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ABSTRACT

One of the most characteristic features of Expert Systems 
is their ability to ’explain’ their reasoning. The nature 
of explanation, however, is ill-defined. The work reported 
here approaches this problem using semantic representations 
based on those of the Conceptual Dependency Theory in the 
field of natural language understanding.

The domain knowledge and the problem-solving strategy are 
represented separately, but both use a script-based 
approach. A new class of action primitives for technical 
domains is described. Question answering is presented as a 
means of investigating the knowledge contained in the 
system, allowing the dynamic creation of explanation 
tailored to the user's needs.

A hierarchy of question types is proposed based on 
characteristic movements within causal chain structures, 
and the relationship between problem-solving and question 
answering is clarified.
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1 INTRODUCTION

1.1 Overview of Research

The explanation facilities of contemporary knowledge-based 
systems are rudimentary. The vast majority of such systems 
use rules or 'productions' as their sole method of 
representing problem-solving knowledge. The terms examined 
by such rules are very simple, forcing any richness of 
representation to lie in the inference structure. This 
methodology constrains discussion of their domain knowledge 
to an unwinding of chains of rules, which can be regarded 
simply as an edited execution trace. Production systems 
are undoubtedly good at producing solutions to the single 
task at which they are 'expert'. However, their usefulness 
is restricted by several factors, of which the most 
important is the ease with which humans can access the 
knowledge contained in the system.

Most I KBS designers create a system that can solve the 
problem, and only when that is achieved do they turn their 
attention to the problems of explanation and justification 
on the part of the system. But explanation and 
justification must be an integral part of the design of a 
system. There are many questions which simple 
problem-solving systems cannot answer, in spite of their 
capabilities in the domain of expertise. The classic
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example of this is MYCIN, which for a long time could 
expertly diagnose bacterial infections of the blood, but 
was unable to explain what a bacterium was, or to decide 
whether a named organism known to the system was indeed a 
bacterium. It is a fundamental tenet of this thesis that 
'explanation' can no longer be relegated to an afterthought 
in expert systems development. The scope of the problem 
must be broadened to the general field of question 
answering, and the familiar HOW and WHY questions of the 
typical rule-based systems are only a fraction of what can 
reasonably be asked.

The limitations on the communicative power of rule-based 
systems stem from their poverty in representation. One 
cannot expect an answer from a system if one cannot convey 
to the system the meaning of the concepts involved in the 
question. It is very easy when examining any rule-based 
system to construct interesting questions that the system 
cannot answer. Generally, any question that deals with 
real-world concepts (rather than ideas involved in the 
problem-solving process) is unaskable. For example, a 
rule-based system capable of selecting an optimal 
anti-corrosive coating for a substrate is likely to deal 
quite competently with a HOW question asking

'How did you decide that a bitumen coating is best?' .
It is extremely unlikely that the question 

'How do you apply a bitumen coating?' 
can be answered by the same system, unless it is dealt with
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by specially included canned text. The difficulties 
associated with canned text are discussed in Chapter 2.

The view of explanation presented here is founded on the
*assertion that explanation depends on understanding. 

Heuristics do not represent an understanding of a domain, 
they provide a model of a particular problem-solving 
activity in a domain. Thus, while a useful solution can be 
obtained using such heuristics, one should not expect them 
to support sophisticated forms of explanation. Explanation 
is commonly associated with causal understanding of a 
field. Consider, for example, simple weather prediction. 
Using only high school geography, I can interpret basic 
meteorological data to some extent. I have heuristics 
that include, for example:

'If the pressure is low, then it will rain.'
When asked to explain about low barometric pressure 
however, I can produce very little helpful information. 
Although I have several interpretive heuristics, I have no 
model of weather processes and causative features. I know 
that it should be possible to explain such things in terms 
of areas of differing pressure, of 'fronts' and the 
temperature and moisture content of air, of the conditions 
that enable cloud formation etc., but these play no part 
in my heuristics. While I may have the vocabulary, I lack 
the necessary model of the physical meteorological 
processes. It is this kind of underlying causal model I 
advocate to support explanation in the form of answers to
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explicit questions.

A body of work already exists in Artificial Intelligence 
that addresses itself to the problems of question 
answering. This work, by Wendy G. Lehnert at Yale, uses a 
deep representation of the semantics of its knowledge 
domain. In this thesis, I present a system whose 
fundamental representation is inspired by the ideas of 
Lehnert, which in turn were based on Schank's Conceptual 
Dependency theory. My aims in this research were twofold:

(a) to develop a representation and control structure 
for a system capable of selecting an 
anti-corrosive coating for a particular 
environment

and
(b) to design the system in such a way as to enable it 

to use all its knowledge in the most flexible way 
possible, and in particular to answer as many as 
possible of the known question types.

1.2 The Domain

The experimental knowledge-based system created in the 
course of this research is called ADEPTUS. The domain of 
expertise is the selection and use of anti-corrosive 
coatings for steel substrates. This engineering 
application is a common and important one. To increase the
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quality of decision-making in selecting the best and most 
cost-efficient protective coating would be of enormous 
practical and economic benefit to industry.

The knowledge used in the work came from a variety of 
sources. Originally, a research engineer from Unilever 
Research, Port Sunlight, provided information on how 
selection is made on an empirical basis. This was, to a 
large extent, already codified in a document co-written by 
him and distributed throughout the Lever Bros, 
manufacturing company. This document is not public domain 
information, and so no parts of it can be quoted in this 
thesis.

After working with this knowledge source for some time, it 
became obvious that a domain expert with a rather different 
view of things would be needed for the implementation of 
structures capable of representing a real understanding of 
the physical processes in the domain. I needed the 
expertise of a paint chemist; one who knew how coatings 
behaved in different environments, and what caused that 
behaviour. This infomation was provided by specialists at 
International Paints, Marine Coatings Division, Gateshead.

The domain was selected by the industrial sponsors of the 
project for its relevance. It is, perhaps, unfortunate that 
the domain is not one of the more thoroughly understood 
areas of materials technology, but the difficulties
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encountered here are likely to be representative of those 
encountered in many other interesting domains of 
engineering and applied science.

1.3 Jargon

Computing is infamous for its use of jargon; ' paint
technology suffers just as much. Jargon can clarify or 
confuse. It clarifies when it increases precision or
reduces prolixity; it confuses when an author coins a 
neologism to describe something which already has an
accepted technical name. I have tried to avoid this 
unnecessary burden on the reader's memory as far as
possible, except when I have been particularly unhappy with 
an existing word. The most notable example in this 
document is my unwillingness to adopt Schank's 
'conceptualisation' term. I have, of course, used the term 
when discussing Schank's own work, but in describing my own 
research I use the term 'image' which the reader should 
regard as a synonym. Thus, references to 'stative images' 
and 'active images' will appear where the reader familiar 
with Conceptual Dependency Theory would expect to find 
’s tative conce p t u a l i s a t i o n s '  and 'active 
conceptualisations'. The change was made in the hope of 
improving the style of some sentences which otherwise got 
completely out of hand.
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Other new or redefined jargon terms are introduced 
naturally as they occur, and I have tried to keep the paint 
technology jargon to a minimum.

1.4 Overview of the Thesis

A review of the literature is presented in Chapter 2. 
Influences on the work have been diverse, including 
philosophical views on the nature of explanation and 
causality, cognitive modelling and text understanding. 
Conceptual Dependency, causal chaining and scripts are 
described, as is Lehnert's question categorisation system.

ADEPTUS is essentially a script-based system. In Chapter 
3, the domain of anti-corrosive coating usage is 
introduced, and the applicability of the script formalism 
demonstrated. An instantiated domain-level script is a 
causal model of the domain: this coincides with much of the 
work discussed in Chapter 2. Although Schank's primitives 
are examined in the literature review, the primitive acts 
required to represent physical processes in the 
anti-corrosion domain are discussed in Chapter 3.

In Chapter 4, the second type of script known to ADEPTUS is 
outlined. This 'system-level' script involves information 
processing acts undertaken by the system. The information
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processing requires manipulation of the domain-level script 
in various ways. One major category of manipulative tasks 
concerns handling the domain script as a single chunk, 
disregarding its inner structure. For example, some aspects 
of the domain-level script will require instantiation, and 
copies of the script may need to be produced.

When dealing with individual pieces of the domain-level 
object script, different kinds of actions are required. 
The latter part of Chapter 4 describes the various 
manipulation tasks which can be carried out within a script 
entity.

The overall goal of the system-level script is to produce a 
list of possible solutions, ranked on suitability, to the 
problem of selecting the best coating for a particular 
situation. Chapter 4 examines the way this is done on paper 
in industry, and shows how a script-based representation 
can be created to cope with the problem.

The ADEPTUS system is presented in Chapter 5. The system 
is written in SRL, and a brief overview of this language is 
included. ADEPTUS is a preliminary implementation of some 
of the ideas described in this thesis. The scripts and the 
various structures which participate in them are described 
in Chapter 5, and examples are given.

Chapter 6 deals with question-answering in problem-solving
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systems. It is concerned initially with the modification of 
Lehnert's question categories for use in a problem-solving 
environment, and subsequently with the question categories 
which have been implemented in ADEPTUS. The first part of 
this chapter depends upon the task analysis of Chapter 4. 
This is because the acts required to produce an answer to a 
query in a script-based system are themselves manipulations 
of the script. The refined classification in Chapter 6 is 
thus based on the analysis presented in Chapter 4. The HOW 
and WHY questions available in conventional expert systems 
are classified, and comparison made with questions that are 
commonly asked by non-expert participants in 
naturally-occurring consultations with an expert. In the 
second part of the chapter, the implementation of four 
question categories is discussed in detail. First, the 
goal orientation category is examined, which corresponds at 
the system level to the WHY question of simple rule-based 
expert systems. Secondly, judgment questions are dealt 
with, followed by expectation questions as the third 
category. Lastly, the definition category is illustrated. 
These four categories are representative of the four major 
divisions in the question hierarchy described in the early 
part of Chapter 6. Of the four, only the Goal Orientation 
category lies within the capability of conventional expert 
systems.

The last chapter presents the conclusions of the research. 
The progress of the work so far is evaluated, and the

11



relationships between explanation, question answering and 
problem solving are discussed in the light of the ideas 
presented in the body of the thesis. Several directions 
for further work in the area are suggested.
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2 REVIEW OF THE LITERATURE

2.1 Introduction

In this chapter I shall look first at what 'explanation' 
is and how a computer system can hope to generate it. For 
particular systems, explanations may be unwanted: this 
possibility is dealt with in section 2.3. The' first 
systems to generate dynamic explanation (contrasting with 
the use of canned text) were simple rule-based ones, and 
section 2.4 examines the limits of this approach.

Other types of system developed over the last ten years 
represent a new emphasis on the communicative abilities of 
knowledge-based systems and new approaches to design. I 
call these systems the second generation of expert systems 
and describe them in section 2.5.

Section 2.6 looks briefly at the formalisms used or 
recommended for improving communicative power, and in 
section 2.7 I examine the scripts employed by Schank and 
his co-workers to represent the basis of text 
understanding. Lehnert used Schank's formalism as her 
starting point for work on general question-answering. I 
discuss her views on question classification in section 
2 .8 .
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Section 2.9 examines the directions in which Schank’s 
semantic primitives require augmentation to cope with 
representation of scientific and technical discourse.

2.2 The Importance of Explanation

What is meant by 'explanation'? Chambers Twentieth Century
Dictionary (1979) defines 'explanation' as

"making plain or intelligible; unfolding and 
illustrating the meaning of; accounting for; the 
meaning or sense given to anything".

The important terms here are 'intelligible': able to be
understood; and 'meaning'. This definition implies that
explanation is an inescapably semantic task. The explainer
must convey meaning in an intelligible way.

Understanding is an essential prerequisite to good 
explanation [Craik 1943, Johnson-Laird 1983]. As 
Johnson-Laird states:

"Explanation depends, of course, on understanding: 
if you do not understand something, you cannot 
explain it."

Craik, a philosopher of science, emphasises the need for 
scientists to create conceptual models in order to generate 
explanations of natural phenomena. In this sense, a model 
is a mapping of one domain on to another; the latter chosen 
for its ease of manipulation. Until a scientist has a 
model-based understanding of a phenomenon, he is not in a
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position to explain it. Johnson-Laird declines to offer a 
definition of understanding, but suggests instead a set of 
criteria:

"If you know what causes a phenomenon, what results 
from it, how to influence, control, initiate or 
prevent it, how it relates to other states of 
affairs or how it resembles them, how to predict 
its onset and course, what its internal or 
underlying 'structure' is, then to some extent you 
understand it."

This is clearly the target for any system worthy of being 
described as 'expert' in its domain.

I suggest that explanation can be considered as the process 
of conveying understanding. A similar but more restricted 
sentiment is expressed by Jackson and Lef re [Jackson & 
Lef ,re 1984] when they describe an expert system's
explanation as the process of communicat ing an
understanding of what the system itself does. An
interesting view of explanation as the transfer of
declarative knowledge structures from the explainer to the 
listener is given by Cullingford et al. [Cullingford et al. 
1981] They show how, in order to communicate through 
narrow verbal/graphical channels, the explainer must leave 
out aspects of the knowledge structure, which the audience 
must then fill in again. Sinnhuber points out that 
explanation of reasoning by computer systems is usually 
achieved by means of an execution trace of the system's 
performance. If understanding is to be communicated to a 
human, the system must reason in a way familiar - or at 
least not entirely alien - to the user [Sinnhuber 1985].
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Human understanding of new information is
"a process by which people match what they see and 
hear to pre-stored groupings of actions that they 
have already experienced. New information is 
understood in terms of old information."

[Schank & Abelson 1977]
This indicates a cognitive modelling approach to the design 
of systems that can communicate their understanding.

In some situations, explanation is the primary task, 
provided without any prompting. The most common occurrence 
of this type is in teaching. However, even in a
pedagogical environment, the student will often ask a 
question to elicit further or alternative explanation if 
the exposition seems insufficient or inappropriate. This 
thesis is concerned with communication with problem-solving 
systems. In such systems, explanation is not provided 
without request. Nor should it be since the primary aim is 
not tutorial.

In the medical domain, it is widely recognised that the 
provision of explanation is crucial to user acceptance of 
consultative systems. Clancey [Clancey 1981] states his 
position in a revealing parallel describing MYCIN as 
'aphasic'. The term can be equally well applied to almost 
any of the expert systems now extant. Frost [Frost 1984] 
draws a clear dividing line between 'expert systems' and 
'knowledge based systems'. For him, the term 'expert 
system' has come to be synonymous with a single-task 
problem solver. He suggests the use of 'knowledge based

16



system' to indicate a system not restricted to a single 
inferential task, but one which has a flexible deductive 
retrieval facility for access to the encoded knowledge. 
Most expert systems have been created with only one real 
criterion in mind - to 'get the answer right'. Awareness 
is now growing of the importance of the user interface as 
the essential factor in a system's acceptability. Edmonds 
[Edmonds 1982] sums up a viewpoint that is gaining credence 
when he advocates the design of the interface (his "dynamic 
processor") as an INITIAL requirement, rather than an 
afterthought having no real bearing on issues such as 
knowledge representation or knowledge partitioning. He 
points out that from the system designer's point of view, 
this interface is likely to be the most complex part of the 
system, outranking the problem-solver or "background 
processor" .

"The 'object' to be designed is an interaction" says 
Johnson [Johnson 1985], who advises a design methodology 
working "from the outside in, rather than from the inside 
out". The theme of Johnson’s paper is the adequate 
representation of a 'model of competence', emulating all 
aspects of the expert's behaviour. This implies a 
flexibility currently beyond the reach of expert systems. 
Problem Solving Is Not Enough [Cavell 1915].

From a psychological perspective, Goguen et al. [Goguen et 
al. 1983] point out that
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"without ... the ability to interact, the speaker 
may present an explanation that is incoherent".

They argue that any theory of explanation must be based
upon empirical study of actual human behaviour. Compelling
evidence for the need for flexible methods of communication
in the form of just such empirical analyses have been
presented in various studies of interactions between users
and human experts. These interactions have been described,
with considerable accuracy, as 'naturally occurring expert
systems' [Pollack et al. 1982]. In two such studies, work
has been undertaken on analysis of protocols from radio
phone-in programmes involving a problem-solving expert and
a non-expert with a problem [Pollack et al, 1982; Kidd
1985] . The results suggest that, far from simply stating
the problem and passively accepting the expert's solution,
the non-expert is a surprisingly active participant in the
dialogue. This is in agreement with the statement of
Goguen et al. that the explainer and the listener need to
negotiate a base from which successful explanation can take
place.

The phone-in protocols show that the enquirer plays a major 
role in negotiating a problem definition with the expert, 
and very commonly has preconceived hypotheses about 
potential solutions. The non-expert may ask several 
questions. Many of these are requests for explanation: why 
a certain solution was not proposed, why the proposed 
solution should work, the effect of employing a 
non-recommended course of action, whether the expert has

18
> \



considered all the factors that the enquirer sees as 
important. This 'critiquing' approach to problem-solving is 
usually judged relevant only to systems where the user is 
also a domain expert [Langlotz & Shortliffe 1983; Miller
1984] ; but the studies by Kidd and Pollack et al., indicate 
that this is not so. For a selection task, where any 
proposed solution is likely to be flawed to some extent, 
self-critiquing by the system was proposed in [Hughes
1985] . This offers solutions to users, highlighting 
potential problems if the problem definition should alter 
in any important respect.

Coombs and Alty [Coombs & Alty 1982] report a series of
experiments with computing-advisory dialogues.
Interactions that resembled those of simple problem-solving
systems (i.e. strongly controlled by the advisor, with
little user participation beyond the supplying of raw
evidence) were the ones judged 'unsatisfactory' by the
users. 'Satisfactory' interactions displayed an apparent
lack of structure, with both the advisor and the enquirer
making substantial contributions to the dialogue. It was
observed that much more information than was strictly
relevant to the task solution was offered by both sides.
The judgment of Coombs and Alty on this is that

"the very act of participation appeared to help 
develop a better 'understanding' of the structure 
of the problem ... the users had less difficulty in 
remembering and applying the solution."

They propose that expert systems should support
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problem-solving rather than direct it.

This participatory approach is endorsed by Jackson and 
Lef- ,re [Jackson & Lef- re 1984] in their work on 
advice-giving systems. Such systems must produce 
explanation, but not necessarily in response to a direct 
user question. The system must infer a ’virtual question’ 
from the user's behaviour, and act as though that question 
had been explicitly asked.

Work of this kind supports the view that expert systems can 
no longer be viewed ONLY as problem-solvers that adopt a 
'system knows best' stance. The user must be seen as an 
integral part of the problem-solving 'team', and his or her 
knowledge of the situation fully exploited. A necessary 
(though not sufficient) condition for this is that the user 
be given access on demand to the essential understanding 
embodied in the system. This can be regarded as 
explanation, and the natural mode of prompting explanation 
(in any form) is the asking of questions [Coombs & Hughes 
1982] .

2.3 On Tolerating Aphasia

The work of Pollack et al., Kidd, and Coombs & Alty 
indicates that in consultations with a human expert, the 
user plays a large part in what is essentially a
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mixed-initiative dialogue. It is still necessary, however, 
to consider whether or not ALL knowledge-based systems 
require a good explanation facility. Some constructors of 
expert systems think not but they are a small minority.

It seems that aphasic systems are acceptable for tasks 
which are routine (eg. XCON) or real-time (eg.VM); or in 
task domains where the encoded knowledge is claimed to be 
undisputed. I am sceptical of'the latter case. Kahn [Kahn 
1984] describes MUD, a system that diagnoses problems in 
lubricant drilling fluids. MUD is a system in which 
explanation facilities beyond those normally associated 
with the production system formalism (see section 2.4) are 
not required. He cites only two possible reasons for 
requiring explanation. First, to answer challenges to the 
line of reasoning employed. Second, to give extra 
information to users, whether for tutorial purposes or to 
permit systems to assist the user in situations other than 
the one for which they were designed. Kahn maintains that 
explanation is not necessary in the MUD system because the 
line of reasoning has never been challenged, and all the 
domain experts agree that the system is using the correct 
reasoning. He refutes the second necessity for explanation 
by asserting that this occurs only extremely rarely in this 
domain, and where it does, it can be foreseen and dealt 
with by the use of well-placed 'canned text' 
justifications.
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The well-known XCON system (previously called Rl) 
[McDermott 1981] has little need for sophisticated 
explanation capabilities. The reasons for this are 
essentially those given by Kahn for the MUD system, but the 
task is considerably more routine and well-understood. The 
system is known to work satisfactorily, so justification of 
its reasoning is rarely useful. XCON was designed to take 
over the task of VAX configuration, and it is difficult to 
see why anyone would want to use it for teaching purposes. 
Its highly specific nature also renders it unlikely that 
anyone would attempt to use it in a very novel situation.

Certain other systems also have no particular need for 
explanation facilities. For example, the VM system [Fagan 
et al. 1981] for real-time monitoring of patients using
ventilator machines in Intensive Care Units, is not 
interactive. It collects data directly from electronic 
sensors attached to the patient and produces periodic 
reports for the use of the consultant. Fagan says

"Almost no dialogue will take place with clinicians
when they are using the system"

but a real-time system might be enhanced by off-line 
explanation facilities that answered questions about the 
data captured over a certain period.

Such systems, however, are the exceptions rather than the 
rule. Most knowledge-based systems are designed to be 
interactive, unlike VM. They are usually concerned with
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domains where experts do not entirely agree with each 
other, in critical domains eg. medicine, where users 
overtly demand evidence of acceptable reasoning, or where 
use of the knowledge-base for tasks other than that 
initially intended (eg. teaching) is advantageous. Two 
types of expert system will exist in the future: those that 
do not require sophisticated explanation facilities and 
those that do. The former will be constructed in a very 
much simpler fashion than the latter.

2.4 Explanation and Rule-Based Systems

When criticising the inflexibility of current expert system 
explanation facilities, it is salutory to remember how much 
of an advance it was to generate any explanation at all. 
Such capabilities are the true hallmark of knowledge-based 
systems, and it is just those capabilities that create the 
gulf between expert systems and conventional programs.

The two modes of explanation of a rule-based system are 
described as HOW and WHY questions. The subject of both 
types of enquiry is a term present in either a premise or a 
conclusion of a rule in the system. Both questions can 
in theory be asked in the general sense or with reference 
to a particular situation. So, if no problem-solving has 
taken place one may ask

'WHY would the system need to know X?'
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Explanation is then provided by finding all the rules which 
have X as a premise term, and quoting them as possible 
reasons for trying to establish X. During or after 
problem-solving, one can ask

'WHY did the system need to know X?'
This time, only those rules having X as a premise term and 
which were actually fired, or which are currently under 
active consideration to be fired, will be quoted. The 
mirror image of these two questions can be constructed to 
answer the corresponding questions

'HOW would you prove Y?'
and

'HOW did you prove Y?'
For HOW questions, Y is matched against rule conclusion 
terms and rules showing such a match are quoted.

The whole basis of the production system methodology, and 
the claims that it represents a good model of human 
cognition [Davis & King 1977], are attacked by 
Johnson-Laird [Johnson-Laird 1984]. Johnson-Laird 
challenges the belief that humans commonly reason in a 
formal manner. He demonstrates the use of mental models in 
reasoning, and points out that such model-based reasoning 
is closer to the actual techniques employed by humans than 
is formal logical reasoning. Acceptance of such claims in 
full would force a radical revision of the role of logic in 
systems that attempt to emulate human cognition even in 
part.
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Rule-based systems are rarely a representation of an 
understanding of the domain of expertise, and this putative 
understanding is not communicated to the user in a 
comprehensible form by quoting a chain of rules. The 
rule-based system typically contains rules which have a 
great deal of knowledge implicit in them. This is not only 
the tacit knowledge described by Collins et al [Collins et 
al. 1985], but is information concerned with the domain 
which may well be unfamiliar' to the user. For example, 
Clancey [Clancey 1983] and Johnson [Johnson 1985] both 
quote the ordering of clauses within a rule as containing 
implicit knowledge. In the same paper, Clancey says that 
conflict resolution strategy commonly remains implicit, 
usually indistinguishable from the control structure of the 
interpreter. The conflict resolution strategy does however 
form a part of the overall understanding of the domain. The 
fact that we usually cannot access it in an explicit form 
means that the system essentially does not understand that 
part of the domain.

Production rules are highly modular in that they are 
self-contained units of knowledge, requiring no external 
context to be valid statements of a useful piece of domain 
^information. They can be added to or removed from a 
rulebase without fear that they will be fired in an 
inappropriate situation, since the rule itself specifies 
the situations in which it is valid. Davis et al. [Davis et 
al.1977] point out that the very modularity of the rules
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means that all context information must be contained in the
rule premise. The inescapable result of this is long, 
complicated and hard-to-understand premises for the rules.

These factors have a bearing on whether or not the user 
finds the quoted chains of rules intelligible. Davis et 
al. [Davis et al. 1977] challenge this at a very basic
level. They highlight the fact that it remains an 
assumption that a system rule, when translated into 
something approaching natural language, provides a 
reasonable explanation of what the system is doing. Often, 
rules must be employed in a system which are content-free, 
for reasons of control. Such rules are not obtained from 
the domain expert, and do not represent a single piece of 
knowledge about problem-solving in the domain. The 
rulebase is being used to hold information on both domain 
problem-solving and the control structure of the 
interpreter. While this might be a positive trait if all 
the control information were explicitly represented in this 
way, it can be nothing but confusing when such control 
rules only occur occasionally and represent only a fraction 
of the structure of the interpreter. These control rules 
can of course be produced in an explanation chain, and can 
make understanding of the system's problem-solving method 
extremely difficult [Johnson 1985].

Some rules may have very many premises and the situation 
they describe may not be at all clear to the user. For
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example, Coombs and Alty [Coombs & Alty 1984] point out 
that mixed initiative dialogue requires that the user be 
allowed to propose novel goals during the course of a 
consultation. In production system terms, this implies the 
enforced use of forward chaining, since by definition novel 
goals cannot already be present in the system's network of 
inferences. However, the control of forward chaining 
systems can be a difficult problem because combinatorial 
explosion of possible inferences can easily occur. 
Conflict resolution by means of complex meta-rules has been 
suggested as a suitable control in such cases, but Coombs 
and Alty illustrate the cognitive opacity of such 
meta-rules, which hinders rather than helps explanation of 
the system's function.

It is also easy to muddy the explanation when a rule is 
used in which the conclusion uses a value computed in a 
premise term rather than the (more intuitive) success or 
failure of the evaluation of premise terms [Davis et al. 
1977]. The usefulness of a code paraphrase as explanation 
is limited by the information represented, but more 
importantly by the information not represented [Neches et 
al. 1985], i.e. the causal, strategic or context knowledge 
which has had to be compiled out to push the domain 
knowledge into a rule-based formalism.

In spite of these problems, the rule-based approach to 
explanation has not been without its champions. Even after
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considering its drawbacks, Davis et al. [Davis et al. 1977] 
have claimed that the rule-based approach is sufficiently 
intuitive that a natural language version of an execution 
trace is "a reasonable basis from which to start" 
explanation. Davis' position has changed since he 
co-authored the 1977 paper. The desire for problem-solving 
flexibility has led him to abandon the uniform production 
system methodology in favour of modelling domain causality 
and the flow of inference. These '2nd generation' expert 
systems are examined further in section 2.5.

Pre-arranged or 'canned' text is the simplest form of 
explanation available to a problem-solving system. Canned 
text has occasionally been recommended as a satisfactory 
method of helping the user make sense of the system's 
behaviour and results [Kahn 1984, Chandrasekaran & Mittal 
1983] . However, the maintenance of such text is a 
separate, additional task to the maintenance of an evolving 
knowledge base, and like any form of static documentation, 
it can easily get out of step with the true state of the 
system [Neches et al. 1985]. For an expert system with a 
knowledge base that is often changed or updated, this type 
of static documentation is inherently dangerous.

Several workers have attempted to improve the usefulness of 
the HOW and WHY facilities in rule-base systems. Swartout 
[Swartout 1977] in his early work, the Digitalis-Advisor 
system, acknowledges that to provide a good explanation the
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system's reasoning must in some way correspond to the 
user's model of the domain processes. He attempts to 
improve explanation by identifying places in the 
computational model where it is clearly different from that 
of the user. At such places, Swartout used 'comments' 
(i.e. some form of canned text) in the code to paste over 
the non-intelligible part of the computational model. 
Digitalis-Advisor uses several levels of abstraction to 
control the amount of information generated during an 
explanation. The system offers the two forms of the HOW 
question: a form asking a general question (the 'how can 
you..?'), which Swartout calls DESCRIBE-METHOD, and the 
form referring to a specific case (the 'how did you..?') 
which he calls DESCRIBE-EVENT. Swartout's later work 
employs a more sophisticated view of explanation, and is 
described in the next section.

2.5 The Birth of the Second Generation

[Swartout 1981] deals with a system called XPLAIN. In this 
he employs a domain model, and uses an automatic program 
generator to construct a problem-solving program from the 
domain model by refinement from abstract goals. Explanation 
is achieved by examination of the refinement structure 
created by the automatic program generator. The aim of 
this information is to offer an explanation of the 
underlying causal basis of a particular rule, commonly
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referred to as a rule justification. This extends 
explanations in Swartout's systems from a statement of the 
rules used in his 1977 paper to access to an underlying 
causal model of the domain in his 1981 work.

Patil, in his ABEL system [Patil 1981], employs a 
multi-level rule-based causal model, linked by common terms 
or nodes which are available to more than one level. His 
aim in using such a representation is, like Swartout's, to 
improve the explanatory power of the system, which is a 
diagnostic problem-solver in the domain of acid base and 
electrolyte disturbances. Like Swartout's XPLAIN, this 
facilitates justification of high level rules in terms of 
chains of lower level causal rules that connect nodes 
referenced by the premise and conclusion of the high level 
rule. Patil's fundamental view of diagnosis is the attempt 
to provide an adequate explanation of the observed 
findings, using 'explanation' in Craik's sense of 
scientific explanation. From this basis, he dismisses a 
set-covering model of diagnosis as unsatisfactory because 
of the causal nature of disease processes. He therefore 
selects a causal model as his knowledge representation. 
Causality is represented as a rule network, and the 
generation of a justification is a statement of a chain of 
these causal rules. Patil generates several versions of his 
Patient Specific Model, and the different models compete. 
Like the system of Addanki and Davis, this offers the 
possibility of comparing outcomes in possible worlds.
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Ferrand [Ferrand 1984], in his SESAM system, combines the 
approaches of Swartout and Patil. He employs an automatic 
program generator in conjunction with a multi-level causal 
model of the domain.

In the work of Swartout, Patil and Ferrand, the explanation 
is seen as a single task produced in a uniform way 
regardless of the user's detailed requirements. The user 
is not permitted to isolate aspects of the domain that 
interest him; if he is interested in a rule, then he can 
have the causal basis for that rule; if interested in a 
term, he can either discover its consequent inferences or 
its logical antecedents. Explanation is viewed as a 
specific task, rather than a generic term describing the 
many ways in which understanding may be communicated. On 
this level, the problems of open user access to a real 
understanding of the domain are not fundamentally dealt 
with.

The PEA system of Neches et al. [Neches et al. 1985] offers 
advice on improving Lisp code, for example replacing CONDs 
by IF or UNLESS to improve readability. The system is a 
development of Swartout's XPLAIN methodology, having an 
expanded knowledge base on which a program generator 
operates. The originators of the system believe that 
explanation should be viewed in terms of a collection of 
different information goals, contrasting with the usual 
view of explanation as a single uniform task. Each
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information goal is to be associated with a particular 
class of question, and has an appropriate explanation 
strategy associated with it. This view of explanation as a 
multitude of tasks is similar to mine. Lehnert [Lehnert 
1978] in the field of natural language understanding has 
also addressed the problems of answering questions (see 
section 2.8). An earlier version of this question answering 
view of explanation was put forward by Scott et al. [Scott 
et al. 1977],with respect to MYCIN. They proposed that at 
the program design stage the question types that were to be 
handled by the system should be enumerated. The 
explanation capability of the system would then comprise a 
set of specialist explainers, one being provided for each 
question type. The underlying representation was MYCIN's 
production system approach, but information was also to be 
available describing the form in which static and dynamic 
(i.e. inferential) knowledge was held in the system. 
Clancey, one of the co-authors of the paper, in later work 
[Clancey 1983] shows how justifications for rules fall into 
four categories: justification by identification, by
causal factors, by common sense, and by restatement in 
terms of domain-dependent facts. This is an im portant 
elaboration of the idea of specialist explainers.

In early work [Clancey 1977] Clancey demonstrates an 
explanation facility that is not a statement of rule 
chains. The system he describes is of a generate and test 
type, and leaves behind a static event structure as it
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executes its problem-solving task. Examination of this 
event structure can answer two categories of question:

'Why was drug X prescribed for organism Y ?'
and

'Why wasn't drug Z prescribed for organism Y ?'
Although this is not an unwinding of rules, it is still an 
examination of an execution trace.

In his description of the GUIDON system, Clancey argues 
[Clancey 1979] that rule-based problem-solvers are 
fundamentally unsuitable for use in tutorial tasks. Two 
new levels must be added to make such a system useful for 
teaching. First, a support level, which provides 
justifications for individual rules, and second, an 
abstraction level, which defines the strategy for the use 
of problem-solving rules and organises these rules into 
patterns. GUIDON also has an explicit representation of 
teaching expertise.

The later approach to explanation espoused by Clancey 
[Clancey 1983] is far more broadly based. In attempting to 
use the MYCIN system for teaching purposes, Clancey 
recognised that lack of explicit representation of domain 
understanding was the fundamental cause of MYCIN's 
inability to explain itself. He reconfigured MYCIN to the 
system NEOMYCIN, including two new categories of rule. 
Rules explicitly describing diagnostic strategies are 
independent of the particular domain reflecting simply the
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way a medical diagnostician in any field approaches the 
task. Secondly, causal rules were included. Clancey 
indicates that access to a causal model is essential for 
the user to understand the system's reasoning. Indeed, it 
has been shown [Hasling et al. 1984] that the explanation 
of strategy is extremely difficult unless domain-level 
concepts are understood first.

In MYCIN, information at " various levels - causal, 
strategic, problem-solving - was inextricably interwoven in 
a single level system. In NEOMYCIN, Clancey separated out 
the knowledge so that each level was a coherent description 
of that view of the domain. NEOMYCIN can be viewed as a 
combination of GUIDON'S explanation capabilities and 
MYCIN's problem-solving.

A causal network showing the progress from the initial 
presence of pathogenic conditions to eventual symptoms is 
the underlying knowledge base for CASNET [Weiss et al. 
1978], which is competent in the field of glaucoma 
diagnosis and therapy. Such networks permit not only 
diagnosis but also prognosis. The nodes of each network 
correspond to physiological states, and the links represent 
physical transitions between the states. Diagnosis is 
achieved by comparison of the fully modified patient model 
with networks representing the progress of various 
diseases. The best match provides the offered diagnosis. 
Szolovits and Pauker [Szolovits & Pauker 1978] offer a
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comparison of MYCIN's inference net structure with the 
causal net structure of CASNET. The fundamental difference 
between the two representations is in the semantic 
interpretation of the nodes and arcs in the two systems. 
In MYCIN, a node is an arbitrary world fact, and a link is 
a similarly arbitrary implication joining the facts on an 
entirely empirical basis. In CASNET, a node represents a 
physical state of the domain, and a link represents 
physical causality. Problem solving inferences are not 
intertwined with physical effects, leaving CASNET's 
semantics certainly more consistent and arguably clearer to 
a human observer.

The use of functional and structural models to represent 
faults in digital electronic sytems is advocated by Davis 
et al. [Davis et al. 1982, Davis 1983] . These models are 
expressed as a series of commands, which, when executed, 
create data structures that model the components and their 
interconnections. The fault models must be quite distinct 
from any problem-solving knowledge: the 'flow of 
electricity' and the 'flow of inference’ are quite 
independent.

A similar idea is presented in the PROMPT system [Addanki & 
Davis 1985], which addresses the problems of design of new 
specialised objects, e.g. a ball point pen for use in 
conditions of unusual temperature, gravity etc. PROMPT 
holds prototypes of the objects of interest (i.e. the pen)
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and transforms a prototype to effect design. Prototypes are 
also available to describe physical processes and 
relations. The system can also cope with diagnosis of 
faults in existing instances of such objects and with 
prediction of the behaviour of specific objects. The 
description of the problem solving process is described in 
terms of 'states', which are snapshots of the world at a 
fixed time. If a full description of a state is 
unnecessary, a 'scene' or partial state can be used. A 
'history' maps an interval of time in the real world into 
an ordered collection of scenes, yielding a partial view of 
the physical occurrences in the period. As states 
correspond to scenes, so 'chronicles' correspond to 
histories, offering a complete world description for the 
time interval. To achieve the various types of 
problem-solving required, multiple pasts and futures can be 
generated in the form of multiple parallel chronicles. 
Although not of primary importance to Addanki and Davis, 
the multiple chronicles will allow description by PROMPT of 
why a proposed solution would (or would not) work.

The systems described in this section all highlight the 
important point that improved explanation requires the 
representation of extra domain knowledge which is not 
directly relevant to a simple problem-solving task. A 
system can usually make do with a simple representation of 
the domain, but to understand that domain to the point 
where it is possible to begin to generate explanation, more
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sophisticated and detailed knowledge and knowledge 
representations are required.

2.6 Representing Understanding for Problem-Solving and 
Explanation

For those systems in which understanding of the domain 
leads to superior explanation facilities (whether the 
explanation is volunteered or must be requested) , what type 
of representation has been recommended and used ? As early 
as 1943, Craik [Craik 1943] was advocating the use of a 
causal model as the basis for generating explanations of 
scientific phenomena. Johnson-Laird refers to mental 
models, which are manipulated in a simulation process 
within the human brain to perform inference and 
problem-solving. His concern is with the modelling of 
understanding. These observations are upheld by the views 
described in section 2.5. All the more successful 
explainers incorporate a knowledge of causality in the 
appropriate domain; some insist on explicit strategy 
representation also.

In creating the TEIRESIAS system [Davis 1977] for the 
interactive acquisition of knowledge from experts, Davis 
chose to view understanding in terms of matching incoming 
data against an existing model. In his case, the model was 
of a characteristic rule, a typical member of a subset.
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The view is widespread; many workers have (implicitly or 
explicitly) seen the system's knowledge as a model or 
collection of models - of physical causality, of the 
expert's problem-solving processes, of general strategic 
knowedge - against which data from the outside world is 
compared and used in accordance with the expectations 
inherent in those models. [Addanki & Davis 1985, Aikins 
1983, Chandrasekaran & Mittal 1983, Clancey 1979, 1981, 
1983, Clancey & Letsinger 1981, Davis 1980A, 1980B,' 1983, 
Davis et al. 1982, Ferrand 1984, Goguen et al. 1983,
Hagert 1985, Hasling et al. 1984, Jackson & Lefr c 1984, 
Johnson 1985, Kidd & Cooper 1985, Koton 1985, Langlotz & 
Shortliffe 1983, Neches et al.1985, Patil 1981, Swartout 
1981, Weiss et al. 1978, Weld 1985, Van Releghem 1984] 
Clancey [Clancey 1981] argues that the use of expert 
systems for tutorial purposes (i.e. for good explanation, 
among other things) requires a shift in viewpoint from 
solving problems well to a simulation of the reasoning 
process. In articulate problem-solving systems, we should 
then look to incorporate such a simulation into the system.

An interesting comparison of a rule-based system and a 
model-based system in the same domain was made by Koton 
[Koton 1985] using GENEX and GENEX II. Both are concerned 
with problem-solving in molecular biology. Koton reports 
increased problem-solving power of the model-based system, 
demonstrating its capability to deal with novel situations. 
These situations were ones which were simply not prefigured
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in the rule premises and therefore insoluble to the 
rule-based system. The advantages of the model-based 
system were flexibility, the ability to change the model in 
a unique manner equivalent to making a collection of 
disjoint changes to many rules in the rule-based system, 
and the accessibility of the domain knowledge. However, 
Koton does point out that of the two systems, GENEX II, the 
model-based system, requires a much more complicated 
control structure. The tasks posed to both systems were of 
a predictive, 'forward-chaining' nature. To what extent the 
tasks affected the comparison, Koton does not say.

Many systems have used the rule-based formalism to 
represent these models, including NEOMYCIN, ABEL and SESAM. 
Others, e.g. CASNET and GUIDON have employed 
state-transition networks. For example in GUIDON, the 
event structure originating from the execution of a 
generate-and-test strategy can be regarded as a 
state-transition diagram of states of knowledge in the 
system, and transitions or actions leading to the next 
state. These constitute instantiated problem-solving 
methods, and as Clancey points out, are readily 
comprehensible by the user [Clancey 1977] .

A most appealing developmental view of expert system 
construction is presented by Riesbeck [Riesbeck 1984]. 
Although a 'prototyping' approach is often advocated as a 
good method for building expert systems, such systems never
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'learn' in any meaningful sense; knowledge may be added in 
a modular fashion, but its organisation remains strictly 
under the control of the knowledge engineer. Like Athene, 
systems spring fully grown from the mind of their designer; 
they have never been novices, always instant experts. 
Riesbeck challenges this methodology, listing three 
advantages which would be enjoyed by a system which had 
been 'educated' in its domain ofexpertise. First, 
non-expert knowledge (which would of course be retained by 
the eventual expert) could be used to explain decisions to 
non-expert users. Secondly, non-expert knowledge could be 
used to handle novel situations since it may be less 
effective for problem-solving, but is likely to be more 
general than the later-developed skill. And finally, if 
the system were created by 'teaching' it, continued 
updating of a volatile domain knowledge base would be very 
simple. Riesbeck suggests that novice knowledge is 
domain-centred, involving physical objects and causality. 
Expert knowledge, in contrast, is task-centred, organised 
around the kind of answers the expert wants to find. This 
leads to knowledge of relations between a situation and a 
solution - typically heuristic.

In representing models of understanding, work in another 
area of Artificial Intelligence is relevant. Charniak 
[Charniak 1981] points out that traditionally, frames have 
been used for natural language work that requires a shallow 
representation of a broad domain, and rules have been used
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as the most common formalism for problem-solvers, where the 
requirement is for a deep representation of a narrow 
domain. He advocates a combination of the two approaches 
to broaden understanding in problem-solving systems. 
Following this line of reason, Aikins employs a combination 
of frames and rules. Her CENTAUR system [Aikins 1983] uses 
prototypes coded as frames to represent disease classes. 
These prototypes are hierarchically organised, and the 
system fills the frame slots by utilising knowledge bases 
in the form of rules associated with each slot. Aikins 
points out that to restrict oneself to the single formalism 
of rules and not to take advantage of frame-oriented 
representations is unnecessarily restrictive.

The demand for flexibility and for an explanatory 
capability means that the information previously held in 
rules must be broken down into its constituent parts. 
Also, knowledge which has no direct involvement in the 
problem-solving process needs to be stored. Frames provide 
representation structures which have been used in other 
areas to represent this wider variety of knowledge.

A group of workers at Yale have demonstrated understanding 
by answering questions using scripts as their underlying 
representation. The argument of this thesis is that this 
approach offers considerable promise for application to 
explanation in problem-solving systems. In the remaining 
sections of this chapter this approach is examined in more
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detail. The work of Schank and Lehnert is covered in 
greater detail than that of other researchers discussed in 
this review because their ideas are of central importance 
to this thesis.

2.7 The Yale Approach to Natural Language Understanding

Over the last ten to fifteen years, cognitive scientists at 
Yale have approached the questions of understanding and 
memory organisation in various ways. Their methodologies 
have ranged from the simple (e.g. understanding simple 
sentences using conceptual dependency representation) to 
the complex (e.g. goal based understanding to explain 
apparently unrelated actions in social situations; memory 
organisation packets illustrating learning mechanisms).

But whatever the level of complexity, the emphasis has
remained on achieving a deep semantic representation of the
text. This work on text understanding is relevant to any
attempt at semantic representation: as Schank asserts in an
attack on the syntax-oriented approach to natural language
understanding and generation [Schank 1981],

"the problem of text representation is identical to 
the problem of meaning representation".

In the work of the Yale group, this is usually based on
conceptual dependency (CD) theory in some form. The
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remaining sections in this chapter start with an overview 
of CD theory, building from there to scripts, and to 
question-answering by the QUALM module.

2.7.1 Conceptual Dependency Theory

The conceptual dependency theory is described by Schank in 
[Schank 1975«J . This theory was aimed primarily at 
developing a representation “of the meaning of individual 
simple sentences in natural language. The topics covered by 
his simple sentences were common actions performed by 
people. Schank, like other workers both before and since, 
viewed the meaning of the sentence as verb-centred and 
actor-oriented. He wished however to perform more than a 
simple case-grammar analysis, which gives the verb used in 
the sentence a central position and assigns all other 
elements to case 'slots' attached to the verb. His aim was 
to capture the essential 'meaning' of the sentence, 
defining the verbs in terms of some underlying 
fundamentals. To this end, he first declared an axiom and 
its corollary, in an attempt to define how he would measure 
the success or failure of his 'meaning' representations.

Axiom : Two sentences having identical meaning,
regardless of language, must share a unique 
representation.

Corollary : Any information implicit in a sentence
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must be made explicit in its 
representation.

So the three sentences
'John sold the book to Jane'
'Jane bought the book from someone called John'
'Jane purchased the book from John' 

would all have an identical representation, and the 
implicit concept of transfer of money would be explicitly 
shown. (Schank does however distinguish the difference in 
'focus' between the active and the passive forms.) Each 
simple "meaning proposition” is called a conceptualisation. 
Active conceptualisations describe the meaning of simple 
action, and Schank uses a uniform syntax to represent them: 

Actor Action Object Direction (Instrument)
Stative conceptualisations are simple unary or binary 
predicates, represented using the form:

Object (is in) State (with Value)

In aiming for a language-independent representation of 
meaning for his chosen domain, Schank postulated eleven 
'primitive acts' in terms of which all the actions in the 
domain of interest could be described. For example, the 
primitive act for the three examples in the preceding 
paragraph is ATRANS, the transfer of an abstract concept of 
possession or control. These primitive acts could then be 
used in the place of the ordinary verb in a case-grammar 
analysis. The active conceptualisations representing each
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example sentence are
(subject JOHN) (act ATRANS) (object BOOK) (to JANE) 
(subject JANE) (act ATRANS) (object MONEY) (to JOHN)

Some sentences do not, however, describe an action. These 
are stative conceptualisations; that is, the sentences 
describe states rather than acts. For example:

'Jane was overjoyed'
'Jane was happy'
'Jane was sad'
'Jane was suicidal'

Schank did not propose 'primitive states' to describe such 
assertions, but chose rather to represent the stative 
conceptualisations in terms of named 'scales' ad hoc. 
Values on these scales range between -10 and +10. The 
above examples are chosen from Schank's MENTAL STATE scale. 
The sentence

'Jane was overjoyed' 
might thus be represented as

(subject JANE) (state MENTAL STATE) (value +9)

2.7.2 Causal Chaining

Having established a meaning representation that could 
adequately fulfil his CD axiom and corollary, Schank 
addresses the problem of the meaning representation of 
connected text. How can meaning be shown to be connected

45



between two sentence representations ? Sometimes explicit 
connectors are provided and a direct causal link can be 
identified, but often apparent links are misleading if 
treated literally. Consider the following two simple 
examples.

'It was raining. John got wet because he had no 
umbrella.'

Here, the rain plus the lack of umbrella are the factors 
that cause John to get wet.

'It was raining. John got wet because he had forgotten 
his umbrella.'

This cannot be taken literally: the mental act of 
forgetting cannot directly cause one to get wet! In this 
case, the act of forgetting leads to a state where John 
does not have an umbrella: it is this state which enables 
him to get wet when it rains.

From considerations like these, Schank arrives at a 
representation of connected text which consists of chains 
of causation. He describes five rules of causal syntax, 
each showing a means of connecting active and stative 
conceptualisations. The five rules are

(i) Actions can result in state changes.
ACT => STATE 

r

(ii) States can enable actions.
STATE => ACT 

E
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(iii) States can disable actions.
STATE => ACT 

dE

(iv) States or acts can initiate mental states.
STATE => MENTAL STATE 

I

ACT => MENTAL'STATE 
I

(v) Mental states can be reasons for actions.
MENTAL STATE => ACT 

R
(Note: Schank's written representation of the causal links 
would show the arrows pointing from right to left in 
statements (i) to (v) above; I find the above notation 
preferable.)

The letters associated with the arrows in the diagrams 
denote the five types of causal links: 

r results in
E Enables
dE dis(En)ables
I Initiates
R Reason

Using these rules, causal chains can be built up, 
connecting the active and stative conceptualisations
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present in the text. Where a literal interpretation of the 
text leads to a syntactically incorrect linkage (as in 
forgetting leading to getting wet), the 'missing links' of 
the causal chain must be filled in.

2.7.3 Scripts

Using causal chains of conceptualisations, Schank describes 
the representation of simple connected text where the 
actions could be linked together in a way determined almost 
completely by the explicit content of the text. However, 
such text has to be contrived; to use the technique on 
simple newspaper stories remains beyond the scope of the 
work at this point. The reason for this is clear. People 
understand, for example, stories about car accidents given 
in an extremely concise form because they have previous 
knowledge of an 'archetypal' car accident story. Consider 
the piece of text:

'A man was killed and another seriously injured 
yesterday when a car veered off the B5181 and hit a 
tree. An ambulance arrived at the scene within 
minutes, but the driver of the car was dead on arrival 
at the hospital. Police have not yet released the 
names of those involved.'

When we read the text, we are not surprised at the sudden 
and unexplained mention of an ambulance: it is a
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well-comprehended part of our expectations about stories of 
this kind. If 'ambulance' were replaced by 'ice-cream van' 
we would be very puzzled at its inclusion in such a tale. 
Understanding of the text is only possible because we 
already have available a knowledge structure which Schank 
refers to as a SCRIPT. These scripts, then, play a central 
role in Schank's text understanding work. They are large 
uninstantiated causal chains.

The causal chains may have several alternative branches 
representing different possible paths to a particular act 
or state. If we consider, for example, a launderette 
script, then the action of putting soap powder into the 
machine requires that the main actor of the script must 
first be in possession of some soap powder. There are 
several ways in which this can happen: he may buy it on the 
spot; he may ask another launderette patron for a donation 
from their supply; or he may be highly organised and bring 
it with him to the launderette. Often, when appropriate 
text is read, only one of these alternative paths is 
instantiated. However, in some cases, no relevant 
information for deciding between the alternatives is 
present in the text, and all remain as possibilities.

These archetypal stories in the form of uninstantiated 
causal chains must, of course, have actors featured in 
them. These actor slots in the uninstantiated script are 
occupied by role descriptors; for example, in the car
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accident story, the roles in the script may include 
Car Driver 
Passenger 
Eye Witness 
Ambulance Driver

These roles are assumed by the people mentioned in the 
actual text when the text is read and the script 
instantiated.

Schank's examples of natural language text are often 
entertainingly bloodthirsty, usually describing various 
ways of killing and maiming. Unfortunately, the domain of 
anti-corrosive paints does not offer such diverting 

examples!

2.8 Question Answering and Causal Chains

Lehnert [Lehnert 1978] recognised that understanding of 
text is most convincingly demonstrated by the ability to 
answer an assortment of questions about that text. This 
idea has been used for generations in primary and secondary 
schools, and in examinations. Lehnert constructed a module 
called QUALM, which could translate natural language 
queries into a Conceptual Dependency representation and 
then access the associated instantiated script to obtain an 
answer. This was achieved by dividing the question into two 
conceptual parts: the question category and the question
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concept. Lehnert's question concept is the CD 
conceptualisation which is present in the question. This 
contains no interrogative force, but clearly may also have 
one or more slots uninstantiated.

For example, using a story about John going to London by 
train in order to go to the theatre, we may consider the 
following questions:

How did John go to London?
When did John go to London?
Why did John go to London?

Although all three example questions are clearly different 
and require different answers, if the interrogative force 
of each query is removed, we are left with a common central 
concept:

John went to London.
This simple sentence is readily representable in CD terms, 
and is the question concept for our three example 
questions.

The concept derived from a posed question can be matched 
against the story representation. When a match has been 
found, the mechanism for recognising an associated item 
which constitutes a reply depends upon the interrogative 
part of the question. So, having discovered a match for 

John went to London
in the instantiated script story representation, we obtain 
answers to our three questions in different ways by
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reference to the question category for each question.
How did John go to London?

requires an answer describing the mechanism employed to 
achieve the action, i.e. by train.

When did John go to London?
enquires about a temporal location for the act, which could 
either be absolute or relative to the time of enquiry. For 
example,

On the 22nd June 1985.
Last Friday.

could be sensible answers.
Why did John go to London?

is a rather more complex question than the previous two 
examples.The complexity stems from the nature of the 
question category. In the previous two examples, responses 
could be found by examining slots attached to the story 
conceptualisation matching the question concept. No other 
conceptualisation needs to be accessed. However, this 
question asks about John's motives in engaging in the act 
in question. This necessitates looking ahead in the causal 
chain to see what major events are subsequently enabled by 
the question concept. Thus, for this question category, 
the question-answering mechanism must shift its attention 
to conceptualisations in the causal chain other than that 
which matches the question concept.

Lehnert identifies thirteen categories of questions.
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2.8.1 Causal Antecedent

e.g. Why did the glass shatter?
Questions in this category ask about states or events that 
have in some way caused the question concept. They are 
answered by identifying the prior concept in the 
instantiated causal chain.

2.8.2 Goal Orientation

e.g. Why did John go to London?
These questions ask about the goals that prompt an action. 
Lehnert says

"this presupposes that the actor of the question 
concept is a human who acts of his own volition".

Goal orientation questions are meaningless outside of the
context of a sentient actor. The category differs from
causal antecedence in that here the action (goal) described
in the answer has not yet happened; replies to a causal
antecedent question are found in prior states or acts, not
subsequent hypothesised acts. Clearly, goal orientation
questions are closely related to causal antecedent
questions, but Lehnert does not examine the nature of this
relationship. In analysing the mechanisms for question
answering implemented in QUALM, she refers to a causal
antecedent question invoking a search through the causal
chain representation of the instantiated script describing
the story. If this search cannot provide a suitable answer
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to a causal antecedent question, then a search is made in a 
'plan' structure to which the script is attached. 
Information in the plan structure may then supply an answer 
to a goal orientation question having the same question 
concept.

2.8.3 Enablement

e.g. How were you able to "afford a new coat?
Such questions are enquiries about states or their 
causative acts which enable the act described in the 
question concept. Although Lehnert does not refer to the 
fact, enablement questions are thus a special subset of 
causal antecedent questions.

2.8.4 Causal Consequent

e.g. What is the outcome of a plutonium leak?
The question concept is an action; the answer is given by 
the state that is the result of that action.

2.8.5 Verification

e.g. Is titanium oxide poisonous?
Verification questions need a yes or no answer, or some 
statement of the answerer's confidence in the truth of the 
question concept.

54



2.8.6 Disjunction

e.g. Who painted 'Beata Beatrix': Rossetti, Burne-Jones 
or Morris?

The OR in disjunctive questions is not the logical OR (else 
a valid answer to the example question would be ’yes'); it 
is more accurately a collection of verification questions, 
one for each 'disjunctive' element, with only the true 
elements reported as answers.

2.8.7 Procedural/Instrumental

e.g. How did John get to London?
How do you make mayonnaise?

Questions in this category ask either about an object 
instrumental to the act in the question concept (’By 
train', in response to the first example question), or 
about a sequence of acts that together constituce the 
question concept act. Lehnert groups these two together, 
because they are very closely related. To see this, 
consider the answer 'by train' to the first example 
question. This is a shorthand for describing the collection 
of acts (in fact, a script) which constitute the procedure 
of travelling by train.

2.8.8 Concept Completion

e.g. Who cooked dinner last night?

55



The question concept for this category is an active 
conceptualisation. At least one slot or descriptive 
feature in the question concept is unknown (in the example, 
it is the identity of the ACTOR involved), and the question 
is answered by providing the appropriate feature.

2.8.9 Expectational

e.g. Why doesn't zinc rust?
If such questions were asked with a positive instead of 
negative force, they would be enablement or causal 
antecedent questions, (i.e. Why does iron rust?) The 
question concept is a negated conceptualisation indicating 
the violation of the enquirer's expectations. To answer 
such a question it is necessary to search for states in the 
causal chain which would disable the positive question 
concept or disable actions eventually resulting in the 
question concept.

2.8.10 Judgmental

e.g. What do you think of SDI?
Judgmental questions ask for a subjective opinion of the 
entity named in the question concept.

2.8.11 Quantification

e.g. How many cats do you have?
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How ill is your uncle?
Questions in this category require counting (example 1) or 
a scale value (example 2).

2.8.12 Feature Specification 

e.g. What colour is your car?
These are 'slot-filling' questions for stative 
conceptualisations, comparable to concept completion 
questions which 'fill slots' for acts.

2.8.13 Requests

e.g. Would you pass me that book?
Requests are instructions for action which are phrased as 
questions. They do not really expect a verbal reply.

2.9 Primitives and Representations for Domain Entities

It may appear that in CD theory, Schank has established a 
sufficient set of eleven primitive acts. These however are 
domain dependent. In [Schank & Carbonell 1979], the 
authors investigate the representation of the Gettysburg 
Address using the ideas of Conceptual Dependency. In 
exploring this, they make the point that the actions 
involved are not simple physical ones, involving 
individuals and everyday tasks. The eleven CD primitive
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ACTs do not apply: they cannot be used as atoms in the 
construction of more complex molecules of meaning. Schank 
and Carbonell propose seven basic 'social ACTs' for use in 
representing social and political events. In considering 
the scope of the two available sets of primitives, they 
say:

"It is very unlikely that either the CD-primitives 
or the basic social acts would be useful in 
codifying, for instance, the knowledge relevant to 
understanding chemistry or microbiology. These 
domains require their own basic knowledge 
organizing units."

In the PROMPT system [Addanki & Davis 1985] described in 
section 2.5, processes are 'precanned', i.e. not described 
at a microscopic level, nor in terms of any primitives. 
For example, no relationship is evident between 'boiling' 
and 'freezing'. The description of processes includes 
specification of preconditions, the entities involved, the 
sffscts generated, and relevant mathematical equations• 
W d d  [Weld 1985] is also concerned with the description of 
processes for use in models. He distinguishes between 
continuous and discrete processes. If the world state is 
described in terms of quantities which are either 'linear' 
(i.e.dimensional, having a continuous range of values) or 
'nominal' (i.e. featural, having a discrete set of possible 
values), the nominal attributes cannot be affected by 
continuous processes, since there is no way monotonically 
to change a quantity 'with no inherent order'. Nominals 
are therefore affected only by discrete processes. Like
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processes in PROMPT, Weld's processes are described in 
terms of their preconditions and influences.

2.10 Conclusion

Explanation in problem-solving systems is not an area where 
a vast amount of work has already been done. The 
achievements are modest, but the problem itself is a very 
difficult one. Sense can only be made of the field by 
regarding 'explanation' as a generic term, and attempting 
to discover what some of the specialised processes are that 
make up the rich fabric of the ways in which human beings 
explain what they know.
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3 THE SCRIPT APPROACH TO CAUSAL MODELLING

3.1 Overview

The domain of the ADEPTUS system is the use of coatings 
applied to steel substrates to prevent or retard corrosion. 
The physical processes in the domain will be viewed as 
elements of an archetypal story or 'script' in Schank's 
terminology.

This chapter discusses the domain under consideration. 
Analysis of the knowledge obtained from the domain experts 
reveals how a causal model can be used as a 
representational formalism for domain processes. Following 
from this, Chapter 4 illustrates how the same formalism can 
be applied to the problem of selection within the domain.

David Hume described the origins of our ideas of causality 
thus:

"The necessary connection betwixt causes and 
effects is the foundation of our inference from one 
to the other. The foundation of our inference is 
the transition arising from the accustomed union. 
These are, therefore, the same." [Hume 1738]

This resembles Schank's comments about a script-based

theory of understanding:
"In order to understand the actions that are going 

iu a given situations, a person must have been 
in that situation before. ...The actions of others 
make sense only insofar as they are part of a 
stored pattern of actions that have been previously
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experienced." [Schank & Abelson 1977]
The "stored patterns of actions" refer of course to 
Schank's ’script' entities. Schank and Abelson are talking 
about social situations, and Hume is concerned with general 
causality. It seems reasonable to employ this 'causality 
as script' view in a system where perception of an external 
reality is not at issue.

3.2 The Outline Account

Analysis of the knowledge elicited f m the domain experts 
showed that the physical processes involved in the use of 
anti-corrosive coatings form an archetypal story. The next 
few subsections show the essential elements of this outline 
account.

3.2.1 Substrate Preparation

First, the surface to be protected must be prepared. This 
is normally achieved by abrasion or impact methods; the 
substrate may be scoured by hand with wire wool or 
shotblasted by machine. The choice of method depends on 
several factors :

(i) The size and shape of the substrate. Small 
intricate items cannot be successfully 
shotblasted. At the other extreme, large expanses
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of flat or simply-shaped surface are not 
efficiently treated by hand.

(ii) The location and mobility of the substrate. 
Shotblasting may be impractical in certain 

interior locations. However,if the substrate can 

be moved to a suitable place, the mechanical 

method may still be feasible.

(iii) The availability of tools and personnel.

The aim of these mechanical processes is to clean the 
substrate and to provide a key, or degree of roughness, on 
the surface to be coated. The nature and depth of this key, 
and the extent to which impurities like rust or old 
coatings have been successfully removed, have a major 
influence on the subsequent adhesion between substrate and 
applied coating.

The substrate may also be degreased: that is chemically 
treated to remove existing adhesions of undesired 
substances, which create a thin but effective barrier 
between substrate and coating.

3.2.2 Coating Application

These preparatory activities should eventually lead to a 
prepared surface that is dry, clean and has a good key. A 
coating may then be applied to the surface. This is
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achieved in one of several possible ways: these include 
brushing, rollering, spraying and tumbling. The 
characteristics of the individual paint will determine 
which methods are possible. For example, the high 
viscosity of bitumen coatings renders spray application 
completely impractical. Another major factor influences 
the choice of application method: the availability of 
skilled personnel. If the optimal application method for a 
coating is an airless spray, the method will nevertheless 
yield unsatisfactory results if employed by personnel 
untrained in the use of such equipment. In a case like 
this, one may well have to resort to brush application.

Possession of appropriate tools is also a necessary 
prerequisite to coating application. Eventually, using one 
or other of the possible application methods, adhesion 
between substrate and coating is achieved over the entire 
surface of the substrate. This means that on the substrate 
there exists a wet film, which will have a collection of 
measurable dimensions and observable properties.

3.2.3 Drying and Curing

The wet film is now left to harden. This may occur
(i) through drying by solvent evaporation
(ii) through curing or chemical crosslinking

or (iii) through a combination of solvent evaporation and
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curing.
The type of hardening process is governed by the nature of 
the coating, but variables such as rate of hardening are 
affected by external factors including temperature, 
humidity and ventilation.

If the hardening processes include drying by solvent 
evaporation, a vapour will be produced. The chemical 
constituents of such a vapour are determined by the 
composition of the wet film, and it may be necessary to 
take account of potential vapour toxicity.

On completion of the drying process, a fresh dry film is 
obtained, adhering to the substrate. This film is 
described by properties and dimensions similar to the wet 
film, but the values along these dimensions have changed. 
For example, the film thickness is likely to have been 
considerably reduced, and the adhesion with the substrate 
enormously increased. Some of the features of the wet film 
that were descriptive of the liquid state will have been 
replaced by new descriptors appropriate to a solid 
substance. For example, the concept of viscosity is 
relevant to consideration of the wet film; in the dry film 
this has no meaning and can be replaced by such qualities 
as hardness, flexibility etc.

At this point in the history , in practical terms, the
coating begins to serve its purpose.
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3.2.4 Wearing

Once in service, the dry film can be affected by many 
factors. It is convenient to group these into 
environmental factors and sub-film factors. The 
environmental factors are any which are external to the 
film-substrate system, and include:

(i) Chemical contact: acids, alkalis, organic 
compounds etc.

(ii) Water contact: fresh water, salt water, permanent 
immersion, splash zones.

(iii) Mechanical damage to the film: impact, abrasion, 
stressing.

(iv) Radiation: e.g. oxidation effects causing

yellowing of white pigments.

(v) Atmospheric pollution: industrial contaminants, 

ozone.
(vi) Temperature: high temperatures, low temperatures.

Sub-film factors are those arise from processes occurring 
either within the film or at the film-substrate interface. 
For example, if the substrate was wet when the coating was 
applied, pockets of moisture may be trapped. An increase 
in temperature can then vapourise this moisture, causing 
'blisters' to form.

All such factors take their toll on the dry film. As time 
passes, the attributes of the film will change in response
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to these destructive processes.

3.3 The Script

When the preliminary knowledge analysis was complete, it 
became clear that the sequence of processes that constitute 
the foregoing description can be represented using a 
modified version of Schank's 'scripts. It is this idea that 
underpins this thesis.

Figure 1 illustrates an initial high-level representation 
of such as script.

3.4 Active Images

Each of the ACTS can be thought of as a reference to an 
entire sub-script rather than a primitive ACT. For 
example, the surface preparation is not a simple ACT, but 
a term used as a shorthand description of a complex, 
variable set of ACTS. This is analogous to Schank's idea 
of a MAINCONS, the ACT central to the script, that is 
sufficient to use if the entire script is not needed.

Although causal chaining is used following Schank (see 
section 3.6), it is not appropriate to use his Conceptual 
Dependency primitives for this domain. CD theory requires
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the use of primitives to obtain a language-independent 
representation of meaning, in which the essential ideas 
common to whole classes of verbs can be made explicit. 
While Schank's eleven primitive ACTs are sufficient for

Figure 1
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the representation of all the active images in his chosen 
domain, they do not offer a vocabulary with which to 
describe physical processes largely independent of human 
motivation.

An ACT can only be described as ’primitive' with respect to 
a particular domain. Schank and Carbonell make this point 
in [Schank & Carbonell 1979]. Schank's eleven CD ACTs can 
only lay claim to the title of primitive for the domain of 
commonplace human activities. For other domains, other 
sets of primitive acts will be required.

Because the domain of the use of anti-corrosive coatings 
includes commonplace human activities, certain Conceptual 
Dependency primitive acts will be applicable. For example, 
in describing how someone moves an object to a different 
location in order to use non-mobile equipment, one could

use Schank’s G R A S P  and P T R A N S  acts. The act of 

shotblasting a substrate would incorporate a P R O P E L  act, 
extended over time.

The new primitives proposed as relevant to this domain are:

ST ICK

Two substances S T I C K  to each other if they are in 
physical contact, and remain so over a periodof time. 

STATECHANGE

a S T A T E C H A N G E  p ro c e s s  i s  r e c o g n i s a b l e  i n  t h a t  the
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major participant is present both before and after the 
process but in different physical states, e.g. solid, 

vapour etc. Thus S T A T E C H A N G E  is at the root of 
processes such as evaporation, condensation, freezing, 
melting, and sublimation.

TOUCH

Physical contact of two substances is a state which is 

brought about by a TOUCH process. The process implies 
nt of one substance with respect to the other. 

primitive can be used to represent the concepts of 
impact (hence shotblasting, spray application and 
mechanical damage) and spillages.

CHEM CHANGE

In such a process, one or more participating substances 
undergo chemical reactions to produce a chemically new 
participant substance. Examples are curing (chemical 
crosslinking), oxidation and precipitation.

In order to use the CD theory in a technical domain such as 
this, I have found it necessary to make an important 
distinction between an ACT and a PROCESS. An ACT must have 
an ACTOR: some entity (sentient or otherwise, e.g. 
g^jivity) that performs or is the causative agent for the 
occurrence. A PROCESS, in contrast, has participating 
entities, but none of these can be considered the causative 
agent for the occurrence. If this distinction were not 
made, then when representing, for example, the adhesion
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between paint and substrate, one would be forced to ask 
whether the paint was the ACTOR of the STICKing act, or 
whether it was rather the substrate. The introduction of 
the idea of PROCESS moves away from Schank’s strong focus 
on the ACTOR-ACT combination as the centre of interest.

This distinction between ACT and PROCESS avoids forcing the 
representation of domain-level active images uniformly into 
Schank's

ACTOR ACTION OBJECT DIRECTION (INSTRUMENT)
CD syntax. For PROCESSes, a simple representation can be 
employed, comprising the name of the PROCESS, followed by

the participants in that process. For example: 

STICK coating substrate 

STATECHANGE coating

So, in general,

PRO CESS participant-) > <participant2> . . .  <participantn>

3.5 Stative Images

3.5.1 Schank's Stative Images and the Cognitive Psychology 
View

Schank1s representation for states in Conceptual Dependency 
Theory is simple and generated ad hoc. A stative image
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takes the form
Object Attribute 

or
Object Attribute Value 

For example,

John ANG RY  

Can O PEN  

John HEALTH (-10)

Schank’s scheme fits well with a simplified approach to the 
classical view of concept definition in cognitive 
psychology. The classical view describes concepts in terms 
of 'features' and 'dimensions'.

A feature is a qualitative attribute, having a binary 
present/not-present nature. This accords with examples like

John ANGRY  

Can OPEN

„ miantitative attribute; that is, one which A dimension is a quantira
can be used in magnitude comparisons with the same 
attribute of a different concept. For example, if a 
Sabatier knife is very sharp and a table knife is quite 
sharp, then the Sabatier knife has a greater magnitude in 
the sharpness dimension than does the table knife. This 
of course maps very well on to Schank's use of scales; the 
value between -10 and +10 is the magnitude of the
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dimension.

3.5.2 Applicability to the Anti-Corrosive Coating Domain

To a very great extent, the stative images in Schank's work 
are of only secondary interest. His story domains are 
highly action-centred; states of the world are only 
incidentally important insofar as they enable or are the 
reason for the next action. His decision to use an 
episodic representation for information encompasses an 
exclusion of semantic representations; Schank admits that 
this may not be appropriate for more scientific domains 
[Schank 1975] • Lehnert was dissatisfied with the 
Conceptual Dependency representation of everyday physical 
objects, and proposed a primitive functional description of 
items such as taps, cups and plates for use with the 
script-based formalism.

The items to be described in the anti-corrosive coating
„„of be aiven a richer and more detailed domain, however, muse oe

representation. It is, after all, the coating film and its 
relation to the substrate that are of prime importance.

The representation of stative images in ADEPTUS is clearly 
divided into two separate levels, the gross and the 
detailed. At the gross level the representation of the 
world state is a very simple featural one. For example, the
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state immediately preceding the STICK process may have the 
form

P H Y S C O N T coating substrate

borrowing the P H Y S C O N T  (physical contact) relation from 
Conceptual Dependency. The gross level delineates only the 
names of the entities which are relevant to the portion of 
the archetypal story into which the state fits, coating and 
substrate in the example. This may be supplemented by 
simple coarse-grain relationships between the participating 

entities i.e. PHYSCONT. The coating and substrate are here 
features of the 'world state' concept.

The representation of the more detailed attributes of the 
world state takes the form of a collection of features and 
dimensions belonging to each of the gross world state 
entities, e.g. coating. It is possible to predict the 
names of the attributes that state-descriptive entities can 
possess. For example, any film will have a thickness, a 
colour and a physical state (solid or liquid). Some of 
these attributes are features in that the possible values 
of the attributes form a discrete set, e.g. colour. 
Others, like film thickness, are clearly dimensions.

It is the changes in the values of attributes at this 
detailed level that are of major importance to 
problem-solving in the domain. At the gross level of state 
description, information is held only on whether the
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coating film and substrate remain in general physical 
contact. At the more fine-grained level, the details of 
the changes in the environment/film/substrate system can be 
viewed.

The feature description of the gross world-state is 
concerned only with the existence or otherwise of entities. 
A variety of attribute names is not required to link the 
world-state concept and its attributable entities. Figure 
2 illustrates an instance of the world state: note that all 
the arcs are simply labelled 1has-feature'.

F ig u r e  Z

The predictable set of attributes for individual entities 
on the detailed level produces a proliferation of arc 
names. Figure 3 shows an example of this. For these 
reasons, the abstract representations of the two levels 
have been translated into different formalisms. The gross 
level has a representation in list form, where the elements 
of the list are attributes of the world state. The
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detailed level is cast into frames. This permits prior, 
hierarchical determination of appropriate attribute names, 
and the facility to restrict the values that are considered 
valid for a given attribute.

3.6 Causal Chaining

Categorising active images into those involving ACTs and 
those involving PROCESSes forces a reexamination of the 
principles of causal chaining. The continuing
applicability of the causal syntax in the presence of 
PROCESSes must be questioned. The substitution of 'Acts or 
Processes' for 'Acts' in the rules of the causal syntax 
will draw attention to any conflict with commonsense 
reasoning.

Figure 3
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1 Acts or processes can result in state changes.
ACT => STATE 

r

PROCESS => STATE 
r

2 States can enable acts or processes
STATE => ACT 

E
STATE => PROCESS 

E

3 States can disable acts or processes
STATE => ACT 

dE
STATE => PROCESS 

dE

4 States, acts or processes can initiate mental states
STATE => MENTAL STATE 

I
ACT => MENTAL STATE 

I
PROCESS => MENTAL STATE 

I
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5 Mental states can be reasons for acts or processes 
MENTAL STATE => ACT 

R
MENTAL STATE => PROCESS 

R
Rule 5 clearly does not make sense when 'process' is 
substituted for 'act'. A mental state can only be the 
reason for an act when the mental state is attributable to 
the actor of the ensuing act. Since a process has no 
actor, a mental state cannot be a REASON for that process. 
It is therefore necessary to restrict Rule 5 to the version 
given by Schank:
5 Mental states can be reasons for acts 

MENTAL STATE => ACT 
R

However, considering the nature of the domain of interest 
in ADEPTUS, it seems possible to dispense with the use of 
causal syntax rules 4 and 5 altogether. The extent to 
which the system will be concerned with people's mental 
state is minimal. Doubtless a case could be made for the 
representation of thoughts or knowledge in the minds of the 
process operatives required by the preparation or 
application phases, but the relevance is peripheral. I 
shall, therefore, be content to describe such operatives as 
'skilled' or 'unskilled' rather than attempt to detail the 
minutiae of their mental states.

This constitutes in effect a restriction on the domain. A
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precedent exists in Schank's own work; in stories about 
spilling beer, he remains interested only in people's 
actions and reactions. He makes no attempt to represent or 
deal with concepts like liquid soaking into fabric or the 
chemical changes bringing about staining.

3.7 Conclusion

Knowledge analysis suggested the central theme of scripts 
as a representation for physical processes. However, 
Conceptual Dependency could not offer a range of primitives 
appropriate to the anti-corrosive coating domain. In 
examining the kinds of verbs used in discussing the domain, 
the distinction between ACTs and PROCESSes became evident, 
and this was incorporated into the selection of new 
primitives.

For the ADEPTUS system, the causal syntax has been 
restricted to rules 1 - 3 ,  which are all those that do not 
mention mental states. The stative images that are of 
central interest in this domain have two levels of 
representation. The uses of these two levels will be 
explained in Chapter 5.
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4 THE REPRESENTATION OF PROBLEM-SOLVING STRATEGY

4.1 Overview

Having chosen to represent the physical processes of the 
domain of interest in a script form, I now turn my 
attention to the problem-solving aspect of the desired 
system. The task of interest is the selection of the 
optimal coating from a specified set in given 
circumstances. However, the essence of describing the 
causal model separately from the problem-solver is that 
problem-solving strategies for other tasks in the domain 
may be described and used without altering the causal 
model. Therefore the task of coating selection will be 
described in terms of a manipulation of the causal script. 
I shall seek to couch this description in terms of a small 
set of possible manipulations of a causal script, in the 
hope that this set will also then provide the building 
blocks for problem-solving descriptions for other tasks.

The problem-solving process is represented in ADEPTUS by a 
script entity. This outlines the essential acts which 
ADEPTUS must perform on an object script which is a 
representation of a causal model of the domain of interest. 
Each act in the problem-solving script can be located 
within a hierarchy of script-manipulative tasks. This 
hierarchy is differentiated on the basis of the object
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type(s) accessed and the essential direction of search. 
Following Lehnert's approach to question-answering using 
scripts, questions can be answered by a search for a match 
for the question concept, followed by one or more 
script-manipulative tasks. The nature of the task is 
dependent upon the question category.

4.2 Paint Selection from Industrial Guidelines

At the heart of the industrial guidelines for paint 
selection is a matrix of environmental descriptions against 
paint class. A simplified version is illustrated in Figure 
4 .

The user can extract from this matrix the rows which apply 
to the particular situation under consideration. Examples 
are given in Figures 5, 6 and 7. This row extraction 
exercise leads to a preliminary selection of one or more 
paint classes by determining those which are not indicated 
as inappropriate for any of the conditions listed. The user 
is then referred to paint class information sheets, where 
more detailed data on coatings can be found. The 
information sheets typically encompass such information as 
application methods, toxic components, drying 
characteristics, single film thickness, working temperature 
ranges, pH tolerance limits, colour availability and cost. 
The user must examine this information to see which set of
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KEY
Very suitable

to if i------- 1 Acceptable

1------- 1------- 1 Inappropriate

PAINT
CLASS

A

PAINT
CLASS

B

PAINT
CLASS

c

PAINT
CLASS

D

Surface Preparation Sa3, Sa 2.5 l " ' l \| m i t i *

Surface Preparation Sa2, St3 1 1 1 l iilw iS i J |!!!;!lj------- 1

Surface Preparation St2 1 1 1 1 1

Indoor heated 1 i A

Indoor unheated l i l i i l i ! m m  "'] r ...

Exterior sheltered r m Kv.vlwlvla I L.'......1...  . J K i i l t e i l

Exterior exposed, inland/unpolluted 1 W iil l

Exterior exposed, coastal/industrial m m  i P in t 1 l l l i  1 w r a w r a

Salt water immersion n *  i ( , ! m m  i

Fresh water immersion l i i l i i l l l É 1 1 1 t e l i l i « ! 1

Weak add spills 1 1 1 I 1 1 t e i i i l i l i

Strong acid spills 1 1 1 1 1 1 n m  i

Weak alkali spills r  m .. ....i | hm m m m r m

Strong alkali spills i i i 1 1 1 L . i  :n

Organic solvent spills m m m m r a w  i 1 | | i i i

Product contamination « m  1 i

Mechanical impact/abrasion ' i m u  i i t i i i i

High temperatures (>80 C ) i i i r i 1 i

Low temperatures (<0C ) r  i i i i i r a w  i

Figure 4
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Tank in Soap 

Manufacturincr Industry

PAINT
CLASS

A

PAINT
CLASS

B

PAINT
CLASS

C

PAINT
CLASS

D

Surface Preparation Sa2 1 1 1 i i i i i l i mm  i
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É M & É  Very suitable

— 1— 1 Acceptable
—1— 1 Inappropriate

Ship Hull
PAINT
CLASS

A

PAINT
CLASS

B

PAINT
CLASS

C

PAINT
CLASS

D

Surface Preparation Sa3, Sa2.5 1  I Iteiiiill

Exterior exposed, coastal / industrial *  1 taitl 1 Itili 1

Saltwater immersion H  1 1 1 1 1*3 1 rai—i

Salt water splash zone ..3 iül 1 1 ! 1 1 1 !

Mechanical Impact/Abrasion ilium 1*  1 1 1 1 1 1 1

Elcrcre 6

paint characteristics most nearly fits the constraints of 
the situation.

Problem descriptions coded in matrices like those described 
raise some interesting points:
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(i) A solution is not always available. In the 
examples given, this is largely a result of the 
reduction in the number of paint classes 
considered. Clearly, coatings that are suitable 
for ship hulls must be available.

FiOTr s_Z

(ii) In situations where no completely satisfactory 
solution exists, a choice must be made among the 
more or less unsatisfactory solutions. The aim 
is to find the best coating, not necessarily a 
perfect (or even very good) one. This 
necessitates an examination of the relative 
importance of those constraints that force a 
paint to be deemed unsuitable.

For example, consider the selection of a coating
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for a garden fence described in Figure 7. Of the 
four given constraints there are three that rule 
out exactly one coating each; i.e. surface 
preparation to St2 standard (a high quality 
hand-prepared surface) rules out coating A, 
mechanical impact rules out coating D and low 
ambient temperatures rule out coating B. 
(Coating C is ruled out on two counts, so it 
seems reasonable to view this as being more 
inappropriate than the other three). If further 
examination of the constraints shows that a 
surface preparation of St2 standard cannot be 
improved upon, that winter temperatures can be 
relied upon to produce frequent and prolonged 
icy environments, but that impact is only a 
fairly infrequent occurrence (caused, for 
example, by a child's bicycle), then clearly 
coating D is preferred over A and B.

(iii) The gradient of response to a constraint is not 
easily perceptible. In the soap manufacturing 
process tank example, if it were possible to 
prepare the surface more thoroughly to standard 
Sa2.5 (a medium-quality shot-blasting), coating 
A would show optimal performance for all the 
given constraints, thereby superceding the 
initial choice of coating B. On reference back 
to Figure 4, it can be seen that this is caused
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by a sharp drop in suitability as the 
preparation standard drops from Sa2.5 to Sa2.

4.3 Strategies for Selection

The solution space for the task of selecting the optimal 
coating can be partitioned hierarchically. That is, there 
are about a dozen broad classes of coating, many of which 
can be divided into subclasses. Specific commercial 
coatings form the leaves of such a tree.

In the original design for ADEPTUS, it was intended that 
paint selection would be performed in stages, conforming to 
the coating hierarchy. A first pass would use knowledge 
about each of the major classes, and would instantiate a 
script for each, eventually producing the optimal paint 
class. This process was then to be repeated (with the 
user's agreement) using knowledge of subclasses of the 
selected class; and so on until a specific paint was 
reached.

From an industrial perspective, this scheme would be most 
inefficient. A full script-based system used in this way 
for problem-solving would require vast resources, and 
enormous amounts of information produced inside the system 
(i.e. the details of all the instantiated scripts) would 
never be accessed.
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The second design for ADEPTUS took these criticisms into 
account. Scripts are used to lend explanatory power to the 
problem-solving system. However, those scripts are no 
longer intended to deal with the entire process of 
selection. The current scheme is to use a simple 
rule-based system to identify perhaps three or four paint 
classes that cannot be ruled out in a very simple fashion. 
This process corresponds to the selection matrix in 
Unilever's text guidelines. Having established this 
shortlist, the script-based system can be used to predict 
the performance of each candidate solution, and to compare 
and rank those performances.

If a simple system based on the propagation of a 
certainty-factor through a rule network (a 

PROSPECTOR-style system) is used to make a preliminary 

selection, the kind of results obtained may be

Final Probability
Paint class 1 0.84
Paint class 4 0.81
Paint class 6 0.79
Paint class 7 0.53
Paint class 2 0.42
Paint class 3 0.21
Paint class 9 0.19
Paint class 5 0.19
Paint class 8 0.11
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The major drawback in terms of explanation in such a system 
lies in the inability to decode the subtleties of meaning 
implicit in the single number used to represent the 
suitability of a coating. The immediate questions posed by 
results in this form are:

Are the differences between the results for paint 
classes 1, 4 and 6 significant ?
If so, what do they imply ?

The task of ADEPTUS is to help the user to understand the 
implications of the use of these competing coatings in the 
problem situation. Running the script-based system will 
give a judgment on each coating in terms of values for many 
meaningful characteristics of the eventual worn paint film. 
This is itself an explanation of some of the results of 
the first coarse selection phase.

After the first phase, the user may wish to examine 
detailed predictions for coatings that seem less promising. 
This may occur, for example, if a large stock of a 
particular coating is already available, but the coating is 
not initially recommended. The methodology of ADEPTUS 
allows the user the opportunity to explore courses of 
action that would otherwise be too risky to try.

Both of these uses of the script-based system only require 
it to make predictions of the eventual outcome, and in 
conventional terms these are the 'problem-solving' uses of 
the system. The general question-answering facilities

87



afforded by such a formalism are discussed in Chapter 6.

4.4 A Script for the Selection Task

The industrial guidelines provide an indication of the 
portions of the causal model that must be instantiated to 
describe the situation constraints. Figure 8 shows the 
information aspects of the 'story', which must be provided 
by the user, indicated by the shaded area.

Armed with such information, it is now possible to use the 
causal model by supplying a description of a coating and 
the necessary tools, and 'running' the model. The coating 
application acts and processes take place, instantiating as 
they do so a description of the resulting wet film. The 
drying and/or curing processes then play their part, 
modified by the known environment during the transition 
from wet film to dry. Having established the expected 
nature of the new dry film, the effects of the corroding 
environment can then be judged, giving a view of the dry 
film after wear.

This running of the model produces an instantiated script 
providing a great deal of information about a particular 
coating. Selection of the optimal coating must take place 
by a comparison of the resultant worn film states of each 
of the instantiated scripts. This comparison takes place
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in two distinct phases. First, the worn film description 
can be compared with an 'ideal' worn film; that is to say,

Figure 8

one which has optimal film/substrate adhesion, uniformity 
of thickness etc. It is these divergences from the ideal
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that will then be compared to establish some ranking of the 
coatings. No judgments of appropriateness are generated at 
the domain level; such judgments are made as part of the 
problem-solving task, not at the level of physical 
causality.

Let us take a step back from this problem-solving activity 
and examine the outline of what is taking place.

(i) the domain level script is instantiated with the 
problem constraints.

(ii) for each solution of interest, the causal model 
is run to obtain a description of the outcome.

(iii) each outcome description is compared with an 
'ideal' outcome, producing a divergence 
description.

(iv) these divergence descriptions are compared to 
obtain a ranking of the associated potential 
solutions.

Just as in chapter 3 a script for archetypal domain level 
processes could be described, so it is possible to detect 
here a problem-solving script outlining the essence of a 
selection strategy. This script outline is quite 
independent of the domain of interest: it is equally
applicable to antibiotic therapy selection or to the 
selection of standard steel formulations for oil rig pipes. 
A clear constraint, however, is that the available 
solutions must form a discrete set, or at least that
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solution spaces having continuous-variable attributes can 
be 'sampled' in such a way as to yield a meaningful 
collection of discrete solutions.

Representation of physical processes and problem-solving 
strategies within the same abstract formalism has the 
appeal of elegance, but the representation of 
problem-solving must be examined more closely. It is clear 
from the summarised description above that the causal 
chaining principle can be used to connect together 
script-manipulative acts and the resulting states of 
knowledge (Figure 9). It is now necessary to examine the 
entities filling the places of active and stative images.

4.5 Stative Images

There are two major categories of stative image in the 
problem-solving script. The first is the DOMAIN-LEVEL 
(d-level) image, which is either a d-level script or a 
recognisable part of one. Examples are an environment 
description, a description of a gross physical state (e.g. 
a coating film in physical contact with the substrate), or 
description of a potential solution. The problem-solving 
script (the SELECTION-LEVEL or s-level script) is acting 
upon or manipulating a d-level script to fulfill its goal 
of becoming as fully instantiated as possible, just as 
Schank's ACTORs act on objects in their environment to
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achieve their goals.

Figure 9

The second major category comprises images that are
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abstractions from the d-level. This encompasses the 
divergence descriptions and the solution ranking list. 
These abstractions must of course contain references back 
to entities in the d-level script used in their generation, 
but do not contain the quantity of knowledge carried in 
that d-level script.

4.6 Active Images

The ACTs or PROCESSes defined for use in an s-level script 
can be approached by identifying classes of tasks which 
manipulate other scripts. In Chapter 2, Lehnert's approach 
to question answering using script representations was 
discussed. The act of answering a question requires that 
the causal chain or image of interest be searched, and 
possibly used for inference if the answer is not explicitly 
available and hence susceptible to simple retrieval. These 
processes thus have identical characteristics to those 
needed here. Lehnert's categories (like Schank's 
primitives) are established ad hoc. Script-manipulative 
task categories can be established and Lehnert's categories 
viewed as instances of these. See Chapter 6, section 6. 
for a detailed discussion.

A TASK is a manipulation or examination of a script-entity, 
or part of such an entity. Instances of tasks are the 
elements of the problem-solving s-level scripts, and can be
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described as starting with evidence and searching for a 
conclusion or solution to a 'primitive problem'. The 
evidence or problem description refers to the state of the 
script under scrutiny before the task commences; the 
solution or conclusion is comprised of the script 
characteristics that are present after completion of the 
task. Viewing the d-script as a causal chain, it is 
possible to categorise the possible manipulations, thus 
describing valid task types.

4.7 Classification of Script-Manipulative Tasks

4.7.1 The Causal/Acausal Differentiation

The first major division proposed is:
(i) CAUSAL TASKS

A class of tasks in which the relationship between the 
evidence or problem description and the set of possible 
solutions involves a representation (whether implicit or 
explicit) of physical causality. Such tasks are susceptible 
to domain-level representation as causal chains.

(ii) ACAUSAL TASKS
A class of tasks in which the problem description and 
problem solution have only a non-causal relationship. Such 
tasks are not susceptible to domain-level representation as 
causal chains, but involve only individual images or 
fragments of images, i.e. individual entities.
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4.7.2 Differentiation of Causal Tasks

4.7.2.1 Basis of the Differentiation

The class of causal tasks can be further decomposed on the 
basis of the temporal relationship between the point in 
time at which the problem is posed, and the physical events 
which are symbolically represented.

4.7.2.2 Analytic Tasks

A causal task may be ANALYTIC. The subclass is categorised 
by an attempt to discover what past events or world states 
could have led to the observations made. Using the causal 
chaining representation, let us examine a sequence 
describing the reaction between water and sodium, 
illustrated in Figure 9.

E

Figure 9

An analytic task seeks the CAUSE of the state observed; in 
this case the analytic task would be seeking the cause of 
the presence of the hydrogen gas. The time at which the 
problem is posed is when State2 is in existence, and the 
solution to the problem is obtained by working back down

Sodium immersed 
in water

STATE 1

r \
oxidising
reactionL J
PROCESS

hydrogen gas 
present

STATE 2
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the causal chain. In general, then, an analytic task has a 
causal chain representation like that shown in Figure 10.

r

t
problem posed 
at this time

Figure 10

The SOLUTION here is not implied to be the act 
syntactically required to fulfill rule 1 of the Causal 
Syntax; it is merely indicated to be somewhere in this 
portion of the causal chain.

4.7.2.3 Predictive Tasks

The second fundamental category of causal task is that of 
the PREDICTIVE task. Tasks in this subclass look to the 
future rather than the past, and attempt to predict an 
outcome of a domain situation described to the 
problem-solver. Using the example of the oxidation of 
sodium, a predictive task would be to describe the outcome 
of the situation in which a piece of sodium is immersed in 
water. The predictive task represented as a causal chain 
therefore has the general structure shown below.

SO LU T IO N O B S E R V E D  STATE
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O B S E R V E D  STATE ____ ^ SO LU T IO N
Ë ^

t
problem posed 
at this time

Figure li

The observed state is that sodium is immersed in water. 
This state enables certain processes, and it is a 
description of these processes that constitute a solution 
to the predictive task.

4.7.3 Differentiation of Acausal Tasks

4.7.3.1 Basis of the Differentiation

Acausal tasks can be described as RELATION-SEEKING. They 
have no causal chain representation; they are tasks which 
take as their starting point limited descriptions of one or 
more world states, entities, processes or acts, and attempt 
to identify currently unknown descriptors for those images 
or entities.

The class of acausal tasks can be further decomposed on the 
basis of the number of states or acts which are presented 
as the problem definition.
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4.7.3.2 Intraconceptual Tasks

An acausal task may be INTRACONCEPTUAL, that is, concerned 
only with a single state or act. This subclass is 
therefore characterised by an attempt to discover 
additional, currently unknown, information concerning a 
unique state of or act within the domain. For example, we 
may describe an INTRACONCEPTUAL task concerning a state:

Or, concerning an act:

Figure 13

Intraconceptual tasks are 'slot fillers', where the slot 
being filled is a part of the description presented in the 
problem description.
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4.7.3.3 Interconceptual Tasks

The other basic subclass of acausal tasks is that of 
INTERCONCEPTUAL tasks. Such tasks are characterised by 
their use of two or more distinct concepts in the problem 
definition. Interconceptual tasks are capable of using 
concepts from different levels: this leads us to define two 
separate subcategories.

An ABSTRACTING interconceptual task has two or more 
domain-level concepts as its problem description. Thus 
such tasks can be thought of as 'comparative' tasks. 
Similar concepts are provided and examined and the 
differences or similarities are sought; or the submitted 
concepts are ordered on the basis of some specified 
attribute. For example:

Figure 14

Here, the values of corresponding 'slots' for each item are 
involved, and the answer is not a slot value belonging to 
either item. For example, both cotton and silk may have



the property ’origin'. The value for silk will be animal, 
and the value for cotton will be vegetable. The solution 
to the abstracting interconceptual task certainly concerns 
the 'origin property of the fabrics, but the 'value' 
attributable to some 'origin' slot in the solution will be a 
more complex structure than a value in a fabric schema. It 
is unlikely that the difference would be regarded as a 
’property’ of either or both items; rather is this 
difference only meaningful for the combination o f 'items. 
The task has provided as its solution a state description 
which is unlike the states that formed the problem 
definition. The solution does not describe a real-world 
object, but instead is referring to a more abstract concept 
involved in problem-solving. The abstracting 
interconceptual task has moved from the domain-level states 
described in the problem definition to an s-level entity 
produced as its result.

A SPECIFYING interconceptual task has a heterogeneous set 
of state descriptions with respect to the level of the 
description. That is, one or more states in the problem 
definition must be at the d-level and (at least) one at 
the s-level. The fundamental idea here is to take 
something known about how a problem can be solved (the 
s-level concept) and some general knowledge about the 
domain of interest (a d-level concept). By combining these 
pieces of information from different levels, a more 
specific picture of a possible state of the domain can be
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created. The detailed domain state can then be used in
various causal tasks to obtain further domain-level 
information.

For example, the description of known solutions in ADEPTUS 
is an s-level concept. This can be merged with the 
d-script 'in parallel' to yield alternative worlds, each 
world detailing one of the possible solutions. This 
'shattering' of the possible solutions is an example of a 
specifying interconceptual task.

4.8 Conclusion

A pattern can be detected in the actions required to make a 
selection from the known solution set of the anti-corrosive 
coating domain. This typical sequence of actions has, like 
the domain level processes, been represented in script 
form.

The s-level script is concerned with manipulations of the 
domain-level script and individual concepts. The possible 
manipulations have been described in a set of primitive 
tasks organised into a hierarchy. This task hierarchy is 
independent of the domain of the script which is being 
manipulated. The categorisation of the primitive tasks 
will be of central importance when Lehnert's question 
classification is reviewed in Chapter 6.
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The next chapter concerns the details of the current 
implementation of the ADEPTUS system.
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5 DESCRIPTION OF THE ADEPTUS SYSTEM ARCHITECTURE

5.1 Introduction

The ADEPTUS system is a knowledge base centred on the 
script formalism, employing demons, rulebases and 
procedural knowledge where appropriate. It is implemented 
in SRL from Carnegie-Mellon Intelligent Systems Laboratory. 
SRL was chosen as the only language available to me at that 
time which offered a powerful frame-based representation, 
supporting inheritance (both automatic and user-defined) 
and 'contexts' to allow independent reasoning in 
simultaneously existing 'parallel worlds'. The initials SRL 
stand for Schema Representation Language, and an enhanced 
version of the language is now commercially available under 
the name of KnowledgeCraft.

SRL is written in Franz Lisp. Its basic representational 
formalism is the schema or frame. A schema has several 
slots, each of which can hold one or more values. Often, 
the value of a slot is the name of another schema. Thus 
the slots act as links between schemata. When describing a 
schema in a diagram, I shall adopt several notation 
conventions: these will be explained when they are 
introduced.

Inheritance via is-a and instance links between schemata is
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automatic; other inheritance paths and inheritance types 
can be defined by the programmer. As an example of a 
programmer-defined inheritance path, consider the 
following. If a schema used in a script describes a state, 
some values in that state may be altered as progress is 
made throught the script. We might then describe the 
initial state as schemal, and the next alteration to this 
state as schema2. Links can then be established to assert

{{ schema2
is-a classname 
successor-to schemal }}

Figure 15

This illustrates the schema schema2. The definition of the 
entire schema is surrounded by double braces. The first 
symbol inside the braces is the name of the schema to which 
the definition belongs. Below this is a collection of 
pairs, each pair consisting of a slot name (in italics) and 
the associated slot value. In the above example, there are 
two slots, i s-a and s u c c e s s o r - t o . The value of each of 
these slots is a schema name. (Bold typeface is used for 
the names of schemata.)

If we define suitable inheritance characteristics (in the 
form of an inheritance schema) for the s u c c e s s o r - t o link, 
it becomes possible to access any slot and slot value of 
schemal from within schema2. Unlike the is-a link which
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denotes the position in the class-subclass hierarchy, the 
successor-to link is not intended to denote that schema2 is 
a subclass or element of a schemal set, but merely 
indicates that unless information is available to the 
contrary, we can assume that values attributed to schemal 
are still valid within schema2.

Several types of inheritance can be defined within SRL. 
For example, the definition of a mapping inheritance 
specification schema allows inheritance of a modified slot 
value from one schema to another. So if for instance the 
t h i c k n e s s  slot of schemal has a value of 100, we could 
define a mapping inheritance specification schema in 
schema2 for the thickness slot, such that the value of the 
schema2 slot, if obtained by inheritance, was 10% of the 
unmapped inherited value. Thus, if we request a value for 
schema2 t h i c k n e s s and the value can only be obtained by 
inheritance from schemal, then the inherited value will be 
returned as 10.

Within SRL, schemata can be defined within 'contexts'. 
These contexts can be arranged hierarchically, and any 
schema within a context is permitted to inherit slots and 
values from the same schema in an ancestor context. For 
example, a general version of the domain-level script 
$d-script is established in a schema within the root 
context. (This, is the SRL system default context.) When 
$d-script is instantiated with details of a particular
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solution, i.e. a particular coating, a new child context is 
created to deal only with that specific solution. So when 
instantiating $d-script with details of a bitumen coating, 
the instantiation is done in a new context, bitumen. (Names 
of contexts will be show bold and underscored.) Thus from 
within the bitumen context, $d-script can inherit values 
from $d-script in the root context, while creating and 
manipulating values in $d-script which are relevant only 
when considering bitumen coatings. Values established in a 
child context do not corrupt ancestor context values, thus 
enabling reasoning in alternative worlds. This is central 
to the way ADEPTUS handles the task of considering 
different candidate solutions.

5.2 The Knowledge Base

5.2.1 Overview

Several types of knowledge are relevant to the task of 
selecting the optimal anti-corrosive coating for a given 
situation. It must be possible to represent the physical 
processes at work as a coating is applied, dries, and is 
put into service. Some representation of the substrate 
material must be present. Information must be available 
about individual coatings, whether considered in bulk, as a 
wet film on the substrate, or as a dry film. Such knowledge 
may encompass chemical information, visual descriptions,
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physical attributes, and the manner in which these and 
other external factors interact under certain 
circumstances. This implies that some knowledge about 
external influences must also be present in the system. 
Such knowledge includes, for example, descriptions of 
various chemicals, corrosive environments and mechanical 
forces which may act upon a coating film. Distinct from 
the knowledge that contributes to the causal model within 
the system is a body of information about the system's 
problem-solving task. This is knowledge of the procedures 
required to select one of a finite set of discrete 
solutions. This 'problem-solving script' is maintained 
independently of the causal model and its associated 
knowledge base.

5.2.2 Scripts

5.2.2.1 Structure of the scripts

Scripts in ADEPTUS are essentially uninstantiated causal 
chains. Each script is implemented as a schema in SRL. The 
domain-level script is called $ d - s c r i p t ;  the 
selection-level, $s-script. $d-script has two kinds of 
slots: state slots and process slots. $s-script has state 
slots and act slots. (In the remainder of section 5.2.2, it 
is unnecessary to distinguish between 'acts' and 
'processes', so only the term 'process’ will be used.)
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Each slot has associated with it a 'meta-schema'. A
meta-schema holds information about the slot to which it 
belongs. As the name implies, the meta-schema is itself a 
schema, and its information is held in slots and slot 
values. This information can originate from two sources; 
system defaults and the programmer. Any slot known to SRL 
has a standard meta-schema linked to it, containing such 
slots as range, default, cardinality etc. Other slots may 
of course be added by the programmer. The slots of this 
meta-schema are described as the 'facets' of the original 
slot, and will be denoted by the use of a different typeface.

States and processes in the script are fashioned into a 
causal chain via certain facets. For forward movement in 
the script, the stative image slots have an enables facet, 
the value of which indicates which processes are enabled by 
that state. Active image slots have a forward-link facet 
called results-in, pointing to the resultant states. Inverse 
pointers exist. The enables facet has an inverse of 
prerequisites, and the results-in facet has an inverse of 

produced-by.

Most slots in ADEPTUS have eponymous schemata that are part 
of the relation hierarchy. It is the root of this hierarchy 
that provides the template for a slot's meta-schema. Thus 
the relation schema itself is a general description of 
information that should be available to describe any slot
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in the system.

Any schema that inherits from the relation schema can have 
a named inverse relation. This inverse relation can 
automatically be put into place (if an SRL switch is set 
appropriately) when a slot is created links two schemata. 
The logical inverse of the enables slot is p r e r e q u i s i t e s . 
Thus, when a link of the form 

stateX enables processX
is created, one can envisage this facility being employed 
so that an inverse link of the form 

processX prerequisites stateX
is automatically put into place. Similarly, the logical 
inverse of r e s u l t s - i n is p r o d u c e d - b y , so the creation of 
the link

processX results-in stateY 
would also imply the creation of the reverse link 

stateY p r o d u c e d - b y processX.
However in ADEPTUS this facility cannot be employed in this 
way. This is because enab l e s is not a slot of the schema 
stateX. Although there is a schema called stateX, it is 
only an eponymous schema for the slot s t a t e X ,  whose 
presence serves to establish s t a t e X  in the relation 
hierarchy. So, while e n a b l e s is a slot of stateX, it is 
being used as a facet of the s t a t e X slot in the $d-script 
schema. e n a b l e s is a slot of a meta-schema. The actual 
relationship is thus
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$d-script st a t e X <value>

I meta-schema
I

m00031 enables processX
m00031 is a schema created by SRL, and is an i n s t a n c e of 
the stateX schema. Any automatic inverse creation would be 
between the meta-schema of the state (m00031), and the 
processX schema. The inverse links are therefore created 
by explicit command. This enables movement in both 
directions along the causal chain.

The domain-level script currently begins with a description 
of the world before a coating has been applied to the 
substrate, but it assumes that surface preparation has 
already been carried out. The elimination of the surface 
preparation description simplifies the model in two ways. 
First, the sheer size of the script is reduced; and 
secondly it means that all active images at the domain 
level are processes, thereby excluding any need to deal 
with physical acts. This is because operatives are required 
to prepare the surface and to apply the paint (whether 
those operatives are human or robot) , but once the paint 
film is in contact with the substrate, no further 
intervention by purposeful actors is required. Thus all 
subsequent active images are processes.

The selection-level (s-level) script describes the actions

110



of ADEPTUS in carrying out selection from a set of known 
potential solutions. All its active images are ACTS, and 
ADEPTUS is implicitly the actor. The actions are 
manipulations of the d-script; they can be regarded as 
'thoughts' of the system, and hence are analogous to 
'mental acts' in Schank's work.

5.2.2.2 Active Images

An active image has two quite separate effects when it 
'executes', whether at the s-level or the d-level. In
order for the system to attempt to carry out, say, the 
drying process within the model, the enabling state must at 
the very least be adequately instantiated. If it is, then 
the execution of the drying process will do two things: 
firstly, it will instantiate the resulting state. It 
accomplishes this by creating a binding list to indicate 
that the resulting state slot has a fixed value. This is 
the macro-effect of the process. Secondly, it will alter 
some values in the schemata that constitute the binding for 
the resulting state. This is the micro-effect of the 
process. For example, the STICK process is described in the 
STICK schema shown in Figure 16.

All processes in the d-script and acts in the s-script have 
such an associated eponymous schema.
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}}

{{STICK
is-a physical-process
script-level $d-script
macro-effects (employ-rules '( <rulebase> ))

Figure 16.

For example, Figure 17 shows a process slot in the 
$d-script schema.

{{$d-script

p r o c e s s 2 (STICK ?C ?S)
[instance processslot]
[results-in state3]
[prerequisites state2]
[can-affect ( (coating adhesion) ) ]
[affected-by ((substrate constituents)

(substrate surface-key) ) ]

[binding-list ((?E . application-environment4)
(?C . wet-film-bitumen2)
(?S . substrate3)) ] }}

Figure 11

The macro-effect operates on the state indicated by the 
value of the causal link results-in. The way in which this 
state is instantiated is governed by knowledge held in the 
value of a slot attached to the STICK schema. The value of 
this slot must be executable; in all cases thus far in 
ADEPTUS, it is a rulebase with an interpreter function.
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The micro-effect of the process is permitted to alter 
values within the schemata which constitute the bindings 
for the resulting state. The choice of slots affected by 
the process is controlled by a facet of the process slot 
(see Figure 17) . The facet is a can-affect link between the 
active image in the script and the attributes altered by 
the process involved in that image. The value of the facet 
gives the names of the affected schema slot combination in 
the resulting state. The way in which each schema-slot 
value is affected is controlled by a 'demon' attached to 
that slot. Whenever a value is to be created or modified 
for the slot, the demon uses its rulebase or other 
executable code, plus the details of the state enabling the 
current process, to generate the appropriate predicted 
value for that point in the script.

The positioning of the macro-effect knowledge and the 
micro-effect knowledge is important. The macro-effect is 
relevant any time that the process is carried out. If we 
consider a system where the domain is crop-spraying, a 
TOUCH process in the domain-level script would have the 
same macro-effects on its resultant state as it does in the 
anti-corrosive coating domain. In contrast to this, the 
actual schema-slot combinations affected would be quite 
different in the two domains, as would the manner in which 
they were affected. Thus, the macro-effect knowledge is 
stored with the process information; whereas the 
micro-effect knowledge is specific to the schemata that
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contain domain-specific knowledge, and is stored 
appropriately.

Details of individual processes and the manner in which 
they execute can be found in section 5.3.4.

The can-affect facet of a process slot is a forward link to
the resultant state. A reverse link also exists, which
shows the elements of the enabling state which are relevant 
to the micro-effects of the process. This reverse link is 
the affected-by facet.

{{$s-script

process4 (COMPARE ?$D ?IDEAL)
[instance processslot]
[results-in state5]
[can-affect (Divergence) ]
[affected-by ($d-script ideal) ]

. . .  }}

Ficrnre 18

5.2.2.3 Stative Images

The value of each state slot in the script schema is a 
simple representation of the pertinent parts of the total 
world state; e.g. (?C ?S ?E) , meaning that the interesting 
parts of the total world state are the coating, the 
substrate and the environment, represented by the tokens
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?C, ?S and ?E respectively. At the domain level, this 
total world state encompasses such diverse schemata as 
environment, coating and substrate. At the selection level, 
relevant schemata are $d-script, Divergence and Ideal.

In some states, a major part of the world description can 
be ignored. For example, at the domain level, the state 
between the TOUCH and STICK processes has no need to refer 
to the environment. The environment is of course still 
part of the total world state, so it must be possible to 
enquire about it at the current point in the d-script even 
though it does not figure in the state value. This type of 
ability in ADEPTUS is achieved by the manipulation of a 
binding-list attached to the state slot. The actual value 
of the state slot is never altered if the script is running 
normally; that is, if the process causing the state has not 
been disabled. The modifications made to the state on 
instantiation affect only the binding list attached to the 
slot. Thus a token in the state value is associated with a 
particular schema only through the binding list, not by 
substitution of the token. The binding list is inherited 
from the prior image in the causal chain, and is merely 
modified as necessary. Thus, although the environment may 
not be explicitly mentioned in a state, it will still be 
present in the binding list, and hence available for 
scrutiny when required.

If, however, the causative process for a state has been
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disabled, this may affect the value of the state itself. 
For example, at the domain level, if the TOUCH process were 
disabled for any reason, the resultant state value would no 
longer have the form 

(PHYSCONT ?C ?S)
since there would be no physical contact between the 
coating (?C) and the substrate (?S) . The state value 
would simply be given as 

(?C ?S)
indicating the existence of both coating and substrate 
without physical contact.

{{$d-script

state3 (?ED ?S)
[instance stateslot]
[enables process3]
[produced-by process2]
[active-enablers ( (coating adhesion)

(coating flexibility)
(coating hardness)
(coating single-film-thickness) 
(environment-description at m o s p h e r e ))] 

[active-results ((substrate constituents)

(substrate surface-key) ) ]
[binding-list ( (?E . drying-environment)

(?C . wet-film-bitumen3)
(?S . substrate-!) ) ]

. . .  }}

Figure 19
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{ {$s-script

state2 (?$D ?SOL)
[instance stateslot]
[enables process2]
[produced-by process3]

}}

Figure 20

State slots have an active-enablers facet illustrated in the 
example in Figure 19. This contains the schema-slot 
combinations in the state whose values may affect the 
performance of the enabled processes. The value of this 
facet maybe regarded as the inverse of the affected-by facet of 
the enabled processes. Figure 19 illustrates a typical 
domain-level state representation, and Figure 20 a typical 
selection level state representation.

5.2.2.4 The Binding List

The binding list is a facet applicable both to process and 
to state slots. The necessity for its existence was 
explained in section 5.2.2.3; for any given slot it is a 
list of pairs of objects, each pair consisting of a token 
and a schema name. This association of tokens and schemata 
gives a snapshot of the characteristics of the domain at 
the current point in the script. It always represents the 
fullest possible description of the domain, regardless of
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the focus of interest of its owning slot. Examples of the 
binding list in the domain level script can be seen in 
Figures 17, 18, 19 and 20.

5.2.3 Knowledge about coatings: The set of potential
solutions

5.2.3.1 The coating hierarchy

The potential solutions of the selection problem are all 
nodes of the i s - a linked hierarchy that has the schema 
coating as its root (See Figure 21).

Figyr$_2],

As a coating is applied and hardens, its attributes change.
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The representation of the various 'phases' of the coating 
lifecycle are held as separate subclasses of the coating. 
This is not an entirely satisfactory solution to the 
problem. An earlier solution was to employ SRL's context 
capability, defining p o t , we t,-film. and dry-film as 
contexts. From these contexts, one could view a particular 
coating and only perceive the attributes relevant to that 
context. This seems a more elegant solution than the 
somewhat cumbersome is-a link' hierarchy. However, the use 
of contexts in describing domain-level knowledge precludes 
the use of contexts for reasoning in alternative worlds. 
It is not possible in SRL for a child context to inherit 
through more than one path to the root-context; that is, 
one cannot ask about a state where the context is 
dryina-oil-paint (the WORLD context) AND the context is 
dry-film (the PHASE context) . This is unfortunate, since 
the ability to partition each of the alternative worlds 
into various contexts is inescapable. Of the two primary 
context hierarchies that I needed, the world context is 
essential to the implementation of the selection process, 
i.e. the s-script. Therefore, this was judged to carry a 
greater importance than the elegant representation of 
domain-specific information.

The slots of the leaf nodes in the coating hierarchy are 
available to the leaf node schemata by inheritance. 
However, they are not inherited from within the coating 
hierarchy, but from another hierarchy, of which the coating
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leaf nodes are also nodes. This hierarchy is the phase 
structure described below. Thus, the ability of a schema 
to belong to multiple schema hierarchies has been 
substituted for the requirement for inheritance from 
multiple contexts.

5.2.3.2 The phase hierarchy

Regardless of the particular coating used, a film of
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{{pot-bitumen
is-a (bitumen pot)
viscosity (2 3)

[instance descriptive-dimension]
p r i c e (4 8)

[instance exact-dimension]
[units sterling-per-litre] 
[valid-range (0 100)] 

coverage (5 8)
[instance exact-dimension]
[units sq-m-per-litre]
[valid-range (0 1000) ]

Figure 23

{{wet-film-drying-oil-paint
is-a (drying-oil-paint wet-film)
drying-method oxidation 

[instance feature] 
time-between-coats (0.5 0.7)

[instance exact-dimension]
[units log-hours] 

state liquid
[instance feature] 

adhesion

[instance descriptive-dimension]
thickness

[instance exact-dimension]
[units microns]

defects

[instance feature]

Figure 24



{{dry-film-drying-oil-paint
is-a (drying-oil-paint dry-film) 
state solid

[instance feature]
hardness

[instance descriptive-dimension]
flexibility

[instance descriptive-dimension]
finish gloss

[instance feature]
adhesion

[instance descriptive-dimension]
thickness

[instance exact-dimension]
[units microns] 

defects
[instance feature] }}

Figure 25

material has characteristic attributes. The same can be 
said of a coating in bulk in the pot. It is these 
characteristic attributes which are bequeathed in the phase 
hierarchy. (See Figure 22.) Using the slots inherited 
through this structure, the different phases of a coating 
can be fully described. Figures 23, 24 and 25 illustrate 
the description of the three phases of a drying oil paint.

At the intersection of the coating and phase hierarchies 
there exist schemata containing values specific to a 
coating, with slots appropriate to the phase under 
consideration.
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Each slot has several facets associated with it. Some of 
these are inherited from the eponymous schema connecting 
the slot into the relation hierarchy. These facets are 
discussed further in section 5.2.5.2 below. An SRL-defined 
facet of great importance is also associated with each 
slot, although it has not been included in previous 
diagrams for the sake of clarity; this is the demon facet. 
It contains the name of zero or more demon schemata, which 
define any action to be taken when the value of the slot is 
under discussion. The demon schema controls the type of 
slot access for which the demon will be roused (e.g. value 
retrieval or value creation) and the point at which the 
demon will act relative to the time of the access. Thus a 
demon may be aroused before or after accessing the value.

The demon facility in SRL is intended for use in reactive 
processing; that is, when a slot value takes on a certain 
value another slot may need to change its value in a 
specific manner. (The example supplied by the creators of 
SRL is that when the fido m o o d  slot takes the value 
'happy', then the fido tail slot should immediately be set 
to 'wagging'.) However, in ADEPTUS the demon schemata are 
employed as repositories for specialist knowledge bases 
that are competent to predict the associated slot's value, 
depending on the world state that obtains when they are 
invoked. In this sense they are comparable to Minsky's 
'agents’ [Minsky 1979].
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5.2.3.3 The Ideal Film

There is within ADEPTUS an Ideal schema, which 
characterises the perfect solution to all corrosion 
problems. This description is an agglomeration of the best 
attributes of all the coating films (i.e. solutions) known 
to the system. Thus the ideal film is flexible, hard, and 
extremely well adhered to its substrate. The value of +3 
given to any descriptive-dimension slot is the maximum 
possible. The film is impervious to extremes of temperature 
and to any chemical spillage, and capable of sustaining 
severe mechanical damage without loss of integrity: this 
is reflected in the value solid for the state slot, and the 
nil value in the defects slot. It is made from a cheap bulk 
phase; the value in the price slot is that of the cheapest 
coating known to the system.

Certain slots within the Ideal schema do not have categoric 
values assigned to them. In Figure 26 these are the 
thi c k n e s s and the finish slots. The ideal thickness of an 
anti-corrosive coating depends on two factors; the coating 
under discussion and the desired effective lifetime of the 
coating. The diagram in Figure 27 illustrates this. The 
nature of the coating can be isolated from the context in 
which the Ideal schema is employed. The desired lifetime 
is a preference on the part of the user. (I say preference 
rather than requirement, since it is just such factors
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{{Ideal
state solid 
hardness +3 
flexibility +3 
finish

adhesion +3 
thickness 
defects nil 
price 1.5 }}

Figure 26

which may be compromised in the face of other 
considerations, notably cost.) The ideal f i n i s h of a 
coating is also a preference on the user's part. If the 
user wants a high-gloss finish, then that is the ideal. If 
the user indicates indifference to the finish obtained, 
then no ideal value is available. The thickness and finish 
slots do not contain values, but have attached demons that 
provide a mechanism for obtaining the ideal value in the 
current situation.

The Ideal schema does not actually belong to the physical 
domain, since it has no correspondence with a real physical 
entity. It can better be thought of as a figment of 
ADEPTUS' imagination; a mythical entity against whose 
advantages any candidate recommendations will be judged. It 
is a necessary construct for the problem-solving 
capabilities of ADEPTUS when a selection task is being 
undertaken. It is described here because of its 
participation in the phase hierarchy. Although the Ideal
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schema is supplied to ADEPTUS as part of its initial 
knowledge base, it could in fact be omitted. ADEPTUS could 
include sufficent knowledge for the construction of the

Minimum Film Thickness

(microns)

lime to first
^ ^ ^ m ain ten a n c e  

coating ..

<5
years

>20
years

drying oil 
paint 85 230

chlorinated 120 300rubber

bitumen 250 500

Figure 27

Ideal schema from the best possible dry film phases of the 
potential solutions in the knowledge base. The knowledge 
about non-agglomerated ideal values (i.e. t h i c k n e s s and 
finish) would of course need to be supplied to ADEPTUS to 
be incorporated in the schema.

5.2.4 Knowledge about the Substrate

5.2.4.1 Substrate representation

A hierarchy exists in ADEPTUS having the schema substrate
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as its root. This hierarchy is illustrated in Figure 28.

Figure 28

Clearly, it must be permissible to nominate a surface 
impurity as a substrate; very few substrates will be 
entirely free from impurities of some sort. However, 
Figure 21 shows that the surface-impurity schema is also a 
node in the coating hierarchy. This enables the system to 
view a surface impurity as a substance deposited on the 
substrate at some past time and thus susceptible to 
removal.

When a problem description is formulated, a substrate 
description must be created. A major representational 
problem was encountered here; that of how to describe a 
physical three-dimensional arrangement in simple symbolic 
fashion. An example of the physical reality of the
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substrate is depicted in Figures 29 and 30.

Cross Section

Figure 29.

Plan View
mill scale

water

grease

steel

Figyrg 3Q

Obviously such an arrangement has many attributes. From 
Figure 29 one can nominate for consideration the substances 
involved, their relative positions in the 'sandwich'
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between essential substrate and environment, and the 
thickness, adhesion etc of each layer. From Figure 30 it 
is apparent that the composition, area and distribution of 
each uppermost layer should be noted.

These attributes would indeed be required to produce an 
accurate and reasonably complete representation of the 
substrate-system, but they are not all necessary to 
ADEPTUS' purpose. First, one'1 could not reasonably expect 
such detailed information to be provided by the putative 
user of the system. So from that viewpoint a substrate 
representation of such complexity is wasted. Secondly, the 
domain knowledge contained in ADEPTUS does not predict 
events in the physical world with accuracy sufficient to 
utilise such a representation. The error margins of the 
domain-level inferences are simply too large for such a 
fine-grained substrate description.

The description of the substrate in use in the current 
version of ADEPTUS revolves around the constituents slot in 
the created schema. For example:

constituents ((water . 40)(mill-scale . 30)(steel . 50)) 
The value of the slot is an association list. The last 
element in the list represents the essential substrate. 
Any overlying layers are represented by elements added to 
the head of the list. The first element then shows the 
outermost layer of the composite surface.
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Each element in the a-list is composed of a schema name as 
the key and a number in the range 0 to 100 as its 
associated value. The numerical value indicates the 
percentage of essential substrate covered IN TOTAL by its 
key substance. The obvious exception to this is the pair 
whose key is the essential substrate itself. In this case, 
the numerical value indicates the percentage area exposed. 
It is clear from the example that substances overlying the 
essential substrate may overlap partially, completely or 
not at all. In the example, the water (40%) and mill scale 
(30%) must overlap to some extent to give a value of 50% 
bare steel.

The two remaining slots in any substrate schema are 
s u r f a c e - k e y  and t e m p e r a t u r e . The former is a dimension 
whose value is directly related to the standard of surface 
preparation decided upon by the system user. The latter is 
also, of course, a dimension. It gives the temperature of 
the substrate itself, as distinct from the environmental 
temperature. This may be important when the ambient 
temperature is within a climatically normal range, but the 
substrate is maintained at an abnormally high or low 
temperature.
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5.2,5 Associated Entities

5.2.5.1 Liquids

There exists within ADEPTUS a hierarchy with the schema 
liquid-substance as its root. This hierarchy is illustrated 
in Figure 31. Four major subtrees are evident, having 
chemical, oil, resin, and water as their root schemata.

The chemical subtree is present for use in describing 
spillages on the coated surface. The leaf nodes of the 
initial knowledge base hierarchy can inherit the pH slot 
from the chemical schema, but no value is placed in this 
slot. A restriction on the values which may be used for the 
p H  slot is specified at each leaf node by using the 
SRL-defined range facet. This enables the specification of 
(in this case) a piece of Lisp code which will be used to 
test any submitted value. Thus it is possible to restrict 
the acid p H  values to between 0 and 7, and the alkali p H  
values to the range 7 to 14. (A perhaps surprising 
omission in the description of the chemicals is the absence 
of a chemical-f o r m u l a slot. This was a part of the 
original design of this tree, but it quickly became obvious 
that to employ symbolic representations of chemical 
reactions would be beyond the scope of the current 
research.) Values for the slots in the specific chemical 
schemata are supplied by the user. Thus, if a likely 
spillage is weak hydrochloric acid, a child schema of
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hydrochloric-acid is created and the value 5 or 6 put into 
the inherited p H  slot. In the absence of contradictory 
information, the t e m p e r a t u r e slot will take the value of 
the environmental temperature. This value will not be put 
into the t e m p e r a t u r e  slot unless it is specifically 
accessed.

The oil and resin subtrees are present because they 
describe common constituents of one of the major' paint 
classes. Active use of such information in the predictive 
sense will require more detailed domain-level knowledge 
than is currently available in ADEPTUS.

The requirement for the existence of the water subtree is 
twofold. First, dry coating films are generally sensitive 
to immersion in water, and to persistent use in a splash or 
spray zone. Secondly, moisture in the air can be of great 
significance during the application of a coating. If a 
water film is present on the substrate, this moisture can 
be trapped between the coating and the substrate causing 
localised lack of adhesion. If the trapped moisture 
subsequently vapourises, the non-adhered coating can be 
forced away from the substrate to yield characteristic 
'blistering'. For this reason, the water schema is also a 
node in the surface-impurity hierarchy.
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5.2.5.2 The relation hierarchy

As previously stated, all slots in ADEPTUS are nodes in an 
is-a hierarchy with the SRL system schema relation at its 
root. This hierarchy can conveniently be discussed in two 
separate parts.

The first part is the tree of relations concerned with 
script definition, and is illustrated in figure 32a.■ These 
relations are employed in scripts at either level, since 
the scripts are intended to function in essentially the 
same way regardless of the script domain. The script 
definition relations fall naturally into two categories, 
script slots and script facets. The meaning and function of 
these relations was described in section 5.2.2.

The second part of the r e l a t i o n  tree is shown 
diagrammatically in figure 32b.

The leaf nodes of the feature and dimension subtrees are 
relations specific to the physical domain of expertise. 
Domain-level attributes can be categorised on the 
continuous/discrete quality of the set of possible values 
for those attributes. A dimension has a continuous set of 
values, whereas a feature has a discrete set. This was 
discussed in section 3.5.2. The control of the range of 
possible values for features is undertaken using SRL' s 
system-defined range facet for the slots. Thus it is
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possible to restrict the value of an i m m e r s i o n - i n slot to 
some entity within the liquid-substance hierarchy, or the 
value of m e c h a n i c a l - d a m a g e to be an instance of either the 
abrasion or the impact schema.

The dimensions known to ADEPTUS are divided into exact 
dimensions and descriptive dimensions. Different facets 
are attached to each class.

The exact dimensions are those given a numeric value which 
has some physical significance. Examples in ADEPTUS are 
temper a t u r e and price. These dimensions are illustrated in 
Figure 33.
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{{temperature
is-a exact-dimension
units degrees-C
valid-range (-100 600) }}

{{price
is-a exact-dimension 
units sterling-per-litre
valid-range (0 100) }}

Figure 33
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Descriptive dimensions are assigned rank values on a fixed 
scale. The units of this scale are imprecise and do not 
correspond rigorously to measurable values in the physical 
world. For example, consider Figure 34.

{{adhesion
is-a descriptive-dimension
valid-range (-3 +3) 
english-scale (strong weak) }}

{{viscosity
is-a descriptive-dimension
valid-range (-3 +3) 
english-scale (thick thin) }}

This shows the dimensions of adhesion and viscosity; both 
are experimentally measurable quantities with standard 
units. However, the use of such units is once again at too 
fine a grain size for ADEPTUS. Neither the information 
provided by the user nor the accuracy of the inferences 
require such details. The descriptive dimensions have 
associated with them a slot english-scale which enables the 
value of the dimension to be translated into English in a 
simple way. Qualifiers are associated with the modulus of 
the integer part of the value of the dimension as follows.

Figure 34

INTEGER QUALIFIER
fairly1

2 very
extremely3
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These qualifiers are used as a prefix to the appropriate 
adjective taken from the e n g l i s h - s c a l e  slot; the first 
element of the list which is the slot value corresponds to 
positive values of the dimension, the second to negative 
values. A zero value has no prefix and always corresponds 
to the word 'average'. For example:

adhesion -1 => adhesion fairly weak
viscosity 2 => viscosity very thick

All the dimensions known to ' ADEPTUS could be represented 
uniformly; all as exact dimensions, or all descriptive. 
The criterion for usage of one category in preference to 
the other is a purely pragmatic one. The considerations 
that led to the assignment shown in figure 32b are the 
terms used by the human expert and the level of detail that 
he or she employs.

The remaining subtree of the relation hierarchy, feature, 
is also shown in the Figure 32b.

5.3 Performing the Selection task

5.3.1 Introduction

The following subsections describe the steps taken by 
ADEPTUS in trying to make a selection of an anti-corrosive 
coating. The structure and meaning of the information 
supplied by a user of ADEPTUS is described. The workings

138



of the s-script and the d-script are then explained, 
focussing on the active images and their effects on the 
'mental state' of ADEPTUS.

5.3.2 Situation Specific Knowledge 

5.3.2.1 Overview

The surface characteristics of the user interface are not 
of interest in this research. I have therefore omitted 
from the s-script any input/output acts which would be 
necessary for a satisfactorily complete system. The user's 
input is viewed as instantiated schemata already in a form 
suitable for use by ADEPTUS.

The information from the user must encompass a description 
of the substrate when ready for coating, and 
characteristics of three distinguishable environments:

- the conditions obtaining when the coating process
takes place

- the conditions obtaining during the drying of the
coating

- the likely environment for the coating during its
effective lifetime.

The third of these includes information on possible 
chemical spillages and mechanical damage to the coating. 
Such information must be available to ADEPTUS before the
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problem-solving process can begin.

5.3.2.2 The substrate

Knowledge about the substrate is held in a child of the 
substrate schema described in section 5.2.4. Both the 
con s t i t u e n t s slot and the s u r f a c e - k e y slot values will be 
influenced by the preparation carried out on the surface. 
If, as is presently true, no representation of preparation 
exists in the causal model employed by the system, a simple 
translation can be made between a standard surface 
preparation (e.g. Sa3, Sa2 in the Swedish Standard) 
supplied by the user and the appropriate values in the 
internal schematic representation of the substrate.

5.3.2.3 The Environment

Three separate environments are of interest in the problem 
of selecting an anti-corrosive coating. The first two of 
these refer to the environment in which application of the 
coating is carried out and the environment in which drying 
occurs. Three essential factors are included in the 
a p p l i c a t i o n - e n v i r o n m e n t  and d r y i n g - e n v i r o n m e n t  
schemata: the atmospheric humidity, the ambient temperature 
and the 'microlocation'. The microlocation shows whether 
the substrate is indoors or outdoors, sheltered from rain 
or exposed to the elements. The m i c r o l o c a t i o n slot is a
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feature; both of the other slots are dimensions. See 
Figures 35 and 35. In these examples, instances of 
application-environment and drying-environment have 
been created to hold the user's situation description, 
application-environment and drying-environment are 
b o t h  s u b c l a s s e s  i n h e r i t i n g  from the
environment-description schema.

{{application-environmentl
instance application—environment
h u m i d i t y (-3 1)

[instance descriptive-dimension] 
temperature (10 20)

[instance exact-dimension] 
microlocation indoors 

[instance feature]
[range (or indoors outdoors) ] }}

Figure 35

{ {drying-environment1
instance drying-environment 
humid i t y (-3 1)

[instance descriptive-dimension] 
temperature (10 20)

[instance exact-dimension] 
microlocation indoors 

[instance feature]
[range (or indoors outdoors) ] }}

Ficrure 36
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The values for t e m p e r a t u r e and h u m i d i t y  are ranges of 
user-estimated values. The information coming from the 
user is in the form of predictions of future environments. 
Certainly in the anti-corrosive coating domain, where 
factors such as weather can influence choice, it is not 
feasible to expect the user always to be categoric about 
the expected environment.

Often, as in the example, ' the application and drying 
environments will be identical, but this is not necessarily 
the case.

The most interesting of the environment descriptions is the 
corroding-environment schema. This is shown in figure 37. 
The three slots from the application/drying environments 
are still relevant, but several other factors now come into 
play.

The syntax of SRL's range facet allows a wide range of types 
of restriction. The ar used in the microlocation and 
macrolocation slots requires that the slot value be one of 
the schemata names given. 2.1 .St demands an ordered list 
conforming to the restrictions described in its arguments. 
Thus, acceptable values for macrolocation would be (rural 
inland), or (industrial coastal) etc. The type 
restriction is characteristic of SRL. It requires that a 
value should bear a certain relation to another schema. 
For example, the value of the immersion-in slot must be a
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{{corroding-environment
is-a environment-description
humidity

[instance descriptive-dimension]
temperature

[instance exact-dimension] 
mi croi ocation

[instance feature]
[range (or indoors outdoors) ]

macrolocation

[instance feature]
[range (list (or rural industrial)

(or coastal inland)) ]
splashed-by

[instance feature] /
[range (set (type is-a liquid-substance)) ]

immersion-in

[instance feature]
[range (set (type is-a liquid-substance) ) ] 

mechanical-damage

[instance feature]
[range (set (type is-a mechanical-damage-description) ) ]

}}

Figure 37

is-a liquid-substance. This relationship need not be 
direct; it is quite acceptable for the link to be via an 
inheritance pathway. So, although salt-water is a 
grandchild, not a child, of liquid-substance, the is-a link 
permits inheritance, and the range restriction on the 
i m m e r s i o n - i n  slot would be satisfied with the value 
salt-water. set allows values which are unordered lists 
of zero or more elements, all of which conform to the
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restrictions given as arguments. For example, splash e d - b y  

could have a value of
(citric-acid organic-solvent linseed-oil nitric-acid) 

or (fresh-water) or () .

The m a c r o l o c a t i o n slot describes in general terms the
location of the substrate. This may be rural or
industrial, and coastal or inland. The value here is
concerned with the degree of "pollution or corrosiveness in 
the atmosphere.

The immersion-in slot must have as its value an element of 
the liquid-substance hierarchy. The s p l a s h e d - b y slot may 
have multiple values, since many substances may be spilled 
on the substrate during the lifetime of the coating. For 
both of these slots' values, if the liquid substance 
concerned is a member of the chemical subtree, the actual 
schema will be a specially created child-schema of one of 
the existing leaf nodes of the chemical subtree. The 
values in this child-schema's slots can then be specified 
by the user. The obvious example of this is in defining 
the pH of a spilled chemical; a coating may be eminently 
suitable for protection against weak acids but not against 
strong acids.

The remaining slot in the corroding-environment schema is 
mechanical-damage. The acceptable values for this slot are 
user-instantiated child-schemata of either abrasion or
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impact, which are shown in Figures 38 and 39.

{ {abrasion
is-a damage
severity

frequency

participants }}

Figure 3.&

{{impact
is-a damage
momentum

frequency

area }}

Figure 39

5.3.3 Running $s-script

5.3.3.1 Initial Instantiation

When the situation-specific information from the user has 
been set up as instances of the appropriate environment and 
substrate schemata, these created schema names are 
collected up into an instance of the situation-description 
schema. An example is shown below in Figure 40.

This central storage of the problem description information 
ensures that the tokens used in the state and act slots of 
the s-script (i.e. ?S, ?EA etc.) are independent of the
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{{situation-descriptionl
instance situation-description 
?S substratel
?EA application-environmentl
?ED drying-environmentl
?EC corroding-environmentl }}

Figure 40

domain of the d-script. In instantiating the s-script, the 
problem description is taken from the schema, not from 
information tied in to the d-script.

/
The other two schemata needed by the s-script are a copy of 
$d-script and a copy of the known-solutions schema. The 
latter is illustrated in Figure 41.

{{known-solutions
schema-names (bitumen drying-oil-paint

chlorinated-rubber)
}}

Figure 41

The SRL schema-copying facility is not implemented in the 
version available to me, so instead of copies of the 
required schemata, child schemata are used. These simply 
inherit all slots and values unchanged from their 
respective parents. The knowledge base schemata are not 
directly used; this maintains their integrity and leaves 
open the possibility of re-running the s-script without 
losing information from previous executions.
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The binding-list facet of the statel slot in $s-script now has 
its value instantiated. If the three schemata described in 
the previous paragraph are situâtion-descriptionl, 
$d-scriptl and known-solutionsl, then the binding-list facet 
will take the value

((?$D . $d-scriptl)(?SOL . known-solutionsl)
(?SIT . situation-descriptionl))

5.3.3.2 The MERGE act

The MERGE act uses the information provided by the 
situation-description schema to alter the binding list of 
the initial state of $d-script. it establishes in the 
domain-level causal model the problem characteristics for 
this particular problem-solving exercise. This is a 
micro-effect of the act, and as such is effected through 
the can-affect facet of MERGE, and the demon attached to the 
statel slot of $d-script.

5.3.3.3 The SHATTER act

Having attached the problem description to $d-script, the 
next step is to attach a possible solution. This requires 
that a copy of the partly-bound $d-script schema is 
available for each possible solution. It is the SHATTER 
act which accomplishes this proliferation. No new schemata
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need to be created by SHATTER; it is at this point in the 
selection script that the SRL context facility is employed.

The SHATTER act creates a context for each known solution. 
Within this context it alters the binding list of the 
s t a t e l  slot of the $d-script schema so that the 
corresponding solution is incorporated. From this point in 
the s-script, the $d-script schema in the root context is 
not used; all necessary manipulations happen to the 
d-script in one of the solution-specific contexts.

Once all this has been accomplished, the $d~script schema 
can simply be used in the binding list of the resulting 
state of the s-script, in the knowledge that all the 
alternative worlds of interest are accessible via the 
$d-script schema in contexts defined by the solution 
schemata names.

5.3.3.4 The RUNEACH act

This act consists of the repetition of a sequence of 
events; performing them once for each solution in its 
binding list. The name of the solution schema is the same 
as the corresponding context name; so for the bitumen 
solution, the appropriate context is bitumen. The context 
for each solution is asserted in turn, and the RUN act is 
executed on $d-script. In common with the SHATTER act,
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only the $d-script schema in the enabling state's binding 
list needs to be named in the resulting state's binding, 
the details existing only within the solution contexts.

The RUN act which executes the d-script is the same act 
which executes the selection script itself. It is an act 
which pursues the e n a b l e s  and r e s u l t  s - i n links in its 
object script, forcing any detected acts or processes into 
execution. The RUN act itself does not alter the current 
context, which is therefore asserted before RUN is invoked.

5.3.3.5 The C O M P A R E  act

A Divergence schema is created by the COMPARE act for each 
solution under consideration. A Divergence schema has the 
same slot names as the final versions of the schemata which 
represent the essential outcome of the d-script, but the 
meaning of the value for each slot is quite different. In 
the anti-corrosive coating domain, this ’outcome' schema 
will be the ultimate dry-film- version of each coating. 
The slot values of the Divergence schema now represent how 
'good' or 'bad' that value is judged to be, whereas in the 
corresponding final dry-film- schema the value is a 
prediction of the physical nature of that attribute, e.g. 
thickness 2, defects (pitting blistering)

Thus, although the final dry-film- schema slots may be a
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mixture of features and dimensions, all the Divergence 
slots are dimensions. In fact, they are all values of the 
same dimension, that of value-judgment.

The Divergence schema slot values are created by examining 
each slot of the final dry-film- schema and comparing that 
slot value with an optimal slot value obtained from the 
Ideal schema. The value then attributed to the Divergence 
slot is a measure of the distance between the predicted 
value for the coating and the Ideal value. This is the 
working definition of the value-judgment dimension.

5.3.3.6 The RANK act

A method for ranking the Divergence schemata has not yet 
been settled in detail. The g e n e r a l - e f f e c t s slot of the 
RANK schema (the eponymous schema describing the RANK act) 
is straightforward. The RANK act will create a child of 
the Rank schema (see Figure 42) conditional only upon the 
enabling state of the act being adequately instantiated.

{ {Rank
ranked-schemata

suitability }}

Figure 42

The demon attached to the Rank s u i t a b i l i t y slot will then
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create a list of values for that slot using a rulebase. It 
is this rulebase that remains undefined. However, the 
information that the rulebase will use is established. The 
rulebase belonging to the Rank s u i t a b i l i t y  demon will 
consider each of the Divergence schemata as a conceptual 
histogram. This is illustrated below in Figure 43.

Example Divergence Schema Histogram

Figure 43

This example shows a Divergence schema where:
2 slots have values of -3 
1 slot has a value of -2 
5 slots have values of +1
3 slots have values of +2

The rulebase needs to be able to decide on the basis of 
this histogram the overall suitability of the corresponding 
solution. Clearly, a solution having more than one 
'extremely' unsuitable attribute (i.e. slot value of -3) 
would itself be 'extremely' unsuitable. However, the 
knowledge required to obtain an overall view from the 
histogram in other cases is not currently available to the
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system; it will be necessary to reconsult the domain 
experts to obtain this. In this type of expert task, it is 
likely that a different collection of heuristics will be 
elicited from each expert. The analysis of the histogram 
may also depend upon the user's view of the problem, and 
the costs and risks involved for them.

5.3.4 Running $d-script

5.3.4.1 Initial Instantiation

The initial instantiation of the binding list for $d-script 
is carried out by the MERGE and SHATTER acts of the 
selection script. The solution schema binding is only 
described within solution contexts, as described in section 
5.3.3.3. The appropriate solution context is therefore 
asserted before the d-script is executed.

5.3.4.2 The TOUCH process

The first process in the current version of the 
domain-level script is TOUCH. This establishes a physical 
contact between the coating and the substrate; borrowing 
the term ’PHYSCONT’ from Schank, the resulting state is 

PHYSCONT coating substrate
This does not attempt to give any information on the nature 
of that contact; the coating may or may not attach to the
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substrate. The description of the relationship between the 
two is only elucidated in the next act, STICK.

5.3.4.3 The STICK process

The STICK process can be disabled by the presence of 
certain elements in the substrate constituents, for example 
a grease film on the surface of the substrate. Should this 
be the case, the rulebase defining the macro-effect■of the 
process can alter the structure of the resulting state, so 
that the coating and the substrate are both present, but 
not in physical contact.

If the process is not disabled in this way, a binding list 
is attached to the resulting state, and the process's 
micro-effects are executed. For this process, it is 
interesting to note how the prior value of the substrate 
c o n s t i t u e n t s slot has an effect on the resulting value of 
the same slot. This is a more detailed reflection of the 
macro-effects of STICKing. If grease is present, the 
description of the substrate does not change. If the 
substrate is clean, however, the coating becomes part of 
the description of the substrate constituents. A suitable 
term involving the token representing the coating schema 
(i.e. ?C) is added to the front of the list describing the 
constituents. It is for this reason that on the 
macro-level, the resulting state does not need to mention 
?C, the token for the coating, if the STICK process has
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been successfully carried out. The token is employed in 
preference to the schema name so that as the description of 
the coating film changes during the remainder of the 
d-script, those changes will automatically be reflected 
within the substrate constituents description.

5.3.4.4 The STATECHANGE process

The nature of the state change is determined by the 
d r y i n g - p r o c e s s slot in the coating schema. (The change of 
state may take place by evaporation, by curing or by a
combination of the two.) STATECHANGE has only to
instantiate the binding of the coating token in the
resulting state and to permit the micro-effects to occur. 
No interference with the value of the substrate 
c o n s t i t u e n t s value is required, for the reasons explained 
in the previous section. However, part of the macro-effect 
of STATECHANGE is that the coating schema in the resulting 
state is a child of the dry-film phase. This must be taken 
into account when creating the coating successor schema for 
the resulting state.

5.3.4.5 The WEAR process

The macro-effects of the WEAR process are very simple. A 
successor coating schema is created and attached to the 
resulting state binding list. The micro-effects of the WEAR 
process are of course the most complex in the d-script,
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reflecting the variety and complexity of the factors which 
affect a coating film when it is in use.

5.4 Summary

The current implementation method for the selection script 
and the domain script have been described. In the next 
chapter, we return to' the central theme of 
question-answering, and the categorisation of questions in 
a system based on a causal model.
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6 QUESTION ANSWERING AND KNOWLEDGE BASED SYSTEMS

6.1 Introduction

Wendy Lehnert's work on question answering was carried out 
as part of the Yale natural language understanding project 
in the 1970's. The domain used by the Yale workers was 
simple, non-technical stories about ordinary people. The 
ideas underlying Conceptual Dependency, causal chaining, 
scripts etc, have a wide applicability, but if they are to 
be used in Expert Systems, some profound modifications are 
required.

6.2 A Reappraisal of Lehnert's Classification

6.2.1 Introduction.

While Lehnert's classification of question types works well 
enough for the domain of simple news stories, it is not 
entirely appropriate to the discussion of problem-solving 
behaviour nor to industrial and technical processes. This 
section first examines the need to add, modify or abandon 
individual categories from Lehnert's work. Having obtained 
a revised list suitable for the domain, a more detailed 
classificatory structure for question types is described, 
based on the fundamental script-manipulative acts described
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in Chapter 3. It is important to understand where the HOW 
and WHY questions in conventional expert systems fit into 
this structure, and section 6.2.4 provides an analysis of 
this. The last part of this section then highlights the 
applicability of this analysis. It illustrates how, when 
people consult experts in reality, they ask questions which 
span the question hierarchy described.

6.2.2 Modifications to individual categories

Only one of Lehnert's existing categories becomes 
completely irrelevant in the changed domain: the request 
category. There does not appear to be any reason to phrase 
a request to a computer system as a question; it would 
naturally be phrased as a command.

Another class, disjunction, can be usefully metamorphosed 
into a class of 'comparison' questions, which have the form 

Which has more of attribute X, entity A or entity B ? 
This class is more than a disjunction of two confirmatory 
questions. Since entities A and B have an attribute in 
common, yet each has an individual value for that 
attribute, the question class cannot be simple 
slot-filling. It is proposed, then, that these Comparison 
questions replace the Disjunctive category.

One extra class of questions should be added to the scheme.
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This is the definition class. This encompasses all 
requests for definitions of entities, and in English is 
often recognisable as a 'What is a ...?' question. This 
class is, in fact, appropriate to Lehnert's original domain 
as well as to an industrial problem-solving domain, and 
would have been worthy of consideration in her work.

There is considerable structure in the classification 
itself. Lehnert simply postulates her categories, leaving 
them organised only into a single level. Relationships 
exist betwen the categories, but these relationships are 
not made explicit. The next section clarifies and 
organises these relationships between categories, using the 
ideas underlying the description of primitive 
script—manipulation tasks, since in answering questions one 
must indeed undertake various movements around a causal 
chain. This will yield a more richly descriptive and deeper 
hierarchy into which the categories can be fitted.

6.2.3 The Overall Hierarchy of Question Categories

Instead of a shallow, flat tree of dependencies, the 
structure shown in Figure 44 may now be obtained. The 
classification follows the distinctions drawn between 
varieties of script-manipulative acts discussed in Chapter
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Classifying questions in this way stems directly from the 
view of question-answering as the process of moving in 
characteristic ways around a causal chain. A primary

distinction is made between questions which require 
movement along causal links and those which do not 
(acausal) . The causal category is then divided into 
analytic and predictive classes.

The predictive class is characterised by a movement of
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attention from the question concept in the causal chain 
toward a resultant state or enabled act. It is this 
forward traversal of the causal links that is common to 
each of the three categories in this class. The 
identification of causal consequent and goal orientation as 
predictive categories is straightforward.

The procedure category has been distinguished from 
instrument questions. Procedure queries require the 
traversal of a detailed causal chain, for which the act in 
the question concept is a 'title' or summary. This 
detailed causal chain is traversed forwards (hence 
predictive) to mimic the time sequence of the description. 
For example:

Q. How did you find the book in the library?
A. I went to the index, looked up the author, found 

the index card, noted the classification number...

Categories in the analytic class are similarly related by 
the need to traverse causal links in finding an answer to 
the query. In this subclass, however, the causal links are 
traversed back up the causal chain; moving from the 
question concept toward enabling state or causative act. 
The distinction between causal antecedent and enablement 
has been more sharply defined. An enablement question has 
an act as a question concept, and enquires about the state 
which enabled it. Symmetrically a causal antecedent query 
asks about an act which caused the state in the question
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concept. The expectational category may have either an act 
or a state as its question concept.

The acausal class is also divided in two. The 
intraconceptual subclass requires that only the image or 
entity in the knowledge base matching the question concept 
is examined. Relationships, causal or otherwise, with 
other images or entities are not relevant to the answering 
of the query. Several categories constitute one sub-class 
of the intraconceptual class. These are the slot-filling 
categories. They can be further divided into slot-filling 
for acts, slot-filling for states and slot-filling for 
individual entities. The instrument category is a
slot-filler for an act. It is interesting that a shift in 
the level of detail required can transform the relatively 
simple instrument query into the more complex causal 
procedure question. For example:

Q. How do you get to London ? (instrumental)
A. By train.
Q. How do you get to London? (procedural)
A. You take a taxi to the railway station, buy a rail

ticket, get on the train ...

Methods for disambiguating the natural language question 
must depend on the context in which the question is asked 
and on the responder's view of the enquirer, but this 
subject lies outside the work reported in this thesis.
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The interconceptual subclass requires consideration of two 
entities, which are related not by causal links, but by 
relationships within some hierarchy. These relationships 
are often ’sibling’ links, in that both entities are 
instances of the same domain class.For example, the two 
entities might be a chlorinated rubber coating and a 
drying-oil coating: both are instances of the 'coating' 
superclass.

The two categories in the interconceptual subclass, the 
judgment and comparison categories, are related to each 
other. Examples of the comparison question category are:

Which is easier to implement, causal consequent or goal 
orientation ?

Is drying-oil-paint more viscous than a chlorinated 
rubber coating ?

An example of the judgment question category is:
What do you think of bitumen coatings ?

The judgment class of query is seeking information about a 
comparison of the object of the question concept with some 
ideal in the same hierarchy; in the example, this is the 
coating hierarchy. This notion of comparison with an ideal 
can be seen most clearly if a comparison question is 
contrasted with a judgment query having a closely related 
question concept.

Q. Which is more resistant to mechanical damage, a 
chlorinated-rubber coating or a bitumen coating ?

A. A bitumen coating.
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Q. What do you think of bitumen coatings ?
A. ...bitumen coatings have poor resistance to 

mechanical damage...
So the bitumen coating wins over the chlorinated-rubber 
coating, yet is judged 'poor' in relation to some other 
unspecified standard. This standard or ideal can be thought 
of as an aggregation of the strongest attribute values 
available in the relevant hierarchy. So if the best 
possible available mechanical" damage resistance is obtained 
from sprayed-metal coatings, then this is the criterion 
against which all other coatings will be judged in a 
general sense; that is, as intended in a judgment question.

6.2.4 Analysis of HOW and WHY using the revised 
classification

The aim of this analysis is to distinguish
i the nature of the question concepts
ii the correct question category for HOW and WHY 

questions in rule-based systems.

6.2.4.1 The WHY question

Consider this example dialogue fragment from a rule-based 
system for selection of anti-corrosive paints.
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What is the standard of surface preparation?
** WHY
I am trying to establish a value for COATING ADHESION 
Rule: If the surface preparation > 2

Then coating adhesion is good

Consider the meaning of the question that is being answered 
here.

The question can be expanded in English in several ways.
Why did you ask me that question?
Why is that concept important?
Why do you need to know?
In what way will that information be used?

The question concept deals with the availability of 
information :

You asked me a question.
That concept is important.
You need to know.
That information will be used.

The contents of 'that question', 'that concept' or 'that 
information' are only of secondary importance. The central 
acts or states in the question concepts are concerned with 
the manipulation of information; 'ask', '...is important', 
'need to know...’ and 'information ... used'. All the 
expansions, in more or less circuitous ways, are enquiring 
about the system's current 'goal',that is, toward what 
desirable state it can move when the sought-after
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information is provided. These are system-level acts and 
states, often taking whole domain-level assertions (i.e. 
'that concept') as objects of the verbs. The most 
appropriate category for these WHY questions is goal 
orientation. Here, the system is functioning as the 
sentient agent which has definable goals. Its actions in 
pursuing those goals form the question concept of the WHY 
question.

6.2.4.2 The HOW question

The HOW question can be elaborated in a manner similar to 
that used for WHY.

What made you reach that conclusion?
(causal antecedent)

What enabled the system to prove that? (enablement)
Also similarly, the question concepts are at the system 
level.

You reached a conclusion.
The system proved something.

The questions are asking about the states of knowledge 
which have led to a certain conclusion being drawn, it is 
tempting to think of HOW questions as procedural or 
instrumental. If this were so, the following would be 
obtained:

Q. How did the system prove that?
A. By modus ponens

The enquirer does not want this description of a mechanism,
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nor a description of any detailed instantiation of the 
mechanism. The useful answer is in terms of enabling 
states.

6.2.5 The Utility of the Question Categories

It is useful to employ the classification and the idea of a 
’question concept' to delineate the extent of what Clancey 
calls the "aphasia" of single-level rule-based systems 
[Clancey 1983].

Kidd [Kidd 1985] gives general examples of questions 
commonly asked of human experts by callers in radio 
phone-in programmes. She points out that the user plays a 
major role in the problem-solving dialogue. The user has 
views on the essential components of the problem 
definition, and often on the nature of an acceptable 
solution. This leads to a negotiation between the expert 
and the user. Many of the questions put to the expert 
belong to categories other than those encompassed by HOW 
and WHY. For example:

Is X a good remedy ? (Judgment)
Which is the best remedy: X, Y or Z ? (Comparison)
How does remedy X work ? (Procedural)
Why doesn’t remedy X work ? (Expectation)
What happens if remedy X is used ? (Causal Consequent) 

It is also interesting to note that the question concepts 
concern domain-level entities. in reality, then, it seems
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that the user asks questions in categories which span the 
whole hierarchy, examples being present for the analytic, 
predictive and acausal classes; and that these questions 
concern actions in the physical world rather than the 
information processing acts of the expert.

6.3 Question Answering in ADEPTUS

6.3.1 Introduction

In designing QUALM, Lehnert was dealing with only a single 
level script. In ADEPTUS, however, I have represented the 
system's knowledge on two levels, the d-script and the 
s-script. Questions can then be asked about processes and 
states occurring in either of these scripts. No 
level-specific constraints are in effect on a question 
category. Any question category which is valid for applied 
science problem-solving can be posed at either level. This 
does not mean, of course, that all question types would 
necessarily yield useful information at each level; only 
that there is no a priori reason why that query class may 
not be used. Syntactic restrictions, however, do apply on 
both levels of script. These follow Lehnert's rules. For 
example, a goal orientation question cannot sensibly be 
phrased to ask about processes in the physical domain, 
since by the definition of the term 'physical process' no 
sentient actor is available to have goals ascribed to them.
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6.3.2 The Goal Orientation Category

6.3.2.1 Questions about the problem-solving process

As discussed above in section 6.2.4.1, this class 
encompasses the WHY questions familiar from rule-based 
systems. In a rule network, the goal orientation question 
is concerned with the problem-solving behaviour of the 
system, although to the naive user it can often seem as 
though the physical processes of the domain are the subject 
of the query. However, the lack of explicitly represented 
knowledge of physical causality in the domain leads to an 
inability to ask domain-level goal-orientation questions.

In the rule-based system, the answer to a goal orientation 
(WHY) question takes the form of the next conclusion 
obtainable from the firing of a single rule, where the 
premise of that rule contains a term matching the piece of 
information which prompted the question. The same question 
can be asked of ADEPTUS, but the answer is obtained in a 
rather different manner. ADEPTUS requires a description of 
the problem situation before any script instantiation or 
manipulation is undertaken. The user's goal-orientation 
query may be expressed while the situation-description 
schemata are being filled, before problem-solving begins; 
or it may be expressed when the selection script has been 
executed. In either case, the technique for answering the 
question remains the same. In the illustrative example
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that follows, the uninstantiated script is employed. 
ADEPTUS is given two pieces of information; a question 
concept and the question category - in this case, goal 
orientation. The question concept for a goal orientation 
question must be an active concept.
For example:

Why does ADEPTUS need a value for the substrate 
surface-key ?

Question concept:
(ACTOR ADEPTUS)(ACT place-value)

(OBJECT (substrate surface-key))
Question category:

Goal orientation
To answer a goal orientation question, we must establish 
first the state that results directly from the execution of 
the act described in the question concept. The subgoal 
requiring this act is then the execution of the next act or 
process that is directly enabled by the state achieved.

The state achieved by our example question concept is the 
existence of a value in the surface-key slot of the 
substrate schema. ADEPTUS performs a 'predictive scan' 
down the causal chain, looking for a state that has the 
existence of this value as an active enabling factor. 
Attention moves down from a state via the enables link to a 
process/act, thence to the next state via the r e s u l t s - i n  

link. As each state in the script is encountered, ADEPTUS 
checks whether or not this stative image names the value of
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the substrate schema's surface-key slot as an active 
enabler. (See Fig. 45).

{ {$s-script
statel (?$D ?SOL ?SIT)

[active-enablers ( (environment-description is-a+inv) 
(available-tool is-a+inv) 
(substrate-description is- a + i n v ) ) ]

actl (MERGE ?$D ?SIT)
[affected-by ( (environment-description is-a+inv) 

(available-tool is-a+inv) 
(substrate-description is- a + i n v )) ] 

. . .  }}

Figure 45

The i s - a + i n v  slot name is produced by the system in the 
absence of a named inverse for a slot, when the SRL 
inverse-creation switch is on. It represents the inverse 
of the is-a link.

Following the progress of the s-script, illustrated in 
Figure 9, it can be seen that the states enabling the MERGE 
and RUN acts do not require a value for any substantive 
domain-level schema slots. The two kinds of entities that 
they do require are instantiated d-script slots,and the 
existence of certain entire domain-level schemata. The 
existence of the latter is established by an examination of 
the appropriate class hierarchy. Consider for example the 
MERGE act and its enabling state. The execution of this
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act requires values in the schema-slots named in the 
active-enabler facet of the enabling state. These are identical 
to those named in the affected-by facet of the MERGE act. 
This exact reciprocity is only the case when a state 
enables exactly one active image. (An example of an 
asymmetric situation is given in section 6.3.2.2)

The slots which must have values for this MERGE act to take 
place are those that show the names of child schemata of 
the environment-description, a v a i 1 a b l e -t o o 1 and 
substrate-description schemata. That is, the domain-level 
script cannot be MERGEd with a problem situation 
description until instances exist of the three known 
components of the problem description. To illustrate the 
second possibility for s-script act requirements, consider 
the RUN act and its enabling state, shown in Figure 46.

{{$s-script

state3 (?$D)
[active-enablers (($d-script statel)

($d-script process 1)) ]
act3 (RUN ?$D)

[affected-by (($d-script statel)

($d-script p r o c e s s l ) ) ]

. . .  } }

Figure 46

The slots actively enabling the RUN act are the initial
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slots of the d-script. If an instantiation is available for 
the two named slots, then the RUN act can execute. If the 
state being examined in the predictive scan does not have 
the schema-slot value of interest as an active-enabler, 
ADEPTUS passes over that state, unless the enabled act is 
itself a predictive task. When a predictive task is 
encountered, the attention of the predictive scan shifts to 
the script that is the object of the new task, and ADEPTUS 
continues the predictive scan down this 'object' script in 
the same manner as before.

When a state is found that uses the value of the 
schema-slot combination specified in the question concept 
to enable the ensuing process/act, the information required 
to construct the answer can then be accessed.

The actor whose subgoal is being established is still 
ADEPTUS. To answer the question, we must now determine what 
the actor is attempting to do at the target point. ADEPTUS 
is attempting to predict the outcome of the (STICK ?C ?S) 
process, and that process cannot be executed until the 
substrate surface-key value is known. It is within the 
stative image of the $d-scrxpt state2 value that we regard 
the target schema-slot combination as being actively 
matched. That is to say, although a value for that slot 
may have been available prior to that state, state2 of the 
$d-script schema is the first instance we have detected of 
its active enabling influence on a process/act. The

^  See %  18*)
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movement down the e n a b l e s  link from the match to the 
enabled process is the predictive task that characterises 
the goal orientation answering mechanism and assigns the 
goal orientation category to the causal/predictive subclass 
of query types. The hypothetical RUN act that ADEPTUS is 
attempting to execute when the substrate s u r f a c e - k e y  

becomes an enabling factor is composed of repeated calls to 
a primitive PREDICT act, which is actually responsible for 
the execution of the individual processes/acts in the 
script being RUN. This allows us to construct the essence 
of the answer to the query thus:

(ACTOR <ACTOR of question concept>) 
has-goal ( <ACT or PROCESS description> )

The actor of the question concept is ADEPTUS. The active 
image identified as the goal is:

(ACTOR ADEPTUS) (ACT PREDICT)
(OBJECT
( (STICK ?C ?S) affected-by (substrate surface-key) ) )

So the complete value is:
((ACTOR ADEPTUS) has-goal 
((ACTOR ADEPTUS) (ACT PREDICT)
(OBJECT
( (STICK ?C ?S) affected-by (substrate surface-key) )) ))

In English, the question is
Why does ADEPTUS need a value for the substrate 
surface-key?

The answer obtained indicates that 
ADEPTUS is trying to PREDICT the outcome of the surface
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and the coating STICKing together, and this is affected by 
the surface-key of the substrate.

Is this a reasonable answer to the question? I would argue 
that it is. The level of the question and answer are the 
same; both are centrally concerned with problem-solving 
images rather than domain-level ones. The answer does 
indeed tell the user something interesting about the 
motivation for requiring the substrate surface-key 
information. It does NOT, however, give any details about 
the way in which the substrate surface-key affects the 
STICKing process. This is not surprising. The effect of 
the substrate surface-key value differs for each coating 
about which the system knows, i.e. differs for each 
solution known to the system. To ask how the substrate 
surface-key affects a particular coating is a domain-level 
concept-completion question.

Lehnert describes Goal Orientation questions as those that 
involve a REASON link. The answer is found by identifying 
the unknown image which is the REASON for the question 
concept. The need for such a link seems to be the 
complexity and deviousness of human motivation in the 
'ordinary occurrences 1 domain. ADEPTUS does not require 
REASON links; all of its motives are explicit, and are 
directly led to by the achievement of the constituent 
subgoals.
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6.3.2.2 Goal Orientation questions about domain-level acts

Goal orientation questions can, of course, be asked about 
acts carried out in the physical domain modelled in the 
system. To illustrate such questions, I shall employ a 
piece of causal chain that does not appear as part of the 
current version of ADEPTUS. This is because no acts (as 
distinct from processes) occur in the d-script, for reasons 
of simplification. Again, no REASON links are required; I 
assume the motives of the people involved to be 
straightforward. This clearly renders the system incapable 
of understanding and hence discussing motives such as 
laziness, greed, sabotage etc. Consider the piece of causal 
chain illustrated in Figure 47. This describes the
preparation of the substrate, prior to paint application. 
This script fragment is shown fitted on to the front of the 
existing d-script, replacing the TOUCH process and its 
enabling state.

I shall consider the Goal Orientation question
Why does someone abrade the substrate ?

Question Concept:
((ACTOR UNKNOWN) (ACT ABRADE) (OBJECT ?S))

Question Category:
Goal Orientation
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{{$d-script
stateA  (?OPERATIVE ?S ?TOOLS ?LIQUID)

[instance stateslot ]
[enables act A actB ]
[active-enablers ((cleaning-tool tool-used)

(operative skill-level) 
(dip-liquid constituents) 
(dip-liquid temperature) 
(dip-liquid pH) ) ]

actA  ((ACTOR ?OPERATIVE)(ACT DEGREASE)(OBJECT ?S)
(INSTR ?LIQUID))

[instance act slot ]
[results-in stateC]
[affected-by ((dip-liquid constituents)

(dip-liquid temperature)
(dip-liquid p H ) ) ]

[can-affect ( (substrate constituents)
(substrate surface-key)) ] 

actB  ((ACTOR ?OPERATIVE)(ACT ABRADE)(OBJECT ?S)
(INSTR ?TOOLS))

[instance actslot]
[results-in stateC]
[affected-by ( (cleaning-tool tool-used)

(operative s k i l l -level))] 
[can-affect ((substrate surface-key)) ]

StateC  (?PAINTER ?S ?C ?TOOLS)
[enables processC]
[active-enablers ( (painter skill-level) ) ] 

p r o c e s s C  ((ACTOR 7PAINTER)(ACT APPLY)(OBJECT ?C)(TO ?S)
(INSTR ?TOOLS))

[results-in state2]
[affected-by ( (painter skill-level) ) ]

[can-affect ( (coating constituents)) ] 
state2 (PHYSCONT ?C ?S)

[instance stateslot ] . . .  }}
Figure 47
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This is easily identifiable as a domain-level question 
since the ACT involved is a domain-level ACT. This 
indicates that the relevant script is the d-script. 
Following the format established for the system-level goal 
orientation questions, a predictive scan thus commences at 
the start of the d-script. The question concept is matched 
by the value of . Once more, to answer a goal
orientation question, we must

(a) establish what schema-slot combination is affected 
by the execution of the question concept ACT

(b) continue with the predictive scan until a 
subsequent ACT or PROCESS is found that is 
actively enabled by the target schema-slot
combination.

The ACT of abrasion, as we see from Fig. 47, can-affect just 
one schema-slot combination, the substrate s u r f a c e - k e y . 
The predictive scan therefore continues down the d-script, 
looking for a state which names the substrate surface-key 
as an active enabler. Of course, since this is the 
d-script, none of the processes/acts can themselves be 
predictive tasks, so we cannot drop down into a lower-level 
script. An active match for the target schema-slot 
combination is found in the state enabling the STICK 
process. Once again it is possible to formulate an answer 
to the question, using the template

(ACTOR <ACTOR of question concept>) 
has-goal ( <ACT or PROCESS description> )
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We instantiate the ACTOR using the question concept ACTOR, 
and the active image with the available details of the 
STICK process. So the complete answer to the question is:
((ACTOR UNKNOWN) has-goal

((STICK 7COATING 7SUBSTRATE) affected-by 
(substrate surface-key)) )

In natural language, the gist of this is that someone is 
trying to make the coating stick to the substrate, and this 
is affected by the surface-key of the substrate. The major 
difference between this answer and the example at the 
selection-script level is the absence of the PREDICT act. 
Here, we are discussing a person operating at the level of 
physical processes; in the previous section's example, the 
discussion was of the doings and goals of the system.

In both the system-level and the domain-level examples 
given, the target schema-slot combination is identified in 
a purely linear section of the script. That is, the state 
in which the active match occurs enables only one active 
image. However, if the state enables more than one act or 
process, then the symmetry between the active-enablers facet in 
the state and the affected-by facet in the active image no 
longer holds. In order to find the relevant enabled act, 
each of the enables links must be pursued and the value of 
the affected-by facet for each active image examined. For 
example, consider the question
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Why does the surface-preparation operative undergo a 
training period ?

The act of undergoing a training period will change the 
operative skill-level value. This state attribute is 
actively matched in s t a t e A  of the $d-script schema 
illustrated in Figure 47. stateA enables both actA and actB; 
to find the active image required as a response, we must 
follow both of the s t a t e A enables... links. The first of 
these leads to actA. On examination of act A's affected-by 
facet, we see that this act is not affected-by the target 
schema-slot combination of operative s k i l l - l e v e l. The next 
enables link is then followed to actB, where the affected-by 
facet contains the target combination. It is this act which 
is then used to construct the answer to the question.

6.3.3 The Judgment Category

6.3.3.1 Introduction

Judgment questions form a category in the interconceptual 
subclass. They are given the name of a concept as their 
question concept and are required to express an 'opinion' 
about that concept. For example, the question may be

What is your opinion of a drying oil paint in this 
situation?
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This question is clearly being asked after a problem 
situation has been described. Information about the 
problem situation is essential if the system is to be able 
to answer such a question: without a problem context, it is 
difficult to pass judgment on the coating. When a human is 
asked the general Judgment question

What do you think of drying oil paints ? 
he or she has two options. One is to ask for more 
constraints on the question by requesting a problem context 
in which to frame the reply, ie by responding with another 
question:

In what context?
Or, the human can respond by identifying contexts in which 
high-level judgments can be made on the question concept. 
For example:

Drying oil paints are good when the surface preparation 
is poor, but are susceptible to spillages of dilute 
chemicals.

This style of response is not comparing the coating with 
some standard, but is attempting to establish general 
characteristics of the coating. The answer given can be 
seen as the answer to two quite different questions:

Which adverse situation factors still give good results 
for drying oil paints?
Which average situation factors give poor results for 
drying oil paints?

It is interesting to note that the answer is phrased as a
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collection of heuristics about drying oil paints.

These are analytic questions, although the original natural 
language query seems to imply a judgment. The problem of 
identifying the correct question category from the natural 
language form of the question has already been achieved by 
Lehnert, and so is not addressed in this thesis.

6.3.3.2 Answering Judgment Questions

Judgment questions as illustrated by the question
What do you think of drying oil paints in this situation? 

are answered in ADEPTUS by a comparison with an idealised 
concept. The act which does this is already defined as 
part of the s-script and is called COMPARE. If a problem 
situation has been defined (i.e. enough is known about the 
physical environment and surface preparation to allow a 
prediction of the worn dry film to be made), the comparison 
is straightforward. The COMPARE act takes two concepts, 
the central question concept and its corresponding 
idealised form, and from these produces a Divergence schema 
(see section 5.3.3.5). The Divergence schema is used as 
the basis for constructing the reply, but itself contains 
information which is not used.

A Judgment question is interested in two groups of 
attributes in the Divergence schema: the particularly good 
and the particularly bad. These are the slot values which
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will give an interesting response. For example, if the 
COMPARE act produces the Divergence schema Divergence6 (see 
Figure 48), only the value-judgment type of slots which 
have 'very* or 'extremely' as qualifiers will be mentioned 
in response to the Judgment question.

{{Divergence6
is-a  Divergence
between  (dry-film-drying-oil-paint2 Ideal)
adhesion  (very poor) 
state  (average) 
defects  (fairly good) 
hardness  (fairly good) 
flexibility  (fairly poor) 
finish  (extremely good)
thickness  (extremely good) }}

Figure 48.

So, the question is:
Question concept :

dry-film-drying-oil-paint2
Question category :

Judgment
And the answer is constructed from the Divergences schema

dry-film-drying-oil-paint2
ha.& e.*.tre.me.ly g o o d  f i n i s h  

&.n& has extremely good thickness
but has very poor adhesion

The general form of the answer is :
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<Question Concept>

and
has <slot value> <slotname>

<slot value> <slotname>

but
and

has <slot value> 
<slot value>

<slotname>
<slotname>

The actual values of the value-judgment dimension are 
stored in numeric form, from -3 to +3. It is easy, 
therefore, to distinguish between positive and negative 
value judgments.

When a Judgment question is asked about a concept for which 
a Divergence schema already exists (i.e. one which has 
previously been considered in the problem-solving task) it 
could be argued that the apparent Judgment classification 
of the query should be some form of slot-filling. This 
ignores the essential nature of the judgment category. The 
COMPARE act must happen at some point for such a question 
to be answered: it is fundamentally an interconceptual 
task.

6.3.4 The Expectation Question Category

Expectation questions are characterised as 'Why not?' 
questions. They form one of the analytic categories and
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enquire about the causes of a state or act not occurring. 
This enquiry about past causes is what leads to the 
categorisation of expectational questions as analytic.

The question concept may be either active or stative.
Why isn't the pavement wet? (Stative question concept) 

..because it didn't rain.
Why didn't it rain? (Active question concept)

..because there were no clouds.

An expectational question can be asked either at the 
physical level, i.e. about a process or state within the 
d-script, or at the problem-solving level, concerning an 
act or state in the s-script.

If the question concept is a state, then the answer is 
obtained by examining the act or process resulting in that 
state. For active question concepts, the answer lies in 
the state which enables the act. For example, consider the 
question:

Why doesn't the coating stick to the substrate?
The question concept is active:

The coating sticks to the substrate.
In the d-script, this matches the value of the p r o c e s s 2  

slot,
(STICK ?C ?S)

The enablement of this process is governed by the details 
of state2,
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(PHYSCONT ?C ?S)
so to answer the question it is necessary to look at the 
binding-list facet for state2 to establish what aspect of the 
state is disabling the process.

Let us say that the c o n s t i t u e n t s  slot of the substrate 
schema has the value

(( grease 70) (steel 30) )
that is, a film of grease covers 70% of the steel 
substrate. The rulebase which defines the macro-effect of 
the STICK process uses the value of this slot to decide on 
the eventual relationship between the coating and the steel 
substrate. In the example above, the presence of a grease 
deposit on the substrate changes the resulting state value 
from

(PHYSCONT ?C ?S) 
to (?C ?S)

The identification of expectational questions as analytic 
tasks can be seen in the path taken from the point in the 
script at which the question concept is matched, to the 
information which determines the disabling of the question 
concept. The premises of the rules in the STICK 
m a c r o - e f f e c t  rulebase require that the binding for the 
substrate in the enabling state be obtained. Central to 
this is the requirement to follow the enabled-by link back 
up the causal chain structure. This is the characteristic 
movement which identifies cause-seeking tasks.
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The rulebase describing the macro-effects of the STICK 
process contains the rule

IF ( percentage grease substrate-constituents ) > 5

THEN replace resultant-state (PHYSCONT ?C ?S) (?c ?S)

[ where:
substrate-constituents is an association list obtained 

from a schema named in the binding list of the previous 
state

percentage is a function which returns the value 
associated with a nominated key on an a-list

resultant-state is the location of the value of the state 
resulting from the process ]

Then the question
Why didn’t coatingl stick to substratel?

Question concept:
( STICK coatingl substratel )

Question category:
Expectation 

can be answered:
( STICK coatingl substratel )
did not happen successfully because
percentage of grease in substrate-constituents > 5

This category has not yet been implemented. The 
description is included to illustrate methods of response 
to cause-seeking questions.
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6.3.5 The Definition Question Category

Definition questions are characterised in English as 
'What is a ... ?'

questions. The question concept is neither a state nor an 
act, but is a single entity. This entity may be used as 
part of a state description or to participate in an act or 
process, but it is not sufficient to describe a full image. 
An example Definition question is:

What is bitumen ?
Answers are obtained by simply using the information 
present in the schema of that name. If a slot value is 
present, or is obtainable by inheritance, then the slot 
name and its value are both given. If the slot is present 
(or can be inherited) but has no value, then the default is 
given if available, with a qualifier indicating that it is 
a default value. Otherwise, the range facet can be 
examined to provide information about constraints on the 
value of a slot. As a last resort, if even range 
information is lacking, it may simply be stated that the 
concept can have a characteristic having the name of the 
slot.

Question concept 
Bitumen

Question category 
Definition
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Answer :
Bitumen

is-a coating 
with colour default black 
with constituents natural-hydrocarbons
with state one-of (solid liquid)
with adhesion range ( (extremely weak) (extremely strong)) 
with single-film-thickness range (200 500)
with defects one-or-more-of (pinholes blisters) 
with hardness range ((extremely soft) (very hard)) 
with flexibility default (fairly flexible) 
with finish dull

The slot names and corresponding values in a frame form the 
essence of the definition of a named entity.

6.4 Summary

The three question types which have a preliminary 
implementation in ADEPTUS are goal orientation, definition 
and judgment. A fourth category of expectation questions 
has been discussed to provide illustrations of question 
types from each of the major branches of the question 
classification tree. Images from both the s-script and the 
d-script are susceptible to use as question concepts; the 
essential ideas of characteristic movement around a causal
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chain are unchanged whatever the level.

Fu/Uvtr a*a is le s , i l l AcDEPfo^’ f-es^o^se te> c^uuesKous 
•̂ oscd bj Ovo-kvar } o/£ ^<mcua A^^evvcUx 1\..

{{$d-script
statel (?EA ?C ?S) . . .
processl (TOUCH ?C ?S) . . .
state2 (PHYSCONT ?C ?S)

[active-enablers ( (substrate-description constituents) 
(substrate-description surf a c e - k e y ) ) ] 

[active-results ( (coatings single-film-thickness) 
(coatings defects)
(coatings time-between-coats)) ]

[enables process2 ]
[produced-by processl ]

p r o c e s s 2 (STICK ?C ?S)
[affected-by ( (substrate-description constituents)

(substrate-description sur f a c e - k e y )) ] 
[can-affect ( (coatings adhesion)

(coatings
visco s i t y ) ) ]

[prerequisites state2 ]
[results-in state3 ]

stated (?ED (PHYSCONT ?C ?S)) . . .  }}

Figure 46a
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7 CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH

7.1 Conclusions

7.1.1 Dialogue with Expert Systems

The aim of the work described in this thesis has been to 
widen the understanding of explanation in problem-solving 
expert systems. No satisfactory theory of explanation is 
available at present, and until this is remedied, a good 
approach to understanding the nature of explanation is to 
investigate the mechanism by which humans seek it. 
Questions are the most direct and overt form of 
explanation-seeking. In understanding the questions that 
can be asked in a domain, and examining the questions that 
actually are asked in natural dialogues, we are beginning 
to make progress in designing problem-solving
representations that are capable of answering such 
questions when they are overtly asked.

In applying the ideas of natural language question 
answering to expert systems, this thesis delineates just 
how poor the explanation provided by the currently accepted 
HOW and WHY questions really is. It provides a greater 
insight into a problem that has been recognised by many 
'knowledge engineers', but helps to move the difficulty 
from an ill-defined sense of insufficiency to a set of
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specific shortcomings in the form of whole categories and 
levels of questions which a conventional expert system is 
fundamentally incapable of answering.

An interesting point that has emerged in the thesis is the 
value which can be obtained from the use of existing work 
in the natural language understanding area for systems that 
have a technical domain. Now that Schank and other workers 
in natural language processing are beginning work on 
technical domains instead of social ones, we can anticipate 
further significant advances of benefit to knowledge-based 
systems.

Simple causal chains offer great promise for representation 
of physical processes. Their simultaneous use for 
describing the system's problem-solving processes offers a 
uniformity of control structure, yet the distinction 
between problem-solving and domain levels remains 
unambiguous because of the different acts or processes 
characteristic of each level.

Scripts are not intended to function as the major 
problem-solving mechanism but rather as a mechanism for 
communication. When two or three good candidate solutions 
have already been identified by a conventional system, 
scripts offer a particularly useful method of communicating 
more detailed knowledge about each solution to the user. 
This is itself a form of improved explanation, of
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communicating the system's understanding of the situation 
to the user. The same representation has been shown to 
support several types of question answering, demonstrating 
the potential of the description to permit free access to 
the knowledge contained in the system.

The categorisation of script-manipulative tasks, and hence 
the detailed categorisation of question types, is 
completely new. Understanding the nature of explanation 
is gravely hampered by the ad hoc collection of 'types of 
explanation’ with no attempt to identify the relationships 
between the proposed classes. Using the classification, it 
will be possible not only to build real systems having far 
greater expressive power, but also to begin to quantify the 
communicative shortcomings of existing systems.

The implementation of the ADEPTUS system is preliminary, 
and to some extent fragmentary. SRL, as available at 
Liverpool University, has serious shortcomings and has no 
technical support. Only a sample of the question 
categories identified have been implemented, and there is 
no reason to believe that any of the remaining categories 
would pose substantial problems. The Request category is 
an exception and presents peculiar problems. These 
problems are, however, ones of identification; and as such 
identification is the reponsibility of the natural language 
interface, they have been omitted from the system.
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Although the system is incomplete, enough has been achieved 
however to indicate that the methods suggested by this 
thesis are significant and offer a means to improve the 
explanatory capabilities of expert systems.

7.1.2 The Relationship between Problem-Solving and 
Question-Answering

I have used question answering as a means of approaching 
the ill-defined problem of 'explanation', and have 
distinguished between the problem-solving activities of the 
system and its explanatory capabilities in the form of the 
answering of explicit questions. This dichotomy is more 
apparent than real. In dialogues between enquirers and 
human experts, the user usually initiates the 
problem-solving activity in the expert by means of asking 
one or more questions. Each of the existing expert systems 
performs a problem-solving activity which has an implicit 
question associated with it. For example, the questions 
that MYCIN can answer are 
'What disease can produce these symptoms?'
'What therapy best treats the disease in this case?'

XCON answers the question 
'How can this order be configured satisfactorily?'

The processing necessary to answer these questions is 
represented in the control structure of the appropriate
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systems. The automatic search for an answer to the 
system's 'permanent' question can sometimes cause problems: 
in my own experience I have seen people obtain misleading 
results from a simple rule-based paint selection system 
because they did not fully understand the system's 
question. Several users assumed that the 'problem' was 
simply
'What paint is best for this situation?'

Whereas the implicit question from the user was actually 
'What paint is best for a steel substrate in this 
situation?'

While posing the problem overtly in the form of a question 
does not automatically remove this type of error, systems 
that expect an overt problem statement would need to be 
inherently more flexible and to make fewer assumptions. A 
further guard is of course that a system flexible enough to 
solve several types of problem in the same domain will 
necessarily have a powerful question-answering capability. 
The user thus has the opportunity to explore any solutions 
or misunderstandings, and hence a greater opportunity of 
correcting misapprehensions.

So, what current expert systems are doing (ignoring HOW and 
WHY facilities) is answering a single question. I see no 
reason to believe that these questions cannot be analysed 
and categorised in the way discussed in this thesis. The 
problem-solving, which we have so far believed to be the 
'real' expertise, is in fact only a subset of the wider
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field of question-answering by knowledge-based systems.

'Explanation' (like 'intelligence'), is a protean word. A 
good explanation changes with the explainer, with the 
listener, with the subject matter, the purpose, and the 
medium of the explanation. The idea of explanation as a 
single activity is a myth, and we must begin to deal with 
the problem in the most practical but flexible way we can. 
Answering the widest possible variety of questions is a 
good place to start.

7.1.3 Heuristics and Levels of Knowledge

I have used two levels of script, the physical model and 
the 'problem-solving' representation. These levels are, in 
a modified form, those proposed by Clancey [Clancey 1983]. 
From Patil's work [Patil 1981], it is clear that the domain 
model itself has different levels, and this is reflected to 
a small extent in my use of the demons' rulebases to 
establish a value for a slot in the $d-script schema. If 
more detailed knowledge were available in the domain, these 
rulebases could themselves be represented as scripts, 
dealing for example with microscopic chemical processes. 
Applied science domains, however, always seem to reduce to 
a collection of heuristics: even the experts rarely know 
the precise nature of causality at very detailed levels. 
Whether for theoretical or practical reasons, then, it
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seems inevitable at our present state of scientific 
knowledge that the ultimate means of predicting the most 
detailed results will remain heuristic. At such levels, 
our forms of explanation are forced to remain those of the 
familiar HOW and WHY questions. This reflects the 
dependence of explanation on understanding. At the most 
detailed levels of knowledge, heuristics represent a 
failure to understand a mechanism, but are a way of 
obtaining useful information despite this. However, while 
it is still possible to elicit a causal explanation from an 
expert, it seems a worthwhile venture to attempt to build 
systems that also have this capability.

7.2 Directions for Future Research

7.2.1 Question Categories

Further work is required on the completeness of the 
question classification presented here. Transcripts of 
series of dialogues between enquirer and expert are needed 
to resolve at least three obvious points of interest. 
First, what categories of questions exist which are not 
described in the existing classification? And can these 
new categories be sensibly assigned a place in a 
modification of the hierarchy?

Next, the possibility that question categories are
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dependant on the domain of expertise must be investigated. 
For example, Lehnert's request category is redundant in an 
expert system. This redundancy stems more from the medium 
of communication than from the domain; if an enquirer 
approaches a human expert, the request category may still 
be used, whereas communication with a machine does not 
require such 'questions'. The possibility that question 
categories are domain-dependant remains unconfirmed, but 
comparisons of dialogue analyses from different domains 
will clarify this.

Third, a very practical problem is the extent to which 
expert systems in different domains should attempt to 
incorporate the many established question categories. 
Little is as yet known about what users really ask. Again, 
dialogue analyses for a particular domain will give some 
indication of the commonest or most crucial question types 
used by the enquirer. Armed with this kind of information, 
the knowledge engineer can make an informed decision on the 
question categories that should be implemented as a 
priority to optimise the user's communication with the 
system.

7.2.2 Domain Acts and Processes

The processes used in the d-script in ADEPTUS are 
candidates for the term 'primitive', and suffice for the

197



purposes of the system. However, a more thorough 
investigation of applied science domains is necessary to 
produce a useful set of primitives for practical domains. 
Within the same domain there is also an evident need for 
primitives at different levels of detail. For example, a 
description of the molecular processes occurring when a 
paint dries will require a rather different vocabulary of 
process primitives than is needed when discussing the 
engineer's view of the event'. In ADEPTUS ' terms, such 
vocabularies for different levels will enable the expansion 
of the rulebases describing the macroscopic effect of 
domain processes. The rulebases could then be described as 
causal chains, on a more detailed level, using the 
appropriate vocabulary. This will facilitate the answering 
of procedural questions; i.e. those which enquire about 
methods for the execution of a named process.

7.2.3 Implicit Questions

The work described in this thesis has been directed to the 
answering of explicit questions. In real situations with a 
human expert, it has been observed that the expert often 
offers explanation without an overt request from the 
enquirer. [Pollack et al 1983, Kidd 1985] This 
spontaneous provision of knowledge can be profitably viewed 
as providing answers to implicit questions from the user. 
For a system to be able to do this in an intelligent,
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appropriate way, it will be necessary for the system to 
contain a representation of the cognitive state of the 
user. If the system can identify specific gaps in the 
user's knowledge of the domain, it may be feasible to 
identify questions which describe the missing knowledge, 
and to provide explanation by answering these 
system-constructed questions. Progress in such an area 
depends strongly on the development of good user models 
whose representation is compatible with the causal' chain 
approach used in this work.

7.3 Summary

Explanation is a difficult and complex field, and like all 
such fields offers a rich choice of avenues for 
exploration. It is something that we as humans do 
constantly; when one listens for it, it is quite surprising 
how common an event it is. As an intelligent function that 
we wish to understand and mimic, it touches on many 
existing branches of Artificial Intelligence and 
Knowledge-Based Systems work. The communication of 
understanding is fundamental to the design of systems which 
give their users good quality advice, and despite the 
difficulty of the task we must move towards giving 
explanation its correct place, in centre stage.
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APPENDIX II

EXAMPLE QUESTIONS SUPPLIED BY UNILEVER

The examples in this Appendix illustrate how ADEPTUS can be 
used to produce useful responses to questions posed by 
industrial users of a coating selection system. Each 
question is given first in the natural language form as it 
was originally expressed. The internal ADEPTUS
representation is then shown, followed by ADEPTUS' actual 
response. This is then rewritten expressed in natural 
language if necessary.

Example 1

What do you mean by a 'weak alkali' ?
-> (DEFINITION 'WEAK-ALKALI)

Answer :
*** Weak-Alkalis

are a class of Alkalis
with state default liquid

with pH range (7 10)
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Example 2

What is the relevance of humidity in this context ?
(This concerns the system's request for an estimate of the 
humidity during the application of the coating.)
-> (GOAL-ORIENTATION '(ACTOR ADEPTUS) '(ACT place-value)

'(OBJECT (environment-description humidity)) )

Answer :
((ACTOR ADEPTUS) has-goal 
((ACTOR ADEPTUS) (ACT PREDICT)
(OBJECT
((STICK ?C ?S) affected-by

(environment-description humidity) ))))

i.e. ADEPTUS is trying to predict the way in which the 
coating and substrate stick together, and this is affected 
by the environmental humidity.
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Example 3

What is a chlorinated rubber coating ?
-> (DEFINITION ’Chlorinated-rubber)

Answer:
*** Chlorinated-rubbers ***

are a class of coatings 
with adhesion default (average) 
with co l o u r all
with c o n s t i t u e n t s  ( c h l o r i n a t e d - r u b b e r - s o l v e n t  
pigment)
with s t a t e one-of (solid liquid)
with single-film-thickness range (0 300)
with d e f e c t s  one-of (pitting blistering cracking 
flaking)
with hardness range ( (extremely soft) (very hard) ) 
with flexibility range

((extremely rigid)(extremely flexible)) 
with finish default gloss
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Example 4

What is the environment after the drying process ?
(The question refers to a previously instantiated script, 
containing details of a particular coating and its 
behaviour. ADEPTUS is required to pick up the appropriate 
binding for the environment in the state following the 
STATECHANGE act in the $d-script.)
-> (DEFINITION 'Corroding-Environment2)

Answer:
*** Corroding-Environment2 ***

is an instance of Corroding-Environments
with i m m e r s i o n . in default none
with h u m idity (very humid)
with m a c r o l o c a t i o n industrial
with m e c h a n i c a l - d a m a g e abrasion2
with m i c r o l o c a t i o n outdoors
with splashed-by default none
with temperature default 20
with v a p o u r isocyanate
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Example 5

Is bitumen suitable for a substrate with a poor surface 
key, used in an exterior industrial environment ?
(This question means that a $d-script must be run for 
bitumen, in the environment described. The binding for the 
worn dry film is then accessed and forms the question 
concept.)
-> (JUDGMENT 'dry-film-bitumen6)

*** dry-film-bitumen6 ***
has very good adhesion

and has extremely good single-film-thickness 
and has solid state 

but has pinholes defects 

and has chalked finish
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