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Abstract 

Machine Learning Approaches 

To Complex Time Series 

by 

D.1. Stamp 

It has been noted that there are numerous similarities between the behaviour 

of chaotic and stochastic systems. The theoretical links between chaotic and 

stochastic systems are investigated based on the evolution of the density of 

dynamics and an equivalency relationship based on the invariant measure of 

an ergodic system. It is shown that for simple chaotic systems an equivalent 

stochastic model can be analytically derived when the initial position in state 

space is only known to a limited precision. 

Based on this a new methodology for the modelling of complex nonlinear 

time series displaying chaotic behaviour with stochastic models is proposed. 

This consists of using a stochastic model to learn the evolution of the density 

of the dynamics of the chaotic system by estimating initial and transitional 

density functions directly from a time series. 

A number of models utilising this methodology are proposed, based on 

Markov chains and hidden Markov models. These are implemented and their 

performance and characteristics compared using computer simulation with sev­

eral standard techniques. 
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Chapter 1 

Introduction 

It has been noted that determinism does not imply either regular behaviour 

or predictability. Chaotically behaved deterministic dynamical systems appear 

to behave in a pseudo-random manner. This apparently random behaviour of 

chaotic systems stems from their inherent properties determined by sensitivity 

of system initial states to system non-linearities. Some chaotic systems behave 

in a similar manner to that of a certain class of stochastic systems whose ran­

domness is caused by stochastic properties of system parameters, states and 

external disturbances as noted by both Wu & Cao [36] and Yang [26]. There­

fore, the theory of statistical properties of dynamical systems and some con­

cepts and techniques used in stochastic systems have been employed to study 

chaotic dynamics. A relationship between chaotic and stochastic systems has 

been identified by Wu & Cao [361 and this gives us the possibility of explor­

ing the exact similarities of behaviour of the two systems and to establish a 

relevant methodology for the study. Identification of this relationship provides 

justification for the application of many established techniques of stochastic 

system analysis and control to the prediction and control of unknown complex 

chaotic systems. 

1 



1.1 Problem formulation 2 

1.1 Problem formulation 

The problem to be examined is the modelling of nonlinear dynamic systems 

which display chaotic characteristics using only a time series generated by the 

system to learn the model. 

Consider a nonlinear dynamical system: 

Xt+l = f(xd (1.1.1) 

where Xt is a state vector of dimension k. Generally it is not possible to directly 

observe the system state. The only available data is a time series. The observed 

sequence: 

Zt = cp{xd (1.1.2) 

where Zt is the observed vector at time t, will be known to a finite level of 

granularity and will be of limited length. The question as to whether it is 

possible to reconstruct the dynamics of the system using the time series is 

answered by Takens theorem which shows that generically the dynamics of a 

system 

Yt = (Zt-d,Zt-d+l, ... ,Zt-l) (1.1.3) 

where d is known as the embedding dimension, and d 2:: 2k + 1, is completely 

equivalent to the dynamics of Xt apart from a smooth invertible coordinate 

transformation. Thus in theory a time series can be used to learn the underlying 

dynamics of the system that generated it. 

1.1.1 History of problem 

The latent tendency of non-linear dissipative systems to irregular motions 

remained unobserved for a long time. Poincare [151 was the first to note this 

characteristic, but it was not until the advent of the computer with its capacity 

for rapid numerical calculation and graphical display that the investigation of 

chaotic phenomenon was practical. 

COMPLEX TIME SERIES D.I.Stamp 



1.1 Problem formulation 3 

In 1963 Edward Lorenz [7J developed a highly simplified hydrodynamic 

model for meteorology which derives from the Navier-Stokes equation. These 

equations lead to an attractive structure in phase space which discloses an 

irregular, seemingly erratic behaviour of the trajectories. The cause of this 

erratic behaviour is the sensitivity of the dynamic system to small changes in 

initial system state over time, the so called butterfly effect. 

Since then progress in the study of chaos has been rapid. Ruelle and Tak­

ens discovered in phase space a limited domain with unusual properties which 

they denoted a strange attractor. Once its existence had been noticed chaos 

was found in a multitude of different systems. Chaos only occurs in nonlinear 

systems, but almost all real systems display some degree of nonlinearity. Chaos 

thus appears in such diverse systems as meteorology, astronomy, biomechanics, 

coupled pendulums, chemical reactions, fluid mechanics, and numerical solu­

tions to differential equations. Irrespective of the medium the dynamics of 

chaotic systems obey certain common rules. 

The study of time series has progressed from the beginning of the century 

with the adoption of linear modelling techniques. Consequently linear mod­

elling techniques have a large, well established body of theory. More recently 

it has been recognised that better results can be obtained in many systems by 

using nonlinear modelling techniques and many such techniques such as neural 

networks have been successfully developed and applied to the modelling of time 

series. 

In the area of non-linear dynamics there has recently been study of the 

possible techniques for the control of chaotic systems, exploiting their unique 

characteristics. Techniques have been developed for the stabilization of un­

stable periodic orbits and the use of recurrence to allow stabilization to be 

applied locally by Vincent [44], Schuster et al [31J, Flake [l1J and Ott et al 

[34J. It has been demonstrated that physical systems respond well to both 

simple and sophisticated control strategies. Applications have been proposed 

COMPLEX TIME SERIES D.l.Stamp 



1.2 Motivation 4 

in communications, electronics, fluid mechanics and chemistry. 

1.2 Motivation 

1.2.1 Potential of the research 

The research has the potential for establishing a new methodology for mod­

elling the dynamics of chaotic systems from their times series using stochastic 

models. This has the benefit of looking at the problem of modelling chaotic sys­

tems in a new way, with the potential of new insights into the problem. Rather 

than concentrating on the evolution of a single trajectory through phase space 

the evolution of the density of dynamics is considered. That avoids tackling 

the initial condition problem of chaotic systems directly, as it is embedded in 

the density distribution function. Therefore the evolution of this density distri­

bution is studied. This gives information about the system in a different form. 

Instead of point predictions a range of possible solutions are considered along 

with their probability of occurring. This is a more informative approach giving 

information on the bounds of future trajectories and an estimate of the accu­

racy of predictions while still allowing us to derive point predictions if required. 

It also opens up the possibility of applying a range of stochastic techniques to 

the modelling of chaotic systems for prediction and control purposes. 

1.2.2 Current situation 

Although many of the measures utilised in the characterisation of chaotic 

systems are statistical in nature there is no established methodology for the 

study of the relationship between chaotic and stochastic systems. Although 

stochastic models have been applied to time series analysis, this has not been in 

the field of chaotic dynamics where the systems are purely deterministic. There 

is thus a lack of stochastic models specifically designed for chaotic systems and 

COMPLEX TIME SERIES D.l.Stamp 



1.3 Overview of thesis 5 

taking advantage of their unique characteristics. There is a corresponding lack 

of application of stochastic models to real applications where the systems are 

known to be chaotic in nature. 

1.3 Overview of thesis 

Chaotic systems are introduced in Chapter 2 and their characteristics iden­

tified. Methods for characterising chaos are presented. Stochastic processes 

are also introduced, concentrating on Markov processes, in particular Markov 

chains and their properties. Current methods of nonlinear time series mod­

elling, and the various aspects of the modelling process are then detailed. 

Chapter 3 compares the similarities between the chaotic systems and the 

stochastic systems introduced in Chapter 2. A theoretical link between the two 

via an equivalence relationship between chaotic and stochastic systems based 

on the study of density of dynamics and Brownian motion of stochastic systems 

is presented. The equivalency in invariant measure and ergodicity between the 

two systems is defined. The concept of the equivalency can be used to achieve 

system reconstruction of the dynamics learnt using the time series of chaotic 

systems. To demonstrate this an equivalent stochastic system model for a 

simple system (the Logistic Mapping) is derived. 

Chapter 4 suggests that since motions of chaotic dynamical systems, after 

some transients, settle down to strange attractors and sustain for a long time. 

This provides a great opportunity in terms of time period for a computer to 

learn the properties of the chaotic systems through space-time patterns. As 

long as learning proceeds, prediction and control of future states of the chaotic 

systems can be achieved in theory. Based on the concept of the equivalence 

relation and the equivalent system model, system reconstruction of chaotic dy­

namics using learning techniques is investigated. Various stochastic models are 

suggested based on Markov models for modelling chaotic time series. Time se-
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1.4 Major contributions 6 

ries modelling is performed on analytically generated and real world time series 

and its performance is assessed. Results are compared with those generated 

using a linear autoregressive model, a feed forward neural network, and a time 

delay neural network. 

To overcome some of the limitations of the Markov models, Chapter 5 inves­

tigates Hidden Markov models as equivalent stochastic models for chaotic time 

series. Modelling of time series is performed and comparisons with previous 

results made. A simulation study of the yearly sunspot series is performed. 

The work is summarised in Chapter 6 with conclusions as to the effective­

ness of the technique being drawn and suggestions for further work made. 

1.4 Major contributions 

A review of current techniques for modelling of chaotic systems has been 

undertaken. The analytical relationship proposed by Wu & Cao [36] has been 

studied and sufficient conditions for its validity investigated. 

The validity of modelling chaotic dynamic systems using stochastic models 

has been demonstrated. It has been shown that it is possible to build a simple 

hidden Markov model of a simple chaotic system (the Logistic mapping) ana­

lytically, and that when the state of the system is observed to a specific limited 

precision the dynamics of the time series generated by this specific system are 

exactly modelled by the stochastic system. 

It has been shown that Markov models and their extension hidden Markov 

models naturally emerge as models for the density evolution, and that they 

have several of the characteristics of the modelled chaotic system embedded in 

them. 

It has been demonstrated by the use of computer simulations that hidden 

Markov models can learn the dynamics of chaotic time series through training 

in an iterative manner using only a time series as data and the characteristics 

COMPLEX TIME SERIES D. I. Stamp 



1.4 Major contributions 7 

of the models along with their accuracy and their limits explored. 
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Chapter 2 

Introduction To Chaotic 

Dynamics And Stochastic 

Systems 

2.1 Dynamical systems 

A dynamical system {StltE!R on X is a family of transformations St : X -t 

X, t E R, satisfying 

• So{x) = x, Vx E X; 

• St{Stl ) = Stw{x), Vx E X, with t, t' E !R; and 

• The mapping (t, x) -t St{x) from X x !R into X is continuous. 

Thus it consists of an abstract phase or state space whose coordinates de­

scribe the dynamical state at any instant and a dynamical rule which defines 

the future evolution of all the state variables. The phase space of a system is 

a mathematical space with orthogonal coordinate directions representing each 

of the variables needed to specify the instantaneous state of the system. A 

discrete phase space is often referred to as a state space. 

8 



2.1 Dynamical systems 9 

A trajectory, path or orbit of a system is the path traced out in phase 

space by the solution of an initial value problem of the dynamical system. For 

a continuous time system this is a curve, while for a discrete time system this 

is a series of points. 

A continuous time dynamical system is commonly represented as a series 

of first order differential equations 

!kt-f( ) dt - I Xl,"" Xn 

~ = fn(XI, ... ,Xn ) 

or alternatively more compactly as 

x = F(X) where X = 

and a discrete time dynamical system by a mapping rule 

(2.1.1) 

(2.1.2) 

(2.1.3) 

Dynamical systems can be divided into two types, deterministic systems and 

stochastic systems. The future evolution of a deterministic system is uniquely 

determined by the systems history. Deterministic systems may be either in­

vertible or non-invertible. The future evolution of a stochastic system has no 

single future evolution, rather it has a number of possible future trajectories, 

only one of which will be realised in a stochastic manner. By its nature a 

stochastic system is non-invertible. 

The time series generated by a dynamic system under the following condi-

tions 

COMPLEX TIME SERIES D.J.Stamp 



2.1 Dynamical systems 10 

• its mean is independent of time 

• its variance is independent of time 

• its autocovariance is independent of time 

is termed stationary in the wide sense. 

Conservative dynamic systems maintain a constant phase volume under 

time evolution. 

Dissipative nonlinear systems converge in the long term in phase space to 

attractors. An attractor A of a phase flow cPt is a compact (closed and bounded) 

set with the following characteristics: 

• for all t's the attractor A is invariant under the influence of the phase 

flow cPt(thus cPtA = A). 

• the attractor A has an open neighbourhood U which contracts under the 

influence of the phase flow cPt onto A. 

• the attractor A cannot be divided into two self contained, non-overlapping 

invariant sets. 

Each attractor is surrounded in state space by a basin of attraction, and any 

system whose initial state lies within that basin will converge on that attractor. 

20 

10 
, 

J I 

~ 
IV >. 0 

-10 

-20 

30 35 40 45 50 

t 

Figure 2.1: The Lorenz attractor in the time domain 
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2.2 Chaotic dynamics 11 

Figure 2.2: The Lorenz attractor 

Attractors can consist of point attractors (sometimes at infinity), periodic limit 

cycles, or (in the case of chaotic systems) strange attractors which can be 

considered as an infinite length limit cycle. 

It is known that many dissipative systems, for example the flow of fluids 

described by partial differential equations with an infinite number of degrees 

of freedom, display a long term behaviour which is determined by low dimen­

sional attractors, thus allowing a dramatic reduction of the effective degrees of 

freedom, as described by Argyris et al[9]. 

2.2 Chaotic dynamics 

Chaos is the irregular behaviour of the solutions of deterministic equations. 

To produce chaos the equations must be nonlinear, but can otherwise be quite 

simple. Chaotic time series are generated by nonlinear deterministic systems. 

They possess a number of characteristics. They display an apparent random­

ness in the time domain, for example the Lorenz attractor in Figure 2.1, but 

their deterministic structure is evident when viewed in phase space, given in 

Figure 2.2. 

Chaos can only arise in systems of sufficient dimension. It requires a mini-

COMPLEX TIME SERIES D.l.Stamp 



2.2 Chaotic dynamics 12 

mum dimension of one for it to occur in a non-invertible discrete time system, 

two for an invertible discrete time system, and three for a continuous time 

system. 

2.2.1 Strange attractors 

When considered in the underlying state space solutions to a chaotic system 

relax onto a strange attractor. A strange attractor is a limited domain in phase 

space which attracts the trajectories globally and causes them to diverge locally 

from one another exponentially. 

This attractor has a fractal structure, and typically a non-integral dimen­

sion. It is of a lower dimension than the system generating it. The attractor 

contains an infinite number of unstable periodic orbits. 

Stretching and folding 

Chaotic systems display an exponential divergence of adjacent trajecto­

ries and yet remain contained within a finite-sized phase space. The primary 

mechanism for this behaviour is that of stretching and folding. As the system 

evolves the phase space is stretched resulting in the exponential divergence of 

trajectories, and then folded back upon itself thus maintaining the finite size 

of the phase space. 

This stretching and folding process causes mixing of the phase space such 

that initially adjacent trajectories will over a period of time be dispersed over 

the attractor. Trajectories adjacent at a point in time will have been widely 

dispersed in the past. Thus over a period of time the system loses its memory 

of its initial state. 

COMPLEX TIME SERIES D.J.Stamp 



2.2 Chaotic dynamics 13 

Ergodicity 

If J.l is a Borel probability measure (Lasota and Mackey[1]) on M and J.l 

is invariant under I, i.e. J.lU- 1 (E)) = J.l( E) for every Borel set E, then a 

dynamical system I : (M, J.l) ~ (M, J.l) is said to be ergodic if 1-1 (E) = E ::::} 

J.l(E) = 0 or 1 (Yang[26]). That is, an ergodic system cannot be decomposed 

into two or more non-trivial subsystems which do not interact with each other. 

For a system to be ergodic it must be stationary (Lasota and Mackey[1]). 

In an ergodic system a link between the temporal behaviour and the spatial 

behaviour is provided by the existence of an invariant natural measure J.l. 

A property is said to hold almost everywhere (a.e.) if it is enjoyed by every 

x E M except possibly on a set E with J.l(E) = O. 

If (X, A, /1) is a measure space, S : X ~ X a non singular transformation, 

P the Frobenius-Perron operator associated with S, and S is ergodic, then 

there is at most one stationary density r of P. Also if there is a unique 

stationary density r of P and r(x) > 0 a.e., then S is ergodic. Since any 

dynamic system will have an associated Frobenius-Perron operator, and since 

a chaotic system converges to a strange attractor with a stationary density, 

chaotic systems are ergodic. 

Birkhoff ergodic theorem 

For any integrable function ¢>: (M, /1) ~ !R the time average converges for 

a.e., x. If this is denoted ¢*(x) 

(2.2.1) 

then if the system is egodic then a.e. 

¢*(x) = ! ¢>(x)dJ.l(x) (2.2.2) 

it is equal to the space average. 

COMPLEX TIME SERIES D.I.Stamp 



2.2 Chaotic dynamics 14 

This means that if the dynamic system is ergodic the temporal mean value 

can be replaced by a mean value of the spatial distribution. Thus the total 

information of the dynamical system is contained in (almost) every arbitrarily 

selected trajectory. 

Let (X, A, J.L) be a finite measure space and S : X ~ X be measure pre­

serving and ergodic. Then for any set A E A, J.L(A) > 0, and almost all x E X, 

the fraction of points Sk(x) in A as k ~ 00 is given by tf~~. Thus every set 

of nonzero measure is visited infinitely often by the iterates of almost every 

xE X. 

2.2.2 Characterising chaos 

Power spectra 

Chaotic systems exhibit a continuous power spectra, and thus appear as 

stochastic time series when analysed using linear techniques. The power spec­

tra are a continuous wide band of frequency along with possible single charac­

teristic peaks. 

Lyapunov exponent 

Chaotic systems are very sensitive to initial conditions and are only accurate 

for a length of time governed by the errors in initial conditions and by the 

Lyapunov exponents of the system (parameters that quantify the exponential 

divergence of state trajectories in chaotic systems). The Lyapunov exponent of 

a time series generated by a one dimensional system given by equation (1.1.1) 

is defined as 
1 t - 1 

a = lim - L log 1!'(Xi)1 > 0 
t-+oo t . 0 

Z= 

(2.2.3) 

where f'(xd is the gradient of the function f(xt}. A multi-dimensional system 

will have a Lyapunov exponent for each dimension. The Lyapunov exponents 
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2.2 Chaotic dynamics 15 

measure the exponential rate of divergence of initially close trajectories over 

time. At least one positive Lyapunov exponent indicates a sensitivity to initial 

conditions which makes the time evolution of the system hard to predict for all 

but the short term. If a system has at least one positive Lyapunov exponent 

a, then it is termed chaotic. 

Exceptional trajectories, such as for example, those that end in an unstable 

fixed point for t ---+ 00, may possess other Lyapunov exponents, but are not 

generally typical for the attractor and are of zero measure. 

It is possible to make an estimate of the relaxation time C for a known 

error in initial conditions 6x(O) 

• 1 I L 
t rv ~ n 16x(O)1 (2.2.4) 

where Al is the largest Lyapunov exponent, and L is a characteristic length of 

the attractor. The relaxation time is the time after which there is no longer 

any correlation between the initial condition x(O) and the current state x(t). 

Generalised dimension 

Consider a strange attractor in an n-dimensional phase space and divide 

the phase space evenly into n-dimensional hypercubes of edge length c. If 

W(e) denotes the number of hypercubes containing attractor points, N the 

total number of measuring points on the strange attractor, and N[ the number 

of measuring points in the ith cell, a mean information of the qth order can be 

defined, the Renyi information: 

(2.2.5) 

and using this define the generalised dimension of the qth order 

D = lim lq(e) 
q E .... O In l/e 

(2.2.6) 

COMPLEX TIME SERIES D. I. Stamp 



2.2 Chaotic dynamics 16 

Capacity dimension 

Setting q = 0 the Capacity dimension can be obtained 

. In W(c) 
Do = Dc = hmE-+ OO In( ~) (2.2.7) 

Information dimension 

Setting q = 1 the Information dimension is obtained 

. In /(c) 
Dl = D/ = hmE -+ OO In(~) (2.2.8) 

where the information gain per single measurement is 

_ l(c) W(E) 

l(c) = - = -K L PklnPk 
N K=l 

(2.2.9) 

and setting q = 2 the correlation dimension DK can obtained. 

It can be proved that DK :::; DJ :::; Dc (Argyris[9]). 

Kolmogorov-Sinai entropy 

Kolmogorov-Sinai (KS) entropy provides the upper limit of the mean infor­

mation production per unit time if both measurement precision and recording 

frequency of the data are varied. It quantifies the degree of our ignorance of the 

system, and allows us to state the fundamental limits to the predictability of 

a dynamical system. In the case of regular, predictable behaviour once a mea­

surement has been made the state of the system is determined and additional 

measurements provide no new information. If the dynamics of the system are 

chaotic then each measurement provides further information as to the state of 

the system. The KS entropy is given by 

( 
l(x(n))) 

h(Ji-) = sup lim 6. 
Z,~t n-+oo n t 

(2.2.10) 

this is linked to the Lyapunov exponents via 

(2.2.11) 
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2.3 Stochastic processes 

and gives an estimate of the relaxation time 

Autocorrelation 

t* = D1 log2(I/c) 
h(Jl) 

The mean autocorrelation of a time series x(t) is defined as 

1 j+T Rx(r) = lim T x(t + r)x(t)dt 
T--+oo -T 

and the autocovariance as 

Kx(r) = Rx(r) - mi 

17 

(2.2.12) 

(2.2.13) 

(2.2.14) 

where mx is the mean of the series. These define the interrelation of one and 

the same signal at two distinct instants of time, t and t + r, and are functions of 

the time shift r. For regular motion they are either periodic or quasiperiodic. 

For chaotic motion K x (r) ~ 0 for r ~ 00. This decaying autocovariance, 

with the correlations between time lagged signals gradually vanishing with 

increasing lag, demonstrates the loss of memory of the initial system state over 

time. 

For white noise Kx(r) is a single impulse at r = O. 

For example for the Logistic mapping 

Kx(r) = 10
1 

p(x)xF(x)dx 

rl xF(x) 1 
= 10 7rJ(x(1 _ x) dx - 4 

= r1 xsin2 (2T arcsin(v'x)) dx _ ~ 
10 7rJx{1 - x) 4 

2.3 Stochastic processes 

(2.2.15) 

A stochastic process ~t is a family of random variables that depend on a 

parameter t, usually called time. If t assumes only integer values then the 
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2.3 Stochastic processes 18 

stochastic process reduces to a sequence of random variables called a discrete 

time stochastic process. If t belongs to an interval of ~, the stochastic process 

is called a continuous time stochastic process. 

2.3.1 Markov processes 

Definition 

A Markov chain is a collection of random variables <I> : nET where T is a 

countable time set T E ~+. The critical aspect of a Markov process is that it 

is forgetful of all but its immediate past. This is the Markov property 

(2.3.1) 

which implies 

(2.3.2) 

and thus to describe the process only the one step transition probabilities 

P(Xk!Xk-l) and the initial probabilities P(xo) are required. 

If the transition probabilities are independent of time the Markov chain is 

said to be homogeneous. 

P(Xk = j!Xk_1 = i) = P(xr = j!Xr-1 = i) 

i.e. Pij = P(Xk = j!Xk-1 = i) does not depend on k 

The transition probabilities Pij satisfy 

Defining the transition matrix P as 

Pll Plj 

P= 

Pil Pij 

COMPLEX TIME SERIES 

(2.3.3) 

(2.3.4) 

(2.3.5) 

D.J.Stamp 



2.3 Stochastic processes 19 

pn is the n-step transition matrix. 

Markov chains which are fully parameterised (have m2 - m) independently 

determined transition probabilities (where m is the number of states) are 

termed saturated. 

Higher order chains 

A model that is non-Markovian but is based only on a finite memory so 

that the system depends on the past only through the previous k + 1 values in 

the probabilistic sense that 

P(Yn+m E AIYj,j :::; n) = P(Yn+m E AIYj,j = n, n - 1, ... , n - k) (2.3.6) 

can be reformulated into a Markov model through defining the vectors 

(2.3.7) 

and the motion of the first coordinate of <I> reflects that of Y. 

Properties of transition matrix 

Transition matrices for further than a single step into the future can be 

formed utilising the Chapman-Kolmgorov equation 

(2.3.8) 

Communication between states 

If P]~) > 0 then state k can be reached from state j. If p;~) > 0 , Pk17
/ > 0 

states k and j communicate. 

If C is a set of states such that no state outside C can be reached from any 

state in C, then C is closed. If each pair of states within C communicate, then 

C is a closed communicating class. If a closed set contains only one state it is 
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know as an absorbing state. Thus absorbing states are states one can make a 

transition into, but not out of. 

Chains for which transitions from a state to any other state are eventually 

possible (i.e. all states communicate with one another) are called irreducible. 

Other chains (including those with absorbing states) are non-irreducible. 

If a discrete Markov chain contains no closed sets with the exception of the 

set of all states then it is irreducible. 

Long term behaviour 

If some state has the property of periodicity, the state is said to be periodic. 

The steady state probability Vj = limj-+oo p)n) satisfies v = vP. The follow­

ing statements about the steady state probability can be made. 

• In any aperiodic Markov chain the limits Vj = limj-+oo p)n) exist. 

• In any irreducible aperiodic Markov chain the limits Vj do not depend on 

the initial distribution. 

• In any finite, irreducible, aperiodic Markov chain the limit vector v is the 

unique stationary probability vector of the process. 

A full treatment of the long term behaviour of Markov ehains is given in 

Tweedie & Meyn [42]. 

2.4 Time series 

2.4.1 Methodologies for time series analysis 

One of the central problems of science is forecasting: given the past, how 

can the future be predicted? The classical approach to this problem is to build 

an explanatory model from first principles, measure initial data, and use the 
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model to make predictions. Unfortunately this is often not possible. In some 

fields the first principles upon which to construct a model are lacking, in others 

although the models are good there is difficulty in obtaining the required initial 

data. 

An alternative approach is to build a predictive model based directly on the 

data. This is usually done by selecting a model based on the observed charac­

teristics of the data and any a priori knowledge of the problem. This selecting 

of the correct model in the case of nonlinear systems has been described more 

as an art than a science. 

The theoretical basis for this data driven approach to modelling was derived 

by Takens [8J. Take the system 

(2.4.1) 

where F(e) is an unknown function (possibly nonlinear), and Xt is a state 

vector of dimension k. In practice usually direct access to the state vector is 

not available and it is merely possible to ohserve some function cp{x) of the 

state vector, where cp is called the measurement function. At first sight the 

observed sequence 

Zt = cp{xd (2.4.2) 

contains little information about the behaviour of the state vector. However 

Takens [8] proved that subject to genericity assumptions the dynamics of a 

system 

Yt = {Zt-d, Zt-d+l, ... , Zt-d (2.4.3) 

where d is known as the embedding dimension, and d ~ 2k + 1, is completely 

equivalent to the dynamics of Xt apart from a smooth invertible coordinate 

transformation. It is possible therefore to take the system defined by equation 

(2.4.3), model it, and that model will reproduce the dynamics of the original 

system, equation (2.4.1). 
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When it comes to the behaviour of a nonlinear system, there are three 

main sources of complexity to be considered using a dynamical systems point 

of view. These are: 

• observation or measurement errors. 

• the dimensionality of the system. This is due to the possible action of 

many variables (which may give rise to process noise). 

• the multiplicative or nonlinear interaction of these variables (possibly 

giving rise to chaos). 

A real time series will consist of a mixture of these effects. 

The time series, generated by a noise-free process, defined by equation 

(2.4.1), is actually observed in the presence of observational noise as: 

(2.4.4) 

where Cobs is usually assumed to be white Gaussian noise. The effect of obser­

vational noise on a model is usually reduced by using as many observations as 

possible from the time series in the construction of the model. 

Process noise is that part of the system dynamics that remain unexplained 

(and unmodelled). Given a real m-dimensional system, and using a k-dimensional 

system to model it, the remaining m - k dimensions arc approximated by noise: 

(2.4.5) 

where cproces8 is the process noise, and F{Xt ) is the modelled noise free skeleton. 

Process noise can cause a stable deterministic skeleton to become unstable 

leading to stochastic chaos. 
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2.5 Conventional techniques for non-linear sys­

tem identification and prediction 

Current models can be divided into two broad categories, global models 

and local models, and into two groups, parametric models and non-parametric 

models. 

Global models 

These are models where a single model is used to represent the entire state 

space of the nonlinear system. An example would be a standard multilayer 

perceptron model, or a NARMA (nonlinear autoregressive/moving average) 

model. 

Local models 

These are models where the state space of the nonlinear system is split 

into several subregions each of which is modelled by a submodel. Examples of 

this include local linear models and Threshold ARM A (autoregressive/moving 

average) models. 

Often there is not a hard boundary between the individual sub models with 

a weighted result based on the position in state spac~ being used. 

Parametric models 

These are models where the structure of the underlying model is assumed 

a priori and then the parameters of the model are fitted to the time series. An 

example is nonlinear ARMA models. The difficulty is that it relies on a good a 

priori model choice. If the underlying dynamics of the time series do not match 

that of the assumed model then the results are poor. Stochastic optimisation 

methods such as genetic algorithms have been used to try and learn the model 
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structures with a certain amount of success with simple applications, but the 

potential search space is very large. 

Non-parametric models 

These are models where few assumptions are made about the underlying 

dynamical structure of the time series. They include models such as feed for­

ward multilayer perceptron networks and recursive networks, as well as local 

linear models. 

They are usually function approximation techniques approximating the un­

derlying transition function of the system. 

The models can be further divided into those which perform prediction 

based purely on the time series and those which perform prediction based on 

the current internal state of the model (which is based on past values on the 

time series) combined with the current value of the time series. An example of 

the former are standard feed forward networks and of the latter are recurrent 

networks. 

2.5.1 Extension of linear methods 

Linear Gaussian models have dominated time series modelling for the past 

50 years. They are supported by a large body of well developed theory and 

computation time required for the models reasonable. 

Linear approximation 

The simplest method for nonlinear system identification is to make the 

approximation that the system is linear and use one of the numerous linear 

models such as an ARMA model: 

k I 

X t = ao + L ajXt-j + L bjlt- j (2.5.1) 
j=l j=O 
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where aj and bj are real constants, and the ft are zero-mean uncorrelated ran­

dom variables. If the system being modelled is close to being linear (almost all 

actual systems display some degree of linearity) then the linear model works 

well. However, if the system displays a high degree of nonlinearity then the per­

formance of a linear model can be extremely poor and truly nonlinear models 

are required. 

NARMAX 

This is a natural extension of the linear ARMAX model, but includes non­

linear terms: 
k I 

X t = L ajpj(t) + L bjft-j (2.5.2) 
j=1 j=O 

where Pj (t) is a nonlinear term such as Xl-I' The model has available a number 

of possible nonlinear terms which are selected along with the coefficients using 

global selection and optimisation techniques such as genetic algorithms. 

2.5.2 Local models 

Local models are constructed by dividing the phase space of the process into 

regimes, and having a separate submodel associated with each regime. The 

distinction between regimes can be hard (each point is in only one regime), or 

soft (overlapping regimes are allowed). Various different submodels have been 

used, including neural networks. 

Threshold models 

Tong [16] covers a number of threshold models such as the SETAR (self­

exciting threshold autoregressive model) which takes the form: 

(2.5.3) 

where Rj is the regime. 

COMPLEX TIME SERIES D.l.Stamp 



2.5 Conventional techniques for non-linear system identification and 

prediction 

Local linear maps 

26 

A similar approach is taken by Casgali [28] who proposes a prediction algo­

rithm that constructs piecewise linear approximations to the unknown function 

by using a variable number k neighbours. A small value of k corresponds to a 

deterministic approach to behaviour, while a large value of k corresponds to a 

stochastic linear autoregressive model. An intermediate value corresponds to 

fitting nonlinear stochastic models. 

The algorithm consists of taking a test vector from which the next values 

will be predicted, finding the k nearest neighbours belonging to a fitting set 

and fitting a linear model to these vectors. This model is then used to make 

the prediction. 

Sequential locally weighted linear maps 

Sugihara [12] proposes a variant on this method which weights the effect of 

the vectors in the fitting set according to a weighting factor: 

w(d) = e-8d/ D (2.5.4) 

where d is the distance between the test vector and the respective fitting vector, 

() is a constant that determines the degree of local weighting and D is the 

average distance between vectors. If (}=o the result is a global linear solution. 

As () is increased the solutions become more local and hence nonlinear. A 

weighting factor of the form w(d) = 1 for d < k, and w(d) = 0 elsewhere gives 

you the local linear maps described by Casgali [28]. However, when there is a 

mixture of linear and nonlinear signals in the data then this weighting function 

can penalise distant points too severely. 

Local linear approximation 

Farmer and Sidorowich [18] use the k nearest neighbours approach of Cas­

gali [28] to construct a local estimator by fitting a linear polynomial using least 
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squares by single value decomposition. 

Fuzzy logic models 

27 

Kim [4J details a genetic fuzzy predictor ensemble for the prediction of 

chaotic time series. It consists of an ensemble of fuzzy predictors combining 

their predictions by an equal error prediction weighting method. Each indi­

vidual fuzzy predictor consists of two stages. The first stage generates a fuzzy 

rule base and the second fine tunes the membership functions. Both stages 

are trained by separate genetic algorithms. Results on the Mackey-Glass time 

series give errors slightly worse than a backpropagation neural network. 

2.5.3 Neural networks 

Neural networks with their capability to generalise, fault tolerance, lack 

of requirement for a priori models and nonlinear operation are an obvious 

method of modelling the behaviour of complex time series and several different 

architectures have been utilised. 

Feedforward networks 

Multilayer feed forward percept ron networks trained using the backpropa­

gation algorithm are the type of neural network in most frequent use in a wide 

range of applications. They provide a practical method of modelling the be­

haviour of a nonlinear input-output mapping of a general nature in a global 

manner and function as universal approximators. 

The networks consist of a series of layers of neurons which perform a non­

linear mapping on the weighted outputs from previous layers. They are trained 

by being presented with known pairs of input and output training vectors, with 

the errors in prediction being propagated back through the network and being 

used to adjust the weights down towards a minimum in the error surface. This 
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process is repeated many times until a required error level is reached or training 

is otherwise halted. 

Backpropagation networks have several disadvantages including long train­

ing times and the potential to get trapped in a local minima in the error surface 

rather than finding the required global minima. There are many variations on 

the backpropagation algorithm. 

Recurrent networks 

Deco and Schurmann [lOJ have used networks with feedback as well as feed­

forward connections using a modified version of the back propagation through 

time algorithm for training. They analyse three different chaotic series - the 

Henon map, Belousov-Zhabotinskii reaction and the logistic mapping. They 

investigated performance not only in terms of the prediction error, but also 

in terms of the dynamical invariants such as the largest Lyapunov exponent 

and the fractal dimension as well as the power spectrum. They concluded that 

recurrent networks performed better than feedforward networks when it came 

to reproducing these qualities. 

McDonnell and Waagen [19] used evolutionary programming to train a net­

work utilising recurrent perceptrons that were nonlinear IIR filters. They anal­

ysed Wolf's sunspot numbers for the years 1700-1988 and the logistic mapping, 

producing results slightly inferior to backpropagation networks. 

Radial basis function networks 

RBF (Radial Basis Function networks) are two layered feed forward net­

works with a single hidden layer. The neurons in the hidden layer have a 

radial basis activation function and a linear output layer. The radial basis 

function is of the form CP(IViCjl) where the cp-function is actually a thin-plate 

spline, v is the input vector and Cj is the RBF centre. 
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RBF networks are good function interpolators and so are a natural choice 

to model a function of the form Xn+l = F(xn, ... , Xn-d). Haykin [39] describes 

how Broomhead and Lowe have used RBF networks to predict the logistic 

mapping, as has Kadirkamanathan [30]. RBF networks have been very suc­

cessful, achieving low prediction errors for example Chaudhury et al [27] and 

Stark [20]. 

CMAC networks 

Berger [3] describes using both Cerebellar Motor Articulator Controller 

(CMAC) models and CErebellar model with INTerpolation (CEINT) models 

(a variant of CMAC which uses linear interpolation) to predict nonlinear sys­

tems. CMAC networks quantize inputs into elements each of which address m 

association cells which contain weights. The output is the sum of the active 

weights. Berger predicted both linear and nonlinear time series to a fair degree 

of accuracy. 

Runge-Kutta networks 

Wang [47] proposes learning the ODEs describing the dynamical system. 

This is implemented with a combination of the Runge-Kutta method for solving 

initial value ODE problems and neural networks to learn the ODEs. This 

gives superior results to neural networks learning the one step ahead transition 

function, particularly for iterated multistep ahead prediction. 

2.6 Stochastic aspects of chaotic dynamics 

There are many similarities between stochastic and chaotic systems, notably 

in terms of their asymptotic behaviour. A basin of attraction is analogous to an 

closed class in a Markov model in that it is not possible for the system to leave 

either. A strange attractor is analogous to an aperiodic irreducible Markov 
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process in that they both possess a limiting distribution which is independent 

of the initial conditions. 

Markov models are memoryless while chaotic systems display a loss of mem­

ory of their initial state over time and whenever their initial state is known with 

limited precision (as is almost always the case in practice) the memory is of 

a limited duration however it has already been shown, by equation (2.3.7), 

that any stochastic process with a limited memory can be transformed into a 

Markov process. 

Just as chaotic systems converge in the long term to attractors Markov 

processes converge to an irreducible class. Neither attractors nor irreducible 

classes can be divided into two self contained, non-overlapping invariant sets. 

The link between chaotic and stochastic systems is provided by the study 

of the density of dynamics, which is examined in the next chapter. 
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Chapter 3 

Relationship Between Chaotic 

And Stochastic Systems 

3.1 Introduction 

One of the reasons that chaos has only been recognised as a phenomenon 

relatively recently is that it was mistaken for noise. The behavior of chaotic 

dynamic systems has many similarities to stochastic systems (a characteristic 

that has been exploited in the creation of pseudo random number generators see 

Fishman [14]). This apparent similarity between chaotic systems and stochas­

tic systems would suggest that techniques and concepts used in the analysis 

of stochastic systems could be usefully employed in the study of chaotic dy­

namical systems. In fact it should be noted that many of the measures used 

to characterise chaos are in fact statistical in nature. 

The previous chapter showed that chaotic systems and certain stochastic 

systems displayed similar properties. The link between chaotic and stochastic 

systems is formed when, as an alternative to the more common approach of 

studying the evolution of a single trajectory through time, the evolution of 

the density of dynamics over time is considered. Instead of assuming an exact 
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initial condition for a system, and then modelling the evolution of the trajectory 

through time to find a single possible outcome for that initial condition, the 

acknowledgement that the initial conditions are known only to a finite degree 

of accuracy can be made. The behaviour of the whole set of initial conditions 

that are possible given our limited knowledge of the state of system can then 

be studied. 

When modelling uncertainty, probability is a natural tool. A probability 

density can be assigned to each possible point in state space, based on our 

knowledge of the initial conditions, and then the evolution in time of this 

density of the dynamics in phase space can be studied. Thus moving from the 

view point of a single trajectory to the density of an ensemble of trajectories 

there is a natural move from a deterministic to a stochastic model. 

3.2 Chaotic dynamics in state space 

3.2.1 Symbolic dynamics 

Information about the periodic orbits of a dynamical system can often be 

captured in terms of sequences of symbols. These symbols code the movement 

of the orbit around the attractor. 

The invariant interval can be divided into two subintervals denoted Land 

R. It is then possible to assign to a typical orbit of the attractor a sequence 

of symbols called the itinerary of the orbit. The information about possible 
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itineraries can be expressed in the form of a transition matrix. 

ABA ABB BAB BBA BBB 

ABA 0 0 1 1 0 

ABB 
M= 

1 1 1 0 0 
(3.2.1) 

BAB 1 1 1 1 0 

BBA 0 0 1 1 1 

BBB 1 1 1 0 1 

The above is the transition matrix for the three symbol itinerary of an attractor 

from the Belousov-Zhabotinskii reaction as given by [6]. The ones represent 

allowed transitions, while the zeroes represent forbidden transitions. The de-

termination of M does depend on the choice of the symbols used. As can been 

seen not all sequences of symbols are possible. This exclusion is known as 

pruning. 

The topological entropy ht of the attractor can be given by 

(3.2.2) 

where Np is the number of periodic orbits of period p in the attractor. It can 

be shown that this can be determined using the transition matrix M giving us 

ht = lim ! log2 tr MP 
p~oo p 

(3.2.3) 

assuming the dynamics are described by M. In this case Itt -+ log2 Amax where 

Amax is the largest eigenvalue of M. 

Symbolic dynamics enables us to identify allowed symbol sequences, or valid 

trajectories. The dynamics of any model of the underlying system should be 

consistent with the symbolic dynamics of the underlying system. 

It is also clear that if the model shares the symbolic dynamics of the sys­

tem then some of the invariant properties of the strange attractor such as the 

topological entropy can be calculated directly from the model. 
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3.3 Chaotic dynamics in time evolution 

If a volume element in phase space is observed, then for t -+ 00 it will 

contract to a subset of an attractor, the dimensionality of which is lower than 

that of the phase space. 

If the initial state of a trajectory lies within a basin of attraction then 

the trajectory will experience a transient period while it relaxes to its strange 

attractor followed by a steady state of orbiting upon the attractor. 

3.4 Density of dynamics 

In general the systems initial state is known imprecisely. If the data is 

quantized then it is known that the initial condition of the system lies within 

an interval, rather than the exact value. Using our knowledge of the system a 

distribution of dynamics within that interval can be implied. 

The evolution of the density of a dynamic system is described by the 

Frobenius-Perron operator. 

( P f(x)J-l(dx) = ( f(x)J-l(dx) 
iA is-l{A) 

(3.4.1) 

Let (X, A, J-l) be a measure space, f(x) be the state density, and P f(x) the 

state density after transformation S. If S : X -+ X is a nonsingular transform 

the unique operator P : Ll -+ Ll defined by equation (3.4.1) is called the 

Frobenius-Perron operator corresponding to S. The Frobenius-Pcrron operator 

is a Markov operator. 

In the special case that the transformation S is differentiable and invertible 

an explicit form for P f is available. 

P f(x) = dd { f(s)ds 
x i 8- 1 ([a,x]) 

(3.4.2) 

The Frobenius-Perron operator has the following properties: 
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• PI 2: a if 1 2: a 

• Ix P l(x)J-L(dx) = Ix l(x)J-L(dx) 

In the two dimensional case 

{X ds {Y P I(s, t)dt = ( f 1(8, t)ds dt 
la lb lS-l([a,xl*[c,yJ) 

(3.4.3) 

and if an explicit form for PI is available 

8
2 f P I(x) = -8 8 I(s, t)ds dt 

y x S-l([a,xj.[c,yj 
(3.4.4) 

As n -t 00 the density pn 1 either converges to a unique density (asymptotic 

stability), approaches a set spanned by a finite number of densities (asymptotic 

periodicity) or it is sweeping. pn is said to be sweeping with respect to A. if 

lim ( pn l(x)J-L(dx) = 0 for every 1 E D and A E A. 
n--.oo 1 A 

(3.4.5) 

A chaotic system relaxes onto a strange attractor over time. It is known 

from ergodic theory that the space average of the system is the same as the 

time average. Since the time average is stationary in the form of the strange 

attractor then the space average (as shown in equation (2.2.2}) and thus the 

long term density distribution should also tend to a stationary distribution. 

This limiting density must satisfy 

p I.(x) = I.(x) (3.4.6) 

Since the system is ergodic this limiting density is unique (see Lasota & Mackey 

[1]) . 

Mixing 

Let (X, A, J-L) be a normalised measure space, and S : X -t X a measure 

preserving transformation. S is called mixing if 

(3.4.7) 
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This can be interpreted as meaning that the fraction of points starting in A 

that ended up in B after n iterations (n must be a large number) is just given 

by the product of the measures of A and B in X. This indicates that as time 

progresses the system loses its memory of its initial conditions. Any mixing 

transformation must be ergodic. 

Exactness 

Let (X, A, J1,) be a normalised measure space, and S : X ~ X a measure 

preserving transformation such that S(A) E A for each A E A, if 

lim J1,(sn(A)) = 1 for every A E A, J1,(A) > 0 
n-too 

(3.4.8) 

then S is exact. Exactness of S implies that S is mixing. Invertible transforms 

cannot be exact (Lasota and Mackey [1]). 

3.5 Fokker-Plank equation 

The Fokker-Plank equation describes the evolution of the density of dy­

namics of a stochastically perturbed continuous system. 

3.5.1 Stochastic process 

A stochastic process can be described by the Ito equation, which is driven 

by the white noise process: 

(3.5.1) 

where (t is a Gaussian white noise. It is known that J~ (sds has all the attributes 

of a Brownian motion Wt. Hence, equation (3.5.1) appears to be equivalent to 

(3.5.2) 

COMPLEX TIME SERIES D./.Stamp 



3.5 Fokker-Plank equation 37 

with stochastic integrals having been well defined. Under some conditions given 

by Ito, the stochastic integral equation (3.5.2) has a unique sample-continuous 

solution which is a Markov process. The precise interpretation of equation 

(3.5.1) can be described as follows: Take a sequence of Gaussian processes 

{(n (t)} which converges to a white Gaussian noise, and yet for each n, (n (t) 

has well-behaved sample functions. Now, for each n, the equation 

(3.5.3) 

together with the initial condition Xn{a) = Xa can be solved, if the functions 

b (the function describing the deterministic skeleton) and a (the function de­

scribing the magnitude of the stochastic component) are such that the solution 

exists and is unique for almost all sample functions. For a sequence of pro­

cesses {Xn(t),a ~ t ~ T}, suppose that as n -+ 00, {(n(t)} converges to a 

white Gaussian noise, and the sequence processes {Xn (t), a ~ t ~ T} con­

verges almost surely, or in quadratic mean, or even merely in probability, to a 

process {X(t), a ~ t ~ T}. Then it is natural to say that X(t) is the solution 

of equation (3.5.2). In this sense, the white-noise-driven differential equation 

is equivalent to a stochastic differential equation given by 

The extra term ~aa' is referred to as the correction term. 

Let {Xt, a ~ t ~ b} be a Markov process, and denote 

P(x, t Ixo, to) = Pr(Xt < xlXto = xo) 

where P(x, t Ixo, to) is the transition function of the process. If there is a 

function p(x, t Ixo, to) such that 
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then p(x, t Ixo, to) is said to be the transition density function. Define, for a 

positive E, 

- { (y - x)kdP(y, t + Alx, t) 
Jllv-xll$£ 

k = 0,1,2 

( lIy - xIl 3dP(y, t + ~Ix, t) Jllv- xlI $£ 

It is assumed that the Markov process {Xt, a ~ t ~ b} satisfies the following 

conditions: 

±[1 - Mo(x, t; E, ~)] ~.j.~ 0 

±[M1 (x, t; E, ~)l ~.j.~ m(x, t) 

±[M2 (x, t; E, ~)l ~.j.~ a2 (x, t) 

±[M3 (x, t; E, ~)] ~.j.~ 0 

If P(x, tlxo, to), m(x, t) and a2(x, t) are sufficiently smooth, then the Fokker-

Planck equation of this stochastic process is as follows: 

1 {j2 
- 2 ()x2 [a2(x, t)p(x, tlxo, to)] 

a 
- ax [m(x, t)p(x, tlxo, to)]; (3.5.4) 

b> t > to > lL. 

This gives us the evolution of the density distribution of the dynamics in a 

continuous time stochastic system. 

3.6 Relationship between chaotic and stochas-

tic processes 

Consider a chaotic system in a general mapping form: 

Xt+l = f(xd (3.6.1) 
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which is referred to equation (2.1.3). The relationship between chaotic and 

stochastic processes is discussed as follows. 

It is proposed to define that the two systems are equivalent if they have 

a same ergodic invariant measure as described by Wu & Cao [36] and Stamp 

& Wu [5]. This implies that the chaotic dynamics side will be analysed from 

the viewpoint of space average and the stochastic system side will be studied 

from the viewpoint of time average. If the space average of a function is 

equal to its time average, the function is the probability distribution which 

will be employed as an invariant measure to bridge the two systems. Based 

on the concept of the equivalency in invariant measure and ergodicity, the 

relation between the two systems will be described mathematically through an 

equivalent stochastic system model derived under certain conditions. 

Based on the above existing theory and the ideas mentioned in the intro­

duction to this chapter, the equivalence relation between chaotic and stochastic 

systems is studied. If the w-limit set of system defined by equation (3.6.1) is 

a strange attractor with an ergodic invariant measure, then from the view­

point of probability and density of dynamics, there exists a stochastic system, 

with a certain probability measure, equivalent to the chaotic system. The two 

measures will be identical. 

Definition If the w-limit set of the system defined by equation (3.6.1), 

w{x), has an ergodic invariant measure J.L{w) and 

J.L{w) = lim 1T{X, t), 
t-+oo 

xE M (3.6.2) 

where 7l"{x, t) is the probability distribution function of a stochastic process x(t), 

then the system (equation (3.6.1)) is said being equivalent to the stochastic 

process. Based on the above definition given by Wu & Cao [36], the same 

characteristics of the two different kinds of dynamics, chaotic and stochastic, 

can be found. 
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3.6.1 The relationship between the two systems 

It can be seen that the Fokker-Planck equation provides a link to density 

of dynamics. Thus the relationship between chaotic dynamics and stochastic 

processes can be obtained in the following theorem due to Wu & Cao [36]. 

Theorem If the system defined by equation (3.6.1) is chaotic, and is equiv­

alent in the sense specified by definition (3.6.2) to the Ito stochastic differential 

equation: 
dx 
dt = g(x) + N(x, t), xE M (3.6.3) 

where N(x, t) is the stationary distribution with a zero mean value and a 

covariance function O(x) given as: 

O(x) = If(x)1 (3.6.4) 

then: 
1 a 

g(x) = 2p{x) {c + ax [If(x)lp(x)]} (3.6.5) 

where p(x) is the probability density function, c is an arbitrary constant. 

Proof: Consider the stochastic system 

dx 
dt = b(x) + 17(x)~, xE M (3.6.6) 

where ~ = dw / dt is known as a white noise, that may be considered the time 

derivative of a Wiener process. This is the stationary form of equation (3.5.1) 

A one-dimensional normalised Wiener process {w(t) h~o is a continuous 

stochastic process with independent increments such that 

w(O) = 0 (3.6.7) 

and for every s, t, 0::; s < t, the random variable w(t) -w(s) ha.<; the Gaussian 

density 
1 _x2 

g(t - s,x) = J eXP(2(t)) 
27r(t - s) - s 

(3.6.8) 
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To solve equation (3.6.6) the system can be formally integrated to get 

x(t) = lot b(x(s))ds + lot a(x(s))dw(s) + XO (3.6.9) 

An approximate solution can be obtained by using the Euler-Bernstein equa­

tion 

x(to + ~t) = x(to) + b(x(to))~t + a(x(to))~w (3.6.10) 

where 

~w = w(to + ~t) - w(to) (3.6.11) 

Existence of solution 

The existence and uniqueness of the solution {x(t)}t~O to equation (3.6.6) 

is guaranteed if the Lipschitz conditions guaranteeing the continuity of b(x) 

and w(x) 

Jb(x) - b{y)J ~ LJx - yJ 

Ja{x) - a(y)J ~ LJx - yJ 

are satisfied, with L some constant. 

Existence of stationary density 

(3.6.12) 

(3.6.13) 

It can be shown that limiting density u. exists if a{x) and b(x) arc regular 

for the Cauchy problem and there is a Lyapunov function V sa.tisfying 

with positive constants a and (3. 

Given 

and 
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b(x) = -b{x) + aa
2

(x) 
ax 

(3.6.14) 

(3.6.15) 

(3.6.16) 
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a(x) and b(x) are regular for the Cauchy problem if they are C4 functions such 

that the corresponding coefficients a, b(x), c(x) satisfy the uniform parabolicity 

condition 

where p is a positive constant, and the growth conditions 

are satisfied. 

Ib(x)1 S; M(I + Ixl) 

Ic(x)1 S; M(1 + Ix1 2
) 

(3.6.17) 

(3.6.18) 

(3.6.19) 

(3.6.20) 

A Lyapunov function is any function V : R -t R that satisfies the following 

four properties: 

V(x) ~ 0 "Ix 

lim V(x) = 00 
Ixl-HX) 

ava2v 
where V has continuous derivatives and ax' ax2 

for some constants p, <5. 

The stationary distribution 

(3.6.21) 

(3.6.22) 

(3.6.23) 

If the density function u(x, t) of the process x(t) is considered the Fokker­

Planck equation can be used 

ou(x, t) 0 1 02 
2 

at = - ox [b(x)u(x, t)] + 2 ox2 [a (x)u(x, t)]. (3.6.24) 
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to describe its time evolution. In order to ensure the existence and differentia-

bility of u it is sufficient that 

& ~u & & & ~u 
u{x), ox' ox2' b{x), ox' ot' ox' and ox2 

are continuous for t > o. 

Lasota & Mackey [1] state the theorem that assuming the coefficients are 

regular for the Cauchy problem and the inequality 

where 

B{x) = r 2b(y) dy 
10 u 2 (y) 

is satisfied then the system is asymptotically stable if 

-_eB(x)dx < 00 100 1 

-00 u2(x) 

They also note that if 

xb{x) ~ 0 for Ixl ~ r 

(3.6.25) 

(3.6.26) 

(3.6.27) 

(3.6.28) 

where r is a positive constant, then equation (3.6.25) is satisfied. This condition 

simply means that the interval [-r, r] is attracting (or at least not repelling) 

for trajectories of the unperturbed equation 

dx 
dt = b(x), xE M (3.6.29) 

As the steady state probability density function is independent of time, it 

can be seen that: 

lim u{x, t) 
t-too 

- u{x), 

lim ou{x, t) = O. 
Hoo ot 

(3.6.30) 

Applying these to equation (3.6.24) the limiting function u{x) is the unique 

density satisfying the elliptic equation 
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1 02 0 
2" OX2 ([a2(x)u(X)] - OX [b(x)u(x)]} = o. (3.6.31) 

making the substitution z = a2u into equation (3.6.31) 

dz 2b(x) 
dx=a2(x)z+c1 (3.6.32) 

is obtained, this has the solution 

(3.6.33) 

where Cl and C2 are constant and B(x) is given by equation (3.6.26). 

From equation (3.6.28) if follows that 

(3.6.34) 

converges to 00 as x ~ 00 and -00 as x --t -00, therefore to satisfy equation 

(3.6.27), Cl = o. This gives us the solution 

u.(x) = ~eB(x) 
a2(x) 

(3.6.35) 

with C2 > o. This can be rearranged to give b(x) in terms of u.(x) an a(x). 

This gives a result equivalent to that given by Wu & Cao [36]. 

) 1 0 2 ] 
b(x = 2u(x) ox [a (x)u(x) (3.6.36) 

Example 

Consider the example given in Wu & Cao [36], b(x) = 1 - 2x and a(x) = 

2vx(1 - x), x E [0,1]. This gives us 

(X 2b(y) r 2 - 4y 1 
B(x) = io a2(y) = io 4y(1 _ y) dy = 21n(4x(1 - x)) (3.6.37) 

thus 

C2 J C2 
U. (x) = 4 (1 ) 4x (1 - x) = J 

x - x 2 x{l - x) 
(3.6.38) 
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which using 

10
1 

u.{x)dx = 1 (3.6.39) 

gives 
1 

u. (x) = ----;;==== 

rrJx(1 - x) 
(3.6.40) 

which is the limiting density function of the logistic mapping as required. 

However in order to guarantee the existence of the limiting density certain 

conditions detailed above must be met. It should be noted that these conditions 

are only required to be met over the region of the strange attractor. The 

behaviour outside this region is irrelevant to the model since the density is 

zero, and only the behaviour of the system once it is no longer transient is of 

interest. For the existence of a solution to equation (3.6.6) it is required that 

the Lipschitz conditions are satisfied. Using our examples b(x) and a(x), the 

attractor is in the range 0 < x < 1. This gives 

Ib(x) - b(y)1 = 21x - yl (3.6.41) 

and 

la(x) - a(y)1 = 21vx{1 - x) - Vy(1 - y)1 (3.6.42) 

Equation (3.6.41) clearly satisfies equation (3.6.12). Equation (3.6.42) satisfies 

equation (3.6.13) for 0 ~ x ~ 1, and the solution is not real outside this range. 

However it is sufficient that equation (3.6.13) is satisfied for 0 < x < 1 so the 

Lipschitz conditions are satisfied. 

For this system 

O"{x) = 2Jx{1 - x) 

80" 1 - 2x 
= --;::::=== 

ax JX{l - x) 

b{x) = 1 - 2x 
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8b =-2 
ax 

1 
u (x) = ---;;:::=== 

1rJx(1 - x) 

au 2x-1 
--r===== 

ax 21rJx3 (1 - xp 

a2u (2x - 1)( _2X2 + 5x - :!) __ 2 

ax2 21rJx3 (1 - x) 

and thus the conditions that 

are continuous are satisfied for x E [0 1]. 

la2(x)1 = 14x(1 - x)1 ~ 1 for 0 < x < 1 

b(x) = -6x + 3 ~ 6(1 + Ixl) 

c(x) = 8 ~ (1 + Ix2 1) 

thus with M = 8, b(x) and a(x) are regular. 

If the Lyapunov function V(x) = x2 is considered 

2a2v av 2 2 a - + b(x)- = lOx - 12x < -nx + (J 
ax2 ax -

46 

(3.6.47) 

(3.6.48) 

(3.6.49) 

(3.6.50) 

(3.6.51) 

(3.6.52) 

(3.6.53) 

(3.6.54) 

for Q = 2 and f3 = 10. This ensures that the limiting distribution 1/,. exists. 

This demonstrates that the example given in Wll & Cao [36] is valid. 

Further considerations 

In Wu & Cao [36] a2 (x) is defined as If(x)/, however equation (3.6.35) 

actually gives a family of solutions as it specifies the relationship between b{x) 

and a(x). In order to guarantee the existence of the asymptotically stable 

solution it is sufficient that the conditions noted previously are met. 
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It should be noted that in general it will usually not be possible to find an 

analytical expression for the limiting density of a chaotic process, particularly 

in higher dimensions. Only in special cases is an analytical solution available. 

In such cases it is not always the case that the limiting density will fit the 

conditions required for the Fokker-Plank equation to be valid. The condition 

that 

(3.6.55) 

are continuous may not be true. However it should be possible to approximate 

u. with a sum of functions such as Gaussians (which do meet the conditions) 

to an arbitrary degree of accuracy and this approximation would have a valid 

Fokker-Plank equation and thus an equivalent stochastic system. 

3.6.2 Two dimensional extension 

Consider the two dimensional stochastic system 

dX dt = b(X) + a(X)~, (3.6.56) 

(3.6.57) 

(3.6.58) 

(3.6.59) 

where w(t) is a two-dimensional vector process 

(3.6.60) 

with its components {wl(t)h~o, {w2(t)h~o are one-dimensional independent 

Wiener processes. Thus the process has the joint density 
-----------------------------------------------------------
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(3.6.61) 

To solve equation (3.6.56) the system can be formally integrated as with the 

one dimensional case to get equation (3.6.9). 

An approximate solution can be obtained by using the Euler-Bernstein 

equations (3.6.10) and (3.6.56) giving 

Xl (to + ~t) = Xl (to) + bl (Xl (to), X2(tO) )~t + 0"11 (x(to) )~Wl + 0"12(X(tO) )~W2 

X2(tO + ~t) = X2(tO) + b2(XI(tO), X2(tO))~t + 0"21 (x(tO))~Wl + 0"22(X(tO))~W2 
(3.6.62) 

where 

(3.6.63) 

If the density function u(x, t) of the process x(t) is considered, the two dimen­

sional Fokker-Planck equation 

aUb~,t) = - a~l [bdx)u(x, t)] - a~2 [b2(x)u(x, t)] 

+4~[(0"~1 (x) + 0"~2(X) )u(x, t)] + aX~;X2 [(0"11 (X)0"21 (x) 

+0"12(X)0"22{X))U(x, t)] + 4~[{0"~1 (x) + 0"~2(X))U(x, t)] 

(3.6.64) 

can be utilised to describe its time evolution. The equation is valid under the 

conditions that 

are continuous for t > 0 and x E ~2 and bi(x), O"ij(X) and their first derivatives 

are bounded. 

The limiting density u. exists if the O"ij{X) and bi{x) are regular for the 

Cauchy problem and there is a Lyapunov function V satisfying 

(3.6.65) 

with positive constants Q and {3. 
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As the steady state probability density function is independent of time 

equation (3.6.30) applies and together with equation (3.6.64) it is demonstrated 

that the limiting function u{x) is the unique density satisfying the elliptic 

equation 

a~1 [b1 (x)u{x)] + a~2 [b2{x)u{x)] = ~Ixr[(a~l (x) + a~2(x))u(x)] 

+ ax~~x2 [(all (x)a21 (x) + a12{x)a22(x))U(x)] 

+~~[(a~l (x) + a~2{X))U(X)] 
2 

(3.6.66) 

This demonstrates that equivalent stochastic systems exist for dimensions 

higher than one. 

3.6.3 Examples 

It has been shown that it is possible to consider a stochastic system equiv­

alent to a chaotic system when they share certain characteristics. Now the 

construction of a stochastic model of a chaotic system is considered. 

The Logistic Mapping is a deterministic chaotic mapping 

and for K = 4 it has the analytical solution 

xn = ~ + ~ cos(2n7l'Oo) 

1 1 (n+l ) 
Xn+l = 2' + 2' cos 2 71'00 

(3.6.67) 

(3.6.68) 

(3.6.69) 

From the above it can be seen that there is a one to one mapping between In 

and On and that if how 0 evolves is considered it is found that 

(3.6.70) 

Given an exact initial value of eo and the above equations the evolution of the 

system can be determined for however far into the future is required. However 
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when the value of ()o can only be obtained to a finite precision as is generally 

the case then the situation alters. If the value of () is determined to a precision 

of 8 bits, writing () in binary form gives 

()o = O.bI b2b3b4bsb6b7bs 

()1 = O.b2b3b4bsb6b7bs? 

()s = O. ???????? 

(3.6.71) 

(3.6.72) 

(3.6.73) 

where ? represents a bit whose value cannot be determined. The evolution of 

the system with time corresponds to a binary shift operator. After one time 

step although the values first 7 bits are known with certainty, the value of the 

8th bit is dependent on the 9th bit of ()o. However the value of the 9th bit is 

not known. One method for dealing with this uncertainty is to use probability. 

The are two possible values for the 9th bit, 0 or 1. There is no reason to prefer 

either of these values and so they can be treated as equally probable. It is to 

be noted that after 8 iterations the value of ()s and thus Xs is independent of 

the eight bit value of ()o. This demonstrates the sensitivity of chaotic systems 

to initial conditions and the consequent problems with long term prediction. 

It is now possible to form a new solution to the Logistic mapping, valid when 

the value of On is known only to a limited precision. 

1 1 (n+ 1 ) () Xn+l = 2 + 2 cos 2 'TrOo + F On (3.6.74) 

It can be seen that this solution consists of a deterministic term, and a stochas­

tic term, both of which are solely dependent on On. This can easily be adjusted 

to give an equation with a zero mean stochastic term and thus can be consid­

ered a discrete time version of equation (3.6.6). 

The question remains, is it feasible to construct a stochastic model of the 

dynamical system. Using again the one dimensional chaotic function, the lo­

gistic mapping which for K = 4 has the solution 

(3.6.75) 
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Figure 3.1: State transition with a state transformation 

where 
1= sin-

1 Fa 
7r 

with the long term density distribution 

If a transformation is defined 

then 

1 
f(x) = y1-X 

7r 1 - x 

51 

(3.6.76) 

(3.6.77) 

(3.6.78) 

(3.6.79) 

and it can be found using the Peron-Frobentius function that the long term 

density distribution in the u domain is 

1 
g(u) = -

7r 
(3.6.80) 

Thus the dynamics are uniformly distributed over the interval 0 ~ u ~ 7r after 

performing this transformation. 

Given that only whether the value of the function falls within an interval 

can be measured, a stochastic model of the process in the limited information 
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Figure 3.2: State transition diagram of 6 state model of the Logistic mapping 

situation can be built. If the value of the logistic mapping can only be ob­

served to fall within one of four equally sized observation intervals then a six 

state Markov model can be constructed by transforming to the u domain and 

partitioning into 6 equal states Figure 3.1. When in each state the output of 

the system corresponds to one of the 4 specified observation intervals. From 

this a state transition diagram can be formed, Figure 3.2. For any sequence of 

output intervals generated by the model, initial conditions can be found for the 

logistic mapping that will generate the same quantized sequence. Conversely 

any quantized sequence generated by the mapping may be generated by the 

model. This model can be considered optimal in the sense that no other model 

of the 4 quantisation level logistic mapping will give improved performance. 

As with the logistic mapping the dimensionality of the process is one. The 

long term probability density function of the model is also the same as that of 

the quantized logistic mapping. As with the logistic mapping the future output 

of the model can only be predicted in the short term. 

That this model can be constructed demonstrates that a stochastic model 

can be used to effectively model a chaotic function when the function value 

is subject to a degree of uncertainty. In almost all practical problems this 

degree of uncertainty exists, due to such factors as observation noise. Thus the 

methodology of using an stochastic model should be valid for modelling real 
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world chaotic time series. 

3.7 Conclusion 

The relationship between chaotic and stochastic systems has been investi­

gated. Based on the dynamic density of chaotic systems and Brownian motion 

in stochastic systems, the equivalency in invariant measure and ergodicity be­

tween the two systems has been defined. Based on the definition, the equiva­

lence relationship is studied and the equivalent stochastic system model of the 

chaotic system is derived analytically, which leads to an equivalent stochastic 

system model. This provides a potential to deal with the problems of high­

dimensional chaotic systems using low-dimensional equivalent models. 

It has been demonstrated that the behaviour of chaotic system defined by 

equation (3.5.1) can be described as a stochastic process. Thus its dynamics 

are characterized by the initial distribution p{xo) and the transition proba­

bility density function p{Xk+llxk), k = 1,2, ... , n. P(Xk) and P(Xk+llxk) can 

conveniently be obtained using the time series of the chaotic dynamics. In 

other words, if the probability density function of a chaotic system has been 

obtained, the chaotic dynamics can be represented by an equivalent stochastic 

system model which is constructed based on the probability d<msity function. 

Inversely, an equivalent chaotic system can be constructed if a steady state 

probability density function of a stochastic system is given. 

It can be seen that the probability measure JL{W) mentioned is actually the 

probability distribution function. This implies IL(W) = fw p(x)dx. Thus it can 

be stated that a chaotic system and a stochastic system are equivalent if they 

have a same ergodic invariant measure. 
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Equivalent Model 

4.1 Introduction 

Based on the links between stochastic and chaotic systems a new method­

ology for the study of chaotic time series is obtained. It consists of describing 

the chaotic dynamic system as an equivalent stochastic system. The dynamics 

of this stochastic system are described in terms of its initial and transitional 

probability density functions. These density functions are determined directly 

from the time series. Since motions of chaotic dynamical systems, after some 

transients, settle down to strange attractors and sustain for a long time, this 

provides a great opportunity in terms of time period for a computer to learn 

the properties of the chaotic systems through space-time patterns so as to build 

an equivalent stochastic model. This stochastic model is then used to predict 

the dynamics of the chaotic system. As long as learning proceeds, theoreti­

cally prediction of future states of the chaotic systems can be achieved. Based 

on the concept of the equivalence relation and the equivalent system model, 

system reconstruction of chaotic dynamics using learning techniques can be 

investigated. 

It is clear that the simple Markov chain models developed in this chapter 
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are an extension of the symbolic dynamics approach, utilising more symbols, 

and replacing the Is in the transition matrix by probabilities. Thus the Markov 

chain model fulfills the criteria of allowing only valid symbol sequences since 

it has the same symbolic dynamics as the underlying system. 

It is also clear that some of the invariant properties of the strange attractor 

such as the topological entropy can be calculated directly from the model. 

4.2 Construction of the equivalent models by 

learning 

An equivalent stochastic model can be used to reconstruct a unknown 

chaotic system as mentioned in the previous section. The reconstruction can 

be achieved based on the probability density function which may be obtained 

using learning approaches to the time series of the chaotic system. 

Since the state of the chaotic system can only be estimated to a limited 

precision, instead of trying to model an individual trajectory, the evolution of 

the density of the dynamics can be modelled. 

Given a probability density function of the density of dynamics at time t, 

the Frobenius-Perron operator for the system gives a link to the density of the 

dynamics at time t + 1. It is not possible to analytically derive the Frobenius­

Perron operator without the system equations. However it should be possible 

to create a model which can approximate the operator via learning. 

There are two possible approaches to modelling the evolution of the density 

of dynamics. The first is to model the transition function and usc that model 

to derive an estimate of the Frobenius-Perron operator. A method for approx­

imating the Frobenius-Perron operator is given by Dellnitz & Junge [291. This 

can then be applied to an initial density estimate to determine the evolution 

of the density. 
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The second approach is to model the evolution of the density directly. This 

is the approach that has been taken. 

The first question is how to represent the probability density function of 

the dynamics. A common approach to modelling density functions is to ap­

proximate them as a sum of basis functions. 

N 

f(x} = LaiGi(x} (4.2.1 ) 

This is a universal approximator in that it can approximate arbitarily well any 

multivariate continuous function on a compact subset of !Rk
, given a sufficient 

number of suitable functions ,N, (Haykin[39]). If a set of suitable basis func­

tions is defined to cover the state space of the system, the link between the set 

of coefficients at time t, A(t) = (al(t), ... ,aN(t)), and the set of coefficients at 

time t + 1, A(t + I} needs to be modelled. 

It is easy to see that if the density function at time t is equal to one of the 

set of approximating functions Gi, then ai = 1, and aj = 0 where j ::j; i. At 

time t = 1 the density function will be represented by a new set of coefficients 

A(t + I}. Thus there are a set of coefficients (independent of time) which link 

ft = Gi to ft+l = L:j mijGj . 

However it is a property of the Perron-Frobenius function that it is linearly 

additive i.e. 

(4.2.2) 

thus if the coefficients for each of the N functions Gi(x) are found then if 

N 

f(x)t = L aiGi(x} (4.2.3) 
i=O 

then 
N N 

f(X}t+l = L L mijaiGj (4.2.4) 
i=O j=O 

or looking at the evolution of the coefficient vector A 

(4.2.5) 
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The simplest functional form for Gi{x) is the characteristic function for a set 

6. which is defined as 

{ 

1 if x E 6. 
1Ll = 

o if x ¢ 6. 
(4.2.6) 

If the probability of occupying a certain state is considered as proportional 

to the density of dynamics of that state then this gives a discrete state space 

Markov chain model. 

4.3 ID, 2D, nD, Markov chain models 

4.3.1 A simple learning methodology 

The above shows that a chaotic system can be described by an equivalent 

stochastic process. It is to be noted that no knowledge of the chaotic system 

is required beyond its dimension and that it converges to a strange attractor. 

Since that equivalent system may be described in terms of the probability 

density function and initial probability distribution, the problem of modelling 

the equivalent stochastic system is one of extracting these quantities from the 

time series generated by the chaotic system. 

In order to find an equivalent stochastic model for a chaotic time series a 

new time series Yt must first be constructed by embedding the time series as 

described previously in equation {2.4.3}. The initial and conditional probability 

density functions must then be estimated. 

The simplest method for estimating these values is to quantize the invari­

ant interval of the chaotic dynamics into n subintervals Ii, i = 1,2, ... , n of 

equal length, or in the case of an embedding dimension higher than 1, into 

d-dimensional hypercubes. The points which are allocated to the subinterval 

Ii are all denoted as the same value yi, i.e. they are quantized. It is to be noted 

that it is not compulsory to have intervals of equal length, merely convenient. 
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Then using the time average to replace the set average the probability density 

function can be estimated through a learning process as: 

(4.3.1 ) 

where P, Nand k are the probability, frequency and number of samples re­

spectively. This can also be realised using the following recurrence formula: 

(4.3.2) 

where a ~ Pk(X i
} ~ 1, i = 1,2, ... , nand Ef=l H(xi

} = 1. The transitional 

probability can be obtained in an analogous manner. If the minimum variance 

method is used as the performance index: 

(4.3.3) 

where x is the estimate error and Xi = xi - Xk+l. Xk+l can be obtained as a 

conditional mean: 
n 

Xk+l = LXi P(xilxk}' ( 4.3.4) 
i=l 

This can be regarded as a weighted mean of states. In its special case, Xk+l 

can be predicted using the maximum transition probability: 

(4.3.5) 

Problems 

This simple model suffers from a number of problems. If the embedding 

dimension d is too low then process noise (errors due to that part of the sys­

tem not modelled) appears. This can be solved by increasing the embedding 

dimension d. 

Intrinsic to the partitioning of the state space into hypercubes is the ap­

pearance of quantisation noise. This can be reduced by reducing the size of 

the hypercubes. 

COMPLEX TIME SERIES D. I. Stamp 



4.3 lD, 2D, nD, Markov chain models 59 

However both reducing the size of the hypercubes and increasing the em­

bedding dimension will lead to a rapid increase in the number of hypercubes 

required. 

If the state space is filled by hypercubes of a fixed side length c then the 

number of hypercubes required to fill the state space is N where 

(4.3.6) 

thus there is an exponential relationship between the embedding dimension 

and the number of hypercubes required for a fixed side length. However, since 

a chaotic time series is being dealt with, it is not required to fill the entire state 

space. In state space the series will relax onto a strange attractor so only those 

hypercubes which contain elements of the attractor are needed. This in general 

means that the required N is considerably less in most cases than that given 

in equation (4.3.6). It will in fact be estimated from the capacity dimension 

Dc equation {2.2.7} giving 

N ex {!}Dc 
c 

{4.3.7} 

However there is still an exponential increase in the number, just at a lower 

rate. 

A larger number of hypercubes, and hence states, will naturally wquire an 

increased number of model parameters, especially since the size of the transition 

table is dependent on the number of states squared. 

An increased number of states will also require a correspondingly longer 

data series in order for reasonably representative probability density functions 

to be estimated. 

In order to reduce the effects of noise without dramatically increasing the 

number of states along with the associated problems the simple stochastic 

model may be modified in a number of ways. The main idea being to combine 

the predictions of a number of submodels as in Warwick & Karny [22]. 
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4.3.2 Weighted sum of models 

A straight forward method is to construct N 1D models, based on P(xilxk) 

to P(xilxk_N) and to take the mean of their predictions, thus reducing the 

effects of noise. The effectiveness of this is limited however, since, as a chaotic 

system is being dealt with, the Lyapunov exponent (] is greater than o. This 

indicates that on average there is an exponential divergence of trajectories 

in phase space leading to increasing inaccuracies in prediction as prediction 

further ahead in time is attempted. Thus if the number of models used, N, is 

too large the accuracy of the mean prediction decreases rather than improves. 

The optimum value of N depends on the level of noise present and the rate 

of divergence of trajectories. This model can be improved by weighting the 

values of each individual prediction giving as the prediction: 

N n 

Xk+l = L Wj Lxi P(xilxk_j). ( 4.3.8) 
j=O i=l 

This can also be viewed as a weighted sum of the conditional probability density 

functions. A simple weighting scheme would be to weight the predictions based 

on more recent values more heavily. It should be noted however that although 

on average the more recent predictions are more accurate on an individual basis 

this is not always so. 

Several different weighting schemes were considered. The simplest was 

equally weighted as described initially. As discussed above, this weights the 

further ahead predicting models too heavily. In order to weight the more re­

cent models more heavily another model was proposed where the weights were 

assigned proportionally to the prediction delay (i.e the P(xilxk_j) term was 

given a weighting of N - j ). 

The state trajectories of a chaotic system diverge at an exponential rate. 

This implies than on average the prediction errors due to predicting further 

ahead will also increase in an exponential manner as would the uncertainty 
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in prediction (the width of the associated density function). An appropriate 

model would be to adopt a weighting of ~ where n is an arbitrary constant. 

As has been stated earlier it is not necessarily true that a j step ahead 

prediction model will give a more certain answer than a j + 1 step ahead model 

in a specific instance, although it will do so on average. It would therefore 

seem desirable to adopt a weighting scheme based on how certain the model 

is about its answer. Two weighting methods were used to implement this 

approach. The first method was to use the variance of each models probability 

density function for each prediction as a measure of certainty and to weight the 

model accordingly. However the variance has disadvantages for this purpose. 

This is because if the density function consists of a few relatively probable 

values spread far apart the variance is high despite a high degree of certainty 

as to the answer. In order to overcome this a new measure was used - the 

entropy of the distribution. 

Entropy is a quantity utilised in information theory in order to measure the 

amount of information being delivered and is defined as follows:-

R 

H(p) = - LPi 10g(Pi) (4.3.9) 
i=O 

where Pi is the probability of event i and R is the number of possible events. 

This tells us that an entropy gives a value of 0 when an event is certain, 

and a value of 10g(R) when all events are equally likely. The entropy can he 

considered as measuring the roughness of the density function. The weighting 

given to each density function is a function of the entropy. The function utilised 

1 
was H(p) " 

It is to be noted that in all the weighting schemes the weights are nor­

malised. 
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4.3.3 Probability density function combinatorial models 

As was noted previously the weighted sum of models is actually also a 

weighted sum of density functions. This can be viewed as similar in philos­

ophy to a Bayesian approach (although different in execution) in that it is 

using prior information as to the shape of the density function (from the j-step 

ahead models to alter the shape of the I-step ahead model). It can be viewed 

as trying to form an estimate of the conditional probability density function 

P(xilxk, ... ,Xk-N) from a number of conditional probability density functions 

P(xilxk_j),j = 0 --+ N. Now it is possible to evaluate P(xilxb ... ,Xk-N) di­

rectly, however this is simply equivalent to increasing the embedding dimension 

with all the problems that entails. The other approach is to find methods of 

combining P(xilxk_j),j = 0 --+ N to produce a modified density function 

?(xi IXk, ... , Xk-N), an estimate of the density function of a higher dimensional 

model. 

What is needed is a method of combining density functions. In the case that 

P(xilxk) and P(xilxk_j) are independent then an appropriate model would be: 

N 

?(xilxk, ... ,Xk-N) = II P(xilxk_j) (4.3.10) 
j=O 

However, it is known that the density functions are not independent. It is not 

known what that dependence is however, so in the absence of that knowledge 

this may prove a reasonable model as discussed by Justice [21]. 

Looking at the problem of combining density functions it can he seen that 

there are a few desirable features for a method to have: 

• where there is a probability of 0 (no chance of event occurring) at a point 

in one of the density functions then there should be a 0 at that point in 

the combined density function . 

• where there is a probability of 1 (event is certain to occur) at a point in 

one of the density functions then there should be a 1 at that point in the 

COMPLEX TIME SERIES D. I. Stamp 



4.3 lD, 2D, nD, Markov chain models 63 

combined density function. This is true if the above feature is true . 

• when the density functions are identical then the combined density func­

tion should be the same as our knowledge has not been increased in any 

way. 

The sum of weighted models method has only the last of these properties. It 

can be seen that although the assumption of independence method has the first 

two features it does not have the last. It warps the density function in favour 

of the more likely results at the expense of those with only a small chance of 

occurring. In effect it moves towards choosing the most probable result so it is 

still likely to give fairly reasonable results. 

4.3.4 Model learning with information entropy 

If information theory is turned to again, the entropy of a distribution rela­

tive to another distribution is defined as: 

R p' 
H(p: q) = - 2:pilog(2) 

i=O qi 
(4.3.11) 

Remembering that entropy is a measure of certainty, a combined density func­

tion is desired that has a maximum entropy relative to the initial density 

functions, i.e. it is desired to maximise the sum H(r : p) + H(r : q) where r is 

the combined conditional density function. 

R ri 
H(r : p) + H(r : q) = - 2: 2ri log( 1/2 1/2) 

i=O Pi qi 
( 4.3.12) 

The relative entropy H(r : p) is maximised when p = r so the new combined 

probability distribution estimate is: 

N 
A i II i liN P(x IXk, ... , Xk-N) = P(x IXk-j) (4.3.13) 

j==O 

This new model meets all of the criteria established earlier. With both these 

models the combined conditional density function needs to be normalised. 
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4.3.5 Variable size quantisation layers 

All the stochastic models developed have used a fixed size of quantisation 

interval. However since as can be seen from the conditional density functions, 

some states lead to larger prediction errors than others. It would possibly make 

sense to vary the size of the quanti sat ion layers in order to improve the accuracy 

of prediction. An algorithm for variable quantisation was not developed, but 

since the logistic function is relatively easy to analyse it was decide to try and 

determine the effect analytically. 

This gives us for the logistic function, for an interval i [a, bj 

2 
Pi = ;[u]~ (4.3.14) 

J-Li = _1_ [u - !sin2uj{J 
1rPi 2 0 

(4.3.15) 

a~ = _1_ [~u - sin2u + !sin4ujf3 - J-L? 
t 21rPi 2 8 0 J 

(4.3.16) 

a = sin-Iva,,B = sin-Iy'b (4.3.17) 

where Pi is the long term probability of being in that interval or state, and J-Li 

and a; are the mean and variance of the one step ahead prediction probability 

density function for that state. The root mean squared error is defined by 

2 1 ~( . )2 
erms = N L- Xt - Xt 

t=o 
( 4.3.18) 

The contribution of state i to the overall squared error is 

(4.3.19) 

and the total squared error is 

(4.3.20) 

which is the function that is wished to be minimised. There is no clear approach 

as to how to do this so the state boundaries were adjusted so that each state 

contributed the same amount to the total error. The error when the states 
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were equally quantized was also calculated and was found to be equal to that 

found though the simulation studies. The theoretical variable quantisation was 

found to improve the root mean square error performance for ten quantisation 

levels by 31 percent. Although this is a significant amount it is probably not 

0.25 ,..--------------------------, 

... e ... 0.2 
Q) 

" e 
~ 0.15 
C" 
t/) 

'0 
c 0.1 
o :e 
o 
Q. e 0.05 
Q. 

o 

2 3 4 5 6 7 8 9 10 

interval 

Figure 4.1: Contribution of ea h stat to ov r 11 rror 

A similar evaluation for more than one st p ah ad pr di ti n ha n b n 

performed and the results of this might mak variabl quanti ati n mor at­

tractive. 

4.3.6 Neural network equivalent to stocha tic mod I 

This leads us to possible structures of a n ural n twork to impl m n a 

stochastic transition approach. The model naturally follows a multi! y r £ d 

forward structure. The input layer would consist of a window 

COMPLEX TIME SERIES D.I.Stamp 



4.4 Comparison study 66 

values of the time series. The second layer would be a classification layer, 

classifying the input vector into a state, or if points were allowed to partially 

belong to several states, into a weighted set of states. The third layer consists 

of a set of conditional probability density functions, each of which is associated 

with a state and is selected when that associated state is activated in the 

second layer. The final layer simply either selects the most likely state from 

the probability density function or calculates the mean value of the probability 

density function. 

This gives the structure of a network for one step ahead prediction. It is 

to be noted that if radial basis functions are used for the classification layer 

and the density function and output layer are combined (as is possible in the 

simple case) then a radial basis function network is obtained. 

This basic structure can be altered to accommodate the inclusion of the 

two and three step ahead density functions. 

Tino [35] describes transforming recurrent neural networks to stochastic 

automata, thus recurrent networks may be a viable extension of the network 

described. 

4.4 Comparison study 

4.4.1 Overview 

Various aspects of the equivalent stochastic system models were investigated 

including 

• the effect of the number of quantisation levels 

• the effect of the number of samples in the time series modelled 

• the effect of predicting multiple steps ahead 

• the effect of increasing the embedding dimension on prediction accuracy 
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Figure 4.2: Neural network structure of equivalent stochastic model 

• the effect of increasing the embedding dimension on the number of hy­

percubes required to contain the attractor 

• the models performance using different data sets 

• the characteristics of the different models 

In order to compare the performance of the stochastic models to more conven­

tional techniques the various data sets were also predicted using three common 

techniques - a linear autoregressive model, a feed forward perceptron neural 

network, and a time-delay neural network. 
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The computation was performed on a Pentium 90 PC using programs writ­

ten in C++. For the linear autoregressive model Matlab was used. Graphs of 

the resulting predictions are shown with the actual time series as a solid line 

and the time series estimated by the model as a dotted line. 

When fitting a model to a time series there are a number of considerations 

to be taken into account. 

Generalisation 

A model is said to generalise well when the input-output relationship com­

puted by the model is correct (or nearly so) for data never used in creating or 

training the model. 

The fewer adjustable parameters a model has the more likely it is to gener­

alise well, however it must have sufficient adjustable parameters to adequately 

model the system. 

Overtraining 

When a model learns too many specific input-output relationships (i.e. it is 

overtrained), the model may memorise the training data and therefore be less 

able to generalise between similar input-output patterns. Deco & Schurmann 

[10] identify a specific type of overtraining which they call dynamic overtraining 

where the model overtrains in such a way as to cease to model the dynamic 

invariants of the system. 

4.4.2 Validation criteria 

It is required to assess the ability of a particular model to generalise a 

system. A standard procedure for model generation is to partition the data 

into two sets. The first larger set is the training set. This set is used to generate 

the model. The performance of the model is then checked using the second 
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set, the validation set. The quality of the model will be judged based on its 

performance with this data set, rather than with the training data. 

An important question is how the performance of the model is measured. 

This is of particular important when the performance measure is used in the 

model generation as is generally the case. 

A common measure is the square root of the mean square {rms} error, or 

equivalently when comparing performance on different time series the average 

relative variance (arv). However, the one step ahead prediction performance is 

not always the best measure for a dynamic system. 

The root mean square error is given by equation {4.3.18} and the average 

relative variance is given by: 

1 ~{ A }2 earv = 2N L.t Xt - Xt 
(J t=o 

{4.4.1} 

It should be noted that a trivial predictor which simply chose the mean value 

of the time series would give an arv of 1. Thus any model with arv close to 1 

is performing extremely poorly. 

In order to assess model performance for recursive prediction some form of 

performance measure is required. One possible measure is the 'long term error' 

ELT as defined by [10] 

ELT = ~ t ~ t[x{t + i) - x{n + i)]2 
t=O i 

{4.4.2} 

which is an extension of the root mean square error frequently used for one 

step ahead prediction. Due to the difficulties of long term forecasting of chaotie 

time series reconstruction in the work done N was limited to 5 steps ahead. 

Multiple step ahead prediction 

When modelling dynamic systems predicting further ahead than a single 

time step is often of interest. There are several approaches to multi-step pre­

diction. The simplest is to build a one step ahead predictor and then iteratively 
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predict one step ahead mUltiple times. A second approach is to build a model to 

predict the number of steps ahead as required. A third approach is to produce 

a model that will simultaneously predict all the required future steps. 

However, one step ahead prediction is not necessarily the best indicator 

of model performance. The performance of good and bad models of slowly 

varying time series with significant observation noise can often appear similar 

when measured using purely a one step ahead prediction criteria. A tougher 

test of dependent ability is to perform system reconstruction, predicting a time 

series several steps ahead using the one step ahead model recursively. This is 

a particularly difficult task for chaotic time series as the exponential rate of 

trajectory divergence in state space makes the system extremely sensitive to 

initial conditions. If a model can predict several steps ahead in this manner 

then it is probably a good model. However, if a model cannot predict a certain 

distance ahead this does not necessarily mean that it is a poor model. This is 

only the case if another model can produce better results. The predictability 

of a time series is dependent upon the characteristics of that series such as the 

Lyapunov exponent. It was shown in an earlier example that limited knowledge 

of initial conditions leads to a prediction horizon beyond which one cannot make 

accurate predictions regardless of how accurate the model of the system may 

be. 

Given the one-step ahead predictor 

x{n) = F{x(n - 1), x(n - 2), ... , x(n - d)) ( 4.4.3) 

the equivalent recursive predictor is 

x{n) = F{x(n - 1), x(n - 2), ... ,x(n - d)) ( 4.4.4) 

The question is which method is best in practice. It has been found that for 

local linear models that an iterative approach gives the best results. Work con­

ducted with neural networks indicated that multilayer perceptrons had prob­

lems learning when used as multistep ahead predictors. The reason for this is 
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Figure 4.3: System reconstruction model 

that the n-step ahead function (the one step ahead function performed n times) 

is more complex than the one step ahead function and correspondingly harder 

to learn. However, this objection does not hold for the equivalent stochastic 

model approach as the model is based on the density of states rather than 

attempting to model a function. It thus remains to be seen which is the better 

approach for this type of model. 

This method has the advantage over just measuring the one-step ahead 

prediction accuracy that it shows whether the system is really being modelled 

properly. For example a trivial one-step ahead prediction algorithm is to pre­

dict the value of the previous sample as the next value. With many time series 

(particularly if the series is slowly varying) this may give a reasonable one-step 

ahead prediction error, however when used for recursive modelling the modelled 

output would rapidly diverge from the real time series as the true dynamics of 

the system are not being modelled. 

The divergence for linear time series can be relatively slow provided that the 

linear model used is reasonably accurate. Chaotic systems however are highly 

sensitive to initial conditions, with nearby trajectories displaying exponential 

divergence, this rate of divergence being measured by the systems Lyapunov 

values. This means that highly chaotic systems which are recursively modelled 

diverge extremely rapidly from the real time series with even small errors in 

the model used. 
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4.4.3 Time series 

Four different time series were utilised to compare the predictive properties 

of the various models. Two of the time series were generated by computer 

using difference equations and two were taken from experimental data. There 

are limitations in using computer generated data for the simulation of chaotic 

systems. Since computer data is stored to a finite precision any computer 

generated data must eventually repeat itself for a sufficiently long time series. 

It was found that 16 bit precision was inadequate for the simulation of the 

Logistic mapping for lengths greater than 3000 samples since it would reach 

the unstable fixed point of 0 and stay there. 32 bit precision was found to be 

adequate for the lengths utilised. 

The Logistic mapping 

The logistic mapping is a discrete time equation that takes its name from 

the corresponding differential equation 

dx 
- = JLx(l - x) 
dt 

(4.4.5) 

originally used by P.F. Verhulst in 1845 to model population growth in a limited 

environment (May [38]). It is a one dimensional time series generated in an 

iterative manner from the algorithm: 

(4.4.6) 

where X t is the tth member of the series and a is a constant. For 0 ~ a ~ 4 this 

defines a map from the unit interval onto itself. As the value of a is increased 

from zero the function produces a series of limit cycles with a series of period 

doublings as a is increased until the period becomes infinite and the limit cycle 

is a strange attractor. The value of a used for the time series utilised was a = 4. 
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This mapping has an invariant measure p with density: 

g{x) = ----r=l== 
nJx(l - x) 

73 

(4.4.7) 

and the Lyapunov exponent of equation (4.4.6) is A = In 2. It has the solution 

(4.4.8) 

with I given by equation (3.6.76). It has unstable fixed points at 0 and 0.75 as 

solutions. If I is rational then the solution is an unstable periodic orbit. If it 

is irrational then the orbits are aperiodic. Since there are infinitely more irra­

tional numbers than rational numbers in general the solution will be aperiodic. 

A simple one to one transformation will convert the Logistic mapping to 

the tent mapping 

Xn+l = 2 - 2xn 

(4.4.9) 

(4.4.10) 

which thus has equivalent dynamic behaviour and is easy to analyse. 

The logistic mapping was chosen as it a simple, easily understood one di­

mensional mapping which has been used by numerous researchers for the study 

of chaotic time series making comparisons easy. 

The Henan map 

The Henon map is a two dimensional time series generated in an iterative 

manner using the algorithm: 

X t - 1 + Yi-l - aX~_l 

or equivalently: 

COMPLEX TIME SERIES 
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where a and b are constants. The values used were a = 1.4 and b = 0.3. 

This produces a chaotic time series with an invariant interval of approximately 

[-1.3,1.3]. 

It is diffeomorphic (a uniquely reversible, continuously differentiable map). 

It has Lyapunov exponents of 0"1 = 0.42 and 0"2 = -1.62 

Similarly to the Logistic mapping, it has been used by several researchers 

into chaotic time series and so allows comparison of results. Also it is two 

dimensional allowing the effect of increasing dimension to be investigated. 

Wolf's sunspot series 

Data was available for Wolf's sunspot series from 1944 to 1988 in the form of 

a monthly mean sunspot number (a total of 300 data points). This is another 

popular series for study, but this time a naturally occurring rather than an 

artificially generated series. The natural mechanism for the generation of the 

sunspots is not well understood and the series is thought to contain a fair 

amount of noise. Although linear methods have been used in an attempt to 

predict it nonlinear methods have proved to be more successful in practice 

implying a degree of nonlinearity in the series. This series was included for 

an appreciation of the problems involved with natural time series, such as 

observation and process noise, unknown dimensionality, limited data, etc, 8.., 

opposed to the idealised artificially generated series. 

N H3 laser data 

One model of the laser is the set of differential equations known 8.Ii the 

Maxwell-Bloch equations (Baker & Gollub [13]). These describe the time de­

pendence of the electric field, mean polarization and population inversion. The 

form of these equations is similar to the Lorenz model for chaotic convection. 

Many practical lasers do not operate within a parameter range where chaos 
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Figure 4.4: Effect of increasing quantisation interval on pr di tion of I gi t.i 
mapping 

occurs, however chaotic behavior may b r alis d wh n th I er nfigur ti n 

is modified by tuning the cavity length, varying the las r gain or til ing n of 

the mirrors. 

In 1992 the Santa Fe time series comp tition wa hid. 

series used was that of a experimentally deriv d s ri of th 

pulsations of a N H3 laser. The data was given as an 8 bit numb rand Lhu 

quantized into 256 intervals. The fractal dimen ion of th 

Huber & Weiess [45] to be just over 3. 

ri w t tlnd 1 y 

4.4.4 One dimensional Markov chain model 

Number of quantisation intervals 

The one dimensional Markov chain model was used to predi t the different 

time series, for example Figure 4.5. The number of quantisation int rval u d 
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Figure 4.5: Logistic map predicted with ID Markov hain 

in each model was varied. The results ar shown in Figur 4.4 giving the 

log of the average relative variance of one step ah ad pr di tion. It i kn wn 

that the average divergence 6n+1 = 6n e->' wh r A i th Jarg t Lyapun v 

exponent. Thus the divergence is proportional to th initial d viation, whi h 

for the Markov chain is the size of the quantisation interval. It i to b 

from this that the average prediction error should be inv rely proporti nal t 

the number of intervals leading to a value of the varian of th iT r that i 

inversely proportional to the square of the number of quantisati n int rval . 

This is found to be the case for the Logistic mapping, but not for th II non, 

laser, or sunspot series. After an initial decrease th pr diction rror for th 

model of the Henon map reaches a plateau. Thi is due to mod lling th wo 

dimensional Henan map as a one dimensional proc ss. This introduc pro 
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J 1 2 3 4 

Logistic mapping 0.0122 0.0808 0.3063 0.4682 

Henon map 0.0861 0.3008 0.3712 0.5892 

Sunspot series 0.0834 0.0999 0.1096 0.1408 

Table 4.1: Effect of prediction interval on accuracy 

noise representing that part of the system inadequately modelled and this noise 

forms a limit on the accuracy of prediction. The effect of modelling the laser 

series as one dimensional has the same effect. 

The sunspot series actually shows an increase in error as the number of 

quantisation intervals increases. This is due to insufficient data. As the number 

of states increases there are on average less samples per state. If there are 

insufficient samples to form a reasonable estimate of the density function the 

performance of the model will decline. 

Probability density distributions 

In general the shape of the density distributions become wider as the step 

interval increases, as would be expected since position in state space is be­

coming less certain as time progresses. In a few specific ca.<;es however the 

distributions become sharper and the position in state space better defined. 

It was noted that if following a time series the j step ahead and the j + 1 

step ahead distributions sometimes overlapped, rather than the j + 1 distribu­

tion completely containing the j distribution. This implies that combining the 

two would lead to a sharper and thus better defined distribution, providing a 

justification for the combined density function models. 
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N 1 2 3 4 

Logistic mapping 0.0122 0.0247 0.0524 0.0870 

Henon map 0.0861 0.0963 0.1038 0.1433 

Sunspot series 0.0834 0.0689 0.0680 0.0745 

Table 4.2: Equal weight model 

Multiple step ahead prediction 

It is known that the average divergence is exponential with increasing pre­

diction period. This rate of divergence is only valid for a small initial difference 

6 and a number of time steps into the future j. The divergence of trajectories 

is bounded by the invariant interval of the attractor and this provides a limit 

for the error at large j. 

Table 4.1 demonstrates this effect giving the error in terms of earv for ID 

Markov chain models with 20 quantisation intervals predicting j time steps 

into the future. The two chaotic time series follow this expected pattern of 

rapid increase in error followed by tending towards a limit. The sunspot series 

however displays a more linear increase implying that it may have a more linear 

nature. 

4.4.5 Equal weight model 

The equal weight model consisting of summing the density functions of 

N one dimensional Markov chain models of varying prediction length and 20 

quantisation intervals was used to predict three different time series. The 

results are shown in Table 4.2 giving the average relative variance of one step 

ahead prediction. The idea behind the model is to reduce the effects of noise 
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N 1 2 3 4 

Logistic mapping 0.0122 0.0157 0.0207 0.0256 

Henon map 0.0861 0.0713 0.0697 0.0738 

Sunspot series 0.0834 0.0687 0.0661 0.0667 

Table 4.3: Exponential weight model, n=0.5 

(quantisation, process and observation). 

1 N 
P(Xn+I E Qilxn, Xn-I, ... , Xn-N) = N L P(Xn+I E QiIXn+l-N) 

I 

79 

(4.4.14) 

where Qi is the ith quantisation interval. The results for the two computer 

generated series show a decrease in performance for increasing N. This is most 

marked for the logistic mapping, due to the exponential increase in prediction 

error for increasing prediction interval. This leads to the inaccurate predictions 

from the higher j-step ahead models drowning out the more accurate prediction 

from the one step ahead model. The effect is less marked for the Henon map, 

possibly due to the presence of process noise. The model actually gives an 

improvement for the sunspot series for medium values of N. It should be 

noted that previous results show that the sunspot series does not display a 

rapid increase in prediction error for increasing time interval so the effects of 

noise reduction give an improvement. 

In general the performance of the equal weight model is poor giving benefit 

only for high noise processes. 

Exponentially weighted model 

The exponentially weighted model uses a weighting factor of ~ where n 

is a constant and j the prediction time interval of the density function being 

weighted. The model was compared using two different values of n. 
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N 1 2 3 4 

Logistic mapping 0.0122 0.0112 0.0111 0.0111 

Henon map 0.0861 0.0735 0.0728 0.0727 

Sunspot series 0.0834 0.0774 0.0770 0.0769 

Table 4.4: Exponential weight model, n=O.l 

N 1 2 3 4 

Logistic mapping 0.0173 0.0133 0.0092 0.0098 

Henon map 0.144 0.069 0.070 0.070 

Sunspot series 0.143 0.137 0.149 0.149 

Table 4.5: Independence model 

The performance modelling the logistic mapping as shown in Tables 4.3 and 

4.4 declined with increasing N for n = 0.5 and improved slightly for n = 0.1. 

With the higher value of n the exponential divergence of trajectories outweighs 

any noise reduction effect. The lower value of n leads to a slight improvement 

in prediction due to reduction in quantisation noise. 

Although the exponential weight models lead to a slight improvement in 

performance overall the effect was marginal. Since the Henon map suffers from 

process noise both values of n give improved results for increasing N, while the 

sunspot series shows a slight improvement. 

Distribution combinatorial models 

Both the assumed independence model based on equation (4.3.10) and the 

~ model based on equation (4.3.13) with 20 quantisation intervals give similar 

results. Both models give initial improvement with increasing N before reach-
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N 1 2 3 4 

Logistic mapping 0.0173 0.0128 0.0097 0.0098 

Henon map 0.144 0.071 0.070 0.070 

Sunspot series 0.152 0.131 0.126 0.130 

Table 4.6: 11 model 

ing a performance limit. This limit is due to density functions for the larger 

prediction intervals j in equations (4.3.10) and (4.3.13) being in general less well 

defined (spread over a larger range). They therefore have less influence than 

the density functions for the shorter prediction intervals. Increasing N thus 

has an increasing small influence on the model results. The two models give 

better results than any of the weighted sum models for the computer generated 

series demonstrating an ability to reduce process and quantisation noise. The 

~ model gives slightly better results than the assumed independence model. 

Overall, although it is possible to gain a small improvement in the per­

formance of the one dimensional Markov chain model by combining one di­

mensional models of increasing prediction interval, in order to improve results 

significantly another approach is required. 

4.4.6 Multiple dimensional models 

Embedding dimension 

The number of states required to model the three time series for increasing 

embedding dimension when the invariant interval is equally partitioned into 20 

intervals is shown in Table 4.7. It can be seen that for the logistic and Henon 

mappings the number of states required approximately doubles each time the 

dimension is increased demonstrating an exponential increase with dimension 

as expected. The sunspot series follows a similar pattern, but only contains 
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N 1 2 3 4 

Logistic mapping 20 56 128 272 

Henon map 20 97 203 367 

Sunspot series 19 94 189 239 

Table 4.7: Effect of dimension on the required number of states 

j 1 2 3 4 

Logistic mapping 0.01219 0.00846 0.00736 0.00722 

Henon map 0.08607 0.00780 0.00550 0.00488 

Sunspot series 0.08344 0.18014 0.85997 1.30232 

Table 4.8: Multi-dimensional model 

300 samples and so as the dimension increases the true number required is 

probably larger than that given in Table 4.7. It can be seen that any sunspot 

model with an embedding dimension of 4 will have less than two samples per 

state and thus the transitional density functions learned will be a very poor 

estimate. 

Prediction 

The general effect of increasing the embedding dimension j on the com­

puter generated time series is an increase in accuracy as shown in Table 4.8. 

In the case of the logistic mapping this is because the larger number of states 

is equivalent to using more quantisation intervals. The effect however tails off 

for increasing dimension and it should be noted that greater improvement in 

accuracy would be given by using the same number of states in a one dimen­

sional model. The prediction accuracy of the Henon map improves by an order 
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Figure 4.6: Henon map predict d with ID Mark v hain 

of magnitude from when embedded to a yst m dim n i n r 1 (t 

Figure 4.6) to when it is embedded to the yst m dim n i 

Figure 4.7). This is due to the removal of th pro 

map being a two dimensional process which w pr 

model. 

3 

wn in 

II n n 

nRi fl, I 

The sunspot series prediction accuracy actually d r ~ r Jarg r dimen-

sion. The results are distorted by the short 1 ngth 

means that at higher dimensions there are ~ w amp) 

to estimate density functions . Indeed the s ri s do 

space and during prediction states are nt red whi h ar n t m d 11 d. In hi 

case the prediction program assigns the state a d fault d n i y fun ti n. hi 

has the consequence that if many new states ar r 
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Figure 4.7: Henon map predicted with 2D Markov hain 

the model is poor and the situation deteriorat for 1 rg r dim n ion. h r­

suIts for the four dimensional model are exce dingly poor, t th xt nt tha < 

model which simply assigned the m an value of th tim s ri it PI' eli ti n 

would give better results. 

4.5 Multiple step ahead and recursive pr dic­

tion 

Once a model of a system has been constructed and param tor valu 

mined the model needs to be tested in order to determin how well it mod I th 

target system. In the work undertaken so far the root m an quare valu f th 

one-step ahead prediction error has been used in this p rformanc ev 1 uati n 

COMPLEX TIME SERIES D.l.Stamp 



4.5 Multiple step ahead and recursive prediction 85 

process. An alternative model evaluation process is by performing recursive 

prediction. A prediction of the time series is computed iteratively by feeding 

the one-step ahead predictions of the model back into the input so that after 

initialisation there is no external input to the model. Thus the recursively 

modelled time series starts the from the same initial conditions as the actual 

time series, but errors in the model lead to differences between the recursively 

modelled (or reconstructed) time series which accumulate over time causing 

the two time series to diverge. The more accurate the model the slower the 

divergence. 

The equivalent stochastic system model was implemented in a recursive 

manner in order to determine its effectiveness as a model. Its performance 

was poor, but due to the highly chaotic nature of the systems modelled it is 

difficult to determine how much was due to the nature of the systems and how 

much due to the inadequacies of the model. In order to afford a comparison 

the capabilities of temporal processing neural networks to model the same time 

series were investigated since such neural networks have been used to effectively 

model certain chaotic time series in the past. 

4.5.1 Equivalent stochastic system model 

The equivalent stochastic system model was used to perform recursive pre­

diction (system reconstruction) on the logistic (Figure 4.8) and Henon map­

pings (Figure 4.9). Although long term prediction was not expected due to 

the chaotic nature of the time series, it was hoped that the reconstructed sys­

tem would display similar properties to the original time series. In both C8.'WS 

the predictions rapidly diverge from the actual time series and the predictions 

cease to be meaningful after 4 or 5 iterations. This is due to the sensitivity to 

initial conditions characteristic of chaotic series. This is possibly made worse 

by the effect of the quantisation noise inherent in the model utilised. 
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Figure 4.8: System reconstruction of Logistic mapping using sto hasti mod I, 
d=l 

The main feature of the reconstructed systems is periodici ty. Thi tr ngly 

contrasts with the real time series which, since they ar haoti, 

The form of equivalent stochastic system model utilis d can b d n d a an 

n state Markov chain with an n x n state transition matrix: 

POO POn 

p= (4.5.1) 

PnO Pnn 

However when the one step ahead prediction is mad 

selected. If the initial state is state q, and the stat pr dict d is t, t m th n 

the Markov chain model is altered so that 

r=m 
(4.5.2) 

r =1= m 
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Figure 4.9: System reconstruction of Henon mapping using sto hasti mod I, 
d= 2 

This gives a state transition matrix consisting of only 0 and Is and whi h 

is thus deterministic. The states can be divid d into on or m r irr du ibl 

classes, plus possibly some transient classes. Depending on th initial ondi­

tions the system will enter (possibly via a transient cla s) an irr du ibl 

and then remain in that class following a periodic path qual in I ngth t th 

number of states in that class. The periodicity evid nt in th l' on tfU t d 

systems is thus due to the change from a stochasti mod I to d t rmini ic 

model when the weighted mean of states, or most prob bi tat i 

the predicted state. 

The stochastic model uses the conditional probability d n ity fun Li n 

P(XnIXn_l, ... , Xn- d), where d is the embedding dim nsion, 

prediction. The initial system reconstruction was p rform d u ing th dim n­

sion of the process as the embedding dimension, d = 1 for th I gi ti mapping, 

d = 2 for the Henon mapping. The accuracy of th sto hastic m d 1 us d ~ r 

one step ahead prediction improved slightly for higher valu of d alth ugh wi h 
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problems such as higher computational, memory requirements and r Quiring 

more training data. System reconstruction for higher values of d w r impl ­

mented for both Logistic and Henon mappings, but the results were on av rag 

only marginally better than those with low embedding dimensions. P riodic­

ity was still evident in the reconstructed systems but tended to be of great r 

length. Occasionally after the real and reconstructed time series had diverg d 

they would after an amount of time overlap once more and the reconstruct d 

system would follow the real system for a few iterations before diverging on 

more. A good example of this is in the graph of the reconstruct d Henon map 

with an embedding dimension of 6, Figure 4.10. This demonstrat that th 

stochastic model does at least partially reflect the mod 11 d tim s ri s. 

Increasing the number of quantisation levels which in on step ah ad pr -

diction led to reduced prediction errors was also investigated , but it gav n 

significant improvement in the results. 

\J 0 .• I 

~ 
t /I • "7 • ,t 1 . I . 97 1 • • , _ ••• 7 •• a t N •• ~ .. .. , _ .. . .. " ... a , ..... ,. .. at .... a'" .. " ... P. 7" 

Figure 4.10: System reconstruction of Henon map using sto h ti m d 1 d= 6 
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Since the periodicity of the stochastic model is due to the choice of the 

most likely state, the model was implemented with random state transitions, 

with the state transition probabilities taken from the density function. This 

unsurprisingly gives worse results for one step ahead prediction. When it is used 

for system reconstruction rapid divergence occurs as with the other models, 

however the system is no longer periodic, and the system looks similar in form 

to the original series once quantisation effects have been taken into account. 

In the stochastic model if the system is in one state then the next state 

to be predicted will always be the same leading to the periodic pattern on 

reconstruction. In an attempt to add information to the prediction process 

it was thought that using the gradient ±(n) might improve matters. Since 

the gradient itself forms a chaotic time series the stochastic model can also 

be used to predict future values of ±(n) based on previous values. This was 

implemented for the Logistic mapping shown in Figure 4.11. The gradient was 

approximated as 

±(n) = x(n) - x(n - 1) (4.5.3) 

The root mean squared one step ahead prediction error for the gradient was 

just under twice the error obtained using the stochastic model on the normal 

time series, although the average relative variance was slightly better. The 

reason for this is that although the Logistic mapping varies from 0 to 1, its 

gradient varies from -1 to 1, a range twice as large. 

Predicting the gradient based on the original time series was also tried. 

This gave an root mean square error similar to that for the original series as 

might be expected. 
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Figure 4.11: One step ahead gradient of Logistic mapping using stoch tic 
model, d=2 

One step ahead prediction of the series using both the tim s ri and th gradi­

ent of the time series was then implemented (Figure 4.12) using th probabilit 

density function 

( .5. ) 

This gave similar results to an transition sto hasti mod 1 n t u Lili in 

gradient. The model was then used for system re onstru tion, but gav simi! r 

results to previous models, diverging after a few it ration nd th n b h ving 

periodically. 

4.5.2 Linear autoregressive model 

The system identification toolbox addition to th Matlab programming 

language contains routines for parameter estimation and tim ri 

of linear models [23J. These were used to create lin ar autor gr iv m 
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Figure 4.12: System reconstruction of Logistic mapping using to h ti m d 1, 
x(n) and x(n), d=2 

of the form: 
m 

x(n) = ao + L akx(n - k) (4 .5 .5) 
k = l 

The predictive performance of these global linear mod Is of oth th L i ti 

and Henon mappings were poor with mean squared rror of ab ut 0.3, for < n 

arv of approximately 0.72 for the Logistic mapping and wor 

map. Due to this poor performance they w re not tri d with th 

although since that series displays a fair degree of linearity it would b xp d 

that the model would be more successful. As xp t d th lin ar m 

not perform well when used to model a chaotic syst m wh n ompar d t th 

equivalent stochastic model or other nonlinear appro a h 

model is not suitable for this study. 

4.5.3 Feedforward perceptron network 

thi 

A multilayer feedforward perceptron neural network on i t of anum r 

of local computational units known as neuron . Th e ar rrang d in c 
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of layers with the neurons in a layer being connected to the neurons in the next 

layer. 
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Figure 4.13: An artificial neuron 
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A neuron consists of a number of inputs known as synapses which are 

individually weighted and then summed together as shown in Figure 4.13. 

They are then transformed by a squashing function such the hyperbolic tangent 

function, thus creating the output of the neuron which is used as the input to 

the synapses of the neurons in succeeding layers. 

The network consists of an input layer, one or more hidden layers followed 

by an output layer as shown in Figure 4.14. The network is trained by means 

of the backpropagation algorithm. This is a form of supervised learning. A 

known input vector is presented to the network and propagated through all the 

neurons until an output vector is produced at the output layer. This output 

vector is then compared with a known desired output for that input generating 

an error signal, the difference between the output and desired output. This 

error is then propagated back through the network and the synaptic weights 

are adjusted in accordance to an error correction rule. 

Input-Output training pairs of vectors are presented to the network suc­

cessively, and the weights updated. When all the training data has been pre­

sented to the network the process is repeated a second time starting with the 

first training pair. This continues until the error performance of the network 
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Figure 4.14: A feed forward neural network with one hidden Layer 

reaches a satisfactory level, or the error ceases to improve significantly. 

Before training starts the weights in the network are initialised to small 

random values. These values are small in order to avoid saturating the neurons 

which leads to long training times. This randomised initialisation means the 

back propagation algorithm is a stochastic gradient descent method. Each time 

the network is trained on the same data, the weights start at different values, 

so the time taken to train may vary. Also since the algorithm follows the 

gradient of the error surface in weight space it is possible to get stuck in a. 

local minima of the surface, rather than find the global minima. Since the 

route taken depends on the random starting point in weight space then, in the 

presence of local minima in the error surface, the network may give different 

results each time it is trained. 

When the backpropagation network is utilised for time series prediction it 

is being trained to act as a function estimator estimating the function in the 

equation 

x(n) = F(x{n - 1), x{n - 2), ... x{n - M)) {4.5.6} 
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It is wished for the network to generalise the function well from the data that it 

is trained on. This is in order that it will give a good estimate of the function 

when used with data on which it has not been trained. In other words the 

network is required to perform a good nonlinear interpolation of the function. 

Just because a network can accurately model a function for the data on which 

it has been trained does not mean that it will generalise well. This can be 

due to overtraining. A large neural network may be merely memorising the 

input-output mappings rather than smoothly interpolating between them. 

One of the most important factors which determines a networks perfor­

mance is its architecture. There exists a universal approximation theorem for 

nonlinear multilayer feedforward networks which states that a network with 

a single hidden layer can approximate any continuous bounded function pro­

viding it has sufficient neurons in the hidden layer. This suggests that a sim­

ple network with a single large hidden layer is all that is required. However, 

although it is known that this architecture is capable of approximating the 

function, the difficulty is in training it to do so. The problem with a single 

hidden layer is that the neurons tend to interact with each other globally so 

it is difficult to improve on an approximation at one point without worsening 

it at another. Using two hidden layers the interactions are less global, and 

training can be easier. Another problem is the complexity of the task. As a 

task becomes more complex then the time required to train a network tends 

to increase exponentially. 

The number of neurons used in each layer is also important. Too few 

neurons and the network will not be able to approximate a complex function 

well. Too many neurons and there is a danger of overtraining. 
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4.5.4 FIR multilayer perceptron network 

In 1992 the Santa Fe time series competition was held. One of the time 

series used was that of the chaotic intensity pulsations of a N H3 laser. One 

thousand samples were supplied and the next 100 had to be predicted. The 

winner was a Finite Impulse Response (FIR) multilayer perceptron network. 

This is an extension of the standard backpropagation network using finite FIR 

filters as the neuron synapses. In view of the proven ability of this type of 

network to model a chaotic time series it was implemented in C++ in order to 

provide a comparison with the equivalent stochastic system model. 

FIR multilayer percept ron networks are feedforward networks similar to 

standard backpropagation networks except that the synapses of the artificial 

neurons are modelling by FIR filters. This allows them to model temporal as 

well as spatial patterns. 

Linear time­
invariant filters 

Nonlinearity 

Figure 4.15: Dynamic model of a neuron using FIR filters as synapses 
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The network can be represented as a number of vectors. 

Defining: 

96 

(4.5.7) 

(4.5.8) 

where M is the order of the FIR filters, then the output of neuron j is given 

by Yj(n): 

p 

vj(n) = L: w~xi(n) (4.5.9) 
;=0 

Yj(n) = cp{vj(n)) (4.5.10) 

In order to train the network a variant on the standard back propagation 

algorithm is used. After a forward pass, the time delayed errors are propagated 

back through the network in a manner analogous to standard backpropagation. 

Defining: 

(4.5.11) 

then for neuron j in the output layer the weight updating equations are 

(4.5.12) 

I5j {n) = ej{n)cpj(n) ( 4.5.13) 

where ej is the difference between actual and target outputs of output neuron 

j, and for neuron j in a hidden layer 

(4.5.14) 

I5j (n -lM) = cpj(vj{n - lM)) L: ~~{n - lM)wmj (4.5.15) 
mEA 
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As can be seen these update equations are analogous for to those for the 

standard backpropagation algorithm. Indeed if the memory M = 0 then the 

network is a standard multilayer feedforward network trained by the back prop­

agation algorithm. It is actually possible to form an feedforward backpropa­

gation network by unfolding the temporal network in time. This leads to a 

larger network with some of the weights constrained to the same value as other 

weights. 

The FIR neural network program was written in C++ and was run on 

a Pentium 90 PC. The output was then sent to Excel for display. On all 

the graphs of system reconstruction, the recursive prediction starts at time 

step 50. The network used hyperbolic tangent activation functions and the 

algorithm included a momentum term. There are a number of parameters to 

be varied. The architecture, 1], a, the size of the training set, the size of the 

test set, the value of the memory M, and the number of epochs trained for. 

These were all varied to improve performance. The network architectures tried 

were initially small, single hidden layer structures, and then larger structures 

and an additional hidden layer were tried. It made sense to start with smaller 

structures as they tend to converge faster since they are simpler, and each epoch 

computes faster as there are fewer neurons. If, when the training records were 

examined, the network was still improving its error performance to a significant 

degree when it stopped, then it was rerun with a larger number of epochs. 

If there was evidence of overfitting then the size of the training sample was 

increased. Sometimes the network failed to train to any significant degree. It 

would then be rerun several times using randomised initial weights to see if this 

happened consistently. The errors were given in terms of root mean square one 

step ahead prediction error and the error for the training set and the test set 

were compared. 

The first data series tried was the logistic mapping as this was the simplest. 

Initially the values of a and TJ were varied as shown in Table 4.9. This was 
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M a 'fJ training error test error 

0 0.2 0.1 fail fail 

0 0.01 0.01 0.02026 0.02259 

0 0.5 0.01 0.01532 0.01394 

0 0.9 0.01 0.01394 0.012904 

Table 4.9: 1-4-1 network 

with 1600 training samples and 500 epochs. Similar results were obtained with 

different architectures and memory, so a = 0.9 and 'fJ = 0.01 were generally 

used. 

The effect of different architectures was then investigated and the results 

are given in Table 4.10. The time taken to train varied from 5 minutes for the 

simplest networks, to over an hour for the larger networks with more training 

samples. A greater number of training samples was required for the larger 

networks to avoid over training. 

The first thing that is noticeable is that the FIR filter memory M had a 

neglible effect on the networks ability to model the logistic mapping for the 

single hidden layer networks. Standard backpropagation networks (M = 0) 

gave similar results, any improvement due to M > 0 was small, or in the 

case of the larger values of M could even lead to a failure of the network 

to train effectively. This is to be expected as the logistic mapping is a one 

dimensional function with its next value solely dependent on its current value, 

thus the extension of the network to take into account previous values would 

be expected to be of little utility. It is artificial that the smallest structure 

performs worse than most of the other structures. This is probably due to 

it having insufficient neurons to properly approximate the function. However 

the worst performing network is that with the most neurons. This is not due 
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Structure M epochs samples training error test error reconstruction 

1-2-1 0 500 500 0.0196 0.02164 

1-3-1 0 500 500 0.0139 0.01337 

1-3-1 1 500 500 0.0132 0.01268 

1-3-1 2 500 500 0.0137 0.01328 

1-4-1 0 500 500 0.01394 0.01290 

1-4-1 1 500 500 0.01324 0.01280 

1-4-1 2 500 500 0.01509 0.01281 

1-4-1 3 2000 1500 0.01270 0.01248 

1-5-1 0 500 1600 0.01324 0.01311 

1-5-1 1 500 1600 0.Q1306 0.01299 

1-5-1 2 500 500 0.01462 0.01488 

1-5-1 3 500 1500 0.Q1306 0.01299 

1-5-1 4 500 1500 fail fail 

1-8-1 0 500 1500 0.Q1366 0.01475 

1-10-1 0 2000 1500 0.01219 0.01191 

1-15-1 0 1000 1500 0.02309 0.02640 

1-15-1 1 500 1500 fail fail 

1-3-3-1 0 100 2500 0.0150 0.0130 0.511 

1-3-3-1 1 500 2500 0.00171 0.00165 0.812 

1-3-3-1 2 500 2500 0.00206 0.00193 0.824 

1-3-3-1 3 100 2500 0.00531 0.00406 0.739 

Table 4.10: One step ahead prediction of the logistic mapping 
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to the networks inability to approximate the function, but of the difficulty 

in training it to do so. The larger the network the greater its capacity to 

accurately approximate the function, but the harder it is to train for reasons 

mentioned earlier. When a second hidden layer is added things change however. 

Although the network with no memory performs similarly to the single hidden 

layer networks, when the memory is increased to M = 1 then the performance 

improves by an order of magnitude. Further increasing M however has no 

positive effect. This does however demonstrate the FIR networks improved 

capacity to model time series. 

The column labeled reconstruction is the root mean square error for the 

time series predicting up to 100 steps ahead using its previous estimates for 

its predictions as described earlier. As can be seen the error is large indicating 

the networks inability to predict that far into the future. 

The Henon mapping is two dimensional so it comes as no surprise to note 

that the networks with no memory are significantly poorer at representing it 

than those with more memory (Table 4.11) since the M = 0 networks are 

attempting to model a two dimensional process as a one dimensional process, 

since the extra unmodelled dimension appears as process noise. Increasing 

the memory so M > 1 however leads to little or no improvement as was the 

case with logistic mapping when the dimension of the mapping was exceeded 

using single hidden layer networks. As was the case with the logistic function 

two hidden layers leads to an increase in performance in general but it is 

not so artificial as previously. Indeed the best single hidden layer network is 

better than many of the two hidden layer networks. Increasing the number of 

neurons used improved performance and the best configuration consisted of a 

large initial hidden layer followed by a second smaller hidden layer. 

One of the problems that has been noted with networks with more than 

one hidden layer is that the network does not tend to train evenly. The layers 

nearer the output layer tend to train at a higher rate. For better training all 
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Structure M epochs samples training error test error reconstruction 

1-5-1 0 100 2500 0.0811 0.0797 0.3563 

1-5-1 1 500 2500 0.0089 0.0086 0.3640 

1-5-1 2 500 2500 0.0090 0.0095 0.410 

1-5-1 3 200 2500 0.0086 0.0084 0.3333 

1-5-1 4 200 2500 0.0095 0.0089 0.3908 

1-10-1 0 100 2500 0.0812 0.0802 0.3436 

1-10-1 1 500 2500 0.0066 0.0058 0.2624 

1-10-1 2 500 2500 0.0096 0.0083 0.3146 

1-3-3-1 0 100 2500 0.0817 0.0800 0.3470 

1-3-3-1 1 1500 2500 0.00356 0.00281 0.2990 

1-3-3-1 2 100 2500 0.00902 0.00942 0.3991 

1-3-3-1 3 200 2500 0.00774 0.00692 0.3167 

1-3-1-1 1 200 2500 0.01522 0.01221 0.3420 

1-3-2-1 1 200 2500 0.00798 0.00745 0.3591 

1-3-4-1 1 200 2500 0.00978 0.00928 0.3876 

1-5-3-1 1 200 2500 0.00615 0.00607 0.3409 

1-5-2-1 1 200 2500 0.00671 0.00623 0.3215 

1-10-2-1 1 200 2500 0.00508 0.00521 0.3720 

1-10-3-1 1 200 2500 0.00457 0.00421 0.2839 

1-10-5-1 1 200 2500 0.00430 0.00398 0.3008 

Table 4.11: One step ahead prediction of the Henon mapping 
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Structure M epochs samples training error test error reconstruction 

1-2-1 0 100 2500 0.06346 0.07206 0.3136 

1-2-1 1 100 2500 0.06157 0.07731 0.3444 

1-2-2-1 0 200 2500 0.06348 0.08199 0.2741 

1-5-1 0 100 2500 0.09907 0.09926 0.2610 

1-5-1 1 100 2500 0.06711 0.0795 0.3088 

1-3-3-1 0 200 2500 0.06061 0.0775 0.3298 

1-3-3-1 1 200 2500 0.06057 0.0729 0.3470 

1-3-3-1 2 200 2500 0.06140 0.0708 0.3470 

1-3-3-1 3 200 2500 0.06247 0.0759 0.4010 

1-3-3-1 4 200 2500 0.06361 0.08595 0.3722 

1-3-3-1 6 200 2500 0.06365 0.07624 0.3235 

1-3-3-1 7 200 2500 0.06359 0.07131 0.2548 

1-3-3-1 8 200 2500 0.07349 0.2923 0.3056 

1-5-5-1 1 200 2500 0.06035 0.0707 0.3277 

1-5-5-1 7 800 2500 0.05874 0.0714 0.3051 

Table 4.12: One step ahead prediction of sunspot series 

the neurons should be converging on the solution at the same rate. Ideally each 

neuron should have its own individual learning rate and algorithms such as the 

Delta-Bar-Delta learning rule which implement this do exist, however they are 

computationally expensive. To improve training a simpler method was used. 

The learning rate constant 'TJ was multiplied by a constant "I for each layer from 

the input layer i.e. the learning rate constant for a layer was taken to be "'''II 

where l is the number of layers from the input layer. This means that the layers 

nearer the output layer are adjusted more slowly, making learning more even. 

This was implemented in the program and was found to give slightly improved 

results for the networks with two hidden layers, with a value of "I = 0.5 working 

well. 

System reconstruction for the Henon mapping is poor. The problem is 

that the reconstruction length of 100 steps is too far beyond the capabilities 

of any of the networks to predict, so any comparison is of dubious value. For 

meaningful comparison a shorter reconstruction length is required. 
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The sunspot series was the first of the series taken from the real world. The 

error performance for all the networks was fairly similar as shown in Table 4.12. 

The amount of memory M did not make a significant difference to performance. 

Although the test error was not poor in overall terms there are indications that 

the models produced were poor. The sunspot series is thought to be noisy, and 

visual inspection of the data would seem to confirm that. The data was of 

monthly sunspot series. The series has been predicted in the past with a 

degree of success using yearly data with linear autoregressive models or neural 

networks using data from up to fifteen previous years. The series appears 

to have an approximately periodic cycle of eleven years. The largest of the 

networks tried only takes values from the previous 24 months and so does 

not take data from nearly as far back as the other models. Looking at the 

data there appears to a high level of high frequency noise overlaying the low 

frequency eleven year cycle. It seems likely that all the networks that were 

tried were doing was learning the noise, rather than the underlying dynamics 

of the system. This view is reinforced by the results of recursive prediction 

where the network fails to represent the dynamics of the system. 

One of the problems found was that when a large value of M was utilised 

so that many of the previous values were taken into account the number of 

parameters became very large, in the largest 280. As well as slowing down the 

training it caused the networks with two hidden layers to overtrain. Since the 

series is thought to be noisy it would be useful if the neurons in the first hidden 

layer had a large M to enable it to filter out the noise, but that this should 

not be needed in later classification layers. It would seem preferable therefore 

to be able to vary the amount of memory in each layer. The network that won 

the Santa Fe competition had this type of configuration. 

The reconstruction error was uniformly large. This is interesting for al­

though the inability to perform system reconstruction for the logistic and 

Henon mappings can be attributed to their highly chaotic natures (large Lya-
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punov exponents), the sunspot series can be predicted, although inaccurately 

at least a year ahead. This implies that the networks are failing to successfully 

model the system, possibly due to the observation noise present. 

Structure M epochs samples training error test error 

1-3-3-1 0 100 2500 0.1451 0.1258 

1-3-3-1 1 100 2500 0.02731 0.01353 

1-3-3-1 2 100 2500 0.02285 0.00631 

1-3-3-1 3 100 2500 0.02161 0.00672 

1-3-3-1 4 100 2500 0.02128 0.00487 

1-3-3-1 5 100 2500 0.02064 0.00818 

Table 4.13: One step ahead prediction of laser series 

It can be seen from Table 4.13 that the errors in the prediction of the test 

series are significantly smaller than that in the training series. This is the 

opposite to what would be expected. The explanation is that the test series 

is only 100 samples long as compared to the training series of 2500 samples. 

It seems that the test series is in a part of the series that is easy to predict 

compared to the series as a whole. If this were so then if the test series were 

to be extended it seems likely that it would become more representative of the 

dynamics of the series as a whole and the test error would increase accordingly. 

The test series length was thus increased in length to 200 samples leading to 

an increase in the test error as expected. This is in Table 4.14. 

The laser data is fairly noise free and all the networks with M > 0 trained 

well. The networks with two hidden layers seemed to perform best. It was 

noticed that as M increased to about 8 the training became unstable with 

the error increasing and decreasing by a significant degree as the training pro­

gressed, rather than the usual steady decline. This is possibly due to the large 
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Structure M epochs samples training error test error reconstruction 

1-2-1 0 100 2500 0.1449 0.1681 0.2249 

1-2-1 1 100 2500 0.0307 0.0339 0.5635 

1-2-2-1 0 200 2500 0.1452 0.1718 0.2184 

1-3-3-1 2 200 2500 0.02286 0.01022 0.1972 

1-3-3-1 6 200 2500 0.01646 0.01589 0.2965 

1-3-3-1 7 200 2500 0.01244 0.00801 0.2282 

1-3-3-1 8 200 2500 0.01288 0.01326 0.2341 

1-3-3-1 9 200 2500 0.02617 0.08719 0.3522 

1-3-3-1 IS 200 2SOO 0.2080 0.1867 0.2122 

1-5-S-1 0 200 2SOO 0.142S7 0.14852 0.1981 

1-5-5-1 1 200 2500 0.02536 0.01483 0.4315 

1-5-5-1 2 200 2500 0.02290 0.00834 0.1908 

1-5-5-1 4 200 2500 0.01510 0.00797 0.3071 

1-S-5-1 6 200 2500 0.01259 0.00940 0.5221 

1-5-5-1 8 200 2500 0.02333 0.01479 0.2090 

1-5-5-1 9 200 2500 0.01257 0.04832 0.3358 

1-5-5-1 10 200 2500 fail fail fail 

1-3-3-3-1 0 200 2500 0.1456 0.1473 0.2024 

1-3-3-3-1 1 200 2500 0.02509 0.01657 0.2242 

1-3-3-3-1 2 200 2500 0.01806 0.01681 0.3210 

1-3-3-3-1 4 200 2500 0.04262 0.05391 0.2407 

1-3-3-3-1 6 200 2500 0.04487 0.05675 0.2592 

Table 4.14: One step ahead prediction of laser series 

number of available parameters, many of which may have been redundant. 

The system reconstruction errors were still large, although there was varia­

tion in values, even when one step ahead prediction values were similar. They 

were however better than for other series, however they still could not ade­

quately predict 100 steps ahead. They did however in some cases perform well 

for predicting shorter sequences, but performance was not consistent. Some­

times it performed system reconstruction well, other times poorly. 

The ability to predict the laser series further into the future than the logistic 

and Henon mappings is due to the laser series having a smaller Lyapunov 

exponent. 
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4.5.5 Network training to improve recursive prediction 

performance 

It is desired to train a network which performs well when used to predict 

recursively. So far the networks have been trained to perform one step ahead 

prediction and then used to predict in a recursive manner. The problem with 

this is that with high noise levels the noise could be learned rather than the 

dynamics of the system. Also areas of the state space that are unimportant for 

one step ahead prediction may prove important when predicting further ahead, 

and thus be under represented in the model for one step ahead prediction. It 

would seem sensible instead to train them from the start to perform recursive 

prediction effectively. 

Figure 4.16: System reconstruction model 

A possible method to train a one step ahead prediction network to perform 

well for two step ahead prediction is to concatenate two identical one step ahead 

networks in series as shown above. This combined network can then be trained 

for two step ahead prediction using a standard backpropagation algorithm 

backpropagating the two step ahead error signal back through the network and 

constraining the transition weights in the two halves of the network to change 

by the same amount. In order to ensure good one step ahead performance 

is retained the error signal for one step ahead prediction is backpropagated 

through the first half of the network. After the network has been trained it 
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can be divided again into the two one step ahead networks. This gives a one 

step ahead network that has been trained to perform two step ahead recursive 

prediction two steps ahead. This procedure could be used to train networks for 

n step ahead prediction by adding more identical networks to the series prior 

to training. A potential problem with this approach is that networks with a 

large number of hidden layers can have difficulties training. 

The FIR neural network program was altered to allow training of this type. 

Normal backpropagation was used and when the weights were updated they 

were changed by the average weight change of the constrained weights. 

( 4.5.16) 

At the junction of the two concatenated networks the one step ahead error 

was injected into the backpropagation. Three different options were experi­

mented with. The first was using the average of the one step ahead error and 

the two step ahead error already back propagated through the second half of 

the network, the second was to just use the two step ahead error so that the 

one step ahead error was not introduced, the third was to replace the two step 

ahead error with only the one step ahead error. In the second case the junction 

of the networks was left floating and not explicitly trained to produce a good 

one step ahead prediction, only for two step ahead prediction. In the third 

case the first half of the network trained for one step ahead prediction and the 

second half for two step ahead prediction. The training method was evaluated 

using the Logistic function with M = O. 

4.5.6 Non-random weight initialisation 

Before the training of a backpropagation neural network begins its weights 

are set to small random values and the network slowly trains towards an error 

minimum. If however the weights could be estimated utilising knowledge of til(! 
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Structure Option epochs 'Y OSA train OSA test TSA train TSA test 

1-3-1-3-1 1 500 1 fail fail fail fail 

1-3-1-3-1 2 500 1 fail fail fail fail 

1-3-1-3-1 2 500 0.5 fail fail fail fail 

1-3-1-3-1 3 500 1 0.02665 0.02443 0.04767 

1-3-1-3-1 3 500 0.5 0.01661 0.01591 0.03670 

1-5-1-5-1 1 500 0.5 0.01508 0.01354 0.03748 0.03361 

1-5-1-5-1 3 500 0.5 0.01571 0.01510 0.03481 0.03216 

1-8-1-8-1 3 500 0.5 0.01553 0.01487 0.03446 0.03241 

1-3-3-1-3-3-1 3 500 0.5 0.01553 0.01470 0.03791 0.03704 

1-3-3-1-3-3-1 2 500 0.5 fail fail fail fail 

1-3-3-1-3-3-1 1 500 0.5 0.00211 0.00209 0.00470 0.00417 

1-3-3-1-3-3-1 1 800 0.5 0.00195 0.00184 0.00420 0.00371 

1-3-3-1-3-3-1 1 500 0.7 0.00310 0.00322 0.00644 0.00593 

1-3-3-1-3-3-1 1 500 0.4 0.00230 0.00228 0.00531 0.00480 

Table 4.15: Logistic mapping 

system then the network could be started closer to a minima, making training 

faster and hopefully making better use of its processing resources. Inspection 

of the way in which a single hidden layer network models the logistic function 

shows a similarity to the stochastic model if the neurons are assumed to be 

hard limiting. Using this approximation it should be possible to calculate 

weights which will be close to their final values and then train the network 

using backpropagation. This approach may allow the use of larger numbers 

of neurons efficiently resulting in a lesser number of inefficient neurons, and 

subsequent reduction in disruption to training efficiency. 

4.6 Remarks 

It has been shown that the Markov chain models have the capability to 

effectively predict chaotic time series. For sufficient data and memory they can 

learn the dynamics of a time series to an arbitrary degree of accuracy. How 

ever in practice these conditions may not apply. Combining the conditional 
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density functions can be utilised to reduce the quantisation and observation 

noise, but does not gain significant performance for the added complexity. 

The best approach is to utilise a multidimensional model with an embedding 

dimension equal or greater than that of the modelled series. Unfortunately this 

can lead to problems due to the rapid increase in number of states required 

and consequent data requirements. 

It was found that linear predictors gave poor results for chaotic time series 

and were not suitable for this role. Feedforward perceptron networks were 

found to give better results in general than the stochastic models, due to the 

in-built quantisation noise of the stochastic models. If it is practical to increase 

the number of quantisation intervals the stochastic models have the capability 

to out perform the networks. Also the stochastic models do not suffer from any 

of the training problems that the neural networks are subject to, i.e. becoming 

trapped in local minima and long convergence times. 

All the approaches examined so far have the disadvantage that they require 

the dimension of the system to be explicitly built into the model. 

It should be noted that due to the use of quantisation intervals the stochas­

tic models were effectively operating on data of much lower pn'dsion than tiw 

conventional techniques. It is to be expected that if the conventional tech­

niques were to use data of equivalent precision then their performance would 

suffer, and in such situations use of the stochastic models would prove superior 

since, as has been shown, the behaviour of chaotic systems known to a limited 

precision is equivalent to that of stochastic systems. 
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Chapter 5 

Hidden Markov Models For 

Time Series 

5.1 Fl~~ process 

The simple Markov chain models developed have a number of disadvan­

tages. Primarily they require the approximate dimension of the dynamic sys­

tem to be known so a model of an appropriate order can be built, also it nceds 

to be determined which time delayed variables are important to the system 

dynamics. They are not as efficient in representing the system as they might 

be and do not take into the account any effects of noise, which is a problcm 

as quantisation noise is inherent in the model. A more sophisticated tyP(! of 

stochastic model is the hidden Markov model. 

Hidden Markov models (HMMs) are doubly stochastic models which are 

commonly used in such applications as speech recognition and image processing 

[18] [17] [37] [25] [43]. HMMs are an extension of Markov models to the case 

where the observation is a probabilistic function of the state. They consist of 

a Markov chain in which each state has a probability of outputting various 

different output symbols. To an observer only the output string of symbols is 
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5.2 Architecture of hidden Markov model network III 

accessible, thus the Markov chain is said to be hidden. 

They have the advantage that they do not require a specific model dimen­

sion to be known a priori and their structure takes into account the possibility 

of there being noise in the system. 

The probability that a particular sequence of observation signals was pro­

duced by a specific hidden Markov model can be assessed. Finding the specific 

hidden Markov model that has the highest probability of producing the ob­

served data can then be attempted. 

5.2 Architecture of hidden Markov model net­

work 

A discrete observation signal hidden Markov model is used to model a 

time series where there are M observation symbols V = {VI, V2, ... VM} and 

Ot is the observed symbol at time t. Thus the time series can be denoted as 

o = Ol02 ... 0r where each Ot is one of the symbols from V, and T is the 

length of the time series. 

A hidden Markov model is specified by its parameters ~ = (A, B, 1f). The 

model has N states, 8 = {81! 82 , .. , 8N }. The state at time t is denoted as 

qt. A is the state transition matrix where the element aij is the transition 

probability from state 8 j to state 8j • B is the observation symbol probability 

distribution, where the element bj(k) is the probability of observing symbolv/c 

when in state Sj. 1f = {1fi} is the initial state distribution at time t = O. 
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5.3 Learning algorithm for the hidden Markov 

model 

In order to find the hidden Markov model most likely to have generated 

the symbol sequence an iterative training algorithm known as the Baum Welsh 

algorithm can be employed. This is an iterative routine which takes an initial 

hidden Markov model and then updates its parameters in such a way that the 

new hidden Markov model is more likely to have generated the time series, 

or at worst as probable. This new model can then form the basis for another 

iteration leading to another improved model. This may be repeated until there 

is no longer any improvement. 

It should be noted that the algorithm leads to a local rather than global 

maxima and that in most complex problems the optimisation surface has sev­

eral local maxima. The algorithm is related to the standard Lagrange method 

of constrained optimisation. 

The following description follows that given in Rabiner[25]. It is useful to 

first define two intermediate variables 0 and (3 as 

and 

Ot(i) = P(OI, O2 ... 0 11 qt = SiI A} 

01 (i) = ll'ibi(Od, 1 $ i $ N 

"'+1 = [~",(i)",; 1 bj(OI+l) 

fJr(i) = 1, 
N 

(5.3.1 ) 

(5.3.2) 

(5.3.3) 

(5.3.4) 

(5.3.5) 

!3t = L aijbj (OHd!3t+1 (j) (5.3.6) 
j=1 

Once these have been calculated for a particular model and time series combi-

nation, the probability of being in state Si at time t and state j at time t + 1, 
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~t(i, j) can be calculated using equation (5.3.7) and the probability that the 

state at time t is Si, 'Yt(i) using equation (5.3.8). 

(5.3.7) 

N 

'Yt(i} = 2: ~t(i,j} (5.3.8) 
j=l 

Using these variables the Baum-Welch re-estimation equations can then be 

utilised to find a better estimate for the system parameters. 

(5.3.9) 

(5.3.10) 

(5.3.11) 

Use of these re-estimation equations gives a new model .x with the property 

P(OI~) 2: P(OIA). 

5.4 Estimation of algorithm parameters 

The Baum-Welsh algorithm improves the measure P(OI>') of an initial 

model until it reaches a local minima. Obviously the minima it reaches is 

dependent on the initial model parameters>' chosen. The question is how to 

chose the initial model parameters prior to training in order to finish at til(' 

global minima, or at least at an acceptable local minima. 

In the simulation study two different methods were used. The first method 

was to randomly assign values to the parameters subject to probahilistic con­

straints. The second method was employed only with the Logistic mapping and 

consisted of a simple estimate of the parameters based on the same techniques 

used to form the stochastic model of the logistic mapping earlier. 
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In practice it was found that although the a priori estimate method would 

converge to a local minima within a few iterations the results in terms of P(OI>') 

were frequently worse than using the purely random initialisation procedure, 

although never particularly bad. Unsurprisingly the performance of the purely 

random procedure varied considerably from poor to quite good. 

One question about hidden Markov models is how much data is required 

to construct an accurate model. The quantity P(OI>') gives the performance 

measure on which training is based. Longer time series give smaller values so for 

comparison purposes it is useful to divide this by the number of samples in the 

time series. This gives the average probability of correctly predicting the next 

symbol. Figure 5.1 shows how this varies for an 8 state hidden Markov model 

of the Logistic mapping. Since P(OI>') is calculated from the time series that 

is used to train the model it is not surprising that for low numbers of samples 

the probability is near to 1 since each state represents only a few samples. 

This leads to a unsatisfactory model since its generalisation abilities are poor. 

When a large number of samples are used then the probability tends towards a 

limiting value of 0.5. It was observed when training the 3 state hidden Markov 

model that the average of this parameter per symbol, (~P(OIO)) was 0.5. It 

is to be noted that for the logistic mapping e-A = 0.5 where>. = In 2 is the 

Lyapunov exponent of the system. This is to be expected since if a difference 

in trajectories in state space of 6 is considered, after a single iteration the 

difference on average becomes 6eA = 26. If the current area of state space 

containing the system state variable is known, after one iteration that area will 

on average have doubled, so the chance of it being in either half is 0.5 = e-A• 

It would seem from Figure 5.1 that at least 40 samples per state are required 

for good generalisation of the logistic mapping. In practice for the Logistic and 

Henon maps 5000 samples were used to ensure adequate generalisation. 

Two of the parameters of the hidden Markov model that have to be fixed 

a priori are the number of observation symbols, and the number of hidden 

COMPLEX TIME SERIES D. I. Stamp 



5.4 Estimation of algorithm parameters 115 
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Figure 5.1: The effect of training data quantity 

states. It was found that for a fixed number of observation symbols increasing 

the number of hidden states improved the values of P{ 0 IA) obtained. However 

after a certain point adding more states ceased to improve the model. The ratio 

of minimum number of states to reach this point to the number of observation 

symbols seemed to be approximately constant for each particular time series. 

Thus to model the time series more accurately both hidden states and number 

of observation symbols need to be increased. 

The time taken to train for one epoch was approximately proportional to 

the square of the number of hidden states. This is due to the need to calculate 

all the values of iiij. However, for models with a larger number of hidden 

states a larger number of epochs was usually required to achieve convergence. 

In practice, on a P90 PC, small models took a few minutes to train while larger 

models with up to 100 states would take a number of hours. 
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5.5 Application of hidden Markov model for 

time series prediction 

A hidden Markov model routine using the Baum-Welsh re-estimation proce­

dure was implemented on a PC in C++. The actual algorithm utilised differed 

from that given above to deal with the problem of scaling for long observation 

sequences. Since at and f3t are calculated by the multiplication of a number 

of terms all of which are less than 1 if t is large then the values of at and f3t 

head exponentially to zero. Similarly for long sequences P{Of>.) tends to zero. 

This leads the precision range of the computer performing the calculations to 

be exceeded. To counteract this problem a scaling coefficient can be used. 

1 
(5.5.1) 

This is used to scale a and f3 to form a scaled coefficient set 

t 

at(j) = (11 c,.)at(j) (5.5.2) 
r=l 

(5.5.3) 

which gives the same results as the unsealed set when used in the re-estimation 

equations, but avoids the problem of values tending to zero. 

5.5.1 One step ahead prediction 

Once a model has been trained its performance as a one step ahead predictor 

(e.g. Figure 5.4) can be examined. The two performance indicators used were 

root mean square error and the proportion of the predicted symbols which 

were correct. When the models trained well then the percentage correctly 

predicted symbols was approximately constant regardless of the actual number 

of observation symbols used. This is not surprising since the precision of the 

prediction is dependent on the precision to which the state of the system can 
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be determined. If the model trained well, then as the number of symbols was 

increased the root mean square error decreased in proportion to the inverse of 

the number of symbols. 

...---+---I Z·1 1--____ --. 

P(statenlstate 0-1 ,On) 

Figure 5.2: Prediction using a hidden Markov model 

When the hidden Markov model is utilised for prediction, as shown in Figure 

5.2, the initial information is the estimate of the current state of the model and 

the current observation symbol. These two pieces of information are combined 

using Bayes law to form a new estimate of the state of the model. The transition 

matrix is then applied to this state estimate to provide an estimate of the state 

of the model one time step into the future. This estimate is then fed back 

to be used as the base state estimate for the next prediction. It is also used 

to calculate an estimate of the probability of each of the possible symbols 

being displayed. Thus a quantized probability density function for the output 

variable is produced. If a single symbol prediction is required then either the 

most probable symbol can be chosen, which will give the best value for number 

of correct symbols, or a weighted mean of states giving the best value for root 

mean square error. 

The first model tested was a 3 state 4 symbol hidden Markov model of the 

logistic mapping which is a more compact version of that in Figure 5.3 but 

with the same statistical properties. This model was used as it is small enough 

to be easily understood and analysed. It is also an exact analytical model 

in the sense that the state space boundaries dividing the states coincide with 
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the observation space boundaries dividing the symbols. This means each state 

corresponds exactly to one or more observation symbols. 

v/v2 

Figure 5.3: The three state hidden Markov model of the Logistic mapping 

The hidden Markov model can be used to predict its own performance as a 

one step ahead predictor assuming that it is an accurate model. Since all the 

states are equiprobable P(qt = So) = P(qt = Sd = P(qt = S2) = ~. 

If qt = So 

thus 

thus 

COMPLEX TIME SERIES 

P(Ot+l = vo) = 0.5 

P( Ot+l = vt} = 0.25 

P(Ot+l = V3) = 1 

P(Ot+l = vo) = 0.5 

(5.5.4) 

(5.5.5) 

(5.5.6) 

(5.5.7) 

(5.5.8) 

(5.5.9) 

(5.5.10) 
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thus 

This gives 

119 

(5.5.11) 

(5.5.12) 

(5.5.13) 

E(O;+1 = 0t+r) = (0.33 * 0.5) + (0.33 * 1) + (0.33 * 0.5) = 0.67 (5.5.14) 

Repeating one step ahead prediction 300 times gave a one step ahead correct 

symbol prediction rate of 67%, the same as that predicted implying that the 

model is a good representation of the logistic mapping quantized into 4 symbols. 

Instead of doing the above calculation by hand the predictor can make an 

estimate of the number of correct predictions it expects to make. It is to be 

noted that a 100% prediction rate is not to be expected unless the underlying 

system was purely deterministic and the data known to infinite precision. Since 

the initial condition in state space is only known to a limited precision due to 

quantisation noise the underlying system is effectively stochastic as has been 

shown previously. 

Table 5.1: Correct prediction of hidden Markov model symbols 

I HMM I Symbols Correct I Expected Correct I 
Logistic 61% 62% 

Henon 65% 67% 

The one step ahead performance of the hidden Markov model was compared 

to that of the simple Markov chain model used previously and a feed forward 

multilayer perceptron network trained using backpropagation (Table 5.2). The 

Markov chain model and the hidden Markov model both had 20 observation 

symbols while the MLP network had 10 hidden neurons. The hidden Markov 
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Figure 5.4: One step ahead prediction of the Henon mapping using a 100 stat 
hidden Markov model 

Table 5.2: RMS errors of thre models 

I Model I Logistic I Henon I Sunspot I 
Markov Model 0.0411 0.0259 

HMM 0.0363 0.0216 0.0566 

MLP network 0.0119 0.0252 0.0697 

model gave improved performance over the Markov chain mod I and thu i 

clearly an improvement, although at the expense of added ompl xity. Th 

hidden Markov model was not as effective at modelling the logisti mapping 

as the MLP network. This is not surprising since the hidd n Markov model i 

limited to predicting a symbol representing a level 0.05 wide and thus has a 

maximum precision available to it even if it predicts the correct symbol ach 

time. Since the Logistic mapping is a simple system the MLP n twork can 

approximate it easily. The Henon map is a more complex syst m and the MLP 
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is slightly worse at predicting it than the hidden Markov model, while for the 

Sunspot series where the underlying system is unknown and believed to be 

noisy the hidden Markov model performs better. 

5.5.2 Multistep ahead prediction with hidden Markov 

models 

The work done to date has shown that stochastic techniques, in particular 

hidden Markov models can be effective one step ahead predictors of chaotic 

time series. However one step ahead performance is not necessarily the best 

indicator of model performance. A tougher test is recursive prediction. 

One measure for multiple step prediction is the error long term (ELT) 

given by equation (4.4.2). Another possible measure when the time series is 

treated as a series of observation symbols is the number of length 5 observation 

symbol sequences correct per 1000 reconstructions. Both these measures were 

used to assess the performance of hidden Markov models for multistep ahead 

prediction. 

Our task is to provide an optimum prediction of the next five steps of the 

time series. Using a hidden Markov model there are several choices as to what 

to consider optimum. The first possible criteria is to just use the ELT. This 

would be the mean state symbol at each step (not the most probable symbol). 

This has the disadvantage that the sequence generated might not be a legal 

sequence of symbols according to the model. 

The first reconstruction technique used was to select the most probable next 

state at each state and display the most probable symbol given that state. The 

next state was chosen purely on the basis of the last state being that previously 

selected. This has the advantage that it is easy to calculate. 

The first model used was the 3 state model of the logistic mapping given 

earlier (Figure 5.3). Out of 15000 5-step ahead reconstructions 4.16% resulted 
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in a sequence of 5 symbols that exactly matched the actual sequence. The ELT 

for 5000 reconstructions was 0.225. The ELT is fairly poor, but considering that 

only 4 observation symbols were used this is to be expected. Since the model 

is fairly simple the expectation of the percentage of correct reconstruction 

sequences can be calculated. 

If the system is currently in state So the most probable next state is So , 

if in SI it is 82 , and if S2 it is So. This gives us two different reconstructed 

sequences. If the initial state is So or S2 then the predicted sequence is 00000, 

while if it is 8 1 then the sequence is 30000. Since the probability of 00000 

occurring from state So of S2 is :12 and 30000 from S2 is 1~ and all initial states 

are equally likely then the overall probability of the sequence being correct 

is 2
1
4 giving an expectation of 4.17% of predictions being correct giving good 

agreement with the simulation results. 

HMM logP(OI~) OSA error OSA correct R( S) correct R(S) exptd R(S) error 

3/4 -1505 0.195 66% 4.2% 4.2% 0.474 

8/8 -1744 0.094 63% 7.0% 5.5% 0.419 

12/8 -1597 0.082 64% 7.4% 8.4% 0.400 

12/8* -1617 0.082 64% 5.9% 6.6% 0.369 

16/8 -1546 0.079 64% 4.6% 4.3% 0.380 

16/8 -1540 0.079 64% 3.1% 3.4% 0.338 

16/S* -1938 0.OS9 59% 2.0% 3.5% 0.373 

20/20 -2216 0.052 55% S.9% 3.9% 0.332 

20/20* -2347 0.038 50% 0.3% 0.8% 0.295 

30/20 -1765 0.034 61% 7.0% 5.4% 0.309 

30/20 -1755 0.035 62% 7.3% S.S% 0.309 

40/20 -1752 0.035 60% 

60/20* -1762 0.034 60% 3.0% 4.3% 0.263 

Table 5.3: HMM System reconstruction method 1 results 

Those hidden Markov models marked * in Table 5.3 were trained by setting 

the initial state transition and observation symbol probabilities based on the 

analytical technique used to build the 3/4 hidden Markov model, and then 
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trained normally. The other hidden Markov models were trained using random 

initial probabilities. 

The 3/4 hidden Markov model performed as predicted by theory, with 

the actual one step ahead correct symbol prediction and 5 step ahead correct 

symbol sequence percentages equal to their expected values. 

If the long term behaviour of systems reconstructed using this method is 

examined then it is found that they display periodicity. This strongly contrasts 

with the real time series which are aperiodic. The reasons for this are the same 

as the periodicity in the iterated Markov chain model. 

The second technique used was to take the initial state probability distri­

bution and use that to calculate the state probability distribution for the next 

state. That state distribution was used to calculate a symbol probability dis­

tribution and the most probable symbol in that distribution chosen. The state 

distribution was then used to calculate the state distribution for the next step. 

The results for this method, shown in Table 5.4, are very poor when it comes 

to correct symbol sequence prediction, however the ELT is slightly better than 

the previous method. The reason for the poor symbol sequence results is that 

because the state distribution is being used, rather than choosing individual 

states at each step. This means that sequences that are illegal, in that they 

cannot be formed by the model, can be generated. Thus this method can be 

considered a poor method of reconstruction. However it is to be noted that the 

ELT does not consider this a poor method, showing that there are problems 

with using ELT as a performance measure for system reconstruction. 

The third technique was identical to the second technique except that the 

weighted mean symbol was chosen. 

The correct symbol sequence prediction, as shown in Table 5.5, is even 

worse than the previous method, which is unsurprising since the most probable 

symbol is no longer predicted at each stage. However the ELT is significantly 

better than either of the previous methods. This is not surprising since it is 
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/ HMM /logP(OIA) I R(5) correct I R(5) exptd I R(5) error I 
3/4 -1505 0.0% 0.0% 0.432 

8/8 -1744 0.0% 0.0% 0.45 

12/8 -1597 0.4% 0.4% 0.382 

12/8* -1617 0.0% 0.0% 0.376 

16/8 -1546 0.4% 0.5% 0.367 

16/8 -1540 0.9% 0.9% 0.361 

16/8* -1938 1.4% 1.5% 0.425 

20/20 -2216 0.0% 0.1% 0.335 

20/20* -2347 0.3% 0.2% 0.348 

30/20 -1765 1.3% 1.2% 0.311 

30/20 -1755 1.1% 1.1% 0.314 

60/20* -1762 1.1% 1.7% 0.31 

Table 5.4: HMM System reconstruction method 2 results 

effectively a weighted mean symbol sequence and thus should give the best ELT 

it is possible to generate using the hidden Markov model. Thus the method 

that generates the best ELT tends to generate most illegal symbol sequences. 

Both this and the previous method deal with the evolution of the density 

of states. In the long term this density converges to an invariant distribu­

tion, leading to an invariant symbol distribution corresponding to the symbol 

distribution of the strange attractor. This means that the predicted symbol 

sequence converges to a single symbol, either the most probable symbol in the 

attractors symbol distribution, or the mean symbol value. In this case the 

series converges to the mean value of the time series, giving the long term 

prediction with the smallest ELT, but generally an invalid symbol sequence. 

The fourth technique was to, instead of predicting each step individually, 
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I HMM IlogP(OI'x) I R(5) correct I R(5) exptd I R(5) error I 
3/4 -1505 0.0% 0.0% 0.322 

8/8 -1744 0.0% 0.0% 0.294 

12/8 -1597 0.0% 0.0% 0.258 

12/8* -1617 0.0% 0.0% 0.259 

16/8 -1546 0.0% 0.0% 0.254 

16/8 -1540 0.0% 0.0% 0.253 

16/8* -1938 0.0% 0.0% 0.272 

20/20 -2216 0.0% 0.0% 0.222 

20/20* -2347 0.0% 0.0% 0.229 

30/20 -1765 0.2% 0.2% 0.204 

30/20 -1755 0.2% 0.2% 0.207 

60/20* -1762 0.6% 1.4% 0.209 

Table 5.5: HMM System reconstruction method 3 results 

calculate the probability of all the possible sequences of five states, and then 

choose the most probable symbol sequence given that state sequence. 

This method can be considered an improvement over the first method since 

the whole state sequence is considered at once rather than a step by step 

approach. This however leads to more complex implementation, taking longer 

to calculate. It does give better results than the first method, if not greatly so. 

It is to be noted that both this and the first method only allow legal symbol 

sequences. 

Both these methods however have the disadvantage that they are gener­

ating single state sequences. The problem is that the states are hidden, not 

having any real physical meaning, what is required is not a state sequence, but 

a symbol sequence. Thus and improved method would be to find the most 
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I HMM IlogP(OI'x) I R(5) correct I R(5) exptd I R(5) error I 
3/4 -1505 4.4% 4.3% 0.422 

8/8 -1744 3.1% 1.8% 0.416 

12/8 -1597 6.6% 6.6% 0.371 

12/8* -1617 5.1% 4.9% 0.348 

16/8 -1546 6.6% 6.7% 0.376 

16/8 -1540 4.5% 5.1% 0.356 

16/8* -1938 3.0% 5.1% 0.405 

20/20 -2216 6.4% 4.1% 0.343 

20/20* -2347 1.1% 1.3% 0.311 

30/20 -1765 5.8% 5.1% 0.303 

30/20 -1755 6.6% 5.3% 0.307 

60/20* -1762 2.8% 4.0% 0.275 

Table 5.6: HMM System reconstruction method 4 results 

probable symbol sequence. Unfortunately this is complex to implement and 

requires much computation, especially with long sequences. 

5.6 Simulation study of the sunspot series 

A simulation study of the ability of a HMM to model the sunspot series was 

performed. The series consisted of yearly averages (rather than the monthly 

averages that had been used previously), this meant that the data series was 

only 225 samples. 

A series of HMMs were generated, starting with a small number of quanti­

sation intervals (symbols) and states. The number of both symbols and states 

were then increased. The smaller models not only trained faster, taking sec-
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Figure 5.5: The effect of the number of symbols and states on the training 
measure 

onds to train, but required only a small number of epochs to train. As the 

models increased in size the number of epochs required before the ceased to 

improve also increased. Thus the largest models took up to half an hour to 

train. 

Each time the number of symbols m increased the quality of the model, 

as given by the probability of the actual sequence being generated given the 

trained model, decreased. To maintain the quality of the model the number of 

states was also required to increase. This is shown in Figure 5.5. Although in­

creasing the number of symbols reduced the measure P{observedsequencelmodel) 

it improved the performance in terms of root mean square error. This is be­

cause although the model predicts the correct symbol slightly less often the 

interval represented by the symbol is smaller leading to a more accurate result. 
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Figure 5.6: The effect of the number of symbols and states on the one step 
ahead prediction error 

It can be seen from Figure 5.6 that increasing the model size ceases to improve 

the prediction error after a certain size of model is reached. This is due to 

larger models being difficult to train, and requiring more data. Since there are 

only 225 data points there are less than 8 data points per state on average 

leading to poor estimates of the symbol density functions for each state and 

thus poor generalisation. 

The results are given in Table 5.7. The number of symbols correctly pre­

dicted out of 100 predictions is given along with the expected number of correct 

predictions if the model were a true representation of the underlying system. 
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5.7 Remarks 

The hidden Markov models were shown to be more effective than the 

Markov chain models and are a more efficient representation of the modelled 

system. They have the advantage that they do not require the dimensionality 

of the modelled system to be explicitly specified. They do however have to 

be trained and like neural networks are subject to the possibility of becoming 

trapped in local minima and may require long training times. Training does 

become more difficult as the number of states increases. 

It should be noted however that the hidden Markov models implemented 

were relatively unsophisticated. There is great potential for optimising the 

model architecture and training algorithms to take advantage of the chaotic 

structure of the system. This should lead to a lower number of parameters, 

better generalisation and faster training. 

As with the Markov chain models, the hidden Markov models utilise data 

to a lower level of precision that available to the conventional techniques due 

to the use of discrete symbols. 
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l States Symbols I Iterations Correct Exptd Correct Error IlogP(OI'x) I 
4 4 20 76 72.3 0.116 -62.037 

8 4 20 76 71.2 0.116 -59.85 

4 8 100 81 74.6 0.112 -51.49 

4 4 100 76 72.2 0.116 -61.82 

12 4 100 77 77.4 0.114 -48.05 

12 4 100 79 78.2 0.104 -48.9 

8 8 100 54 54 0.107 -95.89 

12 8 100 54 58.1 0.092 -83.75 

16 8 100 64 62.8 0.084 -77.34 

20 8 100 68 66.4 0.088 -72.76 

12 12 100 56 55.3 0.071 -107.62 

16 12 100 59 56.7 0.074 -102.65 

20 12 100 55 60.5 0.071 -94.43 

24 12 100 64 63.2 0.09 -95.42 

24 12 100 58 57.9 0.069 -93.78 

28 12 150 66 62.3 0.075 -84.68 

32 12 150 60 62.5 0.063 

16 16 100 51 50.8 0.087 -119 

16 16 150 46 46.7 0.075 -123.02 

20 16 150 47 49.7 0.095 -122.16 

24 16 150 53 53.2 0.079 -111.876 

28 16 150 52 55.5 0.072 -100.43 

32 16 150 60 59.4 0.067 -97.26 

Table 5.7: HMM one step ahead prediction of yearly sunspot series 

COMPLEX TIME SERIES D. I. Stamp 



Chapter 6 

Conclusion 

6.1 Summary 

The validity of modelling chaotic dynamic systems using equivalent stochas­

tic models has been demonstrated. This has been achieved in a number of 

steps. 

1. It has been shown that if the initial conditions of a chaotic system (the 

Logistic mapping) are known only to a finite precision then the system 

appears identical to a stochastic system. 

2. The theoretical links between chaotic and stochastic dynamic systems 

has been investigated via an equivalence relationship and the evolution 

of the density of dynamics described by the Frobenius-Perron operator. 

3. It has been shown that it is possible to build a simple hidden Markov 

model of the Logistic mapping analytically. 

4. It has been shown using computer simulations that hidden Markov mod­

els can learn the dynamics of the Logistic mapping through training in 

an iterative manner using only a time series generated by the Logistic 

mapping as data. 
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5. It has been demonstrated that they can also learn the dynamics of other 

chaotic systems of more than one dimension (the Henon mapping) as well 

as real world time series such as the Sunspot series. 

6.2 General remarks 

Some of the characteristics of the models have been explored. Their accu­

racy is limited by both the number of observation symbols and the number of 

hidden states. It is also limited by the length of the training data. If sufficient 

data, computing power and noise free data of high precision is available accu­

racy can be increased by increasing both the number of symbols and states. 

However with noisy or low precision data there is a limit to the accuracy that 

can be obtained. It is under these conditions however that hidden Markov 

models are most likely to be useful as they take the uncertainty in the current 

state into directly account in contrast to function approximation techniques 

which rely on assumptions of Gaussian noise. 

Hidden Markov models have the advantage that several of the characteris­

tics of the modelled chaotic system are embedded in the model. The Lyapunov 

exponent is related to the quantity P(OIA), the topological entropy is related to 

the state transition matrix. The hidden Markov model has a long term symbol 

distribution that should match the invariant distribution of the strange attrac­

tor and the hidden Markov model, if properly trained, should have the same 

symbolic dynamics as the system. 

If the stochastic equivalent model of a chaotic system when there is limited 

precision (equation (3.5.1)) is examined it can be seen that it consists of two 

terms. The first is the deterministic mean of the systems evolution, the second 

is a stochastic term taking into account the uncertainty due to the imprecision 

in knowledge of the current state. Most conventional function approximation 

techniques (such as ARMAX system identification techniques) concentrate on 
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finding the deterministic term to the highest possible accuracy, while ignoring 

the stochastic term. This means that they begin to struggle for all but the 

shortest term predictions. Discrete symbol hidden Markov models take into 

account the stochastic term, but do not model the deterministic term as well as 

the function approximation techniques. In order to model chaotic time series 

well it is necessary to model both terms to the limit of the accuracy of the 

available data. 

6.3 Limitations of approach 

The approach is only valid for a fairly narrow class of dynamic systems, 

those nonlinear dynamic systems which display low dimensional chaos and 

have settled to a steady state condition. In order for the approach to be 

effective it requires a sufficient quantity of data to provide a good estimate of 

the transitional probability density functions. 

For time series of limited length this means that it is not as effective as 

standard point prediction techniques for point prediction of low noise systems. 

It does however provide a more informative output in the form of a probability 

distri bu tion. 

The number of states required to represent higher dimensional attractors 

grows exponentially with increasing dimension exacerbating the problem of 

data quantity and requiring significant amounts of computer capacity and in­

creasing training times. 

6.4 Recommendations for further study 

The hidden Markov models studied have been fairly simple examples. More 

sophisticated models such as continuous distribution hidden Markov models 

described by Juang [2] and Liporace [24] are a further avenue of enquiry, as 
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are partially parameterised models for improved training (Gales [33] [32]), and 

recursive updating for online model estimation. 

Alternatively a neural network or hybrid hidden Markov model/neural 

network such as that proposed by Bengio & Frasconi [46] or Bourlard et al 

[40] could be used to model density evolution. Tino [35] describes modelling 

stochastic automata with recurrent neural networks suggesting these may be 

suitable, while Valtchev [41] proposes recurrent input transformations for hid­

den Markov models. 

Another approach would be to model the transition function using a stan­

dard technique, rather than model the evolution of the density directly, and 

then use the modelled transition function to find the Perron-Frobenius operator 

analytically. The Perron-Frobenius operator could then be utilised to model 

the density evolution. 

It is suggested that techniques based on estimating the evolution of the 

density of the dynamics may prove more effective for the prediction of chaotic 

systems in the presence of significant uncertainty in the initial conditions due 

to noise. Further investigation is required. 

Since it has been shown that chaotic dynamic systems can be effectively 

modelled by stochastic systems, the control of chaotic systems via stochastic 

control techniques is a logical extension. 
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