
POSITIVE BRAIDS AND LORENZ LINKS 

A Thesis submitted in accordance with the requirement of 

The University of Liverpool 

for the degree of 

Doctor in Philosophy 

By 

EL-SAYED AHMED EL-RIFAI 

February 1988 



· ~..' 

PAGE 

NUMBERING 

\. 

AS ORIGINAL 

'r , 

--:--... ; 

" 



ABSTRACT 

POSITIVE BRAIDS AND LORENZ LINKS by EL-SAYED EL-RIFAI 

In this work a new foundation for the study of positive braids in 
Artin's braid groups is given. The basic braids considered are the 
set SBn of positive permutation braids, defined as those positive 

braids where each pair of arcs cross at most once. These are shown 
to be in 1-1 correspondence with the permutations in S . A canonical 

n 
form for positive braids as products of braids in SB is given, to-

n 
gether with an explicit algorithm for writing every positive braid in 
canonical form and a practical test for use in the algorithm. This is 
a useful approach to braid theory because permutations can be par
ticularly easily handled. 

Applications of this canonical form are: 
(1) An easily handled approach to Garside's solution of the word 

problem in B . 
n 

(2) An algorithm to decide whether (/1 ) k is a factor of a positive 
n 

braid; this happens if and only if at most k canonical factors have 
equal to /1 (where /1 is the positive braid with each pair of arcs n n 
cross exactly once). 

(3) A proof that a positive braid is a factor of (/1 ) k if and only if 
n 

its canonical form has at most k factors. 

(4) An improvement of Garside's solution of the conjugacy problem, 
this is by reducing the summit set to a much smaller invariant 
class under conjugation (super summit set). This includes a nec
essary and sufficient condition for positive braid to contain /1 

n 
up to conjugation. 

The linear generators of the Hecke algebras used by Morton. and/ 
Short are in 1-1 correspondence with the elements of SB. The 

n 
canonical forms above give a quick proof that the number of strands 

in a twist positive braid (one of the form (/1 )2mp for positive braid 
n 

P and for positive integer m) is the braid index of the closure of that 
braid, which was first proved by Franks and Williams. It is also 
shown that if the 2-variable link invariant PL (v, z) for an oriented link 

L has width k in the variable v, then it is the same as the polynomial 
of a closed k-braid, for k = 1, 2. A complete list of 3-braids of width 
2, which close to knots, is given. It is also shown that twist positive 
3-braids do not admit exchange moves (in the sense of Birman). 
Consequently the conjugacy class of a twist positive 3-braid repre
sentative is a complete link invariant, provided that Birman's conjec
ture about Markov's moves and exchange moves holds. 

Lorenz knots and links are studied as an example of positive links. 
It is proved that a positive permutation braid 1T is a Lorenz braid if 
and only if all braid words which equal 1T have the same single starting 
letter. A semicanonical form for a minimal braid representative of a 
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Lorenz link is given. It is proved that every algebraic link of c 
components is a Lorenz link, for c = 1, 2. (The case for knots was 
first proved by Birman and Williams). Consequently a necessary and 
sufficient condition for a knot to be algebraic is given, together with 
a canonical form for a minimal braid representative for every algebraic 
knot. To some extent the relation between Lorenz knots and their 
companions is studied. 

It is shown that Lorenz knots and links of braid index 3 are de
termined by conjugacy classes in B 3. A complete list of 3 -braids which 

close to Lorenz knots and links is given and a complete list of pure 
4-braids which close to Lorenz links is also given. It is shown that 
Lorenz knots and links of braid index 3 are determined by their 
Alexander polynomials. As a further analogy with the properties of 
algebraic links it is shown that the linking pattern of a Lorenz link 
L with pure braid representative and braid index t ~4, determines a 
unique braid representative for L and so determines L. 
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CHAPTER 0 

PRELIMIN ARIES 

§0.1 FOUNDATIONS 

(0.1) Definition: (Knots and links), [RoJ 

A link LeX in a space X is the union of ll-simple closed polygonal 

curves, embedded in X, where the case ll= 1 is called a knot. A 

polygonal knot is one which is the union of finite number of closed 

straight-line segments. A knot is tame if it is equivalent to a polygonal 

knot, otherwise it is wild. All knots and links in this work are assumed 

. 1 3 1 3 to be claSSIcal S e[R , or S eS , and tame. 

(0.2) Definition: (Equivalent knots), [RoJ 

Two links L, L' eS 3 are equivalent if there is a homeomorphism 

h:S3 
-+ S3, such that h(L) = h(L'). i.e. (S3,L):: (S3,L'). 

(0.3) Definition: (Link diagram, regular projection), [RJ 

A link diagram D (L) for a link L is a projection to [R3 with only a 

finite number of crossings, such that at the neighbourhood of each 

crossing only two arcs cross transversely. 

(0.4) Theorem: (Reidemeister), [RJ 

Two links L 1, and L2 are ambient isotopic if and only if a diagram 

of Ll can be altered to a diagram of L2 by a sequence of three moves: 
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(i) : (0 :::: ::: ~ 
(ii) : 9: ::: )( ::: ~ 

XC X /1 ::: } I 
(iii) : 

(0.5) Definition: (Braid group), [B2] 

Define the braid group B as the group generated by aI, a 2, ... 
n 

, a 1 subject to the relations: n-

(i) a.a. 10 . = 0. 10 . 0 . 1 
1 1+ 1 1+ 1 1+ 

(ii) 0.0. :::: 0.0. 
1 J J 1 

1~i~n-2 

li-jl~2, 1~i,j~n-1 

+ 
The pair (a,n) will be referred to as a word aeB for some neZ . The 

n 
-1 

geometric braids representing 0. and (0.) are illustrated in figure 
1 1 

(O-la) . 

(0.6) Definition: (Closed braids), [B2] 

The closed braid BC from a braid word B is -formed by tying the 

top end to each string to the same position on the bottom of the braid 

B as shown in figure (O-lb). 

geometric geometric 

braid (a 1 ) -1 braid 0
1 

Figure (O-la) 
« 0 ) 3) c ::: trefoil 

1 

Figure (O-lb) 



(0.7) Theorem: (Alexander), [B2] 

Every oriented link L can be represented as the closure BC of some 

(B, n) . 

(0.8) Theorem: (Markov), [B2] 

Any two braids whose closures are the same oriented link, up to 

isotopy, are related by a sequence of moves of type: 

-1 
(i): (B,n) '" (a Ba,n), for some (a,n) 

+1 
(ii): (B,n) '" (B(on)- ,n+1) 

(0.9) Definition: (Braid index), [B2] 

A link B
C 

has braid index n if it can be represented by a braid 

(B,n), but can not be represented by a braid (B I ,n-1). 

(0.10) Definition: 

For a braid (a, n), let p [ a] denote to the rotation through angle 1T 

about the centre axis (perpendicular to the plane of the diagram of 

a) followed by arrow reversed. Then p [a] is the reverse of a. Also 

let L [a] be the reflection in the plane of the diagram of a, followed 

by changing the sign of crossings, i. e. rotation about vertical axis. 

Hence as a braid word, p [a] is the word a read backwards, and L [a] 

is the result of turning over a. 

(0.11) Definition: (Symmetric group) 

Define the symmetric group S as the group generated by the 
n 

transpositions ••• , L 1 where L. = (i,i+1) subject to the 
n- 1 

following relations: 
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(i) 2 
t. = e 

1 

(ii) '[.t·+1'[. = '[. 1'[.'[. 1 
1 1 1 1+ 1 1+ 

(iii) t.t. = t.t. 
1 J J 1 

1~i~n-1 

1~i~n-2 

l~iJ j ~n-1 

(0.12) Definition: (Companion, satellite, and cable knots), [Ro] 

Let K be a knot in a 3-space S3 and V an unknotted solid torus 

in S3 with KCVCS3 . Assume that K is geometrically essential (not 

contained in a 3-ball of V). A homeomorphism h: V~ucS3 onto a tubular 

neighbourhood U of a non-trivial knot ccS3 which maps a meridian of 

S3_V onto a longitude of U and maps K onto a knot Kl = h(K). The 

knot K 1 is called a satellite of C and C is its companion. If K is the 

(p,q) torus knot on the boundary of V, and h is faithful, then Kl 

is called the (p, q) cable on its companion C, or simply a cable knot. 

(0.13) Definition: (Algebraic knots and links), [E-N] 

Let f(x, y) be a complex plane polynomial vanishing at the origin, 

and let 

v = {(x,y)E[2 I f(x,y)=O} = f- 1 (0) 

/ 

be the corresponding plane curve. For all sufficiently small E > 0, the 

3-space 

S 3 = {(x,y)E[2! I (x,Y)! = E} 
E 

meets V transversely in a link, which has a natural orientation coming 

from that of V J i. e. L=VnS 3 a union of closed curves. An oriented 
E 

link (SE 3 ,L) determined in this way is said to be an algebraic links. 

If L is connected, it is called the algebraic knot. Then solving f(x, y) 

= 0 for y in terms of x, obtaining a set of solutions which are frac-

tional power series in x. Each fractional power series solution gives 
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rise to a branch of the curve, and thus to one component of the link. 

It is known that all but finitely many terms of the power series can 

be removed without changing the topology of the link. Also the re-

suiting minimal series are written in the form 

y = x(ql/Pl)[a 1 + x(q2/PIP2)[a2 + ... 

+ [a 1 + X(qS/PIP2 ... ps)[a + •.• ] ... J] 
s- s 

(0.1) 

with p., q. > 0, and (p., q.) respectively prime for all i. 
1 1 1 1 

(0.14) Proposition: MurasugLK, [Mu2] 

Any element of B) is conjugate to one and only one element of some 

A., where 
1 

AD = {(ll)2n\ n = 0, ±l, } 

Al = 2n \ {ell)~ 0"10"2 n = 0, ±l, '" } 

A2 = {(ll)2n(0"10"2)2\ n = 0, ±l, ... } 

A) = 

A4 = 

As = 

As = 

{(ll)2n+l\ n = 0, ±l, } 

{(ll3)2n(0"1)-p\ n = 0, ±l, 

2n ql {(ll) (0"2) n = 0, ±l, 

{(ll3)2n(O"d -(Pl) (0"2) (q,l) 

; P = 1, 2, ... } 

; q = 1, 2, '" } 

(0"1)-(Pr )(0"2)(Qr)\n = 0, ±l, ... ; 

Pi' qi' are positive integers} " 
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B 
n 

B (~) 

B (k, r) 

BL(~) 

c(a) 

CL(P) 

e 

F(P) 

L(a) 

S(P) 

S 
n 

SB 
n 

SS (~) 

SSS(~) 

x. 
1 

Y. 
1 

c = 

§O. 2. LIST OF SYMBOLS 

The Artin' s braid group of n - strands 

The base of braid word ~ 

The class of Lorenz braids of type ~(k,r) 

The base length of a braid word ~ 

The exponent sum of the braid a 

The canonical length of a positive braid P 

The set of complex numbers 

The id.entity element in B and in S 
n n 

The finishing set of a positive braid P 

The set of all initial positive permutation braid 

factors of a positive braid P 

The length of a, for aeB , or aeS 
n n 

The set of real numbers 

The starting set of a positive braid P 

"The symmetric group 

The set of all positive permutation braids in" B n 

The summit set of a braid word 6 

The super summit set of a braid word ~ 

The join bottom operator in SB n 

The maximal number of h. in a braid word ~ 
n 

The Lorenz braid ~ (1, i) 

The Lorenz braid 6 (i, 1) 

The set of integers 

+ 
The set of positive integers, Oel 

Equal up to conjugation, in Bn 
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(a,n) 

c 
a 

a(k,r) 

~ 
n 

1T 

'[[a] 

p [a] 

+ 
A braid aeB , for some nel 

n 
+ 

A closed braid aeB , for some nel 
n 

The Lorenz braid of permutation 1T(k, r) 

The associated positive permutation braid to the 

permutation 1TeS 
n 

The associated negative permutation braid to the 

permutation 1TeS 
n 

The permutation tSeS , with tS(i) = n-i+l 
n 

The half twist braid in B 
n' a = ~ ts n 

The half twist braid in the last i-strands 
.... 

in B 
n' 

The upper complement of 1T in tS, i. e. (TI )1T = ts 

The lower complement of 1T in ts, i. e. TI (TI >:J = ts 

The conjugation of ex by ~ 
n 

The result of reading a backwards 

) 

i ~ n 

x 



INTRODUCTION 

The central theme of this thesis is the study of positive braids in 

Artin's braid groups. Positive braids are particularly attractive to link 

theory since positive links, the closure of positive braids, are fibred 

and include the torus links, the algebraic links which occur as isolated 

singularities of algebraic equations and the Lorenz links of periodic 

orbits of dynamical systems. The class of positive links was first 

studied by Burau, [Bu], and later studied by many researchers, e. g. 

[Mu1], [S]. 

In chapter 1 we introduced a construction for factoring every 

positive braid, as a product of positive permutation braids, those 

braids where each pair of arcs cross at most once. 

Section 1.1 deals with a characterisation of positive permutation 

braids. A complete list of factors and factor pairs for the fundamental 

braid fl is given, where it is shown that SB (the set of all positive n n 

permutation braids in Bn) is the set of all possib~.e factors of fln . The 

characteristic properties for the braid fl are' also explored. n 

Section 1. 2 is concerned firstly, with the proof of the main result 

of chapter 1, the canonical form for every positive braid. Secondly, 

this section provides a method for shortening the work required to 

decide whether (fl )k is a factor of a positive braid; this happens if 
n 

and only if at most k canonical factors have equal to fln . This includes 

a proof that a positive braid is a factor of (fln)k if and only if its 

canonical form has at most k factors. 
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Section 1.3 describes a practical algorithm for finding the canonical 

form for every positive braid. It also gives a practical test for use 

in the algorithm. 

Section 1.4 is devoted to applications of the canonical form for 

every positive braid. An efficient normal form for Garside's solution 

of the word problem, in B , is given. While an algorithm to decide 
n 

whether a positive braid contains 6. (up to conjugation) is given, 
n 

together with a necessary and sufficient condition for a positive braid 

to contain A (up to conjugation) is given. Finally this section contains 
n 

an improvement of Garside's solution of the conjugacy problem in B , 
n 

this is by reducing the summit set to an invariant, under conjugation, 

subclass (super summit set). It is also shown that any two super 

summit forms, for a given braid, are conjugate through such these 

forms, by a sequence of positive permutation braid conjugations. 

Consequently it is proved that two braids are conjugate if and only 

if their super summit sets are identical. 

Chapter 2 is concerned to the study of twist positive braids (those 

2m of the form (6.) P for a positive braid P and for a positive integer 
n 

m) which are interested subclass of positive braids. 

In section 2.1, it is noticed that the linear generators of the Heche 

algebras used by Morton and Short, [M-Sl], are in 1-1 correspondence 

with the elements of SB. The canonical forms above give a quick 
n 

proof that the number of strands in a twist positive braid is the braid 

index of the closure of that braid, which was first proved by Franks 

and Williams, [F-W]. 

xii 
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Section 2.2 is concerned to the width of the 2 -variable link invar

iant P(v, z) in the variable v, where the width is the minimal number 

of strands allowed by the index bound. It is proved that if the 

polynomial P(v, z) of width i, then it is the same as the polynomial of 

a closed i-braid, for i = 1, 2. A complete list of 3-braids of width 2, 

which close to knots, is given. 

Section 2.3 is devoted to the study of Birman's "exchange moves" 

in B 3 • It is proved that twist positive 3-braids do not admit non trivial 

exchange moves. Consequently the conjugacy class of a twist positive 

3-braid representative is a complete link invariant, provided that 

Birman's conjecture about Markov's moves and exchange moves holds. 

Chapters 3, and 4 are devoted to the study of Lorenz knots and 

links, those which represent the periodic orbits in the solutions of 

Lorenz differential equations. 

In section 3.1 the class of Lorenz braids is widened to include all 

positive permutation braids which can not written as positive words 

in B with more than one starting letter. It is proved that every al
n 

gebraic link of c components is a Lorenz link, for c = 1, 2. (The 

case for knots was first proved by Birman and Williams, [B-Wl]). 

Consequently a necessary and sufficient condition for a knot to be 

algebraic is given. Finally a semicanonical form for a minimal braid 

representative for every Lorenz link is given, with a canonical form 

for a minimal braid representative for an algebraic knot. 

Section 3.2 is devoted to the study of the possible satellites of a 

Lorenz knot. It is shown in section 3. 1 that every Lorenz link is a 

closed braid, which must follow some pattern (called Lorenz presen-
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tation pattern). Hence the Lorenz knots which are satellites of other 

Lorenz knots should also follow that presentation pattern. It is also 

shown in section 3.1 that the only way in which a Lorenz knot appears 

as a represented cable in Lorenz presentation pattern is when it is 

an algebraic knot. So it is a very plausible conjecture that these are 

the only ways in which a Lorenz knot can be presented as a satellite, 

although attempts to prove it using an extension of Williams methods, 

[W2], have so far been unsuccessful. 

Chapter 4 is concerned to the study of Lorenz links of pure braid 

representatives. As a further analogy with the properties of the al

gebraic links, it is shown that every Lorenz link of braid index k 

with k components is determined by the associated linking pattern of 

its components, for k ~ 4. 

Section 4. 1 is concerned to Lorenz knots and links in B 3 • It is 

proved that Lorenz knots and links with braid index 3 are determined 

by Alexander polynomial. In fact it is shown that Alexander polynomial 

for a Lorenz knot or link L with braid index 3 determines a unique 

braid representative for L and so determines L. A complete list of 

3-braids which close to Lorenz knots and links is given. 

Section 4. 2 is devoted to the study of Lorenz links of braid index 

4 with 4 components. A complete list of pure 4-braids which close to 

Lorenz links is given. It is also proved that the linking pattern of a 

Lorenz link L of braid index 4 with 4 components determines a unique 

4-braid representative for L and so determines L. 
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At the introduction of each chapter, in more specific and technical 

detail the results achieved are described with the problems led to this 

wor k and with their historical settings. 

,-- . 
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CHAPTER 1 

ON BRAID GROUPS 

§I.O INTRODUCTION 

In the braid group Bn of Artin, [ArI] and [Ar2], the word problem 

was solved by Artin himself, but the conjugacy problem waited many 

years for the solution of Garside, [GI] and [G2], where he also gave 

a further solution of the word problem. Garside's solutions are purely 

algebraic and mainly depend on a diagram (Cayley diagram) which 

represents the generators and the relators of a group, [Cll and [C2]. 

The solutions also depend on a special braid word II , called funda
n 

men tal, as defined below. 

In Cayley diagram, the multiplication table of a given group G with 

given, presentation can be represented in a diagram having one vertex 

for each element of the group, where edgey represent generators and 

its inverses. Any vertex may be taken as origin and the others may 
... 

be traced out from there. The drawn diagram can show the initial 

letter on the bottom and the others extending in order to top. The 

factors of a word P in the group are the possible subdiagrams of the 

diagram of P. 

In Garside's solution of the word problem in B , it is shown that 
n 

each braid word a admit a unique normal form, called standard, a = 

(lln)mp , meZ and P is a positive word. The integer m is called the 
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power of a and the word P is called the base of a. For conjugacy 

problem in B , 
n Garside also shown that one may choose a unique 

r 
representative (6n ) Q for the conjugacy class of the braid (a,n). 

The integer r is called the summit power of a and the positive word 

Q is called the summit base of a, [GI] and [G2]. 

r 
Let (6n ) R be the standard form for a braid (a,n). But the braid 

6n itself has many factorizations into two factors. If PQ is one of these 

factorizations, then P(6 )rRP-I may equal (6 )r+IT in the standard 
n n 

form of Pap-I. So that take all conjugations of (6 )rR, where 
n 

conjugators are all possible factors of 6 . From yielding words con
n 

sider those which are of power ~r and which are distinct from 

(6 )rR and from each other. Now repeat the process for each of the n 

words yield by previous step, where the condition being always that 

each new word must be of power ~r. Continue to repeat the process 

for every new word arising, hence Garside shown that a stage must 

be reached when further applications of the process will yield no new 

words. So the device of generating conjugate braids by working 

through the factors of 6 can be used to raise the power of 6 only 
n n 

so far. The braids containing 6 raised to that highest power, called n 

the summit power, form the summit set of all the braids from which 

it can be so reached. Garside proved that two braids are conjugate 

if and only if their sununit sets are identical, [GI] and [G2]. 

Then within each braid group B , both solutions of Garside require 
n 

the use of extensive lists of factor pairs for 6 . Throughout upon the 
n 

definitions and the notations of Garside, Thomas. R. S. D gave an al-

gorithm for writing down the factor lists of 6n , [T]. He proved in-
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ductively that each Cayley diagram of!J. is made up of n copies of 
n 

Cayley diagram of !J.n -1 linked by <1n -1 and so on down to the Cayley 

diagram of !J.2. He also shown that the Cayley diagram of!J. has n! 
n 

vertices, which is the all possible factors of !J. . But Thomas's algo
n 

rithm has the same nature of Garside's technique which is completely 

algebraic, quite long and quite difficult to apply. 

In the following paragraph some definitions are stated, where the 

abstract definition of braid group B is given in definition (0.5). 
n 

(1. 0.1) Definition: (The fundamental word or the half twist), [B2] 

In B , the braid which is accomplished by holding the top of the 
n 

braid fixed and attaching the string bottoms to a rod which is then 

turned over once (in a positive sense), is known as a half twist 

positive braid!J. and 
n 

!::. = (<1 1<1 2··· <11 ) ( <1 1<1 2 ... <12) ... (<1 1<1 2) ( <1 I) n n- n- n- n- n- n- n-

(1. 0.2) Definition: (Positive braids and twist positive braids) 

A braid (p, n) consisting of an ordered sequence of the generators 

only, in which no inverse of any generator occurs will be called a 

positive braid. A positive b~aid P is a twist positive braid if P = 

(!::.n) 2mQ , for me7t, m # 0 and Q is a positive braid. 

(1. O. 3) Definition: (Factor pairs for a positive braid) 

For a positive braid (a, n), the positive braid !3 is called a factor 

of a if and only if there exists a positive braid r such that either a 

= r~ or a = !3 r, the pair {!3, r} is called a factor pair for a. 

3 



Section 1 is devoted to the study of the factors of 11 . It is proved 
n 

in theorem (1.1.14) that a positive braid ((l,n) is a factor of A if 
n 

and only if each pair of arcs in the diagram of a cross at most once. 

In theorem (1.1.4) it is proved that the permutations in S are in 
n 

1-to-1 correspondence with the set of factors of A , denoted SB . 
n n 

But the geometric relations between Sand SB are shown in defi-
n n 

nition (1.1.1) and in lemma (1.1. 3), where the elements of SB are 
n 

called the positive permutation braids. In fact the conception of 

positive permutation braids was first introduced by Morton and 

Traczyk, (M-T]. In corollary (1.1.15) the list of all possible factor 

pairs for 11 is given, i. e. the list of all possible positive braids p's 
n 

and Q's such that 11 = PQ. In fact Q is the lower complement of P 
n 

in 11 , where 11 is the largest positive permutation braid, in B , as 
n n n 

shown in lemma (1.1.10). 

A necessary and sufficient condition for a generator a.EB to be a 
1 n 

starter and a finisher of an element in SB is given in lemma (1.1.8), 
n 

where a. is a starter for a positive braid (P ,n) if there exists a. 
1 

Positive braid Q such that P = a.Q' and a. is a finisher for P if there 
, 1 1 

is a positive braid R such that P= Rai , as in definition (1.1.7). If 

cr. is a starter or finisher for a positive braid, then simply let i denote 
1 

to a .. 
1 

The recognition results of the fundamental braid I1n are given, in 

lemma (1.1.10), where it is shown that every i, 1 ~ i ~ n-l, is a 

starter and finisher for 11 . It is shown also that each two arcs in 
n 

11 cross exactly once. The conjugation of a braid by l1n is shown in 
n 

lerruna (1.1.11). Following that it is proved in corollary (1.1.12) that 
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(A ) 
2 

lies in the centre of n 

passing a braid ex through 

B n' which is geometrically obvious where 

(An)2, the full twist, it means that the 

diagram of ex has turned over twice. At the end of section 1 the re-

cognition results for the factor pairs for A are given in lenuna 
n 

(1.1.16) . 

In fact section 1 contains some technical results on factors of A 
n 

and on the starters (finishers) of a braid 1TESB which are used fre
n 

quen tly in this work. 

Section 2 is devoted to find a canonical form for positive braids 

as products of positive permu ta tion braids. In theorem (1. 2 . 1) it is 

proved that every positive braid P can be written uniquely as a 

product of positive permutation braids, P = 1T11T2 ... 1T
k

, where 1Ti is 

the largest possible positive permutation braid as a starter of (1T.1T. 1 
1 1+ 

1Tk ), for 1 ~ i ~ k. 

The proof of theorem (1.2. 1) is begun with some definitions and 

lemmas. In definition (1.2.4) the set Ip of all initial positive permu

tation braid factors of a positive braid P is given with some ordering 

operator. It is proved, in proposition (1.2.7), that Ip has a maximal 

element for each two of its elements, whil~ corollary (1.2.8) provided 

a unique maximal element in Ip, i. e. a unique maximal starter for P. 

The relation between the starting set of a positive braid and the 

starting set of its maximal starter is given in corollary (1. 2.9) \-()\,-

let P = 1T 1P 1 where 1T 1ESB and PI is a positive braid, then 1Tl is the 
n 

maximal starter for P if and only if S(Pd ~ F(1Td, as shown in pro-

position (1.2.10). At this stage the proof of theorem (1.2.1) is also 

given. 
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As a further analogy with the left-hand canonical form of a positive 

braid, it is shown that every positive braid has also a right-hand 

canonical form with similar properties, as shown in remark (1. 2 .14) . 

Now let AB = llnR for positive braids A, Band R, then it is shown 

that A = A l1T and B =1T,:.B 1 for some positive braids A 1, BleB and 
n 

1TeSBn (as in lerruna (1.2.15» and it is proved that F(A) U S(B) = 

{I, 2, ... , n -I} (as in corollary (1. 2 . 16) ) . 

The positive braid (P, n) contains II if and only if P = All B for 
n n 

some positive braids A and B, as in definition (1.2.11). Necessary 

and sufficient conditions for the positive braid P to contain II are 
n 

given; this happens if and only if lln is the maximal element in Ip (as 

shown in lerruna (1.2.12» and it is also happens if and only if S (P) 

= {I, 2, ... ,n -I}, as shown in corollary (1. 2 .13) . 

For a positive braid P, if at most k canonical factors of P have 

equal to II , then P = (ll ) kQ for some positive and prime (to II ) braid 
n n n 

Q, hence (ll ) k is a factor of P. An algorithm to decide whether a 
n 

k )' 
positive braid P = AB contains (ll) is given; this is by writ}ng A 

n 

and B in their canonical factorizations, then look to the facto~s, as 

in theorem (1.2.17). This algorithm provides a method for shorteniIig 

the work required to decide if a given positive braid has (lln)k as a 

factor or not. 

Following that it is shown some properties of the factors of 

(ll ) k. A necessary and sufficient condition for a positive braid P to 
n 

be a factor of (lln) k is given; this happens if and only if the canonical 

form of P has at most k factors, as in theorem (1.2.18). 
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It is also shown that every factor of (An)k has property that every 

pair of arcs cross at most k times, as in proposition (1. 2.19) . But 

not every such positive braid with each two arcs cross at most k times 

k 
is a factor for (An)·' an example to show that is given in example 

(1. 2.20). Finally a geometric view of the factors of (A )2 is presented 
n 

in proposition (1.2.21). 

In section 3, a practical algorithm for writing a positive braid in 

its canonical form is given, as in (1.3.1). Starting with a positive 

braid (P, n), write P as a successive product of generators. Then 

bracket the successive letters of the word P as a product of positive 

Hence investigate the crossings 

of the arcs of the first factor 1T 1, to decide which arcs do not cross 

in the braid 1Tl. If a pair of such these arcs cross in 1T2 and if it is 

possible to pull that crossing at the end of 1Tl then do it. Do that 

with the other pair of arcs. Hence finish with new positive permutation 

braids (1T l)' and (1T 2) '. Repeat that again on (1T 2)' and 1T 3 to finish 

with (1T2)" and (1T3)'. Repeat that again on (1T3)' and (1T4), and so 

on. Then the braid P has the new factorization, [( 1T 1)' (1T 2)" (1T 3) II ••. 

(1T
k

-
1

)"(1T
k

)']. Note that the number of factors does not increase under 

the algorithm, because it is possible\ that some of the factors vanish. 

But L(P) is finite and SB is also a finite set. Then ultimately a stage 
n 

must be reached when further applications of the process will yield 

no npw factorizations. 

A practical test for use in the algorithm above is given in theorem 

(1. 3.2), where it is proved that (1T 11T 2 .•. 1Tk ) is the canonical ( 

left-hand) factorization for a positive braid P if and only S(1Ti +1) £ 
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F(1Ti ), for 1 ~ i ~ k-1. Following that an example for applying the 

algorithm is given in example (1. 3.3). Consequently it is proved that 

the number of factors in the left-hand canonical form of a positive 

braid equals the number of factors in its right-hand form, as in cor-

ollary (1.3.4). Then the number of factors in the canonical form of a 

positive braid P is called the canonical length of P and denoted CL(P) . 

For a positive braid P with CL(P) = k, it is also proved that P -1 = 

(tt
n

) - kQ where Q is positive and prime to tt
n

, i. e . 

equals -CL(P), as in corollary (1. 3.4) . 

-1 
the power of P 

Section 4 is devoted to discus some contributions of the canonical 

form for every positive braid . An efficient normal form for Garside's 

solution of the word problem is given. It is shown in theorem (1.4.2) 

that any word can be uniquely determined by a sequence of permu-

tations called base and an integer called power. 

An algorithm to decide whether a positive braid P is conjugate (or 

not) to tt Q. for some positive braid Q is given in (1. 4. 3) . The idea 
n 

of that is to write P in its canonical form (1T l1T 2 
.J 

the first factor 1Tl to the end of (1T21T3 .,. 1Tk ); i.e. conjugate by 1Tl 

and put the resulting word, P l = (1Td -lp (1Id, in its canonical form 

(Tlln2 '" n
kl

), say. If nl = tt
n

, then P contains ttn up to conjugation, 

hence stop the algorithm. But if n 1 # ttn repeat the previous process 

by cycling nl at the end of (n2n3 .. , n
kl

), i.e. conjugate P l by nl 

and write P 2 = (nd-1P1(nl) in its canonical factorization (ala2 ... 

) ay and so on. But k ~ kl ~ ... ~ k. and SB is finite, then a k2 IS, 1 n 

ultimately a stage must be reached when further applications will either 

factor out tt or yield no new words. 
n 
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The algorithm above is proved, in theorem (1.4.4), where a posi-

tive braid (P, n) is conjugate to 6
n

R, for some positive braid R, if 

and only if the algorithm above produces 6 . This result reduces the 
n 

required calculations to decide whether P is in the summit set of some 

braid a, or not. In lemma (1.4.5) it is proved a result (due to 

Garside), that if braids P and Q are conjugate by a positive braid A 

-1 
and power of P = power of Q = k, then power of a Pa ~ k, where a 

is the maximal starter for A, which is the key for constructing the 

summit set. 

Finally the Garside's solution of the conjugacy problem is improved 

by reducing Garside's invariant class (summit set), under conjugation, 

to an invariant subclass (super summit set). The summit set of a 

braid P is defined as SS (P) = {(R, n) I R conjugate to P and R = 

(fl )mQ, for m maximal and Q positive braid}. 
n 

set of a braid P is defined as SSS (P) = {(R, n) 

form with minimal CL(Q)} 

But the super summit 

R = (fl )mQ is summit 
n 

In theorem (1. 4 .8) it is proved that if P and Q are super summit 

forms (for a given braid ex), then there are a sequence of elements 

Ro = P, R 1, ... , Rs = Q in super summi,t set of ex such that Ri+1 

conjugate to R. by a positive permutation braid. Using theorem (1.4.8) 
1 

and lemma (1.4.5), it is proved, in theorem (1.4.9), that two braids 

are conjugate if and only if their super summit sets are identical. 
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§1.1. THE FACTORS AND THE FACTOR PAIRS OF A 
n 

(1.1. 1) Definition: (Positive permutation braids) 

Given a permutation 1T in the symmetric group S , make a diagram 
n 

D(1T) of 1T by joining the points 1, 2, ... , n by lines to the points 

1T(I), 1T(2), ... , 1T(n) respectively, such that only two pair of lines 

are crossed at each crossing. Then each pair of lines cross at most 

once. Make each pair cross in the positive sense, then read the re-

sulting braid ~ from D (1T). The positive braid when each pair of 
1T 

strings cross at most once, will called a positive permutation braid 

and SB denote the set of all positive permutation braids in B . 
n n 

(1. 1. 2) Example: 

In S4, the cases when 1Tl = (13)(24) and 1T2 = (14) are illustrated 

in figures (1-la) and (1-lb) respectively. Then 8(1Td = 0'20'10'30'2 and 

8( 1T 2) = 0'10'30'20'10'3· 

1 4 1 4 

1 2 3 4 1 2 3 4 

D(1Tl = (13)(24» D(1T2 = (14» 

Figure (1-1a) Figure (1-lb) 
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(1.1. 3) Lemma: 

For a permutation 1TES , the associated positive permutation braid 
n 

~1T depends only on 1T but not on the choice of the diagram D(1T). 

Proof: 

N umber the strands 1, 2, ... , n on the bottom of ~ , from left to 1T 

right. But each pair of strings cross at most once, then the string 

labelled 1, at the bottom of ~ , lies over (not under) each other 
1T 

string. So we can isotop it to lie at level t 1, with respect to the braid 

axis x(~ ) of P. Do that again with the arc labelled 2 and so on. 
1T 

Then the string i lies at level t., where t 1 > t2 > ... > t, with 
1 n 

respect to x(~ ) as in figure (1-2). So that string i always crosses 
1T 

over (not under) string j for i < j, hence ~ depends only on 1T 0 1T 

t n 

Figure (1-2) 

i-I 

I 
I , 

n 
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( 1. 1. -1) Theorem: 

Let 1T, reS n 1 then ~1T = ~r if and only if 1T = r. 

Proof: 

The necessity of the condition is clear. To establish suffiCiency, 

draw ~1T and ~r with strings in levels as in lenuna (1.1. 3). Then the 

two braids are isotopic, because we can move string i of ~ to string 
1T 

i of ~ r within level \ 0 

(1.1.5) Corollary: 

For each 1TeS there is a unique braid ~ ESB with permutation of n 1T n 

~ 1T equals 1T. 

Proof: 

The proof is a direct consequence of theorem (1.1.4) 0 

(1.1. 6) Remarks: 

(a): As a result of theorem (1.1.4) we can think of every positive 

permutation braid e , simply as a permutation TI without any care how TI 

the arcs in e cross. In fact this is the key of the main result of TI 

this chapter, "The canonical form for every positive braid", as in 

section 2. 

(b) : For every permutation TIES we can use a negative crossing 
n 

to read the resulting braid from the diagram D(1T) of TI. As a further 

analogy with the previous process we can call such this braid "the 

negative permutation braid". Hence for every permutation 1TeSn , let 

~ and (e) be its associated positive and negative permutation braids 
1T 1T -

respectively. So that 

where p [ex] is the braid ex in reverse, as in definition (0.10). 
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(1.1.7) Definition: 

For a positive braid (P, n), define the starting and the finishing 

sets, respectively as: 

S(P) 

F(P) 

= HIP = 

= HIP = 
cr.Q, for some positive braid Q } 

1 

Qcr., for some positive braid Q } 
1 

The following lemma presents a necessary and sufficient condition 

for starters and finishers of positive permutation braids. 

(1.1.8) Lemma: 

Every permutation 1TES satisfies the following: 
n 

Proof: 

(i) : 

(ii) : 

i E S(~ ) if and only if 1T(i) > 1T(i+l) 1T 

i E F(~ ) if and only if 1T -1(i) > 1T -1(i+l). 
1T 

(i) For necessity: let iES(~ ), then the strings labelled i and i+l 1T 

on top of ~1T never cross in ~~ , where 

otherwise ~ ~ S B , hence 
1T n 

1T(i) > 1T(i+1) 

. For sufficiency: let 1TES , such that 
n 

1T(i) > 1T(i+l) 

then the two arcs labelled i and i + 1, on the top of ~ , cross in ~ . 
1T 1T 

Draw the braid ~ in levels as in lemma (1.1.3), hence the string la-
1T 

belled i at bottom of ~ always cross over (not under) string labelled 
1T 

j at bottom of ~1T for i < j. Therefore we can draw a pattern for ~1T' 
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as in figure (1-3), where a.eSB for all 1 ~ i ~ 4. Hence from the 
I n 

diagram and under isotopy, there is some aeSB such that 
n 

~ = a.a 1T I 

then ieS (1T). The proof of case (ii) is similar to that in case (i) 0 

Now we are going to find out the characteristic properties for the 

fundamental braid (!J. , n), which is defined in definition (1.0.1). A n 

picture of the braid (!J. s , 6) is given in figure (1-4a). 

~ : 
1T 

1 

1 

(1.1. 9) Remark: 

i-I i i+1 i+2 

Figure (1 - 3) 

n 

n 

In B let (!J.. ) denote the half twist (fundamental braid) in the 
n' I,"'" 

last i strands, for i ~ n, then (!J.i ..... ) is the result of turning over of , 

the half twist !J.
i 

in the first i strands in Bn , i.e. t [!J.i ] = (!J.i , ..... )' Hence 

F(!J.. ) ~ {n-I, n-2, ... , n-i+1} 
I, ..... 

where 
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S(fli ) ~ {I, 2, ... , i-I} 

Then in B and for i = n we have n 

fl. = (fl. ) 
1 1, +-

An example for n = 6 and i = 5 is given in figure (I-4b). 

1 1 

1 2 3 4 5 6 1 

Figure (1-4a) 

(1.1.10) Lemma: (Recognition results for fl ) 
n 

2 

2 3 4 

Figure (1-4b) 

5 6 

/ 

For a permutation 1TES , the following statements are equivalent:/ 
n 

(i) : 

(ii) : 

~ = fl 1T n 

Each pair of strings in ~ cross exactly once 
1T 

( iii): S (~ ) = F (~ ) = {I, 2 , .,. , n - 1 }. 
1T 1T 

Proof: 

Consider the permutation 1T such that 

1T(i) = n-i+I, for 1 ~ i ~ n 

then 

1T-
1 (i) = n-i+1, for 1 ~ i ~ n 

15 

/ 



hence 

( -1-1 
'IT i) > 'IT(i+1) and 'IT (i) > 'IT -'-(i+1), for 1 ~ i ~ n 

So lemma (1.1. 8) tells us that 

. ie S (f3 ) and ie F (f3 ), for 1 ~ i ~ n-I 'IT 'IT 

i. e. 

But, from the definition of 'IT, we can write 

for some neS , such that 
n 

n(i) = 'IT(i-I) = n-i+2, for 2 ~ i ~ n 

so that 

Replace 'IT by n to get n "eS , such that 
n 

n"(i) = n(i-I) = n-i+3, for 3 ~ i ~ n 

Continuing this prot~ss we can finish with, 

= 6. n 

Now let 6 denote the permutation where f3 6 = 

for 1 ~ i ~ n. 

6. , 
n 

i. e. 6(i) = n-i+l, 
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(i) -+ (li): Since a1T = A , then the geometric definition of A , shown 
n n 

in definition (1.0. 1), tells us that each pair of arcs in a cross exactly 
1T 

once, but theorem (1.1. 4) tells us that 1T is unique, then 1T = 6. 

(ii) -+ (iii): If each pair of arcs, in ~ , cross exactly once, then de-
1T 

finition of A tells us that ~ = ~ = A hence as shown above n 1T 6 n' 

Sea ) = F(~ ) = {l,2, ... ,n-l} 1T 1T 

(lii) -+ (li): Let S(~ ) = {l,2, ... ,n-l}, then 1T 

1T(i) > 1T(i+l), for all 1 ~ i ~ n-l 

hence 

1T(i) > 1T(j), for i < j 

But ~ eSB , then each two arcs cross exactly once, otherwise 1T(i) < 1T n 

1T(j), for some i < j. 

(li) -+ (i): Given a permutation 1T such that each two arcs in ~1T cross 

exactly once, then ~ = A , so 1T = 6 0 
1T n 

k+l 
~------ir---' 

1 2 

Figure (1-5a) 

:: 

k+l 
~--"'--~--i 

1 2 k+l 

Figure (1-5b) 
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(1.1.11) Lerruna: 

k k 
In Bn , let a = IT [(eJ(l.·»(Ej)L then t[a] = IT [(eJ( _. »(Ej )], where 

j=l j j=l n 1j 
T [a] is the conjugate of a by I::. (as in definition (0.10», E.eZ and 1 

n J 

~ i. ~ n -1, for 1 ~ j ~ k. 
J 

Proof 

It is enough to show that t [(\] = an -i' for t is a homomorphism. 

Using (iii) in lemma (1.1.10), then for every 1 ~ i ~ n-l, we have 

where in a 6. each pair of strings cross exactly once, except those 
1 

which labelled i and i + 1 (on top of a 6) they never cross. Draw I::.
n 

= 

eJia(6.) with strings in levels, so if the string from i to 6(i) lies in 
1 

level t. (say), then the string from i+l to 6(i+l) lies in the successive 
1 

level t. l' just over the level t., hence we can isotop these two arcs 1+ 1 

to cross at the end of I::. as in figure (1- 6), then 
n 

Now if a = a., 
1 

then 

T (a.) 
1 

-1 = (I::.) O'.a~ ./ n 1 u 

-1 = (I::.) O'.(O'.a~) 
nIl u. 

1 

-1 = (I::.) (O'.a~)O' . n 1 u. n-1 
1 

-1 = (I::.) I::. 0' • n n n-1 

= a . n-1 

But T is a homomorphism, then the proof follows by repeated appli-

cations of the previous process on the successive letters of a 0 
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(1.1.12) Corollary: 

II 
n 

:::: 

1 

1 

Figure (1-6) 

i-I i i+l i+2 

6. 1 6. 1+ 1 
n 

In B , (ll )2 lies in centre of B , Le. 
n n n ( A )2 t h un corrunu es wit every 

thing. 

Proof: 

Since t is a homomorphism, then as in lerruna (1.1.11) it is enough 

to show that, 

2 t [cr.J = cr., for all 1 ~ i ~ n-l 
1 1 

where t
2 is the conjugation by (ll )2. Using lerruna (1.1.11), since 

n 

t [ cr. J = cr ., for all 1 ~ i ~ n-l 
1 n-l 

then applying t again, we have 

t 2 [cr.J = t[cr .J = cr. 
1 n-l 1 

This is geometrically obvious, because passing a braid P through 

(ll ) 2 means that P has turned over twice 0 
n 
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(1.1.13) Remark: 

Given a positive braid (P, n) and let 1T be the associated permutation 

of P, then the number of crossings of any two strings labelled i and 

j (at top of P) equals the number of crossings of the same strings in 

1T (mod 2). So that if P and Q are two positive braids with the same 

permutation 1T, then strings i and j (at top of both P and Q) cross 

the same times (mod 2). The number of crossings (in a positive braid) 

of two strings i and j is also odd if 1T(i) < 1T(j) for i > j and it is even 

if 1T(i) > 1T(j) for i > j. 

(1.1.14) Theorem: (The factors of A ) 
n 

A positive braid (a, n) is a factor of A if and only if 13eSB . n n 

Proof: 

For necessity: Let P be a factor of A , then there exists a positive 
n 

braid Q (as in definition (1. ° . 3» such that 

A = PQ 
n 

Then number of crossings of string labelled i with string labelled j, 

in PQ, is ~ the number of crossings in P, then each two arcs in P 

cross at most once, so PeSB . n 

For sufficiency: Let a.eSB with permutation 1TeS and choose 
'n n 

~eSn' such that 1T~ = IS and 131S = An' i.e. 13(1T~)' 13 1T = a. and a~ are 

all in SB then each two arcs in each one of them cross at most once, 
n' 

so each two arcs in a1T6~ cross 0, 1 or 2 times. Compare a1Ta~ and 

tI. - A . So using remark (1.1.13) and the fact that each two arcs 
fJ1T~ - n 

in A cross exactly once, then each two arcs in 61Ta~ cross an odd 
n 

number of times, so 

A - tI. = 13 1T6y n - fJ1T~ 0 
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i. e. ex is a factor of 6n , which completes the sufficiency and so com

pletes the proof 0 

(1.1.15) Corollary: (The factor pairs for 6 ) 
n 

For each permutation 1TES
n

, there exist two permutations 1T* and 
~c 

1T , such that 6 * 6 = B B = 6 (1T ) 1T 1T (1T.) n' 

Proof: 

Theorem (1. 1. 14) tells us that 6 is a factor of 6 for every 
1T n 

1TES . 
n 

i.e. there are two positive permutation braids B (1T >''<) and 

6 such that (1T,:.) , 

In fact B (1T>',c) and B (1T.,.) are the upper and lower complements of 1T in 
" 

15, where 615 = 6n 0 

(1.1.16) Lemma: (Recognition results for the factor pairs of fln) 

Every 1TES satisfies the following: 
n 

(i): '[[B(1T,:.)] = B(1T':<), '[[B(1T':<)] = B(1T,:J 

(ii): F(B 1T) n S(B(1T):.» = <1>, F(B 1T ) U S(B(1T::.» = {1,2, 

(iii): F(B(1T':<» n S(B1T ) = <1>, F(B(1T::<» U S(B 1T) = {1,2, 

Proof: 

For any B ESB , corollary (1.1.15) tells us that, 
1T n 

For (i): 

'[ [B ] 
1T >:< 

= (fl)B (fl )-1 
n 1T.,. n -,' 

= (6 *B)6 (fl )-1 
1T 1T 1T>:< n 

= 6 *(6 6 )(6 )-1 
1T 1T 1T ." n -,. 

= 6 >:«fl )(fl )-1 
1T n n 

, n-1} 

, n-l} 
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hence by using corollary (1.1. 12) , 

For (li): 

Clearly F (~ ) n S (~ ) = 4>, otherwise there exist a, ~E SB such 
~ ~* n 

that for some integer j, 

~~ = aC1. and ~ = C1.~, for 1 ~ j ~ n-l 
J ~):c J 

hence, 

2 
I::. = ~ ~ = a(C1,) ~ 

n ~ ~':c J 

so that in I::. there are two arcs cross twice, which is impossible as n 

in lemma (1.1.10), Now let j~[F(~TI) U S(~~ )], then by using lemma 
':' 

(1.1.8), 

i. e, there are two arcs, which labelled j and j+ 1 in bottom of ~ , never 
~ 

cross each other in ~ ~ = I::. , which is impossible, hence 
~ ~,:, n 

For (iii): 
.,-,-

= {1,2, ", ,n-l} 

Follows from (li) with ~ in place of ~ 0 
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§1. 2 A CANONICAL FORM FOR EVERY 

POSITIVE BRAID 

(1. 2 .1) Theorem: (A canonical form for every positive braid) 

Every positive braid (P, n) has a unique left-hand, [right-hand], 

canonical form as a product of positive permutation braids. More 

precisely: 

Every positive braid (P, n) can be written uniquely as a product 

P = (1T11T2 ... 1Tk ), [P = (ar ar - 1 .. , ad], where 1Ti' [ail, is the largest 

possible positive permutation braid as a starter, [finisher], of (1Ti1Ti+1 

'" 1T
k

), for 1 ~ i ~ k, [(ar ar - 1 ... a i ), for 1 ~ i ~ r]. 

To proof the theorem, we begin with several definitions and lemmas. 

(1.2.2) Definition: 

In B , let 1T 1 = aO'. and 1T 2 = aO'., then define the join bottom of 1T 1 
n 1 J 

and 1T2, as 

aO'. 
1 

if i=j 

(1T d U
b ( 1T 2) = aO'.O'. if li-jl~2 

1 J 

aO'.O'. 10'. if li-jl=l 
1 1+ 1 

(1. 2.3) Lemma: 

The set SB is closed under the join bottom operator Ub , i.e. 
n 

[ (aO'.) U
b 

(aO'.)] e S B ,for all aO'., 
1 J n 1 

aO'.eSB . 
J n 

Proof: 

Order the strings at bottom of a, from left to right. Number them 

1,2, ... , n. Then the pair {i, i + I} of strings does not cross in a as 
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do the pair {j, j + I}, otherwise ( aer. ), ( aer . ) ; S B . Then consider the 
1 J n 

following three cases: 

Case ( 1) : If i = j, then directly from the definition of the join 

bottom, we have 

(aer.) Ub (aer.) = (aer.)eSB 
1 J 1 n 

Case (2): If I i - j I ~2, let i < j, then the pair {i, j} of strings do not 

cross in aer. , as in figure (1-7a), hence 
1 

(aer.) Ub (aer.) = (aer.er.)eSB 
1 J 1 J n 

Case (3): If I i - j I = 1, let j = i + 1, then the pair {i, i + 2} of strings 

never cross in a, as in figure (1-7b), hence 

(aer.) Ub (aer.) = (aer.er.+
1

er.)eSB 
1 J 11 1 n 

which completes the proof 0 

.L 

t 
1 i-I j+2 n 

1 i-I i i+1 j j+1 j+2 n 

aer.er. 
1 J 

Figure (1-7a) 

(1. 2.4) Definition: 

1 

I 

~ 

1 
i-I i+2 i+3 n 

i-I i i+1 i+2 i+3 n 

aer.er. 1er. 
1 1+ 1 

Figure (1-7b) 

Given a positive braid (P, n), let Ip be the set of all possible initial 

positive permutation braid factors of P, i.e. if aeIp, then P = (aPt> 

for some positive braid P 1, hence L(P d ~ L(P). The set Ip is called 
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the starter set for P and every aeIp is called a starter of P. For two 

elements 1T I ~eSB I if 1T is a starter of ~ I then there exists aeSB such n n 

that ~ = 1Ta and denoted ~ ~ 1T. The positive permutation braid ~ is s 

also a maximal element in Ip if a = ~ for all a ~ s ~. 

(1.2.5) Example: 

In cases when P = fl3 and P = 1141 the starter sets I(fl]) and I(fl4) 

are illustrated diagrammatically in figures (I-Sa) and (I-Sb), respec-

tively. Note that I (fl ) = SBn I because fln is the largest positive 
n 

permutation braid in B . 
n 

ITJlXZXIR 
e 

Figure (1-8a) 

e 

TIJJl 
IK 

Figure (I-Sb) 
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This work generally is concerned to braids rather than words and 

here is the place where we used to work particularly with words. 

The following lemma, due to Garside, is precisely concerned to words 

in B . 
n 

(1.2.6) Lemma: (Garside) [G2] 

For positive words P, QeB
n

, suppose that O'
i
P = 

P=Q if i=j 

p = O'.Z, Q = O'.Z if ! i-j I ~2 J 1 

P = O'.O'.Z, Q = O'.O'.Z if !i-j!=l J 1 1 J 

for some positive word ZeB where 1 ~ i, j ~ n-1. n' 

Outline of the Eroof of lemma (1.2.6): 

O'.Q, then 
J 

The braid relators (i) and (ii) of definition (0.5) have the property 

that no inverse of a generator appears in either relation. Hence there 

is a semigroup 

a.a. = a.a., !i-j I > 1 
1 J 1 J 

A = a., 1 ~ i ~ n-1 n 1 

where the mapping a.-+O'., for .. 1 ~ i ~ n -1 induces a natural embedding 
1 1 

of A in B , [B2]. Garside's idea is to transfer from A to B in-n n n n 

formation easily obtained in A . Now for positive braid words V., for 
~ 1 

o ~ i ~ r, if V 0 = V 1 = ... = V and if each V. can be obtained from 
r 1 

V. 1 by a single application of one of the braid relators (i) or (li) of 
1-

definition (0.5) (without involving inverses), then one says that Vr 

can be obtained from Vo by a transformation of chain-length r. i.e. 

simply the words V., 0 ~ i ~ r are equal in A. For transformations 
1 n 

of chain -length one, the proof is straightforward. For transformations 

of greater chain-length, one factors into transformations of smaller 
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length, first applies the inductive hypothesis about chain-length then 

the inductive hypothesis about letter length, and checks the all pos-

sibilities. The complete calculations of this proof are given by Garside 

in [G2]. 

(1. 2.7) Proposition: 

For a positive braid (P, n) and for every 1T, n elp , there exists 

;eIp such that ; ~s 1T and ; ~s n. 

Proof: 

Given two positive permutation braids 1T and n in Ip (i. e. P = 1TP 1 

= nP 2, for positive braids P l and P 2 ), write 1T = 0'.1T1 and n = O'.n 1, 
1 J 

for some 1T 1, n1eSB . Using lemma (1.2.6) one can find a corrunon 
n 

starter a for both 1T and n. Now Define mea) = L(t!. ) - L(a), for all 
n 

ae S B , so then m (a) ~ O. Refer to proposition (1. 2 .7), when 1T and 
n 

n have a common starter a with mea) = k, as (Prop')k' 

(Prop. ) 0: Then m( a) = 0, so a = t!.n· But both 1T, neSB , then 
n 

1T = n 

hence, 

= t!. n 

t!. 
n 

So the proof of the general proposition follows by induction on k. For 

our indu~tion hypothesis we assume that (Prop.) r holds. Suppose that 

1T and n have common starter a with mea) = r+1. Let 

and write 

where 

1T = ' aO' • TI , 
1 

n = aO'.n', for TI', n'eSBn J 

P = aQ 

Q = 0'.1T'P 1 = 0'.n'P 2 , i.e. i,jeS(Q) 
1 J 
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for some positive words P 1 and P 2 • Now lemma (1. 2. 6) tells us that 

1T'P 1 = n'P 2 if i=j 

1T'P 1 = a.Z, n'P 2 = 
J 

a.Z 
1 

if li-jl~2 (1.2.1) 

1T'P 1 = a.a.Z, n'P 2 = a.a.Z if li-jl=l J 1 1 J 

for some positive braid ZeB
n

, where 1 ~ i,j ~ n-l, So 

P = o:Q = [(o:a.) U
b 

(o:a.)] (R .. ) 
1 J l,j 

where R .. is a positive braid depends on i and j (as in equation 
l,j 

(1.2.1» with 

L(R .. ) ~ L(1T'Pd = L(n'P 2 ) 
l,j 

Now the pair {1T, (o:a.) U
b 

(o:a.)} and the pair {n, (o:a.) U
b 

(o:a.)}, of 
1 J 1 J 

braids, have the common starters (o:a.) and (o:a.), respectively. But 
1 J 

lemma (1. 2.3) tells us that [( o:a i) Ub (o:a
j
)] e SB n' therefore 

m(o:a
i
) = L(.6

n
) - L(o:a

i
) 

= L(.6 ) - L(o:) - 1 
n 

= m(o:) - 1 

= r 
= m( o:a.) 

J 

Then by induction hypothesis, there exists Xl, X2 e1p such that 

and 

= [(o:a.) Ub (aa')]£2 
1 J 
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for some e., £.e SB , i = 1, 2. We can also apply the induction process 
1. 1 n 

again, because Xl and X2 have [(aa.) U
b 

(aa.)] as a corrunon starter 
1 J 

with 

m[(aai ) Ub (aaj )] = L(~n) - L«aa
i
) U

b 
(aa

j
» 

< L(~n) - L(a) 

= mea) 

= r+l 

Then there exists ~elp such that 

which completes the proof of (Prop.) l' hence completes the proof r+ 

of the general proposition. The relations between these braids are 

represented diagrarrunatically in figure (1-9) 0 

P 

P2 

01 n 1 

/ 

R. 
l,j 

62 £.2-

U
b 

(aa.) 
J 

'TT' 

a 

e 

Figure (1-9) 
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(1.2.8) Corollary: 

For every positive braid (P, n), Ip contains a unique maximal ele

ment, i.e. P = 1TIPI, for some positive braid (Pl,n), such that 

(1T 1 0'.)ItSB , for all ieS(Pd. 
1 n 

Proof: 

Let l, 11eIp' then proposition (1. 2.7) tells us that there exists an 

element aeIp such that 

a ~ l and a ~ 11 s s 

Now assuming that both land 11 are two maximal elements in Ip ' then 

a = l and a = 11 

hence 

a=l=11 

Assuming that 'IT 1 is the unique maximal element in Ip ' then 

for some positive braid PIE B 0 n 

(1.2.9) Corollary: 

For a positive braid (P, n), if 'IT 1 is the unique maximal element in 

Ip ' then S(P) = S(1Td· 

Proof: 

Corollary (1. 2 .8) tells us that 

where 1T 1 is the unique maximal element in Ip and PI is a positive 

braid, then 
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For the converse, let ieS (P), then there is a positive braid p' such 

that 

So 

P = C1.P' 
1 

But 1T 1 is the unique maximal element in Ip ' hence 

then 

so 

which completes the proof 0 

For a positive braid (P, n), the following proposition presents a 

practical test to decide whether an element exeIp is the unique maximal 

starter of the braid P, or not. 

(1.2.10) Proposition: 

In B , let P = 1T lP 1 for a positive braid P 1 eB and for 1T 1 eSB , 
n n n 

, 

then 1T 1 is the unique maKimal element in I~ if and only if S (P l) £ 

Proof: 

For necessity: Order the strings on top of P l, from left to right. 

Let J'eS(Pd, then P l = C1.Q for some positive braid QeB. But 1Tl is 
J n 

the unique maximal element in Ip ' then ex = 1TlC1j~SBn' i.e. the strings 

labelled j and j+1, at bottom of ex, cross twice in ex. Let A and II be 

the permutations of ex and 1Tl respectively, then 
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A = t.1.1eS 
J n 

and 

i. e. 

hence 

-1 1 
1.1 (j+1) < 1.1- (j) 

then lemma (1.1.8) implies that jeF(1T.). Now to establish the suffi-
1 

ciency, let 

If jeS(Pd, then there exist a positive braid (Q,n) and some 8.eSB , 
J n 

such that 

and 

so 

O".Q 
J 

1Tl = 8.0". 
J J 

2 
1TIO"' = 8.0". , for jeS(Pd 

J J J 

i.e. 1TIO".tSB, for all jeS(P 1 ), hence 1Tl is the largest positive per
J n 

mutation braid in Ip, which completes the sufficiency condition and 

hence completes the proof of the proposition 0 

Proof of theorem (1.2.1): 

Given a positive braid (P, n), then find Ip and using corollary 

(1. 2.8), we can write 
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where 1T 1 is the unique maximal element in Ip and (P 1, n) is a positive 

braid. Hence find 1T 2, the unique maximal element in I and write 
(P 1 ) 

for some positive braid P2. But 

then continuing this process, we have 

+ 
for some keil and k ~ 1, with unique maximal factor 1T. as a starter 

1 

of (1T.1T. 1 ... 1Tk ), 1 ~ i ~ k. But as in remark (1.1.6a), we can think 
1 1+ 

of 1T. simply as a permutation in S without any care how the arcs in 
1 n 

1T. cross. Therefore P is uniquely determined by an ordered sequence 
1 

of permutations 0 

(1. 2 .11) Definition: 

A positive braid (P, n) is said to contain II if and only if P = n 

All B for some positive braids A and B. If P does not contain II , 
n ' n 

then P is prime to II and said P has power zero, [B2]. 
n 

(1. 2 .12) Lemma: 

A positive braid (P, n) is said to contain lln if and only if lln is 

the maximal element in Ip ' i. e. P contains lln if and only if P = llnR 

for some positive braid R· 

Proof: 

For necessity: Let P contain II , then n 

P = All B n 
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for some positive braids A and B. So that 

= Il '[ [A] B 
n 

But '[ [A] is a positive braid, then take R = '[ [A] B. 

For sufficiency: Let P = Il R for positive braid R then write P = n ' 

All B for A = e and R = B, hence P contains Il , which completes the 
n n 

sufficiency, hence completes the proof 0 

(1.2.13) Corollary: 

A positive braid (P,n) contains Il
n 

if and only if S(P) = {1,2, ... 

,n-1}. 

Proof: 

The necessity is a direct consequence from lemma (1.1.10). To 

establish the sufficiency: corollary (1.2.8) tells us that 

where iT 1 is the unique maximal element in Ip and P 1 is a positive braid 

in B and corollary (1. 2.9) tells us that 
n 

S(iTd = S(P) 

So if 

S(P) = {1,2, .. , ,n-1} 

then 

S(iTd = {1,2, .. , ,n-1} 

hence lemma (1.1. 10) tells us that iT 1 
= Il , which completes the suf

n 

ficiency, hence completes the proof 0 
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(1. 2.14) Remark: 

As a further analogy with theorem (1. 2 . 1), every positive braid 

(P, n) has a unique right-hand factorization as product of positive 

permutation braids 

P = a a 1 '" al r r-

+ 
for some reZ and r ~ 1, with unique maximal factor (x. at the end of 

1 

(ar a r - 1 ... ail, 1 ~i ~ r. Similarly, as in corollary (1.2.9), 

F(P) = F(a d 

and if 

F(P) = {1,2, .. , ,n-l} 

then 

for some positive braid Pl' Let P = P 1 a 1 where P 1 is a positive braid 

and (XleSB , then (Xl is the unique maximal positive permutation braid 
n 

a t the end of P if and only if F (P d ~ S «(X d . Finally for a positive 

braid, the number of fl factors in its canonical form is called the 
n 

power of P. 

(1. 2 . 15) Lemma: (Garside, Appendix of [G 2]) 

In B , let A and B be two positive braids, such that P = AB = 
n 

fl R, for some positive braid R, then 
n 

(i): A1Tl contains 6. , where 1Tl is the maximal starter of B 
n 

(ii): alB contains 6.
n

' where (Xl is the maximal finisher of A. 

Proof: 

The proof will be done by induction on length of A. 

For L(A) = 0, then 
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P=B=~R n 

so ~n is the maximal starter of B. Now for our induction hypothesis 

we assume that A'lTl contains ~ for L(A) = rand 'lTl is the maximal 
n 

element in IB . For L(A) = r+l, let ieF(A) for some 1 ~ i ~ n-l, then 

we can write A = Ala., So 
1 

Let 11 be the maximal starter for B 1 = a.B, but ieS (B d, then 
1 

a. ~ n 
1 

i. e. 11 contains a., so n can be written as 
1 

Then ~ is a starter for Band 

11 = a.~ 
1 

so the maximal starter of B 1 is contained in a.'IT 1 . Now since L (A l) 
1 

= r, then our induction hypothesis implies that A l11 contains ~ and 
n 

so A'lTl contains ~ , which completes the proof of case (i). 
n 

The proof of case (ii) follows by considering reverse elements in 

case (i) 0 

(1.2.16) Corollary: 

In B , let A and B be two positive braids such that AB = ~ R, n n 

for some positive braid R, then F(A) U S(B) = {1,2, ... ,n-l}. 

Proof: 

Applying (i) of lemma (1.2.15), then A'lTl contains ~n' where 'lTl 

is the maximal starter for B. Again apply (li) of lemma (1. 2 .15), on 

36 



A 1T 1, then ex I1T 1 contains An' where ex 1 is the maximal finisher for A. 

Now write A - '" ( ) th n - ~l exl *' en 

hence 

= F(A) U S(B) 

But lemma (1.1.16) tells us that 

F(exd U S«exd.;'> = {I, 2, ... , n-l} 

so 

peA) U S(B) = {I, 2, '" , n-l} 

which completes the proof 0 

For a positive braid P, if at most k canonical factors of P have 

equal to A , then P = (A )kQ for some positive braid Q and prime to 
n n 

A , i. e. (A )k is a factor of P. Now the following theorem provides n n 

an algorithm to decide whether a given braid P = AB contains (.6 )k, 
n 

or not. This is by writing A and B in their canonical factorizations, 

hence look to factors. 

(1. 2 .17) Theorem: 

In B , let A and B be two positive braids, such that P = AB = 
n 

(.6 ) k R , for some positive braid R, then 
n 

(i): A = Al( 1T 11T2 ... 1Tk ) 

(ii): B = (T11 1h .. · Tlk)B l 

)( ) = (.6
n

)k, where 1T
1
., Tl.eSB for such that ( 1T 11T2 ... 1Tk TlITl2 .. , Tlk 1 n 

every 1 ~ i ~ k. 
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Proof: 

Let (Th')k refer to (i) of the theorem. 

(Th. ) 1 follows directly from lemma (1. 2 . 15), the proof of the general 

theorem follows by induction on k. For our induction hypothesis we 

assume that (Th.) holds. 
r 

For (Th. )r+1: Let (An)r+1R = AB, then AB contains An' hence 

lemma (1.2.15) tells us that there exists some 1T, neSB such that A n 

= A'1T and B = nB', with 1Tn = Il . Then n 

So that 

i. e. 

= A'A B' 
n 

= A'r [B']1l n 

(Il )rr[R]1l = A'r[B']1l 
n n n 

(Il )rr[RJ = A'r[B'] 
n 

Then the induction hypothesis tells us that 

for some a.ESB , 1 ~ i ~ r. So that 
1 n 

a; , say 
r 
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which completes the induction hypothesis, hence completes the proof 

of (i) of the general theorem. Case (ii) also follows by considering 

reverse elements in (i) 0 

(1.2.18) Theorem: 

A positive braid (P, n) is a factor of (f1 )k if and only if its 
n 

canonical form has at most k factors. 

Proof: 

For necessity: Let P be a factor of (f1 ) k, then there exist a 
n 

positive braid Q such that PQ = (f1 )k. But for k = 1 the proof follows 
n 

directly from corollary (1. 1. 15). Then the proof of the necessity fol-

lows by induction on k. Assume that the theorem holds for k = r. 

Now let 

PQ 

then lemma (1.2. 15) tells us that P = P I1T 1 and Q = ~ 1 Q 1 for positive 

hence 

(f1 )r+ 1 = PQ 
n 
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Then from our induction hypothesis, the canonical form of P 1 has at 

most r factors. Therefore P 11T 1 has at most r+ 1 factors, which com

pletes the induction process, and so completes the proof of the ne-

cessity. 

For sufficiency: Let 

P = 

for 1T. E S B , 1 ~ i ~ k, then by switching the factors 1T. by either 
1 n 1 

.:c 
(1Ti ),:c or (1Ti ) and using lemma (1.1.16), for 1 ~ i ~ k., we have 

hence 
-,- >:< -,-

P (1Tk ),:« 1Tk - 1) = ( 1T 11T2 1Tk - 2) (1Tk - 1) (An) (1Tk - 1) ... 

= ( 1T 11T2 1Tk - 2) (1Tk - 1 ) (1Tk - 1)*An 
... 

( 1T 11T2 
2 = 1Tk - 2) (An) ... 

Then continuing this process we finish with positive braid Q such that 

PQ = (A ) k. Then P is a factor of (A ) k, which completes the proof 
n n 

of sufficiency, hence completes the proof of the theorem 0 

(1. 2 . 19) Proposition: 

Every factor of (A )k has property that each pair of arcs cross 
n 

at most k times. 

Proof: 

k Let P be a factor of (A ) , then theorem (1. 2 .18) tells us that the 
n 

canonical form of P has at most k factors. But every pair of arcs in 
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a positive permutation braid cross at most once, hence the proof fol

lows directly 0 

But not every such positive braid with each two arcs cross at most 

k time s is a factor of (6n ) k, an example to show that is given below. 

(1.2.20) Example: 

In B , the braids ~. = (0'.+1)20'.0'.2(0'.1 )2 
n 1, nIl 1+1+ 

2 2 2 
(O'i) (O'i+l) are not factors for (6

n
) . 

Proof: 

and a. 
l,n = 

It is enough to look at (a l 3)eB3 and (6
1 

4)eB
4

, because we can , , 
have (6n _l )2 from (6n )2 by deleting any string in (6

n
)2 as in figure 

2 2 (I-lOa). So that order the arcs in top of a
l 

3 = (O'd (0'2) from left , 
to right, then as in figure (I-lOb) the pair {1,2} of arcs cross each 

other twice, as do the pair {2, 3} of arcs. So a
l 

3 is a factor of , 
(6 3 )2 only if the pair {1,3} of arcs cross each other twice, which is 

impossible without crossing the middle arc, hence a
l 

3 is not a factor , 

2 2, 
of ~I 4 = (0'2) 0'10'3(0'2) from , Similarly order the arcs in the top 

the left to the right. Then as in figure (l-lOc) , the pair {2,3} of arcs 

cross each other twice, as do the pair {I, 4} of arcs and the pair 

{1,3} of arcs never cross each other. But the pair {1,3} never cross 

each other without crossing either the second arc or the fourth one, 

which means that two arcs crossed more than twice, hence ~l 4 is not , 
2 a factor for (6 4 ) 0 
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( 1 . 2 . 21) Proposition: (A geometric view of the factorization of (~ ) 2 ) 
n 

In B n' if (~n) 2 = PQ for two positive braids P and Q, then P = 
ala2 and Q = Q.1Q.2, h Q. SB f . 1 2 JJ JJ were a., JJ. e ,or 1 = , . 

lIn 

Proof: 

Write P = ala2 such that a2 is the largest positive permutation braid 

as a finisher of P. Assume that al~SB , but P is a factor for (6 )2, 
n n 

then there are two arcs crossed twice in a 1 and they never cross in 

(X2· Hence the proof follows by induction on such these arcs which 

cross twice in a 1. So let a 1 has only two arcs i and j (labelled on top 

of ad such that they cross each other twice. Then 

for some generators ok and om which represent the crossings of the 

arcs i and j. Now take a = AOkB and r = om Ca2, then P = al, where 

aeSB , Hence to prove that leSB , it is enough to show that the arcs 
n n 

which crossed in ° C never cross in CX2. m 

Now as in figure (1-11), we can arrange the arcs labelled i and j 

on the top of P to cross at the end of AokB. We can also arrange the 

braid word C to contain a Lorenz braid ~(a, b), (which is a positive 

permutation braid in B b' with single starter ,see definition (3.1.1». 
a+ 

Then we only need to prove that the arcs which crossed in ~(a, b) they 

never cross in CX2. But in CX2 the out strands from the tangle ~(a, b) 

never cross the arcs labelled i,j in the top of the braid (6
n

)2. 

Therefore assume the contrary. Hence we have a contradiction with 

d Q. factors of (A )2 example (1.2. 19), where cxk an JJ are Ll respec-,n r,n n 

tively, see figures (1-12a) and (1-12b) 0 
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1 n-l n 

1 n-l n 

Figure (I-IDa) 

B 

1 
CJ C 

m 

I 

1 

123 1 234 
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Figure (I-lOb) Figure (1 -IDe) 

i-I i j j + 1 n 
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I' 

/ 

Figure (1-11) 
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Figure (1-12a) 

Figure (1-12b) 
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§1.3. AN ALGORITHM FOR FINDING THE CANONICAL FORM 

FOR A POSITIVE BRAID 

(1.3.1) Algorithm: 

Starting with a positive braid (P, n), then without any application 

of the braid relators (i) and (ii) of definition (0.5), write P as a 

successive product of generators, i. e 

where 

cr. 
I 
m 

1 ~ i. ~ n-1, 1 ~ j ~ m 
J 

Again without any application of relators (i) and (ii) of definition 

(0.5), rewrite P as a product of positive permutation braids, i.e. 

'TT , for 'TT. e S B , 1 ~i ~ r 
r I n 

where 

'TT. 1 = (cr. ) (cr. ) ... (cr. ) 
J+ I +1 I +2 I 

~ Sj Sj+1 

for 0 ~ j ~ r-1, So = 0 pnd s = m. r 
Find the starter set I for every 'TT. 

'TT. , 
I 

2 ~ i ~ r, then find the largest 

('TTla:)eSB , so for some reSB , we have 
n n 

I 

element such that 

where 'TT2 = a:r. Again find the largest starter a for 'TTl such that 

(rB)eSB and write 
n 
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where iT3 = aT]. Continuing this process we can have a new 

factoriza tion 

+ 
for some sel Again find the starter set for each T]. and then repeat 

1 

the previous steps. 

In other words bracket the successive letters of the word P as a 

product of positive permutation braids (iTliT2 ... iT
k

). Investigate the 

crossings of the arcs of the first factor iT 1, to decide which arcs do 

not cross in the braid iT l' If a pair of such these arcs cross in iT 2 

and if it is possible to pull that crossing at the end of iT 1 then do it. 

Do that with the other pair of arcs, hence finish with new positive 

permutation braids (iTd' and ( iT 2)'. Repeat that again on ( iT 2)' and 

iT 3 to finish with (iT 2)", and ( iT 3)" Repeat that again on (iT)' and 

(iT 4 ), and so on. Then the braid P has the new factorization, 

[(iTd'( iT 2)"(iT 3)" ... (iT
k

- 1)" (iTk ) '] . Note that the number of factors 

does not increase under the algorithm, because it is possible that some 

of the factors vanish. But L{P) is finite and SB is also a finite set. 
n 

Then ultimately a stage must be reached when further applications of 

the process will yield no new factorizations. 

The condition is that a starter of a factor should be a finisher of 

the previous factor. i. e . 

increase the length of iT .. 
1 

if ieS(iT. 1) then ieF(iT.), otherwise we can 
1+ 1 

Note also that the number of factors of P 

never increase under the algorithm. An example for applying this al-

gorithm is given in example (1.3.3). 
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(1. 3.2) Theorem : (A practical test for use in the algorithm) 

Given a positive braid (P,n) with the factorization P = (1T11T2 

1Tk ), where 1TiESBn , 1 ~ i ~ k, then the given factorization is the 

left - hand canonical form of P if and only if S ( 1T i + I1T i + 2 ... 1T k) ~ 

F(1T.), for 1 ~ i ~ k-1. 
1 

Proof: 

Put Pi = (1Ti1Ti+l ... 1Tk ), for 1 ~ i ~ k, with P 1 = P. Using pro

position (1. 2 . 10) for P 1 , then P 2 and so on. Then 1T. is the maximal 
1 

factor for P. if and only if S(1T. I 1T . 2 ... 1Tk ) ~ F(1T
1
.), for 1 ~ i ~ k-l, 

1 1+ 1+ 

which completes the proof 0 

(1. 3 . 3) Example: 

Let 

Then write P as a product of positive permutation braids, 

Find the starting and finishing sets for each factor, then 

Then applying the algorithm we can write P in its canonical 

factorization as P = (Ci1Ci3Ci2Cil) ( Ci 2Ci 1Ci 3 Ci 2) (Ci2) (Ci2), where the appli

cations are illustrated diagrammatically in figure (1-13) 0 
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~apply the algorithm on 1T 2, 1T 3 

~apply the algorithm on 
, 

1T 2, 

1T"2 1T"3 

~apply the algorithm on 1T 1, 1T" 2 

Figure (1-13) 

(1. 3.4) Corollary: (Canonical length for a positive word) 

For a positive braid (P, n), the number of factors in the right-hand 

canonical form of P equals the numbers of factors in its left-hand 

canonical form. 
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Proof: 

Let P have left-hand canonical form with k terms and right-hand 

canonical form with r terms, then start with the left-hand canonical 

form of P (which has k terms) and apply the algorithm above to write 

the right-hand canonical form of P. But the algorithm never increase 

the number of factors, hence r ~ k. Similarly if we start with the 

right-hand canonical form of P, then we have k ~ r, so k = r. The 

number of factors in a canonical form of a positive braid P is called 

the canonical length of P and denoted CL(P) 0 

(1.3.5) Corollary: 

If (P,n) is a positive braid with CL(P) = k, then p-
1 = (fln)-kQ, 

-1 
where Q is positive and prime to fl , i. e . the power of P equals 

n 

-CL(P) . 

Proof: 

Theorem (1. 2 .18) tells us that P is a factor of (fln)k. Then there 

exists a positive braid Q such that 

PQ 

and CL(Q) ~ k, because Q is also a factor of (fln)k. Then 

f f (fl ) (k-l) which 
But Q does not contain fln' otherwise P is a actor 0 n 

contradicts theorem (1.2.18), hence Q has power 0 0 
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§1.4, APPLICATIONS 

(I) I' A NORMAL FORM FOR GARSIDE'S SOLUTION OF THE WORD 

PROBLEM IN B 
n 

Let 6 be any word in B n' then from corollary (1. 1. 15), we can 

replace every negative permutation braid 1T -1 (which occurs in the 

braid word 6) by 

-1 ,~ 
(~) 1T 

n 

Now using the property, of lerruna (1.1.11), 

+1 +1 
t[(a.)- )] = (<1 .)-

I n-l 

then collect all [(~ ) -1] 's (introduced in the further step) at the left. 
n 

So that ~ is represented by a word of the form 

m 6 = (ll ) P, m ~ 0 
n 

for a positive word P. Now find the left-hand canonical form of Pol as 

in theorem (1. 2 .1), 

Let P has power r, i. e . each one of the first r factors in the canonical 

form equals II , hence 
n 

P = (ll )r(1T 11T 2 ... 1Tk ) n r+ r+ 

So that 

m+r ) 
~ = ( ~) ( 1T 11T 2 ... 1Tk n r+ r+ 

(1.4.1) 
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Then the form in equation (1.4.1) is called the standard form for e 
and (m+r) is called the power of e, which denoted W(~). Since every 

positive permu ta tion braid is only determined, as in lemma (1. 1.3) , 

by its associated permutation, then ~ is determined by its power and 

the corresponding tuple 

where ~. is the associated permutation of 1T., in equation (1. 4.1). Such 
1 1 

B (~) is called the base of ~ and the number of components in B (~) 

is called the base length of ~ , denoted BL( ~) . 

(1. 4.1) Proposition : 

In B every word 6 is uniquely determined by its power and base. 
n 

Proof 

Let a be a braid word with two powers a, b and with two corre-

sponding bases 

then 

where 1T. and n~ are the corresponding positive permutation braids for" 
1 J 

the permutations a. and I). respectively, for 1 ~ i ~ k, 1 ~ j ~ r. Now 
1 J 

assuming that a ¥ b and (a-b) > 0, then 

which contradicts that (n 1 n 2 ••• n r) is prime to fln' otherwise ( I) 1 , 

6
2

, .. , , ~r) does not a base for ~, so a = band 
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But theorem (1. 2 .1) tells us that P has a unique (left-hand) canonical 

form, so 

hence 

n. = 1T.eSB 1 for 1 ::;; i ::;; k = r 
lIn 

ex. = S. eS 1 for 1 ::;; i ::;; k = r 
lIn 

Therefore the two standard forms are identical 0 

( 1. 4 . 2) Theorem: (The sol u tion of the word problem) 

In B , two words are equal if and only if their standard forms are n 

identical. 

Proof 

The sufficiency is clear and the necessity has been shown in pro-

position (1.4.1) 0 

(II): ON CONJUGACY PROBLEM IN Bn 

/ 

An algorithm is now given to decide whether a positive braid P is 

conjugate (or not) to tJ. Q for some positive braid Q. 
n 

(1.4.3) Algorithm: 

In B n 1 let P be positive and prime to tJ.n · Then we can decide 

whether P is conjugate to tJ. Q (or not) for a positive braid word Q 
n 

as follows: 

Put P in its (left-hand) canonical form 
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then 1Tl # An' because P is prime to An. Now conjugate P by 1Tl. Then 

Hence write P 1 in its canonical form as 

If a 1 = An' then the algorithm will stop. Otherwise repeat by conju

gating P 1 by a l, then 

Hence write P 2 in its canonical form as 

If ~ 1 ~ A , then continue the process. Hence on repetition the algo
n 

rithm either stops or cycles, i. e . at some stage either P. contains 
1 

A or P. is prime to A with P. = P., for some j < L This is because 
n 1 n 1 J 

k. ~ k. 1 ~ ... ~ kl ~ k and SB is a set of finite order, Le. a stage 
1 1- n 

must be reached when further applications of the process will either 

factor out Aor yield no new words 0 
n 

The following theorem provides a proof of the algorithm above: 

(1.4.4) Theorem: 

In B , the positive braid P is conjugate to A R, for a positive braid n n 

R if and only if the algorithm above produces An· 

Proof: 

Let P = 1T 11T 2 ••• 1T k be the (left - hand) canonical form of P and write 

= (a.)-lP.a., 1 ~ i ~ k-l 
111 
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and 

where ex. is the first factor in the (left-hand) canonical form of P .. 
1 1 

For sufficiency: Each P. is conjugate to P, so if h. appears in P. then 
1 n 1 

take ex. = h. and R = Q., where P. = ex.Q .. 
1 nIl 1 1 

For necessity: Let P be conjugate to h. R for a positive braid R, 
n 

then put P = 1T 1 Q 1, for positive braid Q 1 and 1T 1 is the maximal starter 

for P. So let 1T 1 F h. , otherwise P contains h. , hence the proof is 
n n 

trivial. Now let P and h. R are conjugate by a braid word l. But 
n 

(h. )2ml = A, say, is positive for large enough m and (h. )2 corrunutes 
n n 

with every thing, then 

AP = h. RA 
n 

So if L(A) = 0, then P contains h. up to conjugation, hence the proof 
n 

follows by induction on the length of the conjugator A. Then for our 

induction hypothesis we assume that the theorem holds for conjugators 

of length ~ r. Then assume that L(A) = r+1. But 

= h. RA n 

Then using lemma (1.2. 15), we can write 

for a positive word A 1, so 

= (h. )RA 
n 
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Hence 

So 

Then Q 11T 1 is conjugate (by '[ [A 1]) to Il t [R], with L(A 1) < L(A). 
n 

So by induction hypothesis, cycling the factors Ql1Tl will produce 

Il , i. e. applying the algorithm (on P) produces Il , which completes 
n n 

the induction process and so completes the proof 0 

(1. 4. 5) Lemma: 

In B , if braids P and Q are conjugate by a positive braid A and 
n 

-1 
if power of P = power of Q = k, then the power of a; Pa; ~ k, where 

a; is the maximal starter for A. 

Proof 

Let a; be the maximal starter for A. i. e . A = a;At, for a positive 

word AI. Then proposition (1.2.10) tells us that 
~ 

F(a;) ;2 SCAd 

But 

i. e. 
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Now put P and Q in their standard forms (~n)kp, and (~n)kQ', re

spectively, for positive braids pI and QI. Then for k-even 

So 

~ A QI n 1 

~:: 

P(a pIa) 2 F(a) 2 S (Ad 

But oJ using corollary (1. 2 .16), 

,'t 

SCAd uF(a'P'a) = {I, 2, , n-I} 

Then corollary (1.2.13) tells us that (a':<pla) contains ~ , i.e. 
n 

* a pia = ~ R 
n 

for some positive word R. So 

a':'pl a = a':<aR 

then 

pia = aR 

1 -1 
so a-Pia = R is a positive word, then a Pa of power ~ k. Now for 

k-odd and using lemma (1.'1.16), we have 

a.,,P I aA 1 = ~ '[ [A II Q I .... n 

Similarly (a,:<pla) contains ~n' i.e. 

= ~ R' n 

for some positive braid R I. Then 

~ (a.,.pla) n .,' 

so 

>' .. 
= a (~ PI) a 

n 

~ pIa = a(~ R') n n 

.:< = a (a)(~ R') 
n 
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i. e . a -1 (L\n PI) a is positive and contains L\n' hence a -1Pa of power ~ 
k, which completes the proof 0 

(1.4.6) Algorithm: (summit forms and summit set), [GI] and [G2] 

In Bn , every word a has a standard form (6
n

)rp , for a positive 

word P which is uniquely determined by its canonical form. Let 

r 
(6 ) p = W 1, say. Define n 

Let those words in WeI) which are of power ~ r, which are distinct 

from W 1 and from each other, be W 2, W 3, ••• , W t. Now repeat the 

process for each of the words W 2, W 3, , W t in turn, denoting 

successively by Wt +I ' Wt +2 ' any new words occurring. The 

condition being always that each new word must be of power ~ r. 

Continue to repeat the process for every new distinct word arising, 

as the sequence W 1, W 2, .•. ,W t+2' '" expands. Now each word of 

the sequence is of the same index length as a. So let (6 ) kQ be the 
n 

standard form for any W., then k ~ r. But 
1 

L(a) = L( (6 )kQ) = k(L(6 » + L(Q) ~ L(6 ) 
n n n 

So 

[L(a)/L(6 )] ~ k ~ r 
n 

/ 

Then the number of values of k is finite and the possible values for 

Q are also finite for fixed k, hence the sequence W 1, W 2, '" is finite. 

So ultimately a stage must be reached when further applications of the 

process will yield no new words. Suppose that the highest power 

reached is s and that the words of power s form the subset V 1, V 2, 

th a Y V will called a summit form of a. The set V 1, V 2 , . .., en n r 
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. .. will called the summit set of a, denoted S S (a). The power s of 

any summit form will called the summit power of a. 

(1.4.7) Definition: (Super summit forms and super summit set) 

For a braid word a in Bn , apply Garside's algorithm above with 

the condition that; choose those words where their associated basis 

(in their canonical forms) have the smallest canonical length among 

those words at each stage. Then define the super summit forms of ex 

as those summit forms with basis of the smallest canonical length among 

the summit set of a. The set of super summit forms of a will be called 

the super surmnit set of a, denoted SSS(a). Hence for every braid 

word a there is an associated number (the canonical length of the base 

of any super surmnit form of a), called the summit length of a and 

denoted SL(a). 

(1. 4. 8) Theorem: 

For a braid word a, let P and Q be two super sununit forms, then 

there are a sequence of elements Ro = P, R 1 , ••• , Rs = Q in the super 

summit set of a such that R. 1 conjugate to R. by a positive per~u-
1+ 1 

tation braid. 

Proof: 

Let P and Q have summit length r, i. e. SL(P) = SL(Q) = r, then 

P and Q have standard forms 

/ 

where p' and Q' are positive braids with CL(P') = CL(Q') = rand k 

is the summit power of a. Now let P and Q be conjugate by braid 

. t b ·t· bral'd X = (A )
2m

W for large W, then they are conJuga e y a POSl Ive Lln 
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enough positive integer m, where (An)2 commutes with every thing. 

So put X in its left-hand canonical form as , 

and let 

with 

1T , 
S 

say 

-1 
W. = (1T.) (W. 1)1T., for 2 ~ i ~ S 

1 1 1- 1 

Then lemma (1. 4. 5) tells us that each W. is of power ~ k, hence 
1 

of power k. i. e. each Wi is a summit form for a. N ow find the in verse 

of each W. and use corollary (1. 3 . 5), then 
1 

where P 1 and Q 1 are positive and prime words to A . Now let W 1 = 
n 

k -1 
(A ) R, with SL(Wd = t ~ r, then (Wd has power -(k+t). But the 

n 
-1 -1 

braids P and Q have the same power - (k+r) and they are conjugate 

-1 -1 
by the positive braid X, then lemma (1. 4. 5) tells us that (1T d P 1T 1 

= (Wd -1 has power ~ -(k+r), so that -(k+t) ~ -(k+r), Le. r ~ t, 

hence r = t. Repeat this process with W 1 and Q, and so on. Then 

each W. has summit length r, i. e. each W. is a super summit form for 
1 1"-, 

a, which completes the proof 0 

The following theorem provides an improvement of Garside's solution 

to the conjugacy problem in B , where the invariant class (summit 
n 

set) under conjugacy is reduced to a much smaller invariant subclass 

(super summit set). 
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(1.4.9) Theorem: 

In Bn' two words are conjugate if and only if their super summit 

sets are identical. 

Proof: 

The sufficiency is clear. To establish the necessity, suppose that 

the words 0: and e are conjugate in B. Let (A )r A and (A ) tB be 
n n n 

any super summit forms for 0: and e, respectively, hence (A ) r A and 
n 

(An) tB are conjugate through such forms (by a braid word R), as in 

2m 
theorem (1.4.8). But (An) R = X, say, is positive for large enough 

m and (A )2 commutes with every thing, then n 

Now assume that t ~ r, then put X in its left-hand canonical form, 

as 

X = 
Put 

W. = (1T.)-l(W. 1)1T., for 2 ~ i ~ k 
1 1 1- 1 

and 

Then lemma (1. 4.5) tells us that each Wi is of power at least r, 

for 1 ~ i ~ k. But theorem (1.4.8) 

the super summit set. Therefore W
k 

also tells us that each W. still in 
1 

= (A ) tB is of power at least r. 
n 

So (A ) tB is a super summit form for 0:, hence we can not have t > 
n 

r. Similarly we can not have r > t, so r = t and (An)tB is a super 

summit form for 0:. Similarly any super summit form of 0: is a super 

summit form of e. So that the super summit sets of 0: and e are 
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CHAPTER 2 

TWIST POSITIVE BRAIDS WITH 

THE 2-VARIABLE LINK INVARIANT AND 

THE ALGEBRAIC LINK PROBLEM 

§2. a. INTRODUCTION 

I: On the 2-variable link invariant 

A link invariant is a function from the isotopy classes of links to 

some algebraic structure. Alexander.J, [A], has been introduced the 

first link invariant ilL (t) of an oriented link L, which is a Laurent 

polynomial in the variable t. Alexander had explained how to calculate 

ilL (t) by taking the determinant of a matrix associated with a 

projection of the link suitably chosen in a special position in a plane. 

In fact ilL (t) is a link invariant up to sign and multiplication by powers 

-1 
of the variable t and can be normalised so that ilL (t) = ilL (t ) . 

The Conway polynomial V
L 

(z) is a direct link invariant, in fact it 

generalise the normalised Alexander polynomial, where ilL (t) = 
-1 VL(/t-/t ), llL(t) is normalised. The polynomial VL(z), first intro-

duced by Conway.J, [Co], has remarkable properties that allow its 

computation from a link diagram without recourse to matrices or de-

terminants. Conway has proved that, if L+, L_ and La are planar 

projections of three oriented links that are exactly the same except 
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near one point where they are as in figure (2-1), then the Conway 

polynomial satisfies the formula: 

VL (z) - V
L 

(z) = zV
L 

(z) 
+ - 0 

(2.0.1) 

But the un knot 0 has aO (t) = 1 and that the Alexander polynomial 

for the unlink of unknots is zero, then Conway's algorithm for cal

culating the polynomial VL(z) is given by changing cross-overs, in 

sequence, any link can be changed to an unlink of unknots, where 

the polynomial is known. 

L 

Figure (2-1) 

Using representations of the braid groups, Jones. V. F. R introduced 

a Laurent polynomial invariant V L (t) for an oriented link L in S3, [J]. 

Jones began with a link L expressed as a closed braid a C
, for some 

(a, n). He then defined a representation, t, of B to the group of 
n 

units of a certain Hecke-algebra over the field of fractions of Z [It] 

on which is defined a trace function, then he defined, 

-1 (n-l) 
VL(t) = -(/t+/t) trace[t(a)] (2.0.2) 

By using the structure of the braid group, and Markov moves, Jones 

showed that VL(t) is indeed a link invariant. He also proved that 

VL(t) satisfies, 

tV
L 

(t) 
+ 

t - 1 V ( t ) + ( It - It - 1) V
L 

( t ) = 0 
L 0 

(2.0.3) 
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where L+, L_ and LO are closed braids that are exactly the same except 

near one point where they are related as in figure (2-1). It is also 

true that V oCt) = 1, 0 is the unknot. The formula in equation (2.0.3) 

could be employed to calculate V L (t) for any link, just as in the case 

of Alexander and Conway polynomials. The similarity between ilL (t) 

and VL(t) raised the question: Are there a more general polynomial 

invariant for isotopy classes of oriented links, which specialise ilL (t) 

and V L (t)? In fact the question has been answered by many authors, 

where Freyd . P , Yetter. D, Hoste . J, Lickorish. W. B . R, Millett. K and 

Ocneanu.A, [F-Y-H-L-M-O], independently realised that VL(t) could 

be generalised to produce a link invariant P
L 

(v, z) which is a Laurent 

polynomial of 2-variables and which specialises to give ilL (t), V
L 

(t) 

and V L (t). Every discoverer of the 2-variable polynomial P
L 

(v, z), 

gave his own approach which is either completely combinatorial, [L-M] , 

or combinatorial and algebraic, [0]. Hence there are different con-

structions of P
L 

(v, z), where they are related by simple change of 

parameters. Here it is followed the construction given by Morten. H, 

[M03] , and Morton.H & Short.H, [Mo-Sl], to compute the polynomial 

PK(v, z) by representing K as a closed braid. They developed the 

theory based on the approach of Ocneanu, where a braid (B, n) closing 

to the given oriented link K is represented as pv(B) in an algebra 

H(z), Hecke algebra as in theorem (2.0.1) below. So that after 

normalisation by a suitable constant ll, (because of the similarity be

tween condition (iii) of theorem (2.0.2), below and Markov moves of 

type (ii) of theorem (0.8», the number 

(2.0.4) 
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depends only on K and not on the representing braid a. This number 

pee) is a polynomial with integer coefficients, PK(v,z), in two pa-

t ±1 ±1 h' h . 1 d' rame ers v , z W IC are Invo ve In the construction of H(z) and 

the representation p • The polynomial P(f3) provides a link invariant 
v 

of K which is to be calculated from a given choice of a. 

I t follows from rela tion (i) of theorem (2.0. 1) below, that c. is 
I 

invertible with (c.) -1 = c. - z, then B 1 can be represented in H , 
I I n+ n 

for any choice of v, by a homomorphism p , where p (eJ.) = vc .. v V I I 

-1 
Starting with Tr(l) = 1 and since eJ., (eJ.) close to the same closure, 

I I 

hence using relation (iii) of theorem (2.0.2) we have, 

But 

-1 
Tr ( p ( ( eJ. ) ) ) 

V 1 

hence 

= v -lTr (c.-z) 
1 

= v -l(T-z) = ll, say 

(2.0.5) 

1 1 · Z [±1 ±1] It is shown that PK(v, z) is a Laurent po ynomia ill v, Z , 

satisfying the recurrence relation, 

v -lPL (v,z) - vP
L 

(v,z) = zPL (v,z) 
+ 0 

(2.0.6) 

\ 

where L +' Land LO are links that are exactly the same except near 

one point where they are related as in figure (2-1), see for example 

[Mo3] . This formula in fact gives a good method for recursively 

computing PL(v,z) together with the normalisation that PO(v,z) = 1 

and the unlink On of n components has P (On) (v, z) = 
-1 n-1 

[(v -v)/z] . Now given an oriented link L, write 
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then Morton.H, [M03] , proved that 

c ( ~ ) - (n -1) ~ e min ~ e max ~ c ( ~ ) + (n -1 ) 

for any braid (~,n) with aC = Land [(e -e. )/2 + 1] is the lower 
max rrun 

bound for the braid index n of any braid with closure L. Also if L 

can be represented by a positive braid (~,n), then e. = c(a) 
rrun 

(n-1). So Morton.H asked if e = c(a) + (n-I) for a twist positive 
max 

braid. This inequality is shown in [M04] to apply also where n is the 

Seifert circles arising from any diagram of L. A similar bounds for 

c (a) ± (n -1) and for the braid index is given by Franks. J and 

Williams.K, [F-W]. A different upper bound for c(a) - (n-1) was also 

given before by Bennquin, [Be], since he proved that c(a) - (n-1) 

~ 1 - X, where X is the Euler characteristic for a minimal genus 

spanning surface for K. 

(2.0.1) Theorem: (Ocneanu.A, [OJ) 

We can construct; for each ze[, an algebra H(z) with generators 

c., 1 ~i and relations 
1 

2 
(i) : ( c.) = zc. 

1 1 

(ii) : c.c. = c.C. 
1 J J 1 

(iii) : c. 1c.c'+1 = 
1+ 1 1 

+ 1 for all i 

!i-j! > 1 

c.c·+1c. 1 ~ i' , 
1 1 1 

a Hecke algebra, which is the group algebra [[S) when z = o. 

(2.0.2) Theorem: (Ocneanu.A, [0]) 

We can construct for any given Te[ a linear function Tr: H(z)-+[ 

with the following properties: 

(i): Tr(l) = 1 
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(ll): Tr(ab) = Tr(ba) 

(iii): Tr(Wc ) = T(Tr(W»), for all Wetl 1 n n-

(2 . 0 . 3) Theorem: 

(i): PL (/t- 1,/t-It-1) = 1, P
L

(/t,/t-/t- 1) = (_I)I-c 

(ii): PL (I,z) = VL(z) 

(iii): PL (I,/t-/t-1) = AL(t) 

= (/t-/t- 1)I-cT «/t_/t-1)2) 

= V
L 

(It-It -1) 

(iv): P L (t,/t-/t- 1) = VL(t) 

(v): If the braid (S, n) closes to an amphicheiral knot then, 

c(S)-(n-l) ~ emin ~ 0 ~ emax ~ c(S)+(n-l), so Ic(S)1 < n 

(vi): e min = (c-l)mod(2) 

where c is the number of components of the oriented link Land 

e 
max' emin are the largest and the smallest degrees of v in P(v, z) . 

II: On the algebraic link problem: 

The central theme in the link theory is to find an algorithm to 

decide "whether any given links are equivalent or not". This geometric 

problem is translated to an algebraic form after the approach of braid 

theory to the link theory, where Alexander. J proved that every ori-

ented link can be represented as a closed braid, [B2]. Markov also 

proved that two closed braids are the same oriented link if they are 

related by a sequence of moves of types (i) and (li) of theorem (0.8), 

[B2] . Hence the geometric problem, cited above, can be formulated 

in an algebraic form as" given two closed braids a
C 

and SC does there 

exist an algorithm to decide whether (a,n) can be obtained from (S,m) 

by a sequence of Markov moves", this form is known as the algebraic 
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link problem. In fact there are several examples of non conjugate 

braids which define the same link type, e. g. for any (a, n) the two 

braids aO'n and a(O'n) -1 are not conjugate, but they represent the same 

link type, [B 2]. There are also much more complicated examples of 

non conjugate braids which define the same link type, see for example, 

[Bl] and [Mu-Th]. Even for minimal braid index, the conjugacy 

classes are not link invariant, e. g. a = 
3 7 5 c c 

(0' d (0'2) (0'3) , are not conjugate in B 4, but a and 6 have the same 

isotopic closure, [B2]. The existence of such examples show that the 

solution of the algebraic link problem is not simple. Recently Birman.J 

introduced a new move between isotopic links, called "exchange move", 

which takes one closed braid to the another, [B-Me]. In fact the ex-

change move is a generalisation of Conway's "Hype move", which is 

defined as in figure (2-2a) below, by replacing each individual strand 

by parallel copies and replace the braids U, V, R by braids on more 

than two strands, as in figure (2 - 2b) below. 

(2.0.4) Conjecture: (Birman.J and Menasco.W), [B-Me] 

Exchange moves are possible alternative to Markov moves. M9re 

precisely: 

Let (a,n) be a braid with a C a link of ,braid index m ~ n, then there 

is a finite sequence of n - braids a=a 1-+a2-+ ... -+ak , such each a i + 1 is 

obtained from a. by either conjugation or exchange move such that 
1 

a
k 

admits an exchange move which is strictly index reducing. Con-

sequently when a link L, of braid index n, is a closure of two braids 

(a, n) and (6, n), then the two closed braids a c and 6 c are related 

by a sequence of n-braids a=al-+a2-+ ... -+ak =6, obtainable as above. 
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Because of the intrinsic properties of the twist positive braids, 

such as in theorem (2.1.10), (where the number of strands in a twist 

positive braid is a link invariant and the 2-variable polynomial deter

mines c(B)' the crossing number of any positive braid (~,n», we can 

ask: Can one decide whether a braid type could be written as a twist 

positive braid up to conjugation? e. g. consider the following conjec-

ture: 

(2 .0. 5) Conjecture: (Morton. H) 

Braids in Bn admitting non -trivial exchange move, not simply 

conjugation, can not be written as twist positive braids. In other 

words the conjugacy class of twist positive braid representative is a 

link invariant, provided that Birman's conjecture in (2.0.4) holds. 

Section 1 is devoted to the study of twist positive braids with the 

2-variable link invariant P
L 

(v, z), for some link L. Starting with the 

observation that the elements of SB have the property that each two 
n 

arcs cross at most once, then one can combine a pair 1T g' 1Th of ele-

ments of SBn where 1Th is 1T g with two adjacent pairs of arcs crossed 

in 1T
h

, while they do not cross in 1T g , i.e. for some r, 1 ~ r ~ n-l, 

we can write 1Th = d;'1T g' Starting ~lso with ,a result due to Morton. H 

and Short. H, [M-Sl], where the subalgebra Hn (z) of the algebra H(z) 

in theorem (2. O. 1) has dimension (n + I)! as a vector space genera ted 

by Pl(SB
n

+
1
)' with Plea) = c

i
' 1 ~ i ~ n. Consequently one can think 

of PI (B), for any braid (B, n), as a linear combination of the basis 

elements, i.e. we can write Pl(B) = + 

( b ) W here b = P 1 (1T ), and Wg is a polynomial of z with 
Wn! z) n! ' g g 

integer coefficients. 
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In lemma (2.1.3) it is proved that Pl(Q)b
h 

is a positive combination 

of b g in Hn -1' i. e. no cancellation of factors. Moreover it is proved 

in lemma (2.1.4) that P d1Tp [1T)) is a linear combination of generators 

bh's with leading coefficient (1 + zf(z», for a polynomial fez) with 

non-negative coefficients, where P [1T] is 1T reversed. In fact this 

approach gives a quick proof that the number of strands in a twist 

positive braid is the braid index, which was first proved in [F-Wl]. 

Consequently it is shown in lemma (2.1.5) that Pl(1T~ ) contains 
n 

P 1 (~n)' for every 1TESBn , a generalisation of that is given, in corollary 

(2.1.6), by replacing 1T by Q, for any positive braid Q. Following 

that it is proved in proposition (2.1. 8) that twist positive braid is 

always full, where the braid (a,n) is called full braid if [e
max 

e . ] = 2 (n -1), where e and e . are the largest and the smallest 
mIn max mIn 

degrees of v in PK(v, z), for K ~ a
C

, as defined in definition (2.1.7). 

Consequently the full braid is always minimal. Hence it is concluded 

in theorem (2.1.10) that the number of strands in a twist positive 

braid is the braid index. 

Section 2 is devoted to the study of the possible 2-variable 

polynomials P K (v, z) of width 2, where width P K (v, z) is the minimal 

number of strings allowed by the index bound, shown in definition 

(2.1. 7). It is shown in lemma (2.2.2) that, if the polynomial PK(v,z) 

has width 1, then it is the same as the polynomial of the closed I-braid 

(the unknot). But no examples for a knot with a polynomial of width 

1 and braid index > 1 are known. In theorem (2.2.3) it is proved 

that if the polynomial has width 2, then it is the same as the polynomial 

of a closed 2-braid. There are examples where the width is strictly 
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less than the braid index, for width 2 the braid [a = «(12(1](11(12)3] 

with width 2, [F-W2], but it has braid index 4, [Mo-S2]. Therefore 

not every link of polynomial of width 2 is a closed 2 - braid. It is not 

known (in general) if a knot of width k must have some polynomial 

as some closed k - braid. 

In theorem (2. 2 .4) a complete list of 3 - braids of width 2 which . , 

close to knots, are given. Consequently it is shown that PK(v,z) 

determines c(/3) for full 3-braid /3, where /3c :: K, as in corollary 

(2.2.10). The 2-variable polynomial for non-full 3-braid is calculated 

in proposition (2.2.11). 

These results, recovering P(v, z) from the Alexander polynomial and 

crossing number, are observed independently of Murakami.H, [Mur]. 

Section 3 is devoted to the study of Morton's conjecture cited 

above, in case n = 3. It is shown, in remark (2.3.2), that Birman's 

"exchange move" includes Markov's "stabiliser move" and exchange 

move preserve braid index, hence preserve the exponent sum, in a 

particular case. In figure (2-5) it is illustrated an isotopic sequence 

of closed braids to represent the general exchange move. 

Using the canonical form approach for every positive braid (shown 

in theorem (1. 2 . 1» it is formula ted, in lemma (2.3. 4), the standard 

form for any positive braid word (a, 3). Following that it is given a 

nice representative for the conjugacy class of a twist positive braid 

in B], as in lemma (2.3.6). Investigating the exchangeable 3-braids, 

as in remark (2.3.7), it is excluded the cases of trivial exchangeable 
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(conjugation) braids and some cases which never conjugate to twist 

positive 3-braids. 

A complete list of those non -trivial exchangeable 3-braids, which 

might contain (6 3 )k up to conjugation, k ~ 1, is given in lemma 

(2.3.8). Using Murasugi's classification of the conjugacy classes in 

B3 (shown in proposition (0.14» it is given an affirmative answer, 

in proposition (2.3.3) , for Morton's conjecture cited above, for 

3-braids. 
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a 

Conway 
"flype move" 

flype(a) 

"The flype move is in fact a half twist, where 

4 points A, B, C, D are left fixed" 

Figure (2-2a) 

Birman 
II exchange move" 

Exch(a) 

Figure (2-2b) 
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§2.1. TWIST POSITIVE BRAIDS ARE 

MINIMAL REPRESENTATIVES FOR KNOTS AND LINKS 

(2.1.1) Remarks: 

(a): For every iTESB
n

, each two arcs cross at most once, then each 

adjacent pair of arcs either cross once or not at all. So if the two arcs 

labelled rand r+l (at top of iT) cross in iT, then rES(iT), see figure 

(1-6), i.e. 

iT = eJ iT' r 
(2.1.1) 

for some iT'eSB
n

. But if arcs labelled r, r+l do not cross in iT, then 

iT' = eJ iT 
r 

(2.1.2) 

still in SB . Hence in SB and for a given r with r < n, the elements 
n n 

iT and iT' are paired by eJ as in equations (2.1.1) and (2.1. 2) . 
r 

(b): It was proved by Morton and Short that the subalgebra Hn (z) 

of the algebra H(z) (in theorem (2.0.1» has dimension (n+1)! as a 

vector space, [M-Sl]. 

where Pl is the linear representation Pv: Bn+l -+ Hn(z), with pv(eJi ) 

= vc., for v = 1. 
1 

Now starting with a braid iT eSB , then we can construct (n+l) 
g n 

string (the heavy string as illustrated elements in SB 1 by fixing a n+ 

in figure (2-3» at position (n+l) at top of the geometric braid iTg and 

fixe the other end of the added string at bottom of the geometric braid 
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TT to give a braid in SB I' If the added arc crosses r arcs of TT , g n+ g 

then it gives the braid TT (cr cr 1'" cr ) E SB 
g n n- n-r+l n+l' 

1 

n-r+l 

Figure (2-3) 

Now let cr(r, n) = cr cr 1'" cr 1 and take cr(O n) = e when the n n - n-r+ ' 

added arc does not cross arcs of 'TT , Therefore for every 'TT ESB there 
g g n 

are associated (n + 1) elements (cr(r, n) , r = 0, 1, 2, '" , n) in 

SB I' n+ 

The technique above provides an algorithm to order the elements 

of SB Suppose that, starting with 'TTl = 1, we have already con-
n 

structed elements 'TT g , g ~ n! for SB , Then define 'TTh = 'TT cr(r, n) for n / g 

h = g + r(n!) with 1 ~ g ~ nl, hence 1 ~ g ~ (n+l)!, Therefor~~e 

can write TT
h

ESB
n

+
1 

uniquely as 'TTh = cr(rI,I)cr(r2,2) '" a(rn,n), with 

g = 1 +r 1 +r 2 + '" +r and 0 ~ r, ~ j, Hence h is uniquely determined 
n J 

by the factorial expansion (r 1, r 2 , ,,' , r n) , 

It was proved by Morton and Short that; for two braids 'TT g and 

'TTh in SB
n

+
1 

with factorial expansions (gl, g2, '" , gn) and (hI, 

h2' ", , h
n

), respectively, if gr ~ gr-l' then TTgcrr = 'TTh , where 

h = g h = g 1 + 1, hJ' = gJ' otherwise, Then hr > h r - 1 and h 
r-l r' r r-
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> g. This result means that for a given choice of r, the braids in 

SBn +1 can be paired as in (a) above. 

Now let b g = Pl(1Tg ) for 1Tg ESBn +
1

, 1 ~ g ~ (n+l)!, then using (a) 

above we can pair the generators, b
h

, 1 ~ h ~ (n+l)!, of the vector 

space H (z), as 
n 

and 

b g = c i b h , if g > h 

b h = c.b , if h > g 
1 g 

where b h and b g correspond P 1 (1T) and P 1 (1T') for 1T and 1T' as in 

equations (2.1.1) and (2.1.2) above. 

(c): Consider the subset 

+ 
H = {W = ~ Wh (z)bh I W10} 

h 

of the algebra Hn (z), where W h (z) is a polynomial of z with non 

negative coefficients. 
+ 

Hence it is clear that H is closed under linear 

+ 
combinations of elements of H with polynomials of non negative coef-

I 

for all X1(z) and X 2 (z) of non negative coefficients. 

(2.1.2) Lemma: 

The subset H+ of the subalgebra H (z) is closed under the multi
n 

+ + 
plication, i.e. W1W2 EH , for all W1 and W2 EH . 

Proof: 

+ + 
It is enough to show that (crW)EH , for WEH and for any, cr ' 

generator of the subalgebra Hn (z), then write 
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Then using (b) of remark (2.1.1) we can write 

and 

= zc b + b if h > g 
r g g' 

c b h = b , if g > h 
r g 

then the proof can be completed by induction on length of generators 

bh's and by use of (c) in remark (2. 1. 1), where H + is closed under 

+ addition, so that c WEH 0 
r 

(2.1. 3) Lemma: 

+ 
In H , the element (p 1 (Q» b eH , for every positive braid Q and n g 

for every generator b h of the vector space Hn' 

Proof 

If L(Q) = 1, then Q = cr. for some i and p(Q)b = c.b which is in 
1 gIg 

H+ as in lemma (2.1.2). Then the proof follows by induction on the 

length of Q. Now assume that the lemma holds for L(Q) = r. Take 
,/ 

positive braid Q with L(Q) = r+l, then write Q = cr.Q' for some positive 
1 

braid Q' and for some intege:r i, so 

pdQ)b = c,Pl(Q')b gIg 

+ 
Then from our induction hypothesis Pl(Q')bgEH. Then using lemma 

+ 
(2.1.2) we have Pl(Q)bgEH , which completes the induction process, 

hence completes the proof 0 
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The following two lemmas explore some properties of positive per-

mutation braids in the algebra H , which are the keys to give a quick 
n 

proof that the number of strands in a twist positive braid is the braid 

index for the closure of that braid. 

(2.1. 4) Lemma: 

+ 
For every 1TeSB , P 1 (1Tp [1T] )eH , with leading coefficient W 1 (z) = 

n 

1 +zf(z), where p [1T] is the reverse of 1T. 

Proof 

Let 

where 

then 

So 

Hence 

1 ~i. ~ n -1, for j = 1, 2, ... k 
J 

= ex, say 

2 
P 1 ( 1TCX) = ( c. ... c. ( c. ) c

1
• • •• c i ) 

11 lk - 1 lk k - 1 1 

= z(c. 
11 

k 

c. c. c. 
1k - 1 1k 1k - 1 

2 
+ (c. . .. c. (c. ) c

1
· ... c i ) 

11 1k - 2 1k - 1 k - 2 1 

= 1 + z{ L (c. . .. c. c. c i ... c i ) } 
j=l 11 Ij _1 Ij j-1 1 

t · bra1·d, then lerruna (2.1.3) tells us that no can-But 1T<X is a posi Ive 

cellation of factors, so 

P 1 ( 1T<X ) = [1 + zf ( z)] + W 
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+ 
where WeH with leading coefficient zero and fez) is polynomial of z 

with non -negative coefficients 0 

(2.1. 5) Lemma: 

For every 1TeSB , pd1TL\ ) = ZL(1T)Pl(L\ ) + W, where WeH+ and 
n n n 

L(1T) is the length of 1T. 

Proof 

This lemma means that P 1 ('rrL\ ) always contain P 1 (L\ ) with non-zero 
n n 

coefficient when written as a linear combination of generators of 

H l' for every 1TeSB . To proof that it is enough to prove it for 1T n- n 

= rJ.. Hence given any 1TeSB , write 1T = 1T l rJ. for some ieF( 1T), so 
1 n 1 

+ + I 
where WeH and lemma (2.1. 2) tells us that W'eH . Again rewrite 1T 

= 1T"rJ., for some jeF(1T'), then by induction on length of 1T, we can 
J 

complete the proof. Now let 1T = rJ., 
1 

(as in (iii) of lemma (1.1. 10», i. e. 

but ieS(L\ ) for all 1 ~ i ~ n-1, 
n 

L\ = (rJ.) ( rJ.) .'_ , for all 1 ~ i ~ n-1 
n 1 1-'-

where L\ = (1T)(1T,:.), for every 1TeSBn (as in corollary (1.1.15», so 
n 
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which completes the induction process, hence completes the proof 0 

(2.1.6) Corollary: 

In Hn , Pl(Q.1n ) = ZL(Q)Pl(.1
n

) + W, for every positive braid Q, 

+ 
where WeH and L(Q) is the length of Q. 

Proof 

The proof is similar to that in lemma (2.1.5), i. e. by replacing Q 

by 1T and use induction on L(Q) 0 

(2.1.7) Definition: 

The braid (a, n) is called a full braid if [e - e . ] = 2(n-l), 
max mm 

where e and e. are the largest and the smallest degrees of v 
max mIn 

in the 2-variable polynomial P
L 

(v, z), respectively, with L ~ 6c . Hence 

define width PL(v,z» or simply width a as Weal = [(e - e . )/2]· max mill 
~ 

+ 1. Le. weal is the minimal number of strings allowed by the index 

bound, hence the braid (a, n) is full if and only if W (a) = n. 

(2.1.8) Proposition: 

Twist positive braids are always full. 

Proof 

2 + 
We need to show that P 1 «.1

n
) ) eH with all the cofficients are non 

zero polynomials Now .1
n 

= 1T1T,:, for any given 1TeSBn . Let a = p [1T] and 

a = 
* 

= II , then 
n 
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hence 

2 . 
(An) a,l, = a".aA a~ 

I .... n ..... 

2 
But (An) commutes with every thing, then 

so 

= a ...... afl a ....... 
-0' n "i' 

( A )2 = 
n aA a" e n '1 

Then lemma (2. 1. 5) tells us that 

2 
P 1 ((An) ) = P 1 ( aAn ) P 1 ( a,:.) 

= [zL(1T)Pl(A ) + W] P 1 (a".) n -0' 

= L( 1T) 
Z PI (An a.:.) + WI 

L(1T) + Wi = Z P 1 ( 1T1T ",a",) 
'"' .... 1"" 

where WeH+ and lemma (2.1. 2) tells us that WleH+. Now using lemma 

( 2 . 1 . 4), we have 

. + 
WIth VeH , then 

(2.1.3) 

for every 1TeSB , where fez) is a polynomial of z with non-negative 
n 

coefficien ts and Xe H +. Therefore P 1 ( (A ) 2) contains P 1 (1T) for every 
n 

1TeSB , with non zero coefficients. So given a twist positive braid 13 
n 

= (An) 2 Q, for a positive braid Q, as in definition (1. 0 . 2), then 
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+ 
But lemma (2.1.3) tells us that pdQ)eH and equation (2.1.3) above 

also tells us that all the generators PI (1T) , 1TeSB , appear in n 

PI «~ ) 2) with positive coefficients, hence no cancellation of the fac
n 

tors. So Plea) is a linear combination of all the generators of H (z), n 

where the coefficients are positive polynomials. Now 

and 

II = z/(v- I - v) 

as in equations (2.0.4) and (2.0.5) where L 

contains the factor 

so that [vc(B)-(n-I)] and [vc(a)+(n-I)] have non-zero coefficients. 

Therefore 

e = c(S) + (n-I) and e
mm

. = c(S) - (n-I) 
max 

where e and e. are the largest and the smallest degrees of 11 
max rrun 

in the 2-variable polynomial P
L 

(v, z), respectively and L ~ B
C

• This 

completes the proof that the twist positive braids are full braids 0 

(2.1. 9) lemma : 

A full braid is always minimal. 

Proof: 

Let a = 0<1 for some (0, n-I), then 
n-l' 

c(B)-(n-l) ~ e . mIn 
~ e max 

~ c(B)+(n-l) 
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But Q.c d yC 
'" an 0 are isotopic. Hence have the same invariant polynomial, 

then 

c ( 1) - (n - 2) ~ e min ~ e max ~ c (1) + (n - 2 ) 

which implies that 

11 = e - e . ~ 2(n-2) max rom 

Then 11 "I 2 (n -1), hence ~ does not a full braid, which completes the 

proof 0 

(2.1.10) Theorem: 

If a link L is represented as a closed twist positive braid (a, n) , 

then L has braid index n, i. e the number of strands in a twist positive 

braid is a link invariant. 

Proof 

The proof is a direct consequence of proposition (2.1.8) and lemma 

(2.1.9) 0 
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§ 2.2. THE 2 - V ARIABLE LINK INVARIANTS OF WIDTH 2 

AND 3-BRAIDS 

( 2 . 2 . 1 ) Remark: 

Given a polynomial P(v, z) of width n (where the width of P(v, z) 

is the minimal number of strings allowed by the index bound as defined 

in definition (2.1. 7) .. Then the polynomial looks like 

which can be written as 

So if we know P(v,z) for n different values of v, e.g. Yo, VI, 

, V 1 and if we know k = e
J 

• , then we know P(v, z), because 
n- ~n 

r (va) -kp(vo,z) 

(v 1) - kp (v 1, z) 

A x = (2.2.1) 

Qn-1 (z) 

for an invertible nxn matrix A, where 
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1 

1 

A = 

1 

(2.2.2) Lemma: 

2 
(vd 

(v
o
)2n-2 

(vd 2n- 2 

(v )2n-2 
n-1 

If the 2-variable link invariant P(v, z) has width 1 then it is the 

same as the polynomial of the closed 1-braid. 

Proof: 

The polynomial of width 1 has the form 

P(v,z) = vkQ(z), with k = 

Then using (i) of theorem (2.0.3), we have 

-k 
Q'(s)(s) = 1 

and 

Q'(s)(s)k = (_I)c-l 

e . 
mill 

-1 
where Q' (s) = Q (s-s ), s = It and c is the number of components. 

.. k 
But k = (c-l)mod(2), as in (vi) of theorem (2.0.3), then s = 1, for 

every s, hence k = O. Then using (ii) of theorem (2.0.3), we have 

P (v, z) = Q (z) = V (z) = 1, which completes the proof. Moreover the 

link of width 1 has odd number of components 0 

(2.2.3) Theorem: 

If the 2 - variable polynomial P K (v, z) has width 2, then it is the 

same as the polynomial of a closed 2 - braid [(0' d k] c, for I k I # 1. 
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Proof: 

Given a polynomial PL(v,z) of width 2, then 

But as in (vi) of theorem (2.0.3), e
min 

= (c-1) mod(2), where c 

is the number of components of L, then using (i) of theorem (2. 0.3), 

we have 

Now put Vo = S = It, V 1 = s-l 

2 -2 
l/(s -s ) 

z = s - s-l and k = e . in equation nun 

(2.2.2) 

N ow the 2 - varia ble polynomial P (v, z) for the 2 - closed braid 

k c 
[ (cr 1) ] , I k I ~ 1, has the form 

where Wo (z) and W 1 (z) can be determined by employing the formula 

in equation (2.0.6), then applying the observation above, to see that 

the 2-variable polynomial of width 2 and e . = k is the same as the 
mm 

h I d 2 b 'd [(rl
1
)k+1]c 0 p()lynomial of t e c ose - ral u 

In the following theorem, we give a complete list of 3-braids which 

are not full, i. e. have width 2. 
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(2.2.4) Theorem 

If a closed 3-braid f)c ::: L, has Alexander polynomial equals the 

Alexander polynomial of a (2,p) torus knot times a power of t, then 

f) is conjugate to one of the following braids: 

-1 
a = a 

-1 -1 + r or n , for keZ . 

The proof of theorem (2.2.4) will start with the following two 

lemmas. 

(2.2.5) Lemma: 

The closed 3-braid [~ = (~3)2n(C1dP(C12)-q]c ::: K, has the 

Alexander polynomial 

p-1 i q-l i 
= 1_(±1)ns3n-q {1 + sp+q + s[ L s] [ L s]} 

i=O i=O 

6n-q+p 
+ S 

Hence if ~K(s) = ±sk~(2,P)(s), then pq = m if n-even and pq + 4 = 

m if n-odd. 

Proof: 

The reduced Burau matrix B (t) of the braid f) is the image of 6 
-1 

under the reduced Burau representation~: Bn -+- GL(n-1,l[t,t ]), 

[B2]. In this presentation 

-t 1 o 

o 1 -t 

Now let t = -s, then 

3 
= -s I2x2 
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and a has the Burau matrix 

B(s) = (±1)ns 3n-q 

Then 

So 

, 

sp 

0 

q-l . 
s L Sl 

i=O 

p-l. 

L s 
1 

i=O 

1 

p-l q-l 
tr [ B ( s )] = ( ± 1 ) n s 3 n - q { 1 + s P + q + s [ Lsi] [ Lsi]} 

i=O i=O 

sq 0 

X 
q-l . 

s L s 
1 

1 
i=O 

p-l . 
L sl 

i=O 

1 

= (±1)ns3n-q {1+sP+q+s[1+2s+3s2+ ... +3sP+q-4+2sP+q-3+sp+q-2]} 

n 3n-q 2 3 
= (±l) s {I +s+2s +3s + 

But the Alexander polynomial of the link aC 
U Le, the closure of 8 

together with its axis, is given by 

fl(x,t) = det[xI-B(t)] = x 2 - trB(t).x + detB(t) 

where the variable x refers to the meridians of the axis Le of the 

closed braid eC = Land t refers to all meridians of the oriented closed 

braid L. Then for a link L = eC
, the Alexander polynomial satisfies, 

Hence for t = -s, we have 
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6n-q+p 
+ S 

hence A
K

(I) = 2 n 
(±1) {pq + 2}. Now assume that AK(s) = 

±SkA(2,m)(s), then pq = m if n-even and pq + 4 = m if n-odd, which 

completes the proof 0 

(2.2.6) Lemma: 

If the closed 3-braid ~c ~ K for 

~ = ( A 3 ) 2 n ( C1 d p 1 ( (j 2 ) - q 1 ••• ( (j d (p r) ( (j 2) - qr 

has the Alexander polynomial of a (2,m) torus knot, then r = 1; where 

+ 
p., q.eZ , for 1 ~ i ~ r and for every neZ. Moreover n = ±(q+2)/3 if 

1 1 

n-odd and n = ±(q-l)/3 if n-even. 

Proof: 

Let A (x, s) be the Alexander polynomial of the link K U L~ (the 

closure of ~ together with its axis), [Ml], then 

and 

A(I,s) = 1 ± s3n-Q [I+(rs) mod(s2)] + s6n-Q+P 

hence 

3 -Q 2 6n-Q+P -
1 ± s,.n [1+(rs) mod(s )] + s 

k 2 3 m-l m+l = ± s [1+s +s + ... +5 +s ] (2.2.3) 

where 

P = P 1 + P 2 + .,. + qr 

and 

Q = q 1 + q 2 + .,. + qr 
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· Let e sand e t be the smallest and the largest power of s in equation 

(2.2.3), respectively. Then in the right-hand side e = k with co-, s 

efficient equals ±1 and e
t 

= k+m+ 1 with coefficient equals ±1. Hence 

consider the two cases: 

Case (1): n ~ 0 : 

(la): For the left - hand side, e = 0 with coefficient equals 1, then 
s 

k = 0 and from equation (2.2.3) we have, 

3n-Q 2 6n-Q+P 2 3 m-1 m+l 
s [1+(rs) mod(s)1 + s = s +s + ... +s +s 

So 3n-Q = 2 and r = 1, i.e. Q = q and n = (q+2)/3 should be odd. 

(lb) : e = k = 3n -Q < 0, with coefficient equals ±1 
s 

Multiplying both sides of equation (2.2.3) by sQ-3n, we have 

Q-3n 2 3n+P 2 3 m-l m+l 
s ± [1+rs modes )] + S = ±(I+s +s + ... +s +s ) 

But the right hand side does not contain s, then Q - 3n = 1, otherwise 

r = 0, which leads to a contradiction. Hence r = 1, k = -1 and n = 

(q-l/3) should be even integer. 

Case (2):n<O 
Q-6n 

Multiplying both sides of equation (2.2.3) by s we have, 

P 
+ s 

k+Q-6n 2 3 m-l m+l = ±s (1 +s +s + ... +s +s ) 

Then comparing the smallest power of s in both sides of the equation 

above, we have the following two cases: 

(2a): n < 0 and k+Q-6n = -3n, then 
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Q-6n 
s ± -3n 2 P -3n 2 3 m-1 m+ 1 

s [1+rs modes )] +s = ±s (1+s +s + ... +s +s ) 

Now let P = -3n+1, otherwise r = 0, then comparing the coefficients 

in both sides, we have r = 1. 

(2b): n < 0, and k+Q-6n = P, then 

Q-6n -3n 2 P 2 3 m-1 m+1 
s ± s [1 +rs modes )] = ±s (s +s + ... +s +s ) 

Thus comparing the smallest power of s in both sides, we have p+2 = 

-3n, then r = 1. This completes the proof 0 

Proof of theorem (2.2.4) : 

There is a nice representative of each conjugacy class in B 3 , where 

the classes are divided to different seven patterns, as in proposition 

(0.14), [Mu2]. So the proof will be done by investigating each pattern 

individually. In proposition (0.14), the types Ao, A3 , A4 and As 

represent links. The types Ai, A2 also represent (3,3n+1) and 

(3,3n+2) tours knots, respectively. Hence proposition (0.14) tells us 

that, the non full 3-braids (which close to knots) lie in As, with 

representative 

where p., q.el +, for 1 ~ i ~ r and for every nel. Now let 
1 1 

for some k, mel and t3 c ~ L, then lemma (2.2.6) tells us that r = 1 

and gives relations between n, p and q. So consider the cases: 

Case (1): n ~ 0 : 

J 
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(1) j Let n-odd, then lemma (2.2.6) tells us that n = ±(q+2)/3, so 

n "f O. Now let n > 0, i.e. n = (q+2)/3, then lemma (2.2.5) tells us 

that 4 + pq = m and 

hence 

and so 

2 1+s+2s + 

If q = 1, then n = 1 and 

2 
p+q-2 p+q-1 p+q p+q+2 

+ s +s +s +s 

p+q+3 = m 

(q-1) = p(q-1) 

for peZ+ and m = p + 4. In fact !)c is isotopic to (2,p+4) torus knot. 

N ow let q f 1, then p = 1 and 

Similarly _ if n < 0,'- t,hen n = -(p+2) /3 and lenuna (2.2.5) tells us 

that 

p+q-2 p+q-l p+q 
+2s +s +s) 

P 2 3 m-1 m+1 = s (s +s + .. , +s +s ) 

then 

p+m+l = q+2p+4, i.e. m = P + q + 3 

hence 

p(q-l) = (q-l) 
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So the resulting braid is conjugate to the inverse of the given, above, 

braid a for n > O. 

Case (II); Let n-even, then lemma (2.2.6) tells us that n = ±(q-1)/3. 

Now if n = 0, then q = 1 and so a = (<112 p ( (12) -1, hence a c is isotopic 

to (2,p) torus knot. For n > 0, Le. n = (q-1)/3 with q , 1, then 

lemma (2.2.5) tells us that pq = m and 

2 p+q-2 p+q-1 p+q p+q-1 
s - (1 +s+2s + ... +2s +s +s) + S 

2 3 m-1 m+1 = -(1 +s +s + ... +s +s ) 

then 

p+q = m+1 

hence 

p(q-1) = (q-1), q > 1 

so p = 1 and q = ffi, hence 

with 
-1 

~~(t) = t ~(2Jq)(t) 

Similarly if n < OJ then n = -(p-1)/3 with p > land lemma (2.2.5) 

tells us that 

q -6n -3n -3n+1 2 -3n+2+ 
s -(s +s + s 

q -6n-1 q-6n q-6n+1) -3n+1 
+2s +s +s +s 

-3n -3n+2 = -(s +s + ... 
-3n +m-1 -3n +m+ 1) 

+s +s 

then 

3 1 · m = q-3n = p+q-1 q-6n+1 = - n+m+ J I.e. 

hence 
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q(p-l) = (p-l) 

so q = 1 and m = p. Therefore our S is conjugate to the inverse of 

the given braid S J above, with 

which completes the proof of theorem (2.2.4) 0 

(2.2.7) Corollary: 

The non full 3 - braids close to non amphicheiral knots. 

Proof: 

The non full 3-braid a has Ic(a) I > 3, shown in theorem (2.2.4). 

Hence as a direct consequence of (v) of theorem (2.0.3), a c is not 

amhpicheiral 0 

Through the proof of theorem (2.2.4), it is proved the following 

results: 

(2 . 2 . 8) Proposition : 

The closed 3-braid [S = (~3)4k<11(<12) -(6k+1)]c :::; K has the 

-1 -6k 
Alexander polynomial, ~K(t) = t ~(2,6k+1)(t) and ~L(t) = t ~K(t), 

+ 
where L is the inverse of K and kE2 . 

"'---

(2.2.9) Corollary: 

Since the maximum spread of P 2 ) (v, z) is 2, then the closed ( ,p 
k 

3-braid K has a full representative if and only if ~K(t) -I t ~(2,p) (t), 

for any p, kEZ. 
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(2.2.10) Corollary: 

If K is the closure of a full 3-braid a, then PK(v,z) determines 

c(a), where c(a) is the exponent sum of a and aC 
:: K. 

Proof: 

Since K has a full 3-braid representative, then 

for non-zero polynomials Q.(z), i=O, 1, 2, which determines c(a) 0 
1 

(2.2.11) Proposition : 

The closed 3 - braid 

2-variable invariant PK(v,z) = v
6k

[Ql(Z)+V
2
Q2(Z)], where keZ+ and 

Pl(/t_lt-l)=[t3k+2_t-3k]/(t2_1), P2(/t_/t-l)=[t3k+l_t-3k+l]/(I_t2) 

Proof: 

Let 

but 

-1 
~K(t) = t [~(2,6k+l) (t)] 

then using (i) and (iii) of theorem (2.0.3), we have 

-3k 6k+l 
A(t) = SO(t)+Sl(t)+S2(t) = t [(t +1)/(t+l)] 

2 -3k+l 
B(t) = So(t)+tS1(t)+t S2(t) = t 

-1 -2 3k-l 
C(t) = So(t)+t Sl(t)+t S2(t) = t 

Then solving A(e), B(t) and C(t) of So(t), Sl(t) and S2(t), we have 

2 
A(t)- B(t) = (l-t)Sl(t)+(l-t )S2(t) 
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and 

Then 

3k+ 1 3k -3k+ 1 -3k = t -t -t +t 

So that 

hence 

then 

Therefore 

So(t) = 0 

which completes the proof 0 
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§2.3. TWIST POSITIVE 3- BRAIDS DO NOT ADMIT 

NON TRIVIAL EXCHANGE MOVES 

(2.3.1) definition: 

A braid ex is exchangeable (admits exchange move) if it is conjugate 

to a braid of the form [URV' ] , h (U .+ ) I.. were ,1 p , 
q, s 

(R, p+s) and 

(V,i+m) are braids as in figure (2-2b) and L is the (q+s)-braid, 
q, s 

shown in figure (2-4a), where a group of q-strands pass over a group 

of s-strands and a negative half twist occurs in each group of strands. 

The exchange of exchangeable braid ex = [URVL ] is exch(ex) = 
q, s 

[ULp,m t[R]Vl. 

( 2 . 3 . 2 ) Remark: 

Suppose 6 is exchangeable as in the definition above, then the 

number of strands of the braids U, V and R are related as, [t+s+q = 

i+q+m = p+s+i = nl and [t+s+p = t+q+m = p+m+i = n']. Hence n = n' 

if t = i, i. e. the braid index preserved by exchange move when t = 

i and so the exponent sum is preserved. Exchange moves also include 

Markov's move of type (ii) of theorem (0.8) as a special case. This 

occurs when q = s = 1 and p = m = 0, so'l+l=i, as in figure (2-4b). 

An isotopic sequence of closed braids is illustrated in figure (2-5) to 

represent the general exchange move. 

Lq,s 
Figure (2-4a) 

. , 
~larKoV s 

n stabiliseI' move" 

Figure (2-4b) 
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(2.3.3) Theorem: 

Braids in B3 admitting non-trivial exchange move, not simply con

jugation, can not be written as twist positive braids. Hence the 

conjugacy class of twist positive braid representative is a link invar-

iant, provided that Birman's conjecture in (2.0.4) holds. 

The proof of the theorem will start with some lenunas. 

(2.3.4) Lemma: 

Any 3-braid has the standard form 

ex = 

Proof: 

s. , 
I 

t., s, teZ+, 1 ~ i ~ r, mel and 8e{0, I}. 
I 

The braid (1T l1T 2 .,. 1T k) is the canonical form for a given braid ex 

if and only if S(1T
i
+

1
) £; F(1T

i
) , for 1 ~ i ~ k-l, as shown in theorem 

(1.3.1). But 

So that S(1T), F(1T) £; {I, 2}, for all 1TeSB 3 • So if 1Tl = 0'1, then 

either 1T 2 = (J 1 or 1T 2 = (J 1 (J 2 and if 1T 1 = (J 2, then either 1T 2 = (J 2 or 1T 2 

But if 1Tl = (J1(J2, then either 1T2 = (J2 or 1T2 = (J2(J1 and if 1Tl 

= 0' 2 (J 1, then either 1T 2 = (J 1 or 1T 2 = (J 10'2' Hence the general pattern 

for a positive 3-braid, which is prime to t:. 3 , is 

ex = 
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(2.3; 5) Remark: 

The braid group B3 has a presentation {O'l, 0'2 ·1 0'10'20'1 = 

0'20'10'2 } , shown in definition (0.5). One can also introduce a new 

generators a = 0'10'20'1 and b = 0'10'2, then B 3 has a new presentation 

1 
2 3 -2 2 -2 2 -1 {a, b a = b }, where 0'1 = a (b a) and 0'2 = a (ab). So (O'd 

-2 -1-2 
= a (ab) and (0'2) = a (ba). Therefore (0'10'2) = band (0'20'd = 

-2 
a (aba), [Mu2]. 

(2.3.6) Lemma: 

The twist positive braid (a, 3) is conjugate to the braid 

where Be{O, 1}, ~e{e, (0'2)S}, s., seZ+, for 1 ~ i ~ rand m is a positive 
1 

integer such that m ~ 2. 

Proof: 

Using lemma (2.3.4) we can write the standard form for twist 

positive braid (a, 3) as / 

m r (s.) (t ) B 
a = (~3) ( IT [( 0'2 ), 1 (0'10'2)( 0'2) i (0'20' d]) ~ 

i=1 

or t[a], where ~e{e, (O'l)S, (O'd
S

(0'10'2), (O'd S(0'10'2)(0'2)t}, for s., 
1 

t., s, m and teZ+, 1 ~ i ~ r, such that m ~ 2 and Be{O, 1}. Using 
1 

the presentation { a, b a 2 = b 3
} (shown in remark (2.3.5» and the 

fact that a 2 commutes with every thing, then a can be written as 

a = a m- 2 (S+T+r)( n [(b2a)(si)(b)(ab2)(ti)(ab)(a)])8~, 
i=l 
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where 

R' { -2s 2 s -2s 2 2 
",E e, (a )(b a) ,(a )(b a)s(b), (a- s)(b2a)s(b)(a-2t)(ab2)t} 

with 

Now rewrite (b
2
a)n = [b2 (ab2)n- 1a] and consider the following cases: 

Case (a): a' = e and 8 = 1 , then 

ex = m-2(S+T+r) 2 2 (s -1) 2 (t ) 
a [b (ab) 1 (ab)(ab) 1 (ab)(a)] 

This is conjugate by a to 

a m- 2 (S+T+r) ( IT [(ab2) (si) (ab)(ab2) (ti ) (ab)]) 

i=l 

Then using the relations between the two presentations of B l' shown 

in remark (2.3.5), we can write a ( up to conjugation) as 

a =c (f1
3
)m+2r IT [(<1

2
) (Si) (<1d -1( (12) (\) (<1d -1] 

i=l 
(~.3.1) 

+ 
where s., t.El , for 1 ~ i ~ r, m is a positive integer such that m ~ 

1 1 

C 2 and = means equal up to conjugation. 

-2s 2 s 
Case (b): ~' = a (b a) and 8 =1 , then 
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1"-1 
IT [(ab

2
) (si) (ab) (ab2) (ti ) (ab)] x 

i=2 

This is conjugate by a to 

= a m
-

2
(S+T+s+r) n ([(ab2) (si)(ab) (ab2) (ti)(ab)] (ab2)s 

i=l 

Then using the relations between the two presentations of B
J

, shown 

in remark (2.3.5), we can write ex (up to conjugation) as 

_c m+2r nr ([( )(s.)( )-1( )(t.)( )-1]( )s ex - a cr2 1 cr 1 cr2 1 cr
1 

cr2 i=l (2.3.2) 

-2 2 s 
Case (c): ~' = [a (b a)] (b) and 8 = 1 , then 

ex = 

r-l 
n [(ab2)(si)(ab)(ab2)(\)(ab)] x 

i=2 

[(ab
2
)(sr)(ab)(ab2)(tr )(ab)](a)(b2a)s(b) 

This is conjugate by a to 

ex = a m- 2 (S+T+s+r)-1 n ([(ab2)(si)(ab)(ab2)(\)(ab)] (ab2)s(ab) 
i=l 

Then using the relations between the two presentations of B J, shown 

in remark (2.3.5), we can write ex (up to conjugation) as 

ex =c a m+2r+1 IT ([(cr 2)(si)(crd-1 (cr2) (ti ) (crd-1 ][(cr2)s(crd- 1] 
i=l 

-------~ (2.3.3) 
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a = m-2(S+T+s+t+r) 2 2 (s -1) 2 (t ) 
a [b (ab) 1 (ab)(ab) 1 (ab)] x 

This is conjugate by a to 

m-2(S+T+s+t+r)-1 r 2 (s) 2 (t) 2 
a .IT ([(ab) i (ab)(ab) i (ab)](ab )s(ab)(ab2)t 

1=1 

Then using the relations between the two presentations of B 3, shown 

in remark (2.3.5), we can write a (up to conjugation) as 

--------+ (2.3.4) 

Case (e): 8 = 0 , then 

or 

Hence using the relations between the two presentations of B 3, shown 

in remark (2.3.5), we can write a (up to conjugation) as 

m m s m+1 s -1 m+1 s -1 t 
aE{(~3) , (~3) (c:1 2 ) '(~3) (c:1 2 ) (c:1d (~3) (c:1 2 ) (c:1d (c:1 2 )} 

--------+ (2.3.5) 

Therefore the equations (2.3.1) - (2.3.4) give the general pattern 

for the representative of the twist positive braid (a,3), (up to con-

jugation) as 

(~3)m+r8[ IT [(c:12)(si)(c:1d-1]8~ 
i= 1 
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where ge{0, 1}, ~e{e, (0'2)S}, si' seZ+, for 1 ~ i ~ rand m is a positive 

integer such that m ~ 2. 

(2.3.7) Remark: 

Using remark (2.3.2), we can write the general pattern for 

exchangeable braid (ex,3) as 

where k, s, reZ and E = ±1, then 

Exch(ex) 

So ex = Exch ( ex), for k = s or E = r . Now to see that the twist positive 

3-braids do not admit non-trivial exchangeable moves, we consider the 

different cases according to the sign of the powers of k, s, rand 

E. It is obvious that ex does not conjugate to a twist positive 3-braid 

if k, sand r are all negative, because the length of the braid (the 

algebraic crossing number) is invariant under conjugacy. Then con-

sider the following cases: 

(a): If r = E, then ex and exch(ex) are conjugate. This can be seen 

by cycling the letters of ex. So let E = 1 and r = -1, then for positive 

integers k, s, we have 
\ 
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But 

Then a and exch (a) are conjugate. In this case we call the exchange 

move trivial. 

(b): If k, s, r are positive integers and E = 1, then we can easily 

check that a and exch(a) are conjugate if k ~ 2, s ~ 2 or r = 1. 

(c): If k < 0, E = 1, s >2 and r > 1, then 

if k-odd 

if k-even 

so 

(2.3.6) 

where Sk = 1, tk = -(k+l / or -0 an k ) 2 f k dd d 9 = 0, and tk = -Ck) /2 

for k-even. 

(2.3.8) Lemma: 

If a admits a non-trivial exchange move, then a is conjugate to: 

(i): (A
3

)4(cr
2
)p(crd -1( cr

2
)Q(crd -1(cr2 )i(crd- 1 

for different non -negative integers p, q, i. 

(ii) : 
2 1 q -j 

(A3) (cr 2 )P(crd - ( cr 2 ) (crd 
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for non -negative integers p, q, i, such that p f. q 

(iii): (02) (ad -P(02)i(01)-q 

for non -negative integers p, q, i, such that p f. q. 

Proof: 

U sing remark (2.3. 7), it is enough to consider the following cases: 

Case (i): When k, s, r are positive integers such that k, s ~ 3, r ~ 

2 and E = 1. Using the presentation {a, b I a2 = b 3 
} of B 3 , shown 

in remark (2.3.5), we can write ex as 

But using the relations between the two presentations of B 3, shown 

in remark (2. 3 . 5), then 

and 

so 

ex = 

2 -3 2 2 r-2 2] [(ab)s ] [a (ab)] [(ab) ] [Cab )a 

2 -3 2 r-2 2 
[(ab)s ] (ab) [Cab) ] [Cab )a] 
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=c -2(k+s+r-5) 2 k-3 
a [Cab) ] (ab) x 

c 
where = means equal up to conjugacy. But 

2 2 2 4 ab a b = a (ab) 

then 

Hence using relations between the two presentations of B 3, shown in 

remark (2.3.5), we can write ex as 

Case (ii): Let k negative and all other powers are positive integers, 

then using equation (2.3.6), we have 

where 8
k 

= I, tk = -(k+l)/2 for k-odd and 8k = 0, tk = -(k)/2 for 

k-even. Now if k-even, then 

so using the presentation in remark (2.3.5), we have 

ex = 
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2(k-s-r-l) -k 4 2 
= a b(ab) (a) (ab )s-2(a2 ab) (ab2)r-1a 

=c a 2 (k-s-r-l)+6( b)-k+l 2 s-2 2 r-l 
a (ab) (ab)(ab) 

Using again the presentations of B 3 , shown in remark (2.3.5), we can 

write ex as 

But if k-odd, then 

Then using the pre sen ta tion in remark (2. 3. 5), we have 

.:.,,' , 

Using again the presentations of B 1 , shown 'in remark (2.3.5), we can 

write ex ~s 

Case (iii): when k, s are negative, and E, r are positive, then simi-

larly as in case (ii), and using equation (2.3.5), we have 
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where 8k = as = 1, tk = -(k+l)/2, ts = -(s+I)/2 for odd integers k, 

sand 8k = as = 0, tk = -(k)/2, ts = -(s)/2 for even integers k, s. 

Then following the previous calculations as in case (li), one can check 

that ex is conjugate to a braid with pattern as 

for non-negative integers p, q, i, such that p i- q, which completes 

the proof 0 

Proof of theorem (2.3.3): 

Lemma (2.3.6) tells us that the selected conjugacy representative 

ex for a twist positive braid contains (~3 )m+r, where m ~ 2 and r is 

the number of factors + 
in ex, for seZ . Hence using 

Murasugi's result on classifying the conjugacy classes in B 3 (as in 

proposition (0.14»), then comparing the conjugacy representatives for 

twist positive braids and for the non -trivial exchangeable braids, we 

conclude that non -trivial exchangeable braids can not conjugate to 

twist positive braids, which completes the proof 0 
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CHAPTER 3 

ON LORENZ KNOTS AND LINKS 

§3.0 INTRODUCTION 

In all known examples of differential equations the solutions ap

peared to fall into two categories, those which ultimately settled down 

to some sort of steady state behaviour and those which are periodic 

in time. 

Starting with the Navier-Stokes equation, [M], which governs the 

motion of a viscous, incompressible fluid, Lorenz introduced a trun-

cation which enabled him to reduce the Navier-Stokes equation to a 

system of ordinary differential equations in 3-space variables x,y,z 

as a function of time, [L]. 

For a system of ordinary differential equations such as Lorenz 

differential equations as t changes the points of 1R3 move simultaneously 

along trajectories, defining a flow tt: 1R3 -+lR t , for telR. Williams. F. R has 

found structures, Lorenz attractors (Lorenz knot holder), in 1R3 rel-

ative to the flow tt which all~w the periodic orbits, in the solution 

of Lorenz equations, to be collapsed onto a 2-dimensional branched 

manifold in 1R3 , for t ~ 0, [WI]. 

The concept of Lorenz knots, Lorenz links and Lorenz braids 

(which are the subject matter of this chapter and chapter 4), have 

been introduced by Birman. J and Williams. F. R, in a series of papers, 

[B-WI], [B-W2] and [W2]. They have investigated the periodic orbits 

in the solution of Lorenz equations and so they shown that knots and 
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links do occur, which called "Lorenz knots and Lorenz links". They 

also proved that there are infinitely many inequivalent Lorenz knots, 

where the relation between the class of Lorenz links and other classes 

such as fibred links, algebraic links and closed positive braids have 

been studied. 

Section 1 is devoted to the study of minimal braid representatives 

of a Lorenz link. It is an attempt to formulate a canonical form for a 

minimal braid representative of every Lorenz link. An example of 

Lorenz braids is given, in example (3.1.7), where a Lorenz braid, 

shown in definition (3. 1. 1), is two groups of strands cross with 

positive crossings only, such that no self crossing in each group and 

each two strands cross at most once. 

In remark (3.1. 2) it is noted that the class B (k, r) of Lorenz braids 

~(k,r), by the conception cited above, is much wider than [B-W1]Is 

class. In [B-W1] IS conception, it is necessary that each arc in any 

group of strands should cross some arcs in the other group, whereas 

here is not. moreover let iT(k, r) denote to the associated permutation 

to the braid ~(k,r), then in [B-Wl] it is excluded those braids of 

permutation iT with iT = 111112 ••. lls as a product of disjoint s cycles 

such that no two cyclic factors ll., ll. of the same length r, with ll· (p) 
1 J 1 

= llj(P) + t, p=1,2, ... ,r, for some integer t, whereas here is in-

cluded. Two examples to explain that widen, of the conception of 

Lorenz braids, are illustrated in figures (3-1a) and (3-1b). 

Recalling the concept of positive permutation braids, it is proved 

in lemma (3.1.3) that every Lorenz braid ~(k,r) is in SBk +r , hence 

it is shown in corollary (3.1.4) that a Lorenz braid depends only on 
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its associated permutation. Using this approach to positive permutation 

braids, a necessary and sufficient condition f01' a positive permutation 

braid to be a Lorenz braid is established in proposition (3.1. 5), (in 

fact this provides an alternative definition for Lorenz braids), where 

it is proved that a positive braid n is a Lorenz braid ~(k,r) if and 

only if S (n) = {k}, for some kEZ+. A formula for a Lorenz braid in 

terms of its associated permutation is given in lemma (3.1.8). 

A technical combinatorial method for representing a Lorenz link by 

a braid, not a Lorenz braid, in fewer strands is established in lemma 

(3.1.11). For a Lorenz link L with Lorenz braid ~ and S (~) = {k}, 

let n be the associated permutation of ~, then consider the number t 

= k+ 1-i, where i is the least integer:::: k such that n(i) > k, such this 

number is called the trip number of L. Following the technique pre

sented in lerruna (3.1.11), it is shown in corollary (3.1.14) that every 

Lorenz link of trip number t, has a twist positive braid representative 

in B
t

. As a consequence of corollary (3.1.14) and Corollary (2.1.12), 

where every twist positive braid is a minimal representative for some 

link, it is given an affirmative answer for [B-W1] 's conjecture about 

trip number of Lorenz links, (conjecture 11.6. page 81, of [B-W1]), 

where it is shown in corollary (3.1.15) that the trip number is the 

braid index, hence it is a link invariant. 

Following that the relation between the class of algebraic knots and 

links and the class of Lorenz knots and links is investigated. In 

proposition (3.1.17) it is proved that every algebraic link with:::: 2 

components is a Lorenz, the same was proved in [B-W1] for algebraic 

knots only. In proposition (3.1. 18) it is given a necessary and suf-
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ficient condition for a knot to be algebraic, where it is shown that a 

knot is algebraic if and only if it is the closure of a braid with some 

specific pattern, shown in equation (3. 1. 5) . Hence it is shown in 

corollary (3.1.19) that the only algebraic knots with minimal braid 

representative in Bn , for n prime, is the (n,r) torus knots for all 

integer r, such that n # r. An example, in example (3.l.20), to show 

that not every algebraic link is a Lorenz link is given. 

Finally a semi-canonical form for a minimal braid representative of 

a Lorenz link is established in theorem (3.l. 22), where a canonical 

form for a minimal braid representative for every algebraic knot is 

established in corollary (3.1.23). An attempt to formulate a canonical 

form (from that form in theorem (3.l.22» for minimal braid repre

sentatives of a subclass of Lorenz links is done. It shown in lemma 

(3.1.25) that every Lorenz link of trip number equals to the number 

of components has an interested semicanonical form, such these links 

were the field of work in chapter 4. 

Section 2 is devoted to the study of the possible satellites of a 

Lorenz knot. In fact every Lorenz link is a closed braid, which must 

follow some pattern (as in figure (3-7a», hence the Lorenz knots 

which are satellites of other Lorenz knots should also follow that 

presentation pattern. But the construction of algebraic knots, as in 

remark (3.l.16) and proposition (3.l.18), tell us that the only \'.-ay 

in which a Lorenz knot appears as a represented cable in this pres

entation is when it is an algebraic knot, hence it is a very plausible 

conjecture that these are the only ways in which a Lorenz knot can 

be presented as a satellite. 
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Now given a Lorenz link C with Lorenz braid ~(a, b), then using 

the combinatorial method in lemma (3.1.11), we can represent C as 

closures of b-braid [L(a)(~(a,b»] and a-braid [R(b)(~(a,b»], where 

L(~(a,b», R(~(a,b», as defined in definition (3.1.9). Then it is 

shown, in proposition (3.2.2), that for every Lorenz knot C the sat

ellite constructed with pattern as a closed braid a C , for a = 

(6 )2k[L(a)(~(a,r»] [R(b)(~(r,b»] is again a Lorenz knot, with r 

positive integers a, band r. The idea is modifying the Lorenz knot 

constructed by running r parallel strands around C in the knot holder 

H (of C) and including L(a)(~(a,r» and R(b)(~(r,b», (for some 

Lorenz braids ~ (a, r) and ~ (r, b» . 

c The pattern given in proposition (3.2.2) is a closed r-braid a , 

where a = (6
r

)2kAB , with A = (X 1 )(a d (X
2
)(a 2 ) (X

r
_
1
)(ar - 1), 

and B = (Y d (b d (Y 2) (b2) ... (Y r-1) (br - 1), for positive integers 

a., b., for all 1:::; i:::; r-1, as shown in corollary (3.1.14). Then the 
1 1 

case with A = (Xi) a and B = (Y i) b gives a cable about C. So algebraic 

knots are built up successively, starting from the case when C is a 

torus knot. 

It is likely to say that the satellites of Lorenz knots can .. otlly 

constructed by the pattern in proposition (3.2.2), although attempts 

to prove it using an extension of Williams methods, [W2], have so far 

been unsuccessful. 
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§3.1 A SEMICANONICAL FORM FOR 

A LORENZ BRAID 

(3.1.1) Definition: 

A Lorenz link L is a closed braid ~EBn for some integer n, where 

in ~ the strands have a natural ordering from left to right. Number 

them, 1,2, ... ,n, on the top and on the bottom. These strings fall 

into two groups of parallel strands, a left group of k strands and a 

right group of r strands, k + r = n, where the strands in the right 

group always pass over (not under) those in the left group, but 

strands in the same group never cross one another. This braid 6 is 

called a Lorenz braid of type (k, r) and denoted ~ (k, r) . 

(3.1. 2) Remark: 

Let iT(k, r) denote to the associated permutation for the braid 6(k, r) 

and let B(k,r) denote to the class of all Lorenz braids of type 6(k,r). 

Note that the class B (k, r) is much wider than the class of Lorenz 

braids in '[B-Wl]. In our definition it is not necessary that each arc 

in any group of strands should cross some arcs in the other group. 

e. g. the example illustrated in figure (3-1a) is not a Lorenz braid from 

point of view of [B-Wl] , because the left-hand strand in the left group 

does not cross any arcs from the right group. In [B-W1] it is also 

excluded those braids of permutation iT with iT = II 1112 ••• lls as a 

product of disjoint s cycles such that no two cyclic factors lli' llj of 

the same length r, with lli(P) = llj(P) + t, p = 1,2, ... ,r, for some 

integer t, e. g. the Lore braid 6(n,n) of permutation iT(a) = a+n for 

1 ~ a ~ nand iT(b) = b-n for n+1 ~ b ~ 2n (which closes to the (n,n) 

114 



torus link, i. e. the closure of the positive braid (a ) 2) is not a Lorenz 
n 

braid from point of view of [B-W1], because 1T = (1 n+1) (2 n+2) ... 

(n 2n). An example of such these braids is illustrated in figure (3-1b) 

for n = 5. 

Figure (3-1a) 

1 7 8 9 10 
" j 

1 2 345 
10 

Figure (3-1b) 
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( 3 . 1. 3) Lerruna: 

Every Lorenz braid ~ (k, r) is a positive permutation braid in 

Bk +r , i.e. ~(k,r)eSBk+r. 

Proof: 

In Lorenz braids the strands in the right group always pass over 

(not under), in a positive sense, those in the left group, i. e. each 

strand in the right group cross at most once with each strand in the 

left group. But strands in the same group never cross one another. 

Hence in ~(k,r) each two strands cross at most once. The crossings 

also occur in a positive sense, so definition (1. 1. 1) tells us that 

~(k,r)ESBk 0 +r 

(3.1.4) Corollary: 

The Lorenz braid ~(k,r) depends only on its associated permutation 

'TT(k,r) and on the ordered pair (k,r) of integers. 

Proof: 

The ordered pair (k, r) determines a left group of k strands and 

a right group of r strands, where strands in the same group never 

cross one another. But ~(k,r)ESBk+r' then lemma (1.1.3) tells us that 

'TT(k,r) depends only on 'TT(k,r) 0 

The following proposition provides a necessary and sufficient con

dition for a positive permutation braid to be a Lorenz braid. In fact 

it can be considered as an alternative definition for Lorenz braids. 
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(3.1.5) Proposition: 

In Bn' a positive permutation braid 1T is a Lorenz braid if and only 

if 1T is an actual word, i.e. 1T has a single starter (S(1T) = {O, for some 

i, 1 ~ i ~ n-l, as in definition (1.1. 7». 

Proof 

For necessity: Let 1T be a Lorenz braid, then lemma (3.1.3) tells 

us that 1TESBn . Assume that i, jES (1T), then lemma (1. 2.6) tells us that 

C1.Cl = C1.Cl if i = j 1 J 

1T = C1.C1.Cl = C1.C1.Cl if Ii jl ~ 2 
1 J J 1 

C1.C1.C1.Cl = C1.C1.C1.Cl if Ii jl = 1 
1 J 1 J 1 J 

for some ClESB . So that we can not break up the strands, in 1T, to n 

two groups such that no self crossings in each group, i. e. 1T does 

not a Lorenz braid, hence 1T has a single starter. 

For sufficiency: Let 1TESB , with S(1T) = {O, for some 1 ~ i ~ n-l, then 
n 

clearly 1T is a Lorenz braid, because at some stage we can break up 

the strands to two groups where no self crossings occur in each group 

of strands 0 

( 3 . 1. 6) Remark: 

For a Lorenz braid ~(k,r.) with permutation 1T(k,r), write 1T(k,r) 

= (1Tl,1T2, ... ,1T
k

+
r

), where 1Ti = 1T(i), 1 ~ i ~ k+r. 

the same group never cross one another, then 

But strands in 

1 ~ 1T 1 < 1T 2 < ... < 1T k ~ k +r, i. e . 1T. ~ i, 
1 

for 1 ~ i ~ k 

and 

5: k+ . 1T ~ J', for k+l ~ J' ~ k+r 1 ~ 1Tk+l < 1Tk+2 < ... < 1Tk+r" r, I.e. j 
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So 

and 

11'. - i ~ r, for 1 ~ i ~ k 
1 

j - 11'. ~ k, for k+l ~ j ~ k+r 
J 

But no crossings occur in each group of strands, then it is clear 

tha t the permu ta tion 11' (k, r) is either determined by the tuple (11' 1 , 11' 2, 

. .. ,1Tk ), denoted L 11T(k, r) (simply L11T) or the tuple (1Tk+ l' lI'k+2' ... 

,1T
k

+
r
), denoted L21T(k,r) (simply L21T). Note that there are braids 

in SB
k

+
r

, which are not Lorenz braids, e. g. f1k +r does not a Lorenz 

braid in Bk . +r 

(3.1.7) Example: 

The example in figure (3 -la) of a Lorenz braid B (8, 6) has the 

Lorenz permutation 

11'(8,6) = (1,3,4,5,8,9,13,14,2,6,7,10,11,12), with S(1T) = {8} 

hence 

L11T(8,6) = (1,3,4,5,8,9,13,14) and L21T(8,6) = (2,6,7,10,11,12) 

Then by using L 21T, we can write B(8,6) as a braid ~ B14 

Now let B(k,r) refer to any Lorenz braid of type (k,r). A specific 

B(k,r) is determined by an associated permutation 1T(k,r) or simply 
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(3. 1. 8) Lemma: 

The Lorenz braid e(k,r) with permutation 1T(k,r) has the positive 

braid representative, 

Proof: 

r 

e(k,r) = [ IT (<1k+i-l<1k+i-2 
i=l 

<1 )]ESB
k

. 
1Tk+i +r 

The string from the position k+i at the top of the braid to the 

position 1Tk+i at its bottom pass over (k-1T
k

+
i 
+i) strands, hence by 

using the permutation L 2 1T, shown in figure (3-2), where boxes in the 

diagram represent some other Lorenz braids, we can write e(k,r) as 

1 

1 

r 

k 
strands 

1T.
k 

.-1 ,+ 1 

k 

strands 

<1 )]ESB
k 

0 
1Tk . +r +1 

k+l k+i k+r 

Figure (3-2) 
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(3.1.9) Definition: 

Define the two operators Land R on B(k,r), such that L(a(k,r», 

(R(a(k,r») ), is the tying the top of the first, (last), string of the 

left, (right), hand side to the same position on the bottom of a, then 

define 

( 3 . 1. 10) Remark: 

Let X. be the Lorenz braid a (1, i) with permutation 1T (1, i) and L I1T 
1 

= (1T 1 =i+ 1) and let Y. be the Lorenz braid a (i, 1) with permutation T) (i, 1) 
1 

and L 2 T) = (T). 1=1), then clearly as in figure (3-3) and as braids of 
1+ 

(i+1) strands, Yi is the result of turning over Xi' Le. 

with 

where, 

Y. = t[X.] 
1 1 

-1 
= (~. l)X·(~·+l) 1+ 1 1 

X rl nd Y. = (1.(1. 1 ... (11 i = (11(12 ••• Vi' a 1 1 1-

= (X.)i+1 = (y.)i+1 
1 1 

i-strands 

\ 
\ 

\ 
\ 
\ 

\ 
\ 

x. 
1 

\ 

Figure (3-3) 

Y. 
1 

/ 

)' 
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The following lenuna provides a technical combinatorial method for 

representing a Lorenz link by a braid (not a Lorenz braid) in fewer 

strands. In fact this method is the key to formulate a sernicanonical 

form for a minimal braid representative for a Lorenz link. 

( 3 . 1. 11) Lemma: 

Given a Lorenz braid 6(k,r) with a permutation 'IT(k,r), then 

(i) : L(6(k,r» 

and 

(ii): R(6(k,r» 

= {O U 6(k-l,r) 

X'IT
1
_2 6(k-l,r) 

= {O U 6(k,r-l) 

Y(k+r)-'IT _1 6(k,r-l) 
k+r 

when 'lTl = 1 

otherwise 

when 'lTk+r = k+r 

otherwise 

where 0 is the unknot, X. is in the first (i+l) strands of the right 
1 

group of 6 and Y. is in the last (i+l) strands of the left group of 6, 
1 

while f)(k-l,r) and 6(k,r-l) have permutations in terms of the per-

mutation 'IT(k, r) . 

Proof: 

For (i): If 'IT 1 = 1 , then the left- hand string in 6 has no crossings 

with the others, hence 

\ 

L(6(k,r» = 0 U f)(k-l,r) 

where f)(k-l,r) has permutation 'IT'(k-l,r), such that 

= 'IT - 1 1 ~ i ~ k-l 
i+ 1 ' 

= 1, so the first ('IT 1 -1) strands from the 
Now let 'IT 1 > 1, then 'lTk+l 

right group of 6 pass over the left hand string of f). Then by 
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k+r 

strands 

~L 

k k+r 

strands 

-
2 k+l k+r 

strands 

" ...... 
...... 

Figure (3-4) 
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using Reidemeister moves, shown in theorem (0.4), we can isotop 

L(a(k,r» to the required braid as in figure (3-4), so 

where this a(k-l,r) has the same permutation 1T', such that 

(1T'). = 1T. 1 - 1, 1 ~ i ~ k-l 
1 1+ 

But Y. is the result of turning over X., then similarly we can conclude 
1 1 

case (ii) 0 

(3.1.12) Definition: 

From the diagram of a Lorenz braid ~(k,r) with permutation 1T(k,r) 

we can read a number t, which is the maximum number of t strands 

in the left-hand side of the right group , which pass over t-strands 

in the right-hand side of the left group. This number t is called the 

trip number of B(k,r), i.e. S(B) = {k}, so t = k+l-i, where i is the 

least integer ~ k, with 1T(i) > k. The example in figure (3-1a) has 

trip number equals 3. 

(3.1.13) Remark: 

Given a Lorenz braid B(k,r) with trip number t and permutation 

1T (k, r), then B (k, r) is the product of three Lorenz braids, shown in 

figure (3-5), Le. 

B(k,r) = [f)(t,t)] [B(k-t,t)] [~(t,r-t)] 

where ~(t, t) is a Lorenz braid in the last t-strands of the left group 

and the first t strands of the right group of B with permutation x(t, t), 

such that 

x. = t+i, for k-t+l ~ i ~ k 
1 
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~(k-t, t) is in the first k strands with permutation ~(k-t, t), such that 

~. = 1T., for 1 ~ i ~ k-t 
1 1 

and ~(t,r-t) is in the last r strands with permutation n(t,r-t), such 

that, 

also, as in figure (3-5), 

and 

1 ~ 1T. ~ k, for 1 ~ i ~ k-t 
1 

k+l ~ 1T. ~ k+r, for k+t+l ~ i ~ k+r 
1 

But remark (3.1. 6) tells us that, 

'TTi ~ i, for 1 ~ i ~ k and 'TT
j 

~ j, for k+l ~ j ~ k+r 

hence 

and 

The example in figure (3-1a), can be written as a product of three 

braid words, 

where the last two words commute 0 
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1 

k-t 

k-t 

(3.1.14) Corollary: 

t 

k+r 
~--"--r----;;; 

r-t 

~(t,r-t) 

t r-t 

Figure (3-5) 

A Lorenz link (~(k,r»c with permutation 'TT(k,r) and trip number 

2 
t, has a braid representative [(.\) XY]eBt , provided that 'TTl > 1 and 

'TTk < k +r where +r ' 

with 

n. = cardOI'TT.-j-1=i, 'TT2(j»'TT(j)} 
1 J 

and 

m. = card{jlj-'TT.-1=i, 'TT2(j)<'TT(j)} 
1 J 

Proof: 

Since 'TTl > 1 and 'TTk + r < k + r, then no trivial links in L(i)(~) 
and R (i) (~) for any i. Illustrate the braid ~(k,r) as in figure (3-5), 

where by successive application of lemma (3.1.11), as illustrated in 

figure ( 3 - 6a), yield 
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and 
r-t 

R(~(t,r-t» = IT (Y[(k+r-i)-1T ]) = Y, say 
i=1 (k+r) - (i-I) 

Now for a fixed integer i, as in figure (3-6b), with 1 ~ i ~ t, there 

+ 
exist n., A.eZ such that, 

1 1 

and 

1 ~ A.+n. < k-t 
1 1 

1T A.+1-(\+I) = i 
1 

1T - 1T = a. + 1 ~ 2 
A. + 1 A. 1 

1 1 

1T - 1T = b. + 1 ~ 2 
A. + n. + 1 A. + n. 1 

1 1 1 1 

U . k (3 1 13) where 1T2(i) >., 1T(i), for 1 ~ i ~ k-t, then sIng remar ., , ..... 

and 

then 

n. = cardOI1T.-j-l = i, 1T2(j) > 1T(j)} 
1 J 

n. 
1 

t-l 
IT (n.) = (k-t) 

1 
i=1 

IT [X(1T +j)-(A.+j)] = 
j= 1 A . 1 

1 
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So 
t-l 

X = II [(X.) (ni )], with n. ~ 0 
i=l 1 1 

But Y1· is the result of turning over X th imila' i' en s rly 

where 

such that 

t-l 
Y = II (Y.) (mi ), with m. ~ 0 

i=1 1 1 

t-l 
II (m.) = (r-t) 

i=1 1 

The resulting braid is represented diagrammatically as in figure 

(3-7a) 0 

(3.1.15) Corollary: 

For a Lorenz link (~( k, r) ) c, the trip number is the braid index. 

Proof: 

Corollary (3.1.14) tells us that the link (~(k,r»c has a twist 

positive braid representative, then the proof is a direct consequence 

of corollary (2.1.10), where the closure of a twist positive braid 

(f1 ) 2mQ has braid index n, for m ~ 1 and for a positive braid Q 0 
n 
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1 

1T A. 
1 

A.+n.+l 
1 1 

Figure (3-6a) 

k-t 

\ 
\ \ 

\ \ 
\ \ 

k k+l 

1T 
A.+n.+l 

1 1 

Figure (3-6b) 

k+t+l 

~ ,r-t 

k+t k+r 

k+r 
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(ll ) 2 
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(X1)(lll) .. 
-

(X 2)(ll2) I . .. 
-

X 
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(Xl)(lll) 1 
1 I . 

I 
I I ••• 
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I I 

(X
t

-
2

) (llt-2) 1 
... 

C X
t 
-1) C llt - 1 ) I 
.. 

·If 

lCYd(m1)1 

· . 

I (Y 2) (m2) I 
_L-

Y 
-...-

(Y3)(m 3 )! 
I I 
. , 

• • I I , , 

I I 

I (Y ) Cmt - 2 ) 
t-2 1 

· . 

I (Y ) (mt - I ) 
t-l J 

'. v 

Figure (3-7a) 

'" ", . 

I , . . 

.. 

I 
i 

1 I . 
I \ 

- ...... - .... 

Figure (3-7b) 
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(3.1.16) Remark: 

Given an algebraic knot K, as defined in definition (0.13), then 

3 -1 
K ~ [(SE ) () f (0)], for some complex plane curve f(x,yl, with f(O,O) 

= 0, where (SE
3 = {(X,y)Ea:

2 I l(x,y)1 = E} for sufficiently small £ 

and K can be described by the fractional power series as in equation 

(0.1). Now consider the first approximation to equation (O.ll, i. e. 

let 

(3.1.1) 

then take x = Et
9

, where t runs once around the complex unit circle 

SI C f -1 (0), so Y is a constant times t (q I) and (x, y) runs P I times 

around in the longitudinal direction S 3 (the x-axis) while running 
E 

ql times around the meridianal direction of S 3 (the y-axis). Hence 
E 

the first approximation is the (PI,ql) torus knot K 1 • Therefore KI 

is the closure of the PI - braid [ ~ 1 = (Xp 1 -1) (q 1) ] . Again consider 

the second approximation to the equation (0.1), i. e. let 

h t . t· t t - t (p 1 P 2 ) so x will follow then change t e parame erlsa Ion 0 pu x - E.- ' 

. 3 
K1 around P2 times,in a longitudinal direction in SE (the x-axis). 

Hence the second a pproxima tion knot K 2 is the (p 2, a 2) cable on K 1, 

for some integer a2' Continuing this process then the knot K re

presented by equation (0.1) is the (ps,as ) cable on the (ps-l,as - l ) 

cable on the ... (p 1, a 1) cable on the unknot, for suitable integers 

a . It is known that ([E-N], proposition lA .1, page 51), 
s 

= + p a for i ~ 1 and a 1 = q 1 
qi+l Pi i+l i' 

(3.1.3) 
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But the pair (Pi,qi) is relatively prime, then the pair (p.,a.) is also 
1 1 

relatively prime and 

(3.1.4) 

Now back again to the case in equation (3.1. 2) above, which can be 

represented by using equation (3.1.3) as a (P2,q2+PIP2qd cable over 

(p 1, q d, then K2 is the closure of the braid ~ 2 illustrated in figure 

(3-7b), which can be written as 

But we can start with q 1 > P 1, because the (p, q) torus knot is 

unchanged by interchanging p and q. Continuing the previous process 

we can see that the arbitrary algebraic knot, which represented by 

equation (0.1), has the n - braid representative 

where 

and 

such that 

k. > m., for r ~ i ~ r 
1 1 

k = m.d. and k. = c.k. l' for 2 ~ i ~ r 
ill 1 1 1-

(3.1.5) 

for some integers c. , 
1 

d .. 
1 

Now let L = K u K' be an algebraic link 

with two components, then L corresponds to two distinct equations 

such as in equation (0.1). Let y and y' be the first approximation of 

L, where y as in equation (3.1.1) above and y' equals y by replacing 

(p 1, q 1) by (p 1 ' ,q 1 '), then consider the two different cases: 
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If (p 1, q d = (p 1', q 1 I), take x = Et 9, as above, then L represented 

by two parallel strands run PI times around in the longitudinal di

rection in S 3 while ql times around the meridianal direction of S 3. 
E E 

Therefore the two components K and K' have linking number ql (which 

gives the feature of the fact that every algebraic link is determined 

by the isotopic type of each component and the linking numbers of 

each pair of components, [E-N]), then L is the closure of the 

(2p d -braid (X2p 1-1) (qd 

But if (PI,qd # (PI',ql'), then L is a splitable link of two com-

ponents (PI,ql) and (PI',ql') torus knots. Therefore L can be re-

presented as a closure of the 

[ ( X ) (q d (Y , ) (q I ') ]. Then by repeating the same construction 
PI-1 PI -1 

adopted for the successive approximations to K used above, we can 

see that every algebraic link of two components has a braid repre-

sentative of pattern such as in figure (3-7a) with some restrictions 

on the powers (n.)'s and (m.)'s. Therefore we can conclude the foI-
l I 

lowing result: 

(3.1.17) Proposition: 
./ 

Every algebraic link with two (or one) components is a Lorenz link. 

(3.1.18) Proposition: 

A knot is algebraic if and only if it is the closure of the braid in 

equa tion (3. 1. 5) . 

Proof: 

The necessity is established in remark (3.1.16). To establish the 

sufficiency it is quite enough to check that the given knot K is 

(ml,bd cable on (m2,b 2) cable on ... (mr,br ) cable on the unknot, 
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such that b I· 's (replaced by a
l
. IS) satisfy the equation (3 .1.3) .. Now 

by sketching a diagram, simply as in figure (3-7b), we can see that 

) (k ) = 
1 r 

= [(X )(m d Z 
m1- 1 m m ( 1, 1 m2 m3.·· m 

r 

] (dd 
1) 

where Za, b is the Lorenz braid ~(a, b), with permutation 1T(a, b) such 

that 1T(i) = i+b, for 1 ~ i ~ a. Therefore K is (m1, b d cable on 

(m2 m3' •• mr , b 2) for some integers bland b 2, such that b 1 = (k
1 

+ 

k2 + ... k r ) and b 2 = dr' Continuing this process and by induction 

on r we can check that the given knot satisfies the condition in 

equation (3. 1. 3), hence it is an algebraic knot 0 

(3.1.19) Corollary 

The only algebraic knots with minimal braid representatives in 

B , for n prime, is the (n,r) torus knots for any integer r, n # r. n 

Proof: 

U sing proposition (3.1. 18) and corollary (3.1. 15), we can see that 

the algebraic knot with minimal braid representative in B , for prime 
n 

n, can be represented as the closure of the braid 

m 
a = (X 1) , for m > n n-

because n is prime, so we can not factor it as a product of integers, 

hence a closes to the (n,m) torus knot, which completes the proof 0 

(3.1. 20) Example 

Since every Lorenz link has a braid representative, as illustrated 

in figure (3-7a), then recalling the construction in remark (3.1.16), 
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one can establish many examples of algebraic links which do not follow 

the pattern in figure (3-7a), i.e. not Lorenz. e.g. consider the 

4-braid 

which closes to an algebraic link of 3 components 0 

(3.1.21) ProposHion: 

m m 
In Bt , (Xi +1 ) = (Xi) (<1i+1<1i '" <1i +2-

m
), for 1 ~ m ~ i+1 and 1 

m m 
~ i ~ t-2, hence (Yi +1 ) = (Yi ) (<1t-i-1<1t-i ... <1t - i - 2+

m
). 

Proof: 

From remark (3.1.10) 

then the proposition is true for m = 1. Now refer to the proposition 

when m = k as (prop')k' The proof of the general proposition follows 

by induction on k. For our induction hypothesis we assume that 

(prop')k holds, i.e. 

Then 

(X )(k+l) 
i+1 

k = (Xi +1) X i +1 
k = (X.) (<1. +1<1. 

1 1 1 

k 
= (X.) (<1'+1<1. 

1 1 1 

/ 

<1i+2-k)Xi+1 

<1i +2- k ) (<11<12 ... <1i+l) 

Now using the braid relator (ii) of definition (0.5), then 

(X )k+1 
i+l 

where 

k = (X.) (<11<12 ... <1.) (<1'+1<1· ... 1 J 1 1 

i - k = j 

<1. 2 k)(<1· 1<1· 2 ... <1'+1)' 1+ - J+ J+ 1 
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Now take 

then using the braid relators (1·) d ( .. ) f d f an 11 0 e inition (0.5), we have 

T) = a·+1 (a. 1a. l 1+ 1 

then continuing this process we have, 

But 

then 

(X .)k+l = 
i+l 

j = i - k 

= (X.)k+1( ) a. 1a.a. 1 ... a. 1 k 1 1+ 1 1- 1+ -

which completes the proof of (prop. )k+l' hence completes the proof 

of the general proposition 0 

(3.1. 22) Theorem: 

Every Lorenz link of trip number t has a semicanonical form for 

its minimal braid representative in B
t

. More precisely: 

The Lorenz link (6(k,r»c of trip number t and a permutation 

1T(k,r) has the minimal representative, 
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+ 
where ex, aeSBt and Pi' qieZ for all 0 ~ i ~ t-2, such that Po ; o. 

Proof: 

Corollary (3.1.14) tells us that the link (a(k,r»c has the minimal 

braid representative 

where 
t-l 

X = IT [(X.)(ni)], n. ~ 0, for 1 ~ i ~ t-l 
i=1 1 1 

and 
t-l 

Y = IT [(y.)(mi)l, m. ~ 0, for 1 ~ i ~ t-1 
.1 1 1 1= 

Now let 

n t - 1 = E t - 1 mod (t) 

i. e. 

then using remark (3.1.6) and proposition (3.1.21) 

= (t:. )(2P o)(X )(E t - 1)(<1 <1 
t t-2 t-1 t-2 

where, as in remark (3.1.10), 

But (t:. )2 commutes, shown in corollary (1.1.12), with every word in 
n 

B , so using proposition (3.1. 21), we have 
n 
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Repeat the same process again with 

n t - 2 + Et - 1 = Et - 2 mod(t-l}, i. e. 

then 

Then continuing this process we have 

x = Po: 

such that 

and i=Q 

with 

0:
1
• = ( C1.(1. _ 1 ... 0' i + 1 - E ) E S B 
IIi i+l (3.1.6) 
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where 

and 

for 

n. + E. 1 = 
1 1+ (i+l)Pt-(i+l) + Ei 

o ~ E. ~ i p. ~ 0 
1 ' 1 

1 ~ i ~ t-l E = 0 , t 

But Y. is the result of turning over X., then 
1 1 

such that 

and 

with 

where 

and 

for 

Y = QB 

m. + 6. 1 = 
1 1 + ( i + 1 ) qt - (i + 1 ) + 6 i 

q. ~ 0, 0 ~ 6. ~ t-i 
1 1 

1 ~'i ~ t-l 8 = 0 , t 

(3.1. 7) 

(3.1.8) 

Which completes the proof of the theorem. This semicanonical form for 

representatives of a Lorenz link is represented diagrammatically in 

figure (3-8) 0 
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1 
-

(.\) (2po + 2ql +2 ) 

1 I 
1 I 

I I I -
I I I 

1 I r 

---------1-- -- ----1-- ------
1-----1---~~_-L-- ---

__ ~_ =-=_-=-=_r. _ "I"IL-_-__ -__ -__ -__ ---r_ -__ -__ .-.-J.1. 
i---l---...lf-----L-=-II ~ ----~--. 

a 

(~ )(2qd 
t-1 +-, 

1 

I 
I 
I 

i 

1 

I 
I 
I 

I 

-------_ .... _- .... ~ [r----L--...J---:-~~------_-_---=-=-::-r:.=-~.... - --

1 
I , 

FIgure (3-8) 

139 



(3.1.23) Corollary 

Every algebraic knot has a positive braid representative of the 

canonical form 

for positive integer p., 0 ~ i ~ t-2, and a.'s as in equation (3.1.6). 
1 1 

Proof: 

Using proposition (3.1.17) and theorem (3.1.22) we can see that 

every algebraic knot has a positive braid representative Pa as illus

trated diagrammatically in figure (3-8). But (f1.)2 commutes with every 
1 

thing in i strands (or less) and recalling the construction of the 

canonical form for a positive braid, one can rewrite Pa as in the re-

quired form, which is in fact a right hand canonical form for the 

positive braid Pa 0 

(3.1. 24) Remark: 

Using the recurrence relations in equations (3.1.7) and (3.1.8), 

we have 

j j-l 

E
t

-
J
. = L (nt _·) - L (t-i)p. 

i=1 1 i=O 1 

and (3.1. 9) 

j ,\, j-l 
6

t 
. = L (mt _·) - L (t-i)qi 

-J i=1 1 i=O 

where n., m. as in corollary (3.1.14), with 
1 1 

t-l 
L (n.) 
. 1 1 1= 

t-l 
= k-t and L (m.) = r-t 

i=1 1 
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Hence the two positive permutation braids, in the associated 

semicanonical form for a Lorenz braid 6 (k, r), are determined by the 

associated permutation 6(k,r). In fact theorem (3.l.22) tells us that 

the number of of components in a Lorenz link is determined by the 

two positive permutation braids ex and 6 in the associated semicanonical 

form for its Lorenz braid representative. Then the number of compo-

nents of a Lorenz link equals the trip number if and only if ex6 has 

the identity permutation, i. e. 6 = p [ex], where p [ex], shown in defi-

nition (0.10) , has the inverse permutation of the permutation ex. 

Finally e qua tion ( 3 . 1 . 6) tells us that 

ex.E{e, rJ., rJ.rJ. l' ... , rJ.rJ. 1 ... rJd 
1 1 1 1- 1 1-

where ex. has the braid diagram as illustrated in figure (3-9a). 
1 

(3.l. 25) Lemma: 

Every Lorenz link with trip number t and t components, has a 

semicanonical form (llt) 2pQ for its Lorenz braid representative, such 

that Q is prime to (llt)2. More precisely: 

Given a Lorenz link (6(k,r»c with permutation n(k,r), trip number 

t and t components, then 6 (k, r) ,has a semicanonical form (llt) 
2 
PR, 

as in theorem (3.l. 22), where either R has two strings with linking 

number zero or R = (l\)2 R " R' has two strings with linking number 

zero. 

Proof: 

Take R = P (ex) Q (p [ex] ), where P, Q, ex and e = p [ex] as in theorem 

(3.l.22), then exclude ex beginning with rJ1 or ending with O't-l' oth-

2 ) 2 t' ly To exclude the erwise we can extract (1l2) or (1l2,+- respec lye . 
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turning over of R, if a and '[ [ a] are different, select one of them and 

if they are equal, arrange P and Q such that, 

if and only if the number PIP2 ... P t - 2 (considered as a numerically 

expanded number) is greater than the number qlq2 . -:. qt-2 (con

sidered as a numerically expanded number). Then consider the fol-

lowing two cases: 

Case (1): 

a = alYt-1' as in figure(3-9b), then 

= P (a 1) Q':< ( p [a 1] ) ':< (Y t -1) (p [Y t -1 ] ) 

where 

and 
::c: 

(p [al]) (<1
i
) = (p [a l ]) (<1i +1) 

as a braid words (functions) of <1 i' 1 ~ i ~. t - 2. So if 

then we can extract (~t) 2 to finish with 

where either 

and 
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or 

and 

q. = (q')., 2 ~ i ~ t-2 
1 1 

Q = Q', (P')1 = p -1 
1 

So that the last string in R' does not link any thing. But if 

p = q = 0 1 1 

then the largest full twist in P and Q is in (t-2) strands, hence 

R' is the end of a semicanonical form in (t -1) strands. So by induction 

either there exist two strings in R' with zero crossing, hence is too 

in R, so R is prime to (L\) 2 or 

where R" has two strings with linking number zero, then 

/ 

Case (2): 

The corner strings in a are different, so 

where a
1 

and a
2 

are positive permutation braids in the first (i-I) 

strands and last (t-j) strands respectively, as in figure(3-9c). So 

the corner strings does not cross in a, hence they do not cross in 

R, then R is prime to (6
t

) 2, which complete s the proof 0 
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p 

1 , __ -,,-~i_-~EIL·+~l __ ~i+l 

i-E. 
1 

Figure (3-9a) 

:: 

Figure (3-9b) 

(~ ) 2p 
t 

Figure (3-9c) 
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§3.2 ON LORENZ KNOTS AND LINKS 

WHICH ARE SATELLITES 

( 3 . 2 . 1 ) Definition: (Lorenz knot holder), [B -W2 ] 

The Lorenz Knot holder is a branched 2 -manifold H with boundary, 

in S3, consisting of one "joining" and one "splitting" charts put to-

gether, as in figure (3-10), by sewing each bottom to exactly one top 

and vice versa. The joining chart has the defect that flow lines come 

together along the branch line B, likewise the flow leaves splitting 

chart at the bottom. 

joining chart splitting chart 

'Figure (3-10) 

, 

B 

, , 
\. , , 

Lorenz knot holder 

Now given a Lorenz link C with Lorenz braid ~(a, b), then using 

the combinatorial method in lemma (3.1.11), we can represent C as 

closures of b-braid [L(a)(~(a,b»] = B (say) and a-braid 

[R (b) (~(a, b») = A (say), as in figure (3-11), where L(~(a, b» is 

the tying the top of the first string of the left hand side to the same 

position on the bottom of ~(a, b), = 

L(L(i-l)(~(a,b»), as defined in definition (3.l.9). 
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b-strands 
a-strandSI~ 

I 
, 

a- strands 

b-strands a-strands 

L(a) (~(a, b» R (b) (~(a, b» 

Figure (3-11) 

(3 . 2 . 2) Proposition: 

For every Lorenz knot C the satellite constructed with pattern as 

a closed braid aC
, for 

is again a Lorenz knot, where k = crossing number of C, for positive 

integers a, band r. 

Proof: 

Modify the Lorenz knot constructed by running r-parallel strands 

around C in the knot holder H (of C) and including L (a) (~( a, r) ) , 

R(b)(~(r,b», (for some Lorenz braids ~(a,r) and ~(r,b», at the 

ends of the branch line of H. Then the resulting knot K is again a 

Lorenz knot, as in figure (3-12a), so K can be represented by braid 

with pattern as in figure (3-12b), which completes the proof 0 
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(3. 2 . 3) Remar k: 

Note that the pattern given in proposition (3.2.2) is a closed r

braid a
C

, where a = (A
r

)2kAB , with 

and 

for positive integers a., b., for 1 ~ i ~ r-1, as shown in corollary 
1 1 

(3.1.14). Then the case with A = (X.)a and B = (Y.) b gives a cable 
1 1 

about C, so algebraic knots are built up successively, starting from 

the case when C is a torus knot. It is likely to say that the satellites 

of Lorenz knots can only constructed by the pattern in proposition 

(3.2.2), although attempts to prove it using an extension of Williams 

methods, [W2], have so far been unsuccessful. 

...... " 
, ., '. , ".,', , , . '"", ". 

" 

Figure· (3-12a) 

A 

B 

r-strands 

Figure (3-12b) 
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CHAPTER 4 

ON LORENZ LINKS OF TRIP NUMBER ~ 4 

WITH THEIR ASSOCIATED LINKING PATTERNS 

§4.0. INTRODUCTION 

Every algebraic knot is a Lorenz knot and every algebraic link of 

two components is also a Lorenz link, as shown early in proposition 

(3.1.17). Then in this chapter it is followed on with the properties 

of the algebraic knots and links, hence it is compared with those 

Lorenz knots and links. The algebraic knot is determined by its 

Alexander polynomial, [Y]. But this is not generally true even for 

class of closed twist positive braids, where algebraic knots belong to, 

[Mo5] . Algebraic link is also determined by its associated linking 

pattern and the isotopy type of each component, [Y] and [E-N]. But 

this does not hold (in general) for Lorenz links. An example of two 

non isotopic Lorenz links with some knotted components is given by 

H . Morton, as in ( 4. 1 . 3) . The central theme of this chapter is the 

study of the following conjecture: 

(4.0.1) Conjecture: [Morton. H) 

A Lorenz link L of unknotted components is determined by its as-

sociated pattern of the linking numbers. 

To some extent an affirmative answer of the conjecture cited above 

is given. It is proved that the conjecture holds for those Lorenz links 

of trip number (braid index) ~ 4. 
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Section 1 is devoted to the study of conjecture (4.0. 1) for Lorenz 

links of trip number 3. It is proved, in theorem (4.1.4), that the 

conjecture holds in B 3. Furthermore it is proved, in theorem (4.1.2), 

that the 3-braid representatives for a Lorenz link of trip number 3 

lie in one conjugacy class. A coplete list of 3-braids which close to 

Lorenz knots and links is given, as in lemma (4. 1. 1) . Moreovor it 

is shown that the reduced Alexander polynomial ('ilL (t» (for a Lorenz 

link L of trip number 3) determines a unique braid representative for 

L and so determines L itself. The reduced Alexander polynomial for 

any Lorenz link of trip number 3 is also calculated, as in theorem 

(4.l.2). 

Section 2 is devoted to the study of conjecture (4.0. 1) for Lorenz 

links of trip number 4. It is proved that conjecture (4.0.1) holds in 

B 4 • A complete list of 4-braids which close to Lorenz links of 4 

components is given. It is defined a six mutually disjoint subsets Q
i 

of 4-braid representatives (each of which consists of non-conjugate 

braids) for all Lorenz links of 4 components, as in proposition (4.2.1). 

Following that it is proved that {(Qi) c I 1 ~ i ~ 6 } (the set of all 

closures of braids in { Q. I 1 ~ i ~ 6 }) represent different link types 
1 

and they are determined by their associated linking patterns as in 

theorem (4.2.2). Furthermore the linking pattern of a Lorenz link, 

of trip number 4 with 4 components, determines a unique 4-braid 

representative for L (the braids { Qi I 1 ~ i ~ 6 } and so determines 

L. 
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(4.1.1) Lemma: 

§4. 1. LORENZ KNOTS AND LINKS 

OF TRIP NUMBER 3 

Every Lorenz link of trip number 3 has a minimal braid represen

tative ireQ = {(63)2k(<1dn(<12)mlk,n,meZ+, k~1 and n~m} c B 3, where 

Q has no two conjugate elements. 

Proof: 

Theorem (3.1. 22) tells us that, every Lorenz link of trip number 

3 has a minimal braid representative, 

+ 
where ex, ~eSB3 p, P1, q1eZ , such that p ~ 1 and 

as illustrated in figure (1-8a). Hence, up to conjugacy, 

(4.1.1) 

+ 
where k, n,meZ , k ~ 1 and n ~ m. The class Q _has no two conjugate 

elements, because the conjugation of braids in equation (4.1.1) is 

simply the cycling of the factors (<1 1 ) n, and (<1 2 ) m, since (6 3 ) 
2 com-

mutes with every thing 0 

(4.1. 2) Theorem: 

Let L be a Lorenz link of trip number 3, then the 3-braid repre-

sentatives of L lie in one conjugacy class and the word l in equation 

(4.1.1) is the conjugacy representative of its class. Moreover the 
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reduced Alexander polynomial (V
L 

(t»"" for a Lorenz link L ::: 

termines ! and so determines L itself, where 

Proof: 

c ! de-

The reduced Burau matrix B (t) of the braid ~ is the image of ~ 

under the reduced Burau representation t: B 
n 

[B2]. In this presentation, 

-t 

o 

Then 

and 

But 

then the braid word, 

o 

1 

1 

1 

m-I . 
tI: (_t)l 
i=O 

n-1 . 
I: (_t)l 

i=O 

1 

o 

m 
( -t) -' 

= t 3k 
I 2x2 

-1 
-. GL(n-1,Z[t,t ]), 

o 

-t 
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has the Burau matrix 

So 

and 

But 

B(t) = t 3k 

n n-l . m-l . 
(-t) +t[ L (-t)l] [ L (-t)l] 

i=O i=O 

m-l . 
tr r (-t)l] 

i=U 

det(B(t» = t 6k (_t)n+m = (_t)6k+n+m 

trace (B (t» 
3k n m n-l . m-1 . = t {(-t) +(-t) +t[ r (_t)l][ r (_t)l]) 

i=O i=O 

(1+t+t
2

) [VL(t)] = 1- trace(B(t» + det(B(t» 

where (V
L 

(t» is the reduced Alexander polynomial for the link oc ~ 

L, [B2]. Now consider the following cases, according to the number 

f t f yc .. o componen s 0 0 

Case ( 1): If oc ~. K is a knot : 

Then both nand m are odd integers and (VK(t» = ~K(t). Hence 

(1+t+t2)~K(t) = 1+t3k[tn+tm_t«tn+1)(tm+l)/(t+1)2)] + t
6k

+
n

+
m 

Then 

( 1 + t ) 2 ( 1 + t + t 
2 

) ~K ( t ) 

Therefore given a Lorenz knot K of trip number 3 and given its 

Alexander polynomial ~K (t), then find the polynomial 
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where (a+2) is the largest exponent of t in fK(t) and n ~ m ~ O. 

Then a = 2b+n+m, b = 3k and K has the braid representative, 

where n, m and b 
+ = 3k eZ , n ~ m and k ~ 1. 

Case (2): If oc :: L is a link of two components : 

So let n be even and m be odd, then n > m ~ O. Hence 

3k n-2 . m-l . 
= 1 -t {tn-tm+t[l-t( L (_t)I)] [ L (_t)I]} t 6k +n +m 

i=O i=O 

= I_t6k+n+m_t3k{tn_tm + t[l-t((tn-1+l)/(t+l»] [(tm+l)/(t+l)]} 

Then 

= (1+t)2(1_t6k +n +m) _ t3k+l(1_tn+m) _ t3k(1+t+t2)(tn~tm)' 
./ 

Therefore given a Lorenz link L of trip number 3 with two components. 

and reduced Alexander polynomial (VL (t» "", then find the polynomial, 

where (a+2) is the largest exponent of t in fL (t) and n > m ~ O. 

Then a = 2b+n +m, b :: 3k and L has the braid representative, 
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[(
A )2(b/3) n m 
Ll] (<1d (<1 2 ) ]eQ 

where n, m and (b/3)eZ: n > m and (b/3) ~ 1. 

Case (3): If oc ::: L is a link of three components: 

Then both nand m are even. Hence 

Then 

6k+n+m 3k n m n-2. m-2 . = 1 + t - t {t +t +t[1-t( L (_t)l] [1-t r (_t)l]) 
i=O i=O 

= 3k n m n-1 m-1 1 - t {t +t +t[1-t«t +1)/(t+1»][1-t«t +l)/(t+l»]} 

6k+n+m 
+ t 

Therefore given a Lorenz link L of trip number 3 with 3 components 

and with reduced Alexander polynomial (V'L (t» "', then find the 

polynomial 

where (a+2) is the largest exponent of t in fL (t) and n 
~ m ~ O. 

Then a = 2b+n +m b = 3k and L has the braid representative, 
, ' 
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+ 
where n, m and bel , n ~ m and (b/3) ~ 1. Hence every Lorenz link 

L !::: ~c of trip number 3 has a canonical form ~ for its 3-braid repre

sentatives as in equation (4.1.1) and its reduced Alexander polynomial 

is given by the equation: 

(4.1.2) 

for every ~eQ 0 

The following example shows that Lorenz links can not be deter-

mined (in general) by the isotopy type of each component and the 

associate linking pattern of its components. In fact this is an example 

of links with some knotted components. Consequently Morton. H gave 

his conjecture, in (4.0.1), about Lorenz links with unknotted compo-

nents. 

(4.1. 3) Example: 

Given the two braids, 

Then theorem (4.1. 2) tells us that the two links a
C 

and ~c are not 

isotopic, because a and ~ are not conjugate. But the two components 

in a c and ~ c have the same isotopy type of the un knot and the (2, 9) 

torus knot, as in figure (4-1) and the two components in each link 

have linking number equals 8 0 
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c a. :: 

Figure ( 4 -1) 

The following result gives an affirmative answer for Morton's con-

jecture cited in (4.0. 1), in case of 3 - braids. 

( 4 . 1. 4) Theorem: 

The linking pattern of L, for a Lorenz link L of trip number 3 with 

3 components, determines the unique braid representative of L in Q 

(as in lemma (4.1.1» and so determines L. 

Proof: 

Let {a, b, c} be the set of linking numbers of L and let a ~ b ~ c. 

Then a is the number of full twists in a., for a.EQ. So c-a and b-a 

a"re the powers of (J 1 and (J 2 in a., respectively. Hence L is isotopic 

c to a. where, 
"""" 

a. = [(~3)2a«(Jl)2(c-a)«(J2)2(b-a)]EQ 

But theorem (4.1. 2) tells us that a. is unique in Q, which complets the 

proof 0 
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§4. 2. ON LORENZ LINKS OF TRIP NUMBER 4 

WITH 4 COMPONENTS 

Theorem (3.1.22) tells us that a Lorenz link of trip number 4 has 

a minimal braid representative 

l = (~4)2p(~3)2pl(~1)2p2(a)( ~3 ~)2ql(~3)2q2(~) 
, (4.2.1) 

+ 
where a, /3eSB 4 and p, p., q.el for i = 1, 2 such that p ~ 1. Then 

1 1 

the braid words a and ~ are the positive permutation braids (the 24 

braids of SB 4, as illustrated in figure (1-8b», 

(4.2.1) Propostlion: 

If L is a Lorenz link 6f trip number 4 with 4 components, then L 

is isotopic to lC, for some l in the following classes: 

Q1 = {(~4)2p(~3)2pl(~d2p2(~3 ~ )2ql(~3)2q2Ieither Pl>ql or Pl=ql, 
, 

P2~q2 } 

Q2 = {(~4)2p(~3)2p~(~1)2p2~2( ~3 ~)2ql(a3)2q2a2Ietlher Pl>ql, or 
, 

Pl=qlJ P2~q2 and (Pl,P2,q2)~(O,OJO) or (P2 ,ql,q2)#(O,O,O)} 

Q3 = {(~4)2p(~3)2pl(~3 ~)2ql(a3 )2q2[al(~2)2ad I (ql,q2) # (O,O)} 
, 

Q4 = {(~4)2p(~3)2pl(~3 ~)2ql [a3(a2)2a3al(~2)2~d I Pl ~ ql} , 
Qs = {(~4)2p(~3)2pl(~d2p2(a2)2ql Ip2 ~ ql ~ 2 } 

Q
6 

= {(~4)2p(~d2pl(a2)2ql[a3a2( ~d2a2a3)] IPl ~ ql ~ 2 } 
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Proof: 

The proof will be given through a sequence of remarks: 

(a): If r is a pure braid as in equation (4.2.1), then B = p[a] (the 

reverse of a). So P2 is increased by 1 (up to conjugacy) when a 

started with 0'1 and q2 is also increased by 1 when a ended with O'l' 

Hence 

r = (A4)2p(Al)2Pl(O'd2P2(a)(Al ~ )2Ql(O'l)2q2p[a] 
, (4.2.2) 

where 

and 

+ 
p, Pi' qiEl , for i = 1, 2 and P ~ 1 

A sketch of these possible seven cases are illustrated in figure (4-2). 

We can define some order on the powers p. and q., i=I,2 such that 
1 1 

no braid in the list is the result of turning over the other. i. e. rand 

t [r] do not both appear separately in the list. 

(b): If a = 0'2 and either P2 = ql = q2= 0 or PI = P2 = q2 = 0, then 

either " 

r = (A4)2p(Al)2Pl(0'2)2 

or 

r = (A 4)2p (A l ~)2ql(0'2)2 
, 

which are conjugate to 

(0,0,0), otherwise the case is included in case a = e. 
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11
2p 

3 

ex: e 

Figure (4- 2) 

(c): If ex = 0'20'1 and P2 # 0, then we have 1 more full twist in the 

first 3 strands, which (up to conjugation) is included in case ex = e. 

But if p 2 = q 1 = q 2 = 0, then 

which is ~onjugate to 

case is included in case ex = 0'2. 

twist in the first (last) 3 strands. Then the case (up to conjugacy) 
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is included in case ex = e, when P2 = q2 -- 0 d an it is also included 

in case ex = (J2(J 1 when either P2 = 0, .J 0 .J 0 q2 r or P2 r , q2 = O. Hence 

(e): If ex = (J3(J2(Jl and Pl +ql 1 0, then we have 1 more full twist 

in 4 strands which is included in case ex = e, when either q2 or P2 

or both are zeros. But if P2 = 1 or q2 = 1, then the case is included 

in case ex = (J 2. Now for P 1 + q 1 = 0, the case is included in case ex 

= (J 2(J 1, when q2 = 1 or P2 = 1 or both are equal 1. Hence when ex = 

(f): If ex = (J 3 (J 2, then the case is the re sult of turnin g over the 

case ex = (J2(Jl with replacing q., p. by p., q. respectively, for i = 1, 
1 1 1 1 

2, hence they are conjugate. 

in the first 3 strands and then have 1 more full twist in the 4 strands. 

So the case is included in case ex = e. But if p 2 +q2 = 0 and p 1 +q 1 1 

0, then we have 1 more full twist in the 4 strands and the case is 

included in case a = (120'1. Therefore consider the case when P 1 +q 1 = 

0, so ~ is conjugate to 

which is included in case ex = (J 3 (J 2' This completes the proof of the 

proposition, where sketches of the diagrams of these six classes are 

illustrated in figure (4 - 3) 0 
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Figure (4-3) 

lk24 lk34 conditions 

ql q! +q2 either P 1 >q 1 

or Pl=ql.PZ~q2 

q 1 +q: ql either Pl>ql 

or P 1 =q 1, PZ~q2 

and ,either 
(p l, P 2, q 2) ~O 

or 
(p 2. q 1 , q 2 ) ~O 

ql q 1 +q2 O&(ql.qZ) 

and Pl~ql 

ql + 1 q 1 + 1 Pl~ql 

0 0 P2~ql~2 

1 1 PI~ql~2 

Table (4-1) 

" 

2Pl a 1 
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notes 
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( 4. 2 . 2) Theorem: 

The linking pattern of a Lorenz link L of trip number 4 with 4 

components, determines a canonical 4-braid representative for Land 

so determines L. More precisely: 

There is a unique representative re{Qi I 1 ~ i ~ 6} and r is uniquely 

determined by the pattern of the linking numbers of L, where Q. as 
1 

in proposition (4. 2 . 1) . 

The proof will be started with the following two remarks: 

( 4. 2 . 3) Remar k: 

The smallest linking number in the components of r C is the maximum 

number of full twists in 4 strands for all re {Q.11 ~ i ~ 6}. Then let r 
1 

= (6 4 ) 2pQ where Q is a positive prime to (6 4 ) 2. Hence there are 

at least two arcs in Q with zero linking number. Therefore the maxi

mum number of full twists in r is invariant for the link type r
C

, 

otherwise we have two different sets of linking numbers to the same 

link, which is impossible. So given r = 
2p' 2 (6 4) Q'eQ., where Q and Q' are prime to (A4) , P 1- p' and 1 ~ i, j 

J 

~ 6, then r C and (r') c represent two dif£erent link types. Hence it 

is enough to study conjecture (4.0.1) for a fixed number of full twists 

p and for a prime (to (6 4 )2)' positive braid Q. 

(4.2.4) Remark: [The key of the proof of theorem (4.2.2)] 

Now let r = (A4) 2PQeQi' 1 ~ i ~ 6. Then order the arcs in top of 

Q from left to right and let lk .. be the linking number of the i-th arc 
IJ 

with the j-th arc in Q. Order the set {lkij 11 ~ i,j ~ 6} in some pattern 

such as a matrix (lk .. ) 
IJ 

or simply as a 6-tupie n = 

Let n. be the corresponding class of 
1 
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patterns of linking numbers of t~e elements in Qi' for 1 ~ i ~ 6. Then 

for ~eQj with t e 11 j (where the arcs labelled (1,2,3,4) on top and on 

bottom of ~). Permute the components of ~ to have ~'e11. for some 
1 

6'eS'2i with arcs labelled (1',2',3',4'). Then to show that conjecture 

(4. ° .1) holds in B 4 , it is enough to prove that ~ = a' if and only if 

t = t'. Furthermore if there are no ~eS'2. and a'eQ., i ;. j with the 
1 J 

same linking pattern t, then S'2. () Q. = 4>, 1 ~ i, j ~ 6, i ;. j. Hence 
1 J 

each element 1, le {S'2.ll ~ i ~ 6}, represents a different conjugacy class 
1 

in B 4 • In case when Q has an arc of linking numbers equal zeros with 

the others or equal ones, then (clearly from the diagrams in figure 

(4-3» Q is conjugate to either Q' or [Q'o3oz(Od20z03] respectively, 

where Q' is conjugate to a Lorenz braid of trip number 3. Hence by 

induction the conjecture (4.0.1) holds. The pattern of the linking 

numbers of Q is given for each Q., as in table (4-1) 0 
1 

Proof of theorem (4.2.2) 

We want to show that, if two braids a and leQ with the same pattern 

of linking numbers, then a = 1, where Q = {Qi 11 ~ i ~ 6}. We need 

also to prove that Q
i 

() Q
j 

= 4>, for 1 ~ i, j ~ 6, with i ;. j. Let us take 

11 = {11.ll ~ i ~ 6}. Now we are going to investigate that in each class 
1 

Q. for 1 ~ i ~ 6. 
1 

For Ql: Let aeQ 1 with linking pattern ~e111' then consider the two 

cases: 

The special case: Qls' when q 1 = 0 

(a): If PI = ql = 0, then ~ = (Pz,O,O,O,O,qz), pz ~ qz· Hence let 

qz ;. 0, otherwise the case (by induction, as in 

in B]. Then ~'en 1 only when ~' = ~ and so ~' = 

remark (4.2.4» is 

a. But ~'~ni' for i ;. 

of zeros linking numbers with the 1, otherwise either a' has an arc 
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others as in T'I2, 1"13 and lls or ~'eIl4 ,ll .6 with at least 4 non-zero 

components, which is impossible. 

(b): 1£ PI; ° and q 1 = 0, then z- - (p + ° ° ) S ~ - 1 P2,Pl, ,PI, ,q2. 0 let 

q2 ; 0, otherwise the case is in B 3 (by induction) . Now if ~ 'ell 1 , then 

either { 1 , 4 }~{ l' , 4' } and { 2 , 4 }-+{ 2 ' , 4' } or {I, 4 }-+{ 2' , 4'} and 

{2,4}~{1',4'}. Then (1,2,3,4)-+{(1',2',3',4') or (2',1',3',4')}. So~' = 

~ and ~' =~. If ;'eIl 2 , then lk1'4' = lk3'4' = ° in ;', otherwise 

~'~1l2. Hence either {1,4}-+{1',4'} and {2,4}~{3',4'} or {1,4}-+{3',4'} and 

{2 , 4 }~{ l' , 4'}. So (1, 2, 3,4) -+{ (1' , 3' , 2' ,4') or (3', l' , 2' , 4') }. Then ;' = 

have only 2 zero components in ;'en 3, we must have lk
2

'4' = lk
1

'4' = 
0, otherwise ;'~T1J. Hence either {1,4}-+{1' ,4'} and {2,4}-+{2' ,4'} or 

{ 1,4 }-+{ 2' , 4' } and {2 , 4 }-+{ I' , 4' }. So (1, 2, 3,4) -+{ ( I' , 2' , 3' ,4') or 

(2',1',3',4')}. Then;' = ; which contradicts the conditions in class 

Hence either 

{I, 4 }~{ I' , 4'} and {2, 4 }-+{ 2' ,3'} or {I, 4 }-+{ 2' , 3'} and {2, 4 }-+{ I' , 4'} , 

which is impossible, then ;'¢n4. Finally since; in this case contains 

exactly two zeros, then ;' neither in n 5 nor in 116. 

The general case: Qlg' when q 1_1 Q : 

In this case; = (Pl+P2,Pl,0,Pl+Ql,ql,ql+q2) with only one zero 
"-

"" "} S component. If ;'ell 1 , then {I, 4 }-+{ 1',4'}, hence {2, 3}-+{2 ,3. 0 ei-

ther: 

(i): (1,2,3,4)-+(1',2',3',4'), then; =;' hence ~ = ~', 

(il): (1,2,3,4)~(1',3',2',4'), then ;' = (Pl,Pl+P2,O,Pl+Ql,Ql+Q2,Qd, 

hence P2 = q2 = 0, ;' = ; and so ~ = ~', 

(iii): (1,2,3,4)-+(4',3',2',1'), then;' = (Ql+Q2,Ql,O,Pl+Ql,Pl,Pl+P2), 

hence z-' = ; with p. = Q. for i=I,2 and so ~ = ~' or 
~ 1 1 
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(iv) : ( 1 2 3 4)-+(4' 2' 3' I') ", "" then ~' = 
(Ql,Ql+q2,0,ql+Pl,Pl+P2,pd, hence ~' = ~ with P2 = Q2 = ° and ~ = 

~' . 

But in this case it is clearly that ~'~Tl., i ., 1, otherwise it contradicts 
1 

the conditions in table (4-1). Then it is proved that Q 1 () Q. = $, for 
1 

2 ~ i ~ 6 and the elements in Q 1 are uniquely determined by the cor-

responding pattern of the linking numbers. 

The other cases will be studied by following the previous tech-

nique. 

For Q2: Let ~EQ2 with linking pattern ~ETl2' then consider the two 

cases: 

The special case: Q2 s' when q 1 = ° : 
(a): If Pl = ql = 0, then ~ = (P2,O,O,I,q2,O), P2 ~ q2· Hence let 

q2 ., 0, otherwise table (4-1) tells us that the case (by induction) is 

in B 3 • Then the 2 - nd arc in Q is the only arc with non - zero linking 

numbers. So {2}-+{2'}, hence {1,3,4}-+{1',3',4'}. Then either: 

(i): (1,2,3,4)-+(1',2',3',4'), hence~' =~, 

(li): (1,2,3,4)-+(3',2',4',1')' then~' = (q2,O,O,P2,I,O), so P2 = q2 

= 1, hence ~' = ~, 
(iii): (1,2,3,4)-+(4',2',1',3'), then ~'- = (I,O,O,q2,P2,O), so P2 = q2 = 

1, hence ~' = ~, 
(3 ' 2' I' 4') then~' = (1,0,O,P2,q2,O), so P2 = q2 (iv): (1,2,3,4)-+ , , , , 

= 1, hence ~' = ~, 

(v) : (1 2 3 4) (4 ' 2' 3' I') then~' = (Q2,O,O,I,P2,O), so P2 = 
", -+"" 

q 2, hence ~' = ~ or 

(vi) : 
(1,2,3,4)-+(1',2',4',3')' then~' = (P2,O,O,q2,I,O), so Q2 

= 1 

hence ~' = ~. 
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Therefore in all cases B' = BeQ2' Now assume that ~'eTh, then q2 = 

1. But there is no arc in Q', as in Q, with non-zero linking numbers 

which gives a contradiction. Also since, see table (4-1). ~ has 3 zero 

components, then ~' neither in n4 nor in ni' Finally Q has no arc with 

zero linking numbers, then ~'~ns. 

q2'O, otherwise the case (by induction) is in B]. Now if ~'en2' then 

either { 1, 4 }-+{ l' , 4' } and { 3, 4 }-+{ 3' , 4' } or {1,4}-+{3' ,4'} and 

{3,4}-+{1',4'L So either (1,2,3,4)-+(1',2',3',4') with ~' = ( or 

~' = ~. Hence 6' = B. Now assume that ('en], then from table (4-1), 

{4}-+{4'} and {1,3}-+{1',2'L Hence either (1,2,3,4)-+(1',3',2',4') so (' 

a con tradiction or (1,2,3,4)-+(2',3',1',4') so = 

(Pl,Pl+1,O,Pl+P2,O,q2), which implies that ('~n3. Since (1,1,0,0,1,1) 

is also the only element in n4 with 2 zero components, then ('~n4' 

Finally it is clear that Q' has never an arc of linking numbers equal 

zeros or equal ones, then (' neither in n 5 nor in n i . 

The general case, Q2g' when q l'Q : 

In this case ~ = (Pl+P2,Pl,O,Pl+Ql+l,Ql+q2,qd with only 1 zero 

component. then {1,4}-+{I',4'L {2,3}-+{2',3'L So either: 

(i): (1,2,3,4)-+(1',2',3',4'), then ~ = (', 

(il): (1,2,3,4)-+(4',2',3',1'), so (' = (ql+Q2,Ql,O,Pl+Ql+1,Pl+P2,pd. 

Hence ~' = ~ with Pi = Qi for i = 1, 2, 

(iii) : (1,2,3,4)-+(1',3',2',4'), so 

hence ~' = ~, with P2 = q2=O or 
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(iv) : ( 1 2 3 4)-+(4' 3' 2' I') ", "" 
hence ~' = ~ with 

P2 = q2 = 0 and PI = ql. Therefore in all cases ~' 
= Now assume 

that ~'Elh, then {1,4}-+{1',4'}, hence 
{2, 3 }-+{ 2' , 3'}. So either: 

( i): (1,2,3,4) -+ (1' ,2' ,3' , 4'), so ~' = ~, 

(ii): (1 2 3 4)-+(1' 3' 2' 4') ", "" 

then ~' = ~ with P2 = 0, 

(iii): (1,2,3,4)-+(4',2',3',1'), t"' 
so ~ = (q I +q2, q I, 0, P I +q 1 + 1, P I +P 2, P d , 

then ~' = ~ with P2 = q2 = ° and PI = ql or 

(iv): (1,2,3,4)-+(4',3',2',1'), so ~' = (ql,ql+q2,0,Pl+ql+l,PI,PI+P2), 

then ~' = ~ with P2 = q2 = ° and PI = ql, so ~' =~. But in all of 

these cases we have, Ik1 '3,+lk2 '4,-1 ~ Ik
2

'3" which contradicts the 

assumption that ~'En3. Similarly let ~'En4' then {1,4}-+{1',4'}, hence 

{2, 3 }-+{ 2' ,3'}. So either: 

(i): (1, 2, 3, 4) -+ (1' , 2' , 3' , 4'), so ~' = ~, 

then ~' = ~ with P2 = q2 = 0, 

then ~ , = ~ with P 2 = q 2 = ° and P 1 = q 1 or / 

then ~' = ~ with P2 = q2 = ° and Pl = ql, hence ~' = ~. But in all 

of these cases we have, lk1'3,+lk2'4,-2 i- lk2'3" which contradicts the 

assumption that ~'En4' It is also clear that ~'~n5' Finally let ~'En" 

since PI +q 1 + 1 ~ 2, then either {2, 3 }-+{ 2' , 3'}, or {2, 3 }-+{ l' , 2' }, which 

is impossible because {1,4}-+{1',3'}, then ~'~n6' Therefore Q2 () Q
i 

= 

4>, for 1 ~ i ~ 6, i i- 2. 

Let ~EQ3 with linking pattern ~En 3, then consider the two cases: 

167 



the special case: Q3s' when q 1 = 0 

( a): If p 1 = q 1 = 0, then ~ = (1 1 0 0 0 q ) "',,2., 

= 1. The arcs labelled 1 and 3 have 2 non Lero components and 1 zero 

component, but the arcs labelled 2 and 4 have 2 zero components and 

1 non zero component Hence { 2 , 4 } .... { 2' , 4' } and { 1 , 3 } .... { I' , 3' } . So 

(1, 2, 3,4) .... { (1' , 2' , 3' ,4') , (3' 4' l' 2') (3' 2' l' 4') "" "" (1' 4' 3' 2')} , " , 

which implies that ~' = ~, hence ~ = ~'. In this case (as shown in 

table (4-1» ~'~ni' for i = 4,5,6. But if q2. > 1, then {3,4} .... {3',4'}, 

{1} .... {1'} and {2,3} .... {2',3'}. So (1,2,3,4) .... (1',2',3',4') which implies 

that ~' = ~, hence 13 = ~'. Then table (4-1) tells us that ~'~n., for i 
1 

= 4,5,6. 

So the 3-rd arc in Q is the only arc with non-zero linking numbers 

and the 4-th arc in Q is the only arc with two zero linking numbers, 

hence {3} .... {3'} and {4} .... {4'}. But the 2-nd arc in Q has 3 different 

linking numbers, while the 1 - st arc does not satisfy that. So 

(1,2,3,4) .... (1',2',3',4'), then ~' = ~, hence 13 = ~'. 

case, table (4-1) tells us that ~'~ni' for i = 4,5,6. 

The general case: Q3g I when q l_~ Q 

Therefore in this 
/ 

In this case ~ = (Pl+1,Pl+l,0,Pl+ql',ql,ql+q2.)' with only one zero 

component, then {1,4} .... {1',4'}, so {2,3} .... {2',3'}, hence either: 

(i) : ( 1 , 2 , 3 , 4) .... (1' , 2' , 3' , 4'), hence ~ = ~', 

(ii): (1,2,3,4) .... (1',3',2',4'), so ~' = (Pl+1,Pl+1,0,Pl+Ql,Ql+q2.,Ql)' 

then q2. = 0, hence ~ = ~', 
(iii): (1,2,3,4) .... (4',2',3',1'), so ~' = (Ql,Ql+q2.,0,Pl+Ql,Pl+1,Pl+l,), 

then Q2. = 0, Q 1 = P 1 + 1, hence ~ = ~' or 
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(iv) : ( 1 , 2 , 3 , 4) -+ ( 4' , 3' , 2' , 1'), so ; , ( = ql+q2,ql,O,Pl+ql,Pl+1 ,Pl+l,), 

then q 2 = 0, q 1 = P 1 + 1, hence ; = ;'. Therefore in all of these cases 

we have, 6' = 6eQ
l. Now assume that ;'eT14, then {1,4}-+{1',4'} and 

{2, 3 }-+{ 2' ,3'}, so either: 

(i) : ( 1 2 3 4)-+(1' 2' 3' 4') 
'" "" hence; = ~' or 

(ii) : ( 1 2 3 4)-+(1' 3' 2' 4') ", "" 
q2 = 0, hence ; = ;', 

then in these two cases we hav lk +lk 2,J. lk h h e l' 3' 2' 4' - r 2' 3 ' , w ic con -

tradicts the assumption that ~'eT14. 

(iii) : ( 1 2 3 4)-+(4' 2' 3' 1') ", "" 

then q2 = 0 or 

(iv) : ( 1 , 2 , 3 , 4) -+ ( 4' , 3' , 2 ' , 1'), so ~ , = (q 1 + q 2 , q 1 , 0, P 1 + q 1 , P 1 + 1 , P 1 + 1) , 

then q2 = 0, 

then in these two cases ~'~T14' because ql < Pl+1. 

But ;'~T15' because it has no three zero components for ql > 0. Simi-

larly ; does not have at least 3 components each equals 1, as in the 

elements of T1 6, hence ~'~ T1 6 . Therefore Q 3 () Q. = 11>, for i = 4,5,6. 
1 

Q4 Let 6eQ 4 with linking pattern ~ET14' then consider the two cases: 

The special case: Q4s' when ql = ° --
,;; 

(a): If Pl = ql = 0, then ~ = (1,1,0,0,1,1) , hence either 

{I, 4 }-+{ l' , 4'} and {2, 3 }-+{ 2' ,3'} or {I, 4 }-+{ 2' ,3'} and {2, 3 }-+{ l' , 4'}, 

which implies that ~' = ;, hence 6 = 6'. In this and suing table (4-1), 

we can see that neither ~'en5 nor ~'ET16. 

{I, 4 }-+{ l' , 4'}, then {2, 3 }-+{ 2' ,3'} . But the I-st arc in Q has the 

greatest two linking numbers, then either (1,2,3,4)-+( l' ,2' , 3' ,4'), or 

(1',3',2',4'), which implies that ;' = ;, hence 6' =~. Note also that 
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t'~Tls, because t' does not has, at least, 3 zero components. But if 

t 'E 11 6, then p 1 = 1, so t = (2, 2, 0, 1, 1, 1), hence no arc in ~ , with 

linking numbers equal 1 as in n 6, therefore t'~116. 

The general case: Q4g' when ql "I ° 
In this case t = (Pl+1,PI+1,0,PI+ql,ql+1,ql+1), 

with only 1 zero component, then {1,4}~{1',4'} and {2,3}~{2',3'}, 

hence either (1,2,3,4)~{(1',2',3',4') and (1',3',2',4')}, then~' = ~ or 

(1,2,3,4)~{(4',2',3',1') and (4',3',2',1')}, which implies that~' = ~ 

with PI = ql, so ~' = ~EQ4. But using table (4-1), we can see that 

neither ~'E11s nor ~'En6. Therefore Q4 () Q. = $, for i = 5,6. 
1 

For Qs and Q6: Let ~ 1 EQ s and ~2 EQ6, with linking patterns ~ 1 En 5 and 

t2 E116, respectively. Then the 4-th arcs in both Ql and Q2 have 

linking numbers equal zeros and ones, respectively. Hence (by in-

d uction as shown in remark (4. 2. 4» ~ 1 and ~ 2 are determined by their 

associated linking patterns. We can see also that Qs () Q6 = q" which 

completes the proof of the theorem 0 

170 



BIBLIOGRAPHY 

rA]: Alexander.J, (1928) 

"Topological invariants of knots and links" 

Trans. Amer. Math. Soc. No. 30, pp 275-306. 

[Ar1]: Artin.E, (1926) 

"Theorie der zopfe" 

Abh.Math.Semin.Hamburg univ.4, pp 47-72. 

[Ar2]: Artin.E, (1947) 

"Theory of braids" 

Ann.Math.48, pp 101-126. 

[Be]: Bennquin.D, (1983) 

"Entrelacements et equations de Pfaff" 

Asterisque, 107-8, pp 87-161. 

[B1]: Birman.J, (1969) 

"N on - conjugate braids can define isotopic knots" / 

Communications on pure an.Q applied mathematics, Vol. XXII, pp 

239-242. 

[B2]: Birman.J, (1974) 

"Braids, links, and mapping class groups" 

Annals of Math. studies No 84, (Princeton univ. press and univ. of 

Tokyo press, Princeton, New Jersey. 

171 



[Bu]: Burau. W, (1936) 

"Uber zopfgurppen und gleichsininning verdrillite verkettunger" 

Abh.Math.Sem.Hanischen.Univ. 11, pp. 171-178. 

[B-Me]: Birman.J and Menasco. W, (1986) 

"Studying links via closed braids: A summary" 

Private Communications. 

[B-W1]: Birman.J and Williams.F, (1983) 

"Knotted periodic orbits in dynamical systems I: Lorenz equations" 

Topology vol. 22, No.1, pp. 47-82. 

[B-W2]: Birman.J and Williams.F, (1983) 

"Knotted periodic orbits in dynamical systems II" 

Comtemporary mathematics volume 20, pp 1-60. 

[C1]: Cayley. A, (1878) 

f " "On the theory 0 groups 

Proc.London Math. Soc.(I), 9, pp 126-133. 

[C2]: Cayley. A, (1878) 

t t · " "The theory of groups : Graphical represen a Ion 

Amer.J .Math.l, pp 174-176. 

[Co]: Conway.J, (1969) 

"An enumeration of knots and links" 

bl m· abstract algebra (ed. J.Leech), Pergamon Computational pro ems 

Press, pp 329-358. 

172 



[Cu]: Curry.J .H, (1979) 

"An algorithm for finding closed orbits" 

Proc. Int. Conf. Global theory of dynamical systems. Springer-Verlag, 

Lecture Notes No.819, pplll-120. 

[E-N]: hp1.Eisenbud.D and Neumann.W, (1985) 

"Three-dimensional link theory and invariants of plane curve 

singularities" 

Annals of mathematics studies No. 110. 

[F-W1]: Franks.J and Williams.R, (1985) 

"Braids and the Jones-Conway polynomial" 

Preprint, North-western University. 

[F-W2]: Franks.J and Williams.R, (1985) 

"Braids and the Jones-Conway polynomial" 

A. M. S. abstracts Vol. 6, page 355. 

[F-Y - H - L-M-O]: Freyd. P, Yetter. D, Haste. J, Lickorish. W, Millett. K 

and Ocneanu. A, (1985) 

"A new polynomial invariant of knots and links" 

Bulletin American Mathematical Society vol. 12, No.2. 

[G1]: Garside.F.A, (1969) 

"The braid group and other groups" 

Quart. J. Math., Oxford(2), 20, No.78, pp 235-254. 

[G2]: Garside. F. A, (1965) 

"The theory of knots and associated problems" 

(D. phil. Thesis, Oxford). 

173 



[J]: Jones.V, (1985) 

"A polynomial invariant for knots via Von Neumann algebras" 

Bulletin American Mathematical Society No. 12, pp 103-111. 

[L]: Lorenz.E.N, (1963) 

"Deterministic nonperiodic flow" 

J.Atmospheric Science, No. 20, pp130-141. 

[L-M]: Lickorish . Wand Millett. K, (1987) 

"A polynomial invariant of oriented links" 

Topology 26, pp 107-141. 

[M]: Marsden.J, (1976) 

"Attempets to relate the Navier-Stokes equations to turbulence" 

Springer-Verlag, Lecture Notes No. 615, pp 1-22. 

[Mol]: Morton. H, (1984) 

"Alexander polynomial of closed 3 - braids" 

Math. Proc. Camb. phil. Soc .. 

[Mo2]: Morton.H, (1985) 

IIExchangeable braids II 

L. M. S. Lecture Notes No. 95, pp 86-105. 

[Mo3]: Morton. H, (1986) 

"Closed braid representatives for a link, and its Jones-Conway 

polynomial. 

Preprint, Liverpool University. 

174 



[Mo4]: Morton.H, (1986) 

"Seifert circles and knot polynomials" 

Math. Proc. Camb. Phil. Soc. No.99, pp 107-109. 

[Mo5]: Morton.H, (1977) 

"Infinitely many fibred knots having the same Alexander polynomial" 

Topology, Vol. 17, pp 101-104. 

[Mo-S1]: Morton.H and Short.H, (1986) 

"Calculating the 2 -variable polynomial for knots presented as closed 

braids" 

Preprint, Liverpool University. 

[MO-S2]: Morton.H and Short.H, (1986) 

"The 2-variable polynomial of cable knots" 

Math.Proc.Camb.Phil.Soc., No. 101, pp 267-278. 

[Mo-T]: Morton.H and Traczyk.P, (1987) 

"Knots Skeins and Algebras" , 

Preprint, Liverpool university. 

[Mu1]: Murasugi. k, (1963) 

"On a certain subgroup of the group of an alternating link" 

Am.J.Math.85, pp 544-550. 

[Mu2]: MurasugLk, (1974) 

"On closed 3 - braids" 

Memoirs of the American mathematical society, No. 151. 

175 



[MU-Th]: MurasugLk and Thomas.R.S.D, (1972) 

"Isotopic closed non-conjugate braids" 

Proceedings of the American mathematical society Vol. 33, No.1, pp 

137-139. 

[Mur]: MurakamLH, (1986) 

"A formula for the two-variable Jones polynomial" 

Preprint, Osaka City University, Japan. 

[0]: Ocneanu.A, (1985) 

"A polynomial invariant for knots; a combinatorial and algebraic ap-

proach" 

Preprint, M. S. R. I. 

[R]: Reidemeister.K, (1932) 

"Knoten Theorie", Original German Edition. 

"Knot Theory", English translation, (1983). 

BCS Associates, Moscow, Idaho, U.S.A. 

[Ro]: Rolfson.D, (1976) , 

"Knots and links" 

Mathematics Lecture Series No.7. Berkeley, CA: publish or perish, 
, , 

Inc .. 

[S]: Stallings. J, (1978) 

"Constructions of fibred knots and links" 

Symp. in pure math. Am. Math. Soc. part 2, pp 55-59. 

176 



[T]: Thomas-.R.S.D, (1975) 

"The structure of the fundamental braids" 

Quart.J.Math., Oxford(3), 26, pp 283-288. 

[W1]: Williams. F, (1976) 

"The structure of Lorenz attractors" 

Springer-Verlag, Lecture Notes No. 615, pp 94-115. 

[W2]: Williams.F, (1983) 

"Lorenz knots are prime" 

Ergod. Th., and Dynam. Sys. , 4, pp 147 - 163. 

[Y]: Yamamoto. M, (1984) 

"Classification of isolated algebraic sigularities by their Alexander 

polynomials" 

Topology, Vol. 23, No.3, pp 277-287. 

- / 

177 


	384365_0001
	384365_0001a
	384365_0002
	384365_0003
	384365_0004
	384365_0005
	384365_0006
	384365_0007
	384365_0008
	384365_0009
	384365_0010
	384365_0011
	384365_0012
	384365_0013
	384365_0014
	384365_0015
	384365_0016
	384365_0017
	384365_0018
	384365_0019
	384365_0020
	384365_0021
	384365_0022
	384365_0023
	384365_0024
	384365_0025
	384365_0026
	384365_0027
	384365_0028
	384365_0029
	384365_0030
	384365_0031
	384365_0032
	384365_0033
	384365_0034
	384365_0035
	384365_0036
	384365_0037
	384365_0038
	384365_0039
	384365_0040
	384365_0041
	384365_0042
	384365_0043
	384365_0044
	384365_0045
	384365_0046
	384365_0047
	384365_0048
	384365_0049
	384365_0050
	384365_0051
	384365_0052
	384365_0053
	384365_0054
	384365_0055
	384365_0056
	384365_0057
	384365_0058
	384365_0059
	384365_0060
	384365_0061
	384365_0062
	384365_0063
	384365_0064
	384365_0065
	384365_0066
	384365_0067
	384365_0068
	384365_0069
	384365_0070
	384365_0071
	384365_0072
	384365_0073
	384365_0074
	384365_0075
	384365_0076
	384365_0077
	384365_0078
	384365_0079
	384365_0080
	384365_0081
	384365_0082
	384365_0083
	384365_0084
	384365_0085
	384365_0086
	384365_0087
	384365_0088
	384365_0089
	384365_0090
	384365_0091
	384365_0092
	384365_0093
	384365_0094
	384365_0095
	384365_0096
	384365_0097
	384365_0098
	384365_0099
	384365_0100
	384365_0101
	384365_0102
	384365_0103
	384365_0104
	384365_0105
	384365_0106
	384365_0107
	384365_0108
	384365_0109
	384365_0110
	384365_0111
	384365_0112
	384365_0113
	384365_0114
	384365_0115
	384365_0116
	384365_0117
	384365_0118
	384365_0119
	384365_0120
	384365_0121
	384365_0122
	384365_0123
	384365_0124
	384365_0125
	384365_0126
	384365_0127
	384365_0128
	384365_0129
	384365_0130
	384365_0131
	384365_0132
	384365_0133
	384365_0134
	384365_0135
	384365_0136
	384365_0137
	384365_0138
	384365_0139
	384365_0140
	384365_0141
	384365_0142
	384365_0143
	384365_0144
	384365_0145
	384365_0146
	384365_0147
	384365_0148
	384365_0149
	384365_0150
	384365_0151
	384365_0152
	384365_0153
	384365_0154
	384365_0155
	384365_0156
	384365_0157
	384365_0158
	384365_0159
	384365_0160
	384365_0161
	384365_0162
	384365_0163
	384365_0164
	384365_0165
	384365_0166
	384365_0167
	384365_0168
	384365_0169
	384365_0170
	384365_0171
	384365_0172
	384365_0173
	384365_0174
	384365_0175
	384365_0176
	384365_0177
	384365_0178
	384365_0179
	384365_0180
	384365_0181
	384365_0182
	384365_0183
	384365_0184
	384365_0185
	384365_0186
	384365_0187
	384365_0188
	384365_0189
	384365_0190
	384365_0191
	384365_0192
	384365_0193
	384365_0194
	384365_0195
	384365_0196

