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Abstract

Intelligent Monitoring 

and Prediction Systems

by

Howard Lewis

The goal of the research work undertaken was to produce a novel intelligent 
monitoring and prediction system for real world time series prediction and 
classification problems. Industrial process data from three sources was used 
during the course of this research. Shell UK provided infra-red scatter data 
that measured oil mist. Shell also provided process data from a catalytic 
cracker. The third set of data came from the NGC and consisted of data used to 
measure the operating conditions of a normal and a faulty power transformer.

The structure of an intelligent monitoring and prediction system would 
include data preprocessing to extract the data’s key features, a neural network 
for pattern classification and a genetic classifier to dynamically develop a rule 
base as the system develops.

Techniques examined for preprocessing the raw data include: principal com­
ponent analysis and the wavelet transform. Both back propagation and radial 
basis function neural networks have been used to examine pattern classification 
of the processed data. Genetic classifiers, are also investigated as components 
of an intelligent monitoring and prediction system.

Extracting the wavelet coefficients of the infra-red scatter data, resulted 
in a large decrease in the dimensionality of the pattern space to be separated 
by a neural network. However, although backpropagation networks could be 
produced that trained properly, generalisation of the networks fell short of the 
accuracy required for real world time series prediction problems.

PCA of the catalytic cracker data has allowed the key variables to be iden­
tified. These variables have been used to attempt to train neural networks for 
time series prediction.

PCA of the transformer data allowed an index number to be introduced 
to measure the distribution of the variance of the principal components. The 
ratio between the index numbers of the normal and faulty transformers was 
sufficiently large that it could be used to report the variation of the transformers 
condition and could therefore be used as an alarm for fault monitoring.
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Chapter 1

Introduction

1.1 Aims and Objectives

The aim of this research was to develop an intelligent monitoring and pre­

diction system. The work is aimed at developing novel methodologies for real 

world time series prediction and classification problems. Three sets of indus­

trial process data are examined: infra-red scatter data (oil mist detection), 

catalytic cracker data (oil refinery) and power transformer data.

Many areas were investigated during the course of this work. Principal 

component analysis, the wavelet transform and neural networks were all ex­

amined as techniques for information processing and as methods of extracting 

the key features from the raw data. Neural networks were investigated for 

pattern classification of the time series data. Further work looked at the archi­

tecture and design of rule based expert systems and evolutionary computation 

for information processing and extraction.

1
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1.2 Methodologies

1.2.1 Neural Networks

The development of artificial neural networks began with the work of Mc­

Culloch and Pitts in 1943. In their paper McCulloch and Pitts described a log­

ical calculus of neural networks [MP43]. In 1948 Weiner’s book described some 

important concepts for control, communications and signal processing [Wie48]. 

Weiner explained the linkage between statistical mechanics and learning.

An explicit statement of a physiological learning rule for synaptic modifica­

tion was presented for the first time by Hebb in 1949 [Heb49]. Hebb proposed 

that the connectivity of the brain is continually changing as an organism per­

forms different functional tasks and that neural assemblies are created by such 

changes. Hebb’s postulate of learning states that the effectiveness of a variable 

synapse between two neurons is increased by the repeated activation of one 

neuron by the other across that synapse.

The first paper to attempt to use a computer simulation to test a well for­

mulated neural theory based on Hebb’s postulate of learning was published in 

1956 [RHHD56]. The simulation results reported in that paper clearly showed 

that inhibition needed to be added for the theory to actually work. In the 

same year Uttley demonstrated that a neural network with modifiable synapses 

may learn to classify simple sets of binary patterns into corresponding classes 

[Utt56]. Uttley introduced the so called “leaky integrate and fire neuron” , 

which was later formally analysed by Caianiello [Cai61]. In later work, Uttley

Intelligent Monitoring and Prediction Systems Howard Lewis
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[Utt79] hypothesised that the effectiveness of a variable synapse in the nervous 

system depends on the statistical relationship between the fluctuating states 

on either side of that synapse, thereby linking up with Shannon’s information 

theory.

In 1954, Gabor proposed the idea of a nonlinear adaptive filter [Gab54]. 

He later went on to build such a machine, where learning was accomplished 

by feeding samples of a stochastic process into the machine, together with the 

target function that the machine was expected to produce. Work on asso­

ciative memory followed a paper published in 1956 [Tay56]. In 1969 a paper 

on nonholographic associative memory proposed two network models: a sim­

ple optical system realising a correlation memory and a closely related neural 

network suggested by the optical memory (Willshaw et al [WBLH69]).

An issue of particular concern in the context of neural networks is that of 

designing a reliable network with neurons that may be viewed as unreliable 

components. This important problem was solved by von Neumann [vN56] 

using the idea of redundancy. This motivated others to suggest the use of a 

distributed redundant representation for the neural network [WC63].

A new approach to the pattern recognition problem was proposed by Rosen­

blatt in his work on the perceptron [Ros58]. The first proof of Rosenblatt’s 

perceptron convergence theorem was published in 1960 [Ros60]. The least 

mean square (LMS) algorithm was used to formulate the Adaline (adaptive 

linear element) in 1960 [WH60]. The difference between the perceptron and 

the Adaline lies in its training procedure. One of the earliest trainable layered

Intelligent Monitoring and Prediction Systems Howard Lewis
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neural networks with multiple adaptive elements was the Madaline structure 

proposed in 1962 [Wid62]. An exposition on linearly separable patterns in 

hypersurfaces was given in Nilsson [Nil65].

During the 1960s it seemed as if neural networks could do almost anything. 

However, a book by Minsky and Papert in 1969 [MP69] demonstrated that 

there are fundamental limits on what one layer perceptrons can compute. They 

also stated that there was no reason to believe that any of the virtues of one 

layer perceptrons carry over to the multilayered version.

An important problem encountered in the design of a multilayer perceptron 

is the credit assignment problem, that is, the problem of assigning credit to 

hidden neurons in the network [Min61]. By the late 1960s most of the ideas 

and concepts necessary to solve the credit assignment problem were already 

formulated. However, in part due to the paper by Minsky and Papert, interest 

in neural networks declined in the 1970s.

In the 1980s, major contributions to the theory and design of neural net­

works were made on several fronts and these led to a resurgence of interest in 

the field. One of these was Hopfield in 1982, who used the idea of an energy 

function to formulate a new way of understanding the computation performed 

by recurrent networks with symmetric synaptic connections [Hop82]. This par­

ticular class of neural networks, known as Hopfield networks, may not be very 

realistic models for neurobiological systems, however the principle they em­

body, namely that of storing information in dynamically stable networks, is 

profound.

Intelligent Monitoring and Prediction Systems Howard, Lewis
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In 1986 the development of the backpropagation algorithm was reported by 

Rumelhart et al [RHW86]. The same year, work by Rumelhart and McClelland 

became a major influence in the use of the back propagation algorithm, which 

has emerged as the most widely used learning algorithm for the training of 

multilayer perceptrons [RM86].

Linsker in 1988 described a new principle for self-organisation in a percep­

tual network [Lin88]. The principle is designed to preserve maximum infor­

mation about input activity patterns, subject to such constraints as synaptic 

connections and synaptic dynamic range.

In 1988, Broomhead and Lowe described a procedure for the design of 

layered feedforward networks using radial basis functions, which provide an 

alternative to multilayer perceptrons [BL88]. This led to a great deal of research 

effort linking the design of neural networks to an important area in numerical 

analysis and also linear adaptive filters.

Today, neural networks are well established as an interdisciplinary sub­

ject with deep roots in engineering, the physical sciences, mathematics, neuro­

science and psychology. Over the coming years, neural networks will continue 

to grow in theory, design and application.

Intelligent Monitoring and Prediction Systems Howard Lewis
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1.2.2 Wavelet Transforms

Wavelet analysis shows many different origins in the history of mathemat­

ics [Mey92], Much of the work was performed in the 1930s and at the time 

the separate efforts did not appear to be parts of a coherent theory. Before 

1930, the main branch of mathematics leading to wavelets began with Fourier’s 

theories of frequency analysis, now often known as Fourier synthesis. Fourier 

asserted that any 27r-periodic function f ( x )  is the sum of its Fourier series.

Fourier series convergence and orthogonal systems, led to the notion of scale 

analysis (as opposed to frequency analysis). That is, analysing f (x )  by creating 

mathematical structures that vary in scale. This is achieved by constructing 

a function, shifting it by some amount and changing its scale. Apply that 

structure in approximating a signal. Now repeat the procedure. Take that 

basic structure, shift it and scale it again. Apply it to the same signal to get 

a new approximation. And so on. Because this sort of scale analysis measures 

the average fluctuations of the signal at different scales it is less sensitive to 

noise.

The first mention of Wavelets is made by Haar in 1910. One property of 

the Haar wavelet is that it has compact support, which means that it van­

ishes outside a finite interval. The Haar wavelet, however, is not continuously 

differentiable which therefore limits its applications [Dau92].

In the 1930s, several groups working independently researched the repre­

sentations of functions using scale-varying basis functions. By using a scale-

Intelligent Monitoring and Prediction Systems Howard Lewis
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varying basis function called the Haar basis function Paul Levy (a 1930s physi­

cist) investigated Brownian motion, a type of random signal. Levy found the 

Haar basis function superior to the Fourier basis functions for studying small 

complicated details in Brownian motion [Mey92],

Another 1930s research effort involved computing the energy of a function. 

The computation produced different results if the energy was concentrated 

around a few points or distributed over a larger interval. This result disturbed 

the scientists because it indicated that energy might not be conserved. The 

researchers discovered a function that can vary in scale and can conserve energy 

when computing the functional energy. Their work provided Marr with an 

effective algorithm for numerical image processing using wavelets in the early 

1980s [Chu92].

Between 1960 and 1980 the mathematicians Weiss and Coifman studied 

the simplest elements of function space, called atoms, with the goal of finding 

the atoms for a common function and finding the “assembly rules” that allow 

the reconstruction of all the elements of the function space using these atoms 

[Dau92]. In 1980, Grossmann and Morlet, broadly defined wavelets in the 

context of quantum physics. This work provided a way of thinking for wavelets 

based on physical intuition [GM84].

Work on wavelets was given further impetus by the work of Mallat in dig­

ital signal processing. Mallat discovered some relationships between quadra­

ture mirror filters, pyramid algorithms and orthonormal wavelet bases [Mal89a, 

Mal89b, Mal89c]. Meyer then constructed the first non-trivial wavelets. Unlike

Intelligent Monitoring and Prediction Systems Howard Lewis
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the Haar wavelets, the Meyer wavelets are continuously differentiable; however 

they do not have compact support. Later Daubechies used Mallat’s work to 

construct a set of orthonormal basis functions that are perhaps the most elegant 

and have become the cornerstone of wavelet applications today [Dau88].

Intelligent Monitoring and Prediction Systems Howard Lewis
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1.2.3 Genetics Based Machine Learning

The theoretical foundations for Genetics Based Machine Learning (GBML) 

systems was laid by Holland in 1962 [Hol62], His outline for adaptive systems 

theory paid special attention to the role of program replication as a method of 

emphasising past programs. Although subsequent applications of genetic algo­

rithms in the 1960’s largely emphasised search and optimisation, the theoretical 

underpinning was not so restricted.

With this theoretical foundation and the recognition of the fundamental role 

of recombination [Hol65], more concrete suggestions emerged for the creation of 

a sequence of increasingly complex schemata processors [Hol71]. In this paper 

Holland proposed four prototype systems. Prototype I was to be a stimulus- 

response processor which would link environmental schemata (conditions) with 

particular action effectors. Prototype II was designed to extend prototype I 

by adding internal effectors (internal states) and prototype III was to build 

on prototypes I and II by including explicit environmental state prediction (a 

model of the real world) and an internal evaluation mechanism. Prototype IV 

was to extend the other prototypes by incorporating the capability to modify 

its own effectors and detectors, thereby permitting a greater (or perhaps lesser) 

range of data detection and a larger behavioural repertoire.

Holland’s pioneering book Adaptation in Natural and Artificial Systems 

proposed a broadcast language [Hol75]. The broadcast language called for the 

creation of broadcast units (production rules) over a 10 letter alphabet. This

Intelligent Monitoring and Prediction Systems Howard Lewis
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alphabet added a number of wildcards both single and multiple match charac­

ters to an underlying binary alphabet. Additionally, a fundamental punctua­

tion mark, a persistence symbol (causing continued broadcast of a message), 

and a quotation character (causing the next symbol to be taken literally) would 

have provided sufficient power for computational completeness and representa­

tional completeness. The proposal for the broadcast language was instrumen­

tal in unifying the earlier suggestions for schemata processors by theoretically 

permitting a consistent representation of all operators, data and rules or in­

structions.

Holland’s book showed how the evolutionary process can be used to solve 

problems by means of a highly parallel technique that is now called the ge­

netic algorithm. The genetic algorithm transforms a population of individual 

objects, each with an associated value of fitness, into a new generation of the 

population, using the Darwinian principle of survival and reproduction of the 

fittest and analogues of naturally occurring genetic operations such as crossover 

(sexual recombination) and mutation [Gol89].

The first practical application of genetics based machine learning was a clas­

sifier system in 1978 [HR78]. This system, called Cognitive System Level One 

(CS-1), was trained to learn two maze running tasks. It used a performance 

system with a message list and simple string rules called classifiers, a genetic 

algorithm comprised of reproduction, crossover and mutation and an epochal 

learning mechanism (where reward was apportioned to all classifiers active be­

tween successive payoff events). This last learning mechanism has largely been

Intelligent Monitoring and Prediction Systems Howard Lewis



Chapter 1 Introduction 11

supplanted by another mechanism, called a bucket brigade, in later systems.

The classifier system represented a considerable extension of the complex­

ity of the structures undergoing adaptation. The genetic classifier system is 

a cognitive architecture that allows the adaptive modification of a set of if- 

then rules [Koz92, Koz94]. The architecture of the classifier system blends 

important features from the contemporary paradigms of artificial intelligence, 

connectionism and machine learning.

Intelligent Monitoring and Prediction Systems Howard Lewis
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1.3 The Industrial Data

The objective of the research was to develop a novel methodology for non­

linear time series prediction. The aim was to produce an alarm system for in­

telligent monitoring and prediction of real-world processes where limited data 

is available.

Initial work focused on a problem for Shell UK involving infra-red scatter 

data used for the detection of oil mist. An array of three sensors, that are 

spatially distributed at known locations around a common reference point, are 

used to detect oil mist. The sensors collect signals from sources in their field 

of view. Depending on the sensor characteristics and the path of propagation, 

the source waveforms undergo deterministic and/or random modifications. The 

outputs of these sensors consists of the desired source signals and unwanted 

noise components. The alarm system is aimed at use on unmanned offshore oil 

installations to warn of developing problems. If the alarm is false it is a costly 

waste of time to send out engineers by helicopter unnecessarily. On the other 

hand, not correctly determining a real alarm in time could have catastrophic 

consequences. The aim was to use neural networks to classify the data into 

one of four alarm conditions: High, Low, Grey and None.

Further work examined data, provided by Shell UK, from a catalytic cracker 

used in an oil refinery. The data consists of ninety-five variables who’s physical 

significance has not been provided. The aim is to use the last sixty variables 

to predict the first thirty five variables concentrating on two variables ini­
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tially. Because this is industrial process data, there are lots of “drop-outs” and 

“spikes” which need to be removed before any modelling is done. The data 

provided includes: the input feeds (a mixture of hydrocarbons), the related 

responses of the system, explanatory variables, related process parameters and 

other process parameters.

The aim was to identify the key features of the catalytic cracker data in 

order to reduce the dimensionality of the problem. Once the key features had 

been extracted from the data, the use of neural networks and learning expert 

systems was examined for classifying these features for time series prediction.

The third set of data was provided by the NGC and is used to monitor the 

condition of a power transformer in service. This data can be classified into two 

types. The first is the common variables related to the transformer operation 

and the second is the dissolved gas analysis. In modern industrial societies 

the maintenance of uninterrupted power supplies is of paramount importance. 

The provision of adequate monitoring systems for power systems is essential 

to avoid damage due to failures of apparatus’ operation and degrading of their 

conditions. A power systems monitoring system should ensure that faulty 

equipment is identified and afterwards removed from service in the minimum 

of time so that; the faulty equipment is isolated and in order to limit the 

damage to equipment due to overheating, excessive mechanical forces, etc.

A method is presented, based on principal component analysis, to determine 

the key variables of a power transformer and the interdependence of those 

variables. An index number has also been defined to monitor any change in
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the distribution of the variance of the principal components of the transformer, 

which may be used for the purpose of condition monitoring.

As described at the start of this section the aim of this research was to 

develop novel methodologies for time series prediction and classification prob­

lems involving real world data. This real world data included: oil mist vapour, 

catalytic cracker data and power transformer data. A number of techniques 

have been investigated to extract the key features from the real world data 

in order to reduce the complexity of the alarm classification problem, without 

at the same time, losing any important information from the data. The data, 

raw and preprocessed, was then used to investigate several different neural net­

work paradigms for pattern classification, including the multilayer perceptron 

neural network and the radial basis function neural network. Evolutionary 

computation and rule based expert systems were also examined as information 

processing and extraction methodologies.
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Chapter 2

Neural Networks for 

Information Extraction

2.1 Introduction

While standard digital computing is good at tasks which require quick 

calculations, it is bad at tasks such as pattern recognition which involve lots of 

information and/or noisy data. Biological neural networks on the other hand, 

while being poor at quick calculations are good at problems that involve lots 

of data or noisy data.

The silicon logic gates used in computers are several orders of magnitude 

faster than biological neurons. The brain however compensates for the rela­

tively slow operation of individual neurons by having a huge number of neurons, 

with each neuron interconnected with many other neurons; estimates put the
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number of neurons in the human brain at ten billion and the number of connec­

tions between them at ten trillion [Ros92]. The brain carries out operations in 

parallel, and in a distributed manner, that is, with many neurons involved in 

any single function and no single neuron being uniquely involved in any way. 

Artificial neural networks, usually referred to as neural networks, mimic in 

some way the operation of the brain to perform parallel distributed processing 

[Ros92].

One of the advantages of neural networks is their ability to learn and there­

fore generalise. Generalisation is the ability of the neural network to success­

fully classify patterns that have not been presented during training (learning).

The objective of pattern recognition is classification, that is, given an input 

signal, can it be analysed to provide a meaningful categorisation of its data 

content. Pattern recognition can be considered as a two stage process.

The first stage is feature extraction. A feature is a measurement taken on 

the input pattern to be classified, that will provide a definite characteristic of 

the input. Feature extraction is usually the most difficult part of the pattern 

recognition problem. The measurements taken of the input pattern form a 

feature vector. If the feature vector consists of n measurements then it creates 

an n dimensional feature space [Hay94, JB94].

The second stage is classification. The classifier is provided with the list of 

measured features and its task is to decide which type of class category they 

match most closely. Classification is usually achieved using distance metrics 

and probability theory.
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2.2 Neural Networks

2.2.1 The Neuron

The basic building block of the neural network is the neuron, which is 

modelled on the biological neuron. A biological neuron adds up its inputs and 

produces an output if the sum is greater than its threshold value. A neuron is 

an information-processing unit that consists of three basic elements:

1. A set of connecting links known as synapses, each of which is characterised 

by a synaptic weight. A signal Xj at the input of synapse j  connected to 

neuron k is multiplied by the synaptic weight wkj. The weight can be 

either positive or negative depending on whether it excites or inhibits the 

synapse.

2. An adder for summing the input signals, weighted by the respective 

synapses of the neuron.

3. An activation function, sigmoid function, also known as a thresholding 

function, or squashing function that limits the output amplitude of the 

neuron to a certain range. The output is normally limited to either the 

range [0,1] or [-1,1].

The model of a neuron also has an externally applied bias, 9k, which can 

be either positive or negative. The bias has the effect of raising or lowering 

the activation of the neuron [Hay94]. Figure 2.1 shows the basic model of a 

neuron.
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Figure 2.1: The basic neuron

The neuron, k, is defined by the two equations:

n

Uk — ^   ̂IVkjXj 
j=l

and

Uk =  v(uk -  6k)

where X\, x 2, ■ ■ ■, xn are the input signals; Wki,u)k2 , • • •, Wkn are the synaptic 

weights of the neuron fc; Uk is the output of the adder; 9k is the neurons bias; 

ip(-) is the activation function; and yk is the output signal of the neuron. The 

activation function defines the output of a neuron in terms of the activity level 

at its input.

The significance of neural networks lies in their ability to learn and to 

improve their performance through this learning process. Neural networks 

learn through an iterative process of adjustments to its synaptic weights and 

thresholds. Learning can be regarded as a three step process [Hay94]:

1. The neural network is stimulated by an environment.

2. The neural network undergoes changes as a result of this stimulation.
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3. Because of these changes the neural network responds in a new way to 

the environment.

A signal Xj at the input of synapse j  connected to neuron k is multiplied 

by the synaptic weight Wkj. Let Wf~3 {n) denote the value of Wkj at time (n). 

At time n an adjustment A Wkj(n) is applied to the synaptic weight Wkj(n), 

yielding the updated weight Wk3 (n +  1). Thus:

wkj (n +  1) =  wkj{n) +  Awkj{n). (2-2.1)

A number of different algorithms exist for determining the adjustment A wkj 

to the synaptic weight ■ One such algorithm is error-correction learning. 

When a input is applied to a neuron k its actual output yfc(n) will differ from 

its desired response dk(n), and an error signal may be defined as:

ek{n) =  dk{n) -  yk{n). (2.2.2)

The purpose of error-correction learning is to get the response of each out­

put neuron to approach its desired response. This is achieved by minimising 

a cost function based on the error signal ek(n). Error correction learning then 

becomes an optimisation problem. The mean square error is a commonly used 

criterion for reducing the cost function, it is defined as the mean square value 

of the sum of squared errors:

J =  E (2.2.3)

where E  is the statistical expectation operator and the summation is over all 

output layer neurons in the network. Normally, because the statistics of the
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underlying processes are unknown, an approximate solution to this optimisa­

tion problem is adopted using the instantaneous value of the sum of squared 

errors:

£ ( « )  =  (2-2 -4)
K

By adjusting the synaptic weights of the network, S(n) can be minimised, 

thus optimising the network. Hence for the error correction learning rule the 

adjustment A Wkj(n) is given by:

A  Wkj{n) =  rjek(n)xj(n), (2.2.5)

where rj is the learning rate. Hence the adjustment made to a synaptic weight 

is proportional to the product of its error signal and its input signal.

Because error correction learning behaves like a closed loop feedback system, 

care has to be taken in choosing a value of p to ensure the stability of the 

learning process. The learning rate affects both the rate of convergence and 

the convergence itself. Small learning rates provide a smooth learning process, 

however the system may take a long time to converge to a stable solution. 

Large learning rates mean that the learning process is accelerated, but the 

danger arises that the learning process may diverge and the system become 

unstable.

The error function, £, is an energy function which represents the amount 

by which the output of the network differs from the expected output. Large 

differences correspond to large energies and small differences correspond to 

small energies. If the error function is plotted against the synaptic weights of
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the network a multidimensional error (energy) surface results.

Starting from an arbitrary point on the error surface, determined by the 

initialisation of the networks weights, the aim of error-correction learning is to 

move gradually toward a global minimum. However, a problem with the error- 

correction learning rule is that it is possible for it to get trapped at some local 

minima on the error surface and therefore never reach the global minimum 

[Hay94, Was93].

2.2.2 The Multilayer Perceptron Neural Network

There are many neural network architectures. Neural networks learn through 

an iterative process of adjustments to its synaptic weights and thresholds. The 

architecture of a neural network depends upon the learning algorithm used to 

train the network. Two or more of the neurons described above can be com­

bined together to form a layer. This forms the simplest neural network the 

single-layer perceptron. A single layer perceptron has an input layer of source 

nodes that maps onto an output layer of neurons. The input layer of source 

nodes performs no computation and is therefore not counted as a layer of the 

network.

A single-layer perceptron associates an output pattern with an input pat­

tern. By modifying the synaptic weights of the network information can be 

stored in the network. The limitation of the single-layer perceptron is that 

it can only classify objects that are linearly separable in the pattern space as 

shown in Figure 2.2. To overcome this obstacle two or more layers can be
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combined to form the multilayer perceptron [JB94].

Figure 2.2: Two dimensional pattern space

The multilayer perceptron has an input layer of source nodes, an output 

layer of neurons and one or more hidden layers of neurons between the in­

put and output layers. The hidden layer(s) of neurons allow the multilayer 

perceptron to learn more complex tasks. The addition of one or more hidden 

layers gives the network a global perspective due to the extra set of synaptic 

connections and the extra dimension of neural interactions, thus enabling the 

network to extract higher-order statistics. If the size of the input layer is large 

this ability to extract higher-order statistics can be extremely useful [Hay94].

Determining the size of the network, i.e. the number of neurons in the 

hidden layer(s) and the number of hidden layers, is critical to the performance 

of the network. A network that is too small may not train to acceptable 

accuracy. A network that is too large will be unnecessarily slow and expensive.
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In addition it may require an excessively large training set to generalise well. 

The optimal size of a network is problem dependent and there are no hard 

and fast rules for determining it. Rather it is down to the experience of the 

engineer and trial and error to produce the smallest network that provides the 

desired accuracy on both the training and test data sets [Hay94].

The multilayer perceptron uses hyperplanes, defined by the weighted sums 

J2nwkjx j> to partition the pattern space, thus allowing the classification of 

patterns that are not linearly separable [JB94].

A multilayer perceptron network, with a single hidden layer, is shown in 

Figure 2.3. The source nodes in the input layer of the network supply respective 

elements of the input vector to the inputs of the hidden layer. The output 

signals of the hidden layer then provide the inputs to the output layer. The 

outputs of the neurons in the final layer provide the overall response of the 

network to the input vector.

The multilayer perceptron is trained using the back-propagation of errors 

algorithm. Back-propagation of errors requires two passes through the layers of 

the network. Firstly, a forward pass, where the input training vector is applied 

to the network and its effects propagate through the different layers of the 

network, until the network produces an output response. During the forward 

pass the neural networks synaptic weights are fixed. Secondly a backward pass, 

during this pass the synaptic weights are all adjusted in accordance with the 

error correction rule. The response of the network is compared to the desired 

output of the network to produce an error signal. The error signal is then
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Figure 2.3: A multilayer perceptron neural network

propagated backwards through the network, that is, against the directions 

of the synaptic connections. The error signal is used to adjust the neurons 

weights in order to move the actual response of the network closer to the 

desired response [Hay94].

A problem arising in the training of multilayer perceptron networks is that 

known as credit assignment. For the network to train properly it is necessary 

to know which neurons in the hidden layer have the credit, or blame, for a 

particular outcome, thus allowing the correct synaptic weights to be adjusted 

accordingly. To allow the error signal to update the weights of the neurons in 

the hidden layer, it is necessary that these neurons have a nonlinear character­

istic, and that it is also differentiable [Hay94]. A commonly used nonlinearity
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is the sigmoidal nonlinearity, defined by:

1

Vj ~  1 +  e~vi ’
(2.2.6)

where Vj is the net internal activity level of neuron j  and x/j is the output of 

the neuron. The sigmoidal function is shown in Figure 2.4.

Figure 2.4: Hyperbolic tangent sigmoid transfer function

The error signal at the output of neuron j  at iteration n is given by:

ej(n) =  dj(n) -  %(n), (2.2.7)

where neuron j  is an output node and dj (n) is the desired response of neuron 

j  at iteration n. The instantaneous sum squared error of the network is:

\ E < 2-2-8)
1 je c

where the set C  includes all the neurons in the output layer of the network. 

If N  denotes the total number of training patterns then the normalised (with
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respect to the training set size N) average squared error is:

1 N
£“  =  j v ^ £ (n )' (2'2'9)

n = 1

The sum squared error of the network is a function of its free parameters, 

that is its weights and biases. The task of the back-propagation algorithm is 

to minimise the cost function £av by adjusting the weights and biases of the 

network. These adjustments to the networks free parameters are made for each 

training pattern in the training set.

If neuron j  is fed by a set of signals from the previous layer, the net internal 

activity level Vj(n) produced at the input of the nonlinearity associated with 

neuron j  is:
v

vj ( n ) = ^ 2 wA n)y i(n )̂  (2.2.10)
¿=0

where p is the total number of inputs, excluding the bias, applied to neuron j.

The signal yj(n) appearing at the output of neuron j  at iteration n is:

V M )  =  ¥?(uj(n))> (2.2.11)

where y?j(•) is the activation function of neuron j .

The back-propagation algorithm applies a correction, A Wji(n), to the synap­

tic weight, Wji(n), which is proportional to the instantaneous gradient, d£ (n) / dw3l(n). 

The correction to the synaptic weight is given by:

A  Wji(n) =  ?'i6j (n)yi(n). (2.2.12)

The gradient indicates the required changes in the synaptic weights. The 

gradient, Sj(n), for output neuron j  is given by the product of the error signal,
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ej(ri), and the derivative, <p'{vj(n)), of the activation function:

8j{n) =  ej(n)y>5(uj(n)). (2.2.13)

If neuron j  is an output neuron then it is a simple matter to calculate its 

error signal because its desired response is known. Equation 2.2.7 is used to 

compute the error signal of the neuron and equation 2.2.13 is to calculate its 

gradient.

If neuron j  is a hidden neuron things become more difficult. Hidden neurons 

share responsibility for any errors at the output of the network. Because there is 

no known desired response for the hidden neuron, its error signal is determined 

recursively in terms of the error signals of all the neurons to which the hidden 

neuron is directly connected. Back-propagation of errors allows the hidden 

neurons to be penalised, or rewarded, for their contribution to this output. 

The gradient for a hidden neuron j  is given by:

5j(n) =  y}(vj(n )) ^ 2  Sk(n)wkj(n). (2.2.14)
k

The first term in equation 2.2.14, cp'j(vj(n)), is the derivative of the activa­

tion function of the hidden neuron. The second term, that is, the summation 

over k, is the product of the gradients of the neurons in the next layer that 

are connected to neuron j  with the synaptic weights associated with these 

connections.

The back-propagation algorithm then requires two passes of computation. 

A forward pass and a backward pass.
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In the forward pass the synaptic weights remain fixed. An input vector is 

applied to the source nodes and propagates forward to the hidden layer and 

then to the output layer. The output is then compared to the desired response 

to produce an error signal.

The backward pass starts at the output layer by passing the error signal 

back through each layer of the network, recursively computing the gradient of 

each neuron. This recursive process allows the synaptic weights of the network 

to be updated.

A problem with the multilayer perceptron is that they require the input 

data to be presented many times, with a forward and backward pass for each 

training vector. Hence the repetition of the back-propagation of errors means 

that the network can be slow to settle to a stable solution [Hay94, Was93].

The back-propagation algorithm cycles through the training data as follows:

1 . Initialisation. Start with a reasonable network configuration and set all 

the synaptic weights and threshold levels of the network to small random 

numbers that are uniformly distributed.

2. Presentations of Training Examples. Present the network with a set of 

training patterns and for each example in the training set perform the 

following forward and backward computations.

3. Forward Computation. With the input vector applied to the input layer 

and the desired response vector presented to the output layer, compute 

the activation potentials and function signals of the network by proceeding
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through the network, layer by layer. Calculate the error signal.

4. Backward Computation. Compute the required adjustments to the synap­

tic weights of the network by proceeding backward, layer by layer. Adjust 

the synaptic weights of the layer.

5. Iteration. Iterate the computation by presenting new sets of training 

examples to the network until the free parameters of the network stabilise 

their values and the sum squared error of the network is at an acceptably 

small value.

2.2.3 Radial Basis Function Neural Networks

An enhancement to the multilayer perceptron uses radial basis functions. 

These are a set of generally nonlinear functions that are built up into one 

function that can partition the pattern space successfully. Figure 2.5 shows a 

radial basis function, where u represents the hidden neurons weight vector, x 

the neurons input vector and h its’ output. As the distance between the input 

vector and the weight vector decreases, the output increases. Thus a radial 

basis neuron acts as a detector that outputs 1 whenever the input vector, x, is 

identical to its weight vector, u [Was93].

While the radial basis function (RBF) network may require more neurons 

than a multilayer perceptron, they have the advantage that they can often be 

designed in a much shorter time than it takes to train a multilayer perceptron. 

The disadvantage of the RBF network is that once trained they are slower to
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Figure 2.5: A radial basis function

use, that is, generalise, requiring more computation to perform a classification 

or function approximation. The reason for this slowness is due to the exponen­

tially decaying localised nonlinearities which construct local approximations to 

nonlinear input-output mapping. Because of the local nature of each radial 

basis function the RBF network typically has a larger number of coefficients 

to compute. The multilayer perceptron, on the other hand, constructs global 

approximations to nonlinear input-output mapping, thereby encoding the char­

acteristics of the training set into a more compact form [Hay94, Was93]. RBF 

networks work best when there are many training vectors available. Initially 

RBF networks will be used to attempt to solve the alarm problem under con­

sideration.

RBF networks use multidimensional ellipsoids or hyperellipsoids to partition 

the pattern space. Thus learning for an RBF network is equivalent to finding
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a surface in a multidimensional space that provides a best fit to the training 

data. The hyperellipsoids are defined by yj(||x — y)||. Where <p is usually taken 

to be Gaussian, as defined in equation 2.2.15 and shown in Figure 2.5, and 

|| • • • || denotes some distance measure, usually the Euclidean norm as defined 

in equation 2.2.16

<p(r) =  e(^ \  cr > 0, r >  0, (2.2.15)

where o  determines the range of influence, that is, the width, of the radial 

basis function.

II* =  (2.2.16)
i

where y represents the centre of the hyperellipse.

The function s in fc-dimensional space, which partitions the space, has 

elements s*, given by:
m

Sk =  '52wjk<p(\\x-yi\\). (2.2.17)
3=1

The basic structure of the RBF network consists of three layers as shown 

in Figure 2.6. The input layer is made up of source nodes (the sensory units). 

The second layer is a hidden layer which must be of high enough dimension 

to partition the pattern space. The output layer supplies the response of the 

network to its inputs. The mapping from the input layer to the hidden layer 

is nonlinear, while the mapping from the hidden layer to the output layer is 

linear, of strength, Wjk [JB94].

If an input is presented to the network each neuron in the hidden (radial 

basis) layer will output a value that depends on how close the input vector is
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Figure 2.6: A radial basis function neural network

to its weight vector. If the input vector is not close to the weight vector of a 

particular neuron, then the output of that neuron will be small. These small 

outputs will have a negligible effect on the linear output neurons. If however, 

the input vector is very close to the weight vector of the neuron then that 

neuron will output a value close to 1. If a neuron has an output of 1 its output 

weights in the second layer pass their values to the linear neurons in the output 

layer [Hay94].

A set of radial basis functions is used to achieve the nonlinear mapping from 

the input layer to the hidden layer. In effect, the radial basis functions expand 

the inputs into a higher dimensional space where they become linearly sepa­

rable. Covers theorem on the separability of patterns states that: a complex
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pattern-classification problem cast in a high-dimensional space nonlinearly is 

more likely to be linearly separable than in a low-dimensional space.

If there is a radial basis function for each input to be classified then the 

network is guaranteed to produce a function that fits all the data points. How­

ever, this does have the disadvantage that noisy or anomalous data points will 

be classified and these will tend to cause distortion. The resulting distortion 

can result in the classification surface not being smooth and this can cause 

problems with generalisation. It can also lead to the network having a large 

number of neurons in the hidden (radial basis) layer if there are a large num­

ber of input vectors. The solution to this is to reduce the number of radial 

basis functions to a level at which an acceptable fit to the data is still achieved 

[Hay94].

The design of an RBFNN has two stages. Firstly, choose a set of basis 

functions that gives an acceptable fit to the data. Secondly, linear optimisation 

is used to set the strengths of the connections between the hidden and output 

layers, that is, Wjk [nn:92].

The training of the weights, Wjk, is usually performed by linear optimisation 

of a cost function. Hence training pairs of input and target vectors are required. 

A typical cost function used is the sum squared error function as given in 

equation 2.2.4, though other cost functions are available. Since this is a linear 

optimisation problem, the radial basis function network can be trained more 

quickly than a multilayer perceptron [Low95].

Theoretical investigations and practical results have shown that the type of
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nonlinearity, <p(-), is not vital to the performance of RBF networks. However 

the positioning of the centres of the radial basis functions is of critical impor­

tance and there are many alternatives for their determination [Hay94, CCG91].

A centre, and therefore a corresponding hidden layer neuron, could be lo­

cated at each input vector in the training set. Because training vectors tend to 

occur in clusters, this method can result in more hidden layer neurons than are 

necessary and thus overfitting of the training data [Was93]. The result will be 

distortion, as described above, and longer training and generalisation times.

A second approach is to assume fixed radial basis functions, whose centres 

are chosen randomly from the training set. If there is no knowledge of the data 

the radial basis functions are chosen so that they fit points evenly distributed 

through the set of possible inputs [JB94], If some knowledge as to the overall 

structure of the inputs exists, then it is better to try and mirror that structure 

in the choice of functions. It is often sufficient to position the basis functions at 

data points sampled randomly according to the distribution of the data. This 

ensures that the radial basis functions are concentrated in regions of higher 

data density [Low95].

Another method is to use the orthogonal least squares (OLS) learning al­

gorithm. This method is based on linear regression models. The OLS method 

can be employed as a forward regression procedure to select a suitable set of 

centres (regressors) from a large set of candidates. The centres are determined 

one-by-one in a well defined manner until a network of adequate performance 

is built. At each step of the procedure, the increment to the explained vari­
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ance (or energy) of the desired response is maximised. The OLS algorithm will 

generally produce a network with fewer hidden neurons than that of an RBF 

network with randomly selected centres [CCG91].

The advantage of the RBF network is that once the radial basis functions 

have been chosen, all that is necessary is to determine the coefficients Wj, to 

allow them to partition the pattern space correctly. An RBF network essen­

tially preprocesses the data and transforms it into a higher dimensional space 

in which the classes are linearly separable [CCM96].

2.2.4 Self-Organised Learning

An important feature of neural networks is their ability to learn from their 

environment and through learning to improve in some sense. In unsupervised 

learning there is no teacher signal. A network has both inputs and outputs but 

there is no feedback from the environment to say what those outputs should be 

or whether they are correct. The network must discover for itself any patterns 

or features in the input data and map them onto its outputs. Unsupervised 

learning can only do anything useful when there is redundancy in the data. 

Without redundancy it would be impossible to find any patterns or features in 

the input data, which would seem like random noise [LB95, Buh95].

Self-organised learning is a process of unsupervised learning whereby sig­

nificant patterns or features in the input data are discovered. The algorithm 

for self-organisation is provided with a set of rules of a local nature, which en­

able it to compute an input-output mapping with specific desirable properties.
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“Local” means that the change applied to the synaptic weight of a neuron is 

confined to the immediate neighbourhood of that neuron. The question that 

arises is: can a useful network develop from self-organisation? Turing states 

[Tur52]:

Global order can arise from local interactions.

This development applies to both the brain and artificial neural networks 

(ANN). Many originally random local interactions between neighbouring neu­

rons can coalesce into states of global order and ultimately lead to coherent 

behaviour. This process is the essence of self-organisation.

Network organisation takes place at two levels that interact with each other 

in a feedback loop. Firstly, activity, certain activity patterns are produced 

by a given network in response to input signals. Secondly, connectivity, the 

connection strengths (synaptic weights) of the network are modified in response 

to neuronal signals in the activity patterns, this modification is due to synaptic 

plasticity. The feedback between changes in synaptic weights and changes in 

activity patterns must be positive in order to achieve self-organisation, rather 

than stabilisation, of the neural network [Has95, HKP91].

Three principles of self-organisation can be identified [Hay94]:

• Modifications in synaptic weights tend to self amplify. The process of 

self-amplification is constrained by the requirement that modification of 

synaptic weights has to be based on locally available signals, that is, 

presynaptic and postsynaptic signals. A strong synapse leads to a coin­

cidence of presynaptic and postsynaptic signals. In turn the neuron is
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strengthened by such a coincidence.

• Limitation of resources leads to competition among synapses and therefore 

the selection of the most vigorously growing synapses (that is, the fittest) 

at the expense of the others. This process is made possible by synaptic 

plasticity.

• Modifications in synaptic weights tend to cooperate, in spite of the overall 

competition of the network.

A Hebbian synapse is a synapse that has its strength selectively increased, 

if the two neurons on either side of it are activated simultaneously (that is, 

synchronously). If the two neurons on either side of a Hebbian synapse are 

activated asynchronously, then that synapse is selectively weakened or elimi­

nated. A Hebbian synapse is characterised by four key mechanisms:

• A time-dependent mechanism. Modifications depend on the exact time 

of occurrence of presynaptic and postsynaptic signals.

• A local mechanism. Locally available information is used by a Hebbian 

synapse to produce a local synaptic modification that is input specific.

• An interactive mechanism. Hebbian learning depends upon a “true inter­

action” between presynaptic and postsynaptic activities, that is, a Heb­

bian synapse cannot make a prediction from just one activity.

• A conjunctional or correlational mechanism. Correlation over time be­

tween presynaptic and postsynaptic activities is viewed as being respon­

sible for a synaptic change.
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If a Hebbian synapse has synaptic weight Wkj with presynaptic signal Xj and 

post synaptic signal yk, then Hebbian learning updates the synaptic weight, at 

time n according to:

A  wkj(n) =  F(yk(n),Xj(n)) (2.2.18)

where F(-,-) is a function of both postsynaptic and presynaptic activities. 

Equation 2.2.18 may be written (as a special case):

A  wkj =  rjyk(n)Xj(n) (2.2.19)

where 77 is the learning rate (a small positive number).

Repeated application of the weight update rule, equation 2.2.19, leads to an 

exponential growth that finally drives into saturation. A limit is needed on 

the growth of the synaptic weight. One method for doing this is to introduce 

a nonlinear forgetting factor into the synaptic weight adjustment. Hence:

Awkj =  r]yk{n)Xj{n) -  ayk(n)wkj{n) (2.2.20)

where a  is a new positive constant and Wkj(n) is the synaptic weight at time 

n. Equivalently:

A wkj(n) =  ayk(n)[cXj(n) -  wkj(n)\ (2.2.21)

where c =  77/ a.

Equation 2.2.21 is known as the generalised activity product rule. The gen­

eralised activity product rule implies that for inputs Xj(n) < Wkj(n)/c the 

modified synaptic weight Wkj(n +  1 ) will actually decrease by an amount pro­

portional to the postsynaptic activity yk{n), if Xj(n) >  (n)/c then Wkj(n+1 )

will increase by an amount proportional to yk{n) [Hay94, Has95].
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2.2.5 A Simplified Neuron Model as a Principal Com­

ponent Analyser

There is a close correspondence between the behaviour of self-organised 

neural networks and the statistical method of principal component analysis. 

A single linear neuron with a Hebbian-type adaptation rule for its synaptic 

weights can evolve into a filter for the first principal component of the in­

put distribution [Oja82], Consider the simple linear neuron model shown in 

Figure 2.7.

The neuron receives a set of p input signals x0, x i , . . . ,  xp- i  through a cor­

responding set of p synapses w q , W \ , . . .  , w p_  x, respectively. The output y is
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given by:
p-1

V  =  ^ 2  W i X i  
i=0

In accordance with Hebbian learning Wi varies with time:

( 2.2.22)

Wi(n +  1) =  Wi(n) +  rjy(n)xi(n), i =  0, 1, 2, 1 (2.2.23)

However, this form of learning rule leads to unlimited growth of the synaptic 

weight Wi. This can be overcome by the use of normalisation in the learning 

rule, for example:

Wj(n) +  rjy(n)xj(n)

( £ £ o  M n) +  yy(n)xi(n)}2)  ̂

where the denominator is the Euclidean vector norm. The summation in the

denominator extends over the complete set of synapses associated with the 

neuron. Assuming a small learning rate, rj, and ignoring second order and 

higher terms, then equation 2.2.24 can be expanded as a power series in p as:

Wi(n +  1) =  Wi(n) +  r]y(n)[xi(n) -  y(n)wi(n)\ (2.2.25)

The term rjy(n)xi(n) in equation 2.2.25 provides the Hebbian modification 

to weight Wi, that is, the self-amplification effect in accordance with Principal 

One of self-organisation. The term —rjy2(n)wi(n) provides the stabilisation 

of the weight in accordance with Principle Two of self-organisation. Equa­

tion 2.2.25 modifies the input Xi(n) into a form that is dependent on the asso­

ciated synaptic weight Wi(n) and the output y(n). The effective input of the 

ith synapse is given by:

x'iin) =  Xi(n) -  y(n)wi(n) (2.2.26)

W i ( n - 1- 1 ) = (2.2.24)
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where the term —y(n)Wi(n) is related to the forgetting or leakage factor and 

increases with stronger response y{n). The learning rule becomes:

Wi(n +  1) =  Wi(n) +  T] y(n)x-(n) (2.2.27)

The signal flow graph of Figure 2.8 illustrates the operation of equations 2.2.26 

and 2.2.27 and exhibits two forms of internal feedback acting on the neuron 

[Hay94]:

• Positive feedback for self-amplification and therefore growth of the synap­

tic weight, Wi(n), according to its external input Xi(n)

• Negative feedback due to —y(n) for controlling the growth, thereby re­

sulting in the stabilisation of the synaptic weight w^n)

2.2.6 Self-Organised Principal Component Analysis

Hebbian learning can be generalised to m neurons. The number of neurons 

m determines how many principal components the network will extract [ZL95].
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Consider the neural network, consisting of a single feedforward layer of linear 

neurons, shown in Figure 2.9.

The network has p inputs and m outputs, with m < p. The output yj (n) of 

neuron j  at time n, produced in response to a set of inputs {xi(n)\i — 0 , 1 , . . .  ,p — 

is given by:

p-i
Vj(n) =  ^2wji(n)xi(n),  j  =  0 , 1 , 2 , . . . , m - l  (2.2.28)

¿=o

where Wji is the ith weight for unit j .
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The generalised Hebbian Algorithm is given by [San89]:

A  Wji(n) =  7] yj(n)xi{n) -  y jin) ^  wki{n)yk[n)
k= 0

i =  0 , 1 , 2 , 1

j  =  0 , 1 , 2 , . . . ,  m — 1 

(2.2.29)

where A Wji(n) is the change applied synaptic weight Wji(n) at time n. The 

generalised Hebbian algorithm of equation 2.2.29 for a layer of m neurons 

includes the algorithm of equation 2.2.25 for a single neuron as a special case 

j  =  0 [Oja95].

For an heuristic understanding of the generalised Hebbian algorithm and 

using matrix notation equation 2.2.29 can be rewritten as:

A w j(n ) =  yyj{n)x!{n) -  rjyj(n)wj(n), j  =  0 , 1 , 2 , (2.2.30)

where
j -1

x'(n) =  x(n) -  ^  w k(n)yk{n) (2.2.31)
fe=0

The vector x'(n) represents a modified form of the input vector. Following 

equation 2.2.30 network operation is:

1 . For the first neuron in the feedforward network shown in Figure 2.9:

j  =  0 : x 7(n) =  x(n) (2.2.32)

As shown above the first neuron will discover the first principal component 

(that is, the largest eigenvalue and associated eigenvector) of the input 

vector x(n) [Jou97].

2. For the second neuron:

j  =  1 : x '(n) =  x(n) -  w0(n)y0(n) (2.2.33)
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Provided the first neuron has already converged to the first principal com­

ponent, the second neuron sees an input vector x '(n) from which the first 

eigenvector of the correlation matrix R has been removed [1197]. There­

fore, the second neuron extracts the first principal component of x', which 

is equivalent to the second principal component (that is, the second largest 

eigenvalue and associated eigenvector) of the original input x(n).

3. For the third neuron:

j  =  2 : x '(n) =  x ( n ) - w 0 (n) j fo(ra)-w1(n)2/i(n) (2.2.34)

If the first two neurons have converged to the first and second principal 

components, the third neuron sees an input vector from which the first 

and second eigenvectors have been removed. The third neuron therefore 

extracts the first principal component from x'(n) which is equivalent to 

the third principal component of x(n) (that is, the third largest eigenvalue 

and associated eigenvector).

4. Subsequent neurons will converge to outputs of decreasing eigenvalue, that 

is, smaller and smaller principal components.

It should be noted however that the neuron-by-neuron description presented 

here is to simplify the explanation of the PCA neural network. In reality, 

the weight vectors, Wj, approach their final values simultaneously, not one 

at a time. This simultaneous convergence of the weight vectors is of course 

advantageous because it leads to faster training times than if the neurons are 

trained one at a time [Oja82, Oja89].
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The PCA network learns the principal components by unsupervised learning 

rules, by which the weight vectors are gradually updated until they become or­

thonormal and tend to the theoretically correct eigenvectors. The network also 

has the ability to track slowly varying statistics in the input data, maintaining 

its optimality when the statistical properties of the input do not stay constant. 

Because of their parallelism and adaptivity to input data, such learning algo­

rithms and their implementations in neural networks are potentially useful in 

feature detection [Hay94, HKP91].
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2.3 Pre-Processing the Neural Network Input 

Data

2.3.1 Statistical Averages

For random signals an important set of properties are the central moments. 

The two most important central moments are the first central moment, known 

as the mean, and the second central moment, known as the variance. Although 

a knowledge of these two moments does not completely describe the random 

data they are usually sufficient to work with [Lyn89].

The statistical average of a random variable X  is the numerical average 

of the values X  can assume, weighted by their probabilities. For a discrete 

random signal the mean is defined as:

k k

where x  (or px) is the average or mean value of X ,  also known as the expected 

value of X  (the expected value E { X n} is referred to as the “nth moment” of 

the random variable X)  and is the probability associated with the sample 

value Xi [BP71]. The time average of X  is given by:

1 N
x =  px =  — x{n) (2.3.2)

71=1

Similarly the second central moment, known as the variance, is defined as the 

expected value of the square of the functions departure from its mean. Thus 

variance is a measure of signal fluctuation and for a discrete random signal is
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defined as [BP71]:

n

o-l =  E { ( X  -  x )2} -  -  x)2Pi (2.3.3)
¿=1

~  * ) 2 ( 2 -3 -4 )
71=  1

For a random signal the mean and variance cannot be determined exactly. 

Each time a set of N  samples is taken, different values are obtained. Therefore 

it is only possible to estimate the mean and the variance, based upon the N  

samples.

If the mean is used in estimating the variance in the equation 2.3.4 the 

estimate is biased. An unbiased estimate is given by [BP71]:

° l  =  _  (2-3-5)
71=1

The square root of the variance is called the standard deviation, ox, of the 

random variable X  and has the same units as X . The standard deviation is 

an indicator of the effective width of the probability density function of X .

Analogous to the variance of one random variable, the covariance of two 

random variables X  and Y  is defined as:

Cxy =  E { ( X  -  px)(Y -  py) }  (2.3.6)

Note that Cxx =  <7 2 the variance of x(n) as defined in equation 2.3.4.

The covariance of x{n) and y(n) is related to the standard deviations of 

x(n ) and y(n) by the inequality:

\Cxy\ <  oxoy (2.3.7)
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Thus the magnitude of the covariance between x{n) and y(n) is less than or 

equal to the products of the standard deviations of x(n) and y{n).

The normalised covariance, known as the correlation coefficient, is defined

as:

Pxy= — (2.3.8)

The correlation coefficient lies between —1 and +1. If the random variables 

have a correlation coefficient of zero, they are uncorrelated [BP71].

The covariance matrix is symmetric and hence allows the eigenvalues to be 

calculated. Eigenvalues determine the nontrivial solutions of the equation:

A X  =  AX (2.3.9)

which is equivalent to the homogeneous system:

(A  — AI)X =  0 (2.3.10)

where I is the unit matrix.

The nontrivial solutions occur when:

|A — AI| =  0 (2.3.11)

Equation 2.3.11 is known as the characteristic determinant. It has n roots, 

Ai, A2 , .. •, A„ known as eigenvalues.

From equation 2.3.10 setting A =  A*, where Xt is any one of the eigenvalues, 

a corresponding solution vector X j can be found. This vector X* is called an 

eigenvector of A  corresponding to A*.
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Eigenvalues are not just the key to differential equations, but have a phys­

Eigenvalues are the most important feature of practically any dynamical system 

[Str80].

2.3.2 The Fast Fourier Transform

The fast Fourier transform (FFT) is a powerful and widely used tool in the 

analysis of signals. The Fourier transform can be applied to signals to reveal 

information in the frequency domain that may not be readily available in the 

time domain. The Fourier transform is a method of expressing a given function 

of time in terms of a continuous set of exponential components of frequency. 

That is, the Fourier transform decomposes a waveform into sinusoids of differ­

ent frequencies which sum to the original waveform. It identifies the different 

frequency sinusoids and their respective amplitudes [Bri8 8 ]. The weighting of 

each frequency component is given by the resulting spectral-density function. 

The continuous Fourier transform is defined as:

The continuous Fourier transform is not however suitable for computation 

by a computer because it yields an infinite number of samples of the signal,

ical significance. The eigenvalues indicate the natural frequency of a system.

(2.3.12)

and the inverse Fourier transform by:

(2.3.13)
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x(t). The discrete Fourier transform (DFT) is therefore used to approximate, 

as closely as possible, the continuous Fourier transform. The DFT limits the 

number of samples, N, by making use of a truncation, or windowing, function. 

The importance of the FFT is that it offers a significant reduction in the com­

putation time of the DFT and indeed of the inverse discrete Fourier transform 

(IDFT). The FFT is an algorithm that reduces the number of calculations 

required to compute the DFT from N 2 to NlogN. The FFT also allows for 

the rapid computation of the power spectral density function and of both the 

autocorrelation and cross-correlation functions.

If the signal x(t) is sampled every T0 seconds then a sequence {cc[A;]} results 

whose value at time, t =  kTo is x[k]. The DFT, X(n),  of the finite length 

sequence {x[&]} is defined as:
N - 1

X(n)  =  ^ j x{k)e=Ĵ ,  n =  0, 1 , 2 , . . .  ,N  — 1 (2.3.14)
fc=0

and the IDFT by:

1 N~1
x{k) =  -  £  X ( n ) e ^ ,  k =  0, 1, 2, . . . ,  N  -  1 (2.3.15)

n=0

2.3.3 Power Spectral Density

The power spectral density function describes the distribution of power 

versus frequency and is defined as:

P(w) =  lim (2.3.16)' ' X^oo T

The power spectral density function of a signal retains only the magnitude 

information, all phase information is lost. For a given signal there is a specified

Intelligent Monitoring and Prediction Systems Howard Lewis



Chapter 2 Neural Networks for Information Extraction 51

power spectral density, but many signals may have the same power spectral 

density.

The power spectral density function of random data describes the general 

frequency composition of the data in terms of its mean square value. Power 

spectral density, Pjv, is estimated numerically by computing the squared aver­

age of the DFT and dividing by the number of samples:

P n =  ~ f t ~

2.3.4 Autocorrelation

The autocorrelation function is the second joint moment and therefore does 

not completely describe the random data, x{t). It does however give much 

information about x(t). The autocorrelation function of a signal is an average 

measure of its time domain properties and is therefore especially relevant when 

the signal is a random one, it identifies to what extent x{t) is not random. The 

autocorrelation function provides the key to a random signals spectra [Str90]. 

The autocorrelation function is defined as:

T
Rxx{t) =  lim ^  +  r)dt (2.3.17)

T —>oo 1  I  - T  “ ~2~

Hence the autocorrelation function is equal to the product of the signal and 

a time shifted version of itself, and is a function of the imposed time shift, r. 

It should be noted that, when the shift, r, is small the average product of the 

signal and the time shifted version of itself is relatively large. This is because 

when the shift is small, large values (positive or negative) tend to be multiplied
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by similar values, hence giving a large positive product. As the shift increases 

there is a decreasing correlation between the signal and the time shifted version 

of itself, and the product therefore tends to zero. The higher the frequencies 

present in the signal, the smaller the shift necessary to reduce the correlation 

[Lyn89]. The autocorrelation function of a discrete time signal is defined as:

^ n = N —l —k

Rxx(k) — — ^ 2  x(n)x(n +  k) (2.3.18)
n=0

The autocorrelation function describes the general dependence of the values 

of the data at one time on the values at another time, shifted by delay, k, that 

is, the shape of the autocorrelation function gives some idea as to how past 

values are related to present values of x(t) and hence how fast a particular data 

function can change.

It should be noted that the PSD function and the autocorrelation function 

form a Fourier transform pair. Hence they provide similar information in the 

frequency and time domains respectively.

P(u)  «=> Rxx{t)

2.3.5 Cross-Correlation

The cross-correlation function relating two functions, /i ( f )  and / 2 (f) is given 

by:
T

Rxy( r ) =  lim ^  [  f i ( t ) f2(t +  T)dt (2.3.19)
T —► oo 1  I  - T  J ~T

where r  is a time shift imposed upon one of the signals.
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Large values of the cross-correlation function indicate the two signals are re­

lated. When the two signals being cross-correlated share a number of common 

frequencies, each gives a corresponding contribution to the cross-correlation 

function. The cross-correlation function, unlike the autocorrelation function, 

retains information about the relative phases of common frequency components 

in the two signals it is comparing. The cross-correlation function is particularly 

suitable for comparing random signals, since it is essentially a time averaged 

measure of shared signal properties. The cross-correlation function determines 

whether a causal relationship exists between two signals and defines it quanti­

tatively [Lyn89]. The cross-correlation function of a random signal is defined 

as:
^ n = N —l —k

Rxy(k) =  - - -- ^ 2  x(n)y(n +  k), k >  0 (2.3.20)
n=0

The cross-correlation function provides a measure of the similarity of one 

signal with another versus a relative shift by delay, k. The cross-correlation 

function of two sets of random data describes the general dependence of the 

values of one set of data on the other. A plot of the cross-correlation function, 

called a cross-correlogram will sometimes display sharp peaks, which indicate 

the existence of correlation between the two signals for specific time displace­

ments [Str90].

I n t e l l ig e n t  M o n it o r in g  a n d  P r e d ic t io n  S y s t e m s Howard Lewis



Chapter 2 Neural Networks for Information Extraction 54

2.3.6 The Correlation Coefficient

The correlation coefficient can be used to determine whether two random 

variables are interrelated and the relative strength of any interrelationship. For 

two random variables x and y, the correlation coefficient is given by:

Pxy (2.3.21)

where o  is the standard deviation

C O

J  (x -  p)2f (x)dx
—oo

and Cxy is the covariance of x and y:

O O

cxy = J J (x -  Px)(y -  Py)p(x, y)dxdy

where p(x, y) is the joint probability density function.

If the two random variables x and y are sampled N  times the correlation 

coefficient may be estimated thus:

__________ Z)ili xiVj ~ Nxy________
~ KE£i z,2 -  » 2)(E .ia Vi -  JVS2)]’

The correlation coefficient pxy lies between +1 and —1. The sign of pxy 

indicates whether the relationship between the two variables is positive or 

negative. The magnitude of pxy, ignoring the sign, gives a measure of the 

strength of the relationship between the two variables. The further pxy is from 

zero, the stronger the relationship. The correlation coefficient takes the value 

+1 only if the plotted bivariate data displays a perfect linear relationship with
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a positive slope, and —1 if the plotted data displays a perfect linear relationship 

with a negative slope. A nonlinear relationship and/or data scatter, whether 

it be due to data measurement errors or imperfect correlation of the variables, 

will force the value of the correlation coefficient pxy towards zero, that is, data 

where the two variables are unrelated will have a correlation coefficient of 0. It 

should be noted that higher values of pxy do not imply anything at all about 

the slope of the straight-line fit: they say something about the quality of the 

fit.

Care, however, needs to be exercised when using correlation coefficients. 

Calculating the correlation coefficient of a data set reduces it to a single number 

and clearly a lot of information can get lost in the process. Therefore, it is 

hardly ever adequate to simply look at the value of the correlation coefficient 

when examining the relationship between two variables.

A study of a scatter plot of the data is usually useful in determining whether 

or not the correlation coefficient will reveal any useful information. The correla­

tion coefficient is most useful when the data form a more or less oval pattern on 

the scatter plot. It is less suitable when the data shows a curvilinear relation­

ship. If the data contains outliers it may be more appropriate to calculate the 

correlation coefficient once they have been removed from the data set (whether 

it is appropriate to remove outliers or not is, of course, another question whose 

answer depends upon the nature of the outlier).
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2.4 Information Extraction of the Oil Mist Data

2.4.1 The Oil Mist Data

The purpose of this work was to create a novel alarm system for use in the 

monitoring and prediction of random time series signals. From a knowledge of 

a random signals history, present value, and its statistical properties it should 

be possible to forecast the future of a signal. Shell U.K. wish to develop such 

a system for unmanned remote oil installations, with the aim of producing an 

alarm system that can anticipate problems from the presence of oil mist, and 

have provided the raw data for the development of this work. The scatter data 

is provided by three infra-red detectors used to measure oil mist. The three 

detectors monitor the same cell from different angles with a sampling frequency 

of 5Hz, and the data falls into one of four alarm categories: high, low, grey 

and none. Figure 2.10 shows a typical sample of the oil mist scatter data, the 

data is windowed into 20 second segments containing 101 samples for each of 

the three detector signals. It should be noted that differing quantities of data 

were available for each alarm condition, ranging from 380 seconds worth of 

data for the low alarm condition to 1140 seconds worth of data for the high 

alarm condition.

The aim of preprocessing the data is to extract key information in order 

to reduce the dimensionality of the problem and hence simplify the neural 

network required. However, care has to be taken in the use of transforms to 

preprocess the data, as problems can be caused. Firstly, although they can
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High Alarm 1

Figure 2.10: A typical 20 second sample of the Shell oil mist scatter data

represent signals to an arbitrary degree of accuracy, there is no guarantee that 

they make it easy to separate classes. It could be that in the transform space 

the representation of two different classes is such that a complicated decision 

boundary is required to separate them. Secondly, many transforms perform 

averaging of the input data. If an important feature is represented by a small 

characteristic of the input vector, its contribution to the average may be so low 

that it is discarded.

The first attempt to train a neural network used the raw data to train a 

radial basis function network. This work was undertaken using the mathemat­

ical computing package Matlab and for each data processing task required a 

Matlab function was written.

The Matlab function to train a radial basis network, solverb [nn:92] only
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allows the user to alter two input design parameter the spread constant, sc 

and the error goal. The spread constant determines the width of the radial 

basis function shown in Figure 2.5. Each bias in the radial basis hidden layer 

is set to 0.8326/sc [nn:92], this determines the width of an area in the input 

space to which each neuron responds to. The spread constant should be large 

enough to allow the radial basis functions of the hidden layer to overlap so as 

to allow good generalisation. However the radial basis functions should not 

be spread out such that the radial basis neurons return outputs near 1 for 

all the input vectors used in the design. Ideally the spread constant should 

be much larger than the distance between adjacent input vectors, so as to get 

good generalisation, but much smaller than the distance across the whole input 

space. For the example shown in Figure 2.11, a spread constant greater than

0.1, the interval between inputs, and less than 2, the distance between the 

left most and right most inputs should be chosen [nn:92], The second design 

parameter the user can choose is the error goal. This is the sum-squared error 

that the network must reach before training can stop.

2.4.2 Training With The Raw Data

The data was provided in a series of text files, high, low, grey and none, a 

Matlab function raw.m was written to convert each text file, containing three 

variables (one from each infra-red sensor), into a one column vector mat file, 

that is, a Matlab variable. A Matlab function nnraw.m was written to create a 

neural network input vector, praw. An output target vector, t was also created.
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Figure 2.11: Choosing a spread constant 

For the sake of simplicity the following targets were adopted:

High Alarm 4

Low Alarm 3

Grey Alarm 2

None Alarm 1

Table 2.1: Neural network target vector for the High, Low, Grey and None 
alarm conditions

Training Vectors

An input vector of ten of each of the alarm conditions was created, that is, 

a 303 x 40 matrix, as was a 1 x 40 target vector. It should be noted here that a 

limiting factor on the size of the input vector is the fact that only 19 examples of 

the low alarm condition are available, their are however more available for the 

other alarm conditions, and in order to check the generalisation of the network 

after training it is necessary to reserve some of the input vectors for testing.
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For the raw data provided a spread constant larger than 0.2, the time between 

samples, and smaller than 60, the time between the first and last samples, is 

required. An initial spread constant of 3.5 was chosen. This figure was derived 

because 3.5 is approximately 17 times larger than 0.2 and approximately 17 

times smaller than 60 and is therefore midway between the two extremes. An 

error goal of 0.001 was chosen.

Once the network has been trained, its weights and biases calculated, the 

Matlab function simurb [nn:92] can be used to test the network designed. The 

neural network trained correctly using the raw data, but failed to generalise 

when previously unseen raw input data vectors were presented to the network. 

Further training then took place' with a range of different spread constants. In 

practice it appears that the size of the spread constant makes little difference 

to the design of the network. Spread constants well outside this range resulted 

in essentially the same network being designed.

The probable source of this problem is too many radial basis neurons in the 

hidden layer. The function solverb.m iteratively creates a radial basis network 

one neuron at a time, adding neurons until the sum-squared error falls below 

the error goal. The neural network created had thirty neurons in the hidden 

layer, n.b. their were forty input vectors. With this large a ratio of hidden 

neurons to training vectors the neural network was essentially providing a one- 

to-one mapping between the input and target vectors. Thus creating a network 

with poor generalisation.

The choice of error goal also has little effect on the design of the network.
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This is because, in this case, once the sum-squared error dropped below zero 

it fell off extremely rapidly to an error of the order of 10~16 as can be seen in 

Figure 2.12.

Figure 2.12: The sum-squared error for a radial basis network trained using 
the raw data.

2.4.2.1 Pre-Processing the Data with the Cross-Correlation Func­

tion

Shell U.K. believe that the phase information between the three detectors 

scatter beams is of significance. The cross-correlation function, which retains 

phase information, was therefore initially chosen for the preprocessing of the 

input data prior to its being used to train a neural network. As noted above, 

differing quantities of data were available for each alarm condition and the lack 

of data, for the low alarm condition in particular, limited the amount of data
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available for training purposes as it was necessary to reserve some data for 

neural network generalisation purposes once training was complete.

The function shelxcor.m calculates for each raw data file the unbiased cross­

correlation of each of the three possible combinations of input signals. Fig­

ures 2.13 to 2.20 show plots of the cross-correlation functions of a selection of 

randomly chosen samples of the oil mist scatter data. From an examination 

of Figures 2.13 to 2.20 it is not immediately obvious, in the intuitive sense, 

that the patterns are separable by a neural network. The scale of the cross­

correlation functions differs markedly between different data sets of the same 

alarm conditions, for example, Grey24 (Figure 2.15) and Grey33 (Figure 2.19). 

In addition, with the exception of low alarm conditions, the scale of the cross­

correlation functions for different alarm conditions tend to overlap. Although 

these data samples were chosen randomly, comparison with other data samples 

suggests that they are not untypical.

An unbiased cross-correlation of the oil mist data was performed for each 

window of data available. The results of this cross-correlation of each seg­

ment of data was then concatenated to provide a single input vector for neural 

network training or later network generalisation. Shelxcor uses the Matlab 

function xcorr [sp:92], if the input vectors are of length M  then xcorr returns 

the cross-correlation sequence in a vector of length 2M —1. Each raw data input 

vector contains 101 samples, therefore concatenating the three cross-correlation 

functions creates a neural network input vector containing 603 samples. For a 

neural network this represents a 603 dimensional space. This high dimension-
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Figure 2.13: Cross-correlation coefficients for High 42 data sample

Figure 2.14: Cross-correlation coefficients for Low 15 data sample

ality makes it more difficult to design a neural network to produce the desired 

input-output mapping. This has resulted in an approximate doubling of the
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Figure 2.15: Cross-correlation coefficients for Grey 24 data sample

x Cxy, Cxz, Cyz - cross-correlation (unbiased estimate)
5 1------------------------------------------------- 1-------------------------------------------------- 1-------------------------------------------------- 1------------------------------ .7 7 — — i---------------------------------------------------

4 -

3 - \  ; ■

2-.’ \ J \ •

i -: : '

- 1 ------------------ 1------------------ 1------------------ 1__________________ i__________________
0 50 100 150 200 250

C xy___, Cxz — , Cyz ...

Figure 2.16: Cross-correlation coefficients for None 18 data sample
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Cxy, Cxz, Cyz - cross-correlation (unbiased estimate)

Figure 2.18: Cross-correlation coefficients for Low 6 data sample

size of the neural network input data.

The aim of pre-processing the data prior to neural network training, is to
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Figure 2.19: Cross-correlation coefficients for Grey 33 data sample
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Figure 2.20: Cross-correlation coefficients for None 7 data sample
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extract the key features from the raw input data without loss of information 

and thus simplify the neural network required. The cross-correlation function 

in approximately doubling the dimensionality of the problem has thus failed 

in that respect. Therefore, because the cross-correlation function has doubled 

the dimensionality this has not simplified the neural network requirements. 

However, this has provided a key stage in the development of this problem.

A 603 x 40 input matrix, consisting of 10 low, 10 high, 10 none and 10 grey 

alarm signals, was created for the purpose of training an RBF neural network. 

Matlab was used to train a radial basis function neural network using the input 

vector described above and neural network target outputs as shown above in 

Table 2.1. These values were chosen for convenience and ten such vectors were 

concatenated to form 40 x 1 target vector. A sum squared error goal for the 

neural network of 0.0001 was set and a spread constant, SC, of 4.9 chosen. The 

spread constant must be in the range:

0.2 < SC  < 120.6

where 0.2s is the distance between adjacent inputs and 120.6s is the distance 

across the whole input vector.

The radial basis function neural network trained successfully, reaching an 

error goal of 10~15 after 89 epochs, as shown in Figure 2.21. However, although 

the network trained successfully it did not generalise when presented with 

previously unseen test vectors. On testing the generalisation of the neural 

network, all the test vectors returned a value of 1, that is, the none-alarm
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condition.

Figure 2.21: A  radial basis function neural networks sum-squared network error 
for 89 epochs

Because of the relatively high ratio of hidden neurons to training patterns, 

29:40, it appears that a radial basis function neural network is being created 

which has a virtually one-to-one mapping between the input training vectors 

and the target vectors. Thus creating a neural network that has poor gener­

alisation. It should be noted that, Matlab creates radial basis function neural 

network’s iteratively. One neuron is added at a time until the sum squared 

error falls beneath an error goal or a maximum number of neurons, specifiable 

by the user, has been reached.

Changing the spread constant made no difference to the performance of 

the neural network. For a wide range of spread constants a neural network 

essentially identical to the network described above was created, that is, one
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that trained correctly but completely failed to generalise when presented with 

previously unseen training vectors.

To reduce the length of the networks input vectors and hence the dimen­

sionality of the problem the function xcorwin was written. This function allows 

the user to window the raw data, to a length, N, of their choosing, before cal­

culating the cross-correlation functions of the data. This windowing has the 

added advantage of creating more vectors for use in the training set. For ex­

ample, windowing the data to a length N  — 50, halves the dimensionality of 

the problem and doubles the number of input vectors available for training.

However this approach yielded the same results as above, the neural network 

trained successfully, reaching an error goal of 10-15 after 29 epochs, as shown 

in Figure 2.22. Again, however, although the network trained successfully 

it completely failed to generalise when presented with previously unseen test 

vectors. With an input of 120 training vectors the trained network required 90 

hidden neurons, thus again essentially providing a one-to-one mapping between 

the input and output. The network therefore failed to generalise correctly when 

presented with previously unseen training vectors.

Further reducing the size of the cross-correlation window, thus further re­

ducing the size of the input vectors and further increasing the number of train­

ing vectors available, produced similar results.

The training vector described above was then used to train a range of multi­

layer perceptron neural networks with differing numbers of hidden and output 

neurons. All these networks did not train correctly, as the neural networks
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Figure 2.22: A radial basis function neural networks sum-squared network error 
for 29 epochs

failed to separate the training patterns in the pattern space. Plots of typical 

training errors are shown in Figures 2.23 and 2.24, which show the training 

errors for back-propagation neural networks with 10 hidden and 4 output neu­

rons and 50 hidden and 4 output neurons respectively. As can be seen from 

Figures 2.23 and 2.24 both neural networks completely failed to reach the error 

goal during training.

2.4.2.2 Pre-Processing the Data with the Autocorrelation Function

The Matlab function shelacor was written to calculate the autocorrelation 

of the raw data using acorr to calculate an unbiased estimate. Figures 2.25 

to 2.30 show typical plots of the autocorrelation function. When examining 

these plots it is not possible, in an intuitive sense, to determine whether or
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Figure 2.23: Plot of the training errors for a back-propagation network with 
20 hidden and 4 output neurons

Figure 2.24: Plot of the training errors for a back-propagation network with 
10 hidden and 4 output neurons
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not the data sets are separable by a neural network. The scale of the auto­

correlation function differs markedly between different detectors of the same 

data window, as can be seen from High 42 Detector A, Figure 2.25, and High 

42 Detector C, Figure 2.27. In addition, the scale of the autocorrelation func­

tions of the different data sets often overlap, for example, High 42 Detector A, 

Figure 2.25, and Low 15 Detector B, Figure 2.29.

Figure 2.25: Plot of the autocorrelation (unbiased estimate) of High 42 - de­
tector A

As with the cross-correlation function, above, calculating the autocorrela­

tion coefficients of the data resulted in a doubling of the size of the neural 

network input vector. A 603 x 40 input matrix, consisting of 10 low, 10 high, 

10 none and 10 grey alarm signals, was created for the purpose of training a 

multilayer perceptron neural network. Matlab was used to train a radial ba­

sis function neural network using the input vector described above and neural
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Figure 2.26: Plot of the autocorrelation (unbiased estimate) of High 42 - de­
tector B

H igh  42  -  D e tec to r C

Figure 2.27: Plot of the autocorrelation (unbiased estimate) of High 42 - de­
tector C

network target outputs as shown above in Table 2.1. These values were chosen 

for convenience and ten such vectors were concatenated to form 40 x 1 target
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L ow  15 -  D e te c to r A

Figure 2.28: Plot of the autocorrelation (unbiased estimate) of Low 15 - detec­
tor A

Figure 2.29: Plot of the autocorrelation (unbiased estimate) of Low 15 - detec­
tor B

vector. A sum squared error goal of 0.001 was set for the neural network. 

Figure 2.31 shows a typical plot of the networks training errors.
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Figure 2.30: Plot of the autocorrelation (unbiased estimate) of Low 15 - detec­
tor C

Figure 2.31: A radial basis function neural networks sum-squared network error 
for 29 epochs

Use of the autocorrelation function to train the neural network also created 

a network that failed to generalise correctly when presented with previously
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unseen test vectors. The network, with 30 hidden neurons, again appeared to 

provide an essentially one-to-one mapping between the training input and tar­

get vectors. For a wide range of spread constants the neural network training 

failed to produce a network that was capable of successful generalisation. Sim­

ilarly, windowing the data to reduce the dimensionality of the network required 

did not produce any observable change in network generalisation.

2.4.2.3 Pre-Processing the Data with the Power Spectral Density 

Function

Shelpsd uses the Matlab function psd [sp:92] to calculate the power spec­

tral density of the raw data. Psd allows the user to specify: nfft, the FFT 

length and Fs, the sampling frequency. The length of each raw data variable is 

=  101 and therefore nfft was chosen to be 128, to allow for fastest execution. 

The data was sampled at 5Hz making Fs =  5Hz. Although it was possible to 

train a radial basis function network using the power spectral density functions 

to reach the required error goal, Figure 2.32, the network again failed to gen­

eralise. As in the cases of the cross-correlation and autocorrelation functions 

the network largely failed to classify test vectors correctly.

2.4.3 Training with the Signal Statistics

Further work involved using some of the statistics of the input signals to 

train a multilayer perceptron network. The statistics chosen were the mean, 

the variance and the eigenvalues. The function shelstat calculates the mean,
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Figure 2.32: A radial basis function neural network’s sum-squared network 
error for 44 epochs

variance and eigenvalues for each of the three signals in each set of data. The 

variance and the eigenvalues are calculated from the covariance matrix of the 

three signals using diag(cov(x)) and eig(cov(x) [sp:92] respectively, where x is 

the input signal. For each set of data the results are then concatenated to form 

a neural network input vector. The length of these input vectors is N  =  9, 

three mean values, three variances and three eigenvalues. The function nnstat 

batches the training vectors as described previously.

The function bpnn.m uses the Matlab functions: rands or initff [nn:92] to 

initialise the weights and biases of the back propagation network, and trainbpx 

[nn:92] to train the network. Alternatively trainbpa [nn:92] trains the network 

with adaptive learning and trainbpm [nn:92] trains the network with momen­

tum.
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Function bpnn creates an network with a layer of hidden neurons (the num­

ber of hidden neurons is variable) with hyperbolic tangent sigmoid transfer 

functions, as shown in Figure 2.4, and one output neuron with a linear transfer 

function. An alternative function bp creates a network with two hidden lay­

ers containing nonlinear neurons and an output layer consisting of one linear 

neuron. These functions can be amended to create neural networks with more 

than one neuron in the output layer.

A feature of the multilayer perceptron is that they can often require long 

training periods. This is due to the repetition of the back propagation of errors 

algorithm required to train the network. Depending upon the initialisation 

of the weights and biases, some of the multilayer perceptron networks used 

have taken up to 500,000 epochs to train, requiring several days (a problem 

exacerbated by the memory limitations of the computers available). Figure 2.33 

shows a typical multilayer perceptron training record.

The signal statistics extracted from the data were used to train a number of 

multilayer perceptron networks, with both one and two layers of hidden neurons 

and a wide range of neurons in the hidden and output layers. Some of these 

neural networks failed to train within the given maximum number of epochs. 

Other networks did train correctly but, when presented with previously unseen 

test vectors, they generally did not classify the test patterns correctly.

This work has examined pre-processing the raw data using; the statistical 

averages, mean and variance; the fast Fourier transform; the power spectral 

density function; the autocorrelation function and the cross-correlation func-
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Figure 2.33: A multilayer perceptron neural network’s sum-squared network 
error for 201083 epochs

tion, prior to training and generalisation with neural networks. Although some 

successes were recorded, more work is required to develop the techniques with 

this data to be able to implement a reliable real-time classification system.
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2.5 Conclusion

The research work described in this section is to develop a novel method­

ology for stochastic time series classification. The aims were to produce an 

intelligent monitoring and prediction system based on neural networks. Shell 

U.K. wish to develop such a system for unmanned remote oil installations, with 

the aim of producing an alarm system that can anticipate problems due to oil 

mist, and have provided the raw data for the development of this work. The 

oil mist data provided, is scatter data that has been detected by three infra-red 

detectors all monitoring the same cell from different angles. The data falls into 

one of four alarm categories: High, Low, Grey and None.

Initially a radial basis function neural network was trained using the raw 

data. This produced a neural network that could correctly classify training 

vectors however, this network was unable to generalise and classify test vectors. 

These findings led to the conclusion that it would be necessary to preprocess 

the raw data. To simplify a neural network, and hence decrease the time the 

network takes both to train and to generalise, preprocessing of the input data 

is often performed. The aim of the preprocessing is to extract the key features 

of the data without at the same time losing any information that may be 

important.

A number of methods for preprocessing the data have been examined: the 

fast Fourier transform, the power spectral density function, the autocorrelation 

function and the cross-correlation function. All of these techniques have been
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used to preprocess the data for training radial basis function neural networks. 

As with the raw data it is possible to successfully train a radial basis function 

neural network to reach a desired sum squared error goal. However, none 

of the networks have been able to generalise correctly when presented with 

test vectors. Therefore, preprocessing the data has not achieved a sufficient 

reduction in the dimensionality of the problem to allow the neural network to 

classify the data.

The aim of preprocessing the data is to extract the key features from the 

data and hence simplify the network required. While the preprocessing tech­

niques described are all important measures of a signal, their use does not 

necessarily simplify the task of separating the different patterns in the trans­

formed pattern space. Indeed both the autocorrelation function and the cross­

correlation function double the length of each training vector, and therefore 

double the dimensionality of the pattern separating problem. The power spec­

tral density function reduces the dimensionality of the pattern space by ap­

proximately 30%, but still leaves a problem of high dimensionality.

To overcome the problem of large training vectors, the use of some impor­

tant signal statistics was examined. These statistics are the mean, the variance 

and the eigenvalues. The use of these statistics greatly reduces the dimension­

ality of the problem, without of course guaranteeing that the patterns have 

become separable in the pattern space. The data, having been preprocessed 

using the signal statistics, was then used to train multilayer perceptron neural 

networks.
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A range of backpropagation networks were used, with varying numbers 

of neurons in the hidden and output layers. However, despite long training 

times, none of these networks reached their error goal and therefore did not 

train correctly. Several networks were unable to correctly classify the training 

vectors once training had been completed. Windowing the data, to further 

reduce the dimensionality of the neural networks required, did not produce 

any observable change in the performance of the neural networks trained.

These investigations have found that although the networks could generally 

be trained correctly, the difficulties lie with interpretation of new data. Despite 

using several different methodologies, so far it has not been possible to produce 

an intelligent monitoring and prediction system sufficiently reliable for a real 

world time series prediction problem.
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Chapter 3

Principal Component Analysis 

and it’s Applications

3.1 Introduction

Principal Component Analysis (PCA) is a standard technique used in fea­

ture extraction and data compression and has been used in pattern recognition. 

PCA belongs to a field known as multivariate analysis. PCA concentrates on 

the internal structure of the data and is defined by the eigenvectors of the 

covariance matrix of the input data. The goal is to find some pattern, or some 

natural structure, within the data. PCA takes advantage of any redundancy in 

the data set and enables a group of variables to be replaced by a single variable. 

Thus PCA linearly reduces the dimensionality of a set of measurements while 

retaining as much information as possible about the original data.
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A data set contains a number of variables, each of which has its own vari­

ance. Each variable is an axis or dimension of variability. Usually the variables 

are associated with each other, that is, there is a covariance between pairs of 

variables. The data set as a whole will have a variance which is the sum of the 

individual variances.

PCA transforms the data so that the transformed data has:

• the same amount of variability

• the same total variance

• the same number of axes (or variables) as the original data.

Additionally the PCA transform is performed in such a way that:

• the first axis accounts for as much of the total variance as possible

• the second axis accounts for as much of the remaining variance as possible, 

while being uncorrelated with the first

• the third axis accounts for as much of the total variance remaining after 

being accounted for by the first two axes, whilst being uncorrelated with 

either, and so on [Str80].

After the PCA transform the new axes, or dimensions, are uncorrelated 

with each other and are weighted according to the total amount of variance 

they describe. Normally this results in there being a few large axes that account 

for most of the total variance and a larger number of small axes accounting 

for very small amounts of the total variance. These small axes are usually 

discounted from further consideration [Wol78].
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Thus the data has been transformed from a set of p correlated variables to 

a set of m uncorrelated axes, or principal components. Where m < p and the 

redundancy induced by the correlations is removed. The existence of m uncor­

related axes is often a useful property if further analysis is planned because, 

m < p introduces a parsimony in the representation of the data which is often 

desirable [JB94].

Much attention is focused on the relationship of the principal components 

to the original variables. How can each principal component be interpreted in 

terms of the original variables? What are the values of the data points after 

the transformation?
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3.2 Principal Component Analysis

Assume that a random variable vector, x, of dimension p has a zero mean 

value and unit standard variance, that is, E[x\ =  0 and D[x] =  1, where E  

and D  are the statistical expectation operator and the statistical variance ex­

pectation operator, respectively. Let u denote a unit vector, also of dimension 

p , onto which the vector x is to be projected. This projection is defined by the 

inner product of vector x and u, as shown by:

a =  uTx (3.2.1)

subject to the constraint: ||u|| =  (iijUr )1/2 =  1.

The projection a is a variable with a mean and variance related to the 

statistics of the measurement vector x. The mean value of projection a is zero, 

E[a] =  uTA[x] =  0, and the variance of a is same as the mean-square value:

cr2 =  E[a2] =  ur E[xxT]u =  utR u

where R  is the correlation matrix of the measurement vector as vector x has 

unit variance.

The variance, a2, of the projection a is a function of the unit vector u. It 

can be expressed as follows:

^(u) =  o 2 =  urRu (3.2.2)

on the basis of which ^(u) is defined as a variance probe.
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3.2.1 The Eigen-Structure of the Principal Components

Principal Component Analysis is mainly concerned with finding a unit vec­

tor, u, such that along u the variable probe, ^>(u), has an extreme or stationary 

value (local maxima or minima), subject to the constraint of Euclidean norm 

of u. The solution of this problem lies in the eigen-structure of the correlation 

matrix R.

R u  =  Au (3.2.3)

This eigenvalue problem (equation 3.2.3) has nontrivial solutions (i.e. u ^  0) 

only for special values of A that are known as the eigenvalues of the correlation 

matrix R. The associated values of u are called the eigenvectors.

A correlation matrix is characterized by real, nonnegative eigenvalues. The 

associated eigenvectors are unique, assuming that the eigenvalues are distinct. 

Let the eigenvalues of the p x p matrix, R , be denoted by A0, Ax,..., Ap_i, and 

the associated eigenvectors be denoted by u0, U i,..., up_i, respectively. This 

satisfies the following equation:

R uj =  XjUj, j  =  0,1, ...,p -  1 (3.2.4)

Let the corresponding eigenvalues be arranged in decreasing order:

Ao >  A i >  . . .  >  A j >  . . .  >  A

so that Ao =  Amax. Let the associated eigenvectors be used to construct a 

m x m matrix:

U =  [u0,u i,.. .,u j ,...,up_1]
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then combining the set of p equations represented in Eqn. 3.2.4 gives a single 

equation:

R U  =  U A

where A  is a diagonal matrix defined by the eigenvalues of matrix R:

A  =  diag[Ao, A i,..., Aj, ..., Ap_i]

and

U T =  I T 1 (3.2.5)

From Eqns. 3.2.2, 3.2.4 and 3.2.5 it can be seen that the variance probes and 

the eigenvalues are equal, that is, 'ip(Uj) — Aj, j  =  0 ,1, . . .  ,p — 1.

Two important features can be seen from the eigen-structure of PCA:

1. The eigenvectors of the correlation matrix, U, pertaining to the data 

vector x with the zero-mean and unit variance, define the vectors uj, rep­

resenting the principal directions along which the variance probes, 

have their extreme values.

2. The associated eigenvalues define the extreme values of the variance probes

3.2.2 Derivation of the Principle Components

Principal Component Analysis requires that some of the variables in the 

data set are intercorrelated. If none of the variables are intercorrelated, there 

exists already a set of uncorrelated axes and there is no point in performing 

PCA.
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The input vectors are random vectors x  with K  elements, representing 

the values of the signals at different time instants, and are mutually corre­

lated. PCA linearly transforms vector x  to another vector y with N  elements, 

N  < K , so that the redundancy induced by the correlations is removed. This 

transformation is achieved by finding a rotated coordinate system such that 

the elements of x in the new coordinates become uncorrelated. The data is 

concentrated into a set of orthogonal vectors that are able to describe the data 

to a good approximation, in a least squares sense. In addition to achieving 

uncorrelated components, the variances of the elements of y will be strongly 

decreasing in most applications, with a considerable number of components so 

small that they can be discarded altogether [JB94].

If the variance-covariance matrix of the original variables is designated C 

then the variance-covariance matrix of the principal components A  is:

A  =  A C A t (3.2.6)

In the matrix A  the relationship between the variables and each principal 

component is given by the row vectors. Convert these relations to column 

vectors by defining a matrix E =  A r :

A  =  Er CE (3.2.7)

Because the principal components are uncorrelated, their covariance terms 

are zero and the matrix A is a diagonal matrix. In the two dimensional case:
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where represents the variance of the two principal components.

The principal components account for all the variance of the original vari­

ables, thus the sum of the At must equal the sum of the variances (the diagonal 

elements of C), that is, trace{A ) =  trace(C). The correlation matrix R  is 

related to the variance-covariance matrix C by:

(3.2.8)
y/ C (i,i)C (j,j)

Each element of the variance-covariance matrix C has been divided by the 

square root of the product of the ith and jth  variances. Hence the variance- 

covariance matrix of the principal components can also be defined as:

A =  Er RE (3.2.9)

where A  will have different A» from Eqn. 3.2.7, and:

trace(A) =  irace(R) =  p , the number of variables. (3.2.10)

since the diagonal values of R  are unit.

The matrix E is computed in such a way that it becomes the matrix of 

normalised eigenvectors. This matrix describes the relationship of the principal 

components to the original variables when the variables have unit variance. 

The components have variances described by A, and the matrix of component 

loading L is given by:

L =  EA^ (3.2.11)

The component loadings are the correlation between each variable and each 

component, and can be seen as the projections of the unit variables onto the
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principal components. That is, L gives the weighted relationship of the princi­

pal components to the original variables. Squaring the elements of L produces 

the proportion of the variance of each variable “explained” by each component.

The final step in the PC A transform is to relate the original data points, 

in vector x, to the principal components so that each data point may now be 

described by a vector y:

y  =  xE (3.2.12)

Eqn. 3.2.12 states that, the coordinates of any point measured on the com­

ponent axes are the coordinates of that point measured on the variable axes 

multiplied by the matrix of eigenvectors. That is, the score of a data point on 

a particular component is simply a linear combination of that points scores on 

the original variables. These y coordinates are known as component scores.

The component scores are the values of each data point in units of the 

principal components. The scores on any one component will have a mean of 

zero (by definition as the component axes are transformed from the variable 

axes by rotating about the multivariate mean) and a variance equal to the 

eigenvalue, Aj, of that component (the eigenvalue is a measure of component 

length). The scores on any one component will also be uncorrelated with the 

scores on any other component (unless there is perfect correlation between 

two or more variables, then p principal components are required to account 

for the p-dimensional variable space and hence all principal components are 

significant) [Dau74].
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3.2.3 PCA Selection of the Key Variables

Having determined the principal components of the data set the question 

becomes; can the principal components be used to select a few key variables 

which adequately describe the data set and its variability? If an initial study 

of a large number of variables reveals some key variables in the data set then 

future analysis can be focused on monitoring these key variables. This has 

obvious practical advantages in saving time and money in monitoring the data 

in future.

Using principal components there are a number of techniques that can 

be used to determine the key variables (other techniques that do not employ 

PCA, for example, multiple correlation and clustering of variables, also exist). 

Once the key variables have been selected the other redundant variables can 

be discarded.

Two techniques have been used during the current work. First, PCA is 

performed on all the original K  variables. If p variables are to be retained, a 

variable is associated with each of the last (K —p) components and these (K —p) 

variables are rejected. The variable associated with the principal component to 

be rejected is the variable which has the largest coefficient on the component 

(eigenvector).

The second technique is in a sense a backwards version of the first. Again 

PCA of all K  original variables is performed and again p variables are to be 

retained. These p components are considered successively, starting with the
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largest. A variable is associated with each of the p components to be retained, 

again by selecting the variable that has the highest loading on the component. 

These p variables are retained and the remaining K  — p variables rejected.

The number of variables, p, to be retained is determined by the choice of 

A0. For the first method, all components with \  less than the critical value, 

Ao, are rejected. For the second method all components with A* greater than 

Ao are retained. The value of Ao is problem specific but, Ao ~  0.7 should give 

a good indication of how many variables to retain. Both of these techniques 

generally produce similar results [Jol72a, Jol72b].

3.2.4 Analysis of Component Scores

Because PCA is a transformation technique further analysis of the com­

ponent scores themselves, that is, the transformed data, is often useful. As 

has been discussed above, a few of the p components will account for most of 

the total variance. The question is, how many components (and their scores) 

should be considered?

One criterion is to eliminate all those components for which the null hy­

pothesis, Ai =  A2 =  • ■ • =  Ap, cannot be rejected. When N  is large, or when 

N  is small but large relative to p, only the smallest components, if any, will 

not be heterogeneous, leaving m acceptable components where m is not much 

less than p. Another criterion often used, is to eliminate all those components 

whose eigenvalues are less than 1.0; on the basis that these components are 

accounting for less of the total variance than any one variable.

I n t e l l ig e n t  M o n it o r in g  a n d  P r e d ic t io n  S y s t e m s Howard Lewis



Chapter 3 Principal Component Analysis and i t ’s Applications 94

Alternatively, using PCA it is possible to determine the proportion of the 

total variance accounted for by each component. Using this information it 

is then possible to decide how many components to eliminate. This can be 

achieved in two ways: firstly, by retaining those successive components that 

account for a set proportion, for example 90%, of the total variance; or sec­

ondly, by discarding those components whose individual contribution to the 

proportion of the total variance falls below some set level, for example 10%. 

Provided the heterogeneity of the eigenvalues of the principal components can 

be demonstrated the cut-off point is unimportant. The scores on the smaller 

components have smaller variances, thus their effect on the analysis is usually 

minimal [Str89].
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3.3 Application of P C A  to Industrial Data

3.3.1 Principal Component Analysis of a Power Trans­

former

This section is concerned with identifying the key variables of a power 

transformer and examining the interdependence of those variables using Prin­

cipal Components Analysis. The aim is to develop a more comprehensive and 

systematic approach to the monitoring of changes in a power transformers op­

erating conditions. The distribution of the transformers principal components 

is examined using an index number which has been introduced. The varia­

tion in the variance of the principal components of the power transformer is 

also reflected by this index. An analysis has been undertaken of data from 

transformers operating in both the normal and faulty conditions.

In modern industrial societies the maintenance of uninterrupted power sup­

plies is of paramount importance. The provision of adequate monitoring sys­

tems for power systems is essential to avoid damage due to failures of apparatus’ 

operation and degrading of their conditions. A power systems monitoring sys­

tem should ensure that faulty equipment is identified and afterwards removed 

from service in the minimum of time so that; the faulty equipment is isolated 

and in order to limit the damage to equipment due to overheating, excessive 

mechanical forces, etc.

The power transformer is one of the most important pieces of apparatus
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in a power system. Its in-service behaviour is vital to the systems operation. 

To keep their size acceptable, modern high voltage transformers are built with 

relatively tight insulation tolerances compared to older equipment and are con­

sequently subject to increasingly high stresses in service. It is vital therefore 

to closely monitor their in-service behaviour in order to avoid catastrophic 

failures, costly outages and loss of production [Rog78, Duv89].

In order to minimise system outages, two strategies have evolved to monitor 

the transformers’ conditions: (1) Various relays have been developed to respond 

to a severe power failure requiring immediate removal of the transformer from 

service, in which case outage is unavoidable, (2) On-line/off-line detectors are 

being developed to monitor the serviceability of transformers. This latter tech­

nique has received a great deal of attention in recent years [HY+97, MS+96]. 

In particular, the preventive techniques based on intelligent methodologies for 

early detection of faults to avoid system outages would be of great use. To 

this end, determination of the key variables of a transformer for monitoring 

and fault diagnosis purposes would be the first step in the development of 

intelligent monitoring systems.

A method is presented below, based on principal component analysis [ESM94, 

JB94, DKK96], to determine the key variables of a power transformer and the 

interdependence of those variables. An index number has also been defined to 

monitor any change in the distribution of the variance of the principal com­

ponents of the transformer, which may be used for the purpose of condition 

monitoring.
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3.3.2 Identification of Key Transformer Variables and 

Interdependence Analysis

The identification of the key transformer variables using PCA is achieved 

through the following steps:

1. Transform the original variables to the feature space using PCA.

2. Analyze the eigen-structure of the principal components.

3. Reconstruct the original measurement space using the principal compo­

nents obtained from the selected variables.

4. Analyze the relationship between the original variables and principal com­

ponents using the principal components loading.

5. Select a smaller set of original variables to maximize the information con­

tained in the measurement space and verify the principal components 

properties in the feature space using the PCA transformation.

6. Select the key variables for the design of intelligent transformer monitoring 

and/or fault diagnosis systems.

3.3.2.1 The Transformer Data

There are many variables available to measure and monitor the condition of 

a power transformer in service. These variables can be classified into two kinds. 

One is the common variables related to the transformer operation (TO), these 

variables are: RH of Oil, T-B Oil Diff, PD in Neutral, Ambient RH, Ambient
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Temp Bottom, Ambient Temp Top, Tank Temp 1, Tank Temp 2, MW, V, I 

W TI and Hydran, giving a total of 13 variables. The other is the dissolved 

gas analysis (DGA) data, these variables are hydran, hydrogen (H2), methane 

(CH4), ethylene (C2H4), acetylene (C2H2), water (H20 ), oxygen ( 0 2), nitrogen 

(IV2), ethane (C2He), carbon monoxide (CO), carbon dioxide (C 0 2), total 

dissolved combustible gases (TDCG) and total dissolved gases (TDG), again 

giving thirteen variables in total (however, four variables have been discarded 

since two of the variables have very small variance and two more are linear 

combinations of other variables).

The National Grid Company have provided two sets of data. The first set 

of data is from a transformer operating within it’s normal range and consists 

of all the above variables. The second set of data is from a faulty trans­

former and consists of the following variables: Hydran, AmbientRH, PD, 

TankTempBottom, TankTemp.Top, AmbTemp. For the purpose of this anal­

ysis these same six variables will be selected from the data available for a 

normal transformer.

For convenience of numerical computation, the original measurements are 

normalized as follows:

Consider p variables with n observations, represented by a matrix X  : n xp :

X  =  jxi x2 . . .  xpj (3.3.1)

where Xj is a column vector with n dimension.

Let matrix X'  : n x p represents the data set after normalizing the original
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data set X .  Its jth  variable is calculated as follows:

(3.3.2)

where M xj  and Dxj  are the mean value and the standard deviation of Xj, 

respectively. By normalisation, each variable of the data set X '  has zero mean 

and unity standard variance.

As the variables already have unit variance, the correlation matrix of the 

input data set can be calculated as follows:

* =  j  =  l , . . . , p

Applying the above equations, the normalised raw data of data sets 1 and 

2 are shown in Figures 3.1 and 3.2.

k=l

0009:00 00:09:00 00:09:00 00:09:00 00:09:00 00:09:00 00:09:00 00:09:00 00:21:00
31/12/97 01/01/98 02/01/98 03/01/98 04/01/98 05/01/98 06/01/98 07/01/98 08/01/98

Figure 3.1: The normalized data of the normal transformer

I n t e l l ig e n t  M o n it o r in g  a n d  P r e d ic t io n  S y s t e m s Howard Lewis



Chapter 3 Principal Component Analysis and i t ’s Applications 100

Figure 3.2: The normalized data of the faulty transformer

3.3.2.2 Principal Component Analysis of the Transformer Data

The PC A transform was applied to both data sets and the principal com­

ponents for data sets 1 and 2 are shown in Figures 3.3 and 3.4 respectively. 

The variance of the principal components for data sets 1 and 2 are shown in 

Figures 3.5 and 3.6 respectively.
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Figure 3.3: The principal components of the normal transformer
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Component 1 

•••*••• Component 2 

—» — Component 3 

-♦-Component 4 

— f—  Component 5 

— Component 6

Time

Figure 3.4: The principal components of the faulty transformer

1 2 3 4 5 6

Principal Components

Figure 3.5: The variance of the principal components of the normal transformer

Figures 3.7 and 3.8 show the correlation coefficient matrices of the normal 

and faulty transformers respectively. The correlation of the variables of the 

two data sets changes when the operation of the power transformer changes 

from a normal to a faulty condition. This can be derived from the correlation 

matrices of the two data sets, as shown in Figures 3.7 and 3.8 respectively. 

The variance of the principal components of the two data sets is compared in
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Figure 3.6: The variance of the principal components of the faulty transformer

Figure 3.9, which also demonstrates a change in the correlation of the variables 

in the data set of the faulty transformer.

~*~Amb. RH 

PD

Tank Bot 

—» — Tank Top 

—•— AmbTemp

Figure 3.7: The correlation coefficients matrix of the normal transformer
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Figure 3.8: The correlation coefficients matrix of the faulty transformer

Figure 3.9: Comparison of the variance of the principal components for the 
normal and faulty transformers

3.3.2.3 Variance Analysis of the Principal Components for Condi­

tion Monitoring

In order to investigate the varying tendency of the variance of the principal 

components, an index number S is defined as follows:

n—1

S =  ^ ( A i  -  Ai+1)2 (3.3.4)
i = l
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where A * is the variance of the zth principal components, i =  1,2,---  , n, where 

n is the number of variables. As the variance value of the principle components 

is also the eigenvalue of the correlation coefficients matrix of the original vari­

ables, the change of correlation can be also represented by the value of such an 

index number.

Let Sf and 6n represent the index numbers of the faulty and normal trans­

formers respectively. The index number calculated from the data sets of the 

faulty and normal transformers are:

Sf =  3.9662 5n =  1.1384

and the ratio between them is

Sf/Sn =  3.48

Although Y^= i A =  1, the distribution of the eigenvalues of the correlation 

coefficients matrix of the faulty transformer will be different to that of a normal 

transformer, which is indicated by the defined index number. Therefore, the 

index number could be used to determine the variations in a transformers oper­

ating condition, from the change in the distribution of the variance of principal 

components. A threshold value of the index number could also be determined 

if more data sets concerning the history of the transformer are available. This 

index number could then be used to report whether a transformer has a fault 

or not [LJWROO].
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3.3.3 Principal Component Analysis of the Catalytic Cracker 

Data.

Shell (UK) have provided data from a catalytic cracker. The data consists 

of ninety five variables, sixty five input variables and thirty five output vari­

ables. The variables belong to two groups catalyst, sampled daily, and process, 

sampled weekly. The aim is to use v36-v95 to develop a predictive model for 

the responses vl-v35 (concentrating on predicting v4 and v6 initially). Because 

this is industrial process data there are lots of “drop-outs” and “spikes” which 

are not physical and need to be removed before any modelling is done. In 

addition there is a significant number of missing variables.

Variables indicated by [•••] in Figure 3.10 are specific measurements of 

composition of fluid. The input feeds v36-v59 and v64-v66 are a mixture of 

hydrocarbons. The variables v2-v9, vl0-vl8, vl9-v24 and v25-v35 are related 

responses of the system. v36-v95 are explanatory variables. Variables v60- 

v63 and v67-v72 are related process parameters. Variables v73-v 84 are other 

process parameters.

Figure 3.10: Catalytic cracker variables block diagram

Initially three groups of variables were selected for PC A; first, v36-v59, a

I n t e l l ig e n t  M o n it o r in g  a n d  P r e d ic t io n  S y s t e m s Howard Lewis



Chapter 3 Principal Component Analysis and i t ’s Applications 106

set of input hydrocarbons; second, v73-v84, other process parameters; third, 

v85-v95, the catalyst data. Because the nature of the data is unknown, for 

example, not all the variables are measured in the same units, and for ease 

of numerical computation all the original data measurements are converted to 

standard scores, that is, each variable of the data set has zero mean and unity 

standard deviation. If the data is a column vector, x, of length p, then the zth 

variable of the standardised vector, x ' is given by

x i =
Xi -  M(xi)

S(xi) ;
0 , . . . , p -  1 (3.3.5)

where M(xi ) and S(xi) are the mean and standard deviation of xt respectively.

The raw data and the standardised data for variables v36-v59 is shown in 

Figures 3.11 and 3.12 respectively. The variance of the principal components 

of the standardised data is shown in Figure 3.13 and Figure 3.14 is a “scree” 

plot showing the percentage variability explained by each principal component. 

The scores on each principal component are shown in Figure 3.15.

If analysis of the component scores was required, for example using genetic 

classifiers or neural networks, then examination of Figures 3.13 and 3.14 give 

two, similar, alternatives of which principal components to select. Firstly, 

using Figure 3.13 to select only those principal components contributing more 

variability than any one variable would yield seven principal components for 

further analysis. Secondly, from Figure 3.14 it can be seen that the first nine 

principal components account for approximately 90% of the total variance of 

the standardised variables v36-v59. Thus the first nine principal components
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Figure 3.11: Variables: v36-v59

Figure 3.12: Normalised data: v36-v59

could be selected with a high degree of confidence that most of the variability of 

the data was being analysed. Given the lack of information about the variables 

in the data set, it is not possible to put a physical interpretation on the principal 

components for this analysis.

The raw data and the standardised data for variables v73-v84 is shown in
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P rinc ip a l C o m p o n e n ts

Figure 3.13: Principal components: v36-v59

Figures 3.16 and 3.17 respectively. The variance of the principal components 

of the standardised data is shown in Figure 3.18 and Figure 3.19 shows the per­

centage variability explained by each principal component. The scores on each 

principal component are shown in Figure 3.20. Table 3.1 shows the principal 

components of the data.

From Figure 3.19 it can be clearly seen that the first principal component 

accounts for nearly 80% of the total variance of the standardised variables 

v73-v84. The fact that the first principal component accounts for such a large
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Figure 3.14: Variability explained (%) of principal components: v36-v59

proportion of the total variance of this data set implies that the variables v73- 

v84 are highly correlated. The first four principal components account for over 

90% of the total variance and could be used directly in further analysis of the 

data.

If selection of the key variables from the group v73-v84 was required then 

analysis of Table 3.1 would reveal which variables to select. Using the first 

technique described above, that of rejecting the last K  — p variables, then 

analysis of Table 3.1 shows that the variable with the highest loading on the
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Figure 3.15: Component scores: v36-v59

Figure 3.16: Variables: v73-v84

last principal component, PC 12, is variable two, that is, v74 (with a loading 

of 0.759), which would therefore be rejected. The next variable to be rejected 

would be that with the highest loading on PC 11, that is, v78, with a loading 

of 0.5421. And so on.

Alternatively, using selection of the first p variables, the variable to be
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Figure 3.17: Normalised data: v73-v84

retained on the first principal component, PC 1, would be variable three, that 

is, v75, with a loading of 0.3241. The second variable retained would be v81, 

with a loading of 0.9745 on PC 2. And so on.

The raw data and the standardised data for variables v85-v95 is shown in 

Figures 3.21 and 3.22 respectively. The variance of the principal components 

of the standardised data is shown in Figure 3.23 and Figure 3.24 shows the per­

centage variability explained by each principal component. The scores on each 

principal component are shown in Figure 3.25. Table 3.2 shows the principal 

components of the data.

Figures 3.23 and 3.24 indicate that the variance of the principal components 

is much more evenly distributed than for the previous set of variables. This 

even distribution of the principal components implies that the variables v85- 

v95 are less highly correlated. From Figure 3.24 it can be seen that eight 

principal components are required to account for 80% of the total variance
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P rinc ip a l C o m p o n e n t

Figure 3.18: Principal Components: v73-v84

of the data set. Thus a much smaller reduction in the dimensionality of the 

variables v85-v95 is possible than for variables v73-v84, if it is required to keep 

the same percentage of the total variance.

Using Table 3.2 the key variables from this data set can be selected. Using 

the rejection method, the first variable to be rejected would be v92 with a 

loading of 0.7319 on the last principal component, PC 11. The second variable 

to be rejected would be v95 with a loading of 0.5315 on PC 10. Alternatively 

using the retention method the first variable retained would be v92 with a
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Figure 3.19: Variability explained (%) of principal components: v73-v84

loading of -0.5368 on PC 1. It can be seen from this that the two techniques 

do not always retain the same subsets.

Define four categories of subsets: Best, Good, Moderate and Bad. The first 

technique for selecting key variables, that is, that of rejecting those variables 

with the highest loading on the last K  — p principal components, retains less of 

the best subsets than the second method, that is, that of retaining the variables 

with the highest loading on the first k principal components. However, if the 

best subsets are only a little better than the good subsets, then the first method
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Figure 3.21: Variables: v85-v95

of selecting variables is superior to the second method [Jol72a].

The above analysis has been performed using the mathematical computing

package Matlab. A principal component neural network based on the gener­

alised Hebbian algorithm has been written in Visual C ++ . While this network
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PCI PC2 PC3 PC4 PC5 PC6

0.3207 -0.0418 0.0561 -0.0254 0.0818 -0.4991

0.3239 -0.0443 0.0652 -0.0347 0.1362 -0.3546

0.3241 -0.0250 0.0756 -0.0477 -0.0169 -0.2427

0.3154 -0.0937 0.1134 -0.087 0.398 0.2417

0.3225 0.0132 0.0763 -0.0455 -0.1106 -0.219

0.3129 0.0621 0.0607 -0.0151 -0.5423 -0.0763

0.3059 0.084 0.0832 -0.0084 -0.5818 0.4517

-0.2356 -0.096 0.3336 0.8999 -0.0971 -0.0579

0.0272 0.9745 0.1134 -0.0876 0.1636 -0.0031

0.1808 0.063 -0.8997 -0.3907 0.0115 0.0328

0.3151 -0.1095 0.1156 -0.1088 0.2948 0.4328

0.3224 -0.0312 0.1031 -0.0636 0.2191 0.2414

PC7 PC8 PC9 PC10 PC11 PC12

0.5037 -0.0635 0.158 -0.0224 0.0093 -0.5937

0.3028 -0.1053 -0.0198 0.2217 0.1223 0.759

-0.319 -0.0332 -0.6465 -0.0171 -0 .55 -0.0594

-0.0907 0.5384 -0.252 0.3011 0.4189 -0.1634

-0.4313 0.4508 0.6042 -0.1657 -0.1891 0.1013

-0.3563 -0.372 -0.0541 0.1394 0.5421 -0.1131

0.4692 0.2694 -0.0556 0.033 -0.223 0.0573

0.0298 0.0084 -0.0085 -0.0163 0.0098 0.0078

0.0005 -0.0235 0.0003 0.039 -0.0078 -0.0129

0.0026 0.0073 -0.0034 -0.0023 0.0013 -0.0004

-0.0922 -0.4965 0.3407 0.346 -0.3029 -0.0819

0.0468 -0.1803 -0.0773 -0.8306 0.1887 0.0888

Table 3.1: Scores on the principal components: v73-v84
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Figure 3.22: Normalised data: v85-v95

converges consistently to the same values, these values do not entirely agree 

with those expected using standard techniques for determining the principal 

components. More analysis is required to determine the degree of correlation 

between the two sets of results. It may be necessary to examine some of the 

other algorithms for neural network extraction of the principal components, 

for example, Robust PCA or nonlinear PCA [Xu95, KOW+97, Plu95].
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Figure 3.23: Principal components: v85-v95
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Figure 3.24: Variability explained (%) of principal components: v85-v95

Figure 3.25: Component scores: v85-v95
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PCI PC2 PC3 PC4 PC5 PC6

0.2345 0.3251 0.0299 -0.5617 0.2883 0.0671

0.0802 0.5009 0.1446 -0.5308 0.2837 0.1137

0.035 -0.0651 0.2919 0.1775 0.5788 -0.6866

0.0366 -0.0347 0.683 0.2034 -0.0162 0.1246

-0.3693 0.0713 -0.0631 0.4023 0.2747 0.2675

-0.2477 0.2277 -0.3534 -0.1387 -0.2283 -0.5936

-0.4485 -0.1261 0.2861 -0.3216 -0.1898 -0.0026

-0.5368 -0.0247 0.1228 -0.1855 -0.0395 0.0431

-0.4763 -0.1573 0.0557 -0.0779 0.1908 -0.0158

0.1298 0.2191 0.444 -0.0072 -0.5106 -0.231

0.0725 -0.7012 -0.0222 -0.0698 -0.197 -0.1275

PC7 PC8 PC9 PC10 PC11

-0 .4 0.3107 0.0027 -0.4185 0.0599

0.0531 -0.0212 -0.2722 0.5149 -0.0638

0.035 -0.2381 -0.0904 -0.0714 -0.0144

0.2776 0.6238 0.0135 0.0409 0.0761

-0.4895 0.1724 -0.4803 -0.0126 -0.2134

0.0205 0.57 -0.1071 -0.0094 -0.0348

0.212 -0.1911 -0.0872 -0.2683 -0.6329

0.0971 -0.1702 -0.2421 -0.1602 0.7319

-0.2759 0.0736 0.6702 0.4146 -0.0063

-0.6231 -0.1776 -0.0072 0.027 0.0572

-0.0111 0.003 -0 .4 0.5315 -0.0014

Table 3.2: Scores on the principal components: v85-v95
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3.3.4 Eigenvalue Analysis of the Oil Mist Data

Eigenvalues indicate the natural frequency of a system. Therefore the Shell 

oil mist data was reduced to a 3 by 3 correlation matrix R (equation 3.2.3) 

and the eigenvalues used to create input vectors for neural network training.

Figure 3.26 shows a scatter plot of the first 5 samples of the eigenvalues of 

all four alarm conditions and indicates that a neural network will have difficulty 

separating the patterns in the pattern space. In order to reduce the difficulty of 

separating the patterns, it was decided to select eigenvalues of only two alarm 

conditions (High and Low). Figure 3.27 shows a plot of the first 7 eigenvalues 

for the High and Low alarm conditions.

Eigen values

Figure 3.26: The first 5 eigenvalues of the High, Low, Grey and None oil mist 
data

The eigenvalues where then used to create a neural network input vector 

and the target vector shown below in Table 3.3 was created. These vectors
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high and low eigen values (7 of each)

Figure 3.27: The first 7 eigenvalues of the High and Low oil mist data

where then used to train a whole range of multilayer perceptron neural net­

works. These networks had varying numbers of neurons in both the hidden 

and output layers and, despite some long training times (with up to 500,000 

epochs elapsing) none of the neural networks trained correctly. Figure 3.28 

shows a typical networks sum squared errors during training.

High Alarm 1

Low Alarm 0

Table 3.3: Neural network target vector for High and Low alarm conditions
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Figure 3.28: Neural network training errors for High and Low eigenvalues
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3.4 Conclusion

Principal Components Analysis can be used to identify any variation in the 

correlation of the transformers operating variables caused by changes in the 

transformers condition. Considering the results shown above, comparison of 

the normal and faulty transformers, suggests that the key variables selected 

by PC A under a normal operating condition, will become more correlated and 

the variance of the principal components will have a more uneven distribution 

if the transformers operating condition changes. This is due to the key vari­

ables selected by PCA forming a maximum information space. Any change in 

the transformer condition, represented by the same variables, will result in a 

contraction of the information space. An index number has been introduced to 

measure the distribution of the variance of the principal components. It also 

reflects the tendency of the correlations of the key transformer parameters to 

vary. It has been found that the ratio between the index numbers of the faulty 

and normal transformers is sufficiently large that it could be used to report the 

variation of the transformers condition. The index number could therefore be 

used as an alarm for the purposes of fault monitoring.

As the data from the normal and faulty transformers were not measured 

from identical transformers and they were sampled within a limited operation 

range, the sensitivity of PCA as applied to condition monitoring could not 

be investigated. The quantitative analysis of this method requires more data, 

obtained from a variety of different transformer conditions, in order to pro­
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vide an accurate assessment of the condition variation. However, the trend is 

clearly positive and suggests that the methodology could be used for condition 

monitoring. In contrast to the conventional correlation analysis methods which 

have been applied, for example monitoring of transformer partial discharges, 

the PCA provides a more systematic and comprehensive approach to analysis 

of correlation variations occurring as the transformer condition changes. Al­

though the PCA cannot be used directly for fault diagnosis, the information 

extracted by the PCA could form a maximum-information space for further 

classification leading to an identification of the details of transformer condition 

variations.

The use of principal component analysis on the catalytic cracker data has 

allowed the key variables in the various data sets to be identified. Although use 

of the rejection method and the retention method for selecting which variables 

to keep provides some discrepancies, there is a large degree of agreement as 

to which variables account for the main principal components. Once selected, 

these variables could be used in conjunction with either neural networks or 

learning expert systems to provide further classification of the catalytic cracker 

data.

Use of the principal components (eigenvalues) of the infra-red scatter data, 

has hugely reduced the dimensionality of the pattern space. However, this 

has not produced a set of patterns that have been separable by a multilayer 

perceptron neural network. Backpropagation networks with a wide range of 

neurons in the hidden and output layers have so far been unable to reach
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the desired error goal despite some networks training for up to 500,000 epochs. 

These networks have in fact largely failed to correctly classify training patterns 

during generalisation and have therefore have not been capable of classifying 

correctly any previously unseen test vectors.

These results show that PC A can be used for identifying the key variables 

of the catalytic cracker data and reducing the dimensionality of the infra-red 

scatter data. However, PCA was not able to produce data that could be used 

for classification by a neural network. As a result of these findings work moved 

on to examine the use of the wavelet transform as a method of information 

extraction.
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Chapter 4

The Wavelet Transform for 

Information Extraction

4.1 Introduction

The fundamental idea behind wavelets is to analyse according to scale. 

As with Fourier analysis, wavelets use superposition of functions, however, in 

wavelet analysis the scale that is used to look at the data plays a special role. 

Wavelet algorithms process data at different scales or resolutions. If a signal 

is examined using a large “window” then its gross features are observed. If 

the signal is examined using a small “window” then its detailed features are 

observed. The result is that using wavelet analysis it is possible to see both 

the “wood” and the “trees” [Gra95].

The procedure used in wavelet analysis is to adopt a wavelet prototype
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function called an analysing wavelet or mother wavelet. Temporal analysis is 

performed with a contracted, high frequency version of the analysing wavelet. 

Frequency analysis is performed with a dilated, low frequency version of the 

same wavelet. Unlike the Fourier transform which only has a single set of 

basis functions, that is, the sine and cosine functions, the wavelet transform 

has an infinite set of possible analysing functions. Therefore, wavelet analysis 

can provide information that may be obscured by the use of Fourier analysis 

[BH96, Gra95].

There are two possible ways that the wavelet transform could be used in 

the development of an intelligent monitoring and prediction system. Like the 

Fourier transform the wavelet transform is an orthonormal basis function. The 

wavelet transform could therefore be used to preprocess the data prior to input 

to the neural network. Wavelet transforms are capable of a sparse represen­

tation of the data, while still allowing the data to be reconstructed from the 

wavelet coefficients. Secondly, is the use of wavelet neural networks. Due to 

the similarity between wavelet decomposition and one hidden layer neural net­

works, the idea of combining both wavelets and neural networks has emerged 

[Joh, MCKDV97]. One possible route for this combination is as a special case 

of radial basis function networks. In this case the radial basis functions of the 

hidden layer are replaced by wavelet functions. The wavelet neural network 

provides an efficient representation of a given function. However, they are not 

generally RBF networks since multi-dimensional scaling functions can be non 

radialsymmetric [ZB92, ZWML95, Zha97].
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4.2 Limitations of the Fourier Transform

Fourier analysis works with linear problems. Nonlinear problems tend to 

be much harder, the behaviour of nonlinear systems is much less predictable: 

a small change in input can cause a big change in output. Another limitation 

of the Fourier transform is that it hides information about time [BH96]. The 

Fourier transform allows one to switch between the time and frequency do­

mains of a signal. However, only one of them is available at a time. That is, 

no frequency information is available in the time domain signal and no time 

information is available in the Fourier transformed signal [Gra95].

The Fourier transform tells us how much of each frequency component is 

in the signal, that is its spectral content, but the information on when in time 

these spectral components exist is buried deep within the phases of the Fourier 

transform. In theory the time information can be extracted by calculating the 

phases from the Fourier coefficients. In practice, computing them with enough 

precision is impossible [BH96]. For a stationary signal, that is, one whose 

frequency content does not change in time, this presents no problems.

However, a problem arises for non-stationary signals. Fourier analysis is 

poorly suited to very brief signals or signals that change suddenly and unpre- 

dictably [Str93, Ued95]. Consider two signals. Firstly, Signal 1 that has four 

frequencies, say 5, 10, 20 and 40 Hz sinusoids, present at all times as shown 

in figure 4.1. Secondly, Signal 2 that has these frequencies present for a set 

time, say the first interval 0 to 250ms has the 5Hz sinusoid present, the second
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interval 250 to 500ms has the 10Hz sinusoid present and so on, as shown in 

Figure 4.2.

Figure 4.1: Signal 1

Both of these signals will have essentially the same Fourier transform. This 

is because, as can be seen from equation 2.3.12, the signal is multiplied by 

an exponential term at some frequency, u, and integrated over all time. The 

Fourier transform gives the spectral content of a signal. The information about 

one instant of a signal (in the time domain) is dispersed throughout all the 

frequencies of the entire transform. Hence, a local characteristic of the signal 

becomes a global characteristic of the Fourier transform [BH96].

Figure 4.3 shows the FFT of Signal 1 and Figure 4.4 shows the FFT of 

Signal 2. It can be seen from these two figures that both signals have similar 

Fourier transforms. Both transforms have major frequency components at 5,
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Figure 4.2: Signal 2

10, 20 and 40Hz. The noise like components in Figure 4.4 are due to the abrupt 

changes in frequency in the second signal. Although these other frequencies 

exist in the signal, they have a small amplitude in the Fourier transform because 

they are not major spectral components of the signal.

When the time localisation of the spectral components of a non-stationary 

signal are required then the Fourier transform is inadequate. The wavelet 

transform does however provide information about the time-frequency repre­

sentation of a signal [Pola], as do others, for example, the short time Fourier 

transform. Figures 4.5 and 4.6 show the wavelet transforms of signals one and 

two respectively.

Note that the axes are translation and scale not time and frequency. How­

ever, translation is strictly related to time, since it indicates where the mother
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Frequency Hz

Figure 4.3: The fast Fourier transform of Signal 1

Figure 4.4: The fast Fourier transform of Signal 2
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Figure 4.5: The wavelet transform of signal 1
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Figure 4.6: The wavelet transform of signal 2
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wavelet is located. The translation of the mother wavelet can be thought of 

as the time elapsed since t — 0. The scale however is actually the inverse 

of frequency. Smaller scales correspond to higher frequencies and frequency 

decreases as scale increases [VM91]. Therefore, the portion of the graph with 

scales around zero correspond to the highest frequencies in the analysis, in this 

case 40Hz. It can be seen from Figure 4.5 that all frequencies are present for all 

times. Figure 4.6 is a little difficult to interpret. However, it can be seen that 

each frequency component exists at separate times. It can also be seen from 

Figure 4.6 that the wavelet transform has good time and poor frequency reso­

lution at high frequencies and good frequency and poor time resolution at low 

frequencies [BH96]. In addition wavelet analysis has advantages over Fourier 

analysis if the signal has transient behaviour or discontinuities [BDG96].
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4.3 The Continuous Wavelet Transform

The Continuous Wavelet Transform (CWT) was developed to overcome 

the time-frequency resolution problem described above and provides a method 

for determining information regarding the time-frequency representation of a 

signal. Wavelets analyse according to scale by the use of the superposition 

of functions at different scales. Wavelet algorithms processes data at different 

scales or resolutions to examine a signals different features [Wei94, CK96].

It should be noted, however, that this time-frequency resolution problem 

is a result of the Hiesenberg uncertainty principle and exists regardless of the 

transform used. In quantum mechanics the Hiesenberg uncertainty principle 

tells us that an elementary particle does not simultaneously have a precise 

position and a precise momentum. In time-frequency decompositions the effect 

of the Hiesenberg uncertainty principle is that a signal can not be concentrated 

simultaneously in time and frequency, that is, it does not have a precise location 

in time and a precise frequency. The product A iA /,  approximately 1/47T, sets 

a lower limit to the size of the window that can be used [Str94].

Figure 4.7 shows an idealised time-frequency plane decomposed with win­

dowed Fourier analysis. Note, that the width of the boxes remains fixed for each 

decomposition: the same for high frequencies and low frequencies. Figure 4.8 

shows an idealised time-frequency plane decomposed with wavelets. The wide 

windows, used to look at low frequencies, are precise about frequency and vague 

about time. The narrow windows, used to look at high frequencies, are precise
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about time and vague about frequency. Note, that the boxes in Figure 4.8 

all have the same (non-zero) area and represent an equal area of the time- 

frequency plane. The fact that these boxes have a non-zero area implies that 

the value of a particular point in the time-frequency plane cannot be known. 

All the points in the time-frequency plane that fall into a box are represented 

by one value of the wavelet transform [Polb].
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Figure 4.7: An idealised time-frequency plane decomposed with windowed 
Fourier analysis

Wavelets do not overcome the limit imposed by the Hiesenberg uncertainty 

principle, but adapt automatically to a signals components. At low frequencies 

a wider wavelet is used and at high frequencies a narrow wavelet is used. 

In effect the uncertainty principle imposes a compromise: knowledge gained

I n t e l l ig e n t  M o n it o r in g  a n d  P r e d ic t io n  S y s t e m s  Howard Lewis



Chapter 4 The Wavelet Transform for Information Extraction 136

Figure 4.8: An idealised time-frequency plane decomposed with wavelets

about time is paid for in frequency and vice versa [BH96, Chu92]. The wavelet 

transform uses multiresolution analysis to give good time resolution and poor 

frequency resolution at high frequencies, and good frequency resolution and 

poor time resolution at low frequencies [Pole].

Wavelet analysis is performed by multiplying the signal with a function, 

that is the wavelet, and the transform is then computed separately for different 

segments of the time domain signal. The width of this window is changed as 

the transform is computed for every single spectral component [Dau92], The 

continuous wavelet transform, is defined as:

J x { t ) ^  ( ^ p - )  dt. (4.3.1)

The transformed signal is a function of the translation, r, and scale, s, param­
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eters. ip(t) is the transforming function, that is, the mother wavelet.

The continuous wavelet transform is a reversible transform and the inverse 

wavelet transform is defined as:

X(t) =  -T [  f  ( - — - )  drds. (4.3.2)
c i/> J s J t  s  V s /

However, reconstruction of the original signal using equation 4.3.2 is only possi­

ble if the admissibility condition is met. Equation 4.3.3 defines the admissibility 

constant:

=  ^2tt f  < °o, (4-3.3)

where /̂>(£) is the Fourier transform of ip(t). Equation 4.3.3 implies that xl>(0) =  

0, which is:

J  ip(t)dt =  0. (4.3.4)

Equation 4.3.4 requires that the wavelet function integrates to zero, that is, 

the wavelet must be oscillatory.

The term translation is related to the location of the windowing function 

or mother wavelet, as the window is shifted through the signal. This term 

corresponds to time information in the transform domain. However, there is 

no frequency parameter. Instead there is a scale parameter, s, which is defined 

as s =  1 / / .  Scaling, as a mathematical operation, either dilates (large scales) 

or compresses (small scales) a signal [Dau88].

High scales correspond to a non-detailed global view of the signal and low 

scales correspond to a detailed view. In terms of frequency, low frequencies 

(high scales) correspond to global information of the signal (that usually spans
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the entire signal), whereas high frequencies (low scales) correspond to the de­

tailed information of a hidden pattern in a signal (that usually lasts a relatively 

short time) [Pole].

4.3.1 Computing the Wavelet Transform

Let x(t ) be the signal to be analysed using the wavelet transform, equa­

tion 4.3.1. A mother wavelet is chosen to serve as a prototype for all windows 

in the process. There is a wide choice of mother wavelets available, figure 4.9 

shows the Daubechies D4 wavelet and Figure 4.10 shows the Haar wavelet 

[BCD+95].

Figure 4.9: The Daubechies D4 wavelet

Once the mother wavelet is chosen the computation starts, with s =  1 for 

example, and continues for increasing values of s, that is, the analysis starts 

from high frequencies and proceeds towards low frequencies. This first value of
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Figure 4.10: The Haar wavelet

s corresponds to the most compressed wavelet. As s is increased, the wavelet 

dilates.

The wavelet is placed at the beginning of the signal, that is at time t =  0. 

The signal is then multiplied by the wavelet function at scale s =  1 and then 

integrated over all times. The resulting integration is then multiplied by the

constant factor —i -  to normalise the transformed signal energy. This ensures
V l«l

that the transformed signal will have the same energy at every scale. The value 

of the CWT has now been calculated for t =  0 and s =  1, that is, the point 

r  =  0 and s =  1 in the time-scale plane.

The wavelet is then shifted along the signal by r  to the point t =  r, with 

s =  1 still. The CWT is then computed for the point t =  r, s =  1 in the 

time-scale plane. This procedure is then repeated until the wavelet reaches the 

end of the signal. For the scale s =  1, one row of points on the time-scale plane
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has now been computed.

This procedure is repeated for every value of s, with s being incremented 

by a small amount each time. Every computation for a given value of s fills 

the corresponding (single) row in the time-scale plane. When this process is 

completed the wavelet transform of the signal has been calculated [BDG96, 

Pole].
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4.4 The Discrete Wavelet Transform

Although the discretised continuous wavelet transform enables the com­

putation of the continuous wavelet transform by computers, it is not a true 

discrete transform. In fact, the wavelet series is simply a sampled version of 

the CWT, and the information it provides is highly redundant as far as the 

reconstruction of the signal is concerned. This redundancy, on the other hand, 

requires a significant amount of computation time and resources. The discrete 

wavelet transform (DWT) provides sufficient information both for analysis and 

synthesis of the original signal, with a significant reduction in the computa­

tion time. In addition, the DWT is considerably easier to implement when 

compared to the CWT. If the scales and positions of the mother wavelet are 

chosen based on the power of two, that is, dyadic scales and positions, then 

the analysis will be much more efficient without losing any accuracy [SLL+].

The main idea is the same as it is in the CWT. A time-scale representation 

of a digital signal is obtained using digital filtering techniques. Recall that the 

CWT is a correlation between a wavelet at different scales and the signal with 

the scale (or the frequency) being used as a measure of similarity. The con­

tinuous wavelet transform was computed by changing the scale of the analysis 

window, shifting the window in time, multiplying by the signal, and integrating 

over all times. In the discrete case, filters of different cutoff frequencies are used 

to analyze the signal at different scales. The signal is passed through a series 

of highpass filters to analyze the high frequencies, and it is passed through a
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series of lowpass filters to analyze the low frequencies [BH96].

The resolution of the signal, which is a measure of the amount of detail 

information in the signal, is changed by the filtering operations, and the scale 

is changed by upsampling and downsampling (subsampling) operations. Sub­

sampling a signal corresponds to reducing the sampling rate, or removing some 

of the samples of the signal. For example, subsampling by two refers to drop­

ping every other sample of the signal. Subsampling by a factor n reduces the 

number of samples in the signal n times [Str89].

Upsampling a signal corresponds to increasing the sampling rate of a signal 

by adding new samples to the signal. For example, upsampling by two refers 

to adding a new sample, usually a zero or an interpolated value, between every 

two samples of the signal. Upsampling a signal by a factor of n increases the 

number of samples in the signal by a factor of n.

For many signals, the low-frequency content is the most important part. It 

is what gives the signal its identity. The high-frequency content, on the other 

hand, imparts flavour or nuance. Consider, for example, the human voice. If 

the high-frequency components are removed, the voice sounds different, but 

it is still possible to tell what is being said. However, remove enough of the 

low-frequency components, and the voice becomes incoherent. It is for this 

reason that wavelet analysis often uses the terms approximations and details.

The approximations are the high-scale, low-frequency components of the 

signal. The details are the low-scale, high-frequency components. Figure 4.11 

shows the filtering process at its most basic level.
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Figure 4.11: Signal S passes through two complimentary filters and emerges as 
two signals

If a signal is denoted x[n\, where n is an integer, then the procedure begins 

by passing this signal through a half band digital lowpass filter with impulse 

response h[n]. Filtering a signal corresponds to the mathematical operation of 

convolution of the signal with the impulse response of the filter. The convolu­

tion operation in discrete time is defined as:

O O

x[n ]*h[n ]=  ^  x[k]-h[n — k] (4-4.1)
k=—oo

A half band lowpass filter removes all frequencies that are above half of 

the highest frequency in the signal. For example, if a signal has a maximum of 

1000Hz component, then half band lowpass filtering removes all the frequencies 

above 500Hz.
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In discrete signals, frequency is expressed in terms of radians. Accordingly, 

the sampling frequency of the signal is equal to 2n radians in terms of radial 

frequency. Therefore, the highest frequency component that exists in a signal 

will be 7r radians, if the signal is sampled at Nyquists rate (which is twice 

the maximum frequency that exists in the signal); that is, the Nyquists rate 

corresponds to ir rad/s in the discrete frequency domain [BH96].

After passing the signal through a half band lowpass filter, half of the sam­

ples can be eliminated according to the Nyquists rule, since the signal now has 

a highest frequency of 7t/ 2 radians instead of n radians. Simply discarding ev­

ery other sample will subsample the signal by two and the signal will then have 

half the number of points. The scale of the signal is now doubled. Note that 

the lowpass filtering removes the high frequency information, but leaves the 

scale unchanged. Only the subsampling process changes the scale. Resolution, 

on the other hand, is related to the amount of information in the signal, and 

therefore, it is affected by the filtering operations. Half band lowpass filtering 

removes half of the frequencies, which can be interpreted as losing half of the 

information. Therefore, the resolution is halved after the filtering operation. 

Note, however, that the subsampling operation after filtering does not affect 

the resolution, since removing half of the spectral components from the signal 

makes half the number of samples redundant anyway. Half the samples can 

be discarded without any loss of information. In summary, the lowpass filter­

ing halves the resolution, but leaves the scale unchanged. The signal is then 

subsampled by two since half of the samples are redundant. This doubles the
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scale. This procedure can mathematically be expressed as:

OO

y[n\= Y  h[k\ ■ x[2n — k] (4.4.2)
k=—oo

The DWT analyzes the signal at different frequency bands with different 

resolutions by decomposing the signal into a coarse approximation and de­

tail information. DWT employs two sets of functions, called scaling functions 

and wavelet functions, which are associated with lowpass and highpass filters, 

respectively [Pold]. The decomposition of the signal into different frequency 

bands is simply obtained by successive highpass and lowpass filtering of the 

time domain signal. The original signal x[n] is first passed through a halfband 

highpass filter g[n] and a lowpass filter h[n]. After the filtering, half of the 

samples can be eliminated according to the Nyquists rule, since the signal now 

has a highest frequency of 7r/2 radians instead of 7r. The signal can therefore be 

subsampled by two, simply by discarding every other sample. This constitutes 

one level of decomposition and can mathematically be expressed as follows:

V h i g h [ k ]  =  Y  ~  n] (4.4.3)
n

Viow[k] =  z[n] • /i[2 k -  n] (4.4.4)
n

where yhigh[k] and yiow[k\ are the outputs of the highpass and lowpass filters, 

respectively, after subsampling by two.

This decomposition halves the time resolution since only half the number
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of samples now characterizes the entire signal. However, this operation doubles 

the frequency resolution, since the frequency band of the signal now spans only 

half the previous frequency band, effectively reducing the uncertainty in the 

frequency band by half. The above procedure, which is also known as subband 

coding, can be repeated for further decomposition. At every level, the filtering 

and subsampling will result in half the number of samples (and hence half the 

time resolution) and half the frequency band spanned (and hence double the 

frequency resolution). Figure 4.12 illustrates this process, where x[n] is the 

original signal to be decomposed and h[n] and g[n] are lowpass and highpass 

filters respectively. The bandwidth of the signal at each level is marked on the 

figure as / .

As an example, suppose that the original signal x[n] has 512 sample points, 

spanning a frequency band of zero to n rad/s. At the first decomposition 

level, the signal is passed through the highpass and lowpass filters, followed by 

subsampling by two. The output of the highpass filter has 256 points (hence 

half the time resolution), but it only spans the frequencies 7t/ 2  to n rad/s (hence 

double the frequency resolution). These 256 samples constitute the first level 

of DWT coefficients. The output of the lowpass filter also has 256 samples, 

but it spans the other half of the frequency band, frequencies from 0 to n/2 

rad/s. This signal is then passed through further lowpass and highpass filters 

for further decomposition. The output of the second lowpass filter followed by 

subsampling has 128 samples spanning a frequency band of 0 to 7r/4 rad/s, 

and the output of the second highpass filter followed by subsampling has 128
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x[n] f=o~7i

Figure 4.12: The Subband Coding algorithm

samples spanning a frequency band of 7t/ 4 to 7r/2 rad/s. The second highpass 

filtered signal constitutes the second level of DWT coefficients. This signal 

has half the time resolution, but twice the frequency resolution of the first 

level signal. In other words, time resolution has decreased by a factor of four, 

and frequency resolution has increased by a factor of four compared to the 

original signal. The lowpass filter output is then filtered once again for further 

decomposition. This process continues until two samples are left. For this 

specific example there would be eight levels of decomposition, each having half 

the number of samples of the previous level. The DWT of the original signal
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is then obtained by concatenating all coefficients starting from the last level 

of decomposition (remaining two samples, in this case). The DWT will then 

have the same number of coefficients as the original signal.

The frequencies that are most prominent in the original signal will appear as 

high amplitudes in that region of the DWT signal that includes those particular 

frequencies. The difference of this transform from the Fourier transform is 

that the time localization of these frequencies will not be lost. However, the 

time localization will have a resolution that depends on at which level they 

appear. If the main information of the signal lies in the high frequencies, as 

happens most often, the time localization of these frequencies will be more 

precise, since they are characterized by a greater number of samples. If the 

main information lies only at very low frequencies, the time localization will 

not be very precise, since few samples are used to express signal at these 

frequencies. This procedure in effect offers a good time resolution at high 

frequencies, and good frequency resolution at low frequencies. Most practical 

signals encountered are of this type. The frequency bands that are not very 

prominent in the original signal will have very low amplitudes, and that part 

of the DWT signal can be discarded without any major loss of information, 

allowing data reduction [BH96].

One important property of the discrete wavelet transform is the relationship 

between the impulse responses of the highpass and lowpass filters. The highpass 

and lowpass filters are not independent of each other and are related by:
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g[L — 1 — n] =  (—l )n • h[n] (4.4.5)

where g[n] is the highpass and h[n] the lowpass filter and L is the filter length. 

Note that the two filters are odd index alternated reversed versions of each 

other. Lowpass to highpass conversion is provided by the (—l)n term. Fil­

ters satisfying this condition are commonly used in signal processing and are 

known as Quadrature Mirror Filters (QMF). The two filtering and subsampling 

operations can be expressed by:

Vhigh[k] =  x[n\ • g[—n +  2k] (4.4.6)
n

yiow[k\ =  y ^ z[n ] • h [-n  +  2k] (4.4.7)
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4.5 Analysis of the Oil Mist data

4.5.1 Raw Data

Data has been provided by Shell UK which consists of limited real world 

infra-red scatter data. This data comes from three separate sensors arranged 

spatially around a point to detect oil mist. The data falls into four alarm 

categories; High, Low, Grey and None. The physical characteristics of this 

data is unknown. Figures 4.13, 4.14, 4.15 and 4.16 show typical plots of high, 

low, grey and none alarm data samples respectively.

Figure 4.13: High alarm data

Figure 4.17 gives a scatter plot of Highl beams A and B and clearly shows 

that the data does not fall into the sort of curvilinear relationship described 

above in Section 2.3.6 and thus suggests that correlation coefficient will not
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Figure 4.14: Low alarm data

reveal any useful information about this particular set of data.

Figures 4.18, 4.19, 4.20, 4.21 and 4.22 show further scatter plots of the raw 

data, in both the High and Low alarm categories. These figures show raw 

data that also clearly does not fit the curvilinear relationship that is generally 

required for the successful use of the correlation coefficients, in revealing any 

useful information about the raw data.

A wavelet analysis was then performed on the data using a range of mother 

wavelets [FTK96, BBPB96, KP]. The Daubechies wavelet of order 5 was even­

tually selected as the wavelet that appeared to reveal most consistently, that 

is, across the widest range of samples of the data, the most interesting features 

of the data. Specifically it was the level 3 detail coefficients of the wavelet 

transform, using the Daubechies 5 mother wavelet, that was chosen as the
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Figure 4.15: Grey alarm data

Figure 4.16: None alarm data
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Figure 4.17: Scatter plot of Highl beams A and B

Figure 4.18: Scatter plot of Highl beams A and C

I n t e l l ig e n t  M o n it o r in g  a n d  P r e d ic t io n  S y s t e m s Howard Lewis



Chapter 4 The Wavelet Transform for Information Extraction 154

Figure 4.19: Scatter plot of Highl beams B and C

Figure 4.20: Scatter plot of Lowl beams A and B
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Figure 4.21: Scatter plot of Lowl beams A and C

Figure 4.22: Scatter plot of Lowl beams B and C
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most suitable for training a neural network. Figures 4.23 and 4.24 show the 

wavelet coefficients of two samples of the data extracted using the Daubechies 

5 wavelet.

Figure 4.23: Wavelet coefficients of a typical sample of High alarm data using 
Daubechies 5 mother wavelet

Figures 4.25, 4.26, 4.27, 4.28, 4.29 and 4.30 show scatter plots of the selected 

wavelet coefficients of the data in Figures 4.18, 4.19, 4.20, 4.21 and 4.22. The 

scatter plots in Figures 4.25, 4.26, 4.27, 4.28, 4.29 and 4.30 again indicate that 

use of the correlation coefficients of the wavelet transform is unlikely to yield 

any useful information.

Nevertheless, the correlation coefficients were extracted from the wavelet 

coefficients and used to train backpropagation neural networks. In an attempt 

to ease the pattern separation problem only two of the alarm conditions, high
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Figure 4.24: Wavelet coefficients of a typical sample of Low alarm data using 
Daubechies 5 mother wavelet

and low, were selected for training the neural network. The processed data 

was split into two groups for neural network training and testing purposes. 

The training data was then used to train a whole range of feedforward neural 

networks, with differing numbers of neurons in the hidden and output layers.

Figure 4.31 shows a plot of the training errors for a backpropagation net­

work with three hidden neurons. The training of this network was successful, 

with all training patterns being classified correctly by the trained network. 

However, the generalisation was poor when the network was tested on previ­

ously unseen test data, the prediction results showed only 45% of Low alarm 

test data and 49% of High alarm test data being classified correctly. Figure 4.32 

shows a plot of the training errors for a backpropagation network with six hid-
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Figure 4.25: Scatter plot of Wavelet coefficients of Highl beams A and B

den neurons. Again training was successful but, generalisation was poor with 

78% of Low test cases and 45% of High test cases being classified correctly. Fig­

ure 4.33 shows a plot of the training errors for a backpropagation network with 

nine hidden neurons. The network trained successfully once again but, again 

the generalisation of the network was poor, with the classification of the test 

data showing no improvement with 66% and 49% of Low and High alarm data 

respectively being classified successfully. Addition of further neurons resulted 

in no further increase of the prediction accuracy of the neural networks.
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Figure 4.26: Scatter plot of Wavelet coefficients of Highl beams A and C
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Figure 4.27: Scatter plot of Wavelet coefficients of Highl beams B and C
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L1acD 3

Figure 4.28: Scatter plot of Wavelet coefficients of Lowl beams A and B

Figure 4.29: Scatter plot of Wavelet coefficients of Lowl beams A and C
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L1 bcD 3

Figure 4.30: Scatter plot of Wavelet coefficients of Lowl beams B and C

Figure 4.31: Training errors for backpropagation neural network with 3 hidden 
neurons
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Figure 4.32: Training errors for backpropagation neural network with 6 hidden 
neurons

Figure 4.33: Training errors for backpropagation neural network with 9 hidden 
neurons
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4.5.2 Normalised Data

The next stage involved normalising the data before using other techniques 

for extracting the key features of the data. Normalisation of the data involves 

processing the data so that it has a mean of zero and a standard deviation of 

1. The formula for normalising the data is given by:

x — x
• E n o rm (4.5.1)

where x  is the mean of x and ox is the standard deviation of x.

Figures 4.34, 4.35, 4.36 and 4.37 show plots of the normalised alarm data 

for the High, Low, Grey and None alarm categories respectively.

Figure 4.34: Normalised High alarm data

Once the data had been normalised, the wavelet transform was applied to 

the normalised data. The correlation coefficients of the wavelet coefficients were
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Figure 4.35: Normalised Low alarm data

then calculated as was the variance of the wavelet coefficients. The correlation 

coefficients were then concatenated with the variances to create a set of input 

vectors, of dimensionality six, for the feedforward neural network. Only two of 

the alarm conditions were chosen for training and testing purposes, to increase 

the probability of the neural networks being able to successfully classify the 

data. The two alarm conditions chosen were High and None, as this allowed 

for a greater number of training vectors to be used in the training of the neural 

networks.

Figures 4.38, 4.39, 4.40, 4.41, 4.42 and 4.43 show plots of the training errors 

for backpropagation neural networks containing, 3, 6, 9, 12, 18 and 24 hidden 

neurons respectively.

All the neural networks, with the exception of the network with 3 hidden
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Figure 4.36: Normalised Grey alarm data

Figure 4.37: Normalised None alarm data
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Figure 4.38: Training errors for backpropagation neural network with 3 hidden 
neurons

P erfo rm ance  is  9 .2 2 3 9 2 e -0 1 1, G oa l is  0

Figure 4.39: Training errors for backpropagation neural network with 6 hidden 
neurons
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Figure 4.40: Training errors for backpropagation neural network with 9 hidden
neurons
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Figure 4.41: Training errors for backpropagation neural network with 12 hidden
neurons
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Figure 4.42: Training errors for backpropagation neural network with 18 hidden 
neurons

Figure 4.43: Training errors for backpropagation neural network with 24 hidden 
neurons
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neurons, trained correctly. That is, once trained, the networks were then pre­

sented with the training data again and successfully classified all the training 

samples of the High and None alarm data. The neural network with 3 hidden 

neurons achieved success rates of 90% in the testing of the None alarm training 

data and 80% in the testing of the High alarm training data.

Table 4.1 shows the percentage accuracy of the different neural networks 

predictions in classifying data, when tested on previously unseen test data. As 

can be seen from table 4.1 the prediction results are disappointing. The neural 

networks trained have all completely failed to generalise when presented with 

previously unseen test data and have proved incapable of accurate prediction 

results.

Number of hidden neurons High None

3 44% 33%

6 51% 25%

9 54% 25%

12 62% 41%

18 58% 42%

24 74% 58%

Table 4.1: Neural network prediction accuracy
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4.6 Conclusion

The research work undertaken in this section was to develop a novel method­

ology for time series prediction. The aim was to produce an intelligent monitor­

ing and prediction system based on neural networks. As previously mentioned 

in Section 1.3 Shell U.K. wish to develop such a system for unmanned remote 

installations, with the aim of developing an alarm system that can anticipate 

problems due to oil mist, and have provided the raw data for the development 

of this work. The scatter data is provided by three infra-red detectors all mon­

itoring the same cell from different angles, and falls into one of four alarm 

categories: High, Low, Grey and None.

Initially neural networks were trained using the raw infra-red scatter data. 

While it has been possible to train many multilayer perceptron neural networks, 

with differing numbers of neurons in the hidden and output layers, that can 

correctly classify training patterns when they are represented to the trained 

network, so far it has not been possible to train networks that generalise satis­

factorily. That is, none of the networks have been able to generalise correctly 

when presented with test vectors that have not been used in the training of the 

network. The neural networks prediction accuracy, achieved when classifying 

previously unseen test data, has generally been of the order of 40 — 60%. This 

is not an acceptable degree of accuracy for any real world applications.

Further work involved extracting the wavelet coefficients of the data. The 

mother wavelet selected was the Daubechies wavelet of level 5, as initial obser­
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vations suggested this revealed the most interesting features of the data. The 

correlation coefficients of the wavelet transform were then examined to discover 

whether or not the patterns showed any likelihood of being separable in the 

pattern space. Again, a range of backpropagation networks trained correctly 

but performed poorly when generalising using test patterns.

The next stage involved normalising the data, so that it had a mean of 0 

and a standard deviation of 1. The wavelet coefficients, Daubechies level 5, 

were extracted from the standardised data and concatenated with the variances 

to form neural network training vectors. To reduce the dimensionality of the 

problem in the pattern separation, only the High and None alarm conditions 

were selected for neural network training. Again a number of backpropagation 

networks were trained. Although most of these networks trained correctly as 

they were able to successfully classify the training data, the networks did not 

perform consistently when presented with previously unseen test vectors.

Overall, these studies have found that using the wavelet transform on both 

the raw infra-red scatter data and the normalised data produced neural net­

works that could be trained successfully. However, even with the reduced 

dimensionality of the data as a result of the wavelet transform, the neural net­

works could not successfully classify the test vectors of either the raw data or 

the normalised data on a consistent basis.
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Chapter 5

Expert Systems And 

Evolutionary Computation

5.1 Introduction

Rule-based expert systems, or production systems, represent the underlying 

technology for many of today’s artificial intelligence systems. Rules have been 

used extensively in artificial intelligence because rules are simple to work with 

and because each rule can be considered independent of the others. This latter 

fact allows for the incremental construction of expert systems.

The main components of an expert system are a knowledge base and a 

demonstrator. The knowledge base contains rules, of the form if-then, and facts 

in a declaratory and modular form, and exists independently of the demon­

strator. The demonstrator must be able to interpret the information in the
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knowledge base and use it to solve a question within the relevant problem 

domain.

Expert systems generally include symbolic representation, symbolic infer­

ence and heuristic search. Expert systems perform difficult tasks at expert 

levels of performance by employing domain-specific problem-solving strategies. 

An expert system is capable of employing self-knowledge to reason about their 

own inference processes and can provide justifications for conclusions reached.

Evolutionary computation can be an effective method for finding the soiu- 

tion of a problem. Evolutionary computation searches through the space of all 

the potential solutions to that problem.

Genetic algorithms frequently operate on fixed iength character strings, 

often binary, as the structure undergoing adaptation. Fitness is determined 

by executing task specific routines and algorithms using an interpretation of 

the character string as the set of parameters. The two main genetic operators 

are reproduction and crossover (sexual recombination). Both are performed 

with a probability based on fitness. The mutation operator is of secondary 

importance.

Genetic classifier systems are a form of genetics-based machine learning 

system. Genetic classifiers combine a simple, parallel production system based 

on string rules, an apportionment of credit algorithm modelled after an infor­

mation based service economy, and genetic algorithms.

Genetic programming is an offshoot of genetic algorithms in which the com­

puter structures that undergo adaptation are themselves computer programs.
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Specialised genetic operators are used which generalise crossover and mutation 

for the tree structured computer programs undergoing adaptation.

Genetic programming is usually nonlinear and operates on tree structured 

genetic material. The genetic material that genetic programming operates on 

can vary in size. Genetic programming creates executable genetic material, 

that is, the genetic material is executed in order to form the desired function 

from which the fitness is derived. Syntax preserving crossover is performed 

by genetic programming, in order to preserve the syntactic correctness of the 

program which is the genetic material.

Learning expert systems, genetic classifiers, are a cognitive architecture that 

allow the adaptive modification of a set of if-then rules. The architecture of the 

classifier system blends important features from the contemporary paradigms 

of artificial intelligence, connectionism and machine learning, including:

• The power, understandability and convenience of if-then rules from expert 

systems.

• A connectionist-style allocation of credit that rewards specific rules when 

the system as a whole takes an external action that produces a reward.

• The creative power and efficient search capability of the conventional ge­

netic algorithm operating on fixed length character strings.

In a learning expert system there is a set of if-then rules. Both the condition 

part and the action part of each if-then rule consists of a fixed length string. 

When the condition part of the rule is satisfied by some external environmental
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feature the rule is “fired” . Rules that are fired, and cause the learning expert 

system to contribute to some environmental action, then have their fitness 

increased. Genetic operators are then used on the set of if-then rules to create 

new rules. The objective of the classifier system is to breed a co-adapted set 

of if-then rules that successfully work together to solve a problem.

An intelligent monitoring and prediction system could be developed using: 

signal processing to extract the key features from the raw data, neural net­

works for pattern classification and a learning expert system for the adaptive 

adaptation of the systems rule base. Figure 5.1 shows the block diagram of an 

ideal intelligent monitoring and prediction system.

Figure 5.1: Block diagram of an ideal intelligent monitoring and prediction 
system
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5.2 Expert Systems

The aim of an expert system is to reproduce the behaviour of a human 

expert, thus performing an intellectual task in a specified field. Expert sys­

tems position themselves at the junction of the two approaches to artificial 

intelligence (AI); the representation of information on the one hand and its 

automatic ‘demonstration’ on the other.

These form two totally independent systems:

1. A knowledge base.

2. A demonstrator of theorems (an inference engine or rule interpreter).

The knowledge base translates expert knowledge in a given field into a 

declaratory and modular form. The demonstrator has the task of calling up 

and using this information in a useful way in order to answer a question or 

solve a problem. The knowledge base must be readable on its own and must 

exist independently from the inference engine, but must be capable of being 

interpreted by it, and this knowledge base must be under the control of the 

human expert.

An expert system differs from a conventional computer program in two 

essential ways since at any time an expert system can [Gon86]:

1. Explain its behaviour to the human expert.

2. Receive new pieces of information from the human expert without any 

new programming being required.
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5.2.1 Components of an Expert System

Figure 5.2 shows an idealised representation of an expert system. No expert 

system contains all these components, but one or more components occur in 

every expert system.

The ideal expert system contains a language processor for problem-oriented 

communications between the user and the expert system; a “blackboard” for 

recording intermediate results; a knowledge base comprising facts as well as 

heuristic planning and problem solving rules; an interpreter that applies these 

rules; a scheduler to control the order of rule processing; a consistency enforcer 

that adjusts previous conclusions when new data (or knowledge) alter their 

bases of support; and a justifier that rationalises and explains the systems 

behaviour [Kos93].

The user interacts with the expert system in a problem-oriented language, 

usually some restricted variant of English. The language processor mediates 

information exchanges between the expert system and the user. Typically the 

language processor parses and interprets user questions, commands and vol­

unteered information. Conversely, the language processor formats information 

generated by the system, including answers to questions, explanations and 

justifications for its behaviour, and requests for information.

The blackboard records intermediate hypotheses and decisions that the ex­

pert system manipulates. Every expert system uses some type of intermediate 

decision representation, but only a few explicitly employ a blackboard. The
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U S E R

Figure 5.2: Anatomy of an ideal expert system

figure identifies three types of decisions recorded on the blackboard: plan, 

agenda and solution elements. Plan elements describe the overall attack the 

system will pursue against the current problem, including current plans goals, 

problem states and contexts. The agenda elements record the potential actions 

awaiting execution, which generally correspond to knowledge based rules that 

seem relevant to some decision placed on the blackboard previously. The solu­

tion elements represent the candidate hypotheses and decisions the system has 

generated thus far, along with the dependencies that relate decisions to one 

another. Often these dependencies are called links.
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The scheduler maintains control of the agenda and determines which pend­

ing action should be executed next. Schedulers generally prioritise agenda 

items according to their relationship to the plan and other extant solution 

elements. Schedulers therefore need to estimate the affects of applying the 

potential rule.

The interpreter executes the chosen agenda item by applying the corre­

sponding knowledge base rule. Generally, the interpreter validates the rele­

vance conditions of the rule, binds variables in these conditions to particular 

solution blackboard elements, and then makes those changes to the blackboard 

that the rule prescribes.

The consistency enforcer attempts to maintain a consistent representation 

of the emerging solution. Most expert systems use some numerical adjustment 

scheme to determine the degree of belief in each potential decision. This scheme 

attempts to ensure that plausible conclusions are reached and inconsistent ones 

are avoided.

The justifier explains the actions of the expert system to the user. In gen­

eral, it answers questions about why some conclusion was reached or why some 

alternative was rejected. To do this the justifier traces backward along black­

board solution elements from the questioned conclusion to the intermediate 

hypotheses or data that support it. The justifier collects these intermediate 

inferences and translates them into English for presentation to the user.

Finally, the knowledge base records rules, facts, and information about the 

current problem that may be useful in formulating a solution. Whereas the
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rules of the knowledge base have procedural interpretations, the facts only play 

passive roles [Sel85].

5.2.2 Expert System Rules

Rules are used extensively in AI because each rule is simple to work with 

and because each rule can be considered independently of the others. This 

latter fact allows for the incremental construction of AI programs. Production 

rules, or if-then rules, are statements of the form:

LHS -»■ RHS

where LHS (left hand side) determines the conditions or situations that must 

be satisfied for the rule to be applicable and RHS (right hand side) is the 

action (s) that must be taken once the rule is applied. The terms premise 

or condition are frequently used for LHS and conclusion or action for RHS. 

The system progresses by inferring the conclusion whenever the conditions 

match the problem at hand. This is the simplest and most fundamental rule 

of inference and is known as modus ponens.

Often the rule of modus ponens is expressed using the if-then construct:

IF AI THEN Bl.

Each side of the rule may be in the form of a conjunction:

IF A l, A2, . . . ,  Am THEN Bl, B2, . . . ,  Bn.
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The above rule means that whenever A l, A2, . . Am hold, actions Bl, B2, 

. . Bn must take place.

Central to expert systems are the concepts of symbols and search. “Physical 

symbol systems” manipulate collections of symbolic structures and perform 

problem-solving tasks using heuristic search. A symbol is defined as a physical 

pattern that can occur as a component of a symbol structure composed of a 

number of symbols related in some physical way, as being next to each other. 

Symbols can be thought of as strings of characters, while symbol structures are 

a type of data structure called list structures containing symbols. Examples of

symbols are:

Transistor
Running
3.142

Examples of symbol structures are:

(On Blockl Block2)
(Research Location 1.01)

A number of factors affect the expert system in problem solving. For ex­

ample, the inference engine must know where to start the process, in which 

direction to pursue the search for a solution, and how to make a choice when 

several rules are eligible for selection at once [HRWL83].

Expert systems allow for both (forward) data-driven and (backward) goal- 

driven computation. Starting from the initial known facts the system can go 

forward until the expected conclusion is reached or, alternatively, backwards 

from the goal until the path is completed.
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Forward chaining can be regarded as a “recognise-act” cycle. In each cycle, 

by matching the contents of the working memory (blackboard) to the condi­

tion side of the rules, the expert system works out which rules have become 

eligible for execution. The interpreter chooses one of these rules, and adds the 

conclusion part of that rule to the working memory. A new cycle can now 

begin.

Backward chaining may be regarded as a “recognise-reduce” cycle. Back­

ward chaining assumes that a rule is true and, by examining the rules, attempts 

to find a chain of inferences that can establish a link between the known facts 

and the goal. Thus proving the goal is indeed true.

Along with a decision on the direction of search, a methodology must be 

selected for making choices when more than one rule is a candidate for firing. 

There are numerous strategies available for this.

Two systematic methods that can be used with both forward and backward 

chaining are depth-first and breadth-first search. The depth-first search digs 

deeper and deeper in a spot, until the goal is found or the limit of the depth 

is reached. The search then examines and digs another spot. By contrast, a 

breadth-first search sweeps across all possible areas before going to a deeper 

level.

Forward chaining has a number of conflict resolution strategies for deciding 

which rule to fire next. Often a combination of these strategies is used to 

eliminate conflicts [Ade90]. Some of these strategies are:
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1. Elimination of executed rules: Rules just executed are discarded from the 

conflict set, thus a rule is not allowed to fire more than once on the same 

set of facts.

2. Textual position: Choose the rule that appears earliest in the list of rules 

in the knowledge base. This requires a prioritising of rules when drawing 

up the list.

3. Ordering of rules: The rule with the highest priority will be chosen. This 

requires assignment of priority values to the rules.

4. Specificity: When the conditions of one eligible rule form a superset of 

the conditions of another triggered rule, then by specificity the rule with 

the larger number of conditions met is picked.

5. Recency: Priority is given to the rule that has been added to the conflict 

set most recently. This concentrates on finding more details about the 

current subproblem.
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5.3 Evolutionary Computation

5.3.1 Genetic Algorithms

Genetic algorithms are a highly parallel technique that apply evolution­

ary processes to the solution of a variety of problems. The genetic algorithm 

transforms a population of individual objects, each with an associated fitness 

value, into a new generation of the population using the Darwinian principle 

of reproduction and survival of the fittest and naturally occurring genetic op­

erators such as crossover (recombination) and mutation. Each individual in 

the population represents a possible solution to the given problem. The ge­

netic algorithm attempts to find the best solution to the problem by genetically 

breeding the population of individuals. While randomised, genetic algorithms 

are not a simple random walk. They efficiently exploit historical information 

to speculate on new search points with expected improved performance.

In preparing to use the genetic algorithm operating on a fixed length char­

acter string to solve a problem, there are four major preparatory steps required 

[Gol89] :

1. Determine the representation scheme.

2. Determine the fitness measure.

3. Determine the parameters and variables for controlling the algorithm.

4. Determine a way of designating the result and a criterion for terminating 

the run.
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For the conventional genetic algorithm, the individuals in the population 

are usually fixed-length character strings patterned after chromosome strings. 

The representation scheme is determined by choosing a string length L and an 

alphabet size K. The most important part of the representation scheme is the 

mapping that expresses each possible point in the search space of the problem as 

a fixed-length character string (that is as a chromosome) and each chromosome 

as a point in the search space. This often requires a deep understanding of the 

problem.

The evolutionary process is driven by the fitness measure. The fitness 

measure assigns a fitness value to each possible string in the population.

The main parameters for controlling the genetic algorithm are the popula­

tion size M  and the maximum number of generations to be run, G.

Each run of the genetic algorithm requires specification of a termination 

criterion for deciding when to terminate a run and a method of result designa­

tion. One frequently used method of result designation for a run of the genetic 

algorithm is to designate the best individual obtained in any generation of the 

population during the run (that is the best-so-far individual) as the result of 

the run.

Once these steps have been completed, the genetic algorithm can be run. A 

simple genetic algorithm that yields good results in many practical problems 

is composed of three operators:

1. Reproduction.
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2. Crossover.

3. Mutation.

The genetic algorithm is as follows:

1. Randomly create an initial population of individual fixed-length character 

strings.

2. Iteratively perform the following substeps on the population of strings 

until the termination criterion has been satisfied:

(a) Assign a fitness value to each individual in the population using the 

fitness measure.

(b) Create a new population of strings by applying the following three 

genetic operations. The genetic operations are applied to individual 

string(s) in the population chosen with a probability based on fitness 

(with reselection allowed).

i. Reproduce an existing individual string by copying it into the new 

population.

ii. Create two new strings from two existing strings by genetically re­

combining substrings using the crossover operation at a randomly 

chosen crossover point.

iii. Create a new string from an existing string by randomly mutating 

the character at one randomly chosen position in the string.

3. The string that is identified by the method of result designation (for ex­

ample, the best-so-far individual) is designated as the result of the genetic
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algorithm for the run. This result may represent a solution, or an approx­

imate solution, to the problem.

Reproduction is the artificial version of the Darwinian principle of survival 

of the fittest. Reproduction selects individual strings to be copied, unchanged, 

to the next generation based on their fitness. Strings with a higher fitness 

have a higher probability of contributing one or more offspring to the next 

generation [Gol89].

Crossover allows new individuals, that is, new points in the search space 

to be created and tested. Crossover is a two step process. First two parents 

are independently selected, again selection is probabilistic based on the strings 

fitness. Secondly, a crossover point is randomly selected. Swapping all genetic 

material between the crossover site and the end of the string then creates 

two new strings. Crossover results in two offspring that each contains genetic 

material from both their parents. Crossover is illustrated below on two parent 

strings of length L =  5 over an alphabet size of K  =  2. If a crossover site of 

k =  3, say, is randomly chosen we have the two parents, Pi and Py

Pi =  010|10 

P2 =  111|01

where | indicates the crossover site and the resulting offspring are C\ and Cy

Ci =  01001

C2 =  11110
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The two offspring are usually different from their parents and different from 

each other.

Mutation allows new individuals to be created. A string is again randomly 

selected with a probability based on its fitness. Then a point on the string is 

randomly selected and the character at that point randomly mutated.

Despite the simplicity of reproduction and crossover, they give genetic al­

gorithms much of their power. Mutation is needed because despite the power 

of reproduction and crossover to search the problem space they can occasion­

ally lose some potentially useful genetic material. Mutation can help protect 

against such loss. The mutation operator plays a secondary role in the ge­

netic operator, with mutation rates typically of the order of one per thousand 

[Gol89].

Despite the fact that the genetic algorithm knows nothing about the prob­

lem domain, operating only on the strings in the population, it is highly ef­

fective in searching even complex, highly nonlinear, multidimensional search 

spaces. The genetic algorithm searches the space of possible strings looking 

for highly fit strings. This search is carried out by the simple operations of 

reproduction, crossover and occasional mutation, guided by the fitness of the 

existing strings in the population.

5.3.2 Genetic Classifiers

Despite the strengths of the genetic algorithm, there is a problem. The 

problem however, lies not with the genetic algorithm itself, but with the struc­
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tures it is required to adapt. The solution to this difficulty is to change the 

adapted structure. Genetic classifiers belong to a branch of engineering known 

as Genetics-Based Machine Learning (GBML) and use genetic search as their 

primary search heuristic. The adaptive systems theory of GBML pays special 

attention to the role of program replication as a method of emphasising past 

programs.

A classifier system is a machine learning system that learns syntactically 

simple string rules, called classifiers, to guide its performance in an arbitrary 

environment. A classifier system consists of three main components:

1. Rule and message system.

2. Apportionment of credit system.

3. Genetic algorithm.

A classifiers rule and message system is a special kind of production system. 

A production system is a computational scheme that uses rules as its only 

algorithmic device. Although they can take on many forms, they are generally 

of the form:

if<condition> then<action>.

That is, if the condition is satisfied then the action is taken (the rule is “fired” ).

Production systems are computationally both complete and convenient. 

A single rule or small set of rules can represent a complex set of thoughts 

compactly. Rule-based expert systems are production systems. Traditional
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expert systems are not generally used in situations where learning is required, 

mainly because of their complex rule syntax. Classifiers differ in using fixed- 

length string representation for rules and actions. Using fixed-length strings 

means that genetic operators can operate on strings. This allows the use of 

the genetic algorithm to search the space of permissible rules [Koz92].

A further advantage of classifier systems over expert systems is that of 

speed. This is because expert systems use serial rule activation whereas clas­

sifiers use parallel rule activation, this permits multiple simultaneous thoughts 

and actions. When a classifier system must decide between mutually exclusive 

alternatives, it uses competitive arbitration strategies rather than the arbitrary 

procedures of expert systems.

An expert system has the value of its rules fixed by the programmer. In a 

classifier system the relative values of different rules is one of the most impor­

tant pieces of information that needs to be learned. Classifier systems achieve 

this by holding a competition amongst the classifiers where the right to answer 

relevant messages goes to the highest bidder, with the subsequent payment of 

bids serving as a source of income to previously successful message senders. In 

this way, the good, profitable, rules survive and bad, unprofitable, rules die off.

The payment made to and from a rule increases and decreases its net worth, 

or strength. Strength determines a rules bid, it also serves as the rules fitness 

in a genetic algorithm search for new rules. Thus not only can the system 

learn by ranking extant rules, it can also discover new, possibly better rules 

as innovative combinations of its old rules. The genetic algorithm adopted in
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classifier systems is very close to those used in search applications; however 

only a portion of the population is reproduced at a time, and more attention 

is focused on who replaces whom [Gol89].

5.3.3 Genetic Programming

Genetic programming is an offshoot of genetic algorithms in which the com­

puter structures that undergo adaptation are themselves computer programs. 

Specialised genetic operators are used which generalise crossover and mutation 

for the tree structured programs undergoing adaptation. Genetic programming 

is capable of evolving computer programs that solve, or approximately solve, 

a variety of problems. The aim of genetic programming is to train computers 

to solve problems without being explicitly programmed.

The search space in genetic programming is the space of all possible com­

puter programs composed of functions and terminals appropriate to the prob­

lem domain. The functions may be standard arithmetic operations, standard 

programming operations, standard mathematical functions, logical functions, 

or domain specific functions.

In applying genetic programming to a problem, there are five major prepara­

tory steps. These are determining:

1. The set of terminals.

2. The set of primitive functions.

3. The fitness measure.
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4. The parameters for controlling the run.

5. The method for designating a result and the criterion for terminating a 

run.

The first step is to identify the set of terminals. The terminals can be 

viewed as the inputs to the as-yet undiscovered computer program. The set 

of terminals (along with the set of functions) are the ingredients from which 

genetic programming attempts to construct a computer program to solve the 

problem.

The second step is to identify the set of functions that are to be used 

to generate the mathematical expression that attempts to fit the given finite 

sample of data.

Each computer program is a composition of functions from the function set, 

F  and terminals from the terminal set, T.

Each of the functions in the function set should be able to accept, as its 

arguments, any value and data type that may possibly be returned by any 

function in the function set. In addition, each of the functions in the function 

set should be able to accept any value and data type that may possibly be 

assumed by any terminal in the terminal set. That is, the function set and 

terminal set selected should have the closure property.

These first two major steps correspond to the step of specifying the rep­

resentation scheme for the conventional genetic algorithm. The remaining 

three major steps for genetic programming correspond to the last three major
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preparatory steps for the genetic algorithm [Koz94],

In genetic programming, populations of thousands of computer programs 

are genetically bred. This breeding is done using the Darwinian principle of 

survival and reproduction of the fittest, along with a genetic crossover opera­

tion appropriate for mating computer programs. From this process of genetic 

programming a computer program may emerge that solves, or approximately 

solves, a given problem.

Genetic programming starts with an initial population of randomly gen­

erated computer programs composed of functions and terminals appropriate 

to the problem domain. The creation of this initial random population is, in 

effect, a blind random search of the search space of the problem represented as 

computer programs.

Each individual computer program in the population is measured in terms 

of how well it performs in the particular problem environment. This measure 

is called the fitness measure. The nature of the fitness measure varies with the 

problem.

For many problems, fitness is naturally measured by the error produced by 

the computer program. The closer this error is to zero the better the com­

puter program. For pattern recognition, for instance, the fitness of a particular 

program may be measured by some combination of the number of instances 

handled correctly (that is, true positives and true negatives) and the number 

of instances handled incorrectly (that is, false positives and false negatives). 

Typically, each computer program in the population is run over a number of
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different fitness cases so that its fitness is measured as a sum or an average 

over a variety of representative different situations.

The computer programs in the initial generation (that is, generation 0) of 

the process will generally have exceedingly poor fitness. Nonetheless, some 

individuals in the population will turn out to be somewhat fitter than others 

are. These differences in performance are then exploited. Reproduction and 

crossover are used to create a new offspring population of individual computer 

programs from the current population of programs.

The reproduction operation involves selecting a computer program from 

the current population of programs based on fitness (that is, fitter programs 

are more likely to be selected) and allowing it to survive by copying it to the 

next generation.

The crossover operation is used to create new offspring computer programs 

from two parent programs selected based on fitness. The parental programs are 

typically of different sizes and shapes. The offspring programs are composed of 

subexpressions (subtrees, subprograms, subroutines and building blocks) from 

their parents. These offspring programs are generally of different sizes and 

shapes to their parents.

Intuitively, if two computer programs are somewhat effective in solving 

a problem, then some of their parts probably have some merit. Recombining 

randomly chosen parts of somewhat effective programs, may produce new com­

puter programs that are even fitter at solving the given problem than either 

parent is.
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The mutation operator may also be used in genetic programming.

After the genetic operations are performed on the current population, the 

population of offspring replaces the previous generation. Each individual in 

the new population of computer programs is then measured for fitness and the 

process is repeated over many generations.

At each stage of this highly parallel process, the state of the process will 

consist only of the current population of individuals. The force driving this 

process consists only of the observed fitness of the individuals in the current 

population in grappling with the problem environment [Kin94].

The genetic algorithm produces populations of computer programs that 

over many generations tend to exhibit increasing average fitness in dealing 

with their environment. In addition, these populations of computer programs 

can rapidly and effectively adapt to changes in the environment. The best 

individual appearing in any generation of a run (that is, the best so far indi­

vidual) is, typically, designated as the result produced by the run of genetic 

programming.
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5.4 Learning Expert Systems

As described above traditional expert systems have the values of their rules 

fixed by the expert during the programming of the expert system. Expert 

systems use a serial rule activation, that is, during each matching cycle only a 

single rule is activated.

In a learning expert system on the other hand, the relative value of different 

rules is one of the key pieces of information that must be learned. To enable 

this learning the classifier is forced to exist in an information based service 

economy. The classifiers take part in an auction where the right to answer 

relevant messages goes to the highest bidder. The payment of the bid to 

previously successful message senders provides their source of income. The 

competitive nature of the economy ensures that good, that is, profitable, rules 

survive and bad, that is, unprofitable, rules die off. Learning expert systems 

overcome the bottleneck of serial rule activation in traditional expert systems 

by using parallel rule activation during a matching cycle. Thus, learning expert 

systems permit multiple activities to be coordinated simultaneously. If choices 

must be made between mutually exclusive actions, or when the size of the 

matched rule set must be pruned to accommodate the size of the fixed message 

list, these choices are left to the last possible moment and the arbitration is 

then performed competitively. A diagram of a learning expert system is shown 

in Figure 5.3.
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Figure 5.3: A learning expert system

5.4.1 Message Coding

A learning expert system, or classifier, is a special kind of production system 

that uses rules as its only algorithmic device. The rules are usually of the 

following form:

if<condition> then<action>.

That is, if the condition is satisfied then the action is taken (the rule is “fired” ).

The if part of the rule is often referred to as the condition. The if operator 

is a binary string encoding of the problem state space. The then part of the 

rule is known as the message and is a binary encoding of possible classes that 

the input data can be placed in.

Despite appearing restricting, such systems are computationally complete. 

They are also computationally convenient. A single rule or small set of rules 

can compactly represent a complex set of thoughts.
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Learning expert systems differ from the traditional systems by restricting 

a rule to a fixed-length representation. This means that all strings under the 

permissible alphabet are syntactically meaningful. In addition, fixed string 

representation permits the use of genetic string operators. Thus it becomes 

possible to search the space of possible rules using genetic algorithms [Koz92].

A message within a learning system is simply a finite-length string over 

some finite alphabet. For example, using the binary alphabet:

< message > ::=  {0, I }1 (5.4.1)

That is, the message is a concatenation of l 0’s or l ’s.

Messages form the basic currency in the information exchange of a classifier 

system. The messages on the message list may match one or more classifiers 

or string rules. A classifier is a production rule with the syntax:

< classifier > ::= <  condition > :<  message > (5.4.2)

The condition is a simple pattern recognition device where a #  is added as a 

don’t care symbol, that is, it can match either a 0 or a 1.

The use of a don’t care symbol allows a form of generalisation in the con­

dition part of the rule:

<  condition > ::=  {0, 1, #}* (5.4.3)

If at every position in a condition a message has, a 0 matching a 0, or a 1 

matching a 1, or a #  matching either a 0 or a 1, then the condition is matched
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by the message. For example the condition # 1 # 0  matches the message 1100 

but doesn’t match the message 0011.

Once a classifiers condition is matched, that classifier becomes a candidate 

to post its message to the message list at the next time step. Whether the 

classifier posts its message depends upon the fitness of the classifier as it takes 

part in an activation auction [Gol89].

5.4.2 Training the Intelligent System

A random population of fixed-length strings, each representing an individ­

ual if-then rule, is created. Each string is then added to a rule base of strings. 

Next the first element of the input set is posted from the environment. Any 

rule that matches the message posted by the environment posts its message to 

a match set. It should be noted that because the “wild card” , # , allows for 

generalisation of the condition, a number of rules that are not identical may be 

posted. Messages that are posted may then activate other rules or may cause 

the system to take some external action through its effectors.

The next stage is to determine which rules in the match set shall be placed in 

the action set. To achieve this all rules in the match set take part in an auction. 

Each rule makes a bid in the auction that is proportional to its strength. In 

this way the fitter rules, that is, those that have been activated more often, are 

given preference over less fit rules.

If a rule is successful in the auction its strength is debited by the size of 

its bid. The successful rules bid is then distributed amongst those rules that
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activated it. The successful rule is then placed in the action set.

When the successful rule has posted its message this may in turn invoke 

other rules by matching their condition. These rules will then take part in 

further auctions. The next environmental message is then posted and this 

process continues iteratively until all messages from the environment have been 

posted.

The next stage is to apply the genetic algorithm in an attempt to create 

new and hopefully better rules. The genetic algorithm creates new rules using 

the processes of reproduction, crossover and mutation.

Rules that have been activated more often in the first stage of the process 

will have a higher fitness function. These rules will therefore be more likely to 

be selected for the operations of the genetic algorithm. Hence, the new rules 

created by the genetic algorithm will be based on previously successful rules.

These new rules are then posted to the system. The new rules are processed, 

by matching messages to conditions and auctions as before, to determine their 

fitness. However, in these systems care generally has to be taken about replac­

ing the whole population (usually the whole population would not be replaced) 

and to which rule replaces which [Gol89].
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5.5 Conclusion

An expert system is a knowledge-based system that emulates expert thought 

to solve significant problems in a particular domain of expertise. Expert sys­

tems are rule-based systems that employ, symbolic representation, symbolic 

inference and heuristic search. Two independent systems make up an expert 

system: a knowledge base and an inference engine. The knowledge base holds 

whatever information, rules and facts for example, that are appropriate to solv­

ing problems in the given domain. The inference engine provides the motive 

power to the system. Its function is to employ the contents of the knowl­

edge base to draw inferences, thus enabling it to attempt to solve a particular 

problem.

Evolutionary computation implicitly utilises a directed search, allowing it 

to search the space of possible computer structures and find solutions to tasks 

in much shorter times than would be possible using random searches. The 

genetic algorithm uses the Darwinian processes of natural selection to breed 

new populations of individuals containing the fittest members of the old pop­

ulation. Each individual represents a possible solution to the problem. The 

main genetic operators are reproduction and crossover (sexual reproduction). 

Both reproduction and crossover operate with a probability based on the fit­

ness of the individuals in the population. A secondary operator is mutation. 

One of the difficulties with the genetic algorithm is that it is not suitable for 

the structures we choose to adapt. Therefore, genetic classifiers are used as
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machine learning systems that use genetic search as their primary discovery 

heuristic. Genetic programming is an extension of the conventional genetic 

algorithm in which the structures undergoing adaptation are hierarchical com­

puter programs of dynamically varying size and shape.

Learning expert systems have their rule sets adaptively modified by ge­

netic operators. The learning expert system architecture combines important 

features from the models of artificial intelligence, connectionism and machine 

learning. Artificial intelligence provides the power, understandability and con­

venience of an expert systems if-then rules. When the system as a whole takes 

some action that is rewarded by the environment, specific rules, that con­

tributed to the action, are rewarded via a connectionist style credit allocation. 

Machine learning provides the system with the creative power and efficient 

search capability of the genetic algorithm operating on fixed length strings.

Time constraints prevented the application of this methodology to the prob­

lems described in this thesis. However, future work could continue the devel­

opment of an intelligent monitoring and prediction system consisting of: signal 

processing to extract the key features from the raw data, neural networks for 

pattern classification and a learning expert system for the adaptive adaptation 

of the systems rule base as illustrated in Figure 5.4.

For example this methodology could be implemented in the following way. 

Using the infrared scatter data select a sample of the Low and High data for 

training purposes. To create training vectors extract the wavelet coefficients 

from chosen data samples. Create the rule base and then test the rules. In
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Figure 5.4: An intelligent monitoring and prediction system

an iterative process use the genetic algorithm to adapt the rule base and then 

retest the rules. It is expected that this architecture could form the basis of an 

intelligent monitoring and prediction system that could be adapted to other 

real world time series prediction problems.

Overall, this work has illustrated the value of intelligent monitoring and 

prediction systems to the problems described in this thesis. Clearly, this would 

be an important system for further investigation.
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Chapter 6

Conclusion

6.1 Introduction

The main aim of the work described in this thesis was to develop novel 

methodologies for real world chaotic time series prediction and classification 

problems. The objective was to produce an intelligent monitoring and pre­

diction system based on various information techniques, neural networks and 

genetic classifiers.

As discussed elsewhere in this thesis, three sets of real world industrial data 

were examined during the course of this research. Shell UK provided two sets 

of data for this work. The first set consists of infra-red scatter data and the 

second set is catalytic cracker data. Further data was provided by NGC from 

both a normal and a faulty power transformer.

The infra-red scatter data comes from three infra-red detectors that are 

arranged spatially around a common reference point and are used to measure
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oil mist. The data falls into four alarm categories: High, Low, Grey and None. 

The physical significance of the data is not known. The aim was to develop an 

alarm system for remote unmanned oil installations that is capable of detecting 

whether or not there is an oil leak and alerting the operators in the case of a 

positive alarm.

The second set of data is from a catalytic cracker. The aim was to develop 

a predictive model for this industrial process data. As with many cases of real 

world industrial data, the data contains a large number of “drop-outs” and 

“spikes” . Where variables are missing, the missing values have been replaced 

by taking the mean value of the two data points either side of the missing 

measurement. The data consists of 95 process variables measured over nearly 

three years. The idea was to use v36-v95 to predict vl-v35, concentrating on 

v4 and v6. Again the physical significance of this data is not provided.

The third set of industrial process data is provided by NGC. This consists of 

two sets of power transformer data: the first set is from a transformer working 

normally and the second set is from a faulty transformer. The aim was to 

develop a more comprehensive and systematic approach to the monitoring of 

changes in power transformers operating conditions.
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6.2 Methodologies

Back propagation neural networks and radial basis function neural networks 

were both examined as a method of classifying any patterns in the industrial 

data provided. In order to simplify the neural networks required for pattern 

classification the raw data was preprocessed to extract its key features.

A number of techniques were examined for extracting the key features from 

the raw data. These techniques included: the autocorrelation function, the 

cross-correlation function and the power spectral density function. However, 

these techniques all resulted in an increasing of the dimensionality of the pat­

tern space. Therefore further methods of extracting the data’s key features 

were examined. These were principal component analysis and the wavelet 

transform.

Genetic classifiers, learning expert systems, were also investigated as com­

ponents of an intelligent monitoring and prediction system.
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6.3 Results

6.3.1 Infra-Red Scatter Data

The first data set examined was the infra-red scatter data. Initially a radial 

basis function neural network was trained using the raw data. This produced 

a neural network that could correctly classify training vectors but was unable 

to generalise, that is, to correctly classify test vectors once trained.

The raw data was then preprocessed using a number of techniques includ­

ing: cross-correlation, autocorrelation, power spectral density and the signal 

statistics, mean, variance and eigenvalues. As with the raw data a radial basis 

function neural network has been successfully trained to reach a desired sum 

squared error goal. However, none of the networks have been able to generalise 

correctly when presented with test vectors. Therefore, an alternative neural 

network paradigm, the multilayer perceptron, was investigated.

Multilayer perceptron neural networks with one and two hidden layers of 

nonlinear neurons and one output layer of linear neurons were also successfully 

trained. The neural networks were trained with data preprocessed by each of 

the above techniques used for preprocessing the data for a radial basis function 

network. Several neural networks were generated during the development of 

this model; each with different combinations of neurons in various layers.

Despite long training times, with up to 500,000 epochs elapsing, none of 

the neural networks successfully reached the required error goal during training 

and were unable to correctly classify the training data.
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In an attempt to improve the response of the neural networks to the test 

data, principal component analysis was used to reduce the dimensionality of 

the data. Using the principal components of the scatter data to train backprop- 

agation networks produced networks that were unable to complete the training 

process. The networks failed to reach their error goal and misclassified training 

data when it was re-presented to the network.

The infra-red scatter data was then processed using the wavelet transform 

and a scatter plot of the correlation coefficients of the wavelet coefficients was 

examined to determine the possibility of a neural network separating the dif­

ferent training patterns. These coefficients where then used to train back prop­

agation neural networks.

This work has developed and trained many multilayer perceptron neural 

networks, these different have different numbers of neurons both in the hidden 

and output layers. Furthermore, these networks have been able to correctly 

classify training patterns when they are re-presented to the trained network. 

However, further work is needed to fully develop neural networks that will 

consistently generalise correctly when presented with test vectors.

The infra-red scatter data was then normalised and the standardised data’s 

wavelet coefficients were extracted. Again a scatter plot of the wavelet coef­

ficients was examined and the data was used to train backpropagation net­

works with a range of neurons in the hidden and output layers. This protocol 

generated several neural networks that trained correctly. In addition, when re­

presented with training data after training was completed the network classified
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it correctly. However, the neural networks performed poorly when presented 

with test vectors. Therefore, further studies are needed to fine tune this sys­

tem. The neural networks were able to accurately and correctly predict from 

previously unseen test data in 40 — 60% of occasions. However, for commercial 

development, further work is needed to increase this accuracy to that required 

of a real time alarm system.

6.3.2 Catalytic Cracker Data

The second set of data is a set of ninety five variables from a catalytic 

cracker used in oil refineries. Because of the high dimensionality of the data, it 

is necessary to preprocess the data in order to extract its key features and hence 

reduce the dimensionality of the problem. A principal component analysis was 

performed on the data to identify the key variables for monitoring.

Use of either the retention or rejection method based on the component 

scores, produced largely the same results as to which variables accounted for 

most of the variance of the catalytic cracker data, although there were some 

anomalies.

Principal component analysis neural networks were also trained. However, 

the results from these networks were inconclusive and require further exami­

nation with other principal component algorithms.

Work focused on the related processes v60-v72 to try to predict v4 and 

v6. A multilayer perceptron neural network was successfully trained using this 

data. Again, despite using both one and two hidden layers and various numbers
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of neurons in the hidden layers, it has not been possible to successfully train a 

neural network.

6.3.3 Power Transformer Data

Principal Components Analysis can be used to identify any variation in 

the correlation of the transformers operating variables caused by changes in 

the transformers condition. From the above results, comparing the normal 

and faulty transformers, it is noted that the key variables selected by PCA 

under a normal operating condition, will become more correlated and the vari­

ance of the principal components will have a more uneven distribution, if the 

transformers operating condition changes. This is due to the key variables 

selected by PCA forming a maximum information space. Any change in the 

transformer condition, represented by the same variables, will result in a con­

traction of the information space. An index number has been introduced to 

measure the distribution of the variance of the principal components. It also 

reflects the tendency of the correlations of the key transformer parameters to 

vary. It has been found that the ratio between the index numbers of the faulty 

and normal transformers is sufficiently large that it could be used to report the 

variation of the transformers condition. The index number could therefore be 

used as an alarm for the purposes of fault monitoring.

As the data from the normal and faulty transformers were not observed 

from identical transformers and they were sampled within a limited operating 

range, the sensitivity of PCA as applied to condition monitoring could not
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be investigated. The quantitative analysis of this method requires more data, 

obtained from a variety of different transformer conditions, in order to provide 

an accurate assessment of the condition variation. However, by contrast to the 

conventional correlation analysis methods which have been applied, for exam­

ple, for monitoring of transformer partial discharges, the PCA provides a more 

systematic and comprehensive approach to analysis of correlation variations 

occurring as the transformer condition changes. Although the PCA cannot 

be used directly for fault diagnosis, the information extracted by the PCA 

could form a maximum-information space for further classification leading to 

an identification of the details of transformer condition variations.

Overall, the studies described in this thesis have shown several different 

methodologies that have been used to develop systems for real world time 

series prediction and classification problems. Initial studies used multilayer 

backpropagation neural networks for data extraction. However, although the 

neural networks trained successfully they could not interpret new data consis­

tently.

Principal component analysis and the wavelet transform were used to iden­

tify key data variables and reduce data dimensionality. Although artificial 

neural networks could be trained successfully using the pre-processed data, 

interpretation of test data by the neural networks was still difficult and incon­

sistent. One method that may prove useful and important for analysis of these 

data is learning expert systems. The application of this methodology to the 

problems described in this thesis has been illustrated in Chapter 5. Clearly the
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work described in this thesis provides the basis for a variety of future studies 

to continue the development of intelligent monitoring and prediction systems.
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