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Abstract

Denoting the space of n x n skew-symmetric matrices, with entries in C, by
Sk(n, C) there is a natural notion of equivalence on this space given by an

action of the group Cl(n, C), We refer to this as skew-equivalence.

In this thesis we consider the classification of families of n x n skew-symmetric
matrices, given by smooth germs C", 0 -+ Sk(n, C), up to a related equivalence,
9-equivalence, introduced by Bruce, Tari to classify families of symmetric ma-
trices. We use the complete transversal theory of Bruce, du Plessis, Kirk and
determinacy results of Damon, Wall, Bruce, du Plessis, to obtain lists of simple
9-finitely determined germs. We are assisted in this task by the Maple computer
package Transversal, developed by Kirk.

Our classifications are initiated by considering the action of the appropriate

jet-group, P9, on the I-jets of such germs. This amounts to an action of
Cl(n, C) on r-dimensional subspaces of Sk(n, C). In particular we consider

this action on 2-dimensional subspaces of Sk(n, C) or pencils of skew-symmetric
matrices. This requires adapting classical techniques, for the reduction of both
non-singular and singular pencils of matrices, to the skew-symmetric case.

Non-singular pencils are dealt with by considering representative pairs of
skew-symmetric matrices of which at least one is non-singular. Representing
these pairs by .A-matrices and considering the associated A-equivalence we find
a complete set of normal forms. Together with a canonical reduction of singular
skew-symmetric pencils, derived from the classical approach of Kronecker, we
obtain a set of normal forms for pencils of skew-symmetric matrices. In particu-

lar we find an explicit list of normal forms for I-jets of germs C2, 0 -+ Sk(4, C).

The main result is a complete list of all simple 9-finitely determined germs

C2,O -+ S k( 4, C). We identify a relationship between aspects of this classifica-

tion and a classification of families of general 2 x 2 matrices, er -+ M(2, C),
carried out by Bruce, Tari. We also consider special families of skew-symmetric
matrices whose classification is either fairly straightforward or is obtained from
existing classifications of map-germs under X:-equivalence.



In addition we perform a selective classification of 3-parameter families of

4 x 4 skew-symmetric matrices. This is initiated by using our list of normal

forms for pencils as a foundation for finding skew-equivalent normal forms for

3-dimensional subspaces of Sk(4, C).

Corresponding to the classifcation of I-jets of rank r of families of skew-

symmetric matrices we identify a dual classification of the J-jets of corank r of

mappings into the dual space Sk(n, C)*.
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Chapter 1

Introduction

We start with some background notation and results from linear algebra, for
which we refer to [Lang).

If V,Ware vector spaces over a field K then H om (V, W) denotes the set
of linear maps from V to W. The set of isomorphisms V -t V is denoted by
Gl(V). When W = K then Hom(V, W) = Hom(V,K) is the dual of V and

denoted by V·. There is a canonical monomorphism V -t (V·)·, which is an

isomorphism when V is finite dimensional.

The tensor product of V with itself is denoted by V®V, and there is a natural

bi-linear map V x V -t V ® V, (v,w) I-t V ® w. The set 1\2 V is obtained as the
quotient of the tensor product V ® V by the submodule generated by elements
of the form V ® v. We define the wedge product of two vectors VI, V2 E V VI/\ V2

to be the image of VI ® V2 in the quotient 1\2 V. It is linear in both slots since

® is. It follows that 0 = (VI + V2) /\ (VI + V2), and since VI /\ VI = V2 /\ V2 = 0

it is clear that VI /\ V2 + V2 /\ VI = O. Clearly any element of 1\2 V is a linear
combination of elements of the form VI /\ V2.

If {el, ... , en} is a basis for V then one easily checks that ei/\ej, 1 ~ i < j ~ n

is a basis for 1\2 V.

We now give a general introduction to skew-symmetric or alternating bilinear
forms, and see how skew-symmetric matrices naturally emerge.
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Definition 1.0.1 [a] Let V be vector space defined over a field K. A bilinear

form, ¢, on V is said to be alternating or skew-symmetric if ¢(v, v) = 0,

for all v E V.

(b) A skew form ¢ is non-singular if ¢(v, -) : V ~ K is non-zero for all

o =I- v E V. Otherwise ¢ is singular.

(c) We denote the set of all skew-symmetric bilinear forms on V by Alt(V),

where
Alt(V) = {¢:V x V ~ K: ¢(v,v) = 0, for all v E V}.

If ¢ : V X V ~ K is a skew-symmetric bilinear form, by expanding ¢(Vl +
V2, Vl + V2), Vl, V2 E V, then

¢(V2, vd + ¢(Vl, V2) = ¢(Vl + V2, Vl + V2) - ¢(Vl, vi) - ¢(V2, V2)

O.
Hence any skew-symmetric bilinear form is also antisymmetric, i.e.

(1.1)

Conversely, if ¢ is an anti symmetric form, then setting V2 = Vl in (1.1) gives

2¢(VI, VI) = 0. So if K is not of characteristic 2 then ¢ is skew-symmetric.

Remark 1.0.2 By the above, if K is not of characteristic 2 there is no need
to distinguish between skew-symmetric and antisymmetric forms. However, in
characterstic 2 this is not the case. For this reason it is preferable to consider
skew-symmetric rather than anti symmetric forms.

Relative to a basis {el, ... , en} of V a skew-symmetric form, ¢ is specified

by an n x n matrix A = (aij), where aij = ¢(ei, ej ). This leads to the following
definition.

Definition 1.0.3 An n x n matrix A = (aij) with entries over a field K is

skew-symmetric if aii = 0, aji = -aij, that is A is of the form

0 aI2 aI3 ain
-a12 0 a23 a2n

A= -a13 -a23

an-ln
-aln -a2n -an-In 0
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Lemma 1.0.4 If K is not of characteristic 2 then a matrix is skew-symmetric

if and only if

(1.2)

Proof If aii = 0, aji = -aij then clearly AT = -A. However if AT = -A then

aji = -aij and aii = -aii, the latter implying that 2aii = O. So if K is not of
characteristic 2 then aii = 0 and A is skew-symmetric. 0

The relevance of the matrix constructed above from a basis and a skew form
is explained in the following obvious result.

Lemma 1.0.5 (a) Let V be a vector space, with basis {el, ... , en}, and ¢ a

skew form on V. Then if v = EViei,W = EWiei E V we have ¢(v,w) = iJT AtV

where iJ, tV are the column vectors corresponding to the Vi, Wj, and A is as above.

(b) A skew form is singular if and only if its matrix representation with

respect to any (and hence all bases) is singular.

Lemma 1.0.6 Any skew-symmetric matrix, A, of odd order n and defined over

a field K, not of characteristic 2, has zero determinant.

Proof Since A is skew-symmetric

Taking determinants

det(AT) = det( -A)

and hence
det A = (-1) n det A

which, since n is odd, implies that

2detA = O.

So as long as K is not of characteristic 2 then

detA = O.

o

7



We sometimes refer to skew-symmetric matrices of odd or even orders as odd
or even skew-symmetric matrices, accordingly. Note, from now on, we assume
the field K is infinite and not of characteristic 2 and hence all matrices, A,
defined over K which satisfy (1.2) will be skew-symmetric. The following result
will be of use later on.

Lemma 1.0.7 Given any skew-symmetric matrix of the form

A=

then

detA = {
if s is even
if s is odd

Proof If s is even then A is an odd skew-symmetric matrix and so its determi-
nant is zero. If s is odd we have an even skew-symmetric matrix and it can be
verified that its determinant is that given above. 0

1.1 The Space of Skew-symmetric Matrices

We denote the space of all n x n skew-symmetric matrices over K by Sk(n, K).

Each skew-symmetric matrix is determined by its upper triangular entries and
hence we can think of Sk(n, K) as a vector space with

dim Sk(n, K) = (n - 1) + (n - 2) + ... + 1

1
2n(n - 1).

(1.3)

(1.4)

The standard basis vectors for Sk(n, K) are the set of matrices

{Eij : 1s i < j s n},

whose (i,j)th element is 1 and whose (j,i)th element is -1with all other entries

zero. ( Alternatively, the (r, s)th entry of e«, E~{, is given by

8



Let N = n(n - 1)/2. Then any A E Sk(n, K) can be written

A=

and can also be represented by the N-tuple [a12, ... , an-In]. (We refer to this

as upper triangular representation for A.)

The following result, taken from [Cohn], concerns the reduction of a skew-
symmetric bilinear form to a standard skew-symmetric matrix representative.

Theorem 1.1.1 Let

Given a skew-symmetric bilinear form, ¢>, on a space V (over any field K),
the form has even rank 2r, say, and in a suitably chosen coordinate system its

matrix is

= o 1
-1 0

(1.5)

o 1
-1 0

o

where 0 is an (n - 2r) x (n - 2r) null matrix.

Proof This is proved by showing that V has a basis Ul, VI, ..• , Ur, Vr, Wh •.. W"

where dim V = 2r + s, rank ¢> = 2r and

1 ~ i ~r with ¢> returning the value 0 for all other choices of pairs of basis
elements.

The proof is by induction on dim V. If ¢> = 0 then r = 0 and we have the re-
sult. Otherwise, choosing x, y E V such that ¢>(x, y) :I 0, then on dividing x or y

by ¢>(x,y) we obtain vectors Ul, VI for which r/>(Ul,VI) = 1. Furthermore Ul and

VI are linearly independent, for if VI = AUI say, then r/>(Ul, Vl) = Ar/>(Ul, Ul) = 0,
which is a contradiction.
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Let Vi be the subspace spanned by Ui and Vi, and U the subspace given by

U = {z E V: ¢(z,ud = ¢(z,vd = OJ.

Clearly, any x E V can be written as

(1.6)

for a unique vector x' E V. In fact it is easily verified that x' E U and moreover

since Vi nU = {OJ it follows that V = VI EElU. Thus dim U = dim V - 2 and

the result follows by induction on dim V. 0

Before discussing skew-symmetric matrices further we consider a related set

of canonical objects. Above we defined the exterior product (alternating prod-

uct), /\2 V as
2

/\ V = V ® V / Sp{ V ® V : V E V} .

If dim V = n and we choose some basis of V to be {el,"" en} the corre-

sponding basis for /\2 V is given by

(1. 7)

For convenience we represent a general element of /\2 V by the notation, ii,

where

v = L Aijei" ej,
l~i<j~n

with Aij E K. Using the property of the wedge product that ej " e, = -ei " ej

we can also write v in the form

ii = L JLrser" es,
1~r,8~n

(1.8)

where !Jsr = =u-« = Ars/2.

Lemma 1.1.2 (aJ Each skew bilinear form ¢ on V corresponds to a linear

map /\2 V -t K, that is element of (/\2 V) * . Conversely any such element

corresponds to a skew form V x V -t K.

(bJ Any bilinear form ¢ on a vector space V yields a linear map </>* : V -t V*

defined by </>. (v) t-+ (w t-+ ¢(v, w)). In particular, this gives a natural map

Alt(V) -t Hom(V, V*).
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Proof (a) Any bilinear form yields a linear map V 0 V -t K; the skew-

symmetry shows that this yields a well defined linear map /\2 V -t K. On the

other hand given a linear map 0: : /\2 V -t K define rP(v, w) = 0:(V 1\w). Clearly

¢ is bilinear and rP(v,v) = 0:(0) = O.

(b) Is obvious. 0

Note that if {el,'" ,en} is a basis for V, then [e, 1\ ej, 1 ::::;i < j ::::;n} is a

basis for /\2 V and {(e, 1\ ej)· ,1 ::::;i < j ::::;n} a basis for its dual. Note that

(e, 1\ ej)· = -(ej 1\ ed··

There is a natural notion of equivalence on the space Alt(V) originating with

the group of linear automorphisms of V, which we denoted GI(V).

Definition 1.1.3 Two elements rPl, rP2of Alt(V) are equivalent if for some

element 0: E Gl(V) we have rPdv,w) = rP2(0:(v),a(w)) for all v,w E V.

It is easily checked that this gives rise to an equivalence relation on Alt(V).

Indeed this follows because there is a corresponding 'action'of the group GI(V),

on the space Alt(V) (or equivalently (/\2 V)·). So given rPE Alt(V) and a E

GI(V) then we set (a.rP)(v,w) = rP(a(v),o:(w)). This is a group action in the
following sense.

Definition 1.1.4 By an action of a group G on a set M we mean a mapping
~ : G x M -t M, such that for all x E M and g1, g2 E G

(i) ~(e, x) = x

where e denotes the identity of G. We usually write g.x for ~ (g, x) and the
above then become

(i) e.x = x

11



Given such an action we define an equivalence relation I'V on M by agreeing

that x I'V y when there exists an element 9 E G for which y = g.x. The equiv-

alence classes are called the orbits under the action. Given x EM the orbit
through x is by definition the equivalence class which contains z, i.e. the set

G.x = {g.x : g E G}.

If G is a group which is also a smooth manifold, then G is a Lie group if

both the maps G x G -+ G,

and G -+ G
9 f-t g-1

are smooth. If M is a smooth manifold an action of the Lie group G is a

smooth map ~ :G x M -+ M satisfying both properties, (i) and (ii) above, of

a group action. The Lie algebra, LG, of a Lie group, G, is the tangent space

to the Lie group at the identity.

Remark 1.1.5 Classification, up to such an equivalence, amounts to listing
orbits, representing each by a suitable normal form.

An invariant of a group action is some property or function which is constant
on orbits.

Naturally when doing calculations one has to choose bases and work with the

space of skew-symmetric matrices rather than skew-symmetric forms, Gl(n, K)

rather than GI(V).

Lemma 1.1.6 The action of GI(V) on Alt(V) corresponds to the action of

Gl(n, K) on Sk(n, K) given by

A f-t XT AX,

where X E Gl(n, K).

It follows (and is easily verifed) that this action preserves skew-symmetry.
This leads us to the following definition.
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Definition 1.1.7 Two skew-symmetric matrices A, B are said to be skew-
equivalent if

B = XTAX,

for some matrix X E Gl(n, K).

In fact, it can be shown that given any skew-symmetric matrix, A, by performing
a series of elementary column operations on it, provided we also apply the same
elementary operations to its rows, we obtain a skew-equivalent skew-symmetric
matrix.

This is dealt with in detail in the next section for the more general case
of skew-symmetric matrices defined over a ring R and we refer the reader to
Lemma 2.1.9 and Definition 2.1.10, there, for a description of elementary row
and column operations on such matrices. So, although the above can be deduced
by standard linear algebra, we defer the proof until then, where it is a special
case (R = K) of Theorem 2.1.14.

Since the reduction under this equivalence corresponds to that given in The-
orem 1.1.1 for a skew-symmetric bilinear form, the standard normal forms for
skew-symmetric matrices are:

(1.9)

with block

E=( 0 1)-1 0

and 0 an (n - 2r) x (n - 2r) null block. These normal forms are representatives

of the orbits of Sk(n, K) under Gl(n, K), determined by rank, 2r, which must

be even. Hence Sk(n, K) has finitely many orbits. These orbits are smooth

manifolds, and their union is the stratification of Sk(n, K).

The proof of the following lemma is taken from [Cohn).

Lemma 1.1.8 The determinant of a non-singular skew-symmetric matrix is
the square of a homogeneous polynomial in its entries.

Proof By Lemma 1.0.6 any non-singular n x n skew-symmetric matrix must
have n even and we let n = 2r. Now let A be the matrix with entries aij = tij

13



(i < j), where the tij are the n(n - 1)/2 independent upper triangular entries,

and aii = 0, aji = -aij' Hence A is of the form

[

0 tl2

A = -~I2 0

-tIn

tn-In
-tn-ln 0

Let Q[t] = Q[tl2,"" tn-ln] be the ring of polynomials in the tij'S with rational

coefficients. We can then consider the field given by

{
f(t) }g(t) : f,g E Q[t] and 9 i- 0 .

Clearly, A is defined over this field. We claim that A is non-singular. If not

detA would be 0 E Q(t). But by choosing certain values, tij, for the tij we can

reduce A to

=
o 1
-1 0

o 1
-1 0

rblocks

and then det (A(t)) = 1 (from Lemma 1.0.7).

Since the above reduction to normal forms, (1.9), is valid over any field it

follows that

where X is a non-singular matrix over Q(t).

Taking determinants
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for some t, g E Q[t], where I, g =I- O. Therefore

(1.10)

where det A is a homogeneous polynomial, of degree 2r, in Q[tJ. Since Q[tJ is a

unique factorization domain (UFD) it follows that gli and writing i /g = F we

deduce from (1.10) that det A = F2 is the square of a polynomial in the til'S,
and hence in the entries of A. Furthermore as noted above this polynomial is
homogeneous and of degree r. 0

Remark 1.1.9 This polynomial is determined up to sign, which can be fixed
so that F reduces to 1 when A = Er. The polynomial determined in this way
is called the Pfaffiar: of order n = 2r and is denoted by P f(A).

We also need the following facts (see [Artin], page 142).

Proposition 1.1.10 (a) For A E Sk(n, K), X E Gl(n, K) we have P j(XT AX) =

det(X).Pi(A).

(b) We write Ars for the matrix obtained from A by deleting rows and

columns rand s. Clearly this is itself skew-symmetric, and we write CrB for
(_I)r+B-l Pf(Ars). Then

n

Pf(A) = LaijCij.
j=l

(This is the analogue of the usual expansion of determinants by rows/columns.)

Proof (a) For the first case we adjoin the variables Xij (entries of a generic

matrix X) to the aij. Clearly Pf(XT AX) = ±det(X)Pf(A)j specialising to
the case X = I we see that the sign is +1.

(b) We may suppose that n = 2m is even. Clearly Pf(A) is linear in the

row variables (multiply the ith row and column by t and taking determinant

yields t2 det A). We write Drs for the coefficient (homogeneous of degree m -1)

of arB in P f(A). Consider first the case r = 1, s = 2. Now det A = P f(A)2 =

(a12D12 + D)2 where D does not involve a12. Expanding the determinant of

15



A by the first row, and the (1,2) minor by its first row it is easy to see that

the coefficient of a~2 in detA is det(AI2), so D12 = ±C12• Switching rows
and columns we deduce that Drs = ±Crs for any r, s. So we can deduce that

Pf(A) = 2::}=1 ±aijCij. It remains to determine the signs. This can be done

as follows. We need to choose a particular matrix A which is non-singular,

whose (r, s) entry is non-zero, which has no other terms in the rth row. For

this we choose the form ¢ with ¢(er,es) = l,¢(ei,ej) = 0 for i = r,s,j:l r,s.

Now write the remaining vectors in order and pair them off consecutively ea, eb

with ¢(ea, eb) = 1. Changing basis to bring this to normal form, and some
straightforward calculations determines the sign. 0

With a view to considering the geometry of stratification of Sk(n, K) we

introduce the following space, re Sk(n, K) x K", given by

r = ((A, v) E Sk(n,K) x K'r : Av = O}.

We then consider orbits of r under Gl(n, K). If X E Gl(n, K) it acts on

(A,v) Er by

X.(A, v) = (XT AX, X-IV).

It can be seen from (1.9) that kernel vectors of N are of the form

w = (0, ... ,0,W2r+l,""Wn).

Given such kernel vectors, w, we consider an action which gives us a normal

form for the set (N,w). If YE Gl(n, K) then let y-l represent a series of row

operations on the last n - 2r rows of w resulting in the vector

e2r+J = (0, ... ,0, 1,0, ... ,0).,___....
2r

Writing

with B an invertible (n - 2r) x (n - 2r) matrix, then it can be seen that these

row operations correspond to the premultiplication of the last (n - 2r) rows of

w by B-1. The action of this Y on (N, w) is given by
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where

and so N is unaffected by this action irrespective of the submatrix, B. This is
as expected since any row operations on the last n - 2r rows of a kernel vector
ware accompanied by a series of simultaneous row and column operations on
the last n - 2r rows and columns of N which are all zero. There are therefore
finitely many GI(n, K) orbits of r represented by the normal forms

Proposition 1.1.11 The tangent space to the GI(n, K) orbit through A E

Sk(n, K) is spanned by {yT A + AY: Y E M(n, K)}.

Proof Consider the path in GI(n, K) given by

X = I +tY,

where Y is any n x n matrix. Hence the tangent vector to the GI(n, K) orbit

of A (at A) corresponding to this path is

lim { (J + ty)T A(I + tV) - A}
t-+o t

(1.11)

(1.12)

as required. 0

Corollary 1.1.12 The tangent space to the GI(n, K) orbit through (A, v) E r
is spanned by {(yT A + AY, -Yv) : Y E M(n, K)}.

Proof Clearly, the first components of tangent vectors to the GI(n, K) orbit of

(A, v) are those found in the previous proposition. It remains to consider the
second component of these tangent vectors corresponding to v E K": Taking
the same path, in GI(n, K), considered in Proposition 1.1.11 it follows that

X-I = 1- tY + 0(2),
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where 0(2) represents terms involving quadratic and higher powers of t. So the

tangent vector to the Gl(n, K) orbit of v (at v) corresponding to this path is

1. {(I - tY)v - v} _ Y1m - - v.
t .....o t

Nate here that we can neglect the higher powers of t occuring in X -1 since they

vanish in the limit. Consequently, the tangent vectors to (A, v) E r are given

by (YT A + AY, -Yv), for any n x n matrix Y. 0

By choosing Y to be each Eij for 1 ::; i, j ::;n, where Eij denotes the matrix

with a 1 in the (i,j)th entry and zeros elsewhere (basis vectors of M(n,K)),

we can use these results to find sets of vectors which span these spaces. In each
case, taking all the linearly independent vectors gives us a basis for the tangent
space and hence its dimension.

Lemma 1.1.13 The tangent space to the orbit of

N = tBrE tB 0 E Sk(n, K)

has the set of basis vectors given by

2k s j s n }
2k + 1::;j ::;n '

for each 1s k ::;r.

Hence the dimension of this tangent space (and the dimension of the orbit)

is

dimSk(n,K) - dimSk(n - 2r,K) = r(2n - 2r -1).

Proof Note, this proof deals with sparse matrices and so for convenience we

leave null blocks of such matrices blank. We first use (1.12) to consider the form
these tangent vectors take, for a general skew-symmetric matrix A. Let

If Y = Eij then AY is a matrix whose jth column is the ith column of A, with

zeros elsewhere. Furthermore yT = Eji and yT A is a matrix whose jth row is
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the ith row of A, with all other entries zero. Hence the tangent vector to the
orbit of A corresponding to Eij is given by

As A E Sk(n, K) it follows that for 1 ~ k ~ n, aik = -aki and hence aij +aii =
O.

Now we consider the tangent vectors to the normal form, N. So for each Eij
the corresponding tangent vector is the matrix whose jth row and jth column
are obtained, respectively, by superimposing the ith row and ith column of N,
with zeros elsewhere. Since the last n - 2r rows (and columns) of the normal

form are zero it follows that all tangent vectors corresponding to Eij where

2r + 1 ~ i ~ n, are the zero vector. We only need to consider the tangent
vectors resulting from directions Eij where 1 ~ i ~2r.

Consider,

N=

0 1
-1 0

0 1
-1 0

0 1
-1 0

0

0

(1.13)

From (1.13) we see that we can obtain the tangent vectors Elj and _E2i by

using the first two rows and columns of N, i.e. the first (leading) block. For

example we get all tangent vectors of the form - E2j from the directions Eli

(3 ~ j ~n) in M(n, K). Similarly we get the tangent vectors Eli (2 s j s n)
from the directions E2i. Note here there are two directions which result in the

tangent vector E12 namely Ell and ~2 but we choose the later to avoid a range
of j which would include the direction E12 resulting in the zero vector. In a
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similar way we use the second block of N to obtain tangent vectors E3j and

_E4j given by directions E4j, 4 :s: j :s: n and E3j, 5 :s: j :s: n. Note here that

the directions E4j and E3j for j < 3 give no new tangent vectors.

It follows that given the kth block of N we obtain the following tangent
vectors to N. The tangent vectors corresponding to using the 2kth column
(2kth row) of N to fill entries in row 2k - 1 to the right (and column 2k - 1

below) are
E2k-1j ,

where 2k :s: j :s: n, and are obtained from the directions E2kj in M(n, K).

The tangent vectors corresponding to filling entries in row 2k to the right (and

column 2k below) are

where 2k + 1 :s: j :s: n, and are obtained from the directions E2k-lj in M(n, K).

Note here that by considering all blocks 1 :s: k :s: r we consider all directions,
Eij, for 1 :s: i :s: 2r which give independent tangent vectors. Clearly since all

these (non-zero) vectors are basis elements of Sk(n, K) they are independent.

So the dimension of the tangent space to N is given by

r

2:[1 + 2(n - 2k)] = r(2n - 2r - 1).
k=l

Notice that this dimension is also given by

dim Sk(n, K) - dim Sk(n - 2r, K) = ~n(n - 1) - ~(n - 2r)(n - 2r - 1).2 2
o

Corollary 1.1.14 The tangent space to the orbit of

has the set of basis vectors given by

!
(E2k-lj ,0) 2k :s: j s n,j -=F 2r + I} )

(E2k-12r+l, -e2k)
l:S:k:S:r

( - E2kj ,0) 2k + 1s j s n, j -=F 2r + 1
(- E2k 2k+l, -e2k-d

(0, -ei) 2r + 1 :s: i :s: n
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and has dimension r(2n - 2r - 1) + (n - 2r).

Proof The first component of any tangent vector to (N, e2r+1) is one of those
found in the previous lemma. To find the second component of this vector we
need, in addition, to consider the effect of the tangent vector Eij E T]GI(n, K)

on e2r+I E K" In general if (A, v) E r and v = (VI,···, vn) then if Y = Eij

then the component of the tangent vector in K" is given by

-EijV = (0,···,0, =v. ,0,···,0).
~

ith entry

That is, the ith entry of the tangent vector is the negative of the jth entry of v.

If V = e2r+1 it follows that V2r+1 = 1 and VI = ... V2r = V2r+2 = ... Vn = °
and so for all directions Eij for which j # 2r + 1 the corresponding component

of the tangent vector in K" is zero. So using Lemma 1.1.13 and considering
directions Eij, for which 1 ~ i ~2r, then provided j # 2r + 1 we have tangent

vectors to (N, e2r+d consisting of ordered pairs of the form

{
(E2k-Ij, 0)
(-E2kj,0)

2k s j s n }
2k -1~j ~ n '

for 1 ~ k ~ r, However, those tangent vectors obtained by considering the
directions Ei2r+1 will have component -e, E Kn. So (with 1 ~ i ~2r) we find
these tangent vectors are

for each 1 ~ k s r,

Since the first components of all these vectors are the independent tangent
vectors to N in Sk(n,K), they are independent in Sk(n,K) x K", irrespective
of their component in K": We obtain additional vectors by considering those
directions, Eij, which give the zero vector in the first component but whose

effect on e2r+l is some non-zero vector in K", Recall from Proposition 1.1.13
that such directions are those Eij for which 2r + 1 ~ i ~ n. Clearly by the
above argument we only get non-zero components in K" when we consider the
directions Ei2r+1. The resulting vectors are
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For these to be independent to the vectors, with non-zero components in Sk(n, K),

their components in K" must be independent, which they clearly are since they

are basis vectors of K", It follows that the dimension of the tangent space to

(EBrE EB0, e2r+l) E r is

dim Sk(n, K) - dim Sk(n - 2r, K) + dim Kn-2r = r(2n - 2r - 1) + (n - 2r).

o

1.2 Pairs of Skew-symmetric Matrices

Definition 1.2.1 Let (A1,A2), (BI,B2) be ordered pairs of skew-symmetric

matrices, over K. We say that they are skew-equivalent if for some invertible

matrix X over K we have

Definition 1.2.2 Given a pair (AI, A2) then we call the roots (p. : A), on the

projective line, PK, which satisfy

the eigenvalues of this pair. Associated with each (distinct) eigenvalue (p.o : AO)
there is an eigenvector no :f; 0 satisfying

Consider any pair (XT A1X,XT A2X), where X E GI(n,K), which is skew-

equivalent to (AI, A2)' This pair has eigenvalues, (p. : A), given by the roots
of

det(JLXT A1X + AXT A2X) = det[XT(JLAI + AA2)X]

= (detX)2 det(p.AI + AA2),

which since det X :f; 0, are the eigenvalues of (AI, A2)' Hence eigenvalues are

an invariant of skew-equivalent pairs.
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1.3 Pencils of Skew-symmetric Matrices

Consider a pair of skew-symmetric matrices (AI, A2) neither of which is null or
a scalar multiple of the other. This pair form a basis for a 2-dimensional family
of skew-symmetric matrices obtained by the linear combination

where (}:i are scalars in K.

We call this family a pencil of skew-symmetric matrices. The skew-symmetric
matrices obtained by fixing the scalar parameters are known as members of the
pencil. Since AI, A2 are skew-symmetric it can be easily verified that for all

((}:I , (}:2) E K2 (}:I Al + (}:2A2 is also skew-symmetric. We refer to pencils obtained
from odd or even pairs as odd and even pencils respectively.

Clearly a pencil is determined by any pair of independent matrices in it. In
what follows we aim to use these independent pairs to describe pencils. For this
reason, in Sk(n, K), null matrices are of no interest, and we also need to identify
a matrix with all its scalar multiples. To do this we consider the projective space
of Sk(n, K) and denote it by P(n, K). As a result any two distinct points of

P(n, K) represent a pair of independent skew-symmetric matrices. With this in
mind we formally define pencils of skew-symmetric matrices as follows.

Definition 1.3.1 A pencil of skew-symmetric matrices is a line in the projec-
tive space, P( n, K), of such matrices. It is, of course, determined by any pair of

distinct points on that line. Hence given such a pair (AI, A2) of skew-symmetric
matrices we can represent the pencil, A, they determine by

where the ratio (J.L : ),) E P K are the coordinates of points of the pencil.

The action of the general linear group, Gl(n, K), on Sk(n, K), mentioned above,

produces an action on the projective space P(n, K). This leads us to the fol-
lowing definition.

Definition 1.3.2 Two pencils are said to be skew-equivalent if one line is taken
to the other by an element of Gl (n, K).
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Alternatively since any pencil is determined by two distinct points on it, then if
we can find a pair of distinct points on each pencil which are skew-equivalent,
according to Definition 1.2.1, the pencils they determine are said to be skew-
equivalent. This leads to the following lemma.

Lemma 1.3.3 Let the pencils A, B be defined by (distinct) pairs (AI,A2),

(BI' B2) respectively. Then the pencils are skew-equivalent if and only if for
some

(~ J) E Gl(2, K)

Proof As stated above the pencil A is determined by the independent pair
(AI, A2) and can be expressed by

(1.14)

We can find a pair of members of A by choosing two ratios (0 : (3), ("( : 6). This

pair, (oAI + (3A2, "(AI +6A2), is distinct if these two ratios are distinct, that is,

or 06 - (3"( :f. o. If this is the case, then we can also express the pencil in terms
of this new pair or basis by

A = P(OAI + (3A2) +O"("(AI + 6A2)

= (po +O""()AI + (p(3+O"o)A2,

where (p : 0") E PK. Comparing with (1.14) we see that the coordinates

(J1. : .\) of points of A, relative to the old basis, can be expressed in terms of the

coordinates (p : 0") of points, relative to the new basis, by the linear map

Hence the condition above for the pair (o:AI + ,BA2, "(AI + 6A2) to be distinct,
and hence determine the pencil A, is just the requirement that the matrix

(~ J) E GI(2,K).
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(We refer to this matrix as the change of basis matrix.) If this pair is skew-

equivalent to the pair (B1,B2), then it follows from Definitions 1.2.1, 1.3.1

and 1.3.2 that the two pencils are skew-equivalent. 0

In this context, the following well known result is useful later.

Lemma 1.3.4 (The Three Point Lemma) Given three distinct points Xl = (Xl :

Y1), X2 = (X2 : Y2), X3 = (X3 : Y3) on the projective line P K1, there is an

element g E Gl(2,K) (or a unique element 9 E PGl(2,K)) such that

gX1 = (1 : 0), gxz = (0: 1), gX3 = (1 : 1);

o

1.4 Singular and Non-singular Pencils

Given an n x n pencil,

it has determinant

a homogeneous polynomial in K[JL, -Xl. Then (the polynomial function) ~ :

KZ ---+ K vanishes at those points (JL : -X) of the pencil for which JLAl + -XA2 is
a singular matrix.

Definition 1.4.1 A pencil is said to be singular if all its members are singular,

that is for all (JL : -X) E PK, ~ = O. As K is infinite this is true if and only if

~ is identically zero, i.e. qo = ... = qn = O.

Note if a skew-symmetric pencil, A = JLAl + -XA2, is odd then it follows from
Lemma 1.0.6 that, for each (JL : -X) E PK, detA is zero. Hence all odd skew-
symmetric pencils are singular.

A non-singular pencil is one for which ~ is a non-zero polynomial, i.e at
least one of the qi ¥ O. (Note that qo = det Ai , qn = detA2.) Over C this
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determinant can be resolved into linear factors

and the singular members of the pencil are given by .BiAl + OiA2. There are
thus n or less distinct singular members, one for each different root (.Bi : Oi) of
~. All other members are non-singular. Recall from Definition 1.2.2 that these

distinct roots of ~ are the eigenvalues of the pair (Al' A2).

In particular for a non-singular skew-symmetric pencil, A, its determinant
~ must be a non-zero polynomial of even degree, 2r say. In fact by considering
A as a matrix whose entries are linear in (J.L,A) it follows from Lemma 1.1.8 that
we can write

b.(J.L, A) = (PoJ.LT+ PlJ.LT
-
l A + ... + PrAT)2,
PI(A)

and we refer to the polynomial PiCA) as the Pfaffian of the skew-symmetric

pencil, A. Hence for a skew-symmetric pencil, A = J.LAl + AA2, the eigenvalues
of (Al' A2) (and the corresponding singular points of A) are given by the roots

of Pi(A).

Lemma 1.4.2 Let be A a non-singular skew-symmetric pencil, defined by the

distinct pair (AbA2). The eigenvalues of any distinct pair (or basis) of A,

(oAl + .BA2,'YAl + oA2), are obtained, from the eigenvalues of (Al,A2), by

the action of an invertible linear map. Furthermore the corresponding singular

members and eigenvectors are preserved.

Proof Recall from the Proof of Lemma 1.3.3 that any distinct pair (aAl +
.BA2' 'YAl + AA2) has the associated change of basis matrix

(~ J) E GI(2,K).

If (J.Lo : Ao) is an eigenvalue of (Al' A2) (and Uo the corresponding eigenvector)
then JLoAl + AoA2 is a singular member of A. From the Proof of Lemma 1.3.3
it follows that the corresponding eigenvalue, (Po : (70) is given by

(Po) _ 1 (0 -'Y) ( J.Lo )
170 - ao - 'Y.B -f3 a Ao·
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Since we only require the ratio (Po: 0"0) this is given by [O/Lo-,Ao : -,B/Lo+QAoj.

Hence the eigenvalues of the pair (QAI + ,BA2"AI + AA2) are obtained from

the eigenvalues of (AI, A2) by the action of the inverse of the change of basis
matrix. It can be verified that the corresponding singular element of A, in terms

of the pair (QAJ + ,BA2, ,AI + AA2), is still /LOAI + AoA2 (up to some scalar
multiple) and hence the corresponding eigenvector is preserved. 0

Lemma 1.4.3 If two skew-symmetric pencils A and B, defined by distinct pairs

(AI, A2) and (BI, B2) respectively, are skew-equivalent then they both have the

same number of singular elements. Furthermore, there is a map, of the type

described in Lemma 1.4.2, between each eigenvalue of (AI,A2) and (BI,B2)

where the corresponding singular elements of A and B are skew-equivalent as

skew-symmetric matrices.

Proof If A and B are skew-equivalent then, by Lemma 1.3.3, for some

(~ J) E GI(2,K),

the pairs (AL A~) = (QAI + ,BA2, ,AI + oA2) and (BI, B2) are skew-equivalent.

If (/Lo : Ao) is an eigenvalue of (AI, A2) then /LOAI + AoA2 is the corresponding

singular element of A. By Lemma 1.4.2 (Po: 0"0) is the corresponding eigenvalue

of the pair (A~,A~) and

Since (A~,A~) and (BI, B2) are skew-equivalent

and

/LOAI + AoA2 = PO(X-I)T BIX-l +O"O(X-l)T B2X-l

= (X-lf(poBI + l1'oB2)X-I,

where POBl + I1'OB2 is the singular element of B corresponding to the common
eigenvalue, (Po: 0"0), of pairs (A~,A~) and (BI, B2)' Hence

as required. 0

27



Chapter 2

Non-singular Pencils

This chapter is concerned chiefly with non-singular pencils. We start by gener-
alising the notion of skew-equivalence of skew-symmetric matrices, described in
Definition 1.1.7, by considering these matrices to be defined over a ring R. Sub-
sequently we derive results about their decompositions and invariants under this
equivalence. By adapting these results to the particular case, of A-equivalence
of A-matrices, we obtain results very useful for the classification of pairs of
skew-symmetric matrices (as described in Definition 1.2.1).

Most of the results in the first two sections of this chapter are either taken

directly from or are based on results given in Chapter 7 (Pgs. 104-122) of

[HrtHwk].

2.1 Classifying skew-symmetric matrices over ID's

In this section we study skew-symmetric matrices defined over integral domains
(ID's). We first need a few definitions.

Definition 2.1.1 An integral domain (ID), R, is a commutative ring with a 1
which has no zero divisors.

From here on assume the ring R is an ID unless we specify otherwise.
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Definition 2.1.2 An element u E R is a unit of R if

vu = 1,

for some v E R.

Definition 2.1.3 We say that two elements a, s e R are associates if

a = ub,

for some unit u E R; this is an equivalence relation and we write a '" b.

Definition 2.1.4 An s x s matrix, X, over R is invertible if there exists an
s x s matrix Y satisfying

XY = YX = I •.

Lemma 2.1.5 A matrix X is invertible if and only if det X is a unit in R.

Proof If X is invertible then by Definition 2.1.4 there exists an s x s matrix Y

over R such that
XY=I s-

So, taking determinants

det(XY) = (detX)(detY) = 1,

which by Definition 2.1.2 implies that det X is a unit of R.
Conversely, if det X is a unit of R by Definition 2.1.2 there exists an element
(detX)-l E R such that

(detX)(detX)-l = 1.

For any matrix over R,

X.adjX = adjX.X = (detX)I.,

so multiplying through by (detX)-l gives

X.(detX)-ladjX = (detX)-ladjX.X = I.,

and by Definition 2.1.4, with Y = (detX)-ladjX, X is invertible. 0
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Definition 2.1.6 Let A and B be two matrices over R of the same size. Then

B is said to be equivalent to A (over R) if there exist invertible matrices X

and Y over R such that
B=YAX.

Definition 2.1.7 We define a list of special square matrices, with entries in R,

as follows:

(i) Fij is the matrix obtained from the identity matrix by interchanging rows

i and j;

(ii) Gi(u) is the diagonal matrix with a unit u of R in the ith row and 1's

elsewhere on the diagonal;

(iii) Hij(r), for any r E Rand j :j:. i, is the matrix obtained from the identity

matrix by adding r times row j to row i. Thus Hij(r) has 1's on the

diagonal, r in the (i, j) place and zeros elsewhere.

(iv) Hij(r) is defined in the same way as Hij(r) with the word 'row' replaced

by 'column'. So Hij (r) has l's on the diagonal, r in the (j, i) place and

zeros elsewhere.

Note that Hij(r) = Hji(r) but it is useful to have both definitions.

Lemma 2.1.8 The above matrices Fij, Gi(u), Hij(r) and Hij(r) are all in-

vertible.

Proof From Definition 2.1.7 we find that detFij = -1, detGi(u) = u and

detHij(r) = Hij(r) = 1. So the determinants of these matrices are units of R

and therefore by Lemma 2.1.5 the matrices are all invertible. 0

Lemma 2.1.9 The effect of postmultiplying a given matrix of the appropriate

size

(1) by Fij is to interchange columns i and i.

(2) by Gi(U) is to mUltiply column i by u,
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(3) by Hij{r) is to add r times column j to column i.

The effect of premultiplying a given matrix of the appropriate size

(4) by Fij is to interchange rows i and j,

(5) by Gi{u) is to multiply row i byu,

(6) by Hij{r) is to add r times row j to row i.

Proof These results follow by standard matrix multiplication. 0

Definition 2.1.10 The operations, 1-3, described in Lemma 2.1.9 are known

as the elementary column operations on a matrix, and those of 4-6 as the

elementary row operations.

We have the following theorem.

Theorem 2.1.11 Two matrices A and B are equivalent if it is possible to pass

from one to the other by a sequence of elementary row/column operations.

Proof To carry out an elementary row (column) operation on a matrix, A, by
Lemma 2.1.9 one only has to perform that operation on the identity matrix and
premultiply (postmultiply) A by the result. Since by Lemma 2.1.8 the matrices
performing these tasks are invertible, any of these elementary operations will
transform the matrix, A, into an equivalent one. In particular the sequence of

row/column operations needed to pass from A to B is represented by a sequence
of matrices of the type listed in Definition 2.1.7 given by

(2.1)

where the matrices Xi represent the elementary column operations and the Y;
represent the elementary row operations. It then follows by Lemma 2.1.9 that

(2.2)

Given such a list of row/ column operations, where for each of the two types the

order in which they are performed is provided, as in (2.1), then the associativity
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of matrix multiplication allows us considerable flexibilty when performing these
operations on a matrix. For example, to obtain the matrix B from A in (2.2),
we could start by performing the first p column operations, represented by the

sequence Xl, ... ,Xp, (p < r), and follow these by the first q row operations

represented by YI, ... ,Yq, {q < s}, then we could perform another sequence

of column operations starting with Xp+! and so on. (We could for example

perform alternate single row and column operations from each sequence.)

As mentioned above by Lemma 2.1.8 each of XI, ... .X; and YI, ... ,Ys is

invertible and so rewriting {2.2}as

B=YAX

where X = Xl ... X; and Y = Ys ... YI it follows that X and Yare invertible.
Therefore by Definition 2.1.6 A and B are equivalent. 0

When dealing with skew-symmetric matrices we need to refine the equiv-
alence given in Definition 2.1.6 so that it preserves the skew-symmetry of a
matrix. This leads us to the following definition.

Definition 2.1.12 Let A and B be two skew-symmetric matrices over R of
the same size. Then B is skew-equivalent to A (over R) if there exists an
invertible matrix, X, over R such that

B=XTAX.

So, skew-equivalence is the special case of equivalence where, Y = XT. Fur-
thermore if the ring over which the matrices are defined is a field, K, we have
the skew-equivalence of matrices over K refered to, in Definition 1.1.7, in Chap-
ter 1. As mentioned there, it is easily verified that skew-equivalence preserves
skew-symmetry.

Definition 2.1.13 Given an elementary row (or column) operation on a matrix

we refer to the same elementary operation applied to its columns (rows) as its

counterpart column (row) operation. Furthermore the action of this row

(or column) operation followed by its counterpart column (row) operation is
called a simultaneous row and column operation.
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Lemma 2.1.14 Two skew-symmetric matrices A and B are skew-equivalent if
it is possible to pass from one to the other by series of (elementary) simultaneous
row and column operations.

Proof Given the matrix, A, there are three possible elementary simultaneous
row and column operations we can perform on it:

(i) interchanging columns i and j followed by interchanging rows i and j. It
can been seen from Lemma 2.1.9 that this action is represented by the
matrix

and since it can be verified that Fij = Fi~' this matrix is skew-equivalent

to A.

(ii) multiplying column i by a unit u E R followed by multiplying row i by u.
This action results in the matrix

where, clearly, since Gi(u) is a diagonal matrix Gi(u) = Gi(uf and we
have a matrix skew-equivalent to A.

(iii) adding rE R times column j to column i followed by adding r times row
j to row i. This corresponds to the matrix

and since Hij(r) = Hji(r) = fIij(r)T it follows that this matrix is skew-
equivalent to A.

So any elementary row and column operation results in a skew-equivalent ma-
trix. Note that given a series of elementary column operations Xl, ... .X; by

the above their counterpart row operations can be written xi, ...,X; and if

we can pass from A to B by the corresponding series of simultaneous row and
columns operations then

B = (X; ... X[)A(XI ... Xr)

= (Xl·· .Xr)T A(XI· ··Xr)

= XTAX,
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where X = Xl" .x.. 0

Note here that if R = K, Le. A, B are skew-symmetric matrices defined
over the field K, then, as remarked in Chapter 1, we deduce from this lemma
that if B can be obtained from A by a sequence of elementary simultaneous row
and column operations then it is skew-equivalent to A. Here the elementary
row and column operations, described in Lemma 2.1.9, are just the standard
elementary operations on matrices defined over a field.

Before going any further we add the following remark, which is useful when
performing simultaneous row and column operations on a skew-symmetric ma-
trix.

Remark 2.1.15 Given a skew-symmetric matrix A = (aij), the effect of si-

multaneous row and column operations of types (ii) and (iii) on this matrix are
fairly easy to interprete. However the result of simultaneous row and column
interchanges on a skew-symmetric matrix is less obvious.

Suppose, starting with

0 a12 ali alj aln
-a12 0 a2i a2j a2n

-ali -a2i 0 aij ain
A= (2.3)

-alj -a2j -aij 0 ajn

-aln -a2n -ain -ajn 0

we wish to interchange columns C, and Cj, followed by interchanging rows R;

and Rj• Call the resulting skew-equivalent matrix A'.

Clearly, any elements which do not lie in either Ci, Cj, R; or Rj are un-

changed in A'. In other words by drawing a vertical line through both columns
C, and Cj of A and a horizontal line through both rows R; and Rj the entries

remaining are preserved in these positions in A'.

Secondly, the entries of the two columns O, and Cj which don't lie in either Ri
or Rj are interchanged in the same manner as for standard column interchanges

on a matrix. In other words, looking down both columns C, and Cj of A,
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excluding the entries at the intersection of a veritcal and horizontal line, pairs
of entries in these columns, occuring in the same row, are interchanged in A'.

Thirdly, in A', the entries aii and aij are interchanged with ajj and aji,

respectively, i.e. the iith and jjth entries of A' are ajj and aii respectively and

the ijth and jith entries of A' are aji and aij respectively. In particular, since

we are considering skew-symmetric matrices (i.e. aji = -aij), interpreting the

resulting entries of A' in terms of the entries of A, this amounts to switching two
zeros on the main diagonal and changing the sign of the ijth and jith entries
of A.

We represent these three effects, on the matrix A in (2.3), by the following

incomplete matrix where any missing entries (in rows R; and Rj) are denoted

by 0,

0 al2 alj ali aln
-al2 0 a2j a2i a2n

1= 0 0 0 -aij 0

0 0 aij 0 0

-aln -a2n -ajn -ain 0

Finally, the remaining entries of A' are given by interchanging entries between
rows R; and Rj in the usual way, these entries being those which lie in neither

C, or Cj of A. This ensures that A' is skew-symmetric and the remaining

entries are filled according to the definition of a skew-symmetric matrix (i.e.

The main result of this section concerns skew-symmetric matrices defined over

Principal Ideal Domains (PIDs). Before this, we provide a standard result for
PIDs.

Lemma 2.1.16 Given any PID R and rl, ... , rn ER, then the ideal in R gen-

erated by TI, ... , Tn, denoted by (rl, .. " rn) = (r), where T = gcd{rl, ... ,Tn}.

Proof If R is a PID then (Tl' ... Tn) = (T), for some TER. So
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(i) TITl,"" TITn (since Tl, ... Tn E (T));

Firstly, (i) tells us that T is a common divisor of Tl, ..• ,Tn. Furthermore if

d is any common divisor of Tt, ... , Tn then (ii) implies that dlr and therefore

T = gcd{rl' ... rn}. 0

We also introduce some convenient notation.

Definition 2.1.11 An n x n skew-symmetric matrix of the form

o

o

is referred to as skewdiag( at, a2, ... , ar).

Theorem 2.1.18 Any n x n skew-symmetric matrix A with entries in a PID,

R, is skew-equivalent to a matrix, skewdiag(dl, d2, ..• ,dr), of the form

o

o

where dtld21·· 'Idr, for some r ~ O.

36



Proof The proof is an adaption of the proof of Theorem 7.10 in [HrtHwk] for

the skew-symmetric case.

It is instructive to prove this theorem first for the special case of a Euclidean
domain since in this case the argument is clearer and it is this situation which
we shall be concerned with later when we study ,x-matrices. We then modify
the argument for the general PID case.

Case when R is a Euclidean domain

So given an n x n skew-symmetric matrix, A over a Euclidean domain R

(equipped with a Euclidean function f/J) we show how to reduce A by means
of simultaneous row and column operations to a skew symmetric matrix of the
form skewdiag( d1, ... , dr) where d11 ... Idr.

First Stage

We aim to reduce A to the skew-equivalent n x n skew-symmetric matrix C
of the form:

0 d1 0 0
-d1 0 0 0

C= 0 0 (2.4)
C*

0 0

where d1 divides each entry of the skew-symmetric sub-matrix, C*. We refer to
the 2 x 2 skew-symmetric block in the top left-hand corner of a skew-symmetric
matrix (or submatrix) as the leading diagonal block and the (1,2) entry as the
entry in the leading diagonal block.

We describe below a finite sequence of simultaneous row and column opera-
tions which when performed on A = (aij) yield either a skew-symmetric matrix

of the form (2.4) or a skew-symmetric matrix B = (bij) satisfying the condition

(2.5)

In the latter case we carry out a further sequence of simultaneous row and
column operations. Then we reach either (2.4), in which case we stop, or a

matrix whose entry in its leading diagonal block has ¢-value reduced further
and we continue. Eventually after a finite number of steps we must reach (2.4)
since otherwise the ¢-values of the entries in the leading diagonal blocks of the
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matrices obtained form a strictly decreasing infinite sequence of non-negative
integers, which is not possible.

The sequence of operations is as follows. If A is the zero matrix we are
already at (2.4). Otherwise A has at least two non-zero entries which by suit-
able simultaneous row and column interchanges can be moved into the leading
diagonal block. We therefore assume al2 :I 0 and A is of the form:

o al2 al3 aln
-al2 0 a23 a2n

A = -al3 -a23

A*

where A * is a skew-symmetric sub-matrix.

There are three possibilities.

Case 1 There is an entry alj (j ~ 3) in the first row such that al2 doesn't

divide alj'

As R is a Euclidean domain we can write

where either r = 0 or ¢(r) < ¢(aI2)' Since al2 doesn't divide alj then r :I 0
and so ¢(r) < ¢(aI2)' By subtracting q times the second column from the
jth column and then interchanging the second and jth columns we replace al2

by r. To preserve the skew-symmetry we must accompany each of the above
by their counterpart row operations and by doing so we replace -a12 by -r.

Consequently we achieve (2.5) (Note that q = 0, i.e ¢(alj) = ¢(r) < ¢(aI2) is

a special case of the above and to get (2.5) we just interchange the second and
jth columns.)

Case 2 There is an entry -a2j in the second column such that al2 doesn't
divide -a2j. In this case

where ¢(r) < ¢(a12), and we can proceed as in Case 1 first operating with rows
instead of columns, and then applying the corresponding counterpart column

operations required to preserve skew-symmetry (to reach (2.5)).
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Case 3 a12 divides every entry in the first row and second column.

In this case by simultaneous row and column operations, involving subtract-
ing suitable multiples of the second column from the other columns, we can
replace all the entries of the first row and column, other than a12 and -a12

respectively, by zeros. Similarly by simultaneous row and column operations,
involving adding multiples of the first row to the other rows, we can kill off all
elements other than a12 in the second column and all elements other than -a12

in the second row. The resulting skew-symmetric matrix is of the form:

0 a12 0 0
-a12 0 0 0

D= 0 0

D*
o 0

where D* is a skew-symmetric sub-matrix. If a12 divides every element of D*
we have (2.4). Otherwise there is an entry dij (j > i ~3, j ~4) in D* such that

a12 doesn't divide dij. In that case we add the ith row to the first row which
along with the counterpart column operation gives us Case 1. Consequently,
by the same argument used there, we obtain a skew-equivalent matrix with an
entry, b12, in the leading diagonal block for which ¢(b12) < ¢(a12). This gives

us condition (2.5).

So the outcome in each of the three cases is a skew-symmetric matrix skew-
equivalent to A which either has the form (2.4) or satisfies (2.5). As previously

mentioned repeated application brings us to (2.4) after a finite number of steps
thereby completing the first stage of the reduction.

Conclusion of the reduction

Having reached (2.4) we have effectively reduced the size of the matrix with

which we are dealing. The above process can then be applied to the submatrix
C* reducing its size further. We note that any simultaneous elementary op-
erations on C* correspond to simultaneous elementary operations on C which
don't affect the first two rows and columns. Furthermore any simultaneous ele-
mentary operations on C* give a new skew-symmetric matrix whose entries will
be linear (over R) combinations of the old ones and therefore these new entries
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will still all be divisible by d1• The result will be a matrix of the form

0 d1 0 0 0 ... 0
-a, 0 0 0 0 ... 0
0 0 0 d2 0 ... 0
0 0 -d2 0 0 ... 0
0 0 0 0

C..
0 0 0 0

where d1ld2 and d2 divides every entry in the skew-symmetric sub-matrix c=.
We carryon this procedure further reducing the effective size of the matrix and
leaving a trail of (leading) diagonal blocks as we go. In due course we reach a

matrix of the form:

o

General case

The argument here is not very different from that for a Euclidean domain,
the main difference being that simultaneous row and column operations are no
longer sufficient alone but need to be supplemented by another kind of 'sec-
ondary operation' to effect the reduction.

We wish to mimic the above method but to do so we first need to find a
replacement for the Euclidean function <p. We do this by introducing a length

function on R* (the non-zero elements of R). If r E R* then r can be written

in the form

where u is a unit, the Pi are primes in R and m ~ O. The integer m in this
expression is unique and we define l(r) = m and call this the length of r. Clearly

l(rr') = l(r) + l(r'), (2.6)

where r, r' E R*.
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We show how to reduce a n x n skew-symmetric matrix A over R to the
required skew diagonal matrix by a sequence of operations which correspond to
the post and pre multiplication of an invertible matrix and its transpose.

First Stage

As for the Euclidean case this consists of successive applications of a certain
sequence of (simultaneous) operations chosen so that each application either

leads to (2.4) or to the modified case of (2.5) where if> is replaced by f.

Modification to the sequence of operations is only needed in cases 1 and 2

and it is sufficient to explain what happens in case 1.

Here we have al2 1= 0 (if not we can make this so by suitable simultaneous

row and column interchanges) and there is some alj such that a12 doesn't divide
alj for some 2 < j ~ n. For notational convenience we can, by a simultaneous

row and column interchange, suppose j = 3.

Since R is a PID we know from Lemma 2.1.16 that the non-empty set

{aI2,aI3} has an hcf d and that the ideals R(a12,aI3) and R(d) are equal.
From the former we have

(2.7)

where, since al2 doesn't divide a13, Y2 is not a unit. Therefore f(Y2) ~ 1 and
by (2.6)

Using R(aI2, a13) = R(d} we can write

for some X2, X3 E R. Then from (2.7) we have

hence X2Y2 + X3Y3 = 1. Therefore the determinant of the n x n matrix

1 0 0
0 X2 -Y3 0

s= 0 X3 Y2

0 In-3
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is 1 and so this matrix is invertible. It follows that the skew-symmetric matrix

ST AS is skew-equivalent to A and the entry in its leading diagonal block is

where e(d) < e(a12). So the matrix ST AS is a matrix satisfying the modified

version of (2.5) where the function <P is replaced bye.

The Conclusion of the Reduction

This follows exactly as in the Euclidean case. 0

We can use the previous proof to establish a result stronger than Lemma 2.1.14
for skew-symmetric matrices defined over a Euclidean domain.

Theorem 2.1.19 Two skew-symmetric matrices A, B defined over a Euclidean
domain, R, are skew-equivalent if and only if one can pass from one to the other
by a series of simultaneous row and column operations.

Proof We have already established, in Lemma 2.1.14, that if we can pass from
A to B by a series of simultaneous row and column operations then B is skew-
equivalent to A. It remains to prove the converse. Suppose B is skew-equivalent
to A that is by Definition 2.1.12

B =XTAX, (2.8)

for some invertible matrix X. Consider this matrix X,

Using techniques described above in the proof of the Euclidean case of Theo-
rem 2.1.18 we can, by column operations only and in a finite number of steps,
reduce X to

X' = (~: 0 X,D),
X~l

(2.9)

Before proceeding it is worth remarking that any matrix obtained from an in-

vertible matrix by applying elementary row/column operations is also invert-

42



ible. This follows from Lemma 2.1.8 and the fact that the subset of units of R
is closed. Consequently det X' = u is a unit and so from (2.9)

det X' = X~l det Xl = U.

So, for some v E R, uv = 1 and

from which we find that Xli is a unit. By a column operation of type 2 given

in Lemma 2.1.9 we can assume the leading diagonal entry of X' is 1 in which
case det X' = det X I which by the previous remark is a unit. Hence we have an
(n -1) x (n - 1) invertible submatrix Xl and by proceeding as above, confining

any column operations to the last n - 1 columns of X', we can reduce X' to the
form

1 0 0 o

X"=
X~l 1 0
X~l X~2

o

where X2 is an invertible (n - 2) x (n - 2) submatrix. By induction we can
therefore reduce X by elementary column operations to

o
1

Xnn-l

and hence it can be seen by further column operations we reach In. It follows
by standard linear algebra that by performing the same column operations used

above to pass from X to In on the identity matrix we obtain the inverse X-I
of X. We can write

where XI, ... ,X; are, in order, the matrices of types (1)-(3) representing the

elementary column operations used. So

X = (Xl'" Xr)-l

- X-l .. ·X-l- r 1 •
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Since the reciprocal of any elementary column operation is also an elementary
column operation (of the same type) it follows that postmultiplying the matrix
A by X is the same as carrying out a sequence of elementary column operations
on A and so (2.8) implies that one can obtain B by a sequence of simultaneous
row and column operations, as required. 0

Corollary 2.1.20 Two matrices A, B, defined over a Euclidean domain, R,

are equivalent if and only if one can pass from one to the other by a sequence

of elementary row and column operations.

Proof If we can pass from A to B by a series of row and column operations
then by Theorem 2.1.11 A and B are equivalent.

Conversely, if A, B are equivalent then

B=YAX, (2.10)

for some invertible matrices X, Y.

In the proof of Theorem 2.1.19, above, we showed that by a sequence of
elementary column operations, represented by matrices Xl, ... .X; of types (1)-

(3) in Lemma 2.1.9, we can reduce X to In and by applying these same column
operations to In we obtain the inverse

X-I = Xl" .x,

of X. Hence by postmultiplying A by X = X;l ... XII we are applying a
sequence of elementary column operations on A.

Similarly, by applying row operations to the invertible matrix, Y, it can
be reduced to In by a sequence of elementary row operations, represented by
matrices, YI, ... , Ya, of types (4)-(6) in Lemma 2.1.9. By applying these to In

we can express the inverse, y-l, as

y-l = Y.··· Y1.
Hence

Y = (y•... Yd-l

_ v-I ...y-l
- ~l .'
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where y1-1, ... ,ys-l also represent elementary row operations since the recip-

rocal of an elementary row operation is also an elementary row operation (of

the same type). So premultiplying A by Y has the effect of carrying out this
sequence of row operations on A.

Hence it follows from (2.10) that B can be obtained from A by a sequence
of elementary row and column operations. 0

2.2 Invariants

Preliminary

We define a k-minor of any matrix A over R to be the determinant of a k x k

sub-matrix obtained from A by deleting a suitable number of rows and columns
(leaving the order of the remaining rows and columns unchanged). Thus a
k-minor is an element of R.

Definition 2.2.1 Let A be any s x t matrix over Rand 1 ~ k ~ min{s, t}. We

define Ik (A) to be the ideal of R generated by all the k-minors of A.

In the following lemma we obtain a result, concerning the ideals generated by
the k x k minors of a special type of diagonal matrix, which will be useful later
on.

Lemma 2.2.2 Consider the matrix

B=
o

o
with b1lb21b31 .. ·Ib,. Then the ideal of all its k x k minors is principal and is
equal to

ifk ~ s
otherwise
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Proof If k > s then Ik (B) = (0) since all k x k minors are zero. If k ~ s any non-

zero member of IdB) is clearly a sum of elements of the form ob.; ... bik, where

o E R, and we may suppose il < .,. < ik' Since bjlbi; for 1 ~ j ~ k we deduce

that bi ... bk divides every member of Ik(B) and since clearly bi ... bk E h (B)

we have the required result. 0

Lemma 2.2.3 Let A, B be s x t matrices over R and suppose that they are

equivalent over R. Then

for 1~ k s minis, t}.

Proof This result is Lemma 7.14 in [HrtHwk] and we closely follow their proof.
We first need the following observation. Let D be any m x m matrix over

R, and write D = (dl, ... ,dm), where dl, ... ,dm denote the columns of D.

Furthermore let di, d~be two other column vectors of length m with entries in

R. Then

and

These facts can be proved by expanding the left hand determinants by the first
column. Clearly similar remarks apply to the other columns. (Note these are

a generalisation of standard results for determinants of matrices over afield.)
Thus, if we have some m x m matrix D and replace its ith column by some R-
linear combination of columns ej , ... , ek, then the determinant of the resulting
matrix is a R-linear combination of the determinants of the matrices obtained
from D by replacing its ith column by el,'" ,ek in turn. We can use this
principle to obtain, from the following, a result neccessary for the proof.

Suppose we are given some collection Cl, ... , C, of column vectors of length
m with entries in R. Let S be the set of all m x m matrices which can be formed
from these columns (with repeats allowed). Let C be any m x m matrix whose
columns are R-linear combinations of Cl, ... , Cl. Then applying the principle,
described in the previous paragraph, to each column in succession it follows that
det C is a R-linear combination of elements det W for W E S. Therefore det C
belongs to the ideal of R generated by the elements det W as W runs over S.
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Having established this we are ready to prove the result. Let A = (al' ... ,at)
be any s x t matrix over R, and let X be any txt matrix over R. Consider
AX. The ith column of this matrix is given by the column vector

(2.11)

We examine a typical i x i submatrix E of AX , letting J = {jl,"" ji} be

the collection of its rows written down in natural order. Then from (2.11) the
columns of E are R-linear combinations of 'partial columns' of A, that is, of

column a~ got by selecting the h, ... ,ji-th entries of ak. Therefore, by the

result in the previous paragraph, the corresponding i-minor det E is an R-linear
combination of elements

det(a~l' ... ,a~J, (2.12)

determinants of i x i submatrices formed from selections of the columns
al J, ... ,at J. The determinant (2.12) is zero unless all of kl' ... k; are distinct
and in this case we can bring its columns into the same order as they occur in
A, by a series of column interchanges, with the resulting determinant differing
only by sign. Consequently, determinants of the form in (2.12) are, up to sign,
i-minors of A. So it follows that, if E is any i x i submatrix of AX , then det E
is a R-linear combination of i-minors of A and so belongs to the ideal Ii(A)
generated by these minors. Therefore

(2.13)

By similar arguments with rows we find that, for any s x s matrix Y,

(2.14)

So, replacing the matrix A by YA, on applying (2.13) followed by (2.14) we

deduce that
Ii(Y AX) ~ Ii(A). (2.15)

If Y and X are invertible and B = YAX, then A = y-l BX-1. Immediately,
from (2.15)

Ii(B) ~ Ii(A),

and furthermore, applying (2.15) to y-l BX-1 = A we also have

Ii(A) ~ l;(B).
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Hence Ii(A) = Ii(B), as required. 0

We are ready to prove the following theorem.

Theorem 2.2.4 A n x n skew-symmetric matrix, A, with entries in a PID R
is skew-equivalent to a matrix oj the Jorm

o

D=

o

where d11 ... Idr and the di 's are unique up to units. Furthermore, the ideals

h(A) genemted by the k x k minors oj A are given by

h(A) ~ {
o

(di" ·a:-1ds)(di ... a:)
iJ k > 2r

iJ k = 2s - 1 is odd }
if k is even i.e. k = 2s 1 s k s 2r '

where 1~ s ~ r.

Conversely, given a skew-symmetric matrix A Jor which the even ideals

12s(A) = (g;), 1 ~ s ~ r with g; the principal generators, then (setting go = 1)
A is skew-equivalent to a matrix as above with

d -....f!.!_
8 - •

g,-l
(2.16)
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Proof By Theorem 2.1.18 A is skew-equivalent to a matrix

o

D=

o

for some d11·· ·Idr. By applying Lemma 2.2.3 to the special case of skew-
equivalence it follows that

Furthermore by interchanging columns of D we obtain the equivalent diagonal
matrix

o

o

and by Lemma 2.2.3 it follows that

If k > 2r then by Lemma 2.2.2 h(A) = (O). However for 1~ k ~ 2r we need

to consider odd and even ideals separately. So, again by Lemma 2.2.2: if k is
odd, Le. k = 28 - 1, we have

and if k is even, Le. k = 28 we have
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where 1 ~ 8 ~ r. It remains to check how unique these di are. Assume A is
also skew-equivalent to a matrix

o
-d~

d'r
o

o

D'=

0 d'1
d' 0- 1

0 d~
d' 0- 2

o

where d~I" ·Id~.Then by applying the above, for 1 ~ 8 ~ r, we have

when k = 28 - 1 is odd and

when k = 28 is even. This implies that

d2 d2 d d,2 d,2 d'1 . •. s-1 s "" 1 .•• s-1 s (2.17)

and

(2.18)

respecti vely.

Set es = d'f .. ·cPa-ldS' e~ = d~2... d~2_1d~and Is = d'f .. ·cPa,n = d~2... d~2.

Then by (2.17) we have es = use~ for some unit Us E R. Therefore

and also, by (2.18), for some unit Vs E R,

whence dsus = v.d~ and ds = u;lv.d~. Hence d, "" d~ as required.

Finally given the even ideals 12B(A) = (g~) where, for each 1 ~ s ~ r, g~ is

a principal generator of 12,(A) it follows that, up to constant multiples,
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Hence setting 90 = 1, for each 1 ~ s ~ r, d, is given by the expression

d, = ....!!!_.
9s-1

o

The following definition follows from this result.

Definition 2.2.5 We call the sequence d1, ... , d; a sequence of invariant fac-

tors of A over the PID, R, and skewdiag( d1, •.. , dr) an invariant factor matrix

for A. In particular, we say the rank of A is 2r.

Theorem 2.2.6 Two n x n skew-symmetric matrices A and B over a PID

R are skew-equivalent if and only if they have (to within associates) the same

sequence of invariant factors over R.

Proof ~ By Theorem 2.2.4 A is skew-equivalent to a matrix of the form

skewdiag( d1, ••• , dr) with, up to units, invariant factors d1, .•• ,dr. So since B

is skew-equivalent to A it follows that B is also skew-equivalent to
skewdiagtd., ... ,dr) and hence, by Theorem 2.2.4 again, has the same sequence
of invariant factors.

{:= If A and B have, up to units, the same sequence of invariant factors
then A is skew-equivalent to D = skewdiag( d1, ••• dr) and B is skew-equivalent

to D' = skewdiag(d~, ... , d~), where dk "'" dk for 1 ~ k ~ r. By applying a

sequence of elementary (simultaneous) row and column operations, involving

multiplication of a row and column by a unit, it follows that D and D' are
skew-equivalent. Hence by the commutativity of (skew-)equivalence A and B
are skew-equivalent. 0

This theorem is the most significant consequence of the above work. Our
aim is to apply this and some of the above to the special case of A-matrices.

2.3 A-Matrices

The following section is inspired by Chapter III of [Ferrar].
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Definition 2.3.1 A .A-matrix, A, is a matrix over the Euclidean domain K[.A],

where K[.A] is a ring of polynomials in a variable .Awith coefficients in the field

K, and the Euclidean junction, f/J, is taken to be the degree of the polynomials.

The determinant, det A, of a square .A-matrix is, in general, a polynomial in
.A. However, it may also be a constant, independent of .A. In particular if this
constant is zero, i.e det A = 0 for all values of 'x, we say det A is identically zero.

Definition 2.3.2 (i) The square 'x-matrix, A, is said to be singular when

det A is identically zero and non-singular otherwise.

(ii) The A-matrix A has rank r (? 1) if r is the largest integer for which not

all minors of order r are identically zero.

( Note: by Theorem 2.2.4, (ii) corresponds, precisely, to the description of rank

given in Definition 2.2.5.)

Corollary 2.3.3 A square 'x-matrix, X, is invertible if and only if det X is a
non-zero constant.

Proof This is just Lemma 2.1.5 restated for R = K[.A], the units of which are
nonzero constants. 0

The equivalence of .A-matrices, corresponding to Definition 2.1.6, is referred
to as 'x-equivalence, so that two 'x-matrices, A, B are said to be 'x-equivalent if
there exist invertible 'x-matrices, X, Y, such that

B=YAX.

We refer to elementary row/column operations on a 'x-matrix as elementary ,X-

transformations. They are the row/column operations described in Lemma 2.1.9

applied to the ring K[.A]. For completeness we restate them.

Definition 2.3.4 The elementary A-transformations of a matrix are

(i) the interchange of rows (columns) i and i:

(ii) the multiplication of a row (column) i by a non-zero constant;
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(iii) the addition oj a polynomial multiple of a row (column) j to a row (column)
i.

Here we are mainly concerned with skew-symmetric >.-matrices and, accord-
ingly, we define an equivalence corresponding to that given in Definition 2.1.12.

Definition 2.3.5 Two skew-symmetric matrices, A and B are skew>.-equivalent
iJ there exists an invertible >.-matrix X such that

B=XTAX.

As we have seen in Theorem 2.1.19 this notion of skew-equivalence corresponds
to applying a series of simultaneous elementary row and column operations to A.
We refer to such operations on a >.-matrix as simultaneous >.-transformations.

By our definition of >.-matrices it is clear that Theorems 2.1.18, 2.2.4 and 2.2.6
are applicable for skew-symmetric >.-matrices.

We use skew >.-equivalence to prove a result about non-singular skew-symmetric
pencils. First we need a few preliminaries concerning general >'-matrices. Note
that throughout the following we denote constant matrices, over K, by small
letters and >.-matrices by capital letters.

Definition 2.3.6 Let A be a (square) >.-matrix. It is said to be oj degree k

when >.k is the highest power oj ); occuring among its entries. Such a matrix
may be written in the form

where ak, ak-l,· .. ,ao are matrices over K and ak is not the null matrix; i.e it
can be thought oj as a polynomial in >.with matrix coefficients.

Lemma 2.3.7 Consider the >.-matrices A, B given by

B = b,>.'+ b,_l>.'-l + ... + bo,

where ak :f. 0 and det b, :f. O. Then the products AB and BA are ).-matrices oj
degree k + I.
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Proof Given the two (constant) matrices ak and bi where b, is non-singular,

then, from Chapter I, §10 of [Ferrar], the matrices akb, and b,ak have the same
rank as ak. In particular if ak is not the null matrix then neither is akb, or b,ak
and the result follows. 0

The next lemma is an analogue (for polynomials with matrix coefficients) of

the standard property of the Euclidean domain K[A].

Lemma 2.3.8 Consider two A-matrices A, B written in the form given in

Lemma 2.3.7, where b, is non-singular. Then there is a unique pair of matrices

Ql and RI for which

and either R1 = 0 or R1 is a A-matrix of degree less than 1 (possibly a constant).

There is also a unique pair of matrices Q2 and R2 for which

and either R2 = 0 or R2 is a A-matrix of degree less than 1 (possibly a constant).

Proof We start by proving the following result.

For k, 1 ~ 0, given any two A-matrices

where ak ¥ 0 and b, is non-singular, then there exists a pair of matrices Q, R,
where R has degree less than l, such that

A =QB+R.

If 1 > k, then we choose Q = 0 and R = A. So assume 1 ~ k. If k = 0
then 1 = 0 and A = ao, B = bo are constant matrices with bo non-singular.
Consequently we can write

For some general k > 0, by choosing Q1 = akb,l Ak-l we can write

(2.19)
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where Rl = A - QlB has degree less than k. Assuming the above hypothesis is
true for all >.-matrices A of degree r < k then we can write

for some R2 of degree < I. So from (2.19)

A = QlB+Q2B+R2

= (Ql + Q2}B + R2

and setting Q = Ql +Q2 and R = R2 the hypothesis holds for k. Since we have
already shown that it holds for k = 0 it follows by induction that the hypothesis
holds for all k ~ O. It remains to show that the pair Q, R are unique. If

then
(2.20)

Assuming Ql -Q2 is non-zero then since bl is non-singular it follows by Lemma 2.3.7
that the LHS of this equation has degree ~ I but by the above hypothesis the
RHS of this equation has degree < I and we have a contradiction. Consequently
our assumption is incorrect and

which implies that

and

as required. The proof of the second statement is similar with the quotient Q a
post-multiplier of B, instead of a premultiplier. 0

The following theorem, which is of considerable use for the study of non-

singular pencils, is Theorem 9 in Chapter III, §9.2 of [Ferrar].

Theorem 2.3.9 Let al, a2, bl, bz be matrices over K and let a2 and b2 be
non-singular. Then if the (>.)-matrices

are >.-equivalent there are non-singular matrices p, q over K for which

B = qAp.
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Proof If A and B are A-equivalent there are invertible A-matrices P, Q for
which

B=QAP. (2.21)

Consider the two A-matrices Q and B. As b2 is non-singular, by Lemma 2.3.8,
there exist a unique pair of matrices Ql, q for which

Q = BQl +q, (2.22)

where, since B is linear in A, q is a constant matrix (possibly zero). Similarly

for the two A-matrices p-1 and A there exist a unique pair of matrices Sb S

such that
(2.23)

where s is a constant matrix, possibly zero. Then from (2.21) we have

which on rearranging gives

B(SI - QdA = qA - Bs. (2.24)

We consider both sides of this equation in turn. Since A and B are linear in A
and q and s are constant matrices the RHS of this equation is at most linear in
A.

If we assume SI - Ql is not the null matrix but a A-matrix of degree t ~ 0,
the LHS is

(2.25)

Since bz and a2 are both non-singular, by Lemma 2.3.7, (2.25) is of degree t + 2

in A and cannot be identical to the RHS of (2.24). We conclude our assumption

to be incorrect and that SI - Ql = O. So from (2.24)

qA = Bs. (2.26)

It remains to show q and s to be non-singular. Using Lemma 2.3.8, let

Then since I = P p-1

and
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But from (2.26) it follows that

(2.27)

We consider both sides of this equation. If (PIBS1 + pSI + P1q) is not the null
matrix then since A = al + >'a2 and a2 is non-singular, by Lemma 2.3.7, the
RHS is of at least degree 1 in >.. However the LHS is a constant matrix and

we have a contradiction. So (PIBSI + pSI + Plq) is the null matrix and from

(2.27) I = ps, Le. s is non-singular with inverse p. From (2.26) we have

qAp= B,

and by writing Q-I = ATI +t and considering QQ-I = I by a similar argument
we can show that q is also non-singular and the result follows. 0

In the following section we will consider pairs, (aI, a2), of skew-symmetric
matrices of which at least one, a2, is non-singular. Associated to this pair we

have a linear >.-matrix al + >'a2' So if the pairs (al,a2) and (bl,b2) are skew-
equivalent this is the same as saying that, for some invertible matrix p over

K,

(2.28)

With this in mind we state the following theorem, which is, principally, an
adaption of the above Theorem 2.3.9 for the skew-symmetric case.

Lemma 2.3.10 Let (aI, a2), (bI, b2) be skew-symmetric pairs with a2 non-singular.
Then they are skew-equivalent if and only if the the skew-symmetric >.-matrices

are skew >.-equivalent.

Proof Clearly, if (aI, a2) and (b}, b2) are skew-equivalent then for some invertible

matrix p over K

and bl + >.~ is also skew >.-equivalent to al + >'a2'

If A = al + >'a2and B = bl + >'b2are skew >.-equivalent there is an invertible
>.-matrix P for which

B=pTAP. (2.29)
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Furthermore, by Theorem 2.2.4, det(al + Aa2) and det(bl + Ab2) differ by a

non-zero constant factor. By considering the polynomial det(al + Aa2) we see
that any terms of degree n are given by

(similarly the terms of degree n in the polynomial det(bl + Ab2) are An det b2)
and since a2 is non-singular this polynomial has degree n. Hence the degree of

det(b1 + Ab2) is n and b2 is also non-singular. The remainder of the proof is an
adaption of the Proof of Theorem 2.3.9.

Given the two A-matrices P, B then as b2 is non-singular by Lemma 2.3.8

there exist a unique pair of matrices Pl, P for which

P= PlB+p, (2.30)

where, since B is linear in A, p is a constant matrix (possibly zero). Similarly

for the two matrices P:", A there exist a unique pair of matrices 81, s such
that

p-1 = 81A + s (2.31)

where s is a constant, possibly zero. Since B is skew-symmetric

pT = BTPT +pT

= -BPT +r"

(2.32)

(2.33)

and from (2.29) we have

Consequently,

(2.34)

We now consider both sides of this equation in turn. Since A and B are linear
in >. and p and s constant matrices the RHS of this equation is at most linear
in A.

If we assume 81+pr is not the null matrix but a A-matrix of degree t, where
t ~ 0, the LHS becomes
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Furthermore, since both a2 and b2 are non-singular, by Lemma 2.3.7 it has
degree t + 2 and so the LHS cannot be identical to the RHS. We deduce that

our assumption is incorrect and SI + pr = O. So from (2.34)

Bs =pTA. (2.35)

It remains to show that S-1 = p. Since 1= pp-l then

and

But, by the above, Bs = pTA and so

We consider both sides of this equation. If (PIBSI + pSI + PlpT) is not the
null matrix then since A = al + Aa2 and a2 is non-singular by Lemma 2.3.7 the
RHS is of at least degree 1 in A. The LHS, however, is a constant matrix and we

have a contradiction. So (PIBSI + pSI + PlpT) is the null matrix and I = ps,

that is s is non-singular with inverse p. It therefore follows from (2.35) that

B =pTAp,

2.4 Non-singular Skew-symmetric Pairs

In the following all skew-symmetric matrices have entries in C.

We consider the set, U, of pairs of even n x n skew-symmetric matrices
(At, A2), with A2 non-singular. Let n = 2r. The set U is an open subset of

Sk(n, C) x Sk(n, C) and, as described in Definition 1.2.1 of Section 1.2, skew-

equivalent pairs are those lying in the same orbit of the action of GI(n, C) on

this set. Expressing such pairs by a linear skew-symmetric A-matrix Al + AA2,

by Lemma 2.3.10 and Theorem 2.2.6, two such pairs are skew-equivalent if and
only if they have the same sequence of invariant factors. (A sequence of invariant

factors corresponds to a single orbit of the set of such pairs.)
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So given any such pair, expressed as a linear skew-symmetric A-matrix, with
a sequence d1, ... .d; of invariant factors our aim is to find the simplest linear
A-matrix with the same sequence of invariant factors. This will then be a normal
form for any pair with this sequence of invariant factors. In fact if we can find
a set of such normal forms yielding all possible invariant factors then any pair
will be equivalent to one in our set.

We start by finding the invariant factors for such a pair, (AI, A2), represented

by the n x n linear skew-symmetric A-matrix

where A2 is non-singular. Then, by Lemma 1.1.8 of Chapter 1,

for some f(A). It follows from the proof of Lemma 2.3.10 that f(A) has degree
r and so over C we can factorize it as

r

f(A) = IT(b;A + C;),
;=1

where b, ¥ 0 for all i. Furthermore by Theorem 2.2.4 det A = (d1 .•• dr)2 where

d1, ••• ,dr are the invariant factors of A. It therefore follows that up to constants

q

d1••· d; = AV. IT(aiA + 1)';',
i=1

where q is the number of distinct non-zero roots of f(A). (Here Vr is the number

of factors of f for which Cj = 0, the ai correspond to some bj/cj, Cj '" 0.) The

integer Sir then denotes the multiplicity of the linear factor (aiA + 1) and u, > 0

the multiplicity of the zero root. Note if Vr = 0 then f(A) has no zero root
which corresponds to Al also being non-singular.

Using (2.16) from Theorem 2.2.4 we can find the invariants of any A-matrix

from the principal generators of its even ideals. Since these principal generators
are square the following notation is useful.

Definition 2.4.1 If 12k = (g) we write .;r;;. for (..;9). (This is not to be

confused with the radical O/I2k.J
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Hence we write down the generators gk = d1 ... dk for the ideals Jhk(A) as

follows
gl
g2 =

AV1rU=l (aiA + 1)8i1
AV2nr=1 (aiA + 1)8.2

(2.36)

where for each 1 ~ i ~q, Sil ~ Si2 ~ •.. ~ Sir, and VI ~ V2 ~ .•• ~ Vr. So

on finding the principal generators, g;, of A using (2.16) its invariant factors,

dl, ... ,dr' k = 1, ... r, are given by

gk
gk-l

q

= AVk-Vk-l II(aiA + 1)8.,,-8.,,-1,
i=l

(2.37)

Given any such sequence of invariant factors, the following section proposes
a normal form.

2.4.1 Normal Forms

Consider the block of the form

0 aiA+ 1
-aiA - 1 0 1

-1 0 aiA+ 1
-aiA -1 0 1

-1

1
-1 0 aiA + 1

-aiA -1 0

2r'j

(2.38)
where ai ¥ 0 and rij is the number of 2 x 2 blocks
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It is more convenient to refer to the size of such a block by the number Tij of

its constituent 2 x 2 blocks as opposed to its actual size 2Tij.

For each distinct ai we construct a direct sum of n(i) blocks of the above

form of sizes Til, Ti2, ••. , Tin(i) arranged so that Til ~ Ti2 ~ ... ~ Tin(i). These

sizes depend on the multiplicities, Sik, of the factor (aiA + 1), in the principal

generator 9k of each of the even ideals. Supposing the determinant of a pair has
q distinct non-zero roots ai, ... , aq its proposed normal form, N, consists of a

direct sum of these objects. Corresponding to any zero eigenvalue of a pair its
normal form has in addition a direct sum of n(O) blocks of the form

0 A
-A 0 1

-1 0 A
-A 0 1

-1

1
-1 0 A

-A 0

(2.39)

2ro;

of sizes TOI ~ .•. ~ TOn(O), determined by the multiplicity of A in the principal

generators of the even ideals of Al + AA2• We can therefore express such a
normal form, N by the following shorthand:

distinctfnon-zero) 1al TU Tl2 ... Tln(l)

(2.40)

a~ T~1 T~2 Tqn(q)

0 TOI T02 TOn(O)

where for each 0 ~ i ~q, Til ~ Ti2 ~ ••• ~ Tin(i).

Our aim is to show that any sequence of invariant factors can be realised by
a normal form of this type.

62



2.4.2 Invariants of the Normal Form

Given such a normal form we first need to find its invariants. We start by using

(2.16) to calculate the invariants of blocks of the type in (2.38).

Lemma 2.4.2 The skew-symmetric A-matrix

0=

0 aiA + 1
-aiA - 1 0 1

-1 0 aiA + 1
-aiA - 1 0 1

-1
1

-1 0 aiA + 1
-aiA - 1 0

has invariant factors d1 = d2 = ... = dr;;-l = 1, dr;; = (aiA + It;;, and is

therefore skew A-equivalent to

0 1
-1 0

0 1
-1 0

0 1
-1 0

0 (aiA + l)r;;
-(aiA + lr;; 0

Proof The block 0 contains rij - 1 blocks
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So with the exception of 12ri; each even ideal 12k (1 ~ k ~ Tij - 1) contains a

2k x 2k minor of the form

0 1
-1 0 aiA + 1

-aiA - 1 0 1
-1 0

aiA + 1
-aiA -1 0 1

-1 0

By Lemma 1.0.7 this matrix has determinant 1, so 1 E 12k which implies that

12k = (I),

for 1 < k < r, - 1.- _.)

Furthermore from the same lemma we see that det n= (aiA + 1)2r.; from which

we deduce that

It follows from (2.16) that

So from Theorem 2.2.4 n is skew A-equivalent to

0 1
-1 0

0 1
-1 0

0 1
-1 0

0 (aiA + l)"i;
-(aiA + l)"i; 0

as required. 0

By a similar argument we can deduce the following, about blocks of the type

in (2.39).
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Corollary 2.4.3 The skew-symmetric .>..-matrix

0 .>..
-.>.. 0 1

-1 0 .>..
-.>.. 0 1

-1

1
-1 0 .>..

-.>.. 0

2rOj

has invariant factors d1 = d2 = ... = droj -1 = 1, drOj = .>..roj,and is therefore

skew A-equivalent to

0 1
-1 0

0 1
-1 0

0 1
-1 0

0 .>..roj
_.>..roj 0

Proof The argument is the same as that for Lemma 2.4.2 with the linear factor

(ai'>" + 1) replaced by A. 0

Remark 2.4.4 So given any constituent block, fl, of the normal form repre-

sented by (2.40), by Theorem 2.1.19 (applied over the Euclidean domain K[.>..])

we can obtain the block E(ai, rij) by a series of simultaneous .>..-transformations.

By virtue of the normal form being a direct sum, the effects of such .>..-transformations

are confined to the block concerned. By applying this argument to each of

its blocks, it follows that the normal form (represented by (2.40)) is skew .>..-

equivalent to a direct sum of the form

q n(i) n(O}

M = EaEaE(ai,rij) EaE(O,roj)'
i=lj=l j=1

By calculating the invariant factors of this sum, M, we find the invariant factors

65



for the skew A-equivalent normal form, N. Before doing this we state a couple
of properties of M which will be refered to later.

Lemma 2.4.5 We denote the number of constituent blocks of the A-matrix

q neil nCO)
M = EBEBE(ai,rij)EBE(O,roj),

i=1 j=1 j=1

by pi, so
q

pi =L n(i) +n(O).
i=1............._.

P

The number of blocks

E=[ 0 1]-1 0

contained in M, is denoted by m' and is given by

q neil nCO)
m' = L L(rij - 1) + L(rOj - 1).

;=1 j=1 j=1

m

Proof The expression for p' is self-explanatory. The expression for m' follows

from a consideration of the form taken by the blocks E(ai' rij) and E(O, rOj). 0

The integer m' is an important invariant when considering the ideals gener-
ated by even minors of M. In fact we can use it to deduce the following.

Lemma 2.4.6 If 12k (M) is the ideal of all 2k x 2k minors of the sum M then

if k ~ m' we have

Proof If k ~ m' one of the 2k x 2k minors is det(ffikE) = 1. So I2k(M) = (1)
as required. 0

By Lemma 2.1.16 an ideal I = (h, ... , fn), where h, ... ,fn E K[Al, has the

principal generator f = gcd{JI, ... , fn}. With this in mind, we are ready to
consider the invariants of M.
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Lemma 2.4.7 Given a sum

q n(i) n(O)

M = ffiffiE(a;,rii) ffiE(O,roj)
i=1 j=1 j=1

with p' and m' the quantities defined and expressed in Lemma 2.4.5, consider

the ideal hk (M) generated by all 2k x 2k minors of M. If k - tn' ~ 0 then

hk(M) = (1). But if k - m' > 0 there are two possibilities:

(a) ij, for all 0 ~ i ~q, p' - n(i) ~ k - m' then JI2k(M) = (1);

(b) if k - m' + n(i) - p' = tik > 0 [or some 0 ~ i ~q then

q

JI2k(M) = (>.Ro. II(ai>' + l)R.k),
;=1

If M has the sequence of invariant [actors 1St, ... ,~r these are given by

q

Ok = ARo,,-ROlr-1 II(a;>. + 1)R.,,-R ••-1•
;=1

1 s k s r, where for each 0 s i s q, R;o = O.

Proof The case k - m' ~ 0 is covered by Lemma 2.4.6. We need to consider
the possibility k > m', Let s = k - m' > O. By suitable ..\-transformations

(interchanging rows and columns, multiplying rows or columns by -1) we can

find a diagonal matrix M', ..\-equivalent to M, of the form

M' = 12m, EB D EB Do

where

IThe subscript k in ti" and ~" refers to the ideal, 12k, we are dealing with and hence for
the main purposes of this Lemma is fixed. This notation however will be useful later on.
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and D, = diag(di1,di2, ... ,di2n(i)) are 2n(i) x 2n(i) diagonal blocks given by

Di=

and Do = diag(dQl,do2, ... ,do2n(O)) is the 2n(O) x 2n(0) diagonal block given

by

Do=

It follows from the ordering of the rjj's (including the roj's) in our original

normal form, described in Section 2.4.1, that each Dj (0 $ i $ q) is a diagonal

block, of the type described in Lemma 2.2.2. From Lemma 2.2.3 12k(M) =
12k(M'). We therefore want to find the generators of 12dM'). In fact we only

need to consider those minors of M' containing the 2m' x 2m' identity 12m, since
any other 2k x 2k minor will be a multiple of one of these (the multiple being

a product of terms of (D EElDo) replacing the unused l's of 12m,). To complete

these minors we need to choose a further 28 = 2k - 2m' elements from (D EElDo)
and it is not too difficult to see that

The generators of 12.(D EElDo) are products of non-negative numbers, 8(i), of

elements chosen from each block D, respectively where

q

L 8(i) + 8(0) = 28.
i=1

Furthermore by Lemma 2.2.2 it is sufficient to choose the first 8(i) elements in
each block Dj. So

has generators of the form:
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where L:f=1 8(i) + 8(0) = 28 and 0 s 8(i) s 2n(i) for each 0 s i s q. Here

8(i) = 0 means there are no elements chosen from Di, Note here that for

1 ~ j ~ n(i)

and
do2j-1 = do2j = ATOj.

When finding a generator the minimum number of diagonal elements we can
choose involving some ai is

28 - (2p' - 2n(i)) = 2tik.

If 2tik ~ 0 it follows that (aiA + 1) is not a divisor of all the generators of

12s(D EBDo). However if 2tik > 0 every minor of 12.(D EBDo) has a factor

consisting of at least 2tik powers of (aiA + 1). So the gcd of the minors has a

factor consisting of a product of the lowest 2tik powers of (aiA + 1). By the

ordering of our original normal form and since, for 1 ~ j ~n(i),

it follows that this product is the product of the first tik pairs of elements in D,
i.e.

Consequently, by considering each 1 ~ i ~q, a factor of the gcd is given by

q

II(aiA + 1)2Rik,
i=1

where Rik = L:~~1 Tij and R;k = 0 if tik ~ O. Furthermore if tik ~ 0 for all

1 ~ i ~q then none of the elements (aiA + 1) is a common divisor of all the

generators of 12.(D EBDo).

Similarly the minimal number of elements of Do appearing in a generator is
given by

28 - (2p' - 2n(O)) = 2tOk'

If 2tOk ~ 0 then A is not a divisor of all the generators of 12.(D$Do). However

if 2tOk > 0 by a similar argument as above the gcd has a factor
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where Rok = E~~l TOk is a sum of the first tOk pairs of elements of Do.

It follows that if for all 0 ~ i ~q we have tik ~ 0 then

Otherwise the gcd is given by

q

>.2Rok II(ai>' + 1)2R;k,
i=l

and using Lemma 2.1.16 and the notation in Definition 2.4.1 the result follows.

The invariant factors, dl, ... ,dr, are then found using (2.16). 0

So given a normal form, N, of the type described in Section 2.4.1, it follows
from Remark 2.4.4 that Lemma 2.4.7 gives an algorithm for finding its sequence
of invariant factors.

The following theorem is the principal objective of this chapter. To establish
it we need to prove two things.

(i) First we show that any sequence of invariant factors (represented by

(2.37)) can be realised by a normal form, N, of the above type.

(ii) Distinct normal forms N yield distinct sets of invariant factors. This is
done by showing that there is a unique normal form corresponding to a
choice of invariant factors.

Theorem 2.4.8 Every pair of skew-symmetric matrices Al +>'A2 with A2 non-
singular is skew-equivalent to a unique normal form N = N, + >'N2 of the type
described in Section 2.4.1 and represented by the shorthand

distinct(non-zero) !al TU r12 ... rln(l)

(2.41)

a!l r!ll T!l2 Tqn(q)

0 rOl r02 rOnCO)

with Til ~ ri2 ~ ... ~ Tin(i) for 0 ~ i ~q.
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Proof Denoting the invariant factors of N by 151,... , 15r,from Lemma 2.4.7, for
each 1s k s r,

q
15k= ARok-Rok-1 II(aiA + l)R,k-R,k-l,

i=1

(2.42)

where Rik = L:~~1 rij with tik = k - m' + n(i) - p' and Rik = 0 if tik ~ o.
(Note, if k = 1 then for each 0 ~ i ~q, RiO = 0.)

From (2.37), for 1~ k ~ r, the invariant factor dk of any pair A = Al + AA2
(with A2 non-singular) is of the form

q

dk = AVk-Vk-1 II(eiA + l)S,k-S,k-l,
i=1

where for each 1~ i ~q, Sil ~ Si2 ~ ... ~ Sir, and VI ~ V2 ~ ... ~ Vr and

We need to show that we can find a set of ai's, ri/s as in (2.41) so that

dk = 15k for each k. Obviously, we choose each ai = e, leaving us to find the

We need to solve the equations

Sik - Si/,-1 = R;k - Rik-1, (2.43)

for each 1~ i ~q, and

(2.44)

We deduce from (2.43) that

{
rik-m'+n(i)-p'

Sik - Sik-l = 0 if k - m' + n(i) - p' ~ 1
otherwise (2.45)

In this way (by considering 1~ k ~ r) for each 1~ i ~q we obtain the values

for the rij in terms of the Sik'S. Similarly it can be shown that if (2.44) holds
then

{
rOk-m'+n(O)-p'

Vk - Vk-l = 0
if k - rn' + n(O) - p' ~ 1

otherwise (2.46)

Hence we can get the values for the rOj's in terms of the Vk'S. Furthermore (for

each sequence of invariant factors) these values of rij are unique thus showing
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that no two N's with distinct sets of ai's, rij's are skew-equivalent. Finally,

recall that these normal forms are constructed so that for each 0 ~ i ~q the rij

are non-decreasing through 0 ~ j ~n( i), a fact used in the proof of Lemma 2.4.7
and therefore a requirement for our argument. It remains to check that this is
true for the rij'S found from the Sik'S and Vk'S. We first want to show that for

each 1s i s q then for 1s k < r

rik-I-m'+n(i)-p' ~ rik-m'+n(i)-p"

It follows from (2.45) that

rik-m'+n(i)-p' = Sik - Sik-l·

(2.47)

(2.48)

rik-l-m'+n(i)-p' = Sik-l - Sik-2,

If we denote the power of the factor (ai>' + 1) appearing in the invariant dk by

deg d~i it follows from (2.37) that

deg~i = Sik - Sik-l.

(2.49)

(2.50)

Furthermore since dk-Ildk then

and so from (2.49) and (2.50) it follows that

Sik-l - Sik-2 ~ Sik - Sik-l·

The required result then follows from (2.47) and (2.48). It remains to show that

rOk-I-m'+n(Oj-p' ~ rOk-m'+n(Oj-p"

for 1 ~ k ~ r. By (2.46) this amounts to showing that

Denoting the power of the factor>' appearing in the invariant, dk, by deg d~ it

follows from (2.37) that

degd~_l = Vk-l - Vk-2

degd~ = Vk-Vk-l'

(2.51)

(2.52)
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Again since dk-lldk

deg dLl ~ deg d;

and (2.51), (2.52) give the required result.

Consequently given the invariant factors of any linear skew-symmetric A-
matrix A we can find a unique skew-equivalent normal form of the type described
in Section 2.4.1. 0

Recall from Section 1.3 of Chapter 1 that the pair (A 1 , A2) determine the
pencil

for points (I-' : A) on the projective line, PK. We can also represent this pencil
by the affine chart

where A' = All-', along with the single matrix A2 corresponding to the point at

infinity, (0: 1). Furthermore recall that the eigenvalues of the pair (Al' A2) are

those points (I-' : A) satisfying det(I-'Al + AA2) = 0 and correspond to singular
members of the pencil, A. As A2 is non-singular it follows that the point at

infinity is not an eigenvalue and hence the eigenvalues, (1 : A'), of the pair

(Al, A2) are given by the roots of

We deduce that the pair (Al' A2) has eigenvalues given by the roots of

q

det(Al + A'A2) = A,vr II(aiA' + I)·or = o.
i=l

Hence these eigenvalues are

(1 : 0) of multiplicity Vr

(ai : -1) of multiplicity Sir 1~ i ~q .

If the normal form of the pair (Al' A2) is (Nl, N2) then, since eigenvalues are

an invariant of skew-equivalent pairs, these are also the eigenvalues (including

multiplicities) of the pair (Nl' N2).

It follows from Lemma 1.3.3 that the pencil, A, determined by the pair

(Al' A2) is skew-equivalent to a pencil determined by the pair (Nt. N2), this
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being the special case where the change of basis matrix is the identity. So
NI + >'N2 is also a normal form for a pencil. Note here that, by Lemma 1.4.3,

for each common eigenvalue of (AI, A2) and (NI, N2) the corresponding singular
elements of each pencil are skew-equivalent.

2.4.3 Classifying Pencils

If the pencil is singular see Chapter 3.

If the pencil is non-singular by a linear change of basis we can always choose
a representative pair of matrices, which are both non-singular, and then use
Theorem 2.4.8 to find a skew-equivalent normal form. This normal form can be
simplified by further changes of basis.

2.4.4 Classifying Pairs

When classifying pairs we do not have the luxury of changes of basis. Any pair
for which at least one is non-singular has a normal form as found above using
Theorem 2.4.8.

Alternatively, given a pair of singular matrices (AI, A2) then they either
determine a singular pencil or not. In the latter case there are a pair of a finite
number, Q ::; n, of points where the (non-singular) pencil they determine meets
the set of singular matrices. By choosing a pair of non-singular matrices on this
pencil we can, again by Theorem 2.4.8, find a normal form pair (BI,B2). The
pencil determined by this pair also meets the singular set in Q points. If we

denote the set of pairs of these points by {(Si, Sj), 1 ::; i < j ::;Q} then by

Lemma 1.4.3 the original pair (AI, A2) is skew-equivalent to one of (~) possible

normal forms, (Si, Sj).
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Chapter 3

Singular Skew-symmetric
Pencils

In this chapter we consider the reduction of singular skew-symmetric pencils.

The method we adopt for this is inspired by work in Chapter IX of [TurnAit].

In Section 3.2 we describe an initial reduction which breaks a singular skew-
symmetric matrix pencil down into a series of canonical singular submatrices,
possibly with an additional non-singular sub-pencil. Then in Section 3.3, using
the results of the previous chapter for dealing with the non-singular part, we
refine this reduction further to obtain normal forms for singular pencils.

An overview of the initial reduction is useful. We start this by establishing
that any singular (skew-symmetric) pencil, A = AA+JLB, has a non-trivial kernel

vector (with homogeneous polynomial entries in A, JL) of a minimal degree, k1•

This minimal degree is a (skew-equivalent) invariant of the pencil. By the

action of Gl(n, K} on this kernel vector we obtain a canonical vector and from

the associated skew-equivalent action of Gl(n, K) on the pencil A we obtain a

corresponding canonical singular (skew-symmetric) sub-matrix, while reducing

the remainder of the pencil to a smaller skew-symmetric sub-pencil, r. The size
of this singular block is determined by the minimal degree k1• In addition there
are various by-products of the reduction which need to be cleared away and we
consider this in Section 3.3.

If the submatrix, r, is singular it can be reduced in a similar way by finding a
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canonical kernel vector of minimal degree k2 ~ kl' thereby separating a further
canonical singular (skew-symmetric) sub-block from the remainder of the pencil
and so on. By definition, the minimal degrees of successive subpencils, r, form
a non-decreasing sequence. In due course the process stops, in particular when
a non-singular sub-pencil, r is produced.

First we need a few preliminaries concerning pencils which we keep as general
as possible. However, when necessary, we specialise some of these for the skew-
symmetric case. We start by generalising some of the definitions introduced in
Sections 1.3 and 1.4 of Chapter 1.

Definition 3.0.9 Let A, B be n' x n matrices defined over K. The pencil
determined by A and B is the family of matrices AA + Jl.B, where (A : Jl.) are

points of the projective line P Kl .

In the following such pencils will be denoted by uppercase greek letters (i.e.

A, OJ.

Definition 3.0.10 (i) Two pencils A, 0 are said to be strictly equivalent
if for some invertible constant matrices P and Q, of appropriate sizes, we
have

n =QAP.

(iij If A = AA + Jl.B, 0 = pC + aD then A and 0 are called equivalent if

p( o:A + 'YB) + a(,BA + 8B) and pC +aD are strictly equivalent, where the

associated linear change of coordinates is given by

(~)=(~ ~)(:),
with the change of basis matrix

(~ ~) E GI(2,K).

Remark 3.0.11 We often omit the prefix 'strict', in (i), when it is clear which
equivalences we are using.

Definition 3.0.12 The rank of any n' x n pencil A = AAI + JLA2 is defined to

be the maximal rank of AAI + JLA2 as (A : p.) varies over P to .
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This rank is determined by the minors of A.

Lemma 3.0.13 Let Ij denote the ideal in K[A, J.tl generated by the j x j minors
of A. Then rank A is the largest k for which h =I O.

Proof If k is the largest integer for which Ik =I 0, then some k x k minor, ~, of
A is a non-zero polynomial. As K has characteristic zero, ~(A, J.t) =I 0 for some

(A : J.t) so the maximal rank A ::::k. But since for j > k all j x j minors vanish

identically A(A, J.t) has rank ~ k for all (A : J.t). It follows, therefore, that A has
maximal rank k. 0

Definition 3.0.14 An n' x n pencil A is singular if rank A < min{n',n}.

Remark 3.0.15 It follows from this definition and the previous lemma that
the condition, given in Section 1.4, for an n x n pencil A to be singular (Le. that

det A == 0) is equivalent to rank A < n.

The following definition introduces the notion of kernel vectors of a pencil.

Definition 3.0.16 Polynomial kernel vectors, v, of the pencil A are n x 1
vectors, whose entries are polynomials in A and u, for which Av = o.

Similarly, we define polynomial nullifying vectors to be 1 x n' vectors,
u, whose entries are polynomials in A and u, for which uA = O.

Note, since the nullifying polynomial vectors defined here are not needed for the
main objectives of this chapter the following results deal specifically with the
kernel vectors. Similar results will also hold for the nullifying vectors.

In fact we need only consider homogeneous polynomial (kernel) vectors of
our pencils as shown by the following lemma.

Lemma 3.0.17 Let v = Vo + ... + v. where vi, 0 ~ i ~s, is a vector with
homogeneous entries of degree i, Then if Av = 0 then AVI = o.

Proof Since the entries of A are linear in A and J.t this is obvious. 0
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Definition 3.0.18 If a pencil A has a homogeneous polynomial kernel vector,

v, with entries of degree k we say that the columns of A have dependence of
order k.

If A has a homogeneous polynomial kernel vector w of degree rn, and no

relation of column dependence holds for a homogeneous polynomial kernel vector

of degree less than rn, then rn is the minimal order of column dependence of

A and w has minimal degree.

Similarly, our pencil A is said to be row dependent of order k' if there exists

a homogeneous nullifying vector u, with entries of degree k', which satisfies
uA = O. The smallest degree, rn', of such a vector is the minimal order of row

dependence of A. The following result applies to skew-symmetric pencils.

Proposition 3.0.19 The minimal orders of row and column dependence of a

skew-symmetric pencil A, have the same value. We call this value the minimal

order of dependence of A.

Proof Let A have column dependence of minimal order k and row dependence
of minimal order k', So

Av=O,

where v is a minimal homogeneous kernel vector of degree k. Therefore

(AV)T = 0

which implies that

and since A is skew-symmetric

-vTA = O.

But vT has degree k, so k ? k' since otherwise the minimality of k' is contra-
dicted.

We also know that
uA=O,

where u is a homogeneous vector of minimal degree k'. Therefore

(uAf = 0
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which implies

and, since A is skew-symmetric, that

_AUT = o.

Since uT has degree k' then for the minimality of k to be preserved k' ~ k. So
k' = k as required. 0

Lemma 3.0.20 The minimal order of column (row) dependence of a pencil, A,
is invariant under

(i) equivalent trans/ormation of A,

(ii) homogeneous non-singular transformation of ,x, I-l to p, a; i. e change 0/
basis.

Proof We consider column dependence. Letting V be a homogeneous kernel
vector of minimal degree k then

Av=O.

(i) Consider an equivalent matrix QAP, where det P =f 0, det Q =f 0, and
suppose that QAPVI = 0 where VI is a vector of minimal order, less than k, in
the kernel of QAP. Since Q is invertible then

APVI = 0

where, since the elements of P are constants, the vector PVI in the kernel of
A must be, like VI, of lower order than k. But this contradicts the assumption
that k is the minimal order of column dependence of A. Hence VI cannot be of
lower order than v. Equally V cannot be of lower order than VI since if it were
then

QAP(P-Iv) = QAv

= 0,

would contradict the minimality of VI' SOthe minimal order of dependence is
invariant under equivalent transformation.

(ii) Ifwe consider a linear change from ,x, JL to p, a then V is transformed into

a homogeneous polynomial vector v' in the variables p, a. Such a transformation
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cannot raise the degree in V', though it might lead to the lowering of it through
the cancelling of some common factor in the transformed elements. In such a
case however, since this transformation is non-singular, we can transform back
from p, a to >., J.L resulting in a vector of lower degree than v which would
contradict its minimality. Hence the minimal order k is also invariant under
change of basis as required.

The result for row dependence follows similarly. 0

The following corollary to this result applies to skew-symmetric pencils.

Corollary 3.0.21 The minimal order of dependence of a skew-symmetric pen-

cil, A, is invariant under

(i) skew-equivalent transformation of A,

(ii) homogeneous non-singular transformation of >., J.L to p, a; i.e change of

basis.

Proof Since, by Proposition 3.0.19, the minimal orders of row and column
dependence of a skew-symmetric matrix are the same we only need to prove the
results for column dependence. To show that column dependence is invariant

under skew-equivalence we simply replace Q by pT in the proof of Lemma 3.0.20
part (i). Part (ii) follows exactly as before. 0

In the following section we establish some results which are useful for the
reduction of singular pencils.

3.1 Key Lemmas

Lemma 3.1.1 Let A be an n' x n pencil (where n' ~ n) and suppose it has k

columns yielding an n' x k pencil of rank (k - 1). Then A has a homogeneous

kernel vector of degree (k - 1).

Proof Let Al be the n' x k pencil formed by these k columns. Since Al has

rank (k - 1) then by Lemma 3.0.13 it has a non-zero (k - 1) x (k - 1) minor
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and by choosing k rows of Al we can form a k x k matrix 0 which contains this

minor. It also follows from Lemma 3.0.13 that 0 has rank (k-1) and det 0 = O.

Consequently
OadjO = 0.

But since 0 contains the above non-zero (k-l) x (k-1) minor, adjf] is non-zero

and furthermore each of its non-zero entries is homogeneous and of degree (k-l).
We choose a non-zero column, w, of adjf] which is therefore annihilated by the

k rows of O. For generic (A, J.L) the ranks of O(A, J.L) and Al (A, J.L) are both (k -1)

and so by standard linear algebra the rowspace of AdA, J.L) is spanned by the

rows of O(A, J.L). So, in particular, the rows of Al (A, J.L) are linear combinations

of the rows of O(A,J.L) and since 0 annihilates the vector, w, it follows that, for

almost all (A, J.L), Al (A, J.L) kills W(A, J.L). Furthermore since K has characteristic

zero we deduce that Al W = ° for all values of (A, J.L). Consequently we have

found a k x 1 homogeneous vector, w, of degree (k - 1) which is killed by Al' If
we assign the suffices iI, ... , ik to the k columns of A which form Al and write

then it follows that
Aw=O,

where w is the n x 1 vector with entries Wi;, (1 ~ j ~ k), in rows ij and zeros
elsewhere. 0

Corollary 3.1.2 If A is an n' x n pencil (where n' ;:::n) of rank r < n then it
has a homogeneous polynomial kernel vector of degree r.

Proof Since A has rank r, by Lemma 3.0.13, it has a non-zero r x r minor and
all higher order minors are zero. Since r < n we can find r + 1 columns of

A which yield an n' x (r + 1) pencil of rank r by choosing them so that they

contain this r x r minor. The rest then follows from Lemma 3.1.1. 0

Lemma 3.1.3 Suppose an n' x n pencil, A, has a homogeneous polynomial
kernel vector, v, of degree k ~ n - 1. Then A is equivalent to a pencil with
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kernel vector either

v(k) = Jl.k
o

or v/=

o o

for some Vi, of degree k, not all zero.

Proof If A has a homogeneous polynomial kernel vector

of degree k then Av = O. This vector, v, can be represented by an n x (k + 1)
matrix, C, whose j rows yield the coefficients of the monomials for each of the

Vj. Premultiplication of v by an invertible matrix, p-l, corresponds to row

operations on v. FUrthermore the resulting vector p-1v is a kernel vector of

the pencil QAP which is equivalent to A. If C has rank (k + 1) then by row
operations it can be reduced to the form

in which case the resulting kernel vector p-1v is v(k). Otherwise if the rank
of C is not maximal then by row operations it can be reduced to a form with k
or fewer non-zero rows and the resulting kernel vector is v', 0

Remark 3.1.4 The same result holds for a skew-symmetric pencil subject to
skew-equivalence.

3.2 Initial Reduction of Singular Skew-symmetric
Pencils

Note that in this section, when we apply the methods and terminology of linear
algebra to our pencils, we are in fact applying it to the matrices obtained for
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generic (A,IL) and use the fact that K has characteristic zero to show that

the results will then hold for all (A,IL). By Lemma 3.0.20 the minimal order

of (column) dependence of the pencil A is invariant under equivalence (and

change of basis). In the following proofs we will frequently use the fact that this

minimality must be preserved to rule out, by contradiction, certain results.

We start with the following theorem for square singular pencils.

Theorem 3.2.1 Let A be an n x n singular pencil. Then it has a homogeneous

polynomial kernel vector v of minimal degree k < n. Furthermore A is equivalent

to a pencil with kernel vector v(k).

Proof Since A is singular, rankA = r < n. So by Corollary 3.1.2, it has a
homogeneous polynomial kernel vector of degree r < n. Therefore there exists
a polynomial kernel vector v of minimal degree k ~ r. So k < n. By Lemma

3.1.3 A is equivalent to a pencil, QAP, with kernel vector either v(k) or a

non-zero vector v' which has its last n - k entries zero. In the latter case the
first k columns of QAP are dependent and therefore have rank ~ (k - 1). By

Lemma 3.1.1 we deduce that QAP has a kernel vector of degree ~ (k - 1)
thereby contradicting the minimality of k, Consequently we can rule out this
case. Recall from Lemma 3.1.3 that

D.

o

Previously, we haven't been particularly concerned with the type of singular
pencils we are dealing with. This is because, when finding polynomial kernel
vectors of a pencil, its type (Le. general, skew-symmetric etc) is not significant

since these vectors depend on column operations on the pencil and it is imma-

terial whether or not we are also performing the same row operations (on the

pencil). However, clearly, when it comes to considering the actual reduction of
a pencil, A, we must be more precise.
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As a consequence from here on we restrict our attention to skew-symmetric
pencils subject to skew-equivalence. We start with the following result, the
first part of which is just a revamped version of Theorem 3.2.1. Note it will
sometimes be more convenient to denote a pencil skew-equivalent to A also by
A.

Lemma 3.2.2 Consider an n x n singular skew-symmetric pencil A. Then, for
some k < n it is skew-equivalent to a pencil of the form

0 0 0 0 0 0
_DT _DT

A 0 0 0 0 0 0 (3.1)0 +JL 0

D A D B
0 0

where A and Bare (n - k - I) x (n - k - 1) skew-symmetric matrices and D

is an (n - k - I) x k matrix. Furthermore this skew-symmetric pencil has a
homogeneous polynomial kernel vector of the form

w(k) =

o

Proof As just stated, the first part of this proof follows a similar argument to
that used, in the proof of Theorem 3.2.1, for a general square pencil.

Since A is singular rankA = r < n. So, by Corollary 3.1.2, it has a homoge-
neous polynomial kernel vector of degree r < n. Therefore it has a polynomial
kernel vector v of minimal degree k < n. By a similar argument to that used to

prove Lemma 3.1.3 A is skew-equivalent to a pencil pT AP with either a (non-

zero) kernel vector v', which has its last n - k entries zero, or a vector w(k) of
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the form

o

Then by a similar argument to that used in the proof of Theorem 3.2.1 we can
rule out the first possiblity. Note we obtain w(k), rather than the vector v(k)
given in the proof of Lemma 3.1.3, by slightly altering the row operations on
the matrix of coefficients C thereby reducing it to the form

where the (k + 1) x (k + 1) matrix, Jk+l, is given by

We have therefore reduced A to

with A = (aij), B = (bij) n x n skew-symmetric matrices, such that

AW(k) = (AA + J.LB)w(k) = O. (3.2)

From (3.2) we get the following identities:

For each 1 ~ i ~n we have a homogeneous polynomial of degree k + 1 which
must be identically zero. Consequently the coefficients of each of the monomials
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must vanish and we get the following conditions on the entries of A and B:

ail = 0
ai2 bil

aik+l = bik

bik+l = O.

We have therefore established that if (3.2) holds, matrices A, B take the form:

A = [ODAd and B = [DOBIl,

where D is an n x k matrix, Al and B, two n x (n - k - 1) matrices and 0 is
an n x 1 column of zeros.

Consider the first k+ 1 equations of (3.2) which are equivalent to (>'[ODlk+l +
JL[DOlk+dw(k) = 0 i.e to the vanishing of

(3.3)

Since A is skew-symmetric it follows that the (k+ 1) x (k+ 1) block (>'[ODjk+1 +

JL[DOlk+d is skew-symmetric which implies that both [OD]k+l and [DO]k+l are

skew-symmetric. As the first column of [OD]k+l is zero by skew-symmetry
its first row must also be zero i.e du = ... = dlk = O. Consequently the
first row of [DOjk+l is zero which in turn by skew-symmetry implies that its
first column is zero i.e d21 = ... dk+ll = O. So the first row and column of

('\[ODlk+l + JL[DO]k+l) are zero and by induction it follows that [ODlk+l and

[DO]k+l are null matrices. Using this we have the skew-equivalent pencil in

(3.1). 0

Lemma 3.2.3 The (n - k - 1) x k matrix, D, in the reduction of A given by

(3.1) has maximal rank, k.

Proof The proof is by contradiction. If rank D < k then by row operations on

D we obtain a matrix D' with less than k non-zero rows. By carrying out the
corresponding simultaneous row and column operations on the pencil given by
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(3.1) we obtain the skew-equivalent pencil

0 0 0 0 0 0

_D'T _D'T
0 0 0 0 0 0

(3.4)A 0 +11- 0

D' A* D' B·
0 0

where A· and B· are (n - k - 1) x (n - k - 1) skew-symmetric matrices. The

first (k + 1) columns form the n x (k + 1) pencil

o

+11-
o o

o o o

o o
o o

D' D'
o o

which has less than k non-zero rows. It follows that all its kxk and (k+l)x (k+l)

minors are identically zero and it has rank ~ k - 1. Consequently Lemma 3.1.1

implies that the skew-equivalent pencil (3.4) has a homogeneous polynomial

kernel vector of degree ~ k - 1 which contradicts the minimality of k. 0

Since D has maximal rank, k, by a series of row operations we can reduce it

to the form

By carrying out these row operations accompanied by their counterpart column

operations we can reduce A to the skew-equivalent pencil

Q
F

_OJ.
(3.5)

where 0 denotes, as usual, null matrices and Q is the (k + 1) x k pencil given by

11- 0 0

A 11-
Q= 0 A 0

J.I.
0 0 A
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G is a k x (n - 2k - 1) pencil and F, I' are skew-symmetric pencils of order k

and (n - 2k - 1) respectively.

Remark 3.2.4 We make a point which proves useful later on. Given a pencil
A' of the form in (3.1) i.e. which satisfies

A/w(k) = 0,

then the skew-equivalent pencil A = pT A'P, in (3.5), which is obtained from

it by simultaneous row and column operations on its last n - (k + 1) rows and
columns satisfies

Hence A has the polynomial kernel vector P-1w(k) = w(k) since the action

of p-l on the vector w(k) corresponds to applying row operations to its last

(n - k - 1) rows which are all zeros.

So simultaneous row and column operations on the last (n - k -1) rows and

columns of A preserve its polynomial kernel vector w(k).

By further skew-equivalent transformation we aim to kill off all the entries
in the sub-pencil, F, of (3.5). Considering the action, on this pencil, by the
invertible matrix

t,
o

u
o ,

In-2k-1
o ]

where U is some (unknown) (k+ 1) x k matrix, we get the skew-equivalent pencil

Hence we need to show that we can find a matrix U such that

However before proving this we need the following.

Theorem 3.2.5 Consider the space of (r + 1) x r matrices, U, of the form
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where Uo and Vo are arbitrary r x r symmetric matrices, then this space has
dimension 2r.

Proof In fact one can show that U is determined uniquely by the choices of

UI, ... ,Ur and VI, ... , Vr. (Defining the skew diagonals of the matrix to be the
diagonals which cross its main diagonal, then having fixed UI, ... ,Ur, Vl,' .• ,Vr

each element of the matrix U lies on a skew diagonal meeting some Ui or Vj,

and the symmetry conditions force it to take this value.)

The formal proof proceeds by induction on r, The cases r = 1,2 are clear.

Suppose that the result is established for r, and consider the situation of a
matrix U which is (r + 2) x (r + 1). Ifwe delete the first row and column of this
matrix we have exactly the same situation and the space of possible solutions
is of dimension 2r.

However all of the entries in the larger matrix are determined by the sym-

metry conditions, except from those in places (1,1), (1,2) and (2,1), the latter

pair being equal. Consequently the space is of dimension 2r + 2 = 2(r + 1) as
required. 0

Lemma 3.2.6 Let Q be the (r + 1) x r matrix

p. 0 0

A p.

Q= 0 A 0

p.
o 0 A

and cl> any r x r skew-symmetric pencil then we can find a constant (r + 1) x r
matrix U such that

(3.6)

Proof If we consider this equation, we see that both sides are r x r skew-
symmetric pencils. The RHS is a pencil of the form AAl + P.Bl where Al and
Bl are known r x r skew-symmetric matrices. The LHS is a pencil of the form
AQl + P.Q2 where Ql and Q2 are r x r skew-symmetric matrices whose entries
are linear combinations of the r(r + 1) unknown entries of U. We can therefore
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think of (3.6) as two sets of linear equations in the r(r + 1) entries of U: one

set corresponding to the matrices multiplied by .x, i.e Ql = AI, and the other,
Q2 = B2 to the matrices multiplied by J.L.

Recall that the space of r x r skew-symmetric matrices has dimension r(r -

1)/2. It followstherefore that (3.6) results in r(r -1) linear equations in r(r+ 1)

unknowns. If we think of _QTU + UTQ as a linear map

then given any element -~ E Kr(r-l) we need to show that there exists an

U E Kr(r+l) such that ¢(U) = -~, that is ¢ is surjective. For ¢ to be surjective

dim(im¢) = r(r - 1)

and therefore, by the rank-nullity theorem for linear maps,

= 2r.

(3.7)

(3.8)

dim(ker¢) = r(r + 1) - r(r - 1)

So we get the required result if we can show that the space of matrices, U,

satisfying _QTU + UTQ = 0 has dimension 2r.

Write _QTU +UTQ as >'Ql + J.LQ2(with the entries of the skew-symmetric

matrices Ql and Q2 linear combinations of the entries of U). So when consid-

ering -QTU + UTQ = 0, we can separate the equations for>. and J.L,i.e Ql = 0
and Q2 = 0 respectively.

We write

and therefore

Then Q1 = 0 implies that
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and writing

where UD is an r x r matrix, we deduce that -UD +ul = O. Furthermore Q2 = 0
implies that

- [ t, ~1U + UT [ t, 1 = 0o 0 ... 0

and if we write

where VD is an r x r matrix (whose first row is u1 ... ur) then we find that

-VD + vl = o.

So if

satisfies _QTU + UT Q = 0 then the two r x r matrices UD and VD are both
symmetric. Conversely, any matrix U of this form, with Uo and Vo both sym-

metric, is in the kernel of -QTU + UTQ. By Lemma 3.2.5 the space of such
matrices U has dimension 2r as required. 0

Lemma 3.2.7 Consider a skew-symmetric pencil, A, of the form

F G ,
-Gl r
Q 0 1 (3.9)

where 0 are null matrices, Q is the (k + 1) x k pencil given by

J.t 0 0

x J.t
Q= 0 ,\ 0

JJ
0 0 ,\
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G is a k x (n - 2k - 1) pencil and F, I' are skew-symmetric pencils of order k

and (n - 2k - 1) respectively. Then by skew-equivalent reduction we obtain an

equivalent pencil of the form

(3.10)

where R is a constant k x (n - 2k - 1) matrix. Furthermore both pencils have

the same homogeneous kernel vector w(k).

Proof The first part follows from the above. By the action on A of an invertible

matrix of the form

t,
o

U
o ,

In-2k-1
o ] (3.11)

for some (k + 1) x k matrix, U, we get the skew-equivalent pencil

Then by Lemma 3.2.6 we can choose U such that -QTU + UTQ + F = O. Since

the action of (3.11) corresponds to adding rows from the (k + 2) to (2k + 1) zero

rows of w(k) to its first (k + 1) rows, w(k) is preserved. Consider the reduced
pencil,

~ ~],
-G~

where the block G is the k x (n - 2k - 1) pencil G = A9ii + Jl.hii where k + 2 ::;

i ~2k + 1 and 2k + 2 ::; j ::; n. So we can kill off the Jl.hii in the ijth entry

of G by adding a multiple of the column of (3.10), for which there is a -JI. in

the ith row of _QT, to the jth column of (3.10), (i.e by the column operation

Ci + hijCi-Ic-t}. In this way we can kill off all the JI. terms in G using column

operations. Furthermore the counterpart row operations required to preserve

skew-symmetry kill off the corresponding JI. terms in _GT and we can reduce

(3.10) to the skew-equivalent pencil

Q
o

-AR']
(3.12)
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where R is a constant k x (n - 2k - 1) matrix. Since the simultaneous row and

column operations used affect only the last (n - 2k - 1) rows and columns of

(3.12) as before the kernel vector of this pencil is unchanged. 0

The pencil given in (3.10) is the starting point for the reduction to a nor-
mal form. Before a formal description of this reduction we make the following
remark.

Remark 3.2.8 If the minimal degree, kl' of a pencil, A, is zero then it has a
constant kernel vector, Vc. By row operations we can reduce this vector to

v(O) = [ r ]
These row operations correspond to premultiplying Vc by the invertible matrix

p-l and the skew-equivalent pencil pT AP has kernel vector v(O). From this we

deduce that the first column of pT AP are all zeros and hence by skew-symmetry
so is its first row.

We have therefore reduced our pencil to one whose first row and column are
null and we are left with an (n - 1) x (n - 1) sub-pencil. It could be that this
sub-pencil also has minimal degree 0 in which case we introduce another null
row and column. Consequently our normal form may start with several null
rows and columns. Although we keep this in mind it is more convenient to start
the reduction to a normal form by considering the (sub- )pencil with non-zero

minimal degree.

Theorem 3.2.9 Given a singular n x n skew-symmetric pencil, A of minimal
degree kl > 0 we can reduce it to a skew-equivalent pencil of the form

0 L1 0 0
-u 0 ARu AR12
0 -ARiI 0 L2
0 -AR't; -Lf 0

0 -ARt._l 0 -ARf.-l
0 -ART 0 -ARia18
0 -AR1H1 0 -ARf.+1

0 0 0
ARlB-1 ARt. AR1s+1

0 0 0
AR2.-1 AR2• AR2.+1

0 L. 0
-L; 0 AR.. +1
0 -AR:.+1 q,

(3.13)

93



where IJI is a possibly existent column independent sub-pencil, the blocks L, are

of the form

k.

/-L 0

A /-L
Li= 0 A

0

o

o
/-L

o A

Proof The proof is by induction on n. The initial step has been done above
and for completeness we summarise it thus.

Given a singular skew-symmetric pencil with homogeneous kernel vector, v,

of minimal degree kl then (using Lemmas 3.2.2 and 3.2.3) it is skew-equivalent
to a pencil of the form

o
L1'

- 1

o

with
/-L 0 0

A /-L

i, = 0 A 0

/-Lo 0 A

and II some skew-symmetric pencil of order (n - kl - 1). Furthermore pT AP

has kernel vector

v(kd = p-1v =

o

For some invertible matrix, Q, we can further reduce A to the the skew-equivalent
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pencil

~' +],
-ARt

(3.14)

where RI is a constant ki x (n - 2kI -1) matrix and r a skew-symmetric pencil
of order n - 2kI - 1. If n = 2kI + 1 we are finished.

This pencil, AI, has a homogeneous polynomial kernel vector Q-lv(kt} with
minimal degree kl. In fact since the row operations corresponding to premul-

tiplying V(kI) by o:' involve adding rows from the (n - kl - 1) zero rows of

v(kt}, to its first (k + 1) rows it follows that Q-lv(kd = v(kd.

In general, Al has a homogeneous polynomial kernel vector

of degree m ~ kl. We therefore have

So
(3.15)

(3.16)

(3.17)

From (3.15) we have

u 0 0 Yl 0
A Jl. Y2 0

0 A 0 =

Jl.
00 0 A Yk!

where Yi are polynomials in A, Jl. of degree m. So

Jl.Yl = 0 :::::} Yl == 0
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and so on. Consequently the only solution to L1 Y1 = 0 is Y1 = 0 and it follows
that L1 is column independent. From (3.17)

rZ1 = O.

If Z1 == 0 is the only solution then r is column independent and we are done.
Furthermore a corresponding kernel vector is

where X I is a homogeneous polynomial vector of degree ~ kl satisfying - Li X I =
O. One such vector is the minimal kernel vector, v(kt}, already found.

Otherwise r has a non-trivial kernel vector of degree ~ kl and in particular
a minimal polynomial kernel vector Zl of degree k2 ~ kl. (In this case we have

the homogeneous polynomial kernel vector, of degree k2'

where Xl satisfies ux, = ARIZ2 from (3.16).)

Inductive Step

By induction, we find that r is skew-equivalent to

0 L2
-Lf 0

0 -ARf.-1
0 -'\Rf.
0 -,\RfB+I

0 0 0
,\R2.-I ,\R2. AR2.+1

0 L. 0
-L; 0 AR.. +I
0 -AR;.+1 'Ii

where k. ~ ... ~ k2• The simultaneous row and column operations, required
for this reduction, when performed on Al have the further effect of altering the

ARI (and -AR'[) blocks to ARi (and -ARiT). The result then follows. 0

In fact (if it exists) the sub-pencil, 'Ii, of this reduced pencil, (3.13), is non-

singular as shown by the following result.
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Lemma 3.2.10 Let 0 be a skew-symmetric pencil which is column independent.

Then it is also row independent and therefore non-singular.

Proof If 0 is column independent then

Ov = 0

has only the trivial solution v = O. If 0 is row-dependent then for some non-
trivial homogeneous polynomial vector u

uO=O.

So (uO)T = 0 and

Therefore since 0 is skew-symmetric

with uT non-trivial. This contradicts the column independence of O. So (}must
also be row independent and hence is non-singular. 0

3.3 Normal Forms for Skew-symmetric Pencils

We have reduced our pencil to the form

0 Ll 0 0 0 0
-LT 0 t t t t
0 * 0 L2 0 0
0 * -Lf 0 t t
0 * 0 * 0 L3
0 * 0 * -LT 0

0 * 0 * 0 *0 * 0 * 0 *0 * 0 * 0 *

0 0 0
t t t
0 0 0
t t t
0 0 0
t t t

0 Lr 0
_LT 0 tr
0 * M

where M is a possibly existent non-singular skew-symmetric pencil, the non-
zero entries of blocks denoted by * are constant multiples of .>. and for each such

block its diagonally opposite block, denoted by t, satisfies t = _*T.

Starting with the above initial reduction, in this section we describe in con-
crete terms how to construct normal forms for singular pencils. The principal
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objective is to clear away the non-zero elements in the submatrices indicated by

stars and daggers. To do this we adapt the general method given in [TurnAit]
to our skew-symmetric case.

We consider the submatrices, denoted by stars, below the Li blocks of the
matrix. These submatrices are aligned with (that is lie in the same row or

column block as) either

(i) two Li's,

(ii) a L, and a -LJ or

(iii) a L, and M.

Clearly, if the initial reduction produces no non-singular subpencil only cases
(i) and (ii) apply. However if M exists we also need to consider case (iii). This

involves incorporating the work in Chapter 2 for simplifying the non-singular
sub-block M.

We consider the three cases in turn.

3.3.1 Case (i)

We consider the case where the submatrix is aligned with L1 and L2. This
submatrix therefore has k2 + 1 rows and k1 columns aligned with L1 above and
L2 to the right. For illustrative purposes we represent this submatrix by the
matrix of stars given below.

J.I. 0 0
A J.I. 0
0 " J.I.
0 0 A

* * * J.I. 0 0

* * * A J.I. 0

* * * 0 A J.I.

* * * 0 0 A

Imagine a diagonal barrier drawn just below the leading diagonal of this sub-
matrix of stars. Since k2 ~ kb the top row of stars lies entirely above, and the
bottom row entirely below, this barrier.
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Each non-zero iith star represents a term et>.. If such an entry is above the
barrier, but not in the final column of stars, it may be moved one step diagonally
downwards to the right. This is done by utilizing the>. of L1 in its own j th
column and the JL of L2 in its own ith row. For example the pair of operations

moves the term et>.from position (5,1) to (6,2) without changing anything else.
If such an entry lies in the final column it can be deleted at once using the >.of

L1 in its own column, e.g the row operation R7 - o:R4 deletes et>.from (7,3).

Similarly, for an entry below the barrier we can utilize the>. of L2 in its own
row and the JL of L1 in its own column to move this entry one step diagonally
upwards to the left and then repeat this process until it passes off the figure
after reaching the first column. So working from left to right above the barrier
and from right to left below, by a sequence of row and column operations we
can delete every star.

For blocks Li, 1 ~ i ~r, for every block, *, below it aligned with an Lj, i > i,

we use this method to kill off each of its entries remembering that after each
individual (row/column) operation used we need to perform the counterpart

(column/ row) operation to preserve skew-symmetry. (This will result in the

clearing of the diagonally opposite block, t. above - LJ and to the right of

-LT.)

In this way, for each Li, we proceed downwards systematically killing off each
block * aligned with an Lj, i = i+ 1, ... , r. We make the following observations:

1) As long as we start with column block L1 (i = 1) and work from left to
right, then any row operations using L, to clear a block below it only affect this
block. (Similarly for the counterpart column operations.)

2) The column operations using Lj to clear the block introduce terms in-

volving >.into the blocks below it and into the blocks above aligned with - Lf
(k < i). Note, however, the zero blocks we have created above, aligned with

Lk (k < i), are preserved. (We have an analogous situation for the counterpart

row operations.)

3) These column operations (along with the counterpart row operations)
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create a skew-symmetric pencil in the block aligned with L; and -LT which

involves multiples of A.

Working column block by column block from left to right, systematically

killing off each block, *, aligned with a L, and Lj (-LT and -Lj), that is by

a series of simultaneous row and column operations, we obtain the following

skew-equivalent pencil.

0 Ll 0 0 0 0
-u 0 0 t 0 t
0 0 0 L2 0 0
0 * -Lf 0 0 t
0 0 0 0 0 L3
0 * 0 * -Lf 0

0 0 0 0 0 0
0 * 0 * 0 *
0 * 0 * 0 *

0 0 0
0 t t
0 0 0
0 t t
0 0 0
0 t t

0 Lr 0
-L; 0 t
0 * M

where although some of the blocks * and t have been altered their entries are

still constant multiples of A, and blocks denoted by 0 are skew-symmetric.

3.3.2 Case (ii)

We represent the submatrix aligned with L; and -LJ by the following figure

p. 0
A p.
0 A
* * -J.t -A 0 0

* * 0 -J.t -A 0

* * 0 0 -J.t -A

Again each non-zero star represents a term aA. For each such entry we use the

A above and the p. to its right to move it one step diagonally upwards to the

right until it is deleted. For example the row operation Rr.- aR2 followed by the

column operation C2 - aC4 moves the element aA from position (5,1) to (4,2).

All entries in the final column are deleted using the A above in the final column

of Li. Working down each column, starting from the LHS and proceeding from

left to right, we can delete every star.
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For blocks Li, 1 :5 i :5 r, for every block, *, below it aligned with an

-LT, j > i, this method can be used to kill off each of its entries provided

we remember, after each individual (row/column) operation is used, to perform

the corresponding the counterpart (column/row) operation required to preserve

skew-symmetry. (This will result in the clearing of the diagonally opposite block,

t. above Lj and to the right of -LT)

In this way, for each Li, we proceed downwards systematically killing off

each block * aligned with an -LT, j = i+ 1, ... ,T. Observe here, that, having

previously killed off all the blocks aligned with L; and Lj, now both the row

operations, using L;, and the column operations, using -Lj, required to kill off

such a block leave the remainder of the matrix unaffected.

Working column block by column block from left to right, we can therefore,
by a series of simultaneous row and column operations, kill off every block, *,
aligned with a L, and a -Lj (accordingly blocks t aligned with -LT and Lj),

to obtain the following skew-equivalent pencil.

0 L1 0 0 0 0
-Lf <> 0 0 0 0
0 0 0 L2 0 0
0 0 -Lf <> 0 0
0 0 0 0 0 L3
0 0 0 0 -Lf <>

0 0 0 0 0 0
0 0 0 0 0 0
0 * 0 * 0 *

0 0 o .
0 0 t
0 0 0
0 0 t
0 0 0
0 0 t

0 Lr 0
_LT 0 tr
0 * M

Before considering case (iii) we need to kill off the skew-symmetric pencils,

<>, aligned with blocks L; and -LT. We represent this situation by the following
figure.
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I' 0 0 0
A I' 0 0
0 A I' 0
0 0 A I'
0 0 0 A

-I' -A 0 0 0 0 O12A O13A Ol4A
0 -I' -A 0 0 -012A 0 023A 024A
0 0 -I' -A 0 -013A -023A 0 034A
0 0 0 -I' -A -014A -024A -034A 0

We can kill off each (j, k)th entry in 0, by a row operation using the A term

above it in Ls, (Note, as usual, the necessary counterpart column operation

kills off the (k, j)th entry.) This introduces a I' term into the (j, k + 1)th entry.

By a column operation, we can use the I' term in -LT to kill this off which, in
general, introduces a further A term diagonally to the right.

For example, in the above figure we can kill off the entries in positions (7,8)

and (8,7) by the simultaneous row and column operations:

and

followed by
and

introducing a ±023A term to positions (6,9) and (9,6) respectively.

We can kill off all terms in the final column (and row) using R5 (and C5).

So working in this way from left to right, above the diagonal, we can delete
each entry of e. Note this example indicates a practical method for obtaining a
special case of the result of Lemma 3.2.6.

Procceeding systematically from left to right, using the method just de-

scribed to kill off each block 0 aligned with an L; and a-LT, we obtain the
skew-equivalent matrix
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0 LI 0 0 0 0
-L[ 0 0 0 0 0
0 0 0 L2 0 0
0 0 -L'f 0 0 0
0 0 0 0 0 L3
0 0 0 0 -Lf 0

0 0 0 0 0 0
0 0 0 0 0 0
0 * 0 * 0 *

3.3.3 Case (iii)

0 0 0
0 0 t
0 0 0
0 0 t
0 0 0
0 0 t

0 Lr 0
-L; 0 t
0 * M

(3.18)

This requires a lot more work. First we need to consider, M, in more detail.

Firstly, M is a non-singular pencil of even order, 2u say. It is given by

where, in general, M1, M2 are both non-singular skew-symmetric matrices.
However, it is also possible that one or both of the basis matrices, M1, M2
are singular in which case before proceeding further it is neccessary to change
this basis to a pair, (D1, D2), of non-singular matrices.

We briefly consider this possibility. Since M has a finite number of singular
members we can easily find distinct ratios (AI: IJd, (A2 : IJ2) such that

are both non-singular and form a new basis for M i.e

As discussed in Lemma 1.3.3 of Chapter 1, the relationship between old and
new coordinates is given via the change of basis matrix, i.e

(3.19)

This necessary change of coordinates changes the entries in pencil (3.18), a
particular nuisance being the changes to the singular blocks. We therefore have
the skew-equivalent pencil.
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0 L' 0 0 0 0I
L'T 0 0 0 0 0- I

0 0 0 L2 0 0
0 0 L'T 0 0 0- 2
0 0 0 0 0 L'3
0 0 0 0 L'T 0- 3

0 0 0 0 0 0
0 0 0 0 0 0
0 * 0 * 0 *

0 0 0
0 0 t
0 0 0
0 0 t
0 0 0
0 0 t

0 L' 0r
_L~T 0 t
0 * M

(3.20)

where L~(>', p.) is the block obtained from Li()..,I-') by the linear change of co-

ordinates given in (3.19) and M = XDI + ilD2. Note here also that with this

substitution the terms in blocks * (and t) involve both X and il.

Whether or not such an initial change of basis is necessary the following
argument applies in both cases. It is natural to continue with the general case
(Le. when MI, M2 are both non-singular) although, despite maintaining the

notation ()..: 1-') for their coordinates, we prefer to denote the non-singular ma-

trices by DI, D2 (thereby incorporating the other possiblity, where.any enforced
changes to the singular part are temporarily ignored ).

We consider the non-singular pencil

Representing this pencil by the pair (D1, D2) of non-singular skew-symmetric
matrices, we aim, by the methods described in Chapter 2, to reduce it to one
of our normal forms.

As discussed in Section 2.4 we represent this pair by the skew-symmetric

I-'-matrix (it is more convenient to use I-'here rather than the usual )..)

Since M is skew-symmetric

det M = der(D, + I-'D2)

= (1(1-'))2,
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for some function f(J.L), which over C can be factorised as

q

f(J.L) = II(aiJ.L + 1)8iu,
i=1

where ai =f 0 for all 1 ~ i ~q.

The invariant factors of M, dt are

q

dt = II(aiJ.L+ 1)8it-8it-1,
i=1

for 1 ~ t ~ u. Recall, these Bij'S are obtained from a representation of the ideals

Jhk(M), similar to that of (2.36) in Section 2.4.

Fixing i, then for 1 ~ t ~ u we find the non-zero powers Bit - Bit-l of

(aiJ.L + 1) in each invariant factor dt. If there are n(i} in total we denote these

Til ~ ... ~ Tin(i)·

(Note we ignore any zero powers.) Doing this for each 1 ~ i ~q, by Theo-
rem 2.4.8, we can construct a normal form of the type described in Section 2.4.1.

Representing this normal form by

the pair (N1,N2) is skew-equivalent to (D1,D2). That is

and

Hence by a series of simultaneous row and column operations on )'D1 + J.LD2 we
obtain the skew-equivalent pencil )'N1 + J.LN2•

Returning to our original pencil, (3.18), these simultaneous row and column
operations correspond to a series of simultaneous row and column operations
on the last 2u rows and columns.
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These give the skew-equivalent pencil

0 LI 0 0 0 0
-L[ 0 0 0 0 0
0 0 0 L2 0 0
0 0 -Lf 0 0 0
0 0 0 0 0 L3
0 0 0 0 -u 0

0 0 0 0 0 0
0 0 0 0 0 0
0 * 0 * 0 *

0 0 0
0 0 t
0 0 0
0 0 t
0 0 0
0 0 t

0 Lr 0
-L; 0 t
0 * N

(3.21)

where N = ANI + J.LN2' and the blocks * (and t), involving terms in A have

been altered.

Consider this non-singular part :

It is the direct sum of blocks:

0 ail' + A
-ail' - A 0 A

-A 0 ail' + A
-ail' - A 0 A

-A
A

-A 0 ail' + A
-ail' - A 0

2r'j

(3.22)

Furthermore, by an argument similar to that given at the end of Section 2.4.1,

the q eigenvalues of (NI, N2), (the values of (A : J.L) on the projective line for

which det N = 0, see Section 1.2}, are (ai : -I) with multiplicities Siu'

By the Three Point Lemma (Lemma 1.3.4) on the complex projective line,

we can use an element p E GI(2, C} to fix up to three of these distinct eigenvalues

to (0 : I), (1 : 0) and (1 : 1). This pE GI(2,C) corresponds to a change of basis

of the pencil from (NI, N2) to (N~, Ni) where
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and the relationship between the new coordinates, (p, a), and the old coordinates

(A, J.l) are via the associated change of basis matrix,

(3.23)

(See Lemma 1.3.3 in Chapter 1.)

Since
q

det(ANI + J.lN2) = (det X)2 II(a;J.l + A)8iu,
i=1

it follows, by the linear coordinate change given by the change of basis matrix,
that

q

det(pN~ + aN~) = (det X)2 II(b;a + CiP)8iu,
;=1

for some bi, ci E C. So the q distinct eigenvalues of the pair (NI' N2) are

(bi : -Ci). So for the first three eigenvalues of this pair to be (1 : 0), (0 : 1) and

(1: 1) the linear map p E Gl(2,C) sends

(i = 1) alJ.l + A ~
(i = 2) a2J.l+A ~
(i = 3) a3J.l+ A ~
(i ~ 4) aiJ.l + A ~

k}a
k2P

k3(P - a) ,
bia + CiP

where kl' k2' k3, bi, Ci "I- O. It can be verfied that the entries of the change of
basis matrix required for this are, for any choice of t "I- 0, given by f32 = t,

(3.24)

(3.25)

(3.26)

For each of these four cases we need to consider the effect of this basis change

on the blocks (3.22) of N = ANI + J.lN2. Before doing this, we introduce the
following useful result.
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Lemma 3.3.1 Given a skew-symmetric block of the form

0 k1O'
-klO' 0 II (p, a)

=l: (p, a) 0 k2O'
-k2O' 0

lr{P, a)
-lr{p,O') 0 krO'

=k;« 0

, (3.27)

where k; '" 0, li(p,O') = aiP + /3iO' {a, '" 0), then it is skew-equivalent to the
block

0 a
-a 0 P

-p 0 a
-a 0

p
-p 0 a

-a 0

(3.28)

2r

Proof The proof is by induction on r

Initial step

Consider the first two blocks of (3.27) :

o k1O'
-klO' 0 aip + /310'

We perform the following simultaneous row and column operations to eliminate
the constants. Note, for each operation described below, for brevity, we omit
the proceeding counterpart operation necessary to preserve skew-symmetry.

(1) Scale the second column {i.e. (1/kdC2) so that the coefficient of (J' in the
leading diagonal block is 1.

(2) Add some multiple of the first row to the third (i.e. R3 + (/31/kdRl ) to
kill off the (J' term in this row.
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(3) Scale the third row (i.e. (kdadR3) so that the coefficient of p in this row
is -1.

By these simultaneous row and column operations the first two blocks are re-
duced as shown below

o (7
-(7 0 P

Inductive step

Assume the result holds for the first (8 - 1) blocks, 8 ~ 2, and consider, in
particular, the 8 - 1, s blocks :

0 (7

-(7 0 P
-p 0 (7

-u 0 p
-p 0 ksu

-ksu 0 asp + f3.u
-a.p - f3.u 0 k.+1u

-k.+l(7 0

(3.29)

By the simultaneous row and column operations :

(1)

(2)

(this operation introduces a -(f3./k.)p term into position (28+ 1, 28 - 2)),

(3)
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(4)

(this introduces a - ({3s / as)(1 term into position (28 - 1,28 - 2)),

(5)

(this introduces a -({3s/as)p term into position (28 - 1,28 - 4)),

(6)

these blocks are reduced to the form

0 (1

-(1 0 p+ ~(1

-p - &(1 0 (1
Q.

-(1 0 P
-p 0 (1

-(1 0 p

-p 0 ~(1

~
Q.

- (1 O.Q.

The first 8 - 1 blocks are of the form (3.27), with their entries satisfying the
associated conditions, so the result follows by induction. 0

This result can be used to reduce the types of blocks obtained by the above
change of basis. We consider each in turn.

1. The blocks of (N{, N~), corresponding to eigenvalue (a1 : -1) of (N1' N2),

are of the form :
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0 kla
-kla 0 l(p, a)

-l(p, a) 0 kla
-kla 0

l(p, a)
-l(p, a) 0 kla

-kla 0

(3.30)

where l(p, a) = QIP + /3la = A is given by (3.23). Clearly from (3.24) 01 t- 0
and we can apply Lemma 3.3.1 to reduce (3.30) to the skew-equivalent block

0 a
-a 0 p

-p 0 a
-a 0

p
-p 0 a

-a 0

(3.31)

For convenience we refer to a direct sum of n(l) blocks of this type as AI.

2. The blocks of (N~, N~), corresponding to eigenvalue (a2 : -1) of (NI, N2),
are of the form :

0 k2P
-k2P 0 l(p, a)

-l(p, a) 0 k2P
-k2P 0

l(p, a)
-l(p,a) 0 k2P

-k2P 0

(3.32)

where l(p, a) = olP+/3la, as before. We look to apply the result of Lemma 3.3.1

to (3.32). If we switch the p and a in (3.32) then since, from (3.26), it is clear

that /31 t- 0 we have a block of the form, (3.27), given in the statement of
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Lemma 3.3.1. Applying this lemma and then switching the P and a back we
can reduce (3.32) to the skew-equivalent block

0 P
-P 0 a

-a 0 P
-P 0

a
-a 0 P

-P 0

(3.33)

For convenience we denote a direct sum of n(2) blocks of this type by A2•

3. The blocks of (N{, N~), corresponding to eigenvalue (a3 : -1) of (NI, N2),
are of the form :

0 k3(P - a)
-k3(P - a) 0 [(p, a)

-[(p, a) 0 k3(P- a)
-k3(P - a) 0

l(p, a)
-[(p, a) 0 k3(P - a)

-k3(P - a) 0

2rSi

(3.34)
with [(p, a) = alP + /3la. Again we look to apply the result of Lemma 3.3.1.

Consider the skew-symmetric block obtained from (3.34) by setting 0 = p - a.
Then it follows that

and it can be verified from (3.24) and (3.26) that for distinct non-zero ab a2, a3,

al + /31 ::j:. O. Therefore we have a block of the form (3.27) given in Lemma 3.3.1.

Applying this lemma and afterwards replacing 0 by p - a we obtain from (3.34)
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the skew-equivalent block

0 (p - (1)
-(p - (1) 0 P

-P 0 (p- (1)
-(p - (1) 0

p
-p 0 (p-(1)

-(p - (1) 0

2r3;

(3.35)

For convenience we denote a direct sum of n(3) blocks of this type by A3•

4. The blocks of (N{, N~), corresponding to eigenvalues (ai : -1), 4 $ i $ q

of (Nl' N2), are of the form:

0 bi(1+ CiP
-bi(1 - CiP 0 l(p, (1)

-l(p, (1) 0 b.o + CiP
-bi(1 - CiP 0

l(p,(1)
-l(p, (1) 0 bia + CiP

-bi(1 - CiP 0

(3.36)

where as usual l(p, (1) = aip + (31(1. For these cases we cannot eliminate all
the constants, so instead the best we can do is to replicate blocks of the type

which made up our original normal forms, Le. of the form (3.22). Again we

look to obtain from (3.36) a block of the type given in Lemma 3.3.1. We start

by multiplying all the even columns by 1/ci and denoting e, = bilci. Hence the

eigenvalues for these blocks are (e, : -1). Consider setting t5 = ei(1 + p. Then

Considering the respective eigenvalues (ai : -1), (e, : 1) of the pairs (N1,N2)

and (Nt, N~) then by Lemma 1.4.2 it follows from (3.23) that ai = a1ei - (31.

Since ai :j; 0, at e, - (31 :/; 0 and we have a skew-symmetric block of the form
given in Lemma 3.3.1. Applying this lemma and then replacing t5 by ei(1 + pin
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the result we can reduce the block (3.36) to the skew-equivalent block

0 eia +p
-eia - P 0 P

-p 0 eia + p
-eia - P 0

p
-p 0 eta + p

-eia - P 0

(3.37)

as desired. For convenience we denote a direct sum of n(i) blocks of this type
by B, where 4 ~ i ~q.

Having just described a way of fixing three of the distinct constants of the

normal form, N, in (3.21) we need to discuss how this is implemented on the
whole pencil.

Essentially this corresponds to a change of basis followed by a series of simul-

taneous row and column operations on the last 2u rows and columns of (3.21).

So the nonsingular part is therefore of the form N = pN1 +aN2, which is a sum
of q blocks, A1, A2, A3, B, 4 ~ i ~q, consisting, respectively, of a direct sum
of the blocks (3.31), (3.33), (3.35) and (3.37) found above.

The effect on the singular blocks, Li, is that of a change of coordinates.
Note if initially we had needed to change the basis (M1, M2) of M to the pair of

non-singular matrices (D1, D2) the further change of coordinates required to fix
the eigenvalues can be composed with this initial change to give a single linear
change of coordinates

on the original blocks L, in (3.18). All we can say about the remaining entries

in the last 2u rows and columns is that they consist of linear terms in p and a.

Before proceeding any further we make the following remark.

Remark 3.3.2 Recall from Section 1.2 that the eigenvalues of a pair of skew-
symmetric matrices is a skew-equivalent invariant. Furthermore by changes of
basis we can only fix up to three distinct eigenvalues of a pencil. It follows that
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if a skew-symmetric pencil has four or more distinct eigenvalues then it has
moduli up to skew-equivalence.

3.3.4 Cleaning up the Singular Blocks

In summary by the work of the previous section we have established that any
pencil, (3.18), is skew-equivalent to one of the form:

0 £I 0 0 0 01
£IT 0 0 0 0 0- 1

0 0 0 L2 0 0
0 0 £IT 0 0 0- 2
0 0 0 0 0 L3
0 0 0 0 L'T 0- 3

0 0 0 0 0 0
0 0 0 0 0 0
0 * 0 * 0 *

0 0 0
0 0 t
0 0 0
0 0 t
0 0 0
0 0 t

0 Lr 0
_L~T 0 t
0 * N

(3.38)

where L~(p,O') = Li(>',Il) is the block obtained from L, by a linear change of
coordinates

with

(3.39)

Note the blocks * and t involve linear terms in p and 0'.

For the following argument it is convenient to denote such a block LHp,O')
by A(p,O'), where

Il 0 0

>. Il
A= 0 x 0 k; + 1,

J.l
0 0 x

ki

corresponds to Li(>., Il).
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It is required that such a block A(p,u) be reduced to a block of the form

0- D 0

P 0-

B= 0 p 0 k; + 1.

0-

D 0 P
k.

To do this we need to demonstrate the existence of invertible constant matrices
P, Q such that

(3.40)

The approach adopted here makes direct use of some of the results in Chapter IX
of [TurnAit] concerning the reduction of general (singular) pencils. In particular,

for brevity we state the key result without proof. (Note: in [TurnAitJ the

coordinates A, IL are the other way round.)

Before the change of basis in (3.39), it can be easily verified that the vector

kills A, i.e

vA=O,

where ki is the minimal order of A. So after the change of basis (3.39) it follows
that

V(p,u)A(p,u) = 0, (3.41)

where v(p,u) is the vector obtained from v by substituting for A, IL using (3.39).

Let w be the nullifying vector

of B.

Note that 9 E Gl(2, C), in (3.39), gives rise to an invertible linear map
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where Vk,+l is the space of binary forms of degree ki' the action of which is
given by

with f E Vk,+1 and x E (:2. Clearly,

are both bases for Vk, +1 and therefore this linear map is determined by the
relation

R-1v(p,<T) = W , (3.42)

where R is an invertible (ki + 1) X (ki + 1) constant matrix.

So from (3.41) we can write

and by (3.42)

(3.43)

where R-l A(p,O') is some pencil in p, (J.

Notice, by Lemma 3.0.20, that the minimal order (of row dependence) of

A is preserved through both the change of basis, (3.41) and the equivalent

transformation of A(p,O') to R-1 A(p,O').

So R-l A(p,O') has minimal order k; and (3.43) is a minimal relation.

We quote the following lemma, albeit with notation modified for the present
case.

Lemma 3.3.3 Let A be an n' x n pencil with minimal order of row dependence
of degree ki < min{n',n}. There exist invertible constant matrices Po and Qo,
over K, which reduce a minimal relation uA = 0 to the form

where Wk, = [w,~, Ao is a pencil with ki + 1 fewer rows and ki fewer
n'-k;-l

columns than A, and S is a submatrix with constant elements. If ki = 0 the B
and pS are non-existent.
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Proof See Lemma I of Chapter IX in [ThrnAit]. 0

Remark 3.3.4 From Lemma 3.0.20 the equivalent pencil QoAPo also has min-

imal degree ki. Also note that the nullifying vector UQC;l is obtained from u by

successive column operations.

Applying this lemma to (3.43) it follows that

(3.44)

where B is as defined above. This is the special case when Wk; = W.

From (3.44) and Remark 3.3.4 we deduce that wQG1 = wand

as required in (3.40).

So it follows that for each block LHp,O') we can perform a series of row and

column operations which reduce it to something of the form

0' 0 0

P 0'
Li(p,O') = 0 p 0 ki + 1.

0'
0 0 P

ki

Returning to the pencil (3.38), for each block

[
0 L'. ]

_L~T 0' , (3.45)

we perform the sequence of simultaneous row and column operations involving

the successive row/column operations required to reduce LHp, 0') to Li (p, 0')

(and thereby also reducing _L~T(p,O') to -LT<p,O'». In practice after each

row/ column operation required to reduce the block LHp, 0') we preceed it, im-

mediately, by its counterpart column/row operation, which reduces _L~T(p, 0').
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Notice, from (3.38), these operations (to be more specific the column operations

on blocks L~(p, a) and counterpart row operations on blocks - L~T(p, a) only al-

ter, as regards the rest of the pencil, the non-zero blocks, involving linear terms
in p and a, in its last 2u rows and columns.

If we denote the non-zero block t aligned with -LT<p, a) by G, and its

negative transpose *, aligned below Li(p, a), by -G~T then, using a similar
method to that discussed in the proof of Lemma 3.2.7 we can use the a terms

in the blocks Li(p,a) and _L~T(p,a) to kill off all the a terms in G, and -Gf.

Briefly, for any block -LT<p, a), for each a term in the ki rows of -LT(p, a)
we can, by means of a sequence of column operations, kill off all a terms in
the corresponding row of Gi. These will also introduce constant multiples of
p into these rows. Furthermore by applying the sequence of counterpart row

operations we can use the a terms in the k, columns of LT<p,a) to kill off all

a terms in the corresponding columns of -GT. These simultaneous row and

column operations don't change the non-singular pencil N since the last 2u
entries of the columns and rows involved are all zeros.

Doing this for each block (3.45) we obtain the following skew-equivalent
pencil.

0 L1 0 0 0 0
-L] 0 0 0 0 0
0 0 0 L2 0 0
0 0 -Lf 0 0 0
0 0 0 0 0 L3
0 0 0 0 -LT 0

0 0 0 0 0 0
0 0 0 0 0 0
0 * 0 * 0 *

0 0 0
0 0 t
0 0 0
0 0 t
0 0 0
0 0 t

0 Lr 0
-L'[ 0 t
0 * N

(3.46)

where all parameters are in p, (1 and each non-zero entry in * and t are constant
multiples of p.

As the reader can see we have reduced the pencil, (3.18) of case (iii), to a

form where we can employ a similar method, to those used in cases (i) and (ii),

to kill off all the non-zero blocks, * and t. We discuss this method presently.
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3.3.5 Conclusion of the Reduction

We consider clearing all the entries of blocks, *. Such blocks have 2u rows and

k; columns and are aligned with Li above and N to the right. Recall from above

that, with one exception, N is a direct sum of blocks of the type

0 e.o + p
-eia - p 0 p

-p 0 eia+ P
-eia - P 0

p
-p 0 eia + p

-eia - P 0

(3.47)

where e, =F O.

Each block * is divided into subblocks aligned with an elementary block of

N. Then using each of these elementary blocks, along with the block Li(p,a)
above, we can systematically kill off the entries in *.

Reduction type 1

For example consider the case of the block * aligned with a block Ll (p, a)

and an elementary block of type (3.47) of size Tij' For illustrative purposes we
represent this by the matrix below

a
p a

p a
p

* * * 0 eia + p
* * * -eia - P 0 P
* * * -p 0 e.o + p
* * * -eia - P 0 p
* * * -p 0 eia+p
* * * -eia - P 0

where ei =F 0 and each non-zero entry * represents a term ap.

Here we apply a similar rule to that used in case (ii) above, provided that
each element * of the first column is treated before those of the second, and
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each of the second before those of the third, and so on.

Starting with the first column, we proceed downwards killing off each entry,
*, by means of a row operation which uses the p term above it in Ll (p, 0"). This
will introduce a 0" term into the adjacent column to the right. By a suitable
column operation we can use the ±(eiO" + p) term in the row in which this

introduced (J term occurs to kill it off, thereby introducing further p terms into
this column, hence the need for working column by column from left to right.

By such a pair of row and column operations we can kill off each and every
element in the first column. For example, by the pair of operations R7 - aR2

followed by C2 - -;;C7 we kill off the term ap in position (7,1) of the above

matrix, however we also introduce terms ±(a/ei)p into positions (7,2) and
(9,2) respectively.

Having killed off each entry in the first column, by the same method we kill
off each entry in the second column, then proceed to the next column and so
on. Eventually, we Can delete all entries in the final column, in the above case
the third column, by a series of row operations using the p in the final column
of L1(p,0-).

Notice, that for this method to work we require e, '" 0 which as men-
tioned above is the case, in general. However there is one exceptional type of

constituent block of N for which this doesn't hold namely the blocks, (3.33),

corresponding to eigenvalues (0 : 1) of the pair (NI, N2). We must therefore
treat these blocks differently.

Reduction type 2

Represent such a situation by a matrix of the form :

0-
P 0-

P 0-
P

* * * 0 p

* * * -p 0 0

* * * -0 0 p
* * * -p 0 0"

* * * -0 0 p
* * * -p 0,
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where, as before, each non-zero element * is a constant multiple of p. Again let

L1 (p, (1) be the block above the * block.

Here, in contrast to the previous method, to kill off the entries * we need to
work, column by column, from right to left.

So starting with the final column, in our case the third column, by a series
of row operations, we can first kill off all the entries in this column using the p
term in the final column of Ll (p, (1).

We then consider the adjacent column to the left. Proceeding downwards, we
can kill off each term * in this column, by means of a suitable column operation
using the p term, of the non-singular block, occurring in the same row as this
entry. This, in general, introduces a (1 term into this column which can be killed
off by a row operation using the (1 in the same column of L, (p, a). Note that
this row operation will also introduce a p term into the adjacent column to the
left, hence the need for working from right to left.

In this way we can kill off all the entries in the second column. For example,
by the pair of operations C2 - o:C5 followed by R7 + o:R2 we can kill off the

term o:p in position (5,2) of the above matrix. However we also introduce an

o:p term into position (7,1).

Having killed off all the entries in a column we carry out the same method
on the adjacent column to the left and so on until we reach the first column.

In the first column, after deleting an entry by a column operation of the type
just described, any subsequently introduced a terms can simply be killed off by
row operations using the (1 in the first row of Ll (p, (1). Hence by proceeding
downwards we can delete every entry in the first column.

In summary we have just shown that given any non-zero block * aligned

with a block L,(p, a) above it and any elementary constituent block of iii to its
right then by a series of row and column operations we can kill off all the entries
in *. We are ready to conclude the reduction with the following result.
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Lemma 3.3.5 Consider a skew-symmetric pencil of the form given in (3.46)

0 Ll 0 0 0 0
-LT 0 0 0 0 0
0 0 0 L2 0 0
0 0 -Lf 0 0 0
0 0 0 0 0 L3
0 0 0 0 -LI 0

0 0 0 0 0 0
0 0 0 0 0 0
0 * 0 * 0 *

0 0 0
0 0 t
0 0 0
0 0 t
0 0 0
0 0 t

0 Lr 0
-L;: 0 t
0 * N

(where all parameters are in p, a, each non-zero entry in * and t are constant

multiples of p and N is the direct sum of the q blocks AI, A2, A3, (Bi : 4 ~ i ~q)
consisting of blocks (3.31), (3.33), (3.35) and (3.37) respectively}.

Then this is skew-equivalent to the skew-symmetric pencil

0 Ll 0 0 0 0
-LT 0 0 0 0 0
0 0 0 L2 0 0
0 0 -Lf 0 0 0
0 0 0 0 0 L3
0 0 0 0 -LI 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Proof The proof is by induction.

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 Lr 0
-L;: 0 0
0 0 N

(3.48)

Consider a general block containing Lie (p, q), 1 ~ k ~ r. Assume that we

can kill off all the preceding blocks * (and t) in the last 2'1.£rows (columns), and
that any subsequent non-zero entries introduced can also be killed off. Then we
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would have a matrix of the form:

o

I
0 ... 0

0 0 ... 0

0 Lk 0 ... 0
-L[ 0 + 1"'1 +

0 Lr 0 ... 0
-L; 0 t 1 .. ·1 t

0 • 0 * SllJ
r--

r--=- ...
0 • 0 r-;- I Sqn(q)

, (3.49)

where the blocks whose entries we are describing how to clear are denoted. and

As described above we have subdivided the block. and the corresponding

block + to match up with the elementary blocks of N. We can use the above
methods (Reduction types 1 or 2) to kill off each of these subblocks, remember-
ing that after each operation we must perform the corresponding counterpart
operation immediately afterwards to preserve skew-symmetry. These counter-
part operations contribute to clearing the corresponding subblock of t.

So progressing down the divided block. we can in turn kill off each of these
subblocks. We make a few remarks on how this affects the rest of the pencil.

Firstly, any row operations, using Lk, (and counterpart column operations

using -Ln do not affect the rest of the matrix, only the subblock we are trying
to delete.

Alternatively, any column operations, using an elementary block of N, (and

counterpart row operations using the same elementary block) introduce p terms,

from the remaining non-zero blocks, t (and *) into appropriate blocks in the

region directly below Lk (and to the right of -Ln. Furthermore such operations

also introduce a skew-symmetric pencil, of p terms only, into the (formerly zero)

block aligned with Lk and -L[. It is also worth pointing out that these column

operations (and counterpart row operations) leave the blocks Lie and -Lf,
themselves, unchanged.
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It can also be seen that as we progress down the block, ., using in turn each
of the elementary blocks to kill one of its subblocks , that we are continually
changing the p terms introduced in these regions. So having killed off all the
entries in the blocks • and t, by simultaneous row and column operations, it

remains to kill off these introduced p terms. Our matrix (3.49) is therefore
skew-equivalent to

0 L1-u 0 0

0 Lk 0
-L'[ ~ 0 RI ... 0 Rr-k 0

0 0 Lk+l 0 0 0
-Ri -L[+l 0 0 0 Rk+l

0 0 0 ... 0 Lr 0
-T 0 0 -L~ 0 n;-Rr ..k ...

0 0 0 0 -R~+l ... 0 -R~ N

(3.50)

where for 0 ~ i ~r - k the matrices Ri, Ri consist of cant ant multiples of p

and ~ is skew-symmetric.

The reader may recognise, that to kill off blocks Ri (and - Rn where i ¥ 0

we can just apply the method described above for case (ii) (Section 3.3.2), with
Aand J.I. replaced by p and a respectively. Furthermore, here we also discussed a
method for killing off a skew-symmetric, matrix of one parameter, aligned with

blocks L; and -LT and we can apply this method, replacing A by p, to kill off

the block ~ aligned with Lk and - L[. Notice that for both of these methods
the simultaneous row and column operations used do not further affect the rest

of the matrix as the remainder of the row (column) blocks containing L, (-Ln
consist entirely of zero blocks.

So it has been shown that given the kth block, Lie, and assuming that, apart
from the L, blocks (1 ~ i ~k - 1), all previous blocks are zero then we can also

kill off the non-zero blocks, aligned with fI, below Lie and to the right of -L[ .

Consider the pencil given in (3.46). It follows that this method can be

initially used, to delete from (3.46) all the non-zero elements in its last 2u rows

and columns, aligned with blocks Ll and - LT. Proceeding in this way from
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left to right the result follows by induction. 0

Matrices of the type given in (3.48) where N is possibly non-existent are
normal forms for a singular skew-symmetric pencil, under skew-equivalence.

Note at this final stage we could, for simplicity, replace the parameters p, 0-

by .A, IL, although obviously they are different to those used above. We conclude
this chapter, and the first half of this thesis, with a demonstration of how such
normal forms of skew-symmetric matrices are found in practice.

3.4 Deriving Normal Forms for Skew-symmetric
Pencils

As we have just demonstrated the normal form for a pair of skew-symmetric
matrices under the action of Gl(2, C) x Gl(n, C) is

0 Ll 0 0 0 0
-LT 0 0 0 0 0
0 0 0 L2 0 0
0 0 -LT 0 0 0
0 0 0 0 0 L3
0 0 0 0 -Lf 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

where, for 1 ~ i ~s,

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 L. 0
-LI 0 0
0 0 N

(3.51)

0- 0 0

P 0-

Li(p,o-) = 0 p 0 ki + 1

0-

0 0 P
lei
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and
o

o
Notes:

(i) Here the notation of the number of singular blocks is changed from T to
S, so as not to confuse this number with the Ti;'S.

(ii) The Aj IBj notation used for the constituent blocks of the non-singular

part N is that previously used in Section 3.3.3.

Given some value of n, we describe a general algorithm for listing all distinct
normal forms of a pair of n x n skew-symmetric matrices, over C, under this
action.

Consider, first, the singular part of the above normal forms. Each block

has size mi = 2ki + 1 i.e is odd. Let

•
Lmi=L.
i=1

So to determine the sizes of the singular blocks in a normal form we need a
partition of L into odd integers, mi.

The non-singular part has q distinct eigenvalues (of which we have fixed the

first three). To each eigenvalue, 1 ~ j ~q, we associate a positive integer

n(j)

u, = LTjle.
1e=1

Hence 2Rj is the size of the block Aj IBj with eigenvalue j.
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Since there are q eigenvalues, letting

it follows that the size of the non-singular part of a normal form is 2U. Therefore
writing

n= L+2U,

we consider all possible non-negative integer pairs (L, U).

The normal forms arising from each pair, (L, U), are determined by the sizes
of their constituent singular and non-singular blocks which are found by suitable
partitions of L and U respectively. As mentioned above, the sizes of singular
blocks in each normal form corresponding to a pair (L, U) are given by one of
the partitions of L into odd integers.

For each of these possibilities we also have to determine the sizes of the
non-singular blocks. To do this we doubly partition U. In each case the parts
resulting from the first partition give the positive integers denoted by Rj above,

their number being the number of distinct eigenvalues, q, of the normal form
and their size determining that of the blocks corresponding to each of these
eigenvalues. Then to determine how each distinct eigenvalue block (denoted by

AjlBj above) is constructed we partition each of the parts Rj into n(j) parts:

nU)

n, = LTile,
1e=1

where n(j) is the number of elementary subblocks of AilBi and Tile (1 ~ k ~

n(j)) their sizes.

This algorithm is best demonstrated by an example, which we use as the
starting point for calculations in Chapter 6

Example 3.4.1 Find the list of all normal forms of pairs of 4x4 skew-symmetric
matrices, over C, under the group action Gl(2,C) x Gl(4,C).

This is the case n = 4. So we write

4= L+2U,
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and starting with U = 0 we list all non-negative integer pairs (L, U):

(4,0), (2,1), (0,2).

We consider each of these in turn

(i) Starting with (4,0) we first partition L = 4 into odd integers Le.

4=3+1=1+1+1+1.

Since U = 0 these normal forms have no non-singular part and we can
represent the two types arising from (4,0) by

(3,1; -), (1,1,1,1; -). (3.52)

(ii) For the second pair, (2,1), L = 2 has only one partition into odd integers:

2=1+1.

Furthermore, doubly partitioning U = 1 just gives the trivial partition
and consequently there is a single type

(1,1; (1))

arising from the pair (2,1). Note we distinguish the parts of the first
partition, of U, by enclosing them in parentheses, each one representing a
distinct eigenvalue of the non-singular part of the corresponding normal
form.

(iii) The third pair, (0,2), has no singular part. However U = 2 has two initial
partitions:

2 and 1+ 1.

We take each partition in turn and partition its parts. So, for example,
for the initial trivial partition, 2, we have two possibilities:

(2) and (11).

Furthermore for the second partition, 1+ 1, the only partition of each part
is the trivial partition and we have the further possibility:

(I), (I).

In summary the third pair, (0, 2), gives the three types:

(-; (2)), (-; (11)), (-; (1), (1)).
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It is clearer from this example how, for a given type, each pair of paren-
theses enclose the structure of a distinct eigenvalue block.

Notice the last three normal forms are those of non-singular pairs of skew-
symmetric matrices. There are, in total, six possible types of normal forms
of pairs of 4 x 4 skew-symmetric matrices and we conclude this example by
converting these into matrix form.

(1) Normal form (3,1;-). This has two singular blocks of sizes

ml = 2kl + 1 = 3,

m2 = 2k2 + 1= 1,

respectively. It follows that kl = 1 and, using the above notation,

We have replaced the labels (J and p by x and y, respectively, in anticipa-
tion of the work in the following chapters.

Since k2 = 0 there is no block L2 and the second singular block is a single
zero, i.e we have a final row and column of zeros. So the corresponding
normal form for (3,1; -) is

[~.oo-yo x 0]y 0
o 0 .
o 0

(3.53)

(2) It follows that the normal form, (1,1,1,1; -), represents a matrix whose
four singular blocks are all single zeros. In other words we have the null
matrix:

[
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]. (3.54)

(3) Normal form (1,1; (1)). The singular part gives two rows and columns of

zeros. The non-singular part has a single eigenvalue, (1 : 0), and consists
of the block, of size 1 :
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The corresponding normal form is therefore

[

Ox 0 0]-x 0 0 0
o 0 0 0 .
o 0 0 0

(3.55)

The remaining normal forms are non-singular.

(4) Normal form (-; (2)). This has one eigenvalue, (1 : 0), and consists of a

single block of size 2, i.e is of the form :

[
~x ~ ~ ~].o -y 0 x
o 0 -x 0

(3.56)

(5) Normal form (-; (11)). This also has the single eigenvalue (1 : 0) but
consists of two blocks of size 1 :

o
o
o (3.57)

-x

(6) Finally the normal form (- : (1), (1)) has two distinct eigenvalues and
consists of the two blocks of size 1 representing each of these eigenvalues,
(1 : 0) and (0 : 1) :

00]o 0 (3.58)

3.4.1 Geometrical Interpretation

Any pair of 4 x 4 skew-symmetric matrices is therefore skew-equivalent to one of
the six normal forms derived in Example 3.4.1. We can interpret each such pair

as a linear map A: C2,0 -+ Sk(4,C). With this in mind we state the following
definition.

Definition 3.4.2 Given a linear map A : C", 0 -+ S k(n, C) determined by an

r-tuple of skew-symmetric matrices (Al, ... ,Ar) the jetrank of A is defined to
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be the dimension of its image in Sk(n, q (i.e. the usual rank of this map).
The jetrank of A = xlAI + ... + xrAr is therefore determined by the number of

independent matrices in the set {AI' ... , Ar}.

We can thus interpret the action of GI(r,C) x Gl(n,q on r-tuples of skew-

symmetric matrices by the standard action ofGl(n, C) on their images in Sk(n, C).

This is discussed further in Chapters 6 and 7.

Let P be a hypersurface of Sk(n, C) given by the vanishing of the Pfaf-

fian. Investigating how the images of these linear systems meet P is of some
geometrical interest.

Returning to pairs of skew-symmetric matrices it follows that they have
jetrank ~ 2 and we can divide the six normal forms of Example 3.4.1 according
to their jetrank.

The three normal forms in (3.54), (3.55) and (3.57) represent pairs with
jetrank ~ 1. Clearly, these could simply have been derived from the action of

GI(4,q on Sk(4,C).

The remaining three normal forms have maximal jetrank, 2, and are normal
forms for pencils of skew-symmetric matrices. Given a pencil

its Pfaffian is a quadratic

P f(A) = ax2 + bxy + cy2.

Recall from Chapter 1 that the 'eigenvalues' of a pencil A are given by the roots

of its Pfaffian P f(A). The three normal forms for pencils, A, are distinguished
by the nature of their eigenvalues, which give points of the source over which
the image of A meets P.

In particular the three possibilities are :

(i) two distinct eigenvalues; the image of the pencil A meets P over a pair

of distinct lines in the source. (Normal form (3.58).)

(ii) a repeated eigenvalue; the image of A meets P over a repeated line in the

source. (Normal form (3.56).)
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(iii) P f(A) vanishes identically on the source and (3.53) gives the normal form
for a singular pencil.

We sometimes refer to pencils of type (i) as non-degenerate pencils. (Non-

degenerate skew pencils are skew pencils with n/2 distinct eigenvalues.)

Clearly, this is a relatively simple classification and the corresponding strat-
ifications of pencils of n x n skew-symmetric matrices will be richer for higher
values of n.
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Chapter 4

Classification

4.1 Introduction

In this chapter we introduce theory required for the classification of smooth
families of skew-symmetric matrices. This classification is motivated by that
carried out, in [BrTarSy], on families of symmetric matrices. The group ac-
tion introduced there is also suitable for classifying families of skew-symmetric
matrices and since this space is smaller we expect a richer classification. The
starting point for any classification is establishing a set of normal forms for 1-
jets of these families, up to this equivalence. In the previous two chapters we
have dealt with this for the two parameter case.

We start with a few general results about smooth maps taken from [BrGibl]

and [Gibson].

Definition 4.1.1 (i) Given smooth manifolds X" C cn+r, yP C CP+B a
map f :X -+ Y is smooth if for every x EX there is an open neighbour-

hood U of x in c-+ and a smooth map F : U -+ CP+· with FIX nU = f·

(ii) Given f as above, and denoting the tangent spaces to X at x and Y at

f(x) by X., and Yf(.,) respectively, the tangent map T f., : XIIJ -+ Y/(IIJ)

is defined by

where dF., is the derivative of F at x.
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We state a couple of results concerning transversality.

Definition 4.1.2 If, for some smooth map / : X" --t yP and some smooth
sub-manifold Qq c YP, the condition

(4.1)

holds for all x E /-1(Q) we say that f is transverse to Q.

Proposition 4.1.3 Let / : xn --t yP be a smooth mapping and Qq a smooth

submanifold of Y with / transverse to Q. Then M = /-1(Q) is a smooth
submanifold of X which either has the same codimension as Q or is empty.

Proof For a proof we refer to that given for result (1.2) in Chapter II of [Gibson].
o

4.2 Classifying Families of Skew-symmetric Ma-
trices

Some notation.

In what follows Gl(n, C) denotes the group of n x n invertible matrices over

C and Sk(n, C) the space of n x n skew-symmetric matrices over C. We shall
also write Or for the ring of smooth function germs C", 0 ---t C, and Mr for
its maximal ideal (consisting of functions vanishing at the origin).

We are classifying the set, Sk, of smooth germs

A : er, 0 ---t Sk(n, q.

Such germs can be thought of as r-parameter families of skew-symmetric ma-
trices.

We wish to define the relevant group acting on the space Sk. (For the

description of a group action see Definition 1.1.4.) We allow an R change of

coordinates in the parameter space, where R is the group of diffeomorphisms
er,o ---t er, 0, the group operation being map composition. In other words
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germs A, B : er, 0 -+ Sk(n, <C) will firstly be deemed equivalent if for some

diffeomorphism ¢ :er, 0 -+ er, 0, B = A 0 ¢.

Furthermore, recall that the action of the group, Gl(n, e), on elements A E

Sk(n, <C) given by

X.A=XTAX,

X E Gl(n,<C}, gives a classification for Sk(n,<C}.

So to classify families of such matrices we employ a parametrised version
of this action. Let 11. denote the set of germs of smooth mappings er, 0 --+
GI(n, e). This set can be given a group structure using the operation of matrix
multiplication in the target. There is an obvious action of 11. on Sk by X.A =

XTAX.

Note that a germ A : er,O --+ Sk(n,<C} is an n x n matrix defined over

the integral domain (ID), Or. We can therefore use some of the definitions and
results introduced at the beginning of Chapter 2. Clearly the units of Or are the
germs which do not vanish at the origin. Moreover by Lemma 2.1.5 it follows
that 11. consists of the invertible n x n matrices over Or.

Using the descriptions in Lemma 2.1.9 of elementary row and column opera-
tions and Definition 2.1.13, regarding simultaneous row and column operations,
we can apply the result of Lemma 2.1.14 to the action of 11. on Sk and deduce
the following result.

Corollary 4.2.1 Two qerms A, B ESk are 1l-equivalent if it is possible to pass
from one to the other by a series of elementary simultaneous row and column
operations.

Proof The prooffollows from Lemma 2.1.14 and its preamble, with R = Or. 0

In the following to avoid confusion wewill refer to such operations as parametrised
simultaneous row and column operations.

We can also use earlier work in Section 2.2 to establish invariants of this
group action. Recall, from Definition 2.2.1, Ik(A) denotes the ideal of Or gen-

erated by all the k x k minors of A.
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Corollary 4.2.2 If two germs A, B E Sk are 'H.-equivalent then

for each 1s k s n.

Proof Setting R = OT! 'H.-equivalence is described in Definition 2.1.12 and is a
special case of the equivalence given by Definition 2.1.6. The result then follows
directly from Lemma 2.2.3. 0

Consider the action of the (direct) product set, 9 = R: x H, on Sk which,

for elements g = (¢,X) E 9 and A E Sk, is defined by

g.A = (X-l)T (A 0 ¢-l )X-l.

Composing the action of two elements, gl = (¢,X), g2 = (t/J,Y), of this set on

A E Sk we have

gdg2.A) = gl. (y-l)T(Aot/J-l)Y-l)

= (X-l)T( ((Y-l)T (Aot/J-l)y-l) o¢-l)X-l

= (X-l)T ( (y-l 0 ¢-l) T (A 0 t/J-l 0 ¢-l) (y-l 0 ¢-l) ) X-I

= ((y-l 0 ¢-l) X-I) T(A 0 (¢ 0 t/J)-l ) (y-l 0 ¢-l) X-I.

Since y-l 0 ¢-l = (Y 0 ¢-l) -1 it follows that

and 9 is a group action, as defined in Definition 1.1.4, provided we define the
corresponding group operation by

With this operation 9 = n x H is a group with identity, (id, In), where id

is the germ of the identity mapping, and each element (¢,X) has the inverse

(¢-l, X-I o¢). Clearly 9 is not a direct product of the groups R: and 'H.. Instead

we refer to 9 = n x 1/. as the semi-direct product of groups R: and 1/.. Using
the above action of this group on Sk we have the following equivalence.
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Definition 4.2.3 If A,B : er,O ~ Sk(n,q are smooth map germs we say

that they are f)-equivalent iJ and only if for some (4), X) E f) = n x 1-{we have

(4.2)

Note that the f)-orbit of A is

and we can ignore the inverses necessary for (4.2) to conform to the definition

of a group action. (See Definition 1.1.4.)

We can use the result of Corollary 4.2.2 to obtain an invariant of this action
of f).

Corollary 4.2.4 If germs A, B E Sk are f)-equivalent then, for some ring

isomorphism 4>* : Or -+ Or,

for each 1s k ~ n.

Proof If A, B are f)-equivalent then for some germ of a diffeomorphism, ¢J :

er,O -+ er, 0, B and A 0 ¢ are 1-{-equivalent. So, if ¢J* : Or -+ Or is the
corresponding ring isomorphism for 4>, then by Corollary 4.2.2 the result follows.
o

Since the dimension of Sk(n,q is n(n - 1)/2, we can think of an element

of Sk as a map er,O ~ eN, where N = n(n - 1)/2. With this observation,

we give the following result, taken from [BrTarSyj.

Lemma 4.2.5 The group f) = n x 1-{acts on the space of mappings er, 0 ~

eN as a subgroup oj the corresponding contact group /C.

Proof The action of the group 'R in both cases clearly coincides, and C is the
group of mappings

er, 0 ~ GI(N, q.
The action of X E Gl(n,q on A E Sk(n,C):

X.A=XTAX
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is linear and invertible. Hence there is a natural group homomorphism

a :Gl(n, C) ~ GI(N, C)

its image yielding an action on Sk(n, C) = er, which is a subgroup of GI(N, C),

Since 1£ is the set of germs er, 0 ~ Gl(n, C) it follows that a gives a group

homomorphism from 1£ to a subgroup of C. The result then follows. 0

Given such an invertible matrix X = (Xij) E 1£, where Xij : er, 0 -t e then

the matrix X E C is just the matrix representing the (parametrised) linear map

XT AX with respect to the standard basis, {Eij}, of Sk(n, C).

This is obtained by finding XT Eij X with respect to {Eij} for each. I ~ i <
j ~n. It can be shown, by considering the (lm)th element of XTEijX, that

XT Eij X = L (XilXjm - XjIXim)E'm
19<m::::;n

and hence

where (ij) = (i - l)n + j - i(i + 1)/2 (and (1m) = (I - 1)n + m - 1(1 + 1)/2).

In fact Q is one of Damon's geometric subgroups of K (for the justification

of this see Appendix B) and as a consequence of results of Damon we can use all

of the standard techniques of singularity theory (for example those concerning

determinacy) to investigate these singularities.

This result also yields a useful invariant of Q-equivalent germs.

Lemma 4.2.6 If two germs A, BE Sk are Q-equivalent they have the same K-
and Ke-codimension. (See [Gibson], Pq. 15B)

Proof If A, B are Q-equivalent, by Lemma 4.2.5, they are also K-equivalent.
Hence since Ke-codimension is an invariant of K-equivalence the result follows.
o

To facilitate calculation of the Ke-codimension of a germ we can use the
action of the full K group to reduce it to something more managable. The
following lemma provides a technique for doing this.
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Lemma 4.2.7 Two germs A, B: er,O --t eN,o represented by N-tuples aT =

(al,"" aN), bT = (bl, ... , bN), where ai, b, E Mr (i = 1, ... ,N), are K-
equivalent if, by a series of elementary row operations, we can pass from column
a to column b (up to a non-vanishing element of Or).

Proof If by a series of elementary row operations we can pass from column a

to column b then by Theorem 2.1.11, with R = Or. y = X and X some 1 x 1
matrix consisting of a unit a E Or, it follows that

b = Xa(a)

= (aX) a.----det~O

Hence a, b : er, 0 -+ eN, 0 are K-equivalent. 0

In the following we discuss some further structure preserved by Q-equivalence.

Definition 4.2.8 The discriminant of an element A E Sk is the set V(A) =
{x E er: detA(x) = O}.

This invariant is only of use when considering families of skew-symmetric
matrices of even order. By a paramerised version of Lemma 1.0.6 in Chap-
ter 1 the determinants of families of odd order skew-symmetric matrices are
identically zero and hence their discriminants are the whole of er.

The following corollary to Definition 4.2.8 is applied to families of skew-
symmetric matrices of even order.

Corollary 4.2.9 Given a smooth germ A: er, 0 --t Sk(n, C), with n = 2s, then

its discriminant is the zero set of its Pfaffian (the square root of its determinant).

Proof Note that for n = 2s, by Lemma 1.1.8 in Chapter 1,

det A = p(X)2,

where P(x) = Pf(A). Clearly, the discriminant, V(A}, of A is just the zero set
of P(x}. 0
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Proposition 4.2.10 If A, B :er, 0 ~ Sk(n, C) (with n = 2s) are Q-equivalent
then their Pfaffians are K>equivalent. Geometrically, this means there is a germ
of a diffeomorphism preserving their discriminants, i.e. taking V(A) to V(B).

Proof Since n = 2s we can write

(4.3)

If A, B are Q-equivalent then for some X E H, ¢ E R:

and

det B = (det X)2 det(A 0 ¢)

= (detX)2(detA)o¢.

From (4.3) it follows that

(det X)2(P1 (x)2) 0 ¢

= (detX)2(H 0 ¢)2,

and taking square roots

(4.4)

Since det X is a non-zero function it follows that PI (x) and P2 (x) are K.-
equivalent.

From Corollary 4.2.9

V(A) = {x E er :P1(x) = O}.

From (4.4) V(B) is the set of points for which det X(P1 0 ¢) vanishes. Further-

more as ¢ E n there is a smooth change of coordinates in the source taking
V(A) to 1)(B) where

1)(B) = {¢-l(x) : x E V(A)}.

o
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4.3 Tangent Spaces

For our classification we shall consider only the simple singularities, that is those
germs, in Sk, with neighbourhoods containing finitely many Q-orbits.

A key task is to determine the tangent space for the action of Q = R x 11..

The tangent space to the orbit Q.A, through the germ A E Sk, is the image
of the "differential", at the identity, of the natural mapping of the group onto
this orbit. As usual we have the problem that our groups and spaces are infinite
dimensional. Given the germ of a smooth curve 'Y : C, 0 -t Q, e we can consider

!!_ { (t).A)1 _ = lim 'Y{t).A - A.
dt 'Y t-O e-sn t (4.5)

One can check that this only depends on

1(0) = lim 'Y(t) - 'Y(O)
'Y t-+O t '

and we define the tangent space TQ.A to be the space spanned by such vectors,
(4.5). Since our group is a product, this tangent space is the sum of the tangent

space to the R and 11. orbits. So we consider these separately. But the tangent
space to the R-orbit of A E Sk is just the standard R-tangent space to any

smooth germ C", 0 -+ CN• The following proposition deals with the 1I.-tangent
space.

Proposition 4.3.1 Let N be the set of smooth germs C", 0 -+ M (n, C), where

M (n, C) is the space of all n x n matrices otJerC. The tangent space to the
1I.-orbit through A E Sk is gitJen by

{yT A + AY : YEN}.

Proof Consider the action on A E Sk, of the path

X(t) = In + tY E 11.,

where In is the n x n identity matrix and YEN an arbitrary tangent vector
to the group, at In. The tangent vector of the resulting path in Sk, at t = 0, is
therefore given by

. { (In + ty)T A(In + tV) - A}
lim t
t-+O
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=yTA+AY,

as required. 0

Note : this is just the parametrised version of the calculation used to find

the tangent space to elements of Sk(n, q under the action of Gl(n, C), as given

in Proposition 1.1.11.

We are ready to describe the 9-tangent space to the orbit of an element
A E Sk. Before doing so we need a little notation. In general we shall represent
an n x n skew-symmetric matrix in upper triangular notation. For example the
4 x 4 matrix

is represented by the 6-tuple (al, a2, a3, a4, a5, a6)' We replace the standard

basis for Sk(n, C), {Eij}, with the standard basis for C6 Le. {ek}, where k =
(ij) = 4(i - 1)+ j - i(i + 1)/2. For convenience we also refer to the position of

the entry ak as slot ek' We write AX(i) for the matrices

8A
8Xi'

So for the above example the corresponding matrix, Ax(i), will have upper tri-

angular entries

The set Sk can be identified with O~, which is an Or-module. So the tangent

space is an Or-submodule of O~ .

Proposition 4.3.2 (i) The R-tangent space to the orbit 0/ the element A E

Sk is the Or-module spanned by the XiAx(j), where 1~ i,j ~ r.

(ii) Let Cij(A) (respectively ~j(A)) denote the matrix whose jth column (re-

spectively row) is the ith column (respectively row) 0/ A, with zeros else-
where. Then the tangent space to the orbit of A under the subgroup 11. of
C is the Or -module spanned by the set of skew-symmetric matrices of the
form Aij = Cij(A) + ~j(A), 1~ i,j ~ n.
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So the tangent space to the 9-orbit of A is

We refer to the set

{(Ax(i) : 1~ i ~r), (Cij(A) + Rij(A) : 1~ t.i ~ n)}

as the set of generators of this tangent space.

Proof The vectors emerging from the action of the n group are obtained in the
usual way. For the 'H group, we use the result of Proposition 4.3.1 that tangent
vectors to A under this action are given by

yTA+AY, (4.6)

where YEN. Let Eij denote the matrix with a 1in the (i,j)th entry and zeros

elsewhere and the set {Eij, 1~ i,j ~ n} the standard basis of M(n,C}. We can

represent any element ofN by an Or-linear combination of these basis vectors.
So the tangent space to A is obtained by considering elements Y = aEij where

a E Or. Substituting this into (4.6) we find the corresponding tangent vector
to be

as required. 0

Again the last part of this proof is just a parametrised version of the ar-

gument used to find generators of the tangent space to the action of Gl(n, C}

on Sk(n, C}. (See the proof of Lemma 1.1.13 in Chapter 1.) As mentioned

there, for each pair (i,j), the corresponding generator of the ?i-tangent space
to A E Sk is the skew-symmetric matrix whose jth row and column is obtained
by superimposing the ith row and column of A and leaving the remaining entries

zero. For example, taking the matrix A above where n = 4 (and N = 6) the

?i- tangent vector corresponding to (i, j) = (1, 3) is the skew-symmetric matrix

whose entries are all zero except those in the third (jth) row and column which

are, respectively, the first (ith) row and column of A. That is the matrix

[

0 0o 0
o at
o 0 -as
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which is [0,0,0, -aI, 0, a3l, in upper-triangular notation. Notice here since A is
skew-symmetric superimposing the rows and columns results in cancellation on
the leading diagonal.

We also introduce a subgroup of 9 which is used in the following section.

Definition 4.3.3 The subgroup {h c 9 is defined to be the semi-direct product

{h = n1 x 11.0,where n1 is the subgroup of n consisting of diJJeomorphisms,

er, ° --t er, 0, with I-jet the identity and 11.0is the subgroup of 11.consisting
of germs er,O --t Gl(n,C) with constant part the identity matrix, In.

The following corollary gives the tangent space to the 91-orbit of a germ A E Sk.

Corollary 4.3.4 The tangent space to the 91-orbit of A E Sk is

where the generators {(Ax(i) : 1~ i ~r), (Cij(A) + Rij(A) : 1~ i,j ~ n)} are

as described in Proposition 4.3.2.

Proof Since 91 = n1 x 11.0,the required tangent space is given by the sum

T91·A = Tnl.A + T1I.o.A.

As before, we consider the two components of this sum separately. Firstly

Tnl.A is the standard tangent space to the nI-orbit of a germ A :er, 0 --t eN
Le.

Secondly, to find T1I.0.A we consider the path, 'Y E 11.0,through the identity
matrix In

'Y(t) = In + toY,

where Y : er,O --t M(n,C) and et E Mr. Following a similar argument to

that used in Propositions 4.3.1 and 4.3.2 the tangent space to the 1I.o-orbit of
A is given by

where again although the elements Cij(A) +Ri;(A) are evaluated as n x n skew-

symmetric matrices they are represented by N-tuples. The result then follows.
o
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The first key initial simplification shows that we may suppose our germs
A E Sk vanish at the origin.

Proposition 4.3.5 Given any A : er, 0 ---+ Sk(n, C) with rank 28 at the origin

then A is Q -equivalent to a germ of the form

8

where

E=( 0 1)-1 0

and B: er,O ---+ Sk(n - 28,C) has B(O) = a.

Proof This proof uses the parametrised simultaneous row and column opera-
tions described in Corollary 4.2.1.

If A(O) :f:. 0 then it has at least two entries, ±a say, which don't vanish at
the origin. By suitable simultaneous row and column interchanges we can move
these entries into the leading diagonal block. We can scale the entry, a, in the
leading block to unity by multiplying the first row and column by its inverse, L]«.
By simultaneous row and column operations, involving subtracting appropriate
Or multiples of the second column from the remaining columns followed by
subtracting appropriate Or multiples of the first row from the other rows, we
can kill off all remaining non-zero entries in the first row and second column
(and accordingly the first column and second row). The resulting matrix is of
the form:

0 1 0 ···0
-1 a 0 · .. 0
0 0

A·
a 0

and we have effectively reduced A to the germ A· :er, 0 ---+ Sk(n - 2,C).

The same process is repeated on this submatrix and continued until we

obtain a submatrix B : er, 0 ---+ Sk(n - 28, C) for which B(O) = 0, thereby
reaching the required form. 0
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As a consequence, we can use this reduction to obtain, from any germ A :
er,O -t Sk(n, C), a germ B : er, 0 -t Sk(n - 2s, C) for which B(O) = O.
So we may as well assume, to begin with, that all our germs A E Sk vanish at
o E er, which we do from now on.

4.4 Classification Theory: Complete Transver-
sals and Determinacy

In the following we seek to list orbits of finitely determined germs, A E MrO~,
under the action of the group 9 = n x 1£, choosing suitable normal forms as
representatives. Classification is done inductively at the jet-level, classifying in
turn all (k + I)-jets with a given k-jet until determined jets result (or we detect

moduli). To do this we employ the method of complete transversals.

4.4.1 Complete Transversals

Before discussing specifics we start with a few results concerning Lie group ac-
tions (see Definition 1.1.4). We first state the following lemma, usually referred
to as Mather's Lemma.

Lemma 4.4.1 (Mather's Lemma) Let G be a Lie group acting smoothly on a
finite dimensional manifold V. Let X be a connected submanifold of V. Then
X is contained in a single orbit of G if and only if

(i) for each x EX, the tangent space Tz(G.x) :::> TzX, and

(ii) dimTz(G.x) is constant for all x E X.

Proof For the proof see Lemma 3.1 of [MathIV]. 0

Lemma 4.4.2 Let G be a Lie group, H a Lie subgroup of G and ~ :Gx X -t X
a smooth group action. If G, H are connected and Tz(G.x) = Tz(H.x) for all
x E X then G.x = H.x for all x E X.
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Proof We need to show that G.x is contained in a single H orbit, so we ap-
ply Mather's Lemma. Here ify E G.x then dimTy(H.y) = dimTy(G.y) =

dim Tx(G.x) = dim Tx{H.x), while Ty(G.x) = Ty{G.y) = Ty(H.y) and we ob-
tain the result. 0

We can associate to each l E LG and x E X a tangent vector l.x E Tx{G.x)

defined as d~(e,x) (l, 0), and write LG.x for {l.x : l E LG}. This clearly coincides

with Tx{G.x). The following result is Proposition 1.3 of [BrKduPJ.

Proposition 4.4.3 Let G be a Lie group acting smoothly on an affine space A,
and let W be a vector subspace of VA (where VA is identified with the tangent
space to A at x E A) with

LG.(x +w) = LG.x (4.7)

for all x E A and w E W. Then

(i) for any x E A we have

x + {LG.x nW} c G.x n {x + W}.

(ii) If Xo E A and T is a vector subspace of W satisfying

Wc T+LG.xo

then for any wE W there exists g E G, t ET such that g.(xo+w) = xo+t.

Proof See [BrKduPJ. Part (i) follows from the hypothesis in (4.7) and applying

Mather's Lemma. Part (ii) is then a consequence of part (i). 0

Remark 4.4.4 Proposition 4.4.3 part (ii) is the significant result. It says that
the transversal T to the G-orbit of Xo meets each G-orbit passing through the
affine subspace Xo + W of A. Consequently T is referred to as a complete
transversal.

The crucial condition required to obtain this result is the hypothesis given
in (4.7) which says that for any x E A the tangent space to the G-orbits of all

points in the affine subspace x +W is the same and, what is more, is equal to

148



the tangent space to the G.x orbit at x. In practice this condition is usually
replaced by the much sharper condition

l.(x + w) = l.x, (4.8)

for all x E A, w E Wand l E LG.

Our aim is to use (part (ii) of) Proposition 4.4.3 to classify germs A :er, 0 ~

eN,o, under the action of 9 = R x 11. (or more accurately, the subgroup 9d
and to do this we must first construct some finite dimensional approximations

to the space of germs and the group 9 (Le. Lie groups, smooth manifolds).

Finite dimensional approximations to the space of germs are the so called
jet-spaces, defined as follows.

Definition 4.4.5 A (k-)jet-space, Jk(r, N), is the space of k-jets of germs

er, 0 ~ eN, O. Elements of such a jet-space are N -tuples whose components

are polynomials of degree :$ k.

Remark 4.4.6 Each jet-space is a finite dimensional vector space and hence a

smooth manifold. We choose a basis for this space, Jk(r, N), to be given by the

set of N -tuples or monomial vectors

1s III s k, 1s i s N,

where III = i1 + ... + ir and e, are the standard basis vectors in eN.

We next consider a finite dimensional approximation to g, which acts on these
jetspaces.

Definition 4.4.7 The finite dimensional approximations to the group 9 = 'R x

11. are given by the semi-direct product of Lie groups, Jkg = Jk'R x Jkli,

described as follows.

(i) The Lie group, Jk'R, is the set of k-jets of invertible mappings er, 0 ~

er, 0, with group structure
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(ii) The Lie group, Jk1£, is the set of k-jets of mappings er, 0 ~ GI(N, C)

with group structure

Note here, if'Rk C 'R is the normal subgroup of'R consisting of germs whose

k-jet is that of the identity, it follows that any element <PkE 'Rk preserves the

k-jet of an element <PE 'R. We can therefore also represent the Lie group Jk'R

by the quotient group 'R/'Rk.

A similar argument, concerning the normal subgroup 1£k C 1£, consisting of

germs whose k-jet is the identity matrix IN, shows that Jk1£ = 1£/1£k.

The following defines the corresponding finite dimensional approximation to

the group gl.

Definition 4.4.8 The Lie group re. is the semi-direct product of Lie groups

Jk'R1 x Jk1£o, where Jk'R1 = 'RI/'Rk consists of all k-jets of diJJeomorphisms,

er,O -+ er, 0, with I-jet the identity and J1.1lo = 11.0/11.1.consists of all k-jets

of germs, er,O -+ GI(N,C) with constant part the identity matrix IN.

Having defined the Lie groups, J1.g, Jkgl and the smooth manifold, Jk(r, N),

on which they act we define the group action as follows.

Definition 4.4.9 The action of (<p,X) E Jk'R x J1.1l (J1.'R1 x Jk1l.0) on an

element A E J1.(r, N) is given by

(<p,X).A = jk [X (l(A 0 ¢))] .

Note (¢,X).A = j1. (X(A 0 ¢)) also.

Lemma 4.4.10 The J1.g_ (J1.gl-) orbits of J1.(r, N) are all smooth submani-

folds of Jk(r, N) and constructible.

Proof To show they are constructible we note that Jkg (J1.Qd is an algebraic

group, that is an affine constructible set (indeed the complement in the affine
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space of an algebraic set) with composition and inverse mapping regular rational.

Given A E Jk(r, N) the map Jkg -t Jk(r, N),

9 E g,

is dearly polynomial. So by Chevalley's Theorem, see [Mumfrd] Pg. 37, the
image is a constructible set. On the other hand the map above has constant

rank, so by the Rank Theorem (see [BrocLndJ, Pg. 2) the image is locally a

smooth submanifold of Jk(r, N). Indeed given any two points on an orbit there

is a diffeomorphism Jk(r, N) -t Jk(r, N) preserving the orbit and mapping one
point to the other. So every point on an orbit is non-singular. But a non-singular
constructible set is a manifold. 0

The Lie algebra of r«. L(Jkg), generates an Or-module of vector fields on

Jk(r,N) given by

where aik represents the ikth entry of A and Qi E Mr. The natural effect of

Qi8/8xi E L(Jkg) on A E Jk(r, N) is to give (k-jets of) Mr-multiples of the
derivative of the matrix, A, with respect to the source variable Xi' The effect

of elements (aik8/8ajk + aki8/8akj) E L(Jkg) on A E Jk(r,N) is to give (k-

jets of Or-multiples of) the matrix whose jth row and column are obtained by
superimposing the ith row and column of A.

Similarly, the Lie algebra of Jkg1, L(JkgJ}, generates an Or-module of

vector fields on Jk(r, N),

j' [0. {a,a~,,1::;.::; r,EP'; (a" a!.+ a"n:.J ,1::; ',j::; n}],
(4.10)

where Qi E M~ and .8ij E Mr. The actions of Qi8/8xi, (aik8/8ajlc + aklJ/8akj) E

L(Jkg) on A E Jk(r,N) follow from those described for L(JkQ).

Remark 4.4.11 It follows from (4.9) and (4.10) that the tangent space to the

JkQ (JkQJ}-orbit of ajet A E Jk(r, N), T Jk9.A (T JkQl.A), is spanned by the k-

jets of the elements ofTg.A (TQl.A) given in Proposition 4.3.2 (Corollary 4.3.4).
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Each of these Lie groups has a different use in the method of classifica-

tion. The Lie group JkQ is used for simplifications discussed later on. Whereas

since »c. has a Lie algebra satisfying Condition (4.8) it is used for the basic
classification result. Before stating this result we need one further definition

Definition 4.4.12 The subspace M~O~ / M~+10~ of Jk(r, N), consisting of

all N -tuples whose entries are homogeneous polynomials of degree k, is de-

noted by Hk(r, N).

Theorem 4.4.13 Consider the action of the Lie subgroup Jk+lQl on a k-jet

A E Jk+l(r,N). Given a vector subspace, T c Hk+1(r,N), satisfying the

inclusion

(4.11)

where T Jk+1 Ql.A is the tangent space to the Jk+1 Ql -orbit of A at A, then any

(k + I)-jet of the form

A+h, hE Hk+1 (r, N),

is Jk+lQl-equivalent to a (k + I)-jet of the form A + t, for some t E T.

Proof This result is a corollary to Proposition 4.4.3 and is proved in more gener-

ality in [BrKduPj. For our situation, taking A = Jk+l(r,N), W = Hk+l(r,N)

and G = Jk+1Ql, it follows, from (4.10), that for all A E Jk+1(r,N), h E

Hk+l (r, N) and I E L(Jk+lQd

1.(A+ h) = I.A,

therefore Condition (4.8) holds and applying Proposition 4.4.3 gives the result.

The key here being that the action of each 1 E L(Jk+lQd on elements h E

Hk+l (r, N) always results in jets whose polynomial entries all have degree k +2

or higher and therefore drop out in Jk+l(r,N).

For example consider the action on h E Hk+1(r, N) of the n.-components,

oj8/8xi, of the Lie algebraL(Jk+1Qd suggested by (4.10). When differentiating

a homogeneous polynomial hj of degree k+ 1 then multiplying by a function OJ E

M~ guarantees the resulting polynomial has degree k + 2 or higher. However

152



for those n-components of L(Jk+lQ), suggested by (4.9), this is not the case
when multiplying by functions O:i E Mr which have non-zero linear part.

Similarly, the effect of the 1l-components of L(Jk+1Qd, L(Jk+1Q) on ele-

ments h E Hk+l (r, N) is to multiply certain homogeneous polynomials of degree
k + 1 by function germs O:i E Or. To ensure this results in polynomials of degree

k+2 or higher we require O:i(O) = 0, which is true for all I E L(Jk+1Q1) but not

for alll E L(Jk+19).

So this result only works provided we use the group 91 (and the correspond-

ing Lie group Jk+1 9d rather than the full group 9. 0

We refer to this result as The Complete Transversal Theorem and to the
affine space, A + T, (or even a basis for T) as a complete transversal (or a

complete (k + I)-transversal). This corresponds to the terminology introduced
in Remark 4.4.4. We sometimes abbreviate complete transversal to CT.

Given a k-jet A, it is clear that any (k + I)-jet with this k-jet is Jk+19-

equivalent to some (k + I)-jet in the affine space

However, using Theorem 4.4.13 this space of (k + I)-jets can be reduced to a

family of representatives, {A + t : t ET}, up to Jk+191-equivalence. Having
done this we refine this family, where possible, by simplifications using elements
of the full group Q, notably scale changes, into a finite list of (k + I)-jets. This

will be discussed in more detail in Section 4.5. To each of these (k + I)-jets we

then apply Theorem 4.4.13 over the (k + 2)-jetspace and so on. We refer to this
method of classification as The Complete Transversal Method. As mentioned
at the beginning of this section the aim of this method is to eventually obtain
a list of determined jets, which represent 9-orbits of finitely determined germs
of Sk, Consequently we need to consider the determinacy of a germ/jet.

4.4.2 Determinacy

Throughout the following sections 9 = 'R x 1l and 91 = 'RI X 11.0 are the
subgroups of 1C described above.
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We first define the notion of determinacy (of a germ).

Definition 4.4.14 A germ A : er, 0 -+ eN, 0 is said to be k-9-determined

when it is 9-equivalent to any other germ B : er, 0 -+ eN, 0 with the same
k-jet. It is finitely 9-determined if it is k-9-determined for some k.

The same definitions apply replacing 9 by 91.

Consider the following corollary to Theorem 4.4.13.

Corollary 4.4.15 Let A : er, 0 -+ eN, 0 be a smooth germ and T a subspace
of Hk+l (r, N) with the property

Then any germ B : er, 0 -+ er, 0 with the same k-jet as A is 91-equivalent
to a germ of the form

A + t+~,

with t E T and ~ E M~+20t'.

Proof This follows immediately from Theorem 4.4.13. 0

We also have the following Theorem of Damon.

Theorem 4.4.16 A smooth germ A : er, 0 -+ eN, 0 is finitely 91-determined

(respectively finitely 9-determined) if and only if M~+10t' c T91.A (respec-
tively Tg.A) for some k.

Proof See [Damon]. 0

Since the tangent spaces to 91-orbits of germs A E Sk are Or-submodules

of Ot', we can make use of the following lemma, due to Nakayama.

Lemma 4.4.17 (Nakayama's Lemma) Let R be a commutative ring with 1,

and M an ideal in R such that every element of 1+M (every element of the
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form 1+ m, rn EM) is invertible in R. If A is a finitely generated R-module,
and Band Care R-modules with A, B c C then

A c B + M . A implies that A cB.

Proof For a proof we refer to 11.16 and 11.17 of [BrGibl]. 0

Bearing in mind the notation employed for germs in Sk, the notation used,

universally, for the R-modules of this lemma (and in the referenced results) is
unfortunate. However to be consistent with the notation used for these results
and since the abstract R-modules (A, B, C) will shortly be replaced with Or-
modules, specific to our situation, we keep this notation.

These results can be used to deduce the following determinacy theorem.

Theorem 4.4.18 A smooth germ A :er,0 -+ eN, 0 is k-QI -determined if and
only if

(4.12)

Proof If A is k-QI -determined then

and taking tangent spaces

It follows from this that

Mk+! ON C re A + Mk+20Nr r ~l· r r ,

and (4.12) is a direct consequence of Nakayama's Lemma. In particular, choos-
ing R to be the ring of function germs Or, and M its maximal ideal, Mr, it
is clear that every element of 1 +Mr is invertible. Let the module C be the

Or-module O~ and module A be the finitely generated Or-module M~+!O~.
Then choosing module B to be the tangent space to the {iI-orbit of germ A, i.e.
the Or-module

by applying Nakayama's Lemma (Lemma 4.4.17) we deduce
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Conversely since TQl.A is an Or-module the inclusion (4.12) implies that

for any s ~ 1. We know from Damon's Theorem that A is m-Ql-determined for
some m. However we also know, using Corollary 4.4.15, that for any s ~ 1 the
complete transversal for the (k + s)-jet A is empty. This proves the result. 0

The following Corollary to Theorem 4.4.18 uses Nakayama's Lemma to give
a simpler criterion for the k-Ql-determinacy of a germ.

Corollary 4.4.19 A smooth germ A :er, 0 -t eN, 0 is k-Ql -determined if and

only if

(4.13)

if and only if (when considered as a k-jet) it has an empty (k + I)-transversal.

Proof The first part follows by Nakayama's Lemma (see the first part of the

proof of Theorem 4.4.18).

On the otherhand if A has an empty (k + I)-transversal then, by Theo-
rem 4.4.13,

and again the inclusion

also holds. This argument is reversible. 0

We have discussed how to find the degree of Ql-determinacy of a germ.
However, we are really interested in the degree of Q-determinacy of such a
germ.

Consider a k-Q-determined germ A. By Definition 4.4.14,

from which we also have the inclusion

A + Mk+10N c Q.A +Mk+20Nr r r r .
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It follows from this that

which implies
(4.14)

By applying Nakayama's Lemma to (4.14) then

which by Theorem 4.4.18 means that A is (k + 1}-Ql-determined.

Remark 4.4.20 We have just shown that if A is k-Q-determined this implies
that A is (k + 1}-Ql-determined. So, we can use the group Ql to find a good
estimate for the degree of Q-determinacy of a germ - this estimate can only
ever improve by 1, Le. it is only ever "out" by at most 1.

We conclude this section with a brief outline of the method of classification
we are adopting including some motivation for Section 4.5.

Method of Classification

The classification is done inductively at the k-jet level and starts with a con-
sideration of the case k = 1. (For our situation this amounts to the classification
of linear combinations of skew-symmetric matrices, under the obvious action of

Gl(r,C) x Gl(n,C), covered for the case r = 2 in Chapters 2 and 3.}

The inductive step is then as follows. Given a k-jet A we find, in (k + 1}-jet

space, a complete transversal A+T. Then we need to consider all the constituent
(k+ I}-jets, A+t, t E T in this family. By various simplifications where possible,
Le. by scaling or using Mather's Lemma, which are discussed in Section 4.5,
we reduce this family to a finite list of (k + I}-jets. Next we consider complete

transversals of each (k + I}-jet in this list and so on. The process stops for a

jet when it has an empty complete transversal (Le. it is k-Q-determined, so all

higher jets with this k-jet are Q-equivalent to it) or moduli are detected; again
more about this in Section 4.5.
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4.4.3 Results useful for the Unfolding of Germs

In this section we define and prove a few results which are useful when consid-
ering the unfoldings of finitely Q-determined germs. However, since our main
interest in the present work is to list these finitely determined germs, we are not
particularly concerned with their unfoldings and include the following results
both for completeness and possible further study, at a later date. Consequently,
any unfolding theory covered here is merely of a superficial nature.

We start with a couple of technical results to be used later on.

Lemma 4.4.21 Let O~ be an Or-module. If L, M are finitely generated Or-

sub modules of O~ where L c M and

dime (O~/M) = dime (O~/L) < 00, (4.15)

then M = L.

Proof Let {gl,' .. , g8}, for some integer s, be a basis for O~/ L. (Such a basis

exists, since from (4.15) dime (ONL) is finite.) So any element of ONL can be
written as a (-:-linear combination of the gi.

Then, {gb ... ,g8} span O~/M. For, given any f E O~,we can write

8

f = LI-'i9i +h,
i=1

(4.16)

for some II ELand I-'i E C: i = 1, ... ,s. But since L eM, 11 is also in M and
we can deduce from (4.16) that any element of ONM can be written as EiI-'igi,
I-'i E C. Using (4.15) it follows that {gl,' .. ,g8} is also a basis for O~/M.

Let m E M be any element of M. Since M C O~we can write

8

m = 2:Aigi +1,
i=1

(4.17)

for some 1 ELand Ai E C : i = 1, ... , s. So

,
L Ai9' = m-I E M,'=1

158



(uses L C M). This implies that in O~/M

8L: )..igi = O.
i=l

(4.18)

So, since we have already shown {9I,' .. ,9s} to be a basis for O~/M, the only

solution to (4.18) is )..1 = ... = )..8 = 0 and from (4.17) we deduce that MeL

as required. 0

Lemma 4.4.22 Let Vn+l C Vn C ... C V2 C VI be a series of inclusions of

(complex) vector spaces (or finitely generated Or-submodules of on. Suppose

e, = {e{, ... ,e~.} C Yj (c Vd,
J

is a basis for Yj/Yj+l, j = 1, ... ,no

Then E = El U ... U En-1 U En is a basis for VdVn+l' In particular,

n

dim (VdVn+d = L: dim (Yj/Yj+d·
j=I

Proof The proof is by induction on n, where the base case, n = 1, is trivial.

Assume the result holds for n, i.e. if

is a basis for Vj/Yj+l, j = 1, ... ,n -1, then

El U·.. UEn-I

is a basis for Vt/Vn. The inductive step is in two parts.

1. We first need to show that E spans Vt/Vn+l' Choosing VI E VI, by the
inductive hypothesis, we can write

VI = V' + Vn, V' E Sp{EI U··· UEn-d, Vn E Vn. (4.19)

But, since En = {er,· .. ,e~n} is a basis for Vn/Vn+1,

Vn = o" + Vn+1, v" E Sp{En}, Vn+I E Vn+I. (4.20)
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So, given any VI E VI, from (4.19) and (4.20), we have

that is E spans VI/Vn+l.

2. We also have to show that E = El U··· U En-l U En is an independent

set in VI/Vn+1' If

(4.21)

(which vanishes in VI/Vn+d then, it also follows that,

and, since En C Vn,

By the inductive hypothesis

Aij = 0, for 1 S j S n - 1, (4.22)

and it follows, from (4.21), that E~'iAinef E Vn+1 and vanishes in Vn/Vn+l.

However, En = {er,... ,e~,J is a basis for Vn/Vn+l so, in addition to (4.22),

Ain = 0, for 1 SiS mn. Hence from (4.21) we have established that E =

El U ... UEn is an independent set in Vl/Vn+l.

The result follows by induction. 0

We state the following useful lemma.

Lemma 4.4.23 Given a finitely generated Or-submodule, M C O~ then

dime (O~/M) < 00

iJ and only iJM~ .O~ C M Jor some integer N.
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Proof If, for some N, M;:' .O~C M then

dime (O~/M) ~ dime (O~/M~ .On < 00.

The converse implication is not so easy. Suppose for some N,

dime (O~/M) s N. (4.23)

Consider the series of inclusions:

M c M + MN . OP C ... c M + Mr ·OP C M + OPr r r r'

It follows directly from these inclusions and (4.23) that

N ~ dim (O~/M) ~ dim (O~/(M + M~ . O~)) ~ ... ~ dim (O~/(M + O~)) = o.
N+2 terms

This sequence of inequalities consists of (N + 2) integers with at most (N + 1)
different values - between N and O. So at least one of the inequalities must be
an equality. There are two possibilities. Either, for some 8 ~ 0

dim (O~/(M + M; . O~)) = dim (O~/(M +M;+l .O~)) (4.24)

or
dim (O~/M) = dim (O~/(M + M~ . O~)). (4.25)

Using Lemma 4.4.21 we deduce, from (4.24), that

M +M;· O~= M +M;+l. O~,

which implies

and by Nakayama's Lemma (Lemma 4.4.17)

M;·O~CM.

The alternative to this is (4.25), from which, again using Lemma 4.4.21, we

deduce that
M=M+MN·Opr r'

and hence M;:' .O~eM. 0
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Corollary 4.4.24 Given an ideal I C Or then

dime (Or/I) < 00

if and only if, for some N, M~ cI.

Proof This is just the special case of Lemma 4.4.23 where p = 1. 0

We give a few definitions adapted from those given in Section 1.3.4 of [Kirk].

Definition 4.4.25 Consider the germ of a mapping Ao : C", ° -t CN, ° (Ao :

cr,O -t Sk(n, C), where Ao(O) = 0). An s-parameter unfolding of Ao is a

germ of a mapping

that is
F: (er x (.B,O) -t (Sk(n,C) x CB,O),

(z, u) t-+ (A(x, u), u),

such that Ao(x) = A(x, 0). The notation Au(x) = A(x, u) is often used; Au can

be thought of as a deformation of Aa, parametrised smoothly by u E CB.

Definition 4.4.26 Consider two unfoldings F, G : (C" X CB, 0) -t (CN X CB, 0)

of Aa, written F(x,u) = (A(x,u),u), G(x,u) = (B(x,u),u) respectively. Then

F, G are isomorphic if there exist

X: er x CB -t Gl(N,C), (X: Cr xC' -t Gl(n,C)

with, for small '11, cPu, x t-+ cP(x,u) (where cPo : C", ° -t C", ° is a germ of

the identity diffeomorphism) and t/J germs of diffeomorphisms and X(x, 0) the

identity matrix IN, such that

B(x,u) = X(x,u)A(cP(x,u),t/J(u»,

that is

B(x, u) = XT(x, u)A (cP(x, u), t/J(u» X(x, u).

In other words Bu is Q-equivalent to Au via an action parametrised smoothly by

u E C' (lor small u).
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For u =I 0, the germs Au, Bu cannot be considered as germs at the origin with
target the null matrix and the germ <Pu cannot be considered as a germ of a
diffeomorphism which fixes the origin.

We continue with a couple of further definitions.

Definition 4.4.27 Given an unfolding F : (C" X CB, 0) -t (cN X CB, 0) and a

smooth map h :C", 0 -t CB, 0 we define an unfolding

by
(x,v) t-t (F(x,h(v)),V)j

h*F is said to be induced from F by h.

Definition 4.4.28 An unfolding F of Aa is versal if any unfolding of Aa is
isomorphic to one induced from F.

At this stage it is convenient to introduce a 'tangent space' similar to those
already encountered (see for example the TQA tangent space defined in Propo-

sition 4.3.2).

Definition 4.4.29 Consider the mapping A :C",0 -t Sk(n, C), which can also

be thought of as an element A E Ot'. The 'extended tangent space' or Qe-tangent
space of A, denoted TQe.A, is defined to be

The Qe-codimension of A is the codimension of TQe.A in Ot", that is

Qe-codimA = dime (Ot" /TQe.A) .

If the Qe-codimension of A is finite we say A is of finite codimension, otherwise
A is of infinite codimension.

We state a fundamental result from unfolding theory due to Damon. (See

[Damon], [Mart], [Wall].)
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Theorem 4.4.30 An unfolding F : (C" x Cs, 0) ---t (CN x Cs, 0) of Ao E MrO[:'

is Q-versal if and only if

where the initial speeds Pi E 0[:' of F are defined by

. 8A
Fi = -8 (x,O),

Ui
for i = 1, ... , s.

From this theorem we have the following corollary.

Corollary 4.4.31 If AI, ... , As E 0[:' form a C-spanning set for the comple-

mentary space to TQe .Ao in 0[:' then

6

F(x, u) = (Ao(x) +Lu;Ai(x), U),
;=1

is a versal unfolding of Ao, where u = (Ul"'" us).

So, to calculate a versal unfolding of Ao we need to find a set of such Ai which
is a problem at the germ level. However if Ao is k-Ql -determined then by

Theorem 4.4.18 we have M~+lO[:' c TQl.Ao and since TQl.Ao C TQe.Ao it

suffices to calculate the complementary space to TQe.Ao in Jk(r, N).

We provide some results which will prove useful for such calculations, starting
with the following result obtained using Lemma 4.4.23 above.

Corollary 4.4.32 Consider a germ A : Cr,O -+ Sk(n,C), where A(O) = O.
Then A is finitely Ql -determined if and only if it has finite Qe-codimension.

Proof This follows immediately from Theorem 4.4.16 and Lemma 4.4.23. 0

Having found a finitely determined germ we next look to calculate its Qe-

codimension. For this purpose we find the following notation, taken from
[Gibson) Pg 156, useful.
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Definition 4.4.33 We define

for s ~ o.

Corollary 4.4.34 Given a mapping A : er, 0 -t Sk(n, C), which is finitely

91 -determined, then for some k ~ 1 its ge-codimension is given by

k

ge -codimA = L codsA
8=0

Moreover, if Es = {ef: 1::; i ::;ms} is a basis for Tge.A +M;.O~ jTge.A +
M;+1.0~ then

k

Ue, = {ef: 1s i s rn,, 0 s s s k},
s=o

is a basis for Ot" jTge.A.

Proof Assume A is k-91-determined for some k ~ 1. Then M~HO~ C Tge.A

and we have the following series of inclusions :

Both results in the statement then follow by applying Lemma 4.4.22. 0

Remark 4.4.35 So, for a k-9-determined germ A we can calculate its ge-
codimension (and a basis for the complement of Tge.A in Ot") by calculating

the complement to Tge.A in Jk(r, N).

We outline the method employed for these calculations given in [Gibson]

(Pgs. 156-159). This concerns how to find
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for each s ~ O. The module M:of is generated by the set of basis vectors (of

Jk(r, N)) :

1s i s N}.

We then check which of these basis vectors lie in Tge.A+M:+10f. In practice

this involves determining how many of these basis vectors can be obtained from

Or-linear combinations of the generators of Tge.A modulo M:+lof. Then,

from the basis vectors not present in Tge.A + M:+lof, we select (a basis

for) a supplement for it in Tge.A + M:of. The number of basis vectors in

this supplement is the number codsA. Applying Corollary 4.4.34, we use these

calculations to obtain a basis for the complement of TQe.A in Of and hence

the Qe-codimension of A.

An example of a calculation of this type is provided in the proof of Lemma 6.1.4

in Chapter 6.

A similar Q-invariant (to the ge-codimension) is the Q-codimension of a germ

(vanishing at the origin).

Definition 4.4.36 Consider the germ of a mapping A : er, 0 ~ eN,O. The

Q-codimension of A is the codimension ofTQ.A in MrOf, that is

Q-codimA = dime (MrO~ ITQ.A) .

If the Q-codimension of A is finite we say A is of finite Q-codimension, otherwise
A is of infinite 9-codimension.

Corollary 4.4.37 Given a mapping A : Cr,O ~ Sk(n,C) (where A(O) = 0),

which is finitely Q1-determined, then for some k ~ 1 its 9-codimension is given
by

f!_ d' A _ ~d' (TQ.A +M~.O~ )~ co 1m - LJ 1m .+1 N .
•=1 TQ.A +Mr .Or

Moreover, if E. = [e] : 1 $ i $ m.} is a basis for T9.A +M:.O~ IT(J.A +

M~+l.Of then

le

U E. = {er: 1s i sm., 1s s :S k},
.=1
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is a basis for MrO{:' ITQ.A.

Proof The result follows by a similar argument to that given for Corollary 4.4.34.
o

These results lend themselves naturally to the following finite dimensional
interpretation.

Definition 4.4.38 Consider a jet A E Jk(r, N). Let T JkQe.A and T JkQ.A be

the subspaces of Jk(r, N) spanned by the k-jets of the elements of TQ e- A and

TQ.A, respectively. Then we define the JkQ._ and JkQ-codimensions of A to be

given by

JkQ _ d· A = ~ di (T JkQe.A +M~.O{:' )
e co 1m L..J im k s+l N

s=o T J Qe-A +Mr .Or

and

k . ~. (TJkQ.A+M;.O{:')
J Q-codtmA = L..J dim kQ 8+1 fYlN '

8=1 T J .A + Mr .Vr

respectively.

Remark 4.4.39 It follows that the Q.-(9- )codimension of a k-Q-determined

jet, A, is equal to its JkQe-(JkQ-)codimension. For specific (usually low) values

of k finding the JkQe-(JkQ- )codimensions of such k-determined jets is easily

achieved using the Transversal package. Furthermore the calculation process

also provides a basis for the complement of JkQe.A (JkQ.A) in Jk(r, N) the
former yielding a versal unfolding for A. This is discussed further in Chapter 5.

4.5 Mather's Lemma and Moduli detection

Given some (k -I)-jet A, and having established a complete k-transversal A+T

in Jk (r, N), we discuss methods for reducing, where possible, the family of k-

jets, which lie in this affine space, to a finite number of k-jets.

This is done at the k-jet level by considering the action of the Lie group,

JkQ, on the jet-space Jk(r, N). The details of the jet-group JkQ and its action

on Jk (r, N) are provided in Section 4.4.2.
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We adopt two basic techniques for determining the orbit structure of a com-

plete transversal. The first involves using the action of explicit members of JleQ
to reduce a set of k-jets to a single representative. The second technique uses
Mather's Lemma to identify submanifolds of the complete transversal which are

contained in single JleQ-orbits of the jet-space, in each case selecting a suit-
able representative for the k-jets in this space. This 'refining' of the complete

transversal is often effective due to the availability of elements of JleQ which are

not present in the subgroup, JIeQ1, needed for the application of the Complete
Transversal Method.

We start by considering the second of these techniques and to do so we restate
Mather's Lemma (Lemma 4.4.1) in a form specific to the present situation.

Lemma 4.5.1 Consider the above action of the Lie group JleQ on JIe(r,N).

Let X C JIe(r, N) be a connected manifold. Then X is contained in a single

orbit of JkQ if and only if

(i) for each jet x E X, the tangent space Tz(JleQ.x) :::> TzX, and

(ii) dimTz(JleQ.x) is constant for all x E X.

In Section 4.3 we restricted our classification to Q-simple germs - roughly
speaking germs A for which there is a neighbourhood of A in Sk which meets
only finitely many Q-orbits. We formalise this notion, in the context of the

jet-groups JkQ, with the following definition due to Arnold.

Definition 4.5.2 Let Q be the group action on Sk defined above. A Q-finitely
determined map A is Q-simple if

(a) for all k ~ 1 the jet jle A E JIe(r, N) has a neighbourhood which meets only

finitely many JIcQ-orbits, say Pie;

(b) Pie remains bounded above as k -+ 00.

In fact since A is Q-finitely determined (say K-Q-determined) we need only show

that JK A E JK (r, N) has a neighbourhood meeting only finitely many JK Q-

orbits. (The reason is that any orbit near a jet jle B in JIe(r, N) would meet
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a transversal to the JkQ-orbit of jk B. For k ~ K, consider jK A E Jk(r, N).

Since A is K-Q-determined TQ.(jK A) :J M:,<+lO~ so the transversal can be

chosen to be in JK (r, N).)

From this we have the following criterion for simplicity, taken from [BrSim].

Lemma 4.5.3 Let A E Sk be Q-simple. Then for all k and all smooth con-

structible subsets Z C Jk (r, N) through jk A there is a neighbourhood U of jk A
and a Zariski open subset V C Z such that for y E V n U

Proof If A is Q-simple then, by Definition 4.5.2, the jet jk A has a neighbour-

hood, U, meeting only finitely many JkQ-orbits of Jk(r,N) all of which are

smooth and constructible (see Lemma 4.4.10). Thus these orbits give a finite
constructible partition of Z n U. Let XI, ... ,X, be the orbits X for which

dim(XnZ) < dimZ. Now set X = cl«XIU .. ·UXS)nZ). This is Zariski

closed by definition and dim X < dim Z. We set V = Z\X. This is Zariski open

and a finite union of orbits Y with dim(Y n Z) = dim Z, so near any y E Y nz,
Y :J Z. The result follows. 0

We can use the result of this lemma to identify k-jets of germs which are not
simple.

Corollary 4.5.4 Consider any smooth constructible set Z C Jk(r, N) with the
property that

is in some Zariski closed proper subset of Z. Then no germ A with jk A E Z is

simple. Indeed any neighbourhood of jk A contains uncountably many orbits.

Proof This is a contradiction of the criterion for simplicity given in Lemma 4.5.3.

Indeed on a Zariski open U with jk A in the closure of U we have T,,(Jk9.y) 1>
T"Z so dim(Jkg.y n Z) < dim Z, and we must have uncountably many orbits.
o

Typically, we attempt to simplify a complete k-transversal, of some (k-l)-jet
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Ao, consisting of the t-parameter family of k-jets given by

Clearly such a family is a smooth constructible subset of Jk(r, N) passing
through each of its constituent k-jets.

If for almost all k-jets, Aa, of this set we find that the inclusion

does not hold (by almost all we mean, with the exception of the union of a finite

number of proper sub-varieties of Za) - Le. Za is a set of the type described

in Corollary 4.5.4 - then the criterion for simplicity (in Lemma 4.5.3) is not
met and it follows that no germ with a k-jet in Za is simple. It follows that the

family Za consists of uncountably many distinct JkQ-types and we have moduli.

Definition 4.5.5 Let Z C Jk (r, N) be a manifold of jets, with JkQ a Lie group

acting on Z. Then elements of Z have JkQ-moduli if every neighbourhood of

every y E Z meets uncountably many JkQ-orbits.

In particular Corollary 4.5...t shows that any family Z of the type described

there has moduli.

For our classification detecting the presence of moduli is done computation-
ally using the Maple package Transversal and is discussed in the following
chapter. Once a complete transversal (or any other family of k-jets) is found to
have moduli we can reason, using the above results, that no germ with a k-jet
in this family can be simple. Since we are only concerned with the classification
of Q-simple germs we need not consider these k-jets any further.

If moduli are not present in a family of k-jets we use Mather's Lemma to

simplify this family into a union of a finite number of JkQ-orbits, choosing
suitable representatives for each. This involves checking both conditions of

Lemma 4.5.1 for each of a (finite) number of constructible partitions of Za.
Again this is done using the package Transversal and is discussed in some
detail in the following chapter which also provides some illustrative examples

of the technique used. Note that checking condition (ii) of Mather's Lemma is
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equivalent to verifying that the JkQ-codimension of all k-jets in a submanifold
is the same.

Having found a family to be a union of a finite number of JkQ-orbits, we

then use the JkQ-codimension (of all k-jets in an orbit) to distinguish these
orbits. By taking a representative from each distinct orbit we obtain a finite
list of k-jets.

In the event that a family of k-jets, Za, is contained in a single JkQ-orbit
- i.e. Mather's Lemma is satisfied for every k-jet in this family - we say the

family is JkQ-trivial. In particular if a complete k-transversal of the (k - 1)-

jet Aa is found to be a JkQ-trivial family we can choose the k-jet Aa as a

representative for the JkQ-orbit containing it.

As will be seen in some of the following calculations, where it is necessary to

show a family of k-jets is JkQ-trivial for general values of k (e.g. see the proof of

Lemma 6.1.23), checking that both conditions of Mather's Lemma are satisfied

over the whole family is no easy task. However, for specific (typically low) values
of k, this can be achieved by a fairly simple calculation using Transversal,

described in the following chapter.

We conclude this section with a brief discussion of the second technique
available to us for simplifying families of k-jets, namely 'scale' changes by hand.

Consider a family of k-jets/germs Aa : Cr,O ~ Sk(n,C), where Aa(O) = 0

for all values of a E et, of the form

Aa = o (4.26)

with aij : er, 0 x et -+ C, O. As usual we may regard Aa as a mapping Aa :

er, 0 ~ eN, 0 determined by the N-tuple [a12,"" an-In]. So, taking local

coordinates, (Xl, ... ,xr), for er, 0 we attempt to simplify the family Aa by the
scale changes, <p. : er, 0 ~ er, 0 given by

Ai :f. 0, 1 < i ~r. Because we are dealing with the group 11. not all scale
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changes in the target

(17ij =1= 0, 1 ::; i < j ::;n), are available to us. However if we consider a constant

element of 'H, er, 0 -+ GI(n, C), given by the diagonal matrix

o o

where ala2·· ·an =1= 0, then the action (<I>B,Xc).Aa = X,!'(A 0 <l>B)XC has the

effect on the corresponding N-tuple, Aa = [a12, ... ,an-In], given by

with 17ij = aiaj. This method is best illustrated by examples and we refer the

reader to the proof of Lemma 6.1.2 in Chapter 6.

4.6 Initial Classification

We are mainly concerned with classifying families of 4 x 4 skew-symmetric ma-

trices using the techniques of the previous two sections. However beforehand

we consider the classification of a few special types of families.

It is useful, for the following proposition, to note that we can define the rank

of A E Sk in a similar way to that described in Lemma 3.0.13, for a pencil. In

other words if Ij is the ideal of Or generated by the j x j minors of A then rank

A is the largest k for which Ik =1= O. Recall that

Proposition 4.6.1 When r = 1 then any germ A : C,O -+ Sk(n, C) is Q-

equivalent to something of the form

where the final zero block is possibly non-existent, E. = Ea.E, and the 8i are
integers ~ 1 and kl < k2 < ... < kt.
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Proof The proof is by induction on n.

Initial Step

If A == 0 we are finished.

Otherwise, since we assume A(O) = 0, let kl ~ 1 be the lowest degree term
of all the entries of A. Then we can write

(4.27)

with Ao(O) ,e O.

If we denote the rank of Ao at the origin by rankoAo then

rankoAo = 2s1,

for some SI ~ 1. So by Proposition 4.3.5 we find

(4.28)

where X : C, 0 ~ GI(n, C) and Al (0) = o. If n = 2s1 we are finished.

Inductive Step

By induction we find that Al is equivalent to

(4.29)

where l2 < ... < It, and the result follows, taking kj = Ij + kl for j ~2. 0

Lemma 4.6.2 Consider the classification of germs A :er, 0 ~ Sk(n, C) un-
der the action of the Q = n x 11. subgroup of the corresponding /C-group.

(i) If n = 2 the germs

A=(O a)-a 0 ' B=(O b)-b 0

are Q-equivalent if and only if a and b are /C-equivalent. In particular the
g -simples are given by classifying the n-simple functions er, 0 --+ C, O.
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(ii) Ifn = 3 a germ A: er, 0 --+Sk(3, C) is 9-finitely determined if and only if

the corresponding germ er, 0 --+e3, 0 is K -finitely determined and two 9-
finite germs A, B are 9-equivalent if and only if the corresponding germs

er,O --+c-,° are K-equivalent. In particular the 9-simples are given by

the K-classification of simple germs er, ° ---+ e3, 0.

Proof

(i) The first case is easy. If A and B are 9-equivalent then

(~a ~) (~ J) ( .: ~ b ~ ~ ) (~ ~)

= (aa - fi'Y) ( _bOo ~ b ~ ~ ) ,

=

for some

Le. a = (ac5 - fi'Y)(b 0 ~). So a and bare K-equivalent (which we already

know). However if a and b are K-equivalent then a = A(b o~) for some A

with A(O) -:f ° and diffeomorphism ~. So consider

(~~)=(~ ~)
above and A and Bare 9-equivalent. Since the list of K-simple function
germs is the same as that for 'R-simple function germs the result follows.

(ii) We associate a germ A : er, ° ---+ Sk(3, C) (where A(O) = 0),

with the germ er, 0--+ c-, 0, (aI, a2. a3). By Lemma 4.2.59 is a connected
subgroup of K and therefore

T9.AcTK.A,
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for all A. We use Proposition 4.3.2 to find the Q-tangent space to this
germ. As usual the 'R-tangent space to this germ is the standard 'R-
tangent space. The 1l-tangent space is given by

FUrthermore, by a little manipulation of its generators we can show this
submodule coincides with the submodule

which is the C-tangent space to the germ (at, a2, a3). Therefore the H and
C tangent spaces to A coincide that is

TQ.A = TIC.A,

for all A. In particular, at the k-jet level

So all calculations at the jet level for the Q-action (on A) are the same as

those for the IC-action on A. FUrthermore given a k-jet A for which

Le. A is k- or (k + l)-Q-determined, then it follows that

and A is also k- or (k + l)-JC-determined.

If two Q-finite germs A and Bare Q-equivalent , they are clearly JC-
equivalent. Conversely if they are JC-equivalent, then choose k ~ 1 so
that both germs are k-Q and k-IC-determined. We need only show that

the JkQ and JkJC orbits of the k-jet of A coincide. This is proved using

Lemma 4.4.2, taking G = JkIC and H = JkQ.

o
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4.7 Miscellaneous Results

In the following we provide some background material required later.

4.7.1 Analytic Varieties

We give some basic results for germs of analytic varieties, which are well known
results for affine varieties (see [CoxLiOs)).

Definition 4.7.1 Let It,...,f. be analytic function germs in Or. Then the set

V(It,.·.,IB) = {x E er: Ji(x) = 0 for 1 ~ i ~s},

is called the germ of an analytic variety of C", 0 defined by 11, ... , f., or an

analytic variety germ.

Definition 4.7.2 Given an ideal I C Or we define the analytic variety germ

V(I) = {x E er : I(x) = 0 for all f El}. (4.30)

Conversely, given an analytic variety germ, V C C", 0, we have a set I(V) C Or
given by

I(V) = {f E Or : I(x) = 0 for all x E V}. (4.31)

Lemma 4.7.3 The set I(V) C Or, given by t{91) in Definition 4.7.2, is an

ideal which we refer to as the ideal of V.

Proof Clearly, 0 E I(V) since the zero germ vanishes on all of C", and in

particular vanishes on V. Suppose I, 9 E I(V) and h E Or. Let x be a point of
V sufficiently close to O. Then

I(x) + g(x) = 0 + 0 = 0,

implying that I + 9 E I(V), and

h(x)/(x) = h(x) ·0= 0,

implying that hI E I(V). The result then follows. 0
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Definition 4.1.4 Let I C Or be an ideal. The radical 01 I, denoted ..fl, is
the set

{/ E Or : Jm E I lor some integer m ~ I}.

Lemma 4.1.5 II I C Or is an ideal, then ..fl is an ideal in Or containing I.

Proof Clearly I C ..fl, since J E I implies that J1 E I and hence, by Defini-

tion 4.7.4, J E ..fl.

To show ..fl is an ideal, suppose J, g E ..fl. By definition there are positive

integers m, I such that F", gl E J. Consider the expansion (f +g)m+l-l. Every

term in this expansion has a factor Ii gj with i + j = m + I - 1. Since either

i ~m or j ~ I, either Ji or gj is in I, whence Jigj E I and every term in the

expansion is in I. Hence (f + g)m+l-1 E J and by definition J + 9 E ..fl.

Finally, suppose J E ..fl and h E Or. Then I" E J for some m ~ 1. Since

J is an ideal, then (hJ)m = hmJm E J and hence hJ E ..fl. It follows that ..fl
is an ideal. 0

The following result is taken from [Gunn].

Theorem 4.1.6 (Hilbert's Nullstellensatz) IJ J C Or is an ideal then

I (V(J)) = Vi.

Proof We refer the reader to the proof of Theorem 2 in Chpt III of [Gunn]. 0

The main objective of this section is the following result.

Lemma 4.1.1 Consider the germ 01 a smooth mapping, J : C", 0 ~ CP, 0

defined by J = (f1,"" Jp), where each Ji E Mr. The lollowing three properties
are equivalent.

(i)
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(ii) ForsomeN,M~COr(fl, ... ,Jp).

(iii) (Using the notation introduced in Definition 4. 7.1)

V(ft, ... ,Jp) = {O].

Proof We prove this in two steps. The first shows condition (i) and condition

(ii) are equivalent and the second that condition (ii) is equivalent to condition

(iii).

Letting I = Or(fl, ... , Jp) we just apply Corollary 4.4.24 of Section 4.4.3.

Firstly, if for some N, M~ C OrUb ... , Jp) then for each 1 ~ k ~ r

So,

V(ft,· .. , Jp) C V(xf/, ... ,x~) = (o].

The converse inclusion uses the Nullstellensatz for analytic varieties (Lemma 4.7.6).

Suppose

V(ft,···, Jp) = {o}.

Using notation introduced by Definition 4.7.2, this implies that

Therefore by Nullstellensatz (Theorem 4.7.6)

where, by Definition 4.7.4,

Considering each Xk E Mr (1 ~ k ~ r), this implies, for some Mk ~ 1, that
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Setting M = L~=}Mk, we deduce that

as required. 0

4.7.2 Binary Quartics

There follows a general, but brief, discussion on the space of binary quartics
which will be used later on. In particular, to introduce neccessary notation, we
quote a couple of results (without proofs), and for further details we refer the

reader to Pgs 94-98 of [Newstd].

Definition 4.7.8 The space, VnH, of binary forms consists of polynomials

of the form

to which we associate a point (0:0, o:}, ... ,O:n) E pcn.

There is a natural bijective correspondence between points of the associated

projective space pcn and the sets of n roots (in PC}) of f(x, y) = O. Consider

the subgroup, 81(2,q, of GI(2,q consisting of matrices with determinant 1

and the projective linear group, PGl(2, C), given by

where c E C. The action of 81(2, C), (or PG1(2, C» on PC} determines an

action on Vn+l (= PCn).

Definition 4.7.9 The linear group action of 8l(2,C) (or PGI(2,C») on the

space, Vn+} (= PCn), of binary forms is given by

for any f E VnH, g E 81(2,C) (or PGI(2,C»).

As already mentioned we are principally concerned with binary quartics.
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Definition 4.1.10 The space, Vs, of binary quartics consists of polynomials

of the form

to which, for convenience, we associate a point (ao, aI, a2, a3, a4) E PC4.

Proposition 4.1.11 Under the 51(2,C) action, quartics have two basic invari-

ants

In other words f and g.f yield the same values of I and J for g E 51(2, C).

o

Definition 4.1.12 We define ~: Vs ~ C (~: PC4 ~ C) by

where q E Vs.

Since both I and J are invariants of 51(2, C)-equivalence, it follows immediately

that ~ is also an 51(2, C)-invariant. The following result is deduced in [Newstd).

Proposition 4.7.13 A quartic q E Vs has a repeated root if and only if ~(q) =
0.0

o

From now on we think of quartics as points of PC4. We denote the set of

quartics with repeated roots by ~, i.e.

~ = {q E PC4
: ~(q) = OJ.

Excluding this set from PC4, we consider the set, PC~, of quartics with no

repeated roots, in other words
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It follows that each point of PC~ is naturally represented by a set of four

distinct points of PCI. Arranging four such points in some particular order, Xl,

X2, X3, X4, by the Three Point Lemma (Lemma 1.3.4) there is a unique element

9 E PGl(2, C) for which

gXI = (1,0), gX2 = (0,1), gX3 = (1,1);

with
gX4 = (A, 1),

for some A "I 0, 1. The value of A is the cross-ratio of Xl, X2, X3, X4 in this
order. The 24 possible orders in which these four points can be arranged give,
in general, six different values of cross-ratio; if anyone of these is A, the full set
is

A, ,I-A, ,1/A, ,(A-l)/\ A/(A-l), 1/(I-A).

It can be verified that the function J.L : C -+ C, given by

_ [(2A - I)(A - 2)(A + 1)]2
J.L - A(A -1) ,

has the same value for all six cross-ratios of points {Xl, X2, X3, X4}.

By direct computation it can be shown that, for quartics with no repeated
roots,

This leads to the map

(4.32)

Consider the action of PGl(2, q on PCI, which as described in Definition 4.7.9

determines an action on PC4•

Lemma 4.7.14 The map J2/!::t. : PC~ -+ C is well-defined and invariant

under PGl(2, q-equivalence. Furthermore, up to this equivalence, the space of

binary quartics, PC4, has uncountably many orbits.

Proof Since J2 and !::t. are both homogeneous of degree 6 in the variables ai

clearly the quotient, J2 /!::t., is well-defined on PC~.

We next show this map is a PGl(2, C)-invariant. Consider two elements, II,
h of PC~ represented by points {x}, X2, X3, X4} and {ul, Y2, Ya, Y4} respectively.
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The system {YI,Y2,Y3,Y4} is PGl(2,C)-equivalent to {XI,X2,X3,X4} if there is

an element, PI, of PGl(2, C) taking one set to the other. There is also a unique

element, Pu E PGl(2,C), fixing three points of {XI,X2,X3,X4} and giving a

cross-ratio, A. It follows that the element PuPl, of PG1(2, C) gives the same

cross-ratio of {Yl, Y2, Y3, Y4}. It follows that II,12 have the same value of J2 / D.
as required.

It follows that to any value of J2 / D. there corresponds at least one (distinct)

PGl(2, C)-orbit in PCi. We refer to each value of J2 / D. as the j-invariant

of elements in the corresponding orbit(s) of PCi and hence, up to PGl(2, C)-

equivalence, PCi has uncountably many orbits. Since ~ is a proper algebraic

subset of PC4, PCi is dense, and (up to PGl(2, C)-equivalence) any point of

PC4 has any neighbourhood meeting uncountably many orbits. 0
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Chapter 5

Using Transversal

As mentioned in the previous chapter, our method of classification involves using
the specialist computer package, Transversal, (developed by N.P.Kirk at Liv-

erpool), which runs under the (symbolic algebra system) Maple, see [MapleV].
This package is principally used for calculating and manipulating tangent spaces

of orbits of jet-group actions on jet-spaces, Jk(r, N), for numeric values of k,

rand N. It is invaluable for calculating the tangent spaces to (members of)
parametrised families of jets and hence, as previously discussed, is particularly
useful for moduli detection and simplification using Mather's Lemma.

Although Transversal proves to be a valuable companion throughout a
given set of calculations, providing a general idea of how the classification pro-
gresses, for example by suggesting the presence of series of distinct determined
jets, there are points where it is more efficient or indeed necessary to use hand
calculations. This is particularly the case when proving the existence of a series
of k-determined germs for general values of k.

In the following we discuss, in some detail, the various procedures and func-
tions of the package used for our calculations. In the final section we illustrate
the techniques used by providing some worked examples taken from these cal-

culations. For further details on Transversal we refer the reader to [KirkTr].

Adopting notation from [KirkTr], throughout this chapter we denote the Lie
algebra of a jet-group by L and the action of this Lie algebra on a jet A by L.A.
(In terms of the notation used in Sections 4.3 and 4.4 L.A represents an action
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LG.A, such as JkQ.A.)

5.1 Overview of Package

Before any calculation can be performed by the package, it is necessary to
define the Lie algebra, L, we wish to work with. Then, for a given k, and

jet A the tangent space, Jk (L.A) 1, to the orbit of A is calculated using the

main routine jetcalc. This routine also finds a basis for this tangent space,
and stores, globally, several useful by-products of the calculation which can be
subsequently accessed by other functions of the package.

5.2 Lie algebra and Initialisation

We first discuss how to specify the Lie algebra. This requires several different
items of data which, within a typical class of problems, remain fixed. Therefore
L is specified using a set of global variables, which are accessed internally by
the package's routines. Before any calculation is attempted the user must first
assign these global variables accordingly.

In general, the Lie algebra L is decomposed as the direct sum of two compo-
nents consisting of source and target vector fields where the source component
can be user specified as an Or-module of vector fields. This Lie algebra is made
more specific by determining which of these components appear in its defining
equation. This is done by setting the 'type' of the Lie algebra.

There are fivebroad 'types' which wedenote R, C, C, A and /C. The required
'type' is set by the global variable equiv which takes the string constant value

R, L, C, A or K accordingly. (Note, although these 'types' can be used to give

Lie algebras to standard groups used in singularity theory, they need not be
associated with just these groups, for example possibilities for Lie algebras of

'type' n extend beyond those associated with the standard R-group.)

For example, since the tangent spaces we wish to consider are just Or-

submodules of O~ we can define the Lie algebra by a source component only.

IJAo(L.A) represents the tangent space L(JAog).A = T J"g.A discussed in Section 4.4
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So for our situation L is chosen to be of 'type' R (the variable equiv takes the

value R) and its action on a jet A is given by the defining equation

(5.1)

where the exponent tl is a user-defined integer global variable, source_power,
and ~i are user-defined vector fields. These vector fields take the form

a a
~i = gl- + ... +gr-OXI OXr

where (5.2)

and are defined for the package via a procedure which, on being called from
within the main routine jetcalc, takes a jet A as parameter and returns the

set {~i.A : i = 1, ... , s}. The global variable liealg holds the name of this pro-
cedure. Before proceeding further we need to clarify the following technicality.
Although this liealg procedure defines the Lie algebra, it is actually the main
routine j etcalc which, using it, generates the actual tangent space, to a given

jet A, from the defining equation (5.1).

In particular, for our calculations we have written the liealg procedure

skewmatrix := proc(A, N, tgtspace),

where A, a list, stores a jet passed to it, and N is a positive integer, the target di-
mension, deduced from the number of components of A. Both these parameters
are pre-determined in j etcalc before it calls skewmatrix. The third param-
eter, tgtspace, is of Maple type 'table' and is assigned within the procedure.
We briefly summarise the function of this procedure here; for more detail we

refer the reader to Appendix D which provides the full (annotated) source code,
together with a short explanation of how it works.

The skewmatrix procedure is structured along the same lines as the general

liealg procedure discussed in Section 4.2.2 of [KirkTrj. It has, essentially, three

tasks.

First it assigns Maple names to the Source coordinates. The code used for
this requires the source dimension, r, to be specified. This is done using the
(user-defined) global variable source_dim which controls the number of Source
coordinates for ensuing calculations. Then a list of names for these Source
coordinates are found and stored in a global list coords. Although we use
Xl, ... ,Xr for source coordinates their actual Maple names are defined to be
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xl, ... , xr, are stored as such in coords and then used to describe any jet A
passed to jetcalc.

Secondly, a set of generators for the (source) Lie algebra are specified and

stored in the parameter tgtspace. Each entry of tgtspace is itself of type
'table' with N components and corresponds to a generator, (i, specifying how
(i acts on A. The precise syntax is as follows. Suppose A is given, in Maple,

by a list of N entries, A = [al,'" ,aN], and the ith vector, (j, in the generating

set is of the form given in (5.2). Then the ith entry entry of tgtspace specifies
the N components of (i.A and is defined in Maple by

tgtspace[i][l] .- gl * diff(A[l], coords[l]) + ... + gr * diff(A[l], coords[r]);

tgtspace[i][N] .- gl * diff(A[N], coords[l]) + ... + gr * diff(A[N], coords[r]);

The tangent spaces we require j etcalc to generate are of the form

where {(I.A, ... ,(r.A} are the standard generators of the Jacobian ideal JA,
{(r+I.A, ... , (r+n2.A} are the generators

described in Proposition 4.3.2 and PI ~ P2 (the powers of the maximal ideal

Mr) differ depending on whether we require the ~h,Q or Qe-tangent spaces to

A. Comparing (5.3) with the defining equation for Lie algebras of 'type' 'R,

(see (5.1», in each case we obtain most of the required tangent space by setting

the global variable source_power to PI = max{pI'P2}. However, the space
subsequently generated by jetcalc using

L.A = M~l (6 .A, ... ,(r+n2 .A), (5.4)

omits the tangent vectors of (5.3) given by

This problem is resolved by defining a global variable to add these 'extra'

vectors to those obtained from (5.4). The variable used is R_nilp and is of
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Maple type 'list'. Each entry in this 'list' specifies an 'extra' vector which is
to be added to (the source component of) L. These vectors take the form g~i

where 9 E Or and ~i (r + 1 $ i $ r + n2) is an existing vector from (5.4). The
precise syntax is as follows. For 9 E Or and ~i the ith vector specified by table
tgtspace, the entry [g, i] in the list R_nilp indicates that j etcalc will add the

vector g~i to the tangent space (generated by (5.4)).

Clearly, these 'extra' vectors depend on which tangent space we are consid-
ering. In particular, we generate the 91 (or CT-group) tangent space by setting
source_power to 2 and R_nilp to be the set of vectors

(5.5)

and the 9 (or full group) tangent space is given by source_power 1with R_nilp
the set of vectors

(5.6)

It is convenient to define both these sets (5.5) and (5.6) in the procedure
skewmatrix, storing them in global variables RCT_nilp and RG_nilp respec-
tively. Then depending on which tangent space we wish j etcalc to generate
we can assign the appropriate set to the global variable R_nilp, discussed above.

These 'extra' vectors will be included in the tangent space generated by
j etcalc provided another global variable nilp is set to true. If however this
variable is set to false, then, when called, jetcalc will ignore any 'extra'
vectors in R_nilp. This is what is required when generating the 'extended'
tangent space,

obtained by setting source_power 0 and nilp to false.

5.3 The Algorithm jetcalc

Briefly, we discuss the algorithm carried out by the main routine jetcalc.
Having specified the Lie algebra L, by assigning the global variables equiv,
liealg, source_power, R_nilp and nilp, then for a given k and jet A jetcalc

first calculates the tangent space Jk(L.A) to the orbit of A. Specifically, the
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algorithm calculates a spanning set, for this tangent space, as a vector subspace

of Jk(r,N), where Jk(r,N) is identified with N-tuples of all polynomials, in r

indeterminates, (over q of degree ~ k, including those which don't vanish at

the origin.

By calling the procedure skewmatrix,jetcalc finds the vectors which gen-

erate L.A as the Or-module (6 .A, ... ,~r+n2 .A). Then it finds all non-zero
k-jets in

L.A = M~l (6 .A, ... '~r+n2 .A)

by multiplying each of these generators (~i.A) by all monomials of degree PI

and higher until jets, whose components all have initial degree greater then k,

are obtained. By adding to this set of k-jets any 'extra' vectors, from R_nilp,

jetcalc obtains a spanning set for the required tangent space Jk(L.A).

Having done this the next and main computational task of jetcalc is to
reduce this spanning set, by Gaussian elimination, to a basis for the tangent
space. Although the algorithm is more sophisticated than the proceeding de-
scription, it is sufficient to interprete it by the following linear algebra problem.

For more details on the actual algorithm see Chapter 3 in [KirkTr].

We have a basis of Jk(r, N) consisting of an ordering of the monomial vec-

tors, xl ej, (see Remark 4.4.62) and with respect to this basis each jet in Jk(r, N)

corresponds to an element of a vector space eM of large dimension. The span-
ning set, just discussed, corresponds to a matrix whose rows consist of these
vectors. The ordering jetcalc chooses, for the basis, is such that the columns
of this matrix corresponding to monomial vectors of degree k appear, together,
in a block at the right hand end of the matrix. Reducing this matrix to row
echelon form using Gaussian elimination gives a basis for the tangent space.

The advantage of writing the package in a symbolic system such as Maple
is that we can allow parameters to be present in the jets we work with, thus
enabling us to perform calculations over whole families of jets. On passing such

a family to jetcalc the matrix representing the spanning set (of the tangent

space to jets in this family) will contain non-constant (polynomial) terms. This
must be taken into account by the reduction algorithm.

2with regards to this Remark, note that 111=0 is also considered here.
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Where possible the algorithm chooses numerical pivotal elements. If forced
to choose a non-constant pivotal element division is not performed on the row,
in which it occurs, to reduce it to unity. However, division is still performed

(working in the field of rational functions) when using the pivot to reduce the rest
of the column to zero. In other words the leading entry of this row remains the
non-constant pivot rather than unity. Clearly, for values of the parameters (of

the family passed to jetcalc) for which this pivot vanishes the row operations
used in the elimination are not valid, but, by preserving the pivot, conditions
when this occurs are retained. We shall discuss this further later On.

Despite the size of this matrix being large it is also highly sparse and can, in
most cases, be reduced relatively quickly. We take this opportunity to mention
a further global variable which needs to be set before calling jetcalc, namely
jetcalc_ verbosity. During a calculation jetcalc relays information relating
to how the calculation is progressing and this variable controls how much of that
information is displayed to the user. Taking an integer value from 0 (forcing

jetcalc to work in silence) through to 3 (for which jetcalc displays all aspects

of the calculation) the j etcalc_ verbosi ty setting enables the user not only to
check that the calculation being performed is the one required but can also
give an idea of the size of the matrix involved. For our calculations we set
j etcalc_ verbosi ty to 2 and in the worked examples at the end of this chapter
we reproduce the information typical to that displayed by j etcalc in response
to this setting.

The result of the reduction performed by jetcalc is therefore a row echelon

matrix of the form (aij) with pivotal elements alit, a2i2"'" auj" (these are

non-zero elements with 1 ~ il < h < ... < i; ~ q = dim Jk(r, N) and

u = dim Jk(L.A)). The rows of this matrix then represent a basis for the
tangent space, the principal objective of the algorithm.

The reduction process, used to achieve this objective, yields various by-
products which are of considerable use as regards the singularity theory dis-
cussed in the previous chapter. These are stored in global variables for access
by other routines of the package. We proceed to discuss these routines, which
are used to manipulate and extrapolate the results of the reduction.

The routine jetcalc also calculates a basis, C, for the complementary (or

normal) space to the tangent space it has found. This is the set of monomial
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vectors required to extend the basis for the tangent space to one of full rank in

Jk (r, N). Having already calculated a basis for the tangent space, represented

by the u rows of the echelon matrix (aij) above, the set of canonical vectors

(where {fi E eM : 1 ~ i ~M} represents the ordered set of monomial vectors,

xl ej, chosen as a basis for Jk(r, N) and t, denotes the exclusion of h from

this set of vectors) correspond to the basis C. Once this set, C, of monomial
vectors has been found they are then stored globally and can be accessed by
the function pcompO (Le. pcompO displays the complementary basis). The
dimension of this complementary space is stored as the global variable codim.

It is important to highlight the following point, when interpreting calcula-

tions. As previously mentioned the routine jetcalc regards Jk(r, N) as the
vector space of N-tuples of all polynomials of degree ~ k thereby including
those which do not vanish at the origin. This enables the package to be used
for unfolding calculations and working with 'extended' tangent spaces. So any

basis for a complementary space in Jk(r,N) found by jetcalc usually contains
constant vectors.

5.4 Interpreting j etcalc Calculations in terms
of Singularity Theory

We discuss how the results obtained by jetcalc can be interpreted as regards
the singularity theory covered in the previous chapter.

5.4.1 Complete Transversals and Determinacy

Due to the ordering, chosen by jetcalc, of the basis of JIc(r,N}, the columns
corresponding to monomials of degree k appear in a block at the right hand end

of the echelon matrix (aij). It follows that the set of tangent vectors from this

matrix, with leading entries in this final block, can be extended to a basis for

Hk(r, N) by adding to it all elements of the complementary basis, C, of degree

k.
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In particular, given a (k - 1}-jet A, if we specify the Lie algebra so that

jetcalc generates the Jk~h-tangent space to A then by Theorem 4.4.13 the
terms of the complementary basis, calculated by j etcalc, of degree k provide
a complete transversal for A.

This complete transversal can be extracted from the complementary basis by,
before calling jetcalc, setting a further global variable, compltrans, to true.
Then after running j etcalc this ensures that the function pcomp0 displays
only the terms of the complementary basis of degree k.

If there are no terms of degree k in the complementary basis then the function
pcompO returns a message indicating that the k-transversal of the (k - 1}-jet
is empty and, since the tangent space is an Or-module, by Corollary 4.4.19, A

is (k - 1}-Ql-determined.

5.4.2 Using Mather's Lemma

Having discussed how, by setting the Lie algebra to the eT-grou.p, we can use
jetcalc to find complete transversals and detect determined jets we consider
what useful information can be gleaned when working with the full jet-group,
JkQ.

So given a k-jet A we define the Lie algebra so that jetcalc generates the

JkQ-tangent space to A. This setup is used, principally, to simplify families of

k-jets into a finite number of JkQ-orbits by applying Mather's Lemma (in the

form of Lemma 4.5.1). Whereas the two conditions for Mather's Lemma are
extremely difficult to check by hand they are easily dealt with by this package.
For this work, we require the fu.ll complementary basis, calculated by j etcalc,
to be displayed by the function pcompo. To ensure this, before any calculation
is performed by jetcalc, it is necessary to set the global variable compltrans
to false. It is worth pointing out that the value of compltrans has no effect
on the actual calculations carried out within j etcalc, it is just a user-interface
device.

A useful invariant for distinguishing JkQ-orbits is the JkQ-codimension of
jets lying in such orbits. Naturally, this codimension is found from the com-

plementary basis calculated by jetcalc. However, when looking for the JkQ_
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codimension of k-jets which vanish at 0 we disregard, from this complementary

basis, any constant jets. The JkQ-codimension is therefore the number of non-
constant monomial vectors in the basis displayed by pcomp0 .

Typically, given a complete transversal of a (k - I)-jet Ao, represented by

a t-parameter family, {Aa E Jk(r, N) : a E et}, of k-jets, we use jetcalc to

simplify, where possible, its members into a finite number of JkQ-orbits. Since,

by Theorem 4.4.13, this transversal meets each JkQ-orbit of a jet with (k-I)-jet
Ao, this means that, at the k-jet level, a neighbourhood of any such jet consists

of finitely many JkQ-orbits.

We have previously mentioned how jetcalc approaches the reduction when

passed a parametrised family of jets. The resulting row echelon matrix (aij) may

well contain pivotal elements which are rational functions in the parameters.
The algorithm jetcalc used to derive the complementary basis, C, from (aij)

also collects all of these non-numeric pivots, and stores them in a 'checklist' for
global access once jetcalc has terminated. The function plistO can be used
to display this checklist. Recall that for values of the parameters for which these
non-numeric pivots vanish the reduction process used by jetcalc is not valid.
Hence the numerators of each element of this list define a finite set of proper
algebraic varieties, within the parameter space, where this occurs.

So the reduction performed by jetcalc applies to members of the family,
passed to it, corresponding to values of the parameters not lying on any of these
varieties and therefore determines the generic behaviour by default. For the
following discussion assume that a t-parameter family, Aa, of k-jets has been

passed to jetcalc and it has calculated the tangent space, Jk(L.Ag), to the

orbit of Ag for generic values, g, of a. We refer to the sub-manifold of JIc(r,N)
consisting of these generic jets by Z C Jk(r, N).

We first use the package to check whether both conditions of Mather's

Lemma are satisfied for Z. Clearly, condition (ii) is satisfied since, by default,

all k-jets in this sub-manifold have the same JIcQ-codimension, given by the
number of non-constant jets in the complementary basis found by jetcalc.

Condition (i) involves determining, for each k-jet Ag E Z, whether the

JIc(L.Ag)-tangent space contains the tangent space to Z (at Ag). Since jetcalc
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has calculated a basis for Jk(L.Ag), represented by the row echelon matrix (aij),

it is relatively easy to check this. The tangent space to Z, at each point Ag, is the

subspace sp{WI, ... , Wt}, where each vector Wi is obtained by differentiating the

family of k-jets, Aa, with respect to the ith parameter. The routine intangent

can then be used to test whether each one of these vectors is contained in the
default tangent space, Jk(L.Ag), calculated by jetcalc.

In general, this routine is passed a list of jets {VI, ... , vp}, considered as

vectors of CM, and determines whether this set together with the basis for the

tangent space, Jk(L.Ag), form a dependent set of vectors. It returns true when

a dependent set results and false when the set is independent. We refer the
reader to Section 4.4 of [Kirk'Ir] for the technical details of this routine. It
follows that if a single vector V is passed to intangent it will return true if V

is in the tangent space but false if not.

Given a spanning set {Wt, ... , Wt} for the tangent space to the submanifold,

Z C Jk(r,N), for our purposes it is sufficient to use intangent individually on
each vector in this set. If intangent returns true for each one of these vectors it

follows that the tangent space to Z is contained in the tangent space Jk(L.Ag)

and condition (ii) of Mather's Lemma is satisfied.

Once both conditions have been shown to hold for the sub-manifold Z of
Jk(r,N), (consisting of jets Ag) by Mather's Lemma we can deduce this sub-

manifold to be contained in a single JkQ-orbit. By choosing a particular value
of g, go, the corresponding jet Ago is a representative for this orbit.

Alternatively, if for anyone of these vectors, intangent were to return
false or it is observed that one of them is present in the complementary ba-
sis, C, calculated by jetcalc, then, the tangent space to the sub-manifold Z

cannot be contained in Jk(L.Ag). Consequently, the criterion for simplicity, in

Lemma 4.5.3, is not met and the family of jets Aa has moduli. We have just
described how the package can be used to detect moduli. It is also possible
to use the package to determine the number of moduli present in a particular
family. However since we are only concerned with Q-simples this is not required.

Having found a (representative of) a JkQ-orbit for generic members, Ag, of

the family of jets Aa, we must also investigate the exceptional behaviour, i.e.
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the members of the family having parameter values for which the reduction
performed by jetcalc is not valid. To do this we need to inspect the list of
non-numeric pivots, displayed by the function plist 0, obtaining from each
entry in this list a condition on the parameters for which it vanishes. From each
condition, we find a variety (of the parameter space) on which the pivot vanishes.
If this variety can itself be parametrised, then we can substitute the parameter
values on this variety back into the original family. The resulting family is
then passed to jetcalc. (Note in this way we have reduced the number of

parameters of the family (passed to jetcalc) by 1.) Denote generic members

of this family by, As. Hence jetcalc calculates the tangent space, Jk(L.As),
to the orbits of k-jets AB' As before we use Mather's Lemma to determine

whether the corresponding sub-manifold of Jk(r, N) consisting of these k-jets

are contained in a single JkQ-orbit. Of course we must also investigate any
exceptional behaviour for this modified family by inspecting the list of non-
numeric pivots used for the reduction and so on.

This process is repeated until either we find the original family to be con-

tained in a finite number of JkQ-orbits, we identify distinct JkQ-orbits by com-

paring the JkQ-codimension of jets in each using pcompO, or moduli are de-
tected. Although this process appears horrendous, for our purposes we use it
when dealing with families of only one or two parameters and the subsequent
calculations don't prove to be too arduous.

We conclude this section by discussing how the package can be used to

identify a family of k-jets, Za = {Aa E Jk(r,N) : a E e:t}, which is JkQ-trivial.

Typically if, on passing a family Za to j etcalc, the subsequent calculation

of the tangent space, Jk(L.Aa), is valid for all values of its parameters, a, (i.e.

the 'checklist' displayed by plist 0 is empty) and both conditions of Mather's

Lemma are satisfied (for this tangent space) then the family is JkQ-trivial.

5.5 Examples of Calculations using Transversal

In this section we demonstrate how some standard calculations, needed for our
classification, can be carried out using Transversal. This we do by means of
a sample of worked examples taken from calculations discussed in the follow-
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ing chapter. These examples are specifically chosen to illustrate the various
techniques, described in the previous sections, and implemented during the pro-
ceeding calculations.

In particular providing details at this stage, such as actual commands used
and some of the corresponding Maple responses, allows us to gloss over (or omit

completely) these technicalities later on so that we can concentrate, instead, on
the calculations themselves. We first describe how, in practice, the various Lie
algebra setups are defined before dealing with the calculations themselves.

5.5.1 Initialising Calculations

Before going any further note that calculations are carried out on Maple V
Release 4 via the graphical interface "xmaple" on Unix. Also after initiating
such a Maple session we first load Transversal by the command,

> with(transversal);
[canonical_vector, classify, coeff_table, determined, gausselim,

get_coeff, get_deg, get_monomial, get_ref_tables, get_wt,

increment, intangent, jetcalc, ldegree_vector, pcomp, pdetterms,

plist, pmons, ptangent, pvars, scalar_multn, setup_Aclassn,

setup_Agroup, setup_Aunf, stdjacobian]

to which, as shown, Maple responds by listing all subroutines, functions that
are available within the package.

All calculations involve working in parallel with three different jet groups,

the Jkg1 or eT-group for complete transversal and determinacy results, the

group, Jkg, for using Mather's Lemma and moduli detection, and the extended

group, Jkge for finding 'extended' codimensions (and unfolding calculations).

As mentioned in Section 5.2 each of these groups require different Lie algebra
setups and the most efficient way to do this is to create three entirely different
Maple sessions, one for each type of calculation. We proceed to define these
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three setups. Unless otherwise stated it is assumed we are classifying germs

(:2, 0 -t Sk(4, C) up to the Q-equivalence defined above, which amounts to

considering germs (:2,0 -t (:6,0 up to this equivalence (see Lemma 4.2.5).

The global variable setup defining the Lie algebra of the eT-group, used in
all complete transversal and determinacy calculations, is stored for convenience
in the file skewsetup. Reading in this file by the command:

read skewsetup;
liealg := skewmatrix

equiv := R

compltrans := true

source_dim := 2

source_power :- 2

target_power := 0

nilp := true

R_nilp := RCT_nilp

L_nilp := []

jetcalc_verbosity := 2

Maple responds by printing the values assigned by this file to the global variables
(described in the previous sections).

Several of these (user-defined) global variables are assigned the same values
for all three setups, Le. the globals: equiv, liealg, jetcalc_verbosity take
the values prescribed in Sections 5.2 and 5.3.

Another constant for this set of germs is the source dimension, specified
by setting source_dim to be 2, and as a result the Lie algebra procedure,
skewmatrix denotes the source coordinates by xl, x2. However, when not
reproducing Maple commands or output we shall represent them by x, y re-
spectively.
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The remaining (user-defined) global variables are assigned values intrinsic to

defining tangent spaces, to Jkg1-orbits of germs, A, given by

In particular, we refer the reader to Section 5.2 to remind them of the values of
source_power and R_nilp required for the C'Ivgroup.

We perhaps should say a little more concerning our use of the variables
nilp/R_nilp. The more usual use of the variables nilp/R_nilp/L_nilp is for
determinacy calculations using a nilpotent Lie algebra - hence their name. For
complete transversal calculations (using a nilpotent space) the homogeneous
jets must be ordered as dictated by the nilpotent filtration. To achieve this
nilp is set equal to true_order and two further variables, nilp_source_wt
and nilp_target_wt, are brought into play for defining the ordering.

However, for our case we use the variable R_nilp for a different purpose,
i.e. to add vectors missing from the tangent space generated by jetcalc, as
discussed in Section 5.2. Notice we do not use L_nilp since, by setting equiv

to be 'type' R, we are only considering a source component Lie algebra. (The

same applies to the variable target_power.)

By setting nilp to true, thereby enabling us to use R_nilp, a default lexi-

cographical ordering is used which ensures the basis of Jk (2,6) is ordered such
that all monomial vectors of degree k appear last. This facilitates the extraction
of the complete transversal, of a jet, from the complementary basis found by
jetcalc (see Section 5.4.1) provided compltrans is set to true, as above.

For the group Lie algebra setup wecreate a different session and, after loading
Transversal and reading in the previous setup, we reassign the three (user-

defined) global variables source_power, R_nilp and compltrans as follows:

source_power:=lj R_nilp:=RG_nilpj compltrans:=falsej
source_power := 1

R_nilp := RG_nilp

compltrans := false

197



This modification to the previous setup defines tangent spaces, to JkQ-orbits
of germs, A, given by

We again refer to Section 5.2 for the justification for the first two reassignments.
Recall from Section 5.4.2 that setting compltrans to false enables us to dis-
play the full complementary basis (to the tangent space to a jet) calculated by
jetcalc.

When setting up a Lie algebra in this way, i.e. by reassigning several global
variables, it is advisable to inspect the current values of all the user-defined
global variables to check this has been done correctly. For this purpose we use
the function pvars 0 .

Finally, for finding Qe-codimensions (of determined jets) we need the ex-
tended group setup obtained by reassigning the following two variables of the
group setup:

> source_power:=O; nilp:=false;

source_power := 0

nilp := false

These modifications define JkQe-tangent spaces to germs A, given by

and are mentioned, briefly, at the end of Section 5.2. Clearly, on setting
source_power to 0 means that jetcalc generates all vectors of the 'extended'
tangent space and so we can ignore any 'extra' vectors present in the variable
R_nilp by setting nilp to false. Also note the value of compltrans is kept
false, since for codimension calculations we require the full complementary
basis.

Having thus defined each of the three Lie algebra setups, used for the fol-
lowing examples, from this point on we refer to them as the CT-group, group
and extended group setups without any further explanation. We also remind
the reader that each such setup and the calculations performed using it occurs
on a different Maple session.
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5.5.2 Worked Examples

The following worked examples are taken from calculations used to give Theo-
rem 6.1.10, in the following chapter, and concern the classification of Q-simple

determined germs with 2-jet [0,x, 0, y, x2, OJ.

We start by considering the J3Ql-orbits over the 2-jet [0,x, 0, y, x2, OJusing

the C'Ivgroup setup. Specifying the jet A = [0,x, 0, y, x2, OJby entering

> A:=[0,xl,0,x2,xl~2,0]j
2

A := [0, xl, 0, x2, xl , 0]

we calculate the ]3Ql-tangent space to A in J3(2,6) by the command

> jetcalc(A,3)j
defined map:

2
[0, xl, 0, x2, xl , 0]

working in 3-jet space with R-equivalence

defined coordinates:

[xl, x2]

••• calculating right tangent space •••

••• performing Gaussian elimination •••

using default ordering

calculating tangent space

matrix dimensions: 76, 60

Ready.

where the second parameter (passed to j etcalc) indicates the degree of the jet

space in which the calculation is performed.
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As promised in Section 5.3, this output is typical of the response from
jetcalc, when the jetcalc_verbosity is set to 2. In the remainder of this
section, although always providing the commands entered, we will not always
show the corresponding Maple response. For example, in future, the response to
an assignment, such as A above, is usually omitted - as is output from jetcalc
of the type shown above.

As described in Section 5.3, this command calculates a basis for both the

J3Ql-tangent space to A and its complementary space in J3 (2,6), storing all
the results. Recalling the discussion of Section 5.4.1, the basis for a complete
transversal of A is displayed by typing

> pcompO;
3

[0, 0, x2 , 0, 0, 0]

2
[0, 0, x2 xl, 0, 0, 0]

Consequently, a complete 3-transversal to A is the 2-parameter family of 3-jets

where a, b E C.

As discussed in Section 5.4.2 we can use the group setup for applying Mather's

Lemma (Lemma 4.5.1) to simplify such a family into a finite number of J3g_
orbits.

We start by calculating the J3g-tangent space to the family of 3-jets, Aab.
(Note for the purposes of Transversal we assign this family to the variable

fam1.)

> faml :- [0, xl, a* xl * x2~2 + b* x2~3, x2, xl~2, 0];
> jetcalc(faml,3);

WARNING: global variable 'checklist' is non-empty !!!

Ready.
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Here in addition to the standard output displayed, j etcalc adds a warning
concerning the 'checklist'. As discussed earlier, in Sections 5.3 and 5.4.2, if
jetcalc is passed a parametrised family of jets it is quite possible that the row

echelon matrix obtained (by the reduction of the spanning set for the tangent

space being calculated) contains a number of non-numeric pivots. Hence the

calculation performed by jetcalc is only valid for those parameter values for
which none of these non-numeric pivots vanish. The 'checklist' mentioned in
the warning is a list of all these non-numeric pivots and is displayed by typing

> plistO;
#1, b

#2, a

The output consists of two columns, the first indicating the index number of
the pivotal element, as an entry in the table where the checklist is stored, and
the second column contains the actual pivotal element. By default plist 0 fac-
torises the pivots before displaying them thereby enabling the exceptional values
(values of the parameters where a pivot vanishes) to be more easily identified.

In future we demonstrate this situation by giving the non-empty 'checklist' and
omit the associated warning message.

So, in the present case the reduction performed by jetcalc applies to mem-

bers of Aab for which a¥-O and b ¥- O. This set of (generic) 3-jets of Aab is a
connected submanifold of the 3-jet space and, for convenience, we denote it as
follows:

z = {z E Aab: a ¥- O,b ¥- O} C J3(2,6).

All the results of the reduction, carried out by jetcalc, therefore hold for
each element z E Z. With this in mind we check whether both conditions of
Lemma 4.5.1 are satisfied by these results.

Firstly, a basis for the complement to the J3g-tangent space, for any element
z E Z, is displayed by the command

> pcompO;
[1, 0, 0, 0, 0, 0]

[0, 1, 0, 0, 0, 0]

201



[0, 0, 1, 0, 0, 0]

[0, 0, 0, 1, 0, 0]

[0, 0, 0, 0, 1, 0]

[0, 0, 0, 0, 0, 1]

[0, 0, x2, 0, 0, 0]

[0, 0, xl, 0, 0, 0]

[0, 0, 0, 0, xl, 0]

2
[0, 0, x2 , 0, 0, 0]

[0, 0, x2 xl, 0, 0, 0]

The variable codim stores the number of these basis vectors

> codim;
11

Recall, from Section 5.4.2, that since the jets we are considering all vanish

at ° the Jk9-codimension (of such jets) is given by the number of non-constant
monomial vectors in the complementary basis. So, clearly each element z E Z

has the same J39-codimension, namely 5, and condition (ii) of Lemma 4.5.1 is

satisfied.

The tangent space, TzZ, to each element z of Z is given by the span of the
two vectors

no, 0, xy2, 0, 0, 0], [0,0, y3, 0, 0, oJ}

and, as described in Section 5.4.2, showing condition (i) of Lemma 4.5.1 to be

satisfied involves verifying whether both these vectors lie in the J3g-tangent
space calculated by jetcalc. This is done by typing the following

> intangent([0,0,xl.x2~2,0,O,O]);

WARNING: original matrix contains non-numeric elements,
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check checklist !!!

true

> intangent([0,0,x2~3,0,0,0]);

WARNING: original matrix contains non-numeric elements,

check checklist !!!

true

The warning message in each case is carried over from the previous cal-
culation (by jetcalc) and reminds us that we still need to investigate the

'exceptional' values a = ° and b = 0.

So condition (i) of Lemma 4.5.1 is also satisfied and it follows that all el-

ements of Aab, for which a ¥ ° and b ¥ 0, are contained in a single J3Q_
orbit of J3(2,6) with J3Q-codimension 5. By choosing the parameter values

(c, b) = (1,1) (Le. satisfying a ¥ 0, b ¥ 0) the corresponding element of Aab,

[0, X, xy2 + y3, y, x2,Oj, (5.7)

is a representative for this orbit.

It remains to check the 'exceptional' values a = 0 and b = O. We start by
considering parameter values for which the first pivot, a, vanishes. Substituting

a = ° into Aab we calculate the J3Q-tangent space of the resulting family of

3-jets, AOb = [0,x,by3,y,x2,Oj, (which for Transversal is denoted fam21) :

fam21:=subs(a=0,faml);
3 2

fam21 := [0, xl, b x2 , x2, xl , 0]

> jetcalc(fam2l,3);

> plistO;

#1, b

#2. -4 b
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(Note: subs is a standard Maple function for substitution) Here the reduc-
tion performed by jetcalc is only valid for the 3-jets of AOb with parameter
values b :I D. We denote the connected submanifold, of Z, consisting of these
3-jets by

W = {w E AOb : b:l D}.

By the techniques described above, we find that the J3g-codimension of each

3-jet w E W is 5 and the vector, [D,D,y3,D,D,D], spanning TwW (the tangent

space to W at w) is contained in the J3g-tangent space calculated by jetcalc.
It therefore follows, by Lemma 4.5.1, that all elements of Aob, for which b ¥ D,
are contained in a single J3g-orbit of J3(2,6) with J3g-codimension 5 and
representative

[0, x, y3, y, x2, OJ. (5.8)

Notice that the 3-jets (5.7) and (5.8) have the same J3g-codimension 5 and it

is possible that they both represent the same J3g-orbit. To investigate this we

construct the l-parameter family, of J3(2,6), connecting them:

At = [D,x,y3 +txy2,y,x2,Dj.

Denoting At by fam22 we use the group setup to find its J3g-tangent space.

> fam22:=[O,xl,x2A3+t.xl.x2A2,x2,xlA2,O];
> jetcalc(fam22,3);

Although jetcalc is passed a I-parameter family of jets, there is no warning
message concerning the 'checklist', as in the previous cases. In fact on inspecting
the checklist

> plistO;
••• CHECKLIST EMPTY •••

we find it is empty. It follows that the calculation performed by jetcalc is
valid for every value of the parameter t, Le. for every element of the family At.

By the previous techniques we find the J39-codimension of each 3-jet of At

to he 5 and that the vector, [0,0, xy2, 0, 0, 0], spanning the tangent space to At is

contained in the J3g-tangent space calculated hy jetcalc. It therefore follows,
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by Lemma 4.5.1, that the entire family, At, is contained in a single J3g-orbit

of J3 (2, 6). In other words, At is a J3g-trivial family and therefore the 3-jets

(5.7) and (5.8) do, in fact, lie in the same J3g-orbit.

We have just demonstrated that provided the parameter b '" ° the corre-
sponding elements of Aab all lie in a single Jsg-orbit, of Jsg-codimension 5,
which has a representative

[0, X, y3, y, x2, OJ. (5.9)

So, with a little thought it follows that the 3-jets of Aab which remain to be
considered are all given by substituting b = ° into Aab giving the family

However, to illustrate the technique used for more complicated siuations we
proceed with a more exhaustive approach.

Backtracking slightly, we need to consider the 'exceptional' value, b = 0, for
the jetcalc calculation for fam21. Substituting b = ° into Aob and calculating

the pg-tangent space to the resulting 3-jet :

> A3:=subs(b=O,fam21);
> jetcalc(A3,3);

we find this jet,

A3 = [0,x,0,y,x2,Oj, (5.10)

to have J39-codimension 7. This 3-jet lies in a distinct pg-orbit to that rep-

resented by (5.9) since their Js9-codimensions differ.

Having thus considered the parameter values for which the first pivot (of

the jetcalc calculation for faml) vanishes it is also necessary to investigate the

3-jets of Aab for which b = 0. Again we proceed with the formal technique by

substituting b = 0 into Aab and calculating the JSQ-tangent space to the family

We find the subsequent reduction performed by jetcalc to be valid for 3-jets
of Aao for which a '" 0. By a similar method to that used previously we find
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these elements of Aao to be contained in the single J3g-orbit with J3g-codimension
6 and representative

(5.11)

It follows that this represents a further (distinct) J3g-orbit. Note that the

exceptional value from the previous calculation by jetcalc i.e. (b = 0),a = °
has already been considered.

5.5.3 Further Illustrative Examples

In the previous subsection we have established that the complete transversal,

Aab = [0,x,axy2 + by3,y,x2,Oj, (to the 2-jet [0,x,0,y,x2,0j) is contained in

three distinct Jag-orbits with representatives:

and
A3 = [0,x,0,y,x2,Oj.

The remaining examples in this section consider the continuation of the classi-
fication of each one of these representatives.

Example 1

Taking the 3-jet Al = [0,x,y3,y,x2,0] we seek a complete transversal by

investigating its J4gl-tangent space. In the CT-group setup we enter the com-
mands:

> Al:= [0, xl, x2~3, x2, xl~2, 0];
> jetcalc(Al, 4);

Then, as before, a basis for a complete 4-transversal for Al is obtained by typing

> pcompO;

.*. THE NORMAL SPACE IS EMPTY ***

This response indicates that the 4-transversal to Al is empty and (since the

tangent space to the germ is an 02-module) we can apply Nakayama's Lemma

(see Corollary 4.4.19) and deduce that At is a-Q-determined.
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So, having found a finitely determined germ it is desirable to calculate

its ge-codimension which, here, is given by the J3ge-codimension of Al =
[0, x, y3, y, x2, OJ.

As remarked above weneed to use the extended group setup for this purpose.
In this setup, by the commands

> Al := [0, xl, x2A3, x2, xlA2, 0];
> jetcalc(Al,3);

j etcalc calculates the J3ge-tangent space to AI.

We take this opportunity to check that the (user-defined) global variables
for this setup have been correctly defined :

> pvarsO;

liealg = skewmatrix

equiv = R

compltrans = false

source_dim = 2

source_power = 0

target_power = 0

nilp = false

R_nilp:

([1, 13], [1, 14], [1, 16], [1, 16], [1, 17], [1, 18], [1, 3], [1, 4],

[1, 6], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12]]

L_nilp:

[]

nilp_source_wt:
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nilp_source_wt

nilp_target_wt:

nilp_target_wt

Observe that, as a result of running j etcalc, the variable R_nilp holds a

list of 'extra' vectors (in this case those needed for the group setup) defined

and stored, originally, in the global variable RG_nilp within the Lie algebra
procedure, skewmatrix. A similar list would appear for the other two setups
(although for the C'Ivgroup case the 'extra' vectors would differ, being those de-

fined and stored, originally, in the global variable RCT_nilp). The interpretation
of the syntax for these vectors is given in Section 5.2. However, for the extended
group setup we do not require these vectors to be added (to the tangent space)
and to ensure this the value of nilp is set to false.

Another point worth noticing is the appearance of (user-defined) global vari-
ables, nilp_source_wt and nilp_target_wt. As discussed in Section 5.5.1,
these are only used for nilpotent Lie algebra setups, when the value of nilp is
set equal to true_order, and so for all our calculations are irrelevant.

The basis of the complement to the J3Qe-tangent space to Al is displayed
in the usual way

> pcompO j

[1, 0, 0, 0, 0, 0]

[0, 0, 1, 0, 0, 0]

[0, 0, 0, 0, 1, 0]

[0, 0, 0, 0, 0, 1]

[0, 0, x2, 0, 0, 0]

[0, 0, xl, 0, 0, 0]

[0, 0, 0, 0, xl, 0]

2
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[0, 0, x2 , 0, 0, 0]

[0, 0, x2 xl, 0, 0, 0]

Since when considering J3Qe-tangent spaces we work over the complete jet-

space, J3 (2,6), of 6-tuples of all polynomials truncated to degree 3, Le. including

those which do not vanish at the origin, the J3Qe-codimension is given by the
number of all the monomial vectors in this basis. So the variable

> codim;

9

gives the Qe-codimension of Al = [0, X, y3, y, x2, OJ. Furthermore this basis yields

a versal unfolding for Al.

Example 2

Taking the 3-jet, A2 = [0,x,xy2,y,x2,Oj, we find using the eT-group setup
that it has a complete transversal

Ac = [0,x, xy2 +cy4,y,x2,0],

in J4(2,6). By definition (of complete transversals) any 4-jet with 3-jet A2 is

J4Q-equivalent to something in this transversal. Denoting Ac by fam3 we use

the group setup to investigate its J4Q-tangent space.

> fam3:=[O,xl,xl*x2~2+c*x2~4,x2,xl~2,O]i
2 4 2

fam3 := [0, xl, x2 xl + c x2 , x2. xl , 0]

> jetcalc(fam3,4);
> plistO i

*** CHECKLIST EMPTY ***

Here, we find the 'checklist' to be empty Le. the calculation performed by
jetcalc is valid for every value of the parameter c. By previously described

techniques we find this entire family to be contained in a single J4Q-orbit of
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J4(2,6) of J4Q-codimension 6. In other words, Ac is a J4Q-trivial family and

we can represent it by the 4-jet

[0, X, xy2, y, x2, OJ.

So any 4-jet, with 3-jet [0,x, xy2, y, x2, OJ is J4Q-equivalent to [0,x, xy2, y, x2, 0].
Furthermore using the CT-group setup we find that this 4-jet has an empty 5-

transversal in J5(2, 6). It follows that the 3-jet,

[0, X, xy2, u. x2, OJ,

is 3-Q-determined and using the extended group setup we calculate its Qe-

codimension (J3Qe-codimension) to be 10.

Example 3

Taking the 3-jet A3 = [0,x,0,y,x2,0], we find, using the CT-group setup, a

complete 4-transversal

On, using the group setup, to calculate the J4Q-tangent space to this family of
4-jets we find that both pivots don't vanish provided d :F O. In other words,
initially, we only have to check one exceptional condition in this case. Compare
this with the more complicated situation encountered when considering the
family Aab above. We find that elements of Acd for which d :F 0 are contained

in a single J4Q-orbit of J4Q-codimension 7 with representative,

[0, x, y4 ,y,x2, OJ.

This representative is 4-Q-determined and has Qe-codimension (J4Qe-codimension)
n.

Investigating the exceptional case d = 0, i.e. the family of 4-jets

we find that elements of this family for which c :F 0 are contained in the single

J4Q-orbit with representative

[
. 3 2A4 = O,x,xy ,y,x ,0],
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which has J4Q-codimension 8. (Note we could also deduce this, by hand, using

the scaling changes described in Section 4.5 and demonstrated in the following

chapter.)

Using the C'Ivgroup setup we find a complete transversal to A4 in J5(2,6} :

We investigate the J5Q-tangent space to this family using the group setup (de-

noting Ae by fam4)

> fam4:=[O,xl,xl*x2~3+e*x2~5,x2,xl~2,O]j
> jetcalc(fam4,5)j
> plistO j

*** CHECKLIST EMPTY ***

We first note that the 'checklist' is empty, so the calculation is valid for all
values of the parameter, e. Inspecting the basis for the complementary space to

the J5Q-tangent space

> pcompO j
[1, 0, 0, 0, 0, 0]

[0, 1, 0, 0, 0, 0]

[0, 0, 1, 0, 0, 0]

[0, 0, 0, 1, 0, 0]

[0, 0, 0, 0, 1, 0]

[0, 0, 0, 0, 0, 1]

[0, 0, x2, 0, 0, 0]

[0, 0, xl, 0, 0, 0]

[0, 0, 0, 0, xl, 0]
2

[0, 0, x2 , 0, 0, 0]
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[0, 0, x2 xl, 0, 0, 0]
3

[0, 0, x2 , 0, 0, 0]

2
[0, 0, x2 xl, 0, 0, 0]

4
[0, 0, x2 , 0, 0, 0]

5
[0, 0, x2 , 0, 0, 0]

we observe that the vector, [0,0, yS, 0, 0, OJ, spanning the tangent space to the
family, Ae, is present in the complementary basis and therefore is not contained

in the J5g-tangent space (for any e). Consequently, the criterion for simplicity,
given in Lemma 4.5.3 is not met for k = 5 and we deduce that any germ with

5-jet Jsg-equivalent to something in Ae cannot be simple. It follows by, the

definition of a complete transversal, that any germ with 4-jet lying in the J4Q_

orbit represented by

also cannot be simple and, since we are only classifying simples, this case needn't
be considered any further.

Normally, we would need to inspect the exceptional behaviour of the family
Aeo when c = O. However, the jet, obtained by substituting c = 0 into Aeo,

As = [0,x,0,y,x2,Oj

needn't be considered any further since in any neighbourhood of it there is a
4-jet,

[0, X, fXy3, y, x2, OJ

where e is small, of a germ for which, by the above, any neighbourhood meets
uncountably many J5Q-orbits.

In conclusion, these worked examples have demonstrated, computationally,

that any Q-simple map A : C2
, ° ~ C6,° with 2-jet, [0,x, 0, y, X2, 0], is Q-

equivalent to one of the three finitely determined germs :

[0, X, y3, y, x2, 0],

[0, X, xy2, v, x2, 0],
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[0, X, y4, y, X2, 0],

with Ye-codimensions 9, 10 and 11 respectively.
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Chapter 6

Calculations

In this chapter we apply the theory and techniques of the previous two chapters
to classify simple families of skew-symmetric matrices, represented by smooth
germs

under the action 9 = 'Rx 1/.. As discussed in Section 4.6 we have already covered
the cases when r = 1 and when r > 1, n = 2,3. Here we are concerned with the
case r ~ 2, n = 4 Le. two or more parameter families of 4 x 4 skew-symmetric
matrices.

We start with some general results useful for these classifications.

Lemma 6.0.1 Any map A :er, 0 -+ Sk( 4,C) of the form,

where ai E Mr, is 1/.-equivalent to both,

+es
o
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and

In particular, A and At are 1£-equivalent.

Proof Recall, from Corollary 4.2.1, that parametrised simultaneous row and
column operations on such matrices correspond to the action of elements of
1£. Here we rely on simultaneous row and column interchanges, discussed in
Remark 2.1.15 in Chapter 2.

Starting with

[ -~, al a2 ., ]
.4= 0 a4 as

-a2 -a4 0 a6 '
-a3 -as -a6 0

by interchanging C2 and C4 (and R2 and ~) we obtain the matrix

Interchanging C3 and C4 (and R3 and ~) gives

[

0 a3 al a2]
-a3 0 -a5 -a6 ,
-al a5 0 a4
-a2 a6 -a4 0

which on multiplying R2 (and C2) by -1 gives the required matrix

Similarly, returning to A and applying the sequence of simultaneous row

and column operations: Cl ++ C3 (RI ++ R3), Cl ++ C2 (RI ++ R2) and -lR3
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(-lC3), we obtain the matrix

o

In fact we can represent any smooth map A :er, 0 -t Sk( 4, C) by the block
matrix

(6.1)

where A is a smooth map germ er,O -t M(2,C) and AI, A2 are smooth map

germs er, 0 -t Sk(2, C).

Consider the subgroup 1/.q C 11. consisting of germs, er, 0 -t Gl( 4, C),

where both Xl and X2 are smooth germs, er,O -t Gl(2,C). The action of

elements of this subgroup on matrices of type (6.1) gives the (1/.-)equivalent
matrix

(6.2)

Setting Y = xl', X-I = X2 we can therefore use a natural equivalence of
families of square matrices, A, to aid the classification of Q-equivalent families
of skew-symmetric matrices of the type in (6.1). We point out that, mostly,

this equivalence is used when considering matrices, of type (6.1), for which

Al = A2 = 0 in which case the action of (n x 1/.q) amounts to a natural
equivalence of the family of square matrices, A.

6.0.4 Families of Square Matrices

In the following section we briefly discuss the classification of families of square
matrices under this equivalence. For further details we refer the reader to

[BrTarSq].
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As usual M(n, C) denotes the space of n x n matrices over C. The set of

singular matrices is a hypersurface D in M(n, C) given by the vanishing of the

determinant.

We are classifying the set, N, of smooth germs

A: cr.o --+ M(n,C),

subject to the following equivalences.

Definition 6.0.2 Let Q be the set of germs cr,O --+ GI(n,C) x GI(n,C) with
the group structure inherited from that in the target. Then if A, B : C", 0 --+
M(n, C) are smooth map germs we say they are Q-equivalent if and only if for
some (X, Y) E Q we have

B=YAX-1•

Notice that Q-equivalence is the parametrised analogue of the standard action

of GI(n, C) x GI(n, C) on the square matrices, M(n, C), corresponding to basis
change. Since N is the set of n x n matrices defined over Or and Q is the
group of pairs of invertible matrices over this integral domain we can deduce
the following result from Theorem 2.1.11 in Chapter 2.

Corollary 6.0.3 Two germs A, BEN are Q-equivalent i/ it is possible to pass
from one to the other by a series 0/ elementary row/column opemtions.

Proof The proof follows from Theorem 2.1.11, with R = Or. 0

This result is an analogue of Corollary 4.2.1 in Section 4.1 although note here,
since we are working with N, as opposed to Sk, all parametrised row/column
operations are independent of each other.

As before, the action of Q is combined with an 'R change of source coordi-
nates to give the following equivalence on N.

Definition 6.0.4 If A, B : C", 0 --+ M(n, C) are smooth map germs we say

they are ('R x Q)-equivalent i/ and only if/or some (t/J,(X, Y» E 'R x Q we have

B = Y(A 0 t/J)X-1•
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An element ofN can also be thought of as map er, 0 -t er, where P = n2•

We state the following result which is an analogue of Lemma 4.2.5.

Lemma 6.0.5 The group 'R x Q acts on the space of mappings er, 0 -t eP as
a subgroup of the corresponding contact group K.

Proof The proof is similar to that of Lemma 4.2.5. In particular if C is the
group of mappings

er,O -t GI(P,C),

there is group homomorphism from Q to a subgroup of C. We represent the

image of an element (X, Y) E Q under this homomorphism by X E C. 0

In fact it can be shown, by a similar procedure to that outlined in Ap-
pendix B, that 'R x Q is one of Damon's geometric subgroups of K. As a
consequence we can apply all the techniques of singularity theory, discussed in
Sections 4.4 and 4.5 of Chapter 4, to these germs. However in order to do this
we need to find a set of generators for the (n x Q)-tangent space to germs
AEN.

Proposition 6.0.6 (i) The 'R-tangent space to the orbit of the element A E

N is the Or-module spanned by the XjAz(il = xj8A/8xi, where 1$ i,j $
r.

(ii) Let Rj (A) (respectively Gi(A») denote the jth row (respectively ith col-

umn) of A. Then the tangent space to the orbit of A under the subgroup

Q of C is the Or-module spanned by the set of matrices Rjl(A) (respec-

tively Cim(A»), with lth row (respectively mth column) Rj(A) (respectively

Gi(A») and zeros elsewhere, for 1s I,m s nand 1s i,j $ n. So the
tangent space to the (n x Q)-orbit of A is

Proof The vectors emerging from the action of the 'R-group are found in the

usual way. For the Q-grOUP we consider the action (on the left) of the path

(In + taEij' In) in Q on matrix A for t small, where In is the n x n identity

matrix, (Eij : 1 $ i,j $ n) give the basis vectors for M(n,C), as described in
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the Proof of Proposition 4.3.2, and a E Or. The tangent vector of the resulting
path in N, at t = 0, is given by

lim { (In + taEij)Aln - A}
t-+O t

yielding the tangent vectors

Or {Rji : 1s i,j s n}. (6.3)

Similarly by considering the action (on the right) of the path (In, In +taEij) E Q

on matrix A, for small t, we find that the tangent vector of the resulting path
in N, at t = 0, is

a(AEij),

thereby yielding the tangent vectors

Or {Cii : 1s i,j s n}. (6.4)

The sum of both sets of vectors, (6.3) and (6.4), gives the Q-tangent space to
A. So the (R x Q)-tangent space to A is

Mr {A"'(i) : 1s i s r} + Or {Rji,Cij : 1s i,j s n}.

o

The subgroup of (R x Q) required for the complete transversal theory of

Section 4.4 is given here by the semi-direct product (R1 x Qo) where R1 is as
described in Definition 4.3.3 and Qo is the subgroup of Q consisting of germs

er,° ~ Gl(n, C) x Gl(n, C) with constant part the identity (In, In). The fol-
lowing corollary gives the tangent space to the action of this group on a germ
AEN.

Corollary 6.0.7 The ('Rl x Qo)-tangent space to a germ, A EN, is given by

M~ {A",(i): 1s i s r} +Mr{Rji(A),Cij(A): 1s i,j s n}.

Proof The first set of Vectors are given by the standard 'R1-tangent space to a

germ er, 0 ~ cr. The second set are given by considering paths in Qo. For
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example in the case of the left action we have paths such as (In + taEij, In)
where a EMr. The result then follows from the proof of Proposition 6.0.6. 0

We continue this summary of (R x Q)-equivalence with the analogues of

Definition 4.2.8 and Proposition 4.2.10.

Definition 6.0.8 The discriminant of an element A EN is the set V(A) =

{x E er,o: detA(x) = O}.

Proposition 6.0.9 If A, B : er, 0 -t M(n, C) are (R x Q)-equivalent then
their determinants are IC-equivalent. Geometrically, this means there is a germ
of a diffeomorphism er, 0 -t er, 0 taking V(A) to V( B).

Proof This is similar to that of Proposition 4.2.10. 0

To find versal unfoldings of germs A :er, 0 -t M (n,C) we need to consider

the 'extended tangent space' (see Section 4.4.3).

Definition 6.0.10 Consider the mapping A: er,O -t M(n,C), which can also

be thought of as an element A E 0;. The 'extended tangent space' or (R x Q)e-

tangent space of A, denoted T(R x Q)e .A, is defined to be

The (R x Q)e-codimension of A is the codimension ofT(R x Q)e.A in 0;, that
is

(R x Q)e-codimA = dime (0; /T(R x Q)e.A) .

We use results analogous to those discussed in Section 4.4.3 to calculate these

codimensions and to find a basis for 0;/T(R x Q)e.A.

The determinacy results, corresponding to those discussed in Section 4.4.2,
have the following geometric interpretation, relating to the natural stratification
of M(n,C).

We need to say a few words here. Recall that we have an action of GI(n, C) x

GI(n, C) on M(n, e). There are finitely many orbits (simply determined by the
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rank of the matrices). The orbits are smooth manifolds, and the union of these

is the stratification referred to. When we say that a map A : er --+ M(n, C) is

transverse to the set of singular matrices, D, we mean that it is transverse to

each of the orbits (or strata) in the stratification.

Lemma 6.0.11 Consider the gern&of a smooth mapping A: er,O --+ M(n,C),
vanishing at the origin. If A is finitely (n x Q)-detern&ined then off 0 E er
A is transverse to the set of singular matrices in M(n, C) and in particular

A-l(O)\{O} is a smooth manifold of dimension r - n2.

Proof Consider the extended tangent space T(n x Q)e.A. Fixing an ordering

for the elements of the set, {Rjl(A),Cim(A)}, described in Proposition 6.0.6,

we denote the sth vector in this set Q.A, (1 :5 s :5 2n2), and write

If A is finitely determined it has finite (nx Q)e-codimension which, by Lemma 4.4.23

in Section 4.4.3, implies, for some integer N ~ 0, that M~ .of c T(n x Q)e .A.

Let ek (1 :5 k :5 P) denote the standard basis vectors for eP• Then, in partic-
ular,

r 2P
N ""k '" 'kXj ek = ~ at (X)Az{i) (X) +~ {J~ (x)Q.A(x),

i=l .=1
(6.5)

tangent to D

for some atk, {J~k E Or, (where 1 :5 j :5 r, 1:5 k ~ P and D is the hypersurface

defined at the beginning of this section). Choose any non-zero point x E er,
for which A(x) E D, that is A(x) is a singular matrix. It follows that some
coordinate of x, Xj ¥ 0, for the sake of argument let this be Xl. Substituting
this value of x into (6.5) gives

r 2P

Xfek = La!k(x)Az(i)(X) + LP!k(x)Q,A(x),
i=l .=1

for each 1 ~ k :5 P, and since xf ¥ 0 it follows that each eA:E dAx (C") +D A(x),

where DA(x) is the tangent space to D at A(x). Since this argument applies to

any choice of non-zero X E C", then it follows for all X 1: 0 with A(x) singular,
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that
im(dA.,)+DA(z) =M(n,C).

In other words A is transverse to D off 0 E er. In particular if we consider the

(codimension P) submanifold of D consisting of just the null matrix, i.e.

Q = {O E M(n,C)},

then clearly, off 0 E er, A is also transverse to Q and applying Proposition 4.1.3

(A -1 (0)\ {O}) is a smooth submanifold of er of dimension r - P. 0

We also have a similar result for mappings into the space of n x n skew-
symmetric matrices. (A map, A : er -+ Sk(n, e), is transverse to the set of
singular skew matrices if it is transverse to each of the strata in the stratification
of Sk(n, C).)

Lemma 6.0.12 Consider the germ of a smooth mapping A: er,O -+ Sk(n,C),
vanishing at the origin. If A is finitely (i-determined then off 0 E er A is trans-

verse to the set of singular matrices in Sk(n,C) and in particular A-l(O)\{O}
is a smooth manifold of dimension r - n(n - 1)/2.

Proof This is similar to that for Lemma 6.0.11. 0

6.0.5 Comparing Equivalences

In this section we link the (i-classification of smooth families of 4 x 4 skew-
symmetric matrices, A :er, 0 -+ Sk( 4, C), of the form

[

0 0 ab]o 0 c d
-a -c 0 0 '
-b -d 0 0

(6.6)

with the ('R- x Q)-classification of the corresponding 2 x 2 matrices, A :er, 0 -+
M(2,C),

A=[~ !]. (6.7)

Starting with several results we finish with a brief discussion of how they Can
be used to aid the ensuing calculations.
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Lemma 6.0.13 Given two smooth germs A, B : er,o -i M(2,q which are

(Rx Q)-equivalent then the corresponding skew-symmetric germs, A, fJ : er, 0 -+

Sk( 4, C), given by block matrices :

- [ 0 A]A = _AT 0 ' - [ 0 B]B = _BT 0 ' (6.8)

(where 0 is the 2 x 2 null matrix) are (R x 'H.q)-equivalent (and therefore g-

equivalent).

ProofIf A and B are (Rx Q)-equivalent then for some germ of a diffeomorphism

f/J : er, 0 -i er, 0 and some pair (X, Y) E Q

B = Y(A 0 f/J)X-1.

Then by choosing Xq E 'H.q,such that

[
yT

Xq= 0

it follows from (6.2) that
- T-B = Xq (A 0 f/J)Xq,

as required. 0

Lemma 6.0.14 Consider a smooth germ, A: er,o -i Sk(4,C), of the form

[

0 0 ab]..1- 0 0 c d
- -a -c 0 0 '

-b -d 0 0

where a, b, c, dE Mr and define A: er,o -i M(2,C) to be

Then it follows that :

(i) the (g-)discriminant 0/ A is just the ((R x '1)-) discriminant 0/ A, and
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(ii) we have the following relation

Ye -codimskA = (n x Q)e-codimN A + 2 dime Or/ (a, b, c, d). (6.9)

Proof (i) Since det A = (det A)2 this follows immediately from Corollary 4.2.9

and Definition 6.0.8.

(ii) Associating any skew-symmetric matrix

A= [ ~-a
-b

~c H],
-d 0 0

with the 2 x 2 matrix

A=[: ~],
it follows by an explicit calculation of the generators of the y-tangent space to

A, as described in Proposition 4.3.2, that

TY.A =:!! T(n x Q).A + Or {(a, b,c, d)el' (a, b,c, d)e6},

where T(n x Q).A is given by Proposition 6.0.6.

In other words, we can consider slots e2, es, e4, es of A together as a 2 x 2
matrix and each of slots el and e6 separately, in both the latter cases the tangent
vectors, arising from the action of the 1-l-group only, being given by the span of
the ideal Or (a, b, c, d}.

In particular, the extended tangent space is given by

Tge.A ~ T(n x Q)e.A + Or { (a, b, c, d)el' (a, b, c, d}e6} ,

and the ge-codimension of A is

ge-codimA = (n x Q)e-codimA + 2dimc Or/Ca, b,c,d).

o

Theorem 6.0.15 Consider the map germs A: Cr,O ~ Sk(4,C),

A= [~a
-b

o
o
-c
-d

a b 1c d
o 0 'o 0
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and A: Cr,O --t M(2,C),

A=[~ !],
(a, b, c, d E Mr) described in Lemma 6.0.1,4, where r is either 1, 2, 3 or 4.
Then A is finitely Q-determined if and only if A is finitely (n x Q)-determined.

Proof We use the relation, (6.9), between codimensions of A and A, found in
Lemma 6.0.14 :

Clearly, if Qe-codim A < 00, it follows from this relation that the (n x Q)e-codim
of A must also be finite and, by applying Lemma 4.4.23 and Theorem 4.4.16, A
is finitely (n x Q)-determined.

The converse is not as simple. If A is (n x Q)-determined, then it is required

to prove that dime (Or/Or(a,b,c,d)) is finite.

However, using Lemma 6.0.11 A-l(O)\{O} is a smooth manifold of dimension

(r - 4). If 1 ~ r ~ 3 this submanifold is empty and A-l(O) = {O}. If r = 4,

A-l(O)\{O} is a smooth 0 manifold, consisting of isolated points. So by the

Curve Selection Lemma, see [Milnor] Chapter 3, A-l(O)\{O} cannot have 0

in its closure and since we are considering A-l(O) as a germ it follows that

A-l(O) = {OJ for this case as well.

Having therefore established that A-l(O) = {OJit follows automatically that

V(a,b,c,d) = {OJ,

and from Lemma 4.7.7 this implies that

dimc(Or/Or(a,b,c,d)) < 00.

This enables us to deduce from (6.10) that the Qe-codim of A is finite, as re-
quired. 0

Remarks 6.0.16 Given a skew-symmetric matrix of the form A (6.6) we can

use the result of Lemma 6.0.13 by considering (R- x Q)-equivalence on its corre-

sponding 2 x 2 block A (6.7). This is particularly useful when proving a family
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of skew-symmetric matrices is JkQ-trivial, as the number of tangent space gen-
erators is much smaller for the 2 x 2 matrix, therefore making the calculations
more managable.

Recall that (n x Q)-equivalence on A amounts to (n x 1-lq)-equivalence on

A. However since (n x Hq) is a proper subgroup of Q then clearly (n x Q)-

equivalence on A and Q-equivalence on A are not in direct correspondence.
As a result two matrices which are not in the same (n x Q)-orbit could still

correspond to Q-equivalent skew-symmetric matrices of type A.

For example, in [BrTarSq], it is found that a germ, A: Cr,O ~ M(2,C),

is, up to (n x Q)-equivalence, usually distinct from its transpose, AT,

T [a c]A = b d .

However, if we consider the skew-symmetric matrix of type, A, corresponding
to A:

[

0 0 ab]
.4- 0 0 c d
- -a -c 0 0 '

-b -d 0 0

then applying the results of Lemma 6.0.1 we find that A is 1-l-equivalent to AT,

AT = [ ~-a
-b

o a c]o b d
-c 0 0 .
-d 0 0

Consequently, the two ('R)( Q)-inequivalent germs A and AT correspond to the

same Q-orbit with representative A (or AT).

So when using (n x Q)-classification, to simplify matrices of type .4 it is im-
portant to use Q_invariants for identifying distinct orbits. In fact Lemma 6.0.14
is a useful tool for finding the Qe-codimensions and discriminants of matrices of

type A by considering those of the corresponding matrix A.
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Representing skew-symmetric matrices of type A with the 2 x 2 matrix A is
also more convenient, notationally, and since applying a row/column operation
to the matrix A corresponds to applying a corresponding simultaneous row and

column operation to A this makes the description of explicit row and column
operations neater (avoiding references to 'counterpart' operations etc).

As a consequence of this result, from here on, we adhere to the following
convention. Unless specified otherwise any 2 x 2 matrix of the form in (6.7)

is interpreted as representing a skew-symmetric matrix of the form in (6.6).
Furthermore, to match the notation used for 4 x 4 skew-symmetric matrices we
denote the basis vectors for M(2, C) by {e2' e3, e4, es}, the corresponding slots,
ei, being given by :

Hence a basis for Jk (r, 4) (the space of k-jets of germs A EN) is given by the

set of monomial vectors x1ei' 1 $ III $ k, 2 $ i $ 5 (see Remark 4.4.6 of

Section 4.4). Occasionally for notational ease, i.e. when manipulating (n x Q)-

tangent spaces, we may also express such germs/jets as 4-tuples [a,b, c, d] in row
major order, by which we mean the rows of the jet are, in descending order,
listed end to end in a single vector.

It is however worth mentioning that care must be taken when finding com-

plete transversals for a jet of type A using the jet A. This is due to having to
account for the two slots el and e6 neglected when considering the 2 x 2 matrix.
So although quite a few of the classification lists obtained in the following are
replicated in lists given in [BrTarSq] the approach we adopt is different. In par-
ticular as a backup resource any calculations performed by Transversal are on

matrices of type A up to Q-equivalence, we only consider (n x Q)-equivalence

on the corresponding square matrix to simplify 'hand' calculations.
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We start with the first of these cases, r = 2.

6.1 Case r = 2, n = 4

Consider smooth germs A: (:2,0 --i Sk(4,C) which we also represent as maps

As discussed at the end of Section 4.4.2 we start classification by considering
the I-jets. Here these I-jets are of the form

where AI, A2 E Sk(4, C). The corresponding jet-group of R x 11. acting on this

space is the product JIRx JI1I.,where JlR is the set of invertible linear changes

of coordinates in (:2, ° and Jl1l the set of I-jets of maps C2,° ---+ Gl (4, C) :

Furthermore the action of this jet-group on Jl (2, 6), as given in Definition 4.4.9,

amounts to the group action GI(2, C) xGl( 4, C) on pairs of 4 x 4 skew-symmetric

matrices, discussed in the first three chapters. Recall, from Example 3.4.1 in
Section 3.4, that under this action we have the following six normal forms (ex-

pressed in upper triangular notation):

[0,0,0,0,0, OJ,

[x, 0,0,0,0, OJ,

[x,O,O,O,O,xj,

[x,O,O,O,O,yj,

[x,O,O,y,O,xj,

[0, x, 0, y, 0, OJ.

Having established these I-jets we start the classification using techniques
described in Chapter 4. We are assisted in this task by Transversal, as dis-
cussed in the previous chapter. The result of our calculations is the following
list of simple finitely Q-determined germs.

228



Theorem 6.1.1 Any Q-simple germ A : ((:2,0 ~ Sk(4,C), where A(O) = 0,

lies in one of the following (distinct) finitely Q-determined orbits. (Note germs

written in 2 x 2 form.)

Normal form Discriminant Qe-codimension Label

[ :' ~ ] , (1 s k s l) Ak+I-I 4k+l-1 Bkl

[: xy] (k> 2) Dk+2 k+5 Sicxk , -

[: y3 ] E6 9 M9x2

[: xy2 ] 10 MlOx2

[: y4 ] Es 11 Mllx2

[~ o ] (k > 2) Dk+2 k+8 FIcy2 + xk , -
(6.11)

[~ o ] (k > 3) D2k 5k GIcxy +yk , -

[ ;, yk ] , (2 < k < 1) Dk+l+1 4k+I+1 Hlclxy --

[ ;2 y2 ] E6 12 Tl2x2

[~ y2 ] E7 13 Tl3x2 +y3

[ ~
y2 ] Es 14 Tl4x2

[~ x21 y3 ] E7 16 Tl6

We proceed by describing how this list is obtained.
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6.1.1 1-jets: pencils

We first consider the three pencils.

Consider first the Ljet, [x, 0, 0, 0, 0, yl, i.e. the family of skew-symmetric
matrices:

[

Ox
-x 0

° °° °
° ° 1o °° .
-y ~

This has an empty 2-transversal and by Corollary 4.4.19 is l-Q-determined. Its

Q-codimension (given by its J1Q-codimension) is °and we deduce [x, 0, 0, 0, 0, yl
to be a finitely-determined representative for the open Q-orbit. By considering
its Pfaffian this germ has discriminant

xy =0,

which has an Al singularity and we calculate its Qe-codimension to be 4.

The I-jet, [x, 0, 0, y, 0, z], is the family of skew-symmetric matrices

[ ~x ~. ~ ~ l.
o 0 -x °

Finding a 2-transversal to this jet to be given by the family

Aa = [x,0,ay2,y,0,xl,

a E C, we use scale changes, mentioned in Section 4.5, to show this family is

contained in a finite number of J2Q-orbits of the 2-jet space.

Lemma 6.1.2 Each member of the family of 2-jets (of germs A C2,0-+

Sk(4,C)) given by

Aa = [x,0,ay2,y,0,xl,

is J2Q-equivalent to either Al or Ao in J2(2, 6).
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Proof Consider the J2g-action, on the family

[

Ox
-x 0

Aa = 0 _Y
_ay2 0

o
y
o
-x

given by the scale R-change of coordinates f/l. : (:2,0 -+ (:2,0

(x,y) t-+ ()..x,py), )"JJ :'/; 0,

followed by the action of a constant matrix Xc E 1£ of the form

[

a 0 00]o {3 0 0
x, = 0 0 "I 0 '

o 0 0 s
(Recall the action of this matrix on Aa corresponds to multiplying each row

and column of Aa by a non-zero constant, see the discussion which concludes

Section 4.5.) The resulting matrix, X;(Aa of/l.)Xc, written in upper triangular
form is then

[a(3)..x, 0, o.dap2y2, (3"1JJY, 0, "Id)..xj.

To preserve the I-jet of Aa we require these constants to satisfy the following
equations:

0.(3).. = 1,

(3"1JJ = 1,

"Id)..= 1.

(6.12)

(6.13)

(6.14)

Equations 6.12 and 6.13 are satisfied by setting

)..= Ijo.{3 (6.15)

and
(6.16)

respectively. It then follows that Equation 6.14 is always satisfied if we set

(6.17)

Hence the set of scale changes defined above, for which conditions 6.15, 6.16
and 6.17 are satisfied for arbitrary non-zero constants 0., {3 and "I, preserve the

I-jet of Aa and change the coefficient of the y2 term in slot e3 to
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So for any a =f. 0 we can choose the constants a, (3, 'Y so that this coefficient
is 1 and hence by such a scale change any element of the family Aa, for which
a =f. 0, is Q-equivalent to the 2-jet

[x, 0, y2, y, 0, z].

By calculation this 2-jet has J2Q-codimension 1. Alternatively for a = ° we
have the 2-jet [x, 0, 0, y, 0, xl which lies in a distinct orbit by virtue of its differing

J2Q-codimension (2). 0

This result is included, primarily, to demonstrate the use of scale changes
for the reduction of families of k-jets to a finite number of representatives. This
technique is used throughout our classification and from here on we apply it
without much further explanation.

Taking each of the 2-jets in turn, we continue by finding a complete transver-
sal at the 3-jet level.

The 2-jet [x,0,y2,y,0,xl, has an empty 3-transversal in J3(2,6) and we

deduce it to be 2-Q-determined.

We find the 2-jet [x, 0, 0, y, 0, z] to have a 3-transversal

[x, 0, ay3, y, 0, z],

a E C which suggests there is a series of (distinct) finitely determined germs
occuring here. Having used Transversal to indicate the presence of a series
we can only prove that there is one by hand calculations. Compared to the
mechanistic approach adopted by Transversal these calculations are more ad-
hoc and as a sample of those to come, we do the present calculation in great
detail. As we proceed and the approach becomes more familiar less explanation
is required.

Theorem 6.1.3 Let A: C2,0 -+ Sk(4,C) be a smooth germ with I-jet

[t
x

°-y
o
i ~],
-x °

(6.18)
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then A is Q-equivalent to a I-Q-determined germ of the form

[

Ox 0 Ylj
-x 0 Y 0
o -y 0 x '

_yl 0 -x 0

where I ~ 2, or A is Q-equivalent to a germ whose l-jet, for any I ~ 1, is (6.18).

So we have the series of finitely determined germs (written in upper-triangular

form):

[x, 0, yl, y, 0, z], (I ~ 2).

Proof Wework, as before, at the jet-level and use the results of Corollary 4.4.15
and Theorem 4.4.18 in Section 4.4 to interpret this at the germ level.

Assume, for any I ~ 2, A has a (l - I)-jet,

[

Ox
.I-IA _ -x 0
J - 0 -y

o 0

o
y
o (6.19)

-x

We calculate the JIQI-tangent space to this jet in the l-jet space. This is given
by

where gij = Cij(A) + ~j(A) are the generators of the ?i-tangent space to A

defined in Proposition 4.3.2, in Section 4.3. Recall that each generator, 9ij, is a

skew-symmetric matrix whose entries are all zero with the exception of its jth
row and column which are found by superimposing the ith row and column of

matrix (6.19). The Ql-tangent space is given by suitable 02-linear combinations

of these generators. Having found the set, {(Az,AII)j9ij : 1 $ i,j $ 4}, of

these 18 generators we list, in upper-triangular form, the subset of distinct

ones. (The labels (i.e. M~, M2) preceeding both types of generators indicate
the appropriate ideals of O2 to be used as coefficients for obtaining tangent
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vectors.)

[1,O,O,O,O,lj, [O,O,O,I,O,Oji

[x, 0, 0, 0, 0, OJ, [0,0,0, x, 0, OJ, [0,0,0,0, x, OJ (6.20)

[0, y, 0, 0, 0, OJ, [x, 0, 0, y, 0, OJ, [0, z, 0, 0, 0, OJ

[O,O,x,O,O,-yj, [-y,O,x,O,O,Oj, [O,O,O,y,O,xj

[0,0,0,0, y, OJ, [0,0,0,0,0, z],

Recall that J' (2,6) is a finite dimensional vector space, with a basis consist-
ing of 6-tuples with a monomial of degree $ I in one slot and zeros elsewhere,
and that finding a complete transversal of our (l - I)-jet amounts to finding a

subspace, T of H' (2,6) such that

where H' (2,6) is the subspace of JI (2,6) of all 6-tuples of homogeneous poly-

nomials of degree I. (See Theorem 4.4.13 in Section 4.4.) Furthermore, a basis

for H'(2,6) consists of the subset of the basis vectors of J'(2,6), which are
homogeneous of degree l.

The approach we adopt to find a complete I-transversal of j'-l A is as fol-
lows. We first use the spanning set, (6.20), to find as many as possible of the

basis vectors of H'(2,6) which are contained in the JI(h-tangent space. This

is achieved by taking each slot e, 1 $ i $ 6 of the 6-tuple and determining
how many degree I monomials we can get in this slot by suitable 02-linear

combinations of the generators modulo (k + 1). Having done this we look for
a complement to the tangent space giving all the remaining basis vectors of

H'(2,6). This complement then provides a complete transversal for j'-1 A.

For future ease of notation, we refer to a general basis vector of H' (2, 6) (or
J'(2,6» in a given slot e, as me;, where m is a monomial of degree I (degree

$ I). Furthermore, we use the shorthand (x)e; and (y)e; for the set of all
basis vectors consisting of a monomial in slot e, which are divisible by x and !I,
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respectively. Clearly, if we can find both sets of monomials (x)e; and (y)e; in

a slot, ei, this means that every basis vector with a monomial (of degree I) in
that slot is contained in the tangent space.

We illustrate this technique by solving the current problem. Consider the
set of generators (6.20).

Multiplying each of [x, 0, 0, 0, 0,OJ, [0,x, 0, 0, 0,0], [0,0,0, x, 0, 0], [0,0,0,0, z ,OJ

and [0,0,0,0,0, x], by monomials of degree (I - 1) we get, respectively,

Furthermore, multiplying [0, y, 0, 0, 0, OJ and [0,0,0,0, y, 0] by y'-l gives the

missing yl terms in slots e2 and es. Also

y'-l ([x, 0, 0, u.0, 0]- [x, 0, 0, 0, 0, 0]) ,

gives a yl term in e4. It remains to find (x)e3, (y)e3 and yl terms in el, e6. A

quick look at the generators confirms that it is not possible to get a yl term in
e3. However we can get (x}e3 by multiplying

[0, O,x,O,O, -yj + [-y,O,x,O,O,Oj + y[I,O,O,O,O, I] = [0,0, 2x,0,0,Oj

by monomials of degree (I - 1). Finally

y'-l ([0, O,x, 0, 0, -yj- [-y, 0, x, 0, 0, 0]) ± yl[l, 0, 0,0, 0,1],

gives a yl term in el and e6 respectively.

We deduce that the J'gI- tangent space to r:' A contains every basis vector

of H' (2, 6) except [0,0, yl, 0, 0, 0] and so a complete transversal is the family of
i-jets

Aa = [x,O,ay',y,O,X].

By scale changes, of the type described in the proof of Lemma 6.1.2, any element

of this family for which a f; ° is Jig-equivalent to the I-jet

Al = [x,O,y',y,Q,x].

Notice if a = °we have the l-jet [x,O,O,y,O,x], for which we can repeat the
same procedure as above, replacing (1- 1) with 1 and so on.
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To show that the l-jet

[ 0
x ° ~]-x ° Y (6.2I)At = ° -y ° x '

-y' ° -x °
is l-determined we need to show that it has an empty complete transversal in the

(l+I)-jetspace (see Corollary 4.4.19). We therefore calculate the Jl+tQt-tangent

space to this jet in the {I + I)-jetspace. This tangent space is determined by

the following list of distinct generators (where, compared with those obtained

from the (l-I)-jet [x, 0, 0, y, 0, xj, new or changed generators are denoted by an
asterisk),

[I,O,O,O,O,Ij, [0,0, ly,-t, 1, 0, OJ.;

M2

[x, 0, yl, 0, 0, OJ., [0,0,0, -x,O,y'j., [0,0,0,0, x, OJ,

[0, y, 0, 0, 0, OJ, [x,O,O,y,O,Oj, [0, x, 0, 0, 0, 0],

[0,0, x, 0, 0, -yj, [-y, 0, x, 0, 0, OJ, [0,0,0, y, 0, z],

[0,0,0,0, y, 01, [0,0, y', 0, 0, xj., [y', 0, 0, -x, 0, OJ.,

[O,O,O,O,y',Ol., [0, y', 0, 0, 0, OJ•.

(6.22)

Notice that we can ignore the last two generators since these already lie in

M2{[0, y, 0, 0, 0, OJ,[0,0,0,0, y, O]}. (6.23)

We apply the same method as before, this time looking to show that all basis

vectors of H'+l (2,6) are contained in this tangent space. Here the notation (x}ei
will denote the set of all monomials of degree 1 + 1 in the slot ei. We follow

the argument used to find the complete transversal of [x, 0,0, y, 0, xJ indicating
modifications where necessary.

To get (x}e2' (x}e5, (x}et, (x}e4' (x}e6' respectively, we multiply generators

[0, x, 0, 0, 0, OJ, [0,0,0,0, x, OJ, [x, 0, y', 0, 0, OJ, [0,0,0, -x, 0, y'j, [0,0, y', 0, 0, xJ by
monomials of degree I, noting that the y' term in each of the last three con-
tributes monomials of degree 21 = (I + 1) + (I - 1) which drop out in (I + 1)

jetspace since I ~ 2.
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To get the yl+l monomials in e2 and es, as before, we use the generators

in (6.23), only here we multiply each by yt. The y'+! term in e4 is given, in a

similar way to that above, by combining [x, 0,0, y, 0, 0] with [x, 0, yl, 0,0,0] and

noting that in (l + I)-jetspace the subsequent y21term in e3 drops out.

We can also use [0,0, x, 0, 0, -y], [-y, 0, x, 0, 0, 0] and y[I, 0,0,0,0,1] as above

to obtain (x)e3 and yl+l monomials in slots el and e6. Observe here, that having

previously demonstrated a basis vector me, (of H' (2,6)) to be contained in the

JIQl-tangent space, to j'-l A, then it follows that the basis vectors xmei, ymei

of H'+! (2,6) are also contained in the Jt+lQl-tangent space to AI.

It therefore remains to find a yl+l term in slot e3. Compared with the pre-

vious case we have the new generators [x, 0, y', 0, 0, 0], [0,0, yl, 0, 0, x] available,

which combined with xlI, 0, 0, 0, 0,1] give us a yl+l in this slot as follows:

y ([x, 0, yl, 0, 0, 0] + [0,0, yl, 0,0, x]- x[I,O, 0,0,0,1]) .

So it follows that the J'+!Ql-tangent space to [x, 0, yl, y, 0, x] contains all the

basis vectors of H'+I (2, 6), therefore it has an empty complete transversal and
is i-determined as required. 0

Lemma 6.1.4 The l-Q-determined germ A = [x,O,y',y,O,x], (l ~ 2), has Qe-
codimension l + 3 and a discriminant of type A,.

Proof We use the result of Corollary 4.4.34, that is,

,
Qe-codimA =L cod.A,

8=0
(6.24)

where, for 8 ~ 0,

d A-d' (TQe.A +M20~ )
co. - im TQe.A +M2+!O~ .

First we calculate the 'extended' tangent space to A, TQe.A. This is the O2-

module consisting of all 02-linear combinations of the 16 vectors in (6.22),

above. Instead of reproducing this set we refer to (6.22).

We proceed to calculate cod.A for each 8 ~ 0, using the method outlined in
Remark 4.4.35.
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Firstly, we consider s = 0, Le. we find codoA. Clearly, the tangent vector

[O,O,ly'-l, 1,0,0] means that [0,0,0,1,0,0] E TQe.A+M20~. However, byob-

servation, neither of [1,0,0,0,0,0], [0,1,0,0,0,0], [0,0,1,0,0,0], [0,0,0,0,1,0]

or [0,0,0,0,0,1) are present in TQe.A +M2.0~. Choosing a basis for a supple-

ment consisting of the first four of these missing vectors (we can omit [0,0,0,0,0, 1)

since the vector [1,0,0,0,0,1) E TQe.A) gives codoA = 4.

Next we consider values of s ~ 1. Here (x}ei and (y}ei represent sets of
basis vectors of degree s which are, respectively, divisible by x and y. Using

[0,0, ly'-l, 1,0,0] we see that (l)e4 E TQe.A + M~+lO~ (where (l}e4 represents

any basis vector of degree s in slot ea). Clearly using the tangent vectors

[x, 0, yl, 0, 0, 0), [0,x, 0, 0, 0, 0], [0,0,0,0, x, 0] and [0,0, yl, 0, 0, x) we find (x}el'

(x}e2' (x}e5 and (x}e6' respectively, in TQe.A +M~+lOg.

Using [0,0, x, 0, 0, -y), [-y, 0, x, 0, 0, 0) and y[l, 0, 0, 0, 0,1] gives (x}e3, (y}el

and (y}e6. The two tangent vectors [0,y, 0, 0, 0, 0) and [0,0,0,0, y, 0] give (y}e2
and (y}e5 which leaves us to check for y. in slot e3.

We observe that for 1 :s s :s 1 - 1 the vector [0,0, y., 0, 0, 0) is not present

in TQe.A +M~+lOg and clearly forms a basis for a supplement, for this space,

in TQe.A + M~Og. However, using vectors [x,O,y',O,O,O), [O,O,y',O,O,x) and

x[l, 0, 0, 0, 0,1) we find the vector [0,0, y', 0, 0, 0) to be in TQe.A. So, for s ~ I,

[0,0,y8,0,0,0) E TQe.A+M~+lO~.

In summary, for values s ~ 1,

{
I for 1s s s I - 1

cod. = ° f Ior s ~

Therefore, from (6.24), Qe-codim A = 4 + (I - 1) = (I + 3).

Finally, by calculating the determinant of

[

Ox
-x °A= ° -y
-y' 0

°y
° ~ 1-x

we find its discriminant to be given by the vanishing of the Pfaffian, i.e.
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which has an A, singularity. 0

The 1-jet [0,x, 0, y, 0, OJis the family of skew-symmetric matrices

[

0 0 x 0]o 0 y 0
g= .-x -y 0 0

o 0 0 0

Again for illustrative purposes we consider the classification of the germs with
this 1-jet in some detail. Firstly we find this 1-jet to have a complete 2-
transversal

Act = [0,x, axy + by2, y, cxy + dx2, OJ,

where (a, b, c, d) E C4. In this case applying scale changes of the type described
in the proof of Lemma 6.1.2 is not sufficient to reduce this family to a finite
number of representatives. For example by such scale changes we obtain the
pg-equivalent family

To preserve the 1-jet we set

and denoting the coefficients of the degree 2 monomials, after this scaling, by
uppercase letters they become:

atS
A = (3"(2'

batS
B = (32"(2'

dt5(3
D=22·

a"(

It can be shown that, in general, it is only possible to scale two of these coef-
ficients to unity. In fact we observe, for any choice of a, (3, "( and tS, the two
ratios:

are invariant under scaling. So, returning to Act, provided ac :F 0 we can, by
scaling, obtain the family

A. = [O,x,xy + By2,y,xy + Dx2,Dj,
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for which, as regards scale changes, any neighbourhood of each element meets
uncountably many orbits. Using Transversal we find this family to be a union

of a finite number of P9-orbits. However the calculations required to find rep-
resentatives for these orbits are untidy, involving the parametrisation of certain

varieties of the parameter space where the calculation, for finding the P9-
tangent space to generic members of As, no longer applies (see Section 5.4.2).

Furthermore we must also consider the possiblities when a = °or c = 0. Instead
we gain more insight by reducing Act in the 2-jet space. We start with a result
which applies to any germ with I-jet [0, x, 0, y, 0, 0].

Proposition 6.1.5 Any germ A: (:2,0 -+ Sk(4,Q with I-jet [O,x,O,y,O,O] is

Jk91 -equivalent to a k-jet of the form

°°-y
-g(x,y)

x J(x,y) 1
y g(x,y)

° ° '° °
(6.25)

where 2 ~ degJ,degg ~ k. We refer to (6.25) as a pre normal form for A.

Proof The proof is by induction at the jet level. Firstly the base case k = 1

is trivial. For the inductive step we assume the result holds for (k - 1), with
k ~ 2. Consider the (k - l j-jet

°°-y
-g(x, y)

x I(x,y) 1y g(x,y)

° ° '
° °

where 2 ~ deg I, deg 9 ~ k - 1. The 91-tangent space is generated by the
following vectors (again the labels refer to the appropriate ideals of Or to be

used as coefficients for obtaining tangent vectors).

(6.26)

[x, 0, 0, 0, 0, 0], [y, 0, 0, 0, 0, 0], (6.27)
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[O,O,O,O,O,xj, [0,0,0,0,0, yj, (6.28)

[0, x, I.0, 0, OJ, [0,0,0, x, I,OJ, (6.29)

[0, v, g, 0, 0,OJ, [0,0,0, v. g, OJ, (6.30)

[0, x, 0, y, 0, 0], [0,0, x,D, y, OJ, (6.31)

[0, I,0, g, 0, 0], [0,0, I.0, g, OJ. (6.32)

As usual we look for a complete k-transversal (an affine subspace which com-

plements the JkQl-tangent space in Hk(2,6».

We first observe that the vectors in (6.27) and (6.28) give every monomial of
degree k in slots el and e6 respectively. Furthermore multiplying the R-tangent

vectors (6.26) by monomials of degree k gives everything in slots e2 and e4' The

key here being that the terms of lx, gx all drop out in the k-jet space. It follows
that a complete k-transversal is something of the form

[O,x, 1+ fk,y,g + 9k,Oj,

where fk' 9k are homogeneous polynomials of degree k, The result then follows
by induction. 0

Remark 6.1.6 We observe from the Q-tangent space generators given above,
that the vectors (6.26) and (6.29) - (6.32) can also be thought of as generators

of the (R x Q)-tangent space to the square germ C2, ° --+ M (2, C)

(6.33)

Therefore we can continue the Q-classification of a k-jet of the form (6.25) by

representing it in this form and considering the action of the (R x Q)-group (see

Section 6.0.4).

Having thus given an idea of where this classification is headed we return to

the simplification of a 2-transversal of [0,x, 0, y, 0, 0]of the form [0,x, Qb y, Q2, 0],
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where Ql (x, y) = ax2+bxy+cy2, Q2(X, y) = Ax2+Bxy+Cy2. Asjust discussed
we can represent this by the 2-jet

(6.34)

and simplify by using elements of the J2(R x Q)-jet group not present in the

J2(R1 x Qo)-group. In particular the scale changes already discussed are used
for this purpose. In addition we also have available the set of transformations
consisting of linear coordinate changes of the form

(x, y) H (x + ay, y),

followed by a suitable row operation such as

to preserve the l-jet, In particular these can be used to eliminate the y2 term

in Ql and the x2 term in Q2. Then we can further simplify the quadratic terms
in the second column by parametrised column operations of the form

where L = rx + sy is a suitable linear combination of x and y. In this way we

can kill off the x2 term in e3 and the y2 term in e5 leaving only xy terms in
both slots. Finally we can scale the coefficients of both these xy terms to 1.
The resulting representative is therefore given by the 2-jet

[X Xy].
Y xy

It is instructive to give the details of this method since it yields representatives
for the more degenerate orbits covering this family.

Lemma 6.1.7 Any square 2-jet of the form

where Ql (x, y) = ax2 + bxy + cy2, Q2(X, y) = Ax2 + Bxy + Cy2 are arbitmry

quadmtics, is J2(R x Q)-equivalent to one of the following four 2-jets:

[
X xy]
y xy ,
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[
X xy]
yO'

the first of which is a representative of the generic orbit.

Proof The proof follows the method of simplification sketched out above. Con-
sider the 2-jet in question,

(6.35)

The first step involves combining a linear change of coordinates of the source
with the action of an element of Q which not only preserves the first column

but also eliminates the y2 term from the (1,2) entry and the x2 term from the

(2,2) entry. We start with an arbitrary linear 'n.-change

(x, y) ~ (ax + [3y, 'YX + 8y), (6.36)

where a, {3, "I, tS E C and atS - {3'Y :f O. The matrix, Ar, representing this map
is

and

( s -(3) (a (3) (1 0)-"I a "I tS = (atS - (3"1) 0 1 .

So applying this 'n.-change of coordinates, in (6.36), to the matrix (6.35) followed
by premultiplying the result by

adj{Ar) = ( eS
-'Y

-(3 )
a '

we obtain the ('n. x Q)-equivalent matrix

[
(aeS - [3'Y)x so, (ax + (3y, 'Yx + eSy) - [3Q2(ax + [3y, 'Yx + eSy) ] (6.37)
(aeS - [3'Y)Y -"IQl (ax + [3y, 'YX + eSy) + aQ2(ax + [3y, "Ix + eSy) .

Consider the matrix in (6.37). It is a requirement of our choice ofR.-change of

coordinates that aeS- [3"1 :f 0 so we can scale the coefficients of x and y in column
1 to unity by a column operation. It remains to find which of these 'n.-changes
will eliminate the required terms from the second column. By expanding the

243



terms in the second column of (6.37) we find that the coefficients of y2 terms in

the first entry and of x2 terms in the second entry are, respectively:

We therefore need to find values of a, fl, '1 and 6 so that both of these coefficients
vanish. This amounts to solving both of the following equations,

(6.38)

and
(6.39)

subject to the condition ad" - fl'Y '" O. Dividing through Equations 6.38 and 6.39
by d"3 and '13 respectively, we find that this problem can be solved provided the
cubic

f(w) = Aw3 + (B - a)w2 + (C - b)w - e,

has at least 2 distinct roots, WI, W2, in which case we can choose a, fl, '1 and d"
such that

fl
J =WI,

a
- =W2·
'1

Suppose that f(w) = 0 has at least 1 root, WI. Then we can always choose

fl and 6 such that flld" = WI' Furthermore, we then choose a, '1 such that

ad" - fl'Y '" O. With these choices the corresponding 'R.-change (followed by the

action of an appropriate element of Q) guarantees the elimination of the y2 term

in the (1,2) entry. The resulting ('R.x Q)-equivalent matrix (to matrix (6.35) )
is

[
X a'x2 + b'xy ]
y A'x2 + B'xy + C'y2 . (6.40)

This matrix is also of the form (6.35), and by applying the previous argument
to it we obtain a cubic

f(w) = A'w3 + (B' - a')w2 + (C' - b')w,

which has two distinct roots unless B' = a' and C' = b'.

So, unless B' = a' and C' = b' we can reduce (6.40) to the ('R.x Q)-equivalent
matrix

a"x2 + b"xy ]
B"xy + C"y2 ,
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which by the column operation C2 - (a"x + C"y)C1 is Q-equivalent to

[
X RXY]
y Sxy , (6.41)

where R, SEC. There are three possibilities.

(i) Both R, S =I- O. In this case we can scale both to unity thence obtaining
the representative

[
X xy]
y xy ,

of the least degenerate J2('R x Q)-orbit of (6.35).

(ii) Only one of R, S is non-zero. By scaling we have either

[
X xy]
yO' (6.42)

or

(6.43)

However they both represent the same J2('R x Q)-orbit since we can pass

from (6.42) to (6.43) by switching rows followed by the 'R-coordinate
switch

(x, y) t---+ (y, x).

(iii) Finally R = S = 0 and we have the representative,

If however BI = al and Cl = b/, then (6.40) becomes

and the column operation C2 - (alx + bly)C1 gives the Q-equivalent matrix
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If A' i' °we can scale it to unity, giving the representative,

otherwise we have A' = ° and the representative,

found above.

Finally if f(w) == ° then A = B - a = C - b = c = °which is a special case
of that above.

Having exhausted all the possibilities we have found the four representatives
given in the statement of the lemma. 0

Taking each of these representatives in turn, we continue our calculations by
finding complete transversals at the 3-jet level.

We find that the 2-jet [O,x,xy,y,xy,Oj, i.e.

[
X xy]
y xy ,

is 2-Q-determined. Furthermore it has Qe-codimension 7 and its discriminant is
given by xy(x - y) = 0 which is of type D4•

The 2-jet [O,x,xy,y,O,Oj, Le.

[
X xy]
yO'

has J2Q-codimension 4. It has a complete 3-transversal

[
X xy]
y ax3 , a E Co

If a i'° by scaling, we obtain the J3g-equivalent jet,

[
X xy]
y x3 ,
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which is 3-Q-determined with Qe-codimension 8. Furthermore, if a = 0 the
corresponding 3-jet,

has a 4-transversal

which suggests the presence of a series.

[
X xy]
yO'

[ Xy xy]ax4 ,

Theorem 6.1.8 Let A : (:2,0 -+ Sk(4, C) be a smooth germ with 2-jet

[

0
o
-x
-xy

o x xy 1o y 0
-y 0 0 '
o 0 0

then A is Q-equivalent to a k-Q-determined germ 01 the [orm

[

0
o
-x
-xy

o x xy 1o Y xk

-y 0 0 '
-xk 0 0

where k ~ 3, or lor each k ~ 2 A is 9-equivalent to a germ with k-jet j2 A.

Proof By Proposition 6.1.5 it suffices to consider the (k - I)-jet (k ~ 3)

·k-l A = [x xy]
J yO'

up to ('R. x Q)-equivalence.

Using Corollary 6.0.7 we find that the Jk('R.1 x Qo)-tangent space to this

jet is generated by the following vectors: (the labels preceding the generators

refer to the ideals of Or from which we can select coefficients for Or-linear
combinations to yield valid tangent vectors)

M2•2 •

[~ ci'].
[~ ~], [~ ~],

[~ ~],
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[
Xy 0]
o 0 ' [ 0 Xy]o 0 .

As before we use this spanning set to find the basis vectors of Hk(2, 4) contained
in the tangent space, refer to the proof of Theorem 6.1.3 for further details.

Multiplying

by terms of degree k - 1 gives (y)e2. The pure power of x term in e2 is given by

k-l [x xy]
x 0 0 '

the resulting xky term in e3 dropping out in Jk (2,4). Similarly the generators,

and

give everthing in e4.

Multiplying the generator,

[ 0 xy]o 0 '

by terms of degree, k - 2, (which is valid since k ~ 3) gives everything in e3
divisible by xy. To find the pure powers of both x and y in this slot we need to
use the Rl-tangent vectors, e.g.

gives the yk term in e3. The xk term in this slot is given by combining the
vector

k-l [0 x]
x 1 0 '

with the two vectors

Xk-2 [xO 0] [0 0]xy = Xk-1 xk-ly
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and

Xk-1 [0 X] = [ 0 Xk ].o y 0 xk-ly

Looking at the generators it is clear that we cannot get a Xk term in slot es.
However,

combined with

gives a tangent vector

and we have everything in es divisible by xy. Finally

k-l [0 x]y 0 y

gives the yk term in this slot, since we have already shown that we have every-
thing divisible by xy in e3. So a k-transversal is

[
X xy]
y axk ,

where a E C. If a :F 0 it can be shown, by scaling this is (R x Q)-equivalent to
the k-jet

[X Xy].
Y xk

(6.44)

Notice if a = 0 we have a k-jet

[
X xy]
yO'

and we repeat the above procedure, replacing k - 1 with k, and so on.

We return to the k-jet in (6.44). For determinacy we need to show that a

(k + 1)-complete transversal to this jet is empty. We find the Jk+ 1(RI x Qo)-

tangent space to this jet to be generated by the vectors (where, compared with
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those obtained from the (k -I)-jet, changed vectors are denoted by an asterisk)

M2. [ b .s.. ].' [~ ~],2 •

M2: [~ xy ]
[~ XOy]' [y xk]o ' o 0 '•

[~ ~k L, [: ~], [~ :],
[ xy ~J., [ ~ xy ]

xk k .
X

By following a method similar to that used to find the complete transversal of
the (k - I)-jet,

[
X xy]
yO'

it follows that these generators give all the basis vectors of Hk+1 (2, 4), corre-

sponding to those found above.

It remains to find the Xk+l term in es. This can be obtained by combining

[ 0 0] [0 x] [0 _x2y]
X y xk - xy 1 0 = 0 xk+1 '

with

[
0 xy]x 0 xk .

So we have shown that the (k + I)-transversal of

[
X xy]Y xk ,

is empty and it is therefore k-('R. x Q)-determined. The required result follows

from Proposition 6.1.5 and Corollary 4.4.19. 0

Corollary 6.1.9 We have the series of finitely k-{;I-determined germs

[0, x, xy, y, xk, OJ, (k ~ 2),

each of which has {;Ie-codimension (k + 5) and discriminant 0/ type Dk+2.
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Proof By using a method similar to that used in the proof of Theorem 6.1.7 it
can be shown that the two squares

[
X xY]
Y xY and [

X xY]
Y X

2

are (R x Q)-equivalent. So it follows that

[0,x,xy,y,x2,Oj, .

is (like [0, x, xy, y, xy, 0]) also 2-9-determined and we can add it to the series
found in Theorem 6.1.8.

The ge-codimension of [0, x, xy, Y, x2, OJ is therefore just the ge-codimension

of [O,x,xy,y,xy,Oj found, using Transversal, to be 7. We proceed by finding

the ge-codimension of the germ [0,z, xy, y, xk, OJ for k ~ 3. For this task it is

more convenient to find the (R x Q)e-codimension of the k-jet

A=[X Xy]Y xk , (6.45)

in O~ and then use the formula given in part (ii) of Lemma 6.0.14 to obtain the

ge-codimension for [0, x, xy, y, xk, OJ. Since this is a slightly different approach
to that described in the proof of Lemma 6.1.4 we give some details. Note that
as regards finding the (R x Q)e-codimension of (6.45) the method is essentially
the same as before.

Firstly, the 'extended tangent space' to A is the 02-module generated by the
vectors given in the latter part of the proof of Lemma 6.1.8. Rewriting them as
4-tuples (in row major order) these vectors are :

[1,y,0,kxk-1j, [O,x,l,Oj

[x, xy, 0, OJ, [O,O,x,xyJ, [y, xk, 0, OJ [0,0, u. xkJ (6.46)

[x,O,y,O], [0, x, 0, y], [xy, 0, xk, 0] [0,xy, 0, xkJ

Using a similar result to Corollary 4.4.34 (in Section 4.4.3) the codimension of
A is given by

(R x Q) _ di A _ ~ di (T(R x Q)e.A +M;O~ )
e co 1m - L.J 1m +1 4 '

.=0 T(R x Q)e.A+M~ O2
(6.47)
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where for convenience we denote the summands codsA, see Definition 4.4.33.

We start by considering s = O. Using vectors [l,y,0,kxk-1) and [O,x, 1,0)

it can be seen that [1,0,0,0) and [0,0,1,0) are both in T(n x Q)e.A +M20~.

However [0,1,0,0), [0,0,0,1) are both missing from T(n x Q)e.A +M20~ and

form a basis for a complement to this space in O~. Hence codoA = 2.

Next we look at the case when 8 = 1. Again using [1,y, 0, kxk-1j and

[0, x, 1,0) all linear terms in both slots e2 and e4 are in T(n x Q)e.A +M~O~.

However the four vectors [O,xly,O,O), [O,O,O,xlyj are not present in T(n x

Q)e.A +M~O~. Since [0,x,D, yj is however in this space, a basis for its comple-

ment in T(n x Q)e.A +M20~ consists of the three vectors

{[O,x,O,O], [O,O,O,x], [O,y,O,O]}.

Hence codoA = 3.

Finally we consider values of s ~ 2. Again using [1,y, 0, kxk-1j and [0,x, 1,0)

all monomials of degree s in both slots e2 and e4 are in T(n x Q)e.A+M~+IO~.

It remains to consider monomial vectors for slots e3 and e5. Using similar
arguments to those used in the proof of Lemma 6.1.8 it can be shown that for

2 :::;8 :::;k - 1 the only monomial vector missing from T(n x Q)e.A +M~+lO~ is

[0,0, O,xBj which clearly forms a basis for a complement ofT(nx Q)e.A+M20~.

However by using vectors [1,y, 0, kxk-lj, [x, xy, 0, 0) it is clear that [0,0,0, xk)

is present in T(n x Q)e.A and so for values 8 ~ 2

cod = { 1 for 2 s 8 s k - 1
B ° for8~k

Hence from (6.47) A has (R x Q)e-codimension 2 + 3 + (k - 2) = k + 3.

Returning to the skew-symmetric germ [0,x, xy, y, xl:, OJ,since

by using the relation, (6.9), in Lemma 6.0.14 this germ has Qe-codimension

(k + 5).

Using part (i) of the same Lemma the discriminant of [0,x, xy, y, xl:, 0] is
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given by the determinant of

[
X xy]

Y Xk

and is xk+l - xy2 = 0 which has a Dk+2 singularity. 0

The 2-jet [0,x, 0, u. x2, OJ, i.e.

o
o
-y
_x2

x 0 1Y x2
o 0 'o 0

has J2Q-codimension 5. The following result, obtained computationally as de-
scribed in Section 5.5, gives all Q-simple germs arising from this 2-jet.

Theorem 6.1.10 Any Q-simple map A: (:2,0 -t (:6,0, with 2-jet J2Q-equivalent

to [0, x, 0, y, x2, OJ, is Q-equivalent to one of the following finitely determined
germs:

[O,x, y3, y, x2, OJ,

[0, x, xy2, y, x2, OJ,

[0, x, v', y, x2, OJ,

with Qe-codimensions 9, 10, 11 and discriminants E6, E7 and Es respectively.

Proof The following is an outline of the classification and we refer the reader
to the worked examples in Section 5.5 for a full description.

The 2-jet [0,x, 0, y, x2, OJ has a complete 3-transversal

where a, b E C.

This transversal is contained in three distinct J3Q-orbits of J3 (2,6) and we
consider each in turn.

1. The elements of Aab for which b ¥ 0 are contained in a single J3g-orbit

with J3Q-codimension 5 and a representative
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Furthermore this 3-jet, AI, is 3-Q-determined and has Qe-codimension 9. Rep-
resenting it by its corresponding 2 x 2 submatrix,

we see that it has discriminant

which has an E6 singularity.

2. The elements of Aab for which b = ° and a :F ° are contained in a single
PQ-orbit with J3Q-codimension 6 and a representative

This 3-jet has a complete 4-transversal

which is found to be a J4Q-trivial family contained in the single J4Q-orbit with

J4Q-codimension 6 and representative

[0, X, xy2, y, x2, OJ.

This 4-jet is 4-QI-determined. So, since any germ with 3-jet A2 is J4Q-equivalent

to the 4-jet [0,x, xy2, y, x2, OJ (by the definition of a complete transversal), it
follows that A2 is in fact 3-Q-determined. We find the Qe-codimension of A2 to
be 10 and representing it by its corresponding 2 x 2 submatrix,

we see it has discriminant

which has an E7 singularity.

3. The element of Aab for which b = a = ° is given by

A3 = [0,x,0,y,x2,Oj

and has J3Q-codimension 7. This 3-jet has a complete 4-transversal
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The elements of Acd for which d =1= 0 are contained in a single J4Q-orbit, of

J4(2,6), with J4Q-codimension 7 and representative

[0, X, y4, y, x2, 0].

This 4-jet is 4-Q-determined and has Qe-codimension 11. Representing it by its
corresponding 2 x 2 submatrix,

we see it has discriminant

which has an Es singularity.

It remains to show there are no more Q-simple germs. The elements of Acd

for which d = 0 and c =1= 0 are contained in a single J49-orbit, of J4(2,6), with
representative

and J4Q-codimension 8. This 4-jet has a complete 5-transversal

All elements of this family have J5Q-codimension 9. Associating each e E C
to the corresponding element of this family, their Pfaffians are given by the

family of function germs x3 - xy4 - ey6. However for any such e E C we claim
that any neighbourhood of e consists of uncountably many (corresponding) /C-

inequivalent germs.

Provided 27e2 - 4 =1= 0 each germ x3 - xy4 - ey6 is 6-/C-determined. Working

in J6(2, 1), by a similar argument to that given in the proof of Lemma 4.4.10,

all J6/C-orbits are constructible and so meet the I-dimensional affine space

in constructible sets. These are either a finite set of isolated points or the
complement of a finite set of points.

If one of the J6/C-orbits meets X in the complement of a finite set of points

then for all except a finite number of values of e the J6/C-tangent space to a
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germ x3 - xy4 - ey6 would contain the tangent vector to X, y6. A calculation

shows this is not the case. So every J6K-orbit of J6(2, 1) meets X in a finite

set of points thus proving our claim.

Hence applying Proposition 4.2.10, in any neighbourhood of each element of

Ae there are uncountably many J5Q-orbits (in J5 (2,6)). Since any germ with a

4-jet, lying in the J4Q-orbit represented by A4, is J5Q-equivalent to something
in Ae (by the definition of a complete transversal) it follows that such germs
cannot be simple.

Finally, the element of Acd for which d = c = 0,

A5 = [0,x,0,y,x2,0)

cannot be the 4-jet of a Q-simple germ, since in any neighbourhood of it (in

J4 (2,6)) there is a 4-jet

[0, X, fXy3, y, x2, 0),

where f is small, of a germ for which, as demonstrated above, any neighbourhood

meets uncountably many J5Q-orbits of J5(2, 6). 0

Investigating germs with 2-jet [0,z, 0, y, 0, 0) we establish the following result.

Lemma 6.1.11 There are no Q-simple germs A C2,0 -t C6,0 with 2-jet
[0, z, 0, y, 0, 0).

Proof The proof relies on a calculation carried out by Transversal. The 2-jet

[0, x, 0, y, 0, 0) has J2Q-codimension 7 and a complete 3-transversal

Acd = [0,x,c(x,y),y,dx3,Oj,

where c(x, y) = CIX3 + c2x2y +C3xy2 +C4y3 and (CI,C2, C3, c4,d) E C&. Observe,

with regard to using Lemma 4.5.3, that Acd is a smooth constructible subset of

J3(2,6) which, obviously, passes through each of its constituent 3-jets.

We find, using Transversal, that for almost all values of the parameters

(Cl, C2, C3,C4, d), (the possible exceptions being values of these parameters which

occur in the union of a finite number of affine varieties of the parameter space)

the corresponding elements of Acd have J3Q-codimension 8 and the J3Q-tangent
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space to each does not contain the vector, [0,0,0,0, X3, 0], (which lies in the

tangent space to Acd) and hence cannot contain the tangent space to Acd.

Consider any 3-jet of the transversal Acd. It follows, by the above calculation,

that on any neighbourhood U of this 3-jet (in J3 (2,6)) there is no Zariski open

set V C Acd satisfying the criterion for simplicity given in Lemma 4.5.3. So, no
germ with a 3-jet in the complete transversal, Acd, can be Q-simple and, by the
definition of a complete transversal, this is also the case for all germs with 2-jet
[O,x,O,y,O,O].D

6.1.2 l-jets jetrank s 1

In this section we consider the remaining l-jets, [x,O,O,O,O,x], [x,O,O,O,O,O]

and [0,0,0,0,0,0]. Initially we manipulate the first two into more convenient

forms. Using Lemma 6.0.1 we find the l-jets [x, 0, 0, 0, 0, x] and [x, 0, 0, 0, 0, 0]
are 1-l-equivalent to the 1-jets

[ ° ° x

~ 1° ° ° (6.48)-x ° °° -x °
and

[ ° ° x

n.° ° °-x ° °° ° °
respectively.

First consider the I-jet [O,x,O,O,x,O]. Exploratory techniques, already fa-

miliar to the reader from the previous section, suggest that any germ with this

I-jet occurs in a series of (distinct) finitely Q-determined germs. An initial step
to proving this is the following result.

Lemma 6.1.12 Any germ C2, °~ Sk(4, C) with (k - I)-jet (k ~ 2),

[~.°oo-x
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is J"g-equivalent to one of the following three k-jets:

[0, x, y", v", x, OJ,

[0, X, y", 0, x, 0],

or
[O,x,O,O,x,Oj.

ProofIt is fairly easy to show that the (k - I)-jet,

[~.° x ~],° °° °-x 0

has a complete k-transversal

[ -a~y'
alY" x a3Y" ],° a4Y" x+aSY"

-x -a4Y" ° a6Y"
-a3Y" -x - aSY" -a6Y" °

(6.49)

where, as usual, ai E C.

We use the J"g-group to simplify this family to a finite number of represen-
tatives. There are two cases to consider

(ii) a3 = O.

(i) If a3 '" 0 we can assume al = a6 = 0, since by using the simultaneous
row and column operation involving the column operation,

followed by another involving the row operation,
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eliminates the yk terms in slots e1 and ee respectively. Assuming a5 :j; ° then

by scaling we obtain the JkQ-equivalent matrix

px 0 X yk

1 '
0 A4yk X +yk

(6.50)-A4yk 0 0
_yk -x _ yk 0 0

where A4 is invariant with respect to scaling.

Representing this k-jet by the square

[ A:yk
yk ] ,x+yk

by explicit row/column operations followed by an R.-change of coordinates, we

obtain the Jk (R. x Q)-equivalent matrix

[
X yk]
ayk x .

(We also obtain a k-jet of this form if a5 = 0 above.) If a :j; ° it can be scaled

to unity and we conclude that all elements of the k-transversal (6.49) for which

a3 :j; 0 are JkQ-equivalent to one of two k-jets :

or [0, x, u", 0, x, OJ.

(ii) Alternatively, if a3 = 0, we can also assume a1 = a4 = a5 = a6 = 0,

since otherwise by a series of simultaneous row and column operations we can

move a non-zero multiple of yk into slot ea thereby obtaining a k-jet considered
in case (i). This leaves the third and final k-jet

[0, x, 0, 0, x, OJ.

o

We can use this lemma to give us the following result.

Theorem 6.1.13 Let A: (;2,0 ~ Sk(4,Q be a smooth germ with I-jet

[~.ooo (6.51)
-x
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then A is Q-equivalent to an l-Q-determined germ of the form

(6.52)

or for any k ~ 1, A is Q-equivalent to a germ whose k-jet is (6.51) or for any

2 ~ k ~ l, A is Q-equivalent to a germ whose l-jet is

[

0 0 X Yk]o 0 0 x
-x 0 0 0 .
_yk -x 0 0

Each germ of the series, (6.52), has Qe-codimension (4k + l-I) and a discrim-

inant of type Ak+l-l.

Proof Assume for any k ~ 2 that A has a (k - I)-jet

[

0 0 x 0]o 0 0 x
-x 0 0 0 .
o -x 0 0

By Lemma 6.1.12 we can represent this jet by the matrix

for which there are two possible k-jets :

(6.53)

or

(6.54)

The third possible k-jet

[~ ~],
corresponds to replacing (k - 1) in the original assumption by k etc. The first

of these, (6.53), is k-(n x Q)-determined. Hence since M~+1C M2{x, yk}, this

implies that the corresponding skew k-jet is k-Q-determined.
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Assume any germ with the second k-jet has (for I > k) an (I - I)-jet

This has a complete I-transversal

where a E C. Note if a = °we replace (1- 1), in the previous assumption, by I

etc. Considering a f. 0, by scaling we obtain the JI(R x Q)-equivalent I-jet

[X yk]
yl X '

which is I-(R x Q)-determined.

Noting that the k-determined jets

[
X yxk]yk

are included in this series by allowing I = k, we have found the required series.

By finding the (R x Q)e-codimension of the I-determined germ

[;
and using the relation (6.9) in Lemma 6.0.14 we find the corresponding germ

[0,x, yk, yl, x, OJhas (le-codimension (4k + I - 1). Furthermore its discriminant

is given by x2 - yHI = 0 which has an AHI-1 singularity. 0

We can extend this series to include all previously found finitely determined
germs whose discriminants have A-type singularities.

Corollary 6.1.14 We have a series, Bkl, of finitely 1-9-determined germs

[O,x, yk, y',x,Oj, (6.55)

each of which has ge-codimension (4k + 1- 1), a discriminant of type AHI-l
and represents a distinct (I-orbit.
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Proof First consider the series of germs obtained in Theorem 6.1.3 :

[~.-s'

x
o
-y
o

o
y
o
-x

~ 1x '
o

l ~ 2. (6.56)

Interchanging C2 and C3 (and R2 and R3) we obtain the matrix

p. 0 x ~l0 -y
y 0

_yl -x 0

Representing this by the matrix

[
X yl]
-y X '

interchanging RI and R2 followed by interchanging Cl and C2 we obtain the
(R x Q)-equivalent matrix

-y ]
x '

which by a scale change is equivalent to

[;, ~]. (6.57)

Hence, using Lemma 6.0.13, we deduce the two germs [x, 0, yl, y, 0, x] and [0,x, y, yl, x, 0],
l ~ 2, are g-equivalent and represent them by the 2 x 2 square in (6.57). So
the series of l-determined germs found in Theorem 6.1.3 can be added to those
found above, in Theorem 6.1.13, by allowing k = 1. It is easily verified that
when k = 1 the invariants of these two series match.

We can also include the open {I-orbit of germs in this enlarged series. Recall,
a representative for such a germ is given by the I-determined jet

[

Ox 0 0]-x 0 0 0
o 0 0 y .
o 0 -y 0

(6.58)

As discussed in Section 3.4.1 any non-singular pencil of 4x4 skew-symmetric ma-

trices with two distinct eigenvalues (a non-degenerate pencil) is skew-equivalent
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to this I-jet. Clearly the I-jet

[
0 0 x

~ 1
0 0 y
-x -y 0
-y -x 0

is such a pencil as the roots of its Pfaffian are given by x2 - y2 == O. Hence
we can add I-determined jets represented by (6.58) to our series by allowing

k==l==1.

It remains to distinguish each of the germs of this series. By Lemma 4.2.7, in

Section 4.2, the germ [0,x, v", yl, x, 0] is K-equivalent to [0,x, v", 0, 0, 0] which
has Ke-codimension (5k - 1). Since, by Lemma 4.2.6, the Ke-codimension of a

germ is a Q-invariant it follows that the value of k in the germ [0,x, v", yl, x,D]

is an invariant. Furthermore since both the discriminant and !le-codimension of
a germ are Q-invariants this implies that l is also an invariant. It follows each
germ in this series represents a distinct !I-orbit. 0

Consider the I-jet

[~~~~l·-x 0 0 0
o 0 0 0

(6.59)

This I-jet has a complete 2-transversal

aly2
o

-a4y2
-p(x,y)

(6.60)

where p(x, y) == ax2 + bxy + cy2 is a arbitrary quadratic. Next we look to

identify, from this 2-transversal, a finite number of distinct J2Q-orbits.

Assume first that a3 =F O. By a pair of simultaneous row and column opera-
tions, the first involving

and the second involving
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we obtain the pg-equivalent matrix

There are two possiblities, each obtained by scaling.

If A4 I- 0 then we have the pg-equivalent matrix

o
o

_y2
-P(x,y)

X y2 1y2 P(x,y)
00·
o 0

(6.61)

where the quadratic P(x, y) is different to p(x, y).

If A4 = 0 then we have the J2g-equivalent matrix

o
o
o

-P(x,y)

~ P(~~y) 1o 0 .
o 0

(6.62)

If in (6.60) a3 = 0, provided one of at, a4 or a6 is non-zero we can, by

simultaneous row and column operations, move a non-zero multiple of y2 into
slot e3 - thereby reducing to one of the previous cases, (6.61) or (6.62). There
remain those 2-jets for which a3 = at = a4 = a6 = 0 i.e.

o
o
o

-P(x,y)

~ P(~,y) 1o 0 .
o 0

(6.63)

For convenience we represent each of these families of 2-jets, (6.61), (6.62)

and (6.63), by the matrices

[ :2 y2 ] (6.64)P(x,y) ,

[ ~
y2 ] (6.65)P(x,y) ,
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and

[~ P(~,y)], (6.66)

respectively, with a view to obtaining, from them, all distinct J2 (n x Q)-orbits.

Lemma 6.1.15 Any 2-jet of the form (6.64), (6.65) or (6.66) lies in one of

eleven (distinct) J2(n x Q)-orbits with representatives, written in row major

order (see Remarks 6.0.16), given by

[x,0,0,x2 +y2j,

[x,0,0,y2j,

[x, y2, y2, xy],

[x, y2, y2, x2j,
[x, y2, y2, OJ,
[x, y2, 0, xyj,
[x, y2, 0, x2j,
[X,y2,0,Oj,

[x,O,O,xyj,

[x, 0, 0, x2],

[x,O,O,Oj.

Proof Here we will show that, given a 2-jet in (6.64), (6.65) or (6.66), then

by J2(n x Q)-equivalence we obtain one of the above cases. We need to check

the corresponding J2g-orbits are distinct and we defer a proof of this to a

later corollary. Clearly, if two J2g-orbits represented by [0,al, bl, Cl, dl, OJ and
[0,a2, b2, C2, d2, OJ are distinct then so are the corresponding J2 (n x Q)-orbits

represented by [at,b1,cl,dd and [a2,~,c2,d2j.

For illustrative purposes we consider 2-jets of the form (6.64)

[
X y2 ]
y2 P(x,y) . (6.67)

The argument used for this case can also be applied to the simpler case of the
2-jets of type (6.65) and (6.66).
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First we classify the quadratic, P(x,y) = PIX2 + ]J2xy + p3y2, up to the
subgroup of linear coordinate changes consisting of elements of the form

(x,y) ~ (o:x,f3x + "IY), 0:"1",0. (6.68)

These coordinate changes preserve x = 0 and hence, after scaling, the I-jet of
(6.67).

In fact the action of this subgroup yields a classification of binary cubics,
xP(x,y) E V4, up to a linear equivalence preserving x = O. Recall from Defi-
nition 4.7.8 and the succeeding remarks that we associate a binary cubic with

the set of its 3 roots, in PCI• Consequently, we expect the action (given in
Definition 4.7.9) on the set,

v = {q E PC3: q = .\xP(x,y),.\ '" 0, with P(x,y) E V2},

of the subgroup of PGl(2, C) which fixes the point (0 : 1) E PCI, to give 4

distinct types. Representing these by their set of roots in PCI, they are:

(1) a simple point (0: 1) and two further simple points,

(2) a simple point (0: 1) and a further double point,

(3) a double point (0: 1) and a further simple point,

(4) a triple point (0 : 1).

Adding to these the further possibility of 0 E V4 gives five possible types under
this classification. In the following we find the normal forms for these types.

The effect of such a coordinate change, (6.68), on the quadratic P(x, y) is

P(o:x, f3x + "IY) = Pl0:2x2 + [J2o:x(f3x + "IY) +P3(f3x + "Iy)2

= (Pl0:2 + [J20:{3+ P3{32)X2

+ (]J20:"I+ 2P3/3"1)XY +P3"12y2. (6.69)

H P3 '" 0 and P(x, y) has distinct roots, by choosing suitable values for (0:, /3, "I),
we can reduce it to x2 +y2. For example, from (6.69), it can be seen, by choosing

"I = 1/ v'P3 and (0:, /3) = .\(2P3, -[J2) for some .\ '" 0, that the coefficient of y2

it scaled to unity and the coefficient of xy is zero. Furthermore the coefficient
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of the x2 term is then given by P3A2(4pIP3 - p~). So denoting the discriminant,

4PIP3 - p~, of P(x, y) by 8 it follows that if 8 '::f 0 then by choosing A= 1/..fii3S

we can scale this coefficient to unity and get x2 + y2.

If however, P3 '::f 0 but P (x, y) has repeated roots (8 = 0) then choosing the

same values, (0, {3, 'Y) = (A2p3, -AP2, 1/ Jii3) for any A '::f 0, we reduce P(x, y)

to y2.

If P3 = 0 then (6.69) becomes

and provided P2 '::f 0 choosing (0, {3, 'Y) = (1, -pt!P2, 1/P2) reduces P(x, y) to
xy.

If P3 = P2 = 0 but PI 1: 0 then by choosing 0 = 1/$I we obtain x2
• Finally

we are left with the possibility, P(x, y) = O.

So by the action of elements of the form (6.68) we can reduce P(x, y) to a

quadratic, Q(x, y), taken from the set:

{ 2 2 2 2 O}X + y ,y ,xy, x, . (6.70)

Premultiplying each of these by some non-zero constant multiple of x gives
each of the five normal forms of cubics, xP(x,y), (up to a linear equivalence

preserving x = 0) discussed overleaf.

The effect of this action on a 2-jet of type (6.67) results in an equivalent

matrix of the form

(6.71)

where a '::f 0 and b3 1: O. Similarly, the action of this group on 2-jets of type

(6.65) or (6.66) result in equivalent matrices of type

(6.72)

and

[a OX 0 ]
Q(x,y) , (6.73)
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respectively. We continue by considering (6.71). Since we are working in the
2-jet space we can use the x-term in slot e2 to kill off both the terms in slot e3
involving x. For example by the column operation,

we obtain the J2(n x Q)-equivalent jet

The same operation applied to the rows of this matrix gives

(6.74)

Applying the same argument to (6.72) we obtain the J2(n x Q)-equivalent jets

(6.75)

We also have jets of type (6.73).

The next step is to scale the non-zero constants a, b3 in (6.74) to unity while
preserving the quadratic Q(x, y). Since Q(x, y) is one of the five homogeneous

quadratic types in (6.70) this amounts to combining a scaling coordinate change,

(x,y) ~ (>.x,>.y) with the Q-action of a pair (X,Y) E Gl(2,C} x GI(2,C}, of
the form

X=[a 0]o f3 ' Y = [~ ~], a{3pa :F O.

By such an action we obtain, from (6.74), the J2(n x Q)-equivalent matrix

It can be verified that by choosing (>\, a, (3, p, er)= (a/b~, bVa2, bUa2, 1/~, 1),
we obtain the required form

y2 ]
Q(x,y) . (6.76)

268



By a similar method we can scale 2-jets of type (6.75) and (6.73) to

[
X y2 ]o Q(x,y) , (6.77)

and

[~ Q(~,Y)]· (6.78)

Finally we observe for types (6.76) and (6.77), that if the quadratic Q(x,y)

contains a non-zero y2 term then it can be used to kill off any y2 terms present

in slots e3 or e4, thereby reducing to a 2-jet of type (6.78). For example, consider

2-jet of type (6.76) where Q(x,y) = x2 +y2,

By the row operation Rl - R2 we get the 2-jet

Then the column operation C2 + XCl gives the J2(n x Q)-equivalent jet

since degree 3 terms drop out in 2-jet space. By the analogous operations Cl -C2

followed by R2 + xRI we obtain the J2(n x Q)-equivalent jet

[
X - y2 0 ]

o x2 + y2 ,

which by the J2R-change (x,y) t-t (x + y2,y) is p(n x Q)-equivalent to

By similar arguments any 2-jet of type (6.76) or (6.77) with Q(x,y) either

x2 + y2 or y2 is p(n x Q)-equivalent to the 2-jet of type (6.78) with this

Q(x,y). Bearing this in mind we obtain from, (6.76), (6.77) and (6.78), the
eleven 2-jets in the statement of the lemma. 0
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We wish to determine, from this list of 2-jets {[x,bi,ci,di] E J2(2,4)},

whether the corresponding 2-jets HO, x, bi, Ci, dj, 0] E J2(2,6)} represent dis-

tinct J2g-orbits of J2(2, 6). To this end we identify an invariant of such 2-jets,
using the following results. Recall, from Corollary 4.2.4, that if two germs
A, B : er, 0 ~ Sk(n, C) are g-equivalent then for some ring isomorphism,

¢* : Or ~ Or,

The following gives a related invariant for germs (of 4 x 4 skew-symmetric ma-

trices) which are equivalent as I-jets.

Lemma 6.1.16 Consider two germs A, B : er,o ~ Sk(4,C), both vanishing

at the origin, with I-jets AI, Bl respectively.

(i) If A and Bare Jl1l-equivalent then

(ii) If A and B are JIg-equivalent then, for some germ of a diffeomorphism

¢ :er, 0 ~ er, 0 and the corresponding ring isomorphism rp* : Or ~ Or,

(6.80)

where rpl is the I-jet of rp.

Proof (i) Write A = Al + A2, B = Bl + B2, where AI, B; are skew-

symmetric matrices with each entry linear in the variables {Xi : I $ i $ r} and

A2, B2 E M;.O~. If A and B are Jl1l-equivalent then, for some X E Jlll,

In particular if X(O) = Xl then

Clearly,

Writing A == (XT)-l BX-l mod M~ and following the same argument gives

the reverse inclusion and hence the result in (6.79).
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(ii) If A and Bare 9-equivalent as I-jets then, for some germ of a diffeo-
morphism 1> : er, 0 --+ er, 0, A 0 1> and B are ?i-equivalent as I-jets. Since we

are working modulo M~ the only relevant part of 1> is its l-jet which we denote

1>1. From (6.79) it follows that

and denoting the ring isomorphism, Or --+ Or, corresponding to 1>1 by 1>i we

have (6.80). 0

Lemma 6.1.17 If the 2-jets A2, B2 : er,O --+ Sk(4,C) of the form, A2 =
[a,Xl + al,bl,cI,dl,a], B2 = [a,Xl + a2,b2,c2,d2,aj (with each ai, bi, Ci, di

homogeneous of degree 2), are J2?i-equivalent then

(6.81)

where >. is some non-zero constant. In particular,

(6.82)

The 3-jet j3(Xldd is therefore, up to non-zero multiples, a J21f.-invariant of

2-jets of this form.

Proof Write

° Xl + al
a Cl

-Cl 0
-dl a

b

l 1dl
o '
a

and

where v, 0:, (3, "(,~, 1J EM~. Then supposing, A2 = [a,Xl +al,bl,cI,dl,Oj, and

B2 = [a,Xl +a2,b2,C2,d2,Oj are J21l-equivalent we know, for some X: er,O--+

GI(4,Q, that

XTAX=B.

Taking determinants of both sides we have
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Taking square roots and denoting det X by A (A(O) i:- 0), this gives

where if>E M~. Writing A = -..\+Al, where ..\ i:- ° is a constant and Al E Mr,

we obtain the following expression

±A(xldl + aldl - blcd - (xld2 + a2d2 - C2b2) = x18 ± Al (xldl + aldl - blCl) + if>

= x18l + if>l,

where 81 E M~, if>l E M~. Recalling that the Pfaffian of a skew-symmetric
matrix is given by a square root of its determininant, the LHS of this expression
is TAP f(A2) + P f(B2) and we have the result in (6.81). Clearly, taking the
3-jets of both sides gives

In both cases, since A is arbitrary, the sign is irrelevant. 0

We can use these two lemmas to identify an invariant of two pg-equivalent
jets of the form [0, Xl, bi, C;, dj, 0].

Corollary 6.1.18 If the 2-jets A2, B2 : er,O --+ Sk(4,Q of the form, A2 =
[O,xl,bl,Cl,dl,Oj, B2 = [O,xl,b2,C2,d2,Oj (with each bi, Ci, di homogeneous

of degree 2), are pg-equivalent then, there is a (invertible) linear change of

coordinates if>l : er, ° --+ er, ° of the form

which takes dl to a non-zero scalar multiple of d2, i.e.

where Ai-D.

Proof If A2 = [0,Xl, bl, Cl, dl, Dj, B2 = [0,Xl, b2, C2, d2, 0] are equivalent as 2-
jets then for some germ of a diffeomorphism, if>: er, 0 -+ er, 0, A2 0 if>and B2
are ll-equivalent as 2-jets. Clearly, A2 0 if>and B2 must also be 1l-equivalent as
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I-jets and denoting the I-jet of ¢ by ¢l, it follows from (6.80) in Lemma 6.1.16

that

Any such diffeomorphism, ¢, must therefore have a I-jet of the form

above.

For such a diffeomorphism, ¢,

aXI + q bl 0 ¢ 1
Cl 0 ¢ dl 0 ¢
o 0 '
o 0

where q is some homogeneous polynomial of degree 2 introduced by the 2-jet
of ¢. It follows, by a simultaneous row and column operation, that if A2 0 ¢ is

J21i-equivalent to B2 then so is

o
o

-Cl 0 ¢
-dl 0 ¢

Xl + ql bl 0 ¢ 1
Cl 0 ¢ dl 0 ¢

o 0 '
o 0

where ql = (I/a)q and Cl = (I/a)cI. Applying Lemma 6.1.17, this implies
that

for some non-zero constant A. Since we are taking 3-jets, we need only consider
the effect of the l-jet, ¢l, of ¢ on the LHS of this expression. So,

where ¢l preserves Xl = o.

We therefore deduce that if A2 and B2 are J2Q-equivalent then there is a
germ of a diffeomorphism ¢ :er, 0 ~ er, 0 whose linear part, ¢l, fixes Xl = 0
and takes dl = 0 to d2 = 0, as required. 0

We return to considering the case r = 2 i.e. germs e2,0 ~ Sk(4,C), in

particular all possible J2Q-orbits of germs with I-jet [0,X, 0, 0,0, OJ.
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We can use the invariant, identified by Corollary 6.1.18, to distinguish the

PQ-orbits which correspond to the ('R x Q)-orbits listed in Lemma 6.1.15.

Corollary 6.1.19 Any germ A: C2,0 -t Sk(4,Q with I-jet, [O,x,O,O,O,O], is

PQ -equivalent to one of the eleven distinct 2-jets :

J'J.Q - codim xd(x,y)

[0, x,D, 0, x2 + y2, 0] 6 x(x2 + y2)

[0, z.O, 0, y2, 0] 7 xy2

[0, x, y2, y2, xy, 0] 7 x2y

[0, X, y2, y2, x2, 0] 8 x3

[0, X, y2, y2, 0, 0] 9 °
[0, x, y2, 0, xy, 0] 8 x2y

[0, x, y2, 0, x2 ,0] 9 x3

[O,x, y2, 0, 0,0] 10 °
[0, x,D, 0, xy, 0] 11 x2y

[0, X, 0, 0,x2, 0] 12 x3

[0, x, 0, 0, 0, 0] 13 0

Proof We have demonstrated above that any element in a 2-transversal of

[0, x,D, 0, 0, 0] is J2Q-equivalent to one of three broad types: [0, x, y2, y2, P(x, y), 0],

[0, x, y2, 0, P(x, y), 0] or [0, x,D, 0, P(x, y), 0]. Furthermore, using Lemma 6.1.15,

we can further simplify this 2-transversal to one of the eleven possibilities listed

in the statement. Finally by comparing both the J2Q-codimensions and the

zero sets of xd( x, y) (d( x, y) being the quadratic in slot e5 of each 2-jet) of these

representatives, it is evident that they are all distinct. 0

Taking each of these 2-jets in turn we can, with the aid of transversal, com-

plete a classification of all Q-simples with l-jet [0, x, 0, 0, 0, 0].

Firstly, [0, x, 0, 0, x2 + y2, 0] is 2-Q-determined and has Qe-codimension 10.
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Investigating jets with 2-jet, [0,x, 0, 0, y2, 0), we detect the presence of a

series.

Lemma 6.1.20 Let A: C2,0 -t Sk(4,Q be any smooth germ with 2-jet

[0, x, 0, 0, y2, 0). (6.83)

Then A is !I-equivalent to a k-determined germ of the form

[O,x, 0, 0, y2 + x", 0),

where k ~ 3, or for any k ~ 2 A is !I-equivalent to a germ whose k-jet is (6.89).

Thus, including the 2-!l-determined jet [0,x, 0, 0, x2 + y2, 0), we have a series of

(distinct) !I-finitely determined germs

[0, x, 0, 0, y2 + x", 0), (k ~ 2),

each with !Ie-codimension (k + 8) and a discriminant of type Dk+2

Proof Assume, for any k ~ 3, A has a (k - 1)-jet

r:' A = [0,x, 0, 0, y2, 0).

It is not difficult to show that the only terms of H"(2,6) missing from the J"!ll-
tangent space to r:' A are scalar multiples of [0,0,0,0, x", 0). In other words

the k-transversal of r:' A is

[0, x, 0, 0, y2 + ax", 0), (6.84)

where a E C. If a i:° then by scaling we obtain the J"!I-equivalent jet

[0,X,0,0,y2 + x" ,0), (6.85)

which is k-!l-determined.

If, in (6.84), a = ° we would have the k-jet [0,x, 0, 0, y2, 0] and can repeat
the previous argument, replacing k-l by k, and so on. The Qe-codimension and

the discriminant of the germ (6.85) are found, in familiar fashion, by considering

the corresponding k-(R. x Q)-determined jet
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o

The 2-jet [0,x, y2, v', xy, OJ has a 3-transversal given by the l-parameter
family

ga = [0,x,y2,y2,xy + ay3,Oj.

This transversal is a connected submanifold X C J3 (2, 6), where

X = {ga : a E Cl,

and any germ with 2-jet [0,x, y2, y2, xy, OJ is J3Q-equivalent to some element of

this space. Using Transversal we find that for all values of a, the jet ga has J3Q_
codimension 7 and the vector, [0,0,0,0, y3 ,0], which spans the tangent space

Tg.X, is contained in the J3Q-tangent space to gao It follows, by Lemma 4.5.1,

that ga is a PQ-trivial family and is contained in a single J3Q-orbit of J3(2, 6)

with representative

[0, X, y2, v', xy, OJ.

Furthermore, since [O,x,y2,y2,xy,Oj is 3-Ql-determined, we deduce that the

2-jet, [0,x, y2, y2, xy, OJ, is in fact 2-Q-determined.

Lemma 6.1.21 Any germ A : C2,0 ~ Sk(4,Q with 2-jet lying in the J2Q-

orbit represented by [0, x, y2, 0, xy, OJ is J3Q-equivalent to one of two 3-jets:

the first of which, [0, x, y2, y3, xy, OJ, is 3-Q-determined.

Proof The 2-jet [0,x, y2, 0, xy, OJ has a 3-transversal

(6.86)

which for convenience we represent by the matrix

By an R-change of coordinates, (x,y) 1-+ (x - (b/2)y2,y), followed the col-

umn/row operations, Cl + (b/2)C2 and R2 - (b/2)yRl, we obtain the (R x Q)-
equivalent matrix

y2 ] .
xy
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If a + b2/4 ;j; 0, scaling gives the 2 x 2 matrix

which is 3-Q-determined. Whereas if a + b2/4 = 0 we have

[
X y2].o xy

Therefore any 3-jet in (6.86) lies in one of two J3Q-orbits. All those for which

a+b2/4 ;j; 0 lie in the J3Q-orbit with representative [O,x,u', y3, xy, 0), have J3Q_

codimension 8 and are 3-Q-determined. However all3-jets for which a+b2 /4 = 0

lie in the J3Q-orbit with representative [0,x, y2, 0, xy, 0) and J3Q-codimension
9.0

The following result deals with germs with 3-jets in the second orbit, [0,x, y2, 0, xy, 0).

Lemma 6.1.22 Let A :C2, 0 -t Sk(4, C) be any smooth germ with 3-jet

[0, x, y2, 0, xy, 0). (6.87)

Then A is Q-equivalent to a k-determined germ of the form

[0,x, y2, v", xy, 0),

where k ~ 4, or for any k ~ 3, A is Q-equivalent to a germ whose k-jet is (6.87).

Thus including the, previously found, Q-determined jets [0, x, u', y2, xy, 0]
and [0, x, y2, y3, xy, 0) we have a series of (distinct) Q-finitely determined germs

[0, x, y2, yl, xy, 0), (I ~ 2),

which have Qe -codimension (I+ 9) and a discriminant of type Dl+3.

Proof Assume, for any k ~ 4, A has a (k - I)-jet

This jet has a complete k-transversal

[0, x, y2, ayk, xy, 0], (6.88)
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where a E C. If a f. 0 then by scaling we obtain the JkQ-equivalent jet

[0, x, y2, v", xy, OJ,

which is k-Q-determined.

If, in (6.88), a = 0 we would have the k-jet [0, x, u', 0, xy, OJand can repeat

the previous argument, replacing k - 1 by k, and so on.

By adding to these k-determined jets the Q-determined jets [0, x, y2, y2, xy, OJ

and [0, x, y2, y3, xy, OJwe obtain the series of finitely determined germs given in

the statement. The Qe-codimensions and discriminants of such germs are found

in the usual manner by considering the l-('R. x Q) determined jet

[
X y2]
yl xy , I ~ 2.

o

In fact we can subsume this series into one which is even more extensive, by

considering those germs with 2-jet [0, x, 0, 0, xy, OJ.

Lemma 6.1.23 Let A: C2,0 -+ Sk(4,C) be any smooth ge"" with 2-jet

[0, x, 0, 0, xy, OJ. (6.89)

Then A is Q-equivalent to, either, a k-dete""ined ge"" of the form

[0, x, 0, 0, xy + v", OJ, (6.90)

where k ~ 3, an l-determined qerm of the /0""

[0, x, v".yl, xy, OJ, (6.91)

3 ~ k ~ I, or for any k ~ 2, A is Q-equivalent to a ge"" with k-jet [0, x, 0, 0, xy, OJ,

or for any 3 ~ k ~ I, A is Q-equivalent to a ge"" whose I-jet is [O,x,yk,O,xy,Oj.

Germs in (6.90) have Qe-codimension 5k and discriminants of type D2k. Germs

in (6.91) have Qe-codimension (4k + I + 1) and discriminants of type DA:+l+l.

Proof If, for any k ~ 3, A has a (k - 1)-jet

jk-l A = [O,x,O,O,xy,Oj,
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it is fairly easy to show that a k-transversal is of the form

(6.92)

If a3 ::j:. 0 then in the usual manner we can use a couple of simultaneous row and

column operations, followed by a scaling change to obtain the JkQ-equivalent
matrix

(6.93)

There are three possibilities here.

(i) If As ::f 0 by a further scaling change we have the family of k-jets

[O,x, v". ayk,xy + v", 0]. (6.94)

(ii) If As = 0 and A4 ::f 0 by scaling we obtain the JkQ-equivalent jet

[0, X, yk, v". xy, 0]. (6.95)

(iii) If As = A4 = 0 then we have the k-jet

[0, X, v", 0, xy, 0]. (6.96)

Alternatively if, in (6.93) a3 = 0 we can also assume that at = a4 = as = a6 = 0,
since otherwise we could, by various simultaneous row and column operations,

move an aiyk (i = 1,4,5,6) into slot e3 and thereby obtain one of the kjets just
considered. We are then left with the k-jet

[0, x, 0, 0, xy, 0],

which by replacing (k - 1) with k in the original assumption is covered by the
following arguments.

We consider each of the three possibilities (i) - (iii) in turn.
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(i) The family of k-jets [0,x, yk, ayk, xy + yk, 0).

Calculations performed by Transversal for specific values of k suggest

such a family to be JkQ-trivial. To prove this for all k ? 3 we need
to demonstrate, by hand, that the family satisfies both conditions of
Lemma 4.5.1. It is instructive to give the details of the technique used.

By Lemma 6.0.13 it is sufficient to show the family of k-jets,

[
X yk]
ayk xy + yk ,

to be Jk (R x Q)-trivial. For convenience we represent elements of the jet

space Jk(2,4) by 4-tuples (in row major order).

By Corollary 6.0.6, the Jk (R x Q)-tangent space to the family of k-jets

9a = [x, yk, ayk, xy + yk) is generated by the vectors

[l,O,O,y), [0, kyk-l, kayk-l, x + kyk-l);

[x, yk, 0, 0), [0,0, x, yk), [ayk,xy + yk,O,O),

[0,0, ayk, xy + yk), [x, 0, ayk, 0), [0, x, 0, ayk),

[yk, 0, xy + v". 0) [0, yk, 0, xy + yk).

(6.97)

To satisfy the first condition of Lemma 4.5.1, we need to show that the

tangent vector to the family ga (at each of its elements), [0,0, yk, 0), is

contained in this Jk(R x Q)-tangent space for all values of the parameter

a. This is seen to be the case, by combining the three Jk (R x Q)-tangent
vectors,

yk[l,O,O,y) = [yk,O,O,O), (6.98)

y[O, 0, x, yk) = [0,0, xy, 0)

and
[yk,O,xy + yk,Q).

The second condition of Lemma 4.5.1 requires us to demonstrate that

the codimension of the Jk(R x Q)-tangent space doesn't vary with the
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parameter a. We achieve this by showing that this space, spanned by the
generators in (6.97), is also spanned by a set of generators independent of
a. We do this by looking to use existing tangent vectors, independent of
a, to eliminate terms involving a from the remaining generators.

Consider the generators, [x, 0, ayk ,OJ,[0,0, ayk, xy +ykj. We have already

shown for all values of a, that the tangent vector [0,0, yk ,OJlies in the

Jk(R x Q)-tangent space. We can amend the set of generators in (6.97) by

replacing [x, 0, ayk, OJand [0,0, ayk, xy + ykj by [x, 0, 0, OJand [0,0,0, xy +
ykj respectively, the resulting set of generators spanning the same space

as before. Using the tangent vector, (6.98), we can replace the generator,

[ayk, xy +u", 0, OJby [0,xy + yk, 0, OJ,again preserving the space spanned.
It remains to consider the remaining generators involving a:

and

where the M2 before the first vector denotes it is always multiplied by
terms in the maximal ideal M2. We observe that, regarding the first

of these, the kayk-l term in e4 drops out automatically except when
multiplying it by linear terms. Consider each of these possibilities. The
tangent vector

y[O, kyk-l , kayk-l , x + kyk-i] = [0, kyk, kayk, xy + kyk],

and the ayk term in e4 can be eliminated by the tangent vector [0,0, v". OJ.
Alternatively the tangent vector obtained by multiplying by x is

[0, kxyk-l , kaxyk-l , x2 + kxyk-ij,

but using the tangent vector yk-l[O,O,x,ykj = [0,0, xy"-l, 0] we can elim-

inate the axyk-l term in e4. In summary, we can further amend our gen-

erating set by replacing the generator [0,kyk-l, kayk-l, x + kyk-lj with

a generator [0,ky"-l, 0, X + kyk-lj, while leaving the space spanned un-
changed.

Finally, we need to consider the generator [0,x, 0, aykj. Using the previous
generator, we find the tangent vector
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which, combined with generator [0,yk ,0, xy + yk], gives a tangent vector

(6.99)

Furthermore the generator [x,D, 0, 0], discussed earlier, combined with

[x, yk, 0, 0] gives a tangent vector

[0, yk, 0, 0]. (6.100)

Combining vectors (6.99) and (6.100) gives the tangent vector [0,0,0, yk],

which justifies replacing the final generator dependent on a, [0,x,D, aykj,

by [0,x, 0, 0]. We have therefore replaced the generator set (6.97) by a
set of generators, each of which is independent of the parameter a, and
which generate the same space. Hence, for all values of a, the Jk (n x Q)-

tangent space to the k-jet [x, yk, ayk, xy + ykj is the same and therefore,
for each element of the family this tangent space has constant dimension.
So the second condition of Lemma 4.5.1 is satisfied and this family is

Jk (n x Q)-trivial.

It follows that the corresponding family of k-jets, [0,x, v", ayk , xy + yk ,0]

is JkQ-trivial and the JkQ-orbit in which it lies has representative

[0, x, yk ,O,xy + v", OJ.

Writing this in matrix form,

o
o
o

-xy _ yk

X yk 1° xy + yk
o 0 'o 0

it can be seen by the simultaneous row and column operation involving
RI - R2 followed by the simultaneous row and column operation involving

C4 + yC3 that this is equivalent to the k-jet [0,x,D, 0, xy + v", OJ, which
is k-Q-determined. Hence we have found a series of determined germs of
the form (6.90).

(ii) The k-jet [O,x,yk,yk,xy,Oj.

This k-jet has a complete (k + I)-transversal

[0 le le leH 0],x, y ,y ,xy + ay ,. (6.101)
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Calculations performed by Transversal suggest this family to be Jk+lQ_
trivial. Using a method similar to that introduced above we can prove

this (for all values of k ~ 3).

As before, this amounts to showing both conditions of Mather's Lemma

(Lemma 4.5.1) are satisfied for the Jk+l(nx Q)-action on the 2x2 matrix,

Representing this family by the 4-tuple [x, u". v", xy+ayk+l], the Jk+l (nx

Q)-tangent space to it is generated by

[l,O,O,y],

[x, u", 0, 0], [0,0, x, yk], [yk, xy + ayk+l, 0, 0]

[0,0, yk , xy + ayk+1] [x, 0, s", 0], [0, x, 0, yk],

[yk, 0, xy + ayk+l , 0]

(6.102)
To satisfy the first condition of Lemma 4.5.1 we need to show that the tan-

gent vector, [0,0,0, yk+l J, to the family, [x, yk, yk, xy+ayk+l], is contained

in this Jk+l (n x Q)-tangent space. This is significantly more difficult to
achieve, compared with the previous example.

We wish to show that the monomial vector yk+les is contained in the

tangent space. Using the list of generators, (6.102), we compile a set of

tangent vectors each with yk+l in slot es but with the number of other
monomial vectors involved kept to a minimum. To isolate the required
monomial vector it is more than likely that this set needs to be augmented
with further tangent vectors, although this is done with a view to keeping
the total number of distinct monomial vectors involved as small as possible.

Denoting the number of tangent vectors in this set by t and the total
number of distinct monomial vectors involved in it by 8, we first require
t ~ 8. If we can show the span of this set to consist of 8 linearly inde-
pendent vectors, then by various linear combinations of them, we obtain

all 8 monomial vectors and in particular the required one (here yk+l es).
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Equivalently, we could represent this set by a t x s matrix over C, where
each row corresponds to a tangent vector, which we then require to have
maximal rank. This will become clearer as we proceed with the present
example.

The vectors yk[I,O,O,yj = [yk,O,O,yk+!j, y[O,O,x,ykj = [O,O,xy,yHlj,

each contain a yHl term in slot es and introduce two further monomial

vectors yke2 and xye4. The tangent vector

[yk, 0, xy + ayk+!, OJ, (6.103)

contains both these monomial vectors, but also introduces a yHl term into

slot e4. The two tangent vectors y[x, 0, v", OJ= [xy, 0, yk+!, OJ,y[O, 0, yk, xy+

ayHlj = [0,0,yHl,xy2j, although both containing a yHl term in e4,

introduce two more monomial vectors xye2 and xy2eS respectively. At
present we have found five tangent vectors which are combinations of six
distinct monomial vectors and so by adding to these the tangent vector,

xy[l, 0, 0, yj = [xy, 0, 0, xy2J which introduces no new monomial vectors,
we have a set of tangent vectors satisfying the first requirement, Le. t ~ s.

By showing these six vectors to be linearly independent it would then

follow that each of the six monomial vectors are contained in the Jk(R x
Q)-tangent space.

It can be easily seen, from the spanning set of the three tangent vectors,

(6.104)

that

[0,0, yHl, xy2J - [xy, 0, 0, xy2J + [xy, 0, yH1 ,OJ= [0,0, 2yA:+1,OJ,

gives the monomial vector yk+! e. and consequently we can also find the

monomial vectors [xy, 0, 0, OJand [0,0,0, xy2] from this spanning set.

With this in mind we consider the remaining three tangent vectors :

(6.105)

Since we have just shown that [0,0, yA:+1,0] is in the tangent space we can

replace the first of these vectors by [yk, 0, xy, 0]. Then we see that
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and therefore, for all values of a, the monomial vector yHI es lies in the

JHI (R x Q)-tangent space to [x, yk, v", xy+ayHI], Le. the first condition
of Lemma 4.5.1 is satisfied.

However by this process we have also found five further monomial vectors

which are contained in this tangent space. (The final two yke2 and xye4

are found from (6.105) using the fact that yk+!es is in this spanning set.)
This makes the task of showing the second condition of Lemma 4.5.1 is
satisfied considerably easier. Since the method adopted for this is similar
to that described above, when proving part (i), we omit the details and
give the result. We therefore find, by applying Mather's Lemma, that

[x, v", yk, xy + ayk+!] is a JHI (R x Q)-trivial family with representative,

the (k + I)-jet

[x, v". yk, xy].

Wehave therefore shown that any germ with k-jet [x, v", v", xy] is Jk+! (Rx

Q)-equivalent to a germ with (k + 1)-jet [x, v". v", xy] and to show this

k-jet to be k-determined it is enough to show it to be (k + 1)-determined.
This follows easily from the above work.

Recall that the k-jet [x, v". u", xy] has the (k+1)-transversal [x, yk, yk, xy+

ayHI]. It follows that the (k + 2)-transversal of [x, yk, v", xy] can only

be missing the term [0,0,0, yH2]. By the triviality result we demon-

strated that the Jk+! (R x Q)-tangent space to [x, yk, yk, xy], contains

[0,0,0, yk+!]. Furthermore the (six) tangent vectors used to obtain this

are, with the exception of (6.103), in the Jk+!(RI x Qo)-tangent space to

[x, v", v", xy]. By multiplying these tangent vectors by y (in particular ob-

taining from the Jk+1(Rx Q)-tangent vector, (6.103), the JH2(R1 x Qo)-

tangent vector y[yk, 0, xy + ayk+1 ,0]) we hence find that [0,0,0, yk+2] lies

in the JH2 (RI x Qo)-tangent space to [x, v", v", xy]. It therefore follows

that [x, yk, v, xy] is (k + 1)-determined as required.

We must interprete these calculations for the corresponding skew-symmetric
k-jet

[0, x, yk, yk, xy, 0].

It follows by the previous triviality result that any germ with this k-jet

is Jk+!Q-equivalent to the (k + 1)-jet [O,X"l,yk,xy,O]. So to show it to

be k-Q-determined it is sufficient to show it to be (k + 1}-Q-determined.
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It is easily verified that the Jk+2Ql-tangent space to [0,x, yk, v", xy, OJ

contains all monomials of degree (k + 2) in both slots e) and e6. So since
the corresponding 2 x 2 matrix

has been proved to be (k + 1)-(R. x Q)-determined it follows that

[0, x, yk, v", xy, OJ, (6.106)

is k-Q-determined.

(iii) The k-jet [O,x,yk,O,xy,Oj.

This jet has a complete (k + I)-transversal

[0, x, v". ayk+l, xy + byk+1,OJ, (6.107)

which we represent by the 2 x 2 matrix

[
X yk]
ayk+l xy + byk+l .

Generalising the argument of the proof of Lemma 6.1.21, we can by an R.-

change, (x, y) 1-+ (x- (b/2)yk, y), followed by appropriate row and column

operations, reduce this 2 x 2 matrix to the (R. x Q)-equivalent matrix

By the same reasoning used in this proof, it follows that any (k + I)-jet

in (6.107) lies in one of the two Jk+1Q-orbits represented by

[0, x, yk, yk+1, xy, OJ, and [0, x, yk, 0, xy, 0]. (6.108)

The first of these representatives is (k + 1)-Q-determined. and it remains

to consider germs with (k + I)-jet [O,x,yk,O,xy,O].

By a similar approach to that adopted above when proving Lemma 6.1.22

(concerning germs with 2-jet [0,x,y2,0,xy,O]) we can prove that any

germ with (k + I)-jet [0,x, yk, 0, xy, 0] is either {I-equivalent to the l-Q-
determined germ

[0, x, v.y', xy, 0], (6.109)
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where I ~ k + 2, or for any I ~ k + 1 is g-equivalent to a germ whose I-jet

is [0,x, u", 0, xy, 0).

Adding the finitely determined germs [0,x, u", v". xy, OJ, [0,x, u", yk+l, xy, OJ

(k ~ 3), found seperately from cases (ii) and (iii) respectively, to the series

given in (6.109), we have the second series of finitely determined germs, (6.91),
in the statement. The codimensions and discriminants of all the finitely deter-
mined germs in the statement are found in the usual manner. 0

Remark 6.1.24 Clearly, the series referred to prior to this result is given by
adding the series of finitely determined germs from Lemma 6.1.22 to those of
(6.91) in Lemma 6.1.23, and hence consists of germs

[0, X, v". y', xy, OJ, (2 s k s I)

with ge-codimensions (4k + I + 1) and discriminants with Dk+l+l singularities.

From the set of J2g-orbits not yet considered we look for further g-simple
finitely determined germs.

Lemma 6.1.25 From the six J2g-orbits : [0,x,y2,y2,x2,Oj, [0,x,y2,y2,0,Oj,

[0, x, y2, 0, x2, 0), [0,x, y2, 0, 0, OJ,[0,x, 0, 0, x2, OJand [0,x, 0, 0, 0, 0), we can find
four 9 -simple finitely determined germs :

[0,x,y2,0,x2 + y3,Oj,

[0,x,0,0,x2 +y3,0),

with ge-codimensions 12, 13, 14, 16 and discriminants E6, E7, Ea, Er respec-
tively.

Proof The remainder of this classification is done using Transversal and we
give an outline of the results.
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(i) The 2-jet [0, X, y2, y2, x2, OJ.

This 2-jet has a complete 3-transversal

_ [0 2 2 2 2 by3 OJgab - ,X,y ,y ,X +axy + ,.

This family is found to be J3Q-trivial and contained in the J3Q-orbit with
representative

Since this jet is 3-Ql-determined we conclude

is 2-Q-determined. A straightforward calculation using the extended tan-
gent space verifies that this germ has Qe-codimension 12. Representing it
by the 2 x 2 matrix

it has a discriminant given by x3 - y4 = 0 which has an E6 singularity.

(ii) The 2-jet [0, X, y2, 0, x2, OJ.

This 2-jet has a complete 3-transversal

(6.110)

Provided c '" 0, by scaling we obtain the J3Q-equivalent family

which is PQ-trivial and lies the single J3Q-orbit with representative

and J3Q-codimension 9. Furthermore, this 3-jet is 3-Q-determined, has
Qe-codimension 13 and its discriminant is an E7 singularity.

If, in (6.110), c = 0, but a", 0 we can scale to the J3Q-equivalent family

which is J3Q-trivial and lies in the J3Q-codimension 1000rbit with repre-
sentative
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This 3-jet has a complete a 4-transversal

which is a J4Q-trivial family and is represented by 4-Qt-determined jet

We can therefore deduce that, from the case c = 0, a '" ° in (6.110), we
obtain the 3-Q-determined germ

which has ge-codimension 14 and discriminant with an Es-singuiarity.

The final possiblity arising from the 3-transverSal' (6.110), is c = a = ° :

which is a J3g-trivial family, contained in a J3Q-codimension l l-orbit
represented by the 3-jet

[0, X, y2 ,0, x2, 0).

This 3-jet has a complete 4-transversal

but for values of d '" ° the J4Q-tangent space to gde does not contain the
tangent vector [0,0,0,0, y4, 0) (to the submanifold of J4(2, 6) correspond-

ing to gde). Consequently, the criterion for simplicity in Lemma 4.5.3 is

not met for any germ with a 4-jet in the complete transversal gde' There-

fore the neighbourhood of any germ with 3-jet, [0,x, y2, 0, x2, 0), meets

uncountably many g-orbits and the case (c = a = 0) cannot give us any
Q-simple germs.

(iii) The 2-jet [0,x, 0, 0, x2, 0].

This 2-jet has a 3-transversal, written in matrix form,

aty3

°-a4y3
_x2 - b:;xy2 - a:;y3
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Assuming a3 =F 0, we have a J3g-equivalent family,

o
o

-ays
-x2 _ bxy2 _ cy3

x
ay3
o
o

(6.112)

Provided c =F 0 we can scale to obtain

which is pg-trivial and is contained in a J39-codimension 12-orbit with
representative

(6.113)

which is 3-g-determined. Representing this 3-jet by the 2 x 2 matrix

it Can be seen, by a couple of explicit row/column operations, to be

J3g-equivalent to [0, x,D, 0, x2 + y3, 0]. Furthermore this 3-jet has ge-
codimension 16 and its discriminant is an Er-singularity.

If, in (6.112), c = 0, we have a family of 3-jets

For values of a =F 0 the vector, [0,0,0,0, xy2, 0], tangent to this submani-

fold, is not contained in the J3g-tangent space to gab. Consequently, any
3-jet in 9ab fails the criterion for simplicity in Lemma 4.5.3 and there-
fore any neighbourhood of a germ with such a 3-jet meets uncountably
many g-orbits. It follows that, in (6.112), the case c = 0 cannot give any
g-simples.

Finally, if in (6.111) as = 0, unless al = a4 = a6 = C6 = 0 we can, by

simultaneous row and column operations, move an y3 term into slot e3
and thereby obtain one of the 3-jets just considered. So, it remains to
consider 3-jets originating from the family

[0, x, 0, 0, x2 + b6xy2, 0].

However, in any neighbourhood of a 3-jet in this family there is a 3-jet of
the form

(6.114)
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for some small e ¥- O. Clearly, (6.114), is in gab and by the above argu-
ment any neighbourhood of it meets uncountably many Q-orbits. This in

turn means any neighbourhood of the 3-jet, [0,x, 0, 0, x2 + bsxy2, OJ,meets
uncountably many Q-orbits and therefore any 3-jet in this family cannot
give Q-simple germs.

Having exhausted all possibilities we deduce that we have all Q-simple germs
arising from the set of 2-jets in the statement of the lemma. 0

We conclude this discussion of germs with 1-jet [0,x, 0, 0, 0, OJby collecting
together our results.

Theorem 6.1.26 Any Q-simple map A: (:2, ° -t (:6, ° with 1-jet [0,x, 0,0,0,0]

lies in one of the following finitely Q-determined orbits (where it is convenient
to provide each representative in 2 x 2 form) :

Discriminant Qe-codimension Label

[~ o ] (k> 2) Dk+2 k+8 Fiey2 + x" , -

[~ o ] (k > 3) D21e 5k Gil:xy +yle , -

[ ;, y" ] ,(2 < k < I) DIe+l+1 4k+l+1 H",xy --

[ :2 y2 ] E6 12 T12x2

[~ y2 ] ET 13 Tux2 + y3

[ :3 y2 ] Es 14 T14x2

[~ X2~y3 ] 16 T16

(6.115)
Furthermore, each 01 these orbits is distinct.

Proof We show that each of these orbits are distinct.
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Since the discriminant of a germ is a Q-invariant we can immediately divide
the above list of germs into those with type E-discriminants and those with
type D-discriminants. Considering the four germs, with E-discriminants, it can
be seen that their Qe-codimensions are all different and, since codimension is
another invariant, each of these germs are distinct.

Consider the list of germs with D-discriminants. By looking at either its
discriminant or Qe-codimension it is clear that for each germ in the series, FA:,
the value of k ~ 2, is a Q-invariant and they are all distinct. Furthermore, using
Corollary 6.1.19, we can distinguish any germ in this series from the germs in
the two remaining series, GA: and HI", by virtue of its 2-jet.

We are left with these two remaining series. Clearly, the germs in the series,
Gk, are distinct from each other, since by looking at either their discriminant
or codimension the value of k is an invariant.

By Lemma 4.2.7, in Section 4.1, the germ [O,x,yA:,y',xy,O], (2 $ k $l), is

K-equivalent to to [0,x, yk ,0,0,0] which has Ke-codimension (5k - 1). Since the

Ke-codimension of a germ is a Q-invariant it follows that the value of k in the

germ [0,z, v", y', xy, 0] is an invariant. Furthermore, since each element of this

series has a discriminant with a Dk+,+1-singularity, (k + 1+ 1) and therefore I
is also a Q-invariant. It follows that each germ of the Hid series represents a
distinct Q-orbit.

Finally, comparing the GA: and Hid series,

[0, x, 0, 0, xy + yA:, 0] k ~ 3, (6.116)

and

(6.117)

it is possible that for some values of k ~ 3 and 3 $ a $ b a germ in series,

(6.116), lies in the same Q-orbit as a germ in (6.117). Note that we needn't

worry about germs [0,x, v". y', xy, 0] with k = 2, occuring in the Q-orbits of
(6.116), by virtue of Corollary 6.1.19.

If a germ in (6.116) is Q-equivalent to a germ in (6.117), then they must
both have the same discriminant and be K-equivalent. In other words for some
k ~ 3 and 3 ::;a ::;b it is necessary that

2k = a+b+ 1, (6.118)
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and
k = a. (6.119)

Substituting (6.119) into (6.118) gives

b= a-I,

which contradicts the initial assumption a ~ b. It follows that we can distinguish

between germs in (6.116) and (6.117).

We conclude that each germ in the list, (6.115), represents a distinct g-orbit.
o

Finally, we consider germs with I-jet [0,0,0,0,0, OJ. It follows that any such
germ has a 2-jet of the form

(6.120)

where Qi(X,y) = ailx2 + ai2XY + ai3y2, 1 ~ i ~6. The space of these jets can

be thought of as an 18-dimensional subspace of J2 (2,6) :

which we represent by CI8. The action of the jet-group J2g on VA, as given

in Definition 4.4.9, amounts to the obvious action of GI(2, C) x GI(4, C) on
these matrices. It follows, by the same argument used in the proof of Proposi-

tion 4.2.10, that if two 2-jets AI, A2 E VA are J2g-equivalent then there is a
linear coordinate change (corresponding to an element of GI(2, C)) taking the

discriminant of Al to that of A2• We have already discussed how the Pfaffian
of finitely determined germs is an important invariant, we also find it useful for
considering the 2-jets in VA.

Since det A has degree 8, its Pfaffian is a quartic of the form

(6.121)

where each coefficient, bj, is a polynomial in the coefficients of the quadratics Qi

(or the coordinates, in CI8, of A E VA). Identifying the binary quartic, (6.121),

with the point (bo,bI,~,b3,b4) E PC4 (see Section 4.7.2), we can therefore
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represent the Pfaffian of elements A E VA as images of a polynomial map P :
CIS ~ PC4 determined by

Furthermore if two elements AI, A2 in VA lie in the same Gl(2,<C) x Gl(4,<C)-

orbit their Pfaffians are PG1(2, <C)-equivalent (up to the action given by Defini-

tion 4.7.9).

We will show, in the following theorem, that all 2-jets of type (6.120) have

moduli. By Lemma 4.7.14 their Pfaffians have (up to linear equivalence) a
modulus. To show that the corresponding 2-jets in VA also have moduli it is
enough to show, near any A E VA, that the modulus of the resulting Pfaffian
varies.

Theorem 6.1.27 There are no (i-simple map germs with zero I-jet.

Proof Assuming all of the above preparatory work we also use notation from
Section 4.7.2 without further explanation.

We consider the composite map

where ~ is the set of elements of PC4 with repeated roots, P the polynomial
map described above and j the rational map

It follows, using Lemma 4.7.14, that distinct values of joP correspond to distinct
Gl(2,<C) x Gl(4,<C)-orbits of VA. Alternatively the fibres,

of j 0 P, lie in distinct Gl(2,C) x Gl(4,C)-orbits of VA.

Each fibre (of some element JJ E C) consists of points A E CI8\P-l(~)
satisfying

J2 (P(A»
A (P(A» = p,
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or
J2 (P(A» - I1-A (P(A» = O.

The latter defines an algebraic set in C18• To reclaim the fibre, (j 0 P)-1 (11-), we

must remove, from this set, its intersection with the algebraic set P-l(6) and
thus the fibres of j 0 P are differences of algebraic sets.

By definition, these fibres fill the 18-dimensional space CI8\P-l (6). The
proof therefore hinges on showing that these fibres have dimension :5 17, in
which case any neighbourhood of any point of the space would meet uncountably
many fibres. It then follows, from previous remarks, that any neighbourhood of
any point of this space would meet uncountably many Gl(2, C) xGl(4, C)-orbits.

Furthermore, provided p-l (6) is a proper algebraic subset of C18, CI8\P-l (6)

is dense in C18 which also implies that any neighbourhood of any point of VA
meets uncountably many Gl(2,C) x Gl(4,C)-orbits, meaning there can be no
simple germs with one of these 2-jets.

Assume the contrary, Le. that some fibre of j 0 P has dimension 18. As
already stated, this fibre is a difference, (S\ V), of algebraic sets, S and V in

C18. If S\ V has dimension 18 then so does S, but the only 18 dimensional

subvariety of C18 is C18 itself. It follows that any 18-dimensional fibre of j 0 P

is C18 \ V, for some algebraic set V. By the definition of a fibre, j 0 P is constant

on C18\ V. Furthermore since C18\ V is dense in C18 and j 0 P is continuous

j 0 P is constant on C18.

For this assumption to be false we must therefore demonstrate two things.

Firstly, we need to verify that p-l (6) is a proper algebraic subset of C18 and

secondly show that j 0 P varies near some point Ao E C18.

For example, consider the following L-parameter family:

aEC.

Here P(Aa) = X4 - y4 - ax2y2, and by calculation A (P(Aa» = -(1 + a2/4)2
and

(6.122)
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So elements of this family, for which a2 + 4 '" 0, have discriminants which

don't lie on A. Hence, ~ (P(A» is not identically zero and P-l(A) is a proper

algebraic subset of C18• Furthermore, from (6.122), joP(Aa) = (J2 /~) (P(Aa»
varies with a and we have contradicted the assumption that j 0 P has a fibre of
dimension 18. It follows that VA cannot be Q-simple. 0
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6.2 Case r = 3, n = 4

Having classified all g-simple 2-parameter families of 4 x 4 skew-symmetric
matrices, we can use these calculations as a foundation for exploring higher
parameter families of 4 x 4 skew-symmetric matrices. In this section we consider

3-parameter families, that is the space of smooth germs A : C3,0 -+ Sk(4, C).

As before, the first step of any classification involves considering the I-jets,
which here are of the form

(6.123)

with AI, A2, A3 E Sk(4,C). The corresponding jet-group JIg action on this

subspace of Jl (3, 6), as defined in Definition 4.4.9, amounts to the group action

of Gl(3,C) x Gl(4,C) on triples of 4 x 4 skew-symmetric matrices.

These I-jets, (6.123), can be thought of as linear maps C3,0 -+ Sk(4,C), of
rank g 3, this rank being determined by the number of independent matrices in
the set {AI, A2, A3} (see Definition 3.4.2 of jetrank, given in Section 3.4.1). Be-
fore going any further we give a couple of useful definitions which are analogous
to Definitions 1.2.1 and 1.2.2 in Section 1.2.

Definition 6.2.1 Let (A1,A2,A3), (Bl,B2,B3) be ordered triples ofnxn skew-

symmetric matrices over C. We say that they are skew-equivalent if for some

matrix X E GI(n,C) we have

Definition 6.2.2 Given a triple (AI, A2, As), then the points (Xi: Yi : Zi) in

the projective plane, PC2, which satisfy

are refered to as eigenvalues of the triple. Associated with each (distinct)

eigenvalue, (Xi: Yi : Zi), there is an eigenvector UI ¥- 0 satisfiying

Corollary 6.2.3 The set of eigenvalues is an invariant of skew-equivalent triples.
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Proof By Definition 6.2.1, any triple skew-equivalent to (AI, A2, A3) is of the

form (XTAIX,XTA2X,XTA3X) where X E GI(n,C). Such 3-tuples have

eigenvalues given by the zeros of

det (xXT A1X + yXT A2X + zXT A3X) = det [XT (XAI + yA2 + zA3) Xl
= (det X)2 det(xAI + yA2 + zA3),

which since det X-:j:.O are the eigenvalues of (AI, A2, A3). 0

Consider the following definition, which extends the arguments in Section 1.3,
concerning pairs, to triples of skew-symmetric matrices.

Definition 6.2.4 A net of (skew-symmetric) matrices is a plane in the pro-

jective space, P( n, C), of such matrices. It is determined by any three non-
collinear points in that plane. In other words a net, A, is determined by any
triple, (AI, A2, A3), of linearly independent matrices lying on it and is rep-
resented by

A(x, y, z) = xAI + yA2 + zA3,

with points (x : y : z) in the projective plane, PC2, giving its members. The set

{AI, A2, A3} is a basis for the net.

Lemma 6.2.5 Two triples (AI,A2,Aa) and (D1,D2,Da) determine the same
net if and only if there is some P E GI(3,C) taking the basis {AI,A2,Aa} to
{D1, D2, D3} .

Proof Denoting the net, determined by (A1,A2,Aa), by A we write

(6.124)

If (DI,D2,D3) determines the same net then

a 3 3
(Db D2, D3) = (LQiAi,L .8iAi,L 1'iAi),

i=l i=l i=l

for some Qi, f3i, 1'i E C with {Db D2, Da} linearly independent. This implies

that the three vectors (QI,Q2,Q3), (/31!f32,/3a) and (-Yb'Y2,1'3) are linearly inde-
pendent, that is the matrix

P = (~~ ~~ ~~) E GI(3,C).
Q3 .83 1'3

(6.125)
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(In particular,

Comparing this with (6.124) we see that the coordinates, Z = (A : Jl : v), of

A, with respect to the old basis {AI, A2, A3}, are expressed in terms of the

coordinates Z = (x: y: z), with respect to the new basis {DI,D2,D3}, by

Z = PZ.)

The converse is clear from the above. 0

Remark 6.2.6 It follows from Lemma 6.2.5 that nets are representatives for

orbits, under this action of Gl(3, C), of the set of linearly independent triples.

A triple of skew-symmetric matrices, (AI, A2, A3), determines a net if they
are independent (have rank 3), a pencil if they span a line in pen, C) (have rank

2), or a point if they are all multiples of some (non-zero) matrix (have rank 1).

It is easy to see that if the rank is 2 (respectively 1) a GI(3, C) change
of coordinates on the triple reduces the family xAI + yA2 + zAa to a pencil
x,BI + y' B2 (respectively x'Cd. We then have the normal forms (3.58), (3.56)

and (3.53) (respectively (3.55) and (3.57)) of Example 3.4.1 in Section 3.4.

We can thus interpret the action of Gl(3, C) x Gl(n, C) on I-jets, (6.123), as

the standard action of Gl(n, C) on their images in Sk(n, C).

Clearly, a net contains pencils, for example by considering the members of

A = AAI + JlA2 + vA3 with coordinates (A : Jl : 0) we see that they constitute

a pencil determined by the pair (Al' A2)' Assume that A contains a pencil

determined by a pair, (DI' D2), of its members and let D3 be a further member

of A which does not lie on this pencil. By a Gl(3, Cl change of basis
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we can represent elements of A by

where (x : y : z) are coordinates with respect to the basis {D1,D2,D3}. So
when considering a pencil contained in a net we can always, by a change of
coordinates, suppose the pencil is given by z = O.

The following definition concerns equivalent nets under the action of Gl(n, C)

on Sk(n, C) (Compare with Definition 1.3.2 and Lemma 1.3.3 of Section 1.3.)

Definition 6.2.7 Two nets, A, B are said to beskew-equivalent if the action
of Gl(n, C) on Sk(n, C) (inducing an action on the projective space P(n, C))

takes one net to the other. Equivalently if the action of GI(3, C) x GI(4, C)
takes any independent triple of A to any independent triple of B.

We describe a classification of skew-equivalent nets using results from the
classification of pencils, discussed earlier in Chapters 2 and 3. Although the
following can be applied to nets of any even order of skew-symmetric matrices,
here we restrict ourselves to considering nets of 4 x 4 skew-symmetric matrices
where we can use the list of normal forms of 4 x 4 pencils given by Example 3.4.1
of Section 3.4.

6.2.1 Nets Containing Non-degenerate Pencils

Consider, first, all nets containing a non-degenerate pencil (see Section 3.4.1).

(Recall for a pencil of 4 x 4 skew-symmetric matrices the Pfaffian is a quadratic,

so a non-degenerate pencil has two distinct eigenvalues.) We may suppose this

pencil is given by z = O. We therefore represent our net by

(6.126)

where xAI + yA2 is a non-degenerate pencil. From the classification of pencils
we found that any non-degenerate pencil, XAI + yA2, is skew-equivalent (or the

pair (AI, A2) is GI(2, C) x GI(4, C)-equivalent) to the normal form:

[

Ox
-x 0
o 0
o 0

o
o
o
-y
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Hence by the action of Gl(4,Q on nets, (6.126), for which XA1 + yA2 is a
non-degenerate pencil we obtain a skew-equivalent net of the form

[

-x ~ a1
Z

x +Oa1z

-a2Z -a4Z

-a3Z -a5Z

a2
Z

a3
Z 1a4Z aijZ

o y + a6Z '
-y - a6Z 0

where ai E C, 1 ~ i ~6. Furthermore by a change of basis this net is equivalent
to

[

Ox a2Z a3Z 1
-x 0 a4Z a5Z

-a2Z -a4Z 0 Y .
-a3z -a5Z -y 0

(6.127)

Assuming a2 # 0 we can, by a pair of simultaneous row and column operations,
use the Z term in the second slot to kill off the a3Z and a4Z terms in the third
and fourth slots. Furthermore we can then scale the coefficient of this Z term
to unity, obtaining the skew-equivalent net

x
o
o

Z

o
o
-y fl-az

This then gives rise to two inequivalent nets.

(i) If at 0

[ ~x

x Z n0 0
0 0
-z -y

which has J1 g-codimension O.

(ii) If a = 0

[ ~x

x Z

n-O 0
0 0
0 -y

which has Jlg-codimension 1.

Returning to the net (6.127), if a2 = 0 we can also assume as = a4 = all = 0
since otherwise by simultaneous row and column operations we can move a
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non-zero multiple of z into the second slot giving the previous case. But setting
a2 = a3 = a4 = as = 0 gives the normal form for a non-degenerate pencil, i.e.
we are no longer considering a net. We have therefore deduced that any net

which contains a non-degenerate pencil has one of the two normal forms (i) and

(ii) above.

6.2.2 Nets Containing No Non-degenerate Pencils

The next type of net to consider is one which doesn't contain any non-degenerate
pencils but which still contains a non-singular pencil. In the present case this
amounts to nets containing a pencil with repeated eigenvalues. As before sup-
pose this pencil, with repeated eigenvalues, is given by z = 0 in (6.126). Recall

from the classification of pencils that any 4 x 4 pencil xAl +yA2 (pair (Ai, A2»
with repeated eigenvalues (that is those whose Pfaffian is a non-zero perfect

square) has the skew-equivalent (GI(2,C) x GI(4,C)-equivalent) normal form:

Therefore by an action of GI(4,Q on these nets we have skew-equivalent nets
of the form

[
-x ~ alZ

-a2Z

-a3Z

x +alz
o

-y - a4z
-al)z -x - a6Z

which, by a change of basis, are equivalent to

[

Ox
-x 0

-a2Z -y
-a3Z -asz -x- a6Z

(6.128)

where as is different to that above. This gives us a representation for all nets
containing a pencil with repeated eigenvalues. However we may suppose these
nets contain no non-degenerate pencils. To identify such nets, we need an
expression for the set of all pencils contained in nets of type (6.128).
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Consider the set of linear maps Wat,/3 : C2, 0 -t C3, 0, defined by

(x, y) t-+ (x, y, ax + {3y).

For each pair of values (a, {3) E C2 the map Wat,/3 is a parametrisation (of

points (x : y : z» of the line ax + {3y - z = 0 in PC2. Hence varying (a,{3)

over the whole complex plane gives every line, Wat,/3(x,y), in PC2, other than

those through (0 : 0 : 1). It follows that the composition of linear maps,

A 0 wat ,/3 : C2 -t Sk( 4, C) represents a pencil contained in net A.

Substituting z = ax + {3y into (6.128) gives:

x a2(ax + {3y)
o y
-y 0

-a5(ax + {3y) -x - a6(ax + {3y)

a3(ax + {3y) ]
as(ax + {3y)

x + a6(~x + {3y) .

(6.129)

So

and the Pfaffian, P f (Aat ,/3), of Aat ,f3 is a quadratic.

As already stated, we are only concerned with nets of type, (6.128), whose

complete set of pencils (6.129) contains none which are non-degenerate. Since a
non-degenerate pencil of 4 x 4 skew-symmetric matrices has two distinct eigen-
values, or equivalently its Pfaffian has two distinct roots, we are looking for con-

ditions on the ai's for which Pf(Aat,/3) has repeated roots, for every (a, {3) E C2.

By calculation we find that

Pf(Aat,f3) = (-1+ a2aSa2 - a6a) x2 + (2a2a5a{3 - a3a - a6{3) xy

+ (-a3{3 + a2a5{32) y2,

which has repeated roots provided its discriminant

vanishes. So we seek conditions on a2, a3, a5 and a6 so that this expression
vanishes for all a, {3. This results in the following conditions on a2, a3, a5, a6
in (6.128) :

a3 = 0, (6.130)
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a~ + 4a2aS = O.

We can parametrise these conditions by

(6.131)

which is regular provided (u,v) i- (0,0). Therefore all nets containing no non-

degenerate pencils but containing at least one (non-singular) pencil with re-
peated eigenvalues are skew-equivalent to a net of the form

[

Ox
-x 0
-u2z -y
o v2z

o 1y -v2z° X + 2uvz '
-x - 2uvz 0

(6.132)

where u, v E C.

This net has Pfaffian (x+uvz)2, which determines a repeated line in PC2. It

therefore follows that the net is tangent to the singular set P, (see Section 3.4.1)

of Sk(4,Q along a pencil. This makes sense since any non-singular pencil of

this net is also tangent to P, at some point on the aforementioned (singular)
pencil, and hence cannot be non-degenerate.

By using skew-equivalence we can reduce the nets in (6.132) to a finite list

of representatives. Assume u i- O. By the basis change given by (x, y, z) t-+

(x - uvz, y, z) we can represent such nets by

[

Ox - uvz
-x +2uVZ 0
-u Z -y
o v2z

y
o

-x - uvz

By the simultaneous row and column operations 02 + (V/U)03 (R2 + (V/U)R3),

followed by R.t + (v/u)R1 (04 + (V/U)Ol) we obtain the skew-equivalent nets

[ 0
x u2z n-x 0 y

_~2z -y 0
0 -x

Scaling gives their representative,

[~.x z n0 v (6.133)-z -y 0
0 0 -x
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which has J1g-codimension 3.

Alternatively, if in (6.132) u = 0 but v # 0, by scaling we have the represen-

tative

[

Ox
-x 0
o -y
o Z

o
u
o
-x

~Z 1x '
o

which we can obtain from (6.133) by the sequence of simultaneous row and

column operations: C4+Cl (R4 +Rd, C2+C3 (R2 +R3), RI - ~ (Cl - C4),

C3 - C2 (R3 - R2). Therefore nets in this family lie in the same orbit as (6.133).

Finally the case u = v = 0 yields a pencil and not a net.

The final type of net (of 4 x 4 skew-symmetric matrices) are those which
contain only singular pencils. All nets containing a non-singular pencil are
covered by one of the previous two types.

As before, we represent the net by

where here the pencil xAI + yA2 is singular. Recall that all singular pencils of
4 x 4 skew-symmetric matrices are skew-equivalent to the normal form :

Therefore, by an action of Gl (4, C) on A we obtain the skew-equivalent nets

[

0 alZ
-aiZ 0

-x - a2Z -y - a4Z

-a3z -a5Z

which, by a change of basis, are equivalent to

[

0 alZ
-aiZ 0
-x -y
-a3Z -a5Z

z
u
o

-a6Z

(6.134)
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This is therefore a representation for any net containing a singular pencil, how-
ever again we may choose to consider only those nets which contain no non-
singular pencils. Again replacing z by ax + f3y we obtain a pencil given by

[

0 al (ax + f3y)
A - -al (ax + f3y) 0

Ot.i3 - -x _y

-a3(ax + f3y) -as(ax + f3y)

x a3(ax + f3y) 1
y as(ax + f3y)
o a6(ax + f3y) .

-a6(ax + f3y) 0

It follows from Definition 1.4.1 (of singular pencils), that nets in (6.134) yield

only singular pencils provided Pf(AOt,jj) == 0 for all (a,f3) E C2• By calculation
we find that

(al aija2 - asa) x2 + (2al a6af3 + a3a - asf3) xy

+ (al a6f32 + a3f3) y2,

which vanishes identically for all a, 13 if and only

as = 0,

and
a3 = O.

Substituting the conditions on a3 and as, into (6.134) gives the family of nets

where al a6 = O. It can be seen, by scaling, that those elements of this family
for which al f:. 0, are skew-equivalent to the representative

[
0 Z x 0]z 0 v 0
-x -y 0 0 .
o 0 0 0

(6.135)

Alternatively if a6 f:. 0 we have the representative

[~.oo-yo
x
u
o
-z
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which, using Lemma 6.0.1, is skew-equivalent to the net

[

0 0 0 Xlo 0 ° zo 0 0 y .
-x -z -y 0

(6.136)

We observe here that these two singular nets, (6.135) and (6.136), both have

the same JI g-codimension, 6, and at first sight we might expect them to be
skew-equivalent. This however is not the case, as we will show in Chapter 7.

If al = a6 = 0 then we have a pencil. In summary we have just established
the following result.

Theorem 6.2.8 Any net of 4 x 4 skew-symmetric matrices over C is skew-
equivalent to one of five possible normal forms (written in upper triangular form)

[x, z, 0, 0, z, yj,

[x, z, 0, O,O,yj,

[x, z, 0, y, 0, z],

[z, x, 0, y, 0, OJ,

[0,0, x, 0, z, yj.

It follows that a complete list of orbits of I-jets of maps, A : C3, 0 -+
Sk(4, C), under JIg-equivalence (or alternatively GI(3, C) xGI(4, C)-equivalence}
is obtained by appending the five normal forms in Theorem 6.2.8, above, to the
list of normal forms of I-jets of two parameter families found in Example 3.4.1

of Section 3.4.

6.2.3 Selective Classification (r = 3, n = 4)

Using this list of l-jets as a starting point we can proceed to classify all g-simple

germs A : C3, 0 -+ Sk( 4,q using the methods employed for the two parameter

case. However, instead we limit our consideration to the g-simples arising from
the l-jets found in Theorem 6.2.8, leaving the complete classification to a later
date.
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Here for all calculations using Transversal the only alteration to the Lie
algebra setups (see Section 5.5 of Chapter 5) is to change the value of the global
variable source_dim to 3, thereby introducing an extra source coordinate, x3,
to represent z.

Firstly, [0, x, z, z, y, 0] is I-Q-determined and is a representative of the open

Q-orbit (it has JlQ-codimension 0). Furthermore its Qe-codimension is 3 and

its discriminant is given by xy - Z2 = 0, which has an Al singularity.

Investigating jets with I-jet [0, z, z, 0, y, 0] we detect the presence of the
following series.

Lemma 6.2.9 Let A: C3,0 ~ Sk(4,C) be any smooth germ with I-jet

[0, x, z, 0, y, 0]. (6.137)

Then A is Q-equivalent to a k-determined germ of the form

[0, x, z, Zk, y, 0],

where k ~ 2, or for any k > 1, A is Q-equivalent to a germ whose k-jet is

{6.137}.

Each germ [O,x,z,z"',y,O], k ~ 2, has Qe-codimension (k + 2) and a dis-
crimnant of type A",.

Proof Assume, for any k ~ 2, that A has a (k - I)-jet

[

0 ° x Z]·"'-1 A = 0 0 0 Y
3 -x ° ° 0 .

-z -y ° °
Firstly, we observe that any monomial xry. zt, r+s+t = k, in either slot el or ee

is in the Jk'Ho-tangent space to r:' A due to the ?io-tangent space generators

[xlylz, 0, 0, 0, 0, 0], [0,0,0,0,0, xlulz].

Hence when looking for a complete k-transversal it is sufficient to represent

j"'-l A by the corresponding (k - I)-jet,
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in Jk (3, 4) and calculate its Jk (nl x Qo)-tangent space. (See Sections 6.0.4

and 6.0.5, in particular Corollary 6.0.7 and Remarks 6.0.16.) For ease we repre-

sent elements of Jk (3,4) by 4-tuples. So the Jk (nl x Qo)-tangent space to Aq
is generated by the following vectors :

M2.
3 •

[1,0,0,Oj, [0,1,0,Oj [O,O,O,ljj (6.138)

[x,z,o,o], [O,O,x,z], [O,y,O,Oj

[O,O,O,yj, [x,O,O,Oj, [O,x,O,Oj

[z,O,y,Oj, [O,z,O,yj.

We are looking for all elements of the set of vectors,

which are contained in this tangent space.

Clearly, the three generators in (6.138) give everything in slots e2, e3 and e5

respectively. The only generators which have terms in e4 are :

[O,O,x, zj, [z,O,y, OJ.

Provided T ? 1 or s ? 1 we obtain terms xry·zte4 by combining one of these
vectors with an appropriate nI-tangent vector from (6.138). For example if

TI ? 1 the vector [0,0, xrJ yBJ ztJ ,OJ is given by

So, the only elements of Hk(3,4) missing from this tangent space are scalar

multiples of Zke4 and we have a k-transversal

[x, z, azk, y), (6.139)

where a E C.
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If a t- 0 by scaling we obtain the Jk(R x Q)-equivalent jet

[X,Z,zk,yj.

It is clear, from what has gone before, that the Jk+1(Rl x Qo)-tangent space

to this jet contains all elements of Hk+l (3, 4) except, possibly, scalar multiples

of [0,0, zk, OJ.The significant vectors of the Jk+l (Rl x Qo)-tangent space are:

M~: [O,I,kzk-l,Oj ([1,0,0,0])

M3: [0,0, zk, yj [x,D, zk, OJ.

By combining z[x,O,zk,Oj and xz[I,O,O,Oj it follows that this tangent space

also contains all scalar multiples of zk+le4. Therefore [x, z, zk, yj is k-(R x Q)-

determined, which, since every monomial of degree k + 1 in slots el and e6 is

present in the Jk+l~h -tangent space, means [0,x, Z, zk, y, OJis k-g-determined.

If, in (6.139), a = 0 then we would have the k-jet [0,x, z, 0, y, OJ(or [x, z, 0, y])
and can repeat the previous argument replacing k - 1 by k and so on.

The ge-codimension and discriminant of each germ [0,x, z, zk, y, OJ, k ~

2, are found by considering the corresponding invariants of the k-(R x Q)-

determined germ

[~ ;],
and using the results of Lemma 6.0.14 of Section 6.0.5. 0

Consider the I-jet [x, z, 0, y, 0, xj. By the R-change (x, y, z) t-+ (z, y, x) this
l-jet is equivalent to (in matrix form) :

and has a 2-transversal of the form

310



where Ql(X,y) = ax2 + bxy + cy2, Q2(X,y) = Ax2 + Bxy + Cy2 are arbitrary
quadratics. The following result uses Lemma 6.1.7 to simplify the 2-jets in this

transversal into a finite number of J2Q-orbits.

Lemma 6.2.10 Any 2-jet of the form

where Ql(X,y) = ax2 + bxy + cy2, Q2(X,y) = Ax2 + Bxy + Cy2 are arbitrary

quadratics, is J2Q-equivalent to one of the following four 2-jets:

0 z x
xu 1 0 z x

Xt 1[ + z 0 y xy [ -z 0 y
-x -y 0 z ' -x -y 0 z '
-xy -xy -z 0 -xy 0 -z 0

[ ~z
z x ~2l [ ~z

z x

n-O y 0 y
-x -y 0 z ' -x -y 0
0 -x2 -z 0 0 0 -z

the first of which is a representative of the generic orbit.

Proof Consider the action of the subgroup of Q, (R x 1I.q), on the skew-
symmetric matrix,

[ 0
z x Q,(X,g) 1

-z 0 y Q2(X,y) (6.140)

-Q~(:,Y)
-y 0 z '

-Q2(X, y) -z 0

(see the discussion following Lemma 6.0.1). Clearly, any 'R-change of coordi-
nates preserving the z-coordinate only affects the 2 x 2 sub-matrix

[
X Qt{x,y)]
y Q2(X,y) . (6.141)

Furthermore the action of elements of 1I.q on (6.140) have the effect, apart from

that on (6.141) itself, of multiplying the z terms in slots el and e6 by non-zero
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function germs. We can then use the results of Lemma 6.1.7 to deduce that a

matrix of the form (6.140) is PQ-equivalent to something of the form

cz x
o y
-y 0

-Q2(X, y) -dz

(6.142)

where

is one of the four 2-jets given in the statement of Lemma 6.1.7 and c, d are
non-zero function germs. It remains to 'scale' away the function germs c and d.

We can first assume c = 1 by the coordinate change (x,y,z) H (x,y,z/c).
By the further coordinate change given by (x, y, z) H (Ax, Ay, z), where A is
a non-zero function germ, combined with multiplying R3, C3 by a non-zero
function germ 0: and multiplying R.t, C4 by a non-zero function germ (3 we

obtain the J2Q-equivalent matrix

aAx
aAY
o

-a(3dz

By choosing a = 1/ A, (3 = 1/ A2, with A = dl/3 we obtain the required result. 0

We consider each of these representatives in turn.

The 2-jet [z,x,xy,y,xy,z] is 2-Q-determined. It has Qe-codimension 6 and

its discriminant is given by z2 - xy(x - y) = 0, which is of type D4.

Investigating jets with 2-jet [z, x, xy, y, 0, z] we detect the presence of the

following series.

Lemma 6.2.11 Let A: C3,0 -t Sk(4,C) be any smooth germ with 2-jet

[z, x, xy, y, 0, z]. (6.143)

Then A is Q-equivalent to a k-determined germ of the form

[z, x, xy, y, xlc, z),
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where k ~ 3, or for any k ~ 2 A is {I-equivalent to a germ whose k-jet is (6.149).

Proof The main idea of this argument is to use the proof of Lemma 6.1.8 to

simplify the calculations.

Assume, for any k ~ 3, that A has a (k - I)-jet

(6.144)

The Jk91-tangent space to this jet is generated by the following vectors:

M2•3 .

[1,0,0,0,0,1], [0,1, y, 0, 0, 0] [O,O,x,I,O,O];

M3:

[z, 0, 0, 0, Z, 0], [0,0,0,0, Z, x], (6.145)

[-y,O,z,O,O,O], [0,0, Z, 0, 0, -y], (6.146)

[z,x,xy,O,O,O], [0,0, xy, 0, 0, z], (6.147)

[0,0,0, z, xy, 0], [0, y, 0, 0, 0, 0], (6.148)

[0,0, x,D, v, 0], [0, xy, 0, 0, 0, 0], (6.149)

[z, 0, 0, y, 0, 0], [0, x, 0, y, 0, z], (6.150)

[0, z, 0, 0, 0,0], [0,0,0, -z, 0, xy] [xy, 0, 0, -Z, 0,0]. (6.151)

First, it is clear that scalar multiples of xker; are not contained in this tangent

space, but we will show that all other elements of Hk(3, 4) are present.

We next demonstrate that this generating set gives every monomial xry·zt

(r + s + t = k) in both slots el and e6· Specifically the spanning set consisting

of:
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(i) x[l, 0, 0, 0, 0,1] and both vectors in (6.145) give xel, xe6, zes;

(ii) y[l, 0, 0, 0, 0,1] and both vectors in (6.146) give yel, ye6, ze3;

(iii) z[l, 0, 0, 0, 0,1], x[O, 1, y, 0, 0, 0] and both vectors in (6.147) give zer , ze6
and xye3.

Hence we have everything in slots el and e6.

Next we show that every monomial xTy8ztei (r + 8 + t = k, 2 $ i $ 5) for

which t ~ 1 is contained in the »c.-tangent space. This is clear since from (i)

and (ii) we have (z}e5, (z}e3 and the vectors in (6.151) give (z}e2 and (z}e4.

From (iii) we have the vector [0,0, xy, 0, 0, 0] and using zel and ze6 we obtain,

from the vectors in (6.150), the vectors [0,0,0, y, 0, 0] and [0,x, 0, y, 0, 0] respec-

tively. These three vectors along with the vectors [0,1, y, 0, 0, 0], [0,0, x, 1,0,0]

and all the vectors in (6.148) and (6.149) give a spanning set corresponding to

the Jk (Rl x Qo)-tangent space to

[: x~],
given in the proof of Lemma 6.1.8. It then follows, using the calculations in

this proof, that the Jk ~h-tangent space contains every monomial vector xT v' e,
(r + 8 = k, 2 $ i $ 5) - with the exception of xkes.

So a k-transversal to (6.144) is

[z, x, xy, y, axle, z], aee. (6.152)

Provided a #: 0, by scaling, we have the 9-equivalent k-jet

[z, x, xy, y, xle, z].

From the above it is clear that the JIe+l91-tangent space to this jet contains all

elements of HH1(3,4) except possibly scalar multiples of[O,O,O,O,xk+l,O).

Relevant tangent vectors of the Jk+l 91-tangent space are,

M2.
3 • [1,0,0,0,0,1], [0,0, x, 1,0,0],

M3: [z,O,O,y,xle,O], [O,O,xy,O,xk,z],
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which give the required [O,O,O,O,xkH,O). It follows that [z,x,xy,y,xk,z) is

k-Q-determined.

As usual if, in (6.152), a = 0 we have the k-jet [z,x,xy,y,O,z) and we can
repeat the previous argument, replacing (k - 1) by k, and so on. 0

Corollary 6.2.12 We have the series of finitely Q-determined germs

[z, x, xy, y, xk, z), (k ~ 2), (6.153)

each of which has Qe-codimension (k + 4) and a discriminant of type Dk+2'

Proof By a similar approach to that used to prove Lemma 6.2.10 it can be
shown that the two 2-jets

[
° z
-z °
-x -y
-xy -xy

and

x

:~ 1z '
-z °
u
o

z
o
-y
_x2

:~ 1z '
-z °
y
o

x

are J2Q-equivalent. So it follows that

[z, x, xy, y, x2, z),

(like [z,x,xy,y,xy,zj) is also 2-Q-determined and has Qe-codimension 6. We
add it to the series found in Lemma 6.2.11.

Using a method similar to that described in Remark 4.4.35 of Section 4.4.3
we find, for each k ~ 3, that the corresponding germ of the series, (6.153), has

Qe-codimension (k + 4). (Setting k = 2 this agrees with the Qe-codimension of

[z, x, xy, y, x2, z).) Finally each germ of the series has a discriminant given by

Z2 - (Xk+l - xy2) = 0, i.e. of type Dk+2' 0

Investigating the 2-jet [z, x, 0, y, x2, z] we obtain the following result, analo-
gous to that given by Theorem 6.1.10.

Theorem 6.2.13 Any Q-simple map A: C3, 0 -+ C6, 0, with 2-jet J2Q-equivalent
to [z, x, 0, y, x2, z], is Q-equivalent to one of the following finitely determined
germs:

[z, X, y3, y, X2, z],
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[z, X, Xy2, y, X2, z],

[Z,x,y4,y,x2,zj,

with Qe-codimensions 8,9, 10 and discriminants E6, E7 and Es respectively.

Proof The classification is carried out using Transversal in a similar fashion
to that used to obtain the results of Theorem 6.1.10 (see Section 5.5). Starting
the classification, by finding a complete 3-transversal to

[z, x, 0, y, x2, zj,

the calculations involved and the results obtained are analogous to those for
Theorem 6.1.10.

The Qe-codimensions of the resulting finitely determined germs, listed in the
statement, are also found using Transversal.

By finding their determinants, the discriminants of [z, X, y3, y, x2, zj, [z, X, xy2, y, x2, z]
and [z,x,y\y,x2,zj are given by

which have E6, E7, and Es singularities, respectively. 0

The investigation of germs with 2-jet [z, x,D, y, 0, zj is found to be analogous
to that discussed in the proof of Lemma 6.1.11.

Lemma 6.2.14 There are no Q-simple germs A e3,0 -+ e6,0 with 2-jet
[z, x, 0, y, 0, z].

Proof This result relies on a similar calculation and argument to that used for
Lemma 6.1.11. 0
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Chapter 7

Geometry

7.1 Duality of Classification

Setting V = K", we have seen that we can think of n x n skew-symmetric
matrices as the set of skew forms, Alt(V), on V. We have also seen that the

space of skew forms is canonically isomorphic to (/\2 V)*, Le. linear maps

/\
2 V --t K. We have the following result.

Lemma 7.1.1 (see [Lang).} Let Vl and V2 be a pair of vector spaces. Then
any linear map

induces a linear map

and a linear map

Moreover if rp, t/J E Alt(V) and 4>, iiJ are the corresponding elements of (/\ 2 V)·
then the diagram on the left below commutes if and only if that on the right
commutes (if and only if &(tJ!) = rp).

t/J
/\2 Vl

~
Vl X Vl \., \.,

(a,a) + K t---+ I\2a + K.
til ~V2 X V2 /' 1\2 V2 /'
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So we can think of our skew-symmetric matrices as elements of (/\2 V)·

and, by setting W = K", of our I-jets as elements f E hom(W, (/\2 V)·). The

classification of these l-jets corresponds to the natural action of GI(W) x GI(V)

on this space. It is not hard to see that the type of f is determined by the
image of f j see below. Before considering this we need a few results from linear
algebra.

Lemma 7.1.2 There is a canonical isomorphism (identification) between the
two vector spaces Alt(V)· and Alt(V·). Alternatively we have a canonical iso-
morphism between

2
(/\ V)· and

21\ V·.
If we choose a basis {eI, ... ,en} for V, the dual basis {ei, ... ,e~} for v· and

corresponding bases for (/\2 V)· and ,,2 (V·) then the isomorphism takes (e, A

ej)· to et A ej.

Proof We give two (equivalent) proofs. Consider the map 8: Alt(V) xAlt(V·) -+
K defined by (cp,t/J) H trace( t/J. 0 cp.), where cp* : V -+ V· and t/J. : V* -+
(V·)· == V. We claim that 8 is a natural non-degenerate bilinear form. Bilin-
earity and naturality is clear. So we need to establish non-degeneracy.

First as in the statement the dual basis for V· is {ei, ... , e~} where

Now we have seen that there is a natural map Alt(V) -+ Hom(V, V*). With
respect to the given basis for V and the dual basis for V* we can think of this as

a homomorphism Sk(n, K) -+ M(n, K), and it is easy to check that this is the

transpose map. So the bilinear form becomes a map Sk(n, K) x Sk(n, K) -+ K

given by (A,B) t-+ trace(BA) = - Li Lj aijbij. This is clearly nondegenerate.

The map 8 now gives an isomorphism 8* : Alt(V*) -+ Alt(V)*.

For the second proof consider the pairing /\2 V x /\2 V* --+ K determined
by

(VI A V2,Vi A V2) t-+ (vi(vdv2(v2) - vi (V2)v2 (vd) ,

which we denote by (VI AV2,vi Avn and extend linearly. This is a canonical
well defined bilinear form which we will demonstrate is also non-degenerate.
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Consider for 1 ~ i < j ~ n, 1 ~ r < s ~ n the expression (e, 1\ ej, e; A e:). It

is easy to see that this is 1 if i = r,j = sand 0 otherwise. (It is not possible

that i = s, j = r.) So the bilinear form is therefore non-degenerate.

Consequently this bilinear form yields a natural isomorphism /\2(V*) --+

(/\
2 V)* determined by

as required, which has the required effect on (e, 1\ ej)*. 0

A consequence of this lemma is that we can identify Alt(V)* with Alt(V*)

(resp. (/\2 V)* with /\ 2(V*». In the latter case we denote either by /\2 V· from
now on.

The following definitions and results will prove useful.

Definition 7.1.3 Given a subspace U of a vector space, V, there is an associ-

ated subspace u- of the dual space, V*,

U.L = {v· E V* : v· (u) = 0 for all 11. E U C V} .

So U.L consists of those elements of V* which kill off every element of U.

Lemma 7.1.4 If V is finite dimensional and U is a subspace of V then dim U.L =

dim V - dimU and (U.L).L = U.

Proof Let {el. ... ,er} be any basis for U. We extend this basis to the basis

{el,'" ,eN} of V, where N is its dimension. Consider the corresponding basis

for the 'dual space' V·, {ei, ... , eiv} where

(7.1)

A general element v· E V· can be written

N

v· = LAie;,
i=l

Ai E K.

For v* E U.L, then Definition 7.1.3 requires that

v·(u) = 0,
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for all u E Sp{ el, ... , er}. This holds provided

N

L Aiei(ej) = 0,
i=l

for each 1 ~ j ::;r. From the identity (7.1) it follows that Aj = 0, 1 ::; j ~ r

and we can express any element u* E U 1. by

N

u* = L Aiei,
i=r+1

for some (Ar+I, ... ,AN) E eN -r. Clearly, {e;+I" .. ,eN} is a basis for U 1. and

dimU1. = N - r as required. It is not hard to see that (U1.)1. :::> U and since

both spaces have the same dimension the result follows. 0

Lemma 7.1.5 If Vt.V2 are vector spaces, UI,U2 respectively subspaces with
dim VI = dim V2 and dim UI = dim U2 then an isomorphism a : VI ~ V2 takes

UI to U2 iJ and only if the dual isomorphism a* : V2*~ Y;* takes ut to ut·

Proof The map a* is defined by a*(v2)(vl) = v2(a(vd). The result is now
easy. 0

We tailor these results to suit the case at hand, where we consider subspaces
of the vector space Alt(V) and its dual Alt(V)* == Alt(V*) (or equivalently

A2 V* and its dual, (A2(V*»* == A2 V). We have a canonical isomorphism

"( : Alt(V)* ~ Alt(V*) (denote the isomorphism (A2(V*W == A2 V by the

same symbol) .

Lemma 7.1.6 So given any subspace, U C Alt(V) (resp. U C A 2 V*), there is

an associated subspace, "(U1.), of Alt(V*) (resp. (1\2 V*)* == 1\2 V), given by

"(u1.) = {~E Alt(V*) : trace (~*o,p*) = 0 for all t/J E U C Alt(V) } ,

(respectively

Jar all u* E U c 1\2 V* } I

where (v, u*) is the bilinear form described in the proof of Lemma 7.1.~.)
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Proof Underlying this result is the following. Let (J : V x W -+ K be a non-
degenerate bilinear form. Then there is a natural isomorphism (J* : W -+ V*.

Let V be a subspace of V, so V.1. C V*. Then ((J*)-l (V.1.) = {w E W : (J(u, w) =

o for all u E V}. To see this note that ((J*)-I(v*) = w where v*(v) = 8(v,w)

for all v E V. The result follows simply by writing down the definitions of the
two sets. The stated results are immediate consequences. 0

Definition 7.1.7 Let VI, V2 be vector spaces and Vi subspaces of A 2 Vi, i =
1,2, respectively. Then the pairs (VI, Vd and (V2' V2) are defined to be equiv-

alent, written

if and only if there exists an isomorphism a : VI -+ V2 with

With this definition in mind we give the following lemma.

Lemma 7.1.8 Let Vi, Wi, i = 1,2 be finite dimensional vector spaces with

dim W. = dim W2. Given linear maps

j = 1,2,

the following are equivalent :

(1) There is a commutative diagram

where a : WI -+ W2, f3 : VI -+ V2 are both isomorphisms. (In which case

we can write It '"h')
(e)
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Proof The equivalence is clear. 0

Note that the result shows that the only invariant of these maps f :W -+ A 2 V

are the pair (V, im f) and the dimension of W.

The result we require now follows.

Theorem 7.1.9 Two subspaces U1 and U2 of (A 2 vt are equivalent if and only

if the corresponding subspaces ,),-1 (ut) and ')'1(Ut) of (A 2 V*t are equivalent.

Proof Since ')' is natural ,),-I(Ut) and ,),-l(Ut) are equivalent in (A2V*)* if

and only if ut and Ut are equivalent in (A 2 V)** = (A 2 V). But this is true if

and only if U1 and U2 are equivalent in (A 2 V)*. This is because if A 2 et takes

ut to Ut then (/\20)* takes U2to Ul. 0

We deduce that if we have a classification of elements A E hom(X, A2 V*)

when dim(imA = r) then we have a similar classification of elements of B E

hom(Y, (A2 V*)*) where dim(im B) = (N - r) where N = n(n - 1)/2, where
X, Y are finite dimensional vector spaces of equal dimension. Working with
co-ordinates we see that once we have classified r-dimensional subspaces of
Sk(n, K) we have a classification of (N - r)-dimensional subspaces of Sk(n, K).

We illustrate this with the following example where K = C, V = C4.

Example 7.1.10 Consider the I-dimensional subspace, U, of the 6-dimensional
space Sk(4, C), consisting of non-singular skew-symmetric matrices and repre-
sented by the normal form

[

Ox
-x 0

A(x) = 0 0
o 0

o
o
o
-x

with respect to some basis of C4• The corresponding dual 5-dimensional sub-

space of Sk(4,C) is given by

')'(U.l) = {B E Sk(4,C) : trace(BA) = O}. (7.2)
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With respect to the dual basis of (C4)., a representative for an element of this
space is given by

where bij E C satisfy 2x(b12 + b34) = 0, for all x E C. Hence the corresponding

'dual' space, for A(x), is the 5-dimensional subspace of Sk(4,C) consisting of
skew-symmetric matrices of the form

For s ~ 5 this gives a l-jet of an s-parameter family of 4 x 4 skew-symmetric
matrices which has cojetrank 1.

7.2 Some Geometry

Consider the two normal forms for singular nets, found in Section 6.2.2,

A= [
0 Z x 0]

Z 0 Y 0
-x -y 0 0 '
o 0 0 0

B= [1.
o
o
o
-y

OX]o yo .
-z ~

(7.3)

These represent 3-dimensional subspaces of the 6-dimensional space Sk( 4, C),

and are clearly dual to each other. Both these I-jets have the same JIQ_

codimension (namely 6) and a natural question is whether they are JIg-equivalent

(or skew-equivalent). In fact we can distinguish between them as follows.

Following the above, we can think of A, B as 3-parameter families of skew-
symmetric forms V x V ~ C, where dim V = 4. Consider some non-zero vector
v E V such that

vT A(x) == 0, (7.4)

for all x E C3. (In other words, if A(x) is a matrix representative for a family

of skew-symmetric forms Ckz : V x V ~ C, then Ckz (v, w) = 0 for all w E V, and
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x E C3.) Any net skew-equivalent to A is of the form

for some 4> E Gl(3,C), X E Gl(4,C). Consider,

noting that X-lV is a non-zero vector of V. It follows that

_ 0,

from (7.4). So if there exists a v E V (v ¥ 0) such that vT A(x) == 0 for all

x E C3 then for some non-zero vector, VI E V,

Returning to the two nets above, (7.3), by choosing

vT A == 0 for all (x, y, z) E C3• For B to be skew-equivalent to A there must be
a non-zero vector

such that

is identically zero for all (x, y, z) E C3. This is not the case and so A and B
cannot be skew-equivalent, even though they are dual.

Consider the space S k( 4, C) consisting of elements of the form[-~, al a2 a, ]0 a4 a5A= 0 a6 '-a2 -a4
-a3 -a5 -a6 0
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where ai E e. The set of singular skew-symmetric matrices, P, is given by the
vanishing of Pfaffian P f(A) = O. Since P f(A) has degree 2 this set is a quadric

of dimension 5 in Sk( 4, C). Alternatively, considering the associated projective

space P(4, C) of Sk(4, C), denoted by pe5, the singular set is a quadric of

dimension 4, which we shall denote by Q4.

Since a net of skew-symmetric matrices is a plane in pe5 it follows that

singular nets are 2-dimensional subspaces of pe5 contained in a quadric of
dimension 4. Griffiths and Harris in their book, [GrifHar], Pg. 735 show that

there are two 3-parameter families of planes in Q4. We show how one family is

parameterised in an natural way by pe3 j the other family is obtained as their
duals.

Lemma 7.2.1 Let V be a finite dimensional vector space of dimension n. Con-

sider any v E V\{O}. Define a linear map tPv : Alt(V) -+ V· by

¢ 1-+ ¢(v, -).

Then imtPv = v.L, where

v.L = {v· E V* : v*(v) = OJ.

Proof Since ¢ is skew-symmetric ¢(v, v) = 0, and therefore imtPvC v.L.

We show the reverse inclusion by considering bases. Choose a basis, {et, ... ,en},
of V with v = en. Clearly, {ei, ... ,e~_l} is a basis for v.L = e;. Therefore to

show v.L C im.,pv it is sufficient to show

Define, for 1 :5 j :5 n - 1, ¢j E Alt(V) such that, for r < s,

{
I if (r,s) = (j,n)

¢j(er,e.)= 0 otherwise

So under .,pv,

1:5 j $ n -1,

which implies {ei, ... ,e~_t} C im.,pv,as required. 0
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Consider, ker 1f!v. If ¢ E ker 1f!v then </J(v, w) = 0 for all w E V, i.e. if A is a
matrix of ¢, with respect to some basis of V,

vT Aw = 0,

for all w E V. Choosing a basis for V with v as one of its elements, a row and
column of the corresponding skew-symmetric matrix, A, is null and det A = O.

So, for any v E V\ {OJ there is a linear subspace, ker 1f!v, of Sk(n, C) contained

in the set of singular skew-symmetric matrices (given by the vanishing of the

Pfaffian). From the proof of Lemma 7.2.1, dim(im 1f!v) = dim V-I and so by
rank-nu.llity this subspace has dimension,

dim ker e, = dim(Alt(V» - (dim V-I). (7.5)

Corresponding to the action of Gl(n,C) on A E Sk(n,C) there is an automor-

phism of the vector space V. Hence given any v E V\{O}, by this automorphism
we can suppose v = en and

ker1/le.. = {¢ E Alt(V) : ¢(en, -) =O}

gives a skew-equivalent normal form for all such subspaces ker 1/Iv of Sk( n,C).

This has a projective interpretation. It is easy to see that given two vectors

v, w E V\{O}, that ker1/lv= ker1/lwif and only if v = AW, A ::f O. Considering
the projective space P(V), associated with V by identifying each v E V\{O}

with its scalar multiples, there is a P(v)-family of subspaces ker 1/Iv contained
in the singular set.

We finish by applying these results to the example introduced at the begining
of this section.

Example 7.2.2 Consider any non-trivial vector v E V, where dim V = 4. The

kernel of the map 1/Iv is a 3-dimensional subspace of Sk(4,C) (using (7.5».

Furthermore, this subspace is contained in the singular set of Sk(4, C). We
therefore have a 4-parameter family of singular nets. Corresponding to the
action of Gl(4, C) on Sk(4, C) there is an automorphism of V and we can choose

the vector v to be e4. It follows that up to skew-equivalence this family of nets
has the single normal form

A= [ ~.

z
o
-y
o

: ~1o 0 .
o 0
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Projectively, this is a skew-equivalent normal form for all members of a 3-

parameter family of nets contained in the quadric Q4 (the singular set ofP( 4, C)).
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Appendix A

An Alternative Approach

Although the following is of interest it is not necessary for the main purpose of
the thesis.

In Section 2.4, of Chapter 2, we considered a pair of skew-symmetric matrices

(AI, A2), for which A2 is non-singular, as a A-matrix A = Al +AA2. In so doing
we used work on A-matrices along with the result of Lemma 2.3.10 to derive
a skew-equivalent normal form for this pair. Naturally we could also represent
this pair by the A-matrix A2 + AAI and we discuss this presently.

Consider the A-matrix

and so (again using Lemma 1.1.8)

for some !(A). Here deg! = p $ rand /(0) :F o. So over C we can write

q

!= IT (CiA + 1)'ir,
i=1

there possibly being a e; which is zero (if p < r). Hence using Theorem 2.2.4,

the invariant factors of A are given by

dl = 0~=1(CiA + 1)'it
dld2 = of=l (e;A+ 1)';2

(A.l)

dld2··· d; = 01=1(e;A+ 1)';r,
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where for each 1 :s i :s q, Sil :s Si2 :s ... :s Sir· By following a similar argument
to that in Section 2.4 we can construct, for A2 + AAl, the skew A-equivalent

normal form N = Nl + AN2 consisting, exclusively, of blocks of the type in

(2.38) and represented by the shorthand:

r
TU Tl2 ... Tln(l)

distinct ;

cq TqI Tq2 Tqn(q)

where for each 1 :s i ~q, Til ~ Ti2 ~ .•• ~ Tin(i)' Note, if deg! < T there will

be n(i) blocks for which Cl = 0 that are of the form

0 1
-1 0 1

-1 0 1
-1 0 1

-1

1
-1 0 1

-1 0

This normal form is more elegant than the one obtained for Al +AA2, but since
Al is not necessarily non-singular we can no longer use Lemma 2.3.10 to equate

the skew A-equivalence of A2 + AAl and Nt + AN2 with the skew-equivalence of
the pairs they represent.

From this arises the question of whether the normal forms NI + AN2 and

s. + AN2, of Al + AA2 and A2 + AAl respectively, are related. Since skew A-
equivalent matrices have the same invariants this can be investigated, to some
extent, by comparing the invariants of Al + AA2 and A2 + AAl. It seems
sensible here to broaden our consideration of these invariants to those under
A-equivalence (see Section 2.3). rather than just skew A-equivalence. This is

discussed in the following section. However before doing so we give the following
corollary.

Corollary A.O.3 Consider the A-matrices Al + AA2, B; +AB2. If A2 is non-
singular and At +AA2 is A-equivalent to Bl +AB2 then A2 +AAl and B2 +ABl
are A-equivalent.
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Proof If Ai +AA2 and B, +AB2 are A-equivalent then by following a similar ar-
gument to that used in the proof of Lemma 2.3.10, here applying Theorem 2.3.9,

it follows that the pairs (At, A2) and (Bb B2) are equivalent. So we can write

for some invertible constant matrices x, y, and hence B2 + ABI and A2 + AAl
are A-equivalent. 0

A.I Comparing Invariants

From Lemma 2.2.3 and using the result of Lemma 2.1.16 invariants of A-equivalent
matrices are the principal generators of the ideals generated by their r x r minors.
With this in mind, we need the following result.

Lemma A.1.1 Denote an r x r minor of (A2 + AAt) by

where (A2 + AA1)r is the associated sub-matrix of A2 + AA1. If the sub-matrix
(Ai + AA2)r is obtained from Al + AA2 by the same row and column deletions
then the corresponding r x r minor of Al + AA2 is given by

Then
(A.2)

Proof So

Qr(A) = det(Al + AA2)r

= det(Alr + AA2r}

= det A(A -1Alr + A2r}

= Ar det(A-1 AIr + A2r}

= Ar det(A -1Al + A2}r

= ArPr(A-1},

as required. 0
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Note, from (A.2), by replacing A with A-t we also find that

As previously mentioned our aim is to find a relationship between the invariants
of A2 + AAt and those of At + AA2. We can immediately use the result of
Lemma A.1.1 to this effect for the last invariants.

The last invariant of A2 + AAt is det(A2 + AA.) = Pn(A). So, from (A.2),

the relation between this and the last invariant, det(At + AA2) = Qn(A), of

At + AA2 is given by

(A.3)

If A2 is non-singular, Pn(O) i:- 0, and it follows from (A.3) that Qn(A) has degree
n as was shown in the proof of Lemma 2.3.10.

Given the list It,...,i« of all r x r minors of A2 + AA!, the associated
invariant, gr, of this matrix is given by

(A.4)

It follows from Lemma A.1.l that we can write the ideal generated by the
corresponding r x r minors of At + AA2 as

with h; the associated invariant. We look for some relation between gr and hr.

Definition A.1.2 The junction a :K[A] ~ K[A] is defined as follows. Given
any polynomial pE K[A], of degree d, a(p) is the polynomial

Lemma A.1.3 Given a polynomial p E K[A], the polynomial, u(P), defined
above, has no zero roots.

If p E C[A] the junction, a, in addition to killing ofT the zero root of p, sends

each of its (distinct) non-zero roots, ai, to the non-zero root l/ai of a(p), of

the same multiplicity. As a result, the number of roots of u(P) is equal to the
number of non-zero roots 0/ p.
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Proof Writing

where each Pi E K, if P has degree d then Pd '" o. So since

a(p) = ..\d(po +Pl..\-1 + ... +Pd_I..\I-d +Pd..\-d)

Pd +Pd-l"\ + ... +Pl..\d-l +Po..\d

it can be seen that a(p) has no zero roots.

If pE q..\] it can be expressed in the form

q

p(..\) = c..\k II (..\- G:;)m,
;=1

(k ~ 0),

where q is the number of non-zero roots. So

q

u(p) = ..\(k+E1_1 m')c..\-k II(..\-1 - G:;)m,
;=1

q

= c..\E1=1 m, II (..\-1 - G:i)m,
;=1

q

= c II (1 - G:;..\)m,.
;=1

(A.5)

Note that, irrespective of its multiplicity, any zero root of P is killed off by
a, Furthermore it can be seen, from (A.5), that for each non-zero root, ai, of

P there is a non-zero root, l/a; in u(P), of the same multiplicity. Hence the

number of roots of u(P) is the same as the number of non-zero roots of p. D

Lemma A.1.4 Let 9r and hr be the principal generators of the ideals generated
by the r x r minors of the ..\-matrices A2 +"\Al and Al + ..\A2, respectively. Then
it follows that

and

Furthermore, over the polynomial ring C[..\], we can write

(A.6)
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and
(A.7)

there being a one to one correspondence between the non-zero roots, ai, of gr
and the non-zero roots, l/aj, of hr.

Proof Adopting the notation in (A.4), above,

(A.8)

from which we recall, using Lemma A.1.t, that

From (A.8), for each 1 $ i $ N,

for some qj E K[,x]. Let deg g, = s. Then

deg q, = deg fi - deg g, = degj; - s,

and since deg fi $ r it follows that

dege, :$ r - s.

So

,xrh(,x-1) = ,xrgr(,x-1)Qi(,x-1)

= ,x'gr(,x-1),xr-'Qi(,x-1). (A.tO)

Since deg qi $ r-s then ,xr-'qj(,x-1) is a polynomial and so, for each I $ i :$ N,

,x'gr(,x -1) = u(gr) divides ,xrfi(,x -1). From (A.9) this implies that u(gr) divides

hr.

Alternatively, writing

(A.U)

then by the note after Lemma A.t.t

(A.t2)
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Letting deg h; = t, then by applying to (A.ll) the argument used above on

(A.8) it can be shown, for each 1 ~ i ~N, that a(hr) = Athr(A-I) divides

ArHi(A-I). Then from (A.I2) it follows that a(hr) divides gr'

We consider the case when K = C and write

(A.I3)

(A.I4)

where gr, hr, a(gr), a(hr), K, and K2 are polynomials in C[A]. Let ml, m2 be
the number of non-zero roots of gr and h; respectively and nI, n2 be the number
of non-zero roots of KI(A) and K2(A) respectively. Then, by Lemma A.1.3 the

number of (non-zero) roots of a(hr) is equal to the number, m2, of non-zero

roots of hr. So from (A.I3) we find

(A.I5)

Similarly, since the number of non-zero roots of a(gr) and Br are the same it

follows from (A.I4) that

(A.I6)

It follows from (A.IS) and (A.I6) that the only non-negative solution for ni and

n2 is nl = n2 = O. So both K1(A) and K2(A) have no non-zero roots. So

(A.I7)

(A.I8)

Note that since we are dealing with principal generators we can neglect any
constant multiples.

1). From Lemma A.1.3 a(hr)' has no zero roots and so, over C, we can write

q

a(hr) = II(A - (}i)mi
•

•=1

Hence from (A.I7) we can write

q

gr = AU~II(A - (}i)mi,

i=1
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where ai are the distinct non-zero roots of gr' Substituting this expression into
(A.I8) and using Lemma A.1.3 we get

q

hr = >.v. II(1- a,>.)m;,
i=l

and the one to one correspondence between the non-zero roots, ai, of gr and

the non-zero roots, I/a" of h; is clear.

It is the second of these equations, (A.7), which is needed for our purposes.
Particularly we would like to determine the unknown power, Vr• However before
considering this, we show that for some values of r the powers Ur and Vr vanish.

Corollary A.1.5 Over the polynomial ring q>.] let

and

for some 1~ r ~n. By Lemma A.1.4

If rankA2 ~ r then Ur = 0 and

Similarly, provided rankAl ~ r I it can be shown that Vr = 0 and

Proof Recall from (A.S), in the proof of Lemma A.1.4, that

for some 1 ~ r ~ n. H rankA2 ~ r then some r x r minor of A2 is non-zero. H
the minor of A2 + >.Al, corresponding to the same row and column deletions, is

f..,(>') = det(A2 + >.Adr, it follows that f..,(O) '" O. Since gr = gcd(I1""/N),

see Lemma 2.1.16, this implies that gr(O) '" 0, hence Ur = 0 in (A.6) and
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From (A.ll), in the proof of Lemma A.1.4,

If rank/l., ~ r then by applying, to this, the same argument we can find some

r x r minor Ho(>") of Al + >"A2 for which Ho ::f:. D. This implies that hr(D) ::f:. D,

so Vr = Din (A.7) and

o

For the remaining values of r we would like to determine Ur and Vr, particu-
larly the latter since for the purpose discussed in the preamble we need relation
(A.7).

However before considering this we can use Corollary A.1.5 to establish the
result of Corollary A.D.3 directly, without having to use Theorem 2.3.9.

Lemma A.1.6 If A2 is non-singular and the matrices Al + >"A2 and BI + >"B2
are >..-equivalent then A2 + >"AI is >..-equivalent to B2 + >..BI.

Proof Let the sequence of invariants of Al + >"A2 be {hl, ... ,hn}. Since A2
is non-singular rankA2 = n and so for each invariant, hr, where 1 :$ r :$ n,
r ~ rankA2. By Corollary A.1.5 we deduce that the corresponding invariants,
gr, of A2 + >"AI are given by

If BI + >"B2 is >..-equivalent to Al + >"A2 then by Lemma 2.2.3 it has, up
to constant multiples, the same sequence of invariants. In particular, the last

invariants of each, det(BI +>..B2)and det(AI +>..A2), differ by a constant and as

A2 is non-singular it follows, by the argument used in the proof of Lemma 2.3.10,
that B2 is also non-singular. So rankB2 = n and for each invariant, hr, of
BI + >"B2, r ~ rankB2. Applying Corollary A.1.5 we deduce that, for each
1 ~ r ~ n, the corresponding invariants, g~, of B2 + >"BI are given by

Therefore the sequence of invariants of A2 + AAI and B2 + ABI are equal and
by Lemma 2.2.3 it follows that A2 + AAI and B2 + >"BI are A-equivalent as
required. 0
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We return to the consideration of

with a view to determining the power vr.

Lemma A.1.7 Given the A-matrix Al + AA2, the rank, k, of Al is invariant
under A-equivalence. Furthermore reducing Al +AA2 to the A-equivalent matrix

we denote the rank of the (n - k) x (n - k) sub-matrix Au by s.

Then for 1 :::;r :::;k + s the invariant, hr, of Al + AA2 can be expressed, in
terms of the invariant, gr, of A2 + AA1, as follows

However, as yet, for k + s < r :::;n, it can only be determined that Vr > r - k.

Proof Firstly, given any matrix Bl + AB2 which is A-equivalent to Al + AA2
then for the invertible matrices X(A), Y(A)

Setting A = 0 it follows that Bl = Y(O)A1X(O) and hence rankBl = rankAl.
So rankAl = k is invariant under A-equivalence.

By a series of elementary row and column operations (over K) on Al + AA2
we obtain the equivalent matrix

(A.19)

For r :::;k it follows from Corollary A.1.5 that

If r > k then the gcd, hr' of all the r x r minors of (A.19) is given by

h; == All..O'(gr),
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where Vr > 0 and u(gr)(O) '" O. So the factor, AV~, is the highest power of A
which divides all these r x r minors. Hence from these minors, those with the

minimal power of A as a factor will yield Vr.

Minors, with the lowest possible multiple of A as a factor, are those obtained

from sub-matrices, of (A.19), containing the k x k sub-matrix Ik + AA21• The

remaining r - k rows and columns of each such sub-matrix are obtained by

deleting n - r rows and columns from the last n - k rows and columns of

Al + AA2. These r x r sub-matrices are of the following form,

(A.20)

M

where all non-specified entries are some constant multiple of A (possibly zero)

and M is some (r - k) x (r - k) sub-matrix of A24• It follows that, provided

det M '" 0, the corresponding minor of Al + AA2 is

Ar-k(l + 0(1»,

where 0(1) is a A-polynomial consisting of linear and higher order terms. So as

long as one (r - k)-minor of A24 is non-zero we have a minor of Al +AA2 whose

multiple of A is the lowest possible, i.e. r - k. Since this power is therefore the

minimal power of A of any minor of Al +AA2, we deduce that if rankA24 2: r-k,
then v = r - k and

hr = Ar-kU(gr)'

If however rankA24 < r - k then all (r - k) x (r - k) minors of A24 are zero, and

no minor of Al + AA2 can have, as a factor, a multiple of A with degree r - k,
So Vr > r - k. 0

Having established this, we ask whether the reverse of Lemma A.l.6 is also
true.

Conjecture A.I.S Given that A2 is non-singular and the matrices A2 + AAI
and B2 +ABI are A-equivalent then does this imply that Al +AA2 is A-equivalent
to B, + AB2?
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If A2 + AAI is A-equivalent to B2 + ABI then by Lemma 2.2.3 they both have
the same sequence of invariants, {gl, ... ,gn}. We would like to compare the
sequence of invariants,

{hI, .. ·,hn},

of Al + AA2 and the sequence of invariants,

{h~, ... ,h~},

of BI + AB2. To do this we use the results of the previous lemma. First note,
since A2 is non-singular the A-equivalence of A2 +AAI and B2 +ABI implies that
B2 is also non-singular. However, from this equivalence there is no reason why
the ranks of Al and B, should be equal. Let rankAl = ki and rankBl = k2•
As described in Lemma A.1.7 above, we can reduce Al + AA2 and Bl + AB2 to

Al + AA2 and El + AE2 respectively, where

and

If rankA24 = 0: and rankB24 = {3, then, by this lemma, the invariants, {hI, ... , hn},

of Al + AA2 are

and the invariants, {hL ... ,h~}, of Bl + AB2 are

{u(gt}, ... ,U(gk2)' AU(gk2+l), ... ,AtJ U(gk2+tJ), AW.2+I'+lU(gk2+tJ+t}, ... ,Aw" u(gn)}.

So the sequence of invariants for Al + AA2 and Bl + AB, are equal only if all
of the following three conditions are satisfied.

(ii) 0: = {3,

(iii) Vi = Wi for kl + 0: + 1 :$ i :$ n.

Hence, by Lemma 2.2.3, the conjecture that Al +AA2 is A-equivalent to Bl +AB2
also depends on these conditions. Clearly this conjecture generally fails as shown

by the following counter example.
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Consider the linear A-matrix

Premultiplying this by the invertible A-matrix,

[1~A 1]
1\ 1 '

it follows that

[1~A ~] = [~ ~]+A[~ ~]

= B2 +ABI

is A-equivalent to A2 + AAI.

However,

has the sequence of invariants {A,A2},whereas the sequence of invariants of

is {I, A2}. Since the first invariants, of each, are different Al +,xA2 and BI +,xB2
are not A-equivalent. Note that rankAI = 0, whereas rankBl = 1 and hence
this is an example of kl :F k2•

It therefore appears that the method described in Section 2.4 is the most
suitable for classifying pairs of skew-symmetric matrices, where at least one is
non-singular .
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Appendix B

Justification for 9 being one
of Damon's geometric
subgroups of JC

It is required to establish that our group 9 is one of Damon's geometric sub-
groups of /C. Having shown that it is a subgroup of /C (see Lemma 4.2.5) we

need to show that it satisfies the four conditions given in [Damon] Pgs. 40-42,
labelled by him : naturality, tangent space structure, exponential map and fil-
tration condition. It is easy to see that if we establish the relevant conditions for
the action of 11. then they will also hold for 9 = n x 11.. So to simplify matters
we consider the subgroup 'H. of C consisting of smooth germs er, 0 -+ Gl (n,C)
acting on the space of germs

Ske = {A: er,O -+ Sk(n,e)},

with the action X(x}.A(x} = XT(x}A(x}X(x}.

In fact using Proposition 4.3.5 we can assume all our germs vanish at 0 E er,
i.e. we consider the action of 11. on the space of germs

Sk = {A: C,O -+ Sk(n,C),O}.

The subgroup C of /C just consists of pairs of germs (id, r/J)with id : er, 0 -+
er,O the identity, r/J : er x Sk(n, C), (0,0) -+ Sk(n, C),0, r/J(x,O} = 0 for all

x and r/J(O,-} : Sk(n, C), 0 -+ Sk(n, C),0 the germ of a diffeomorphism. This

r/Jcan roughly be thought of as a family (iJ: cr,O -+ Diff(Sk(n,C» (where
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Diff(Sk(n,C) is the group of diffeomorphisms Sk(n,C),O ~ Sk(n,C),O).

Our group 1-l merely corresponds to the subgroup of C where the target is
Gl(n, C), a subgroup of Dif f (Sk(n, C).

In the following we demonstrate that 1-l satisfies each of Damon's require-
ments of a geometric subgroup.

1. Naturality An unfolding of a germ A : er,O ~ Sk(n,C),O is a germ

A : er x Cq, (0, 0) ~ Sk(n, C) x eq, (0,0) of the form

A(x,u) = (A(x,u),u),

with A(x,O) = A(x) (see Definition 4.4.25). The set of unfoldings of germs in
Skis the translate of the linear space S kun ,

Skun = {A: er x Cq,(O,O) ~ Sk(n,C),O},

by the addition of the projection 7l'(x, u) = u.

Given a smooth mapping ..\ : ep, ° ~ eq, ° then the pull-back of A, ..\.A,
is defined by A·A(x, v) = (A(x, ..\(v», v), for x E er, vEep (compare with

Definition 4.4.27).

Using notation corresponding to that used in [Damon] Pgs. 4-5,

1-lun(q) = {X: er x c-, (0,0) ~ GI(n,C) x c- :X is

an unfolding of X E 1i} ,

with X(x,u) = (X(x,u),u) E GI(n,C) x Cq•

If X E 1-lun(q) for naturality under pull-back (see [Damon] Pgs. 5 and 40)

we need ).·X, given by ).*X(x,v) = (X(x,).(v»,v), to lie in llun(P). This is
obviously true.

2. Algebraic Structure (of the tangent spaces) These conditions are relatively

trivial since all tangent spaces are Or-modules (i.e. modules over the ring of
function germs in the source).

Here we have Our group 'H acting on the space Sk, defined above.
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Proposition B.O.9 Consider the spaces

Skun,e(q) = {ii: er x c-, (0,0) -t Sk(n,C)},

(Skun(q) = {ii: er x Cq,(O,O) -t Sk(n,q,O})

and

1iun,e(q) = 1iun(q)

= {X: Cr x Cq,(O,O) -t Gl(n,q x Cq}.

Using Damon's notation (see [Damon] Pgs. 2-3),

TSkun,e(q) = {ii: Cr x Cq
, (0,0) -t Sk(n,q},

(TSkun(q) = {ii: er x Cq,(O,O) -t Sk(n,q,O})

and

where

Proof Firstly, consider a J-parameter family in Skun,e(q) :

ii: Cr x Cq xC, (0,0,0) -t Sk(n,q,

with members A(x, u, t).

(The corresponding l-parameter family in Skun(q) is given by germs A :

Cr x cq X C, (0,0,0) -t Sk(n, C), ° with A(O, 0, t) == 0.)

Now the tangent vector to A(x, u, t) E Skun,e(q) at A(x, u, 0),

~~ (x, u, 0) : er x Cq
, (0,0) -t Sk(n, C),

is clearly in Skun,e(q) which implies that TSkun,e(q) C Skun,e(q).

(The tangent vector to A(x, u, t) E Skun (q) at A(x, u, 0), given by

a;(x, u, 0) : er x o, (0,0) -t Sk(n, C),
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vanishes at (0,0), since A(O,O,t) == 0, and hence 8A/8t(x,u,0) E Skun(q).)

Conversely, let B(x, u) : er x eq, (0,0) -+ Sk(n, C) be any element of

Skun,e(q). Considering the path A(x,u) + tB(x,u) E Skun,e(q), and differenti-

ating with respect to t, it follows that B(x,u) E TSkun,e(q). Hence Skun,e{q) =
TSkun.e(q) as required.

(By a similar argument if B(x, u) : er x 0, (O,0) -+ Sk(n, C), ° is a general

element of Skun{q) we can also show that Skun(q) C TSkun(q).)

Secondly, for ll.un.e(q) consider the L-parameter family

X: er x c- x C,(O,O,O) -+ Gl(n,q,

i.e. X(x,u,t) E Gl(n,q for x, u, t in a neighbourhood of (0,0,0).

Then the tangent vector to this path, at X (x, u, 0), is

~~ (x,u,O) : er x c-, (0,0) -+ M{n,q

and Tll.un,e(q) C Nun{q).

Conversely if Y : er x eq, (O, 0) -+ M(n, C) is a general element of Nun(q)
then by considering the I-parameter family

X(x, u) + tY(x, u),

the elements of which, for x, u, t in a neighbourhood of (0,0, O), are in Gl(n, C),

(since X(x,u) : C" x eq,(O,O) -+ Gl{n,q then for t small, and x, u in a

neighbourhood of (O,O), X{x,u)+tY(x,u) E GI(n,C)) it follows that Nun{q) C

Tll.un.e{q). 0

We now demonstrate these tangent spaces satisfy the algebraic structure
given in [Damon], Pg. 41.

Firstly, clearly TSkun.e{q) is a finitely generated Or,q-module, Or.q(Eij :

1 $ i < j $ n), (where Eij are the standard basis vectors for Sk(n, C), see

Section 1.1) which clearly contains TSke as an Or-module, by setting q = O.
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Note that TSkun is also a finitely generated Or,q-module generated by the
set

The space Tllun,e(q) is the finitely generated Or,q-module Or,q(Eij : 1 $ i,j $

n), (where Eij are the standard basis vectors for M(n,C), see proof of Propo-

sition 4.3.2) which contains Tlle as an Or-module.

Given A E Skun we define the orbit map

- - - -T - -X(x, u) ~ X(x, u).A = X (x, u)A(x, u)X(x, u),

with derivative

Y(x, u) ~ yT A(x, u) + A(x, u)Y(x, u).

(This derivative is found by considering the action of paths 1+ tY(x, u) E

llun,e(q) on A(x,u) E Skun,e(q) in the same fashion used when proving Propo-

sition 4.3.1.)

It can be easily verified that daA is a homomorphism of Or,q-modules.

Secondly, the natural map

TSkun.e/Mu.TSkun,e -+ rsi,
is clearly an isomorphism of Or-modules (since the basis of TSkun,e doesn't

depend on the unfolding parameters u,). Similarly the natural map

is also an isomorphism of Or-modules.

Finally the inclusions

and

are obvious.

3. Exponential Map Here we check the exponential condition. We first review
this map for the group C (acting on the space of smooth map germs f :er, 0 -+
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cP, 0). This is the set of diffeomorphisms Ho :Cr X CP, 0 -+ Cr, 0 X CP, °of the
form Ho(x,y) = (x,ho(x,y)) with ho(x,O) == o.

Definition B.O.10 We define

Cun(q) = {H: C" x CP x Cq,O -+ C" x CP x Cq,O:

H is an unfolding of Ho E C},

and H(x,y,u) = (x,h(x,y,u),u) with h(x,O,u) == 0 (see [Damon) Pq. 4).

Then two ",nfoldings /(x, u), g(x, u), /, 9 :C" xO, 0 -+ CP, ° are isomorphic

if for a diffeomorphism A : Cq, 0 -+ Cq, 0 and a map H E Cun (q)

g(x,v) = h (X,/(X,A(V)),V),

where v E 0 (see [Damon) Pqs. 6-7).

The group of such equivalences is labelled Ceq(q) and

(see [Damon] Pg. 7,1-1) i.e. elements of TCeq,e(q) can be identified with pairs

of smooth germs (a, {3)where

a :C" X CP X Cq, 0-+ CP, 0 with a(x, 0, u) == 0, (B.1)

{3: c-,° -+ c-.
We now define the exponential map for C.

Definition B.O.11 The exponential map is a map

exp : TCeq,e(q) -+ Ceq(q + 1),

where exp(a,{3) is identified with a germ tPt(x,y,u,t) = (x,h(x,y,U,t),A(U,t»

with the property that

h(x,y,u,O) = y l: ,,1,._\( 0) I.e. 'I'U = id"u, = u

and
ah
at (x, y, u, t) = a (x, h(x, y, u, t), A(U, t» ,

346



a>.
at (u,t) = ,8(>.(u,t)),

(see [Damon] Pg. 8).

Remark B.O.12 Such maps h, >. exist by the fundamental existence (and

uniqueness) theorem for the solution of systems of ordinary differential equa-

tions (see [ArnMec], Pg. 56 and preceding pages). Note that it follows from the

above definition that h(x, 0, u, t) == 0 (it is easy to check this is a solution, and

the solution is unique) which is required for <Pt to be in Ceq(q + 1).

Returning to our subgroup 1-l of C, two unfoldings A(x, u), iJ(x, u), A, iJ : er x

eq, (0, 0) ~ Sk(n, C}, 0 are isomorphic if, for a diffeomorphism>. :eq, 0 ~ eq, 0

and a map X : er x 0, (0,0) ~ GI(n,C} we have

- -T - -B(x,v) = X (x,v)A(x, >.(v))X(x, v),

where v E eq (see Definition 4.4.26). This follows from Definition B.0.10 by
replacing C by 1-l.

The group of such equivalences is clearly 1-lun(q) x V(q) (where V(q) is the

group of diffeomorphisms eq, 0 ~ eq, 0). This group, 1lun(q) x V(q), is labelled

as 1leq(q) in [Damon], Pg. 41. It follows that

T1-leq,e(q) = T1lun,e(q) EB TrV(q),

(see [Damon], Pg. 41,1 -5).

For H to satisfy Damon's condition on the exponential map we need to prove
the following result.

Proposition B.O.13 The restriction of the exponential map for C (see Defini-

tion B.O.11) induces a map

exp : T1leq,e(q) ~ 1leq(q + 1).

(See [Damon], Pg. 41.)

Proof We need to check that when we restrict the exponential map to T1-leq,e(q)

we obtain a map in lleq(q + 1). As we have just remarked the space T1ieq,e(q)
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consists of elements (a(x, u), ,8(u)) where a : er x 0, (0, 0) ~ M(n, C) and

,8 : eq, 0 ~ eq. This a corresponds to the Classociated with TCeq,e(q) above

(see (B. I)) via

Cl: er x Sk(n,C) x Cq,O ~ Sk(n,C),O

Cl(X,A, u) = a(x, u)T A + A a(x, u).

(Note that,8: 0,0 ~ Cq coincides with that associated with TCeq,e(q).)

Applying the exponential map for C to (Cl,,8)we obtain the equations

h(x, A, u, 0) = A, ..\(u,O) = u,

& _ T -
at (z ,A, u, t) = Cl(x, ..\(u, t)) h(x, A, u, t) + h(x, A, u, t) Cl(x, A(U, t)), (B.2)

a..\
at (u, t) = ,8 (A(U, t)) ,

which, as stated in Remark B.0.12, has a unique solution A t-+ h(x, A, u, t), A

(for each (Cl,(3)). We need to show that the maps A t-+ h(x, A, u, t) are linear and

of the form A t-+ X(x,u, t)T AX(x,u, t) for some X: er x eq x C,O ~ Gl(n, C).

Suppose this was the case. Then the above equation (B.2) reduces to

ax T - - T ax
&(x,u,t) AX(x,u,t) +X(x,u,t) A&(x,u,t) =

T - T-a(X,A(U,t)) X(x,u,t) AX(x,u,t) +

- T-X(x, U, t) AX(x, u, t) a (x, ..\(u, t)) .

This is satisfied if

ax -
&(x,u,t) = X(x,u,t)a(X,A(U,t».

Setting X(x, u, t) = ezp (ta (x, A(U, t))), where exp: M(n, C) ~ Gl(n, C) is the

familiar exponential map given by exp(A) = ~~o AA:/k!j then

ax -
&(x,u,t) = X(x,u,t)a(x,A(u,t»

as required, and X(x, u, 0) = In. Since the solution for h above was unique this
proves the result. 0
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4. Filtration Condition Finally, by considering the action of X(x,u) E 1lun
- Ion A(x, u) E Mr.Skun, I ~ 0,

- - -T - -X(x,u).A(x,u) = X (x,u)A(x,u)X(x,u),

it is obvious that 1lun preserves the filtration M~.Skun on Skun.
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Appendix C

Vector Fields on Varieties

Our group of equivalences 9 has two parts, 'R and 11., the latter corresponding
to a subgroup of Mather's group C. This arises naturally from the group action
of Gl(n, C) on Sk(n, C). We show here that the corresponding vector fields can
also be interpreted as coming from those tangent to the set of singular skew
matrices.

Let X be an analytic variety in en, and let Sing(X) denote the singular
part of X.

Definition C.O.14 A germ of a vector field ~ is tangent to X if it is tangent
in the usual sense to X \ Sing(X). The set of smooth vector fields tangent to
X is denoted SeX). These clearly form an On-module.

We shall largely be concerned with the case when X is a hypersurface given
by the reduced equation f = O. One can then prove the following.

Proposition C.O.15 The vector field ~ is tangent to X = {J = O} if and only

iJ~(f) = a.] Jor some smooth a.

Now suppose that the Lie group G acts smoothly on the germ en, OJ in
particular G fixes O. Then given an element I of the Lie algebra LG we can
define the germ of a vector field l~ on en, 0 as follows. Since I E TeG there is a

smooth curve "r: e,o -+ G,e with "r'(0) = I. For each x E en define le(x) to be

db(t).x)/dtlt=o.
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Proposition C.O.16 The vector fields l~ are well defined.

Proof Clearly if ¢ : G x X -+ X is the map yielding the group action then
l~(x) = d¢(e,x)(I,O). 0

This set of vector fields is, of course, a finite dimensional vector space. We
can consider the On-module generated by these fields; this is denoted by 9(G).

Proposition C.O.17 The module 9(G) is finitely generated and given any ~ E

9(G) we find that ~(x) is tangent to the orbit G.x through x.

Proof The module is clearly finitely generated. We have only to show that
the final result holds true for the vector fields of the form Ie. However le(x) =

d¢(e,x)(I,O) which is clearly tangent to ¢(G x {x}) the orbit of x. 0

Example C.O.1S As usual we work over the complex numbers. Let M(n,p)

denote the set of n x p matrices. Clearly there is an action of the Lie group
G = Gl(n) x Gl(p) on this space given by

(GI(n) x GI(p» x M(n,p) -+ M(n,p); «X, Y), A) ~ X-I AY.

Let Eij denote the matrix with a 1 in the (i, j)th place and O's elsewhere.

Consider the path 'Yij in G = GI(n) x Gl(p) given by t ~ (I, 1+ tEij) for

t small. Clearly 'Yij(t).A = A(J + tE;j) = A + tAEij and the corresponding

tangent vector is AEij. Similarly from the obvious paths in GI(n) we obtain

the tangent vector field Eij A. (The key here is that when computing this one

can ignore the inverse. Take the paths to be t ~ (I + tEij, 1) -1.) From this we

deduce the following.

The vector fields in 9(G) are generated by the Aij, 1 ~ i,j ~ P and ijA, 1 ~

i,j ~ n, where Aij (respectively ijA) is the matrix whose jth column (respec-

tively row) is the ith column (respectively row) of A, and whose remaining
columns (respectively rows) are zero.

Example C.O.t9 Now let Sk(n) denote the set of skew n x n matrices. There

is an action of the Lie group G = Gl(n) on this space given by

Gl(n) x Sk(n) -+ Sk(n); (X, A) ~ XT AX.
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Let Eij denote the matrix with a 1 in the (i,j}th place and O's elsewhere.

Consider the path "Iij in Gl(n) given by t 1-+ J + tEij for t small. Clearly

'Yij(t}.A = (I + tEji)A(J + tEij) = A + t(EjiA + AEij} + t2EjiAEij and the
corresponding tangent vector is EjiA +AEij. From this we deduce the following.

The vector fields in 0(G} are generated by the matrices obtained by placing the
ith row of A in the jth row and the ith column in the jth column, with zeros
elswhere, and adding. Note that the result is skew-symmetric, and in particular
the diagonal entries are all zero.

Now we know that the elements of 0(G} are tangent to the orbits. In the

first case above and the second case when n is even there is one open orbit (those

matrices with maximal rank) and the remaining orbits form a hypersurface D

given by the vanishing of the determinant. The main result we wish to establish
is the following.

Theorem C.O.20 For the square matrices (n = p), and the even skew matrices

0(G} = 0(D}.

We first consider the case of (arbitrary) square matrices, and start to try to

compute 0(D}. We do this because the basic algebra is more familiar.

Lemma C.O.21 The defining equation of the set of singular matrices D is

homogeneous of degree n, and consequently there is an euler vector field e =
Ll$i.j$n aij818aij with e(det(A}} = ndet(A}.

This is just Euler's theorem.

Now to check if a vector field e is in 0(D} we need to find all solutions to
the equation

e(det(A}} = o(A} det(A}

for some smooth o. However note that given such a e the vector field e' =
e -oeln has the property e'(det} = e(det)-oe(det)/n = o. det -no. det In = O.

So we are reduced to finding solutions to the equation e(det) = O. Now any e
can be written as a linear combination of 81 8aij, so we are looking for relations
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between the a det / aaij. On the other hand if we expand the determinant by

its ith row we obtain
n

det(A) = L -li+kaikAik
k=l

where the Aik are the (n-I) x (n-I) minors of the matrix A, and do not contain

any entry in the ith row. So adet/aaij = (-l)i+jAij and we are reduced to

finding relations between the (maximal) minors of the matrix A. One obvious

set of relations is provided by the equations A.adj(A) = adj(A).A = det(A)I.
The next result shows that the vector fields one can construct from these are
those we obtained from the group action.

Proposition C.O.22 The equations A.adj(A) = adj(A).A = det(A)I yield

2n2 - 1 relations between the minors of the generic matrix A, namely

L aik( _I)k+j Ajk = 0, i i i: L aik( _l)k+i Aik = det A, 1 ~ i ~n
k k

~)-l)k+jAkjaki = 0, i ij; L(-l)k+iAkiaki = detA, 1 s i s n.
k k

Moreover these relations immediately show that the corresponding vector fields,

Ek aika/8aj/. and Ek aki8/8akj, are tangent to D. These are the vector fields
produced geometrically from the group action.

We are consequently reduced to showing that these are the only relations
between the minors of a generic matrix. Note that we are working here over the
ring of smooth/analytic functions, and not the polynomial functions, but this
is also a Noetherian ring. This result is provided by the exactness of a complex
due to Gulliksen and Negard, see [BrunV]. In what follows Mn is the space of
n x n matrices with entries in Or. and let A E Mn. We are interested in the case

when A is the generic matrix A = (aij), r = n2 and Or is the ring of smooth

functions in the aij' So consider the sequence

To explain all of the symbols here we need the sequence
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where i(oX) = (AI, AI) and 1I"(V,W) = tr(V - W). With this noted G2 =
ker 11" / im i, and then d1 (V) = tr(AV) where A is the adjoint of A, d4 (oX) = oXA,

d2(V, W) = V A - AW, d3(V) = (AV, V A). It is not difficult to prove that this
is a complex. The following is more difficult.

Theorem C.0.23 Let I(A) denote the ideal generated by the (n - 1)x (n - 1)

minors of A. Then if grade I(A) ~ 4 then the above sequence is exact. Moreover

in the case when A is the generic n x n matrix then the grade of I(A) is 4, and

the sequence is exact.

Completion of the proof of Theorem C.0.20 in square matrix case.
Since the sequence is exact it follows that the image of d2 coincides with the

kernel of d1' Now d1(V) = Ej Ei(-I)i+jvijAij so the kernel of d1 coincides

precisely with the set of relations between the maximal minors of A. We have
now to find the image of d2; we can clearly extend d2 to the whole of ker 11". But

ker 11" is spanned by (Eij, 0), (0, Eij) i "# j, and (Eii' Ejj), 1 ~ i, j ~ n. However

d2(Eij,0) = EijA and d2(O,Eij) = AEij and these correspond precisely to the

first occuring in the two sets of relations in Proposition C.O.22. On the other
hand d2(Eii, Ejj) = EiiA-AEjj and the corresponding relations here are simply

those from the second two sets. 0

We now need to carry out the same process for the skew-symmetric matrices.
What is different here is that if A is an n x n skew-symmetric matrix with entries
in a ring R, then det(A) is the square of an element in R, the Pfaffian Pf(A).

Now for a sequence of integers I = 1 ~ i1 < i2 < ... < ik ~ n the matrices
obtained by deleting the rows and columns with these indices is also skew. We

write Pflor Pjid2 ...i. for its Pfaffian, said to be a Pfaffian of order n - k, We

next show that our vector field problem reduces to one concerning Pfaffians of
order n - 2. Let us suppose that n = 2m is even, and let D be the set of skew
matrices of rankx n. Here the equation det A = ° does not now give a reduced

equation for D, but Pf(A) = ° does; this is a homogenous equation of degree

m = n/2.

So to check if a vector field e is in 9(D) we need to find all solutions to the
equation

e(Pf(A)) = a(A)Pf(A)
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for some smooth a. As above note that given such a ~ the vector field e = ~ -
aelm. has the property ~/(Pf) = ~(Pf) - ae(Pf)lm = a.PI - ma.Pf lm = O.

So we are reduced to finding solutions to the equation ~(Pf) = o. Now any ~

can be written as a linear combination of BIBaii' so we are looking for relations

between the BPf/Baii.

The next step involves a not so familiar result.

Lemma C.O.24 If A = (aij) is a generic skew matrix let A* = (bii) denote the
skew matrix with entries

b;j = {
(-1)i+i-1PJii(A) if j < i

o ifi=j
(_l)i+iPlii(A) ifi<j

Then AA* = A*A = Pf(A).I.

Proof The fact that the identity holds for the diagonal elements follows from
Proposition 1.1.10 in Chapter 1. For the off-diagonal entries we obtain a sum

E~=l(-l)i+k-laikP lik(A). However by the aforementioned result this is just

the Pfaffian of the skew-symmetric matrix obtained by replacing the ph row

and column by the ith row and column. This matrix is clearly singular if j :F i
and the result follows. 0

Note that the P Iii do not contain any entry in the ith or jth rows, or

columns. So BP I IBaii = (_l)i+i-l P Iii and we are reduced to finding relations

between the Pfaffians of order n - 2 of the matrix A. One set of relations is
provided by the above equations A.A'" = A"'.A = Pf(A)I. The next result

shows that the vector fields one can construct from these are those we obtained
from the group action.

Proposition C.O.25 The equations A.A· = A·.A = PI(A)I yield the follow-
ing relations between the Pfaffians of order n - 2 of the generic skew matrix
A.

Laik(-1)i+k-1Pfik = 0, i:F jj Laik(-1)i+k-1Pfik = Pf(A), 1 s i s n.
k k

Moreover these relations immediately show that vector fields Ek aik8/8a;k are
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tangent to D. These are the vector fields produced geometrically from the group
action.

Proof These relations immediately show that the indicated vector fields are

tangent to D. (Note that there is only one set of relations because the matrix

is skew.) Moreover these are the vector fields produced geometrically from the
group action. 0

We are consequently reduced to showing that these are the only relations
between these Pfaffians of order n - 2 of a generic matrix. Note that we are

working here over the ring of smooth/ analytic functions, and not the polynomial
functions, but this is also a Noetherian ring. This result is provided by the
exactness of a complex due to Jozefiak and Pragaz, see [JozPra]. In what

followsM« (respectively Symn, Skn) is the space of n x n matrices (respectively
symmetric matrices, skew symmetric matrices) with entries in Or. Let A E Skn
be the generic skew-symmetric matrix A = (aij) with aij = -aji, r = n(n-l)/2

and Or is the ring of smooth functions in the aij, 1 :5 i < j :5 n. So consider
the sequence

Here L4 = coker(Or -+ Mn, r H rI) and L2 = ker(Mn -+ R, X H tr(X».

With this noted dl(V) = tr(A*V), d2(V) = AV mod Symn, d3(V, W) = A*(V +
VT) - WA, d4(V) = (AV mod Skn, VA* + (VA*)T), ds(V) = VA mod OrI,

d6(r) = r I, It is not difficult to prove that this is a complex. The following is
more difficult.

Theorem C.O.26 Let I(A) denote the ideal generated by the Pfaffians of order

n - 2 in A. Then if grade /(A) ~ 6 then the above sequence is exact. Moreover

in the case when (as usual n = 2m is even) and A is the generic skew n x n

matrix then the grade of I(A) is 6, and the sequence is exact.

Completion of the proof of Theorem C.O.20 for the even skew case.
Since the sequence is exact it follows that the image of d2 coincides with the
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kernel of d1. Now the rest goes as before. The point is that tr(A*V) = 0

gives the relations between the Pfaffian minors of A. We can work modulo
Symn because A· is skew and if W is symmetric then tr(A*W) is identically O.
Exactness shows that these relations all arise as the image of d2• But elements

in the image of da we may suppose are of the form (AV - VT AT)/2. Choosing

V to be the basis matrix Eij where i f- j or Eii - Enn for 1 ~ i < n yields

exactly the relations given above. (Taking V = Eii we obtain the relation
giving the Pfaffian, and considering only those matrices with trace 0 eliminates

the Pfaffian.) 0
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Appendix D

The procedure skewmatrix

Here we provide the full Maple source code for the Lie algebra procedure
skewmatrix mentioned in Chapter 5. First we make a few remarks.

Principally, the objective of this procedure is to define the {I-tangent space,
to a family of skew-symmetric matrices, described in Proposition 4.3.2. As usual
this involves finding a finite set of generators for this space. It is convenient and
more efficient (for carrying out calculations in the jetspaces) to represent families
of skew-symmetric matrices by N-tuples in upper triangular form. However for
finding the generators for the tangent space we require the matrix form.

Therefore the main problem tackled by this procedure is that of converting
upper triangular N-tuples into skew-symmetric matrices, to find the generators
of a tangent space, and then converting the resulting skew-symmetric matrices
back into N-tuples for the purposes of calculations using jetcalc.

The equivalence for families of symmetric matrices (used in [BrTarSy]) is the

same as the {I-equivalence defined here for the skew-symmetric case. Hence the
method for finding generators of the tangent space to the orbit of a family of
symmetric matrices, under this action, is the same as for our skew-symmetric
case. Consequently, to write this procedure we have made use of a procedure
drafted by N.P.Kirk for the symmetric case. In particular the code used for
finding the ll-tangent space generators is suggested by his routine.

We finish with a few further points on the following code.
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Defining the source coordinates xl, ... ,xr and the n.-tangent space generat-
ing set are standard and we refer to [Kirk]. Regarding the ?i-tangent space, the
code for converting an N-tuple into a skew-symmetric matrix is fairly simple and
uses the Maple array indexing function antisymmetric. The code for converting
a skew-symmetric generator into an upper triangular N-tuple uses the relation
between the index, rs, of an upper triangular entry arB of a skew-symmetric
matrix and the index, k, of its corresponding entry bk in the representative
N -tuple. That is, if arB = bk then

k = (r - l)n + s - r(r + 1)/2.

The code used for finding the 'extra' vectors, described in Section 5.2, is also
taken from the aforementioned symmetric procedure.

D.l The code

In the following, all annotations are prefixed by the symbol '#'.

# Procedure to define Lie algebra corresponding to group R x H
# used for classifying Families of Skew-symmetric Matrices (is used
# within the routine initialised by the call jetcalc(A.k);)

# NOTES:
#

# Represent (n x n) skew-symmetric matrices as
# n(n-l)/2 (upper triangular) vectors. e.g
# [ O. al. a2, a3 ]
# [-al, 0, a4, a5] <--> [al. a2. a3. a4, a5, a6 ]
# [-a2,-a4, 0, a6 ]
# [-a3,-a5,-a6, 0 ]

# Dimension of source manifold given by global variable
# )source_dim) .
# Source coordinates defined as (xl, x2 •...• xr)
# where r = source_dim.
# Target dimension passed in as the argument target_dim; must be a
# triangular number.
# Nilpotent vectors: need two different sets - one for er calculations.
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# one for full group tangent space. (Note these are the extra
# tangent vectors which have been missed by setting
# source_power = 2/1 for R _ part. Not 'true' Nilpotents.)
# Therefore define two global lists, RCT_nilp and RG_nilp which
# define these. One then assigns the appropriate one to R_nilp
# (and sets L_nilp := []i).
# NB: CT: source_power:= 2; R_nilp := RCT_nilp;
# group source_power:= 1; R_nilp := RG_nilp;

skewmatrix:=proc(A,target_dim,tgtspace)

local coords_temp,n,i,j,F,k,count,r,s,v,b_rs,temp_vect,F_t,K,
temp,last_tgt;
global source_dim,coords,RCT_nilp,RG_nilp;

# DEFINE COORDINATES (global variable, data type 'list')
# first check all source coordinates are formal indeterminates
# i.e are unassigned as Maple expressions

if not type(source_dim,posint) then
ERROR('global variable 'source_dim' must be a
+ve integer');
fi;
for i from 1 to source_dim do
if assigned('x'.i) then
ERROR('not all source coordinates are unassigned
Maple names');
fi;
od;
# CREATE SOURCE COORDINATES
coords_temp := array(l ..source_dim);
for i from 1 to source_dim do
coords_temp[i] := 'x'.i; # concatenates "string" name
# 'x'.3 = "x3"
od;
# now convert vector coords_temp to type list to form coords
coords := convert(coords_temp,list);
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# CHECK TARGET DIMENSION VALID
# (The target_dim holds the number of components
# of the jet, A, and is
# determined within jetcalc.)

n:= (1 + sqrt(1 + 8*target_dim»/2:
if n <> trunc(n) then
ERROR ('the target dimension must be a triangular number'):
fi:

# DEFINE LIE ALGEBRA GENERATING SET (data type 'table')
tgtspace := table():

# 1) R-TANGENT SPACE

for i from 1 to source_dim do
for j from 1 to target_dim do
tgtspace[i][j] := diff(A[j],coords[i]):
od;
od;

# 2) H-TANGENT SPACE
#
#
#

# first need to convert vector A into skew-symmetric matrix
F:=array(antisymmetric,1 ..n,1 ..n):
k:=1:
for r from 1 to n-1 do
for s from r+1 to n do
F[r,s]:=A[k]:
k:=k+1:
od:
od:
# need to convert this to nA2-vector using row major order
v:=convert(F,vector):

# following code calculates the H tangent space generators

count:= source_dim+1:
for i from 1 to n do
for j from 1 to n do
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temp_vect:=array(1 ..n~2); # stores the generator
# whose ith row and column is obtained
# by superimposing the jth row and
# column of A

# build B(i,j) and assign to temp_vect
for r from 1 to n do
for s from 1 to n do
# finds C_{ji}(A)
if i = s then
b_rs := v[n*(r-l)+j);
else
b_rs := 0;
fi;
# finds R_{ji}(A)
if i = r then
b_rs := b_rs + v[n*(j-l)+s);
fi;
temp_vect[n*(r-l)+s) := b_rs;

od;
od;
# converts 'temp_vect' back to its corresponding
# skew-symmetric matrix
F_t := linalg[matrix) (n,n,temp_vect);
# Finally need to convert this tangent matrix
# into an upper triangular vector
# and assigns it to tgtspace[count)
for r from 1 to n-l do
for s from r+l to n do
K:= (r-l)*n + s -r*(r+l)/2;
tgtspace[count)[K):= F_t[r,s];
od;
od;

count:= count+l;
od;
od;

# store last element
last_tgt := count-lj
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# Define "NILPOTENT" VECTORS (global variables,
# data type 'list')
# (see above notes)

# RCT_nilp: extra vectors: x.k * B(i,j)
# NB: the relevant B(i,j) vectors are stored as
# tgtspace[source_dim +1], ..., tgtspace[last_tgt]
# (also see manual)

count:=l;
temp: =table 0 ;
for i from source_dim+1 to last_tgt do
for j from 1 to source_dim do
temp[count]:= ['x'.j,i];
count: =count+1;
od;
od;
RCT_nilp := convert(temp,list);

# RG_nilp: extra vectors: B(i,j) (Not needed for CT)

count:=l;
temp: =table 0 :
for i from source_dim+1 to last_tgt do
temp [count] := [l,i):
count := count+1;
od;
RG_nilp := convert(temp,list):

# RETURN NULL
NULL;

end:
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