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Abstract 

Digitally modulated signals play an important role in the world of communic­

ations today. It is increasingly necessary for the communication intelligence 

(COMINT) sector to have the capability to classify these signals effectively in 

an automated fashion. Automatic recognition of a signal's modulation has been 

a well studied subject and has undergone significant transformation in recent 

years. 

This thesis investigates some recent advances in the field of automatic modu­

lation classification, especially in the development of modulation classifiers. From 

the view of organisation, this thesis can be largely broken into three main parts, 

Le.: 

i) investigation of neural networks (NN) approach 

ii) refinement of NN approach through feature selection; and 

iii) investigation of maximum likelihood (ML) approach. 

For the NN approach, a conventional multi-layer perceptron (MLP) based classi­

fier is reviewed and refined in performance through the adoption of a more robust 

algorithm. Furthermore, a wider variety of NNs are also investigated including 

radial basis function (RBF) network and probabilistic neural network (PNN). 

Additionally, A novel feature set based on the analysis of higher-order statistics 

x 



of the signal's constellation is also formulated in this work. From experiments, 

the proposed feature set has shown a good degree of robustness and invariance 

under additive white and Gaussian noise (AWGN) environments. 

A good feature set is essential for a NN classifier to achieve good performance. 

However, as the number of features increases, the number of training examples 

needed to ensure statistically reliable performance also increases. This presents 

a practical problem. The second part of the thesis investigates the possibility of 

minimising the number of input features with the minimum degradation in clas­

sification performance. New genetic algorithm (GA) based methods are devised 

for the selection of features for modulation classification. The rest of this part of 

the work is devoted to the investigation of linear transformation based methods, 

in particular, principal component analysis (PCA) and independent component 

analysis (ICA). 

When training examples are not available, one has to resort to alternative 

approaches that do not require training examples. In the final part of this work, 

ML based methods are reviewed and investigated. In a coherent environment 

ML classifier provides an upper bound for classification performance. A new 

minimum distance based method is derived from ML method and its performance 

is compared with the ML method. Although this method suffers degradation of 

2 dB in performance (in a dual class scenario), it offers better computational 

efficiency. A multi-class scenario is also investigated here. 

Although ML is the optimum classifier in a coherent environment, its per­

formance is expected to suffer from degradation in non-coherent environment as 

phase mismatch is introduced. Therefore, a closed form ICA based algorithm is 

introduced to mitigate the effects of phase errors. Originally devised for blind 

source separation (BS8), the algorithm is proven capable of removing the phase 

offset through experiments. 

xi 



In short, this thesis is comprised of a collection of recent works in automatic 

modulation classification. When training samples are available, NN classifiers 

provides a robust and effective solution. Feature selection and transformation are 

efficient tools to form a smaller feature subset for NN classifier with minimum 

compromise in performance. On the other hand, when training examples are not 

available ML classifiers provide an optimum solution in a coherent environment. 

With the aid of a closed form phase offset removal blockset, the ML classifier can 

be applied in the non-coherent operating environment directly. 
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Chapter 1 

Introduction 

Communication is an integral part of our life nowadays. We often encounter 

communication without realising the process of it, for examples, the telephones 

(both land-lines and mobile phones) we use every day, the computer terminal, 

radio and television networks, and the Internet are examples of many facets of 

communications that surround us today. Many of these applications are multi-

plexed in nature, i.e. many sources of signals share a common channel. One way 

of multiplexing these signals is to limit the frequency bandwidth of the signal 

and send the signals at different portions of the total available bandwidth. To do 
. 

this, we require an important process in communication called modulation. In 

its simplest form, modulation is the process where the carrier wave (often at a 

higher frequency band) is "modulated" by the information that is to be transmit­

ted. For digital modulation, this process is preceded by an analogue-to-digital 

conversion (ADC) phase; and a symbol-mapping phase whereby the digitised 

signal is mapped onto the respective constellation diagrams. 

Today, digitally modulated communication signals are becoming vital as the 

world is becoming increasingly 'digital'. Many analogue applications have been re­

placed with their digital counterparts e.g. digital cable/satellite television, digital 

1 



CHAPTER 1. INTRODUCTION 2 

audio and digital software radio. The wide usage of Internet is another evidence of 

the popularity of digital signals, digital modems are used to (de )modulate data 

for transmitting across normal telephone lines. Additionally, the mobile com­

munication system has been 'digitised' with the introduction of GSM networks 

around the globe and is now getting a further boost with the introduction of third 

generation (3G) code division multiple access (CDMA) based system [1,2, 3, 4]. 

The forthcoming fourth generation mobile system (4G) [5,6] has also proposed an 

IP-based digital network with the adoption of multi-carrier techniques. With the 

shift of focus from analogue technology to digital equivalents, digital modulation 

now deserves more attention than the aging analogue modulation. 

Software defined radio (SDR) [7, 8, 9] provides an interesting prospect for the 

future communications sector, as it has the ability of rapid reconfiguration and as 

all processes in SDR are executed in software, it is also cheaper to manufacture 

hence beneficial financially. Another advantage of SDR is that, it provides a single 

unified platform for signals of various modulation types. This highly desirable fea­

ture implies that we need an 'intelligent' modem that can automatically identify 

different modulation types. Automatic recognition of the modulation type of the 

incoming signal then plays an important task in this 'intelligent' modem. 

In this work, we investigate several variants of such study, under the umbrella 

of a wider field of pattern recognition. In digital communication, each modulation 

has its own distinct characteristics that can be considered as an unique pattern. 

The aim of this study is to seek an efficient method for classifying these patterns 

with very limited amount of prior knowledge. In the originating work, Liedtke 

[10] described modulation classification is neither an energy detection nor a de­

modulation problem that required full message extraction, but it is something in 

between as depicted in Figure 1.1. The amount of prior knowledge required for 

modulation recognition is more than what is needed for symbol detection, and 
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Figure 1.1: The relationship of ADMC and other detection procedures 

3 

similar to that required for demodulation. However, due to the nature of the 

problem, we do not possess these information and estimates have be done blindly 

without the actual knowledge. Correct classification would not give us the full 

demodulated information, and more complex tasks of deciphering might follow 

after demodulation. Nevertheless, classification of modulation type is an essential 

process especially in a furtive environment. 

In recent years, artificial intelligence (AI) has found many applications in 

pattern recognition and established a good track record in performance against 

traditional statistical pattern recognition. The use of AI is also found in various 

complex applications among respective engineering disciplines. For example, Ar­

tificial Neural Networks (ANN) have been applied in system identification [11], 

and system control processes [12]; Genetic Algorithms (GA) in optimisation pro­

cess [13, 14], multiuser detectors for DS-CDMA communications [15], and Fuzzy 

logic in robotics control [16], etc. 
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By framing the task of modulation classification into a supervised neural net­

work learning problem, we avoid the cumbersome process of manual determina­

tion of thresholds for key feat ures (Chapter 3) as in conventional decision theoretic 

methods (see Chapter 2). Besides, through this formulation using ANNs, one also 

benefits from the many advantages offered by ANN detailed in Chapter 4. 

There are limitations for any supervised learning method. One of these is the 

input dimension of a learning machine. The larger the input dimension of the 

learning machine is, the larger the amount of training data that is required for 

drawing a sufficiently generalised discriminating boundary. This problem in itself 

is an interesting one and is to be investigated in an individual study in its own 

right. Such study is sometimes named feature selection (see Chapter 5). The 

objective of feature selection is to select a minimal amount of input dimension 

while avoiding performance loss. At times, the outcome of feature selection can 

increase the performance of the learning machine. 

Another limiting factor for the supervised learning machine would be the need 

for training data. At times, there is too much variability in a system, and it is de­

sirable to have a generalised framework for all variabilities, e.g. changes in signal 

to noise ratio, fading channels, etc. The amount of training examples needed to 

cover such a wide variety of scenario is just not feasible in practice. Therefore, it 

would be logical to re-framework the existing problem into a probabilistic hypo­

thesis testing one. However, unlike conventional decision theoretic methods, we 

would like to consider one specific form of classifier that would handle multiple 

hypotheses at once, so that the order of tests does not have any influence on the 

final classification result. One way of doing so is to have a likelihood value for 

each possible hypothesis and choose the hypothesis with the greatest likelihood 

value. This is called the maximum likelihood (ML) method and will be discussed 

in greater depth later (Chapter 6). 
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We cannot overlook the explicit usage of probability theory and higher or­

der statistics (HOS) in this work. Gaussian probability density function (PDF) 

can be completely characterised using second order statistics (SOS), Le. by the 

mean and variance of the distribution. However, real world data often tends 

to be non-Gaussian, and in this case, SOS cannot provide sufficient information 

to help to solve the problem. Hence, HOS provides an interesting approach to 

many problems, e.g. independent component analysis (lCA) and blind source 

separation (BSS), blind channel equalisation, blind SNR estimation, blind decon­

volution, etc. These applications are termed 'blind' because one does not have 

the prior knowledge on the target's information, e.g. different components in ICA 

or channel coefficient in the case of channel estimation or deconvolution. HOS 

plays an integral role in this work, especially in feature formulation and extrac­

tion. Besides, HOS is also employed in non-coherent environment prior to the 

classification. 

1.1 Structural Organisation of The Thesis 

This thesis is organised in the following fashion: Chapter 2 presents an introduct­

ory section on the background and motivations of this research; this is followed by 

another section introducing some communications and mathematical preliminar­

ies which might be useful for readers that do not have necessary pre-requisites 

toward this study. Next, Chapter 3 will present the signal model used in this 

work and subsequently the derivation of a novel set of HOS based features. This 

feature set is in turn used in the experimental works of Chapter 4, preceded by 

an introduction to ANN, and some feed-forward variants of the ANN. 

Chapter 5 expands the feature set to include a wider range of statistical and 

spectral features to investigate the interesting topic of feature selection. Two 
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paradigms are discussed in this chapter: choosing feature subset by selection and 

forming feature subset by transformation. Both paradigms were supported with 

a set of results obtained via computer experiments. 

Furthermore, in the final part of the thesis (Chapter 6), the ML likelihood 

classifier and its variants are introduced and investigated. The classifiers are first 

derived in the ideal condition, where the signals are only corrupted through an 

AWGN channel. Later on, the investigation was taken further in an non-coherent 

environment where a lCA/BSS based method is called upon to mitigated the 

phase offset introduced in the received signal model as a result of carrier frequency 

offset. 

Lastly, the work is summarised in Chapter 7 on a chapter-by-chapter basis. 

A summary of possible directions for the future works of this research is also 

presented at the end of this chapter. 

1.2 Summary of Contributions 

This thesis has some novel works in the study of automatic digital modulation 

classification and these contributions are summarised as below: 

• A set of new higher order cumulants based features had been devised and 

analysed in Chapter 3. These features (a set of three 4th order cross cumu­

lants) are guaranteed to be non-complex. Besides, the standard deviations 

of these features are shown to be small under the influence of addictive 

white and Gaussian noise . 

• An alternate training algorithm, the Resilient Backpropagation (RPRPOP), 

were proposed in favour to the conventional backpropagation (BP) algorithm 

adopted in the previous works. Expriemental results showed that RPROP 
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is faster to train and offers better classification performance. The above is 

detailed in Chapter 4. 

• The author proposed a new integer list genome based genetic algorithm 

(GA), in Chapter 5. This integer list genome mitigate the posibility of 

repeatable entry into the GA, hence reducing the search space. Unlike the 

binary genome based GA, the new GA gives the users control over the 

number of required features. 

• A comparison of principal component analysis (PCA) and independent com­

ponent analysis (ICA) as feature transformation techniques has been made 

in second part of Chapter 5. 

• In Chapter 6, a new maximum likelihood (ML) modulation classifier (MC) 

with SNR estimation had been devised and introduced. The new classifier 

showed high degree of robustness in coherent AWGN environment. Its 

performance had been compared to the optimum ML classifier with a priori 

knowledge of SNR. 

• Besides, the author employed a Blind Source Separation (BSS) algorithm in 

non-coherent AWGN environment. By doing so, one can directly employ the 

above mentioned ML MC without alteration to the original algorithm. The 

performance of such algorithms had been investigated through experimental 

results. 

1.3 List of Publications 

This research started in September 1999 and was the major part of the author's 

research. However, there are also some other works, both in communication and 
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pattern recognition, that the author has undertaken through this period of time. 

All these are reflected in the following list of pUblications: 

• M. L. D. Wong and A. K. Nandi, "Multiuser Detection", Proceedings of 

ICCCD'2000, Khagapur,India, December 2000. 

• M. L. D. Wong and A. K. Nandi, "Automatic Digital Modulation Recog­

nition using Spectral and Statistical Features with Multi-layer perceptrons", 

Proceedings of ISSPA 2001, pp. 390-393, Vol II, ISSPA, Kuala Lumpur, 

Malaysia, August 2001. 

• L. B. Jack, M. L. D. Wong and A. K. Nandi, "Modified Kohonen Self 

Organizing Map for Automated Fault Detection in Helicopter Gear Boxes", 

Proceedings of the 16th Int. Congress and Exhibition on Condition Mon­

itoring and Diagnostic Engineering Management (COMADEM), Sweden, 

27-29 August 2003. 

• M. L. D. Wong and A. K. Nandi, "Automatic Digital Modulation Re­

cognition using Artificial Neural Network and Genetic Algorithm", Signal 

Processing 84(2)(2004), 351-365. 

• M. L. D. Wong, L. B. Jack and A. K. Nandi, "Automated Novelty Detec­

tion using a modified Kohonen Self Organising Map", preprint submitted 

to EURASIP Journal on Applied Signal Processing. 

• L. B. Jack, M. L. D. Wong and A. K. Nandi, "A Modified SOM for 

Helicopter Gear Box Fault Detection", presented at Sensors for Aircraft 

Systems, Institute of Physics. 14 May 2003. 



Chapter 2 

Background and Preliminaries 

In this chapter, a section on the background of automatic modulation classifica­

tion and the related motivationsis introduced. The background is taken from a 

historical viewpoint and ends with discussions on some of the recent developments 

of this study. The second part of this chapter is devoted to some pre-requisites 

for readers who may not have the necessary academic background. 

2.1 Background and Motivations 

The present methods of modulation recognition can be traced back to Liedtke's 

first paper [10] published in 1984. Since then, the methods became very different 

from what was first proposed. Azzouz and Nandi's pioneering works in the 90's 

led to their book [17]; this presented a excellent summary of recent modulation 

recognition techniques up till 1996. They proposed various algorithms in dealing 

with analogue modulation and digital modulation signals. Besides, they also 

proposed the use of ANN in complement with conventional hypothesis testing 

classification methods. Various new features were introduced for differentiating 

among various classes of analogue and digital modulations. 

9 
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In the early days, modulation recognition relied heavily on the human oper-

ator interpr tation of measured parameters to classify signals. Signal properties 

such as IF waveform ignal spectrum, instantaneous amplitudes and instant an-

eou phase are often u d in conventional methods. A latter form of recogniser 

(Figure 2.1) con i ts of a bank of demodulators, each designed for a particular 

modulation type. Thi i considered as semi-automatic since a human operator 

till required to 'listen' to the output, but it is impractical for digital commu-

nications. 

~ 
Demodulator 

Type I H 
U 
M 
A 

Demodulator N 

> Type 2 

J 
0 

• p 

• E 
• R • • A 

• T 
0 
R 

Demodulator 
Type N 

Figure 2.1: A emi-automatic modulation classifier which requires human inter­
pretation. 

ince the mid- O's, new classes of modulation recognisers which automatic-

all determine incoming modulation type have been proposed. Generally, these 

methods fall into two main categories, decision theoretic and statistical pattern 

r cogni ion. Deci ion theoretic approaches use probabilistic and hypothesis test­

ing arguments to formulat the recognition problem. The major drawback of this 

approach ar th difficultie of forming the right hypothesis as well as careful ana­

ly s that are required to et the correct threshold values. Examples of decision 
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theoretic approaches include Azzouz and Nandi [18, 19J who proposed a global 

procedure for analogue and digital modulation signals; and Dohono and Huo [20J 

who proposed a new method using Hellinger representation. 

Pattern recognition approaches, however, do not need such careful treatment. 

Nevertheless choosing the right feature set is still an important issue. The recog­

nition method can be further divided into two: the feature extraction sub-system 

and the classification sub-system. The feature extraction sub-system is respons­

ible for extracting prominent characteristics, called features, from the raw data. 

The second sub-system, the pattern classifier, is responsible for classifying the 

incoming signal based on the features extracted. It can be implemented in many 

ways, e.g. K-nearest neighbourhood classifier (KNN) , Probabilistic Neural Net­

work (PNN), Support Vector Machine (SVM), etc. Multi-layer perceptron (MLP) 

was chosen as the classifier system in [21, 22, 23, 24]. 

Louis and Sehier [21] proposed a hierarchical neural network which uses back­

propagation (BP) training. They also gave a performance analysis on back­

propagation with other algorithms such as cascade correlation, binary decision 

tree and KNN. Lu et al. [22] proposed a novel MLP based modulation neural 

network recogniser using instantaneous frequency and bandwidth features of sig­

nals. In [23), Lu et al. enhanced their techniques through the usage of cyclic 

spectrum features. Nandi and Azzouz [24J proposed MLP neural networks with 

spectral feature sets for analogue, digital and combined modulation recognition. 

Their algorithms had inspired the foundation of a couple of commercial products 

or prototypes; examples of hardware implementation have been reported in a 

variety of applications, e.g. 4G software radio wireless networks [25), spectrum 

monitoring hardware [26, 27], etc. 

Recently, several papers [28, 29, 30, 31] have proposed several novel meth­

ods in tackling the problem. Swami and Sadler [28] presented a comprehensive 
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paper discussing their proposed higher-oder statistics (HOS) based hypothesis 

testing method. Wong and Nandi [30], extending the work of Azzouz and Nandi 

[17], proposed a combined set of spectral and statistical features in classifying 

10 different modulation types. On the other hand, Mobasseri [29] suggested an 

alternative method by reconstruction the signal constellation shape using max­

imum likelihood estimation. The common trend among these algorithms seems to 

be recognising that the constellation shape is an unique signature among different 

modulation types. 

The conventional classification methods exploit different instantaneous prop­

erties, e.g. instantaneous frequency, amplitudes, phase, etc. However, with the 

wide spread of usage of digital modulation nowadays, one could make use of 

the unique constellation diagram of each modulation type to discriminate among 

various digital modulations. Each constellation possesses different higher order 

cumulant values which can be estimated via its two dimensional histogram. An 

advantage of such a method is that it is immune to additive white and Gaussian 

noise as all higher-order cumulants for any Gaussian distributions are zero. 

On the other hand, Mobasseri's [29] method provides an interesting altern­

ative. By using clustering, his algorithm works under a non-supervised envir­

onment. Clustering also reduces the dimension of the input signal. To this 

end, it is parallel to feature extraction procedure in other pattern recognition 

algorithm. After clustering, Mobasseri proposed a Bayesian maximum likelihood 

(ML) method based on an image modeling method. However, the method sug­

gested is sensitive to phase error, both static and non-static. 

There are some other more generic forms of ML method that have also been 

reported. Wei and Mendel [32] showed that the constellation vector is a sufficient 

statistic for modulation recognition and that the ML classifier is optimal under 

ideal situations. Their work provides an upper bound for performance comparison 
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for classifiers in non ideal situations. In another related work [33], they proposed 

a method based on fuzzy logic (FL) and had shown that, when fine tuned, FL 

based method corresponds to the ML solution. Meanwhile, Sills [34] extended 

the ML method to non-coherent environment which remains a challenging area 

of research in this field. 

2.1.1 Applications of Modulation Classification 

Conventionally, modulation classifier (MC) was devised for Communication Intel­

ligence (COMINT) applications. Typical CO MINT includes a receiver front-end, 

a modulation classification unit and a presentation stage. Types of receiver front­

end include channelised receiver, scanning superheterodyne and an instantaneous 

frequency measurement (IFM). The front-end is important as most MCs require 

input from the decision front-end. Discussion of these is beyond the scope of 

this thesis. Similarly the presentation stage, e.g. demodulators, information ex­

traction, deciphering, etc. need an accurate information from the MC to perform 

their operation and hence MC plays an important role in COMINT applications. 

Examples of COMINT include the followings: 

• Civilian Applications 

- Transmission control and monitoring 

- Signal confirmation 

- Interference identification 

- Spectrum management 

• Military Application 

- Electronic support measures (ESM) 
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- Electronic counter measures (ECM) 

- Threat detection and warning 

- Target acquisition 

- Homing 

A more recently reported application of MC is in the area of software defined 

radio (SDR). Originally proposed for military purpose, recent proposals of SDR 

e.g. [35, 36] are gearing towards the public consumer market. Under the new 

software based architecture, SDR boasts high reconfigurability. Some SDRs have 

the ability of handling multiple modulation type as standard, enabled by the built­

in MC unit. The work presented in this thesis favours a working environment that 

is like an SDR or adaptive modulation environment, in which, the application 

is channelised so information such as the carrier frequency and other channel 

parameters are mostly assumed to be known. However, the model introduced 

in later chapters will take into account the errors of such information, although 

these are thought to be minimal. 

2.2 Preliminaries 

The study of automatic classification of modulation signals is an interesting field 

as it requires some cross-disciplinary knowledge from different branches of en­

gineering and computer science e.g. signal detection and identification, signal 

modulation, parameters estimation and pattern recognition. This thesis is a col­

lection of work done in the above mentioned study, particularly of those using the 

statistical pattern recognition approach (includes both ANN and ML). Therefore 

in the following sections some background knowledge of digital communication 

as well as relevant mathematics are presented. Interested readers should refer 
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to [37, 38, 17J for further in-depth discussions in communications and [39J for 

statistics related background. 

2.2.1 Digital Communication Preliminaries 

Communication Signals as Narrow Band Signals 

Present day communication signals! are mostly narrow band signals, i.e. the sig­

nal bandwidth is relatively small in comparison with the center carrier frequency. 

For example, in radio communications, baseband signals are used to modulated 

carriers of higher frequencies spaced at intervals of the order of the signal band-

width. 

To enable the analysis of these signals, it is essential to convert these pass­

band signals to baseband complex envelopes. Due to the typically high carrier 

frequency of such signals, a high sampling frequency rate is normally required. 

Along with this requirement, it is also desired to have high processing ability. 

Here, we shall look at ways to treat these signal efficiently while suppressing the 

largely irrelevant carrier oscillations. 

Before proceeding, it needs to be emphasised that the task is to recognise 

various modulations but not to demodulate them. Therefore, details regarding 

demodulation are omitted. 

Analytic Signal, Hilbert Transform and Complex Envelope 

The Fourier Transform of any real signal is defined as: 

F(jw) = I: f{t)exp{ -jwt)dt (2.1) 

lwith the exception of the recently launched 3G mobile communication system, which has 
a wide-band protocol, however in [40], it was shown that once the user code is decoded, the 
signal can be treated in the same way as narrowband signals. 
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For the purpose of clarity, we shall simply state F(jw) as F(w) for the rest of 

this thesis. It is trivial that, F(w) is conjugate symmetric, i.e. F( -w) = F*(w) 

where * denotes complex conjugate. 

Owing to this property, there is obvious redundancy of the negative frequencies 

as it is the mirror image of positive frequency. It is clear that we only need the one 

side of the signal spectrum. This representation of the signal is termed analytic 

signal. 

An analytic signal Jp(t) can be one that has the spectrum: 

Fp(w) = F(w)[l + sgn(w)] (2.2) 

1 w> 0, 

sgn(w) = 0 w=o, (2.3) 

-1 w < o. 

In other words, the analytical is spectrum is twice the original spectrum for posit­

ive frequencies but zero for negative frequencies with DC component unchanged. 

Note that Jp(t) is complex and it is sometimes referred to as the pre-envelope 

signal of f(t). The real envelope of f(t) can then be found via the magnitude of 

Jp(t). 

Rewriting Equation (2.2) as 

Fp(w) = F(w) + jF(w) (2.4) 

where 

F(w) = H(w)F(w) (2.5) 
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with 

H(w) = -jsgn(w) (2.6) 

A system with transfer function as in Equation (2.6) is called a Hilbert trans­

fonner, and a signal, i(t) with spectrum as in Equation (2.5), is the Hilbert 

transform of f(t). 

With this, the analytic signal fp(t) can be written as: 

jp(t) = f(t) + j j(t) (2.7) 

In practice, j(t) can be realised by multiplying f(t) with a quadrature filter, 

:FQ, with impulse response, rQ(t) and complex gain H(w). Thus we can write, 

= x(t) * rdt) 

= I: x(t - ()).rQ(())d() 

A complex envelope, j(t), of a real signal, j(t) is then defined as, 

j(t) = jp(t) exp( -jwct) 

= (J(t) + jj(t)) exp(-jwet ) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

where We = 27r fc in this context, refers to the carrier frequency in the passband. 
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Instantaneous Amplitude, Phase and Frequency 

The instantaneous amplitude, ii( t) of real signal can be found using the magnitude 

of the analytic signal: 

Similarly, the instantaneous phase, J>(t) can be calculated as follows: 

t -I(i(t)) an f(t) if J(t) > 0, jet) > 0, 

7r - tan- I ( j(t)) 
f(t) if J(t) < 0, jet) > 0, 

71" if J(t) = o,j(t) > 0, 
J>(t) = 

"2 

7r + tan- l (j(t)) 
f(t) if J(t) < 0, jet) < 0, 

371" if J(t) = o,j(t) < 0, T 

27r - tan-l(j(t)) 
f(t) if J(t) > 0, jet) < O. 

Finally, the instantaneous frequency, J(t) is found by 

Digital Modulations 

j(t) = ~ d<jJ(t) 
27r dt 

(2.13) 

(2.14) 

(2.15) 

There are general four major modulation schemes, namely amplitude shift keying 

(ASK), phase shift keying (PSK), frequency shift keying (FSK) and quadrature 

amplitude shift keying (QASK, also commonly known as quadrature amplitude 

modulation QAM). All modulation schemes are M-ary 2 derivation of the above 

four. 

A digitally modulated signals in its complex envelope representation can be 

2 An expression used in digital communication, where M correspond to the number of symbols 
in the constellation diagram. 
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written as follows: 

(2.16) 

where Am, 1m and ¢m are the message amplitude, message frequency and message 

phase respectively, in accordance with appropriate modulation techniques and 9T 

is the pulse shaping function. Consider the four main types of digital modulation 

techniques, i.e. Amplitude Shift Key (ASK), Phase Shift Key (PSK), Frequency 

Shift Key (FSK) and Quadrature Amplitude Modulation (QAM). 

QAM, (e.g. QAM16, V29, V32, QAM64, etc.), is a newer type among the 

four and takes a slightly different form: 

(2.17) 

where "'l(t) and sQ(t) are known as the in-phase and quadrature components of 

the signal respectively. Equation (2.17) is also known as the canonical represent­

ation for general digital modulation signals. Without loss of generality, we can 

take gT(t) as rectangular pulse function. Equation (2.17) can then be rewrote 

with its complex envelope representation: 

(2.18) 

2.2.2 Mathematical Preliminaries 

Probability Theory 

From a sample space, fl, that contains a set of possible of outcomes where A 

being a particular set of those outcomes. In other words, A correspond with a 

subset of sample points in O. A probability measure is a function, peA), with A 
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as argument. It can be thought of the expected frequency of occurrence for A to 

be observed and possesses the following properties: 

• 0 ~ p(A) ~ 1 

• P(O) = 1 

• If A and B are mutually exclusive events then 

P(A U B) = P(A) + P(B) 

or if they are not mutually exclusive 

P{A U B) = P(A) + P(B) - P(A n B) 

Given a random variable x, the cumulative distribution function (CDF) is: 

Px(x) = probability that X ~ x 

and the derivative of the CDF is the probability density function (PDF) of x 

dPx 
Px(x) = dx 

which has the following properties: 

• J: pAx)dx = P(a ~ X :S b), and 
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Higher Order Statistics 

Some features and methods that we discuss in later chapters will invoke the use 

of higher order statistics (HaS). Gaussian density can be fully characterised us­

ing up to second order statistics (SOS). However, for other distributions, e.g. 

sub-Gaussian or super Gaussian, measures beyond SOS are needed. In digital 

commnnications, signals are non-Gaussian, and owing to the central limits the-

orem, the total effect of summation of different sources of noise can be model as 

a Gaussian distribution. This has motivated the use of HaS in many communic-

ation application since the mid-80's. 

At the same time as interest in HaS was growing in signal processing com­

munity, ANN had become popular. An ANN is basically a large collection of 

distributed parallel non-linear processing units. Each processing unit, called a 

neuron, possess a chosen non-linearity. The non-linearity, for example a sigmoid 

function (or hyperbolic tangent function as it is also known), implicitly intro­

duces HaS to the input data. For example, the sigmoid function, tanh(u) can be 

expanded into its Taylor series: 

1 3 2 5 
tanh( u) = u - -u + -u - ... 

3 15 
(2.19) 

For feed-forward ANN, e.g. the multilayer perceptrons (MLP), the scalar u 

is the inner product u = w T x where x denotes the input data, and W are the 

weights of the neurons. It is plain that HOS is implicitly utilised in this examples. 

A successful example of HOS in recent signal processing would be independent 

components analysis (ICA), and its application in the problem of blind source 

separations (BSS). Other examples also includes blind channel equalisation, blind 

estimation of signal and noise ratio. 
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Expectation, Moments and Cumulants 

Let x be a random variable of probability density function Px, the expectation 

operator, E{ x} for any function g( x) of x is then defined as: 

E{g(x)} = i: g(x)Px(x)dx (2.20) 

Moments are set of typical expectation used to characterise x. The lh order 

moment Ctj is written as: 

(2.21) 

and the /h order central moment J-lj of x is: 

(2.22) 

where mx are the first order moment, better known as the mean of x. J-to = 1 and 

J-tl = 0 are of little use to us, but J-t2 is the variance of x. 

Skewness, the third order central moment J-l3, is a measure of asymmetry of 

the PDF of x. For a symmetrical PDF around the mean, skewness is equal to 

zero. 

Kurtosis, on the other hand a measure of the length of the tail of the PDF, 

and it is zero for a Gaussian distribution. However, Kurtosis unlike skewness is 

not a central moment although it is related to the fourth order central moment 

J.L4. In fact, kurtosis is known as the the fourth order cumulant, /'\:4 and it is 

defined as: 

(2.23) 

Here. we assumed x is zero mean. 
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Cumulants are related to moments by the natural logarithm of the moment 

generating function defined as below: 

m.g.f(x) = E{exp(jwx)} = 1: exp(jwx)px(x)dx (2.24) 

which incidentally is the Fourier Transform of the expectation operator. 

For zero mean variable x, the first four cumulants are shown in Table 2.1. 

Cumulants Definition 

"'1 /11 = 0 

"'2 /12 = E{ X2} 

"'3 /13 = E{ X3} 

"'4 /14 - 3/1~ = E{x4
} - 3E{x2 }2 

Table 2.1: First four cumulants expressed in term of moments 

From the table, it can be easily deduced that the first three cumulants are the 

same as the first three central moments, for the zero mean case. For the fourth 

order cumulant, kurtosis, there exists an normalised version which is more often 

used, f£4 

(2.25) 

Sometimes the data is pre-whitened, thus the variance is unity, i.e. E{x2 } = 1, 

in this case both version of kurtosis reduce to: 

(2.26) 

which is the fourth order central moment with a bias. 

Mean Vector, Correlation Matrix and Covariance Matrix 

Let f(x) denotes any function of a random vector oflength N, x = [Xl, X2, ..• XNV, 

and f(x) can either be a scalar, vector, or matrix. As with Equation 2.20, the 
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expectation operator of f (x) is defined as 

E{f(x)} = 1: f(X)Px(x)dx (2.27) 

where Px(x) again denotes the probability density function (p.d.f.) of x. The 

integral in carried out on each component of x, Xl, X2, ... ,Xn yielding a new 

quantity of the same dimension. 

The first order moment, is called mean vector, mx of x, is defined as the 

expectation of x: 

mx = E{x} = I: xpx(x)dx (2.28) 

Correlation matrix is defined by the second order expectation of x: 

(2.29) 

A correlation matrix is a positive semi-definite matrix, i.e. aTRxxa is greater 

than zero for all nonzero vector a , and in practice it is usually positive definite, 

provided the sample size of x is large enough. 

We define central moments for random vectors as we did for the random 

variables, however, it is plain that first order central moment for random vectors 

are irrelevant. Second order central moment for x is termed as the covariance 

matrix, and the covariance operation is sometimes denoted by, cov(x). Covariance 

matrix C xx is the expectation of the central moment of xx 

Cxx = E{(x - mx)(x - mxf} (2.30) 
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Cross covariance for two vectors, cov(x, y) can be similarly defined: 

(2.31) 

Each component C~~ in Cxy then represents the cross-covariance between Xi 

and yj. 

(2.32) 

Likewise, the cross-correlation matrix is defined as: 

(2.33) 



Chapter 3 

Feature Extraction and Data 

Preprocessing 

3.1 Data Model for Digital Modulation 

To build up a working model for the problem, the working environment is assumed 

to be coherent and synchronous. This implies that the carrier frequency, data 

baud rate and channel coefficient have been adequately established. In practice, 

these parameters are sometimes not known, for example in a furtive environment, 

where the signal is intercepted stealthily and these parameters have to be estim­

ated. A high sampling rate! is also usually required for adequate recovery of 

these paratmeter. Nevertheless, in other civil applications, these parameters are 

sometimes available. An example of this is the combined orthogonal frequency di­

vision multiplexing (OFDM) - code division multiple access (CDMA) technique. 

In OFDM-CDMA using adaptive modulation [41, 42] where the modulation type 

of the signal is depending on other operating factors, it can be assumed that the 

IThe features proposed in this work are extracted using symbol based calculation, therefore 
changes of sampling rate should not affect the training of ANN. Nevertheless, a high sampling 
rate and fast processing power is always desired. 

26 
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carrier frequency and sample baud rate are known a priori. 

In the case where the carrier frequency is unknown, a coarse estimate of 

the carrier frequency can be obtained using the power spectral density (PSD) 

of the intercepted signal. The baseband in-phase (I) and quadrature (Q) part 

of the signal can then be recovered through the quadrature filter (i.e. Hilbert 

transformer in Chapter 2). The carrier frequency can be refined via various 

high resolution spectrum analysis methods [43, 44]. The symbol baud rate can 

be estimated through a tracking loop, and symbol timing can be obtained via 

standard fractional sampling schemes [37, Chapter 6]. 

Here, we also assumed that the channel effects on the received signal have 

been equalised. A constellation-independent algorithm has to be used in this 

task as by definition the underlying constellation type is unknown. Examples of 

these blind equalisation algorithms include the Godard's algorithm [45], and the 

constant modulus algorithm (CMA), [46, 47]. 

Assuming that the above mentioned tasks have been carried out, we introduce 

the following model for the received data: 

00 

y(n) = A· L x(f)h(nT - fT + cTT)· exp(j27rfoTn + jen) + g(n) (3.1) 
e=-oo 

where x(f) is the signal sequence, A is an unknown amplitude factor, h(·) rep­

resents the residual baseband channel effects, T is the symbol spacing, CT is the 

timing error, fo is the constant frequency offset for the received sequence and en 
is the phase jitter which vary from sample to sample in the recovered sequenced. 

g(n) is the complex additive white and Gaussian noise (AWGN). 

Here, we further assumed that the channel effects and symbol timing errors 

are negligible, and the phase jitters are sufficiently small, we can then take a 
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impl r model as follows: 

y(n) = Ax(n) exp( -.j2n fo) + g(n) (3.2) 

Although WG is as umed in this model, g(n) can qually be from a coloured 

proces too. x(n) i the complex envelope of the received samples which tak s 

th form of (2.11). The real and imaginary part of x(n) correspond to the I and 

Q component of the signal. By plotting the I and Q components of the signal 

with a two dimen ional scatter plot, we obtained the estimated constellation dia-

gram for th re eived signal. The con tellation diagram is unique to a particular 

modulation type (see Figure 3.1). 

Various Normalised Constellation Diagrams 

• • • • • • • 

0 ;. • 0 0 0 • •• 
• • : . . : 

-1 -1 • -1 -1 • 
- 1 0 -1 0 -1 0 -1 0 

ASK2 BPSK QPSK PSK8 

• • ••• • . . • • ••••• • • • • • • ••• • • • • • • • • •• o • • ••••••• 0 •• . . •. : " 0 ........ ••• 0 . .. .•... ... •• • • • • • • •• • • • .:. • -1 • -1 • • -1 .. -1 • • • • • • • •• 
-1 0 -1 0 -1 0 -1 0 

STAR V.27 V.29 V.32 

• • • •• ... : .. , ....... : ....... 
~ .. : ... • •••••••• • • •• • • • • • • ••••• • •••••••• 

0 0 0 " ..... .. 0 :.::.:.:.::: .. • • •• • • • • • •• ••••• • ••••••• •••••• • •••••••• -1 -1 • • ••• -1 : ..... : -1 ••••••••• 
-1 0 -1 0 -1 0 -1 0 

QAM8 QAM16 QAM32 QAM64 

Figur 3.1: Th 12 digital modulation types considered in this work 
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3.2 Problem Statement 

Given N samples of received signal, y(n), and a set of c possible modulation types, 

Ij , as follows: 

j=1,2, ... ,c (3.3) 

where x jk is a point in the constellation j and Mj is the total number of points 

that constellation; by normalising both y(n) and Ij to unit power, we can then 

take A to be unity. 

Given a set of K received signals, denoted by vector Yk = {Yl, Y2, . .. , YK}, 

the task is to choose the hypothesis, Hj , based on some pre-defined criterion: 

Hj : the underlying constellation is Ij (3.4) 

For maximum likelihood (ML) method (Chapter 6), the criterion is the log like­

lihood value, however, we shall leave the discussion of ML to later chapters. For 

neural network (NN) with supervised learning paradigm, the criterion is the min­

imisation of the cost function. An example of such a cost function is the mean 

squared difference between the output of the NN and the desired target value. 

We shall discuss NN in greater depth in Chapter 4. 

3.3 Feature Extraction 

The problem of modulation classification can be formulated in terms of a pat­

tern recognition problem. However, prior to the actual recognition stage, it is 

necessary to consider the feature extraction and data reduction process. 

By definition, any pattern or object (in this case, modulations) that can be 

classified possesses some discriminative properties that differentiate between itself 
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and other patterns or objects. These properties are called features (analogous to 

the human face features) in pattern recognition problem. Three type of features 

exists in general, i.e. physical features, structural features and mathematical 

features. 

Examples of physical features are colour of an object, its fragrance, it mater­

ials, etc. Structural features includes structural properties of the objects such as 

its shape, height, weight, textures, volume, etc. The third category (the math­

ematical features), which might be the most relevant in this context, are derived 

properties of the object. E.g. the statistical mean, statistical variance, Fourier 

Series, eigenvalues or eigenvectors of covariance matrix etc. A classifier is essen­

tially a mathematical algorithm dealing with any computable features. An often 

desirable characteristic for a given feature is invariance. Any good feature should 

be invariant toward scaling, dilation, transformation, etc. Therefore, care need 

to be exercised when selecting and defining features. 

Various features for modulation classification have been proposed as men­

tioned previously (Chapter 2). Among which, Azzouz and Nandi [48] proposed a 

spectral feature set for digital communication signal. Azzouz and Nandi tackled 

various modulation types, namely ASK2/4, PSK2/4, and FSK2/4. However, 

while the spectral feature set recognised the fact that information is hidden in 

either the amplitude, phase and frequency spectrum of the signal, and were use­

ful for their application, the newer modulation schemes like M-ary QAM signals 

contain both information in amplitude and phase spectrum. A HOS based hier­

archical algorithm has been proposed by Swami and Sadler [28], and has shown 

robustness and proven performance in multiple scenarios. 

Some of the features that Swami and Sadler proposed are complex features, 

although they appeared to be real valued if the frequency offset is small. There­

fore, complex valued NN are needed if these features is to be used instead of 
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the standard NN. Later in this chapter, the author proposes a set of alternative 

HOS based real valued features that can be applied directly to a standard NN. 

The examples given in Swami and Sadler's literature addresses particular set 

of modulation types, however, most of their examples contains a small number 

of modulation types (c = 2,4) and owing to the hierarchical hypothesis testing 

method, a particular set of modulation types require a different formation of the 

classifier. Great care and experience are exercised for the each formation of the 

solution. When a new modulation type is added to the system, the user needs 

to re-examine the feature threshold manually which can be equally cumbersome 

and time consuming. However, by using a NN solution, the user simply needs to 

retrain the network by adding the new training data and target class label to the 

existing database. 

With any feature extraction procedure, the number of features used is nor­

mally kept to a minimum, as the input dimension of the pattern classifier is 

determined by the number of features. The higher the input dimension, the more 

the number of training samples that is required. This is known as the curse of 

dimensionality. It is the analogous to the estimation problem in statistics, in 

that one needs sufficient samples to generate a meaningful statistical estimate. 

Feature selection algorithms (Chapter 5) can be used to choose the feature subset 

that gives the best performance. 

3.4 Data Pre-processing 

Prior to feature extraction, it is customary to take certain measures to ensure 

the integrity of the data. Such measures are commonly known to as data pre­

processing. Some examples of these pre-processing techniques are outlier removal, 

data normalisation and missing data treament. 
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Outliers are points that lie far away from the statistical mean of a random 

variable. The presence of outliers also leads to large errors during training, which 

can be costly to the classification process. Normally, a threshold is determined 

(e.g. a multiple of standard deviation) to remove possible outlier. 

Apart from the problem of outliers, it is also possible that the amount of 

available data is not the same for all features. This is the case of missing data. 

This can be a significant problem when the data set is small (a problem typically 

found in genomic signal processing). Otherwise, the examples with missing data 

can be disregarded. In practice, the missing data is sometimes predicted through 

heuristic methods (see [49, 50]). 

Among these pre-processing method, data normalisation is the most relevant, 

as it ensures invariance of certain features. One common normalisation method 

is that the signal/data is ensured to be of zero mean and of unit variance. Math-

ematically, this is achieved through the following: 

(3.5) 

where i is the discrete time index, Xk and (JXk are the mean and standard deviation 

of kth signal examples respectively. 

3.5 Cumulants 

In Section 2.2.2, we introduced some higher order statistics for the case of a 

random variable, where the definition of the moments and cumulants of a random 

variable were given. In a similar fashion, higher order cross-cumulants for random 

variables can be defined as follows: 

Given N samples of a random variable, xi(n), arranged in a vector format, 
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{X; = [x;(l), x;(2), ... , xi(N)V}, and E{-} denote the statistical expectation. 

The second, third and fourth order cross cumulants2 can be defined (c.f. Chapter 

3 in [51]) a..., follows: 

CumX1 ,X2 - E{XI,X2} 

1 N 
- N 2: Xl (n)X2(n) 

n=] 

(3.6) 

CunlX1 ,X2,X3 - E{Xl,X2,X3} 
1 N 

N 2: xl(n)x2(n)x3(n) 
n=l 

(3.7) 

-E{x], x2}E{X3, X4} 

-E{Xl, x3}E{X2, X4} 

-E{x], x4}E{X2,X4} 
1 N 

- N 2: Xl (n)X2(n)X3(n)x4(n) 
n=l 

-CumX1 ,X2 CumX3 ,X4 

(3.8) 

Under ideal environment, the signal model introduced in Equation (3.2) is only 

affected by additive Gaussian noise, g(n), and the phase offset. Assuming that the 

2These cumulants are derived using central moments, and since the signal is of zero mean 
(first order moment), hence for clarity, all relevant products of first order moment in Equation 
(3.7) had been dropped. 
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Figure 3.2: olTuption of the signal's constellation under AWGN at different 
R 

op rating environm nt i coherent the received signal is then only corrupted by 

g(n). Figur 3.2 show how the noise affected the reconstructed I-Q diagram. For 

Gau sian noi higher order cumulant (n > 2) are equal to zero; therefore the 

stimated high r ord r cumulants of the received signal, y(n), can be attributed 

to the high r ord r cUlllulant of the source signal, x(n), as illustrated below using 

t h fomt h ord r cUl1lulant : 

(3.9) 

Thi ' provid an int r ting pro pect for u ing higher order cumulants as f ature 

to clas ify differ nt modulation type . 
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3.6 Feature Set 

Let H.II be the complex envelope of the sampled signal y(t) which is defined by: 

Hy(n) = [y(n) + jy(n)Jexp(-j2nIen) (3.10) 

where y(t) is the Hilbert transform of y(t) and Ie again denotes the carrier fre-

quency. For clarity, we shall drop the discrete time index. 

We then define R to be the real part of Hy , R(Hy) and I to be the imaginary 

part of Hy, r;:"s(Hy). For elegance, we adopt the following convention for nth order 

cumulallts: 

Kn-p,p = CumR ... RI ... I 
~ 

n-p p 

Thus, the following features are introduced: 

(3.11) 

(3.12) 

which are the second, third and fourth order cumulants and cross cumulants of 

the real and imaginary parts of the signal. 

As most of the constellation types considered (see Figure 3.1) here have four­

fold symmetry (with the exception of ASK2, BPSK and QAM8), it follows that 

theoretically, the features listed in Equation 3.13 for these summetrical modu­

lation types are null features, i.e. their value should be zero, and hence non-

discriminating. 

(3.13) 

Table 3.1 shows the value of all the values of the elements in Equation 3.12, 
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cakulat('d from the ideal noise free constellation diagrams (SNR = 00). The 

result is in accordance with Equation 3.13. It is normally assumed the received 

signal is normalised to unit power. In practice self-normalised cumulants are often 

used to avoid the scaling problem. Owing to the four-fold symmetry properties, 

K20 and n02 are the same (again, with the exception of the three constellations 

mentioned earlier). Therefore, the fourth order cumulants are normalised by 

their second order cumulants. To generalise for modulation types which do not 

process four-fold symmetry, the higher value between K20 and n,02 is taken to be 

the normalising cumulant, n,narm, i.e. 

(3.14) 

and 

(3.15) 

After normalisation, the second order cumulants are not kept since they are 

now non-discriminating. Therefore, the final feature set comprises the following 

fourth order cumulants: 

(3.16) 

In Table 3.2, we consider the theoretical values for the following phase and 

quadrature modulation types: 

· ASK2 . BPSK . QPSK . PSK8 

· STAR . V.27 . V.29 . V.32 

· QAM8 . QAM16 . QAM32 . QAM64 

These values were again calculated using the ideal constellation diagrams of each 

individual modulation. Besides, the standard deviations of these values at 0, 10 



Cumulants ASK2 BPSK QPSK PSK8 STAR V.27 V.29 V.32 QAM8 QAM16 

11:20 0.50 0.00 0.38 0.44 0.46 0.44 0.47 0.48 0.73 0.47 
11:11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
11:02 0.00 0.50 0.38 0.44 0.46 0.44 0.47 0.48 0.15 0.47 
11:30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
11:21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
11:12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
11:03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
11:40 -0.50 0.00 -0.28 -0.29 0.10 -0.30 -0.14 -0.22 -0.72 -0.30 
11:31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
11:22 0.00 0.00 0.00 -0.10 -0.21 0.05 -0.12 -0.10 0.00 0.00 
11:13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
11:04 0.00 -0.50 -0.28 -0.29 0.10 -0.30 -0.14 -0.22 -0.04 -0.30 

-- -- -- - -

Table 3.1: Theoretical cumulant values for various modulation types 

QAM32 QAM64 

0.48 0.49 
0.00 0.00 
0.48 0.49 
0.00 0.00 
0.00 0.00 
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and 20 dB signal-to-noise ratio (SNR) are also presented here (Tables 3.5, 3.4, 

3.3). The SNR is defined mathematically as follows: 

[
{-, y2(n)] 

SNR = 10 log ~ g2(n) (3.17) 

where y( n) and g( n) are the signal and the Gaussian noise respectively. 

3.7 Conclusion 

This chapter presented a practical mathematical model of a received signal with 

unknown modulation via an AWGN channel. This complex model which takes 

into account various non-idealities upon interception of signals can be simplifed 

under the assumption of a coherent channel. The problem definition for modula-

tion classification was also stated in the first half of this chapter. 

Feature extraction is an integral part of the pattern recognition problem. An 

important criterion for an ideal feature is invariance against translation, trans-

formation, noise corruption, rotation etc. Such features are difficult to obtain 

in real life. However, if the underlying mechanism of a problem can be clearly 

understood, it is then easier to find features that are near to the ideal conditions. 

In this chapter, a small feature set based on HOS is introduced. Communic­

ation signals are often corrupted by Gaussian noise. In general, HOS provides 

a good degree of immunity against additive Gaussian noise, as the higher order 

cumulants ( of order > 2) are zeros. Although, in practice, owing to the finite 

samples scenario, variability can still be found in the estimates of these HOS. 

HOS provides good descriptive measures for 2D constellation diagrams. It 

provides an intuitive method for discriminating among different modulation type 

with different constellation diagrams. A statiscal feature set, based on the fourth 



Features ASK2 BPSK QPSK PSK8 STAR V.27 V.29 V.32 QAM8 QAM16 QAM32 QAM64 

K40 -1.00 0.00 -0.75 -0.66 0.21 -0.68 -0.29 -0.46 -0.99 -0.64 -0.55 -0.61 

'"'22 0.00 0.00 0.00 -0.22 -0.46 0.12 -0.26 -0.21 0.00 0.00 -0.12 0.00 
K04 0.00 -1.00 -0.75 -0.66 0.21 -0.68 -0.29 -0.46 -0.06 -0.64 -0.55 -0.61 

Table 3.2: Theoretical values for the final feature set calculated with ideal noise free constellation diagrams 
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Standard ASK2 
Deviation 

Std(K40} 0.02 
Std(K22} 0.00 
std(Ko.i} 0.00 

- -- -- --

Standard ASK2 
Deviation 

std(K40} 0.07 
Std(K22} 0.02 
Std(K04) 0.02 

'--~-.---- L- ___ 

Standard ASK2 
Deviation 

Std(K;40) 0.11 
Std(K22) 0.04 
std(Ko.i) 0.08 

BPSK QPSK PSK8 STAR V.27 V.29 V.32 QAM8 QAM16 

0.00 0.04 0.06 0.07 0.04 0.06 0.06 0.04 0.05 
0.00 0.00 0.01 0.02 0.01 0.02 0.01 0.00 0.02 
0.02 0.04 0.06 0.07 0.04 0.06 0.06 0.01 0.05 

- ----- -- ------'-

Table 3.3: Standard deviation of proposed features at 20 dB SNR 

BPSK QPSK PSK8 STAR V.27 V.29 V.32 QAM8 QAM16 

0.02 0.06 0.08 0.07 0.06 0.06 0.06 0.05 0.05 
0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.01 0.02 
0.07 0.06 0.07 0.07 0.06 0.06 0.06 0.01 0.05 

- -- - ----'------ --- '----- - '---'--- --- L- _____ 

Table 3.4: Standard deviation of proposed features at 10 dB SNR 

BPSK QPSK PSK8 STAR V.27 V.29 V.32 QAM8 QAM16 

0.08 0.10 0.10 0.10 0.09 0.08 0.08 0.10 0.08 
0.04 0.04 0.04 0.03 0.04 0.03 0.03 0.03 0.04 
0.12 0.10 0.10 0.09 0.10 0.09 0.08 0.05 0.08 

-------- ----- '-- --- '-------

Table 3.5: Standard deviation of proposed features at 0 dB SNR 
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--------
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order ("ulllulants of the I-Q diagram, was devised. The theoretical values shown 

in Table 3.2 suggest that discimination is possible using the proposed statistical 

feature set. The tightly bounded standard deviations of these features in high 

SNR (> 10 dB) give an optimistic view for the actual classification process. 

Although when the noise gets higher, the bound of the standard deviaton also 

lossen. This is understandable judging from Figure 3.2. 



Chapter 4 

Digital Modulation Classification 

using Neural Networks 

Artificiallleural networks (ANN) first overwhelmed the signal processing society 

in the mid-80s. Today the ANN is widely used in many digital communication 

application [52]. It applications ranges from simple channel estimation to MIMO 

channel equalisation. Other examples can also be found in control engineering, 

condition monitoring, image processing, etc. ANN can be grouped into two major 

categories by their learning paradigms, i.e. supervised learning (learning with a 

teacher) or unsupervised learning (clustering). Unsupervised learning is widely 

used in applications such as data representation, vector quantisation, data mining, 

etc; while supervised learning is commonly used in non-linear regression and 

pattern classification. In this work, the application of supervised learning based 

neural networks in digital modulation classification is investigated. 

Supervised neural networks are popular choices in recent developments of 

modulation classification. It is a preferred alternative approach to decision the­

oretic (DT) based algorithms [17J when training examples are available. ANN 

based algorithms have the ability to learn the optimal threshold via training. This 

42 
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differs from some algorithms based on the DT approach where many thresholds 

of the key feature values needed to be chosen carefully with detailed analyses. 

Another major advantage of supervised ANN over DT is that the key features 

can be applied all at the same instance. For DT however, the order of evaluat­

ing certain key features are crucial, as it can give rise to differing performance. 

Training the ANN requires all features must be available prior to the classification 

phase. This may be time-consuming if the number of key features is large and 

is extracted serially. Nevertheless, this issue can be overcame through parallel 

processing of key features as often they do not rely on the presence of other key 

features. 

When an ANN classifier is trained, i.e. the underlying structure and paramet­

ers are fixed adaptively through the training data, it may be used for on-line ana­

lysis. This is owing to the computational simplicity of the ANN. Besides, when 

changes occurred to the operating environment (e.g. changes of SNR), ANN can 

be easily retrained for the new operating condition. Most ANNs also demonstrate 

robustness and tolerances against faults. 

In general, an ANN classifier can be viewed as shown in Figure 4.1. A set 

of pre-defined features are calculated during the feature extraction stage. The 

features are then fed through the pre-trained neural networks which consists 

an interconnection of weighted non-linear processing units called neurons. These 

weighted neurons form a set of non-linear discriminant functions which will output 

a set of soft decisions. A final classification stage transforms these soft decisions 

into hard decisions where the output is associated to one modulation type in the 

context of autmatic digital modulation classification (ADMC). 

The operation of each ANN, in general, consists of a training phase and a 

testing phase. Depending on the training methodology adopted, a validation 

phase is sometimes required. In the training phase, the weight of the neurons are 
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Figure 4.1: A based modulation classifier 

constantly adju ted with the aid of error information fed back through a feedback 

path. 

In the validation phase, if present, a separate set of validation data is used to 

check the generality of the classifier at the end of each training epoch (iteration). 

A classifier with good generalisation is one that has good classification for all 

sample ' including tho it has never seen before. It is essential that a classifier 

performs well for all three datasets (training, validation and testing). During 

validation phase if th cla sifier's error index of the validation set increases con-

si 'tently for a pre-defined period, despite the error index of its training set still 

dccreassing, th cla ifier i aid to be "overfitting" the training set. Hence, the 

training pro s is intcruptted. Subsequently, the weights of the classifier are re­

v rt d to th previou weight values that gave the smallest validation error index. 

This III thod i called generali ation via early topping" and is commonly used 

in back-propagation 1 arning ba ed neural networks. 

One th training phas is completed, a new feature set is then supplied to 
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test the performance of the classifier. In both validation phase and testing phase, 

the feature set used should not be seen before by the classifier nor should the 

weights of the neurons be altered. 

In this chapter, three ANN based classifiers are presented, namely, multi-layer 

perceptrons (MLP), radial basis function networks (RBF) and probabilistic neural 

networks (PNN). There is a discussion of MLP in some details and with that we 

proceed to introduce the latter two variants. Their performances are compared 

at different SNR conditions. This chapter aims to demonstrate the capability of 

ANNs in ADMC. 

4.1 Multi-layer Perceptrons Classifier 

MLP (see Figure 4.2) is a feed-forward structure of interconnection of indi­

vidual non-linear parallel computing units called neurons. Inputs are propagated 

through the network layer by layer and MLP gives a non-linear mapping of the 

inputs at the output layers. 

We can write MLP mathematically as: 

q p 

Yk(n) = <P2(l: Wkj<P1 (l: Wjixi(n))) ( 4.1) 
j=1 i=O 

where n is the sample number, subscript k denotes the output nodes, subscripts 

i and j denote hidden nodes and inputs nodes respectively; p and q are the total 

number of neurons available in layer i and j respectively. Note that the activation 

functions, <Pl,2, can vary for different layers of neurons. 

Classification generally consists of two phases - training and testing. A paired 

training input and target output are presented at each training epoch, output 

errors and weights are calculated according to the chosen learning algorithm. 
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Figur 4.2: two-layer MLP with sigmoid activation 

For a bat h training algorithm, weights are updated once every training epoch, 

m aning a full run of training sample, while in adaptive training, weights are 

updat d y ry training ampl. Learning algorithms shall be discussed in more 

d pth in the n xt ction. 

4.1.1 Learning Algorithms for MLP 

Th ~ILP i a r lativ 1. mature branch of ANN and there are a number of efficient 

training algorithm '. zzouz and andi adopted the standard back-propagation 

algorithm (BP) [53]. Th y al 0 u ed BP with momentum and adaptive learning 

rat to:p d lip th training tim required. 

BP algorithm implem nt gen ralised chained rule repetitively to calculate 

th chang ach \V ight wi h r pect to the error fun tion, E. 

6E 6E 6Yi bUi 

bWij = 6 Vi bUi bWij 
( 4.2) 



Digital Modulation Classification using NNs 47 

and where 'Wij represents the weight value from neuron j to neuron i, Yi is the 

output and 11,i is the weighted sum of the inputs of neuron i. Examples of some 

common choices of E are the Sum Squared Error (SSE) and Mean Squared Error 

(MSE): 

( 4.3) 

( 4.4) 

where E{·} is the mathematical expectation operator, and di is the target vector. 

The weight values are then updated by a simple gradient descent algorithm: 

8E 
Wij(t + 1) = Wij(t) - c 8Wij (t) (4.5) 

The learning rate parameter, f, is analogous to the step size for a least mean 

square (LMS) adaptive filter, where a higher learning rate means a faster con­

vergence, but with risk of oscillation. On the other hand, a value too small will 

take too much time to achieve convergence. An adaptive learning rate variant of 

BP takes account of this problem by updating the learning rate adaptively. By 

doing so, one also avoids trapping in a local minimum. 

A BP algorithm with momentum adds an extra momentum parameter, Il, to 

the weight changes: 

(4.6) 

This takes account of the previous weight changes and leads to a more stable 

algorithm and accelerates convergence in shallow areas of the cost function. 

In recent years, new algorithms have been proposed for network training. 
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However. some algorithms require much computing power to achieve good train-

ing, especially when dealing with a large training set. Although these algorithms 

require very small numbers of training epochs, the actual training time for a 

epoch is much longer compared with BP algorithms. An example would be the 

Levenberg-Marquardt Algorithm (LM) [54]. 

Here, we consider the BP algorithms and the resilient back-propagation a1-

gorithm (RPROP) proposed by Riedmiller and Braun [55] in 1993. Basically, 

unlike BPs, RPROP only considers the sign of derivatives as the indication for 

the direction of the weight update. In doing so, the size of the partial derivative 

does not influence the weight step. 

The following equation shows the adaptation of the update values of Aij for 

the RPROP algorithm. For initialisation, all Aij are set to small positive values. 

'Y)+ * AiJ-(t - 1), if 8E (t - 1) * 8E (t) > 0 '/ OWij 8Wij 

'Y)- * AiJ-(t - 1), if 8E (t - 1) * 8E (t) < 0 '/ 8w'J OWij 
(4.7) 

1]0 * Aij (t - 1), otherwise 

where 1]0 = 1, 0 < 1]- < 1 < TJ+ and 1]-.0,+ are known as the update factors and * 
denotes the multiplication operand. Whenever the derivative of the corresponding 

weight changes its sign, it implies that the previous update value is too large and 

it has skipped a minimum. Therefore, the update value is then reduced (TJ-) 

as shown above. However, if the derivative retains its sign, the update value is 

increased (1]+). This will help to accelerate convergence in shallow areas. To 

avoid over-acceleration, in the epoch following the application of 1]+, the new 

update value is neither increased nor decreased (TJO) from the previous one. Note 

that values of Aij remain non-negative in every epoch. 

This update value adaptation process is then followed by the actual weight 
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update proces , which i governed by the following equations: 

-6. i j (t), if 8:~i (t) > 0 

+6. i J (t) , if 8E (t) < 0 8Wt j 

0, otherwise 

4.2 Radial Basis Networks 

x2 

• • • • • xM 

Figure 4.3: A RBF network with linear output lay r 
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( 4.8) 

(4.9) 

Yl 

Y2 

• • • 
YN2 

not her popular typ of fe d-forward AN is the radial basis function (RBF) 

11 tworks [56 57] . RBF network would normally have more hidden layer neurons 

than lLP ' . In fact , a typical RBF has one neuron for every training examples. 

However there a1 0 xi t implementation where the hidden layer neurons are 
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added one at a time. To do this, the training pattern that produces smallest 

training error will be chosen as the new hidden layer neuron. 

Typically, RBF is a two layer network as shown in Figure 4.3. The activation 

function for the input layer of RBF is: 

f(x) = <1>(lIxll) (4.10) 

where <1>(-) is a continuous function (a radial basis function). The activation 

function can take the form of a Gaussian activation function, thus for kth neuron 

in the hidden layer: 

( 4.11) 

where a is known as the scale factor which is constant for all neurons and Ck is 

the centre for the neuron k. 

The second layer as shown in the diagram is a weight sum of the output of 

the input layer. Therefore the network output can be written as below: 

N 

Yj = Lwkj<I>k(IIx - Ckll) (4.12) 
k=l 

where NJ is the number of neurons in the hidden layer and Wkj is the weight value 

of output j from hidden neuron k where j = 1, ... , N 2 . In fact, when there is 

only neuron that fires and other neurons' output are zero or close to zero, the 

output of this linear layer is actually the weight vector for the winning neuron. 

However, this is an extreme case, normally, all neurons would have a certain 

degree of response. 

One way to see the difference between a MLP and a RBF network is to look 

at the way the decision boundaries are drawn. In MLP, the decision boundary 

are drawn as hyperplanes. However, in RBF networks, decision boundaries exist 
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as countonrs ill the feature space. A comprehensive illustration of this can be 

found in [58, Chapter 3]. 

4.2.1 Learning Rule for RBF 

The RBF networks have two stages for learning, an unsupervised stage for the 

centres and a supervised stage for the weights update. 

In the unsupervised stage, each time an input vector, x(n), is presented to 

the network,the distances between x(n) and the centres Ci(n) are computed. The 

winning centre,Cwin is then the one with the smallest distance, Dwin: 

( 4.13) 

The winning centre is then updated according to the following: 

(4.14) 

where I-l is a small positive constant analogous to the learning rate parameter 

in MLP. After the unsupervised stage, the weights update of the output layer is 

then carried out. If the output layer is linear one, then the Least Mean Squared 

(LMS) algorithm can be used. For each iteration, the errors between the targets 

(desired output values) to the network's outputs are found. Consequently the 

weights are updated according to: 

(4.15) 

where again Q is a small positive constant and ej (n) is a small. If the output 

activation function is not a linear one, then standard BP algorithm can be applied 



Digital Modulation Cla..<;sification using NNs 52 

in place of the LMS algorithm. 

4.3 Probabilistic Neural Networks 

Another family of neural networks, which is structurally similar to the RBF net­

works, is the probabilistic neural networks (PNN). The PNN is in fact an out 

growth from Bayesian classifiers and evolved from a classifying method named 

Parzen's windows. Historically, the PNN was first proposed for pattern classific­

ation by Specht in 1967 [59] and since then had been used in various applications 

e.g. vector-cardiogram interpretation [60], power lines fault detection [61], spike 

detection for on-line vibration diagnostics [62], etc. However, the PNN was not a 

straight hit off during the early days of its introduction due to the computational 

constraint which limited its usage in real time or dedicated application. Never­

theless, with the massive advances in computing abilities and parallel computers, 

the PNN has enjoyed renewed interest [63, 64] and a few modified version to were 

proposed [65, 66] recently. 

The PNN has some advantages over MLP and other BP methods. Firstly, 

the PNN has a rapid training time when compared to BP. The iterative training 

in BP could take a long period of time, but this is replaced by a little more 

than reading in the training set in the case of PNN. Secondly, PNN is said to be 

guaranteed to converge to a Bayesian classifier given enough training examples. 

Such guarantee can not be found with standard BP procedures, and as a matter 

of fact, standard BP has the risks of become trapped in the local minimums of the 

cost functions. Additionally, the PNN also allows convenient data alteration, i.e. 

pattern can be added or deleted from the training set without lengthy retraining. 

This means that when there are more data available as the time goes by, we can 

add to the PNN so that better classification can be made. One other advantage 
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over the 1fLP is that the output of PNN indicates the confidence of the decision. 

Such a level of evidence cannot be found in MLP. 

Although the PNN overcomes some major shortfalls of MLP, it still retains the 

desired characteristics of neural networks. Like MLP, it is able to map complex 

input/output relation via learning. It is also able to generalise data, i.e. if a 

similar pattern is found, it is able to classify the new pattern correctly within 

limits. Last but not least, it also retains the concurrency property of neural 

networks enabling parallel implementation for real time processes. 

4.3.1 Bayesian Classification and Parzen Windows Estim­

ation 

The Bayesian method of N class classification chooses class a with the feature 

value, x, which maximises product of the prior probability Pa , the probability 

Pa{x), and its loss factor, la{x) of the class a, a = 1,2, ... , N. In its simplest 

case, if the prior probabilities and the loss factors are equal for all classes, the 

Bayesian classifier simply chooses the class with the greatest probability value for 

feature, x to be observed. This can be illustrated in a dual class scenario using 

Figure 4.4. In Figure 4.4, the one dimensional Normal PDFs of two classes, Class 

1 and Class 2, are shown for one dimensional input feature, x. Given an observed 

value of x = 0.2 as shown with the vertical dotted line, Pl(X) gives a value of 

0.04 and P2{X) give a value of 0.77. The decision of Bayesian Classifier in this 

case therefore is that the observation belongs to Class 2. Of course, in practical 

scenario, there are often more than one dimensional input spaces, and hence a 

multi-dimensional PDF is used for such decision making processes. 

In rea11ife, the PDF for each class is general unknown and has to be deduced 

from the training samples. It is often difficult to estimate the PDF accurately 
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Figure 4.4: Illustration of Bayesian classification 

because the training data is often quite sparse in nature, therefore not allowing 

sufficient density for the histogram of the training data to be meaningful. Parzen 

proposed a method in overcoming such problem in 1962 and this method is now 

generally called Parzen windows [67]. Figure 4.5 shows the method is used for 

OIle feat ure and one class. Three samples and their unit Gaussians are shown in 

dotted lines in Figure 4.5. Adding them up together with scaling, an estimation of 

the true PDF is shown with the thicker solid line. Parzen showed that with large 

number of samples and appropriate scaling, this composite curve will approach 

the true PDF. 

The calculation of whole PDF is not necessary while implementing Parzen's 

windows for classification. One only need the value of Parzen's windows at the 

test vector point, which is summarised in the following equation, generalised for 
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( 4.16) 

where i is the sample number, d is the number of dimension of the feature space, 

a is the scale factor as with the case of RBF networks, X is the test vector to be 

classified, and Y; is the ith training vector of class a. When the scale factor a, 

approaches zero, the classifier then approximates a nearest neighbour classifier. 

When a approaches to infinity, the decision boundaries reduces to a hyperplane, 

therefore only linearly separable problems can be solved. 

The popularity of lleurailletworks in 19808 led to the reformulation of Parzen'8 

windows with neural networks terminology. The idea of Parzen's windows can 

be recreated using a PNN with a three-layer network. These layers include a 
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pattern layer, a summation layer and an output layer. Structurally the PNN 

is similar to the RBF networks, except the output layer can be now called a 

decision layer since it is replaced with competitive layer and therefore only one 

neuron (representing one particular class) can fire at one time. 

More detailed discussion 011 MLP, RBF and PNN can be found in [68, 69] and 

other neural network related literatures. A bibliography of application of neural 

networks in digital communications can also be found in [52]. 

4.4 Experimental Setup and Results 

In this section, we investigated and examined the three neural networks that 

were discussed previously. For the purpose of the experiments in this work, some 

statistical feature sets (Equation (3.16)) were generated with a variety of selec­

ted parameters. The datasets were generated according the parameters shown in 

Table 4.1. These features were then generated and grouped according to their 

Parameters Varieties 

ASK2, BPSK, QPSK, PSK8, 
Modulation V.27, V.29, Star(V.29c), V.32, 

QAM8, QAMI6, QAM32 & QAM64 

SNR -5 dB, 0 dB, 5 dB, 
10 dB, 15 dB & 20 dB 

Total Number of Symbols 100, 250 & 500 

Table 4.1: Parameters for feature sets 

SNRs and total number of symbols from which the three statistical features were 
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generated. For each modulation type, 3000 examples for each SNR and each set­

ting of total number of symbols were generated. These 3000 examples were then 

divided into 3 equal set of a thousand for training, validation and testing. This 

high lllllllber of training and test examples ensured the statistics for classification 

were as meaningful as possible. 

For the following sections, we first looked at the determination of hidden 

neurons for the case MLP with BP and RPROP. The BP that was adopted here 

incorporates learning with momentum and early stopping. Then, the asymptotic 

behaviour of the feature sets was examined by comparing the effect of the estim­

ation of features using different number of symbols. The performance of RBF 

and PNN with a variety of scale factors is compared with the best performance 

obtained using RPROP classifier. 

The general model for a ANN based classifier is shown in Figure 4.1. From 

the diagram, it implicitly shows that the number of input nodes for the ANN 

classifiers is determined by the number of input features; in this case, three. The 

number of output neurons is then determined by the number of available classes. 

It has been shown that a two-layer network (a hidden layer and output layer) has 

the ability to approximate any measurable function in a precise fashion provided 

there are sufficient number of hidden layer neurons [70, 71 J. Therefore, a two-layer 

network is adopted in this work. 

Under this kind of setup, one now needs to find the optimal number of hidden 

layer lleurons for MLP based classifiers. A general rule of thumb is that the 

hidden layer neurons is at least twice the input features. For RBF and PNN 

based classifiers, the number of hidden layer neurons are assigned implicitly in 

the training algorithm. 
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4.4.1 Case Study I: SNR Analysis and Hidden Layer N eur-

ons 

In order to find out the optimal (or at least suboptimal) number of neurons, 

two computer experiments were conducted in MATLAB, in conjunction with the 

Neural Network Toolbox. For each experiment, a set of two-layer MLP feed­

forward NNs was created with different number of hidden layer neurons, ranging 

from one neuron to a layer of twenty neurons. Two training algorithm were 

then used for investigation namely, BP learning with momentum and adaptive 

learning rate, and the RPROP algorithm. For both algorithms, the nonlinearity 

for the hidden layer neurons was set to the tansig (sigmoid) function, while the 

nonlinearity of the output layer neurons was set to logsig (logarithmic sigmoid) 

function 1. For each algorithms, SNR analyses were conducted with each setting 

of number of hidden layer neurons. 

At the end of each training iteration, the network under test was tested with all 

the three sets of data, giving three set of performance, which were then averaged 

to give the performance index2
• 

Equation (4.17) was used as performance index for this section: 

P 
Ptraining + PYalidation + Ptesting 

avg = 3 ( 4.17) 

where Hraining, Pvalidation and Hesting are the correct classification percentages of 

1 The logsig function has the range from 0 to 1 that corresponds to the range of target vectors 
(N x 1 vectors with a single entry of '1' at the row corresponding to the class label, and '0' 
elsewhere). 

2It is not common practise to use such a performance index; if the classifier are over-fitted 
to the training data set, this index will be bias to a higher value. However, as seen from Figure 
4.6, all three data sets show closely matched and well generalised performance. Therefore, in 
this case, the usage of such index can be compromised. A more common approach is to use 
the classification performacne of the test set as the performance index, which will be adopted 
in the author's future works. 
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training, validation and testing process. Figure 4.6 shows a typical graph to 

depict a typical training process. As can be seen from the graphs, the network 

was generalising well as there were little differences in the MSE of each curves. 

Figure 4.7(a) gives the result obtained from the experiment using BP learning 

with momentulll and adaptive learning rate. The horizontal axis gives the number 

of neuron and the vertical axis gives the performance index of the classifier. 

Results for SNR = -5,0, 5, 10, 15, and 20 dB are shown using different markers 

as depicted in the legend box. 

The results obtained for this experiment did not clearly indicate the optimal 

number of neurons. From the graph, it did show a general trend of convergence 

once a certain number of neurons was achieved for all cases with different SNRs. 

Ideally, the performance of the classifier should converge if the classifier possesses 

sufficient neurons to draw the decision boundaries. 

The number of hidden layer neurons chosen was fourteen in this case. The 

reason being, with fourteen neurons, the performance of most classifier had ad­

equately converged, particular for SNR = 20 dB and 5 dB. The fluctuation of 

performance at lower SNR seemed to be less prominent than with higher SNRs. 

With the RPROP classifier, the picture was much clearer than it was with 

the case of BP training. In Figure 4.7(b), the results for the RPROP classifier 

is shown using identical setup as with BP classifier, with the exception that, the 

horizontal axis, representing number of hidden layer neurons, has been truncated 

to 10 neurons. The six curves again show the results obtained for six different 

SNR value as depicted in the legendary box. 

From the graph, it was shown that the RPROP classifiers were superior to 

their BP counterparts. All RPROP classifiers gave a converged performance index 

value with number of hidden layer neurons set to five or more. This was a useful 

result that one can immediately determine the number of neurons needed for the 
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hidden layer without much further analysis or compromise to be made. 

In general, the performance of RPROP classifiers also seemed to be consist­

ently higher or at least equal to their BP counterpart for all positive SNRs. 

However, the number of hidden layer neurons needed for RPROP was half com­

pared to the number of hidden layer neurons required for BP classifiers. This 

suggested RPROP as the more attractive choice for our modulation classification 

task, as a lesser number of neurons indicates a simpler neural network in term of 

network complexity. By using five hidden layer neurons, the number of hidden 

layer neurons of RPROP classifier was one neuron less than the rule of thumb 

had required. 

4.4.2 Case Study II: Asymptotic Behaviour 

Having designed a feature set, its relation with the sample size that it was estim­

ated from is of particular interest in signal processing algorithms. It is a desirable 

characteristic for a classifying system to have good asymptotic behaviour, i.e. the 

increment of performance against the sample size. In this section, we used three 

identical groups of datasets to test the two MLP classifiers. These three groups 

of datasets varied in the sample size of the signal that they were estimated from, 

and in our case these are 100, 250 and 500 samples. We assumed symbol space 

sampling for these signals, therefore the sample sizes corresponded to the number 

of symbols. To avoid confusion while comparing against other works, the term 

symbol is adopted hereafter. 

Having chosen the number of hidden layer neurons from the results of previous 

section, we set the number of hidden layer neurons to be fourteen for the BP 

classifiers, and five for the RPROP classifiers. Consequently, the classifier were 

trained for different SNRs as before. The number of maximum training epoch 
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allowed for each classifier was set to 10,000. This will give more chances for the 

classifier to converge fully. The results obtained are summarised in Figure 4.8(a) 

and Figure 4.8(b) for the BP classifiers and RPROP classifiers respectively. 

From the figures, both classifiers indicate that a higher sample size dataset 

would give a better classification performance. In other word, our classifying 

systems do converge with the increment in sample size. From the results, it can 

be seen that the RPROP classifier outperformed the BP classifier again, and 

especially in datasets of low sample size. Interestingly, the performance of BP 

at 100 symbols and 250 symbols were lower than RPROP initially (0 dB and 5 

dB), then over the range of SNR, the performance of the algorithms seemed to 

converged and leveled at 10 dB and above. At 500 symbols, the BP's performance 

at 15 dB dropped back to 100 symbols, this could be due to a local minimum 

encounter in the algorithm. 

4.4.3 Case Study III: RBF network and PNN 

In this section, we examine the performance of alternative classifiers, based on 

the RBF networks and PNNs. For these experiments, the training dataset was 

reduced to one tenth of those used for MLP classifiers. Although more training 

data was available, the computational burdens of these neural network variants 

were too much. From experiments, it was deduced that the physical memory 

was a limitation for the algorithm to train with full dataset. Therefore, the 

classifier was only shown 100 training examples per modulation type as opposed 

to 1000 examples per modulation in previous sections. An alternative method 

that could be used is to train the networks multiple times if one insists to have 

all the examples used for training. However, this was not adopted and proved 

unnecessary from the experimental results obtained. 
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Unlike ~lLP neural networks, generalisation was controlled by the scale factor 

in these variants of neural networks. Therefore no validation set was used. For 

testing, the same dataset used for the previous experiments was used. The per-

fOflnance index used for this section is the correct classification rate of the test 

dataset as this reflects the generalised performance of the classifier as well. 

Results of these classifiers using the above setup for datasets obtained with 

500 symbols are shown in Table 4.2 and 4.3 for the RBF network classifier and the 

PNN classifier respectively. The range of scale factors examined in this section 

ranged from 0.2 to 1.2, and the SNR examined again ranged from -5 dB to 20 dB 

in steps of 5 dB. 

Scale SNR 
Factor -5 dB o dB 5 dB 10 dB 15 dB 20 dB 

0.20 8.31 9.03 57.79 71.60 67.45 95.85 
0.40 8.30 9.69 31.98 32.24 92.74 96.97 
0.60 8.97 9.42 25.94 61.08 84.96 92.85 
0.80 9.57 14.63 46.77 77.30 90.99 98.19 
1.00 9.06 20.11 58.75 84.80 92.62 97.16 
1.20 10.25 25.82 65.85 88.10 94.07 98.28 

Table 4.2: Performance of RBF network for N = 500 

Scale SNR 
Factor -5 dB o dB 5 dB 10 dB 15 dB 20 dB 

0.20 16.07 46.56 78.79 93.35 94.91 97.83 
0.40 18.16 48.89 79.24 92.92 94.46 97.17 
0.60 20.12 49.07 78.91 92.83 94.13 96.86 
0.80 21.07 49.12 78.78 92.67 93.98 96.75 
1.00 20.98 48.91 78.58 92.64 93.99 96.68 
1.20 20.82 48.95 78.53 92.57 93.96 96.67 

Table 4.3: Performance of PNN for N = 500 

From Table 4.2, it was found that the best performing scale factor of those 

examined was 1.2 for the RBF network classifier. At high SNR (10, 15 and 20 
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dB), the RBF network classifier achieved very similar performance of the RPROP 

classifier with 5 hidden layer neurons (see Figure 4.8(b)). However, at lower SNRs 

(-5,0 and 5 dB) the performance of the RPROP classifier was twice as good as 

the figures shown by the RBF network classifier. 

With the PNN classifier, the determination of scale factor was a more difficult 

task. The optimal scale factor seems to decrease with the improvement of SNR. 

From the table, it seemed that for -5 dB and 0 dB, the best scale factor was 

0.8. For 5 dB and 10 dB, it was 0.4 and for high SNRs, the best scale factor 

was chosen as 0.2. Nevertheless, for a practical system, we would have to make 

some trade off, therefore we have chosen the scale factor to be 0.4 after various 

considerations. Nevertheless, these knowledge is useful if the knowledge of SNR 

is available. It also prompt for further work in a adaptive version of PNN with 

variable scale factor. 

In comparison with the RPROP classifier, the performance of the PNN classi­

fier showed (scale factor = 0.4) a close match although typical 1 or 2% lower than 

the RPROP classifier. This is an encouraging result as the training examples used 

were one tenth of those shown to the RPROP classifier, The results suggested 

that the possibility of better performance if repetitive training were used for the 

PNN classifier. One remark from the observation in terms of physical training 

time, the PNN classifier was the fastest in all the variants of NN investigated in 

this work. However, the memory requirement for a PNN is much larger than the 

memory requirement of a MLP. This is because the PNN reads in every training 

vectors as its patterns. 

The experiments were repeated for datasets obtained with 100 and 250 sym­

bols as with the MLP classifiers. The corresponding results were shown in Table 

4.4 to Table 4.7. Generally, the results show an increase of performance with 
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increment of the original signal sample size. This is coherent with the observa-

tion in Section 4.4.2 in the case of MLP classifiers. This is expected in statistical 

features a,.,) such features are sample estimates of the true statistics of the sampled 

signals. 

Scale SNR 
Factor -5 dB OdB 5 dB 10 dB 15 dB 20 dB 

0.20 8.26 11.28 39.52 9.66 51.92 89.74 
0.40 8.35 9.40 9.61 15.82 52.73 74.53 
0.60 8.14 8.51 12.75 39.85 73.03 85.76 
0.80 9.29 11.84 31.38 58.77 80.33 96.22 
1.00 9.07 14.87 39.58 69.92 83.94 96.23 
1.20 9.21 19.27 47.33 77.47 86.10 94.81 

Table 4.4: Performance of RBF network for N = 250 

Scale SNR 
Factor -5 dB o dB 5 dB 10 dB 15 dB 20 dB 

0.20 8.38 8.72 16.62 11.29 39.67 77.81 
0.40 8.18 8.58 24.77 14.19 31.85 76.72 
0.60 8.16 8.92 11.91 20.38 47.35 64.17 
0.80 8.45 9.30 17.97 33.89 57.64 74.81 
1.00 8.93 11.79 25.10 43.83 64.24 87.30 
1.20 9.07 13.82 29.70 51.67 69.11 88.33 

Table 4.5: Performance of RBF network for N = 100 

From the tables, the same phenomenon that was observed for the scale factors 

in the case of the RBF networks and the PNN were again observed for 100 and 250 

symbols. The RBF network favoured a consistent scale factor (1.2 in this case) 

but the scale factors for the PNN seemed to get smaller as the SNR increases. 

4.5 Conclusion 

In this chapter, the general framework of pattern recognition using neural net­

works was introduced and discussed. Three popular types of neural network were 
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Scale SNR 
Factor -5 dB o dB 5 dB 10 dB 15 dB 20 dB 

0.20 13.38 34.60 68.20 86.77 90.58 96.00 
0.40 15.65 38.48 69.87 85.53 89.71 95.51 
0.60 16.56 39.38 69.68 84.84 89.34 95.32 
0.80 17.00 39.33 69.21 84.38 89.09 95.20 
1.00 17.27 39.05 69.07 84.12 89.00 95.18 
1.20 17.55 38.86 68.85 83.90 88.97 95.15 

Table 4.6: Performance of PNN for N = 250 

Scale SNR 
Factor -5 dB o dB 5 dB 10 dB 15 dB 20 dB 

0.20 9.83 22.40 48.36 69.28 77.86 89.49 
0.40 11.50 26.47 52.44 69.87 77.17 88.33 
0.60 12.85 27.54 52.77 69.20 76.54 87.30 
0.80 13.30 27.84 52.62 68.54 76.04 86.83 
1.00 13.23 28.11 52.26 68.28 75.70 86.61 
1.20 13.35 28.02 51.87 67.95 75.53 86.54 

Table 4.7: Performance of PNN for N = 100 

investigated and their performance was examined using the statistical features 

proposed in previous chapter. Selected results were included at the end of the 

chapter. 

The first neural network variant investigated was the MLP neural network. 

With a feed forward structure and structure resemblance of the physical neural 

network, this variant gained huge popularity since the 80s particular among the 

new comer into field. Two training algorithms were investigated for the case 

of MLP classifiers, these were namely the standard BP with momentum and 

adaptive learning rate, and the RPROP algorithm. In terms of performance, the 

RPROP classifier consistently outperformed the BP classifier. From observation, 

the RPROP classifier also showed faster convergence during training. The optimal 

number of hidden layer neurons for the classifiers were chosen via Monte Carlo 

trials for a range of numbers of hidden layer neurons. 
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The asymptotic characteristic of the features proposed were also examined 

through experiments with the two chosen classifiers with an optimal number of 

hidden layer neurons. It was shown that the the higher the original sample size, 

the better the sample estimates, and hence the better the performance shown. 

This observation was later confirmed with a coherent result for other variants of 

neural networks investigated in this chapter. 

In the final part of the chapter, the performance of RBF network classifier 

and the performance of PNN classifier were investigated through computer ex­

periments. The scale factors for the networks, although different in their origins, 

played an important roles for the generalisation for the neural networks. The 

PNN in particular was shown to be a robust alternative to MLP based solution, 

boasting implicit generalisation, faster training time and no threats of trapping in 

local minimum of cost functions. Performance wise, the PNN closely matched the 

RPROP classifier, while RBF network classifier lagged behind to the two other 

alternatives in lower SNRs. 

In short, supervised neural networks provide an easy to implement and theor­

etically easy to comprehend approach to modulation classification. With the 12 

modulation types tested in this work, all three neural networks variants gave ex­

cellent performance of near 100% in simultaneous learning/classification of all 12 

modulation types. As far as the knowledge of the author is concerned, none of the 

other previous works using ANN reported such a broad range of digital modula­

tion types. Unfortunately, direct comparison of results with other work is difficult 

because of different modulation types and signal datasets used in different works 

(as agreed by [29]). Furthermore, the existence of various definitions for SNR 

also complicate the task of result comparison. Nevertheless, supervised neural 

networks give a robust alternative solution to the decision theorectic approach in 

digital classification. 



Chapter 5 

On Feature Selection and 

Transformation 

Feature design as discussed in Chapter 3 has always been a crucial and integ­

ral process of any pattern recognition system. An excessive number of features 

as input to any classification system is undesirable as it induces more computa­

tional overhead and requires more training samples as was discussed earlier. The 

technique of choosing the right set of feature subset without compromising on 

performance is often called feature subset selection. 

Two approaches of feature subset selection are investigated here in this work, 

i.e. feature selection and feature transformation. Feature selection iteratively 

selects a combination of features and evaluates the performance of the selected 

feature subset. This is often carried out in an organised fashion, e.g. forward 

selection, backward selection, etc. This type of feature subset selection method 

is often called the wrapper type method as the classifier is used as the evaluating 

agent in the algorithm. The main drawback of the wrapper type method is that 

these algorithms often take a long time to complete and this is may be a factor 

to consider for those who require a solution quickly. 

70 
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The ot.her approach, feature transformation, exploits some pre-defined inter­

relationship of the features and applies a linear projection of the original feature 

set to create a new feature sets (often with less dimensionality). Feature trans­

formation is more often used for feature extraction; however, it is demonstrated 

that it can be used as a feature subset selection method. In terms of evaluating 

functions, feature transformation would be grouped under the approach called 

filter type feature selection, as the classifier is not involved in choosing the new 

feature subset. However, it differs from the main stream filter type method as 

each of the new features is now a combination of a group of features from the 

original feature set. Although, in principle, the transformation method is quicker 

than the selection method, the performance of the chosen feature is not guaran­

teed in terms of classification as the actual classification does not take part in the 

selection process. 

The RPROP-MLP classifier is chosen as the classifier throughout this chapter 

to enable performance comparison between different methods. 

5.1 Feature Sets 

Two datasets are used in this work. The first set is the spectral feature set, which 

was introduced in Azzouz and Nandi's work in digital modulation classification 

[17]. The second set is the statistical set, which includes all 12 statistical features 

(defined by Equation (3.12)) prior to self-normalisation and processing. 

For completeness, the spectral feature set are listed in the following section: 

5.1.1 Spectral Feature Sets 

The main motivation for this spectral feature set is that, the information content 

for digital modulations is hidden either in the signal instantaneous amplitude, 
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instantaneous phase or instantaneous frequency, while for the previously proposed 

modulation types [17, chapter 3], information is only hidden in a single domain 

for 1-1 particular modulation type. 

The five features proposed previously are as below: 

• !\laximum value of the power spectral density of the normalised-centred 

instantaneous amplitude: 

1 ( . 2 'max = argmax Ns DFT acn('l)) (5.1) 

where Ns is the number of samples, acn(i) = an(i) - 1 and an(i) = a(i) , a(i) is the 
ma 

ith instantaneous amplitude and ma is the sample mean value. 

• Standard deviation of the absolute value of the centred non-linear compon­

ents of the instantaneous phase: 

where C is the number of samples in {q>Nd i )} for which an(i) > at and at is the 

threshold value for a( i) below which the estimation of the instantaneous phase is 

very noise sensitive. 

• Standard deviation of the direct value of the centred non-linear component 

of the instantaneous phase: 
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• Standard deviation of the absolute value of the normalised-centred instant-

aneous amplitude: 

(5.4) 

• Standard deviation of the absolute value of the normalised-centred instant­

aneous frequency: 

Note that the availability of instantaneous amplitude, phase and frequency 

depends on the availability of carrier frequency fe. It is assumed that fe is known 

a prior1; in practical applications it would need to be estimated. Besides the 

frequency estimation (see Appendix B in (17]), other concerns such as channel 

information are assumed to have been adequately addressed either with a priori 

knowledge or through blind estimation algorithms. The above features were used 

in previous works of Nandi and Azzouz. 

5.1.2 General Experimental Setup 

Combining the spectral feature set with the 12 statistical features, a total set 

of 17 features is obtained. For the purpose of examining the feature selection 

and transformation algorithm, the RPROP MLP classifier is adopted. A range 

of SNR values is chosen for investigation: -5 dB, 0 dB, 5 dB, 10 dB and 20 dB. 
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The SNR is again defined as follows: 

SNR in dB = 10 log 10 (:i) (5.6) 

where a; corresponds to the variance (power) of the the signal, x, and (T~ repres­

ents the noise variance (power). 

Ten modulation types are used in this work, including frequency shift keying 

(FSK), which was not examined in the previous chapter. The 10 modulation 

types are listed in Table 5.1. 

I Modulation Types I 
OOK ASK4 
BPSK QPSK 
FSK2 FSK4 

QAM16 V.29 
V.32 QAM64 

Table 5.1: 10 digital modulation types investigated in this chapter 

Time series of the these modulation types were created and additive white 

Gaussian noise was added with a noise factor, Rsn , to achieve the desired SNR. 

~
2 -SNR 

R = ..2.10-10-
sn 2 

(Tn 
(5.7) 

Three datasets were created at each chosen SNR. For each datasets 1000 ex-, 

amples of each modulation types were created and noise was added accordingly. 

The three datasets at each SNR were used for training the classifiers, the valid­

ation process during classifier training and testing the classifier. These datasets 

were therefore labeled as the training set, validation set and test set respectively. 

Table 5.2 shows a set of parameters used in preparation of the datasets. 
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Parameters Values 
Sampling Frequency, is 307.2 kHz 
Carrier Frequency, ie 17 kHz 
Baud Rate, Rb 9600 baud 
No. Samples, Ns 4096 samples 

Table 5.2: Parameters used for digital modulation 

5.2 Feature Subset via Selection Method 

There exists two main paradigms of feature selection, i.e. the filter type approach 

(e.g. [72, 73]) and the wrapper type approach (e.g. [74, 75]). For the filter type 

approach the feature set is evaluated without the aid of the application, in this 

case, the MLP classifier. In other words, the features were selected based on some 

predefined functions of the members of the features set. An example of these 

functions is the correlation among the features. The wrapper type approach, 

however, uses the performance of the classifier to evaluate the selected feature 

subset. This has the advantage of guaranteed performance, but often takes a 

longer time. 

There are many methods for feature selection, but they generally consist of two 

main parts - a selection phase and evaluation phase. In pattern recognition, the 

selection criterion is normally the minimisation of recognition errors. This leaves 

us with choosing a suitable selection procedure. In this work we shall focus on a 

stochastic search method using a genetic algorithm (GA). Similar wrapper type 

feature selection method with GA were also proposed in [76, 77, 78]. Conventional 

brute force searching method like forward-selection, backward-selection etc. are 

also available; a comparison among these methods Can be found in [79]. 
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5.2.1 Genetic Algorithm 

GA [80, 13J is a stochastic optimisation algorithm which mimics Darwin's theory 

of survival of the fittest. The algorithm runs through an iteration of individual 

selection, reproduction and evaluation stages. Each individual represents a unique 

solution to the problem and for each generation (Le. epoch in ANN terminalogy), 

there exists a collection of solutions which is termed a population. The fitness 

of an individual refers to the quality of the solution which is evaluated at the 

end of a generation. Prior to evaluation stage, the previous population breeds 

through reproduction functions, such as crossover and mutation, gives rise to a 

new population. The new population inherits some preferred properties from 

the parent population as only individuals with strong fitness value are chosen to 

reproduce. 

1. Initialise a population Po of N individuals 

2. Set generation counter, i = 1 

3. Create an intermediate Population, P:, through selection function 

4. Create a current Population, ~ through reproduction functions 

5. Evaluate current population 

6. Increment the generation counter, i = i + 1 

7. Repeat step 3 until termination condition reached 

8. Output the best solution found 

Table 5.3: An overview of generalised G A 

Table 5.3 shows a generalised form of the GA. Various advanced GAs exist but 

all GAs are based on this general concept. At each iteration, or generation in the 
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context of GA, a pool of individuals is created. Each individual is uniquely rep­

resented by its genome which is analogous to human genome. The fitness of each 

individuals is then tested using an evaluation function, which will be discussed 

later. A pre-defined selection criteria is then used to choose the individuals to 

reproduce through the genetic operators. The process is then repeated for the 

next generation. At each generation, the performance is always checked to see 

whether the GA has converged. Nevertheless, to avoid early convergence, this 

option is only enabled after a predefined number of generations. 

Two important issues in GA are the genetic coding used to define the problem 

and the evaluation function. Without these, GA is nothing but a meaningless 

repetition of procedures. The simple GA proposed by Goldberg in his book [13] 

uses binary coding, but other methods such as real coding are sometimes more 

meaningful to the problem. This is discussed in further details in the following 

section 5.2.2. 

The fitness function evaluates how good an individual is in surviving the cur­

rent environment. In function minimisation problems, the individual that gives 

the smallest output will be given the highest score. In this case, the fitness 

function can be the reciprocal of output plus a constant. In the modulation clas­

sification problem, the evaluation is defined as the overall percentage of correc­

tion classification of the classifier. Hence, the GA implemented here is designed 

to search for the indivuals that represent the classifiers with high accuracy in 

classfication. 

5.2.2 String Representation 

Each individual solution in GA is represented by a genome string. This string 

contains specific parameters to solve the problem. In our application, two different 
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methods of coding are investigated, i.e. the binary genome coding and the list 

genome coding. 

0 1 1 0 •••••• 
I 1 

I 
'-- ~ 

----v--
N 

Figure 5.1: An example of binary string genome with length N 

In the binary genome coding (see Figure 5.1, each string has a length N, 

where N is the total number of input features available. A binary '1' denotes the 

presence of the feature at the corresponding index number. Similarly, a binary 

'0' denotes an absence. The advantage of this coding is that it searches through 

the feature subspace dynamically without user defined number of subset features. 

No constraint is needed with this coding method. 

The second coding used is the integer list genome string as shown in Figure 

5.2. Each genome in this category is of length M, where M is the desired num­

ber of features in a feature subset. To initialise, the GA chooses randomly M 

integers from a list of integers ranging from 1 to N. However, we do not desire 

any repetition of the integers as this means that the same feature is selected more 

than once. Therefore a constraint, 1 < Ii < N is applied, where Ii denotes ith 

input feature. In practice, we randomise the list sequence and choose the first M 

features in the list. 

1 •••••• 

'-------------- -------------~ --v-
M 

Figure 5.2: An example of integer list string genome with length M 

An extra parameter can be appended to the genome for choosing the number of 
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hidden units in the ~ILP classifier. However, from previous experience [30], it was 

determined that the optimum number of hidden units is around ten neurons using 

RPROP training algorithm. Since this is practical and reasonable for a hardware 

implementation, we shall not complicate our problem of feature selection with an 

extra parameter. 

5.2.3 Basic Genetic Operators 

Basic genetic operators are used for reproduction and selection. The following 

gives a brief description of each operator: 

Crossover: Crossover occurs with a crossover probability of Pc. A point is chosen 

for two strings where their genetic informations are exchanged (Figure 5.3). 

There are also variations of two-points or multi point crossover. For our 

purpose, we shall use one-point crossover, and typical value of probability 

of crossover,Pcrossoven of 0.75. 

Mutation: Mutation is used to avoid local convergence of the GA. In binary cod­

ing, it just means the particular bit chosen for mutation is inverted to its 

complement (Figure 5.4). For the list genome, the chosen index is replaced 

with a new index without breaking the constraint. Mutation occurs with 

typical mutation probability, Pmutation, of 0.05. This probability value is 

kept at such a low value to prevent unnecessary oscillation. 

Selection: There are several ways to select a new intermediate population. Based 

on the performance of individual strings, roulette wheel selection assigns a 

probability to each string according to their performance. Therefore poor 

genome strings will have a slight chance of survival. Unlike roulette wheel, 

selection by rank just orders the individuals according to their performance 
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and select copies of best individuals for reproduction. 

Other genetic operators, such as elitism, niche and diploidy, are often classified 

as advanced genetic operators [13]. For the purpose of this investigation, we shall 

apply only elitism. Elitism comes in various forms. In our application, we require 

that the best two strings are always to be included in the new population. This 

gives a chance to reevaluate their capabilities and improves GA convergence. 

PARENT I 1 o 

• • • 

1 0 0 i 0 0 1 01 
• 

PARENTIII~_O~_l~_l~l~_o-+l~l~l_l~l_o~_o~ 
~ "crossover site 

CHILD I 1 o 

CHILD II 0 1 

• 

1 I 0 I 0 I 1 I 1 0 0 
• 

1 I 1 I 0 ! 0 I 0 0 1 
• • • • • 

Figure 5.3: Illustration of the single point crossover genetic operation 

5.3 Feature Subset via Component Analysis 

The second method of choosing the "right" feature subset is related to the wider 

of field of component analysis. Two of such methods are investigated in this work, 
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I 

PARENTI 0 1 1 1 0 1 
I 

1 0 0 

c::=::J ~ 
0: I MUTATION SITE 

;( 
l 

CHILD I 0 1 1 1 0 
I 

0 
I 

1 0 0 

L _ I 

Figur 5.4: Illustration of the mutation genetic operation 

th ar llaUl ly th principal component analysis (PCA) and the independent 

compon nt analy:i (I ). In term of operation, these m thods share the common 

operation pr p rty that both m thod map the original d-dimensional dataset F on 

to a r due d £ atur t F ' of dimen ion d' through the mean of linear projection, 

lL. 

(5.8) 

For arh method, tIl linear proje t, lL, is obtain through optimisation of differ­

ent obj tive erit rion' for xample, the PCA seeks the best representation of a 

datas t a ording to a minimum- qUill'ed-error criterion while ICA seeks features 

with minimulll joint ntropy of the data. 

h main acivantag of the method is the operational speed in finding the 

'olution I' lative t '1 ction based method'. However, when used as a tool to 

. 1 ct f atur 'ub 'et , all of the original features have to be present for feature 

transformation. Th rca on for this being that Lhe llew feature set is a linear 

combinati 11 of til original feature et as mentioned earlier. Therefore, feature 
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transformation based methods do not offer speed boost during the feature ex­

traction stage. The main speed difference is the training of the classifier as there 

are lesl' inputs to the classifier after transformation. One minor drawback due to 

the lincar cOlllbination operation, the new features are difficult to be interpreted 

physically in relation to the original feature set. 

5.3.1 Principal Component Analysis 

PCA, also known as Karhunen-Loeve transform, is a well-known technique in 

lllany signal processing and statistical applications; it originated from the work of 

Pearson [81J in 1901. The purpose of PCA in the context of feature transformation 

is to derive a new reduced set of features from the original feature set while taking 

into account the level of importance of each features. It is common practice to 

arrange the new feature set according to the decreasing measure of importance 

(represented by the variance). 

As we mentioned earlier, the new feature set created by PCA is a linear 

combination of the original features, with the constraint that the new features 

have to be orthogonal to one another. Geometrically, it can be thought as a 

rotation of the original axes in the feature space to a new set of orthogonal axes 

that are ordered in terms of the amount of variation of the original features. 

Although, it may be almost always possible to find a reduced representation 

of the original feature set, it is often difficult to assign meaningful interpretation 

on the new feature set. PCA is also a feature directed technique as it does not 

take into account of prior information such as the class label of the data. Thus 

it is essentially an unsupervised technique. 

Given iI,.·. jp as the original set of features, and let ~1' ... , ~pl be the new 
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linear combination of these features: 

P 

(i = L lijiJ (5.9) 
j=1 

where lij is called the basis vector, and in matrix form, as we mention earlier in 

(5.8): 

~ = lLTF (5.10) 

Consider now the ith new feature, we choose at = (ail, ai2 . .. aip)T to maximise 

the variance of 1:, subject to the constraint that aT ai = 1. The variance, i.e. the 

second central moment: 

var(~i) - E{(?} - E{~i}2 

E{aTffT ail - E{aTf}E{fT a;} 

- anE{ffT} - E{f}E{fT} )ai 

(5.11) 

To find the stationary value of (5.12), with the constraint aT ai - 1, is the 

same as to find the unconditional stationary value of the following: 

(5.12) 

Hence, differentiating with respect to ai and equating to zero gives: 

(5.13) 

A trivial solution would be a; = 0, but this will then be meaningless. There­

fore the nontrivial solutions of ai have to be an eigenvector of C ff and v is the 
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corresponding eigenvalues. Note that Cft' has the rank of p, therefore we have p 

eigcnvalues, Al ... Apo and we can rank them in descending order, without loss of 

generality: 

The ith principal basis vector is then chosen as the eigenvector with the ith largest 

eigenvaluc Ai since our objective is to maximise variance of ~ and by (5.12): 

(5.14) 

By choosing the p' eigenvalues, the whitened version peA transform has the 

closed form solution of: 

(5.15) 

where A is diagonal matrix with it it h value equal to Ai in descending and 2: is a 

matrix with it's ith column being the corresponding eigenvector. 

More detailed discussions of peA can also be found in [82J. 

Simple PCA Demonstration 

In Figure 5.5, we show a simple demonstration where the application of peA is 

particularly useful. Figure 5.5{ a) shows three two-dimensional Gaussian clusters 

of data but with two data clusters belonging to the same class, denoted by '0'. 

The third cluster is marked with 'x'. The first two clusters are of mean of '0' 

and '3' respectively. However, they are biased with a vector, b q = [-3.0,O.aV. 

The third cluster has the mean of '0' but was biased with b
C2 

= [1.5, -3.0V. 

All clusters are of unit variance. From the figure, it is obvious that a non-linear 

separation boundary is required to separate the two classes accurately. 

In Figure 5.5(b), the data is redrawn on the principal component axes, where 
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(b) peA transformed Data 

Figure 5.5: A simple demonstration where PCA can be useful 

5 

it i obvious that by choosing the axes with maximum variance, a linear separation 

line can be readily drawn with the minimum mean squared error criterion on the 

first prin ipal a.-xes, x~. Instead of using both axes, only one principal axis is 

needed to do th cle. ification (dimension reduction in the input features). 

However, we noLe that the direction of maximum variance is not always the 

be t direction. 

peA via eural Network 

Figure 5.6 shows an example of bottleneck multilayer perceptrons with linear 

activation function. ueh a network can be used to create PCA basis vectors 

in an auto-a ociative mode. The number of output neurons is set equal to the 

lllUnber of input node and the number of hidden layer neurons is set to number 

of dimensions t hat one wi hes to reduce to. This network can then be randomly 

initialisrcl and train d with standard BP algorithm. The target vectors are set 

equal to th input vector. pon convergence, The output layer can be pruned 

and the output of the hidden layer neurons will be the principal components of 

th input [ 3]. In other word , the weights of the hidden layer neurons act as the 
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Figure 5.6: linear bottlen ck MLP network 

princil al ba 'i ve tor ' . ote that the activation fun tion of the hidden layer has 

to b linear, oth rwi 'e th output would not be th principal components. 

non-linear v rsion can al 0 b easily implemented using a similar idea ([ 4]). 

To add in non-linearity, the network is extended to a five-layer n twork ( Figure 

5.7 with th addition of 2nd and 4th lay r being non-linear activation neuron . The 

training of non-linear PC n twork are the am a for linear PCA network. At 

the nd of training, th final layer is prun d off a in the linear case. 

In thi work, th exp rim ntal results were achi ved by using the eigenvalue 

d mp ' ition (E D) approa h; these neural networks (linear and non-linear) 

bas d P method ar included for complet n ss and interest of the read rs. 

Th inv ' tigation of th uperiority of differ nt PC methods is beyond the 

context of thi ' work. Int l' sted r ader an find out more in [85]. 
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Figure 5.7: non-linear bottleneck MLP network 

5.3.2 Independent Component Analysis 

Imagin th cene of a co ktail party, where multiple people are speaking simul­

taneously and yet th human ear have the amazing capability of recognising the 

individual ource '. However, a r cording of the party would contain a mixed up 

copy of different ource . The question here is, if multiple copies of the recording 

are obtained from multiple microphones, can one reconstruct the original sources? 

Th answer to that i independent component analysis (ICA) 

Th name IC was fir t coined by Comon in 1994 [86]. Neverthel ss, ICA was 

originat ct form the work in solving blind source separation (BSS) problems (e.g. 

the cocktail party problem mention d above) and th first paper was published by 

II rault and Jutt n in 1991 [7]. maximum likelihood solution wa proposed in 

[ ] and recently Hyviirinen et. al. proposed a FastICA algorithm that has been 
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pron'll robust awl Ils{'ful ill f('atuu' extraction of stereo images [89]. Other ap­

plications of ICA includ(' extraction of fetus ECG diagram, artifacts cancellation 

of EEG. sp('ak('r s('panltioll. <'tc. 

Th(' applicatioll of leA to feature transformation gets its motivation from 

results in 1l('Hrosci<'llce that suggest similar principle of redundancy reduction 

explaills SOIll(' f('SP('cts of the early processing of sensory data by the brain [90, 91]. 

In lCA, \\'(' a.O";slll1l('d that the observed data (the original feature set) are a 

lilH'ar cOlllhinatioll of independent components (ICs). In statistical terms, these 

Ie:; are call('d lat('ut sources, because they cannot be observed in the data. Con­

sidering olll~' t h(' case of linear mixtures, ICA adopts the following model: 

x=As (5.16) 

when' x is tIl(' ohs('rved data, s are the original ICs and A is the unknown 

(as.·mlll('(i square) mixing mat rix. 

Estimating til(' les means that we are estimating a demixing matrix, denoted 

by W: 

s - Wx 

- WAs 

:. W _ A-I 

(5.17) 

(5.18) 

By (5.18) w(' ha\'(' implied the assumption that the mixing matrix is invertible, 

and estimating W is to find the inverse of A. Unfortunately, A is unknown here. 

However, by taking the following further assumptions, the problem can be 

simplified: 

1. The les are assumed to be statistically independent. Mathematically this 
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Illeans that: 
N 

P(Sl, S2, ... , SN) = II P(sn) (5.19) 
n=l 

2. The probability distributions of the ICs are assumed to be non-Gaussian. 

Ga1lssian data is usually disregarded and treated as noise in ICA. 

P(S"S2) of two ICs 
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Figure 5.8: Joint distribution of two statistically independent sources 

However, the output of ICA also possesses two main ambiguities: 

1. The variances (energies) of the I Cs cannot be determined. This means 

that the successfully recovered signal will be a scaled version of the original 

sources. 

2. The order of the ICs cannot be determined, i.e. the original order of the 

sources can not be preserved. This has implication in some applications. 

In many ways, ICA goes to PCA with whitening, and it is stricter than PCA 

as it imposes statistical independence for the sources while PCA only require 
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Ullcorr lat dnef..'. B r P with whitening, the constraint is stricter but it is 

not. cnouh ~ r 1 . Howc\' r. whit ning is desired as a pre-process for lCA as 

it tran.form ' thr mixino matrix A to a new matrix A which is orthogonal. An 

orthogonal matrix ontain ' 11(11 - 1) / 2 degree of freedom. For example, for a 

two 'our as, an orthogonal tran formation is solely determined by an angle 

pm'am t 1'. h mixtur ' i ' 'aid to be whitened if: 

(5.20) 

P(w,.w~ OI two whl1eood aIgoal. 

0' : ~. 

II 

OJ 

.... 
.. 

... .. , .s " 

(n) Ob ' rv<.'d 'ignal (b) Whitened signals 

Figure 5.9: The whitening process is favoured in lCA. 

Figur 5.9(a) how a two dimensitional joint probability density function 

(s 'att r diagram) of two received signals while Figure 5.9(b) shows the same 

signal ' after P A with whitening. Comparing Figure 5.9(b) with Figure 5.8, the 

whitcned cop. of th our is a caled copy of the original sources and offset 

with an angl . Finding th demixing matrix is now simplified to estimating the 

unknown angl . 

In this part of th work, the FastlCA package was used in the computer 

ex}) rim nt. This package i freely distributed and downloadable via the package 
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hOllH'page OIl t he Internet !. 

A summary of the FastiCA algorithm for a single source can be found in Table 

A.I. The algorithm seeks to maximise the non-Gaussianity of the data through 

maximise the negentrop:v. It is a fast fixed point algorithm that approximate the 

n('g('ntrop~' using some non-linear functions, e.g. g(x) = tanh(x). For the m > 1 

sources case. an orthogonalisation stage is added to the algorithm. One way of 

doing so is llsing Gram-Schmidt method to estimate the sources one after another. 

\Vhenever p ICs have been estimated, the projection (WJ+l Wi)Wj, for j = 1, ... , P 

is subtracted from w p+!' The orthogonalisation stage prevents the vectors Wl, ... ,p 

from having the same maximum. The algorithm is presented in Table A.2. 

5.4 Experimental Results 

5.4.1 Selection Based Methods 

The block diagrams of the training and testing process for selection based method 

for feature selection are as depicted in Figure 5.10: 

The features were first selected according to the assigned selection method 

and criterion and an ANN was trained using the RPROP MLP classifier (Figure 

5.1O(a)). When the selection criterion were made, the best classifier network was 

then chosen for modulation classification. In the actual classification process, only 

the required features were extracted from raw received data (Figure 5.10(b)). 

In this section two variants of selection methods using GA were investigated. 

The first one is the binary coding method where the GA is allowed to search 

through 17 dimensions of feature space, and the latter being a fixed length list 

coding method where one has the freedom to choose the best pre-defined N' 

1 FastiCA Homepage: http://vww.cis . hut. fi/projects!ica/fastica 
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Figure 5.10: Block diagrams for feature selection based MLP-RPROP Classifier 

dimension. 

Binary Coding 

For binary coding, 20 binary genome strings were created randomly with uniform 

probability distribution during initialisation. This implies that each bit in the 

string is independent of other bits. One-point crossover and single bit mutation 

were used as reproduction operators. The GA was run until it reached conver­

gence. Each feature subset selected was allowed to train for a maximum of 250 

epochs unless it was stopped by the validation process prior to the maximum 

epoch being reached. 

Table 5.4 shows the best genome strings selected in different SNR environ­

ments and their performance. These are then compared with the performance of 

the MLP classifier trained using RPROP. 

Generally, performance from reduced feature sets selected in different SNRs 

show similar to the performance achieved by the RPROP MLP classifier. Moreover 
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it should be llotpd that, the GA achieved this performance using only 10 to 12 

featur('~ t,v pica ll,v. with the exception of SNR = -5 dB, which required 14 fea-

t Ur<'s. 

SNR Dinary String Feat ures Chosen Perf. with GA RPROP Perf. 
-5 dB 11011111111111100 14 94.37% 94.79% 
o dB 11110100011101111 12 99.15% 99.07% 
5 dB 11110100010111101 11 99.97% 99.53% 

10 dB 11110100011101111 12 99.97% 99.95% 
20 dB 11011000001110111 10 99.99% 99.97% 

Table 5.4: Performance of binary string GA RPROP MLP with 10 hidden layer 
neurons with dynamic feature selection 

Fixed Length List Coding 

The experimental setup remained similar to the previous experimental setup. 

However. the following results were obtained through running the experiments 

in compiled environment using a software suite written entirely in C++ 2. The 

advantage being compiled language offer much efficiency and consumed less CPU 

time for computer experiments than interpreted language such as MATLAB. As 

the lists of experimental were a lot more elaborate than the binary string GA 

feature selection, using compiled language was a natural choice. 

With list genome encoding method, one has to specify the length of the gen­

ome string, which represents the number of features in the reduced feature set. 

As seen from the previous section, without any compromise in performance, the 

feature set can typically be reduced down to twelve features. Therefore in this 

section, experiments were carried out to investigate the possibility of even smaller 

datasets and the compromise in performance that might be observed. 

At each SNR, a GA was used to select a set of designated number of features. 

2The author would like to express his thanks to Mr. A. D. Parkins for sharing his GAFFS 
package [921. 
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Here. the total ll11Illber of features to be selected ranges from one single feature 

to ('ight. features. The lists of feature selected for -5 dB, 0 dB, 5 dB, 10 dB, and 

20 dB ar(' shown in Tables 5.5, 5.6, 5.7, 5.8 and 5.9 respectively. A summary of 

the classificat.ion p('rformance at each SNRs is t.hen found Table 5.10. 

Required 
No of Features Features Selected 

1 5 
2 1 6 
3 1 6 14 
4 168 12 
5 169 11 14 
6 1 89 11 14 16 
7 1 689 10 11 14 
8 1 5 8 10 11 12 14 16 

Table 5.5: Features selected by GA at -5 dB SNR 

Required 
No of Features Features Selected 

1 5 
2 511 
3 1 6 14 
4 126 14 
5 169 11 14 
6 14678 14 
7 1 246 8 9 14 
8 1 5 6 7 9 11 12 14 

Table 5.6: Features selected by GA at 0 dB SNR 

Each GA was stopped when the convergence criteria were reached. Figure 

5.11 to Figure 5.13 show some of the GA process plots for 0 dB, 10 dB and 20 dB 

SNR respectively. It is dear that all GAs achieved convergence generally and 25 

generations were typically adequate. Moreever, from these plots, it is shown that 

the processes with 10 dB and 20 dB SNR show quicker convergence than those 

with 0 dB SNR. 

From Table 5.10, it was shown that by using only 3 features one can achieve 
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Required 
No of Features Features Selected 

1 5 
2 1 6 
3 5614 
4 136 14 
5 567 11 14 
6 3 567 11 14 
7 1 234 7 12 14 
8 1 3 4 5 7 11 14 15 

Table 5.7: Features selected by GA at 5 dB SNR 

Required 
No of Features Features Selected 

1 1 
2 1 6 
3 5 6 14 
4 136 14 
5 1 3 7 12 14 
6 3 6 11 12 13 14 
7 o 1 3 6 7 12 14 
8 o 1 3 5 7 10 11 14 

Table 5.8: Features selected by GA at 10 dB SNR 

Required 
No of Features Features Selected 

1 1 
2 1 6 
3 1312 
4 1 3 5 14 
5 1 357 14 
6 1 3 7 12 14 15 
7 o 1 356 7 14 
8 o 1 2 3 5 6 14 15 

Table 5.9: Features selected by GA at 20 dB SNR 
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:\ umber of SNR 
requir d features -5 dB o dB 5 dB 10 dB 20 dB 

1 66.68 65.24 67.95 64.06 68.23 
2 3.97 8 .67 90.92 91.04 93.82 
3 7.05 96.79 98.85 99.32 98.57 
4 .15 96.56 98.61 99.73 99.95 
5 90.13 97.59 99.24 99.80 99.98 
6 90.92 96. 99.17 99.87 99.98 
7 91.33 97.02 99.12 99.88 99.99 
8 90.79 98.39 99.25 99.90 99.98 

Tabl 5.10: Performance of the GA aided MLP RPROP classifier 
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> 95r;{ ill cla.<;sifkation accuracy for SNRs larger than 0 dB. By increasing the 

numlwr feat.ures, bet.ter performance were achieved in the low SNRs. These 

result.s demonstrated the advantage and practicality of the proposed GA feature 

selection algorithm. By using a fraction of the original feature set, one can achieve 

good da'isificatioll results similar to the results achieved when a full feature set 

was used. Of course. this is based on the assumption that there is possible 

redundancy in the feature set and normally, the original number of features are 

thought to be large. 

5.4.2 Transformation Based Methods 

Any transformation base method differs from the selection method in that both 

training and testing share the same procedures as shown in Figure 5.14: 

Preprocessed Feature .. MLP-RPROP 

Data .. Feature .. Classifier Extraction Transformation 

Figure 5.14: Block diagram of the feature transformation based RPROP classifier 
for ADMC 

After the features were extracted, they were projected to fewer dimensions by 

the transformation matrix. The dimension of the new feature space was controlled 

by the size of the transformation matrix. Here, all the 17 transformed dimensions 

were investigated because it was quicker to calculate than the GA based feature 

selection method. 

For each set of experiments, the RPROP-MLP was allowed to train for a 

maximum of 250 epochs as with the GA based feature selection. The architecture 

for the RPROP-MLP remained unchanged from previous section, i.e. a three layer 

network, with 10 hidden-layer neurons. The validation process was also used 

for experiments. The transformation matrix was first found for each individual 
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Rand th 1 most influential (components with most significant eigenvalues) 

were cho n for dimensionality reduction. All features in the datasets were pre-

normali ed before PC and whitening. 

To e timate th number of reduced components needed, the cumulative sum 

of the ig llYalU of the pre-normalised training dataset for each SNR were plot-

ted on Figure 5.15. From the figure, it was shown that for SNR above 10 dB, the 

igellvalue were table and for most SNRs except a dB and below, eight com­

ponents wer enough to claim more than 90% contribution towards to cumulative 

um of eigenvlaues. In any case, 11 components (all datasets converged to the 

arne percentage at thi level) claimed over 97.5% of the cumulative sum of the 

eigenvalue . The e useful information could facilitate the analyses of the results 

shown in Table 5.11. 

100 
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Percentage of Eigenvalues 
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No of Component 

- SNR ~-5dB 
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x SNR ~ 10 dB 
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Figure 5.15: Percentage of eigenvalue against the number of selected components 

From Table 5.11, the results recorded for single component showed some mixed 
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No. of SNR in dB 
Features -5 0 5 10 20 

1 69.8 57.7 57.2 75.1 70.8 
2 72.1 76.8 83.7 79.7 89.0 
3 76.2 81.7 87.0 83.2 92.3 
4 79.3 84.2 87.0 84.7 93.8 
5 81.9 87.8 88.6 87.3 95.9 
6 85.0 91.6 92.6 96.9 97.1 

7 83.4 94.9 97.3 98.9 99.7 

8 84.3 95.4 97.5 99.5 99.9 
9 90.6 95.9 98.3 99.7 99.9 
10 85.5 96.2 98.5 99.7 99.9 
11 85.5 95.9 98.7 99.7 99.9 
12 88.3 96.2 98.8 99.9 99.9 
13 88.0 96.5 99.2 99.7 99.9 
14 92.4 97.6 99.3 99.9 99.9 
15 92.3 98.7 99.3 99.9 99.9 
16 93.0 99.1 99.6 99.9 99.9 
17 93.8 99.2 99.7 99.9 99.9 

Table 5.11: Performance (%) of whitened peA for feature transformation 

results (e.g. lower SNRs performed better than higher SNRs), however, because 

there was only one component and the maximum epoch was set to a short length, 

this confusion could be owing to pre-convergence termination of training process. 

Therefore it would be safer to disregard this particular row of result in our ana­

lyses to follow. Otherwise, the results shown here look sensible. At 20 dB SNR, 

over 90% of classification success rate was achieved using only 3 transformed 

features. By only choosing the 6 highest eigenvalues features, over 90% of classi­

fication success rate were recorded for all positive SNRs. Increasing the number 

of transformed features would give us over 90% of classification success rate for 

all SNRs investigated here. Interestingly, the performance for -5 dB dropped for 

subsequent components added. However, the performance climbed back to 92% 

at 14 components, and stabilised for the rest of the experiments. 

For ICA, the procedure was largely the same as for the peA. The number 
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of input dilllPnsion were first determined using N components with largest ei-

genvalues a,,'i for PCA. Subsequently, the reduced feature set (whitened) were 

orthogonalised using deflation method as described in Table A.2. The RPROP-

I\lLP used for this investigation was identical in structure with the one used for 

peA investigation. The results were shown in Table 5.12 

No. of SNR in dB 
Features -5 0 5 10 20 

1 69.69 58.60 57.15 75.13 77.98 
2 69.14 79.69 83.73 77.45 89.45 
3 78.37 82.45 86.84 82.75 91.45 
4 82.72 85.02 86.62 92.43 93.91 
5 78.28 88.70 88.74 92.87 95.00 
6 83.76 91.69 91.68 97.79 97.95 
7 90.50 95.71 98.50 98.84 99.80 
8 92.83 95.89 97.66 99.64 99.87 
9 88.85 98.71 99.63 99.62 99.84 
10 93.77 95.23 98.79 99.77 99.93 
11 87.28 96.32 99.05 99.88 99.92 
12 87.57 96.52 98.82 99.83 99.90 
13 93.04 98.83 99.47 99.20 99.88 
14 93.08 97.13 99.38 99.79 99.93 
15 94.01 97.73 99.69 99.91 99.94 
16 94.29 99.07 99.76 99.92 99.87 
17 94.53 99.20 99.78 99.91 99.90 

Table 5.12: Performance (%) of ICA (with pre-normalisation of features) for 
feat ure transformation 

From the table, the performance recorded using ICA transformation was 

largely similar to those shown by using whitened PCA transform. In other words, 

ICA had little to offer in improving the performance of the datasets used in this 

investigation. The performance of higher dimension at this SNR were nearer to 

the original RPROP performance value (Table 5.4). 

Figures 5.16 and 5.17 showed the two transformed features with largest eigen­

values after whitening and after ICA respectively at SNR of 20 dB. The horizontal 
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axis represents the number of samples, and each 1,000 samples belongs to a par­

ticular modulation type. The vertical axis represents the numerical values of the 

features. The first. ICA t.ransformed features (upper figure in Figure 5.17) showed 

more pronounced separation for modulation type 7, 8 and 9 when compared with 

the whitened features. However in terms of classification success rate, both PCA 

and ICA performed remarkably similarly in terms of the average classification 

rate for the dataset tested in this work. 

5.5 Conclusion 

This chapter presented two methods of dimension reduction that can be used 

when dealing with a large input dimension feature set. Firstly, the feature selec­

tion based method were demonstrated through the introduction of GA in digital 

modulation classification. Two approaches of selection were investigated: the 

binary string genome method and the list string genome method. The first ap­

proach enables the search through the entire feature space and find the best 

combination of features. The number of features selected are determined by the 

algorithm. The latter approach, however, gave more control to the user in that 

one has the choice of fixing the number of features required for the application. 

Both approaches have been designed for the application of automatic modula­

tion recognition. Nevertheless, the principle developed is applicable to pattern 

recognition and feature selection problems at large. 

The second focus the chapter is the dimension reduction through linear pro­

jection method, which was terrmed feature transformation in this work. Again, 

two methods were discussed and investigated; these are namely PCA and ICA. 

PCA projects the features according to the minimum squared error criterion, 

while leA extends the methodology of PCA to seek maximum "independence" 



011 Feat. Selection & Dansformation 105 

property among t he features. Both method gave similar performance as shown 

ill t.hl' results recorded from computer experiments. 

In term of performance, the list string genome based GA showed better per­

fOrIllanCe when compared with the feature transformation based method, par­

ticularly in lower dimension feature space (N = 2 or 3). However, the feature 

transformation based method offers quicker operational time. Nevertheless, the 

transformed feature space were difficult to interpret as they were not direct sub­

set, but combinations, of the original feature space. 



Chapter 6 

Maximum Likelihood 

Classification of Digital 

Modulations 

ANN based classifiers exhibit high degree of performance (Chapter 4 and 5) in cor­

rectly recognising a wide variety of modulations across a range of SNRs. However, 

these appealing classification performances depend on the availability of training 

examples. The number of training examples required is related to the number of 

features in the input feature set to the ANN classifier. Although ANNs are well 

known for their robustness, the re-training requirement at designated SNRs are 

troublesome and time consuming. 

There are situations where training examples are not available or the number 

of available training examples are not sufficient for the training of an ANN clas­

sifier. The parameters of the operating environment (e.g. SNR value) might also 

change rapidly, hence re-training of classifiers becomes impractical and something 

to avoid. These are realistic factors where unsupervised algorithms become ap­

pealing. By unsupervised, it is meant that the decision boundaries of the classifier 

106 
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arc drawn wit hout. using t.he knowledge of existing examples. Instead, other prior 

knowledge of the modulations are exploited. In this work, we investigate a fam­

ily of da .. o..;sifiers t hat exploit the probabilistic relationship between the received 

samples and source constellations. These are namely, the Maximum Likelihood 

(!\lL) modulation classifier, the Estimated Maximum Likelihood (EML) classifier, 

and a the Minimum Distance (MD) modulation classifier. 

\Ve hegin by some discussions on The Law of Total Probability and Bayes 

Rules for estimation. Following which the ML modulation classifier (Me) is 

presented. The EML r..lC is a version of the ML where the unknown SNR is 

estimated through a proposed simple algorithm. The MD Me is a reduced version 

of the ML MCs proposed with the aim to reduce the complexity of ML MC. The 

performances of these classifiers were investigated first in coherent environment 

and then in non-coherent environment. 

When classifying in nOll-coherent environment a novel method of utilising a 

well known EML closed form ICA/BSS estimator for phase mismatch removaL 

This removal process is essentially a blind process as we do not have the inform­

ation of phase mismatch on arrival of the received signal. 

The performance of the classifiers are evaluated through computer simulation 

in MATLAB environment, and selected results are reviewed at the end of this 

chapter. 

6.1 The Law of Total Probability and Bayes Rules 

The law of total probability states if an event A can exist in m states, and each 

of the m states occurs exclusively, then the the probability of event A happening 

is equal to the sum of all the probabilities of the occurrence of the m states. For 

example, if a random variable y can take m different values of y when x takes the 
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values of II . . r2 •... .Im , then P(y) is the sum of the joint probability P(x, y) over 

all possible values of x. Mathematically, the law of total probability is stated as 

follows: 

P(y) = L P(x, y) (6.1) 
xEX 

\\'hen two variables are statistically dependent, the information of one of the 

two will h{'lp in estimating the other. This is called the conditional probability, 

P(I I y) i.e. the probability of event x given event y is observed, and is stated 

mathematical as follows: 

and equally: 

P(x, y) 
P(x I y) = P(y) 

( I ) - P(x, y) 
Pyx - P(x) 

(6.2) 

(6.3) 

Combining (6.1) with (6.2) and (6.3); rearranging them gives us the Bayes the-

orem: 
P(y / x)P(x) 

P(x I y) = L:xEX P(y I x)P(x) (6.4) 

and if x takes M states, for clarity we can write: 

(6.5) 

In pattern recognition, y often represent the observation and Xl, X2, . .. XM are 

the various pattern classes, (or as the causes in statistics) Bayes' theorem can be 

expressed in term of words as the following: 

. likelihood x prior 
postenor = 'd eVI ence (6.6) 

The term likelihood, P(y I Xj) expresses how likely the observation is to occur 
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given t hat the underlying class is actually Xj, it is easier to estimate because we 

would know what the pattern (cause) is. On the other hand, the posterior probab­

ility P(Ij I y) is difficult to determine as often the observation can be originated 

from a s{'\'(lral causes. Nevertheless, Bayes' theorem inverts this situation and 

makps it easv to estimate the posterior given that we know the likelihood and the 

prior probability of each class, P(xJ The denominator in (6.5) is a normalising 

factor to ensure that the posterior probabilities sum up to unity. Therefore it is 

the llumerator which actually gives the shape of the function. 

It is then logical, given an observation and a set of classes for classification, 

one would choose the observation-class pair which give the maximum posterior 

probability. This plain logic gives us the fundamental of a particular classifier 

family, known as the maximum a posteriori (MAP) classifier. However, in many 

cases, it is fair to assume that all classes in the system share the same prior prob-

ability, therefore the shape of function is now only depending on the likelihood 

term since the prior term is now constant. This then bring us to the maximum 

likelihood method for classification which chooses the observation-class pair that 

possesses the highest likelihood measure. 

6.2 Coherent Maximum Likelihood Classifier 

The received signal can be modeled ((3.1), Chapter 3) as the following: 

00 

y(n) = A· 2: x(e)h(nT - eT + ETT)· exp(j2rrfoTn + jOn) + g(n) (6.7) 
t=-oo 

where all the variables are as defined previously in Chapter 3. In this section, we 

assume ideal working condition with only the presence of white Gaussian noise. 
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The cOllllllunication channel had been adequately equalised and the residual chan­

nel df{'ct. h(·) is negligible. Besides, other parameters such as symbol timing, T, 

carrier fr<'quC'Ilcy, fe. etc are known or have been successfully estimated. In some 

lit('rature, ('.g. [32, 34, 33], it is assumed that the signal amplitude and the noise 

varianc{' are also known, i.e. one has knowledge of the SNR. This assumption can 

be rcla..xed as will be shown here through experimental results. One other import­

ant assumpt.ion is that the transmitted symbols are independently and identically 

distributed (i.i.d) process. The signal and noise are also not correlated. 

It was shown in [32] that under these assumptions, the received signal se­

quence, after being processed by the quadrature receiver, is a sufficient statistic 

for modulation classification. The received sequence in ideal coherent environ­

ment can then be rewritten as: 

y{n) = Ax(n) + g(n) (6.8) 

As noted before, each modulation is associated with one particular constella­

tion which is a set complex points. Let us denote a group of c possible constella­

tions by 

I = 1,2, ... , c (6.9) 

where Nit is the total number of symbols in constellation, II. 

It was mentioned briefly in Section 3.2 that classification of a set of con­

stellation can be thought of as a hypotheses testing problem on the following c 

hypotheses: 

HI = the underlying constellation in Il 1=1,2, ... ,c (6.10) 

The maximum likelihood (ML) solution for classifying different modulation 
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t~·p('s is to choose the hypothesis that has the largest value of its likelihood func-

tion give a set of received data, YN = {Yk = [Ylk, YQk]T}, 

H* - argmaxL(HI I YN ) 
I HI 

- arg max P(YN I Ht) 
HI 

6.2.1 The Likelihood Function 

k = 1,2, ... , N: 

Using the law of total probability (Equation (6.1)), we have 

M 

P(Yk I HI) = L P{Xli I IdP(Yk I Xli) 
i=l 

Under AWGN environment, the likelihood is as follows: 

(6.11) 

(6.12) 

(6.13) 

where a2 represents the variance of the Gaussian noise. With the Li.d assumption, 

we can assume each constellation point has equal probability of being observed, 

therefore we can write: 

(6.14) 

Taking into account of all received point, The likelihood function is then: 

N 

L(Hl I YN ) - II P(Yk I Hl) (6.15) 
k=l 
N Mill 1 g tt MI y'2iia exp( - 2a21/Yk - Xli1/2) (6.16) 

It is often easier to take the natural logarithm of the likelihood function, and 
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because the natural logarithm is a monotonic function, taking the maximum of 

the logarithm achieve the same result as taking the maximum of the likelihood 

function. 

In practice, the constant term can be dropped, and the log likelihood equation 

is reduced to: 

11 - L(I IX)II---------, 
1 

I 
Y 

2 - L(I IYI---....,;;:..;...\ MAX 
-----+-----~ 2 N 

N 

(6.18) 

--~30;... decision 
HML 

1 

Figure 6.1: The maximum likelihood modulation classifier 

Figure 6.1 shows a block diagram of the maximum likelihood classifier for 
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modulation recognition. Upon availability of the output of the quadrature filters, 

the signal is then passed to a bank of likelihood estimators. Each estimator has 

a knowledge of a particular type of constellation diagram. The outputs of these 

(log)likclihood estimators are then processed by a maximum operator (compet­

itiv(' la:ver in ANN terminology). This method accommodates any modulation 

t.vpe with constellation diagram that can be expressed in its in-phase (I) and 

quadrature (Q) components. Although, the classifier is only optimum in the 

ideal ('oherent assumption, it nevertheless gives an upper bound for classification 

performance in comparison with the non-ideal scenario. In real life, the recovered 

constellation diagram is affected by frequency offset which results in a phase 

mismatch between the received data and the original constellation. 

6.2.2 Variability of Likelihood Function caused by SNR 

Both the likelihood function and its logarithm acquire the knowledge of the noise 

variance, (J2. This is readily available if one has the knowledge on the working 

SNR. The parameter (J2 scale the width of the curve of the probability density 

function (PDF). Three one dimensional Gaussian PDFs (i.e. the likelihood func­

tion in this case) are shown in Figure 6.2. A PDF with higher SNR (i.e. small 

variance) will have a sharper peak than one with lower SNR. The horizontal axis 

represents the distance of the received signal point and the constellation point. 

In any case, the likelihood function has a peak when the distance is the smal­

lest. When SNR is infinitely high, the PDF reduced to a point source on the two 

dimensional PDF (the constellation diagram). 

However, in lllany cases, the knowledge of SNR is not available directly. There­

fore, the noise variance need to be estimated. A simple and approximate method 

of estimating the noise variance is presented in the following section: 
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Figure 6.2: Likelihood function with various values of CJ 

Estimation of the Unknown CJ Parameter 

114 

As with the formulation of the maximum likelihood classifier, we assumed that we 

are working in an ideal coherent AWGN channel. The noise variance can then be 

estimated through the mean squared distance between the received signal point 

and the original constellation point. 

N 

&r ~ L: d(yk, xi;) (6.19) 
k=l 

where 

xjj = arg mind(Ykl Xli) i = 1,2, ... , Ml (6.20) 
Xli 

and 

d{m, n) = 11m - nl1 2 (6.21) 
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B:v til(' definitioll. the source constellation point is unknown, therefore for a group 

of (' lllodulatioll type. there are c estimated noise variances. Figure 6.3 shows the 

matching pair of signal and source constellation will have the smaller value of 

the estimated variance at high SNR region (SNR 2: 10 dB). At these SNRs, the 

mismatch pairs always exhibit a higher value than the matching pair. Therefore, 

with this observation, our variance estimator logically chooses the minimum of 

er1 for I = 1. 2 .... ,c: 

eri2 = arg min 81 l = 1,2, ... , c (6.22) 

A block diagram of such an estimator is shown in Figure 6.4. For lower SNR, 

the variance estimator does not perform well. However, the maximum likelihood 

classifier shows a good degree of robustness against the estimation error, as will 

be shown later, as long as the (J2 is common to all sub estimator modules within 

the classifier. 

6.2.3 Minimum Distance Classifiers 

ML modulation classifier provides an optimum performance for benchmarking in 

AWGN environment. However, it would be beneficial to reduce the complexity 

of the classifier as the speed is an important factor in modulation classification. 

From (6.18) and Figure 6.2, it was observed that the maximum of the likelihood 

functions occur when the distances between the received signal and the constella­

tion point are at the minimum (d = 0). This observation suggests an alternative 

classifier based on the distances only. 

Given the received signal, Yk and a set of c constellations, II where 1 
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ML 
Classifier 

1. 2, ... ,c, the minimum distance (MD) modulation classifier chooses the hypo­

thesis of which the sum squared distance function, V(·, .), is the minimum: 

N 

V(Yk, II) = L d(Yk' xiJ (6.23) 
k==l 

with xii and d(·,·) defined in (6.20) and (6.21) respectively. The procedures for 

the MD modulation classifier is identical to the procedures for estimating the 

SNR described in Section 6.2.2. For this reason, the MD modulation classifier 

can be also be termed as minimum variance classifier. 

The MD modulation classifier (shown in Figure 6.5) has reduced complexity 

with respect to ML modulation classifier. Besides, it requires no prior knowledge 

of the SNR. However, due to the fact that MD modulation classifier only takes into 

consideration the winning constellation point, and ignores the rest of the members 

in the constellation, one would expect trade-off in classification performance. The 

trade-off would be more obvious in lower SNR as with the case of estimation 
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Figure 6.5: The minimum distance modulation classifier 

of unknown SNR discussed in previous section. The is an interesting area of 

investigation for comparison between the optimal classifier and the MD classifier. 

6.3 Non-coherent Maximum Likelihood Classi-

fier 

In real practical situation, the operating environment is likely to be non-ideal (c.f. 

(6.7)). In a non-coherent situation, we assumed that every parameter is known 

except for the carrier phase mismatch. The additive noise is modelled as white 

and Gaussian as in the coherent case. The received signal can then be modeled 

as the following: 

y(n) = Ax(n) exp(j¢c) + gk(n) (6.24) 

There have been attempts in tackling the problem in non-coherent environ­

ment as reported in [34, 93, 94, 95]. Sills extended the log likelihood function to 
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incorporate the pha e information in [34J while similar approaches using likeli­

hood ratio w r reported in [94, 95] which have an extensive and in-depth study 

of coh r nt, 'ymho} non-coherent and phase non-coherent environments, however, 

the III dulation type w re limited to 1-ary PSK modulation and a hierachical 

aprroa h i taken. In [93], A method for non-coherent BPSK and QPSK classi-

fication u ing an int resting antenna array method was also proposed by Hong 

and Ho. 

The main problem of carrier non-coherency is that the received signal are 

pre ented with a translation. Geometrically it can be observed as a rotation 

around th origin a hown as in Figure 6.6. This rotation as can be seen from 

QAM16 with iflc = 0.1848 rad 
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Figure 6.6: An example of received QAM16 with carrier phase offset of ¢c 



1\1L Cla.."isificatioll of Digital !vlodulatiollS 120 

the figure in turn causes the mismatch between the received samples and the 

constellation points. As a result, the previously derived likelihood function no 

10llgn holds for the nOll-coherent case. 

As the ~lL method is generalised for all quadrature phase-amplitude modu­

lation. it is therefore desirable to leave the solution as it is, and mitigating the 

pha.<;e mismatch problem as a separate block prior to the current classifier block. 

A tool that can perform blind estimation of the phase error without prior know­

ledge of the constellation model is required. Recalling the introduction of leA 

in Chapter 5, this phenomena is similar to the two uniformly distributed unit­

variance sources scenario, where performing leA is the same as estimating the 

angle of rotation after whitening. By regarding the I and Q component of the 

received signal as separate i.i.d. sources (valid for most communication applica­

tions), the process attempts to mitigate the rotation by performing leA on the 

received signal. When the number of sources is equal to two, the solution can be 

found using a closed form method discussed in detail in the following section. 

6.3.1 Closed Form Blind Phase Offset Removal 

In the case of linear instantaneous mixture of two statistically independent sources, 

the mixtures are normalised and uncorrelated. After whitening, the sensor out­

put, y E Cd is related to the source, x E Cd, (also assumed to be zero mean and 

unit variance), by a unitary mixing matrix,M E Cdxd [86, 96, 97, 98]. Mathem­

atically, this can be expressed as the following for a noiseless case: 

y=Mx {6.25} 

For any d > 2 case, the problem can be solved by solving the elementary d = 2 

case iteratively over the signal pairs ([98]). In this application, we treat the I and 
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Q components as i.i.d components (d = 2), which the mixing matrix (rotation 

matrix for whitened I and Q components) has the general shape: 

M = [cose - sine] 

sin e cose 
(6.26) 

Given the above equation, closed form expressions for the non-iterative estimation 

of e can be formulated, through the utilisation of the HOS of the signal. Fur­

thermore. it is usually possible to find further closed form expressions to predict 

large sample asymptotic behaviour of these closed form estimation method. 

The angle, e' is estimated in closed form as the phase of a set of two 'centroids', 

which are just complex linear combinations of the 4th-order statistics of the 

whitened random vector. The extended maximum likelihood estimator is based 

on the 4th-centroid [99]: 

~4 

- I exp(j4e) 

(6.27) 

(6.28) 

where I = K~O + K(M is the source kurtosis sum, which can be estimated from the 

source using: 

(6.29) 

The angle, e can the be estimated from the following for cases where I #- 0: 

~ 1 
eExtended ML = 4L(~41) (6.30) 

For our purpose, most of the modulation types have four-fold symmetry, and 
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th r for th kurto f r I and Q components are therefore equal , i.e. the con-

diti n , =I 0 i ati fied. Con equently, the utilisation of Extended ML method 

is ju: Ufied. Th Extend d l\IL method also has the lowest asymptotic variance 

am ng timator ' from the ame la s. 
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igur 6.7: d mon tration of blind phase offset removal: QAM16 

Figur s 6.7, 6. , 6.9 and 6.10 how the r ult of applying the closed-form 

xtendcd l\IL timator on Q 116 V.29, V.29 (Star), and QPSK modulations 

rcspc tiv ly. • 'ot that th con tellations after transformation arc not always 

th am a th original const llations. Ther fore it is propo ed to apply the 

transform n hot h th original constellation and the receiv d signal to maintain 

tIl relation,'hip b tWO .11 the l' c ived en or output and the original constellation 

f th modulation. 
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6.4 Experimental Results 

6. 4 .1 Coherent Classifiers 

In thi ction, th elas ification p rformance of the fL, EML and MD classifier 

ill thr c ca e 'tudie of coher nt detection is examined. The first two case studies 

are dual-cl " las ification the first case study for the case of modulations with 

ompl t ly diff rent con tellations; meanwhile the second for two modulations 

with imilar con tellation etup (with one being a subset of another). The third 

tudy ext nd to a multi-elas scenario where four modulation types are 

in Iud d for la .. <; ification. 

Throughout the ' as studi s, the performance index used is the average 
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percentage of classification, defined as follows: 

"L pIt 
pAvg = DI c 

C L l = 1,2, ... , L 

125 

(6.31) 

where L is the total number of modulation types and p!t is the correct classific-

ation rate of modulation type, h 

All the experiments were run for three settings of total number of symbols 

of the received signal, N = 100,200 and 1000. This is to help in examining the 

a."iymptotic behaviour of the classifiers. The experiments were also conducted with 

a total number of 1000 realisations of each modulation type. For each realisation, 

random A\VGN were mixed with the signal with appropriate scaling to achieve 

the desired SNR value. The experiment was also repeated over a range of SNR, 

ranging from 0 dB to 30 dB with single stepping. 

Case Study I: V.29 vs QAM16 

In this case study, a dual class scenario was investigated. Two modulation types 

of different constellation shapes were chosen, i.e. V.29 against QAM16. In terms 

of shape, V.29 is said to have a diamond (or kite) shape and QAM16 is a square 

shape (see Figure 3.1). The distinct shape difference make it a good case for 

building a handle for better understanding of the behaviour of the classifiers. 

The results presented here were obtained with 1000 realisations for each mod­

ulation type at each designated SNR. The experiments were run repeated from 0 

dB to 30 dB SNR in step of 1 dB. At each run, random additive white Gaussian 

noise was added according to the desired SNR. The same received signals were 

fed into 3 different classifiers, i.e. the generic ML Me with actual knowledge of 

SNR, the EML MC with an estimated value of SNR and the MD MC. All received 

signal and constellation diagrams were normalised to unit energy. 
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Figure 6.11: Case 1: Performance of ML MC and EML MC 
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Figure 6.11 how ' the performance of the 1L MC, both generic and estimated. 

It \Va ho\Vn that the re ults obtained agrees with the results shown by Wang 

and r-.lend 1 in [32]. The figure also hows that both Me shows good asymptotic 

b haviour her even at very low S R values, where the performance increases as 

th 'ample size increases. 

At lower number of samples, N = 100 and 200, the EML MC showed a very 

do ' match with the generic ML MC. Interestingly, the EML classifier exhibited 

lightly better performance at lower S R than the generic ML MC. At first glance, 

it wa not convincing as ML MC acts as a performance upper bound for other 

I s. How vcr during our SNR e timation, by choosing the smallest variance 

'timatioll. we were effectively choosing the preferred modulation type (in fact 

the proc dure i th ame a doing an MD classification). This pseudo-decision 

implicitly uppre ' 'cd other less preferred modulation types. Consequently, more 

iIlf rmation was exploited than might have app ared on the surface. 
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In Figure 6.12 the performance of the MD cla sifier was compared with the 

1IL de ' ifi r. From the figure, the MD classifier shows a close match with the 

optimal }'IL cla 'ifier at high S R value. This results supported the claim that 

the ?-.ID da ifier ar equivalent to ML classifier in AWe environment given suf-

fi ient R. However, at lower S R values, the performance is not as satisfactory. 

This was owing to th simplification of the MD classifier that decision was purely 

made u ing th n ar st constellation point, and the relationships between the 

re iv d ,ample and other point in the constellation were ignored. 

point worth noting was that the MD classifi r showed a lower bound of 50% 

das ification, uc ' rate at low S R. By taking a detailed look (see Figure 6.13), 

it W~ , reali:ed that the classifier was biased to a particular modulation type at 

lower J\R (V.29 in thi case). Therefore, the figure (50 %) did not reflect the 

actual ' ('uario of what \Va' going on. 
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t udy II: QP K v QAM16 

Th ~etup for the 'ocond case study was the ame a the previou ca e study. The 

only cliff renc wa ' that two square con tellations were chosen for comparison, 

i.e. QP K and Q 116. ame experiments were deployed as for the previous 

xperim nt . Th classification performance was again expressed with the average 

of th percentage of correction cla sification. Thes figures were obtained, again, 

from th av rag of 1000 examples for each modulation types . 

Figure 6.14 present· th performance of the EML MC and the ML MC. The 

clott'd lin repr nts th performance of IL MC with appropriate legend for 

100. 200 and 1000 number of samples. The solid line again hows the performance 

of E}'IL 11 . nce again, t he two classifiers showed a clo e match in p rformance 

with th E~IL:\1 Olltp rfonning the IL MC by a slight margin at low S R 

region. For mid end high R (> 10 dB), both classifiers were achieving 100 % 
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of corrcct classification. 

The average performance of the MD Me and the ML Me are shown in Figure 

6.15. As with Case Study I, the ML Me exhibit its superiority over the MD Me 

in term of average performance. The gap of the two classifiers were wider at the 

lower SNR regions compared to previous case. This is owing to the fact that 

the two modulation types possess similar shape and in lower SNR, the effect of 

AWGN causes difficulties in distinguishing the two modulations. The implication 

of the MD by taking only the winning constellation point into consideration for 

decision making was not justified in this case. 

Case Study III: Multi-class Scenario 

The final case study of this section investigated a multi-class problem. Four 

modulation type were chosen as listed below: 

1= {V.29, QAM16, V.32, V.29c (Star)} 

The experiments were again conducted with different number of samples over 

a range of SNR as before. However, in this case study the experiments were 

repeated five times with 200 test examples each to get a smoother performance. 

The average performance was again chosen as performance index and the results 

are shown in Figure 6.16 and Figure 6.17. 

The average correct classification performance of EML Me is shown in Figure 

6.16 as solid lines and the performance of ML Me is shown as dotted lines. 

As with the dual class scenario, the EML Me consistently outperformed the 

ML Me by at lower SNRs. However the differences are not so prominent. For 

N = 1000, there was only IdE difference approximately. At lower sample sizes, 

the differences were negligible. 



ML Classification of Digital Modulations 130 

Figure 6.17 shows the performance of the MD Me (solid lines) with the ML 

~IC as reference (dotted lines). The performance difference between the two 

cla...,::;ifiers was wider than in the QPSK-QAM16 scenario. For large sample size, 

the performance of the MD Me is similar to that of the the ML MC at mid SNR 

range (SNR ~ 12 dB), but for smaller sample sizes, the SNRs needed were much 

higher ( SNR ~ 16 dB for N = 200 and SNR > 20 dB were needed for N = 100). 

6.4.2 Non-Coherent Classifiers 

In this final section of the chapter, the performance of the classifiers in the non­

coherent environment with the aid of the proposed closed form blind phase re-

moval tool is examined. The experimental setup is the same as the previous 

experiments, with the exception that, for each received sample a constant phase 

offset is added to the received signal simulating the unknown phase mismatch, 

7f 7f 
-- < ()c < -2 - - 2 (6.32) 

We assume high sampling rate so that the carrier phase offset is constant through­

out the length of the received signals. 

Case Study IV: Non-coherent performance of the proposed classifiers 

As in previous case studies, Monte Carlo simulations were conducted for SNRs 

ranging from 0 dB to 30 dB. At each SNR, 200 examples of received signal 

were mixed with AWGN and random phase offsets. This was repeated for 5 

trials with 3 different number of samples at each trials, N = 100,200 and 1000. 

Four modulation types were again chosen for multi-class classification. The four 

digital modulation types were the same as those used for Section 6.4.1. The 

results obtained for EML MC, ML Me and MD Me were presented in Figure 
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6.18, Figure 6.19 and Figure 6.20 respectively. 

The performances of the EML classifier with the aid of the closed form phase 

removal tool are shown in solid lines while the performances of its coherent coun­

terpart without the tool are drawn using dotted lines. At N = 100, the perform­

ance of the non-coherent case is about 5% less than the coherent case. However, 

it is still in the high ninety percent for correct classification for high SNRs. For 

higher values of N, the performance of the noncoherent EML Me equated the 

performallce of the coherent EML Me at high SNR. Nevertheless, the perform­

ances were typically 5 rv 10% lower in low SNR regions. 

In Figure 6.19, the same setup were adopted for presenting the results of the 

ML classifier in non-coherent environment and coherent environment. A close 

match of performance was observed for the high SNR region regardless of the 

the sample size. At sample size of a hundred, the performances of both scenario 

converged to almost the same percentage of correct classification. The same fact 

can be observed at higher samples size. At lower SNR, it was observed that more 

trials was needed for a better smoothness of the performance. 

Lastly, the performances of the MD Me were examined for the non-coherent 

environment in Figure 6.20. As with the previous results, the performances 

showed close matching in all SNRs, with the non-coherent case lagged with rv 1 

dB in performance for lower SNRs. As we have seen in previous cases, the SNR 

needed for MD Me is more than the ML methods of modulation classification. 

6.5 Conclusion 

The ML approach has advantages over the conventional hypothesis testing and 

ANN based methods. In hypothesis testing, the order of tests for multi-class 
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modulation classification can be influential to the final classification results. Re­

petitive testing is needed for determination of key features thresholding. The 

hypothesis testing method has its limitation in extending the algorithm. ANN 

based method on the other hand, faces the difficulty in getting training examples 

for statistical reasons. Besides, the hassle of re-training the ANN for different 

SNRs appears as another drawback for ANN based classifier. 

To these ends, the ML approach has major advantage over these methods. 

The method exploits the probabilistic relation between the received samples and is 

derived in accordance with classical detection theory [100]. There is no extraction 

of key features, hence no extra effort required for determination of thresholds for 

different modulation types. The prior knowledge needed is nothing more than 

the known constellations of the modulation types. Assuming that the operating 

environment is AWGN with others sufficient treatment for the channel, the ML 

is the optimal classifier for method of the same class. 

We developed a simple SNR estimation method in complement to the ML Me 

for the case when SNR is not known a priori. Experimental results show that this 

method works very well, and in some cases, it had slightly better performance 

than generic ML. This is believed to be caused by the fact that the EML MC is 

implicitly a cascaded MD and ML classifier. The MD MC was also derived from 

the ML Me without the exploitation of the knowledge of SNR. The performance 

of MD Me was shown through experiment to be not as good as ML Me in low 

SNR regions, but it offered an option with less computational complexity. 

A novel application of leA was deployed in dealing with the non-coherent 

environment where a phase offset was introduced to the coherent signal model. 

The method was based on the fact the capability of leA in compensating the 

angle of rotation of the constellation caused by the phase mismatch. A closed 

form solution method was adopted and the results were close to those obtained 
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for coherent environment. 

In short, ML based methods offer a realistic, simple and extendible solution 

preferred to the conventional hypothesis testing as well as the newer ANN based 

pattern recognition approach. The case studies proved that the ML based meth­

ods are robust and give good performances. 
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Chapter 7 

Conclusion 

This thesis presented a compilation of work in the study of digital modulation 

classification. The increasing integration of digital communications in our daily 

lives had posed a need for an intelligent modem that automatically demodulates 

the signal without prior knowledge of the incoming signal modulation. To achieve 

this, a modulation recognising front end is required. Besides, modulation classific­

ation also plays a role as an important front end in various military communica­

tion intelligence systems as well as civil surveillance applications. The popularity 

of software digital radios along with the rapid evolution of digital communication 

also echoes the need for automatic digital modulation classification. 

We have seen the evolution of modulation classification from manually oper­

ated system to nowadays abundant choices of fully automatic systems (Chapter 

2). The study of automatic classification of signal modulation has gone a long 

way from it first began. With a firmer grip of more advanced signal processing 

and pattern recognition techniques, researchers have been able to improve the 

classification performance through these years. The proposal of ANN for modu­

lation classification presents a elegant and robust substitute to the conventional 

decision theoretics methods. A wide choice of different variants of ANN s also 

139 
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give the user customised solutions depending on the circumstances. While ANN 

methods lean toward a more practical investigation of the problem, ML based 

solutions offer better theoretical value. 

\Ve summarised the major contributions of this work on a chapter by chapter 

basis in the following section. A broad view of considerations and comments for 

future direction of this research are discussed in concluding this work. 

7.1 Summary by Chapters 

The backgrounds and literature survey of the field were given at the start of this 

work. The literatures surveyed includes the originating work of automatic mod­

ulation recognition as well as many recent contributions by various researchers. 

Some necessary pre-requisites were also included at the end of Chapter 2. 

The mathematical treatments of the problem were laid out in the subsequent 

chapter (Chapter 3). A novel higher order statistical feature set was introduced 

in this chapter. The feature set (consisting of only three HOS based features) 

was designed based on the fact that each modulation had a unique constellation 

signature under the coherent environment. The higher order cumulants capture 

the statistical descriptions of the in-phase and quadrature components of the 

complex envelope of the received signal. The variants of the proposed feature set 

for various SNR were also found through numerical computation. 

In Chapter 4 of the thesis, three variants of supervised neural networks (MLP, 

RBF network and PNN) were investigated. These neural networks were examined 

in terms of classification performance via computer experiments. The RPROP 

MLP excelled among them, giving a high classification performance of 98% in high 

SNR while giving 50 % of classification accuracy at 0 dB SNR. This was remark­

able considering the broad range of digital modulations tested in this chapter, 
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12 modulation types in total. The classifying system also showed a good asymp­

totic behaviour in terms of classification performance. The PNN, being another 

variant of the neural network, proved to be a strong contender to the RPROP 

l\ILP in term of classification performance. Besides, it offered a shorter train­

ing time along with other advantage over the BP training based MLP classifiers. 

RBF network based classifier was also investigated in this chapter. Experimental 

results were also presented at the end of the chapter. 

There have been a broad collection of feature set proposed by various research­

ers for the problem of modulation classification. Chapter 5 discussed the issues of 

feature selection and transformation. The primary aim of feature selection was to 

reduce the input dimension to the classifier by choosing the most effective feature 

subset. The author proposed the use of GA for feature selection and two methods 

of such algorithm to meet different design requirements. The first approach, using 

a binary string genome, dynamically searched the whole feature space. However, 

the user loses control on the final reduced input dimension, as this is controlled 

by the GA. The latter approach, list string genome, rectified this drawback by 

including an extra parameter to fix the exact number of features needed. By 

using the latter approach, a performance of "-J 96 % of correct classification was 

recorded for 0 dB SNR using only 3 features out of the total of 17 features. The 

chapter continued to explored another type of dimension reduction method based 

on linear transformation matrix. Two method were investigated again, namely 

PCA and ICA. From the experimental results, it was shown that leA, although 

an extension of PCA, did not outperform the PCA. Both method recorded similar 

performanes, giving more than 90% across all SNRs using 9 transformed features, 

and over 70 % across all SNRs using only 2 features. As the dataset used in this 

chapter was different from the previous chapter, much to the author's regret, 

direct comparison was not possible. 
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In the final part of this work (Chapter 6), an alternative approach to the 

neural network approach and the decision theoretic approach, the maximum like­

lihood approach was introduced. The introduction began with the discussion of 

The law of total probability and Bayesian rule for classification. Subsequently, 

the ML classifier were derived for the coherent case of operating environment. 

A more practical implementation of the ML classifier using a novel yet trivial 

SNR estimation technique was introduced. From the ML classifier, a new min­

imum distance classifier was derived. The performance of these three classifier 

was reviewed for the dual class scenario and the multi class scenario involving 4 

different modulation types. As the ML classifier is only optimal in the coherent 

environment, we proposed the novel utilisation of a blind phase correction tool: 

the closed form extended maximum likelihood BSS estimator. The performance 

of the classifiers with the aid of the closed form estimator under non-coherent 

environments were also investigated. Selected results were given at the end of 

this chapter. 

In conclusion, the supervised neural networks promised excellent performance 

without any fuss of threshold determination. The novel HOS based features was 

proven to be effective and robust, particularly in high SNRs under coherent scen­

arios. When there exists a large number of features or when the characteristics 

of the features were not adequately understood, feature selection and transform­

ation could be used in refining the performance of the neural classifiers. When 

training examples are not accessible to the user, ML approach is a strong altern­

atives to the neural classifier. Using the blind closed form estimator, the ML 

approach and its variants can be applied directly without any alteration in likeli­

hood function. The classification performance obtained via this method suffered 

little degradation. 
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7.2 Future Directions 

The author suggests the following for consideration of the extension of the existing 

works: 

1. The design and investigation of a single neural classifier for all SNRs. One 

particular advantage of the ML approach is that a single global solution for 

all SNR. This is not the case for neural classifier at the moment, it would 

be a desirable feature if there exists an universal neural classifier. 

2. The investigation of a adaptive scale factor for PNN classifier. As seen 

from the results obtained in Chapter 2, it hints that the optimal scale 

factor seems to change with the SNRs. A possible method is determination 

of scale factors from the statistics of the training dataset. 

3. Extension of the investigation of ML approach to more modulation type. 

The proposed method seemed to be robust but currently the investigation 

is limited to few modulation types only. 

4. A unified dataset to facilitate the direct performance comparison between 

the ANN classifiers and ML classifiers. 

5. The implementation of current classifiers (Neural and ML) on to real time 

DSP based solution. This will enable real field application of the algorithms. 

Integration of the algorithms to a practical active software radio project 

would also be of great interest e.g. Free Software Foundation (FSF) GnuRa­

dio Project [101]. 

6. The investigation of other framework for modulation classification e.g. the 

phase lock loop based method [102, 103], fuzzy logic frame work [33], etc. 
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7. Feature selection and transformation are only required under specific cir­

cumstance where dimension reduction is required. However, these are in­

teresting and practical problems, investigation should continues with some 

recently proposed approach such as the maximum representative and dis­

criminative features (MRDF) transformation [104J. Genetic programming 

is also proposed to be a quicker alternative to GA in feature selection. 



Appendix A 

The FastICA Algorithm 

In this thesis, the FastICA algrotihm was used in evaluating the application of 

ICA in feature transformation. The algorithm is available freely in MATLAB and 

R software packages. The FastICA website can be accessed through the following 

URL: 

• http://wwv.cis.hut.fi/projects/ica/fastica 

Tables A.l and A.2 detail the algorithm for a single IC and mulitple Ies 

respectively. These tables are included here to facilitate the relevant discussion 

in this thesis and for easier reference for interested readers. 

In both Table A.l and Table A.2, the statistical expectation E {.} is approx­

imated by sample average. A parallel version of FastICA that uses symmetric 

decorrelation exists. However it was omitted here, as it was not investigated 

in this work. The version of FastICA adopted was as described in Table A.2. 

The readers are referred to [105, Chapter 8] for further information and detailed 

mathematical derivation of the algorithm using negentropy. 
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1. Remove the mean from the data. 

2. Whiten the data to give z. 

3. Initialise a unit norm random w vector. 

4. Let w f- E{zg(wTz)} - E{zg'(wTz)}w, where 9 is a chosen non-linearity 
fUllction e.g. tanh. 

5. Let w f- w/llwll. 
6. Check for convergence, repeat step 4 otherwise. 

Table A.l: A brief summary of the FastICA algorithm for one IC 

1. Remove the mean from the data. 

2. Whiten the data to give z. 

3. Choose m, the number of lCs to estimate, and initialise the counter p +- 1. 

4. Initialise a unit norm random wp. 

5. Let wp +- E{zg(w; z)} - E{zg'(w; z)}w, where 9 is a chosen non-linearity 
function e.g. tanh. 

6. Execute the orthogonalisation: 

7. Let wp +- 11::11. 

p-l 

wp f- wp - 2:)w; Wi)Wj 

j::=l 

8. Check for convergence, repeat step 5 otherwise. 

9. increase counter p, if P ::; m, repeat step 4. 

Table A.2: A summary of the FastICA algorithm for multiple ICs 

(A.l) 
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