
QUESTION ANSWERING FOR THE GENERATION OF
EXPLANATION IN A KNOWLEDGE-BASED SYSTEM

Thesis submitted in accordance
with the requirements of the
University of Liverpool for the
degree of Doctor of Philosophy
by Sheila Hughes.

July 1986

CONTENTS Page

ABSTRACT 1

ACKNOWLEDGEMENTS 2

1 INTRODUCTION
1.1 Overview of Research 3
1.2 The Domain ' 6
1.3 Jargon 8
1.4 Overview of the Thesis 9

2 REVIEW OF THE LITERATURE
2.1 Introduction 13
2.2 The Importance of Explanation 14
2.3 On Tolerating Aphasia 20
2.4 Explanation and Rule-Based Systems 23
2.5 The Birth of the Second Generation 29
2.6 Representing Understanding for Problem-Solving

and Explanation 37
2.7 The Yale Approach to Natural Language

Understanding 42
2.7.1 Conceptual Dependency Theory 43
2.7.2 Causal Chaining 45
2.7.3 Scripts 48

2.8 Question Answering and Causal Chains 50
2.8.1 Causal Antecedent 53
2.8.2 Goal Orientation 53
2.8.3 Enablement 54
2.8.4 Causal Consequent 54
2.8.5 Verification 54
2.8.6 Disjunction 55

QUESTION ANSWERING FOR THE GENERATION OF EXPLANATION IN
A KNOWLEDGE-BASED SYSTEM

2.8.7 Procedural/Instrumental 55
2.8.8 Concept Completion 55
2.8.9 Expectational 56
2.8.10 Judgmental 56
2.8.11 Quantification 56
2.8.12 Feature Specification 57
2.8.13 Requests 57

2.9 Primitives and Representations for Domain
Entities 57

2.10 Conclusion 59

3 THE SCRIPT APPROACH TO CAUSAL MODELLING
3.1 Overview 60
3.2 The Outline Account ' 61

3.2.1 Substrate Preparation 61
3.2.2 Coating Application 62
3.2.3 Drying and Curing 63
3.2.4 Wearing 65

3.3 The Script 66
3.4 Active Images 66
3.5 Stative Images 70

3.5.1 Schank's Stative Images and the
Cognitive Psychology View 70

3.5.2 Applicability to the Anti-Corrosive
Coating Domain 72

3.6 Causal Chaining 75
3.7 Conclusion 78

4 THE REPRESENTATION OF PROBLEM-SOLVING STRATEGY
4.1 Overview 79
4.2 Paint Selection from Industrial Guidelines 80
4.3 Strategies for Selection 85
4.4 A Script for the Selection Task 88
4.5 Stative Images 91
4.6 Active Images 93
4.7 Classification of Script-Manipulative Tasks 94

4.7.1 The Causal/Acausal Differentiation 94

4.7.2 Differentiation of Causal Tasks 95
4.7.2.1 Basis of the Differentiation 95
4.7.2.2 Analytic Tasks 95
4.7.2.3 Predictive Tasks 96

4.7.3 Differentiation of Acausal Tasks 97
4.7.3.1 Basis of the Differentiation 97
4.7.3.2 Intraconceptual Tasks 98
4.7.3.3 Interconceptual Tasks 99

4.8 Conclusion 101

5 DESCRIPTION OF THE ADEPTUS SYSTEM ARCHITECTURE
5.1 Introduction 103
5.2 The Knowledge Base 106

5.2.1 Overview . 106
5.2.2 Scripts 107

5.2.2.1 Structure of the scripts 107
5.2.2.2 Active Images 111
5.2.2.3 Stative Images 114
5.2.2.4 The Binding List 117

5.2.3 Knowledge about coatings: The set
of potential solutions 118

5.2.3.1 The coating hierarchy 118
5.2.3.2 The phase hierarchy 120
5.2.3.3 The Ideal Film 124

5.2.4 Knowledge about the Substrate 126
5.2.4.1 Substrate representation 126

5.2.5 Associated Entities 131
5.2.5.1 Liquids 131
5.2.5.2 The relation hierarchy 134

5.3 Performing the Selection task 138
5.3.1 Introduction 138
5.3.2 Situation Specific Knowledge 139

5.3.2.1 Overview 139
5.3.2.2 The substrate 140
5.3.2.3 The environment 140

5.3.3 Running $s-script 145
5.3.3.1 Initial Instantiation 145

5.3.3.2 The MERGE act 147
5.3.3.3 The SHATTER act 147
5.3.3.4 The RUNEACH act 148
5.3.3.5 The COMPARE act 14 9
5.3.3.6 The RANK act 150

5.3.4 Running $d-script 152
5.3.4.1 Initial Instantiation 152
5.3.4.2 The TOUCH process 152
5.3.4.3 The STICK process 153
5.3.4.4 The STATECHANGE process 154
5.3.4.5 The WEAR process 154

5.4 Summary ’ 155

6 QUESTION ANSWERING AND KNOWLEDGE BASED SYSTEMS
5.1 Introduction 156
6.2 A Reappraisal of Lehnert1s Classification 156

6.2.1 Introduction 156
6.2.2 Modifications to individual categories 157
6.2.3 The Overall Hierarchy of Question

Categories 158
6.2.4 Analysis of HOW and WHY using the

revised classification 163
6.2.4.1 The WHY question 163
6.2.4.2 The HOW question 165

6.2.5 The Utility of the Question Categories 166
6.3 Question Answering in ADEPTUS 167

6.3.1 Introduction 167
6.3.2 The Goal Orientation Category 168

6.3.2.1 Questions about the problem-solving
process 168

6.3.2.2 Goal Orientation questions about
domain-level acts 175

6.3.3 The Judgment Category 179
6.3.3.1 Introduction 179
6.3.3.2 Answering Judgment Questions 181

6.3.4 The Expectation Question Category 183
6.3.5 The Definition Question Category 187

7 CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH
7.1 Conclusions 190

7.1.1 Dialogue with Expert Systems 190
7.1.2 The Relationship between Problem-Solving

and Question-Answering 193
7.1.3 Heuristics and Levels of Knowledge 195

7.2 Directions for Future Research 196
7.2.1 Question Categories 196
7.2.2 Domain Acts and Processes 197
7.2.3 Implicit Questions ■ 198

7.3 Summary 199

Appendix X Bibliography 200
U QuesAvowS &u±>pU’ed bj LVulovtc 2.09

6.4 Summary 188

ABSTRACT

One of the most characteristic features of Expert Systems
is their ability to ’explain’ their reasoning. The nature
of explanation, however, is ill-defined. The work reported
here approaches this problem using semantic representations
based on those of the Conceptual Dependency Theory in the
field of natural language understanding.

The domain knowledge and the problem-solving strategy are
represented separately, but both use a script-based
approach. A new class of action primitives for technical
domains is described. Question answering is presented as a
means of investigating the knowledge contained in the
system, allowing the dynamic creation of explanation
tailored to the user's needs.

A hierarchy of question types is proposed based on
characteristic movements within causal chain structures,
and the relationship between problem-solving and question
answering is clarified.

1

ACKNOWLED GEMENT S

Thanks to Brian Ward for his unfailing interest,
constructive criticism and advice.

Thanks also to Mike Shave, Stuart Moralee and Brian Walsh
for their help and encouragement, and to Jim Alty and Mike
Coombs for initial guidance.

This research was supported by a Science and Engineering
Research Council C.A.S.E. award, reference 81506775; and by
Unilever Research, Port Sunlight Laboratory.

2

1 INTRODUCTION

1.1 Overview of Research

The explanation facilities of contemporary knowledge-based
systems are rudimentary. The vast majority of such systems
use rules or 'productions' as their sole method of
representing problem-solving knowledge. The terms examined
by such rules are very simple, forcing any richness of
representation to lie in the inference structure. This
methodology constrains discussion of their domain knowledge
to an unwinding of chains of rules, which can be regarded
simply as an edited execution trace. Production systems
are undoubtedly good at producing solutions to the single
task at which they are 'expert'. However, their usefulness
is restricted by several factors, of which the most
important is the ease with which humans can access the
knowledge contained in the system.

Most I KBS designers create a system that can solve the
problem, and only when that is achieved do they turn their
attention to the problems of explanation and justification
on the part of the system. But explanation and
justification must be an integral part of the design of a
system. There are many questions which simple
problem-solving systems cannot answer, in spite of their
capabilities in the domain of expertise. The classic

3

example of this is MYCIN, which for a long time could
expertly diagnose bacterial infections of the blood, but
was unable to explain what a bacterium was, or to decide
whether a named organism known to the system was indeed a
bacterium. It is a fundamental tenet of this thesis that
'explanation' can no longer be relegated to an afterthought
in expert systems development. The scope of the problem
must be broadened to the general field of question
answering, and the familiar HOW and WHY questions of the
typical rule-based systems are only a fraction of what can
reasonably be asked.

The limitations on the communicative power of rule-based
systems stem from their poverty in representation. One
cannot expect an answer from a system if one cannot convey
to the system the meaning of the concepts involved in the
question. It is very easy when examining any rule-based
system to construct interesting questions that the system
cannot answer. Generally, any question that deals with
real-world concepts (rather than ideas involved in the
problem-solving process) is unaskable. For example, a
rule-based system capable of selecting an optimal
anti-corrosive coating for a substrate is likely to deal
quite competently with a HOW question asking

'How did you decide that a bitumen coating is best?' .
It is extremely unlikely that the question

'How do you apply a bitumen coating?'
can be answered by the same system, unless it is dealt with

4

by specially included canned text. The difficulties
associated with canned text are discussed in Chapter 2.

The view of explanation presented here is founded on the
*assertion that explanation depends on understanding.

Heuristics do not represent an understanding of a domain,
they provide a model of a particular problem-solving
activity in a domain. Thus, while a useful solution can be
obtained using such heuristics, one should not expect them
to support sophisticated forms of explanation. Explanation
is commonly associated with causal understanding of a
field. Consider, for example, simple weather prediction.
Using only high school geography, I can interpret basic
meteorological data to some extent. I have heuristics
that include, for example:

'If the pressure is low, then it will rain.'
When asked to explain about low barometric pressure
however, I can produce very little helpful information.
Although I have several interpretive heuristics, I have no
model of weather processes and causative features. I know
that it should be possible to explain such things in terms
of areas of differing pressure, of 'fronts' and the
temperature and moisture content of air, of the conditions
that enable cloud formation etc., but these play no part
in my heuristics. While I may have the vocabulary, I lack
the necessary model of the physical meteorological
processes. It is this kind of underlying causal model I
advocate to support explanation in the form of answers to

5

explicit questions.

A body of work already exists in Artificial Intelligence
that addresses itself to the problems of question
answering. This work, by Wendy G. Lehnert at Yale, uses a
deep representation of the semantics of its knowledge
domain. In this thesis, I present a system whose
fundamental representation is inspired by the ideas of
Lehnert, which in turn were based on Schank's Conceptual
Dependency theory. My aims in this research were twofold:

(a) to develop a representation and control structure
for a system capable of selecting an
anti-corrosive coating for a particular
environment

and
(b) to design the system in such a way as to enable it

to use all its knowledge in the most flexible way
possible, and in particular to answer as many as
possible of the known question types.

1.2 The Domain

The experimental knowledge-based system created in the
course of this research is called ADEPTUS. The domain of
expertise is the selection and use of anti-corrosive
coatings for steel substrates. This engineering
application is a common and important one. To increase the

6

quality of decision-making in selecting the best and most
cost-efficient protective coating would be of enormous
practical and economic benefit to industry.

The knowledge used in the work came from a variety of
sources. Originally, a research engineer from Unilever
Research, Port Sunlight, provided information on how
selection is made on an empirical basis. This was, to a
large extent, already codified in a document co-written by
him and distributed throughout the Lever Bros,
manufacturing company. This document is not public domain
information, and so no parts of it can be quoted in this
thesis.

After working with this knowledge source for some time, it
became obvious that a domain expert with a rather different
view of things would be needed for the implementation of
structures capable of representing a real understanding of
the physical processes in the domain. I needed the
expertise of a paint chemist; one who knew how coatings
behaved in different environments, and what caused that
behaviour. This infomation was provided by specialists at
International Paints, Marine Coatings Division, Gateshead.

The domain was selected by the industrial sponsors of the
project for its relevance. It is, perhaps, unfortunate that
the domain is not one of the more thoroughly understood
areas of materials technology, but the difficulties

7

encountered here are likely to be representative of those
encountered in many other interesting domains of
engineering and applied science.

1.3 Jargon

Computing is infamous for its use of jargon; ' paint
technology suffers just as much. Jargon can clarify or
confuse. It clarifies when it increases precision or
reduces prolixity; it confuses when an author coins a
neologism to describe something which already has an
accepted technical name. I have tried to avoid this
unnecessary burden on the reader's memory as far as
possible, except when I have been particularly unhappy with
an existing word. The most notable example in this
document is my unwillingness to adopt Schank's
'conceptualisation' term. I have, of course, used the term
when discussing Schank's own work, but in describing my own
research I use the term 'image' which the reader should
regard as a synonym. Thus, references to 'stative images'
and 'active images' will appear where the reader familiar
with Conceptual Dependency Theory would expect to find
’s tative conce p t u a l i s a t i o n s ' and 'active
conceptualisations'. The change was made in the hope of
improving the style of some sentences which otherwise got
completely out of hand.

8

Other new or redefined jargon terms are introduced
naturally as they occur, and I have tried to keep the paint
technology jargon to a minimum.

1.4 Overview of the Thesis

A review of the literature is presented in Chapter 2.
Influences on the work have been diverse, including
philosophical views on the nature of explanation and
causality, cognitive modelling and text understanding.
Conceptual Dependency, causal chaining and scripts are
described, as is Lehnert's question categorisation system.

ADEPTUS is essentially a script-based system. In Chapter
3, the domain of anti-corrosive coating usage is
introduced, and the applicability of the script formalism
demonstrated. An instantiated domain-level script is a
causal model of the domain: this coincides with much of the
work discussed in Chapter 2. Although Schank's primitives
are examined in the literature review, the primitive acts
required to represent physical processes in the
anti-corrosion domain are discussed in Chapter 3.

In Chapter 4, the second type of script known to ADEPTUS is
outlined. This 'system-level' script involves information
processing acts undertaken by the system. The information

9

processing requires manipulation of the domain-level script
in various ways. One major category of manipulative tasks
concerns handling the domain script as a single chunk,
disregarding its inner structure. For example, some aspects
of the domain-level script will require instantiation, and
copies of the script may need to be produced.

When dealing with individual pieces of the domain-level
object script, different kinds of actions are required.
The latter part of Chapter 4 describes the various
manipulation tasks which can be carried out within a script
entity.

The overall goal of the system-level script is to produce a
list of possible solutions, ranked on suitability, to the
problem of selecting the best coating for a particular
situation. Chapter 4 examines the way this is done on paper
in industry, and shows how a script-based representation
can be created to cope with the problem.

The ADEPTUS system is presented in Chapter 5. The system
is written in SRL, and a brief overview of this language is
included. ADEPTUS is a preliminary implementation of some
of the ideas described in this thesis. The scripts and the
various structures which participate in them are described
in Chapter 5, and examples are given.

Chapter 6 deals with question-answering in problem-solving

10

systems. It is concerned initially with the modification of
Lehnert's question categories for use in a problem-solving
environment, and subsequently with the question categories
which have been implemented in ADEPTUS. The first part of
this chapter depends upon the task analysis of Chapter 4.
This is because the acts required to produce an answer to a
query in a script-based system are themselves manipulations
of the script. The refined classification in Chapter 6 is
thus based on the analysis presented in Chapter 4. The HOW
and WHY questions available in conventional expert systems
are classified, and comparison made with questions that are
commonly asked by non-expert participants in
naturally-occurring consultations with an expert. In the
second part of the chapter, the implementation of four
question categories is discussed in detail. First, the
goal orientation category is examined, which corresponds at
the system level to the WHY question of simple rule-based
expert systems. Secondly, judgment questions are dealt
with, followed by expectation questions as the third
category. Lastly, the definition category is illustrated.
These four categories are representative of the four major
divisions in the question hierarchy described in the early
part of Chapter 6. Of the four, only the Goal Orientation
category lies within the capability of conventional expert
systems.

The last chapter presents the conclusions of the research.
The progress of the work so far is evaluated, and the

11

relationships between explanation, question answering and
problem solving are discussed in the light of the ideas
presented in the body of the thesis. Several directions
for further work in the area are suggested.

12

2 REVIEW OF THE LITERATURE

2.1 Introduction

In this chapter I shall look first at what 'explanation'
is and how a computer system can hope to generate it. For
particular systems, explanations may be unwanted: this
possibility is dealt with in section 2.3. The' first
systems to generate dynamic explanation (contrasting with
the use of canned text) were simple rule-based ones, and
section 2.4 examines the limits of this approach.

Other types of system developed over the last ten years
represent a new emphasis on the communicative abilities of
knowledge-based systems and new approaches to design. I
call these systems the second generation of expert systems
and describe them in section 2.5.

Section 2.6 looks briefly at the formalisms used or
recommended for improving communicative power, and in
section 2.7 I examine the scripts employed by Schank and
his co-workers to represent the basis of text
understanding. Lehnert used Schank's formalism as her
starting point for work on general question-answering. I
discuss her views on question classification in section
2 .8 .

13

Section 2.9 examines the directions in which Schank’s
semantic primitives require augmentation to cope with
representation of scientific and technical discourse.

2.2 The Importance of Explanation

What is meant by 'explanation'? Chambers Twentieth Century
Dictionary (1979) defines 'explanation' as

"making plain or intelligible; unfolding and
illustrating the meaning of; accounting for; the
meaning or sense given to anything".

The important terms here are 'intelligible': able to be
understood; and 'meaning'. This definition implies that
explanation is an inescapably semantic task. The explainer
must convey meaning in an intelligible way.

Understanding is an essential prerequisite to good
explanation [Craik 1943, Johnson-Laird 1983]. As
Johnson-Laird states:

"Explanation depends, of course, on understanding:
if you do not understand something, you cannot
explain it."

Craik, a philosopher of science, emphasises the need for
scientists to create conceptual models in order to generate
explanations of natural phenomena. In this sense, a model
is a mapping of one domain on to another; the latter chosen
for its ease of manipulation. Until a scientist has a
model-based understanding of a phenomenon, he is not in a

14

position to explain it. Johnson-Laird declines to offer a
definition of understanding, but suggests instead a set of
criteria:

"If you know what causes a phenomenon, what results
from it, how to influence, control, initiate or
prevent it, how it relates to other states of
affairs or how it resembles them, how to predict
its onset and course, what its internal or
underlying 'structure' is, then to some extent you
understand it."

This is clearly the target for any system worthy of being
described as 'expert' in its domain.

I suggest that explanation can be considered as the process
of conveying understanding. A similar but more restricted
sentiment is expressed by Jackson and Lef re [Jackson &
Lef ,re 1984] when they describe an expert system's
explanation as the process of communicat ing an
understanding of what the system itself does. An
interesting view of explanation as the transfer of
declarative knowledge structures from the explainer to the
listener is given by Cullingford et al. [Cullingford et al.
1981] They show how, in order to communicate through
narrow verbal/graphical channels, the explainer must leave
out aspects of the knowledge structure, which the audience
must then fill in again. Sinnhuber points out that
explanation of reasoning by computer systems is usually
achieved by means of an execution trace of the system's
performance. If understanding is to be communicated to a
human, the system must reason in a way familiar - or at
least not entirely alien - to the user [Sinnhuber 1985].

15

Human understanding of new information is
"a process by which people match what they see and
hear to pre-stored groupings of actions that they
have already experienced. New information is
understood in terms of old information."

[Schank & Abelson 1977]
This indicates a cognitive modelling approach to the design
of systems that can communicate their understanding.

In some situations, explanation is the primary task,
provided without any prompting. The most common occurrence
of this type is in teaching. However, even in a
pedagogical environment, the student will often ask a
question to elicit further or alternative explanation if
the exposition seems insufficient or inappropriate. This
thesis is concerned with communication with problem-solving
systems. In such systems, explanation is not provided
without request. Nor should it be since the primary aim is
not tutorial.

In the medical domain, it is widely recognised that the
provision of explanation is crucial to user acceptance of
consultative systems. Clancey [Clancey 1981] states his
position in a revealing parallel describing MYCIN as
'aphasic'. The term can be equally well applied to almost
any of the expert systems now extant. Frost [Frost 1984]
draws a clear dividing line between 'expert systems' and
'knowledge based systems'. For him, the term 'expert
system' has come to be synonymous with a single-task
problem solver. He suggests the use of 'knowledge based

16

system' to indicate a system not restricted to a single
inferential task, but one which has a flexible deductive
retrieval facility for access to the encoded knowledge.
Most expert systems have been created with only one real
criterion in mind - to 'get the answer right'. Awareness
is now growing of the importance of the user interface as
the essential factor in a system's acceptability. Edmonds
[Edmonds 1982] sums up a viewpoint that is gaining credence
when he advocates the design of the interface (his "dynamic
processor") as an INITIAL requirement, rather than an
afterthought having no real bearing on issues such as
knowledge representation or knowledge partitioning. He
points out that from the system designer's point of view,
this interface is likely to be the most complex part of the
system, outranking the problem-solver or "background
processor" .

"The 'object' to be designed is an interaction" says
Johnson [Johnson 1985], who advises a design methodology
working "from the outside in, rather than from the inside
out". The theme of Johnson’s paper is the adequate
representation of a 'model of competence', emulating all
aspects of the expert's behaviour. This implies a
flexibility currently beyond the reach of expert systems.
Problem Solving Is Not Enough [Cavell 1915].

From a psychological perspective, Goguen et al. [Goguen et
al. 1983] point out that

17

"without ... the ability to interact, the speaker
may present an explanation that is incoherent".

They argue that any theory of explanation must be based
upon empirical study of actual human behaviour. Compelling
evidence for the need for flexible methods of communication
in the form of just such empirical analyses have been
presented in various studies of interactions between users
and human experts. These interactions have been described,
with considerable accuracy, as 'naturally occurring expert
systems' [Pollack et al. 1982]. In two such studies, work
has been undertaken on analysis of protocols from radio
phone-in programmes involving a problem-solving expert and
a non-expert with a problem [Pollack et al, 1982; Kidd
1985] . The results suggest that, far from simply stating
the problem and passively accepting the expert's solution,
the non-expert is a surprisingly active participant in the
dialogue. This is in agreement with the statement of
Goguen et al. that the explainer and the listener need to
negotiate a base from which successful explanation can take
place.

The phone-in protocols show that the enquirer plays a major
role in negotiating a problem definition with the expert,
and very commonly has preconceived hypotheses about
potential solutions. The non-expert may ask several
questions. Many of these are requests for explanation: why
a certain solution was not proposed, why the proposed
solution should work, the effect of employing a
non-recommended course of action, whether the expert has

18
> \

considered all the factors that the enquirer sees as
important. This 'critiquing' approach to problem-solving is
usually judged relevant only to systems where the user is
also a domain expert [Langlotz & Shortliffe 1983; Miller
1984] ; but the studies by Kidd and Pollack et al., indicate
that this is not so. For a selection task, where any
proposed solution is likely to be flawed to some extent,
self-critiquing by the system was proposed in [Hughes
1985] . This offers solutions to users, highlighting
potential problems if the problem definition should alter
in any important respect.

Coombs and Alty [Coombs & Alty 1982] report a series of
experiments with computing-advisory dialogues.
Interactions that resembled those of simple problem-solving
systems (i.e. strongly controlled by the advisor, with
little user participation beyond the supplying of raw
evidence) were the ones judged 'unsatisfactory' by the
users. 'Satisfactory' interactions displayed an apparent
lack of structure, with both the advisor and the enquirer
making substantial contributions to the dialogue. It was
observed that much more information than was strictly
relevant to the task solution was offered by both sides.
The judgment of Coombs and Alty on this is that

"the very act of participation appeared to help
develop a better 'understanding' of the structure
of the problem ... the users had less difficulty in
remembering and applying the solution."

They propose that expert systems should support

19

problem-solving rather than direct it.

This participatory approach is endorsed by Jackson and
Lef- ,re [Jackson & Lef- re 1984] in their work on
advice-giving systems. Such systems must produce
explanation, but not necessarily in response to a direct
user question. The system must infer a ’virtual question’
from the user's behaviour, and act as though that question
had been explicitly asked.

Work of this kind supports the view that expert systems can
no longer be viewed ONLY as problem-solvers that adopt a
'system knows best' stance. The user must be seen as an
integral part of the problem-solving 'team', and his or her
knowledge of the situation fully exploited. A necessary
(though not sufficient) condition for this is that the user
be given access on demand to the essential understanding
embodied in the system. This can be regarded as
explanation, and the natural mode of prompting explanation
(in any form) is the asking of questions [Coombs & Hughes
1982] .

2.3 On Tolerating Aphasia

The work of Pollack et al., Kidd, and Coombs & Alty
indicates that in consultations with a human expert, the
user plays a large part in what is essentially a

20

mixed-initiative dialogue. It is still necessary, however,
to consider whether or not ALL knowledge-based systems
require a good explanation facility. Some constructors of
expert systems think not but they are a small minority.

It seems that aphasic systems are acceptable for tasks
which are routine (eg. XCON) or real-time (eg.VM); or in
task domains where the encoded knowledge is claimed to be
undisputed. I am sceptical of'the latter case. Kahn [Kahn
1984] describes MUD, a system that diagnoses problems in
lubricant drilling fluids. MUD is a system in which
explanation facilities beyond those normally associated
with the production system formalism (see section 2.4) are
not required. He cites only two possible reasons for
requiring explanation. First, to answer challenges to the
line of reasoning employed. Second, to give extra
information to users, whether for tutorial purposes or to
permit systems to assist the user in situations other than
the one for which they were designed. Kahn maintains that
explanation is not necessary in the MUD system because the
line of reasoning has never been challenged, and all the
domain experts agree that the system is using the correct
reasoning. He refutes the second necessity for explanation
by asserting that this occurs only extremely rarely in this
domain, and where it does, it can be foreseen and dealt
with by the use of well-placed 'canned text'
justifications.

21

The well-known XCON system (previously called Rl)
[McDermott 1981] has little need for sophisticated
explanation capabilities. The reasons for this are
essentially those given by Kahn for the MUD system, but the
task is considerably more routine and well-understood. The
system is known to work satisfactorily, so justification of
its reasoning is rarely useful. XCON was designed to take
over the task of VAX configuration, and it is difficult to
see why anyone would want to use it for teaching purposes.
Its highly specific nature also renders it unlikely that
anyone would attempt to use it in a very novel situation.

Certain other systems also have no particular need for
explanation facilities. For example, the VM system [Fagan
et al. 1981] for real-time monitoring of patients using
ventilator machines in Intensive Care Units, is not
interactive. It collects data directly from electronic
sensors attached to the patient and produces periodic
reports for the use of the consultant. Fagan says

"Almost no dialogue will take place with clinicians
when they are using the system"

but a real-time system might be enhanced by off-line
explanation facilities that answered questions about the
data captured over a certain period.

Such systems, however, are the exceptions rather than the
rule. Most knowledge-based systems are designed to be
interactive, unlike VM. They are usually concerned with

22

domains where experts do not entirely agree with each
other, in critical domains eg. medicine, where users
overtly demand evidence of acceptable reasoning, or where
use of the knowledge-base for tasks other than that
initially intended (eg. teaching) is advantageous. Two
types of expert system will exist in the future: those that
do not require sophisticated explanation facilities and
those that do. The former will be constructed in a very
much simpler fashion than the latter.

2.4 Explanation and Rule-Based Systems

When criticising the inflexibility of current expert system
explanation facilities, it is salutory to remember how much
of an advance it was to generate any explanation at all.
Such capabilities are the true hallmark of knowledge-based
systems, and it is just those capabilities that create the
gulf between expert systems and conventional programs.

The two modes of explanation of a rule-based system are
described as HOW and WHY questions. The subject of both
types of enquiry is a term present in either a premise or a
conclusion of a rule in the system. Both questions can
in theory be asked in the general sense or with reference
to a particular situation. So, if no problem-solving has
taken place one may ask

'WHY would the system need to know X?'

23\

Explanation is then provided by finding all the rules which
have X as a premise term, and quoting them as possible
reasons for trying to establish X. During or after
problem-solving, one can ask

'WHY did the system need to know X?'
This time, only those rules having X as a premise term and
which were actually fired, or which are currently under
active consideration to be fired, will be quoted. The
mirror image of these two questions can be constructed to
answer the corresponding questions

'HOW would you prove Y?'
and

'HOW did you prove Y?'
For HOW questions, Y is matched against rule conclusion
terms and rules showing such a match are quoted.

The whole basis of the production system methodology, and
the claims that it represents a good model of human
cognition [Davis & King 1977], are attacked by
Johnson-Laird [Johnson-Laird 1984]. Johnson-Laird
challenges the belief that humans commonly reason in a
formal manner. He demonstrates the use of mental models in
reasoning, and points out that such model-based reasoning
is closer to the actual techniques employed by humans than
is formal logical reasoning. Acceptance of such claims in
full would force a radical revision of the role of logic in
systems that attempt to emulate human cognition even in
part.

24

Rule-based systems are rarely a representation of an
understanding of the domain of expertise, and this putative
understanding is not communicated to the user in a
comprehensible form by quoting a chain of rules. The
rule-based system typically contains rules which have a
great deal of knowledge implicit in them. This is not only
the tacit knowledge described by Collins et al [Collins et
al. 1985], but is information concerned with the domain
which may well be unfamiliar' to the user. For example,
Clancey [Clancey 1983] and Johnson [Johnson 1985] both
quote the ordering of clauses within a rule as containing
implicit knowledge. In the same paper, Clancey says that
conflict resolution strategy commonly remains implicit,
usually indistinguishable from the control structure of the
interpreter. The conflict resolution strategy does however
form a part of the overall understanding of the domain. The
fact that we usually cannot access it in an explicit form
means that the system essentially does not understand that
part of the domain.

Production rules are highly modular in that they are
self-contained units of knowledge, requiring no external
context to be valid statements of a useful piece of domain
^information. They can be added to or removed from a
rulebase without fear that they will be fired in an
inappropriate situation, since the rule itself specifies
the situations in which it is valid. Davis et al. [Davis et
al.1977] point out that the very modularity of the rules

25

means that all context information must be contained in the
rule premise. The inescapable result of this is long,
complicated and hard-to-understand premises for the rules.

These factors have a bearing on whether or not the user
finds the quoted chains of rules intelligible. Davis et
al. [Davis et al. 1977] challenge this at a very basic
level. They highlight the fact that it remains an
assumption that a system rule, when translated into
something approaching natural language, provides a
reasonable explanation of what the system is doing. Often,
rules must be employed in a system which are content-free,
for reasons of control. Such rules are not obtained from
the domain expert, and do not represent a single piece of
knowledge about problem-solving in the domain. The
rulebase is being used to hold information on both domain
problem-solving and the control structure of the
interpreter. While this might be a positive trait if all
the control information were explicitly represented in this
way, it can be nothing but confusing when such control
rules only occur occasionally and represent only a fraction
of the structure of the interpreter. These control rules
can of course be produced in an explanation chain, and can
make understanding of the system's problem-solving method
extremely difficult [Johnson 1985].

Some rules may have very many premises and the situation
they describe may not be at all clear to the user. For

26

example, Coombs and Alty [Coombs & Alty 1984] point out
that mixed initiative dialogue requires that the user be
allowed to propose novel goals during the course of a
consultation. In production system terms, this implies the
enforced use of forward chaining, since by definition novel
goals cannot already be present in the system's network of
inferences. However, the control of forward chaining
systems can be a difficult problem because combinatorial
explosion of possible inferences can easily occur.
Conflict resolution by means of complex meta-rules has been
suggested as a suitable control in such cases, but Coombs
and Alty illustrate the cognitive opacity of such
meta-rules, which hinders rather than helps explanation of
the system's function.

It is also easy to muddy the explanation when a rule is
used in which the conclusion uses a value computed in a
premise term rather than the (more intuitive) success or
failure of the evaluation of premise terms [Davis et al.
1977]. The usefulness of a code paraphrase as explanation
is limited by the information represented, but more
importantly by the information not represented [Neches et
al. 1985], i.e. the causal, strategic or context knowledge
which has had to be compiled out to push the domain
knowledge into a rule-based formalism.

In spite of these problems, the rule-based approach to
explanation has not been without its champions. Even after

27

considering its drawbacks, Davis et al. [Davis et al. 1977]
have claimed that the rule-based approach is sufficiently
intuitive that a natural language version of an execution
trace is "a reasonable basis from which to start"
explanation. Davis' position has changed since he
co-authored the 1977 paper. The desire for problem-solving
flexibility has led him to abandon the uniform production
system methodology in favour of modelling domain causality
and the flow of inference. These '2nd generation' expert
systems are examined further in section 2.5.

Pre-arranged or 'canned' text is the simplest form of
explanation available to a problem-solving system. Canned
text has occasionally been recommended as a satisfactory
method of helping the user make sense of the system's
behaviour and results [Kahn 1984, Chandrasekaran & Mittal
1983] . However, the maintenance of such text is a
separate, additional task to the maintenance of an evolving
knowledge base, and like any form of static documentation,
it can easily get out of step with the true state of the
system [Neches et al. 1985]. For an expert system with a
knowledge base that is often changed or updated, this type
of static documentation is inherently dangerous.

Several workers have attempted to improve the usefulness of
the HOW and WHY facilities in rule-base systems. Swartout
[Swartout 1977] in his early work, the Digitalis-Advisor
system, acknowledges that to provide a good explanation the

28

system's reasoning must in some way correspond to the
user's model of the domain processes. He attempts to
improve explanation by identifying places in the
computational model where it is clearly different from that
of the user. At such places, Swartout used 'comments'
(i.e. some form of canned text) in the code to paste over
the non-intelligible part of the computational model.
Digitalis-Advisor uses several levels of abstraction to
control the amount of information generated during an
explanation. The system offers the two forms of the HOW
question: a form asking a general question (the 'how can
you..?'), which Swartout calls DESCRIBE-METHOD, and the
form referring to a specific case (the 'how did you..?')
which he calls DESCRIBE-EVENT. Swartout's later work
employs a more sophisticated view of explanation, and is
described in the next section.

2.5 The Birth of the Second Generation

[Swartout 1981] deals with a system called XPLAIN. In this
he employs a domain model, and uses an automatic program
generator to construct a problem-solving program from the
domain model by refinement from abstract goals. Explanation
is achieved by examination of the refinement structure
created by the automatic program generator. The aim of
this information is to offer an explanation of the
underlying causal basis of a particular rule, commonly

29

referred to as a rule justification. This extends
explanations in Swartout's systems from a statement of the
rules used in his 1977 paper to access to an underlying
causal model of the domain in his 1981 work.

Patil, in his ABEL system [Patil 1981], employs a
multi-level rule-based causal model, linked by common terms
or nodes which are available to more than one level. His
aim in using such a representation is, like Swartout's, to
improve the explanatory power of the system, which is a
diagnostic problem-solver in the domain of acid base and
electrolyte disturbances. Like Swartout's XPLAIN, this
facilitates justification of high level rules in terms of
chains of lower level causal rules that connect nodes
referenced by the premise and conclusion of the high level
rule. Patil's fundamental view of diagnosis is the attempt
to provide an adequate explanation of the observed
findings, using 'explanation' in Craik's sense of
scientific explanation. From this basis, he dismisses a
set-covering model of diagnosis as unsatisfactory because
of the causal nature of disease processes. He therefore
selects a causal model as his knowledge representation.
Causality is represented as a rule network, and the
generation of a justification is a statement of a chain of
these causal rules. Patil generates several versions of his
Patient Specific Model, and the different models compete.
Like the system of Addanki and Davis, this offers the
possibility of comparing outcomes in possible worlds.

30

Ferrand [Ferrand 1984], in his SESAM system, combines the
approaches of Swartout and Patil. He employs an automatic
program generator in conjunction with a multi-level causal
model of the domain.

In the work of Swartout, Patil and Ferrand, the explanation
is seen as a single task produced in a uniform way
regardless of the user's detailed requirements. The user
is not permitted to isolate aspects of the domain that
interest him; if he is interested in a rule, then he can
have the causal basis for that rule; if interested in a
term, he can either discover its consequent inferences or
its logical antecedents. Explanation is viewed as a
specific task, rather than a generic term describing the
many ways in which understanding may be communicated. On
this level, the problems of open user access to a real
understanding of the domain are not fundamentally dealt
with.

The PEA system of Neches et al. [Neches et al. 1985] offers
advice on improving Lisp code, for example replacing CONDs
by IF or UNLESS to improve readability. The system is a
development of Swartout's XPLAIN methodology, having an
expanded knowledge base on which a program generator
operates. The originators of the system believe that
explanation should be viewed in terms of a collection of
different information goals, contrasting with the usual
view of explanation as a single uniform task. Each

31

information goal is to be associated with a particular
class of question, and has an appropriate explanation
strategy associated with it. This view of explanation as a
multitude of tasks is similar to mine. Lehnert [Lehnert
1978] in the field of natural language understanding has
also addressed the problems of answering questions (see
section 2.8). An earlier version of this question answering
view of explanation was put forward by Scott et al. [Scott
et al. 1977],with respect to MYCIN. They proposed that at
the program design stage the question types that were to be
handled by the system should be enumerated. The
explanation capability of the system would then comprise a
set of specialist explainers, one being provided for each
question type. The underlying representation was MYCIN's
production system approach, but information was also to be
available describing the form in which static and dynamic
(i.e. inferential) knowledge was held in the system.
Clancey, one of the co-authors of the paper, in later work
[Clancey 1983] shows how justifications for rules fall into
four categories: justification by identification, by
causal factors, by common sense, and by restatement in
terms of domain-dependent facts. This is an im portant
elaboration of the idea of specialist explainers.

In early work [Clancey 1977] Clancey demonstrates an
explanation facility that is not a statement of rule
chains. The system he describes is of a generate and test
type, and leaves behind a static event structure as it

32

executes its problem-solving task. Examination of this
event structure can answer two categories of question:

'Why was drug X prescribed for organism Y ?'
and

'Why wasn't drug Z prescribed for organism Y ?'
Although this is not an unwinding of rules, it is still an
examination of an execution trace.

In his description of the GUIDON system, Clancey argues
[Clancey 1979] that rule-based problem-solvers are
fundamentally unsuitable for use in tutorial tasks. Two
new levels must be added to make such a system useful for
teaching. First, a support level, which provides
justifications for individual rules, and second, an
abstraction level, which defines the strategy for the use
of problem-solving rules and organises these rules into
patterns. GUIDON also has an explicit representation of
teaching expertise.

The later approach to explanation espoused by Clancey
[Clancey 1983] is far more broadly based. In attempting to
use the MYCIN system for teaching purposes, Clancey
recognised that lack of explicit representation of domain
understanding was the fundamental cause of MYCIN's
inability to explain itself. He reconfigured MYCIN to the
system NEOMYCIN, including two new categories of rule.
Rules explicitly describing diagnostic strategies are
independent of the particular domain reflecting simply the

33

way a medical diagnostician in any field approaches the
task. Secondly, causal rules were included. Clancey
indicates that access to a causal model is essential for
the user to understand the system's reasoning. Indeed, it
has been shown [Hasling et al. 1984] that the explanation
of strategy is extremely difficult unless domain-level
concepts are understood first.

In MYCIN, information at " various levels - causal,
strategic, problem-solving - was inextricably interwoven in
a single level system. In NEOMYCIN, Clancey separated out
the knowledge so that each level was a coherent description
of that view of the domain. NEOMYCIN can be viewed as a
combination of GUIDON'S explanation capabilities and
MYCIN's problem-solving.

A causal network showing the progress from the initial
presence of pathogenic conditions to eventual symptoms is
the underlying knowledge base for CASNET [Weiss et al.
1978], which is competent in the field of glaucoma
diagnosis and therapy. Such networks permit not only
diagnosis but also prognosis. The nodes of each network
correspond to physiological states, and the links represent
physical transitions between the states. Diagnosis is
achieved by comparison of the fully modified patient model
with networks representing the progress of various
diseases. The best match provides the offered diagnosis.
Szolovits and Pauker [Szolovits & Pauker 1978] offer a

34

comparison of MYCIN's inference net structure with the
causal net structure of CASNET. The fundamental difference
between the two representations is in the semantic
interpretation of the nodes and arcs in the two systems.
In MYCIN, a node is an arbitrary world fact, and a link is
a similarly arbitrary implication joining the facts on an
entirely empirical basis. In CASNET, a node represents a
physical state of the domain, and a link represents
physical causality. Problem solving inferences are not
intertwined with physical effects, leaving CASNET's
semantics certainly more consistent and arguably clearer to
a human observer.

The use of functional and structural models to represent
faults in digital electronic sytems is advocated by Davis
et al. [Davis et al. 1982, Davis 1983] . These models are
expressed as a series of commands, which, when executed,
create data structures that model the components and their
interconnections. The fault models must be quite distinct
from any problem-solving knowledge: the 'flow of
electricity' and the 'flow of inference’ are quite
independent.

A similar idea is presented in the PROMPT system [Addanki &
Davis 1985], which addresses the problems of design of new
specialised objects, e.g. a ball point pen for use in
conditions of unusual temperature, gravity etc. PROMPT
holds prototypes of the objects of interest (i.e. the pen)

35

and transforms a prototype to effect design. Prototypes are
also available to describe physical processes and
relations. The system can also cope with diagnosis of
faults in existing instances of such objects and with
prediction of the behaviour of specific objects. The
description of the problem solving process is described in
terms of 'states', which are snapshots of the world at a
fixed time. If a full description of a state is
unnecessary, a 'scene' or partial state can be used. A
'history' maps an interval of time in the real world into
an ordered collection of scenes, yielding a partial view of
the physical occurrences in the period. As states
correspond to scenes, so 'chronicles' correspond to
histories, offering a complete world description for the
time interval. To achieve the various types of
problem-solving required, multiple pasts and futures can be
generated in the form of multiple parallel chronicles.
Although not of primary importance to Addanki and Davis,
the multiple chronicles will allow description by PROMPT of
why a proposed solution would (or would not) work.

The systems described in this section all highlight the
important point that improved explanation requires the
representation of extra domain knowledge which is not
directly relevant to a simple problem-solving task. A
system can usually make do with a simple representation of
the domain, but to understand that domain to the point
where it is possible to begin to generate explanation, more

35

sophisticated and detailed knowledge and knowledge
representations are required.

2.6 Representing Understanding for Problem-Solving and
Explanation

For those systems in which understanding of the domain
leads to superior explanation facilities (whether the
explanation is volunteered or must be requested) , what type
of representation has been recommended and used ? As early
as 1943, Craik [Craik 1943] was advocating the use of a
causal model as the basis for generating explanations of
scientific phenomena. Johnson-Laird refers to mental
models, which are manipulated in a simulation process
within the human brain to perform inference and
problem-solving. His concern is with the modelling of
understanding. These observations are upheld by the views
described in section 2.5. All the more successful
explainers incorporate a knowledge of causality in the
appropriate domain; some insist on explicit strategy
representation also.

In creating the TEIRESIAS system [Davis 1977] for the
interactive acquisition of knowledge from experts, Davis
chose to view understanding in terms of matching incoming
data against an existing model. In his case, the model was
of a characteristic rule, a typical member of a subset.

37

The view is widespread; many workers have (implicitly or
explicitly) seen the system's knowledge as a model or
collection of models - of physical causality, of the
expert's problem-solving processes, of general strategic
knowedge - against which data from the outside world is
compared and used in accordance with the expectations
inherent in those models. [Addanki & Davis 1985, Aikins
1983, Chandrasekaran & Mittal 1983, Clancey 1979, 1981,
1983, Clancey & Letsinger 1981, Davis 1980A, 1980B,' 1983,
Davis et al. 1982, Ferrand 1984, Goguen et al. 1983,
Hagert 1985, Hasling et al. 1984, Jackson & Lefr c 1984,
Johnson 1985, Kidd & Cooper 1985, Koton 1985, Langlotz &
Shortliffe 1983, Neches et al.1985, Patil 1981, Swartout
1981, Weiss et al. 1978, Weld 1985, Van Releghem 1984]
Clancey [Clancey 1981] argues that the use of expert
systems for tutorial purposes (i.e. for good explanation,
among other things) requires a shift in viewpoint from
solving problems well to a simulation of the reasoning
process. In articulate problem-solving systems, we should
then look to incorporate such a simulation into the system.

An interesting comparison of a rule-based system and a
model-based system in the same domain was made by Koton
[Koton 1985] using GENEX and GENEX II. Both are concerned
with problem-solving in molecular biology. Koton reports
increased problem-solving power of the model-based system,
demonstrating its capability to deal with novel situations.
These situations were ones which were simply not prefigured

38

in the rule premises and therefore insoluble to the
rule-based system. The advantages of the model-based
system were flexibility, the ability to change the model in
a unique manner equivalent to making a collection of
disjoint changes to many rules in the rule-based system,
and the accessibility of the domain knowledge. However,
Koton does point out that of the two systems, GENEX II, the
model-based system, requires a much more complicated
control structure. The tasks posed to both systems were of
a predictive, 'forward-chaining' nature. To what extent the
tasks affected the comparison, Koton does not say.

Many systems have used the rule-based formalism to
represent these models, including NEOMYCIN, ABEL and SESAM.
Others, e.g. CASNET and GUIDON have employed
state-transition networks. For example in GUIDON, the
event structure originating from the execution of a
generate-and-test strategy can be regarded as a
state-transition diagram of states of knowledge in the
system, and transitions or actions leading to the next
state. These constitute instantiated problem-solving
methods, and as Clancey points out, are readily
comprehensible by the user [Clancey 1977] .

A most appealing developmental view of expert system
construction is presented by Riesbeck [Riesbeck 1984].
Although a 'prototyping' approach is often advocated as a
good method for building expert systems, such systems never

39

'learn' in any meaningful sense; knowledge may be added in
a modular fashion, but its organisation remains strictly
under the control of the knowledge engineer. Like Athene,
systems spring fully grown from the mind of their designer;
they have never been novices, always instant experts.
Riesbeck challenges this methodology, listing three
advantages which would be enjoyed by a system which had
been 'educated' in its domain ofexpertise. First,
non-expert knowledge (which would of course be retained by
the eventual expert) could be used to explain decisions to
non-expert users. Secondly, non-expert knowledge could be
used to handle novel situations since it may be less
effective for problem-solving, but is likely to be more
general than the later-developed skill. And finally, if
the system were created by 'teaching' it, continued
updating of a volatile domain knowledge base would be very
simple. Riesbeck suggests that novice knowledge is
domain-centred, involving physical objects and causality.
Expert knowledge, in contrast, is task-centred, organised
around the kind of answers the expert wants to find. This
leads to knowledge of relations between a situation and a
solution - typically heuristic.

In representing models of understanding, work in another
area of Artificial Intelligence is relevant. Charniak
[Charniak 1981] points out that traditionally, frames have
been used for natural language work that requires a shallow
representation of a broad domain, and rules have been used

40

as the most common formalism for problem-solvers, where the
requirement is for a deep representation of a narrow
domain. He advocates a combination of the two approaches
to broaden understanding in problem-solving systems.
Following this line of reason, Aikins employs a combination
of frames and rules. Her CENTAUR system [Aikins 1983] uses
prototypes coded as frames to represent disease classes.
These prototypes are hierarchically organised, and the
system fills the frame slots by utilising knowledge bases
in the form of rules associated with each slot. Aikins
points out that to restrict oneself to the single formalism
of rules and not to take advantage of frame-oriented
representations is unnecessarily restrictive.

The demand for flexibility and for an explanatory
capability means that the information previously held in
rules must be broken down into its constituent parts.
Also, knowledge which has no direct involvement in the
problem-solving process needs to be stored. Frames provide
representation structures which have been used in other
areas to represent this wider variety of knowledge.

A group of workers at Yale have demonstrated understanding
by answering questions using scripts as their underlying
representation. The argument of this thesis is that this
approach offers considerable promise for application to
explanation in problem-solving systems. In the remaining
sections of this chapter this approach is examined in more

41

detail. The work of Schank and Lehnert is covered in
greater detail than that of other researchers discussed in
this review because their ideas are of central importance
to this thesis.

2.7 The Yale Approach to Natural Language Understanding

Over the last ten to fifteen years, cognitive scientists at
Yale have approached the questions of understanding and
memory organisation in various ways. Their methodologies
have ranged from the simple (e.g. understanding simple
sentences using conceptual dependency representation) to
the complex (e.g. goal based understanding to explain
apparently unrelated actions in social situations; memory
organisation packets illustrating learning mechanisms).

But whatever the level of complexity, the emphasis has
remained on achieving a deep semantic representation of the
text. This work on text understanding is relevant to any
attempt at semantic representation: as Schank asserts in an
attack on the syntax-oriented approach to natural language
understanding and generation [Schank 1981],

"the problem of text representation is identical to
the problem of meaning representation".

In the work of the Yale group, this is usually based on
conceptual dependency (CD) theory in some form. The

42

remaining sections in this chapter start with an overview
of CD theory, building from there to scripts, and to
question-answering by the QUALM module.

2.7.1 Conceptual Dependency Theory

The conceptual dependency theory is described by Schank in
[Schank 1975«J . This theory was aimed primarily at
developing a representation “of the meaning of individual
simple sentences in natural language. The topics covered by
his simple sentences were common actions performed by
people. Schank, like other workers both before and since,
viewed the meaning of the sentence as verb-centred and
actor-oriented. He wished however to perform more than a
simple case-grammar analysis, which gives the verb used in
the sentence a central position and assigns all other
elements to case 'slots' attached to the verb. His aim was
to capture the essential 'meaning' of the sentence,
defining the verbs in terms of some underlying
fundamentals. To this end, he first declared an axiom and
its corollary, in an attempt to define how he would measure
the success or failure of his 'meaning' representations.

Axiom : Two sentences having identical meaning,
regardless of language, must share a unique
representation.

Corollary : Any information implicit in a sentence

43

must be made explicit in its
representation.

So the three sentences
'John sold the book to Jane'
'Jane bought the book from someone called John'
'Jane purchased the book from John'

would all have an identical representation, and the
implicit concept of transfer of money would be explicitly
shown. (Schank does however distinguish the difference in
'focus' between the active and the passive forms.) Each
simple "meaning proposition” is called a conceptualisation.
Active conceptualisations describe the meaning of simple
action, and Schank uses a uniform syntax to represent them:

Actor Action Object Direction (Instrument)
Stative conceptualisations are simple unary or binary
predicates, represented using the form:

Object (is in) State (with Value)

In aiming for a language-independent representation of
meaning for his chosen domain, Schank postulated eleven
'primitive acts' in terms of which all the actions in the
domain of interest could be described. For example, the
primitive act for the three examples in the preceding
paragraph is ATRANS, the transfer of an abstract concept of
possession or control. These primitive acts could then be
used in the place of the ordinary verb in a case-grammar
analysis. The active conceptualisations representing each

44

example sentence are
(subject JOHN) (act ATRANS) (object BOOK) (to JANE)
(subject JANE) (act ATRANS) (object MONEY) (to JOHN)

Some sentences do not, however, describe an action. These
are stative conceptualisations; that is, the sentences
describe states rather than acts. For example:

'Jane was overjoyed'
'Jane was happy'
'Jane was sad'
'Jane was suicidal'

Schank did not propose 'primitive states' to describe such
assertions, but chose rather to represent the stative
conceptualisations in terms of named 'scales' ad hoc.
Values on these scales range between -10 and +10. The
above examples are chosen from Schank's MENTAL STATE scale.
The sentence

'Jane was overjoyed'
might thus be represented as

(subject JANE) (state MENTAL STATE) (value +9)

2.7.2 Causal Chaining

Having established a meaning representation that could
adequately fulfil his CD axiom and corollary, Schank
addresses the problem of the meaning representation of
connected text. How can meaning be shown to be connected

45

between two sentence representations ? Sometimes explicit
connectors are provided and a direct causal link can be
identified, but often apparent links are misleading if
treated literally. Consider the following two simple
examples.

'It was raining. John got wet because he had no
umbrella.'

Here, the rain plus the lack of umbrella are the factors
that cause John to get wet.

'It was raining. John got wet because he had forgotten
his umbrella.'

This cannot be taken literally: the mental act of
forgetting cannot directly cause one to get wet! In this
case, the act of forgetting leads to a state where John
does not have an umbrella: it is this state which enables
him to get wet when it rains.

From considerations like these, Schank arrives at a
representation of connected text which consists of chains
of causation. He describes five rules of causal syntax,
each showing a means of connecting active and stative
conceptualisations. The five rules are

(i) Actions can result in state changes.
ACT => STATE

r

(ii) States can enable actions.
STATE => ACT

E

46

(iii) States can disable actions.
STATE => ACT

dE

(iv) States or acts can initiate mental states.
STATE => MENTAL STATE

I

ACT => MENTAL'STATE
I

(v) Mental states can be reasons for actions.
MENTAL STATE => ACT

R
(Note: Schank's written representation of the causal links
would show the arrows pointing from right to left in
statements (i) to (v) above; I find the above notation
preferable.)

The letters associated with the arrows in the diagrams
denote the five types of causal links:

r results in
E Enables
dE dis(En)ables
I Initiates
R Reason

Using these rules, causal chains can be built up,
connecting the active and stative conceptualisations

47

present in the text. Where a literal interpretation of the
text leads to a syntactically incorrect linkage (as in
forgetting leading to getting wet), the 'missing links' of
the causal chain must be filled in.

2.7.3 Scripts

Using causal chains of conceptualisations, Schank describes
the representation of simple connected text where the
actions could be linked together in a way determined almost
completely by the explicit content of the text. However,
such text has to be contrived; to use the technique on
simple newspaper stories remains beyond the scope of the
work at this point. The reason for this is clear. People
understand, for example, stories about car accidents given
in an extremely concise form because they have previous
knowledge of an 'archetypal' car accident story. Consider
the piece of text:

'A man was killed and another seriously injured
yesterday when a car veered off the B5181 and hit a
tree. An ambulance arrived at the scene within
minutes, but the driver of the car was dead on arrival
at the hospital. Police have not yet released the
names of those involved.'

When we read the text, we are not surprised at the sudden
and unexplained mention of an ambulance: it is a

48

well-comprehended part of our expectations about stories of
this kind. If 'ambulance' were replaced by 'ice-cream van'
we would be very puzzled at its inclusion in such a tale.
Understanding of the text is only possible because we
already have available a knowledge structure which Schank
refers to as a SCRIPT. These scripts, then, play a central
role in Schank's text understanding work. They are large
uninstantiated causal chains.

The causal chains may have several alternative branches
representing different possible paths to a particular act
or state. If we consider, for example, a launderette
script, then the action of putting soap powder into the
machine requires that the main actor of the script must
first be in possession of some soap powder. There are
several ways in which this can happen: he may buy it on the
spot; he may ask another launderette patron for a donation
from their supply; or he may be highly organised and bring
it with him to the launderette. Often, when appropriate
text is read, only one of these alternative paths is
instantiated. However, in some cases, no relevant
information for deciding between the alternatives is
present in the text, and all remain as possibilities.

These archetypal stories in the form of uninstantiated
causal chains must, of course, have actors featured in
them. These actor slots in the uninstantiated script are
occupied by role descriptors; for example, in the car

49

accident story, the roles in the script may include
Car Driver
Passenger
Eye Witness
Ambulance Driver

These roles are assumed by the people mentioned in the
actual text when the text is read and the script
instantiated.

Schank's examples of natural language text are often
entertainingly bloodthirsty, usually describing various
ways of killing and maiming. Unfortunately, the domain of
anti-corrosive paints does not offer such diverting

examples!

2.8 Question Answering and Causal Chains

Lehnert [Lehnert 1978] recognised that understanding of
text is most convincingly demonstrated by the ability to
answer an assortment of questions about that text. This
idea has been used for generations in primary and secondary
schools, and in examinations. Lehnert constructed a module
called QUALM, which could translate natural language
queries into a Conceptual Dependency representation and
then access the associated instantiated script to obtain an
answer. This was achieved by dividing the question into two
conceptual parts: the question category and the question

50

concept. Lehnert's question concept is the CD
conceptualisation which is present in the question. This
contains no interrogative force, but clearly may also have
one or more slots uninstantiated.

For example, using a story about John going to London by
train in order to go to the theatre, we may consider the
following questions:

How did John go to London?
When did John go to London?
Why did John go to London?

Although all three example questions are clearly different
and require different answers, if the interrogative force
of each query is removed, we are left with a common central
concept:

John went to London.
This simple sentence is readily representable in CD terms,
and is the question concept for our three example
questions.

The concept derived from a posed question can be matched
against the story representation. When a match has been
found, the mechanism for recognising an associated item
which constitutes a reply depends upon the interrogative
part of the question. So, having discovered a match for

John went to London
in the instantiated script story representation, we obtain
answers to our three questions in different ways by

51

reference to the question category for each question.
How did John go to London?

requires an answer describing the mechanism employed to
achieve the action, i.e. by train.

When did John go to London?
enquires about a temporal location for the act, which could
either be absolute or relative to the time of enquiry. For
example,

On the 22nd June 1985.
Last Friday.

could be sensible answers.
Why did John go to London?

is a rather more complex question than the previous two
examples.The complexity stems from the nature of the
question category. In the previous two examples, responses
could be found by examining slots attached to the story
conceptualisation matching the question concept. No other
conceptualisation needs to be accessed. However, this
question asks about John's motives in engaging in the act
in question. This necessitates looking ahead in the causal
chain to see what major events are subsequently enabled by
the question concept. Thus, for this question category,
the question-answering mechanism must shift its attention
to conceptualisations in the causal chain other than that
which matches the question concept.

Lehnert identifies thirteen categories of questions.

52

2.8.1 Causal Antecedent

e.g. Why did the glass shatter?
Questions in this category ask about states or events that
have in some way caused the question concept. They are
answered by identifying the prior concept in the
instantiated causal chain.

2.8.2 Goal Orientation

e.g. Why did John go to London?
These questions ask about the goals that prompt an action.
Lehnert says

"this presupposes that the actor of the question
concept is a human who acts of his own volition".

Goal orientation questions are meaningless outside of the
context of a sentient actor. The category differs from
causal antecedence in that here the action (goal) described
in the answer has not yet happened; replies to a causal
antecedent question are found in prior states or acts, not
subsequent hypothesised acts. Clearly, goal orientation
questions are closely related to causal antecedent
questions, but Lehnert does not examine the nature of this
relationship. In analysing the mechanisms for question
answering implemented in QUALM, she refers to a causal
antecedent question invoking a search through the causal
chain representation of the instantiated script describing
the story. If this search cannot provide a suitable answer

53

to a causal antecedent question, then a search is made in a
'plan' structure to which the script is attached.
Information in the plan structure may then supply an answer
to a goal orientation question having the same question
concept.

2.8.3 Enablement

e.g. How were you able to "afford a new coat?
Such questions are enquiries about states or their
causative acts which enable the act described in the
question concept. Although Lehnert does not refer to the
fact, enablement questions are thus a special subset of
causal antecedent questions.

2.8.4 Causal Consequent

e.g. What is the outcome of a plutonium leak?
The question concept is an action; the answer is given by
the state that is the result of that action.

2.8.5 Verification

e.g. Is titanium oxide poisonous?
Verification questions need a yes or no answer, or some
statement of the answerer's confidence in the truth of the
question concept.

54

2.8.6 Disjunction

e.g. Who painted 'Beata Beatrix': Rossetti, Burne-Jones
or Morris?

The OR in disjunctive questions is not the logical OR (else
a valid answer to the example question would be ’yes'); it
is more accurately a collection of verification questions,
one for each 'disjunctive' element, with only the true
elements reported as answers.

2.8.7 Procedural/Instrumental

e.g. How did John get to London?
How do you make mayonnaise?

Questions in this category ask either about an object
instrumental to the act in the question concept (’By
train', in response to the first example question), or
about a sequence of acts that together constituce the
question concept act. Lehnert groups these two together,
because they are very closely related. To see this,
consider the answer 'by train' to the first example
question. This is a shorthand for describing the collection
of acts (in fact, a script) which constitute the procedure
of travelling by train.

2.8.8 Concept Completion

e.g. Who cooked dinner last night?

55

The question concept for this category is an active
conceptualisation. At least one slot or descriptive
feature in the question concept is unknown (in the example,
it is the identity of the ACTOR involved), and the question
is answered by providing the appropriate feature.

2.8.9 Expectational

e.g. Why doesn't zinc rust?
If such questions were asked with a positive instead of
negative force, they would be enablement or causal
antecedent questions, (i.e. Why does iron rust?) The
question concept is a negated conceptualisation indicating
the violation of the enquirer's expectations. To answer
such a question it is necessary to search for states in the
causal chain which would disable the positive question
concept or disable actions eventually resulting in the
question concept.

2.8.10 Judgmental

e.g. What do you think of SDI?
Judgmental questions ask for a subjective opinion of the
entity named in the question concept.

2.8.11 Quantification

e.g. How many cats do you have?

56

How ill is your uncle?
Questions in this category require counting (example 1) or
a scale value (example 2).

2.8.12 Feature Specification

e.g. What colour is your car?
These are 'slot-filling' questions for stative
conceptualisations, comparable to concept completion
questions which 'fill slots' for acts.

2.8.13 Requests

e.g. Would you pass me that book?
Requests are instructions for action which are phrased as
questions. They do not really expect a verbal reply.

2.9 Primitives and Representations for Domain Entities

It may appear that in CD theory, Schank has established a
sufficient set of eleven primitive acts. These however are
domain dependent. In [Schank & Carbonell 1979], the
authors investigate the representation of the Gettysburg
Address using the ideas of Conceptual Dependency. In
exploring this, they make the point that the actions
involved are not simple physical ones, involving
individuals and everyday tasks. The eleven CD primitive

57

ACTs do not apply: they cannot be used as atoms in the
construction of more complex molecules of meaning. Schank
and Carbonell propose seven basic 'social ACTs' for use in
representing social and political events. In considering
the scope of the two available sets of primitives, they
say:

"It is very unlikely that either the CD-primitives
or the basic social acts would be useful in
codifying, for instance, the knowledge relevant to
understanding chemistry or microbiology. These
domains require their own basic knowledge
organizing units."

In the PROMPT system [Addanki & Davis 1985] described in
section 2.5, processes are 'precanned', i.e. not described
at a microscopic level, nor in terms of any primitives.
For example, no relationship is evident between 'boiling'
and 'freezing'. The description of processes includes
specification of preconditions, the entities involved, the
sffscts generated, and relevant mathematical equations•
W d d [Weld 1985] is also concerned with the description of
processes for use in models. He distinguishes between
continuous and discrete processes. If the world state is
described in terms of quantities which are either 'linear'
(i.e.dimensional, having a continuous range of values) or
'nominal' (i.e. featural, having a discrete set of possible
values), the nominal attributes cannot be affected by
continuous processes, since there is no way monotonically
to change a quantity 'with no inherent order'. Nominals
are therefore affected only by discrete processes. Like

58

processes in PROMPT, Weld's processes are described in
terms of their preconditions and influences.

2.10 Conclusion

Explanation in problem-solving systems is not an area where
a vast amount of work has already been done. The
achievements are modest, but the problem itself is a very
difficult one. Sense can only be made of the field by
regarding 'explanation' as a generic term, and attempting
to discover what some of the specialised processes are that
make up the rich fabric of the ways in which human beings
explain what they know.

59

3 THE SCRIPT APPROACH TO CAUSAL MODELLING

3.1 Overview

The domain of the ADEPTUS system is the use of coatings
applied to steel substrates to prevent or retard corrosion.
The physical processes in the domain will be viewed as
elements of an archetypal story or 'script' in Schank's
terminology.

This chapter discusses the domain under consideration.
Analysis of the knowledge obtained from the domain experts
reveals how a causal model can be used as a
representational formalism for domain processes. Following
from this, Chapter 4 illustrates how the same formalism can
be applied to the problem of selection within the domain.

David Hume described the origins of our ideas of causality
thus:

"The necessary connection betwixt causes and
effects is the foundation of our inference from one
to the other. The foundation of our inference is
the transition arising from the accustomed union.
These are, therefore, the same." [Hume 1738]

This resembles Schank's comments about a script-based

theory of understanding:
"In order to understand the actions that are going

iu a given situations, a person must have been
in that situation before. ...The actions of others
make sense only insofar as they are part of a
stored pattern of actions that have been previously

60

experienced." [Schank & Abelson 1977]
The "stored patterns of actions" refer of course to
Schank's ’script' entities. Schank and Abelson are talking
about social situations, and Hume is concerned with general
causality. It seems reasonable to employ this 'causality
as script' view in a system where perception of an external
reality is not at issue.

3.2 The Outline Account

Analysis of the knowledge elicited f m the domain experts
showed that the physical processes involved in the use of
anti-corrosive coatings form an archetypal story. The next
few subsections show the essential elements of this outline
account.

3.2.1 Substrate Preparation

First, the surface to be protected must be prepared. This
is normally achieved by abrasion or impact methods; the
substrate may be scoured by hand with wire wool or
shotblasted by machine. The choice of method depends on
several factors :

(i) The size and shape of the substrate. Small
intricate items cannot be successfully
shotblasted. At the other extreme, large expanses

61

of flat or simply-shaped surface are not
efficiently treated by hand.

(ii) The location and mobility of the substrate.
Shotblasting may be impractical in certain

interior locations. However,if the substrate can

be moved to a suitable place, the mechanical

method may still be feasible.

(iii) The availability of tools and personnel.

The aim of these mechanical processes is to clean the
substrate and to provide a key, or degree of roughness, on
the surface to be coated. The nature and depth of this key,
and the extent to which impurities like rust or old
coatings have been successfully removed, have a major
influence on the subsequent adhesion between substrate and
applied coating.

The substrate may also be degreased: that is chemically
treated to remove existing adhesions of undesired
substances, which create a thin but effective barrier
between substrate and coating.

3.2.2 Coating Application

These preparatory activities should eventually lead to a
prepared surface that is dry, clean and has a good key. A
coating may then be applied to the surface. This is

62

achieved in one of several possible ways: these include
brushing, rollering, spraying and tumbling. The
characteristics of the individual paint will determine
which methods are possible. For example, the high
viscosity of bitumen coatings renders spray application
completely impractical. Another major factor influences
the choice of application method: the availability of
skilled personnel. If the optimal application method for a
coating is an airless spray, the method will nevertheless
yield unsatisfactory results if employed by personnel
untrained in the use of such equipment. In a case like
this, one may well have to resort to brush application.

Possession of appropriate tools is also a necessary
prerequisite to coating application. Eventually, using one
or other of the possible application methods, adhesion
between substrate and coating is achieved over the entire
surface of the substrate. This means that on the substrate
there exists a wet film, which will have a collection of
measurable dimensions and observable properties.

3.2.3 Drying and Curing

The wet film is now left to harden. This may occur
(i) through drying by solvent evaporation
(ii) through curing or chemical crosslinking

or (iii) through a combination of solvent evaporation and

63

curing.
The type of hardening process is governed by the nature of
the coating, but variables such as rate of hardening are
affected by external factors including temperature,
humidity and ventilation.

If the hardening processes include drying by solvent
evaporation, a vapour will be produced. The chemical
constituents of such a vapour are determined by the
composition of the wet film, and it may be necessary to
take account of potential vapour toxicity.

On completion of the drying process, a fresh dry film is
obtained, adhering to the substrate. This film is
described by properties and dimensions similar to the wet
film, but the values along these dimensions have changed.
For example, the film thickness is likely to have been
considerably reduced, and the adhesion with the substrate
enormously increased. Some of the features of the wet film
that were descriptive of the liquid state will have been
replaced by new descriptors appropriate to a solid
substance. For example, the concept of viscosity is
relevant to consideration of the wet film; in the dry film
this has no meaning and can be replaced by such qualities
as hardness, flexibility etc.

At this point in the history , in practical terms, the
coating begins to serve its purpose.

64

3.2.4 Wearing

Once in service, the dry film can be affected by many
factors. It is convenient to group these into
environmental factors and sub-film factors. The
environmental factors are any which are external to the
film-substrate system, and include:

(i) Chemical contact: acids, alkalis, organic
compounds etc.

(ii) Water contact: fresh water, salt water, permanent
immersion, splash zones.

(iii) Mechanical damage to the film: impact, abrasion,
stressing.

(iv) Radiation: e.g. oxidation effects causing

yellowing of white pigments.

(v) Atmospheric pollution: industrial contaminants,

ozone.
(vi) Temperature: high temperatures, low temperatures.

Sub-film factors are those arise from processes occurring
either within the film or at the film-substrate interface.
For example, if the substrate was wet when the coating was
applied, pockets of moisture may be trapped. An increase
in temperature can then vapourise this moisture, causing
'blisters' to form.

All such factors take their toll on the dry film. As time
passes, the attributes of the film will change in response

65

to these destructive processes.

3.3 The Script

When the preliminary knowledge analysis was complete, it
became clear that the sequence of processes that constitute
the foregoing description can be represented using a
modified version of Schank's 'scripts. It is this idea that
underpins this thesis.

Figure 1 illustrates an initial high-level representation
of such as script.

3.4 Active Images

Each of the ACTS can be thought of as a reference to an
entire sub-script rather than a primitive ACT. For
example, the surface preparation is not a simple ACT, but
a term used as a shorthand description of a complex,
variable set of ACTS. This is analogous to Schank's idea
of a MAINCONS, the ACT central to the script, that is
sufficient to use if the entire script is not needed.

Although causal chaining is used following Schank (see
section 3.6), it is not appropriate to use his Conceptual
Dependency primitives for this domain. CD theory requires

66

the use of primitives to obtain a language-independent
representation of meaning, in which the essential ideas
common to whole classes of verbs can be made explicit.
While Schank's eleven primitive ACTs are sufficient for

Figure 1

67

the representation of all the active images in his chosen
domain, they do not offer a vocabulary with which to
describe physical processes largely independent of human
motivation.

An ACT can only be described as ’primitive' with respect to
a particular domain. Schank and Carbonell make this point
in [Schank & Carbonell 1979]. Schank's eleven CD ACTs can
only lay claim to the title of primitive for the domain of
commonplace human activities. For other domains, other
sets of primitive acts will be required.

Because the domain of the use of anti-corrosive coatings
includes commonplace human activities, certain Conceptual
Dependency primitive acts will be applicable. For example,
in describing how someone moves an object to a different
location in order to use non-mobile equipment, one could

use Schank’s G R A S P and P T R A N S acts. The act of

shotblasting a substrate would incorporate a P R O P E L act,
extended over time.

The new primitives proposed as relevant to this domain are:

ST ICK

Two substances S T I C K to each other if they are in
physical contact, and remain so over a periodof time.

STATECHANGE

a S T A T E C H A N G E p ro c e s s i s r e c o g n i s a b l e i n t h a t the

68

major participant is present both before and after the
process but in different physical states, e.g. solid,

vapour etc. Thus S T A T E C H A N G E is at the root of
processes such as evaporation, condensation, freezing,
melting, and sublimation.

TOUCH

Physical contact of two substances is a state which is

brought about by a TOUCH process. The process implies
nt of one substance with respect to the other.

primitive can be used to represent the concepts of
impact (hence shotblasting, spray application and
mechanical damage) and spillages.

CHEM CHANGE

In such a process, one or more participating substances
undergo chemical reactions to produce a chemically new
participant substance. Examples are curing (chemical
crosslinking), oxidation and precipitation.

In order to use the CD theory in a technical domain such as
this, I have found it necessary to make an important
distinction between an ACT and a PROCESS. An ACT must have
an ACTOR: some entity (sentient or otherwise, e.g.
g^jivity) that performs or is the causative agent for the
occurrence. A PROCESS, in contrast, has participating
entities, but none of these can be considered the causative
agent for the occurrence. If this distinction were not
made, then when representing, for example, the adhesion

69

between paint and substrate, one would be forced to ask
whether the paint was the ACTOR of the STICKing act, or
whether it was rather the substrate. The introduction of
the idea of PROCESS moves away from Schank’s strong focus
on the ACTOR-ACT combination as the centre of interest.

This distinction between ACT and PROCESS avoids forcing the
representation of domain-level active images uniformly into
Schank's

ACTOR ACTION OBJECT DIRECTION (INSTRUMENT)
CD syntax. For PROCESSes, a simple representation can be
employed, comprising the name of the PROCESS, followed by

the participants in that process. For example:

STICK coating substrate

STATECHANGE coating

So, in general,

PRO CESS participant-) > <participant2> . . . <participantn>

3.5 Stative Images

3.5.1 Schank's Stative Images and the Cognitive Psychology
View

Schank1s representation for states in Conceptual Dependency
Theory is simple and generated ad hoc. A stative image

70

takes the form
Object Attribute

or
Object Attribute Value

For example,

John ANG RY

Can O PEN

John HEALTH (-10)

Schank’s scheme fits well with a simplified approach to the
classical view of concept definition in cognitive
psychology. The classical view describes concepts in terms
of 'features' and 'dimensions'.

A feature is a qualitative attribute, having a binary
present/not-present nature. This accords with examples like

John ANGRY

Can OPEN

„ miantitative attribute; that is, one which A dimension is a quantira
can be used in magnitude comparisons with the same
attribute of a different concept. For example, if a
Sabatier knife is very sharp and a table knife is quite
sharp, then the Sabatier knife has a greater magnitude in
the sharpness dimension than does the table knife. This
of course maps very well on to Schank's use of scales; the
value between -10 and +10 is the magnitude of the

71
\

dimension.

3.5.2 Applicability to the Anti-Corrosive Coating Domain

To a very great extent, the stative images in Schank's work
are of only secondary interest. His story domains are
highly action-centred; states of the world are only
incidentally important insofar as they enable or are the
reason for the next action. His decision to use an
episodic representation for information encompasses an
exclusion of semantic representations; Schank admits that
this may not be appropriate for more scientific domains
[Schank 1975] • Lehnert was dissatisfied with the
Conceptual Dependency representation of everyday physical
objects, and proposed a primitive functional description of
items such as taps, cups and plates for use with the
script-based formalism.

The items to be described in the anti-corrosive coating
„„of be aiven a richer and more detailed domain, however, muse oe

representation. It is, after all, the coating film and its
relation to the substrate that are of prime importance.

The representation of stative images in ADEPTUS is clearly
divided into two separate levels, the gross and the
detailed. At the gross level the representation of the
world state is a very simple featural one. For example, the

72

state immediately preceding the STICK process may have the
form

P H Y S C O N T coating substrate

borrowing the P H Y S C O N T (physical contact) relation from
Conceptual Dependency. The gross level delineates only the
names of the entities which are relevant to the portion of
the archetypal story into which the state fits, coating and
substrate in the example. This may be supplemented by
simple coarse-grain relationships between the participating

entities i.e. PHYSCONT. The coating and substrate are here
features of the 'world state' concept.

The representation of the more detailed attributes of the
world state takes the form of a collection of features and
dimensions belonging to each of the gross world state
entities, e.g. coating. It is possible to predict the
names of the attributes that state-descriptive entities can
possess. For example, any film will have a thickness, a
colour and a physical state (solid or liquid). Some of
these attributes are features in that the possible values
of the attributes form a discrete set, e.g. colour.
Others, like film thickness, are clearly dimensions.

It is the changes in the values of attributes at this
detailed level that are of major importance to
problem-solving in the domain. At the gross level of state
description, information is held only on whether the

73

coating film and substrate remain in general physical
contact. At the more fine-grained level, the details of
the changes in the environment/film/substrate system can be
viewed.

The feature description of the gross world-state is
concerned only with the existence or otherwise of entities.
A variety of attribute names is not required to link the
world-state concept and its attributable entities. Figure
2 illustrates an instance of the world state: note that all
the arcs are simply labelled 1has-feature'.

F ig u r e Z

The predictable set of attributes for individual entities
on the detailed level produces a proliferation of arc
names. Figure 3 shows an example of this. For these
reasons, the abstract representations of the two levels
have been translated into different formalisms. The gross
level has a representation in list form, where the elements
of the list are attributes of the world state. The

74

detailed level is cast into frames. This permits prior,
hierarchical determination of appropriate attribute names,
and the facility to restrict the values that are considered
valid for a given attribute.

3.6 Causal Chaining

Categorising active images into those involving ACTs and
those involving PROCESSes forces a reexamination of the
principles of causal chaining. The continuing
applicability of the causal syntax in the presence of
PROCESSes must be questioned. The substitution of 'Acts or
Processes' for 'Acts' in the rules of the causal syntax
will draw attention to any conflict with commonsense
reasoning.

Figure 3

75

1 Acts or processes can result in state changes.
ACT => STATE

r

PROCESS => STATE
r

2 States can enable acts or processes
STATE => ACT

E
STATE => PROCESS

E

3 States can disable acts or processes
STATE => ACT

dE
STATE => PROCESS

dE

4 States, acts or processes can initiate mental states
STATE => MENTAL STATE

I
ACT => MENTAL STATE

I
PROCESS => MENTAL STATE

I

76

5 Mental states can be reasons for acts or processes
MENTAL STATE => ACT

R
MENTAL STATE => PROCESS

R
Rule 5 clearly does not make sense when 'process' is
substituted for 'act'. A mental state can only be the
reason for an act when the mental state is attributable to
the actor of the ensuing act. Since a process has no
actor, a mental state cannot be a REASON for that process.
It is therefore necessary to restrict Rule 5 to the version
given by Schank:
5 Mental states can be reasons for acts

MENTAL STATE => ACT
R

However, considering the nature of the domain of interest
in ADEPTUS, it seems possible to dispense with the use of
causal syntax rules 4 and 5 altogether. The extent to
which the system will be concerned with people's mental
state is minimal. Doubtless a case could be made for the
representation of thoughts or knowledge in the minds of the
process operatives required by the preparation or
application phases, but the relevance is peripheral. I
shall, therefore, be content to describe such operatives as
'skilled' or 'unskilled' rather than attempt to detail the
minutiae of their mental states.

This constitutes in effect a restriction on the domain. A

77

precedent exists in Schank's own work; in stories about
spilling beer, he remains interested only in people's
actions and reactions. He makes no attempt to represent or
deal with concepts like liquid soaking into fabric or the
chemical changes bringing about staining.

3.7 Conclusion

Knowledge analysis suggested the central theme of scripts
as a representation for physical processes. However,
Conceptual Dependency could not offer a range of primitives
appropriate to the anti-corrosive coating domain. In
examining the kinds of verbs used in discussing the domain,
the distinction between ACTs and PROCESSes became evident,
and this was incorporated into the selection of new
primitives.

For the ADEPTUS system, the causal syntax has been
restricted to rules 1 - 3 , which are all those that do not
mention mental states. The stative images that are of
central interest in this domain have two levels of
representation. The uses of these two levels will be
explained in Chapter 5.

78

4 THE REPRESENTATION OF PROBLEM-SOLVING STRATEGY

4.1 Overview

Having chosen to represent the physical processes of the
domain of interest in a script form, I now turn my
attention to the problem-solving aspect of the desired
system. The task of interest is the selection of the
optimal coating from a specified set in given
circumstances. However, the essence of describing the
causal model separately from the problem-solver is that
problem-solving strategies for other tasks in the domain
may be described and used without altering the causal
model. Therefore the task of coating selection will be
described in terms of a manipulation of the causal script.
I shall seek to couch this description in terms of a small
set of possible manipulations of a causal script, in the
hope that this set will also then provide the building
blocks for problem-solving descriptions for other tasks.

The problem-solving process is represented in ADEPTUS by a
script entity. This outlines the essential acts which
ADEPTUS must perform on an object script which is a
representation of a causal model of the domain of interest.
Each act in the problem-solving script can be located
within a hierarchy of script-manipulative tasks. This
hierarchy is differentiated on the basis of the object

79

type(s) accessed and the essential direction of search.
Following Lehnert's approach to question-answering using
scripts, questions can be answered by a search for a match
for the question concept, followed by one or more
script-manipulative tasks. The nature of the task is
dependent upon the question category.

4.2 Paint Selection from Industrial Guidelines

At the heart of the industrial guidelines for paint
selection is a matrix of environmental descriptions against
paint class. A simplified version is illustrated in Figure
4 .

The user can extract from this matrix the rows which apply
to the particular situation under consideration. Examples
are given in Figures 5, 6 and 7. This row extraction
exercise leads to a preliminary selection of one or more
paint classes by determining those which are not indicated
as inappropriate for any of the conditions listed. The user
is then referred to paint class information sheets, where
more detailed data on coatings can be found. The
information sheets typically encompass such information as
application methods, toxic components, drying
characteristics, single film thickness, working temperature
ranges, pH tolerance limits, colour availability and cost.
The user must examine this information to see which set of

80

KEY
Very suitable

to if i------- 1 Acceptable

1------- 1------- 1 Inappropriate

PAINT
CLASS

A

PAINT
CLASS

B

PAINT
CLASS

c

PAINT
CLASS

D

Surface Preparation Sa3, Sa 2.5 l " ' l \| m i t i *

Surface Preparation Sa2, St3 1 1 1 l iilw iS i J |!!!;!lj------- 1

Surface Preparation St2 1 1 1 1 1

Indoor heated 1 i A

Indoor unheated l i l i i l i ! m m "'] r ...

Exterior sheltered r m Kv.vlwlvla I L.'......1... . J K i i l t e i l

Exterior exposed, inland/unpolluted 1 W iil l

Exterior exposed, coastal/industrial m m i P in t 1 l l l i 1 w r a w r a

Salt water immersion n * i (, ! m m i

Fresh water immersion l i i l i i l l l É 1 1 1 t e l i l i « ! 1

Weak add spills 1 1 1 I 1 1 t e i i i l i l i

Strong acid spills 1 1 1 1 1 1 n m i

Weak alkali spills r mi | hm m m m r m

Strong alkali spills i i i 1 1 1 L . i :n

Organic solvent spills m m m m r a w i 1 | | i i i

Product contamination « m 1 i

Mechanical impact/abrasion ' i m u i i t i i i i

High temperatures (>80 C) i i i r i 1 i

Low temperatures (<0C) r i i i i i r a w i

Figure 4

81

Tank in Soap

Manufacturincr Industry

PAINT
CLASS

A

PAINT
CLASS

B

PAINT
CLASS

C

PAINT
CLASS

D

Surface Preparation Sa2 1 1 1 i i i i i l i mm i

Indoor Unheated « # 1 1 « fessisi 1 lilÉ W M t e l « «

Weak alkali spills r' ' $.] m m i mmmm

Organic Solvents BM 1 i f i l i 1

Mechanical Impact/ Abrasion ii.:: ' i wm i i i i 1 1 1

JSëX Figure 5
É M & É Very suitable

— 1— 1 Acceptable
—1— 1 Inappropriate

Ship Hull
PAINT
CLASS

A

PAINT
CLASS

B

PAINT
CLASS

C

PAINT
CLASS

D

Surface Preparation Sa3, Sa2.5 1 I Iteiiiill

Exterior exposed, coastal / industrial * 1 taitl 1 Itili 1

Saltwater immersion H 1 1 1 1 1*3 1 rai—i

Salt water splash zone ..3 iül 1 1 ! 1 1 1 !

Mechanical Impact/Abrasion ilium 1* 1 1 1 1 1 1 1

Elcrcre 6

paint characteristics most nearly fits the constraints of
the situation.

Problem descriptions coded in matrices like those described
raise some interesting points:

82

(i) A solution is not always available. In the
examples given, this is largely a result of the
reduction in the number of paint classes
considered. Clearly, coatings that are suitable
for ship hulls must be available.

FiOTr s_Z

(ii) In situations where no completely satisfactory
solution exists, a choice must be made among the
more or less unsatisfactory solutions. The aim
is to find the best coating, not necessarily a
perfect (or even very good) one. This
necessitates an examination of the relative
importance of those constraints that force a
paint to be deemed unsuitable.

For example, consider the selection of a coating

83

for a garden fence described in Figure 7. Of the
four given constraints there are three that rule
out exactly one coating each; i.e. surface
preparation to St2 standard (a high quality
hand-prepared surface) rules out coating A,
mechanical impact rules out coating D and low
ambient temperatures rule out coating B.
(Coating C is ruled out on two counts, so it
seems reasonable to view this as being more
inappropriate than the other three). If further
examination of the constraints shows that a
surface preparation of St2 standard cannot be
improved upon, that winter temperatures can be
relied upon to produce frequent and prolonged
icy environments, but that impact is only a
fairly infrequent occurrence (caused, for
example, by a child's bicycle), then clearly
coating D is preferred over A and B.

(iii) The gradient of response to a constraint is not
easily perceptible. In the soap manufacturing
process tank example, if it were possible to
prepare the surface more thoroughly to standard
Sa2.5 (a medium-quality shot-blasting), coating
A would show optimal performance for all the
given constraints, thereby superceding the
initial choice of coating B. On reference back
to Figure 4, it can be seen that this is caused

84

by a sharp drop in suitability as the
preparation standard drops from Sa2.5 to Sa2.

4.3 Strategies for Selection

The solution space for the task of selecting the optimal
coating can be partitioned hierarchically. That is, there
are about a dozen broad classes of coating, many of which
can be divided into subclasses. Specific commercial
coatings form the leaves of such a tree.

In the original design for ADEPTUS, it was intended that
paint selection would be performed in stages, conforming to
the coating hierarchy. A first pass would use knowledge
about each of the major classes, and would instantiate a
script for each, eventually producing the optimal paint
class. This process was then to be repeated (with the
user's agreement) using knowledge of subclasses of the
selected class; and so on until a specific paint was
reached.

From an industrial perspective, this scheme would be most
inefficient. A full script-based system used in this way
for problem-solving would require vast resources, and
enormous amounts of information produced inside the system
(i.e. the details of all the instantiated scripts) would
never be accessed.

85

The second design for ADEPTUS took these criticisms into
account. Scripts are used to lend explanatory power to the
problem-solving system. However, those scripts are no
longer intended to deal with the entire process of
selection. The current scheme is to use a simple
rule-based system to identify perhaps three or four paint
classes that cannot be ruled out in a very simple fashion.
This process corresponds to the selection matrix in
Unilever's text guidelines. Having established this
shortlist, the script-based system can be used to predict
the performance of each candidate solution, and to compare
and rank those performances.

If a simple system based on the propagation of a
certainty-factor through a rule network (a

PROSPECTOR-style system) is used to make a preliminary

selection, the kind of results obtained may be

Final Probability
Paint class 1 0.84
Paint class 4 0.81
Paint class 6 0.79
Paint class 7 0.53
Paint class 2 0.42
Paint class 3 0.21
Paint class 9 0.19
Paint class 5 0.19
Paint class 8 0.11

86

The major drawback in terms of explanation in such a system
lies in the inability to decode the subtleties of meaning
implicit in the single number used to represent the
suitability of a coating. The immediate questions posed by
results in this form are:

Are the differences between the results for paint
classes 1, 4 and 6 significant ?
If so, what do they imply ?

The task of ADEPTUS is to help the user to understand the
implications of the use of these competing coatings in the
problem situation. Running the script-based system will
give a judgment on each coating in terms of values for many
meaningful characteristics of the eventual worn paint film.
This is itself an explanation of some of the results of
the first coarse selection phase.

After the first phase, the user may wish to examine
detailed predictions for coatings that seem less promising.
This may occur, for example, if a large stock of a
particular coating is already available, but the coating is
not initially recommended. The methodology of ADEPTUS
allows the user the opportunity to explore courses of
action that would otherwise be too risky to try.

Both of these uses of the script-based system only require
it to make predictions of the eventual outcome, and in
conventional terms these are the 'problem-solving' uses of
the system. The general question-answering facilities

87

afforded by such a formalism are discussed in Chapter 6.

4.4 A Script for the Selection Task

The industrial guidelines provide an indication of the
portions of the causal model that must be instantiated to
describe the situation constraints. Figure 8 shows the
information aspects of the 'story', which must be provided
by the user, indicated by the shaded area.

Armed with such information, it is now possible to use the
causal model by supplying a description of a coating and
the necessary tools, and 'running' the model. The coating
application acts and processes take place, instantiating as
they do so a description of the resulting wet film. The
drying and/or curing processes then play their part,
modified by the known environment during the transition
from wet film to dry. Having established the expected
nature of the new dry film, the effects of the corroding
environment can then be judged, giving a view of the dry
film after wear.

This running of the model produces an instantiated script
providing a great deal of information about a particular
coating. Selection of the optimal coating must take place
by a comparison of the resultant worn film states of each
of the instantiated scripts. This comparison takes place

88

in two distinct phases. First, the worn film description
can be compared with an 'ideal' worn film; that is to say,

Figure 8

one which has optimal film/substrate adhesion, uniformity
of thickness etc. It is these divergences from the ideal

89

that will then be compared to establish some ranking of the
coatings. No judgments of appropriateness are generated at
the domain level; such judgments are made as part of the
problem-solving task, not at the level of physical
causality.

Let us take a step back from this problem-solving activity
and examine the outline of what is taking place.

(i) the domain level script is instantiated with the
problem constraints.

(ii) for each solution of interest, the causal model
is run to obtain a description of the outcome.

(iii) each outcome description is compared with an
'ideal' outcome, producing a divergence
description.

(iv) these divergence descriptions are compared to
obtain a ranking of the associated potential
solutions.

Just as in chapter 3 a script for archetypal domain level
processes could be described, so it is possible to detect
here a problem-solving script outlining the essence of a
selection strategy. This script outline is quite
independent of the domain of interest: it is equally
applicable to antibiotic therapy selection or to the
selection of standard steel formulations for oil rig pipes.
A clear constraint, however, is that the available
solutions must form a discrete set, or at least that

90

solution spaces having continuous-variable attributes can
be 'sampled' in such a way as to yield a meaningful
collection of discrete solutions.

Representation of physical processes and problem-solving
strategies within the same abstract formalism has the
appeal of elegance, but the representation of
problem-solving must be examined more closely. It is clear
from the summarised description above that the causal
chaining principle can be used to connect together
script-manipulative acts and the resulting states of
knowledge (Figure 9). It is now necessary to examine the
entities filling the places of active and stative images.

4.5 Stative Images

There are two major categories of stative image in the
problem-solving script. The first is the DOMAIN-LEVEL
(d-level) image, which is either a d-level script or a
recognisable part of one. Examples are an environment
description, a description of a gross physical state (e.g.
a coating film in physical contact with the substrate), or
description of a potential solution. The problem-solving
script (the SELECTION-LEVEL or s-level script) is acting
upon or manipulating a d-level script to fulfill its goal
of becoming as fully instantiated as possible, just as
Schank's ACTORs act on objects in their environment to

91

achieve their goals.

Figure 9

The second major category comprises images that are

92

abstractions from the d-level. This encompasses the
divergence descriptions and the solution ranking list.
These abstractions must of course contain references back
to entities in the d-level script used in their generation,
but do not contain the quantity of knowledge carried in
that d-level script.

4.6 Active Images

The ACTs or PROCESSes defined for use in an s-level script
can be approached by identifying classes of tasks which
manipulate other scripts. In Chapter 2, Lehnert's approach
to question answering using script representations was
discussed. The act of answering a question requires that
the causal chain or image of interest be searched, and
possibly used for inference if the answer is not explicitly
available and hence susceptible to simple retrieval. These
processes thus have identical characteristics to those
needed here. Lehnert's categories (like Schank's
primitives) are established ad hoc. Script-manipulative
task categories can be established and Lehnert's categories
viewed as instances of these. See Chapter 6, section 6.
for a detailed discussion.

A TASK is a manipulation or examination of a script-entity,
or part of such an entity. Instances of tasks are the
elements of the problem-solving s-level scripts, and can be

93

described as starting with evidence and searching for a
conclusion or solution to a 'primitive problem'. The
evidence or problem description refers to the state of the
script under scrutiny before the task commences; the
solution or conclusion is comprised of the script
characteristics that are present after completion of the
task. Viewing the d-script as a causal chain, it is
possible to categorise the possible manipulations, thus
describing valid task types.

4.7 Classification of Script-Manipulative Tasks

4.7.1 The Causal/Acausal Differentiation

The first major division proposed is:
(i) CAUSAL TASKS

A class of tasks in which the relationship between the
evidence or problem description and the set of possible
solutions involves a representation (whether implicit or
explicit) of physical causality. Such tasks are susceptible
to domain-level representation as causal chains.

(ii) ACAUSAL TASKS
A class of tasks in which the problem description and
problem solution have only a non-causal relationship. Such
tasks are not susceptible to domain-level representation as
causal chains, but involve only individual images or
fragments of images, i.e. individual entities.

94

4.7.2 Differentiation of Causal Tasks

4.7.2.1 Basis of the Differentiation

The class of causal tasks can be further decomposed on the
basis of the temporal relationship between the point in
time at which the problem is posed, and the physical events
which are symbolically represented.

4.7.2.2 Analytic Tasks

A causal task may be ANALYTIC. The subclass is categorised
by an attempt to discover what past events or world states
could have led to the observations made. Using the causal
chaining representation, let us examine a sequence
describing the reaction between water and sodium,
illustrated in Figure 9.

E

Figure 9

An analytic task seeks the CAUSE of the state observed; in
this case the analytic task would be seeking the cause of
the presence of the hydrogen gas. The time at which the
problem is posed is when State2 is in existence, and the
solution to the problem is obtained by working back down

Sodium immersed
in water

STATE 1

r \
oxidising
reactionL J
PROCESS

hydrogen gas
present

STATE 2

95

the causal chain. In general, then, an analytic task has a
causal chain representation like that shown in Figure 10.

r

t
problem posed
at this time

Figure 10

The SOLUTION here is not implied to be the act
syntactically required to fulfill rule 1 of the Causal
Syntax; it is merely indicated to be somewhere in this
portion of the causal chain.

4.7.2.3 Predictive Tasks

The second fundamental category of causal task is that of
the PREDICTIVE task. Tasks in this subclass look to the
future rather than the past, and attempt to predict an
outcome of a domain situation described to the
problem-solver. Using the example of the oxidation of
sodium, a predictive task would be to describe the outcome
of the situation in which a piece of sodium is immersed in
water. The predictive task represented as a causal chain
therefore has the general structure shown below.

SO LU T IO N O B S E R V E D STATE

96

O B S E R V E D STATE ____ ^ SO LU T IO N
Ë ^

t
problem posed
at this time

Figure li

The observed state is that sodium is immersed in water.
This state enables certain processes, and it is a
description of these processes that constitute a solution
to the predictive task.

4.7.3 Differentiation of Acausal Tasks

4.7.3.1 Basis of the Differentiation

Acausal tasks can be described as RELATION-SEEKING. They
have no causal chain representation; they are tasks which
take as their starting point limited descriptions of one or
more world states, entities, processes or acts, and attempt
to identify currently unknown descriptors for those images
or entities.

The class of acausal tasks can be further decomposed on the
basis of the number of states or acts which are presented
as the problem definition.

97

4.7.3.2 Intraconceptual Tasks

An acausal task may be INTRACONCEPTUAL, that is, concerned
only with a single state or act. This subclass is
therefore characterised by an attempt to discover
additional, currently unknown, information concerning a
unique state of or act within the domain. For example, we
may describe an INTRACONCEPTUAL task concerning a state:

Or, concerning an act:

Figure 13

Intraconceptual tasks are 'slot fillers', where the slot
being filled is a part of the description presented in the
problem description.

98

4.7.3.3 Interconceptual Tasks

The other basic subclass of acausal tasks is that of
INTERCONCEPTUAL tasks. Such tasks are characterised by
their use of two or more distinct concepts in the problem
definition. Interconceptual tasks are capable of using
concepts from different levels: this leads us to define two
separate subcategories.

An ABSTRACTING interconceptual task has two or more
domain-level concepts as its problem description. Thus
such tasks can be thought of as 'comparative' tasks.
Similar concepts are provided and examined and the
differences or similarities are sought; or the submitted
concepts are ordered on the basis of some specified
attribute. For example:

Figure 14

Here, the values of corresponding 'slots' for each item are
involved, and the answer is not a slot value belonging to
either item. For example, both cotton and silk may have

the property ’origin'. The value for silk will be animal,
and the value for cotton will be vegetable. The solution
to the abstracting interconceptual task certainly concerns
the 'origin property of the fabrics, but the 'value'
attributable to some 'origin' slot in the solution will be a
more complex structure than a value in a fabric schema. It
is unlikely that the difference would be regarded as a
’property’ of either or both items; rather is this
difference only meaningful for the combination o f 'items.
The task has provided as its solution a state description
which is unlike the states that formed the problem
definition. The solution does not describe a real-world
object, but instead is referring to a more abstract concept
involved in problem-solving. The abstracting
interconceptual task has moved from the domain-level states
described in the problem definition to an s-level entity
produced as its result.

A SPECIFYING interconceptual task has a heterogeneous set
of state descriptions with respect to the level of the
description. That is, one or more states in the problem
definition must be at the d-level and (at least) one at
the s-level. The fundamental idea here is to take
something known about how a problem can be solved (the
s-level concept) and some general knowledge about the
domain of interest (a d-level concept). By combining these
pieces of information from different levels, a more
specific picture of a possible state of the domain can be

100

created. The detailed domain state can then be used in
various causal tasks to obtain further domain-level
information.

For example, the description of known solutions in ADEPTUS
is an s-level concept. This can be merged with the
d-script 'in parallel' to yield alternative worlds, each
world detailing one of the possible solutions. This
'shattering' of the possible solutions is an example of a
specifying interconceptual task.

4.8 Conclusion

A pattern can be detected in the actions required to make a
selection from the known solution set of the anti-corrosive
coating domain. This typical sequence of actions has, like
the domain level processes, been represented in script
form.

The s-level script is concerned with manipulations of the
domain-level script and individual concepts. The possible
manipulations have been described in a set of primitive
tasks organised into a hierarchy. This task hierarchy is
independent of the domain of the script which is being
manipulated. The categorisation of the primitive tasks
will be of central importance when Lehnert's question
classification is reviewed in Chapter 6.

101

The next chapter concerns the details of the current
implementation of the ADEPTUS system.

102

5 DESCRIPTION OF THE ADEPTUS SYSTEM ARCHITECTURE

5.1 Introduction

The ADEPTUS system is a knowledge base centred on the
script formalism, employing demons, rulebases and
procedural knowledge where appropriate. It is implemented
in SRL from Carnegie-Mellon Intelligent Systems Laboratory.
SRL was chosen as the only language available to me at that
time which offered a powerful frame-based representation,
supporting inheritance (both automatic and user-defined)
and 'contexts' to allow independent reasoning in
simultaneously existing 'parallel worlds'. The initials SRL
stand for Schema Representation Language, and an enhanced
version of the language is now commercially available under
the name of KnowledgeCraft.

SRL is written in Franz Lisp. Its basic representational
formalism is the schema or frame. A schema has several
slots, each of which can hold one or more values. Often,
the value of a slot is the name of another schema. Thus
the slots act as links between schemata. When describing a
schema in a diagram, I shall adopt several notation
conventions: these will be explained when they are
introduced.

Inheritance via is-a and instance links between schemata is

103

automatic; other inheritance paths and inheritance types
can be defined by the programmer. As an example of a
programmer-defined inheritance path, consider the
following. If a schema used in a script describes a state,
some values in that state may be altered as progress is
made throught the script. We might then describe the
initial state as schemal, and the next alteration to this
state as schema2. Links can then be established to assert

{{ schema2
is-a classname
successor-to schemal }}

Figure 15

This illustrates the schema schema2. The definition of the
entire schema is surrounded by double braces. The first
symbol inside the braces is the name of the schema to which
the definition belongs. Below this is a collection of
pairs, each pair consisting of a slot name (in italics) and
the associated slot value. In the above example, there are
two slots, i s-a and s u c c e s s o r - t o . The value of each of
these slots is a schema name. (Bold typeface is used for
the names of schemata.)

If we define suitable inheritance characteristics (in the
form of an inheritance schema) for the s u c c e s s o r - t o link,
it becomes possible to access any slot and slot value of
schemal from within schema2. Unlike the is-a link which

104

denotes the position in the class-subclass hierarchy, the
successor-to link is not intended to denote that schema2 is
a subclass or element of a schemal set, but merely
indicates that unless information is available to the
contrary, we can assume that values attributed to schemal
are still valid within schema2.

Several types of inheritance can be defined within SRL.
For example, the definition of a mapping inheritance
specification schema allows inheritance of a modified slot
value from one schema to another. So if for instance the
t h i c k n e s s slot of schemal has a value of 100, we could
define a mapping inheritance specification schema in
schema2 for the thickness slot, such that the value of the
schema2 slot, if obtained by inheritance, was 10% of the
unmapped inherited value. Thus, if we request a value for
schema2 t h i c k n e s s and the value can only be obtained by
inheritance from schemal, then the inherited value will be
returned as 10.

Within SRL, schemata can be defined within 'contexts'.
These contexts can be arranged hierarchically, and any
schema within a context is permitted to inherit slots and
values from the same schema in an ancestor context. For
example, a general version of the domain-level script
$d-script is established in a schema within the root
context. (This, is the SRL system default context.) When
$d-script is instantiated with details of a particular

105

solution, i.e. a particular coating, a new child context is
created to deal only with that specific solution. So when
instantiating $d-script with details of a bitumen coating,
the instantiation is done in a new context, bitumen. (Names
of contexts will be show bold and underscored.) Thus from
within the bitumen context, $d-script can inherit values
from $d-script in the root context, while creating and
manipulating values in $d-script which are relevant only
when considering bitumen coatings. Values established in a
child context do not corrupt ancestor context values, thus
enabling reasoning in alternative worlds. This is central
to the way ADEPTUS handles the task of considering
different candidate solutions.

5.2 The Knowledge Base

5.2.1 Overview

Several types of knowledge are relevant to the task of
selecting the optimal anti-corrosive coating for a given
situation. It must be possible to represent the physical
processes at work as a coating is applied, dries, and is
put into service. Some representation of the substrate
material must be present. Information must be available
about individual coatings, whether considered in bulk, as a
wet film on the substrate, or as a dry film. Such knowledge
may encompass chemical information, visual descriptions,

106

physical attributes, and the manner in which these and
other external factors interact under certain
circumstances. This implies that some knowledge about
external influences must also be present in the system.
Such knowledge includes, for example, descriptions of
various chemicals, corrosive environments and mechanical
forces which may act upon a coating film. Distinct from
the knowledge that contributes to the causal model within
the system is a body of information about the system's
problem-solving task. This is knowledge of the procedures
required to select one of a finite set of discrete
solutions. This 'problem-solving script' is maintained
independently of the causal model and its associated
knowledge base.

5.2.2 Scripts

5.2.2.1 Structure of the scripts

Scripts in ADEPTUS are essentially uninstantiated causal
chains. Each script is implemented as a schema in SRL. The
domain-level script is called $ d - s c r i p t ; the
selection-level, $s-script. $d-script has two kinds of
slots: state slots and process slots. $s-script has state
slots and act slots. (In the remainder of section 5.2.2, it
is unnecessary to distinguish between 'acts' and
'processes', so only the term 'process’ will be used.)

107

Each slot has associated with it a 'meta-schema'. A
meta-schema holds information about the slot to which it
belongs. As the name implies, the meta-schema is itself a
schema, and its information is held in slots and slot
values. This information can originate from two sources;
system defaults and the programmer. Any slot known to SRL
has a standard meta-schema linked to it, containing such
slots as range, default, cardinality etc. Other slots may
of course be added by the programmer. The slots of this
meta-schema are described as the 'facets' of the original
slot, and will be denoted by the use of a different typeface.

States and processes in the script are fashioned into a
causal chain via certain facets. For forward movement in
the script, the stative image slots have an enables facet,
the value of which indicates which processes are enabled by
that state. Active image slots have a forward-link facet
called results-in, pointing to the resultant states. Inverse
pointers exist. The enables facet has an inverse of
prerequisites, and the results-in facet has an inverse of

produced-by.

Most slots in ADEPTUS have eponymous schemata that are part
of the relation hierarchy. It is the root of this hierarchy
that provides the template for a slot's meta-schema. Thus
the relation schema itself is a general description of
information that should be available to describe any slot

108

in the system.

Any schema that inherits from the relation schema can have
a named inverse relation. This inverse relation can
automatically be put into place (if an SRL switch is set
appropriately) when a slot is created links two schemata.
The logical inverse of the enables slot is p r e r e q u i s i t e s .
Thus, when a link of the form

stateX enables processX
is created, one can envisage this facility being employed
so that an inverse link of the form

processX prerequisites stateX
is automatically put into place. Similarly, the logical
inverse of r e s u l t s - i n is p r o d u c e d - b y , so the creation of
the link

processX results-in stateY
would also imply the creation of the reverse link

stateY p r o d u c e d - b y processX.
However in ADEPTUS this facility cannot be employed in this
way. This is because enab l e s is not a slot of the schema
stateX. Although there is a schema called stateX, it is
only an eponymous schema for the slot s t a t e X , whose
presence serves to establish s t a t e X in the relation
hierarchy. So, while e n a b l e s is a slot of stateX, it is
being used as a facet of the s t a t e X slot in the $d-script
schema. e n a b l e s is a slot of a meta-schema. The actual
relationship is thus

109

$d-script st a t e X <value>

I meta-schema
I

m00031 enables processX
m00031 is a schema created by SRL, and is an i n s t a n c e of
the stateX schema. Any automatic inverse creation would be
between the meta-schema of the state (m00031), and the
processX schema. The inverse links are therefore created
by explicit command. This enables movement in both
directions along the causal chain.

The domain-level script currently begins with a description
of the world before a coating has been applied to the
substrate, but it assumes that surface preparation has
already been carried out. The elimination of the surface
preparation description simplifies the model in two ways.
First, the sheer size of the script is reduced; and
secondly it means that all active images at the domain
level are processes, thereby excluding any need to deal
with physical acts. This is because operatives are required
to prepare the surface and to apply the paint (whether
those operatives are human or robot) , but once the paint
film is in contact with the substrate, no further
intervention by purposeful actors is required. Thus all
subsequent active images are processes.

The selection-level (s-level) script describes the actions

110

of ADEPTUS in carrying out selection from a set of known
potential solutions. All its active images are ACTS, and
ADEPTUS is implicitly the actor. The actions are
manipulations of the d-script; they can be regarded as
'thoughts' of the system, and hence are analogous to
'mental acts' in Schank's work.

5.2.2.2 Active Images

An active image has two quite separate effects when it
'executes', whether at the s-level or the d-level. In
order for the system to attempt to carry out, say, the
drying process within the model, the enabling state must at
the very least be adequately instantiated. If it is, then
the execution of the drying process will do two things:
firstly, it will instantiate the resulting state. It
accomplishes this by creating a binding list to indicate
that the resulting state slot has a fixed value. This is
the macro-effect of the process. Secondly, it will alter
some values in the schemata that constitute the binding for
the resulting state. This is the micro-effect of the
process. For example, the STICK process is described in the
STICK schema shown in Figure 16.

All processes in the d-script and acts in the s-script have
such an associated eponymous schema.

Ill

}}

{{STICK
is-a physical-process
script-level $d-script
macro-effects (employ-rules '(<rulebase>))

Figure 16.

For example, Figure 17 shows a process slot in the
$d-script schema.

{{$d-script

p r o c e s s 2 (STICK ?C ?S)
[instance processslot]
[results-in state3]
[prerequisites state2]
[can-affect ((coating adhesion))]
[affected-by ((substrate constituents)

(substrate surface-key))]

[binding-list ((?E . application-environment4)
(?C . wet-film-bitumen2)
(?S . substrate3))] }}

Figure 11

The macro-effect operates on the state indicated by the
value of the causal link results-in. The way in which this
state is instantiated is governed by knowledge held in the
value of a slot attached to the STICK schema. The value of
this slot must be executable; in all cases thus far in
ADEPTUS, it is a rulebase with an interpreter function.

112

The micro-effect of the process is permitted to alter
values within the schemata which constitute the bindings
for the resulting state. The choice of slots affected by
the process is controlled by a facet of the process slot
(see Figure 17) . The facet is a can-affect link between the
active image in the script and the attributes altered by
the process involved in that image. The value of the facet
gives the names of the affected schema slot combination in
the resulting state. The way in which each schema-slot
value is affected is controlled by a 'demon' attached to
that slot. Whenever a value is to be created or modified
for the slot, the demon uses its rulebase or other
executable code, plus the details of the state enabling the
current process, to generate the appropriate predicted
value for that point in the script.

The positioning of the macro-effect knowledge and the
micro-effect knowledge is important. The macro-effect is
relevant any time that the process is carried out. If we
consider a system where the domain is crop-spraying, a
TOUCH process in the domain-level script would have the
same macro-effects on its resultant state as it does in the
anti-corrosive coating domain. In contrast to this, the
actual schema-slot combinations affected would be quite
different in the two domains, as would the manner in which
they were affected. Thus, the macro-effect knowledge is
stored with the process information; whereas the
micro-effect knowledge is specific to the schemata that

113

contain domain-specific knowledge, and is stored
appropriately.

Details of individual processes and the manner in which
they execute can be found in section 5.3.4.

The can-affect facet of a process slot is a forward link to
the resultant state. A reverse link also exists, which
shows the elements of the enabling state which are relevant
to the micro-effects of the process. This reverse link is
the affected-by facet.

{{$s-script

process4 (COMPARE ?$D ?IDEAL)
[instance processslot]
[results-in state5]
[can-affect (Divergence)]
[affected-by ($d-script ideal)]

. . . }}

Ficrnre 18

5.2.2.3 Stative Images

The value of each state slot in the script schema is a
simple representation of the pertinent parts of the total
world state; e.g. (?C ?S ?E) , meaning that the interesting
parts of the total world state are the coating, the
substrate and the environment, represented by the tokens

114

?C, ?S and ?E respectively. At the domain level, this
total world state encompasses such diverse schemata as
environment, coating and substrate. At the selection level,
relevant schemata are $d-script, Divergence and Ideal.

In some states, a major part of the world description can
be ignored. For example, at the domain level, the state
between the TOUCH and STICK processes has no need to refer
to the environment. The environment is of course still
part of the total world state, so it must be possible to
enquire about it at the current point in the d-script even
though it does not figure in the state value. This type of
ability in ADEPTUS is achieved by the manipulation of a
binding-list attached to the state slot. The actual value
of the state slot is never altered if the script is running
normally; that is, if the process causing the state has not
been disabled. The modifications made to the state on
instantiation affect only the binding list attached to the
slot. Thus a token in the state value is associated with a
particular schema only through the binding list, not by
substitution of the token. The binding list is inherited
from the prior image in the causal chain, and is merely
modified as necessary. Thus, although the environment may
not be explicitly mentioned in a state, it will still be
present in the binding list, and hence available for
scrutiny when required.

If, however, the causative process for a state has been

115

disabled, this may affect the value of the state itself.
For example, at the domain level, if the TOUCH process were
disabled for any reason, the resultant state value would no
longer have the form

(PHYSCONT ?C ?S)
since there would be no physical contact between the
coating (?C) and the substrate (?S) . The state value
would simply be given as

(?C ?S)
indicating the existence of both coating and substrate
without physical contact.

{{$d-script

state3 (?ED ?S)
[instance stateslot]
[enables process3]
[produced-by process2]
[active-enablers ((coating adhesion)

(coating flexibility)
(coating hardness)
(coating single-film-thickness)
(environment-description at m o s p h e r e))]

[active-results ((substrate constituents)

(substrate surface-key))]
[binding-list ((?E . drying-environment)

(?C . wet-film-bitumen3)
(?S . substrate-!))]

. . . }}

Figure 19

116

{ {$s-script

state2 (?$D ?SOL)
[instance stateslot]
[enables process2]
[produced-by process3]

}}

Figure 20

State slots have an active-enablers facet illustrated in the
example in Figure 19. This contains the schema-slot
combinations in the state whose values may affect the
performance of the enabled processes. The value of this
facet maybe regarded as the inverse of the affected-by facet of
the enabled processes. Figure 19 illustrates a typical
domain-level state representation, and Figure 20 a typical
selection level state representation.

5.2.2.4 The Binding List

The binding list is a facet applicable both to process and
to state slots. The necessity for its existence was
explained in section 5.2.2.3; for any given slot it is a
list of pairs of objects, each pair consisting of a token
and a schema name. This association of tokens and schemata
gives a snapshot of the characteristics of the domain at
the current point in the script. It always represents the
fullest possible description of the domain, regardless of

117

the focus of interest of its owning slot. Examples of the
binding list in the domain level script can be seen in
Figures 17, 18, 19 and 20.

5.2.3 Knowledge about coatings: The set of potential
solutions

5.2.3.1 The coating hierarchy

The potential solutions of the selection problem are all
nodes of the i s - a linked hierarchy that has the schema
coating as its root (See Figure 21).

Figyr$_2],

As a coating is applied and hardens, its attributes change.

118

The representation of the various 'phases' of the coating
lifecycle are held as separate subclasses of the coating.
This is not an entirely satisfactory solution to the
problem. An earlier solution was to employ SRL's context
capability, defining p o t , we t,-film. and dry-film as
contexts. From these contexts, one could view a particular
coating and only perceive the attributes relevant to that
context. This seems a more elegant solution than the
somewhat cumbersome is-a link' hierarchy. However, the use
of contexts in describing domain-level knowledge precludes
the use of contexts for reasoning in alternative worlds.
It is not possible in SRL for a child context to inherit
through more than one path to the root-context; that is,
one cannot ask about a state where the context is
dryina-oil-paint (the WORLD context) AND the context is
dry-film (the PHASE context) . This is unfortunate, since
the ability to partition each of the alternative worlds
into various contexts is inescapable. Of the two primary
context hierarchies that I needed, the world context is
essential to the implementation of the selection process,
i.e. the s-script. Therefore, this was judged to carry a
greater importance than the elegant representation of
domain-specific information.

The slots of the leaf nodes in the coating hierarchy are
available to the leaf node schemata by inheritance.
However, they are not inherited from within the coating
hierarchy, but from another hierarchy, of which the coating

119

f ig urg 2 2

leaf nodes are also nodes. This hierarchy is the phase
structure described below. Thus, the ability of a schema
to belong to multiple schema hierarchies has been
substituted for the requirement for inheritance from
multiple contexts.

5.2.3.2 The phase hierarchy

Regardless of the particular coating used, a film of

120

{{pot-bitumen
is-a (bitumen pot)
viscosity (2 3)

[instance descriptive-dimension]
p r i c e (4 8)

[instance exact-dimension]
[units sterling-per-litre]
[valid-range (0 100)]

coverage (5 8)
[instance exact-dimension]
[units sq-m-per-litre]
[valid-range (0 1000)]

Figure 23

{{wet-film-drying-oil-paint
is-a (drying-oil-paint wet-film)
drying-method oxidation

[instance feature]
time-between-coats (0.5 0.7)

[instance exact-dimension]
[units log-hours]

state liquid
[instance feature]

adhesion

[instance descriptive-dimension]
thickness

[instance exact-dimension]
[units microns]

defects

[instance feature]

Figure 24

{{dry-film-drying-oil-paint
is-a (drying-oil-paint dry-film)
state solid

[instance feature]
hardness

[instance descriptive-dimension]
flexibility

[instance descriptive-dimension]
finish gloss

[instance feature]
adhesion

[instance descriptive-dimension]
thickness

[instance exact-dimension]
[units microns]

defects
[instance feature] }}

Figure 25

material has characteristic attributes. The same can be
said of a coating in bulk in the pot. It is these
characteristic attributes which are bequeathed in the phase
hierarchy. (See Figure 22.) Using the slots inherited
through this structure, the different phases of a coating
can be fully described. Figures 23, 24 and 25 illustrate
the description of the three phases of a drying oil paint.

At the intersection of the coating and phase hierarchies
there exist schemata containing values specific to a
coating, with slots appropriate to the phase under
consideration.

122

Each slot has several facets associated with it. Some of
these are inherited from the eponymous schema connecting
the slot into the relation hierarchy. These facets are
discussed further in section 5.2.5.2 below. An SRL-defined
facet of great importance is also associated with each
slot, although it has not been included in previous
diagrams for the sake of clarity; this is the demon facet.
It contains the name of zero or more demon schemata, which
define any action to be taken when the value of the slot is
under discussion. The demon schema controls the type of
slot access for which the demon will be roused (e.g. value
retrieval or value creation) and the point at which the
demon will act relative to the time of the access. Thus a
demon may be aroused before or after accessing the value.

The demon facility in SRL is intended for use in reactive
processing; that is, when a slot value takes on a certain
value another slot may need to change its value in a
specific manner. (The example supplied by the creators of
SRL is that when the fido m o o d slot takes the value
'happy', then the fido tail slot should immediately be set
to 'wagging'.) However, in ADEPTUS the demon schemata are
employed as repositories for specialist knowledge bases
that are competent to predict the associated slot's value,
depending on the world state that obtains when they are
invoked. In this sense they are comparable to Minsky's
'agents’ [Minsky 1979].

123

5.2.3.3 The Ideal Film

There is within ADEPTUS an Ideal schema, which
characterises the perfect solution to all corrosion
problems. This description is an agglomeration of the best
attributes of all the coating films (i.e. solutions) known
to the system. Thus the ideal film is flexible, hard, and
extremely well adhered to its substrate. The value of +3
given to any descriptive-dimension slot is the maximum
possible. The film is impervious to extremes of temperature
and to any chemical spillage, and capable of sustaining
severe mechanical damage without loss of integrity: this
is reflected in the value solid for the state slot, and the
nil value in the defects slot. It is made from a cheap bulk
phase; the value in the price slot is that of the cheapest
coating known to the system.

Certain slots within the Ideal schema do not have categoric
values assigned to them. In Figure 26 these are the
thi c k n e s s and the finish slots. The ideal thickness of an
anti-corrosive coating depends on two factors; the coating
under discussion and the desired effective lifetime of the
coating. The diagram in Figure 27 illustrates this. The
nature of the coating can be isolated from the context in
which the Ideal schema is employed. The desired lifetime
is a preference on the part of the user. (I say preference
rather than requirement, since it is just such factors

124

{{Ideal
state solid
hardness +3
flexibility +3
finish

adhesion +3
thickness
defects nil
price 1.5 }}

Figure 26

which may be compromised in the face of other
considerations, notably cost.) The ideal f i n i s h of a
coating is also a preference on the user's part. If the
user wants a high-gloss finish, then that is the ideal. If
the user indicates indifference to the finish obtained,
then no ideal value is available. The thickness and finish
slots do not contain values, but have attached demons that
provide a mechanism for obtaining the ideal value in the
current situation.

The Ideal schema does not actually belong to the physical
domain, since it has no correspondence with a real physical
entity. It can better be thought of as a figment of
ADEPTUS' imagination; a mythical entity against whose
advantages any candidate recommendations will be judged. It
is a necessary construct for the problem-solving
capabilities of ADEPTUS when a selection task is being
undertaken. It is described here because of its
participation in the phase hierarchy. Although the Ideal

125

schema is supplied to ADEPTUS as part of its initial
knowledge base, it could in fact be omitted. ADEPTUS could
include sufficent knowledge for the construction of the

Minimum Film Thickness

(microns)

lime to first
^ ^ ^ m ain ten a n c e

coating ..

<5
years

>20
years

drying oil
paint 85 230

chlorinated 120 300rubber

bitumen 250 500

Figure 27

Ideal schema from the best possible dry film phases of the
potential solutions in the knowledge base. The knowledge
about non-agglomerated ideal values (i.e. t h i c k n e s s and
finish) would of course need to be supplied to ADEPTUS to
be incorporated in the schema.

5.2.4 Knowledge about the Substrate

5.2.4.1 Substrate representation

A hierarchy exists in ADEPTUS having the schema substrate

126

as its root. This hierarchy is illustrated in Figure 28.

Figure 28

Clearly, it must be permissible to nominate a surface
impurity as a substrate; very few substrates will be
entirely free from impurities of some sort. However,
Figure 21 shows that the surface-impurity schema is also a
node in the coating hierarchy. This enables the system to
view a surface impurity as a substance deposited on the
substrate at some past time and thus susceptible to
removal.

When a problem description is formulated, a substrate
description must be created. A major representational
problem was encountered here; that of how to describe a
physical three-dimensional arrangement in simple symbolic
fashion. An example of the physical reality of the

127

substrate is depicted in Figures 29 and 30.

Cross Section

Figure 29.

Plan View
mill scale

water

grease

steel

Figyrg 3Q

Obviously such an arrangement has many attributes. From
Figure 29 one can nominate for consideration the substances
involved, their relative positions in the 'sandwich'

128

between essential substrate and environment, and the
thickness, adhesion etc of each layer. From Figure 30 it
is apparent that the composition, area and distribution of
each uppermost layer should be noted.

These attributes would indeed be required to produce an
accurate and reasonably complete representation of the
substrate-system, but they are not all necessary to
ADEPTUS' purpose. First, one'1 could not reasonably expect
such detailed information to be provided by the putative
user of the system. So from that viewpoint a substrate
representation of such complexity is wasted. Secondly, the
domain knowledge contained in ADEPTUS does not predict
events in the physical world with accuracy sufficient to
utilise such a representation. The error margins of the
domain-level inferences are simply too large for such a
fine-grained substrate description.

The description of the substrate in use in the current
version of ADEPTUS revolves around the constituents slot in
the created schema. For example:

constituents ((water . 40)(mill-scale . 30)(steel . 50))
The value of the slot is an association list. The last
element in the list represents the essential substrate.
Any overlying layers are represented by elements added to
the head of the list. The first element then shows the
outermost layer of the composite surface.

129

Each element in the a-list is composed of a schema name as
the key and a number in the range 0 to 100 as its
associated value. The numerical value indicates the
percentage of essential substrate covered IN TOTAL by its
key substance. The obvious exception to this is the pair
whose key is the essential substrate itself. In this case,
the numerical value indicates the percentage area exposed.
It is clear from the example that substances overlying the
essential substrate may overlap partially, completely or
not at all. In the example, the water (40%) and mill scale
(30%) must overlap to some extent to give a value of 50%
bare steel.

The two remaining slots in any substrate schema are
s u r f a c e - k e y and t e m p e r a t u r e . The former is a dimension
whose value is directly related to the standard of surface
preparation decided upon by the system user. The latter is
also, of course, a dimension. It gives the temperature of
the substrate itself, as distinct from the environmental
temperature. This may be important when the ambient
temperature is within a climatically normal range, but the
substrate is maintained at an abnormally high or low
temperature.

130

5.2,5 Associated Entities

5.2.5.1 Liquids

There exists within ADEPTUS a hierarchy with the schema
liquid-substance as its root. This hierarchy is illustrated
in Figure 31. Four major subtrees are evident, having
chemical, oil, resin, and water as their root schemata.

The chemical subtree is present for use in describing
spillages on the coated surface. The leaf nodes of the
initial knowledge base hierarchy can inherit the pH slot
from the chemical schema, but no value is placed in this
slot. A restriction on the values which may be used for the
p H slot is specified at each leaf node by using the
SRL-defined range facet. This enables the specification of
(in this case) a piece of Lisp code which will be used to
test any submitted value. Thus it is possible to restrict
the acid p H values to between 0 and 7, and the alkali p H
values to the range 7 to 14. (A perhaps surprising
omission in the description of the chemicals is the absence
of a chemical-f o r m u l a slot. This was a part of the
original design of this tree, but it quickly became obvious
that to employ symbolic representations of chemical
reactions would be beyond the scope of the current
research.) Values for the slots in the specific chemical
schemata are supplied by the user. Thus, if a likely
spillage is weak hydrochloric acid, a child schema of

131

132

Figugë_31

vj
y

hydrochloric-acid is created and the value 5 or 6 put into
the inherited p H slot. In the absence of contradictory
information, the t e m p e r a t u r e slot will take the value of
the environmental temperature. This value will not be put
into the t e m p e r a t u r e slot unless it is specifically
accessed.

The oil and resin subtrees are present because they
describe common constituents of one of the major' paint
classes. Active use of such information in the predictive
sense will require more detailed domain-level knowledge
than is currently available in ADEPTUS.

The requirement for the existence of the water subtree is
twofold. First, dry coating films are generally sensitive
to immersion in water, and to persistent use in a splash or
spray zone. Secondly, moisture in the air can be of great
significance during the application of a coating. If a
water film is present on the substrate, this moisture can
be trapped between the coating and the substrate causing
localised lack of adhesion. If the trapped moisture
subsequently vapourises, the non-adhered coating can be
forced away from the substrate to yield characteristic
'blistering'. For this reason, the water schema is also a
node in the surface-impurity hierarchy.

133

5.2.5.2 The relation hierarchy

As previously stated, all slots in ADEPTUS are nodes in an
is-a hierarchy with the SRL system schema relation at its
root. This hierarchy can conveniently be discussed in two
separate parts.

The first part is the tree of relations concerned with
script definition, and is illustrated in figure 32a.■ These
relations are employed in scripts at either level, since
the scripts are intended to function in essentially the
same way regardless of the script domain. The script
definition relations fall naturally into two categories,
script slots and script facets. The meaning and function of
these relations was described in section 5.2.2.

The second part of the r e l a t i o n tree is shown
diagrammatically in figure 32b.

The leaf nodes of the feature and dimension subtrees are
relations specific to the physical domain of expertise.
Domain-level attributes can be categorised on the
continuous/discrete quality of the set of possible values
for those attributes. A dimension has a continuous set of
values, whereas a feature has a discrete set. This was
discussed in section 3.5.2. The control of the range of
possible values for features is undertaken using SRL' s
system-defined range facet for the slots. Thus it is

134

possible to restrict the value of an i m m e r s i o n - i n slot to
some entity within the liquid-substance hierarchy, or the
value of m e c h a n i c a l - d a m a g e to be an instance of either the
abrasion or the impact schema.

The dimensions known to ADEPTUS are divided into exact
dimensions and descriptive dimensions. Different facets
are attached to each class.

The exact dimensions are those given a numeric value which
has some physical significance. Examples in ADEPTUS are
temper a t u r e and price. These dimensions are illustrated in
Figure 33.

135

^atmosphere ^

mechanical
-damage)

_^plashed-by ^

<s
-Qld

<

immersion-m 3

drying-
method

^colour^—

(finish

microlocation J
(defects^—

macrolocation

(appropriate j
\ -t001 J
-(tool-used)

~) (S H

K3
constituents)

Figure 32b

dimension
units
valid-range

exact-
dimension

-^temperature ^

Ktime-between |
-coats J

single-film j
-thickness J

-(tM

descriptive
-dimension

valid-range (-3 +3)
units nil
english-scale

thickness)
coverage)

- 4

-Q

price)
shelf-lifeD

4 f)

(Íhumidity
(flexibility

0hardness(3adhesion0 ~

>
(viscosity^-

{{temperature
is-a exact-dimension
units degrees-C
valid-range (-100 600) }}

{{price
is-a exact-dimension
units sterling-per-litre
valid-range (0 100) }}

Figure 33

136

Descriptive dimensions are assigned rank values on a fixed
scale. The units of this scale are imprecise and do not
correspond rigorously to measurable values in the physical
world. For example, consider Figure 34.

{{adhesion
is-a descriptive-dimension
valid-range (-3 +3)
english-scale (strong weak) }}

{{viscosity
is-a descriptive-dimension
valid-range (-3 +3)
english-scale (thick thin) }}

This shows the dimensions of adhesion and viscosity; both
are experimentally measurable quantities with standard
units. However, the use of such units is once again at too
fine a grain size for ADEPTUS. Neither the information
provided by the user nor the accuracy of the inferences
require such details. The descriptive dimensions have
associated with them a slot english-scale which enables the
value of the dimension to be translated into English in a
simple way. Qualifiers are associated with the modulus of
the integer part of the value of the dimension as follows.

Figure 34

INTEGER QUALIFIER
fairly1

2 very
extremely3

137

These qualifiers are used as a prefix to the appropriate
adjective taken from the e n g l i s h - s c a l e slot; the first
element of the list which is the slot value corresponds to
positive values of the dimension, the second to negative
values. A zero value has no prefix and always corresponds
to the word 'average'. For example:

adhesion -1 => adhesion fairly weak
viscosity 2 => viscosity very thick

All the dimensions known to ' ADEPTUS could be represented
uniformly; all as exact dimensions, or all descriptive.
The criterion for usage of one category in preference to
the other is a purely pragmatic one. The considerations
that led to the assignment shown in figure 32b are the
terms used by the human expert and the level of detail that
he or she employs.

The remaining subtree of the relation hierarchy, feature,
is also shown in the Figure 32b.

5.3 Performing the Selection task

5.3.1 Introduction

The following subsections describe the steps taken by
ADEPTUS in trying to make a selection of an anti-corrosive
coating. The structure and meaning of the information
supplied by a user of ADEPTUS is described. The workings

138

of the s-script and the d-script are then explained,
focussing on the active images and their effects on the
'mental state' of ADEPTUS.

5.3.2 Situation Specific Knowledge

5.3.2.1 Overview

The surface characteristics of the user interface are not
of interest in this research. I have therefore omitted
from the s-script any input/output acts which would be
necessary for a satisfactorily complete system. The user's
input is viewed as instantiated schemata already in a form
suitable for use by ADEPTUS.

The information from the user must encompass a description
of the substrate when ready for coating, and
characteristics of three distinguishable environments:

- the conditions obtaining when the coating process
takes place

- the conditions obtaining during the drying of the
coating

- the likely environment for the coating during its
effective lifetime.

The third of these includes information on possible
chemical spillages and mechanical damage to the coating.
Such information must be available to ADEPTUS before the

139

problem-solving process can begin.

5.3.2.2 The substrate

Knowledge about the substrate is held in a child of the
substrate schema described in section 5.2.4. Both the
con s t i t u e n t s slot and the s u r f a c e - k e y slot values will be
influenced by the preparation carried out on the surface.
If, as is presently true, no representation of preparation
exists in the causal model employed by the system, a simple
translation can be made between a standard surface
preparation (e.g. Sa3, Sa2 in the Swedish Standard)
supplied by the user and the appropriate values in the
internal schematic representation of the substrate.

5.3.2.3 The Environment

Three separate environments are of interest in the problem
of selecting an anti-corrosive coating. The first two of
these refer to the environment in which application of the
coating is carried out and the environment in which drying
occurs. Three essential factors are included in the
a p p l i c a t i o n - e n v i r o n m e n t and d r y i n g - e n v i r o n m e n t
schemata: the atmospheric humidity, the ambient temperature
and the 'microlocation'. The microlocation shows whether
the substrate is indoors or outdoors, sheltered from rain
or exposed to the elements. The m i c r o l o c a t i o n slot is a

140

feature; both of the other slots are dimensions. See
Figures 35 and 35. In these examples, instances of
application-environment and drying-environment have
been created to hold the user's situation description,
application-environment and drying-environment are
b o t h s u b c l a s s e s i n h e r i t i n g from the
environment-description schema.

{{application-environmentl
instance application—environment
h u m i d i t y (-3 1)

[instance descriptive-dimension]
temperature (10 20)

[instance exact-dimension]
microlocation indoors

[instance feature]
[range (or indoors outdoors)] }}

Figure 35

{ {drying-environment1
instance drying-environment
humid i t y (-3 1)

[instance descriptive-dimension]
temperature (10 20)

[instance exact-dimension]
microlocation indoors

[instance feature]
[range (or indoors outdoors)] }}

Ficrure 36

141

The values for t e m p e r a t u r e and h u m i d i t y are ranges of
user-estimated values. The information coming from the
user is in the form of predictions of future environments.
Certainly in the anti-corrosive coating domain, where
factors such as weather can influence choice, it is not
feasible to expect the user always to be categoric about
the expected environment.

Often, as in the example, ' the application and drying
environments will be identical, but this is not necessarily
the case.

The most interesting of the environment descriptions is the
corroding-environment schema. This is shown in figure 37.
The three slots from the application/drying environments
are still relevant, but several other factors now come into
play.

The syntax of SRL's range facet allows a wide range of types
of restriction. The ar used in the microlocation and
macrolocation slots requires that the slot value be one of
the schemata names given. 2.1 .St demands an ordered list
conforming to the restrictions described in its arguments.
Thus, acceptable values for macrolocation would be (rural
inland), or (industrial coastal) etc. The type
restriction is characteristic of SRL. It requires that a
value should bear a certain relation to another schema.
For example, the value of the immersion-in slot must be a

142

{{corroding-environment
is-a environment-description
humidity

[instance descriptive-dimension]
temperature

[instance exact-dimension]
mi croi ocation

[instance feature]
[range (or indoors outdoors)]

macrolocation

[instance feature]
[range (list (or rural industrial)

(or coastal inland))]
splashed-by

[instance feature] /
[range (set (type is-a liquid-substance))]

immersion-in

[instance feature]
[range (set (type is-a liquid-substance))]

mechanical-damage

[instance feature]
[range (set (type is-a mechanical-damage-description))]

}}

Figure 37

is-a liquid-substance. This relationship need not be
direct; it is quite acceptable for the link to be via an
inheritance pathway. So, although salt-water is a
grandchild, not a child, of liquid-substance, the is-a link
permits inheritance, and the range restriction on the
i m m e r s i o n - i n slot would be satisfied with the value
salt-water. set allows values which are unordered lists
of zero or more elements, all of which conform to the

143

restrictions given as arguments. For example, splash e d - b y

could have a value of
(citric-acid organic-solvent linseed-oil nitric-acid)

or (fresh-water) or () .

The m a c r o l o c a t i o n slot describes in general terms the
location of the substrate. This may be rural or
industrial, and coastal or inland. The value here is
concerned with the degree of "pollution or corrosiveness in
the atmosphere.

The immersion-in slot must have as its value an element of
the liquid-substance hierarchy. The s p l a s h e d - b y slot may
have multiple values, since many substances may be spilled
on the substrate during the lifetime of the coating. For
both of these slots' values, if the liquid substance
concerned is a member of the chemical subtree, the actual
schema will be a specially created child-schema of one of
the existing leaf nodes of the chemical subtree. The
values in this child-schema's slots can then be specified
by the user. The obvious example of this is in defining
the pH of a spilled chemical; a coating may be eminently
suitable for protection against weak acids but not against
strong acids.

The remaining slot in the corroding-environment schema is
mechanical-damage. The acceptable values for this slot are
user-instantiated child-schemata of either abrasion or

144

impact, which are shown in Figures 38 and 39.

{ {abrasion
is-a damage
severity

frequency

participants }}

Figure 3.&

{{impact
is-a damage
momentum

frequency

area }}

Figure 39

5.3.3 Running $s-script

5.3.3.1 Initial Instantiation

When the situation-specific information from the user has
been set up as instances of the appropriate environment and
substrate schemata, these created schema names are
collected up into an instance of the situation-description
schema. An example is shown below in Figure 40.

This central storage of the problem description information
ensures that the tokens used in the state and act slots of
the s-script (i.e. ?S, ?EA etc.) are independent of the

145

{{situation-descriptionl
instance situation-description
?S substratel
?EA application-environmentl
?ED drying-environmentl
?EC corroding-environmentl }}

Figure 40

domain of the d-script. In instantiating the s-script, the
problem description is taken from the schema, not from
information tied in to the d-script.

/
The other two schemata needed by the s-script are a copy of
$d-script and a copy of the known-solutions schema. The
latter is illustrated in Figure 41.

{{known-solutions
schema-names (bitumen drying-oil-paint

chlorinated-rubber)
}}

Figure 41

The SRL schema-copying facility is not implemented in the
version available to me, so instead of copies of the
required schemata, child schemata are used. These simply
inherit all slots and values unchanged from their
respective parents. The knowledge base schemata are not
directly used; this maintains their integrity and leaves
open the possibility of re-running the s-script without
losing information from previous executions.

146

The binding-list facet of the statel slot in $s-script now has
its value instantiated. If the three schemata described in
the previous paragraph are situâtion-descriptionl,
$d-scriptl and known-solutionsl, then the binding-list facet
will take the value

((?$D . $d-scriptl)(?SOL . known-solutionsl)
(?SIT . situation-descriptionl))

5.3.3.2 The MERGE act

The MERGE act uses the information provided by the
situation-description schema to alter the binding list of
the initial state of $d-script. it establishes in the
domain-level causal model the problem characteristics for
this particular problem-solving exercise. This is a
micro-effect of the act, and as such is effected through
the can-affect facet of MERGE, and the demon attached to the
statel slot of $d-script.

5.3.3.3 The SHATTER act

Having attached the problem description to $d-script, the
next step is to attach a possible solution. This requires
that a copy of the partly-bound $d-script schema is
available for each possible solution. It is the SHATTER
act which accomplishes this proliferation. No new schemata

147

need to be created by SHATTER; it is at this point in the
selection script that the SRL context facility is employed.

The SHATTER act creates a context for each known solution.
Within this context it alters the binding list of the
s t a t e l slot of the $d-script schema so that the
corresponding solution is incorporated. From this point in
the s-script, the $d-script schema in the root context is
not used; all necessary manipulations happen to the
d-script in one of the solution-specific contexts.

Once all this has been accomplished, the $d~script schema
can simply be used in the binding list of the resulting
state of the s-script, in the knowledge that all the
alternative worlds of interest are accessible via the
$d-script schema in contexts defined by the solution
schemata names.

5.3.3.4 The RUNEACH act

This act consists of the repetition of a sequence of
events; performing them once for each solution in its
binding list. The name of the solution schema is the same
as the corresponding context name; so for the bitumen
solution, the appropriate context is bitumen. The context
for each solution is asserted in turn, and the RUN act is
executed on $d-script. In common with the SHATTER act,

148

only the $d-script schema in the enabling state's binding
list needs to be named in the resulting state's binding,
the details existing only within the solution contexts.

The RUN act which executes the d-script is the same act
which executes the selection script itself. It is an act
which pursues the e n a b l e s and r e s u l t s - i n links in its
object script, forcing any detected acts or processes into
execution. The RUN act itself does not alter the current
context, which is therefore asserted before RUN is invoked.

5.3.3.5 The C O M P A R E act

A Divergence schema is created by the COMPARE act for each
solution under consideration. A Divergence schema has the
same slot names as the final versions of the schemata which
represent the essential outcome of the d-script, but the
meaning of the value for each slot is quite different. In
the anti-corrosive coating domain, this ’outcome' schema
will be the ultimate dry-film- version of each coating.
The slot values of the Divergence schema now represent how
'good' or 'bad' that value is judged to be, whereas in the
corresponding final dry-film- schema the value is a
prediction of the physical nature of that attribute, e.g.
thickness 2, defects (pitting blistering)

Thus, although the final dry-film- schema slots may be a

149

mixture of features and dimensions, all the Divergence
slots are dimensions. In fact, they are all values of the
same dimension, that of value-judgment.

The Divergence schema slot values are created by examining
each slot of the final dry-film- schema and comparing that
slot value with an optimal slot value obtained from the
Ideal schema. The value then attributed to the Divergence
slot is a measure of the distance between the predicted
value for the coating and the Ideal value. This is the
working definition of the value-judgment dimension.

5.3.3.6 The RANK act

A method for ranking the Divergence schemata has not yet
been settled in detail. The g e n e r a l - e f f e c t s slot of the
RANK schema (the eponymous schema describing the RANK act)
is straightforward. The RANK act will create a child of
the Rank schema (see Figure 42) conditional only upon the
enabling state of the act being adequately instantiated.

{ {Rank
ranked-schemata

suitability }}

Figure 42

The demon attached to the Rank s u i t a b i l i t y slot will then

150

create a list of values for that slot using a rulebase. It
is this rulebase that remains undefined. However, the
information that the rulebase will use is established. The
rulebase belonging to the Rank s u i t a b i l i t y demon will
consider each of the Divergence schemata as a conceptual
histogram. This is illustrated below in Figure 43.

Example Divergence Schema Histogram

Figure 43

This example shows a Divergence schema where:
2 slots have values of -3
1 slot has a value of -2
5 slots have values of +1
3 slots have values of +2

The rulebase needs to be able to decide on the basis of
this histogram the overall suitability of the corresponding
solution. Clearly, a solution having more than one
'extremely' unsuitable attribute (i.e. slot value of -3)
would itself be 'extremely' unsuitable. However, the
knowledge required to obtain an overall view from the
histogram in other cases is not currently available to the

151

system; it will be necessary to reconsult the domain
experts to obtain this. In this type of expert task, it is
likely that a different collection of heuristics will be
elicited from each expert. The analysis of the histogram
may also depend upon the user's view of the problem, and
the costs and risks involved for them.

5.3.4 Running $d-script

5.3.4.1 Initial Instantiation

The initial instantiation of the binding list for $d-script
is carried out by the MERGE and SHATTER acts of the
selection script. The solution schema binding is only
described within solution contexts, as described in section
5.3.3.3. The appropriate solution context is therefore
asserted before the d-script is executed.

5.3.4.2 The TOUCH process

The first process in the current version of the
domain-level script is TOUCH. This establishes a physical
contact between the coating and the substrate; borrowing
the term ’PHYSCONT’ from Schank, the resulting state is

PHYSCONT coating substrate
This does not attempt to give any information on the nature
of that contact; the coating may or may not attach to the

152

substrate. The description of the relationship between the
two is only elucidated in the next act, STICK.

5.3.4.3 The STICK process

The STICK process can be disabled by the presence of
certain elements in the substrate constituents, for example
a grease film on the surface of the substrate. Should this
be the case, the rulebase defining the macro-effect■of the
process can alter the structure of the resulting state, so
that the coating and the substrate are both present, but
not in physical contact.

If the process is not disabled in this way, a binding list
is attached to the resulting state, and the process's
micro-effects are executed. For this process, it is
interesting to note how the prior value of the substrate
c o n s t i t u e n t s slot has an effect on the resulting value of
the same slot. This is a more detailed reflection of the
macro-effects of STICKing. If grease is present, the
description of the substrate does not change. If the
substrate is clean, however, the coating becomes part of
the description of the substrate constituents. A suitable
term involving the token representing the coating schema
(i.e. ?C) is added to the front of the list describing the
constituents. It is for this reason that on the
macro-level, the resulting state does not need to mention
?C, the token for the coating, if the STICK process has

153

been successfully carried out. The token is employed in
preference to the schema name so that as the description of
the coating film changes during the remainder of the
d-script, those changes will automatically be reflected
within the substrate constituents description.

5.3.4.4 The STATECHANGE process

The nature of the state change is determined by the
d r y i n g - p r o c e s s slot in the coating schema. (The change of
state may take place by evaporation, by curing or by a
combination of the two.) STATECHANGE has only to
instantiate the binding of the coating token in the
resulting state and to permit the micro-effects to occur.
No interference with the value of the substrate
c o n s t i t u e n t s value is required, for the reasons explained
in the previous section. However, part of the macro-effect
of STATECHANGE is that the coating schema in the resulting
state is a child of the dry-film phase. This must be taken
into account when creating the coating successor schema for
the resulting state.

5.3.4.5 The WEAR process

The macro-effects of the WEAR process are very simple. A
successor coating schema is created and attached to the
resulting state binding list. The micro-effects of the WEAR
process are of course the most complex in the d-script,

154

reflecting the variety and complexity of the factors which
affect a coating film when it is in use.

5.4 Summary

The current implementation method for the selection script
and the domain script have been described. In the next
chapter, we return to' the central theme of
question-answering, and the categorisation of questions in
a system based on a causal model.

155

6 QUESTION ANSWERING AND KNOWLEDGE BASED SYSTEMS

6.1 Introduction

Wendy Lehnert's work on question answering was carried out
as part of the Yale natural language understanding project
in the 1970's. The domain used by the Yale workers was
simple, non-technical stories about ordinary people. The
ideas underlying Conceptual Dependency, causal chaining,
scripts etc, have a wide applicability, but if they are to
be used in Expert Systems, some profound modifications are
required.

6.2 A Reappraisal of Lehnert's Classification

6.2.1 Introduction.

While Lehnert's classification of question types works well
enough for the domain of simple news stories, it is not
entirely appropriate to the discussion of problem-solving
behaviour nor to industrial and technical processes. This
section first examines the need to add, modify or abandon
individual categories from Lehnert's work. Having obtained
a revised list suitable for the domain, a more detailed
classificatory structure for question types is described,
based on the fundamental script-manipulative acts described

156

in Chapter 3. It is important to understand where the HOW
and WHY questions in conventional expert systems fit into
this structure, and section 6.2.4 provides an analysis of
this. The last part of this section then highlights the
applicability of this analysis. It illustrates how, when
people consult experts in reality, they ask questions which
span the question hierarchy described.

6.2.2 Modifications to individual categories

Only one of Lehnert's existing categories becomes
completely irrelevant in the changed domain: the request
category. There does not appear to be any reason to phrase
a request to a computer system as a question; it would
naturally be phrased as a command.

Another class, disjunction, can be usefully metamorphosed
into a class of 'comparison' questions, which have the form

Which has more of attribute X, entity A or entity B ?
This class is more than a disjunction of two confirmatory
questions. Since entities A and B have an attribute in
common, yet each has an individual value for that
attribute, the question class cannot be simple
slot-filling. It is proposed, then, that these Comparison
questions replace the Disjunctive category.

One extra class of questions should be added to the scheme.

157

This is the definition class. This encompasses all
requests for definitions of entities, and in English is
often recognisable as a 'What is a ...?' question. This
class is, in fact, appropriate to Lehnert's original domain
as well as to an industrial problem-solving domain, and
would have been worthy of consideration in her work.

There is considerable structure in the classification
itself. Lehnert simply postulates her categories, leaving
them organised only into a single level. Relationships
exist betwen the categories, but these relationships are
not made explicit. The next section clarifies and
organises these relationships between categories, using the
ideas underlying the description of primitive
script—manipulation tasks, since in answering questions one
must indeed undertake various movements around a causal
chain. This will yield a more richly descriptive and deeper
hierarchy into which the categories can be fitted.

6.2.3 The Overall Hierarchy of Question Categories

Instead of a shallow, flat tree of dependencies, the
structure shown in Figure 44 may now be obtained. The
classification follows the distinctions drawn between
varieties of script-manipulative acts discussed in Chapter

158

Classifying questions in this way stems directly from the
view of question-answering as the process of moving in
characteristic ways around a causal chain. A primary

distinction is made between questions which require
movement along causal links and those which do not
(acausal) . The causal category is then divided into
analytic and predictive classes.

The predictive class is characterised by a movement of

159

attention from the question concept in the causal chain
toward a resultant state or enabled act. It is this
forward traversal of the causal links that is common to
each of the three categories in this class. The
identification of causal consequent and goal orientation as
predictive categories is straightforward.

The procedure category has been distinguished from
instrument questions. Procedure queries require the
traversal of a detailed causal chain, for which the act in
the question concept is a 'title' or summary. This
detailed causal chain is traversed forwards (hence
predictive) to mimic the time sequence of the description.
For example:

Q. How did you find the book in the library?
A. I went to the index, looked up the author, found

the index card, noted the classification number...

Categories in the analytic class are similarly related by
the need to traverse causal links in finding an answer to
the query. In this subclass, however, the causal links are
traversed back up the causal chain; moving from the
question concept toward enabling state or causative act.
The distinction between causal antecedent and enablement
has been more sharply defined. An enablement question has
an act as a question concept, and enquires about the state
which enabled it. Symmetrically a causal antecedent query
asks about an act which caused the state in the question

160

concept. The expectational category may have either an act
or a state as its question concept.

The acausal class is also divided in two. The
intraconceptual subclass requires that only the image or
entity in the knowledge base matching the question concept
is examined. Relationships, causal or otherwise, with
other images or entities are not relevant to the answering
of the query. Several categories constitute one sub-class
of the intraconceptual class. These are the slot-filling
categories. They can be further divided into slot-filling
for acts, slot-filling for states and slot-filling for
individual entities. The instrument category is a
slot-filler for an act. It is interesting that a shift in
the level of detail required can transform the relatively
simple instrument query into the more complex causal
procedure question. For example:

Q. How do you get to London ? (instrumental)
A. By train.
Q. How do you get to London? (procedural)
A. You take a taxi to the railway station, buy a rail

ticket, get on the train ...

Methods for disambiguating the natural language question
must depend on the context in which the question is asked
and on the responder's view of the enquirer, but this
subject lies outside the work reported in this thesis.

161

The interconceptual subclass requires consideration of two
entities, which are related not by causal links, but by
relationships within some hierarchy. These relationships
are often ’sibling’ links, in that both entities are
instances of the same domain class.For example, the two
entities might be a chlorinated rubber coating and a
drying-oil coating: both are instances of the 'coating'
superclass.

The two categories in the interconceptual subclass, the
judgment and comparison categories, are related to each
other. Examples of the comparison question category are:

Which is easier to implement, causal consequent or goal
orientation ?

Is drying-oil-paint more viscous than a chlorinated
rubber coating ?

An example of the judgment question category is:
What do you think of bitumen coatings ?

The judgment class of query is seeking information about a
comparison of the object of the question concept with some
ideal in the same hierarchy; in the example, this is the
coating hierarchy. This notion of comparison with an ideal
can be seen most clearly if a comparison question is
contrasted with a judgment query having a closely related
question concept.

Q. Which is more resistant to mechanical damage, a
chlorinated-rubber coating or a bitumen coating ?

A. A bitumen coating.

162

Q. What do you think of bitumen coatings ?
A. ...bitumen coatings have poor resistance to

mechanical damage...
So the bitumen coating wins over the chlorinated-rubber
coating, yet is judged 'poor' in relation to some other
unspecified standard. This standard or ideal can be thought
of as an aggregation of the strongest attribute values
available in the relevant hierarchy. So if the best
possible available mechanical" damage resistance is obtained
from sprayed-metal coatings, then this is the criterion
against which all other coatings will be judged in a
general sense; that is, as intended in a judgment question.

6.2.4 Analysis of HOW and WHY using the revised
classification

The aim of this analysis is to distinguish
i the nature of the question concepts
ii the correct question category for HOW and WHY

questions in rule-based systems.

6.2.4.1 The WHY question

Consider this example dialogue fragment from a rule-based
system for selection of anti-corrosive paints.

163

What is the standard of surface preparation?
** WHY
I am trying to establish a value for COATING ADHESION
Rule: If the surface preparation > 2

Then coating adhesion is good

Consider the meaning of the question that is being answered
here.

The question can be expanded in English in several ways.
Why did you ask me that question?
Why is that concept important?
Why do you need to know?
In what way will that information be used?

The question concept deals with the availability of
information :

You asked me a question.
That concept is important.
You need to know.
That information will be used.

The contents of 'that question', 'that concept' or 'that
information' are only of secondary importance. The central
acts or states in the question concepts are concerned with
the manipulation of information; 'ask', '...is important',
'need to know...’ and 'information ... used'. All the
expansions, in more or less circuitous ways, are enquiring
about the system's current 'goal',that is, toward what
desirable state it can move when the sought-after

164

information is provided. These are system-level acts and
states, often taking whole domain-level assertions (i.e.
'that concept') as objects of the verbs. The most
appropriate category for these WHY questions is goal
orientation. Here, the system is functioning as the
sentient agent which has definable goals. Its actions in
pursuing those goals form the question concept of the WHY
question.

6.2.4.2 The HOW question

The HOW question can be elaborated in a manner similar to
that used for WHY.

What made you reach that conclusion?
(causal antecedent)

What enabled the system to prove that? (enablement)
Also similarly, the question concepts are at the system
level.

You reached a conclusion.
The system proved something.

The questions are asking about the states of knowledge
which have led to a certain conclusion being drawn, it is
tempting to think of HOW questions as procedural or
instrumental. If this were so, the following would be
obtained:

Q. How did the system prove that?
A. By modus ponens

The enquirer does not want this description of a mechanism,

165

nor a description of any detailed instantiation of the
mechanism. The useful answer is in terms of enabling
states.

6.2.5 The Utility of the Question Categories

It is useful to employ the classification and the idea of a
’question concept' to delineate the extent of what Clancey
calls the "aphasia" of single-level rule-based systems
[Clancey 1983].

Kidd [Kidd 1985] gives general examples of questions
commonly asked of human experts by callers in radio
phone-in programmes. She points out that the user plays a
major role in the problem-solving dialogue. The user has
views on the essential components of the problem
definition, and often on the nature of an acceptable
solution. This leads to a negotiation between the expert
and the user. Many of the questions put to the expert
belong to categories other than those encompassed by HOW
and WHY. For example:

Is X a good remedy ? (Judgment)
Which is the best remedy: X, Y or Z ? (Comparison)
How does remedy X work ? (Procedural)
Why doesn’t remedy X work ? (Expectation)
What happens if remedy X is used ? (Causal Consequent)

It is also interesting to note that the question concepts
concern domain-level entities. in reality, then, it seems

166

that the user asks questions in categories which span the
whole hierarchy, examples being present for the analytic,
predictive and acausal classes; and that these questions
concern actions in the physical world rather than the
information processing acts of the expert.

6.3 Question Answering in ADEPTUS

6.3.1 Introduction

In designing QUALM, Lehnert was dealing with only a single
level script. In ADEPTUS, however, I have represented the
system's knowledge on two levels, the d-script and the
s-script. Questions can then be asked about processes and
states occurring in either of these scripts. No
level-specific constraints are in effect on a question
category. Any question category which is valid for applied
science problem-solving can be posed at either level. This
does not mean, of course, that all question types would
necessarily yield useful information at each level; only
that there is no a priori reason why that query class may
not be used. Syntactic restrictions, however, do apply on
both levels of script. These follow Lehnert's rules. For
example, a goal orientation question cannot sensibly be
phrased to ask about processes in the physical domain,
since by the definition of the term 'physical process' no
sentient actor is available to have goals ascribed to them.

167

6.3.2 The Goal Orientation Category

6.3.2.1 Questions about the problem-solving process

As discussed above in section 6.2.4.1, this class
encompasses the WHY questions familiar from rule-based
systems. In a rule network, the goal orientation question
is concerned with the problem-solving behaviour of the
system, although to the naive user it can often seem as
though the physical processes of the domain are the subject
of the query. However, the lack of explicitly represented
knowledge of physical causality in the domain leads to an
inability to ask domain-level goal-orientation questions.

In the rule-based system, the answer to a goal orientation
(WHY) question takes the form of the next conclusion
obtainable from the firing of a single rule, where the
premise of that rule contains a term matching the piece of
information which prompted the question. The same question
can be asked of ADEPTUS, but the answer is obtained in a
rather different manner. ADEPTUS requires a description of
the problem situation before any script instantiation or
manipulation is undertaken. The user's goal-orientation
query may be expressed while the situation-description
schemata are being filled, before problem-solving begins;
or it may be expressed when the selection script has been
executed. In either case, the technique for answering the
question remains the same. In the illustrative example

168

that follows, the uninstantiated script is employed.
ADEPTUS is given two pieces of information; a question
concept and the question category - in this case, goal
orientation. The question concept for a goal orientation
question must be an active concept.
For example:

Why does ADEPTUS need a value for the substrate
surface-key ?

Question concept:
(ACTOR ADEPTUS)(ACT place-value)

(OBJECT (substrate surface-key))
Question category:

Goal orientation
To answer a goal orientation question, we must establish
first the state that results directly from the execution of
the act described in the question concept. The subgoal
requiring this act is then the execution of the next act or
process that is directly enabled by the state achieved.

The state achieved by our example question concept is the
existence of a value in the surface-key slot of the
substrate schema. ADEPTUS performs a 'predictive scan'
down the causal chain, looking for a state that has the
existence of this value as an active enabling factor.
Attention moves down from a state via the enables link to a
process/act, thence to the next state via the r e s u l t s - i n

link. As each state in the script is encountered, ADEPTUS
checks whether or not this stative image names the value of

169

the substrate schema's surface-key slot as an active
enabler. (See Fig. 45).

{ {$s-script
statel (?$D ?SOL ?SIT)

[active-enablers ((environment-description is-a+inv)
(available-tool is-a+inv)
(substrate-description is- a + i n v))]

actl (MERGE ?$D ?SIT)
[affected-by ((environment-description is-a+inv)

(available-tool is-a+inv)
(substrate-description is- a + i n v))]

. . . }}

Figure 45

The i s - a + i n v slot name is produced by the system in the
absence of a named inverse for a slot, when the SRL
inverse-creation switch is on. It represents the inverse
of the is-a link.

Following the progress of the s-script, illustrated in
Figure 9, it can be seen that the states enabling the MERGE
and RUN acts do not require a value for any substantive
domain-level schema slots. The two kinds of entities that
they do require are instantiated d-script slots,and the
existence of certain entire domain-level schemata. The
existence of the latter is established by an examination of
the appropriate class hierarchy. Consider for example the
MERGE act and its enabling state. The execution of this

170

act requires values in the schema-slots named in the
active-enabler facet of the enabling state. These are identical
to those named in the affected-by facet of the MERGE act.
This exact reciprocity is only the case when a state
enables exactly one active image. (An example of an
asymmetric situation is given in section 6.3.2.2)

The slots which must have values for this MERGE act to take
place are those that show the names of child schemata of
the environment-description, a v a i 1 a b l e -t o o 1 and
substrate-description schemata. That is, the domain-level
script cannot be MERGEd with a problem situation
description until instances exist of the three known
components of the problem description. To illustrate the
second possibility for s-script act requirements, consider
the RUN act and its enabling state, shown in Figure 46.

{{$s-script

state3 (?$D)
[active-enablers (($d-script statel)

($d-script process 1))]
act3 (RUN ?$D)

[affected-by (($d-script statel)

($d-script p r o c e s s l))]

. . . } }

Figure 46

The slots actively enabling the RUN act are the initial
171

slots of the d-script. If an instantiation is available for
the two named slots, then the RUN act can execute. If the
state being examined in the predictive scan does not have
the schema-slot value of interest as an active-enabler,
ADEPTUS passes over that state, unless the enabled act is
itself a predictive task. When a predictive task is
encountered, the attention of the predictive scan shifts to
the script that is the object of the new task, and ADEPTUS
continues the predictive scan down this 'object' script in
the same manner as before.

When a state is found that uses the value of the
schema-slot combination specified in the question concept
to enable the ensuing process/act, the information required
to construct the answer can then be accessed.

The actor whose subgoal is being established is still
ADEPTUS. To answer the question, we must now determine what
the actor is attempting to do at the target point. ADEPTUS
is attempting to predict the outcome of the (STICK ?C ?S)
process, and that process cannot be executed until the
substrate surface-key value is known. It is within the
stative image of the $d-scrxpt state2 value that we regard
the target schema-slot combination as being actively
matched. That is to say, although a value for that slot
may have been available prior to that state, state2 of the
$d-script schema is the first instance we have detected of
its active enabling influence on a process/act. The

^ See % 18*)
172

movement down the e n a b l e s link from the match to the
enabled process is the predictive task that characterises
the goal orientation answering mechanism and assigns the
goal orientation category to the causal/predictive subclass
of query types. The hypothetical RUN act that ADEPTUS is
attempting to execute when the substrate s u r f a c e - k e y

becomes an enabling factor is composed of repeated calls to
a primitive PREDICT act, which is actually responsible for
the execution of the individual processes/acts in the
script being RUN. This allows us to construct the essence
of the answer to the query thus:

(ACTOR <ACTOR of question concept>)
has-goal (<ACT or PROCESS description>)

The actor of the question concept is ADEPTUS. The active
image identified as the goal is:

(ACTOR ADEPTUS) (ACT PREDICT)
(OBJECT
((STICK ?C ?S) affected-by (substrate surface-key)))

So the complete value is:
((ACTOR ADEPTUS) has-goal
((ACTOR ADEPTUS) (ACT PREDICT)
(OBJECT
((STICK ?C ?S) affected-by (substrate surface-key)))))

In English, the question is
Why does ADEPTUS need a value for the substrate
surface-key?

The answer obtained indicates that
ADEPTUS is trying to PREDICT the outcome of the surface

173

and the coating STICKing together, and this is affected by
the surface-key of the substrate.

Is this a reasonable answer to the question? I would argue
that it is. The level of the question and answer are the
same; both are centrally concerned with problem-solving
images rather than domain-level ones. The answer does
indeed tell the user something interesting about the
motivation for requiring the substrate surface-key
information. It does NOT, however, give any details about
the way in which the substrate surface-key affects the
STICKing process. This is not surprising. The effect of
the substrate surface-key value differs for each coating
about which the system knows, i.e. differs for each
solution known to the system. To ask how the substrate
surface-key affects a particular coating is a domain-level
concept-completion question.

Lehnert describes Goal Orientation questions as those that
involve a REASON link. The answer is found by identifying
the unknown image which is the REASON for the question
concept. The need for such a link seems to be the
complexity and deviousness of human motivation in the
'ordinary occurrences 1 domain. ADEPTUS does not require
REASON links; all of its motives are explicit, and are
directly led to by the achievement of the constituent
subgoals.

174

6.3.2.2 Goal Orientation questions about domain-level acts

Goal orientation questions can, of course, be asked about
acts carried out in the physical domain modelled in the
system. To illustrate such questions, I shall employ a
piece of causal chain that does not appear as part of the
current version of ADEPTUS. This is because no acts (as
distinct from processes) occur in the d-script, for reasons
of simplification. Again, no REASON links are required; I
assume the motives of the people involved to be
straightforward. This clearly renders the system incapable
of understanding and hence discussing motives such as
laziness, greed, sabotage etc. Consider the piece of causal
chain illustrated in Figure 47. This describes the
preparation of the substrate, prior to paint application.
This script fragment is shown fitted on to the front of the
existing d-script, replacing the TOUCH process and its
enabling state.

I shall consider the Goal Orientation question
Why does someone abrade the substrate ?

Question Concept:
((ACTOR UNKNOWN) (ACT ABRADE) (OBJECT ?S))

Question Category:
Goal Orientation

175

{{$d-script
stateA (?OPERATIVE ?S ?TOOLS ?LIQUID)

[instance stateslot]
[enables act A actB]
[active-enablers ((cleaning-tool tool-used)

(operative skill-level)
(dip-liquid constituents)
(dip-liquid temperature)
(dip-liquid pH))]

actA ((ACTOR ?OPERATIVE)(ACT DEGREASE)(OBJECT ?S)
(INSTR ?LIQUID))

[instance act slot]
[results-in stateC]
[affected-by ((dip-liquid constituents)

(dip-liquid temperature)
(dip-liquid p H))]

[can-affect ((substrate constituents)
(substrate surface-key))]

actB ((ACTOR ?OPERATIVE)(ACT ABRADE)(OBJECT ?S)
(INSTR ?TOOLS))

[instance actslot]
[results-in stateC]
[affected-by ((cleaning-tool tool-used)

(operative s k i l l -level))]
[can-affect ((substrate surface-key))]

StateC (?PAINTER ?S ?C ?TOOLS)
[enables processC]
[active-enablers ((painter skill-level))]

p r o c e s s C ((ACTOR 7PAINTER)(ACT APPLY)(OBJECT ?C)(TO ?S)
(INSTR ?TOOLS))

[results-in state2]
[affected-by ((painter skill-level))]

[can-affect ((coating constituents))]
state2 (PHYSCONT ?C ?S)

[instance stateslot] . . . }}
Figure 47

176

This is easily identifiable as a domain-level question
since the ACT involved is a domain-level ACT. This
indicates that the relevant script is the d-script.
Following the format established for the system-level goal
orientation questions, a predictive scan thus commences at
the start of the d-script. The question concept is matched
by the value of . Once more, to answer a goal
orientation question, we must

(a) establish what schema-slot combination is affected
by the execution of the question concept ACT

(b) continue with the predictive scan until a
subsequent ACT or PROCESS is found that is
actively enabled by the target schema-slot
combination.

The ACT of abrasion, as we see from Fig. 47, can-affect just
one schema-slot combination, the substrate s u r f a c e - k e y .
The predictive scan therefore continues down the d-script,
looking for a state which names the substrate surface-key
as an active enabler. Of course, since this is the
d-script, none of the processes/acts can themselves be
predictive tasks, so we cannot drop down into a lower-level
script. An active match for the target schema-slot
combination is found in the state enabling the STICK
process. Once again it is possible to formulate an answer
to the question, using the template

(ACTOR <ACTOR of question concept>)
has-goal (<ACT or PROCESS description>)

177

We instantiate the ACTOR using the question concept ACTOR,
and the active image with the available details of the
STICK process. So the complete answer to the question is:
((ACTOR UNKNOWN) has-goal

((STICK 7COATING 7SUBSTRATE) affected-by
(substrate surface-key)))

In natural language, the gist of this is that someone is
trying to make the coating stick to the substrate, and this
is affected by the surface-key of the substrate. The major
difference between this answer and the example at the
selection-script level is the absence of the PREDICT act.
Here, we are discussing a person operating at the level of
physical processes; in the previous section's example, the
discussion was of the doings and goals of the system.

In both the system-level and the domain-level examples
given, the target schema-slot combination is identified in
a purely linear section of the script. That is, the state
in which the active match occurs enables only one active
image. However, if the state enables more than one act or
process, then the symmetry between the active-enablers facet in
the state and the affected-by facet in the active image no
longer holds. In order to find the relevant enabled act,
each of the enables links must be pursued and the value of
the affected-by facet for each active image examined. For
example, consider the question

178

Why does the surface-preparation operative undergo a
training period ?

The act of undergoing a training period will change the
operative skill-level value. This state attribute is
actively matched in s t a t e A of the $d-script schema
illustrated in Figure 47. stateA enables both actA and actB;
to find the active image required as a response, we must
follow both of the s t a t e A enables... links. The first of
these leads to actA. On examination of act A's affected-by
facet, we see that this act is not affected-by the target
schema-slot combination of operative s k i l l - l e v e l. The next
enables link is then followed to actB, where the affected-by
facet contains the target combination. It is this act which
is then used to construct the answer to the question.

6.3.3 The Judgment Category

6.3.3.1 Introduction

Judgment questions form a category in the interconceptual
subclass. They are given the name of a concept as their
question concept and are required to express an 'opinion'
about that concept. For example, the question may be

What is your opinion of a drying oil paint in this
situation?

179

This question is clearly being asked after a problem
situation has been described. Information about the
problem situation is essential if the system is to be able
to answer such a question: without a problem context, it is
difficult to pass judgment on the coating. When a human is
asked the general Judgment question

What do you think of drying oil paints ?
he or she has two options. One is to ask for more
constraints on the question by requesting a problem context
in which to frame the reply, ie by responding with another
question:

In what context?
Or, the human can respond by identifying contexts in which
high-level judgments can be made on the question concept.
For example:

Drying oil paints are good when the surface preparation
is poor, but are susceptible to spillages of dilute
chemicals.

This style of response is not comparing the coating with
some standard, but is attempting to establish general
characteristics of the coating. The answer given can be
seen as the answer to two quite different questions:

Which adverse situation factors still give good results
for drying oil paints?
Which average situation factors give poor results for
drying oil paints?

It is interesting to note that the answer is phrased as a

180

collection of heuristics about drying oil paints.

These are analytic questions, although the original natural
language query seems to imply a judgment. The problem of
identifying the correct question category from the natural
language form of the question has already been achieved by
Lehnert, and so is not addressed in this thesis.

6.3.3.2 Answering Judgment Questions

Judgment questions as illustrated by the question
What do you think of drying oil paints in this situation?

are answered in ADEPTUS by a comparison with an idealised
concept. The act which does this is already defined as
part of the s-script and is called COMPARE. If a problem
situation has been defined (i.e. enough is known about the
physical environment and surface preparation to allow a
prediction of the worn dry film to be made), the comparison
is straightforward. The COMPARE act takes two concepts,
the central question concept and its corresponding
idealised form, and from these produces a Divergence schema
(see section 5.3.3.5). The Divergence schema is used as
the basis for constructing the reply, but itself contains
information which is not used.

A Judgment question is interested in two groups of
attributes in the Divergence schema: the particularly good
and the particularly bad. These are the slot values which

181

will give an interesting response. For example, if the
COMPARE act produces the Divergence schema Divergence6 (see
Figure 48), only the value-judgment type of slots which
have 'very* or 'extremely' as qualifiers will be mentioned
in response to the Judgment question.

{{Divergence6
is-a Divergence
between (dry-film-drying-oil-paint2 Ideal)
adhesion (very poor)
state (average)
defects (fairly good)
hardness (fairly good)
flexibility (fairly poor)
finish (extremely good)
thickness (extremely good) }}

Figure 48.

So, the question is:
Question concept :

dry-film-drying-oil-paint2
Question category :

Judgment
And the answer is constructed from the Divergences schema

dry-film-drying-oil-paint2
ha.& e.*.tre.me.ly g o o d f i n i s h

&.n& has extremely good thickness
but has very poor adhesion

The general form of the answer is :

182

<Question Concept>

and
has <slot value> <slotname>

<slot value> <slotname>

but
and

has <slot value>
<slot value>

<slotname>
<slotname>

The actual values of the value-judgment dimension are
stored in numeric form, from -3 to +3. It is easy,
therefore, to distinguish between positive and negative
value judgments.

When a Judgment question is asked about a concept for which
a Divergence schema already exists (i.e. one which has
previously been considered in the problem-solving task) it
could be argued that the apparent Judgment classification
of the query should be some form of slot-filling. This
ignores the essential nature of the judgment category. The
COMPARE act must happen at some point for such a question
to be answered: it is fundamentally an interconceptual
task.

6.3.4 The Expectation Question Category

Expectation questions are characterised as 'Why not?'
questions. They form one of the analytic categories and

183

enquire about the causes of a state or act not occurring.
This enquiry about past causes is what leads to the
categorisation of expectational questions as analytic.

The question concept may be either active or stative.
Why isn't the pavement wet? (Stative question concept)

..because it didn't rain.
Why didn't it rain? (Active question concept)

..because there were no clouds.

An expectational question can be asked either at the
physical level, i.e. about a process or state within the
d-script, or at the problem-solving level, concerning an
act or state in the s-script.

If the question concept is a state, then the answer is
obtained by examining the act or process resulting in that
state. For active question concepts, the answer lies in
the state which enables the act. For example, consider the
question:

Why doesn't the coating stick to the substrate?
The question concept is active:

The coating sticks to the substrate.
In the d-script, this matches the value of the p r o c e s s 2

slot,
(STICK ?C ?S)

The enablement of this process is governed by the details
of state2,

184

(PHYSCONT ?C ?S)
so to answer the question it is necessary to look at the
binding-list facet for state2 to establish what aspect of the
state is disabling the process.

Let us say that the c o n s t i t u e n t s slot of the substrate
schema has the value

((grease 70) (steel 30))
that is, a film of grease covers 70% of the steel
substrate. The rulebase which defines the macro-effect of
the STICK process uses the value of this slot to decide on
the eventual relationship between the coating and the steel
substrate. In the example above, the presence of a grease
deposit on the substrate changes the resulting state value
from

(PHYSCONT ?C ?S)
to (?C ?S)

The identification of expectational questions as analytic
tasks can be seen in the path taken from the point in the
script at which the question concept is matched, to the
information which determines the disabling of the question
concept. The premises of the rules in the STICK
m a c r o - e f f e c t rulebase require that the binding for the
substrate in the enabling state be obtained. Central to
this is the requirement to follow the enabled-by link back
up the causal chain structure. This is the characteristic
movement which identifies cause-seeking tasks.

185

The rulebase describing the macro-effects of the STICK
process contains the rule

IF (percentage grease substrate-constituents) > 5

THEN replace resultant-state (PHYSCONT ?C ?S) (?c ?S)

[where:
substrate-constituents is an association list obtained

from a schema named in the binding list of the previous
state

percentage is a function which returns the value
associated with a nominated key on an a-list

resultant-state is the location of the value of the state
resulting from the process]

Then the question
Why didn’t coatingl stick to substratel?

Question concept:
(STICK coatingl substratel)

Question category:
Expectation

can be answered:
(STICK coatingl substratel)
did not happen successfully because
percentage of grease in substrate-constituents > 5

This category has not yet been implemented. The
description is included to illustrate methods of response
to cause-seeking questions.

186

6.3.5 The Definition Question Category

Definition questions are characterised in English as
'What is a ... ?'

questions. The question concept is neither a state nor an
act, but is a single entity. This entity may be used as
part of a state description or to participate in an act or
process, but it is not sufficient to describe a full image.
An example Definition question is:

What is bitumen ?
Answers are obtained by simply using the information
present in the schema of that name. If a slot value is
present, or is obtainable by inheritance, then the slot
name and its value are both given. If the slot is present
(or can be inherited) but has no value, then the default is
given if available, with a qualifier indicating that it is
a default value. Otherwise, the range facet can be
examined to provide information about constraints on the
value of a slot. As a last resort, if even range
information is lacking, it may simply be stated that the
concept can have a characteristic having the name of the
slot.

Question concept
Bitumen

Question category
Definition

187

Answer :
Bitumen

is-a coating
with colour default black
with constituents natural-hydrocarbons
with state one-of (solid liquid)
with adhesion range ((extremely weak) (extremely strong))
with single-film-thickness range (200 500)
with defects one-or-more-of (pinholes blisters)
with hardness range ((extremely soft) (very hard))
with flexibility default (fairly flexible)
with finish dull

The slot names and corresponding values in a frame form the
essence of the definition of a named entity.

6.4 Summary

The three question types which have a preliminary
implementation in ADEPTUS are goal orientation, definition
and judgment. A fourth category of expectation questions
has been discussed to provide illustrations of question
types from each of the major branches of the question
classification tree. Images from both the s-script and the
d-script are susceptible to use as question concepts; the
essential ideas of characteristic movement around a causal

188

chain are unchanged whatever the level.

Fu/Uvtr a*a is le s , i l l AcDEPfo^’ f-es^o^se te> c^uuesKous
•̂ oscd bj Ovo-kvar } o/£ ^<mcua A^^evvcUx 1\..

{{$d-script
statel (?EA ?C ?S) . . .
processl (TOUCH ?C ?S) . . .
state2 (PHYSCONT ?C ?S)

[active-enablers ((substrate-description constituents)
(substrate-description surf a c e - k e y))]

[active-results ((coatings single-film-thickness)
(coatings defects)
(coatings time-between-coats))]

[enables process2]
[produced-by processl]

p r o c e s s 2 (STICK ?C ?S)
[affected-by ((substrate-description constituents)

(substrate-description sur f a c e - k e y))]
[can-affect ((coatings adhesion)

(coatings
visco s i t y))]

[prerequisites state2]
[results-in state3]

stated (?ED (PHYSCONT ?C ?S)) . . . }}

Figure 46a

189

7 CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH

7.1 Conclusions

7.1.1 Dialogue with Expert Systems

The aim of the work described in this thesis has been to
widen the understanding of explanation in problem-solving
expert systems. No satisfactory theory of explanation is
available at present, and until this is remedied, a good
approach to understanding the nature of explanation is to
investigate the mechanism by which humans seek it.
Questions are the most direct and overt form of
explanation-seeking. In understanding the questions that
can be asked in a domain, and examining the questions that
actually are asked in natural dialogues, we are beginning
to make progress in designing problem-solving
representations that are capable of answering such
questions when they are overtly asked.

In applying the ideas of natural language question
answering to expert systems, this thesis delineates just
how poor the explanation provided by the currently accepted
HOW and WHY questions really is. It provides a greater
insight into a problem that has been recognised by many
'knowledge engineers', but helps to move the difficulty
from an ill-defined sense of insufficiency to a set of

190

specific shortcomings in the form of whole categories and
levels of questions which a conventional expert system is
fundamentally incapable of answering.

An interesting point that has emerged in the thesis is the
value which can be obtained from the use of existing work
in the natural language understanding area for systems that
have a technical domain. Now that Schank and other workers
in natural language processing are beginning work on
technical domains instead of social ones, we can anticipate
further significant advances of benefit to knowledge-based
systems.

Simple causal chains offer great promise for representation
of physical processes. Their simultaneous use for
describing the system's problem-solving processes offers a
uniformity of control structure, yet the distinction
between problem-solving and domain levels remains
unambiguous because of the different acts or processes
characteristic of each level.

Scripts are not intended to function as the major
problem-solving mechanism but rather as a mechanism for
communication. When two or three good candidate solutions
have already been identified by a conventional system,
scripts offer a particularly useful method of communicating
more detailed knowledge about each solution to the user.
This is itself a form of improved explanation, of

191

communicating the system's understanding of the situation
to the user. The same representation has been shown to
support several types of question answering, demonstrating
the potential of the description to permit free access to
the knowledge contained in the system.

The categorisation of script-manipulative tasks, and hence
the detailed categorisation of question types, is
completely new. Understanding the nature of explanation
is gravely hampered by the ad hoc collection of 'types of
explanation’ with no attempt to identify the relationships
between the proposed classes. Using the classification, it
will be possible not only to build real systems having far
greater expressive power, but also to begin to quantify the
communicative shortcomings of existing systems.

The implementation of the ADEPTUS system is preliminary,
and to some extent fragmentary. SRL, as available at
Liverpool University, has serious shortcomings and has no
technical support. Only a sample of the question
categories identified have been implemented, and there is
no reason to believe that any of the remaining categories
would pose substantial problems. The Request category is
an exception and presents peculiar problems. These
problems are, however, ones of identification; and as such
identification is the reponsibility of the natural language
interface, they have been omitted from the system.

192

Although the system is incomplete, enough has been achieved
however to indicate that the methods suggested by this
thesis are significant and offer a means to improve the
explanatory capabilities of expert systems.

7.1.2 The Relationship between Problem-Solving and
Question-Answering

I have used question answering as a means of approaching
the ill-defined problem of 'explanation', and have
distinguished between the problem-solving activities of the
system and its explanatory capabilities in the form of the
answering of explicit questions. This dichotomy is more
apparent than real. In dialogues between enquirers and
human experts, the user usually initiates the
problem-solving activity in the expert by means of asking
one or more questions. Each of the existing expert systems
performs a problem-solving activity which has an implicit
question associated with it. For example, the questions
that MYCIN can answer are
'What disease can produce these symptoms?'
'What therapy best treats the disease in this case?'

XCON answers the question
'How can this order be configured satisfactorily?'

The processing necessary to answer these questions is
represented in the control structure of the appropriate

193

systems. The automatic search for an answer to the
system's 'permanent' question can sometimes cause problems:
in my own experience I have seen people obtain misleading
results from a simple rule-based paint selection system
because they did not fully understand the system's
question. Several users assumed that the 'problem' was
simply
'What paint is best for this situation?'

Whereas the implicit question from the user was actually
'What paint is best for a steel substrate in this
situation?'

While posing the problem overtly in the form of a question
does not automatically remove this type of error, systems
that expect an overt problem statement would need to be
inherently more flexible and to make fewer assumptions. A
further guard is of course that a system flexible enough to
solve several types of problem in the same domain will
necessarily have a powerful question-answering capability.
The user thus has the opportunity to explore any solutions
or misunderstandings, and hence a greater opportunity of
correcting misapprehensions.

So, what current expert systems are doing (ignoring HOW and
WHY facilities) is answering a single question. I see no
reason to believe that these questions cannot be analysed
and categorised in the way discussed in this thesis. The
problem-solving, which we have so far believed to be the
'real' expertise, is in fact only a subset of the wider

194

field of question-answering by knowledge-based systems.

'Explanation' (like 'intelligence'), is a protean word. A
good explanation changes with the explainer, with the
listener, with the subject matter, the purpose, and the
medium of the explanation. The idea of explanation as a
single activity is a myth, and we must begin to deal with
the problem in the most practical but flexible way we can.
Answering the widest possible variety of questions is a
good place to start.

7.1.3 Heuristics and Levels of Knowledge

I have used two levels of script, the physical model and
the 'problem-solving' representation. These levels are, in
a modified form, those proposed by Clancey [Clancey 1983].
From Patil's work [Patil 1981], it is clear that the domain
model itself has different levels, and this is reflected to
a small extent in my use of the demons' rulebases to
establish a value for a slot in the $d-script schema. If
more detailed knowledge were available in the domain, these
rulebases could themselves be represented as scripts,
dealing for example with microscopic chemical processes.
Applied science domains, however, always seem to reduce to
a collection of heuristics: even the experts rarely know
the precise nature of causality at very detailed levels.
Whether for theoretical or practical reasons, then, it

195

seems inevitable at our present state of scientific
knowledge that the ultimate means of predicting the most
detailed results will remain heuristic. At such levels,
our forms of explanation are forced to remain those of the
familiar HOW and WHY questions. This reflects the
dependence of explanation on understanding. At the most
detailed levels of knowledge, heuristics represent a
failure to understand a mechanism, but are a way of
obtaining useful information despite this. However, while
it is still possible to elicit a causal explanation from an
expert, it seems a worthwhile venture to attempt to build
systems that also have this capability.

7.2 Directions for Future Research

7.2.1 Question Categories

Further work is required on the completeness of the
question classification presented here. Transcripts of
series of dialogues between enquirer and expert are needed
to resolve at least three obvious points of interest.
First, what categories of questions exist which are not
described in the existing classification? And can these
new categories be sensibly assigned a place in a
modification of the hierarchy?

Next, the possibility that question categories are

196

dependant on the domain of expertise must be investigated.
For example, Lehnert's request category is redundant in an
expert system. This redundancy stems more from the medium
of communication than from the domain; if an enquirer
approaches a human expert, the request category may still
be used, whereas communication with a machine does not
require such 'questions'. The possibility that question
categories are domain-dependant remains unconfirmed, but
comparisons of dialogue analyses from different domains
will clarify this.

Third, a very practical problem is the extent to which
expert systems in different domains should attempt to
incorporate the many established question categories.
Little is as yet known about what users really ask. Again,
dialogue analyses for a particular domain will give some
indication of the commonest or most crucial question types
used by the enquirer. Armed with this kind of information,
the knowledge engineer can make an informed decision on the
question categories that should be implemented as a
priority to optimise the user's communication with the
system.

7.2.2 Domain Acts and Processes

The processes used in the d-script in ADEPTUS are
candidates for the term 'primitive', and suffice for the

197

purposes of the system. However, a more thorough
investigation of applied science domains is necessary to
produce a useful set of primitives for practical domains.
Within the same domain there is also an evident need for
primitives at different levels of detail. For example, a
description of the molecular processes occurring when a
paint dries will require a rather different vocabulary of
process primitives than is needed when discussing the
engineer's view of the event'. In ADEPTUS ' terms, such
vocabularies for different levels will enable the expansion
of the rulebases describing the macroscopic effect of
domain processes. The rulebases could then be described as
causal chains, on a more detailed level, using the
appropriate vocabulary. This will facilitate the answering
of procedural questions; i.e. those which enquire about
methods for the execution of a named process.

7.2.3 Implicit Questions

The work described in this thesis has been directed to the
answering of explicit questions. In real situations with a
human expert, it has been observed that the expert often
offers explanation without an overt request from the
enquirer. [Pollack et al 1983, Kidd 1985] This
spontaneous provision of knowledge can be profitably viewed
as providing answers to implicit questions from the user.
For a system to be able to do this in an intelligent,

198

appropriate way, it will be necessary for the system to
contain a representation of the cognitive state of the
user. If the system can identify specific gaps in the
user's knowledge of the domain, it may be feasible to
identify questions which describe the missing knowledge,
and to provide explanation by answering these
system-constructed questions. Progress in such an area
depends strongly on the development of good user models
whose representation is compatible with the causal' chain
approach used in this work.

7.3 Summary

Explanation is a difficult and complex field, and like all
such fields offers a rich choice of avenues for
exploration. It is something that we as humans do
constantly; when one listens for it, it is quite surprising
how common an event it is. As an intelligent function that
we wish to understand and mimic, it touches on many
existing branches of Artificial Intelligence and
Knowledge-Based Systems work. The communication of
understanding is fundamental to the design of systems which
give their users good quality advice, and despite the
difficulty of the task we must move towards giving
explanation its correct place, in centre stage.

199

APPENDIX I

B I B L I O G R A P H Y

ADDANKI S. and DAVIS E.
'A Representation for Complex Physical Domains'
Proc. Int. Joint Conference on Artificial Intelligence-9,

1985 .

AIKINS J. S.
'Prototypical Knowledge for Expert Systems'
Artificial Intelligence Vol.20(1983), pp 163-210.

CHANDRASEKARAN B. and MITTAL S.
'Deep versus Compiled Knowledge Approaches to Diagnostic

Problem Solving'
Int. Journal of Man-Machine Studies Vol.19(1983),

pp 425-436.

CHARNIAK E.
'On the Use of Framed Knowledge in Language Comprehension'
Artificial Intelligence Vol.11(1978), pp 225-265.

CHARNIAK E.
'A Common Representation for Problem-Solving and Language

Comprehension Information'
Artificial Intelligence Vol.16(1981), pp 225-255.

CLANCEY W. J.
'An Antibiotic Therapy Selector which provides for

Explanations'
Proc. Int. Joint Conference on Artificial Intelligence-5,

1977 .

200

CLANCEY W. J.
'Tutoring Rules for Guiding a Case Method Dialogue'
Int. Journal of Man-Machine Studies Vol.11(1979), pp 25-49.

CLANCEY W. J.
'Methodology for Building an Intelligent Tutoring System'
Report No. STAN-CS-81-894, HPP-81-18, Stanford University,

Stanford, Ca. 1981.

CLANCEY W. J.
'The Epistemology of a Rule-Based Expert System - A

Framework for Explanation'
Artificial Intelligence Vol.20(1983), pp 215-251.

CLANCEY W. J. and LETSINGER R.
'NEOMYCIN: Reconfiguring a Rule-based Expert System for

Application to Teaching'
Proc. Int. Joint Conference on Artificial Intelligence-7,

1981.

COOMBS M.J. and ALTY J.L.
'General Proposals for the design of a Knowledge-based

Consultant: Rationale and a Cartoon’
Department of Computer Science Report,

University of Strathclyde 1982.

COOMBS M.J. and ALTY J.L.
'Expert Systems: An Alternative Paradigm'
Int. Journal of Man-Machine Studies Vol.20(1984), pp 21-43.
See noie
CRAIK K.
'The Nature of Explanation'
Cambridge University Press, Cambridge, 1943.

CULLINGFORD R.E., KRUEGER M.W., SELFRIDGE M. & BIENKOWSKI
M .A . 'Towards Automating Explanations'
Proc. Int. Jt Conference on Artificial Intelligence-7,1981.

* Coorv\e>5 AO.J. awH H0<H\£S S . 2Q1

' E M W ^ * * *> C o p ie s f w * * b e s g v , 0p *
Koc.) Brunei.

DAVIS R.
'Interactive Transfer of Expertise: Acquisition of New

Inference Rules'
Proc. Int. Joint Conference on Artificial Intelligence-5,

1977 .

DAVIS R. [1980a]
'Meta-Rules: Reasoning about Control'
Artificial Intelligence Vol.15(1980), pp 179-222.

DAVIS R. [1980b]
'Content Reference: Reasoning about Rules'
Artificial Intelligence Vol.15(1980), pp 223-239.

DAVIS R.
'Reasoning from First Principles in Electronic

Troubleshooting'
Int. Journal of Man-Machine Studies Vol.19(1983),

pp 403-423.

DAVIS R. and KING J.
'An Overview of Production Systems'
Machine Intelligence Vol.8 (1977),

eds. E.W. Elcock and D. Michie, Ellis Horwood.

DAVIS R., BUCHANAN B.G. and SHORTLIFFE E.
'Production Rules as a Representation for a Knowledge-Based

Consultation Program'
Artificial Intelligence Vol.8(1977), pp 15-45.

DAVIS R., SHROBE H., HAMSCHER W., WIECKERT K., SHIRLEY M.,
and POLIT S.

'Diagnosis based on Description of Structure and Function.'
Proc. AAAI Conference, 1982.

202

EDMONDS E.
'The Man-Computer Interface: a Note on Concepts and Design'
Int. Journal of Man-Machine Studies Vol.16(1982),

pp 231-236.

FAGAN L.M., KUNZ J.C., FEIGENBAUM E.A., and OSBORN J.J.
'Representation of Dynamic Clinical Knowledge: Measurement

Interpretation in the Intensive Care Unit'
Proc. Int. Joint Conference on Artificial Intelligence-6,

1979.

FERRAND P .
'SESAM: an Explanatory Medical Aid System'
Proc. ECCAI 1984,.Pisa.

FROST R. A.
'Identification of Similarities between Various Knowledge

Representation Formalisms'
Proc. Architecture of Large Knowledge-Based Systems

Conference, Manchester, 1984.

GOGUEN J.A., WEINER J.L. and LINDE C.
'Reasoning and Natural Explanation’
Int. Journal of Man-Machine Studies Vol.19(1983),

pp 521-559.

GERRING P.E., SHORTLIFFE E.H. and VAN MELLE W.
'The Interviewer/Reasoner Model: An Approach to Improving

System Responsiveness in Interactive A.I. Systems'
The A.I. Magazine Vol.3 No.4(1982), pp 24-27.

HAGERT G.
'What's in a Mental Model? On Conceptual Models in

Reasoning with Spatial Descriptions'
Proc. Int. Joint Conference on Artificial Intelligence-9,

1985 .

203

HASLING D.W., CLANCEY W.J. and RENNELS G.
'Strategic Explanations for a Diagnostic Consultation

System'
Int. Journal of Man-Machine Studies Vol.20(1984),

pp 3-19.
4 See, noVe.

HUET G.
'In Defense of Programming Languages Design'
Proc. ECCAI 1982, Orsay, France.

HUME D .
'A Treatise of Human Nature'
Book I, Part III, Section XIV, 1738.

JACKSON P. and LEFEVRE P.
'On the Application of Rule-Based Techniques to the Design

of Advice-Giving Systems'
Int. Journal of Man-Machine Studies Vol.20(1984), pp 63-86.

JOHNSON L.
'The Need for Competence Models in the Design of Expert

Consultant Systems'
Int. J. Systems Research and Info. Science Vol.1(1985),

pp 23-36.

JOHNSON-LAIRD P . N .
'Mental Models'
Cambridge University Press, 1983.

KAHN G.
'On When Diagnostic Systems Want To Do Without Causal

Knowledge'
Proc. ECCAI 1984, Pisa.

HOsuES S.
The Ccŵ û caKx/e ^

R.S<D Vo'. 1 5 N o .l (w s) *>.

204

KIDD A. L.
'What Do Users Ask? - Some Thoughts on Diagnostic Advice'
Expert Systems 85, ed. M. Merry, BCS Workshop Series,
Cambridge University Press, 1985.

KIDD A .L . and COOPER M.B.
'Man-Machine Interface Issues in the Construction and Use
of an Expert System'
Int. Journal of Man-Machine Studies Vol.22(1985),

pp 91-102.

KOTON P .A .
'Empirical and Model-Based Reasoning in Expert Systems'
Proc. Int. Joint Conference on Artificial Intelligence-9,

1985 .

LANGLOTZ C.P. and SHORTLIFFE E.H.
'Adapting a Consultation System to Critique User Plans'
Int. Journal of Man-Machine Studies Vol.19 (1983),

pp 479-496.

LEHNERT W. G.
'The Process of Question Answering'
Lawrence Earlbaum Associates, 1977.

MCDERMOTT J.
'Rl: A Rule-Based Configurer of Computer Systems'
Report CMU-CS-80-119, Department of Computer Science,

Carnegie-Mellon University, 1980.

MILLER P. L.
'A Critiquing Approach to Expert Computer Advice:

ATTENDING’
Pitman Advanced Publishing Program, Boston, 1984.

205

MINSKY M.
’The Society Theory'
in "Artificial Intelligence: An M.I.T. Perspective" Vol 1.

eds. Winston P.H. and Brown R.H. 1979

NECHES R., SWARTOUT W.R. and MOORE J.
'Explainable (and Maintainable) Expert Systems'
Proc. Int. Joint Conference on Artificial Intelligence-9,

1985 .

PATIL R. S.
'Causal Representation of Patient Illness for Electrolyte

and Acid-Base Diagnosis'
Ph.D. Thesis, Laboratory for Computer Science, M.I.T.

1981.

POLLACK M.E., HIRSCHBERG J. and WEBBER B.
'User Participation in the Reasoning Processes of Expert

Systems'
Report MS CIS-82-9, Dept of Computer & Information Science,

University of Pennsylvania, 1982.

RIESBECK C.K.
'Knowledge Reorganisation and Reasoning Style'
Int. Journal of Man-Machine Studies Vol.20 (1984),

pp 45-61.

SCHANK R. C.
'Conceptual Information Processing'
North-Holland 1975. (öl)

SCHANK R. C.
'The Structure of Episodes in Memory'
in "Representation and Understanding: Studies in Cognitive

Science" eds. D.G. Bobrow & T. Collins
Academic Press, 1975. (b)

206

SCHANK R. C.
'Representing Meaning: An A.I. Perspective'
Yale University Cognitive Science Technical Report 11,

1981.

SCHANK R.C. and ABELSON R.P.
'Scripts, Plans, Goals and Understanding'
Lawrence Earlbaum Associates, 1977.

SCHANK R.C. and CARBONELL, J.G.
'Re: The Gettysburg Address - Representing Social and

Political Acts’
in "Associative Networks" ed. N.V. Findler
Academic Press, 1979.

SCOTT A.C., DAVIS R., CLANCEY W. and SHORTLIFFE E.H.
'Explanation Capabilities of Production-Based Consultation

Systems'
Memo HPP-77-1, Heuristic Programming Project,

Stanford University 1977.

SINNHUBER R.
'Explaining and Justifying the Reasoning of Expert Systems

A Review of Recent Work'
University of Sussex A.I. in Medicine Group Report AIMG-4,

1984 .

STICKLEN J., CHANDRESEKARAN B. and JOSEPHSON J.R.
'Control Issues in Classificatory Diagnosis'
Proc. Int. Joint Conference on Artificial Intelligence-9,

1985 .

SOWA J.F.
'Conceptual Structures'
Addison Wesley, 1984.

207

SWARTOUT W.R.
'A Digitalis Therapy Advisor with Explanations'
Proc. Int. Joint Conference on Artificial Intelligence-5,

1977 .

SWARTOUT W.R.
'Explaining and Justifying Expert Consulting Programs'
Proc. Int. Joint Conference on Artificial Intelligence-7,

1981.

SZOLOVITS P. and PAUKER S.G.
'Categorical and Probabilistic Reasoning in Medical
Diagnosis' Artificial Intelligence Vol.11(1978),

pp 115-144.

TORSUN I.S.
'Knowledge Representation: An Overview'
Proc. Architecture of Large Knowledge-Based Systems

Conference, Manchester, 1984.

WEISS S.M., KULIKOWSKI C.A., AMAREL S, and SAFIR A.
'A Model-Based Method for Computer-Aided Medical

Decision-Making'
Artificial Intelligence Vol.11(1978), pp 145-172.

WELD D.S.
'Combining Discrete and Continuous Process Models'
Proc. Int. Joint Conference on Artificial Intelligence-9,

1985 .

VAN RELEGHEM E.
'Separating Control Knowledge from Domain Knowledge'
Proc. ECCAI 1984, Pisa.

208

APPENDIX II

EXAMPLE QUESTIONS SUPPLIED BY UNILEVER

The examples in this Appendix illustrate how ADEPTUS can be
used to produce useful responses to questions posed by
industrial users of a coating selection system. Each
question is given first in the natural language form as it
was originally expressed. The internal ADEPTUS
representation is then shown, followed by ADEPTUS' actual
response. This is then rewritten expressed in natural
language if necessary.

Example 1

What do you mean by a 'weak alkali' ?
-> (DEFINITION 'WEAK-ALKALI)

Answer :
*** Weak-Alkalis

are a class of Alkalis
with state default liquid

with pH range (7 10)

209

Example 2

What is the relevance of humidity in this context ?
(This concerns the system's request for an estimate of the
humidity during the application of the coating.)
-> (GOAL-ORIENTATION '(ACTOR ADEPTUS) '(ACT place-value)

'(OBJECT (environment-description humidity)))

Answer :
((ACTOR ADEPTUS) has-goal
((ACTOR ADEPTUS) (ACT PREDICT)
(OBJECT
((STICK ?C ?S) affected-by

(environment-description humidity)))))

i.e. ADEPTUS is trying to predict the way in which the
coating and substrate stick together, and this is affected
by the environmental humidity.

210

Example 3

What is a chlorinated rubber coating ?
-> (DEFINITION ’Chlorinated-rubber)

Answer:
*** Chlorinated-rubbers ***

are a class of coatings
with adhesion default (average)
with co l o u r all
with c o n s t i t u e n t s (c h l o r i n a t e d - r u b b e r - s o l v e n t
pigment)
with s t a t e one-of (solid liquid)
with single-film-thickness range (0 300)
with d e f e c t s one-of (pitting blistering cracking
flaking)
with hardness range ((extremely soft) (very hard))
with flexibility range

((extremely rigid)(extremely flexible))
with finish default gloss

211

Example 4

What is the environment after the drying process ?
(The question refers to a previously instantiated script,
containing details of a particular coating and its
behaviour. ADEPTUS is required to pick up the appropriate
binding for the environment in the state following the
STATECHANGE act in the $d-script.)
-> (DEFINITION 'Corroding-Environment2)

Answer:
*** Corroding-Environment2 ***

is an instance of Corroding-Environments
with i m m e r s i o n . in default none
with h u m idity (very humid)
with m a c r o l o c a t i o n industrial
with m e c h a n i c a l - d a m a g e abrasion2
with m i c r o l o c a t i o n outdoors
with splashed-by default none
with temperature default 20
with v a p o u r isocyanate

212

Example 5

Is bitumen suitable for a substrate with a poor surface
key, used in an exterior industrial environment ?
(This question means that a $d-script must be run for
bitumen, in the environment described. The binding for the
worn dry film is then accessed and forms the question
concept.)
-> (JUDGMENT 'dry-film-bitumen6)

*** dry-film-bitumen6 ***
has very good adhesion

and has extremely good single-film-thickness
and has solid state

but has pinholes defects

and has chalked finish

213

