 1 opera lon

In previous chapters we have identified that the user nrust possess

two types of specific system knowledge. The first is knowledge of

the syntax of the query language, in order that a query ll'ay be

specified in an acceptable fom. The second is an understanding of

the stnlcture of the database, so as the user is able to map his

query, which is in the tenus of the real world, into the structure

of the database model. SUch requirements are condemned by Larson and

Wallick [Iarson & Wallick 1984] who write

''Users should not be required to know or rernernber the contents
of the database, the stnlcture of the database, or the fonnal
syntax of a query language".

~ote that we are discussing just the user interface arrl are
not concerned with the complexities of controlling nrulti-user access
or mapping internal views to physical schemas

52

We nCM consider hCM both the problem of query ll'apping ani the

problem of fonnal query specification can be eased by using the

facilities which expert systems provide.

3.2.1 - SiIDplifyinj the mawinJ process

When a user conceptualises a query he does so in the terms and

structures of his own personal view of the 'world'. Therefore, in

order to satisfy a user's query these conceptualisations nrust be

translated into the specific structures of the database which

represent the modelled situation.

To illustrate this problem let us consider the model shown in figure

3.1. '!his user view represents an "external schema" as envisaged by

an enquirer (The notational semantics of such models is described in

chapter 4).

The corresponding relational model for this user view is given in

appendix A.

53

1 2

PERSON

'!he numbered links have the following meanings

LINK 1 - lECIURER
LINK 2 - SIUDENT
LINK 3 - lECIURER
LINK 4 - lECIURER

lECIURFS
ATI'ENDlliG
TEACHES
PERSONAL 'IUroR 'IO

cnuRSE
cnuRSE
S1UDENT
S1UDENT

other non numbered links correspond. to "HAS A" links

figure - 3.1

To illustrate the problems faced by inexperienced users consider for

the given model the situation where a user wishes to ascertain which

IECIURERS are personal tutors to which S1UDENTS ('!his corresponds to

link 4 in Figure 4.1). To satisfy this request it is essential for

the user to know how the database is structured. If each student has

one and only one personal tutor, as in this example, then there will

probably be an attribute PERSO~'IUroR (PIUroR in the model in

appendix A) of the relation S1UDENT. If however it were a many to

many relation, then the two relations S1UDENT and IEClURER might be

54

connected via a third relation 'lUIORS. The impact of the two

possible relational representations can be seen quite clearly by

looking at the two very different SQL queries which would be needed

to implement the user's intentions:

<:pERY: fetch the t1aIlES of students \J10 have Dr Green as their personal tutor

SQL translation if each student has only one personal tutor-

SEIEcr TITIE, FIRSTNAME, SURNAME
FR)M S'IUDENT
WHERE PERSONAL _ 'lUIOR = (SEIEcr NUM

FOOM IECIURER
WHERE

SURNAME = 'GREEN'
AND

TITlE = 'DR')

SQL translation if each student may have many personal tutors-

SEIEcr TITIE, FIRSTNAME, SURNAME
FR)M S'IUDENT
WHERE NOM IN (SEIEcr S'lUDENl'

FRCM 'lUIORS
WHERE

'lUIOR = (SELEcr NUM
FRCM IEcruRER
WHERE

SURNAME = I GREEN I
AND

TITlE = IDRI)

The latter example also illustrates the difficulties which may

confront users as a result of the restricted functionality of

current database query languages. In order to confonn to the

relational representation of the model a user request which is

55

corditional on a sub-request nust be nested with an explicit

specification of all of the sub-queries. A l~ge havirg this

restricted functionality can be thrught of as a low level query

lan;JUage. As a consequence even an apparently simple query such as

~Y: get all students ~ attend course OICS

must be expressed in a nested form by the user.

SEI.ECl' *
FR:M S'IUDENl'
WHERE NUM m (SEIECr S'IUDENI'

FR:M ATI'END
WHERE CXXJRSE m (SEIECl' NUM

FI01 ClXJRSE
WHERE roDE = , OICS ' »)

I.OtI level retrieval places all the responsibility for fonrW.atirg a

query on to the user. To express his query he needs to knc:M how to

navigate the rigid syntactic structures ani this in tum means he

must \ll'rlerSt.ard the database structure for the specific trode1.

As we have seen in chapter two, even the graphical database

interface Q.leI.y by Exan'ple requires a certain degree of prc:grammi.n;

for retrievals involvin:.J joins. It achieves this by ~ the user

place variable names in the spaces representirg relation attributes.

"8j usin:J a logic representation we are able to specify user queries

in an alternate form. If we re.cx>nSider the first exanple query:

QJERY: fetch the naTeS of students ~ have Dr Green as
their personal tutor

56

We can express this in a logic fonn as:

query (Title,SUrnarne, Initial) <
student(Title,SUrnarne,Initial,*,*,Snurn,*) &
personal_ tutee _ of (Snurn, Inurn) &
lecturer('DR','GREEN',*,Lnurn,*).

'!he predicates student and lecturer represent their respecti '{e

relational entities, while the predicate personal_ tutee _ of is the

representation of the user perceived connection between the

entities. '!hus, expressing queries in a logic fonn allows explicit

reference to user o:mcepts without the need to directly navigate the

stru.ctures of the relational model. The actual specification of such

queries is still romplex. We therefore see these queries as a

"stepping stone" to be used as an inten1al representation of the

user's query, expressed in the concepts of the user's view. The

logic query can then be executed against the infonnation stored in

the database. f5j explicitly coding such user perceived connections

we are able to reduce the need for the user to understarrl fully the

database structure. For the predicate personal_ tutee _ of the coding

would simply be:

personal_ tutee _ of (Snurn, Inurn) <
student(*,*,*,*,*,Snurn,Inurn).

'!he method of using logic predicates to represent user

conceptualisations is similar to using conventional user views,

however in section 3.3 we contrast these methods and describe many

of the advantages that the representation of such views in a logic

baSed language such as Prolog, has over the expression of views in a

relational l~ge such as SQL.

57

3.2.2 - Reducin} formal syntax

'!he secorrl problem with conventional query language systems is that

their syntax is fonnal, stringently enforced and every term used in

a query must be defined explicitly even when its implied context is

obvious. '!he problem of fonnally specifying a query in the query

l~ge can be simplified by using natural language or semi -natural

l~ge, in the form of limited vocabulary systems [Good 1984,

Kelly 1977]. '!his relaxation leads to additional functional

requirements for the system. '!hese requirements include the handling

of ambiguity and provision of an explanations facility to allow

users to verify both the interpretation of their initial query and

the retrieved results. All of these facilities can be provided by

usim expert systems.

3.2.3 - Inferen:::e to simplify quezy specification

'!he requirement for an explicit specification of each term referred

to in a query can be overcome if simple inferences are made on the

context of words in the query. Consider the following example query

QJERY: In 1JU.ch session is course Oles taugilt?

without further definition we can reasonably asSl..ID\e that 'OlCS' is

sarre form of identification code for the relation COURSE. We can

help verify this inference by automatically checking the internal

schema where we obtain the infonnation that the key field of CDURSE

is a fixed four character string and this therefore gives further

58

credibility to the inference. The inference made in the previous

example is fairly straightforward as only one relational entity is

referred to.

The process of inferring attribute and relation names is made more

complex when more than one relation is involved. This problem can be

seen in the following example query:

Q,JERY: Get the code for all courses atten:led by Mr Blue

It is more difficult to infer the relational attributes which are

associated with "MR BllJE". However, by using the external schema

knowledge that a::>URSFS are A'ITENDED _BY SWDEN'IS, we are able to

infer that ''MR BllJEII may be an identification of the entity S'IUDENT.

By consulting the internal schema we see that it does not match the

key attribute NUM which is defined as an integer. However, it does

match the composite object name (See section 4.2.3 for a description

of composite objects).

All of the inferences that are made should be verified by the user

so that at any stage of the inference proc::ess the user can redirect

or discard any incorrect inferences. To enable the user to perfonn

such actions we need to provide mixed initiative dialogue.

59

3.2.4 - Mixed initiative dialogue

Mixed initiative systems are vitally important in systems where

inferences are made. The ability for the user to regain the

initiative and redirect the system's actions can save the time which

will be wasted if the system pursues an incorrect inference.

In order to explain the functions of intelligent interface systems

it is sometimes easier to relate their actions to a scenario where

two people who are not totally conversant in each others language

try to communicate e.g. an English tourist and a foreign official.

The need for mixed initiative systems can be seen if we consider

such a scenario

The tourist may ask the question

\oJhere is the bank rearest to the bus station ?

The helpful foreign official attempts to answer this question based

on his own limited knowledge of the English language. The official

from his partial knat/ledge recognises the "WHERE IS THE" and

"NEAREST" so understands the query is one requiring directions. He

also identifies the object "BUS srATION". From these "knaNn

fragments" he infers that the tourist wants directions to the bus

station qualified by "NEAREST" and so replies

ahh! yoo. want the central bus station - you turn left at ..•.

60

arrl proceeds to give directions to the Bus station. In response to

this the tourist naturally interrupts am thereby retakes the

initiative and attempts to correct the wrong assumption the official

has made. The tourist interrupts and redefines his query

No, I wish to go to the bank

It is therefore important to provide facilities to allow the user to

interrupt and regain the initiative so as to redirect any incorrect

inferences and stop any needless execution.

SUch a scenario also illustrates the problem that can be encotmtered

by dedicated retrieval systems, such as QPROC and NEL, which ignore

tenus and phraseS that they do not re<XX311ise and proceed to

interpret the fragments that they do understan::l.

3.2.5 - ProVidirq explanations

Another important facility that needs to be provided is that of

giving explanations. This allows the user to ascertain what

inferences have been made and what task the expert system is

currently tJ:ying to solve. Explanation can be provided in two

distinct areas. The first is explanation to verify that the system

has correctly interpreted the user's query. '!he secorrl is

justification that the results which have been retrieVed are

correct. Allowing the enquirer to request justification of the

results he receives helps to ensure that what the enquirer asked am

61

what the system thought the enquirer asked were the same. 'lberefore

justification can i..nq:>rove the integrity of the results.

3.2.6 - Harrllirg ambiguity

In order to si..nq:>lify the user interaction, we are attempting to

reduce the fonnal specification of a query. However, this increases

the possibility that the user may submit an ambiguous query. Usirq a

back-tracking facility gives us an ideal way of harrlling such

queries. When faced with an ambiguous choice the system can cho<y"."e

the path it considers most likely and derive a parse for the query.

If the user does not agree with the parsirq of a query he can say

so. '!he system will then back-track, revise any inference it has

previously made and endeavour to construct an alternative parse

which again can be offered to the user for approval. The scope for

ambiguity in the English language makes this ability to respooo to

ambiguous query specifications particularly important when

attempting to understand the users intended meaning. '!he followirq

example query illustrates the problem. In the absence of any

mathematical notion of precedence among the logical connectives,

there is more than one possible parse of the query

<PERY: Get the nanes of students \J1O atterrl courses which are atterdcd by the
student naned AIW1S or students \In are older th:m 30

62

Possible quay parses -

Parse 1

quay (Title, Sllrname, Initial) <
student(Title,Surname,Initial,*,*,Snum,*) &
attends (Snum,Oourse) &

Parse 2

attends (Snurnl, Course) &
student(*,Surnarnel,*,*,Agel,Snurnl,*) &

(Surnamel = 'ADAMS'
gt(Agel,30)).

query (Title, surname, Initial) <
student(Title,Surname,Initial,*,Age,Snum,*) &
(attends (Snum, Course) &

attends (Snurnl,Course) &
student(*,'ADAMS',*,*,*,Snuml,*) ;

gt(Age,30).

The user's intended AND OR ordering may not be the "correct" one

according to the operator priority rules. However, an intelligent

language should be able to deal with these ambiguities am by the

use of backtracking combined with user interaction the system should

eventually be able to arrive at the user's interrled query.

using predicate logic helps us to distinguish possible parses as we

can specify the queries involving "or" as several separate queries

(See Appendix B for the respecification of the two previous parses).

By specifying several queries we change the "or" from being explicit

in the predicate to implicit in the execution of the predicates.

It is important that the user is made aware that lOOre than one

possible interpretation of his query exists. The enquirer should be

required to confinn that the interpretation offered by the system is

63

the intel:pretation he intended. This action helps prevent an

erroneous parse from proceeding by default. Most of the dedicated

systems reviewed in section 2.5 were unable to cope with queries

that had more than one acceptable parse. These systems simply fol..lrrl

an acceptable parse and asstnned it to be the only one.

3.3 - USING U::X;IC 'ID REffiESENr RElATIONAL mTABl\SE VI.El<JS

In the previous section we have used lCXJic to represent user

perceived concepts. 'Ibis has been compared with the activity of

creating and using conventional relational user views. In this

section we describe several of the advantages to be obtained from

specifying user views using logic rather than a standard relational

language.

The expression of a view in lCXJic still makes it a view as defined

by Codd [1982]

"A view is a virtual relation defined by an expression or a
sequence of conunands"

'Iherefore our logic representations are a fom of user view. Using

logic programming or more specifically Prolog in combination with

relational databases is not new, such work has been described by

Gray [Gray 1984J and zaniolo [Zaniolo 1986J. Zaniolo states that

"Prolog constitutes an attractive domain-orientated query
language for relational databases"

64

he proceeds to explain that

"The power of Prolog as a logic language surpasses that of
relational calculus, since it is relationally complete (Codd
1972]".

using a logic language allows us to handle procedural objects rather

than the more usual static data object. We can also simplify the

definition of user views and allow the definition of these views in

a procedural or recursive form.

3.3.1 - Simple view definition

For all the following examples we will use the following relational

model

EMPIDYEE

MANAGER NAME YFARS SERVICE

DEPARIMENT

FlOOR

figure - 3.2

We can easily define a user view for the above relations which

represents the concept that an "employee" works_on a "floor". This

view is specified as a virtual relation which has two attributes,

the errployee' s name and the floor which is the location of his

department. In SQL this would be:

65

CREATE VIEW EMP_FIOO~NO
AS SEIECI' EMPIDYEE. NAME, DEPARIMENT. F100R

F'IU1 EMPIDYEE, DEPARTMENT
WHERE

EMPIDYEE. DEPI' NAME = DEPARIMENT. NAME

By considering a logic predicate as a relation we can define the

same view succinctly in logic as:

ernp_floor_no(Narne,Floor) <- departrnent(Dept,Floor) &
ernployee(Narne,Dept,*,*).

It is easy to see the simplification achieved by specifying the

query in logic rather than as a conventional user view. It is also

far easier to directly execute the logic representation. This

simplification of execution is due to the fact that the logically

expressed view is of a type which pennits "equal opporttmity".

3.3.2 - Equal c:gnrbmity interaction

Equal opportunity interaction is a feature which allows similar

problems to be phrased in many different ways. To illustrate this

consider the simple mathematical problem

2 + 3 = X

If we fully understand this problem then a solver should have no

difficulty in resolving the similar problem

2 + X = 5

66

'!his facility is easily represented in Prolog as:

add(2,3,X).

am

add(2,X,S) •

Although this facility of allowing arguments to be either inpJt or

output is not unique to Prolog, as it is available in QBE, it is

acknowledged that "Prolog predicates fonn an obvious h:lsis for the

construction of equal opportunity systems." [Runic:man & 'lbi.mbleby

1986],

In database tenns a user would regard the followinJ two queries as

similar problems

JOHN SMI'IH works on floor X

X works on floor 1

'Iherefore if the system can also regard these as similar it will

sinplify the task of translation.

For systems to be considered intelligent they lTllSt be able to show

sarre urrlerst:arrlirq of a problem no matter in what order it is

phraSed Le. sometimes our queries may be verifications.

'!he primal:y characteristic of equal OWOrtunity is that oojects can

either be input or outplt Le. there is no diff~ between the

knOWn input oojects which are the retrieval constraints, am the

data objects to be retrieved. Conventional relational l~ges do

67

not support such non object distinction. 'lhey confonn to a pattern

of

Retrieve List of objects

Subject to conditions

If we compare the SQL view defined in 3.3.1 with its lOJic

representation we see the advantage of using equal opportunity

specification in resolving queries

~ Fetch nanes of employees \oJOrking on the first floor

OM'ABl\SE CALL

SEIEcr NAME
FROM EMF _ FIDOR yo
WHERE

FIDOR = '1'

r.o:;IC CALL

Floor = '1' &
emp_floor-po(Name,Floor).

cpFRY fetch the floor nuDer ~uch John Smith \oJOrks on

OATAPASE CALL

SEIEcr FIDOR
FROM EMP _ FIDOR _NO
WHERE

NAME = 'JOHN SMI'llI'

r.o:;IC CALL

Name = 'JOHN SMI'llI'
emp_floor_no(Name,Floor).

To a user the evaluation of the user concepts workin<:L on and

works_on are the same. This similarity is preserved in the lOJic

68

representation as the same predicate is used. Whereas when \Ie use

the relational specification of the view we have to re-specify the

quezy to make the FLOOR attribIte the unknown or retrieval object,

am. the NAME attribute the inp.It or constraint abject.

3.3.3 - P.r:OC~rlllral view definiticn

using our lcX]'ic representation we can exparrl the idea of views to

include proce.dural information. Consider the calculation of annual

holiday entitlement for each enployee. SUppose that in rut' ex.anq:>le

carrpany this is calculated as a basic twenty days plus an additional

one day for each year of service up to a total maximum holiday

entitlement of 30 days. '!his can easily be represented in rur logic

form as

- -
holiday_ ent (Name, D:lys) <- enployee (Name, * , Years ser, *) &

calculate .Jloliday (Years _ ser, Days)

calculate_holiday (YearB_ser, 30) <- ge(YearB_ser,10) & / •
calculate_holidaY(YearB_ser,Days) <- Days := 20 + Years_sere

Notice the use of the Prolog rut "/". '!his is inportant to cxmtrol

the search strategy. It should be realised that procedural viE!1117

definition is not unique to a logic representation as mIV [Tcxll

1976] provides facilities for such procedural views.

3.3.4 - Recm:sive view definiticn

In addition to the fairly siJrple procedural expression, as shown

aboVe, we can also use recursive definitions. To illustrate this

consider the situation where we want to fim out all the managers

for all enployees.

69

manager (Emp,Man) <- eroployee(Name, *, * ,Man) •
manager (Emp,Man2) <- eroployee(Name,*,*,Manl) &

manager(Manl,Man2).

We can easily see that there are many advantages to be gained from

using logic, and in particular Prolog, to express queries or user

views.

3.4 - e:nhar:ced user facilities

using expert systems not only simplifies the task of extracting data

but also gives us the opportW1ity to provide new facilities to

improve the overall process of query satisfaction.

3.4.1 - ~ta-level queryirq

One such facility is the ability to query the system's understarrling

of the model. When reviewing the system in section 2.5 we noted that

very few of these systems offered any opportW1ity for the enquirer

to query the domain.

Meta querying focuses on the actual attributes or on objects in the

domain. For example

~: \hat is an identification l1uber

where the system response may be

70

1m identification rwber is the key attribute of student arrl lecturer

The attribute is defined as an integer in the range lCXXXX) to 999999

Alternatively, it may be a meta query relating to an explicit

connection between entities, such as:

~: 'What is the connection between students run lecturers

where the system response may be

There are two explicit connections

students are taught by lecturers

students are personal tutees of lecturers

As we are already storing such infonnation in our logic view

specifications it is fairly straightforward to provide interactive

querying of the system knowledge, and we consider the practical

implementation of such a querying mode in section 7.1.

3.4.2 - lJrde.n;t:ardi. a user request

An important area of user interaction is that of trying to

understand what the actual task is that the user wishes to

perfonn.Helpful database system interfaces are designed to allow

free expression by a user of his query. But even when a query is

logically expressed and logically answered the result may not be the

one desired. This high-lights the need for a means of answering the

query which incorporates a meta-interpretation or task

identification of the actual user goal. To illustrate the problem

consider the following scenario.

71

FAcr

A train leaves for Lordon at 08: 20

QUESTION

Does the train to lDrd>n leave at 08: 10 or 08: 30

IDGICAL ANSWER

No

USEFUL ANSWER

No, it leaves at 08:20

This may not only apply to the negation or null answer. If the

response is affirmative then we may still need clarification.

FAcr

A train leaves for Lordon at 08: 20

QUESTION

Does the train to lDrdon leave at 08: 10 or 08: 20

LOGICAL ANSWER

Yes

USEFUL ANSWER

Yes, it leaves at 08:20

'!be terse logical answer is not very helpful for solving the

implicit user query of - "What time does the train to london leave

in the time vicinity of 08:20". It is only when the persistent

enquirer explicitly follows up his enquiry with additional questions

that he is finally able to satisfy his actual but implicit goal.

Useful answers can be categorised in two ways. The first scenario is

where they correct a user misconception about the model i. e. the

72

user has a belief that a train to IDndon leaves at either 08:10 or

08:30. The secorrl scenario is where the useful answer is a

classification of the ambiguous answers to the users implied goal.

Detection and recognition of implied user goals is of major

importance in the accessibility of querying systems. For such

systems to be widely used they need more facilities than just

accepting a query specification in a free fonnat. The acceptance ani

use of such supposedly 'helpful' systems will be hampered if the

enquirer still has to state the entire goal explicitly even when it

is obvious.

'Ihese dialogues also show how abrupt "yes" "no" answers when given

by the system may be of limited value, even when they are logically

correct.

3.4.3 - HanlliIJ]' regation ani null values

using a logic representation we are able to harrlle null values

directly [Wilkins 1986]. If our null value is an "unknown" null, as

opposed to a "not applicable" null value [Gray 1981], then we can

either infer a value from surrounding data or we can use the expert

system idea, taken from frame-based systems, of an unknown variable

being able to inherit values from a pre-specified super class. In

effect inheritance provides dynamic default values which are

calculated on the known facts ani so reduce the uncertainty caused

by unknown facts.

73

The known data set can be exparded by the use of directly specified

negation, without the need to rely on negation as failure.

e.g.

Consider a situation for the deparbnental store model

SAIES STAFF

NAME SAIARY ADDRESS

DEPARIMENT

I TTTLE I ~TION MNGR.NAME

figure - 3.3

where we know that "J. SMITH", one of the sales staff, does not work

in the stationcny deparbnent but we do not know in which deparbnent

he does work. This infonnation could not be represented in the

simple Deparbnental store database as it requires the explicit

storage of negation. Explicitly storing both positive am negative

data would lead to integrity and redundancy problems. The

Departmental store database would therefore not be able to give the

name "J. SMITH" in response to the query

QJERY: \-)hat are the narres of all employees rot \IIOrldng in
the stationary departnent

Representing this problem in logical form we can show both how a

conventional database deals with negation am how Expert Database

Systems should be able to deal with explicit negation.

74

Conventional Database

works in(Dept,Narne) :- sales staff (Name, Age, Sal, , Dept, Add) &
- not Dept = 'UNKNOWN' •

not_works_in(Dept,Per) :- works in(Deptl,Per) &
depaitment(Dept,*,*) &
not Dept = Deptl.

i. e. a person does not work in a known deparbnent if a department

exists which is different from the one in which the person is known

to work

'!he only way to achieve negation with this method is by using the

closed world assumption and allowing negation by failure. This

method of negation can lead to problems in incomplete dataOOses

which have unknown or null values.

using Expert Database Systems allows the specification of explicit

instances of negation which help to overcome the previous problems.

'!his can be achieved by imposing semantic checks to ensure

integrity. '!he Expert Database Systems uses the above rules plus the

additional rules

not_works_in('srATIONARY', 'J. SMITH').

contradiction ('works in') : - works_in (Dept, Person) &
not_works_in(Dept,Person).

'!his method allows Expert Database Systems to store negation

explicitly in incomplete database systems, and hence give more

complete answers than those of conventional database systems

75

J.5 - SUMMARY

In this chapter we have considered the use of logic and more

specifically the use of Prolog to represent the modelled domain. We

have shown how such a representation can help alleviate the current

problems of query specification and database navigation faced by

naive users. We have also shown how the specification of user views

in logic is not only more expressive than usirB a relational

language as it allows recursion but is also far simpler to use when

attempting to translate and resolve user queries. Thus a logic

representation is an ideal internal fonn for representing not only

the domain but also the coding of user queries specified in the

concepts of that domain. Finally we described the new aspects of

meta querying which a semantic representation of the domain

provides, and the way in which Prolog's horn clause logic allows us

to represent negation explicitly and thus distinguiSh it fram

nullity.

We will now proceed to consider the requirements for implementing

such a combination of systems so as to demonstrate the potential

benefit that this combination offers. One of the fundamental

requirements is that we fully understarrl the user view and are able

to represent the concepts specified by such user views. In the next

chapter we analyse a rnethcx:l for capturing and explicitly

representing nany of the semantic concepts which are implicit in

user views.

76

aIAPI'ER - 4

In the previous chapters we stated several problems faced by naive

database users and described how the use of an expert system acting

as an interface assistant, between the user and the database system,

can help alleviate many of these problems. We also considered the

need of such a system for a representation of the domain semantics

and proposed the use of ~ .logic based representation of the user's

view to satisfy this nero. In this chapter we consider the task of

realising such user views, and describe in detail how the

preparatory analysis and remodeling of the data to bring out the

user's semantic infonnation can simplify the implementation of these

logic specified views.

We begin this chapter by considering how a user perceives the world

domain in which he expresses his queries. We next consider the

problems of using a conventional entity-relationship design method

to produce a relational model to represent these user perceptions.

From the resulting relational structure we illustrate the effect

that the lack of semantic representation has on the expression of

user queries. We then propose a design representation which captures

more of the user concepts pertaining to the domain. Using this

method we design a second relational model. Finally we compare the

translation of user queries for the two relational representations

77

of the domain, and demonstrate how the translation task of the

expert system has been simplified

4.1 - '!he need for greater semantic ex>ntcnt in database design

In the previous chapter we outlined two maj or problems faced by

naive users of database systems. 'lhese were fonnal query

specification and query mapping. In order that our interface

assistant may help alleviate these problems, it must be able to

translate user concepts into the fonnaliscd database structures in

which they are represented.

USER WORID
MODEL

I

/\
/ \

/ \ DATAPASE
IX>MAIN

MODEL
/ /\ \

~~+---------I-I \ \
/ /_\ \

/ \
/ \

figure 4.1

Figure 4.1 shows the mapping of a query (the inner square) specified

by the user in the tenus of his own conceptualisation of the real

world (the outer square), being mapped onto a specific

representation in the database model (the inner triangle) .

It is far easier to perform the translation process when the two

representations are conceptually similar. By bringing these

78

representations closer together, that is reducing the conceptual

distance between the two representations, we can help simplify the

task of translation that the interface assistant has to perform. As

Boguraev and Sparck Jones (Boguraev & Sparck Jones 1983] write when

describing a translator between the "semantic content of the user's

query" and the "administrative structure of the target database"

"it is necessary to reconcile the user's view of the
world with the domain model"

'!here are two possible ways in which the representations can be

brought closer together. The first is to educate the user to

urrlerstand the database representation, so that his perception of

the world includes an lU1derstanding of the relational model. The

secorrl method is to design and express the constructs of the

relational model so that it is closer to the user's own model,

thereby making the relational model more representative of the

semantic information for the domain.

'!he first method defeats our objective that the user should not be

required to know the relational structure so we will not pursue

this. However, it is important to remember that the user's

perception of the world includes the querying system itself.

Educating a user to lU1derstand a database schema for a domain, will

probably not alter the user's fundamental perception of the world

but it may alter the way in which he expresses his queries when

interacting with the database. This is simply because he knows what

the database lU1derstands. Such a method of education has been

79

proposed by RoussopoUlos am Mark [RoussopoUlos & Mark 1986] for use

with self describirg data IOCrlels.

Since the first method is inappropriate we will give further

consideration to the secord altexnative, namely to design the

database structures so that they more closely lOOdel. the users am

concepts of the domain.

4.2 - 'lbe User Ib3el.

To achieve a closer representation we must first \ll"rlerstarrl am be

able to define the user 1OOdel. '!he user IrOdel. we propose is similar

to the conventional external schema, hCMever it is augmented to be

m:>re representative of the semantic damain infonmtion. '!he proposed

external schema is similar to the Erd-User level of DIAM II [Senko

1976]. '!he DIAM II representation of the domain was used to assist

the query language FORAL to umerstan:l domain contextual queries.

To illustrate the benefits that can be derived fran lnprovirg the

IOOdel representation we will consider a familiar

CoUrse_Student_Teacher exanple. We first need to define the general

user concepts of the exanple which we wish to incorporate into the

relational representation.

80

4.2.1 - PrimaIy am sulEet objects

When defining the user model we need to specify the prirna.ry and

subset obj ects. These two classes of obj ects both correspond to

entities in the conventional entity-relationship model. A prirna.ry

object can be considered a "base" entity which is not a subset of

any other entity. A subset object is defined as an entity which is a

subset of either a prmary object or another subset object which has

a primary object as a super-set. A subset object can not be a subset

of an object for which it is a super-set.

In the eourse_Student_Teacher domain we can identify the following

primary and subset obj ects:

PRIMARy OBJECIS

Person
Department

SUBSEI' OBJECIS

Course
Faculty

PersOn ::- (University Employee, Student)

University Employee :: - (Teacher, Secretary)

Teacher :: - (Professor, Senior lecturer, I.ecturer)

secretary::- (Personal Secretary, Cepartmental Secretary)

Entities belonging to either of the two object classes are

attributed certain characteristics which explicitly represent the

infonnation to be modelled in the domain.

81

Distinguishing between the two types of objects ani representing

them explicitly allows us to encapsulate the user notion of

inheritance into the model definition. '!his notion of inheritance

refers to the way in which a subset object inherits or is accredited

with all of the attributes and relationships associated with the

object for which it is a subset. Notice that a subset may be a

subset of a subset.

'!he subsets are not necessarily complete and are not mutually

exclusive. '!hus we can refer to an instance of a super-set obj ect

even when it is not defined as belonging to any of the specified

subsets. '!his allow us to state infonnation relating to a person

even when it is not known to which subset, either student or

uni versi ty employee, that he belongs.

'!he explicit representation of subsets helps the expert system in

detennining the scope of a user request. e.g. if the user refers to

TFArnERS in the context of this example then it is explicitly

obvious that the user is referring to

A group of PEOPLE who are UNIVERSITY EMPLOYEES

and are TFAaIERS

'!hus we are able to associate the sub group TFAQIERS with all the

attributes and relations associated with its super groups. Hence, we

have gained an invaluable insight ani understanding of the global

scope of a user I s reference to an entity.

82

langUages for schema representation already exist, for example

DAPLEX [Shipman 1979] and ADAPLEX [Smith et al 1981]. '!he schema

language of ADAPLEX allows us to define sub sets in the schema as

follows:

type person is entity
name :string[l. .40];
age : integer;
sex : (male, female) ;

end entity;

subtype university_employee is person entity
salary : integer;
office :string[1 .. 10];

end entity;

using this specification it is possible to represent inheritance.

SUch schema infonnation needs to be made available to the

interfacing system.

4.2.2 - Non referenced objects

When dealing with entities in the real world certain facets of these

entities may be considered characteristic attributes e.g. a person's

address. However such characteristics may themselves be entities

which can be referred to. In the database world, because it is

closed, many of the possible references apply to objects outside the

domain of the database. Hence characteristics become simply

attributes with no external references. As Addis [Addis 1985] writes

"'!he primary entities, although always potentially recognisable
as being complex, are considered atomic within the context of a
task domain. Change the task and what is considered an entity
may also change".

To illustrate this consider the concept that

83

a course is taught in a session

To represent this concept we could store "session" as an attribute

of the entity "coursell , where the value which can be held by the

attribute "sessionll is either first or second. Using this structure

to store session causes all external references to IIsessionll , as an

entity, to be lost. However, just because these references are lost

in the database representation does not stop a user, who specifies

his query in the terms of his own concepts about the world,

referring to "sessionll as an entity. For example, a user may pose

the query

~: "*rich courses are t:augJ:lt in February ?

Thus session has, in the user model, a characteristic of time

although this is not represented in the relational model. The

explicit reference to the attribute session as if it were an entity

can be compared to a user reference to an actual stored entity e. g.

CXXJRSE. If we know the user concept that

a course is attended by students

Then to understand the user query

~Y: "*rich courses are attended by John Smith ?

we need to realise that the user is making a silent reference to the

entity SIUDENT Le. the entity student is not explicitly mentioned

but is implied by the phrase llcourse attended by" and is identified

by the string "JOHN SMITHII
• 'Ihis illustrates the way in which users

84

refer to objects, which may be stored as cbaracteristics in the

database world, in the same way that they refer to objects which are

stored as entities.

To improve our understanding· of a user request we must know what the

user considers an entity even if such entities are not referred to

as entities in the database model domain. Therefore the domain

information should include information identifying any user

perceived entities which are stored as attributes. In our example

domain these could include the following:

NON-REFERENCED OBJECI'S

session
Year of study
Title
surname
Town
Countl:y
Identification Number

Level
Age
Forename
street
County
Course Code

Even characteristic objects such as identification numbers can be

considered as entities with a date of issue.

QJERY: which identification rwbers were issued in August

The database model can therefore be seen as a filter on the world

domain, as obviously we can not store all of the infinite world

references to an entity. However, we must realise that users may

refer to any of these objects as entities.

85

4.2.3 - camposite objects

Certain objects in the model are referred to by the user as a single

object. In reality these objects may be made up of distinct objects

which can themselves be referred to individually. By explicitly

incorporating this information into the model we aid the recognition

and understanding of the user's request. The following corrposite

objects exist in our Course_student_Teacher example model.

CDMroSITE OBJECl'S
Name ::- (Title, Forename, Surname)
Address::- (street, Town, County, Country)

The user may refer to such composite objects as if they were a

single object

QJERY 1: \.Jhat is the age of the person narred Mr Jolm Smith?

QJERY 2: \.Jhat is the age of the person rorred John Smith?

QJERY 3: \.Jhat is the age of the person rorred Mr Smith?

In our model name is not a unique identifier so any of these queries

may return many results.

Thus a user may conceptualise the obj ect NAME as a concatenation of

several other objects. The user's concept of composite objects must

be expressed explicitly so as to define all valid concatenations.

Having a definition of a valid combination gives us a new facility

for evaluating the semantic equivalence of composite objects as

implied by the user. Considering the above example, a user would

86

expect any infonnation retrieved for query 1 to be retrieved also by

queries 2 and 3. Thus the tuples satisfying the conditional part of

query 1 can be viewed as a sub set of both the conditional parts of

the other queries.

PEOPLE NAMED JOHN SMI'IH

PEOPLE NAMED MR JOHN SMITH

PIDPLE NAMED MR SMITH

figure 4.2

The explicit definition of implied semantic equivalence is far

superior to any form of simple attribute value matching. Improving

our understanding and representation of the user's concept of the

world helps to simplify the process of translating the user's query

into the fonnalised structures of the database world.

4.2.4 - Relation.shi~ between cbjects

Having described the data objects as perceived by the user, we can

now consider the relationships between the obj ects. When considering

the relationship links between objects we are only interested in

their existence and type, and not with their philosophical

interpretation. For example, it will suffice to)maw that a S'IUDENT

is TAUGHI' BY many TFAOIERS. We are not concerned with the underlying

meaning of the relationship TAUGHT BY nor any relevance it ll'ay have

87

to the principles of learning. When we refer to the "type" of a

relationship we mean the N to M relationship between the obj ects

i. e. one to many, many to one, many to many. Returning to our

Course_student_Teacher example, we can explicitly define the

relationships between the objects as follows

RElATIONSHIP CDNNEcrroN TYPES

1. A Person has only one name.

More than one Person can have the same Name.

2. A Person has only one age.

More than one Person can have the same Age.

3. A Person has only one address.

More than one Person can have the same Address.

4. A University Employee has only one salary.

Many University Employees may be paid the same.

5. A Teacher may be a personal tutor to many students.

A student has only one personal tutor.

6. A Teacher may lecture many students.

A student may be lectured by many Teachers.

7. A Professor has his own Personal Secretary.

A Personal Secretary works for only one Professor.

8. A Teacher can have many Deparbnental secretaries
working for him.

A Deparbnental Secretary works for many Teachers.

9. In each year of study there are many students.

A student can only be in one year of study.

10. A student can attend many Courses.

A Course can be attended by many students.

88

11. A student can be in more than one Department.

A Department can have many students in it.

12. A Department can have many University Employees.

A University Employee belongs to only one
Department.

13. A Person can only belong to one Faculty.

A Faculty can have many People belonging to it.

14. A Course is taught by one and only one Teacher.

A Teacher nay take many Courses.

15. A Person has a unique Identification Number.

An Identification Number is had by one and only one
Person.

16. A Person has only one sex.

More than one Person can have the same gender.

17. A Department belongs to only one Faculty.

A Faculty has many Departments.

18. Many Courses can be taught in each session.

A Course can be taught in more than one session.

19. A Course can only be taught at one level.

Many Courses can be taught at each level.

20. A Course has a unique Code.

A Code is had by one and only one Course.

Having defined all the obj ects and relationships we can now proceed

to design a relational model to represent the Course_Student _Teacher

model.

89

4.3 - Relational rntabase Design

Conventional database design is heavily dependent on the structures

provided by the database system. The table structure of relational

databases allows for the logical decomposition of the model into

sbnple entity groups. Each group then has a table to represent it

and other tables representing particular relationships between the

groups. The process of decomposition [Ce Bra 1986] although making

it easier for the user to visualise the database model, can

corrplicate the query specification task. The task of translation is

frustrated due to a loss of the semantic domain infonration in the

explicit relational representation of the domain. This loss of

infonnation includes the loss of a representation of the user's

macroscopic perspective of the domain. If we are to answer a user's

query adequately it is bnportant that we are able to understand

fully the scope of the user's query. To achieve this we need an

explicit representation of the user's macroscopic perception.

4.3.1 - '!he entity-relationship nx:rlel

A conventional methodology used in relational database design is

entity-relationship modelling [Olen 1976, Parkin 1982]. When using

this technique the problem of the loss of semantic infonration still

persists. This problem is due to the logical sub set decomposition

of the domain. This problem can be illustrated by considering the

Course_student_Teacher model. Consider specifically the inter-entity

relationships

90

A PERSONAL SECRETARY WORKS FOR A PROFESSOR

DEPARIMENTAL SECRETARIES WORK FOR TEAaiERS

CDURSES ARE TAUGHT BY A TEAafER

These relationships were fully defined in section 4.2.4. If we

attempt to draw the Entity-Relationship model for these

relationships we observe a problem in representing all of the given

infonnation

PERSONAL SECRETARIES

SENIOR IECIURERS 17----~~

IE~~--------~

CDURSESp 1,;----1
""--------'

SESSION

figure 4.3

The model in figure 4.3 allows us to represent explicitly "the works

for" relationships. However, we are unable to ccx:1e the constraint

that a course has one and only one teacher. Also, if we design the

model with a single super-set entity TEAOIER then we lose the

infonnation that every Professor has his own personal secretary

(figure 4.4).

91

PERSONAL SECREI'ARIES I

TEAQfERS DEPARIMENTAL SECREI'ARIES

CX>URSES SESSION

figure 4.4

If we use an "is_a" link we can combine these two models. Figure 4.5

shows these combined models with some additional representation of

the macroscopic perspective describing SECREI'ARIES and UNIVERSITY

EMPIDYEES. However, by using such a representation we encounter the

problem that we are unable to represent explicitly the information

relating to the inheritance of entity subsets.

IPROFESSORS~ PERSONAL
SECRETARIES

I r TEAa-IERS k 1
L I' I SECRETARIES I I r LECIURERS ~ " I

DEPARIMENTAL
SECREI'ARIES

I SENIOR LECIURERSl

I SESSION CXXJRSES t-
UNIVERSITY '" i SAIARY 1 1/
EMPIDYEES

figure 4.5

92

The following description illustrates this loss of explicit

representation of inheritance information.

Knowing that a UNIVERSITY EMPIDYEE is paid a SAlARY and a PROFESSOR

is _ a UNIVERSITY EMPIDYEE we therefore know that a PROFESSOR is paid

a Sl>J..AAY.

However the model in figure 4.5 has no explicit representation of

this direct link, that a

A PROFESSOR IS PAID A SAlARY

If we compare this with the indirect semantic link that a

PROFESSOR TEACliES A OOURSE ill A SESSION

then there is no notational distinction between these two

relationships. However, to the user there is a considerable semantic

gap between the direct possession of a characteristic, and an

indirect link with a characteristic via another entity.

TO distinguish the relationships we have adopted the notation of

nesting subset entities. Thus we can redraw the previous model as

figure 4.6. SUch sub-entity distinctions correspond to those

proposed for the extended relational model RM/T [Codd 1979].

93

UNIVERSITY EMPIOYEES

TFAGIERS SECREI'ARIFS

I PROFESSORS I 1 PERSONAL SECREI'ARIFS I
I SENIOR IECIURERS I ~ DEPARIMENTAL SECREI'ARIFS 1
I IEcnmERSl

'r
r CUJRSFS P : SFSSION I I SAIARY 1

figure 4.6

'!he semantic distinction between direct and indirect links is

vitally important when translating a user's query, as it gives us

the ability to distinguish inter-entity and intra-entity

relationships, even when both are inter-relational links.

By simply applying the conventional logical deconposition of the

entity relationship design method to the Course_Student_Teacher

model we derive the relational structure in figure 4.7.

94

,~

roNVENTIONAL REIATION DATABt\SE MODEL

proFESSORS

I~ I NMm I ~ I ADmFSS I 0EPr I SMARY I SEX I SEC I

SENIOR IECIURERS

I~ I NMm I ~ I ~S I 0EPr I SAlARY I SEX I
IECIURERS

I~ I NMm I ~ I~S I
DEPl'

I
SAlARY I SEX I

PERSONAL SECRETARY

DEPARIMENTAL SECRETARY

S'IUDENT

roJRSE

ATI'ENC6

figure 4.7
N.B. - NAME is composed of TITIE, FIRS'INAME and SURNAME.

ADDRESS is composed of S'IREEI', '!OWN, CXXJN'IY and
<X>UNTRY.

95

'Ihis model, although storing the domain data, has failed to capture

much of the explicit macroscopic semantic infonnation. Therefore if

we are to allow users to express their queries in the terms of the

semantic concepts with which they conceptualise the world, then we

must specify the lost semantic information externally i.e. in the

system which processes the data rather than the data itself. The

infonnation is then available for access during queries. However,

the more semantic infonnation we can represent in the model the less

work has to be done at the interaction stage.

4.4 - IDDEU.JNG USER CDNCEPI'S IN A RElATIONAL S'IRJCIURE

Having stated that the design of the relational model can adversely

hamper the function of an "expert" system interface, we now proceed

to propose a structured design method which helps us to incorporate

more of the semantic infonnation into the relational model. As

Beman states [Beman 1986]

"'Ihere are considerable advantages in basing a design on a
semantic data model ••• The model is sufficiently easy and
'natural' for end-users to employ"

our proposed method can be divided into four distinct stages. The

four stages are:

96

1) Rationalisation

2) unification

3) D.Ip1ication rerooval

4) CcmpOSition

4.4.1 - Diagranlnatic user JIrJdel. syntax

Before we describe the design stages in detail, we ImJSt first define

the syntax for our proposed user oode1 representation.

CIASSrn AND '!HEIR IroPERl'lES

A class is identified by a box with a label in the top left

harrl ro:rner.

An enclosed shaded label htp1ies the class is CCIlposOO of sc:IOO

pnrlefined CX>I1Catenation of the classes contained within.

'!he ar:I'C1WS cx>nnectin;J a class to other classes represent the

properties of that class.

A class which is c:x:mp1ete1y enclosed by aoother class is a

subset of the original class.

'!he properties of a class are also the properties of all of

the subsets of that class.

97

CIASS cx:>NVml'ION

Class connections are bidirectional.

'!his is read as

for fNery X there is one an1 only one Y.

for fNery y there are many X.

X >-- - - -

'!his is read as

for fNery Y there exists many X.

y

y

for same X there exists one an1 only one Y.
(nus also means that

for some X· there are no Y).

Obviously the ar.row c::ould be broken over its entire len;Jth Which

would inply - •

for same X there exists one am only one Y

for the remaini.rq X there are no Y

for same Y there are many X, am

for the remaini.rq Y there are no X

98

4.4.2 - Ratimal isaticn

'!he first stage is rationalisation. '!his is where classes with

silnilar characteristics are linked together to fonn super-set

groups, e.g.

students have the characteristics name, address am age .

Lecturers also have these characteristics, so we can fonn a

united super-set of 'Person' which has these attributes:

By further rationalisation of the user lOOdel am usi..n3 the user

nOOellirq syntax as described in section 4.4.1 a diagrammatic

representation of the user nOOel. can be drawn (figure 4.8).

99

USER M:>DEL

WIME f--

~
..--- ADrnESS

TITIE Fffi£- SlR- S1REEI' 'f(l.JN CUJNlY
NAME NAME NAME

I StUAAY

1 2 3 I4 ... ~ /~ , t,
PERSCN

UNIVffiSTIY
EMPWYEE

TFAGlER SEmErARY
S1UDENT 5

FROFESSCR 1
7

I... FROF'S v I SEC
6

\IFCIrnER\ I,

17- S DEPf

l:ml
SEC

, ,/

9 11 12 13 14 15 16

YEAR
I,

SEX 1 I DEPf ~ OF
S1UDY

1~ 10
FAClJL1Y I IIDtufl

... t-.

CllJRSE

18 19 20

I SESSrCN J lEVEL CDDE

figure 4.8

100

4.4.3 - unification

The second stage is to lU1ify the user model. The lU1ified model is

very similar to the original User model except that common

relationship links have been 'tmified' to fonn a single link. This

is achieved by changing a fixed link to be an optional link.

The first link lU1ified was the "works for" link

The original user model has links where

7. A Professor has his own Personal Secretary.

Personal Secretary works for only one Professor.

S. A Teacher can have many Departmental

Secretaries working for him.

A Departmental Secretary Works for many Teachers.

Combined with the subset infonnation

A Teacher can be a lecturer, a Senior Lecturer or a

Professor.

A Secretary can be a Personal Secretary or a Departmental

secretary.

this allows us to fonn the lU1ified link

A secretary may work for (one or) many Teachers. A

Teacher may have many Secretaries working for him.

The process of lU1ification is a fonn of generalisation and so

appears to cause a loss in model knov.Jledge. However for user

interaction such generalised infonnation is more useful as it shows

the connections between groups of entities and not the isolated

101

sub-entity groups. In fact there is no actual loss of stored data as

all of the previously held data is still stored.

The second link unified was the "in department" link '!he

original user model has links where

11. A Student can be in many Departments.

A Department can have many Students in it.

12. A Department can have many Uni versi ty Employees.

A University Employee belongs to only one Department.

Combined with the subset infonnation

A Person can be a Student or a University Employee.

this allows us to fom the unified link

A Person may be in (one or) many Departments. A Department

has many People in it.

Again this generalisation gives us the information that members of a

L'epartment are people and have all the attributes of the group

PersOn. Applying this process to the user model we derive the

unified model shown in figure 4.9.

102

UNIF'IElJ USER M:>DEL

NAME -

~
r- ADffiFSS

TInE RR£- SUR- S1REEl' 1WN CXXJNIY
NAME NAME NAME

l SAlARY

1 2 3 14 /1"- '\

PERSCN
UNIVERSI'lY
EMPLOYEE

TFACllFR SECRETARY
Sl1lDOO 5

IffiO~SffiI 1 OOF'S 1 SEC

Irn;rrnml rr -~

~ ~ , l:ml
SEC

T '\~/ " "
9 1 13 14 15 16

YEAR l SF)(I I Dm J OF
Sl1lDY lr

I
FAaJL1Y I I IDOO1 I

10 17 I

I, ,/

CIlJRSE

" / v

18 19 20

~ SESSICN I lEVEL CDDE

figure 4.9

103

4.4.4 - ruplication :renv:JVal

The third stage of the process is to remove any duplicate links

before the database structure is fonned. There are several

relationship links that are displayed in the user model which,

although they seem explicit to the user, are in fact implied by

other links in the model. Therefore it is important that when the

users model is fonnalised in a database structure these links are

not duplicated, as this may lead to problems with consistency

constraints •

The first such duplicate link is "Teacher lectures Student" From the

original model

10. A student can attend many courses.

A Course is attended by many Students.

14. A Teacher takes many Courses.

A Course is taught by one am only one Teacher.

Therefore if we lmow which courses a Student attends we can deduce

which Teachers lecture the Student :-

Teacher lectures Student = Teacher takes Course &
Course attended by Student

'!he equals sign can be read as "if" and ampersarrl as "and"

The inverse of this link "Student lectured by Teacher" must also be

satisfied

student lectured by Teacher = Student attends Course &
Course taught by Teacher

This makes the explicit storage of "lectures" unnecessary.

104

The second such duplicate link is "Person is member of a Faculty".

From the original model

17. A Department belongs to one and only one
Faculty.

A Faculty has many J:X:!partments.

(Unified link 7+8).

A Person may be in (one or) many J:X:!pa.rtrncnts.

A Department has many People.

Coupling the above asslll11ptions with the asslll11ption

13. A Person can only belong to one Faculty.

Thus we can conclude that all of the departments which an individual

person is a member of are in the same faculty, and that a person is

therefore a member of only the faculty which the department(s) he

belongs to are in.

Person member of a Faculty = Person in J:X:!partment(s) &
J:X:!partment (s) belong to Faculty

The inverse is also true

Faculty has as a member Person = Faculty has J:X:!partrncnt (s) &
J:X:!partment (s) has Person

Applying this process to the unified user model we derive the model

shown in figure 4.10.

105

NAME - r-- ADOOfSS

I AGE I
TITIE FffiE- SUR- S'IREEl' 'fO..JN CUJNIY

NAME NAME NAME

l SAlARY

1 2 3 14 /'- r... r-..

PERSCN
UNIVERSI'lY
EMPI1JYEE

TFAClIER SECREfARY
S1UDENl' 5

I ffiOFFSSffi I V IllID~S I SEC

IlECIlIDRl ~-...;

~ 'v 'V

I~I
SEC

'v '<r'

I
9 1 15 16

YFAR l SEX J I DFFr I OF
S1UDY l' I

FAClJL1Y I ~IDNlMl
10 17 I

CXlJRSE

'" V

18 19 20

I SSSSIOO I lEVEL (X)l)E

figure 4.10

106

4.4.5 - amstruct:iIxJ the relatia:al JOOdel.

'!he fourth am final stage is to create the actual relational

tables. 'lhi.s is a sinple process fran the final diagram.

1) Evety class Which is a super-set has a table

defininJ the subsets.

2) Evety class Which has a sirgle arrcM fran it has

the class it points to as an attribute.

3) An arrow depictirg uniqueness is only represented

once.

4) A many-to-many arrow is represented by a separate

table

5) No class table is represented twice.

Followirg these sinple rules we can create a database with a

structure which is mre representative of the user mdel. (figure

4.11).

107

REIATIONAL DATABASE MODEL REPRESENTING USER (l)NCEPIUALISATION

PERSON

FORENAME SURNAME

S'IUDENT IECIURER SENIOR _ LECIURER

IID_= I
YEAR_OF_S'IUIJYI ~ r9

PERSON DEPr DEPI' FACULTY

IID_= I DEIT_IDI IDEPr_ID I FAaJUl"UOI

ATI'ENOO UNIVERSITY_EMPlOYEE

ISWDEm_ID roJRSE _ roDE I IID_= I ShlARYI

PROFESSOR

TEAClIER

figure 4.11

N. B. ADDRESS is composed of STREEl', '!OWN, a::>UNTY and COUNTRy.

108

4.5 - 'IHE EF'FFX:I' OF GREATER SEMl\NITC REfRE.SENIM'Irn rn <lJFRY

SPEcrFICATIrn

Having specified two relational stru.ctures (figures 4.7 and 4.11) we

are now in a position to illustrate the simplifications that can be

made to the specification and hence to the translation of a user I s

query. In these examples we will use a logic representation of the

queries. The corresponding SQL translations of these queries can be

found in Appendix C.

QJERY 1: Fetch the narres of teachers teaching courses in session 1

DATABASE STRUCIURE 1

query{Title,Forename,~) <-
(professor(Idnurn,Tltle,Forenarne,Surname,*,*,*,*,*,*) &

course{*,*,Idnurn,l)) I
(lecturer{Idnum,Title,Forenarne,Surname,*,*,*,*,*) &

course(*,*,Idnurn,l)) I
(

senior lecturer(Idnurn,Title,Forenarne,
- Surname,*,*,*,*,*) &

course (*, *, Idnurn,l)).

DATABASE STRUCIURE 2

query (Title, Forename, SUrname) <-
person (Title, Forename, Surname, *, *,Idnurn,*) &
course{*,*,Idnurn,l).

This simple query of a super group shows the problem of reuniting

logically separated groups. When translating the above queries into

a relational language the "I" (or) perfonns a similar operation to

that of the UNION conunand. Modelling the structure with explicit

super sets allows us to realise that when an attribute is referred

to we inunediately know the scope of the reference e.g. when a user

109

refers to the composite name in our model we know the user is

referring to person

~ 2: Fetch the narres of senior lecturers teaching courses taLqjllt at level 2

DATABASE STRUCIURE 1

query (Title, Forename, Surname) <-
senior_lecturer (Idnum,Title, Forename,

Surnarne,*,*,*,*,*) &
course(*,2,Idnum,*).

Dt\TAEASE STRUCIURE 2

query (Title, Forename, Surnarne) <-
person (Title, Forename,Surnarne, *, *,IDNUM,*) &
senior lecturer(Idnum) &
course(*,2,Idnum,*).

QUery 2 shows that even when sub sets are explicitly referenced

there is little complication in specifying the required sub group

"senior lecturer" of the larger super-set entity "person".

QJERY 3: fetch the narres of people \o.ho earn over £ 20000

DATABASE STRUCIURE 1

query (Title, Forename, Surnarne) <
(professor(*,Title,Forename,surname,*,*,*,Salary,*,*) &
gt(Salary,20000)) I

(lecturer(*,Title,Forename,Surnarne,*,*,*,Salary,*) &
gt(Salary,20000)) I

(senior_lecturer (*,Title, Forename,
Surnarne,*,*,*,Salary,*) &

gt(Salary,20000)) I
(personal_secretary (*,Title, Forenarne,

surnarne,*,*,*,Salary,*) &
gt(Salary,20000)) I

(dept_secretary (*,Title, Forename,
Surname,*,*,*,Salary,*) &

gt(Salary,20000)).

110

DATABASE STRUcruRE 2

query (Title, Forenarne, SUrname) <-
person (Title, Forenarne,SUrname, *, *,Idnum, *) &
university employee(Idnum,Salary) &/
gt(salary,20000)). (

'!his query shows that reference to a sub group which itself is a

super group is also simplified in our new model (Le "university

employee" is a sub group of "person" and super group for "teachers"

and "secretaries").

4.6 - SUMMARY

In this chapter we have considered the specification of many of the

concepts constituting the user view, and have outlined a method for

diagrammatically representing such concepts. We identified the

notion of conceptual distance between representations, and stated

that it is easier to perfom a translation between two

representations when they are "closer" together. We described a

method for enhancing the macroscopic perspective of the relational

model by improving its representation of the user view, and thereby

bringing the two representations closer.

By considering the specification of queries in Prolog, we

illustrated the significant improvements to be derived from this

enhanCed representation. We found that this approach aided both the

understanding of the scope of the query and vastly simplified the

expression of such logic queries.

111

ClJA.PI'ER - 5

We have considered the benefits which an expert system approach

could provide for database users. In this chapter we describe am

investigate possible methods for coupling expert systems am

database management systems. OUr aim is to specify a system which is

seen as a single unified structure, which can be used to implement

our proposed data retrieval system. We start by considering the

principal strategies for forming a single system. We then Proceed to

develop a specific architecture. 'Ibis proposed architecture helps us

to identify the need for a canununications link between the expert

am database systems. Using systems which are currently available,

we consider the practical inplementation of the conununications link.

We then describe the problems which frustrate such a link. Finally

we propose several methods to alleviate these frustrations.

5.1 - APffiCWliES '.ro ~ A cnmINED SYSTEM

It is inportant to ascertain initially the functional requirements

of a combined system. '!his will allow us to determine the degree of

combination of the two component systems, the expert arrl the

database systems. 'Ihe degree of combination refers to the dominance

each of the underlying systems I characteristics has on the

functionality of the final system. Factors such as the predominant

112

type of search technique required by the final system nrust be

considered. The type of search techniques corresporrls to the

different search strategies of the two UI'rlerlyirg COITpOnent systems.

One nnlSt also consider the trade-off between Optimisation ani

Prototyping am between Compilation am Interpretation.

The degree of combination is deperrlent on which of the construction

strategies is chosen. '!here are three distinct strategies for

combining the systems [stott Parker 1984].

The first is to enhance the queIY language of an existing

Database Management System so that it incorporates the

facilities which an Expert System possesses

The secorrl methcxi is to create a means of communication between

an existing Expert System arrl a Database Management System

[Vassiliou 1985].

Finally the third method is to add to an existirg Expert System

the multiple user secorrlary storage access am management

routines which are necessary for the irrplementation arrl control

of a large database.

These strategies illustrate how the functionality of the resulting

system will be effected by the methcxi of canbination chosen. For

systems which require highly efficient mass data retrieval then the

113

first system would be most appropriate. For a system which is

strongly deperrlent on knowledge-directed processing then a system

like the third would be best.

We have decided however, to inplement the secord design. 'Ibis was

because it gave us a more flexible arxi general system with the

greatest opportunity to maximise the advantages to be obtained from

both systems. By using systems which were already inexistance it

saved us considerable time in development and we were able to build

demonstrators relatively quickly to illustrate the :functional

operations of our proposed system.

5.2 - MA1NI'ENANCE OF ~ INDEPENDI!NCE

Another inportant reason why we adopted the secorrl design strategy

was that it maintained the irdeperrlent identities of the two

systems. Although we are atterrpting to construct an apparently

single unified system we are keen to maintain the irdeperdent

physical identities of the two systems. We see several advantages

arising from this separation.

Maintaining system irdeperrlence is beneficial to us as we are

designing systems only for specific user groups, such as naive

users. By maintaining the separate identities we do not exclude any

current application of either system. 'Iberefore we do not affect or

han'1};>er access by users who are outside our specified user group. As

114

shown in figure 5.1, group 2 users are not affected by the

introduction of an expert system front em.

ER US
GROOP

US
GROOP

.T:tn
'.LoI.

1

2

ES I I
DIHS I I I

aJRRENT
DATABASE
APPLICATION

figure 5.1

Maintaining irrleperrlence from a given database management system

allows us to use the interface as a means of providing a

starrlardised database interface.

USER---I ES DIHS1

USER----1 ES DIHS2

USER---I ES DIHS3

figure 5.2

As shown in figure 5.2 the users interact with the a cammon

front-end. arrl are oblivious as to which database management system

they are actually using. '!his starrlardised front em shields the

users from needing to know any system specific infonnation.

'!his notion of a single starrlard front-el'rl arrl multiple database

back-ends may be pursued so as the expert system becomes a manager

to a distributed database system or a gate-way advisor to discrete

115

database systems. SUch a gateway system is illustrated in figure

5.3.

USER---i

figure 5.3

5.3 -~ FOR Killl'I-osER UNfi'lED SYSTEM

When coupl~ expert systems am database ll'aI'lagement systems it is

important to presel:Ve the functionality of each of the component

systems in the final system.

One such function is the multi-user access facility of database

management systems. We have identified two possible architectures

which preserve this facility. 'lbe first is to create the system by

provi~ each user with access to an isolated copy of an expert

system, which is able to conununicate with a shared Database

Management system (DBMS). Figure 5.4 illustrates how using this

architecture we can create a virtual multi-user system.

116

USER I ES 1
I I I
I FS I I DIMS I I I I USER

I I ES I
I I USER

figure 5.4

'!he outer box depicts the virtual shared system.

'!his configuration is really only a simulation of a shared system.

Although it uses a cammon database each user's expert system is

isolated and hence is unable to share the knowledge represented in

the expert systems as a whole.

A fully shared system with a single Multi-user Expert system front

ern (MUES see figure 5.5) provides a unifonn interface to users

while interacting with the database.

USER ------,

USER ----i

USER----...J

figure 5.5

'!hus the MUES manages the multi user function. Although gaining the

benefit of a global data management system the fully shared system

117

(figure 5.5) loses several of the advantages asociated with the

virtual shared system of figure 5.4.

'!be first structure (figure 5.4) gives us greater opportunity for

future development of adaptive interfaces for irrlividual users am

maximises the available benefits of both of the existing conponent

systems. As the DIJ.1S already has shared access management facilities

it is far easier to 1Irplement the structure of figure 5.4 than it is

to construct that of figure 5.5. We have therefore chosen to

1rrplement the structure illustrated in figure 5.4.

5.4 - '!HE IN<DRRlRATICfi OF IXMAlN DM:2\ DlIO '!HE ~

Even though we have decided on the general structure of the system,

certain aspects of the combined system architecture still remain

urrlefined. '!bese aspects occur where the component systems'

functions overlap.

one such aspect is the storage ani manipulation of domain

description infonnation, the expert domain data. 'Ibis data can

either be stored in the actual database or represented in the expert

system. 'Ibe locating of the expert domain infonnation is depenjent

primarily on its vol1.mle ani to some extent on its nature. When we

refer to the nature of the data we are referring to the way in which

it is represented, this may be as data objects or production rules

etc.

118

'!he first method of storing the expert domain infonnation in the

expert system leads to a situation where we have an isolated linear

combination (figure 5.6). Using the secoJrl method we can derive a

fully integrated system [Brodie 1984] (figure 5.7). To the enquirer

however both systems appear integrated.

LINEAR COMBINATION

US '"," EXPERT DATABASE
' "

SYSTEM MANAGEMENT
I SYSTEM
I

J:XJvlAIN
DATA

figure 5.6

IN'I'mRATED COMBINATION

rx::wJN DATA
EXPERI'

US ..,.,... SYSTEM ACIUAL ...-.
DATA

figure 5.7

'!he integrated architecture requires the expert system to haIrlle

both queries am updates to the two types of data. '!he greatest

advantage for such a combined system is in the future development of

large Expert. Systems which will be able to share not only the data

objects but also the domain knowledge. Inplementing such a system

would require considerable work in knowledge representation. As we

119

were not explicitly concerned with this we have chosen the structure

represented in figure 5.6.

'!he structure we have chosen (figure 5.6) satisfies our requirement

for functional indeperrlence of the two systems. '!his is in contrast

to the integrated architecture which violates this requirement as

the expert system can not function without the database system,

although the database system could :function alone.

If we apply the domain data structure of figure 5.6 to our chosen

multi-user architecture (figure 5.4) we can derive the complete

architecture for our combined system, which is displayed in figure

5.8 •

FS
USER

In.1AlN I4l+.TA

FS
USER DIHS

In.1AlN DATA

FS cornrm.micatio ns
USER links

In.1AlN I4l+.TA

figure 5.8

As we have previously stated we wish to make use of existing

systems, therefore in order to implement our chosen architecture we

need only create the communication link between the two system

CCJIttX>nents •

120

our chosen architecture is similar to the one proposed for the

Difead system [Al-Zobaidie 1987]. The Difead system proposes the use

of an independent sub-systern (ISS) to control the interaction

between the expert and database system.

USER

figure 5.9

We regard the control of interaction as an expert system task. We

therefore have only one expert system, and represent the Difead

application expert system (FS in figure 5.9) as our expert domain

data which can be used by our single expert system.

Having fo:rmalised the architecture for our proposed system (figure

5.8), we can now proceed to consider the cannnunication link between

the two component systems required to implement the combined system.

121

5.5 - '!HE cnHJNICATIWS L1NK

'lhe cammunications link for our chosen architecture must satisfy the

following two rules.

1. To enable the expert system to extract any item of data that

is stored in the database which the interface user is

allowed to access.

2. '!he use of the canununication link should not impirXJe on the

operation of either system so as to harrper the usage of

either system in isolation or in combination.

'lhe first objective covers two criteria namely that the interface

nrust

1. have the power to extract all data items that are available

to the user.

2. be allowed to extract only the data items that are available

to the user.

'Ibis second criteria requires the combined system to enforce

the user security access checks used by current database

management systems. '!his strengthens our desire for usirXJ

existing systems, as to satisfy the security objective the

expert system has only to make the urxlerlying DIMS aware of the

identity of the interface user.

122

5.6 - .APl'R)A(llES '10 J:MPJ:»tENrIlG '1HE cnHJNICATICN LINK

OUr initial objective of enabling the ES to extract any required

item of accessible data is frustrated by the interactive nature of

the combined system. '!he primary difficulty with an interactive

system is that queries are not lmown in advance. It is therefore

necessary for the ES to create the database queries dynamically

during the interaction. '!hus the communications link or coupling

must be able to handle queries which have not been previously

specified.

Jarke & vassiliou [1984] suggest four fonns which the coupling

between the Expert Systems and Database Management System can take:

Elementary data management within the ES. Data facts are held

as part of the main ES program

Generalised data management within the ES. Data facts are held

in simple files which are accessed by the ES.

IDose coupling of the ES with an existing DIMS. Loose coupling

(Snapshot) is where data extractions occur statically before

the actual operation of the ES. '!he extracted data is copied

and stored as a separate expert system database.

Tight coupling of the ES with an existing DBMS. Tight coupling

(on-line Interaction) is where the database appears as an

123

extension of the FS. Data extraction from the database cx::curs

during the operation of the FS.

It is only the last two techniques 3 and 4, which are of interest to

us as it is only these which interface to existing DIMS. 'Ibe third

and fourth methods offer two different types of strategy for

building dynamic interfaces to existi.rg OEMS. However, it is only

interfaces of type four that are truly interactive. We ncM proceed

to describe different methods for inq:>lementing the two types of DIMS

link, loose coupling and tight coupling.

5.7.1 - 'lhe snapshot

'!he first technique known as 'taki.rq a snapshot' would require

the dumping of either the entire contents or a domain

sub-section of the DIMS. Accesses (i.e. queries) would then be

made to these files Weperrlently of the DIMS, eliminating the

need for any further DIM) operation. 'Ibe data in the dtnnped

files could be up:lated at set tiIre inteIva1s. 'Ibese time

intervals would be deperrlent on the volatility of the data. 'Ibe

accessi.rg strategy for the dtnnped files would be controlled by

the interfacing program. 'Ibe main advantage of this method is

its sinq:>licity; the only DIMS conunarrl ever specified would be

the IXJMP conunand. 'Ibis increases the degree of indeperrlence of

the FS from anyone particular DIMS. The main disadvantage of

124

the snapshot method is that it extracts the data only once so

that any updates to the actual database can lead to

inconsistency problems. Also this method fails to take

advantage of the look-up or addressing facilities ani

aggregation facilities that can be obtained by using the OEMS.

~e problems of this method are accentuated when we are dealing

with large databases. It would be i.nq:>ractical to down-load the

entire database therefore only a chosen sub-section can be

down-loaded. '!his may lead to problems with detennining which

section of the database is required. Finally there is also the

obvious waste of duplication. In 5.11 we compare an

implementation of a snapshot method with several other methods.

5.8 - TIGIII' CXXJPL1NG

~e following three techniques all interact with a OEMS at run time

and use at least same of the facilities the OEMS provides. All of

these techniques i.nq:>lement in different ways the concept of tight

coupling.

~e three techniques are:

predefined all-tuple retrieval

semi -dynamic querying

fully dynamic querying

125

5.8.1 - Predefined all-tuple retrieval

The siIrplest technique for interactive retrieval, retrieves each am
every tuple of a relation as am when the relation is queried, this

is irrespective of whether the tuples satisfy the constraints of the

original query. All of the condition testing, attribute selection,

aggregate calculation or expression evaluation, has to be carried

out in the interface host language. We have investigated the use of

such an interfacing strategy for the following two systems

RAPFORI' - FORI'RAN

'!he RAPFORI' to FORI'RAN interface, as it is currently available,

requires that all FORI'RAN programs containing RAProRI' commarrls

(the CPI or pseudo FORl'RAN program) nnlSt be preprocessed by the

RAPFORI' compiler before they are compiled by the FORmAN

compiler. '!his makes it almost inpossible for the interface to

handle true dynamically generated queries directly. Therefore a

predefined "all-tuple" retrieval system was inplemented. This

system used predefined FORI'RAN subroutines which could retrieve

one tuple at a time from any of the relations in the database

and then pass this tuple to a higher-level interface which

could test if the tuples satisfied the initial retrieval

requirements. If they did then the values of the attributes

would be processed.

126

I
N
T
E
R
F
A
C
E

'!he following figure illustrates the general layered structure

of the interfacing system when preconpilation of the queries is

required. It also shows the need for harrl-crafted

model-dependent FORmAN retrieval routines.

'lOP
LEVEL

INI'ERFACE

PREcnn?IIED
FORl'RAN

SUBROUrINES

DIi1S

rmur

1
generated

quel:Y

1
generic
tuple

request

I
tuple

request

1
figure 5.10

T
selected tuple

with
selected attributes

tuple

tuple

T

'!he FS to DIi1S interface is divided into two. '!he top level is

deperrlent on the urrlerlying DIi1S anj the secorn level, containing

the hand-crafted subroutines, is deperrlent on both the underlying

DIi1S am the actual database model.

127

SQI/OO - FORmAN

We have also considered using the SQI/OO - FORmAN interface

but did not proceed to an irrplementation as the link required

would be very similar to the previous system. Like RAProRr the

SQI/OO - FORmAN interface demarrls that the FORmAN program,

with embedded fully defined SQL COl1'IItlal'¥3s, must be preproc:essed.

'!his fixes the COl1'IItlal'¥3s am severely limits the ability to

generate queries for a non-expert user.

'!he use of predefined all-tuple retrieval is only a slight

improvement on the snapshot. It avoids consistency problems as the

data retrieved is IrOre up to date but is extremely inefficient. Vast

annmts of data are retrieved which will never be required am no

advantage is taken of any of the retrieval strategies provided by

the database.

'!he restrictive problem of predefinition appears initially to

indicate that FORmAN is a poor host language for database

interaction. However FORmAN does have one advantage as a host

language in its ability to harrlle type constraints. The type

constraint is a problem encountered by many other host languages.

128

A type CXlI1Straint occurs when retrieved values can be assigned

only to variables of the same type. '!his implies that the type

of the attribute to be retrieved must be known in advance so

that suitable variables of the same type can be defined.

e.g. For the following query

SEIECI' PARINO, DFSCRIPI'ION, QONHAND
INIO VPARlNO VDFSCR VQONHAND
Fmvf INVEN'IORY

the program variables must be defined so that

INVEN'IORY. PARINO is of the same type as VPARINO
INVEN'IDRY • DFSCRIPI'ION is of the same type as VDESCR
INVEN'IDRY • QONHAND is of the same type as vc;;.oNHAND

In general the set of attributes to be retrieved is unpredictable,

but when using FORmAN this problem of type matching could be

overcome by the use of the m1MJN block area which has a free fonnat

am could be defined to hold any retrieved tuple. SUrprisingly

neither of the previously described systems allow the interfacing

progranmter access to this ~N block area. However it should be

noted that the use of cnmN has been the subject of debate in the

discussions now taking place on a revised FORmAN sta.rrlard.

5.8.2 - Semi~c quezying

Semi-dynamic interaction is where predefined template queries can,

by the use of in-built parameters, be adapted to fom the required

query. 'lWo such systems have been studied

129

SQI/DS - <X>OOL

'!his interface allows the generation of semi -dynamic queries by

using parameters which can be placed into the initial specification

of the queJ:Y. Assignment can then be made to these parameters in

order to modify the predefined tenplate query into the required

queJ:Y.

The following t:errplate queJ:Y is for the relation student in

the Course-I.ecturer-Student database.

SEIECI' *
mro : student_record
FRCM S'IUDENl'
WHERE

S'IUDENT.NAME BEIWEEN I.DW NAME AND HIGH NAME
AND

S'IUDENl'.NUMBER BEIWEEN I.DW NUMBER AND HIGH_NUMBER
AND

S'IUDENl' • ADDRESS BEIWEEN I.DW _ADDRESS AND HIGH_ADDRESS
AND

S'IUDENT.AGE BEIWEEN I!:M AGE AND HIGH AGE

By assigning values to the parameters HIGH_attribute am

I.CM attribute for every attribute in the tuple, we can fonn the

required queJ:Y.

Although the semi-dynamic SQI/DS-<X>OOL interface is far from being

the m:::>st efficient method of retrieval it is m:::>re selective am so

is m:::>re efficient than retrieving every tuple, especially When some

optimising technique is used by the database managen-ent system.

130

RAPIORI' - PIDIOO

A similar method, although not quite as powerful, is used by the

RAProRI' to PIDIOO interface. This allows specification of equals

constraints, the most efficient form of access constraint.

'!he form of the retrieval conmunication can be seen in the

following example.

QUERY: fetch students aged 20

PIDLOG: fetch (student, Name, Number, Address, 20) •

where student is a relation which has the attributes name,

number, address arrl age.

It remains necessary for constraints other than "equals" to be

harrlled in the interface, i.e. AGE = 20 is easily specied, hCMeVer

had the query been

QUERY: fetch students aged over 20

PIDLOG: fetch (student, Name, Number, Address ,Age) & Age > 20.

'!hen the constraint test is performed in the interface itself.

'!he RAProRI' PROIOO interface is reminiscent of the ALIr-'IUPI.E

retrieval method, although it does use parameters to specify equals

constraints •

131

'!he semi -dynamic method is by no means ideal. It is an improvement

on the two earlier methods, in that it is now possible to alter the

retrieval conditions, but it is still unable to specify which tuple

attributes are to be retrieved, so it still requires the projection

of the tuple onto the required result fomat. Also it fails to take

full advantage of DBMS facilities of addressing am aggregation, am

like the previous methods it is unable to harrlle queries involving

joins, such as:

Fetch students ~ are the sama age as student Adams.

SEIEcr *
~ S'IUDENr
WHERE

AGE = (SEIEcr S'IUDENr.AGE
~ S'IUDENT
WHERE

S'IUDENr • NAME ='.AI::lAMS')

If the above e.xa.rrple were inq:>lemented using a semi-dynamic method,

then the age of the student with NAME 'Adams' must be obtained am

teIrporarily stored, before the data for students with the same age

can be retrieved. To resolve queries of this type, using any of the

previously described interface strategies, would require the

temporcu;y storage of the intennediate results. '!his may lead to

serious consistency problems.

132

5.8.3 - FUlly dynamic qumyirg

'Ihe ideal coupling would be one where we could specify all or any of

the available DIMS operations during the execution of the interface.

with fully dynamic querying we are able to do this. None of the

queries requires precompilation as this is perfonned at runtime.

'Ihree systems of this type have been investigated.

SQ1/00 - PL1

'Ihe SQ1/00 to PrJ. interface provides the facility for queries

to be specified in a string which can then be corrpiled am

executed. '!his means that queries can be generated in a free

format in the IOC>St efficient form for the DEMS. The operation

is divided into five stages

PREPARE
DESCRIBE
OPEN
FEl'CH
CIDSE

TO overcame the problem of the type matching constraint,

previously defined in section 5.8.1, the interface has a

DESCRIBE stage. '!his specifies the data types of the attributes

being retrieved. Information fran the describe operation is

placed in the SQ1/00 data descriptor area (SQlDA). (see

following example query for illustration of the description

area). once we have the type infonnation it is possible to

allocate or map pointers in the description area to program

133

variables of the same type (see figure 5.11). These pointers in

PLl are of the fom

REF UNION (IDNG INT , INT , STRING)

Data items can now be retrieved via the SQI.m pointers into the

program variables.

We now trace an example quay procesSEd by a generaliSEd

interface which is written in PL1 using the PL1 - SQl/a:>

interface.

EXAMPIE QUERy

From querying the string -

S1RJN:; - I SEI..ECl' NAME,ADI:RFSS ,NlMBER,AGE FR01 snJDENl' I

and passing it to the SQL descriptor we obtain the following

infonnation

134

SQIl:l.1\. SQLVAR. SQIlI'YPE 448
SQIl:l.1\.SQLVAR.SQLLEN 30
SQIl:l.1\. SQLVAR. SQINAME NAME

SQIl:l.1\. SQLVAR. SQIlI'YPE 449
SQIl:l.1\. SQLVAR. SQUEN 50
SQIl:l.1\. SQLVAR. SQINAME ADDRESS

SQIl:l.1\. SQLVAR. SQIlI'YPE 500
SQIl:l.1\. SQLVAR. SQUEN 2
SQIl:l.1\. SQLVAR. SQINAME NUMBER

SQIDA. SQLVAR. SQLTYPE 501
SQIl:l.1\. SQLVAR. SQUEN 2
SQIDA. SQLVAR. SQINAME AGE

For each attribute there is also a pointer variable which specifies

the location where the retrieved value will be stored.

SQINAME defines the name of the attribute

SQm.YPE defines the type of the attribute

Dm'A OODE DATA TYPE nIDlCA'roR VARIABIFS

501 SMALUNT YES
500 SMALLINT NO
449 VARaIAR YES
448 VARaIAR NO

SQUEN defines the attribute's store requirement in bytes

A full definition of the codes used in the SQI/Description area can

be obtained from the SQI/CS manual [lm 1984a].

135

EXAMPIE MAPPrnG

From the describe stage we can obtain all the infonnation to produce

the follC1N:lrq mappings onto the internal program arrays of type

STRING, IARGE !NT am !NT which are used to store the retrieved

tuple attributes.

SQL pointer values are shown by arrowed connections.

[~~
ROCM3 , NEW HALL <:

MAPPING
FUNCI'ION

TYPE ~y

FOINTER

CA 1
CA 2
IIA 1
lSA 1

SQ~

SQINAME

NAME
ADDRESS
NUMBER
AGE

figure 5.11

136

SQIIOO - PROLOO

'!his connection is similar to the SQIIOO - PLl connection. DIM3

queries can be passed in string fonnat but the result is

returned in a Prolog list structure. Again the DESCRIBE

statement can be used to obtain the types of the retrieved

attributes, although the DESCRIBE statement is not so inportant

in Prolog as uninstantiated variables are type-less.

INGRFS - CPROLOO

'!his connection is similar to the SQIIOO to PROlOG interface,

although far sinpler in its capabilities. It has been developed

under UNIX and relies heavily on the facilities provided by

UNIX, such as the piping of I/O. '!he Ingres call takes the QUEL

quelY comman:l in string fom, and delivers a simple description

of the retrieVed results along with a retrieved tuple. Further

requests retrieve other tuples which satisfy the initial

request. '!his continues until all satisfying tuples have been

retrieved.

137

5.8.4 - carparisan of dynamic interfaces in PL1. ani Prolog

We have shown that the type constraint is a cause of difficulty for

many systems in the harrlling of dynamic queries. PrJ. overcomes this

problem by the use of pointers, which can reference or map to a

variable of the required type. Prolog overcomes the type constraint

problem by its inherent structure of uninstantiated variables which

are type-less. '!he elimination of the requirement for a mapping

:function, previously defined, makes quetying in Prolog far easier

than in PLl.

A description of the results is inperative for dynamic querying

where the ordering of the retrieVed results is not known in advance.

Both COl1I1U.ll'lication links have access to the description area, which

defines the data to be retrieved, am the Ingres system retrieves a

description list whenever it retrieves a tuple

In corrprring integrity control and locking mechanisms, it appears

easier in pIJ. with logical work units, whereas Prolog with its

backtracking seeInS to makes it harder to enforce integrity control.

However, as we are only considering quetying systems the problem of

integrity is not so inportant.

If we consider the interfaces for our purpose of constructing a

COl1I1U.ll'lication link between an expert system am a database then it

is more advantageous to use Prolog, rather than PLl. It is far

138

easier to design expert systems in Prolog, with its in-built

inference erx;Jine am rule-based structure, than it is in PrJ..

5.8.5 - ecmpu:iscn of the iIIplementa:tialS of interfaces

One of the major problems in building a combined system is

custarnization [Damerau 1985]. We have tried, in all the coupling

strategies that have been considered, to overcame this problem by

layering the interfaces into generaliSEd levels. Consider the

follCMing diagrams (figures 5.12 am 5.13) of two specific examples

PREDEFINED AIL 'ruPIE REI'RIEVAL (FORI'RAN-RAProRI')

u
S
E
R

-
INTERFACE
FRONr
END

<- retrieved data

GENERALISED SPECIFIC OEMS
i- DEM) I-- MODEL BACK

INTERFACE INTERFACE END

IY>.TABASE specific harrl-
"--- MODEL - I- crafted database

INFORMATION subroutine calls

figure - 5.12

FUILY DYNAMIC QUERYING (SQIIDS-PrJ.)

u
S
E
R

-

DATA&!.SE
<- retrieved data ,...--. DESCRIProR

INTERFACE
FRONT f-

END

GENERALISED
OEM)
INI'ERFACE

AREA

database quay
language conunands
in string fom

figure - 5.13

139

n
OEMS
BACK
END

When fully dynamic querying strategy is employed it can be seen that

there is no need for precompiled harrl crafted subroutines. A

mechanism for passing conun.aI'rls in string fom directly to the Dl!1S

is provided. 'Ihis means the interface does not need to be customised

for a particular model.

5.9 - '!he reed for traffic cuILrol when usiDj the CXJ'llTunicatian link

Having analysed arxi developed several methods, or mechanisms, for

canununicating between expert systems and database management systems

we are nCM able to identify further problems that may arise in the

operation of such conununications links.

'!he communications link which offers the best facilities for a

single unified Expert System to Database Management System

combination is that of a tight coupling. 'Ibis type of coupling gives

the interface progranuner the facility to generate database system

queries during the runtime of the interface. '!bus the interface

progranuner haS the opportunity to fully utilise the efficiency of

the underlying database management system.

HCMever, this efficiency can easily be lost if the canununications

link becomeS a bottle-neck due to excessive use caused by poorly

specified queries or lack of control over the inferential search

technique of the expert system.

140

SIMPLISITC DYNAMIC OONNECI'ION
(NO SYS'I'm OON'IROL OR QUERy OPI'IMISATION)

EXPERl'
SySTEM

DIMS

No Traffic Control. '!he FS can repeatedly
issue the same or as many PJOrly specified DIMS
queries as it wants.

figure - 5.14

'!be problem of lack of traffic control could be crippling for the

overall perfonnance of the infonnation system. If the perfonnance

was degraded so ruch as to make the coupled system unusable then the

communications link would have failed to satisfy the secord of our

two requirement rules for the communications link (see section 5.5).

Dynamic coupling places the onus for the perfonnance of the

resulting infonnation system on the interface programmer. It is his

ability or knowledge of how to fully utilise the database management

system's look-up or retrieval facilities which will detennine the

combined system's perfonnance

141

5.9.1 - Rxlrly specified database lDal'lagE!Ile1t systems calls

In order to reduce the volume of infonnation retrieved from the

database system we should attempt to constrain the database queries

as nnlch as is possible. 'Ihese constraints nnlSt not exclude any of

the required tuples. 'Ibis increase in constraint specification not

only reduces the number of tuples retrieVed but also gives the

database management system oore opportunity to perfonn irxiexed or

optimised look-ups. Poorly constrained query specifications may lead

to expensive linear searches of the database.

'!he efficiency problem in query evaluation is caused by using the

inferential search of the ES rather than the efficient but rigid

search technique of the DIMS. 'Ibis problem can be illustrated by

considering" the possible specifications of an exanple inquiry I which

use the dynamic SQIIOO to Prolog link.

For the follCMing" e.rrployee relation

EMPIOYEE

Year seJ:Vice

figure - 5.15

consider the follCMing" -

QJERY; fetch all infonnation on all eJIl>loyees \\he have the l'lBIOO A SMInI or B JrnES

In logic the specification of this query is not unique so we can

specify it in several fonns

142

version - 1

employee (Name,Mdress,Age, Year_s) <-
sql ('select * fram employee' ,

[Name, Address ,Age, Year_s]) •

person (Name, Address ,Age, Year _s) <-
employee (Name, Address ,Age, Year s)
and -

(Name = I A SMI'IH I
or
Name ='B JONES').

Alternatively we could specify the previous query in the following

fo:rm (although in tenns of performance it is less well stated)

version - 2

employee (Name, Address , Age , Yeary) <-
sql ('select * from employee' ,

[Name, Address ,Age, Year s]) •

person (Name ,Address ,Age, Year _ s) <-
employee{ 'A SMI'lH' ,Address ,Age, Year_s)

or
employee { 'B JONES' ,Address,Age, Year s).

If we were to specify the query in a database query language it

would be of the form

select *
from employee
where

name = "A SMI'IH" or
name = "B JONES"

using the dynamic query mec:hanism available, the optimum way to

specify the query in logic and fully utilise the efficient retrieval

power of the DEMS, would be

143

version - 3

person (Name, Address ,Age, Year_s) <-
sql ('select * from employee

where name = "A SMITH" or
name = "B JONES" "

[Name, Address ,Age , Year s]).

'!he first am secom versions access the database system via the

predicate "enployee" which itself calls the "sql" predicate which

then carries out a linear search of the relation. '!he first logic

specification is therefore merely a linear search of all the records

in the database relation "employee" with Prolog harrlling the

matching. 'Ihe secom specification is an even more wasteful double

linear search of the same relation arrl again Prolog does the

matching. 'Ihe third specification is the nost efficient as it is an

iJrlexed look-up which takes full advantage of the database

management system I S accessing strategies.

'Ihe best perfonnance is therefore achieved when the database

management system access is constrained by as many clauses as is

possible. 'Ihese constraints may be increased using domain knowledge.

Constrained retrievals give the database management system more

opportunity for using its own optimising techniques for detennining

the access strategy of the shared data. 'Ibis will enable the system

to perfOIl11 efficient look-ups rather than it having to perfonn an

expensive linear searc:::h. 'Ihe straightforward linear search vastly

rerluces the benefits to be gained from using a database management

system as opposed to a collection of records in files. The general

guide given by John Miles Smith [1984] is that

144

"'!he ES should only be used for those cases of inferencing
where the pcMer of its search mechanism is really needed. In
other cases, sbrpler search mechanisms should be used. In
particular, the DIHS should be delegated maximum responsibility
for searching shared infonnation".

'Ibis need for the interface programmer to be aware of intricacies in

the system pe.rfonnance is reminiscent of the first uses of virtual

meIOOry store where, to gain the best use am perfonnance from the

system, a programmer was required to specify his own overlays.

'!be automatic solution of this problem is very difficult due to the

unpredictability of the dynamic calls to the database system. '!be

optimisation of the operations following the call, whose relevance

to the dynamic query is only known at runtime, is extremely carnplex.

'!be only real aid to help alleviate this problem is to give the

interface programmers guide lines on how best to use the

communications link ani how certain specification may effect

efficiency.

5.9.2 - Repeated datamse ~ syst:.eos calls

Another problem with the inferential search technique which causes

traffic problems is the "trial ani error method". This occurs where

a logic predicate is repeatedly specified, so defining all the

ao:::eptable fontlS by which it can be satisfied. '!his querying

operation may be considered to be of the "or" fonn i. e. try this

specification of the predicate "or" if it fails then try another

specification.

145

We can therefore write the previous e.xanple query as a double

predicate definition thereby eliminating the explicit "or"

enployee(Narne,Address,Age) <- sql('select * from enployee',
[Narne , Address ,Age]).

person (Narne ,Address , Age) <- employee('A SMITH' ,Address,Age).
person (Narne , Address , Age) <- enployee('B JONES' ,Address,Age).

So even if we were to use only well defined query calls we could

still have excessive OOIl1IllI.ll1ications traffic.

'!he followirq query is an e.xanple of a well fo:nned database system

query but one which is repeatedly called because of the poor

definition of the logic predicate.

Q,lery - How many days lx>1iday is person "A SMIUi" entitled to ?

Rules for holiday entitlement

Holidays 4 weeks (= 20 days) + 2 days for each years service up
to a total holiday entitlement of 6 weeks
(= 30 days)

Holiday entitlement(30,Narne) <-
- form_quexy('select * from employee

where name = '" ,Nan¥3, "" ,Q) &
sql(Q, [Name,*,*,year_service]) &
year service >= 5 & /.

Holiday entitlement(Days,Nan¥3) <-
- form_query ('select * from employee

where name = '" ,Nan¥3, '''' ,Q) &
sql(Q, [Name, *, * ,year_service]) &
Days := 20 + (year_service * 2) •

So the above query would be specified as

Holiday_entitlement (Days, "A SMI'IH") •

'!he "holiday_entitlement" predicate therefore makes a double call to

the urrlerlyirq database if the first predicate has failed. nus

146

problem of repeatedly issuing the same query request may be

accentuated by the recursive calls of a predicate. A method which

has been suggested by Sciore am Warren [Sciore & Warren 1986] to

overcome this problem is asserting the latest query calls in the

Prolog database. It is envisaged that this would be similar to a

small cache store of the fonn first in first out. However the

duplicate storage of infonnation which may be especially volatile

would require careful management, as discrepancies may occur between

the values stored in the database am those held in the cache store.

5.10 - F.:rlharD:Eent of the dynamic CXJlJDmicaticn link usirg Prolog

Having previously outlined the problem of excess traffic am the

need for traffic control in COll'Illtlll1ications between expert systems

am database management systems, we nCM propose an automated method

to improve this canmrunications link am hence reduce the traffic. We

have analysed am timed several database queries for the SQIIOO to

VMPROIDG link. '!his has enabled us to assess both the current

problem am the effect of using our improved DIMS call. The analysis

has involved calculating the virtual cpu time used to resolve each

query, first for the "sql" predicate provided am then for our

improved sql predicate "bsql". By comparing the results we can

illustrate the need for the binding of database calls am estimate

the value of the predicate "bsql".

147

5.10.1 - 'Dle example queries

In order to iIrprove efficiency we attempted to identify the main

types of queries which caused the current system to be inefficient.

By analysing several example queries we were able to compare and

contrast many of the aspects associated with Prolog to DH1S

communication.

'!he following table lists the queries which were analysed.

TFSr SQL
NtH ~

1 sql(,select * fran student where rwber - 6', [A,B,C,D,E] ,Er).
2 sq1('se1ect * fran student' ,[A,6,C,D,E],Er).
3 sq1(,se1ect * fran student' ,[A,B,C,D,El,Er) & B - 6.
4 sq1('se1ect name,rwber fran student where tUlber-6' t [A,B] ,Er).
5 sq1(' select name,IUIber fran student where 'CloaIre-' 'FABER'" ,[A,B] ,Er).
6 sqlC'select name,rwber fran student' ,[A,B] ,Er) & A - 'FABER'.
7 sq1(' select * fran student where tuJber-6' ,[A,B,*,*,*] ,Er).
8 sq1('se1ect * fran student' t [A,6,*,*,*] ,Er).
9 sq1(,describe select * fran student' ,A,Er).

10 sql('describe select name,nmi>er fran student where nmi>er-6' ,A,Er).
11 sq1(' select name,TUIber fran student wi1ere rwber - 6' ,A,Er).
12 sq1(' select * fran student where age - 54' ,[A,B,C,D,E] ,Er).
13 sq1(,describe select name,tuJber fran student wi1ere IUlber-6' ,Des,Err)

&
sq1(' select * fran student where tuJber - 6' , [A,B,C,D,E] ,Er).

Analysing the timing results for the above queries enabled us to

corrpare our hypothesis of the communications issues which we

initially believed to be iIrportant. 'lbese issues were:

148

1 - eonpu-ing search strategies

Query 1 am Query 2 both retrieve the same tuple but query 1

uses the DIMS search strategy whereas 2 uses the Prolog

matching tec1mique.

2 - current optimisation of DIMS calls

Query 3 also uses the Prolog matching strategy but this is

perfonned outside the DIMS call. If the timings for Query 3 ani

Query 2 are similar then we have shown that the sql predicate

does not take advantage of the assigned Prolog variables to

utilise the DIMS search tec1mique.

3 - Selected attribute retrieval

Query 4 ani Query 5 test if there is any significant difference

in retrieving only selected attributes rather than the entire

tuple.

4 - Non key field retrieval

Query 5 am Query 12 test whether there is any loss in time if

it is not the key field which we are retrieving on. ('!be key

field in this example is the student mnnber) •

5 - string matching versus ntnneric matching

Query 5 and Query 6 test to assess the difference in matching

strings rather than ntnneric values.

149

6 - Retrieval into anonymous variables

Query 7 and Query 8 test if anonymous variables effect the

retrieval time. Values retrieved from the database into

anonymous variables are discarded.

7 - Variable list versus specified list

Query 12 tests if using a single list rather than a specified

item list (i.e. "A" instead of "[A,B,C,D,E]") has any effect.

8 - Non select commands

Query 9 and Query 10 gives us an iOOication of the timing of

other sql commands, that is commands other than the select

conunand.

9 - Composite DBMS calls

Finally query 13 gives us an iOOication of the effect on the

timing of performing two sql commands in the same predicate.

5.10.2 - 'Dle timinJ of the oms calls

To measure the effect of the issues outlined we needed to time each

of the queries specified above. We applied them to the following

relation.

150

S'IUDENT

NUMBER ADDRESS

figure - 5.16

The S'IUDENT relation had only seven tuples but this was still

sufficient to illustrate the traffic problem.

To get a reasonable mean time we took 12 timings of the virtual cpu

time used by 1000 iterations of each of the above DEMS calls. (test

o was the timing for the 1000 iterative loop without any DB1S call)

The mean results in milliseconds were as follows

GRAIHICAL REPRESENTATION OF QUERy TIMINGS

TIME (Milliseconds)

* * * * GROOP 3
5000

4000 *
3000

* * * * * * 2000

* * GROOP 1
1000

* o 1 2 3 4 5 6 7 8 9 10 11 12 13

QUERIES

figure - 5.17

See Appendix E for actual timing figures.

151

We took two sets of timings, one at the weekerd when there were very

few users on the system, the other during a busy weekday. '!he

marginal difference in the two sets of timings gives a good

indication that the timings are a reasonable representation of the

algoritbm time rather than the swapping or paging algorithms or any

other operating system overhead associated with time sharing.

It is easy to see from the results that the tests divide into the

follaving three groups

GROUP QUERy TIME (Ms)

GROUP 1 9, 10 1500
GROUP 2 1, 4, 5, 7, 11, 12 2500
GROUP 3 2, 3, 6, 8 5500

figure - 5.18

(test 13 is a COl'l'p)Site test of two tests from group 1 am 2)

By looking at the actual test calls we firrl that these groupings are

fairly predictable

152

GROUP 1 - 'lhese are calls to the DIM3 in which no actual tuple is

retrieved.

GROUP 2 - These are all select statements with a condition part,

that is they are constrained look-ups with the DIMS

perfonning the matching process.

GROUP 3 - 'lhese are all select statements of the same relation, ani

in most cases the same tuple as those in group 2.

However, in this group all of the attribute matching is

perfonned by the Prolog system.

It is no surprise to see that the DIM3 search technique is faster

than the Prolog one. However, what is surprising is the fact that

even for such a trivial relation the difference is so large.

We can therefore conclude it is advantageous to use the DEMS search

as much as is possible.

The traffic problem of retrieving anonymous variables is shown not

to be so significant so we will not concentrate on a remedy for

this. Instead we will look at a method for automatically making

greater use of the DEMS search technique, while reducing the use of

the Prolog matching strategy.

5.10.3 - '!he birrlinJ of assigned variables

Having outlined the areas where improvement can be made we proceed

to develop an automated method for making such improvements.

153

By considering the two Queries 1 and 2 we can demonstrate how our

method inproves the current interface.

1 sql('select * from student where number=6', [A,B,C,O,E] ,Er).

2 sql('select * from student', [A,6,C,O,E] ,Er).

As we know that the secorrl field of the relation S'IUDENT is the

NUMBER attribute we can semantically equate these queries. However,

comparing the query times we see that Query 1 is evaluated in

approximately half the time of Query 2. This has identified the need

to develop a predicate which will translate a specified retrieval

list value into a OEMS constraint. By performing this translation we

utilise the OEMS search teclmique rather than the Prolog system

match. By considering the previous result timings we see it is only

worth birrling to select statements which have no "where" part, and

obviously we can only perfonn this birrling when at least one of the

values to be retrieved is known at the time of the OEMS call (Le.

the retrieval list is not an unassigned list or a list of unassigned

variables) •

'!he code to perfonn the required variable birrling is contained in

AppeIilix o.

154

5.10.4 -~ the ba.1rd am the nonnal I)IH; call

using this new version of the DIMS call, the "bsql" predicate we

perfonned tests identical to those previously carried out. '!his gave

us the following results

GRAFHICAL CXMPARISON OF BJUND AND tJNOOUND QUERy TlMINGS

TIME (Milliseconds
for 1000 iterative loop)

6000 *
* * GROUP 3

5000

* * * *
4000

3000 * * *
* * * - GROUP 2

2000

* * GROUP 1
1000

'Ie

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

QUERIES

figure - 5.19

"*" represents virtual cpu time for 1000 iterations of the
"bsql II predicate for the indicated queJ:Y.

"_" represents virtual cpu time for 1000 iterations of the
"sql II predicate for the indicated queJ:Y where they are
different from the "bsql II timings.

By corrparing the results of the nomal am bourd calls we can

estimate the advantage to be gained from using a binding on our

seven tuple example relation.

155

From the results we can draw the following conclusions for each of

the three groups. (See Appendix E for actual timing figures)

Group 1

For non select statements there is an approximate five percent

perfonnance loss. 'Ibis is the overtlead of testing to see whether the

cammarrl is a "select" c:amrnarrl.

Group 2

For "select" statements which already have a "where" part there is a

mean degradation in time of approximately eight percent. Again this

is because of the overtleads caused by testing.

Group 3

'!he change in execution time for queries classified in this group

varied. Same queries showed substantial in'provements while others

were showed a degradation in perfonnance. '!he degradation in

execution time occurs when the system is unable to produce a

constraining "where" part. 'Ibis is usually because the retrieval

list is either an unassigned list or a list of unassigned

attributes. '!he overtlead for attempting to form a "where" part am

failing causes an approximate degradation in time of seven percent.

However, when the system is able to form a corrlitional part we can

obtain a significant in'provement in time of approximately sixteen

percent ('!his in'provement was for the trivial seven tuple relation,

for relations containing more tuples this in'provement will be

considerably greater).

156

5.10.5 - 'llle effect of predicate order on Dim access ti.Ioo

The degradation problem in queries 3 am 6 of group 3 can be

alleviated by reordering the query. If we perfonn the retrieval test

before we perfonn the DIMS call, then in effect we are assigning to

the retrieval list am so we know the attribute value when the DIMS

is called. This allows us to take full advantage of the DIMS search

technique. We can illustrate this by reordering the two queries as

follows

3 sql('select * from student', [A,B,C,D,E] ,Er) & B = 6

New3 B = 6 & sql('select * from student', [A,B,C,D,E] ,Er)

AND

6 sql('select name,nurnber from student', [A,B] ,Er) & A = 'FABER'

New6 A = 'FABER' & sql('select name,nurnber from student', [A,B] ,Er)

using these reordered queries the time results are as follows

REVISED RESULTS SUMMARY

TEST NORMAL B:XJND REORDER DIFFN %DIFF
QUERY B:XJND

3 5634 6034 -400 -7.10
6 5248 5632 -384 -7.32

New] 5634 4489 1145 20.32
New6 5248 4303 945 18.01

figure - 5.20

157

Hence by optimally ordering the queries categorised in group 3 we

can obtain an inprovement in virtual cpu time of between sixteen am.

twenty percent.

'!he reordering process of performing the test before we execute the

query, works because a Prolog test on an unassigned variable is

really an assigrment to that variable. '1herefore by performing the

test we are assigning a value to the Prolog variable. '!his value can

then be used to constrain the database call. From the above results

we can conclude the peculiar sounding progranuning rule, that:

"All tests should be perfonned on the attributes of the

relation to be retrieved, before any tuple is actually

retrieved" •

FS:l doing this it allows us to use the DEMS search facility which

substantially reduces the virtual cpu time used.

5.10.6 - 'lhe birrlilg nethod for retrieval fran larger relations

'!he real value of this birding can be seen when we :run it against a

larger relation. Using a large system catalogue, which has over 3000

tuples, am. holds references to the corrputer manuals available from

the University of Liverpool corrputer laboratory, we perfonned tests

with exarrples taken from each of the three groups previously

categorised.

158

The following table lists the test queries analysed for this new

relation

TFST ~
NlM ~

1 sql('select * frOOI qpcat.catsingles wre scatn> - 3598' ,
[A,B,C,D,E,F,G,H,I],Er).

2 sql('select * frOOI qpcat.catsingles' ,[A,B,C,D,E,F,G,3598,I],Er).
3 sql('describe select * frOOI qpcat.catsingles', [A,B,C,D,E,F,G,H,I] ,Er).
4 sql('select * frOOI qpcat.catsingles',[A,B,C,D,E,F,G,H,I],Er) & H - 3598.

rue to the magnitude of the virtual cpu time used to resolve these

queries, instead of the 1000 iterative loop we only used a 10

iterative loop. '!his has caused tnmcation problems with measurirq

the faster routines am has led to the plZzling result that test

zero took no time at all.

RFSULTS SUMMARY 3000 tuple relation
(truncated to nearest millisecorrl)

GRaJP TEST NORMAL OOUND DIFFN %DIFF

0 0 0 0
2 1 28 30 -2 -7.14
3 2 15185 50 15135 99.67
1 3 14 15 -1 -7.14
3 4 16772 17041 -269 -1.60

figure - 5.21

These last results, although only from a snaIl sanple, show the

dangers of using the ES inferential search on a large database. By

automatically birrling assigned variables we can sometimes provide

sensationally superior times (over 99 percent improvement). However,

poorly specified code will still cause problems. The benefits of

159

the binding method will be even greater in situations where

predicates are used to perfonn a relational join.

5.11 a:H?ARISCH OF 'l'IMIlrn FOR Dll'F'ERENI' CXXJPI..1K; SIRATEX;IES

We can now compare the perfonnance of our proposed system against

some of the other coupling strategies which we have outlined.

To time these methods we will use the Computer Manual database and

by using a queJ:Y which requires a join we will accentuate any

perfonnance difference.

'!be techniques we will compare are the snapshot method, where we

down-load the database into the Prolog system, the currently

available SQI/DS to Prolog dynamic interface, and our improved fonn

using the binding.

'!be example queJ:Y we have chosen is:

Retrieve all books published in the same year and by the same author as book

with refereoce ruIDer 3000

'Ibis queJ:Y has a simple logic representation of

cata(Al,B,C,Dl,El,F1,G1,3000,I1) &
cata(A2,B,C,D2,E2,F2,G2,H2,I2).

160

where cata is a predicate which retrieves tuples from the catalogue

of manuals and attribute B is the author, C is the publication year

and H the reference number. (The motive for representing a relation

as a predicate will be discussed in the next chapter).

'Ihe snapshot Coupling:

If we down load all the tuples and assert them as data obj ects of

the predicate "cata", then applying the above look up takes

approxinately 175 milliseconds ('!his ignores initial set up time).

'Ihe Qlrrent Unconstrained Dynamic Coupling:

By defining the predicate "cata" as follows

cata(A,B,C,D,E,F,G,H,I) <- sql('select * from catalog',
[A,B,C,D,E,F,G,H,I],Err).

Then applying the initial look up takes approximately 3468

millisecorrls •

The Boum Dynamic Coupling:

By defining the predicate "cata" using our bound database call as

follows

cata(A,B,C,D,E,F,G,H,I) <- bsql('select * from catalog',
[A,B,C,D,E,F,G,H,I],Err).

161

'!hen applying the initial look up takes only 14 millisecoms.

'Ihese exanples illustrate the great perfo:nnance advantages to be

obtained from exploiting the efficient search strategy of the

database system. '!his combination of systems can improve the

operation of the Prolog environment when reasonably large voltnnes of

data are irnrolved. In our exanple we reduced the VfVProlog system's

search time from 175 ms to 14 ms, which is a time reduction of 92

percent.

162

5.12 - SUMMARY

We have outlined several architectures and concepts for coupling

Expert systems and Database Management systems. We have shown that

fully dynamic queuying is by far the best method. FUlly dynamic

queuying allows the most efficient use of the DIHS without

compromising the execution of the Expert System.

Although fully dynamic queuying is the best method to use, it is

still worth considering the other methods since, if we are to

produce a DIMS independent system, we may need to communicate with

existing DFJofS I which do not provide the features requirerl. for fully

dynamic queuying.

We have shown that a sinple cormection of the two systems may result

in a system which is unusable because of its inefficient

perfonnance.

We then proceeded to develop a method for controlling database

access and hence inproved the overall system perfonnance.

Finally to illustrate the inproved perfonnance of our controlled

database access method we CClllpared its perfonnance to several of the

other methods we had described. '!his CClllparison should how by usirq

the efficient look-up routines of a DIHS we could inprove the

operation of the Prolog envirorunent.

163

aJAPI'ER - 6

In chapter five we described several possible external architectures

which could be adopted when connecting an expert system, acting as

an interface assistant, to a database management system. In this

chapter we describe the internal architecture of an interface

assistant and specify a domain representation language which is to

be used by this interface. The specific design of this interface

assistant is based on the general observations made in chapter three

and makes direct use of the proposed logic representation of the

user view.

6.1 - A GENERALISED USER 1NI'ERFACE SHEIL

In earlier chapters we have described many of the advantages to be

derived from an interfacing system which aids naive users. These

advantages can be very briefly surrrrnarised as:

savings in time and money on training people to use both the

DPMS system and the specific database model.

Increased use of the database information by casual users who

would not normally be able to access the information directly.

164

These advantages are offset by the cost of writing such interfaces.

It would be unlikely that an interface assistant which is dedicated

to one database model could recoup its costs. A more profitable

approach would be to develop a generalised interface which could

easily be adapted for different domains [Damerau 1985]. We have

therefore striven to produce an interface system which has a "Shell"

type of architecture. Such shell like systems provide a generalised

interface to the relational model but remain independent of anyone

particular domain.

To construct such a system it is necessary to identify the general

infonnation components which are required to fill the interface

shell, and so enable the system to function adequately.

6.2 - AN ANADlSIS OF 'mE TASI<:S 'ill BE PERFORMED BY 'IUE SHEIL

The primary function of the interface shell is to help users to

resolve their enquiries and thereby improve the usage of the

database system. TO achieve this the interface has to simplify the

query process by removing the intricacies with which users of

database management system are confronted (see section 2.2). The

process of simplifying the query operation can be divided into the

following five general tasks

165

1. Understand what the user wants.

2. Translate the system's interpretation of the users' queries

into the terms of the database rno:1el.

3. Represent the database rncxlel query in the concepts of the

database management system.

4. Code and pass the query to the database system so as it may

be executed.

5. SUpply the user with the results.

We can represent these five tasks diagranunatically as is shown in

figure 6.1.

USER \nUl)

IXl1AJN

:in:Juirer --~ user
query

Th\TAPASE
MJDEL IXMAlN

--~ request --~

specification

<:-----------------------------

Figure 6.1 : The Distirct Stages of Translation

database]
query

results <:

Having outlined the prinary tasks we can now specify the modules

which fonn the shell. These modules represent the three different

domains and the translations between them (figure 6.1). The model

representation languages used within these rncxlules should provide a

more procedural definition of the domains than is usual for schema

166

representation languages. By "procedural definition" we mean that

these languages should not merely state the existence of concepts

within the distinct domains but should represent hCM these concepts

relate to the concepts in the other domains. These languages

therefore code the actions required to translate between the

domains. By encapsulating a procedural aspect in the representation

of the domains it allows the interfacing system to execute these

coded representations directly when the system translates between

the domains.

The interface assistant we have developed is independent of any

particular user view or relational model. This system known as IRIS

(an Independent Relational model Interface System) merely provides a

framework or a shell which can be "prograrraned" or primed with domain

knowledge to produce a domain specific interface. The domain

knowledge required for such a system can be categorised as:

Infonnation describing a general user I s interpretation of the

real world domain, the user view.

Infonnation defining the data stored in the tmderlying database

with definitions of the data structures, the database model.

Infonnation describing the semantic connections or translations

between the user view and database model

167

Information relating to the specification of well-formed

database queries

These four knowledge components are required by the interface system

in order that it may perfonn the first four of the five primary task

which we have previously outlined.

The interface shell can thus be viewed as a generalised interface

manager with "slots" for these specific knowledge components. The

structure of the shell is shown in fig 6.2.

I USER I

INTERFACE MANAGER

USER VIEW-MODEL
VIEW TRANSLATION
INFORMATION INFORMATION

DATABASE QUERy DATABASE
SPECIFICATION MODEL
INFORMATION DEFINITION
- - - - -

'--- INTERFACE MEOfANISM f---

I Dms I

figure 6.2 The Interface Shell

168

It is the function of the interface manager to control all

interactions with the user and all of the accesses that are made to

the domain infonnation during the interaction. '!he interface manager

shields the user from not only the intricacies of the underlying

database system, but also the internal operations and domain

representations of the interface shell itself. '!he interface manager

is also responsible for initiating all accesses to the underlying

database system. However, the interface manager does not directly

interact with the database management system itself, instead all

communications between the interface manager and the database

management system are perfonnecl via the interface mechanism.

As described in chapter five (section 5.2), by using an interface

mechanism we provide the interface shell with a level of

independence from the underlying database system.

Two of the component slots of the interface, the "database query

specification infonnation" and the "interface mechanism" (figure

6.2) are specific to the underlying database management system. '!hey

are tightly linked. together as their functions overlap. Hence, they

may be considered as a single module.

Having outlined. the general internal architecture we are now able to

specify a language for each of the module components. '!hese

languages will allow each module to represent its particular aspect

of the domain. '!he system we have developed is written in VM/Prolog

169

[IHVI 1985] and the module language definitions we have used are all

based on the mixed VM/PROLCG notation.

6.3 - Representi..n] the user view infonnation

To perform the first task of the interface, query understanding, we

need to be able to interpret the entire scope of the request as it

is perceived by the user. By understanding a user's query the system

is able to understand not only how to satisfy the query but also to

determine whether the system is capable of answering the query. By

considering the following query we can illustrate the system's need

for an understanding of the users conceptualisation of the domain in

order that it may correctly resolve the user's queries.

Example Query

\.bat are the narres of all people living in Lorrlon Y.ho are older than 27 and
are personal tutees of Dr Smith.

By analysing this query we can reveal many of the hidden assumptions

made by the user. If we are to interpret this query correctly then

the user's implicit knowledge, relating to these hidden assumptions,

needs to be represented and hence made explicit. It is this implicit

knowledge which we now seek to represent.

170

6.3.1 - Representing Inplied Scope

If our example query was applied to a simple database situation then

the word "people" may simply refer to a relation, as illustrated in

figure 6.3.

PEOPLE

ADDRESS PERSONAL WIDR

figure 6.3

However, it may not be as straightforward as this. The context of

the query may imply that the questioner has in mind a subset of the

relation "person", such as all "adults" or as is the case in our

example "students". Alternatively a user reference to an entity may

be a reference to a superset comprised of several subset entity

groups, which the user may conceptualise as fonning a united

superset entity.

In order to understand scope intended by the user the primary

entities and their subset entities have to be explicitly defined.

'!his is a task for the interface prograrmuer in consultation with the

users. If the database is to be structured as suggested in chapter

four then the interface progranuner should either consult the DBA. or

perfonn the function of a DBi\. 'Ihe following ccxled representation is

an extract from the user model for the COurse Teacher Student domain

(chapter four, figure 4.8), which specifies the primary and subset

entities and the relationship between them.

171

entity person .
entity sponsor .
entity deparbnent .
entity faculty.

entity X if X direct_subset_of Y .

The definition of entities includes both the explicit definition of
. ~

'.
primary entities and the information that subset entities themselves

can also be considered as entities.

professor direct subset of teacher.
lecturer direct-subset - of teacher.
senior lecturer direct - subset-of teacher .
teacher direct-subset - of university employee.
secretary direct=subset=of university=employee.
university employee direct subset of person.
student - direct - subset-of person.

X subset of Y if X direct subset of Y •
X subset=of Y if X direct=subset=of Z and Z subset_of Y .

The definition of subset entities includes the explicit definition

of direct_subset relationships. The definition also states that

An entity is a subset of all entities which have as a

subset the entity for which it is a direct subset of.

Thus:

lecturer subset_of person

These definitions define the scope of reference of the users query

as it should be perceiVed in the dorrain. Thus, when a user refers to

person he is referring to an entity that may belong to the subset

class university_employee or student. These subset groups may

172

themselves be further refined to a more specific ~up, so that

the person entity referred to may belong to the subset class

secretaJ:y or teacher. This process of possible decomposition can be

continued until the base entities, which have no further subsets are

encountered.

Inversely if the user refers to the entity group lecturer then the

user is referring to an entity which is a teacher and is a

university_employee and is a person. The scope of a reference to the

entity lecturer therefore inherits all attributes and relationships

associated with entities for which it is a subset of.

6.3.2 - Representing Implied a:m:nections

Fhrases such as "living in", "older than" and "personal tutee of"

inply connections between or within relations

e.g.

PERSON living in ADDRESS
PERSON older than AGE
S'IUDENT personal_ tutee _of TFAQIER

In the example query the connections "living_in" and "older_than"

are both intra-relational connections, that is they refer to

attributes within a relation. Implied connections become more

complex when they are inter-relational, that is they imply a

connection with another relation or another instance of the same

relation.

173

For example

PERSON lives with PERSON

"lives with" is therefore an inter-relational connection. To satisfy

such connections involves using joins. The implied connection

"personal_tutee_of" is also an inter-relational connection, as it

connects the two enti ties under_grads and teachers.

As with the representation of the implied user scope we also have to

make the user's interpretation of the entity connections explicit.

The following representation is a extract from the coded definition

of the user view for the Course Teacher student domain.

connect(attends, student, course, n, ro, attended by).
connect(aged, person, age, 1, ro, "). -
connect(older than, person, age, 1, m, ").
connect(younger than, person, age, 1, ro' ").
connect (named, person, name, 1, ro, ").
connect(resident at,student, home address, 1, m, ").
connect(resident=at,person, addreSs, 1, ro, ").
connect(teacher_to, teacher, student, n, ro, taught_by).
connect(supervisor_to, teacher, post_grad, n, m, supervised_by).
connect(personal_tutor_to, teacher, under_grad, n, 1,

personal_ tutee _of) •

N.B. The phrase "living in" is defined as a synonym for the
phrase "resident at"

The first of the above connect statements can be read as:

The user perceives the existence of a connection called A'I'I'ENffi

which is between the entity student and course. It is believed that

174

a student A'lTENC6 many (n) courses

and that

a course is A'ITENDED_BY many (rn) students.

similarly, the user perceives the existence of a connection called

PERSONAL _ 'lUTOR _ 'ID which is between the entities teacher and

under_grad. It is believed that a teacher is PERSONAL_WI'OR_'ID many

(n) under_grads and that an under_grad is a PERSONAL'IUl'EE OF one

and only one (1) teacher.

CONNEcr STATEMENT

NAME attend personal_tutor_to

BEIWEEN student course teacher under_grad

'lYPE nm n 1

INVERSE NAME attended_by personal_tutee_of

figure 6.4

Although in our example only one link ever exists between two

entities, it is possible to have many different links between the

same two entities. For example if all students had personal tutors

then there would exist two different links "teaches" and

"personal_tutor_toll between the two entities teachers and students.

Perceived intra_entity references need additional infonnation if

they are to be resolved. 'Ibis additional infonnation states that the

connection is an intra-entity connection and also defines the

175

CXlIllpc'3.rison type. '!he following ccx:le is the definition of several of

the intra-entity connections.

intra entity(older than, age, ">") •
intra - entity(younger than, age, "<") •
int.rcl entity (aged, age, "=") •
intra-entity (named, name, rule) .
intra - entity(resident at, address, rule) •
intra-entity(resident-at,hame address,rule).
in~ entity (born,dat:e_of_hirth, "=").

'!hus the intra-entity older_than refers to the attribute "age" and.

has the CXlIllpc'3.rison type ">".

'!he use of the comparator "rule" denotes that a ccx:led predicate

expression exists for CXlIllpc'3.ring values for that attribute e. g. the

predicates "name" or "address".

'!he use of synonyms such as "resident at" instead of "living_in" is

described in section 6.5.2.

'!he explicit definition of these connections also helps in the

understanding of the scope of the quel:Y. Refer back to the initial

example query:

\-hat are the mIreS of all people living in Lon::lon Y.bo are older than 27 and
are personal tutees of Dr Smith.

We are able to deduce that the "people" being referred to all belong

to the subset under_grad as in the view definition it is only

under_grads who satisfy the implied connection "personal_tutees_of".

176

As under_grad is a subset of student we also know that the entity

being referenced is a student.

From lmowing the entity of reference is a subset of both student and

person, the system is able to deduce that two possible

interpretations of the implied connection "living_in" exist. '!he

conflict in understanding the user's intended meaning is caused by

the system not }mowing whether the implied connection refers to the

attribute person.address or the attribute student.home_address. 'Ihe

system having identified that this conflict exists then proceeds to

resolve it by further interaction with the user.

6.3.3 RepresentiIq CcIrI£XEite Object Expressions

It is important for a system to recognise the partial expression of

attributes. In the above example query a reference is made to the

attribute ADDRESS via the intra-entity connection "livin(~Lin".

HCMever, the attribute ADDRESS is a structured attribute which is

composed of several attributes. Thus if it were to attempt to

satisfy the constraint

Address = lDndon

it would almost certainly fail to match with any address that is

stored. In order to match such partial expressions we require a

means of specifying acceptable partial expressions of composite

attributes. '!be equals comparator should not be limited to a literal

177

equivalence, instead it should allow for a semantic match. For the

attribute ADDRESS this semantic equivalence could be defined as:

Address = House / street / Town / COunty / COuntry
or Town / COunty
or Town
or COunty
or COuntry

"/" means concatenates with using a space separator

In order to perfonn serrantic marching we first need to identify such

composite attributes am specify which attributes they are composed

of. For example:

composite(name,[title,firstname,surname]).
conposite(address, [street, town, county ,count:ry]) •

Thus NAME is defined as a composite object which is composed of the

attributes TITIE, FIRSTNAME am SURNAME. Having identified these

attributes we then need to define the rules to allow for the

evaluation of acceptable combinations e. g. SMITH MR is not an

acceptable fonn of NAME.

The rules to define the acceptability of partial attribute

expressions are stated as logic predicates. '!he following rules,

which are written in VM/PROLOG, define the acceptable fonns that the

cornposi te attribute name can take.

178

narnerule(St,Sf,Ss,S) <- stconc(St,' ',SI) &
stconc(Sf,' ',S2) &
stconc(SI,S2,S3) &
stconc(S3,Ss,S).

narnerule(St,Sf,Ss,S) <- stconc(St,' ',SI) &
stconc(SI,Ss,S).

namerule(St,Sf,Ss,S) <- stconc(Sf,' ',SI) &
stconc(SI,Ss,S).

namerule(St,Sf,S,S).

'Ihus the following four predicates will succeed

narnerule('MR', 'JOHN', 'SMITH', 'SMITH').
narnerule('MR' , 'JOHN' , 'SMITH' , 'MR SMITH') •
namerule ('MR' , 'JOHN' , 'SMITH' , 'JOHN SMITH').
narnerule('MR', 'JOHN', 'SMITH', 'MR JOHN SMITH').

However the predicates

namerule('MR', 'JOHN', 'SMITH', 'SMITH MR').
namerule ('MR' , 'JOHN' , 'SMITH' , 'SMITH JOHN') •

will fail to match.

A similar predicate "addressrule" is used to match values for the

attribute "address".

6.4 - REffiESENl'1NG 'lliE DM1illASE IDDEL

Having outlined a representation for the user view we can now

proceed to consider the second knowledge component, the database

model (figure 6.2).

The relational merlel is already fonnally defined in the database

system's internal schema so representing it in the interface shell

is a fairly trivial process.

179

6.4.1 - Represent:i..nJ relations

The basic definition of the data model requires a description of all

of the relations, their key fields and a list of all of the

attribute fields. This is achieved using the relation statement.

relation (person, [nurn), [nurn,title,firstname,surname,
date of birth,street,town,county,count:ry,sex)).

relation(student~[nurn),[nurn,year,h_street,h_town,
h county,h country,nationality,attendance type]).

relation(uncter_grad~[num],[num,personal_tutor]). -
relation(course,[code],[code,session,level,teacher]).
relation(attend,[student,course],[student,course]).

The first predicate "relation" defines the relation "person" to have

the key field "nurn" am attributes nurn, title, firstname, surname,

date_of _birth, street, town, county, country and sex. The following

table (figure 6.5) further illustrates the use of the "relation"

predicate.

REIATION STATEMENT

NAME KEY ATI'RIBUI'E LIST

person num num,title,firstnarne,surname,sex,
date_of _birth, street, town,
county, country

under_grad ntnn num,personal_tutor

course code code, session, level, teacher

figure 6.5

The key elements are duplicated in the attribute list primarily to

improve system perfornance. The improvement in perfornance is

180

achieved by eliminating the need to append the lists everytime the

full attribute list is required.

To allow the user to refer to structured attributes in the same way

that they refer to non-structured attributes we also specify an

"image_relation". Obviously, this is only required for relations

which have composite attributes. Thus:

image relation (person, [num], [nurn,narne,date_of_birth,
- address, sex]) •

image relation (student, [nurn], [nurn,year,hame_address,
- nationality,attendanoe_type]).

6.4.2 - Attribute definition

In order that the system is able to recognise a certain attribute by

its value, we need to define the fonna.t that the attribute values

may take. e. g. consider the qum:y

Fetch the oanes of all people \Jlo are male

It is obvious from our knowledge of the world that "male" refers to

the attribute "sex", although no explicit reference is made to the

attribute. SUch fonna.t infonna.tion is made explicit by the use of an

attribute fonna.t statement.

181

attribute(num,integer,6).
attribute (name , composite, name:rule) •
attribute(date of birth,fchar,8).
attribute (address -; composite, address:rule) •
attribute (sex, one of, [male, female]) .
attribute (year, one_of, [1,2,3,4]).
attribute(personal_tutor,reference,teachers).
attribute (na.tiona.lity, one_of, ['UK', 'EEe' ,rest_of_world]).
attribute(session,one_of,[first,second,third]).
attribute(level,one of,[one,two]).
attribute(teacher,reference,teachers).

SUch attribute descriptions can be summarised as follows.

ATI'RIruTE srATEl-1ENT

ATI'RIruTE ATIRIBUI'E TYPE TYPE DESCRIPTION

name composite narne:rule

sex one of - male, female

persona.l_ tutor reference teachers

figure 6.6

The interpretation of the TYPE DESCRIPTION depends on the ATrRIBUI'E

TYPE. See Appendix G for a full list of attribute types and the

corresponding interpretation of the type description infonna.tion.

'!be attribute description infonnation gives both a syntactic and

pragmatic description of the attributes in the data model. For a

semantic description of the whole database model, we need to examine

the way the user interprets or translates the stnIctures into his

user view.

182

The third knowledge component of the interface shell (figure 6.2)

irwolves explicitly expressing the process of translation between

the user view and database model. In section 6.3 when defining the

user view, it was stated that the user perceives the existence of a

connection "personal_tutor_to" between the entities teachers and

under_grads. When defining the data model it was stated that the

relation under_grad has an attribute personal_tutor and that this

attribute has type reference. However, the system has not been given

an explicit definition of how to translate and hence satisfy such

user perceived connections in the tenus of the database model.

6.5.1 - TranslatinJ implied cormections

In order that the interface system can understand the implied

connections, we have explicitly stated them using a logic

representation. We thus define the personal tutor connection as:

personal_tutor _ to (Teacher _mnn, Student _ nurn) <
under_grad (Student _nurn, Teacher _ nurn) •

Thus the interface is now able to resolve the user I s perceived

connection personal tutor without requiring the user to navigate

through the database model, Le. the system can simply call the

Other links are similarly defined

183

lectured _by(eourse, Teacher) <- courses (Course, *, *, Teacher) •

teacher_to (Teacher, Student) <- attend (Student, Course) &
lectur~by(Course,Teacher).

'Ihe connection "attends" is already represented as a relation and so

does not need to be represented as a connection. The connection

"teacher_to" uses the previously defined connection taught_by. Thus

a teacher is a teacher_to a student if the student attends a

course which is taught_by the teacher.

using such explicit representations the system is able to code the

user's implied query without direct reference to the data model.

6.5.2 - Recognising object descriptions

Included in the translation infomation is a minimal language

translation information component. This includes phrase descriptions

of database tenus such as:

database tenn('university employees' , university employees)
database -tenn('personal tutor to' ,personal tutor to).
database = tenn ('lectured by' , lectured_by). - -

Also in this language section there is definition of plurals e.g.

plural (student, students) •
plural (address, addresses) .
plural (sex, sexes) •
plural(grad,grads).
plural(graduate,graduates).
plural(street,streets).
plural(person,people).
plural (country, countries) •

184

and synonym definitions to match with the database mcx:iel naming

conventions.

synonym(department,dept).
synonym(departments,depts).
synonym (tutees, under_grads) .
synonym (tutors, teachers) •
synonym (people, persons) •

This language translation information is used to translate the

phrases of the user query into the tenns of the database model,

whereas the connection translation information is used to translate

the user concepts into the relational structures of the database

model.

6.6 - Query formulation

As we previously stated, the query fonnulation information and the

interface mechanism can be considered as a single mcx:iule as their

functions are so tightly linked.

using the bound Prolog - SQI/ffi link, which we described. in chapter

five, section 5.10, the interface shell is able to extract tuples

from the database using predicates to represent relations. Thus the

query

Fetch the person nanro Mr Smith

would be coded as:

185

person (Num, 'MR' ,Firstname, 'SMITH' ,Date_of_birth,
street, Town, COlmty, COlmtry, Sex) •

where the predicate "person" is defined as:

person (Nurn,Title, Firstname, Surname, Date_of_birth, Street,Tawn, County,
Country, Sex) <-

bsql ('select * from person' ,
[Num, Title , Firstname, Surname, Sex,
Date_of_birth, Street, Town, County, Country]

,Error) •

The simple specification of entities as logic predicates leads to

poorly specified database queries. The problems caused by such

poorly specified queries are outlined in section 5.9. However, by

using the binding method outlined in section 5.10 we are able to

reduce the effects of this problem. It is the function of the query

formulation component (figure 6.2) to perfonn any bindings. Thus the

previous query would result in the following bsql call

bsql('select * from person', [Num, 'MR' ,Firstname,
'SMITH',Date of birth,street,Town,County,

Country,sex),Er) •

From the info:mation in this call the query formulation component

will be able to formulate the following constrained SQL corrnnand

select * from person
where title='MR'

and surname=' SMITH'

It is then the task of the interface mechanism to pass this query to

the database management system using the sql predicate call.

186

Tuples which satisfy the retrieval request can then be passed back

into the interface shell. These tuples can then be displayed to the

user via the interface manager (figure 6.2).

6.7 - SUMMARY

This chapter has described the internal architecture of the

generalised interface shell and the specific knowledge components

which wake up the shell. A representation language to be used by the

components of the interface shell has been specified (see Appendix

F). When defining the system we have drawn on many of the ideas

outlined in previous chapters, such as the logic representation of

the user view and the design of interfacing mechanism. The practical

implementation of such a shell type of interface has enforced these

ideas of using logic languages such as Prolog for an interface

specification language. In Appendix I a full listing of the

interface code is given. The specific code for the

eourse_Iecturer_student model is given in the module ALTER. This

module is obviously altered for different domain situations.

Although the types of representation language predicate remain

constant.

187

aIAPIm - 7

In early chapters we considered the deficiencies of current database

systems for naive users. We have outlined how interfaoes of the

expert system type could help alleviate these difficulties. In order

to provide such interfaoes we have described the physical external

architecture for connection to a database management system. We have

also proposed a relational design method which sinplifies the tasks

that the interface is required to perfonn. In the previous chapter,

chapter six, we described the internal structure of the interface

shell which we have developed. In this chapter we wish to combine

all of the proposals we have made am justify them by dem:>nstrating

the operation of the resultiIg interface shell during extracts fran

several actual interactive sessions with a user. '!his will enable us

to highlight many of the features wch we believe greatly sinplify

am hence inprove the interactive process for naive users. Apperrlix

H shows an interactive session in full i.e. fram the initial user

query through to the user receiving a reply. we ac:knc1Nledge that to

create a complete system, the user domain intel:pretations wch we

have described, woold require greater initial syntactic language

parsing.

7.1 l)::IDai n qum:yiJq

Most queries seek to elicit specific facts, but sane seek nore

general infonnation. In many cases a naive user will use the sane

188

fonn to express both types of query. In the first mode a typical

exchange would be:

QJestion: \hit is John Smith doing on Morrlays at 10 am?

Answer: Course 02CS

The second mode is a meta-level query or doma.in query i.e. a query

about the domain rather than about specific facts. e.g.

Q.lestion: '-bat is John Smith doing on Morrlays at 10 am?

Answer: Atterrling a lecture

It is most important that naive users should have the ability to

query what is actually being represented in the database since, by

definition, they may be unfamiliar with its structure. This

infonnation is cxx:led in the domain infonnation components defined in

chapter six. For such initial querying, when a user wishes to

confinn or ascertain the system's representation of the modelled

domain, the simple structure and operation of a prornpted-input-type

dialogue system is most appropriate. We believe the requirement for

simplicity outweighs the problem of inflexibility associated with

such systems (see section 2.4.3). We therefore decided to use this

approach to implement queries about the domain so that users can be

guided by the system tCMards the domain knowledge which has been

stored.

When executed, the domain querying envirorunent provides the user

with a choice of primary entities about which the user is able to

189

make further enquiries. By pursuing an enquiry, the user can

ascertain all subsets of an entity that the system recognises, and

all perceived cormections which the system is aware of for that

entity. '!he attribute definitions can also be queried allowing the

user to find out the fonnat of the values stored in an attribute. In

this way a user can gain an overview of the domain and if required

obtain more detailed infonna.tion regarding the system's

representation of the domain.

7.2 - lHtahase querying

Although domain queries are important, they are relatively

infrequent. Hence the alternative mode, database querying, is the

default mode of querying for the interface shell. Database queries

have a limited language type of interaction. OUr experience has

shown that the vast number of possible queries that a user can

request make the simpler prompted input or menu-based system

unusable for this type of query. Prompted input systems are suitable

only for initial interaction or situations where the number of

possible queries is manageable.

As outlined in section 6.2 the process of assisting naive users to

perfonn database querying can be divided into five basic tasks. By

considering examples of user queries we will consider possible ways

in which these tasks could be performed and demonstrate the specific

way in which they are perfo:nned by the interface shell we have

developed.

190

7.2.1 - User Request Analysis

When a user inputs a database query the system attempts first to

identify the tenus and phrases of the query which it understands.

Consider the following exarrple query

QJERY: Get the naroos am ages of all people VJho atterrl OlCS or teach DICS

After the removal of plurals and synonyms, and identification of the

database tenus, the analysis of the query gives the following

infonnation

CXl1roSlTE ATI.RIBUfE NAME
cmNEGTCR AND

A.TIRIBUI'E AGE
£NITTI PEDPIE
cmNECTICN A1TEND
lJNKtn.iN OlCS
cmNFLTCR ffi
cmNECTICN TFAaI

lJNKtn.iN Oles

From this description the system attempts to associate attributes

with entities to fom objects. In order to fonn such objects the

system must first define areas of context. Context is important in

understanding a user query as it defines which entity is currently

being referred to implicitly.

191

(x)NI'EXT

a:tffi)SITE ATI'RIBIJI'E NAME
(x)NNEClUR AND
ATI'RIBIJI'E AGE
ENTITY PEOPLE PERSON

S'IUDENT
(x)NNECI'ION ATI'END

cnuRSE
UNKNa-JN OICS
cx:>NNEClUR OR

TFACHER
(x)NNECI'ION TFAOI

cnuRSE
UNKNOWN OICS

figure - 7.1

From the user view definition of inter-entity connections, such as

cormect(attend, •..) (see section 6.3.2), the system is able to

recognise that the user perceiVed connection ATI'END, connects the

entities S'IUDENT and cnuRSE. From its user view infonnation the

system also reco;nises that S'IUDENT is a subset of PERSON. Thus the

system is able to deduce that the entity PERSON is "in context" for

the que:ry prior to the reference to the inter-entity cormection

ATTEND, and that after ATI'END the entity cnuRSE is the "in context"

entity.

From the above exanple we can see that when a sub-set entity is the

"in context" entity then all of its super-set entities are also in

context. Thus when S'IUDENT is in context PERSON is also in context

and when TFAOfER is in context PERSON is still in context. This

factor of sub-entity context facilitates the concept and

192

implementation of sub entity inheritance. 'Ihis allows the system to

associate the subset entities with the attributes and connections of

their super-set entities.

Having detennined the context phases of the query and associated the

attributes with these context entities, thereby forming the objects,

the system is able to deduce the subj ect of the query (i. e. the

retrieval list). '!he language fonus of the above query are fairly

simple and it is easy to obtain the subj ect for this query as being

the objects PERSON.NAME and PERSON.AGE. 'Ibis is obviously a trivial

example but adequately shows the process of context evaluation.

7.2.2 - eornition / Restriction identification

Having obtained infonnation about the obj ects that the user wants

retrieved, the system proceeds to ascertain on what conditions the

retrieval is based. '!he precedence of the "or" operator splits the

constraints into two sections. Each of the two sections corresponds

to a section of a UNION type select statement in SQL.

If the first section of the constraint list is:

PERSON IS A S'IUDENT AND

SIUDENT ATI'END 'D1CS'

then the initial condition that

193

PERSON IS A S'IUDENl'

is a subset enforcement constraint. SUch constraints are necessary

as they not only produce the correct evaluation of the query but

also vastly reduce the search space by constraining the query. As

described in section 5.9, when using systems which incorporate some

form of inferential search technique it is important to reduce the

search as much as possible and as soon as possible.

In the example query the specific term 'OlCS' is unknown to the

interface system. It may be a stored item in the database. If it is

a stored value then the system must match it against the attribute

which it is stored in. Obviously, it would not be possible for the

system to check every unknown term against the entire contents of

the database. SUch a matching process to ascertain the associated

attribute would be not only exceedingly time consuming but also

un-infonnative if a user were asking about an instance of an object

which does not exist. For example, if a user asks if there is any

infonnation about course XYZ, and course XYZ does not exist, then

the system would have no means of matching XYZ to an attribute. It

is therefore up to the system to query the user as to whether the

user believes that the term is stored in the database. Having

ascertained that the user does believe the item is stored, then its

type is changed from "unknown" to "stored" (see table 7.1). When

attempting to understand the intended meaning of a query it is

irrelevant whether or not an item which the user believes is stored

in the database is actually stored. Values which the user believes

194

are stored need to matched against the corresponding attributes

which they are believed to be stored in.

When matching a "believed" stored value to an attribute the system

first attempts to match the stored tenn against the key attributes

for the entity which is in context. Having explicitly defined the

format types of attribute values with the attribute statement, (see

section 6.4.2) the system is able to test the unknown item to see if

it is of the same type. For example, to the system the following

three queries appear similar.

Get the narres of all people \o.ho are older than 20
Get the narres of all people \o.ho are older fum Jolm Smith
Get the narres of all people \o.ho are older fum 2347193

'!he system has to match the formats of the three believed stored

items "20", "John Smith" and "2347193" with possible attribute

formats. Query1 is easily matched to the AGE attribute. However

Query2 and Query3 require a join to via PERSON and then match to the

attributes NAME and ID_NUMBER respectively. (For a full listing of

the type matching process see Appendix I module 'IM).

In the example query in section 7.2.1,

qJERY Get the narres arrl ages of all people \o.ho atterd OlCS or teach OlCS

195

the system would fim a direct match with the key attribute CDDE of

CIXJRSE. '!he CDDE attribute is defined as a four character fixed

length string, which matches the fonnat of the item. If the fonnat

type of the CDDE had failed to match with key elements then we would

have had to consider the other possible attributes of the entity in

context.

'Ihus this query has been transformed into the query

Fetch PffiSCN.NAME ani PERSCN.AGE
subject to

person is a student ani student atterrl course ani
course's code is equal to OlCS

or
person is a teacher

ani
teacher teach course

ani
course's code is equal to OlCS

It is only this representation of the query that the user sees. All

of the other representations of the query are internal to the

interface manager, figure 6.2, which shields the user from seeing

them.

A user may reject a parse if the displayed representation does not

conform to the one intended by his initial query. When a parse is

rejected the system will back-track ani re-evaluate the assumptions

which have been drawn during the initial query parse.

196

7.3 - Query Fornulatian

Having divided the query into its two parts, the retrieval part and

the conditional part, we can now proceed to specify the query as a

rule or a logic queryyredicate. As with all predicates the query

predicate has a head and a body. The head specifies the retrieval

list and the body the constraint list.

7.3.1 - Fo1:llli.nJ the query predicate head

using the previously formed retrieval list we first decompose all

composite attributes into their base attributes. In our example, the

attribute NAME is a composite attribute composed from the base

attributes

title, firstname, surname

Thus our revised query list becomes

[title,firstname,surname,age]

This list is then processed to change the elements into Prolog

variables and a numeric value is appended to each of them to make

them unique. Thus the query predicate head becomes

queryyred([TitleO, Firstnameo, SurnameO,AgeO]) <-

The requirement for uniqueness of variables is needed as another

entity, or in our example another person, may be referred to in the

query. For example, consider the following query.

Fetch the narres arrl ages of all people older than Norrra Smith

197

'!he NAME specified in the query retrieval list is certainly not to

be matched with the implied NAME "NORMA SMITH". The use of m.nneric

values allows the system to distinguish between different

occurrences of an entity. Thus in this case we would have the same

predicate head

queryyred([TitleO,FirstnameO,SUrnarneO,AgeO]) <-

Le. retrieve name and age of personO

while the a:mstraint list would be defined as:

age of personO > age of personl
and

personl named 'Norna Smith'

SUch entity distinction is imperative for the successful evaluation

of the query rule.

7.3.2 - Fo:rmi.rg the query predicate body

The predicate body defines the constraints which the retrieVed

infornation must satisfy if it is to confom to the user's initial

query. '!he predicates which fom the body must represent the clauses

of the constraint list.

Consider the constraint list for the query outlined in section 7.2.

person is a student
and

student attend course
and

course.code = 'OICS'

198

'!he first clause of this query defines the entity, for which values

are to be retrieved as belonging to a subset. To represent this

concept in logic we specify the two relations S'IUDENT and PERSON as

predicates and the key fields can then be matched. Thus the clause

person is a student

can be represented as:

student (NurnO, Home _ streeto, Home _ townO, Home _ count yO , Home _ countl:yO,
National it yO, SponsorO,Attendance_typeo, Year_of_studyO)

&
person (NumO,AgeO ,TitleO , Firstnarneo , SUrnarneo ,

Streeto , TownO , Count yO ,eountl:yO , SexO) •

The system matches NumO so that only the entity members of the

relation person who are defined as "student" will be returned.

The subset entity is specified first as it will always have the same

or a smaller search space. By knowing the value of the Num attribute

the system is able to to perform an indexed look-up and so optimise

the search of the larger predicate "person".

In section 6.5.1 we described how the translation of user

perceptions could be explicitly represented as predicates. For

inter-entity connections we sinply specify these as the cormecting

predicate with arguments that are the key fields of the entities

that are being connected. 'lhus the defined connection

S'IUDENT ATI'END a:>URSE

is represented as

attend (NumO , Code1)

199

Where NUM is the key attribute of SWDENT and CODE the key attribute

of COURSE.

To resolve intra_entity connections the system needs to consult the

user view information, which is defined in section 6.3.2. '!his

information tells the system how to resolve the connections. For

example given the following query

Fetch rlaI1eS of people older than 50

the intra-entity connection information expresses the hidden

knowledge that "older than" refers to the attribute AGE and that it

is of comparison type "greater than". '!hus it enables the system to

represent the query as

queryyred([TitleO,FirstnameO,SUmarneO]) <-
person (NumO,AgeO,TitleO, Firstnameo,Surnameo,

StreetO,TawnO,Countyo,countryO,sexO)
&
gt(AgeO,50).

If the intra-entity connection had been between two entities,

instead of having a literal value, e.g.

Fetch rlaI1eS of people older than person with id run 100001

then the system would still require the access to the definition of

"older than". '!he only difference would be the change of entity

occurrence over the intra-entity connection, i. e.

200

qtlayyred([TitleO,FirstnameO,SUmameO]) <-
person (NumO, AgeO,TitleO, Firstnameo,surnameo,

streeto,TawnO, CountyO,CountryO, SexO)
&
gt(AgeO,Age1)

&
person (Numl, Agel, Title1, Firstname1, surnarne1,

Street1, Tawn1, County1, Country1, Sex1)
&
eq(Numl,100001).

A slightly different representation is required for intra-entity

connections which have a comparator defined as a "rule". 'Ibis occurs

for connections relating to composite objects and hence requiring

partial expression evaluation, as described in section 6.3.3.

Consider the following query

Fetch the t'lalmS ani ages of all people older than Nonm Smith

Firstly the system has to recognise that a new entity is being

specified. From an initial query parse the system realises that the

string "Noma Smith" does not satisfy the fomat specification of

the attribute AGE (see section 6.4.2). From this the system infers

that the intra-entity connection may be between two entities. It

then proceeds to parse the query urrler this assumption as follows

personO
Entity

older than
Intra=Entity

person1
Entity

Noma Smith
Unknown

As AGE is an attribute of PERSON the system tries to match the

"unknown" to an attribute of PERSON to identify the entity

occurrence. Matching the string fonnat to the attributes of PERSON

we have two possible matches, NAME or ADDRESS. The system chooses

the NAME attribute. However, if it had chosen the ADDRESS attribute

201

the user would have rejected the parse and the system would then

re-try using the other possible attribute.

From the successful parse the system is able to augment the query

specification to include the following information:

personO AgeO older than Agel personl Namel Norma Smith
Entity Att Intra=Entity Att Entity Att Unknown

condition n>n condition "nile"

It can then represent the query in the following lcqical fom:

query yred ([TitleO, FirstnameO, SUrnameO]) <-
person (NumO,AgeO,TitleO, FirstnameO,Surnameo,

streetO,TownO,COuntyo,COuntryO,SexO)
&
gt (AgeO , Agel)

&
person (Numl,Agel,Titlel, Firstnamel,Surnamel,

Streetl, Townl, COuntyl, Countryl, Sexl)
&
namerule (Titlel, Firstnamel,5urnamel, 'NORMA SMITH').

Here "namenile" is a predefined predicate which matches partial

expressions of the composite attribute NAME. The arguments for such

predicates confom to a fixed pattern, with the front variables

corresponding to the base attributes of the composite attribute, and

the last argument being a string representing the value to matched

Many of the conditional comparisons specified by the user during the

interaction will not be predefined, but must still be recognised and

represented by the system. For example in the query

202

Ust id nnbers of uroer gr-aduates who atterrl 34CS

the system must not only recognise that the unknown value "34CS" is

an identifier of the entity axJRSE but it must also match it to the

attribute CODE of CXXJRSE. Once such conditions have been recognised

and the literal values have been matched to their respective

objects, the system then has to represent the conditions. When

matching identification attributes which have no specified condition

comparison type then they default to "equals" and so the built in

predicate "eq" is used.

The previous query can be defined in the predicate fonn as:

queryyred([NumO]) <-
under_grad (NumO, Personal_ tutorO)

&

&

&

&

person(NumO,AgeO,TitleO , Firstnameo, SUrnameo,
StreetO,TownO,COuntyO,COuntryO,SexO)

student(NumO,Hame_streetO,Hame_townO,Hame count yO,
Hame_countryO,NationalityO,SponsorO,

Attendance _ typeO, Year_of _ studyO)

person (NumO ,AgeO ,TitleO , Firstnameo, Surnarneo,
StreetO , TownO, Count yO , CountryO, SexO)

attend (NumO , Cbdel)
&

course(Cbdel,Sessionl,Levell,Teacherl)
&

eq(Cbdel,'34CS').

To execute the query we merely assert the predicate queryyred then

call it as

query yred (X) •

203

The retrieved tuple's attributes are matched against the retrieval

list before they are passed to the user.

The time cost of executing this logic query is not as bad as it

first appears. By using the binding methods outlined in section

6.10, the system perfonns only one linear search of the relation

under_grad. All of the remaining calls to the database are indexed

key attribute look-ups which have query cost 1 in the SQIIffi system.

The inefficiencies which do exist in the query specification are

caused by the distance between the retrieval list and the condition

list. i.e. in the exanple there is no need to call the predicate

SIUDENT as none of the attributes of S'IUDENT are used. However, if

the initial query had been:

Get nanes arrl hare addresses of all uiller graduates who atterrl 34CS

Then the only difference would have been in the retrieval list and

not in the constraint list.

For the above query the query head would be:

query-pred([TitleO,FirstnameO,SUrnameO,Home_streeto,
Home _ townO, Home _ countyO, Home _ countryO]) <-

The lack of alteration that is needed to transfonn the query

high-lights the way in which the query body mcrlels the user's own

perceptions of the query and not the database mo::1el' s. As the user's

conditions of retrieval have not changed it is only the objects to

204

be retrieved which. have been altered and so it is only the head of

the query predicate which. is affected.

7.4 - ~ EVAIIJATION

Once the query predicate has been fonned all previously asserted

queries are retracted and this new query is then asserted. To

execute the query all that the system is required to do is call the

predicate queryyred(X). '!he tuples satisfying the query body are
-.

then returned tuple by tuple .. When all satisfying tuples have been

returned the query predicate fails.

When executing a query the system first checks the scale of the

retrieval before it gives the user any retrieved infonnation. This

involves the system perfonning a CXXlNT operation on the successes of

the query predicate. Often the user would require only the first

tuple which. satisfies the predicate and it would be very wasteful to

retrieve many unwanted tuples. Therefore the system perfonns a COW1t

and does not exceed ten. Having tested the scale of the retrieval

the system then infonns the user that there are 0-10 or over 10

tuples which satisfy the given query conditions. '!he user can then

either view each individual tuple one after the other or quit and

respecify a new or more selective query.

205

A complete example of a user interaction is given in appendix H.

This includes the corresponding logic representation of the query

and for comparison a SQL translation of the query.

7.5 - 'llIE NEED FOR MIXED DIAIJ:X;UE

The use of mixed dialogue is most important in interactive systems

which deal with ambiguity. The ability for the system to stop and

confinn with the user that it has made the correct asstnnptions is

most advantageous as it avoids much of the wasted time in pursuing

incorrect inferences (see section 3.2.4). A dialogue facility is

useful when trying to understand tenus which are unknown to the

system (see Appendix H). However, it is important that the user

dialogue is not used to excess as it may alienate the user and may

also be excessively costly in respect of time. The over use of such

a facility is particularly likely in systems which rely on

back-tracking.

206

7.5.1 - 'lHE USER IRlFIIE

In order to minimise the occurrence of excessive user dialogue, we

have introduced a session record, which records the answers given by

the users. By examining this record before consulting the user the

system eliminates the need to ask the same question repeatedly. '!he

session record is lmown as a user profile. The user profile builds

up a picture of an individual user's tenninology for the domain.

Thus if the system does not recognise the words used by the user it

will ask for synonyms until it finds one it recognises or the user

gives up. The user profile also stores the literal values which the

user has specified in his query requests in the belief that they are

stored in the database. The user profile can also be used to store

any or all of the lmowledge components described in chapter six.

It is possible to save and load the user profiles from one session

to the next so as to maintain a pernanent record of a user's

queries, and eliminate much of the nnmdane dialogue needed for tenn

verification.

The user profile gives the interface system a degree of user

adaptivity. This adaptivity allows each individual user's profile to

be modified during the interactive session. Basic user profiles can

be provided for new users, and these can be specifically tailored

for different types of user groups. Such tailoring can be beneficial

as it can be used to reduce the expected domain of interest and

207

create a logical horizon for a user group. By reducing the expected

domain of interest we reduce the available tenninology and

correspondingly reduce the search space for the interface assistant

system. Reducing the search space greatly improves the system's

perfonnance.

Most of the user dialogue is related to attempts to understand tenus

which the system does not recognise. In the majority of cases these

will be words which the user believes are stored in the database. As

previously stated in section 7.2.2, when attempting to understand a

user query it is of considerable benefit to know which terns the

user believes to be stored in the database. When the system is made

aware of such a term then it records this fact in the user profile.

'!his eliminates the need for the system to ask the user repeatedly

about the tenn. The need for the system to recognise all terns in

the query helps reduce the risk of the system translating the query

incorrectly.

208

7.6 - SUMMARY

The examples both in this chapter am in appendix H high-light many

of the ways in which the encoded domain knowledge of the interface

shell can be used to help translate user queries am so improve the

usability of database systems for the inexperienced user. We have

attempted to illustrate the user interaction with the system by

showing the external responses a user receives am the internal

processes perfonned by the interface shell. We have attempted to

show how a user can phrase his request in the tenus am concepts of

his own personal user view, am the way the system attempts to

naintain these conceptions in its logical representation of the

query. The simplification of the queries due to the subset

decomposition am the resulting inheritance capabilities justifies

the advantages that can be gained from the relational design

technique we described in chapter five. We have demonstrated the use

of the domain translation knowledge, and the reason why it was

specified in the fonn of directly executable logic predicates. The

simple nature of the calls to the database relations, in the fom of

predicates, would be totally un-usable due to efficiency

restrictions if it were not for the binding teclmiques we described

in chapter six.

209

OIAPI'ER - 8

In this chapter we summarise the work which we have carried out and

high-light many of the important aspects. We also propose possible

directions for future work. This future work includes both the

practical work which could be carried out to improve the current

version of the information retrieval system we have described in this

thesis, and more generally the directions in which we feel the

combination of information systems and logic progranuning should

develop in the longer tenn.

8.1 - SUMMARY

8.1.1 - Haw an expert system can help

We have identified the problems which frustrate the use of existing

database systems by naive users and also the ways in which expert

systems, and in particular a logic representation, could be used to

resolve these problems.

We have described the problems experienced by naive users who are

required to specify their queries in a formal query language, and

illustrated how these problems could be alleviated by using both a

limited natural language interface and some fonn of inference to

eliminate superfluous query specification.

210

Having identified the problems of navigating the relational model,

we illustrated the simplicity with which Horn clause logic

predicates could be used to specify user views. Such logical user

views resemble the user's own concepts, rather than those of the

relational stru.ctures. We demonstrated that, by having a

representation which was conceptually closer to the user's own

actual view, the task of translation could be simplified. Such

findings confirmed Bundy's [1984] idea of distinct translation

stages for intelligent front ends.

When reviewing the systems which have been proposed to assist in

providing users with infonnation, we stated the need for these

systems to be interfaces to external database systems as opposed to

systems with self contained databases. SUch self contained systems

failed to capture the potential benefits associated with the use of

an existing database system.

Many of the early systems designed to assist naive users in

retrieving infonnation suffered from the problem of

transportability. 'Ihat is, the systems were specifically designed

for a single domain. The use of predicate logic as a domain

specification language enables the division of the knowledge

requirements of the system into several components or modules. This

allowed us to create a generalised "shell" structured interface

which minimises the amount of effort required to specify an

interface for a new domain. Simply by combining different modules we

are able to expand the domain of knowledge of the system.

211

More recent retrieval systems have atte.rrpted to provide a degree of

transportability. However, such systems have encountered great

problems through the lack of representation of the domain semantics.

systems which rely entirely on language parsing have only a shallow

understanding of the meaning of a user's request.

Having outlined the ways in which a logic representation of the user

view of the domain could help, we needed a method to capture and

specify the user view infonnation. To achieve this we used an

augmented version of the sub-entity modelling teclmique. This

modelling technique enabled the modelling of the user's perceptions

of inter-entity and intra-entity connections, the concepts of

structured objects and the existence of subset entities and the

inherited properties of such subset entities. We also outlined a

method for producing a relational model from this user view which

was closer to the users own conceptual view. This closeness

simplified the task of translating between the representation of the

user view and the relational model.

8.1.2 - Connect.i..nJ an interface front ern to a DIHS

Having specified the advantages of using a logic representation of a

user view, we then proceeded to implement a system which provided a

means of representing and using the logic of a user view to assist

retrieval from a database system. This involved combining an

intelligent front end system with a database system.

212

After considering several of the proposed design methcx:ls for

coupling expert systems and databases [Vassiliou 1983] we decided on

a combined fom of architecture which would maintain the

independence of both systems. '!his in turn required the provision of

a conununication link. Before developing such a link we outlined the

following two rules which the communications link nrust satisfy

1. The conununications link should enable the expert system to
extract any item of data that is stored in the database
which the interface user is allowed to access.

2. '!he use of the comrm.mication link should not impinge on the
operation of either system so as to hamper the usage of
either system in isolation or in combination.

For the system to take full advantage of the database facilities it

was necessary to allow the dynamic specification of queries. To

achieve this required a tight coupling of the two systems.

By implementing a tight coupling we exposed a system with an

inferential search technique to vast volumes of data. In tenns of

performance this was potentially disastrous. However, by developing

an appropriate binding technique between the two systems we vastly

reduced the volume of communications traffic and so improved the

system I S overall performance.

213

8.1.3 - SpeCifyirq an expert system front errl

When designing the user interface front end we pursued our ideal of

a generalised interface. The interface architecture was designed as

a shell which could be "filled" with separate distinct knowledge

modules. The use of such modules simplified the process of

transporting the system to a new domain or altering the current

domain of interest. SUch alterations could occur due to expansion of

the represented domain or a change in one aspect of the domain, such

as the underlying relational model.

In order to provide such modules we defined a generalised language

which enabled the modules to represent the user concepts of the

domain.

Having developed the interface shell and specified a domain

representation for our typical example user view, we proceeded to

demonstrate the ease with which a limited language understanding

system, which used a simple phrase recognition technique, could code

non trivial retrieval requests. 'Ihis demonstrated the simplicity

with which user requests could be translated into a predefined

logical view and the ease with which such queries once specified in

logic could be executed against a relational database.

214

8.2 - FUIURE ~ OF '!HE lNI'ERFArn SHElL

In this section we consider same aspects of the interface shell

where it would be possible to irrprove the ftmctionality of the

current version.

8.2.1 - In'provinJ the system's response

'!he shell currently answers queries by presenting the user with the

results in a tabular fonn, which corresponds to the structure of the

relational model. SUch responses are abrupt and present the results

in an artificial way. When irrplementing the interface shell, we were

predominantly concerned with the urderstaOOing of what a user wants,

so we have largely ignored the task of presentation of the results,

which was the fifth of the five interface tasks, stated in section

6.2. The interface system's responses could be irrproved by

interpreting the results back into the terms of the user model. To

illustrate this consider the following example

qJERY: \oho teaches Oles ?

'!he system currently presents the reply to this query as:

Title
Firstname
surname

PROF
ARI'HUR
SMI'IH

Instead of this curt response the system could interpret the results

back into the user model and, combining this with a paraphrased

version of the original user query, the system could express the

reply as

215

The naIre of the te.3cher \Iho teaches the course mich has code Oles is
ffiOF ARIHlR SMI'lli

A fonn of reply such as this improves the user friendliness of the

system and provides a degree of validity to the system's

understanding of the original query.

8.2.2 - Inproved IIEta-level queIyinJ

In chapter seven we explained how the shell allows querying of the

domain info:rma.tion using a menu-driven dialogue. OUr reason for

using menus rather than limited language was that it gave a simple

means of making initial queries about an unknown dornain. For

subseqUent interactive queries of the domain a more in-depth fonn of

querying nay be required. In such circumstances it nay prove

beneficial to include an additional meta querying system which does

allow limited language queries of the system's underlying semantic

interpretation of the dornain. To illustrate this consider the

example from section 3.3.3 where we have defined the tenn

holiday_entitlement for an employee database as:

holiday ent(Name,Days) <-
- employee (Narne, *,Years_ser, *) &

calculate_holiday(Years_ser,Days).

calculate holiday(Years ser,30) <-
- ge(Years ser,10) & / •

calculate holiday(Years ser,Days) <-
- Days := 20 + Years sere

216

usin:j this representation of the concept the system has the

info:nnation to answer the followin:j meta query

QUESTION: ~t is an employees holiday entitlanent

ANSWER: 30 days if years service is greater than 10
or else
20 plus rrnber of years service

'!he text for the answer is generated directly from the Prolog code

representation of the concept. The representation is already stored

in the system's domain infonnation module. The problem of text

generation from sources such as Prolog code is currently being

investigated by Melish [1987].

B.2.3 - ProvidiIq semantic integrity

one of the major new problems in handling lmowledge rather than data

is the need for lmowledge integrity or semantic integrity [Frost &

Whittaker 1983]. This is in addition to the need for data integrity.

As our logic specifications give us a semantic representation of the

model we can use this representation to test for semantic integrity

violations or contradictions.

using Kowalski's [1978] logic definitions we can explicitly define a

contradiction as an occurring set of conflicting events

contradiction (C) : - Pred1 I Pred2 I I I PredN .

where each predicate represents an event

217

To illustrate this amsider the semantic concepts that a student is

taught by a teacher, and that a course is taught by a teacher. Thus

only teachers can teach whereas both students and courses can be

taught. We can enforce this constraint as a contradiction,

specifying that if there exists a situation where it is not a

teacher who teaches then a contradiction has occurred. Similarly we

can specify that if it is not a course or a stUdent who is taught

then a semantic contradiction has occurred. In logic we can simply

specify this as follows

contradiction ('student or course taught by non teacher') <
taughtyy(*,Teacher) &
not teacher (Teacher, * , * , *) .

contradiction ('non student or course taught by teacher') <
taught by(SC,Teacher) &
not (student (SC, *, *, *, *, *)

or
course (SC, *, *, *)) •

Contradiction testing can be used to ensure the correct negation of

objects (see section 3.4.4). Such contradiction predicates could be

used to verify database uIrlates. semmtic verification could easily

be performed by the following expression:

contradiction (X) & write(X) & fail.

Obviously semantic testing would have to be run as a background task

as it perfonns extensive searches of the entire database contents.

218

8.2.4 - IIrpIUVed binlirq tedmiques

In chapter five we described a method for binding instantiated

ProICXJ variables to constraints for database queries. This method of

binding reduced the traffic between the two systems and so improved

the perfonnance of the overall system. In section 5.10.5, we stated

the following rule for improving the specification of database

look-ups in logic:

All tests should be perfonned on the attributes of the relation

to be retrieved, before any tuple is actually retrieVed.

By adhering to this rule the system was able to use the binding

technique for instantiated variables, thus:

Id num = 12345 &
person (Id _ num, Name ,Address, Age) •

allows the system to perfom an indexed look up on the relation

"person" .

'!he binding method described was unable to handle any constraint

other than equality. For example in standard ProlCXJ [Clocksin 1981]

it is not acceptable to perfom a constraint on an uninstantiated

variable. '!hus

Id num <= 12400 &
Id-num > 12345 &
person (Id_ num, Name, Address , Age) .

219

would not be allCMed. '!his is because variables can not be

instantiated to constraints such as "> 12345". Instead the query

would have to be specified as:

person (Id_num, Name, Address , Age) &
Id num <= 12400 &
Id-num > 12345.

'!his does not adhere to the specification rule and so results in a

costly linear search. '!his problem severely limited the initial

binding technique.

HCMever, we have recently developed a technique whereby mnneric

variables can be instantiated to constraints and such constrained.

variables can be used to further improve the traffic control and

perfonnance of the two systems.

To achieve this we have introduced the new comparators "gtn", "ltn",

"gen", "len" and "eqn" (see Appendix I mcrlule QCON for a listing of

these predicates). '!hese comparators either perfonn a test or

instantiate a variable to a numeric constraint. Rules have had to be

defined to allow for the combining of such constraint operators.

Using these operators we can specify the previous IOJic query as:

Id num len 12400 &
Id-num gtn 12345 &
person (Id _ nurn, Name, Address, Age) .

'!his new binding technique enables the specification of the

constraints before the actual retrieval is perfonned and so allows

the system to perfonn an indexed search of the relation. This

220

further reduces the volume of traffic and so vastly improves the

combined systems' perfo:rmance.

This new technique has not yet been incorporated into the interface

mechanism for the generalised interface shell. Although the code for

the conditional binding predicate csql is listed in Appendix I

module CSQL.

8.3 - A NEW GENERATION OF EXPERr D1\TAB1\SE SYSTEMS

In the previous section we looked at the facilities which could be

added to the interface shell which we have developed. In this

section we look further ahead to the many new opportunities which

the inclusion of a logic semantic representation offers to the

formation of Expert Database systems (EOO).

8.3.1 - Semantic query optimisation

The semantic representation of the domain and relational models

which we have provided can be used to improve the efficiency of

storage and retrieval of the data. Such improvements in query

optimisation can be achieved by the use of logical equivalence

transformations, and also by the use of the additional semantic

constraints available to the system. Cllakravarthy [1986] describes

how semantic query optimisation can help in two ways. The first is

the elimination of the need for certain database calls, and the

221

second is an increase in the mnnber of query constraints, which

improves the efficiency of the retrieval operation by reducing the

search space and allowing the database system to optimise the search

query path. We can illustrate a simple example of query optimisation

using the following model

SALES srAFF

SAIARY ADDRESS

DEPARIMENT

MNGR.NAME

figure - 8.1

'Ihe first type of optimisation can be shown by the trivial query

Who works on the tenth floor

We can specify this as

department(Dept,lO,*) & sales_staff(Narne,*,*,Dept,*).

If we know there are only eight floors then we do not bother to

consult the database and there is no need for a search of the

department relation. 'Ihus the semantic infonnation can reduce the

m..nnber of calls to the external database.

222

'!he second type of optimisation where semantic infonna.tion improves

the constraints of a query can be seen by considering the following

query.

~ \Narks on the first floor ani earns nore than £ 40,000

We can specify this as

department(Dept,l,*} & sales_staff(Name,*,Salary,Dept,*} &
Salary> 40000.

If we know that the only department on the first floor is the

furniture department, then we can specify this query without the

need for a join. '!hus the query could be specified as a single

look-up and if we use the enhanced binding method described in

section 8.2.4 then the retrieval can be perfonned as an indexed

retrieval. '!he new specification of the logic query would be:

Salary gtn 40000 &
Dept = I FURNI'lURE I &
sales~taff(Name,*,Salary,Dept,*}.

'!hus the domain infonna.tion has simplified and hence improved the

evaluation of the query executed by the external database.

8.3.2 - FUzzy values / Intuitive queries

Another new facility which is made possible by the use of a domain

semantic representation is the satisfying of intuitive queries.

'!hese queries are similar to the goal queries of Metro [1986]. In

223

order to satisfy intuitive queries we need some fonn of coding or

representation of judgement. Consider the following intuitive query:

What is the nane of a person w.o can carry out a job which requires
sorreo~ \\ho is tall and heavy?

When it is applied to the following model:

PERSON

NAME HEIGHT WEIGHT
(ems) (kg)

ADAMS 180 71
BLACK 175 73
CLARK 171 74
DAVIS 170 65
EVANS 160 70

figure - 8.2

We can define the concepts tall and heavy as

tall (X) <- person(X,Height,_) & Height> 170 •
heavy (X) <- person(X,_,Weight) & Weight> 70 •

If the above goal wanted an optimised answer i.e. the best person

for the job then we would need to represent some measure of

'distance' Le. a means of quantifying the intuitive retrieval

conditions "heavy" and "tall" and then assigning a weighting to the

conditions to detennine the relative importance of heavy or tall.

Depending on whether weight or height is the more important then

there are two neighbourhcxxi goal results and one optimised result

for the above model

224

NEIGHOOURHOOD GOAL where weight is most important
retrieved tuple (, ClARK' , 171, 74)

NEIGI-JB)URHOOD GOAL where height is most important
retrieved tuple (' ADAMS' ,180,71)

OPI'IMUM NEIGHroURHOOD GOAL
retrieVed tuple ('BLACK',175,73)

The evaluation of intuitive queries is a major new area of database

que:rying. The logic specification of semantic judgement concepts can

be easily incorporated into our current domain representation. The

understanding of such judgmental queries when regarded as logic

views is similar to the understanding of exact concepts e. g.

consider the following example queries

Fetch naIreS of all people who are lecturers
Fetch naIreS of all people who are tall

These can be represented in logic as:

person(Num,Name,*,*,*) &
lecturer(Num,*,*,*).

person (Num, Name, * , * , *) &

tall(Ntnn).

The representation and execution of individual judgement goals is

therefore relatively simple. However, considerable work is still

required on the quantification of judgement goals in order that we

may solve optimal neighbourhcx:x1 goals and evaluate the overall

optimal solution for the optimum neighbourhcx:x1 goal.

225

8.3.3 - IBta r:e.dLIrDarq

'lbe use of a logic representation of the domain can help alleviate

the problems of redundancy, where stored data is dependent on, or

can be •. calculated from, other items of stored data. SUch redtmdancy

causes difficulties both in wasted storage and in integrity control

when updates are made. The use of an explicit representation of the

domain can help resolve these problems. Consider as an example the

following relational model

r-mNAGERS

Name Age Salary Type

AdamS 26 13000 Department Manager
Brown 46 23000 Group Manager
Clark 52 26000 Group Manager
Davis 40 20000 Section Manager

figure - 8.3

Suppose that we know that in this model the COITpany' s wage structure

is such that:

l)eparbnent Managers salary is less than or equal to 15000

section Managers salary is between 15000 and 21000

Group Managers salary is greater than or equal to 21000

'lben we can express this infonnation in rules as expert data which

defines the model domain e.g.

226

manager(Name,Age,Salary,Type) <
manager(Name,Age,Salary) &
Salary <= 15000 &
Type = 'Deparbnent Manager' / •

manager (Name ,Age, Salary, Type) <-
manager (Name, Age, salary) &
Salary >= 21000 &
Type = 'Group Manager' & / •

manager(Name,Age,Salary,Type) <
manager(Name,Age,Salary) &
Salary > 15000 &
Salary < 21000 &
Type = 'Section Manager' •

using these rules we are able to remove the need for explicit

storage in the database of the attribute "TYPE".

In general such reduced relations can be specified as:

relation (Al,A2, "Ai,Aj,Ai+l, "AN) <
relation (Al,A2, "Ai,Ai+l, "AN) &
constraint function(Al,A2, "Ai,Ai+l, "AN) &
instantiate (A j) •

The use of logic to represent data aids conventional databases as it

reduces redundancy. However, using such semantic rules to represent

the actual data requires special techniques for handling updates of

both the data and the rules themselves.

8.3.4 - InferrinJ knowledge fran data

The use of logic as described in section 8.3.3 to represent the

actual data facts, can be extended to the description of generalised

aspects of the data. Such a logic representation could be

automatically derived from the actual data. Wiederhold [1986]

identifies two main reasons for inferring such generalised data

227

descriptions. '!he first is the provision of "intelligent summaries

of databases". '!his would help reduce the problem which he outlines

of infonnation overload. '!he second reason is that of extracting

"new knowledge present implicitly in the data".

The use of a language which represents the semantics and concepts of

the domain can help facilitate this task and provide a means of

expressing any infonnation that is inferred. To illustrate how such

inferred knowledge may be used consider the previous relation of

MANAGERS in a departmental store, where all the data is stored

explicitly. We can attempt to infer the wage structure of the

company, previously stated in section 8.3.3, by interpreting this

data. Reconsidering the previous model, figure 8.3, the resulting

inferred interpretation of the wage structure would be

rnanager(Name,Age, Salary, Type) <-
manager (Name, Age, Salary) &
Salary = 13000 &
Type = '~partment Manager' / •

rnanager(Name,Age,Salary, Type) <
manager(Name,Age,Salary) &
Salary >= 23000 &
Type = 'Group Manager' & / •

rnanager(Narne,Age,Salary, Type) <
manager(Narne,Age,Salary) &
Salary = 21000 &
Type = 'Section Manager' •

Obviously more data would improve our implied knowledge. However

implied knowledge can be misleading as it is specific to the known

facts at a given instant. Considering the example above we could

infer that:

228

manager(Name,Age,Salaxy,Type) <-
manager (Name, Age, Salary) &
Salaxy := Age * 500 •

Clearly this rule, though correct at the present time, does not have

the same pennanent status as the previously expressed rules.

'Ihe inferred rule is true for the model at a precise instant of

time. However, such rules may be purely coincidental and have no

lasting validity.

'Ihe ability to infer knowledge from factual data is an important new

area. To facilitate future work in this area is required a language

which can represent both the inferred knowledge and the domain

semantics, so that more in-depth inferences can be drawn. By the

tenn in-depth we are primarily referring to inferences involving

inter-entity connections within the domain, as in the above example

inferences were all drawn from a single relation. Such domain

semantics would be similar to those modelled in the domain

representation of the interface shell.

8.3.5 - An iInproved expert system envi.ronnw:mt

In our attempt to simplify the process of data retrieval for naive

users we have created an efficient link between a log'ic based

envirorunent and a database system. Using this link we have vastly

improved the perfonnance of the logic envirorunent when accessing

large volumes of data. As stated in section 5.11 there was a

229

perfonnance bnprovement of over ninety percent when using the

combined system as opposed to using the Prolog system in isolation.

The efficient handling of large volumes of data is only one of the

many advantages that can be acquired by expert systems when they are

linked to database systems. We see this link as the essence of a

corrplementary existence for both expert systems and database

systems. As database systems themselves evolve so expert systems can

benefit from their bnprovement. This process of complementary

existence can currently be seen with the improvements in distributed

databases. If expert systems are able to fully utilise this advance

then they may provide a means by which expert systems can themselves

operate in a distributed manner, thereby transparently sharing

information and knowledge throughout a network of expert systems.

8.4 - Oonclusion

In this thesis we have been predominantly concerned with the

creation of a naive user interface for a relational database. In

demonstrating how this can be achieved we have shown that ll1al1y

other benefits can arise from the use of a logic based semantic

representation in conjunction with a relational database system. We

believe that such a combination offers considerable promise for the

future.

230

ADDIS 1985

ADDIS T.R. 'Designing Knowledge-based Systems', Kogan Page Ltd

1985.

AIrZOBAIDIE 1987

AIrZOBAIDIE A. & GRIMSON J.B. 'Expert systems and database

systems: how can they sel:Ve each other ?' - Expert Systems,

Vol 4, No I, Feb 1987.

A.1. CDRP 1980

ARI'IFICIAL lNI'ELLIGENCE CDRP. 'INTELIEcr Query System User

Guide' - 500 Fifth Ave, Waltham, Mass, USA; 1980.

BATES 1984

BATES M. MOSER M. & STALlARD D. 'The IRUS Transportable Natural

LangUage Database Interface' - Proc First International

Workshop on Expert Database Systems, South carolina, Editor

H. KERSCHBERG, pp 617-630, 1984.

BERMAN 1986

BERMAN s. 'A semantic Data Model As the Basis for an Autonated

Database Design Tool' - Journal of Infonnation systems, Vol 11,

No 2, pp 149-165, Pergamon Press 1986.

231

B:lGURAEV 1983

BXURAEV B. & SPARCK JONES K. 'How to Derive a Database Front

End Using General Semantic Infonnation' - Proc of Conference on

applied natural language processing, california, pp 81-88, Feb

1983.

OONT.EMfO 1983

OONT.EMfO C.J. 'Feature catalog of Query by Example' -

Relational Database Systems Analysis and Comparison, Edited by

J.W. schmidt & M.L. Brodie, pp 410 - 435, Verlag-Springer 1983.

BRODIE 1984

BRODIE M. L. 'Knowledge Base Management Systems Discussion

Group' - Proc First International Workshop on Expert Database

Systems, South carolina, Editor H. Kerschberg, 1984.

BUNDY 1984

BUNDY A. 'Intelligent front ends' - Proc of Fourth Conference

of the BCS on Expert Systems, cambridge University Press 1984.

CERI 1986

CERI S. GOlTIOB G. & WIEDERHOLD G. 'Interfacing Relational

Databases and Prolog Efficiently' - Proc First International

conference on Expert Database Systems, pp 141-153, April 1986.

232

ClIAKRAVANTHY 1986

ClIAKRAVAN'IHY U. S. MINKER J. & GRANT J. 'Semantic Query

Optimisation: Additional Constraints and Control strategies' -

Prcx:: First International Conference on Expert Database Systems,

pp 259-269, April 1986.

OImG 1984

arANG C. L. & WALKER A. 'PROSQL: A Prolog Progranuning Interface

with SQI/ffi' - Proc First International Workshop on Expert

Database Systems, South carolina, Editor H. KERSClIBERG, 1984.

OlEN 1976

CHEN P. 'The entity-relationship model-towards a unified view

of data' - ACM Trans on Database Systems 1 (1), pp 9-36, 1976.

CIDCKSlli & MElLISH 1981

CIDCKSIN W.F. & MELLISH C.S. 'Programming in Prolog' -

springer-Verlag: 1981.

cnDD 1972

cnDD E. F. 'Relational completeness of database sublanguages' -

Courant Corrputer Science Symp, Prentice Hall 1972.

233

cnDD 1974

cnDD E.F. 'Seven steps to Rendezvous with the casual user' -

IFIP conf working conf on Database Management, Ed J.W. Klimbie,

North-Holland, pp 179-200, 1974.

cnDD 1979

Codd E. F. 'Extending the Database Relational Model to Capture

More Meaning' - AQ1 'IDa:; Vol 4 No 4 Dec 1979.

cnDD 1982

cnDD E.F. 'Relational Database: A Practical Foundation for

Productivity' - CAQ1, Vol 25, No 2, pp 109-117, February 1982.

cnDD 1983

cnDD E.F. 'Relational Database Systems Analysis and Comparison'

- Editor by SCHMIDT J.W. & BRODIE M.L. Springer-Verlag; 1983.

ClJFF 1984

ClJFF R.N. 'HERCULFS: Database query using natural language

fragments' - Proc Third British National Conference on

Databases, Editor J lDngstaff 1984.

D'~ 1983

D' ~ A. 'Expert systems, Fifth Generation and UK

suppliers' - NCC Manchester; 1983.

234

DAMERAU 1985

I:ll\MERAU F.J. 'Problems and some solutions in customization of

natural language database front ends' - ACl1 Transactions on

Office Information Systems, Vol 1, No 2, pp 165-184, April

1985.

DATE 1986

DATE C.J. 'An Introduction to Database Systems' - Fourth

Edition Systems progranuning series, Vol 1, Addison-Wesley;

1986.

DE BRA 1986

DE BRA P. 'DecompOSition based on FUnctional Dependency Set

Implications' - Proc Int Conference on Database Theory, Rome,

Sept 1986.

EPSTEIN 1981

EPSTEIN B. et al 'INGRFS Version 6.3 Reference Manual' Feb

1981.

FEIGENBAUM 1980

FEIGENBAUM E.A. 'Knowledge Engineering for the 1980s' -

Computing Science Department Stanford University, 1982.

235

FROST & WHITI'AKER 1983

FROST R.A. & WHITI'AKER S. 'A step towards the Automatic

Maintenance of the Semantic Integrity of Databases' - The

Colrq?uter Journal, Vol 26, No 2, pp 124-133, 1983.

GEVARI'ER 1983

GEVARI'ER W. B. 'An overveiw of computer-based natural language

processing', NASA Tech Memo 85635, Washington D.C. 1983

GINSPARG 1983

GINSPARG J. M. 'A Robust Portable Natural Language Data Base

Interface' - Pree Conference Applied Natural Language

ProceSsing, Santa Monica, california, pp 25-30, Feb 1983.

GOOD 1984

GOOD M.D. et al 'Building a user-derived interface' - CACl1, Vol

27, No 10, pp 1032-1043, october 1984.

GPAY 1981

GRAY M.A. 'Implementing unknown and imprecise values in

databases' - Proc First British National Conference on

Databases, pp 139-150, carob 1981.

GPAY 1984

GRAY P. 'lDgic, Algebra and Databases' - Ellis Horwood Series,

1984.

236

GROSZ 1983

GROSZ B. J. 'TEAM: A Transportable Natural-language Interface

system' - Proc of Conference on Applied Natural language, Santa

Monica california, pp 39-45, Feb 1983.

GUIDA & TASSO 1983

GUIDA G. & TASSO C. 'IR-NLI An Expert Natural language

Interface to online databases' - Proc Conference on Applied

Natural Language Processing, Santa Monica, california,

pp 31-38, Feb 1983.

HARRIS 1984

HARRIS L.R. 'Experience with intellect: Artificial Intelligence

Technology Transfer' - The A.I. Magazine, Vol 5, Part 2,

pp 43-50, 1984.

1m 1983

1m 'INTELLEcr General rnfonnation Manual' - Program Number

5796-PWA, First Edition, Sept 1983.

rm 1984a

1m 'SQI/Data system Tenninal User's Guide for VM!SP' -

Program Number SH24-5045-1, Release 3, Second Edition, Dec

1984.

rm 1984b

1m Systems Journal, Vol 23, No 2, 1984.

237

lIM 1985

lEM 'VMlPrograImning in Logic Program Description and

Operations Manual' - Release 1 , Modification 0 , Program

Number 5785-APJi, July 1985.

JARKE & VASSILIOU 1984

JARKE M. & VASSILIOU Y. 'Coupling expert systems with database

management systems' - Artificial Intelligence application for

business, pp 65-85, Editor W Reitman; 1984.

JOHNSON 1984

JOHNSON R.G. 'Intergrating Data and Metadata to Enhance the

User Interface', Proc 'Ihird British National Conference on

Databases, Editor J lDngstaff, pp 31-39, 1984.

KELLY 1977

KELLY M.J. 'Limited Vocabulru::y Natural language Dialogue' -

Infotech 20, Man machine studies 1977.

KING et al 1977

KING M. DEIL'ORCX> P. & SPADAVECOIIA V. 'catering for the

experienced and the Naive User' - Prcx:: Workshop on Natural

LangUage For Interaction with Databases, International

Institute for Applied Systems Analysis, pp 49-68, 1977,

Infotech 20 Man machine studies 1977.

238

KOWAlSKI 1978

KOWAISKI R 'Logic for Data description' - Logic and Databases,

Editor Gallairer and Minker, Plemnn Press, New York, pp 77-102,

1978.

KOWAlSKI 1984

KOWAISKI R 'Logic as a Database language' - Proc Third British

National Conference on Databases, Editor J IDngstaff, 1984.

KUMMEL 1979

!<UMMEL P 'Fo:malization of Natural languages' - Series in

eommunication with Cybernetics, springer-Verlag, 1979.

IAKOFF 1971

IAKOFF G. 'Linguistik und naturliche IDgik' - Athenatnn Vlg,

Frankfurt 1971.

lARSON & WALLICK 1984

IARSON J. & WALLICK J. 'An Interface for Novice and Infrequent

Database Management System Users' - AFIPS Conference Pree, NCC

Vol 53. pp 523-529, 1984.

UX;ICA 1984

U:X;ICA 'RAPFORI'-4 RAPIDE' - Ref R4-RPD, Database Project Group,

Logica Ltd 64 Newman St IDndon, May 1984.

239

MELLISH 1987

MELLISH C. 'Computers and language generation' - Paper

presented at Alvey Intelligent Interface Special Interest Group

Workshop, May 1987.

MOrRO 1986a

MOrRO A. 'l3A.RCXPE: A Browser for Relational Databases' - ACM

TranS Office Information Systems, Vol 4, No 2, pp 164-181,

April 1986.

MOrRO 1986b

MOrRO A. 'SUPFORrING GOAL QUERUFS IN REIATIONAL DATABASFS' -

Proc First International Conference on Expert Database Systems,

pp 85-96, April 1986.

NAQVI 1986

NAQVI S. 'Negative Queries in Horn Databases' - Proc First

International Conference on Expert Database Systems, South

carolina, pp 75-82, April 1986.

pARKIN 1982

PARKIN A. 'Data Analysis and System Design by

Entity-Relationship MOdelling' - The Computer Journal, Vol 25,

No 4, pp 401-409, 1982

240

PRENNER & ROWE 1978

PRENNER C.J. & ROWE L.A. 'Programming Languages for Relational

Database Systems' - AFIPS NCC Conference Proc, pp 849-855,

1978.

RAJINIKANIH & rosE 1986

RAJINIKANIH M. & rosE P.K. 'A semantic and lJJgical Front-end to

a Database System' - Proc ACN/SIGARl' International Syrnpositnn on

Methodologies for Intelligent Systems, Tennessee, pp 103-111,

Oct 1986.

ROUssorouros & MARK 1985

ROUSSOFOUIDS N. & MARK L. 'Schena Manipulation in

self-Describing and Self-Documenting Data Models' -

International Journal of Computer and Infonnation Sciences, Vol

14 No 1, pp 1-28, 1985

RUNCIMAN & THIMBLEBY 1986

RUNCIMAN C & THIMBLEBY H. 'Equal opportunity interactive

systems' - International Journal Man-ma.chine studies 25, pp

439-451, 1986.

SCIORE & WARREN 1984

SCIORE E. & WARREN D.S. 'Towards an integrated Database-Prolog

System' - Proc First International Workshop on Expert Database

Systems, pp 293-305, South carolina, Editor H. KERSa-IBERG,

1984.

241

SENKO 1976

SENI<O M.E. 'DIAM II: '!he binaIy Infologica1 level am Its

Ditabase IaJ'¥3t1age - FORAL' - AQI SIGPIAN/SIGMJD Con! Proc, Salt

Lake City 1976 AQI SIGPLAN Vol 11 pp 121-140 1976.

SHAVE 1981

SHAVE M.J .R. 'Entities, functions am binary relations: steps

to a conceptual schema' - CcnTputer JOUITlal., Vol 24, No 1, 1981.

SHUMAN 1976

SHUMAN D. ''lhe FUnctional Data Model am the Dita I.an;Juage

OM'I.EX' - ACM Trans on Ditabase Systems 6, W 140-173, 1976.

SMI'lH 1981

SMI'lH J.M. FOX S. & IANDERS T.A. 'Reference Manual for ~,

- Cclrp1ter Corporation of America, 1981.

SMI'lH 1984

SMI'lH J .M. 'Expert Ditabase Systems: A Ditabase Perspective' -

Proc First InteJ:national Workshop on Expert Ditabase Systems,

South carolina, 1984.

S'roNEBRAKER 1980

S'roNEBRAKER M.R. 'Retrospection on a Dita Base system' - ACM

'1000, Vol 5, No 2, June 1980.

242

S'lOlT PARKER 1984

sroIT PARKER 'IDgic Programmirg am D:ltahases' - Proc First

International Workshop on Expert Database systems, sooth

carolina, Editor H. KERSCHBERG, 1984.

TENNANI' 1981

TENNANl' H. 'Natural I..anJllage Processin;J' - PBI Petrocelli book,

1981.

TENNANI' 1984

TENNANI' H. 'Menu-based Natural larguage Urrlerst:ardi.rq' - AFIPS

Conference Proo, NCC, Vol 53, pp 629-635, 1984 •

'roOD 1976

'roOD S.J .P. ''!he Peterlee Relational Test Vehicle - a system

overview' - 11M Systems Jomnal, Vol 4, pp 285-308, 1976.

'!aJ 1982

'lW F.N. et al 'Rabbit An Intelligent D:ltabase Assistant' -

Proc of Conference AAAI, pp 314-318, 1982.

VASSILIOO 1983

VASSILICXJ Y. et al 'How does an expert system get its data?' -

Proo Nineth International Q:>nference on Very large D:ltabases,

pp 70-72, 1983.

243

VASSILIOO 1985

VASSILIOO Y. et al 'Access to Specific Declarative Knowledge

by Expert Systems: '!he inpact of lDgic Programi.rg' - Decision

SUppOrt Systems 1, pp 123-141, North-Hollard 1985.

VERYARD 1984

VERYARD R. 'Pragmatic data analysis' - Blackwell Scientific

PUblications 1984

WALIACE 1984

WALIACE M. 'Ccmmmicat:i.n:J with dataM-SeS in natural larguage' -

Ellis Hon«XXi, 1984.

WALIACE -& WEST 1983

WALIACE M. & WEST V. 'QPROC: a natural larguage database

enquiry system in"plemented in PR>IOO' - ICL Technical Joomal.,

pp 393-406, Nov 1983.

WAIII'Z 1978

WAI.lI'Z D. L. • An Er¥Jlish laI'gUage Question Answer!n;J System for a

large Relational Database' - CAO!, Vol 21, No 7, pp 526-539,

July 1978.

244

WEIZENBAUM 1966

WEIZENBAUM J. 'ELIZA - A COnp.Iter program for the study of

Natural I.an:;JUage between Man am Machine' - CACM, Vol 9, No 1,

pp 36-45, Jan 1966.

WEST 1986

WEST V. • Natural I.an:;JUage IBtabase Enquiry' - ICL Technical

Journal, pp 46-63, May 1986.

WIEDERHOID 1986

WIEDERHOID G. et al 'AcqUisition of F:nowledge fran IBta' - Proc

AOVS1GARl' International 5ynposium on MethodoICXJies for

Intelligent Systems, Tennessee, pp 103-111, Oct 1986.

WILKINS 1986

WII1<INS M. W. 'U{:dating Logical Dltahases Containig Null Values'

- Proc First Intemational conference on Dltabase 'lheory, RaRe,

Sept 1986.

ZANIOID 1986

ZANIOID C. 'ProICXJ: A IBtabase Query l.an:]uage for all Seasons'

Proc First International Workshop on Expert IBtabase Systems,

South carolina, Editor H. l<ERS<liBERG, pp 219-232, 1984.

ZIDOF 1977

ZIOOF M. 'Query By Exanple: A IBtabase I.an:Juage' - 1111 systems

journal, pp 324-343, No 4, 1977.

245

·.APPHIDIX A

AN EXAMPlE OF A RElATIONAL MODEL

SIUDENT

ISNUM 1 = 1 S~ 1 =-1 SITAR 1 = I =1
ATI'END

1==1 a=EI
axJRSE

1 COOE I =m I SESSION I = I

IECIURER

246

.APPElIDIX B

ALTERNATE U:X;IC TRANSLATION OF AMBIGUOUS QUERIES

Initial query:

Get the ~ of students \oho atterrl caJrses attetrl:!d by the student
113I"OO<l AIWfS or students \oho are older than 30

Parse 1 - explicit OR

query (Title, SUrname, Initial) <-
student (Title, SUrname, Initial, *, *,Snurn,*) &
attends (Snurn, Course) &
attends (Snurnl, Course) &
student(*,SUrnamel,*,*,Agel,Snurnl,*) &

(SUrnamel = 'ADAMS I I
gt(Agel,30)).

Parse 1 - implicit OR

query (Title, SUrname, Initial) <
student(Title,SUrname,Initial,*,*,Snurn,*) &
attends (Snurn, Course) &
attends (Snurnl, Course) &
student(*,'ADAMS',*,*,*,Snurnl,*).

query (Title, SUrname, Initial) <
student(Title,surname,Initial,*,*,Snurn,*) &
attends (Snurn, Course) &
attends (Snurnl, Course) &

student(*,*,*,*,Agel,Snuml,*) &
gt(Agel,30).

Parse 2 - explicit OR

query (Title, surname, Initial) <
student(Title,SUrname,Initial,*,Age,snurn,*) &
(attends (Snurn, Course) &

attends (Snurnl, Course) &
student(*,'ADAMS',*,*,*,Snurnl,*)) I

gt(Age,30).

Parse 2 - implicit OR

query (Title, surname, Initial) <
student(Title,Surname,Initial,*,Age,Snurn,*) &
attends (Snurn, Course) &
attends (Snurnl, Course) &

student(*,'ADAMS',*,*,*,Snurnl,*).
query (Title, surname, Initial) <

student(Title,Surname,Initial,*,Age,Snurn,*) &
gt(Age,30).

247

.APPENDIX C

a:MPARING QUERIES PARSED AGAINST DIFFERENT DA.TABASE STRUCIURES

'!he followirq queries are displayed with the possible parses in SQL
to satisfy the queries for both database stnlctures.

QUERy 1

Fetch the nanES of teachers teaching courses in session 1

DATABl\SE STRUCIURE 1

select title, firstname, surname
from lecturer
where

lecturer. id in select teacher id
from course -
where

course.session = 1 union
select title, firstname, surname
from senior_lecturer
where

senior lecturer. id in select teacher id
- from course -

where
course. session = 1 union

select title, firstname, surname
from professor
where

professor. id in select teacher _ id
from course
where

course. session = 1

DATABN3E STRUCIURE 2

select title, firstname, surname
from person
where

person.id in select teacher_id
from course
where

course. session = 1

248

QUERy 2

Fetch the I'l8IDaS of senior lecturers teaching courses ~t at level 2

Ill\TABASE SI'RUCIURE 1

select title, firstname, surname
from senior_lecturer
where

lecturer. id in select teacher id
from course -
where

course. level = 2

DATAEASE STRUCIURE 2

select title, firstname, surname
from person
where

person. id in (select id
from senior lecturer

ani
person.id in (select teacher id

from course
where

course. level = 2

249

QUERy 3

fetch the nanes of people lIh> earn over £ 20000

DA.TABASE STRUCIURE 1

select title, firstnarne, surname
from lecturer
where

lecturer.salary > 20000
union
select title, firstnarne, surname
from senior lecturer
where

senior_lecturer. salary > 20000
union
select title, firstnarne, surname
from professor
where

professor.salary > 20000
union
select title, firstnarne, surname
from dept_secretary
where

dept_secretary. salary > 20000
union
select title, firstnarne, surname
from personal secretary
where

personal_secretary. salary > 20000

DA.TABASE STRUCIURE 2

select title, firstnarne, surname
from person
where

person.id in (select id
from university_employee
where

salary > 20000)

250

APPrnOIX D

c:n1MENTED EXTRAcr OF '!HE BSQL MOaJI.E

/* bsql - if this is not a select command or it has
/* got a "where" part or an "order by" part or
1* a "group by" part; or the retrieval list is
/* a variable or the retrieval list is a list of
/* variables then use the normal sql predicate
/*

bsql(C,T,Er) <- ((- substring(C, 'select' ,0,6)) ;
(substring(C,' where ',S, 7));
(substring(C,' order by ',P,lO));
(substring(C,' group by ',Q, 10));
var(T);
varleT) } &

/ &
sql(C,T,Er) •

1* bsql - the previous predicate has failed so the
/* conunand is a select conunand without a where
1* part and the retrieval list is partly assigned

bsql(C,T,Er} <- stconc('describe ',C,DesC) &
sql(DesC,TD,Errd) &
ge(Errd, 0) &
create(TD,T,New,' where ') &
stconc(C,New,NeWC) &

I &
sql(NewC,T,Er) •

bsql(C,T,Er) <- sql(C,T,Er).

1* create - given the describe list and the retrieval
1* list we can create a where part to constrain
1* the DEMS access

create([*![*![*!TT]]],[H!T],R,W) <- var(H) &
create (TT,T,R,W) & / •

create([HT![*![*!TT]]],[H!T),R,W) <- stoonc(W,HT,Sl) &
stoonc(S1,' = ',S2) &
stt_to_att(SH,H) &
stoonc(S2,SH,Rl) & / &
create (,rr, T ,R2,' and ')

&
stoonc(Rl,R2,R} & I.

create ([] , [] , ' , ,Any) •

251

1* stt to att this predicate converts a string to an atom
1* - - if the atom is already a string then it places 1*
it in quotes

stt_to_att(SH,H) <- strinjp(H) & I &
stoonc("",H,Sl) &
stoonc(Sl,"",SH) & I. stt_to_att(SH,H) <-

st_to_at(SH,H) •

1* varl sua:::eeds if the list is a list of variables

varl([H!T]) <- var(H) & varleT) & I .
varl([) •

252

.APPENDIX E

SUMMARY OF TEST RESULTS

'Ibe following table lists the queries which were analysed.

TFST ~L

NlM QJERY

1 sql('select * fran student \\here nni:>er - 6' ,[A,B,C,D,E],Er).
2 sql(' select * fran student' ,[A,6,C,D,E] ,Er).
3 sql(' select * fran student' ,[A,B,C,D,E] ,Er) & B - 6.
4 sql(' select nane,nni:>er fran student \\here n.IDer-6' ,[A,B] ,Er).
5 sql('select nane,n.nber fran stl.ldent where nane-' 'FABER"', [A,B] ,Er).
6 sql('select nane,n.nber fran student', [A,B] ,Er) & A - 'FABIR'.
7 sql(' select * fran student \\here nnber-6' ,[A,B, *,*, *] ,Er).
8 sql('select * fran student' ,[A,6,*,*,*] ,Er).
9 sql('describe select * fran student' ,A,Er).

10 sql('descrlbe select nane,n.nber fran student \o41ere nnber-6' ,A,Er).
11 sql(' select nane,n.nber fran student \\here ru!her - 6' ,A,Er).
12 sql(' select * fran student \\here age - 54' • [A,B,C,D,E] ,Er).
13 sql('describe select nane,tulber fran student \\here nnber-6' ,Des ,Err)

&
sql('select * fran student \\here rulber - 6', [A,B,C,D,E] ,Er).

RESULTS SUMMARY

7 tuple relation mean CPU time in milliseconds for a 1000
iterative loop. Test 0 is a control test of the iterative loop.

GRXJP TEST NORMAL IDUND DIFFN %DIFF

GRCXJP 1 9 1428 1503 -75 -5.25
10 1396 1462 -66 -4.73

GRXJP 2 1 2618 2848 -230 -8.79
4 2506 2744 -238 -9.09
5 2511 2746 -235 -9.36
7 2644 2846 -202 -7.64

11 2511 2730 -219 -8.72
12 2663 2850 -187 -7.02

GROUP 3 2 5328 4465 863 16.20
3 5634 6034 -400 -7.10
6 5248 5632 -384 -7.32
8 5369 4479 890 16.58

R(X;UE 0 20 20 0
13 3987 4270 -283

253

'!he following test lists a secom set of test queries

TESl' 91L
NtH ~

*1 sql('select * frOOl qpcat.catsingles ~re scatro - 3598',
[A,B,C,D,E,F,G,H,I],Er).

*2 sql('select * frOOl qpcat.catsingles', [A,B,C,D,E,F,G,3598,I] ,Er).
*3 sql('descrlbe select * frOOl qpcat.catsingles', [A,B,C,D,E,F,G,H,I] ,Er).
*4 sql('select * frOOl qpcat.catsingles', [A,B,C,D,E,F,G,H,I] ,Er) & H - 3598.

RESULTS SUMMARY

3000 tuple relation mean CPU time in milliseconds for a 10
iterative loop. Test 0 is a control test of the iterative loop.

GROOP TESl' NORMAL BXJND DIFFN %DIFF

*0 0 0 0
2 *1 28 30 -2 -7.14
3 *2 15185 50 15135 99.67
1 *3 14 15 -1 -7.14
3 *4 16772 17041 -269 -1.60

254

~IXF

EXAMPIES OF REPRESENTATION IANGUAGE STATEMENTS

USER. VIEW INFORMATION

entity ENTITY.

ENTITYl direct_subset _ of ENTITY2.

connect(cnNNECI'ION, ENTITYl, ENTITY2, N, M, INVERSE CX>NNECrION).

intra_entity(CX>NNEcrroN, ATI'RIBln'E, a::MPARA'IDR).

composite (ro.m:>sITE _ ATI'RIBln'E ,ATI'RIIUl'E _LIST) •

J::lATABASE IDOEL INFORMATION

relation (REIATION, KEY _FIEI.ffi, ATI'RIBUI'E _ LIsr) •

image_relation (REIATION, KEY _ F'IEIm, IMAGE _ ATl'RIEUl'E _LIST) •

attribute(ATI'RIBUI'E, A'ITRIBUI'E_TYPE, TYPE_OESClUPITON).

TRANSIATION INFORMATION

plural (SrnGUIAR, PIDRAL).

synonym (USER_TERM, DATAPASE_ TERM) •

QUERy FORMUIATION

bsql (SQL _ SEIEcr _STATEMENT ,
ATI'RIBUI'E REI'RIEVAL LIST,
ERROR _ REriJRN _ CX>OE) .-

255

APPENDIX G

A'ITRIIUI'E STATE11ENT DESCRIPI'ION TABlE

ATI'RII:UI'E _TYPE DESCRIPI'ION INTERPREI'ATION

integer N N digit integer

real [N,M] real number of N digits
M digits after decimal
point

fchar N character string of
fixed length N

vchar N character string of
variable length N

composite RUliNAME composite attribute
values acceptable
combinations defined by
predicate IDLENAME(*)

one of [LIST] LIST of all possible - values attribute can
take

reference REIATION attribute is a
reference to a tuple in
the relation REIATION.
It is therefore of the
form of the key
attribute(s) of the
REIATION

256

APPENDIX H

~ EXAMPIE OF AN mrERACI'IVE SFSSION WI'IH '!HE SYSTEM

To show the flexibility and capability of the system we now consider
a non trivial queJ:Y which is traced from the initial input of the
user query through to the user receiving a reply.

UST WE NAMES OF AIL STIJDENI'S WH) ARE FH1AI.E AND ARE IF.cIURill BY rnDF SMI'IH

Given this initial input the system parses it, then queries the
unknoWn tenns. If two unknown tenns are separated by only a space
then the system initially assumes them to be perceived as a single
item. '!he system fails to recognise the words LIST, PROF an:i SMITH.
'!he system responds with:

Do yoo believe that the tem UST is stored in the database Yin

To which the user would respond: N

'!he system then replies:

I do not urrlerstarrl the tem UST please supply an alternative or type Q to quit
ani respecify the entire query

To which the user replies: FETCH

'!he system recognises this tern an:i so proceeds to ask:

Do yoo believe that the tem ffiOF SMI'lli is stored in the database Yin

To which the user replies: Y

'!he system then proceeds to parse the query to confinn its
urrlerstanding it asks:

The obj ects yoo wish retrieved are: Person Narre

To which the user replies: Y

257

'll1e system then proceeds to state its assunptions:

This retrieval is subject to:

person is a stu:lent ani stu:lent has sex -'FEMAlE' ani
stu:lent lectured by teacher ani teacher is a person ani
person's name is according to a rule 'PROF SMI'IH I

To which the user replies: Y.

'lhe system then codes the quay am then infonns the user:

There is 1 tuple satisfying the request hit return to view or q to quit.

If the user types return he is presented with the following list

title
first:naroo
surnane

MRS
IXlUS
SMI1H

258

INI'ERNAL r.cx;IC REFRESENTATION AND ALTERNATIVE SOL TRANSLATION

From the previous interactive session the system will have generated
the following internal representation which it could then execute.

Initial Query,

usr WE NAMES AlL OF SIUDENl'S WID ARE FH1AIE AND ARE l..ECIURED BY ffiOF SMI1I I

logic codirq of query generated by system

pred query ([TitleO, Firstnameo, SUrnarneO]) <-
- person(NumO,AgeO,TitleO,Firstnameo,surnameo,

streeto, TownO, CountyO, CountryO, SexO) &
student (NumO ,Home _streeto, Home _ townO, Home _ count yO ,

Home_countryO,NationalityO,SponsorO,
Attendance _ typeO, Year_of _studyO) &

eq(5exO , 'FEMAIE') &
lectured by (Id numO, Id numl) &
teacher (Id numI, Rooml) - &
person (Id_numl, Agel,Titlel, Firstnamel, SUrnamel,

Streetl, Townl, Countyl, Countryl, Sexl) &
narrerule (Titlel, Firs'tnarrel, SUnlamel, 'EmF SMI'IH') •

IbSSible ~ logic cxx:lin.J of quexy (hand generated)

pred_query([Titleo,Fi:stname?,SUrnameO]) <
person(NumO,*,T1tleO,FLrStnarneo,SUrnameO,*,*,*,*,'FEMAlE') &
lectured by(Id numO, Id numl) &
person (Id_numl:-* , 'PROF':-*, 'SMITH' , *, *, *, *, *).

SQL ocxlin.J of saIOO query (han1 generated)

select person. title, person. firstnarne, person. surname
from person
where

person.num in (select num
from student)

and
person. sex =' Ffl.1AI.E'

am
person.num in (select attend. stUdent

from attend
where
course in (select code

from course
where
lecturer = (select nurn

from person
where

259

title=' PROF'
ard
surnarne=' SMITH ' »)

APPENDIX I

SOURCE mOE LISTING OF ENTIRE INI'ERFACE SYSTEM

MOIXJIE LIsr

Alphabetical listing of all program mcx:iules

PROBJOl' EXEC
srARIUP EXEC
AGGREX;AT PRQIm
AIJI'ER PRQIm
ANALYSE PRQIm
AroST PRQIm
APPEND PRQIm
A'lTFIND PRQIm
BSQL PRQIm
OIECK PRQIm
W1FQSE PRQIm
(x)NDITIO PRQIm
CDNNECIO PRQIm
CDNUSER PROr..cx;
CSQL PROr..cx;
CUSER PROIm
DA.TA PRQIm
DBI'ERMS PROIm
DISPLAY PROIm
rx:wuN PROr..cx;
OOUBIE 0 PROIm
EQUIVAL PRQIm
EXPlAIN PROr..cx;
FC PROr..cx;
FILL REM PROIm
FILlER PROIm
FIND PROr..cx;
FIND DEF PROr..cx;
GEI'FIIE PROr..cx;
GEISCREE PROIm
ID PROIm
lNIOO PROIm
ISA PRQIm
r..cx;IC PROIm
MEMBER PROIm
NEWUSER PROIm
our PROIm
OUTQ PROIm
PWRAL PROIm
PRINTL PROIm
PROCESS PRQIm

260

QO)N PROr.cx;
<POI'ED PROr.cx;
RATI PROr.cx;
RFADlli PROr.cx;
REVERSE PROr.cx;
RL PROr.cx;
ROUL PROr.cx;
RUN PROr.cx;
SIFAD PROr.cx;
STR LIST PROr.cx;
SYNONYM PROr.cx;
'lM PROr.cx;
'IOP PROr.cx;
TRANSL PROr.cx;
UC PROr.cx;
UNIT UN PROr.cx;
VERIFY PROI.£X;

261

APPENDIX I continued

PREDICATE CROSS REFERENCE LIST

PREDICATE NAME

a

a condition

act on

(MOrmE NAME WHERE PREDICATE DEFINED]
BRIEF PREDICATE DESCRIPl'ION

(qcon]
test predicate used to deliver integers in the range
1toB

[fc]
defines the types of possible conditional units

[conuser]
predicate takes appropriate action depending on user
response to question about nature of an unknown tenn
in a user query

actual relation
- [alter]

addressrule

add subset

relational attributes as actually stored, compare
with iInage_relation which stroes composite
attributes

[cuser]
adds entity name to list of attribute to fonn
retrieval list

[alter]
model specific composite attribute comparison rule

[rl]
add a subset clause to the conditional clause list
of the query

add tenn stored
- - [conuser]

record that the user believes a tenn is stored
add to tenn database

- - - [conuser]

a function

aggregates

analyse

tenus composed of several words must be stored so
that they nay be identified in the future

[process]
specifies all recognised system functions

[aggregat]
lists for model aggregates and their type (0 to 5)

[analyse]
analyse query input to fonn system recognised
objects

262

apostro

append

ask about

attend

att inf

attributes

[apost]
eliminates single apostrophe from a word an::l notes
the possibile existence of a possession verb

[append]
apperrls two lists to fonn a third

[cuser]
asks the user whether an asstnnption is correct, this
is assuming it has not already been asked, the user
response is then stored

[data]
model relation predicate

[alter]
model specific connection specification

[domain]
displays further infonnation when requested on an
attribute during the querying of the domain
infonnation

[alter]
attribute definition statement

attributes of interest
- - [attfind]

given a relation name finds all attributes of it or
its supersets

atributes _of_interest
[cuser]
given a relation name finds all attributes of it or
its supersets and records all entity names in a list

[data]
model relation predicate

break yrintlist
[explain]

bsql

capital

caseshift

ccat

prints out the que:ry cordition list with suitable
line breaks to make the asstnnptions more readable

[bsql]
binds instantiated varibles into the call to the
SQIIOO database

[outq]
. captialise first element of a list of characters

[str list]
turn-a string from lower case to upper case

[out]
csql test predicate

263

check

check addax

[qcon]
tests current status of variable then correctly
changes it, if possible, to eq N

[qcon]
tests current status of variable then amerxls it, if
possible, to be constrained by ge N

[qcon]
tests current status of variable then arnerrls it
it if possible to be constrained by gt N

[qcon]
tests current status of variable then amerrls
it if possible to be constrained by Ie N

[qcon]
tests current status of variable then arnerrls
it if possible to be constrained by It N

[double_d]
checks integrity of loaded Prolog code

[qcon]
check to see if a variable contstrained by >= arrl <=
conic ide so l!'aking the only relevant constraint =

check asked corrlition
- - [check]

checks to see if the user has already been asked a
question if he has not then new question is recorded
as having been asked - can also be used to clear
asked storage area

check for double definition
- (double_d]

checks to see if the same predicate, head arrl body, .
has been defined more than once

check for split_clause_definition
- - [find def]

check user

combine

corop

checkS to see if a predicate head has been defined
in more than one module

[cuser]
checks with user to ensure that the deductions ma.de
by the system about the query are correct

[fc]
combines conditional objects to fonn more complete
corrlitional units in the conditional clause list

[csql]
fonus cornpourrl corrlitional clauses by apperrling
"arrl" to the front of any following corrlitional
clauses

264

compose

con

com

corrlitionals

[compose]
composes the recognised query tenus into a meaning
internal representation

[alter]
composite attribute definition statement

[attfin:l]
locates all connections for a given entity

[csql]
matches corrlition rornes to prolog corrlitional
predicates

[corrlitio]
states types of corrlitions

corrlition output
- [out]

con inf

connect

output a corrlitional clause in a nnre easily
readable fonn for confinnation checking by the user

[domain]
displays infonnation on a connection when requested
duri.rq querying of the domain infonnation

[alter]
model connection definition statement

connection of interest
- - [attfin:l]

connectors

constraint

identifies for a given entity all connections it has
with other entities or it inherits from any superset

[connecto]
states the three types of connectors "arrl" "or"
"not"

(qcon]
adds a constraint on to the predicate evaluation
stack

[csql]
fonns corrlitional clause of a SQI/ffi query if the
variable has been instantiated to a constraint
condition.

consult user for unknown
- - (eonuser]

dialogue with user to detremine which of the unknown
tenns the user believes to be stored in the database

copy_till_dash .
[str ll.st]
copy -a string enclosed in quotes until closing quote

265

count

countl

course

coutput

create

crite

csql

ct

ct2

ct3

cw

cwrt

db tenus

departIrent

display

dimension

[run]
count mnnber of tuples retrieved by the ICXJic query
predicate, up to a maximum of 10

[csql]
csql test predicate

[data]
model relation predicate

[qcon]
writes out a constraint clause

[csql,bsql]
creates the corrlitional clauses of a SQI/oo call

[ICXJic]
writes a corrlition as a prolCXJ predicate

[csql]
birrls all corrlitional statements into a SQI/oo call

[csql]
predicate csql test call

[csql]
predicate csql test call

[csql]
predicate csql test call

[domain]
writes out a connection

[qcon]
writes out a prolCXJ corrlitional predicate as a
conditional operator

[alter]
model phrase definition statement

[dbtenns]
joins words in query word list to fonn recognised
obj ect tenns

[data]
model relation predicate

[display]
displays current query and asstnnptions made

[alter]
attribute dimension definition statement

266

dorrain attributes
[dorrain]
identifies all attributes for an entity including
those inherited from any superset entities

dorrain cormections
- [domain]

dorrain inf

dorrain ssets

entity

eqn

equi

equivalance

explain

extfirrl

faculty

fee

filler

identifies all connections for an entity including
those inherited from any superset entities

[dorrain]
displays infonnation on an entity when requested
during querying' of the domain infonnation

[domain]
locates all subsets for a given domain entity and
the subsets of its subset entities

[alter]
entity definition statement

[qcon]
equals constraint for constraing a variable to be
equal to a mnnber N

[equival]
defines equivalance of two different operators anded
together

[equival]
defines equivalance of any two operators anded
together

[explain]
when a predicate quel:Y fails to retrieve any tuples
an explanation of the conditions on which the query
was based is output

[find def]
firrls-names of all prolog files on system

[data]
model relation predicate

[data]
model relation predicate

[getfile]
using' a set of query got from a test file run the
system

[filler]
defines all words considered to be filler words

267

find
[find_def]
firrls module(s) nane where predicate is defined

find_aggregate
rid]
attempts to find aggregate clauses in a query

find aggregates
- rid]

findall

searches entire query sentence to firrl aggregate
clauses

[find_def]
specifies all predicates currently loaded

find combination
rid]
given a list of corrlitions attellpts to match them to
fom more succinct queries

find combinations
- rid]

fOO corrlition

searches an entire query sentence to find all
possible combinations or combinations of
combinations

rid]
given a list of teI:m types attempts to match them to
identify possible corrlitional units

find concli tions
- [id]

find others

searches list to fOO all corrlitions

[uc]
searches for an entity as an atom or the first teI:m
of an object list structure

[rl]
firrls an entity attribute pair within a list

[fOO_def]
finds name of other module(s) if predicate defined
in more than one module

find others similar
- [fOO def]

fOO ilames of other modules where predicates with a
name containing a given string are defined

findout

fOO similar

[find]
firrls for a given predicate body all predicates
which it calls

[find_def]
find names of modules for predicates with a given
string contained in their name

268

fim subset
[rati]
given query clause list locate the subset clauses
within it

formalise condition
- [fe]

fonn conditional objects into conditional clauses
formalise conditions

- [fe]

fonn condition

for the entire conditional list fonn conditional
objects into conditional clauses

[csql]
fonns conditional part of SQL\a> query

fonn condition

tunction_check

g

gen

get_attribute

get_comparator

rue]
fonn the predicate query conditions on which the
retrieval is based

[rl]
combine an entity am attribute to fonn an object

[domain]
checks whether a user has input a system function
'domain', 'load', 'new', 'save'

[getscree]
initiates running the system to parse the user query
once parsed it then asks the user to confinn the
exea.ltion of the query

[qcon]
greater than or equal to constraint for constraing a
variable to a conditional value

[fe]
get an attribute appropriate for a conditional unit,
"any" if any attribute appropriate

rue]
identify comparison operator for a conditional
clause

[fe]
get conditions embedded in a list structure

rue]
identify entity in context which matches current
attribute

[rl]
get an entity to match with an attribute

269

get_inter_entity
[uc]

gf

gtn

get new in context entity after an inter entity
connection conciition

[uc]
group remainig entity objects to fonn retrieval list

[getscree]
reads in a user query fram the tenninal then
initiates running the system to understarrl the query

[getfile]
test nm of system reading queries from file
"simple data a"

[qcon]
greater than constraint for constraing a variable to
a conditional value

identify clauses
- [id]

identifies the constraint clauses of a query first
identifying the conditional units then atteIrpting to
combine them

identify_quoted_tenns
[quoted]

ifrule

given list of words removes quotation marks fram
quoted terns

[out]
outputs when writing out conditional clauses that a
condition is subject to a rule

image relation
- [alter]

increm

ins

intro

is

relation definition statement includes imagined
composite attributes

[outq]
returns the increment of the input variable

[data]
insert values into the SQIIOO database

[conditio]
states intra-entity conditions for a given model

[intro]
Initiates system running display a welcome screen

[isa]
predicate defined to specify the type of a word in a
query sentence

270

lastline

lastlinef

lecturer

len

level

[readin]
checks to see if line read from the tenninal is the
last line or a continuation line

[readin]
checks to see if line read from a file is the last
line or a continuation line

[alter]
model specific connection specification

[data]
model relation predicate

[alter]
model specific connection specification

[qcon]
less than or equal to constraint for constraing a
variable to a conditional value

[data]
model relation predicate

list attributes

list domains

listst

loaduser

loe

locate

ltn

[attfind]
prints out attribute list three to a reM

[attfind]
prints out all entity names

[csql]
makes elements of one list equal constrained to
elements of another list

[data]
corwert list elements into string separated by ","

[newuser]
loads the aSSlIDlptions and data stored in a user
profile

[dbtenns]
matches a list to the start of another list
delivering the rerra.in:ier of the list

[dbtenns]
locates a list of elements in another list

[qcon]
less than constraint for constraing a variable to
a conditional value

271

[check]
fonns predicate to maintain query has been asked
store

make retrieval list
-[ue]

make variable

match

match

match isa

namerule

form retrieval list from list of remaining objects

[outq]
turns an atom or composite attribute into a variable
or list of variables by capitalising the first
character

[id]
matches types of corrlitions with terms in a query
sentence

[tIn]
match acceptability of a value to the defined
attribute fonnat

[uc]
match a condition with the in context entity or one
of its super/sub sets

[member]
finds whether an element is a member of a list

[alter]
model specifie composite attribute comparison

nationality classify
- [data]

model relation predicate
nct2

[csql]
predicate csql test call

net
[csql]
predicate csql test call

neat
[csql]
predicate csql test call

negate_inter _ ent

new con

[outq]
write out a not clause for the query predicate tail

[attfind]
apperrls the elements of one list to another
eliminating any duplicate elements

[qcon]
sets up a new corrlitional constraint number for a
variable

272

new context

new user

[uc]
defines possible new context entity

[newuser]
clears any previously asserted queries

[newuser]
clears user profile area for new user removing all
asstllTptions made during any prior session

[logic]
ensures an attribute list has no members which are
corrposite attributes

(alter]
model specific connection specification

not atten::ied by
- - [alter]

obtain

model specific connection specification

[nm]
write out number of possible tuples to be retrieved

[cuser]
appends pairs of list objects as long as every
secord element of the pair is unique

(apost]
obtains corditional type of inter-entity corrlition

obtain_context
[rl]
find entity which is currently in context

obtain_objects
[rl]
search a list to firrl all entity attribute objects .

obtain retrie list
- - [rl]

form a list of obj ects which will constitute the
retrieval list

obtain retrieval list
- [rl]

o clause

oyred

initiate process of attempting to firo required
retrieval list allowing backtracking from any wrong
assumption

[fim_def]
output the clause's module name and calling
predicate list for each predicate

[fim_def]
outputs predicate list as long as it have not
already been printed

273

out

out att list

out cond

out cond

out dim

[newuser]
opens a new file or oldfile if it already exists to
write out a user profile

[logic]
outputs the attribute list as a list of variables to
forn the query predicate

[uc]
write out condition to the condition list

[logic]
outputs a corrlition as a prolog corrlition as part of
the logic specification of a query predicate

[run]
write out for an attribute its dimension if kncrvm

[domain]
output a list of attributes for an entity and
initiates further querying of attributes

output corrlition
- [logic]

outputs a corrlitional clause as part of the logic
specification of a query

output connector
- [logic]

outputs a connector as part of the logic
specification of a query predicate

[domain]
output a list of connections for an entity and
initiates further querying of these connections

output_inter_entity,
[loglC]

outputyred

output yrofile

outputs an inter entity relation as part of the
logic specification of a query predicate

[find_def]
output a list of predicates with the modules where
they are declared and a list of predicates which
call them

[newuser]
writes out the assumptions made during a session to
a user profile file

output relation
- [logic]

outputs a relation as part of the logic
specification of a query predicate

output retrieval
- [run]

write out a retrieVed tuple

274

output_subset

out ret

paid

person

[domain]
output a list of subsets for an entity am initiates
further querying of these subsets if required

[logic]
outputs a subset condition as part of the logic
representation of the query

[run]
write an attribute value for a retrieVed tuple

[outq]
writes out the logic query predicate list of
attributes to be retrieVed

[outq]
writes out the logic predicate representation of the
original query

[alter]
model specific connection specification

[alter]
model specific connection specification

[data]
model relation predicate

personal_ tutee _ of
[alter]
model specific connection specification

personal_tutor_to
[alter]
model specific connection specification

plural
[alter]
vocabulary plural definition statement

[data]
model relation predicate

primary_entity_Iist .
[domam]

printlist

printlistf

identifies all entities which are primary i.e.
no supersets

[printl]

have

print a list of elements as a string separated by
spaces

[printl]
print to a file, a list of elements as a string
separated by spaces

275

professor

putwrittail

q

query

quoted

rationalise

readline

readlinef

[process]
controls the pn-sing of the initial user que:ry

[data]
model relation predicate

[data]
model relation predicate

[domain]
prints outs a list of objects as string separated by
spaces

[outq]
test predicate used to debug predicate query tail
output

[attfind]
Queries for all known entities their attr.ibutes,
connections

[str list]
tuniS a string of words separated by spaces into a
list

[str list]
locates que:ry tenus to fonn a que:ry list

[attfind]
Queries an entity specifying all known facts about
the domain of interest Le. atrr.ibutes, connections,
subsets

[quoted]
returrls string within quotation marks

[rati]
removes unwanted/repetative subset conditions

[readin]
reads a line from the tenninal checks to see if it
is a continuation line

[readin]
reads line from a file and test to see if it is the
last line

[check]
recalls all queries that have been stored as "been
asked of the user"

276

reduce

relation

[verify]
reduces a retrieval list by eliminating relation
clauses if an obj ect from that relation is being
retrieved on its own

[alter]
relation definition statement

remove default

remove_filler

[outq]
remove default context entity names from required
attributes list

[fill_rem]
eliminates all words with type filler from a list

remove yrevious _queries
[outq]

re order_not
removes the instatiation of any previous queries

[process]
correct specification of Nar next to actual
condition an:i away from any asstmlption clauses

retrieve output
- [cuser]

fonus output list of entity attributes to retrieVed
reverse

[reverse]
reverses the order of elements in a list

reverse get inter entity
- - [uc]

rites

rules

salary

saveuser

get inter entity connection for an inversely defined
connection to the one specified in the connect
statement

[domain]
writes out connection name and degree of connection'
based on description of connection in connect
statement

[find]
returns all predicates called by a given predicate

[nm]
load query predicate and execute it displaying the
results if required

[data]
model relation predicate

[newuser]
saves the assumptions made during the current
session in a user profile file

277

sc

secretary

separate

session

setup

shift

singylural

[uc]
a new context entity is the same as the current one

[logic]
tests whether two entities have the same key

[qcon]
search and write out all corxUtional constraints

[data]
model relation predicate

[str list]
specIfies possible word separtors

[data]
model relation predicate

[top]
loads all system modules

[str list]
converts lower case to upper case unless word is
quoted

[apost]
If a word only has a single apostrophe then the word
before the apostrophe is returned

[domain]
COnverts word from plural to single if the plural is
known

specific_conditionals
[fc]
ascertains whether a conditional unit refers to a
specific attribute

space separate
- [str list]

seperate all word separtion characters by spaces

sponsor

stprst

[out]
splits an object pair back into its entity attribute
parts

[data]
model relation predicate

[run]
writes out an atom or print a string

strip leading tenns
- - [slead]

strip any leading tenus from the list of conditional
clauses which are not conditions

278

strip_object_default
[rl]

student

sub cond

sub condition

subset

subsets

supervise

swap yluralS

synonym

remove default context entities from the retrieval
list

[str_list]
removes spaces from start and finish of a string

[csql , bsql]
converts an atom to a string if it is already
enclosed in quotes then the resulting string is also
placed in quotes

[data]
model relation predicate

[logic]
outputs a sub condition as part of the logic
specification of a query predicate

[out]
writes out a sub condition, used to make reading
conditional clauses easier when a user is confirming
a parse

[str_list]
substitute a word separation character with a string
made up of itself with a space either side

[alter]
entity direct subset definition statement

[alter]
entity direct and indirect subset definition
statement

[data]
model relation predicate

[alter]
model specific connection specification

[alter]
model specific connection specification

[plural]
for list of words swap plurals for singular

[synonym]
swaps any word which has a more usual synonym

[synonym]
defines all acceptable synonyms

279

synonyms

taughtyy

teacher

teacher for

test

test db tenn

translate

[synonym]
defines a synonym as a synonym of a synonym

[alter]

[data]
model relation predicate

[alter]
model specific connection specification

[qcon]
test to see whether a constraint actually further
constrains a variable

[conuser]
tests whether a tenn is stored as a database tenn

[transl]
translates a list of words into there recognised
word type

type_of _aggregate
[id]
defines sequence of tenns which constitute an
aggregate clause

type of combination
- - [id]

defines sequence of tenns ani corrlitional clause
which constitute a combined corrlitional clause

type_of_corrlition
[id]
defines a sequence of tenus which constitute a
corrlitional clause

type of unlmown
- - [unit un]

unit co

defines the two types of unJmown values to be
unlmown or believed stored

[data]
model relation predicate

[uc]
unites corrlitionals with their objects ani rules
maintaining the in context entity

unite corrlitions
[uc]

unite unlmown
unites corrlitionals with their objects ani rules

[unit un]
fonns -all types of consecutive unlmown tenns into a
single unknown tenn

280

university employee
- [data]

model relation predicate
uppercase_data

ushift

varl

[quoted]
corwert unlmown data items to uppercase unless they
are quoted

[str list]
corwerts a list of characters from lower case to
upper case

[csql,bsql]
determines whether a list is a list of
uninstantiated variables

verify retrieval
- [verify]

we

wct2

write head

write line

writes att

write tail

writtail

wrt tail

verifies that in a retrieval list a relation and
selected objects from that relation are not being
retrieVed together

[domain]
writes out a connection

[csql]
predicate csql test call

[domain]
writes out the information about an entity
connection in a pretty fonn

[outq]
writes out the head of the logic query predicate

[domain]
writes out a line for a connection deperrling on
whether it is a 1 to 1 or 1 to m.:my connection

[domain]
writes out an attribute definition based on the
attribute statement

[outq]
write out the query predicate tail

[outq]
write out the clauses and clause connections of the
query predicate tail

[outq]
write out a clause of the query predicate tail

281

FILE: STARTUP EXEC Al (SQ53) 7/29/87 11:54:37

1* start up vm prolog with prolog file top *1
EXEC PROBOOT
EXEC VNPROLOG DROP WS MIXED NODI SPLAY

PAGE 1

FILE: PROBOOT EXEC Al (SQ53) 7/29/87 11:54:36

&BEGSTACK
reconsult(top).
intro.
&END

PAGE 1

FILE: PROBOOT EXEC A1 (SQ53) 7/29/87 11:54:36

&BEGSTACK
reconsult(top).
intro.
&END

PAGE 1

FILE: AGGREGAT PROLOG A1 (SQ53) 3/25/88 12:16:56

aggregates(average,O).
aggregates(count,3,any).
aggregates(least,2,any).
aggregates(maximum,l,any).
aggregates(minimum,2,any).
aggregates(most,l,any).
aggregates(sum,4,any).
aggregates(total,3,any).
aggregates(oldest,1,age).
aggregates(youngest,2,age).

PAGE 1

FILE: ALTER PROLOG Al eSQ53) 9/17/87 21:00:42 PAGE 1

not_8ttend(I,C) <- , vareI) & person(I,*,*,*,*,*,*,*,*,*,'UNIV EMP') & /.
not_attend(I,C) <- person(I,*,*,*,*,*,*,*,*,*,*) & -

course(C,*,*,*) &
, attendCI ,C) .

attended by(Code, Id) <- attend(Id,Code).
not_8ttended_by(Code, Id) <- not_attend(Id,Code).

taught by(Course,Teacher) <- course(Course,*,*,Teacher).
teache~_for(Teacher,Course) <- course(Course,*,*,Teacher).

persona1_tutor_to(Teacher,Under_grad) <- under_grad(Under_grad,Teacher).
persona1_tutee_of(Under_grad,Teacher) <- under_grad(Under_grad,Teacher).

supervised_by(Post_grad,Teacher) <- supervise(Teacher,Post_grad).
supervisor_to(Teacher, Post_grad) <- supervise(Teacher,Post_grad).

lecturer to(Teacher, Student) <- attend(Student,Course) &
- taught by(Course,Teacher).

lectured_by(Student,Teacher) <- lecturer_to(Teacher,Student) ,
addressru1e(St,To,Co,Cr,To).
addressru1e(St,To,Co,Cr,Co).
addressrule(St,To,Co,Cr,Cr).
addressrule(St,To,Co,Cr,S) <- stconc(St,' ',Sl) &

stconc(To,' ',S2) &
stconc(Co,' ',S3) &

stconc(SI,S2,S4) &
stconc(S4,S3,SS) &
stconc(SS,Cr,S).

addressru1e(St,To,Co,Cr,S) <- stconc(To,' ',S2) &
stconc(Co,' ',S3) &
stconc(S2,S3,SS) &
stconc(SS,Cr,S).

addressrule(St,To,Co,Cr,S) <- stconc(To,' ',S2) &
stconc(S2,Co,S) .

addressrule(St,To,Co,Cr,S) <- stconc(To,' ',S2) &
stconc(S2,Cr,S) .

addressrule(St,To,Co,Cr,S) <- stconc(Co,' ',S2) &
stconc(S2,Cr,S) .

namerule(St,Sf,Ss,S) <- stconc(St,' ',SI) &
stconc(Sf,' ',S2) &
stconc(Sl,S2,S3) &
stconc(S3,Ss,S).

namerule(St,Sf,Ss,S) <- stconc(St,' ',S1) &
stconc(SI,Ss,S) .

namerule(St,Sf,Ss,S) <- stconc(Sf,' ',Sl) &
stconc(SI,Ss,S).

namerule(St,Sf,S,S).

attributes Clevel_id,one_of, ["ONE", "TWO"]).
attributes (session_id,one_of, ["FIRST","SECOND","THIRD"]).
relation(professor,[id_num],[id_num]).
re1ation(lecturer,[id_num],[id_num]).
relation(senior_lecturer,[id_num],[id_num]).
relation(post grad,[id num],[id num]). - - -
relationesession, [session], [session id]).
relation(level,[leve11,[level_id]).
relation(sa1ary,[sa1ary],[salary]).
entity(session).
entity(level) .

FILE: ALTER PROLOG A1 (SQ53) 9/17/87 21:00:42

entity(salary) .

1''< SYSTE~I SET-UP FOR LIST NOTATION
<- pragma(list,l).

1* A SPECIFICATION OF THE CODED RELATIONAL MODEL FOR THE
1''< COURSE-LECTURER-STUDENT nmlAIN
1''<

/* ENTITIES OR OBJECTS IN THE DOMAIN
1*
entity(course).
entity(post_grad).
entity(under_grad).
entity(departmental_sec).
entity(professor_sec).
entity (fee) .
entity(professor).
entity(lecturer).
entity(senior_lecturer).
entity(sponsor).
entity(department).
entity(faculty).

1* THE RELATIONS REPRESENTING THE ENTITIES WITH THIER ATTRIBUTES
1* (Attribute which are entity references have been high-lighted)

image_relation(course,[code],[code,session,level,teacher]).

PAGE 2

image_relation(person,[id_num],[person_type,id_num,age,sex,
name,address]).

actual relation(person,[id_num],[id_num,age,title,firstname,surname,
- street,town,county,country,sex,person_type]).

composite(name,[title,firstname,surname]).
composite(address,[street,town,county,country]).

image_relation(student,[id_num],[id_num,home_address,nationality,sponsor,
attendance_type,year_of_study,student_type]).

actual_relation(student,[id_num],[id_num,home_street,horne_town,
home_county,

home_country,nationality,sponsor,
attendance_type,year_of_study,student_type]).

composite(home_address,[home_street,home_town,home_county,home_country]).

image_relation(university_employee,[id_num],
[id_num,salary,department_id,
ni,tax_code,university_employee_type]).

image_relation(secretary,[id_num],[id_num,secretary_typel).

image_relation(teacher,[id_num],[id_num,room,teacher_type]).

image_relation(professor_sec,[id_num],[id_num,professor]).

image_relation(fee,[attendance_type,nationality_classify,student type],
[attendance_type,nationality_classify,student_type~value]).

image_relation(sponsor,[sponsor_name],[sponsor_name,address]).

FILE: ALTER PROLOG A1 (SQ53) 9/17/87 21:00:42

image_relation(department,[department_code],[department_code,
department_name,facu1ty]).

image_relation(faculty,[faculty_name],[faculty_name]).

PAGE 3

/,'(EXPLICIT DEFINITION OF ENTITY RELATIONSHIPS REQUIRED FOR NANY TO ~IANY

/* RELATIONSHIPS
/,'(
image relation(attend,[student_id,course_id],[student_id,course_id]).

image_relation(belongs_to,[student_id],[student_id,department_id]).

image_relation(supervise,[teacher],[teacher,post_grad]).

/,'(ROGUE RELATION 7?7?

/*
image_relation(nationality_classify,[nationality],

[nationality,classification]).

relation(X,Y,Z) <- image_relation(X,Y,Z).
relation(X,Y,Z) <- actual_relation(X,Y,Z).

/,'(ADDITIONAL INFORMATION FOR USER CONCEPTUALISED HODEL

/*

/* SUBSET DEFINITION
/* subset(person,student) defines person has a subset student
/* or inversely student is a person
j-l(
subset(person,university_employee).
subset(person,student).
subset(university_employee,teacher).
subset(university_employee,secretary).
subset(student,post_grad).
subset(student,under_grad).
subset(secretary,departmental_sec).
subset(secretary,professor_sec).
subset(teacher,professor).
subset(teacher,senior_lecturer).
subset(teacher,lecturer).

subsets(X,Y) <- subset(X,Y).
subsets(X,Y) <- subset(X,Z) & subsets(Z,Y).

/": A SUPERSET IS ALSO AN ENTITY SO WE NEED TO EXPAND THE ENTITY DEFINTION

/*
entity(person).
entity(student) .
entity(university_employee).
entity(teacher).
entity(secretary).

/,'(WE ALSO NEED TO EXPLICITLY DEFINE ALL PERCIEVED RELATIONSHIPS BET\{EEN
/,'(ENTITIES WITH THEIR CONNECTIONS DEFINTION.
/* THIS CAN BE ACHIEVED USING THE FOLLOWING DEFINITION FOR~IAT

/,'(CONN NANE BETWEEN TYPE INVERSE NAHE

FILE: ALTER PROLOG A1 (SQ53) 9/17/87 21:00:42 PAGE 4

1* 1 PAID UNIVERSITY_E~lP, SALARY l:M PAID TO
1*
I~~ read as;-
1*
1* university employee paid a salary
1* salarty paid to a university employee
I~~

1* a university employee has one and only one salary
1* the same salary may be paid to many university employees
1*
1* translates
1* paid(Person,Salary) <- university_employee(Person,*,*,Salary,*,*).
1* paid_to(Salary,Person) <- paid(Person,Salary).
1*
1* dimension(paid in #).
I~':

I~~ coded
1* connect(paid,university_employee,salary,l,m,'paid to').
I'':
I'~ synonym
1* paid - earn

connect(paid, university_employee, salary, 1, m,paid_to).

paid(Person, Salary) <- university_employee (Person, Salary,'~,'~, *, '':).
paid_to(Salary,Person) <- paid(Person,Salary).

dimension(age,'years').
dimension(value, 'pounds').
dimension(salary, 'pounds').

Ii: synonym(paid,earns).

connect(aged, person, age, 1, m, ").
connect(named, person, name, 1, m, ").
connect(resident_at,student, home_address, 1, m, 'I).

connect(resident_at,person, address, 1, m, II).

I*connect(have_as, unknown, unknown, n, m, ").
connect(located at, sponsor, address, 1, m, ").
connect(called,-sponsor, name, 1, 1, I').
connect(sponsor to, sponsor, student, n, 1, sponsored by).
connect(lecture~_to, teacher, student, n, m, lectured=by).
connect(supervisor_to, teacher, post_grad, n, m, supervised by).
connect(personal_tutor_to, teacher, under_grad, n, 1, -

personal tutee of).
connect(secretary_to, professor_sec, professor, 1, 1, in_charge_of).
connect(work_for, departmental_sec, teacher, n, m, has_working_for).
connect(member_of, student, department, n, m, belongs_to_by).
connect(attend, student, course, n, m, attended_by).
connect(in, student, year_of_study, 1, m, ").
connect(working_in, university_employee, department, 1, m,

has_working_in_it).
connect(belongs_to, person, faculty, 1, m, belonged to).
connect(taught_by, course, teacher, 1, m, teacher f;r).
connect(identified_by,person, ident_number, 1, 1,-1').
connect(has_gender, person, sex, 1, m, ").
connect(classified_as, nationality, type_of_nat, 1, m, ").
connect(pays, sponsor, fee, n, m, paid by).
connect(dependent_on, fee, attendance,-n, m, 'I).
connect(has_a, student, nationality, 1, m, ").
connect(type_of, student, attendance, 1, m, ").
connect(depends_on, fee, type_of_nat, n, ro, ").

FILE: ALTER PROLOG Al (SQ53) 9/17/87 21:00:42

connect(charged, student, fee, 1, m, charged to).
connect(member_to, department, faculty, 1, m~ made up of).
connect(taught_in, course, session, 1, m, II). --
connect(taught_at, course, level, 1, m, II).
1* connect(called, course, code, 1, 1, II).

I''r SPECIFICATION OF INDIVIDUAL ATTRIBUTES
1*
attributes(code,fchar,4).
attributes(session,one_of,["FIRST","SECOND","THIRD").
attributes (leve1,one_of, ["ONE", "TWO"]).
attributes(teacher,reference,teacher).
attributes(room,vchar,4).
attributes (id_num, integer, [100000,999999]).
attributes (age, integer, [0,120]).
1* attributes(age,composite,agerl).
I''r attributes (date_ of_birth, fchar, 8).
1* attributes(date_of_birth,composite,dbrule).
attributes (sex,one_of, ["MALE","FEMALE").
attributes (person_type,one_of, [student,university_empl oyee]).
attributes (student_type,one_of, [post_grad,under_grad).

PAGE 5

attributes (university_employee_type,one_of, [secretary, teacher]).
attributes (secretary_type ,one_of, [departmental_sec,pro fessor sec).
attributes (teacher_type, one_of, [professor,senior_lectu rer,lecturer]).
attributes(nationalitY,vchar,10).
attributes(sponsor,reference,sponsor).
attributes (attendance_type ,one_of, ["FULL THIE", "PART TUIE").
attributes (year_of_study,one_of, [1,2,3,4]).
attributes(personal_tutor,reference,teacher).
attributes(salary,real,[5,2).
attributes(department_id,reference,department).
attributes(ni,fchar,9).
attributes(tax_code,fchar,9).
attributes(professor,reference,professor).
attributes(nationality_classify,one_of,["UK","EEC","OTHER"]).
attributes(value,real,[4,2]).
attributes(department_code,vchar,4).
attributes(department_name,vchar,40).
attribute(faculty,reference,faculty).
attributes(facu1ty_name,one_of,["SCIENCE","ARTS",

"MEDICINE", "LAW", "ENGINEERING")).
attributes(student_id,reference,student).
attributes(course_id,reference,course).
attributes(post grad,reference,post grad).
attributes(name~composite,namerule)~
attributes(title,one_of, ["MR", "MS", "~lISS", "MRS", "DR", "PROF"]).
attributes(firstname,vchar,1S).
attributes (surname,vchar, 15).
attributes(sponsor_name,composite,sponsor_namerule).
attributes(address,composite,addressrule).
attributes(home_address,composite,addressrule).
attributes(street,vchar,15).
attributes(town,vchar,15).
attributes(county,vchar,15).
attributes (country,vchar, 15).
attributes(home_street,vchar,15).
attributes(home_town,vchar,I5).
attributes(home_county,vchar,I5).
attributes(home_country,vchar,15).

database_term(departmental_sec,[departrnental,sec]).

FILE: ALTER PROLOG A1 (SQ53) 9/17/87 21:00:42

database_term(departmental_sec,[department,sec)).
database term(id num,[id,num]).
database=term(date_of_birth,[date,of,birth]).
database_term(attendance_type,[attendance,type)).
database_term(student_type,[student,type)).
database_term(department_id,[department,id)).
database_term(course_id,[course,id)).
database_term(belongs_to_by,[belongs,to,by]).
database_term(belonged_to,[belonged,to]).
database_term(student_id,[student,id)).
database_term(belongs_to,[belongs,to]).
database_term(under_grad,[under,grad)).
database_term(personal_tutor,[personal,tutor)).
database_term(personal_tutor_to,[personal,tutor,to)).
database_term(post_grad,[post,grad)).
database_term(sponsor_name,[sponsor,name]).
database_term(nationality_classify,[nationality,classify)).
database term(professor sec,[professors,sec)).
database=term(university_employee,[university,employeeI).
database_term(university_employee,[university,emp)).
database_term(department_name,[department,name)).
database_term(faculty_name,[faculty,name]).
database_term(senior_lecturer,[senior,lecturer]).
database term(tax code, [tax,code)).
database-term(home address, [home,address]).
database-term(home-street,[home,street)).
database=term(home=county,[home,county)).
database_term(home_country,[home,country)).
database term(home town, [home,town)). - -
database_term(resident_at,[resident,at)).
database term(taught at,[taught,at)).
database-term(type of,[type,of]).
database-term(has gender, [has,gender)).
database-term(depends on,[depends,on]).
database=term(type_of=nat,[type,of,nat]).
database term(attended by, [attended,by]).
database-term(charged to,[charged,to)).
database=term(classified_as,[classified,as]).
database_term(has_member,[has,member]).
database term(taught in,[taught,in]).
database-term(paid by,[paid,by]).
database=term(paid=to,[paid,to]).
database term(work in,[work,in)).
database=term(has_working_in_it,[has_working,in,it)).
database_term(working_in_it,[working,in,it)).
database_term(working_in,[working,in)).
database_term(dependent_on,[dependent,on]).
database_term(sponsor_to,[sponsor,to]).
database_term(sponsored_by,[sponsored,by)).
database_term(personal_tutee_of,[personal,tutee,of]).
database_term(personal_tutor_of,[personal,tutor,of]).
database_term(taught_by,[taught,by]).
database_term(teacher_for,[teacher,for]).
database_term(identified_by,[identified,by)).
database_term(work_under,[work,under]).
database_term(has_working_for,[has,working,for]).
database_term(has_a,[has,a)).
/*database_termChave_as,[have,as)).
database_term(lectured_by,[lectured,by)).
database term(work for,[work,for]).
database=term(in_charge_of,[in,charge,of)).
database_term(member_of,[member,of]).
database_term(member_to,[member,to)).

PAGE 6

FILE: ALTER PROLOG A1 (SQ53) 9/17/87 21:00:42

database_term (made_up_of, [made,up,of]).
database_term(supervised_by,[supervised,by]).
database_term(supervisor_to,[supervisor,to)).
database_term(secretary_to,[secretary,to]).
database_term(lecturer_to,[lecturer,to]).
database_term(located_at,[located,at]).

database_term(otherthan,[other,than]).
database_term(1essthan,[1ess,than]).
database_term(olderthan,[older,than)).
database_term(youngerthan,[younger,than]).

/* plural(singular,plurals)
plural(post_grad,post_grads).
plural(tax_code,tax_codes).
plural(under_grad,under_grads).
plural(department_name,department_names).
plural(departmental_sec,departrnental_secs).
plural(faculty_name,faculty_names).
plura1(id_num,id_nums).
plural(professor_sec,professor_secs).
plural(date_of_birth,date_of_births).
plural(sponsor_narne,sponsor_narnes).
plural(senior_lecturer,senior_lecturers).
plural(person_type,person_types).
plural(student_type,student_types).
plural(university_employee_types,university_ernployee_types).
plural(secretary_type,secretary_types).
plural(teacher_type,teacher_types).
plural(home_address,home_addresses).
plural(university_employee,university_employees).
plural(attendance_type,attendance_types).
plural(year_of_study,year_of_studies).

plural(personal_tutor,personal_tutors).
plural(course,courses).
plural(fee,fees).
plural(age,ages).
plural(give,gives).
plural(take,takes).
plural(room,rooms).
plural(professor,professors).
plural(lecturer,lecturers).
plural(department,departrnents).
plural(faculty,faculties).
plural(person,people).
plural(student,students).
plural(teacher,teachers).
plural(teach,teaches).
plural(secretary,secretaries).
plural(code,codes).
plural(session,sesions).
plural(lecture,lectures).
plural(level,levels).
plural(name,names).
plural(title,titles).
plural(attend,attends).
plural(firstnarne,firstnarnes).
plural(secondname,secondnarnes).
plural(surnarne,surnames).
plural(address,addresses).
plural(sex,sexes).

PAGE 7

FILE: ALTER PROLOG Al (SQ53) 9/17/87 21:00:42

plural(nationality,nationalities).
plural(sponsor,sponsors).
plural(salary,salaries).
plural(ni,nis).
plural(value,values).
plural(work,works).
plural(grad,grads).
plural(graduate,graduates).
plural(street,streets).
plural(county,counties).
plural(country,countries).
plural(town,towns).

PAGE 8

FILE: ANALYSE PROLOG Al (SQ53) 6/02/87 16:47:20 PAGE 1

/* Analyses the query words in terms of the database model

ana1yse(Str,Lu,Ru) <- qst_to_qli(Str,List) &
/ & label(lanalyse) &
swap_plurals(List,Listplural) &
swap_synonyms(Listplural,Listsynon) &
db_terms(Listsynon,Listdbterml) &
swap_synonyms(Listdbterml,Listdbterm2) &
translate(Listdbterm2,Listtran) &
uppercase_data(Listdbterm2,Listtran,Listupp) &
identify_quoted_terms(Listupp,Listquote) &
apostro(Listquote,Listtran,Aposquery,Apostran) &
unite_unknown(Apostran,Aposquery,Lf,Lrf) &
remove_fi11er(Lf,Lrf,Lu,Ru).

FILE: APOST PROLOG Al (SQ53) 3/25/88 12:17:04

/*
Eliminate words with a single apostrophe
as having an implied connection

~'r 1
*1
*1
*1

/ **";~;,:*;,:**.,':***;h':';':**"':*';':'f':;':;':;'r**;':"lr;':*.,,:,,'r*;':*.,,:*..,,:.,t,,'r.,'r..,'r.,'r.,,(,'r..,':;'r.,'r.,'r /

apostro([Hqin!Tqin],[Htin!Ttin],[Hqout! [dummy!Tqout]],

PAGE 1

[Htout![inter_relation!Ttout]]) <
single_strop(Hqin,Hqout) & 1 &
obtain(Hqout,Htin,Htout) &
apostro(Tqin,Ttin,Tqout,Ttout).

apostro([Hqin!Tqin] ,[Htin!Ttin], [Hqin!Tqout],[Htin!Tto ut]) <
apostro(Tqin,Ttin,Tqout,Ttout).

apos tro ([] , [] , [] , []) .

single_strop(Hqin,Hqout) <- st_to_at(Shqin,Hqin) &
substring(Shqin,IIII,Sl,l) & 1 &
stlen(Shqin,L) &
S3 := SI + 1 &
S2 := L - S3 &
substring(Shqin,Sh2,S3,S2) &
~ substring(Sh2, IIII ,S4,1) &
substring(Shqin,Shqout,O,Sl) &
st_to_at(Shqout,Hqout).

obtain(Hqout,unknown,Htout) <- Hqout is Htout & /.
obtain(Hqout,Htin,Htin).

FILE: APPEND PROLOG A1 (SQ53) 3/25/88 12:18:05

/* append(L1,L2,L3) appends list1 and list2 giving list3
append([],L,L).
append([X!T1],T2,[X!T3]) <- append(T1,T2,T3).

PAGE 1

FILE: ATTFIND PROLOG Al (SQ53) 6/02/87 19:50:59

query(D)

q <-

<- repeat & nl &
prst('Domain of interest:') & nl &
writes(D) &

(entity(D) ; list domains) &
/ & nl &
prst('Attributes of interest:') & nl &
attributes_of_interest(D,A) &
list attributes(A,10) & nl &
prstC'Connection of interest:') & nl &
connection_of_interest(D,C,[]) &
list_attributes(C,10) & nl &
st to at(Sd,D) &
st~on~(Sd,' type',S) &
st_to_at(S,As) &
(

(attributes(As,one of,Tl) &
prst('Types of domain: ') & prst(D) & nl &
list_attributes(Tl,10) & nl) ; true).

entity(D) & nl & nl &
prst('Domain of interset:
prst(D) &
nl &

') &

prst('Attributes of interest:') & nl &
attributes_of_interest(D,A) &
list attributes(A,lO) & nl &
prstC'Connection of interest:') & nl &
connection_of_interest(D,C,[]) &
list_attributes(C,10) & nl &
st to at(Sd,D) &
st~on~(Sd,'_type',S) &
st_to_at(S,As) &
(

(attributes(As,one of,Tl) &
prst('Types of domain: ')
list_attributes(Tl,lO) & nl

fail .

& prst(D) & nl &
) ; true) &

list domains <- prst('Domains of interest are') & nl &
entity(X) &
prst (' t) &
st to at(S,X) &
st;on;(S, ,
substring(C,S2,O,34) &
prst(S2) &
fail.

list attributes([],M) <- nl & / .
list-attributes(T,N) <- gt(N,60) & nl & list_attributes(T,10) & / .
list-attributes([H!T].N) <-

- tab(N) &
M := N + 25 &
prst(H) &
list_attributes (T,M)

attributes_of_interest(D,L) <-

attributes_of_interest(D,L) <
attributes_of_interest(D,B) <-

relation(D,N,C) &
subset(X,D) & / &
attributes_of_interest(X,Ll) & / &
new_append(Ll,C,L) & /.
relation(D,N,L) & /.
subset(M,D) &

attributes_of_interest(M,B)

PAGE 1

',C) &

FILE: ATTFIND PROLOG Al CSQ53) 6/02/87 19:50:59

/* appendCL1,L2,L3) appends listl and list2 giving list3
newappend([],L,L).
new-appendC[X!T1],T2,T3) <- memberCX,T2) & new append(T1,T2,T3).
new=append([X!T1],T2,[X!T3]) <- new_appendCT1,T2,T3).

<- reconsult(member).

connection_of_interestCD,L,H) <- conCD,C,[]) &

PAGE 2

subsetCX,D) & / &
connection_of_interestCX,Ll,H) & / &
new_append(C,Ll,L) & /.

connection_of_interestCD,C,[]) <- con(D,C,[])

conCB,[A!L],R) <- connectCA,B,C,D,E,F) &
(~ member(A,R)) &
new append([A],R,P) &
con(B,L,P) & / .

con(C,[A!L],R) <- connect(A,B,C,D,E,") &
(~ member(A,R)) &
new_append([A],R,P) &
con(C,L,P) & / .

conCC,[F!L],R) <- connectCA,B,C,D,E,F) &
(~ member(F,R)) &
new_append([F],R,P) &
con(C,L,P) & / .

con(B,[],R).

..

FILE: BSQL PROLOG Al (SQ53) 3/25/88 12:38:24

/* succeeds if the list is a list of variables
varl([H!T)) <- var(H) & varleT) & / .
varl([]).

bsql(C,T,Er) <- ((~ substring(C, 'select' ,0,6))
(substring(C,' where' ,S,7));
C substring(C,' order by ',P,10));
(substring(C,' group by ',Q,10));
varCT) ;
varl(T)) &

/ &
sql(C,T,Er).

bsql(C,T,Er) <- stconcC'describe ',C,DesC) &
sql(DesC,TD,Errd) &
ge(Errd,O) &
create(TD,T,New, t where ') &
stconc(C,New,NewC) &
/ &
sql(NewC, T, Er).

bsql(C,T,Er) <- sql(C,T,Er).

PAGE 1

create([A![B![C!TT])],[H!T],R,W) <- var(H) & create(TT,T,R,W) & / .
create([HA![B![C!TT]ll,[H!T),R,W) <- stconc(HA,' = ',Sl) &

stconc(W,Sl,S2) &
stt_to_att(SH,H) &
stconc(S2,SH,Rl) & / &
create(TT,T,R2,' and ') &
stconc(Rl,R2,R) & /.

create C [] , [] , , , , G) .

stt_to_att(SH,H) <- stringp(H) & / &
stconc("" ,H,Sl) &
stconc(Sl, '" , ,SH) & / .

stt_to_att(SH,H) <- st_to_at(SH,H).

FILE: CHECK PROLOG Al (SQ53) 6/04/87 11:09:52 PAGE 1

1* *1
1* Erase user asked parses *1
1* *1
/*~"'"i'r'"i'r**'i':*;'r;";':*;':**;':*'i':;':i':;t:"'r;':;':;':;':;':i"";':;':i':i':i':i':i':i':i'(;',"ki':i':;':i':,#':.,':i,:.,':.,'r.,:,t;"lri':i,:-;,:",:,,:.,':i':i':"i'(I
check asked condition(clear) <- axn(previously checked,B,D,[],M) &

- - delax(D) & -

fail.
check_asked_condition(clear).

check asked condition(In,Type,found) <-
- - previously_checked(In,Type,found) & 1 .

check asked condition(In,Type,assert) <-
- - P = .. [previously_checked,In,Type,found] &

addax(P).
check asked_condition(Ret,Type,check) <-

previously_checked(Ret,Type,Con) & 1 & fail.
check asked condition(Ret,Type,check) <-

- - ~ previously_checked(Ret,Type,Con) &
P = .. [previously_checked,Ret,Type,check] &
addax(P).

maintain_query(Q) <- P = .. [previously_checked,Q,query,check] &
addax(P).

recall_query(Q) <- previously_checked(Q,query,check).

FILE: COHPOSE PROLOG Al (SQ53) 9/14/87 20:47:33

1* *1
1* Compose the query units into a meaningful *1
1* concatenation *1
1* *1

compose(Ret,R12,Rep3) <- obtain_retrieval_list(Rli,Ret,Repa) &
verify_retrieval(Rli,Rl,Rree) &
append(Rree,Repa,Rep) &
strip_leading_terms(Rep,Repl) &
rationalise(Repl,Rep2) &
strip_leading_terms(Rep2,Rep3) &
verify_context_flow(Rl,Rep3,Out) &
check_userCRl,Rep3,R12,Rp2) .

PAGE 1

FILE: CONDITIO PROLOG Al (SQ53) 6/02/87 18:26:10

conditionals("/=").
conditionals("<").
conditionals("<=").
conditionals("=").
conditionals(">").
conditionals(">=").
conditionals(rule).
conditionals(after).
conditionals(before).

intra entity(olderthan,age,">").
intra-entity(youngerthan,age,"<").
intra-entity(older than,age,">").
intra-entity(younger than,age,"<").
, - t't (d -" ") ~ntra en ~ y age ,age, = .

- . ("" intra ent~ty named,name, =).
- , (11 d " ") intra ent~ty ca e ,name, = .

intra=entity(resident_at,address,rule).
intra entity(resident at,home address,rule).
intra=entity(born,date_of_birth,"=").

PAGE 1

FILE: CONNECTO PROLOG Al (SQ53) 8/25/87 18:18:41

connectors(and).
connectors(not).
connectors(or).

PAGE 1

FILE: CONUSER PROLOG Al (SQ53) 6/04/87 12:03:19

I'':
1''<
I'':
I'':
1''<
I'':
1"(
1*
I'"
I'':
I'':
I'':
1"(

Consult user to make sure that the terms which we
do not know the meaning of are in fact items
stored in the database

If the user
The term is
Then record
Ask the user

has not been previously asked and
not already specified as database term
the user has been asked and

read in the reply and
act accordingly
then if answer was yes try to re-analyse the query

I -;':;':-;':-;':-;':-;':*,,;':-;':,':-;':****-;"-;':*,,;':1,-;':-.':*;':-;':-;':-;':-;':,,;':;':0.;':*"':-;':;':.':;':.',,':-;':-;':,,':-;':,':*')':*,,':;':,,':-;',-;,:,,;,:,,,:* __ 'r,,': /

consult user for unknown([Hq!Tq],[unknown!Tp]) <-
- - - ., previously_asked(Hq) &

., stored_in_database(Hq) &

PAGE I

Askedterm = .. [previously asked,Hq] &
addax(Askedterm) & nl & ~l &
prst('Do you believe that ') &
writes (Hq) &
prst(' is stored as
prst('entity in the
nl & nl &
readline(Reply) &
act_on(Reply,Hq) &
retry(lanalyse) .

a single ') &
database') &

consult user for unknownC[Hq!Tq],[Hp!Tp]) <- ., Hp = unknown &
- - - consult_user_for_unknownCTq,Tp).

consult_user_for_unknown([],[]).

1* *1
1* Act on reply if answer was y or yes then add the *1
1* term to the user model as a stored item of data *1
1* if the term is made up of more than one word then *1
1* add to database of terms. *1
1* *1
/ -J:-l:-;':i':-;':-;,:-;':-;':;':#"l:;':,':**-J:i':;':O'ln':-;':-;':*-;':*-;',;':,,:-.,:,':;',-;':;,:-;,:-;':-;':;,,: ... ,:--':,;':-;,:-;,:-;':-;,:,,:,':-;,:-;,:-;,: ... ':i':";',i':i':i':"k-;':;':

1"(
1"(
I'':
1"(
1*

Act on reply if answer was no then
test to see if the term single is a word
In which case fail reporting that the term
Otherwise fail and backtrack to the single

is unknown '':1
terms '':1

1* *1
/ ;",-;':-;':-;':-;'d':-;':-;':-;':-;':-;':"/:-;':"::-;':-;':-;':*-;':-;':-;':;':-;':-;':*-;':-;':-1:-;':* .. }:-;':*-;':-;':;':;':-;':-;':-.':-;': ':";': ... ':.':;':*"":*"':-;':"i':-;':i':i':,':i':

act onC'Y' ,Term) <- act_on('yes' ,Term).
act-on('yes' ,Term) <- add_term_stored(Term) .
act-on(No,Term) <- st to_at(Sterm,Term) &

- qst_to_qli(Sterm,Lterm) &
Lterm = [Dummy] &
test_db_termCTerm) &
I & fail.

act_on(No,Term) <- st_to_atCSterm,Term) &
qst_to_qliCSterm,Lterm) &
Lterm = [Dummy] &
prst('I am unable to parse your query as I do') &
prst(' not understand the term ') &
writes(Term) & nl &
prst('Please enter a synonym for the term ') &
writes(Term) & nl &

FILE: CONUSER PROLOG Al (SQ53) 6/04/87 12:03:19

prst('or Q to quit') &
nl & nl &
caseshift(Sterm,Slterm) &
readline(Sy) &
, (Sy = 'q' ; Sy = 'Q') &
st_to_at(Sy,Sya) &
st_to_at(Slterm,Alterm) &
Synon = .. [synonym,Alterm,Sya) &
addax(Synon) &
retry(lanalyse).

/ -;':,':-;':.,':,':-;':"':-;':-;':*,':,,':*-;':-;':***,,:-.,:,,,:,;':-;,:-;,:,,:,,:-;,:,,:,':,':*,':.,':.,':,':,',-l:-.':,;':"I'\";':.,':,;':*.,':,,,:,,;,:,,:,,:,,:*,,:,,:,,;,:;':i':*,,':

/* */
/* A term has been defined as being made up of several */
/* words in order to recognise it in the future we need */
/* add the term to our known composite database terms */
/* */
/ ""*",;~";':"J'r";,:*,,,,,,:,,'r,;':,'r.,,:,;,:*,;~**,,:,t:";':';':';':";':"i':,':,,:,;I:,;,:,,:,,:,,:,,:,,:,,:,'(,,;"c,':,':,':-;':,,':.,':.,tr,,'(')':,':,'r*i,:,,,:,':,':i':"'':'''':'i'r,,':

add to term database(Term) <- st to atCSterm,Term) &
- - qst t~ qliCSterm,Lterm) &

, Lterm = [Dummy) &

PAGE 2

Db_term = .. [database_term,Term,Lterm) &
addax(Db_term).

/ '#':";':,;':,,;':,':*,':-;':*,':,':,;':,':*,,:-.,:.,,:,,,,:,,:-,':,':,':,;':-;':";':";':'':'';':'':-'':''l:,,;':,':-l:''l:''':''J'r-l:--.':1'ri':,,;':.,,:*.,,:,,':,':.,':-1:.':-,':,':,':,':,,':,':,':,':

/* */
/* A term has been defined as beleived to be stored in */
/* the database it is therefore asserted as a stored */
/* database term. */
/* */
/ ,,:.,,:-;,:*..,':-;':-;':*-;':-;':,':,,;':,,;'d':**,':**,,;':,':-l:*,,;':-;':,':";':"1:.':*,':";':,,;':.,':.,':* .. ,: ... ,:,,:,,:.,,:,,,:,':-;':,,:,,:,,:,',,':,,:"1:,,:*.,'r,t.:.,'r""l'.-J',

add term stored(Term) <- st to at(Sterm,Term) &
- - caseshift(Sterm,Slterm) &

st_to_at(Slterm,Lterm) &
Stored term = .. [stored in database,Term] &
addax(Stored_term) & - -
add_to_term_databaseCTerm) &
Sltored_term = .. [stored_in_database,Lterm] &
addax(Sltored_term) &
add_to_term_database(Lterm) .

st_to_at(Sterm,Term) &
caseshift(Sterm,Slterm) &
st_to_at(Slterm,Lterm) &
database_termCC,D) &
member(Lterm,D).

FILE: CSQL PROLOG Al (SQ53) 9/05/87 16:45:16

<- pragma(list,l).

/* succeeds if the list is a list of variables
varl([H!T) <- var(H) & varleT) & / .
varl([]) .

csql(C, T ,Er) <-

csql(C,T,Er) <-

csql(C,T,Er) <-

((, substring(C, 'select' ,0,6))
(substring(C,' where' ,S,7));
(substring(C,' order by ',P,10));
(substring(C,' group by ',Q,lO));
var(T);
varleT)) &

/ &
sql(C,T,Er).

stconc('describe ',C,DesC) &
sql(DesC,TD,Errd) &
ge(Errd,O) &
create(TD,T,New,' where ') &
stconc(C,New,NewC) &
/ &
sql(NewC,TT,Er) &
list_eqn(T, TT).
sql(C,T,Er).

create([A![B![C!TT))),[H!T),R,W) <- var(H) & create(TT,T,R,W) & / .
create([HA![B![C!TT))),[H!T),R,W) <- , H = constraint(N) & / &

PAGE 1

stt to att(SH,H) &
for~_c~ndition(HA,W,SH,Rl,' = ') &
/ &
create(TT,T,R2,' and ') &
stconc(Rl,R2,R) & /.

create([HA![B![C!TT)]],[constraint(N)!T] ,R,W) <
constraint_con(Rl,W,N,HA) &
/ &

create([],[],I',G).

create(TT,T,R2,' and I) &
stconc(Rl,R2,R) & /.

form_condition(A,W,H,R,C) <- ~ C = null &
stconc(A,C,Sl) &
stconc(W,Sl,S2) &
stconc(S2,H,R).

form_condition(A,W,H," ,null).

constraint_con(S,W,N,A) <- constraint(N,Syl,Nl,Sy2,N2) &
cond(Syl,Cl) &
st_to_at(N1S,Nl) &
form_condition(A,W,NlS,Sl,Cl) &
cond(Sy2,C2) &
comp (W , S 1 , W2) &
st_to_at(N2S,N2) &
form_condition(A,W2,N2S,S2,C2) &
stconc(Sl,S2,S) & / .

comp (W , , , ,W) .
comp(W,X,' and ') <- ~ X = I'

cond(null,null).
cond(eq, I = ').
cond(gt,' > I).
cond (1 t, I < I).
cond(le, I <= ').
cond(ge,' >= I).

FILE: CSQL PROLOG Al (SQ53) 9/05/87 16:45:16

stt_to_att(SH,H) <- stringp(H) & / &
steone("",H,SI) &
steone(SI," ",SH) & /.

stt_to_att(SH,H) <- st_to_at(SH,H).

list_eqn([H!T],[HH!TT]) <- H eqn HH &
list_eqn(T,TT).

lis t _ eqn ([] , []) .

et(Rn,Bn) <-
sql('seleet ~': from qpeat.eatsingles' ,[A,B,C,D,E,F,G,H,I],N) &
gt(H,Rn) &
1t (H,Bn) &
writes([A,B,C,D,E,F,G,H,I]) & nl.

net(Rn,Bn) <- H gtn Rn &
H ltn Bn &

PAGE 2

esql('seleet * from qpeat.catsingles' ,[A,B,C,O,E,F,G,H,I],N) &
eoutput(H,Ho) &
writes([A,B,C,D,E,F,G,Ho,I]) & nl.

et3 <-
esql('seleet * from qpeat.eatsingles',

[AI, B 1 , C 1, 'D ITC 16/83 ' , E 1 , Fl , G 1 , HI, 11] , N 1) &
csql('seleet * from qpeat.eatsingles',

[A2,B2,C2, 'DITCl/82' ,E2,F2,G2,H2,I2],N2) &
sql('seleet * from qpeat.catsingles',

[A,B,C,D,E,F,G,H,I],N) &
gt(H,Hl) &
It(H,H2) &
writes([A,B,C,D,E,F,G,H,I]) & nl.

et2 <-
sql('seleet * from qpeat.eatsingles',

[Al,Bl,Cl, 'OITCI6/83' ,El,Fl,Gl,Hl,11] ,Nl) &
sql('seleet * from qpcat.catsingles',

[A2,B2,C2,'DITCl/82',E2,F2,G2,H2,I2],N2) &
sql('seleet * from qpeat.catsingles',

[A,B,C,D,E,F,G,H,I],N) &
gt(H,Hl) &
It(H,H2) &
writes([A,B,C,D,E,F,G,H,I]) & nl.

wet2 <-
system('query time' ,ems) &

sql('seleet * from qpeat.eatsingles',
[Al,Bl,Cl,Dl,El,Fl,Gl,Hl,Il],Nl) &

Dl = 'DITCI6/83' & / &
systemC'query time' ,ems) &

nl &

sql('seleet * from qpeat.eatsingles',
[A2,B2,C2,D2,E2,F2,G2,H2,I2],N2) &

systemC'query time' ,ems) &

nl &

sql('seleet * from qpeat.eatsingles',
[A,B,C,D,E,F,G,H,I] ,N) &

02 = 'DITCl/82' &
gt(H,Hl) &
It(H,H2) &

system('query time' ,ems) &
nl &

writes([A,B,C,D,E,F,G,H,I]) & nl.

net2 <-
esql('seleet * from qpeat.eatsingles',

FILE: CSQL PROLOG A1 (SQ53) 9/05/87 16:45:16

[A1,B1,C1, 'DITC16/83' ,E1,F1,G1,H1,I1],N1) &
esql('seleet * from qpeat.eatsingles',

[A2,B2,C2,'DITC1/82',E2,F2,G2,H2,I2],N2) &
H gtn H1 &
H ltn H2 &
esql('seleet * from qpeat.catsingles',[A,B,C,D,E,F,G,H,I],N) &
eoutput(H,Ho) &
writes([A,B,C,D,E,F,G,Ho,I]) & nl.

ceat([A2,B2,C2,D2,E2,F2,G2,H2,I2]) <-
sql('select * from qpcat.eatsingles where author = "DEC"',

[A2,B2,C2,D2,E2,F2,G2,H2,I2],N2).
ncat([A2,B2,C2,D2,E2,F2,G2,H2,I2]) <-

esql('select * from qpeat.catsingles',
[A2,B2,C2,D2,E2,F2,G2,H2,I2],N2).

countl <
addax(c(O)) &
csql('seleet * from qpcat.catsingles',

[A1,B1,C1,D1,El,Fl,Gl,H1,I1] ,Nl) &
c(N) &
N := N + 1 &
delax(c(N)) &
addax(cW)) &
Dl= 'AAAAAAA2' &
eeL) & write(L) & nl .

PAGE 3

FILE: CUSER PROLOG Al (SQS3) 6/11/87 16:32:30 PAGE 1

check_user(Rl,Rep,Rl2,Rep2) <-
retrieve output(Rl,Rl2) &
ask_about('OBJECTS TO BE FETCHED' ,ret,Rl2) &
condition_output(Rep,Rep2) &
ask_about('SUBJECT TO' ,con,Rep2).

ask_about(String,Type,Ra) <- check_asked_condition(Rb,Type,found) & I &
Rb = Ra & I.

ask_about(String,Type,[]) <- check_asked_condition(Ra,Type,check) &
display &

nl &
prst(String) & nl & nl &
prst(' UN-CONSTRAINED RETREIVAL ') & nl &
nl &
prst('is this what you want for the ') &
prst(String) & prst(' clause? Yin') & nl &
readli(Answer) &
(Answer ='y';

Answer ='yes') &
check_asked_condition([],Type,assert) & I .

ask_about(String,Type,Ra) <- check_asked_condition(Ra,Type,check) &
display &

prst(String) & nl & nl &
printlist(Ra) & nl & nl &
prst('is this what you want for the ') &
prst(String) & prst(' clause? Yin') & nl &
readli(Answer) &
(Answer ='y' ;

Answer ='yes') &
check_asked_condition(Ra,Type,assert) & I .

retrieve output([relation![[R]]],S) <- I &
- atributes of interest(R,S).

retrieve output([[object![[A,B]]]!T],[[A![B![', ']]]IY]) <- I &
- retrieve_output(T,Y).

retrieve_output([H!T],[A!B]) <-

retrieve_output([],[]).

retrieve_output(H,A) &
retrieve_output(T,B).

atributes_of_interest(D,L) <- relation(D,N,C) &
add_entity(C,D,Cl) &
subsets(X,D) & I &
atributes_of_interest(X,Ll) & I &
nw_append(Ll,Cl,L) & I.

atributes_of_interest(D,Ll) <- relation(D,N,L) & I &
add_entity(L,D,Ll).

atributes_of_interest(D,B) <- subsets(N,D) &
atributes_of_interest(H,B)

1* append(Ll,L2,L3) appends listl and list2 giving list3
nwappend([],L,L).
nw-append([E![X![' ,'!Tl]]],T2,T3) <- member(X,T2) & nw append(Tl,T2,T3).
nw=append([E![X![' ,'!Tl]]],T2,[E![X![', '!T3]]]) <- nw_sppend(Tl,T2,T3).

add entity([Sh!St],R,[R![Sh![',' IV]]]) <- add_entity(St,R,Y).
add=entity([],R,[]).

FILE: DATA PROLOG Al (SQ53) 9/19/87 18:01:49

professor(100001).
lecturer(100002).
lecturer(100003).

salary(X) <- var(X) & /.
salary(X) <- numb(X).

student (100004, 'HOME STREET A', 'TOWN A', 'HOME COUNTY A', 'nOME
'NATIONALITY A', 'SPONSOR A', 'FT' ,1, 'UNDER GRAD').

student(10000S, 'HOME STREET A', 'TOWN A', 'HmlE COUNTY A', 'HOME
'NATIONALITY A', 'SPONSOR A', 'FT' ,3, 'UNDER GRAD').

student(100006, 'HOME STREET T' , 'TOWN T' , 'HmlE COUNTY T' , 'HOME
'NATIONALITY A', 'SPONSOR A' ,'FT' ,3, 'UNDER GRAD').

student (100007 , 'HOME STREET y' , 'TOWN y' ,'HmlE COUNTY y' ,'HOME
'NATIONALITY X', 'SPONSOR A', 'PT' ,2, 'POST GRAD').

student (100008, 'HOME STREET y', 'TOWN Y', 'HOME COUNTY y', 'HOME
'NATIONALITY Q', 'SPONSOR A', 'FT' ,1, 'POST GRAD').

student(100012, 'HOME STREET T' , 'TOWN T', 'HmlE COUNTY 1" , 'HmlE
'NATIONALITY A', 'SPONSOR B', 'FT' ,3, 'UNDER GRAD').

student(100013, 'HOME STREET Y', 'TOWN Y', 'HQ}lE COUNTY Y', 'HOME
'NATIONALITY X', 'SPONSOR B', 'PT' ,2, 'POST GRAD').

student(100014, 'HOME STREET y' , 'TOWN y' , 'HOME COUNTY y' , 'HOME
'NATIONALITY Q', 'SPONSOR C', 'FT' ,1, 'POST GRAD').

under grad(100004,100001).
under-grad(100005,100002).
under-grad(100006,100001).
under=grad(100012,100001).

university employee(100001,20730.23, 'cs' ,
- 'CZ253476Q' ,R23, 'TEACHER').

university employee(100002,15000.43, 'CS',
- 'CZ253476Q' ,R23, 'TEACHER').

university employee(100003,16500.21, 'CS',
- 'CZ253476Q' ,R23, 'TEACHER').

university employee(l00009,11000.13, 'CS',
- 'CZ253476Q' ,R23, 'SECRETARY').

university employee(lOOOlO,12340.45, 'CS',
- 'CZ253476Q' ,R23, 'SECRETARY').

university employee(lOOOll,15000.23, 'CS',
- 'CZ253476Q' ,R23, 'SECRETARY').

secretary(100009, 'DEPARnlENTAL') .
secretary(100010, 'DEPARnlENTAL').
secretary(lOOOII, 'PROFESSOR').

teacher(100001, 'Gl', 'PROFESSOR').
teacher(100002, 'GI', 'LECTURER').
teacher(I00003, 'Gl', 'LECTURER').

professor_sec(100011,100001).

fee(attendance_type,nationality_classify,student_type,value).

PAGE 1

COUNTRY A' ,

COUNTRY A' ,

COUNTRY T' ,

COUNTRY y' ,

COUNTRY y' ,

COUNTRY T' ,

COUNTRY y' ,

COUNTRY y' ,

sponsor('SPONSOR A', 'SPON STREET' ,'SPON TOWN', 'SP COUNTY' 'SP COUNTRY')
sponsor('SPONSOR B', 'SPNB STREET', 'SPNB TOWN', 'SPB COUNTY:, 'SP COUNTRY').

department (' CS' , 'COMPUTER SIENCE' , 'SCIENCE').

faculty('SCIENCE').

attend(l00004, 'OlCS').

FILE: DATA PROLOG Al (SQ53) 9/19/87 18:01:49

attend(100005,'01CS').
attend(100006,'02CS').
attend(100004,'02CS').
attend(100004,'03CS').
attend(100005,'03CS').
attend(100006,'03CS').
attend(100004, '66CS').
attend(100007,'03CS').
attend(100007,'34CS').
attend(100008,'32CS').
attend(100008,'07CS').
attend(100007,'07CS').
attend(100006,'07CS').
attend(100005, '07CS').
attend(100004,'07CS').

course('OlCS','FIRST', 'ONE',100001).
course('02CS','SECOND', 'ONE',100002).
course('03CS', 'FIRST', 'TWO' ,100003).
course('07CS' ,'SECOND', 'TWO' ,100003).
course('66CS' ,'SECOND' ,'ONE' ,100002).
course('32CS' ,'THIRD','ONE' ,100002).
course('34CS' ,'FIRST','TWO' ,100001).
session('FIRST').
session('SECOND').
session('THIRD').
level (' ONE').
level('TWO').
ins <- person(A,B,C,D,E,F,G,H,I,J,K) &

listst([A,B,C,D,E,F,G,H,I,K,J],Str) &
stconc('insert into testp values(' ,Str,Str1) &
stconc(Str1,') ',Str2) &
sql(Str2,ERR) & fail.

PAGE 2

listst([A],S2) <- stringp(A) & / &steone("" ,A,Sl) & steone(Sl, "" ,S2).
listst([A],S) <- / & st_to_at(S,A).
listst([A!B] ,Str) <- listst([A] ,Sl) &

listst(B,S2) &
steone(Sl,' , ',S3) &
steone(S3,S2,Str) .

person(100001,46, 'PROF', 'ARTHUR', 'SMITH', '12 HIGH ST',
'LIVERPOOL','MERSEYSIDE','ENGLAND','MALE','UNIV EMP').

person(l00002,57, '~lR', 'BARRY', 'SMITH', '12 HIGH ST', -
'NEWCASTLE' , 'TYNESIDE' , 'ENGLAND' , 'MALE' , 'UNIV EMP').

, "CLAR" SMIT ' , , -person(100003,32, MRS , E , H , 12 HIGH ST ,
'EPPING' , 'ESSEX' , 'ENGLAND' , 'FE~lALE' , 'UNIV EMP').

person(100004,23, '~lRS', 'DENNIS', 'SHITH', '12 HIGH ST',
'TORQUAY' , 'CORNWALL' , 'ENGLAND' , 'FEMALE' , 'STUDENT') .

person(100005,18,'MR','ERIC','SMITH','12 HIGH ST',
'NOTTINGHAM' , 'NOTTS' , 'ENGLAND' , 'MALE' , 'STUDENT').

person(l00006,21, 'MR', 'FRANK', 'S~lITII',' 12 HIGH ST',
'NOTTINGHAM' , 'NOTTS ' , 'ENGLAND' , 'MALE' , , STUDENT') .

person(l00007 ,20, 'MR' , 'GEORGE' , 'S~lITH' , '12 HIGH ST',
'TOWNF', 'COUNTYF', 'ENGLAND', '~lALE', 'STUDENT').

person(100008,20,'MR','HARRY','SMITH' ,'12 HIGH ST',
'TORQUAY', 'CORNWALL', 'ENGLAND' ,'MALE' ,'STUDENT').

person(100009,18, 'MISS' , 'INGRID' , 'S~lITII' , '12 HIGH ST' ,
'LIVERPOOL' , '~lERSEYS IDE' , 'ENGLAND' , 'FEMALE' 'UNIV E~lP').

person(l00010,19, 'MR', 'JOHN', 'SMITH', '12 HIGH ST',' -
'LIVERPOOL' , 'MERSEYS IDE' , 'ENGLAND' '~lALE' 'UNIV EMP')

person(100011,23,'MR','KEN','SMITH','12 HI~H ST',' - .
, LIVERPOOL' , '~lERSEYS IDE' , 'ENGLAND' , '~IALE' , 'UNIV _ E~IP') .

FILE: DATA PROLOG Al (SQ53) 9/19/87 18:01:49

person(100012,22,'MR','LARRY','SMITH','12 HIGH ST',
'NOTTINGHAM' , 'NOTTS ' , 'ENGLAND' , 'tlALE ' , 'STUDENT') .

person(100013,33,'MR','MORRIS','JONES','12 HIGH ST',
'TOWNF' , 'eOUNTYF' , 'eOUNTRYF' , 'tlALE ' , , STUDENT') .

person(100014,31, 'tlRS', 'NORMA', 'BROWN',' 12 HIGH ST'.
, TOWNF' , 'eOUNTYF' , 'eOUNTRYF' , 'FEtlALE' , , STUDENT') .

supervise(100003,100007).
supervise(100001,100007).
supervise(l00002,l00008).
supervise(100003,100013).
supervise(100003,100014).

post_grad(100007).
post_grad(100008).
post_grad(l00013).
post_grad(l00014).

nationality_classify(nationality,classification).

belongs to(100004, 'eS').
belongs-to(l00005, 'eS').
belongs-to(l00006, 'eS').
belongs-to(l00007, 'eS').
belongs- to (l00008,'eS').
belongs-to(l00008, 'PHY').
belongs-to(l00012, 'eS').
belongs-to(l00013, 'eS').
belongs=to(l00014, 'eS').

PAGE 3

FILE: DBTERNS PROLOG Al (SQ53) 9/15/87 14:51:25

/*
db_terms(A,B) <- database_term(C,D) &

db_terms (A,A) .

locate(D,A,Before,After) &
append(Before,[C],E) &
append(E,After,R) &
db_terms(R,B).

PAGE 1

locate([H!T],[H!After],[],A) <- loc(T,After,A) .
locate([H!T],[Ha!After],[Ha!Before],A) <- locate([H!T],After,Before,A).
locate([],After,[],After).

loc([H!T],[H!After],A) <- loc(T,After,A).
loc([],After,After).

FILE: DISPLAY PROLOG A1 (SQ53) 9/17/87 14:10:04

display <-

display.

system('clear') &
recall query(Q) &
prst('CURRENT QUERY') & nl & nl &
prst(Q) & nl & nl &
prst('--')
check asked condition(Ra,ret,found) &
prstCTFETCHT) & nl & nl &
printlist(Ra) & nl & nl &
prst('--')
check asked condition(Rc,con,found) &
prstCTSUBJECT TO') & nl & nl &
printlist(Rc) & nl & nl &
prst('--')
nl & / .

PAGE 1

& nl &

& nl &

& nl &

FILE: DOHAIN PROLOG Al (SQ53) 6/02/87 19:39:25

function_check('domain ') <- / &
repeat &
system('clear') & nl &

PAGE 1

prst ('THE FOLLOWING ENTITIES ARE THE PRIHARY DOHAINS I) &
prst('OF INTEREST ') & nl & nl & nl &
, primary_entity_list &
nl & nl & nl &-
prst('ENTER THE NAHE OF A DOHAIN TO OBTAIN FURTHER I) &
prst('INFORHATION ') & nl & nl &
prst (I ALTERNATIVLY HIT RETURN FOR QUERYING ~IODE I) & nl &
readline(D) &
domain inf(D) &
D = 11-& / &

fail.
function check('load ') <
function-check('save') <
function-check('new') <

function=check(A).

nl & loaduser & / & fail.
nl & saveuser & / & fail.
nl & new user & / & fail.

domain_inf(") <- /
domain_inf(Ds) <- st_to_at(Ds,D) &

entity(D) &
domain_ssets(D,[],S) &
output_ssets(D,S,Reps) &
domain connections(D,C,[]) &
output=cons(D,C,Repc) &
domain_attributes(D,A) &
output_atts(D,A,Repa)

primary_entity_Iist <- entity(X) &
, subsets (Y ,X) & prst (I I) &
writes(X) & fail.

domain_attributes(D,L) <- relation(D,N,C) &
subset(X,D) & / &
domain_attributes(X,Ll) & / &
new append(Ll,C,L) & /.

domain attributes(D,L) <- relation(D,N,L) & /.
domain=attributes(D,B) <- subset(M,D) &

domain_attributes(M,B)

domain_connections(D,L,H) <- con(D,C,[]) &
subset(X,D) & / &
domain_connections(X,Ll,H) & / &
new_append(C,Ll,L) & /.

domain_connections(D,C,[]) <- con(D,C,[])

domain_ssets(D,R,G) <- subset(D,S) &

domain_ssets(D,R,R).

, member(S,R) &
new_append(R,[S] ,Gl) & / &
domain_ssets(D,Gl,G).

output_atts(D,A,Repa) <-
repeat &
system('clear') &
nl &
prst('ATTRIBUTES FOR ENTITY - I) &
writes(D) & nl & nl &
prt_oblst(A) & nl & nl &
prst('TYPE ATTRIBUTE NAME FOR FURTHER INFmlATION ') &

FILE: Dm1AIN PROLOG A1 (SQ53) 6/02/87 19:39:25 PAGE 2

att inf(").
att=inf(Att) <-

nl &
prstC'OR RETURN TO QUIT') & nl &
readline(Repa) &
att inf(Repa) &
Repa = " & / & nl

nl & prst(' INFORHATION ON ATTRIBUTE - ') &
st to at(Att,Aatt) &
writes(Aatt) & nl &
attributes(Aatt,Type,H) & nl &
prst(' ') &
writes_att(Type,M) &
nl & nl &
prst('HIT RETURN TO CONTINUE') & nl &
readline(Return).

output_ssets(D,[),Reps) <- /.
output_ssets(D,S,Reps) <-, ,

system(clear) &
nl & prst('SUBSETS FOR ENTITY _ ') &

writes(D) & nl & nl &
prt oblst(S) & n1 & nl &
prst ('TYPE SUBSET NAHE FOR FURTHER INFOHATION') &
nl &
prst('OR RETURN TO CONTINUE') & nl &
readline(Sub) &
domain_inf(Sub).

output_cons(D,C,Repc) <-

con in f(' ,) .
con=inf(Con) <-

con_inf(Con) <-

write_connect (

repeat &
system('clear') &
nl & prst('CONNECTIONS FOR ENTITY _ ') &
writes(D) & nl & nl &
prt oblst(C) & nl & nl &
prst('TYPE CONNECTION NAHE FOR FURTHER INFOMATION') &
nl &
prst('OR RETURN TO CONTINUE') & nl &
readline(Repc) &
con inf(Repc) & Repc = " & /

st_to_at(Con,Acon) &
connect(Acon, E1, E2, Nl, N2, Incon) & / &
write_connect(Acon, E1, E2, NI, N2, Incon).

st to at(Con,Acon) &
conne~t(Incon, El, E2, NI, N2, Acon) &
write_connect(Acon, E2, E1, N2, Nt, Incon).

Acon, E1, E2, Nl, N2, Incon) <-
nl & prst(' INFORHATION ON CONNECTION
rites(Acon) & nl & nl &
prst(' CONNECTION OF THE FORM ') &
nl & nl &
write_line(Acon,E1,E2,N1) & nl &
prst(' A~D ') & nl &
write_line(Incon,E2,E1,N2) &
nl & nl &
prst('HIT RETURN TO CONTINUE') & nl &
readline(Return).

_ ') &

FILE: DOMAIN PROLOG Al (SQ53) 6/02/87 19:39:25

rites(l) <- prst(' a ') & I·
rites(m) <- prst(' many') & I.
rites(n) <- prst(' many') & I.
rites(") <- prst(' had by') & I.
rites(N) <- var(N) & prst(' unspecified ') & I.
rites(N) <- database_term(N,L) & printlist(L) & I.
rites(N) <- writes(N).

/i':i':*";':***~':t,:*";,:**** .. 'r***";':*i':";':*i'r;':*;'r*4'r*;'r;':**i'r i':-;'n',-;'ri'r-;'ri':,'ri'r*.,'ri'r**'i'ri'r,':i'r.,'r.,'r,'r.,'ri'ri'r /

1* *1
1* prints out a list as a string of elements separated *1
1* by a space. output directed to the console *1
1* *1
/-;'ri':*,'r"lr*"i'r*,'ri'r****i':*,'ri'r**,'r**;'r***,'r*;'r*;'ri"**"r**,'(,'ri'r.,',i'-(i'r*,'r.,'ri'ri'r-;,:,':i,:.,'r"i'ri'r-;'ri'r.,'c.,'r,tr /

prt oblst([]) <- I·
prt-oblst([H!T]) <-

prt_oblst([H!T]) <-

prt_oblst([H!T]) <-

prt_oblst([H!T]) <-

WC <-

atom(H) & 1 &
st to at(Hs,H) &
prst(Hs) &
prst(' ') &
prt oblst(T) & I.
numb(H) & 1 &
prst(H) &
prst(' ') &
prt_oblst(T) & I.
stringp(H) & 1 &
prst(H) &
prst(' ') &
prt_oblstCT) & I.
prt_oblst(H) &
prst (' ') &
prt_oblst(T) & I.

connect(Acon, El, E2, Nl, N2, Incon) &
write_connect(Acon, E1, E2, Nl, N2, Incon).

cw <-
connect(lncon, E1, E2, Nl, N2, Aeon) &
write_connect(Acon, E2, E1, N2, NI, lncon).

write_line(Acon,E1,E2,1) <-

write_line(Acon,El,E2,m) <-

1 &
prst (' A') &
rites(El) & prst(' is ') &
rites(Acon) & prst(' only one ') &
rites(E2).
1 &

write_line(Acon,E1,E2,n) <-

prst(' The same ') &

rites(El) & prst(' may be ') &
rites(Acon) & prst(' many') &
sing_plural(E2,P2) & rites(P2).
write_line(Acon,El,E2,m).

writes_att(one_of,M) <- prst(:Attribute value is one of') & nl &
prst(') & prt oblst(M).

writes att(integer,M) <- prst('Attribute is an integer in ') &
prst('the range') & nl &
prst(' ') & prt oblst(M).

writes_att(real,[B,A]) <- prst('Attribute is a real with ') &
writes(B) & prst(' places before the') &
prst(' decimal point') & nl &
prst(' and ') &

PAGE 3

FILE: DOMAIN PROLOG Al (SQ53) 6/02/87 19:39:25 PAGE 4

writes(A) & prst(' places after').
writes att(fchar,A) <- prst('Attribute is a character string of ') &

prst('fixed length ') & writes(A).
writes_att(vchar,A) <- prst('Attribute is a character string of ') &

prst('variable length up to ') & writes(A).
writes att(reference,A) <- prst('Attribute is a reference to the ') &

- prst('relation ') & writes(A).
writes_att(composite,A) <- prst('Attribute is a composite object ') &

prst('defined by the rule ') & writes(A).

sing plural(E2,P2) <- plural(E2,P2) & /.
sing=plural(E2,E2)

FILE: DOUBLE_D PROLOG A1 (SQ53) 6/02/87 18:31:49

checkeD,S) <- check_for_double_definitionCD) & nl &
check_for_split_clause_definition(S).

/*;~,,;':;':·l:·t':*;"'***i"';':*;':;':"':'':'':''#':;':***;':''':;':****;'r;,:-;"*.,':i':"i'C-;':'f'r-;':*,,tr*"i':-'':'" /

1* ,'rl
I'': CHECK FOR DOUBLE DEFINITION OF HODEL DATA '':1
1* '':1
/ ***i':*;':***'i':***.':*"':****'f':-;':**,,':,,':";"******i':.,,:*,,:***i'r.,'ri',,':i':,':.,'r /
check for double definition(Pn) <- ax(Pn,Dl,CNl) &

- - - ax(Pn,D2,CN2,12) &
Dl == D2 &
... 12 = 1 &
... CNl = debug &
ax(Pn,D2,CN2,I3) &
... 13 = 1 &
nl &

PAGE 1

prstC'Double definition of clause ') &
nl & nl &
writes(Dl) & nl & nl &
prstC'In file(s) ') &
writes(CNl) &
((... CNl = CN2 &

prst (' ') &

writes(CN2) & I) true) & nl & nl.
check_for double_definition(null).

FILE: EQUIVAL PROLOG Al (SQ53) 3/25/88 12:16:46

equivalanceCX,X,X).
equivalanceCX,Y,Z) <- equiCY,X,Z).
equivalance(X,Y,Z) <- equieX,Y,Z).

"(" II ">" ">_") equ1 =, ,-.
"C" II "<" "<_11) equ1 =, ,-"
"C"_" ">_" ">_11) equ1 -, -, - .
"e"_II "<_" "<_11) equ1 -, -, - "
"e"<" ">" "/=") equ1 " "
iC"/-" X "/=") equ -" .
"C"_ II "/=" any) equ1 -, , "

PAGE 1

FILE: EXPLAIN PROLOG Al (SQ53) 6/12/87 15:20:55

explain(A,B,f) <- system('clear' ,ems) & nl &
remove_default(A,And) &
reverse(And,Rand) &
condition_output(Rand,Ra2) & 1 &
prst('We can conclude that no tuples ') &

PAGE 1

prst('exist which satisfy the conditional clause ') &
nl & nl &
break_printlist(Ra2) & nl &
readli(JUNK).

break printlist([]) <- I·
break=printlist([andIT) <- 1 & nl & prst(' and') & nl &

break_printlist(T) & I.
break_printlist([orIT) <- 1 & nl & prst(' or') & nl &

break_printlist(T) & I.
break_printlist([notIT) <- 1 & nl & prst(' not') & nl &

break_printlist(T) & I.
break_printlist([HIT]) <- atom(H) & 1 &

st_to_at(Hs,H) &
prst(Hs) &
prst(' ') &
break_printlist(T) & I.

break_printlist([HIT) <- numbCH) & 1 &
prst(H) &
prst(' ') &
break_printlist(T) & I.

break_printlist([HIT) <- stringp(H) & 1 &
prst(H) &
prst(' ') &
break_printlist(T) & I.

break_printlist([HIT) <- break printlist(H) &
prst(T ') &
break_printlist(T) & I.

FILE: FC PROLOG Al (SQ53) 9/15/87 15:21:20

formalise conditions(A,B,A,B) <- ~ member([combineIT] ,A) & 1 .
formalise=conditions(A,B,C,D) <- formalise_condition(A,B,Cl,Dl) &

(~ A = Cl j ~ B = DI) & 1 &
formalise_conditions(Cl,Dl,C,D).

formalise_conditions(A,B,A,B).

formalise condition([[combine![Qcond))ITq),
- [[combine![Tcond)]!Tt],Nq,Nt) <-

1* / &
1* write(['QCOND' ,Qcond]) &
1* write(['TCOND' , Tcond]) &

combine(Qcond,Tcond,Nqc,Ntc) &
formalise_condition(Tq,Tt,Nql,Ntl) &
append(Nqc,NqI,Nq) &
append(Ntc,NtI,Nt) .

l*formalise_condition([Hq!Tq], [Ht!Tt],[[Hq!Qr)), [[HtITr)]) <-

I'':
/,,:
/,,:
1*
/,,:
1*

write('hereO') &
write(['Hq' ,Hq) &
write(['Tq' , Tq) &
~ Tq = [) &
formalise_condition(Tq,Tt,Qr,Tr).

formalise_condition([Hq!Tq], [Ht!Tt],[Hq!Qr], [Ht!Tr]) <-
Tq = [) &

formalise_condition(Tq,Tt,Qr,Tr).
formalise_condition([),[),[),[).

combine([[combine![R)]!Qr],
[[C! [Te]] !Tr] ,Ql,Tl) <-

/* write('hereI') &
eombine(R,Te,[Qa!Qb],[Ta!Tb]) &

/*write(['**Q2',Qa]) &
/"'write(["'<;':T2' , Ta) &
/"'wri te ([""'':Qb' , Qb) &
/*write([',h':Tb' ,Tb]) &

(Tb = [] &
append([QaIQb],Qr,Q) &
append([Ta!Tb),Tr,T) &
eombine(Q,T,Ql,Tl));
(
-,Tb=[] &

/* wr i te (['*~I;~,:;,:;,:;,:;r;I,;.:;t:**;·:;':;';**"l:*.,,(;,:*;';;'o':;':";':-;':Yureeka ' , Tb]) &

append([Qa),Qr,Q) &
append([Ta],Tr,T) &

/* write(['**Q',[Q]]) &
/* write(['**T',[T]]) &
/* wr i te ([',':*,'<;':,':*,b':'':**''<;':**'':*'':Yureeka ' , Tb]) &

eombine(Q,T,Q3,T3) &
/* write(['**Q3',Q3]) &
/* write(['**T3' ,T3]) &

append(Q3,Qb,QI) &
append(T3,Tb,Tl)).

/ * writ e ([','<;"T 1 ' , T 1])) .

eombine([Qel![or![[condition! [[Qe2!R]]1]]),
[ConI! [conneetor![[eonditional! [[Con2!N))]))),
[Newq],[Newt]) <-

a_eondition(Conl) &
a_condition(Con2) &
specific_conditionals(Qel,Attl,Tl) &

PAGE 1

FILE: FC PROLOG Al (SQ53) 9/15/87 15:21:20

specific_conditionals(Qc2,Att2,T2) &
get_attribute(Qatt,Tatt,Attl,Att2) &
., Tatt = [] &
equivalance(Tl,T2,Newcond) &
append([Newcond],Qatt,Qn) &
append(Qn,R,Qqn) &
append([condition],[Qqn],Newq) &
append([conditional],[Tatt],Tn) &
append(Tn,N,Ttn) &
append([conditional],[Ttn],Newt)

cornbine([Qcl![or![[condition![[Qc2!R]]]]]],
[ConI! [connector! [[conditional! [[Con2!N]]]]]],
[Newq],[Newt]) <-

a condition(Conl) &
a-condition(Con2) &
specific_conditionals(Qcl,Attl,Tl) &
specific_conditionals(Qc2,Att2,T2) &
get attribute(Qatt,Tatt,Attl,Att2) &
Tatt = [] &
equivalance(Tl,T2,Newcond) &
append([Newcond],Qatt,Qn) &
append(Qn,R,Qqn) &
append([condition],[Qqn],Newq) &

append([conditional],Tatt,Tn) &
append(Tn,N,Ttn) &
append([conditional],[Ttn],Newt)

combine([[condition![[R![T!Tr]]]]IQs],
[[conditional! [[N! [NT!Ntt]]]] !D],
[[condition ! [[R !Ns]])) ,
[[conditional![[N!Ny]]]]) <-

/* write('here6') &
/~~ write(['R' ,R]) &
/* write(['R!T' ,[R!T]]) &

member([conditional!Qa],[N![NT]]) &

PAGE 2

/* write(['R2' ,R2]) &
/* write(['Qs' ,Qs]) &

get_condition ([N! [NT]] , [N2] , [[R] ! [T]], [R2]) &.

/* write(['S' ,S]) &
/* write(['Y' ,Y])

combine([R2!Qs],[N2!D],S,Y) &
append(S,Tr,Ns) &
append(Y,Ntt,Ny) .

combine([[condition![[Qc2![Rl!R2]]]]![Co!Qs]],
[[conditional![[Tn![Nl!N2]]]] ![connector!D]],
[[condition![[Qc2![Rl!R2]]]]![Co![[conditionl
[[Qc2!Rt))]]]] ,
[[conditional![[Tn![Nl!N2]]]]![connector!
[[conditional![[Tn!Dt]]]]]]) <-

((R2 = [] & Rt = Qs & Dt = D)
(-.R2 = [] & append([RI],Qs,Rt) & append([Nl] ,D,Dt))) .

/* write('here2') &
/* write(['here2RI',Rl]) &
/* write(['here2R2' ,R2]) .

combine([[condition![[Qc2![Rl!R2]]]]!Qs],
[[conditional! [[Tn! [Nl!N2]]]]!D],
[[condition![[Qc2![Rl!R2]]]]![or![[condition!
[[Qc2!Rt]]]]]],

FILE: FC PROLOG Al (SQ53) 9/15/87 15:21:20

[[conditional![[Tn![Nl!N2]]]] ![connector!
[[conditional![[Tn!Dt]]]]]]) <-
((R2 = [] & Rt = Qs & Dt = D)

PAGE 3

(~R2 = [] & append([Rl],Qs,Rt) & append([Nl],D,Dt))) .
1* write('here3') .

cornbine([[condition![Qc2![Con![R]]]]!Qs],
[[conditional! [T1! [Co! [T2]]]] !Tr],
[Qc2![Con!A]],
[Tl![connector!B]]) <-

I~~ write('here4') &
combine([R!Qs],[T2!Tr],A,B)

get attribute([],[],any,any) <- I.
get-attribute([Att],attribute,Att,Att) <- I.
get-attribute([Att],attribute,Att,any) <- I.
get-attribute([Att],attribute,any,Att) <- I.
get-attribute([Att],attribute,Any,Att).
get-attribute([Att],attribute,Att,Any).

a condition(conditional).
a=condition(intra_entity).

specific_conditionals(Q,A,T) <- intra_entity(Q,A,T).
specific_conditionals(Q,any,Q) <- conditionals(Q).

get_condition([[conditional!R]],[[conditional!R]],Q,Q) <- I.
get_condition([H!T],R,[Qh!Qt],Q) <- get_condition(T,R,Qt,Q).

FILE: FILL_REM PROLOG Al (SQ53) 3/25/88 12:17:40

/* remove all filler words
remove filler([],[],[],[]) <- /.
remove=filler([fillerIX],[HIIT],Tt,Tw) <-

/ &
remove_filler(X,T,Tt,Tw).

remove filler([HI!TI],[H2!T2],[HI!T3],[H2!T4]) <-
- remove_filler(Tl,T2,T3,T4).

PAGE 1

FILE: FILLER PROLOG Al "CSQ53) 9/21/87 16:40:39

fillerC"7'<") .
filler (filler) .
fillerCplease) .
fillerCin) .
fillerCa) .
fillerCwhich) .
fillerCwhose) .
fillerChave) .
fillerChas) .
filler Chow) .
fillerCmuch) .
fillerCget) .
fillerCdo) .
fillerCevery) .
filler(all) .
fillerCinformation).
filler(about) .
fillerCtheir) .
filler(as) .

/7'< filler(by).
fillerCthe) .
fillerCof) .
filler (who) .
fillerCare) .
filler(but) .
fillerCthan) .
fillerCthey) .
fillerCwhom) .
filler(if) .
fillerCthem) .
fillerCto) .
fillerCwhere) .
fillerCprint) .
filler (number) .
filler(retrieve).
filler(retreive).
fillerCfetch) .
filler(is) .
filler(specify) .
filler (any) .
filler Can) .
fillerCwith) .

filler(". ").
filler(", ").
fillerC"!") .
filled"?") .
filled II : ").
filled"; ") .

PAGE 1

FILE: FIND PROLOG Al (SQ53) 6/12/87 14:48:21

rules(A,M) <- axn(A,B,C,D,E) &

rules(A,[]).

C = .. [I<-",Al,Bl] & / &
findout (B 1 ,M).

findout(A,F) <- A= .. ["&" ,Ml,M2] & / &
findout(Ml,Fl) &
findout(M2,F2) &
newappend(Fl,F2,F).

findout(A,F) <- A=.--:-[";",Ml,l-12] & / &
findout(Ml,Fl) &
findout(M2,F2) &
new_append(Fl,F2,F).

findout(A,[Ml]) <- A = .. [Ml!M2].

PAGE 1

FILE: FIND_DEF PROLOG Al (SQ53) 6/12/87 15:23:36

1* ,'rl
1* find clause names asociated with predicate Pn *1
1* *1
/ ****~':**"i':**")":;':"':i~**f':**;':*f':*"':*;':*;':i':"':";':;':;':*;':;':;'ti':;':;'r;'r":*;'r,':;':,':~lr;'r;':;tr /

find(Pn,L) <- axn(Pn,A,R,CN,I) &
1 &
find others(Pn,[CN],L).

PAGE 1

find(Pn,L) <- nl &-prst('No such rule has been loaded') & nl & n1 &
findal1([],L) & prst('Loaded clauses are') & n1 & nl &
printlist(L) & nl.

I''r *1
1* find all clause names for loaded predicates ,'rl
1* *1
/,':**;':;':"':,;'r**'':;':;':*'';~**;':**'~;':*''i,:*,,:.,,:;,:*,'r~:*,,;,:*,,'r*,',,':,'r,,:,':*'#':,':"l:.,':;':i'ri':,', /

findall(L,R) <- axn(Pn,A,B,CN,I) &

findall(L,L) .

~ member(CN,L) & 1 &
append(L,[CN],L2) &
findall(L2, R) .

/******o;'r*,.:*,,:*,t:*,'c,,Ti,:*m':i':****i':*i':,':*l:*,':i':*i':1:.,,:,,,,:,,:*.,,:.,,:'),:,,:.,':-;':,,;',,,;':,':,,,:,,:,': /

1* *1
1* find other clause names for loaded predicate Pn *1
1* ' *1
/ .,':i,:,':"l:,,'ti':i':"i'ri':,,':i':i':-;':i':*"':"i':i':;':i':*i':-;':i':-;':;'ri':i':i,:*.,':*i':,':i':i':i':i':,'r-;':.':;'t..,':i':,":i',-,,:.,':,,:;,:,,,:,', /

find_others(Pn,L,Lf) <- axn(Pn,A,R,CN,I) &
~ member(CN,L) & 1 &
append(L,[CN],L2) &
find_others(Pn,L2,Lf).

find_others(Pn,L,L).

/ *i':'i":"':"':*"i,:**.,,:,':i':-l:*-;,:,,,:,':··l:,,':i,:,':*,,':i':,,':,':-;':;':;':;':*;':;'r;'r;':;':;t:;':,':;':..,':;':;':-I: .. ,: .. ':;':~':;':"a'r"';':..,': /

1* *1
1* find file names for all files filetype prolog *1
1* *1
/*;':"l:i':';':"i':;"*"i':;':"i':"i':**i':;':;':";"';':";':**;':';"*';"";':';"';':*.,";':*;'f;':"':"i':";':i':;':,,;':;~"'·k'':;':''':;':;':;':i':''i':'''' /

extfind(Pn,L) <- system('listfi1e * prolog (exec' ,cms) &
dcio(in,input,fi1e,cms,exec,a) &
readat(Jl,in,l) & write(J1) & fail &
readat(J2,in) &
readat(J3,in) &
readat(J4,in) &
readat(File,in) &
readat(J5,in) &
readat(J6,in) &
write (File) .

1* *1
1* find clause names where predicate defined in *1
1* more than one clause *1
1* *1
I";':*"':***"-:"~*"':"':*"':"':"':*****;':"i'r"i,:.,,:.,,:.,td':*"':";'r"'r "':W/:"':"':.,t:";'r~("':"':"':";':"':"':*"':"':"i" .. ·:"l(.,,:,,'r /

check_for_sp1it_clause_definition(P) <- axn(P,A,R,CN,I) &
~ P = op &
find_others(P,[CN],C1ause list) &
~ Clause_list = [H] & -
nl &

prst('Predicate definition found in more than one clause') &
n1 & n1 &

FILE: FIND DEF PROLOG Al (SQ53) 6/12/87 15:23:36

writesCP) & nl & nl &
prst('In clauses ') &
printlist(Clause_list) & nl.

1* *1
1* find clause names asociated with predicate Pn *1
1* ,', 1
/ *~"~~,,;'r*'";':··lr.,'t,,;'r .. ":,'r,,;':,,;':*;':')'r"l~''t'';'r.,'r''lr')':*''J':'';':'':'';': .. 't*,'t,':,'r-;':,':*;'r*..,':7':,";,':*-;'r,':*.'r*,':,':*,': /

find similarCPred,Clause) <- axnCPn,A,R,CN,I) &
- atom(Pn) &

st_to_at(Sp,Pn) &
st_to_at(Sd,Pred) &
substring(Sp,Sd,Q,N) &
1 &
find_others_similar(Pred,[Pn),Clause).

1***-.,<****-.,<**-.,<********,,<,,<**,':-.'<-.,<**,,<,,<,,<,,<*-.,;-.,,**-1,***-.',**1,**,,<,,<** 1
I''; ,'r 1
1* find other clause names for loaded predicate Pn *1
I''; ,'r 1
/<;':";':**"i':,':**;':;'r.':***-;':*,,':,':,"*,':')\:-;':**,':,':,,;'r*-lr* ... ";,:",:*,,:,,;'(-;,:,,:*"#-;,:,,,:,,:,,;,:**,,;,:-;,:,,:,'0': /

find others similar(Pred,L,Lf) <- axn(Pn,A,R,CN,I) &
- - atom(Pn) &

find_others similar(Pn,L,L).

st_to_at(Sp,Pn) &
st_to_at(Sd,Pred) &
substring(Sp,Sd,Q,N) &
, member(Pn,L) & 1 &

append(L,[Pn),L2) &
find_others_similarCPred,L2,Lf).

output~red <- dcio(out,output,file,pred,list,a,v,80) &
o pred([debug,built),out) &
d~io(close,out).

o_pred(Cl,Out) <- axn(Pnnn,Ann,Rnn,CN,Inn) &
, member(CN,Cl) &
new append([CN1,Cl,CI2) & 1 &
o clause(CN,[),Out) &
o_pred(CI2,Out).

o clause(CN,Pl,Out) <- axn(Pn,A,R,CN,I) &
, member(Pn,PI) & 1 &

find(Pn,L) &
writes(Pn,Out) & nl(Out) &
tab(15,Out) & writes(L,Out) &
write(Pn) &
nl(Out) & tab(15,Out) &
rules(Pn,M) & writes(M,Out) &
nl(Out) &
new_append([Pn],PI,Pl2) & 1 &
o_clause(CN,P12,Out).

o clauseCCN,Pl,Out).

PAGE 2

FILE: GETFILE PROLOG A1 (SQ53) 9/14/87 20:26:00

1* get a query from a file test for bye to terminate *1
fget_query(Query,Alist,File) <-

readlinef(Str,File) &
caseshift(Str,Query) & 1 & nl &
check_asked_condition(clear) &
maintain query(Query) &
(Query=Tbye ') ;
(process_query(Query,RI,Rep3) &

out_query(Rl,Rep3,Alist)) & 1

gf <- nl & dcio(in,input,file,simple,data,a) &
repeat &

fget query(Query,Alist,in) &
(~ Query = 'bye' &

display & nl &
prst('HIT RETURN TO CONTINUE') & nl &
readline(Return) &
run_query(Alist,R) &
fail) ;

Query = 'bye' & 1 &
dcio(in,close).

PAGE 1

FILE: GETS CREE PROLOG Al (SQ53) 9/18/87 18:34:40 PAGE 1

get query(Query,Rep3,Alist) <-
- system('clear') &

g <-

/*
/*
/*
/*

prst('Enter Your Query or Command (DOMAIN, LOAD, NEW,') &
prst(' SAVE, STOP)') & nl & nl &
readline(Str) &
caseshift(Str,Query) & / &
check_asked_condition(clear) &
maintain query(Query) &
(QuerY;'stop') ;
(process_query(Query,Rl,Rep3) &

out_query(Rl,Rep3,Alist)) &
/.

repeat &
get_query(Query,Ret,Alist) &

(~ Query = 'stop' &
display & nl &

prst('CHECK THE QUERY THEN HIT RETURN TO CONFIRM') & nl &
prst('TYPE Q TO QUIT') & nl &
readline(Return) &
(~ Return = 'q' & ~ Return = 'Q') &

run_query(Alist,R) &
explain(Ret,Alist,R) &
fail) ;

Query = 'stop' & /.

FILE: ID PROLOG A1 (SQ53) 9/19/87 14:19:50

1* *1
1* identify conditional parts of a query *1
1* Qist - Query list *1
1* Trlst - translation list *1
1* NewQ - new query list *1
I'" NewTr - new translation list '''I
1* *1
/ ~':~1:~",,':;':;':;':;";·:";,':";,':';':';':";,':*';':*"i':**";':"i':";,':*"i':*"':·k';':"i':i':,;'r··}r";':7r*;I,;':;':7r;,:;,:,;,:,;,:* .. ':";,':~/:,,;':;t:··k;1(";,':* /

identify_clauses(Q,T,Ret) <-

l*write(['*Q ',Tempq]) &
l*write(['*T ',Tempt]) &

find_conditions(Q,T,Tempq,Tempt) &

PAGE 1

find_combinations(Tempq,Tempt,Intq,Intt) &
l*write(['*Q2 ',Intq]) &
/'''write(["'"T2 ',Intt]) &

((member(aggregate,Intt)) I
(~ member(inter_entity,Intt) &

~ member(intra_entity,Intt) &
~ member(conditional,Intt) &
~ member(stored,Intt))) &

formalise_conditions(Intq,Intt,Fntq,Fntt) &
/* Intq = Fntq & Intt = Fntt &

find_aggregates(Fntq,Fntt,Nnq,Nnt) &
/*write(['*Q ',Nnq]) &
l*write(['*T ',Nnt]) &

unite conditions(Nnq,Nnt,Ret)
l*write(['*R ',Nnq]) . -

find conditions(Qin,Tin,Qout,Tout) <
/," Cmember(conditional,Tin) I
/'"
/"(

find_conditions(Qin,Tin,Qin,Tin).

member(inter entity,Tin) ;
member(intra entity,Tin)) &

find condition(Qin,Tin,Qtout,Ttout) &
(~ Qin = Qtout I ~ Tin = Ttout) &
1 &
find_conditions(Qtout,Ttout,Qout,Tout).

find condition([HqITq] ,[HtITt),Nq,[[conditionall [[HtINt2)))INtl)) <-
- type_of_condition([HtITc) &

/* add match(Tc,Tt,Tq,Remt,Remq,Q) &
match(Tc,Tt,Tq,Ntl,Nql,Q) &
find_condition(Q,Tc,Nq2,Nt2) &

t·(find_condition(Remq,Remt,Nql,Ntl) &
append([[conditionl[[HqINq2]))),Nql,Nq).

find condition([HqITq),[HtITt),[HqIQr],[HtITr]) <-
- find_condition(Tq,Tt,Qr,Tr).

find_condition([), [), [), [).

find_aggregates(Qin,Tin,Qout,Tout) <- member(aggregate,Tin) & / &
find_aggregate(Qin,Tin,Qout,Tout) &
~ member(aggregate,Tout) .

find_aggregates(Qin,Tin,Qin,Tin).

find_aggregate([HqITq),[HtITt),Nq,[[aggregatel[[HtINt2]))INtl)) <
type_of_aggregate([HtITc) &
match(Tc,Tt,Tq,Remt,Remq,Q) &
find_aggregate(Q,Tc,Nq2,Nt2) &
find_aggregate(Remq,Remt,Nql,Ntl) &

. append([[aggregatel[[HqINq2)))),Nql,Nq).
find_aggregate([HqITq),[Htlft),[HqIQr),[HtITr) <-

FILE: ID PROLOG Al (SQ53) 9/19/87 14:19:50

find_aggregate(Tq,Tt,Qr,Tr).
find_aggregate([],[],[],[]).

find_combinations(A,B,C,D) <- find_combination(A,B,Cl,Dl) &
e ' A = Cl I ' B = Dl) &

find_combinations(A,B,A,B).

/ &
find_combinations(Cl,Dl,C,D).

PAGE 2

find_combination([HqITq],[HtITt],Nq,[[combinel[[HtITc]]]INt1]) <
type_of_combination([lit ITc]) &
match(Tc,Tt,Tq,Remt,Remq,Q) &
find_combination(Remq,Remt,Nql,Nt1) &
append([[combinel[[HqIQ]])),Nql,Nq).

find combination([HqITq],[HtITt],[HqIQr],[HtITr]) <-
- find_combination(Tq,Tt,Qr,Tr).

find_combination([],[],[],[]).

match([HITl],[HIT2],[HqITq],Remt,Remq,[HqIQ]) <
match(Tl,T2,Tq,Remt,Remq,Q).

match([] ,Remt,Remq,Remt,Remq, []).

/,,: type_ of_ combination([conditional, connector, conditional]) .
type_of_combination([[conditionalIR],connector,storedj).
type_of_combination([[conditionalIR] ,stored]).
type_of_combination([[combineIR],connector,stored]).
type_of_combination([[combineIR] ,stored]).
type_of_combination([conditional,connector, [conditiona lIR]]).
type_of_combination([conditional,connector, [combineIR]]).
type_ of_ combination([intra_entity, connector, [conditional I R]]) .

I'': type_ of_ condition([attribute, conditional, stored]) .
/* type_of_condition([conditional,entity,stored]).
/": type_ of_conditione [conditional, entity, [conditional! R]]) .
type_of_condition([entity,inter_entity]).
type_of_condition([stored,inter_entity]).
type_of_condition([intra_entity,stored]).
type_of_condition([conditional,stored]).
type_of_condition([connector,stored]).
type_of_condition([attribute,stored]).
type_of_condition([entity,stored]).
/,':pe_of_condition([stored,entity]).
type_of_condition([inter_entity,stored]).
type_of_condition([attribute,[conditionalIR]]).
type_ of_conditione [inter_entity, [condi tional! R]]) .
type_of_condition([entity,[conditionalIR]]).
type_of_condition([intra_entity,[conditionalIR]]).
type_of_condition([conditional,[conditionalIRj]).

type_of_aggregate([aggregate,entity).
type_of_aggregate([aggregate,attribute).
type_of_aggregate([aggregate,[conditionalIR]]).
type_of_aggregate([entity,aggregate,attribute]).
type_of_aggregate([entity,inter_entity,aggregate]).

FILE: INTRO PROLOG Al (SQ53) 7/29/87 12:03:08

intro <- system('clear') & system('type intro info' ,ems) & g &
fin.

PAGE 1

FILE: ISA PROLOG Al (SQ53) 9/10/87 0:54:44 PAGE 1

I'': is defines what a term It is It in the database wor ld

op(is,rl,50).

X is stored <- quoted(X,'':) & I .
X is intra_entity <- intra_entity(X,*,*).

1* X is synonym <- synonym(X,Xb) •
X is stored <- stored _in_database(X) numb(X) .
X is connector <- connectors(X).
X is conditional <- conditionals(X).

1* X is relation <- relation(X,* ,>'r).

X is entity <- entity(X) .
X is dimension <- dimension(X).
X is aggregate <- aggregates(X,*,*).
X is attribute <- attributes(X,*,*).
X is inter_entity <- connect(X, ,'r >'r >'r * *) ; , , , ,

connect (,':, ,,: * >'r * X) . , , , ,
X is stored <- attributes(Z,one_of,L) & st_to_at(Xs,X) &

member(Xs,L).
X is filler <- filler(X) .

1* The following items have been commented out to reduce duplication
1* X is plural <- plural(X,Singular).
/* X is synonym <- synonym(X,*) I synonym(* ,X).
/0;'(X is entity <- entity(X).
/* X is subset <- subset(*,X).
/* X is superset <- subset(X,":) .

FILE: LOGIC PROLOG Al (SQ53) 9/09/87 21:16:57

output_relation(X,N,Out) <- relation(X,Key,Attributes) &
no_composite(Attributes) &
st_to_at(St,X) &
prst(St,Out) &

no_composite([H!T])

no_composite([]).

prst(' (' ,Out) &
out att list(Attributes,N,Out) &
prst(' 5 ',Out).

<- ~ composite(H,Any) & 1 &
no_composite(T).

out att list([H![]],N,Out) <- make_variable(H,S,JJ,N,Out) & 1 &
- prst(S,Out) .

out_att_list([H!T],N,Out) <- make_variable(H,S,JJ,N,Out) & 1 &
prst(S,Out) &
prst(',',Out) &
out_att_list(T,N,Out).

output_subset([X,Yj,N,Out) <- output_relation(X,N,Out) &
nl(Out) &
prst(' &' ,Out) &
n1(out) &
output_relation(Y,N,Out).

output_inter_entity([X,I,Y],Ni,No,Out) <- relation(X,Keyx,Ax) &
relation(Y,Keyy,Ay) &

1* output relation(X,Out) &
1* prst('-&' ,out) &
1* nl(Out) &

st_to_at(S,I) &
prst(S,Out) &
prst('(' ,out) &
same_key(Keyx,Keyy,Ni,No) &
out att list(Keyx,Ni,Out) &
prst(',-',Out) &
out att list(Keyy,No,Out) &
prst(' 5' ,Out)

1''< nl (Out) &
1''< prst (' &' ,out) &
1* nl(Out) &
1* output_relation(Y,No,Out).

output condition([[X,Y],Con,Object],Ni,No,Out) <-
- prst(' (',Out) &

sub_condeObject,Ni,No,Out) &
output_relation(X,Ni,Out) &
prst(' &' ,Out) &

j*st('-------' ,out) &

nleOut) &
crite(Con,Y,Out) &
prst('(' ,Out) &
out_att_list([Y] ,Ni,Out) &
prst(' ,',Out) &
out_cond(Object,No,Out) &

prst(') ',Out) .

PAGE 1

output_connector(or,Out) <- nl(Out) & prst(' I
output_connectoreand,Out) <- nl(Out) & prst(' &
output_connector(not,Out) <- nl(Out) & prst(' &

',Out) & nl(Out).
',out) & nl(Out).

~ ',out) & nleOut).

FILE: LOGIC PROLOG Al (SQ53) 9/09/87 21:16:57

out_cond(Object,N,Out) <- atom(Object) & / &
st_to_at(Sob,Object) &
writes(Sob,Out) &
prst(') ',Out) .

out_cond(Object,N,Out) <- numb(Object) & / &
writes(Object,Out) &
prst(') ',Out) .

out_cond([sub![[E,A]![T]]],N,Out) <-
out_att_list([A],N,Out) &
p r 5 t (') " au t) .

sub_cond([sub![[E,A]![T]]],Ni,Noo,Out) <- increm(Ni,No) & / &
nl(Out) &

PAGE 2

write tail([],T,No,Noo,Out) &
prst(T &' ,Out) & nl(Out).

sub_cond(A,Ni,Ni,Out).

same key(Keyx,Keyy,Ni,Ni) <- ~ Keyx = Keyy & /.
same=key(Key,Key,Ni,No) <- increm(Ni,No).

<- prst('ne' ,Out).
<- prst('lt' ,Out).
<- prst('le' ,Out).
<- prst('eq' ,Out).
<- prst('gt' ,Out).
<- prst('ge' ,Out).

critec"/=" ,Att,Out)
crite("<",Att,Out)
crite("<=",Att,Out)
crite("=",Att,Out)
crite(">",Att,Out)
crite(">=",Att,Out)
crite(rule,Att,Out) <- attributes(Att,composite,Rule) &

st_to_at(S,Rule) & prst(S,Out).
crite(after,Att,Out) <- prst('ge' ,Out).

FILE: MEMBER PROLOG A1 (SQ53) 3/25/88 12:17:52

/* succeeds if A is a member if the list B
member(A,[A!T]).
member(A,[H!T]) <- member(A,T).

PAGE 1

FILE: NEWUSER PROLOG Al (SQ53) 6/02/87 19:28:11

/* */
/* Erase user workspace to clear for a new user */
/* Erase current user assumptions ,'r /
/* Erase current workspace */
/* */
/;'r;':4':;':7'**;':"':#':**;':;~*;':*;':***;':**";':;':*;':"':;':"':;':*,':.'r.,'r,':i'ti'r.'rj':i'r*,':i'r*i'ri'r",:,Ti'r,'r,':,':*')':*,,:,'r.,'r I
new user <- current_user(User) &

ax(A,B,User,M) &
delax(B) &
prst('Removed ') &
writes(A) & nl &
fail.

new user <- ax(A,B,[],M) &
delax(B) &
prst('Removed ') &
writes(A) & nl &
fail.

new_user 0 .

/,",':*,,':i,:.,t:**;'r,,;':*****,,':*i':,,':i':*i'ri':*.'ri,:;,:";,:;t,i':,':;':i'r,':i':i'r.,':,,':i'r*,':,':,'ri'ri':,'r,,:*.,,:,'ri'r,',i':,,':,':,':iT-a':"lr,'r /

/* */
/* Erase user query assumptions */
/* */
/ 'f':··lri':,':;':-;':,,':*;'ri':,,':i':"i,:***.,':i':*i':i':;':,;':*i':i'r*** .. ':i':i':i':'i':**,,'r,':,,'r,'r,,':*,':.,':,':*,':,':,'r,'r*,':,'r.,':,'r*"lr"lr,'ri'r* /

new_query <- axn(previously asked,B,D,[],H) &

new query().

delax(D) &
fail.

/ i':;':*,'r*.'n':'i'n':*;':;':*of:*;':,;':;':-;':;':-;':**i':i,:,;':*i':i':i':,':i,:.,':-k...,':i':i':i,:-;,,:*.,':i'r.,'n':,'o':,,;':"lr,,;'r,':*,':,,;':,,':,':*J,:";,:,,;,:*.,':,,:,,,: /

/* */
/* Load in the profile for a new user */
/* */
/"':"':*;':"':*;':;t:;':··l:***;':';':*.':**-;':*-;':**-;':i':***~'r~'r~':~':*,;'r*,;':,;'rit:*i':~':i'r';"i'(i'ri'r·k~':i'r*i'r~'r-;'r"'ri'r,'r"'("'r-;'r /

loaduser <- nl & nl & prst('ENTER USER PROFILE ID') & nl &
readat(User) &
addax(current_user(User)) &
reconsult(User).

/~':i':*.':~':i'r.'ri'r1n':;':i':~':i'r*.'r;t'i':;t:i':~"*~':';':i':;',~'r;'r.':i',-;',;'r,t,;'r-;',·l:-;'ri'r~':~'r-;'r~t,~'ri'r~'r~"i':i':i':,;'r";'r,,:,':~,:,':;':,'r":i'r* /

/,,~ ,'r /
/* Save the perceptions made by a user */
/* Check if a user profile exists */
/* If file does not exist write direct to file */
/,'r "User prolog a" ,'r /
/,,~ Otherwise append to existing file "User prolog a" ,'r/
/,.~ * /

PAGE 1

I ,;':";':";':~':*";':i":";':.":";':~h':;':";':*~':~':**;':;':'':~':;':~':*";': ... ':~':";':;':·l:it';':*i':*i'r~',,,;'r,,;':~:*";'r-;~,'r;':i'r* ... 'r.,'r,':,'r"'':'':'':*''i':''i':'': /

saveuser <- nl & nl & prst('ENTER 10 FOR SAVED PROFILE') & nl & nl &
readline(User) &
system('set emsg off' ,ems) &
stconc('listfile ',User,Sl) &
stconc(Sl,' prolog a' ,52) &
system(S2,cms,Ret) &
out(User,Ret) &
system('set emsg on' ,cms).

1******i':*";':*******~'r**-;'r*-;':*,,;'r;'r~':"'1:*~':;':"i':~".':"":-;':;':*.',-;'r ... ,:****-;,:-;,:,,;,:,,:*,':*-;'r*-;':,'r,,;'r*-;':"lf-;'r /

/* */
/* file does not exist write direct to file */
/,'r "User prolog a" ,'r /

/* */
/****-;'r**-;':**.':*,,;':.':**.H:*;'ri':****.':**.':;':.':***."*-;':*"i':* .. ':*********-;,:**,,:* .. ,:**.,:,,: I

FILE: NEWUSER PROLOG Al (SQ53) 6/02/87 19:28:11

out(User,28) <- dcio(out,output,file,User,prolog,a,f,80) &
output_profile(out) &
dcio(out,close).

/*4"*~tr*******"'r"'r******''c**''~***'''':-l:***'''r'''r'''rf''''''";''7'c..,'r*,'r-.'r**"Ti',iT*.,":i',"i'r*,'r,'r.,'r,'r,'r.,'r.,'r,'r /

1*
1*

1*

file does exist write to file "junkzzq prolog a"
Then append to existing file "User prolog a"

/*""***""*-;'(;,:""***,,,-,':,";,,****,,,,,,:****,,,:**,,",,':;':*"'0".,'r",:*.,'r,'ri'r,'n'r.,'..-,',,'r,'r,'r.,-r,'r,'r,'r,'r,'r,'r,'r'i'r.,'r*,'r /
out(User,O) <- dcio(out,output,file,junkzzq,prolog,a,f,80) & nl &

prst('Appending to old user profile') & nl &
output_profile(out) &
dcio(out,close) &
stconc('copyfile ',User,S1) &
stconc(SI,' prolog a junkzzq prolog a ',S2) &
stconc(S2,User,S3) &
stconc(S3,' prolog a (replace' ,S4) &
system(S4,cms) &
system('erase junkzzq prolog a' ,cms).

/ ,,".,'r*,'r,,'r.,'ri'ri'ri'r**.,'r.'r,",'r-.'r**.,'r,t:-;""l:-;'r";"i'r*;'r.'r;'r-;'r;'r*k*.,'r-.'r··k,':"'r,,;'ri':,',,';,',i'ri'r,'r.,':,'r,',,,;':,'r"l\.,'riT*;':,':",':"':.,':.,",'; /

1* *1
1* Output current user profile file specified Out *1
1* *1
/ ,,'r*.,'r"":'i'ri'r*,'r,'ri'r;'r***.,'r****.,t:***.'ri'ri'ri'ri'r.,':,,'ri'r*i'r··/r-;'"'r,':,'c.,"";',,,;'r,';,,'ri'ri'r",'n'r,'r.,,,.,'r.,'r*-;'r"':"'J'ri'r*;'ri'r'1'r,'r /

output_profile(Out) <- ax(A,B,[],M) &

output_profile(Out).

write(B,Out) &
fail.

PAGE 2

FILE: OUT PROLOG Al (SQ53) 6/11/87 16:32:25 PAGE 1

ccondition_output([[connector,[O]]!T],[O!R]) <- condition_output(T,R).
ccondition_output([H!T],[and!R]) <- ~ H = [connector![K]] &

condition_output([H!T],R).
ccondition_output([H!T],[or!R]) <- ~ H = [connectorl[K]] &

condition_output ([HIT] ,R).
ccondition_output([],[]).

condition_output([[subset![[A![B]]]]!T] ,D) <-
/ & ccondition_output(T,R) &
append([B,is,a,A] ,R,D).

condition_output([[inter_entityl[[A![BI [C]]]]]IT],D) <- / &
ccondition_output(T,R) &
append ([A, B , C] , R, D) .

condition_output([[condition![[A![B![C]]]]]!T],E) <
sub_condition(C,Co) & / &
ccondition_output(T,R) &
split_object(A,Al,A2) &
ifrule(B,Bo) &

append([the,Al, "'s" ,A2,is,Bo,Co] ,R,E).
condition_output([[connector,[not]]!T],[notIR]) <- condition_output(T,R).
condition_output([],[]).

split_object([An![A2]] ,An,A2).

sub_condition([sub! [N! [Cll], [N! ["subject to"!Co))) <- / &
condition_output(C,Co).

sub condition(C,C).

ifrule(rule,"according to a rule") <- /.
ifrule(X,X).

FILE: OUTQ PROLOG A1 (SQ53) 9/09/87 21:17:00

increm(Si,So) <- st_to_at(Si,Ai) &
Ao := Ai + 1 &
st_to_at(So,Ao).

PAGE 1

out_query(F,S,Alist) <- dcio(out,output,file,qu_out,prolog,a,v,BO) &
remove_previous_queries &
n1(out) & nl(out) &
write_head(F,Ret,Alist,out) &
nl(out) &
remove_default(S,Snd) &

/* prst('11111') & write([F,Snd]) &
prst(' <- ',out) &
nl(out) & / &
write_tail(Ret,Snd, '0' ,M,out) &
prst(' . ',out) & nl(out) &
nl(out) & nl(out) &
dcio(out,close) &

system('copyfile qu_out prolog a col prolog a(appcnd',
ems).

out_query(F,S,Alist) <- error('wrtiting out query pred').

remove_default([[default,[X])IT),Tr) <- / &
remove_default(T,Tr).

remove_default([[objeet,X)IT],Tr) <- / &
remove_default(T,Tr).

remove default([HIT],[HITr) <- remove_default(T,Tr).
remove=default([],[]).

remove_previous_queries <- ax(pquery(X),H,N) &
delax(pquery(X) &
fail.

make variable(Att," ,Attl,N,Out) <- atom(Att) &
composite(Att,Attl) &
out_att_list(Attl,N,Out) & /.

make variable(Att,Str2,[Attj,N,Out) <- atom(Att) &
- st to at(Str,Att) &

st=to=li(Str,Lis) &
capital(Lis,Clis) &
st_to_li(Str1,Clis) &
stconc(Str1,N,Str2).

capital([H!T],[Ch!T]) <- upshift(H,Ch).

write_head(F,R,Alist,Out) <- prst('pred query([' ,Out) &
out_ret_list(F,R,Alist, '0' ,Out) &
prst(']) ',Out).

out_ret_list([H],Rl,Al,N,Out) <- / & out_ret_list(H,Rl,Al,N,Out) .
out_ret_list([He! [H! [Cal [])]], [He] ,R,N,Out) <- make_variable(H,S,R,N,Out)

& / &
prst(S,Out) .

out ret list([Hel[H![CaIT])],Ret,Al,N,Out) <- make_variable(H,S,Al,N,Out)
& / &
prst(S,Out) &
prst(',' ,Out) &

out_ret_list(T,Tret,Ta,N,Out) &
append(A1,Ta,Al) &

FILE: OUTQ PROLOG Al (SQ53) 9/09/87 21:17:00 PAGE 2

new_append([He] ,Tret,Ret).
out_ret_list([HIT],Rl,Al,N,Out) <- / & out_ret_list(H,R2,A2,N,Out) &

prst(' , ',Out) &
out_ret_list(T,R3,A3,N,Out) &
append(A2,A3,Al) &
new_append(R2,R3,Rl).

out_ret_list([],[],[],N,Out).

write tail([XI[)],[],N,M,Out) <- output_relation(X,N,Out) & / .
write=tail([XIT],[],N,M,Out) <- output_relation(X,N,Out) &

prst(' &' ,Out) & nl(Out) & / &
write_tail (T, [] ,N ,~1 ,Out).

write tail([],[],N,N,Out) <- /
write=tail([],S,N,H,Out) <- ... S = [] &

nl(Out) & / &
writtail(S,N,M,Out).

write_tail(X,S,N,M,Out) <- ... S = [) & write_tail(X,[],N,~I,Out) &
prst(' &' ,Out) & nl(Out) & / &
writtail(S,N,M,Out).

writtail([XI[]],N,M,Out) <-
wrt_tail(X,N,M,Out) & / & nl(Out).

writtail([XI [[connector, [not)]1 [[inter_entity,Y] IT)]], N,Mo,Out) <
wrt tail(X,N,M,Out) & / &
prst(' &' ,Out) & nl(Out) &

writtail ([[connector, [not]] I [[inter_entity, Y] IT]] ,M ,Mo, Out) .

writtail([XI[[connector,[Y])IT)),N,Mo,Out) <-
wrt_tail(X,N,M,Out) & / &
writtail([[connector,[Y))!T),M,Mo,Out).

writtail([[connector, [not)] ! [[inter_ ent ity ,X] IT]] ,N ,H, Out) <
negate_inter_ent(X,Z) & / &
writtail([[inter_entity,Z) IT] ,N,H,Out).

writtail([[connector,[X]]IT],N,Mo,Out) <- / &
wrt_tail([connector,[X11,N,H,Out) &
writtail(T,H,Mo,Out).

writtail([X!T),N,Ho,Out) <- wrt tail(X,N,M,Out) & / &
prst(' &' ,Out) & nl(Out) &
writtail(T,H,Mo,Out).

writtail([],N,M,Out).

wrt tail([[X]),N,M,Out) <- wrt_tail([X],N,H,Out).
wrt-tail([relation,[X]),N,N,Out) <- output_relation(X,N,Out).
wrt-tail([subset,[X,Y]],N,N,Out) <- output_subset([X,Y],N,Out).
wrt-tail([inter_entity,[X,I,Y]],Ni,No,Out) <-

- output_inter_entitY([X,I,Y],Ni,No,Out).
wrt tail([condition,[[X,Y],Con,Obj]l,N,M,Out) <-

- output_condition([[X,Yl,Con,Obj],N,M,Out).
wrt tail([connector,[X]] ,N,N,Out) <- output_connector(X,Out).
wrt=tail([default,X],N,N,Out).

putwrittail(F,Out) <- writes(F,Out)
negate_inter_ent([El,Il, E2 1,[El,I2,E2]) <- st_to_at(S1,I1) &

stconc('not_' ,S1,52) &
st_to_at(S2,I2) .

FILE: PLURAL PROLOG Al (SQ53) 4/28/87 16:46:18

/* Swaps words for singular of plural
swap plurals([HA!TA],[HB!TB]) <- plural(HB,HA) &

swap_plurals(TA,TB).
swap plurals([HA!TA],[HA!TB]) <- swap_plurals(TA,TB).
swap-plurals([],[]).

PAGE 1

FILE: PRINTL PROLOG Al (SQ53) 4/28/87 14:43:07

/*
/*
/*
/*

prints out a list as a string of elements separated
by a space. output directed to the console

/*************-;",,*~"i':****"i':**,,;'r***"i"*';~i"'*#';;':***,;'r"'r"':i,,**.t:*i'r*,;"**i'r"i'r-;'r**,,'n'r*,'n'r I
printlist([]) <- I.
printlist([HIT]) <-

printlist([HIT]) <-

printlist([HIT]) <-

printlist([HIT]) <-

atom(H) & / &
st_to_at(Hs,H) &
prst(Hs) &
prst(' ') &
printlist(T) & /.
numb(H) & / &
prst(H) &
prstC' ') &
printlist(T) & I.
stringp(H) & 1 &
prst(H) &
prst(' ') &
printlist(T) & I.
printlist(H) &
prst(' ') &

printlist(T) & I.

/**i'r*;'r****i'r"i'r;'ri'r*,':i':"i'r**"i':;':*"i'rit:i':"'ri'r*i'ri':*i':;'r.,'r*i'ri':;':"i'r*,t:*"i'r.,'r..,'r.,tr*'i'r***.,'r'·i'r*i'ri'r,':'"I'r,':,': I
1* *1
/* prints out a list to the channel Out - Out should ,'r 1
1* be specified in a DeIO statement ,'r 1
1* *1
/****'i'r,;'ri'r*i':~ri'r.tn':"'r,;'r"i'r***i':i':*";':"it:,;t:.,,:#,:;,:*..,,:"':-;':-;':*;':"'':'';':'':''':*;':;'':*'';':'';':''4,:",:-;,:"':,,,:.,,:,,:,,:,,;,:*..,,:,,:..,,:,,: .. 'r"i'r /

printlistf([],Out) <- I.
printlistf([HIT),Out) <- atomCH) & 1 &

st_to_at(Hs,H) &
prst(Hs,Out) &
prst(' ',Out) &
printlist(T,Out).

printlistf([HIT),Out) <- prst(H,Out) &
prst(' ',Out) &
printlist(T,Out).

PAGE 1

FILE: PROCESS PROLOG Al (SQ53) 9/14/87 20:35:36 PAGE 1

process_query(Query,R12,Ret2) <- function_check(Query) &
ana1yse(Query,Parse,Listq) &
consu1t_user_for_unknown(Listq,Parse) &
identify_c1auses(Listq,Parse,Ret) &

/~': write([' * ',Ret,' *' '* proc**~':']) & readli(HH) &
re_order_not(Ret,Ret2) &
compose(Ret2,R12,Rep3) & / .

process_query(Query,RI2,Ret2) <- ~ Query = " &
~ a_function(Query) &

systern('c1ear' ,crns) &
n1 &
prst (' I AM UNABLE TO PARSE THIS QUERY') &
n1 & n1 &
prst('PLEASE RESPECIFY YOUR REQUEST') &
n1 & n1 &
prst('HIT RETURN TO CONTINUE') &
n1 & read1i(Return) &
fail.

re order_not(Ret,Ret2) <- locate([[connector,[not)),[subset,S),
[inter_entity,I)),Ret,B,A) &

append(B,[[subset,S)),Rl) &
append(Rl,[[connector,[not))),R2) &
append(R2,[[inter_entity,I)],R3) &
append(R3,A,Ret3) &
re_order_not(Ret3,Ret2).

re order_not(Ret,Ret).

a function('dornain')
a-function('save') .
a-function('new') .
a-function('load') .
a-function('DOMAIN').
a-function('SAVE') .
a-function('NEW') .
a-function('LOAD')

FILE: QCON PROLOG Al (SQ53) 9/05/87 16:37:34

<- pragrna(list,l).

op(gtn,rl,50).
op (1 tn, r 1 ,50) .
op(gen,rl,50).
op(1en, rl, 50) .
op(eqn,rl,50).

<- reconsult(append).
<- reconsult(csql).

1* *1
1* Equals constraint eqn *1
1* *1
I*;,:***;,:*"f,*;':;':*;':*";"*;':;':**;':;':*;':*,,':*;':"l:;':;':;':*i'r,':;':-;':"':i'r*-a':i':*;':,':i'r-;':*,,':i':,'ri'r.,'r-;'r,':,'ri',,,:* /

eqn(X,Y) <- var(X) &
... var(Y) &
X = Y •

eqn(X,Y) <- ... var(X) &
X = constraint(N) &
., var(Y) &
change_eqn(N,Y).

eqn(X,Y) <- ., var(X) &
... X = constraint(N) &
... varCY) &
eq(X,Y).

change_eqn(N,Y) <- constraint(N,Gl,Nl,L2,N2) &
test(Y,Gl,Nl) &
test(Y,L2,N2) &
label(constraint(N,eq,Y,null,null)).

1* *1
1* Greater than constraint gtn *1
1* *1 /**i':*-;""ki':-;':;1:;t:;':i':*-l:*;':**-;':,,;':,'r*;I:*it:;':i':*";':i':*;':;':-l:,,;':;':-;':,,;':,':-;,:;':,,;,:;,:*-;,:**-;,:-;,:..,,:;,:.,t:-;'r..,':-;':"i':"':"'':'': /

gtn(X,Y) <- ... var(X) &
X = constraint(N) &
... var(Y) &
change_gtn(N,Y).

gtn(X,Y) <- var(X) &
... var(Y) &
new_con(N) &
X = constraint(N) &
label(constraint(N,gt,Y,null,null».

change_gtn(N,Y) <- constraint(N,eq,Nl,L2,N2) &
gt(N1,Y).

change_gtn(N,Y) <- constraint(N,G1,N1,L2,N2) &
... G1 = eq &
test(Y,lt,N2) &
... test(Y,G1,N1).

change_gtn(N,Y) <- constraint(N,G1,Nl,L2,N2) &
test(Y,lt,N2) &
test(Y,G1,N1) &
label(constraint(N,gt,Y,L2,N2)).

PAGE 1

..

FILE: QCON PROLOG Al (SQ53) 9/05/87 16:37:34

/* */
/* Greater than or equal to constraint gen */
/* */
I **;':**;':··lr*;n':;";~i'r**i'r*;'r;";'r**;";'r;'r;'r;'r-:.;·n'r**;"":,i"'':'"J'c,'r;'r,'n':*'#'r,,;',,'r-;'r*''\i'ri'r.,t;.,'ri'r,'r.'r*-l:,,;'r* I

geneX,Y) <- ~ var(X) &
X = constraint(N) &
~ var(Y) &
change_gen(N,Y).

gen(X,Y) <- var(X) &
~ vareY) &
new con eN) &
X =-constraint(N) &
label(constraint(N,ge,Y,null,null».

change_gen(N,Y) <- constraint(N,eq,NI,L2,N2) &
gt (Nl, Y) •

change_gen(N,Y) <- constraint(N,Gl,Nl,L2,N2) &
~ Gl = eq &
test(Y,L2,N2) &
~ test(Y,Gl,Nl).

change_gen(N,Y) <- constraint(N,Gl,Nl,L2,N2) &
test(Y,L2,N2) &
testeY,Gl,Nl) &
check_addax(N,ge,Y,L2,N2).

/* */
/* Less than constraint ltn */
/* */
/*i'r*i,:***'k**;'r**;':'':*'i':***--kitr'),;;':.t:,':'f''*;'r;':-;':,':*.,'n':**;'.;':;':,':;':.,':*,':**;'r*,';,':,':,':,':,':,':,tr*,': I

Itn(X,Y) <- ~ var(X) &
X = constraint(N) &
~ var(Y) &
change_ltn(N,Y).

ItneX,Y) <- var(X) &
., vareY) &
new_con eN) &
X = constraint eN) &
label(constraint(N,null,null,lt,Y».

change_Itn(N,Y) <- constrainteN,eq,NI,L2,N2) &
It(Nl,Y).

change_Itn(N,Y) <- constrainteN,Gl,Nl,L2,N2) &
., Gl = eq &
test(Y,gt,Nl) &
., test(Y,L2,N2).

change_Itn(N,Y) <- constrainteN,Gl,Nl,L2,N2) &
test(Y,gt,Nl) &
test(Y,L2,N2) &
label(constraint(N,Gl,Nl,lt,Y)).

/* */
/* Less than or equal to constraint len */

//: ... * .. *** , '- * /
., ,, "" of" '''" O'II •• h '" ""' n ., flo "" n ,(.. .." ... '" 'H'; .. ***;'~.,':;':;t:*";':;':**;'r*;':*.,':';': /

len(X,Y) <- ., var(X) &
X = constraint(N) &

PAGE 2

FILE: QCON PROLOG A1 (SQ53) 9/05/81 16:31:34

... var(Y) &
change_Ien(N,Y).

len(X,Y) <- var(X) &
... var(Y) &
new_con(N) &
X = constraint(N) &
label(constraint(N,null,null,le,Y».

change_Ien(N,Y) <- constraint(N,eq,N1,L2,N2) &
le(NI,Y).

change_len(N,Y) <- constraint(N,GI,NI,L2,N2) &
... G1 = eq &
test(Y ,G1 ,N1) &
... test(Y,L2,N2).

change_Ien(N,Y) <- constraint(N,G1,N1,L2,N2) &
test (Y ,G1 ,N1) &
test(Y,L2,N2) &
check_addax(N,G1,Nl,le,Y).

PAGE 3

check_addax(N,ge,N1,le,N2) <- eq(NI,N2) & / &
label(constraint(N,eq,NI,null,null)).

check_addax(N,GI,NI,L2,N2) <- label(constraint(N,GI,N1,L2,N2)).

constraint(N,GI,NI,L2,N2) <- query_l(constraint(N,GI,NI,L2,N2).

new_con(N1) <- query_1(num_con(N» &
NI := N + 1 &
labelCnum conCN1».

new_conCa) <- labeICnum=conCO».

testCY,Sym,null).
testCY, 1t, Yl) <- (... Y1 - null) & 1t (Y , Y 1) .
test(Y,gt,Yl) <- ("'Yl - null) & gt(Y,Y1).
test(Y, Ie, Yl) <- ("'Yl - null) & le(Y,Yl).
test(Y,ge,Y1) <- (... Y1 - null) & ge(Y,Y1).

sc <- query_l(constraint(A,B,C,D,E),N) &
write([A,B,C,D,E]) & fail.

sc.

sc(constraint(A)) <- query_l(constraint(A,B,C,D,E») &
write([A,B,C,D,E]) & fail.

sc(X).

coutput(constraint(N),C) <
coutput(constraint(N),Ou) <-

query_l(constraint(N,eq,C,D,E».
query_l(constraint(N,B,C,D,E» &
cwrt(B,C,Oul) &
cwrtCD,E,Ou2) &
append(Oul,Ou2,Ou).

FILE: QCON PROLOG Al (SQ53) 9/05/87 16:37:34

cwrt (null,E, []).
cwrt(lt,E,[' < ',E]).
cwrt(le,E,[' <= ',E]).
cwrt(gt,E,['> ',E]) .
cwrt(ge,E,[' >= ',E]).

a(l) .
a(2) •
a(3).
a(4) .
a(5) .
a(6).
a(7) .
a(8).

PAGE 4

FILE: QUOTED PROLOG Al (SQ53) 4/28/87 16:48:22 PAGE 1

uppercase_data([Hl!T1],[H2!T2],[H3!T3]) <- type_of_unknownCH2) &
~ quoted(H1,Shl) & / &
st_to_at(Shl,Hl) &
caseshift(Sh3,Shl) &
st_to_at(Sh3,H3) &
uppercase_data(Tl,T2,T3)

uppercase_data([Hl!T1],[H2!T2],[Hl!T3]) <- uppercase_data(Tl,T2,T3)
uppercase_data([],[],[]) .

identify_quoted_terms([Hi!Ti],[Ho!To]) <- quoted(Hi,Unqhi) & / &
st_to_at(Unqhi,Ho) &
identify quoted terms(Ti,To).

identify quoted terms([Hi!Ti],[Hi!To]) <- identify=quoted=termsCTi,To).
identify=quoted=terms([],[]).

quoted(X,R) <- st to at(S,X) &
substring(S, IIII ,0,1) &
stlen(S,L) &
K := L - 1 &
J := K - 1 &
substring(S, IIII ,K,l) &
substring(S,R,l,J) .

FILE: RATI PROLOG Al (SQ53) 4/22/87 13:22:12 PAGE 1

rationalise(Lin,Lout) <- find_subset([subset![[A![B]]]],Lin,Bl,Afl) &
find_subset([subset![[A![B]]]],Afl,B2,Af2) &
~ member([condition!R],B2) &
append(Bl,B2,B3) &
append(B3,[[subsetl[[A![B]]]]],B4) &
append(B4,Af2,Loutl) & / &
rationalise(Loutl,Lout).

rationalise(Lin,Lin).

find subset(Ha,[Ha!Rlin],[],Rlin).
find=subset(Ha,[H!T],[H!Before],After) <- find_object(Ha,T,Before,After).

FILE: READIN PROLOG Al (SQ53) 3/25/88 12:17:12

<- reconsult(str_list).
/ *.,'r***"i'r;~,,:";,:,,:,': .. ':,;t:;,:,':''r .. 'r'";'r**,,#':**''i,: .. 'r .. 'r''':'''r**'''n'r-;'r-;,:,,:.,,:,':-;'r*o;':,':,':,':,':,'ri'r"lri'c.,'r·lri':,'r,'r,'r.,'n'r-;'ri'r /

/*
/*
/*

read a line test take off leading and trailing spaces
test if a continuation line or last line

*/
*/
*/

/* */
/;'ri':****;'c"i'ri'r;'r**"i'r***"''r***-;':"it:**i'ri'r*;'c,,;'ri'r**;':;':i'r.,'r**"i':*,':')'r,'r,'ri'ri'r"i'r**,'ri':i,:,,:,,:*.,'r*;'ri'r /

readlinef(A,In) <- readli(C,In) &
strip_spaces(C,C2) &
lastlinef(C2,A,In).

/*;':****";~"i'r*'':;':*'''r*'';':*'''':";':'k;':,,;'r''i'r;':i':-;':';':*;':*";':;'r*.,':"':;':.,':**.,':";':,,;,:,,:*,,;,:.,,:*-;,:,,:**.,,:-;,:,,,:,,,:* ... ':,,':.', /

/* */
/* if a continuation line I_I read another line */
/* */
/i'ri':***,':***,':*i':*i'ri':,':i':***-lr;lr*.,'r***;':*;':**'':'i':i':;':***-;'r*.,':i':****i'r**,':i':,':*..,':*,,:**,,: /
lastlinef(C,A,In) <- stlen(C,L) &

lastlinef(C,C,In).

D := L - 1 &
substring(C, I_I ,D,l) &
/ &
readlinef(Ab,In) &
substring(C,Cb,O,D) &
stconc(Cb,Ab,A).

/i':,':***i'r*,,:***,':**"':**'':;':;':**''':''i':i':**,':*i,:,t:,,:***i':"'k**i':,':"lr*.,':,':,':i'r.,':,':i':,'r,':i'r**i'ri':i': /

/* */
/* read a line test if lastline */
/* */
/ i':i':*i'r*i'ri'li':i':i':i,:*"':i':i':i':i':i':,':,,':,,':i':i':i':i':i':*,,':"':,,;':,,;':***,,;':,':,,;~,,;'r;~;t,**;'r":'':;':'':i':;':i~''':i':''':';':'1':';': i':i':,;'r /

readline(A) <- readli(C) &
strip_spaces(C,C2) &
lastline(C2,A) .

/* */
/* if a continuation line I_I read another line */
/* */
/*i':~l:-;'''':i'':i':,;':-l:*''J':i':i':i':;':''J':'i':';':'i':;':';':'i':;':;':,;':-l:'i':'i':';':';':'i':'i':';':'i':'i':'i':-;':-ln'r'i,:.,t:.,,:.,':i':*-;':,,:-;':,;':,'(-;':i':*;':-l:.,':,;':,;':i': /

lastline(C,A) <- stlen(C,L) &

lastline(C,C) .

D := L - 1 &
substring(C, I_I ,D,l) &
/ &
readline(Ab) &
substring(C,Cb,O,D) &
stconc(Cb,Ab,A).

PAGE 1

..

FILE: REVERSE PROLOG Al (SQ53) 3/25/88 12:17:58

/* reverse the order of items in a list
reverse([) , []) .
reverse([H!T),X) <- reverse(T,Z) & append(Z,[H],X).

PAGE 1

FILE: RL PROLOG Al (SQ53) 9/14/87 20:47:28 PAGE 1

1*
1* obtain_retrieval_list(Rlout,Retqueryin)
1*
/*-;,:"""";':*;"***~k*.,td'n,,**;,:*;,,,;'n~"':"':"'r,,;'r""*;'r"':"':*i':i,:··l\i':.'r.,':i':i'ri':.,'r,':i'ri'r"':'i'r"l,,,;':*.,'ri'r,':i'r"f'r.,'ri'r.,'r.,',*

obtain retrieval list(Rlout,Rlin,Rep) <- label(retri) &
- - obtain_retrie_list(Rlout,Rlin,Rep).

obtain retrie list(Rl,Rl,Rl) <- member([mysticIWl],Rl) & 1 .
obtain=retrie=list(Rlout,Rlin,Rep) <- member([object,Entity],Rlin) &
I*write(['rl pos l' ,Entity]) &

obtain_objects(Rlin,Rlout,Rep) &
I*write(['rl pos 2',Rlout]) &

~ Rlout = [] & I.
obtain retrie list([relationl[[Rlout]]],Rlin,Rlin2) <-

- - obtain_context(Rlin,Rlout) &
strip_object_default(Rlin,Rlinl) &
add_subset(Rlout,Rlinl,Rlin2).

obtain objects(Rlin,[Object!Out],Rep) <-
- find_object([object!R],Rlin,Before,After) &

1 &
append(Before,After,Aff) &
form_object([objectIR],Object,Rlin,Repl) &
~ Repl = [error] & 1 &
obtain_objects(Aff,Out,Rep2) &
append(Repl,Rep2,Rep).

obtain objects(Rlin,[[relationIR] IOut],Rep) <-
- find_object([relationIR],Rlin,Before,After) &

1 &
append(Before,After,Aff) &
obtain_objects(Aff,Out,Rep).

obtain objects([[defaultIR]],[],[]) <- I·
obtain-objects([HIRest],Out,[HIRep]) <- obtain_objects(Rest,Out,Rep).
obtain=objects([],[],[]).

form object([objectl [[unknown![Attr]]]),[object! [Entity_At]],R,Rep) <-
- 1 &

get_entity(Entity_At,Attr,R,Rep).
form_object([object!A],[objectIA],R,[]).

find object(Ha,[HaIRlin],[],Rlin) <- I·
find=object(Ha,[HIT),[HIBefore],After) <- find_object(Ha,T,Before,After).

get_entity(Object,Attr,R,Rep) <- obtain_context(R,Entity) &
get_context(Attr,Entity,Object) &
match_isa(Entity,Object,Rep) .

get_entity(Object,Attr,R,[error) <- obtain_context(R,Entity) &
get_context(Attr,Entity,Object) &
~ match_isa(Entity,Object,Rep) &
fail (retri).

obtain_context([[subsetl [[Entityl[Subent]]]] IR),Entity).
obtain_context([[subsetl[[Entityl[Subent]])]IR),Subent).
obtain_context ([[inter_entityl [[Entityl [In! [Subent]]]]] IR] ,Entity).
obtain context([[defaultl[[Entity]])IR),Entity).
obtain-context([[relationl[[Entity]))IR],Entity).
obtain=context([HIT],Entity) <- obtain_context(T,Entity).

strip_object_default([[defaultIEntity]],[]).
strip_object_default([[objectIEntity]ITl],T2) <- 1 &

strip_object_default(Tl,T2).
strip_object_default([[relationIEntity]ITl),T2) <- 1 &

FILE: RL PROLOG Al (SQ53) 9/14/87 20:47:28

strip_object_defaultCTl,T2).
strip_object_defaultC[Hl!Tl],[Hl!T2]) <- ~ HI = [dcfault!Entity] &

~ HI = [object!Entity] &
strip_object_defaultCTl,T2).

strip_object_defaultC[],[]).

PAGE 2

add_subsetCRlout,Rlinl,Rlin2) <- subsets(X,Rlout) &
add_subsetCX,Rlinl,R13) &
appendC[[subset,[Rlout,X]]],R13,Rlin2).

add_subset(Rlout,Rlin,Rlin) <- ~ subsetsCX,Rlout).

FILE: RUN PROLOG Al (SQ53) 9/18/87 15:34:05

run_query(Al,s) <- reconsult(qu out) &
count(Number) &
ne(Number,O) & / &
system('clear') &
prst('THERE ARE ') & num_writes(Number) &

PAGE 1

prst.(' TUPLES SATISFYING THE RETRIEVAL CONSTRAINTS') &
nl & nl &
prst('HIT RETURN TO VIEW OR Q TO QUIT') & nl &
readli(Junk) &
, (Junk = 'q' ; Junk = 'Q') & / &
output retrieval(Al,Reply) &

- " Reply = &
system('clear') &
prst('NO HORE TUPLE TO BE RETRIEVED') & nl &
nl & nl &
prst('HIT RETURN TO CONTINUE ') & nl &
readli (Junk2).

run_query(Al,f) <- system('clear') &
prst('NO SATISFYING TUPLES ') & nl &
nl & nl &
prst('HIT RETURN') & nl &
readli (Junk) .

output_retrieval(Al,Reply) <- pred_qu~ry(Ol~ &
system(clear) &
out_ret(Al,Ol) &
nl & nl &

prst('HIT RETURN TO CONTINUE - Q TO QUIT') & nl &
readli(Reply) &
(Reply = Iql ; Reply = IQI) & / .

output_retrieval (AI , II).
out ret([Ha!Ta),[Ho!To)) <- writes(Ha) & tab(30) & stprst(Ho) &

- out dim(Ha) & nl & out ret(Ta,To).
out_ret([),[]) <- nl & tab(15) & -

prst(l_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ') &
nl.

out_dim(A) <- dimensionC A, S) &
prst(' I) & prst(S) & / •

stprst(A) <- stringp(A) & prst(A) & /.
stprst(A) <- writes(A) & /.

count (X) <- , (delax(counter(N)) & fail)
addax(counter(O)) & fail.

count(M) <- pred_query(P) &
counter(N) &
M := N + 1 &
delaxCcounterCN)) &
addaxCcounterCM)) & eq(N,lO).

count(Y) <- counterCY) .

&

num writes(Number) <- It(Number,lO) & writes(Number) & / .
num=writes(Number) <- ge(Number,10) & writes(Number) & prst(1 or more ').

FILE: SLEAD PROLOG Al (SQ53) 6/10/87 12:08:38 PAGE 1

strip_leading_terms([[connector,[or]]!Tl],T2) <
strip_leading_terms(Tl,T2) &
/ .

strip_leading_terms([[connector,[and]]!Tl],T2) <-

strip_leading_terms([Hl!Tl],[Hl!Tl]).
strip_leading_terms([],[]).

strip_leading_terms(Tl,T2) &
/ .

FILE: STR_LIST PROLOG Al CSQ53) 4/14/87 19:47:46

copy_till_dashC[H!T],To,[H!Ty]) <- copy_till_dashCT,To,Ty).
copy_till_dashC[],[],[) <- fail.

1* ,,:/
1* convert a list of characters from upper case */
1* to lower case unless letters inside quotes */
1* */
I**i't****~,:******,;,:";,:,;t:**';':**~~ ~,:,;,:**~,:*,;,:~,:*,;,:,;,: .. ,:* .. 't"':"':";':"i':,,;tn':.,,:,,:";,:,;'r I
shiftC [" "' !T], [" "' !Ty)) <- copy_till_dashCT, To, Tz) & I &

shift(To, Tw) &
append(Tz,Tw,Ty) & I .

shiftC[H!T),[Hy!Ty) <- upshiftCHy,H) & / &
shift (T, Ty) & /

shift([H!T),[H!Ty) <- shiftCT,Ty) & I.
shift([),[]).

1* */
I'': convert a list of characters from lower case ,,~/
1* to upper case unless letters inside quotes */
/* */
/******,':*********-;':';':"i':';':-;':*-;':';':";':"J':**"':';':*-;':*"':';':*-'':**",:",,:,':** .. ':**.':-;': /

ushift(["II'!T],["II'!Ty)) <- copy_till_dash(T,To,Tz) & I &
ushift(To,Tw) &
append(Tz,Tw,Ty) & / .

ushiftC[H!T),[Hy!Ty) <- upshiftCH,Hy) & / &
ushiftCT,Ty) & /

ushiftC[H!T),[H!Ty) <- ushiftCT,Ty) & I.
ushift ([) , [)) .

1* */
/* convert a upper case string into lower case */
I'': ,,: I
/ *,':-k.':****-;':*"i':*.':"':.':'i':'':'i':-;':i':-;':,;':,':,;':*;':* ... ':*')', ,;':"':,;',-;,:-;,:",,:,,,,:,,,:,,:,,,:,,,:,,':*·"'0', .. ': .. ',.':'";':,': /

caseshift(U,L) <- var(L) & I &
st_to_li(U,Ul) &
shift(Ul,Ll) & / &
st_to_li(L,Ll) .

I'': ,,: /
/* convert a lower case string into upper case ,,:/
/* */
/***********,,;,:,;':**-;':';tdt:m':*-;':,,:**,,:,;,:"J':'':*';':*';':*';':******",;'dt:*",:-;,:-;,:,,: ... ,: /

caseshift(U,L) <- var(U) &
st_to_liCL,Ll) &
ushiftCLl,Ul) & I &
st_to_liCU,Ul) .

1* */
1* substitute defined word seperater characaters */
/* for spaces */
/* */ / ** .. ,:-;,:-;':*.':*-;':-;':"l:**",:**,',-;':;':";':,,;':-,':"l:-;': .. ,, .. ',-;,:,;':;,:.':-4':;,: .. ':*,':-;':-;':*1:*-.':-.':-.':-.': ... ,:-;':;':-;':;': I
space_separateCXi,X) <- st_to_liCXi,Xil) &

sub_sep(Xil,Xl) &
st_to_liCX,Xl) .

sub_sepC[Hxi!Txi),Newlist) <- separateCHxi,Hnew) & I &
sub_sep(Txi,Tx) &

PAGE 2

FILE: STR LIST PROLOG Al (SQ53) 4/14/87 19:47:46

append(Hnew,Tx,Newlist).
sub sep([Hxi!Txi],[Hxi!Tx]) <- sub_sep(Txi,Tx).
sub=sep([], []).

/~':separate(". ", [" ", ".", II "]).

(" II [" II II II II "]). separate " ",
t ("1" [" II "1" " "]). separa e ., ,.,
t ("?" [" " "?" II ")). separa e ., ,.,
t (II II [" II II II II "]). separa e :, ,:,
t ("" [" II"" II "]). separa e ;, ,;,

PAGE 3

FILE: SYNONTII PROLOG A1 (SQ53) 9/19/87 14:57:00

1* *1
1* Swaps words for alternative synonyms *1
/* '''/
/***********-.':-;':i"******,""k****-;':***-;':*-;':-;':i':,,':*i':**,,"*.,':.':,':-.':.,':.,'r /

swap_synonyms([HA!TA),[HA!TB) <- HA is XX & swap_synonyms(TA,TB).
swap_synonyms([HA!TA),[HB!TB) <- synonyms(HA,HB) &

swap_synonyms([HA!TA),[HA!TB]) <-

swap_synonyms([],[]).

synonyms(A,B) <- synonym(A,B).

swap_synonyms(TA,TB).

... HA is XX &
swap_synonyms(TA,TB).

PAGE 1

synonyms(A,B) <- ... var(A) & synonym(A,C) & synonyms(C,B) & ... var(C) &
... var(B) & ... A = B.

(1 " ") synonym equa ,= .
(II ") synonym greater, > .

(
• II ") /* synonym 1S, = .

(" II "I ") synonym <>, = .
(II ") synonym same, = .
(h II ") synonym less_t an, < •

synonym(1essthan, "<").
synonym(otherthan,not).

(d II ") synonym un er, < .
(II ") synonym over, > •

I'': synonym(outside term, dbase term).
/* synonym(their,person).
synonym(department,department_id).
synonym(attending,attend).
synonym(from,resident_at).
synonym(lives,resident).

(' d '") synonym on t ,not .
synonym(taught,lectured).
synonym(teaches,lecture).
synonym(dept,department).
synonym(depts,department).
synonym(tutees,student).

/* synonym(tutors,lecturer).
/* synonym(tutee,student).
synonym(people,person).
synonym(given,taught).
synonym(personal_tutor,personal_tutor_to).
synonym(teach,teacher_for).
synonym(teach,lecturer_to).
synonym(give,teacher_for).
synonym(take,teach).

/* synonym(person,student).
synonym(who,name).
synonym(graduate,grad).
synonym(graduates,grads).
synonym(secretary,sec).
synonym(earn,paid).

FILE: TN PROLOG Al (SQ53) 4/23/87 18:06:16

match(Value,Attribute) <- attributes(Attribute,one of,List) &
member(Value,List). -

match(Value,Attribute) <- int(Value) &
attributes(Attribute,integer,[L![U]]) &
(le(Value,U) ; U = max) &
(ge(Value,L) ; L = min).

match(Value,Attribute) <- int(Value) &
attributes(Attribute,real,[Db![Da]]) &
L := len (Value) &
ge(Db,L)

match(Value,Attribute) <- floatp(Value) &
attributes(Attribute,real,[Db![Da]]) &
A := abs(Value) &

match(Value,Attribute) <-

F := A - 0.49999999 &
fl_to_int(F,I) &
Li ;= len(I) &
La := len(A) &
le(Li,Db) &
N := (La - Li) - 1 &
ge(Da,N).

T := len (Value) &
(attributes(Attribute,fchar,N) &
T = N) ;
(attributes(Attribute,vchar,N) &
ge(N,T)).

PAGE 1

match(Value,Attribute) <- attributes(Attribute,reference,Relation) &
relation(Relation,[Key],List) &
match(Value,Key).

match(Value,Attribute) <- attributes(Attribute,composite,Rule).

FILE: T~~SL PROLOG A1 (SQ53) 4/28/87 16:46:38

/* translate terms into database objects
translate([H!T],[Hx!Tx]) <- H is Hx & translate(T,Tx).
translate([H!T],[unknown!Tx]) <- (, H is Hx) &

translate([],[]).

(, plural(Hx,H)) &
translate(T,Tx).

PAGE 1

FILE: UC PROLOG Al (SQ53) 9/19/87 14:19:54

1* *1
1* Unite conditionals with there objects and rules *1
1* *1
/~':i~**#'-:*#':#':***#':#':#':i':it:*i':***#':';':*;':;':'':*i':';':****''':***';~;':*';':*"':")':·":'':';':*;':*i';-''k;'r'''r*i':;'r* /

unite_conditions(Ha,Hb,Ret) <- 1 &
unit_co(Ha,Hb,unknown,Ret).

1* ,~ 1
1* Unite conditionals with there objects and rules *1
1* Maintains the current entity context *1
1* ,~ 1
/ ********,,:,,-:*** .. ,:* .. ,:****** .. ':,,;':,':**,':*,':,':i':***-;':,':**,,:,':;':,,':,':,'r**,':,,"ri':,,':;':,':.,"c,':*-;':,'c"lr /

/ *,,:*.,:,':****'':*'':*;':'':'#':**'':*-;':***'i':**'':*''':***,,:***,,:*;':';':';': /
1* *1
1* New entity is referred to so the *1
1* context has been changed try to *1
1* form condition using the new context *1
1* but if not then use the old one if *1
1* it was known *1
1* *1
/*******",:**,,:*,,:****,':;':#':*-;':-;':'#':**,':"l:*****,':";':;':,':;':";,:;,:*.,,: /

unit co(A,B,Context,Ret) <- ~ A = [] & ~ B = [] &
- ~ member([inter_entityIE] ,A) &

~ member([conditionIF],A) &
make_retrieval_Iist(A,B,Context,Ret).

unit co([Ha!Taj,[entity!Tb],Context,Ret) <- 1 &

PAGE 1

- new_context(Context,Ha,Newcon,Ta) &
unit_co(Ta,Tb,Newcon,Retl) &

append([[relationl[[Ha]]]],Retl,Ret).

/ -l:*",:***"';,:,,·:;':"l:,,;':,,;':"k*,;':"k**;':*i':i':i':;':**";':.':~':~'r'";":;':*;':'";'r~":;t:**4,:,':~':;t: /

1''<
1*
I>':
I>':
1*

inter-entity is referred
context has been changed
form condition using the

to so the
try to
new context

>~ 1
.~ 1
.,: 1

/*-l:itn':**,':,':-k,,,;,,.,,:*;tn":-l:,,;'Ci':;':,':-;':;':,':*i':,':"·l:**"i,:** .. ':-;':*,':,;'c,':,,':i':.,,:"i':'': /

unit_co([HaITa],[inter_entityITb],Context,Ret) <- 1 &
get_inter_entity(Ha,Con,Tcon) &
unit_co([Ta], [Tb] ,Con,Ret).

1*
1*
1*

a condition has been encountered so
make a formal condition then parse

I>': the rest
1*

,', 1
>~ 1
>~ 1

/ ... * ... *.,: .. ,: .. ,:.,:*-::-..,:,.::.,:.,:-..~ .. ~"*,:* .. ,: .. ,:* .. ,:*.~ .. ~ .. ,:.",: .. h,:",:*",~**,,':*"'':,;'r''':'*"f~.':"i': I
unit_co([HaITa],[[conditionaIIR]ITb],Context,Ret) <- 1 &

form_condition(Ha,[conditionalIR],Context,Con,Retl) &
new_context(Context,Con,Newcon,Ta) &
unit_co(Ta,Tb,Newcon,Ret2) &
append(Retl,Ret2,Ret).

1* *1
1* a connector has been encountered so *1
1* record connection type then parse *1
1* the rest *1

FILE: UC PROLOG Al (SQ53) 9/19/87 14:19:54

1* *1
/ *~':";':**;':***;':;':;':*#':"k**;'r .. 'r;";'r.'r;':"T**;':;':;'r*;n':f'r*''#*,'r;'r*-;':-;':,':;': /

unit co([Oper!Ta),[connector!Tb),Context,Ret) <- 1 &
- unit_co(Ta,Tb,Context,Ret1) &

append([[connector![[Oper)))],Retl,Ret).

/*;':****;':**i':;':;':*i':;':;':";':*;':;': .. ;':;':*·· .. t*i':;':*'':;':i':'f':i':i':*,':*-;':-;':-l:,;',i':;': /

1*
1*
1*
1*

a non condition object has been
encountered so record its presence
then parse the rest

,"/
*1
,,, 1

*/
1* *1
/ *;~;':-*·k*·k';':"i':**;':*"i':*;':;':-;'':*;':*;':-;':*''i':;':;':;':'';':;':;':;':;':*-;':**-'':*-;':i':i':i': /

unit co([Ha!Ta),[Hb!Tb),Context,Ret) <-
- get_context(Ha,Context,Newcon) &

match_isa(Context,Newcon,Rep) & 1 &
new_context(Context,Newcon,Ncon,Ta) &
unit_co(Ta,Tb,Ncon,Retl) &

PAGE 2

append([[object! [[unknown! [Ha]]]]],Retl,Ret2) &
append(Rep,Ret2,Ret).

unit co([Ha!Ta),[Hb!Tb],Context,Ret) <-
, Ha = [Any!Other] & 1 &
unit_co(Ta,Tb,Context,Ret1) &
append([[objectl[[unknownl [Ha]]]]],Retl,Ret).

unit co([HaITa),[HbITb),Context,Ret) <- 1 &
unit_co(Ta,Tb,Context,Retl) &
append([[mysticl[Ha]]),Retl,Ret)

/ *-;':-;':**-;':-;':-;':*-;':-;':;':-;':-;':*;':*;':'':;':-;':;':'i':-;':;':-;':-;':''ki':'"':.':;':-;':-;':"k-.':i',i':*,':*,':,': /

/* */
/* a null list indicates the end of the */
/* parse *1
/* */
/ *.,tr**-f,'·;:-;',"ki,:*-;':.':*-;':"l:.':-;':-;':i,:,'n'd':i':i',i':"k'i':;':;~;':i':.':i':;':,;':··k·k;':;':··k;':··;,(;': /

unit co([),[),[Context![Any]),[[default! [[Context]]]]) <- I.
unit=co([),[],Context,[[defaultl[[Context]]]]) <- I.

/ -;':·l:~,:,,:;':~,:,':~':;':-l:-;t:'O:'':';':';':-;':';':''i':''it:''i':·k,;':,;':~':;',;':-;':;':"t':"t':,;':,;':~':"k~':';':"t',,;',*,,,,,,;,:,,:,;,:,;,:,;':;':~':';':'':'';':';':;':''tt:';''';':';':'':7':';': /

/*
/* Form the actual conditions on which the retrieval
/* is based
/,,,

,,, /
,'~ 1
of'l
,'~ /

/'k;':;':*;':*"'i':-;':*-;':*;':**,,;':;':-;':"k;':**"i':"':;':~':*~t:~':~':~t(~':~t:~':-;':~':-;':~':-;':~':,,;':~·:*~':-;':~':~':*k-.,:,,:~'(-.':* ,':,':-;'(i':-;',,':"t': /

/ *'~*7':'J';--k*7~'J':";~'Jtn':';':7':7':";':';':";':';':''J':;':;':,,#':;':;':*7':''k-l:,':-;'",:-;,:,,:,,:,,:,':*;':7':,':-;',,': /

/,,:
/*
/"<

doble bracketed condition remove one
set of brackets and find formal

I'" condit ions
/,,,

*1
,', 1
,,< 1
,', 1
,', /

/ *;':~':*~':-;':***"t':*'':-;':*~':-;':,;,,:-;':-;,:*-;,:~,:-;':,;':.':,;':,;,:.,,"t':.':.':-;':-;':,;,:~,:~,:,,:~,:,':··k,;':~·:,;': /

form_condition([[condition!A]),[[conditionalIB]],Con,Non,Ret) <- 1 &
form_condition([condition!A],[conditional!B],Con,Non,Ret).

/ .f:.':-!:*~':.l:*-.': .. 0: .. ,:,;':.,:-;':,;':,;0, "t':.':-k*-;"-;':-;':-::.':*;':;':;-'.':-'':-;':-;':''':;':7':-;':'':-;': -;':-;':;': -.':-;': /

I": ,,: 1
1* An entity has been encountered change *1
/* context then continue find formal */
/* conditions *1
/* ,,:/
/**"it:*,':-;':**************;':**;':**.':*.':*'':;':***-,,:-,,:*-,,:.':-;':.':.': /
1* form_condition([conditionl[[EI[A]l]],

/* [conditional! [[entity! [inter_entity]]J],Con,E,Ret) <- 1 &
1* reverse_get_inter_entity(A,Newcon,Tcon,Z) &

FILE: UC PROLOG A1 (SQ53) 9/19/87 14:19:54 PAGE 3

1* prst('**CONDITION - ') &
1*

1>'<
writes([Con,E,Newcon]) & nl & nl &

append([[inter_entityl[[Newconl[AI[Con]]]1]1,Ret1,Ret)

form condition([condition![[E!A]]],

1*
1''<
1*
1*
1*

- [conditional! [[entity!B]]],Con,E,Ret) <- 1 &
form_condition(A,B,E,F,Ret).

An Attribute has been encountered
change context then continue to find
formal conditions

/******,,:*-;,: .. ,,*-;':*;':***,;':, .. -k*,':"ln':,;':*,;"**********,,,*#~7':i"* /
form condition([condition![[AttrIA]1],

- [conditionall[[attribute!B]]],Con,Newcon,Ret) <-
I*write(' 1') &
l*write(['Attr' ,Attr,' ** ',A]) &

get context(Attr,Con,Newcon) &
l*write('2') & -
l*write(['Con' ,Con,' Newcon ',Newcon,' Rep' ,Rep]) &

match isa(Con,Newcon,Rep) & 1 &
l*write('3') & -

form condition(A,B,Newcon,F,Ret1) &
l*write(['Ret1' ,Retl,' ** ',F]) &

(~ F = Newcon &
find_entity(Econ,Con) &
append([[object![[Econ![Attr]]11],Ret1,Ret2) &
append(Rep,Ret2,Ret)) I

(F = Newcon &
append(Rep,Ret1,Ret)).

form condition([condition![[AttrIA]]],
[conditional![[attribute!B]]],Con,F,Ret) <- / &

get_context(Attr,Con,Newcon) & 1*
/*write('2qq') &
1 '':w r i t e ([, At t r' ,A t t r, ' ,':* " A]) &
l*write(['Con',Con,' Newcon ',Newcon,' Rep ',Rep]) &

form condition(A,B,Con,F,Retl) &
appe~d([[object![[unknown![Attr]]]]],Retl,Ret)

/#':';·:'i·:7~*,;,:*,;·~*·k~':"'-:'':**';'';.':;':***';'''i':*;':*;':;t(*."~#':*;"**#':;':*;,:;,:-.,:** /

/* */
1*
1*
/*
I'':

A condition separated by a connector
so find a formal condition for
conditions before and after connector

/ *,':'1:*-;,:-;,:-.,: .. ::,"(-;,:-;,,:-.,:,;,:,,;,:-.,:,,: .. ::";,:*,,:,':;':*;':;':*"':**'':'':*'':''':*''i':-;':;':'·l:.,:,,:,;,:* /

form condition([[condition!E]![Oper!A]],

1''<
1*
/*

- [[conditional!Et]![connector!At]],
Con,F,Ret) <- 1 &

form_condition([[condition!E]],[[conditional!Et]],Con,Fl,Retl) &
form_condition(A,At,Con,F2,Ret2) &
append(Ret1,[[connector![[Oper1111,Ret3) &
append(Ret3,Ret2,Ret).

A condition made up of the comparator
attribute then value output the

~': /
,,: /

1* resulting conditions
*/
*/
,,: / /,,:

/**1:;':*i'n':,,;·:;':*,.':***;':";':;·:'i':;':;':*.':**'':**-'':*****;':*;':'':*1:*.':*;': /

FILE: UC PROLOG A1 (SQ53) 9/19/87 14:19:54

form condition([condition![[Comp![Att![Value]]]]],
- [conditional![[conditional![attribute![stored]]]]],

Con,Con,Ret) <- 1 &
1* prst('*3CONDITION - ') &

out_cond(Att,Con,Ncon,Comp,Value,Ret).
form condition([condition![[Att![Value]]]],

[conditional! [[attribute! [stored]]]],
Con,Con,Ret) <- 1 &

1* prst('*2CONDITION - ') &
out_cond(Att,Con,Ncon,Comp,Value,Ret).

form condition([condition![[Comp![Att!Condit]]]],
- [conditional! [[conditional! [attribute!Type]]]],

Con,Ncon,Ret) <- 1 &
get context(Att,Con,Ncon) &
match isa(Con,Ncon,Rep) &

PAGE 4

form condition(Condit,Type,Ncon,Non,Retl) &
Ret2-= [[condition![[Ncon![Comp![[sub![[Ncon![Ret1]]]]]]
]]]] &
append(Rep,Ret2,Ret).

/***m~**** l..1 ... ,.***'~*-;':**-;':****4':*,;':*,;':*,,;':,;':,;':*,;':"k";':*,;':";':";': I
1* *1
1* A condition made up of the comparator *1
1* and value output the resulting *1
/* conditions *1
1* *1
/ ****-;';-******";~*";~,;':-****m':**",'r,;':***,,;1:*"l:'#'r**";':*";':";':'kf':*";':,,;'r /

form condition([condition![[Comp![Value]]]],
- [conditional! [[conditional! [stored]]]],

Con,Ncon,Ret) <- 1 &
1* prst('*lCONDITION - ') &
1* write([Att,Con,Ncon,Comp,Value,Ret]) &

out_cond(Att,Con,Ncon,Comp,Value,Ret).

/**-;,:";,:*****;,:*.':,,;"r-;':*-:.':-k-;':*,':-.,:,,:;,:"i':-;':";':*-;':-;':";':*'':";,:,;',,,':*"l:i':";~";':"":";':";': /

1* *1
1* An inter_entity has been encountered *1
1* change context then continue find *1
1* formal conditions *1
1* *1
/***";':*****,'(";':;';,,;':*";':"k"i,:o;':**,;':,,;':*,;':-l:-;':,':,':,':,':*";,:*-;,,:**,,: .. ,:*-;,: .. ':** /
form condition([condition![[E!A]]],

- [conditional![[inter_entity!B]]],Con,Newcon,Rt) <- 1 &
get_inter_entitY(E,Newcon,Tcon) &

1* prst('*lCONDITION - ') &
I'': writes([Con,E,Newcon]) & nl & nl &

form condition(A,B,Newcon,F,Ret1) &
match_isa(Tcon,Con,Rep) &
append([[inter_entity![[Tconl[EI[Newcon]]]]]],Retl,Ret) &
append(Rep,Ret,Rt) .

form condition([condition![[E! [A]]]],
- [conditional! [[stored! [inter_entity]]]],Cn,Non,Rt) <- 1 &

reverse_get_inter_entity(A,Non,Tcon,B) &
1* prst('*1CONDITION - ') &
1* writes([Cn,E,Non,B,A]) & nl & nl &

form_condition([E],[stored],Non,F,Retl) &
match_isa(Tcon,Cn,Rep) &
append([[inter_entitY![[Tcon![BI[Non]]]]]],Retl,Ret) &
append(Rep,Ret,Rt) .

/ .,:*..,':**-;':*,;':*-k**-l:*,':****-;':***,':*";':-;':**,':-;':-;':,;'n':";':,,'«:,;':-;': .. ,,: ... ,:-;,:-;,:-;,: /

/* */

FILE: UC PROLOG A1 (SQ53) 9/19/87 14:19:54 PAGE 5

/* An intra_entity condition is followed */
/* by another condition, output intra */
/* condition then formalise following sub */
/* conditions */
/* */
/*******",;,:******,;':****"k",;"*********#"******~~",;,:**;,:~" /
form_condition([conditionl[[Int_enl[[conditionIRjjjjj,

[conditional I [[intra_entityl [[conditionalIKjjjjj,
Con,Ncon,Ret) <- / &

intra_entity(Int_en,Att,Comp) &
get_context(Att,Con,Ncon) &
match_isa(Con,Ncon,Rep) &

/* prst('CONDITION - ') & writes(Ncon) &
/* prst(' ') & writes(Comp) & prst(' ') & nl &
/* prst(' sub ') &

form_condition([conditionIR],[conditionalIKj,Ncon,Non,Retl) &
Ret2 = [[conditionl[[Nconl[Compl[[sub![[Ncon![Retl]]]
)]])j]] &
append(Rep,Ret2,Ret).

/ *,,;t:";~*******,,':*~*,,;':,,;':,,;':**"'':;h':*';':"i':''';':;':''':'';':'':.':'';':'';':''i'rl:* ***"'''**",;':*,*'r /
/* */
/*
/.,(
/*

An intra entity condition is followed
by a single value output the formal
condition

/* */
/-;"***********'#"';':*'J"'";~,,,;,:***,,;,: .. ,: .. ':-;':";':*";':;':**,,;':*,,;':";':*,;,:,,:,;,:*-;,:,,;,:-;,: /

form condition([conditionl[[Int_en![Value]JJJ,
- [conditional I [[intra_entityl [storedJJ]J ,Con,Con,Ret) <_ / &

intra_entity(Int_en,Att,Comp) &
out_cond(Att,Con,Ncon,Comp,Value,Ret)

/ -;,:*******-k***"':-;':';':"i,:***,,:-;,:*-;':-;':,,':*,,*':*-;':'#':,,;':**i':"i':-;':**,,;,: .. ,:*,;,:;,: /

/* */
/* A lone value using the none context */
/* output the formal condition */
/* */
/ **'i':.':;':-;r'i':*-;':-;':*-;':-;':-;':.':"::";':";':.':*;':-;':";':-;':";':-;':",:,,;,: .. ':,,;':-;':-;':*-;':i':-;': .. ,: .. ,:,,;,:,,;,:,,;,:,,;,:,,;': /

form condition([Valuej,[stored),Con,Con,Ret) <- / &
- out_cond(Att,Con,Ncon,"=",Value,Ret)

form condition([condition,[not,Value)],
- [conditional,[connector,stored)],Con,Con,Ret) <_ / &

out_cond(Att,Con,Ncon,"=",Value,Rt) &
append([[connector,[not))),Rt,Ret)

/ *";"*-;,':";':·l-;"':"':";':*.':";':"i,:;,:*.,:,,;·~ .. ':*,,;':·l:**,,;': .. ·:,,,:,,,:";,:"':*··):";':***,,;':·k,,;':,,;':~~*,,,;~~': /

/*
/*
/,'r
r:

~'r /

Oh dearl something must have gone wrong*/
output the conditional information */

/ ~':";·:-;·:*i"·l: ... ·: ... ~",,:-: ·:";·:";·:";·:.·:,,·: ... ~ ... ·:*-;,,:-;,:* ... ": ... ~ ... t:-;":"';,t:.': ... ':"';':.': ... ': ... t:*"';': ... ': ... ': ... ':**.~.~.t: /
form condition([A],[inter_entity],Con,Newcon,Rt) <- / &

- get inter entity(A,Newcon,Tcon) &
for~_condition(A,B,Newcon,F,Retl) &
match_isa(Tcon,Con,Rep) &
append(Rep,[[inter_entityl [[Tcon! [A! [NewconJ]]]J],Rt).

form condition(A,B,C,C,[error)) <-

- prst('CONDITION + ') & writes(A) & nl &
prst('TRANSLATION - ') & writes(B) & nl &
prst('CO~~EXT - ') & writes(C) & nl & nl

FILE: UC PROLOG Al (SQ53) 9/19/87 14:19:54

1''(,,: I
1* Get context given an attribute name and/or the context *1
1* match or/find acceptable combinations returning a new *1
I"r context ''(I
1''(,,: I
/ ;,:,,;,(··l:;':;'r*;':;':**'";':;':;':**;':*;':*')':~':;':;'r*;':*;'r;':,,;'r.,':,':;':,':*.,'r,':,':,':*i'r**"f':'':··;':'i':,':i':,'r''k,,:*,',;'o'n'r'·l,"lei', /

/;':;'r'l:*******;'r;'r*-;':*;':O;':;'r*,'r;':;'ri':"J':;':*";'r;'r"J':;':;':;'ri':,':i'r,':,'r'·l\i,: .. ':.':i':,'r /

1* *1
1* A perfect match the attribute is the *1
1* attribute in context and the entity *1
1* context *1
1* *1
/ *i':i':i'ri'ri'r;':i':i':it,k,'r-;'ri':-k7,;':i'r*'ki'ri':i':,':,':**,'ri'r,'ri'r* .. 'ri'ri':..,'r";'ri':,'r,'ri',i'ri'r /

get_context(Attr,[Con![Attr]],[Con![Attr]]) .

1''(
1*
1''(

for all entities which the context is
a subset see if attr is an attribute

1* for one of them
I'':

,,: I
*1
*1

/ *-l:,;':-;':;':*,':;':;':,,;':i':.':*;':**;':;':,,;':;':,,;':,;':,;':;':,,;':,,;':;'ri'ri':i'r...,'r,,;':*,;':'·k.,':,,;':i': ... ':,,:,,:,,;':* /

get_context(Attr,Con,Newcon) <- subsets(Sup,Con) &
relation(Sup,Key,Att list) &
member(Attr,Att_list) &
append([Sup],[Attr],Newcon).

1* *1
1* The context is a relation which has *1
1* the attribute attr as an attribute *1
1* *1

get context(Attr,Con,Newcon) <- relation(Con,Key,Att list) &
member(Attr,Att list) &
append([Con],[Attr] ,Newcon).

1* *1
1* A subset entity is a relation with *1
1* the attribute attr as an attribute *1
1* *1

get_context(Attr,Con,Newcon) <- subsets(Con,Rel) &
relation(Rel,Key,Att list) &
, ReI = Con & -
memberCAttr,Att_Iist) &
append([Rel],[Attr] ,Newcon).

1* *1
1* The attribute is an attribute for *1
1* relation which has not been covered by *1
1* any of the previous definitions *1
1* *1

get_context(Attr,Con,Newcon) <- , var(Attr) &
relation(Rel,Key,Att list) &
, ReI = Con & -
, subsets(Rel,Con) &
, subsets(Con,Rel) &
member(Attr,Att_Iist) &
append([Rel],[Attr],Newcon).

PAGE 6

FILE: UC PROLOG Al (SQ53) 9/19/87 14:19:54 PAGE 7

get_context (Att, [Con! [Attr]],Newcon) <- get_context(Att,Con,Newcon) &
... Att = Attr

out cond(Att,Con,Ncoo,Comp,Value,Ret) <-
- get context(Att,Con,Ncon) &

match(Value,Att) &
match_isa(Coo,Ncon,Rep) &
get_comparator(Att,Comp,Compout) &

/* prst('$$$$$CONDITION - ') & writes(Ncon) &
/* prst('CONDITION - ') & writes(Ncon) &
/* prst(' ') & writes(Comp) &
/* prst(' ') & writes(Value) & nl & n1 &

Retl = [[conditioo![[Ncon![Compout![Va1ue]]]]]] &
append(Rep,Retl,Ret) .

out cond(Att,Con,Ncon,Comp,Value,[]) <-
-. get context(Att,Con,Ncon) &

match(Va1ue,Att) &
match_isa(Con,Ncon,Rep) & / & fail.

out cond(Att,Con,Ncon,Comp,Value,Ret) <-
w~ite([Att,Con,Ncon,Comp,Va1ue,Retl) &

get context(Att,Con,Ncon) &
get=context(NAtt,Con,Nocon) &
match(Value,NAtt) &
same_entity(Ncon,Nncon) &
match isa(Con,Nncon,Rep) &

/* prst('CONDITION - ') & writes(Ncon) &
/* prst(' ') & writes(Comp) & 01 &
/* prst(' sub ') &
/* writes(Ncon) &
/* prst(' ') & writes(Nncon) &
/~': prst(' ') & writes("=") &
/* prst(' ') & writes(Va1ue) & n1 & n1 &

get comparator(NAtt,"=",Compoutl) &
/*write('66!!!! I!!!!') &

Retl = [[condition! [[Nncon![Compoutl![Va1ue]]]]1] &
/*write('77! I!! I!!!!') &

get comparator(Att,Comp,Compout2) &
/*write('88! I!! lIt!!') &

Ret2 = [[condition! [[Ncon! [Compout2! [[sub! [Ncon! [Retl]]
]]]]]]] &

append(Rep,Ret2,Ret).

match isa(Con,Con,[]).
match=isa(Con,Conl,[]) <- ... var(Con) & ... var(Conl) & Con = unknown.
match isa(Con,[Con![A]],[]).
match-isa(Con,En,Rep) <- subsets(En,Con) &

Rep = [[subset,[Con,En]]].
match_isa(Con,[En![A]],Rep) <- subsets(En,Con) &

Rep = [[subset,[Con,En]]].
match_isa(En,Con,Rep) <- subsets(En,Con) &

Rep = [[subset,[Con,En]]].
match_isa(En, [Con! [A]] ,Rep) <- subsets(En,Con) &

Rep = [[subset,[Con,En]]J.
match_isa([Con![R]],[En![A]],Rep) <-
/* .. R = A &

match_isa(Con, [En! [A]] ,Rep) &

same_entity(Ncon,Ncon) <- atom(Ncon).
same_entity([E![R]],[E![P]]) <- ... R = P.
same entity(E,[E![P]).
same=entity([E![R]),E).

find_entity(E,E) <- atom(E).

FILE: UC PROLOG Al (SQ53) 9/19/87 14:19:54 PAGE 8

find_entity(E,[EI[P]]).

1* get new entity after inter entity reference
get _inter_ entity(E, Newcon, Tcon) <- connect (E, Tcon ,Newcon, "r, "r, , ...) .
get_inter_ entity(E ,Newcon, Tcon) <- connect ("r ,Newcon, Tcon,'''',''', E) .
reverse_get_inter_entity(E,Ncon,Tcon,B) <- connect(B,Tcon,Ncon,*,*,E).
reverse_get_inter_entity(E,Ncon,Tcon,B) <- connect(E,Ncon,Tcon,*,*,B).

new context(Con,Context,Context,[]) <- /.
new-context(Context,Context,Context,A) <- I.
new-context(unknown,Context,Context,A) <- I.
new-context(Context,unknown,Context,A) <- I.
new=context(Con,Context,Context,A).
new_context(Context,Con,Context,A) .

get comparator(Att,Comp,Comp) <-

get_comparator(Att,Comp,rule) <-

(" ") get comparator Att,Comp, = .

... var(Comp) &

... Comp = "=" & I .

.. var(Att) &
attributes(Att,composite,Rule)

make_retrieval_list(A,B,Context,Ret) <- get_objects(A,B,Ret) &
.. Ret = [] .

& 1 .

get objects([HalTa],[entitylTb],C) <- 1 & get_objects(Ta,Tb,Tc) &
append([[relation! [[Ila]]]] ,Tc,C),

get_objects([HalTa],[attributeITb],C) <- 1 & get_objects(Ta,Tb,Tc) &
append ([[object I [[unknown! [Ila]]]]] , Tc ,C) .

get objects([HalTa],[Hb!Tb],C) <- get_objects(Ta,Tb,C).
get-objects([],[],[]).

FILE: UNIT UN PROLOG Al (SQ53) 4/28/87 16:49:11

type_of_unknown(stored).
type_of_unknown(unknown).

unite_unknown([Ul![U2!X]],[Hl![H2!T]],Tt,Tw)

type of unknown(Ul) &
type=of=unknown(U2) &

<-

st_to_at(SI,Hl) &
st to at(S2,H2) &
stconc(Sl,' ',St) &
stconc(St,S2,S3) &
st to at(S3,Hw) &
unite - unknown ([unknown!X] , [Hw!T], Tt, Tw).

unite unknown([Hl!Tl],[H2!T2],[Hl!T3],[H2!T4]) <-
- unite_unknown(Tl,T2,T3,T4)

unite_unknown ([] , [] , [] , []) .

PAGE 1

FILE: VERIFY PROLOG A1 (SQ53) 9/14/87 20:44:18

verify_retrieval(In,Out,Rep) <- member([object!A],In) &
member([relation!B],In) &
reduce(In,Out,Rep).

verify retrieval(A,A,[]).

reduce(In,Out,Rep) <- locate([[objectl[O]]],In,Bl,Al) &
locate([[relation![[R]]]],In,B2,A2) &
match_isa(R,O,Rep1) &
append(B2,A2,Next) &
reduce(Next,Out,Rep2) &
append(Repl,Rep2,Rep).

reduce(In,In,[]).

PAGE 1

