
THE UNIVERSITY of LIVERPOOL 

Information Management, Condition Monitoring and 
Control of Power Systems over Internet Protocol 

Networks 

Thesis submitted in accordance with the 

requirements of the University of Liverpool 

for the degree of Doctor in Philosophy 

III 

Electrical Engineering and Electronics 

by 

D. P. Buse, BSc 

September 2003 



Acknowledgements 

This work was supported by an EPSRC doctoral studentship. Additional sup

port was provided by the National Grid Company PLC. The facilities of the 

Department of Electrical Engineering and Electronics and the National Instru

ments E-Automation Laboratory at the University of Liverpool were essential 

to the completion of my studies. 

I would like to thank my supervisor Professor Q. H. Wu for his valuable 

direction and support throughout my PhD studies. I would also like to thank 

John Fitch of the National Grid Company, for supporting this project and 

providing assistance with the substation simulator and IMU, and Brian Baker, 

also of the National Grid Company, for his support of the project during its 

initial stages. Finally, I would like to thank Pu Sun, who worked on the hard

ware architecture and the data acquisition system for the prototype, and with 

whom I collaborated on the writing of several papers based on the project, and 

Jun Qiu Feng, who worked on the human-machine interface for the prototype 

system. 

11 



Abstract 

This thesis presents an architecture for the information management, online 

monitoring and control of distributed power system substations over computer 

networks using the Internet Protocol suite. A modern substation automation 

system is made up of a number of different monitoring, control ana protection 

devices (known as Intelligent Electronic Devices or IEDs), each having a mi

croprocessor, analogue and/or digital input/output connections and a network 

interface. These devices collect and make available a large quantity of data 

such as condition monitoring data and fault and event records. In addition to 

this data, there is also information, including maintenance records and techni

cal documentation, stored at various locations in the power system. However, 

the amount of data available makes it difficult for engineers and management 

to retrieve the data required for a particular purpose and to make use of it 

in an appropriate manner. The aim of this thesis is therefore to develop an 

open architecture for access to power system data and devices, which provides 

the functionalities of information management and online control, as well as 
• 

supporting further work to create a fully integrated and intelligent automation 

system. 

The architecture proposed and evaluated in this thesis is based on the 

concepts of multi-agent systems and mobile agents. Multi-agent systems pro

vide a useful methodology for the modelling and implementation of distributed 

systems, particularly those consisting of a number of largely autonomous com

ponents. The extensive use of multi-agent systems in various areas, including 

industrial and manufacturing systems, suggests that the multi-agent systems 

methodology may also be appropriate for the design of power system automa-

III 

• 



tion systems. 

Within this architecture, software agents are used to represent the various 

data sources and components of an electricity substation. This representation 

consists of multiple levels, including substation plant (transformers, switchgear 

and other components), data acquisition and control systems and information 

infrastructure (databases and document repositories). The use of agents pro

vides a standard communications interface for access to data sources which 

use different data models or communications protocols. By using the directory 

facilities provided by a Foundation for Intelligent Physical Agents (FIPA)

compliant agent platform, it is possible to reconfigure the system by adding 

and removing new agents, without having to change the other system compo

nents. The multi-agent system also provides a basis for the development of 

intelligent cooperative control schemes in the future. 

A mobile agent is a software program with the capability to suspend its 

execution and resume it on another computer. Mobile agents may be distin

guished from mobile object technologies, such as Java applets, in that mobile 

agent transfer is initiated by the agent itself, rather than by the client computer, 

and also in that when a mobile agent is transferred it takes with both data and 

code, whereas in mobile object systems only code is transferred. Mobile agents 

have been successfully applied to a range of problems including information 

retrieval and software update, and various experiments have shown that they 

can provide performance gains in these applications. In this thesis, mobile 

agents are applied to the retrieval and analysis of substation data, and to re

mote operator intervention. Experimental and theoretical results demonstrate 

that mobile agents can provide a performance advantage for these applications 

in comparison to client-server or static agent methods. 

This thesis also describes a prototype implementation of the architecture, 

in the form of a substation information management system, which has been 

demonstrated and evaluated using a substation simulator. This simulator is 

used to test substation control equipment and provides the same analogue 

and digital I/O as would be provided by the substation plant. Therefore, the 

IV 



simulator provides a realistic test environment. The prototype demonstrates 

agent-based data acquisition, information management and data analysis using 

mobile agents. Data is gathered by a data acquisition system and stored in 

the National Grid Company's Information Management Unit (IMU) database. 

It is then accessed via the database agents and the user interface agent. The 

implementation of the prototype system demonstrates the viability of the pro

posed architecture and provides various insights into its advantages and disad

vantages. The architecture is also evaluated theoretically with respect to its 

performance, modifiability, functionality and reliability. 

v 



Contents 

List of Figures 

List of Tables 

Definitions and Abbreviations 

1 Introduction 
1.1 Introduction to Industrial and Power System Automation. 

1.1.1 Automation Systems in Electricity Transmission 
1.1.2 Network-Based Power System Automation .... . 
1.1.3 The National Grid Company System ....... . 

1.2 Introduction to Agents, Multi-Agent Systems and Mobile Code. 
1.2.1 Intelligent / Autonomous Agents 
1.2.2 Multi-Agent Systems ............... . 
1.2.3 Mobile Agents ................... . 

1.3 Previous Agent-Based Automation System Architectures 
1.4 Problem Statement .... . 
1.5 Thesis Outline ....... . 
1.6 Contributions to Knowledge 

x 

... 
XUI 

XVI 

1 
2 
4 
6 
9 

10 
11 
13 
15 
16 
19 
20 
22 

2 An Agent-Based Architecture for Power System Automation 24 
2.1 Tasks Performed ... 25 
2.2 Multi-Agent System 28 

2.2.1 Agent Platform 30 
2.2.2 Data Acquisition and Control System . 32 
2.2.3 Information Management System and User Interface 37 
2.2.4 Combined Multi-Agent Architecture 40 

2.3 Agents, Tasks and Interaction Protocols 43 
2.4 Data and Knowledge . . . . . . . . . . 51 

2.4.1 Available Data and Knowledge 52 
2.4.2 Knowledge Representation 53 
2.4.3 Ontologies............ 59 

VI 



2.5 Agent Platform Implementation 
2.5.1 Standard FIPA Platform 

2.6 

2.5.2 
2.5.3 

Jini Based Platform 
UDP Based Platform .. 

2.5.4 Combined FIPA and UDP Based Platform 
Summary . .. . ...... . 

3 Static Components of Architecture 
3.1 Database Agents 

3.1.1 Description .. 
3.1.2 Agent Specification .. 
3.1.3 Agent Implementation 

3.2 Document Agents. .. 
3.2.1 Description .. 
3.2.2 Agent Specification .. 
3.2.3 Document Agent Issues. 

3.3 Ontology Agents .. . . 
3.4 Device Agents and Node Agents 

3.4.1 Description ... 
3.4.2 Agent Specification 

3.5 Plant Agents .... . 
3.5.1 Description .. . 
3.5.2 Agent Specifications 
3.5.3 Data Acquisition System / Plant Mappings 

3.6 User Interface Agents. 
3.6.1 Description .. 
3.6.2 Agent Specification 

3.7 Summary . . . . 

4 Applications of Mobile Agents 
4.1 Mobile Agent Performance. .... .. 
4.2 Mobile Agent for Data Analysis ... . 

4.2.1 Agent Algorithms and Implementation 
4.2.2 Data Analysis Agent Performance. 
4.2.3 Benchmarks. 
4.2.4 Related Work . . . . . 
4.2.5 Conclusions .. 

4.3 Mobile Agent for Remote Control of Power Systems 
4.3.1 Agent Algorithms and Implementation 
4.3.2 Remote Control Agent Performance. 
4.3.3 Experiment 1 .. 
4.3.4 Experiment 2 
4.3.5 Summary and Conclusions 

Vll 

61 
61 
63 
65 
66 
66 

69 
71 
71 
72 
73 
76 
76 
77 
79 
79 
80 
80 
80 
83 
83 
84 
86 
91 
91 
91 
92 

94 
94 
97 

100 
103 
105 
113 
115 
116 
118 
120 
123 
127 
140 



4.4 Summary .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 143 

5 Implementation of Substation Information Management Sys-
tem Based on Proposed Architecture 145 
5.1 Introduction.................... 145 
5.2 System Architecture and Agents. . . . . . . . . 146 

5.2.1 Information Management System Agents 149 
5.3 System Ontology . . . . . . . . . . . . . 151 
5.4 Examples of Usage . . . . . . . . . . . . . . . 154 

5.4.1 Querying the IMU for a Data Set . . . 155 
5.4.2 Mobile Agent Based Analysis of Data. 161 
5.4.3 Searching for Documents . . . . . . . . 162 
5.4.4 Performing an Action Using the Data Acquisition Agents 166 
5.4.5 Reading a Plant Property Using the Data Acquisition 

Agents. . . . . 168 
5.5 Implementation Issues 169 
5.6 Summary .. . . . . . 170 

6 Evaluation and Analysis 1 72 
6.1 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . .. 173 

6.1.1 National Grid Company Requirements for Substation 
Control Systems. . . . . . . . . . . 173 

6.1.2 Haacke "Opportunity Matrix" . . . 174 
6.1.3 Summary of Functionality Results. 176 

6.2 Performance.............. 176 
6.2.1 Data Acquisition Performance 176 
6.2.2 Responding to User Queries 181 
6.2.3 Data Display . . . . . . . 181 

6.3 Modifiability............. 182 
6.3.1 Modifying the Substation . 183 
6.3.2 Modifying the Data Sources 184 
6.3.3 Modifying the User Interface. 186 
6.3.4 Summary . . . . . . . . . . . 187 

6.4 Security, Reliability and Availability 187 
6.5 Integration Into Existing Substations 189 
6.6 Possible Applicability to Other Industries. 189 
6.7 Discussion....... 190 

6.7.1 Advantages . . 191 
6.7.2 Disadvantages. 192 

6.8 Summary . . . . . . . 193 

Vlll 



7 Summary, Conclusions and Future Research 195 
7.1 Summary . . . . 195 
7.2 Conclusions . . . . . . . . . . . . 196 
7.3 Future Research. . . . . . . . . . 198 

7.3.1 Learning and Intelligence. 198 
7.3.2 Control Agents . . . . . . 198 
7.3.3 Real Time Control and Monitoring 199 
7.3.4 Multi-Hop Mobile Agents and Mobile Agent Planning. 199 
7.3.5 Document Retrieval and Integrated Document and Data 

Retrieval Using Mobile Agents. 200 
7.3.6 Further Evaluation . . . . . . . . . . . . . . . . . . .. 201 

A Data Tables and Experimental Results 202 
A.1 Mobile Agent Control Experiment 1 . 202 
A.2 Mobile Agent Control Experiment 2 . 204 
A.3 MA Analysis Experiment. . . . . . . 205 

B Implementation Details of Prototype System 210 
B.1 Class Hierarchy . . . . . . . . . . . 210 
B.2 Substation Simulator Agent . . . . 212 

B.2.1 Agent-Specific Classes Used 212 
B.3 Plant Agents .. 212 
B.4 Database Agents .. 212 
B.5 Document Agents . . 212 
B.6 User Interface Agent 213 

C Data File Formats 214 
C.1 Generic Agent Configuration. . . . . 214 

C.l.1 Example.... . . . . . . . . 216 
C.2 Mobile Analysis Agent Configuration 217 

C.2.1 Example. . . . . . . . . . . . 218 
C.3 Mobile Remote Control Agent Configuration 219 

C.3.1 Example............... . 219 

References 220 

IX 



List of Figures 

1.1 "CIM pyramid" Model of an Automation System . . . . . . 3 
1.2 Supervisory Control and Data Acquisition (SCADA) System 6 
1.3 Client-Server Automation System 8 

2.1 Outline View of Architecture. . . 24 
2.2 Functional Decomposition of Power System Automation System 26 
2.3 User Interaction. . . . . . . . . . . . . . . . . . . . . . . . . .. 27 
2.4 Allocation of Systems to Substations and Wide Area Network . 28 
2.5 Generic Object Model for Data Acquisition System (using UML 

class diagram notation) . . . . . . . . . . . . . . . . . . 33 
2.6 Multi-Agent System for Data Acquisition and Control. 36 
2.7 Information Management Multi-Agent System 39 
2.8 Combined Multi-Agent System 41 
2.9 Agent Collaboration . . . . . . . . . . . . . . 42 
2.10 User Interaction. . . . . . . . . . . . . . . . . 43 
2.11 Intervention (including output data interpretation) 46 
2.12 Data Acquisition . . . . . 46 
2.13 Input Data Interpretation 47 
2.14 Automatic Control 48 
2.15 Data Storage .... 48 
2.16 Querying. . . . . . . 49 
2.17 Document Retrieval. 50 
2.18 Document Storage . 50 
2.19 Analogue / Digital Output . 51 
2.20 Hierarchy of Ontologies. . . 60 
2.21 Abstract FIPA Agent Platform (Simplified) 62 
2.22 Java Agent Development Environment Architecture 63 
2.23 Jini-based Agent Platform 64 
2.24 Combined Platform . 67 

3.1 Agent Architecture . 
3.2 Agent Control Loop. 

x 

70 
70 



3.3 Structure of Database Agent. . . . . . . . . . . . . . . . . . .. 72 
3.4 Structure of Document Agent . . . . . . . . . . . . . . . . . .. 77 

4.1 Subset of Generic Architecture used for Mobile Agent Based 
Data Analysis . . . . . . 98 

4.2 Experimental Setup. . . . . . . . . . . . . . . . . . . . . . ... 106 
4.3 All Agents at 10Mbit/s ....................... 109 
4.4 Agents at 10Mbit/s with Static Direct Access Agents Removed. 109 
4.5 Time Taken to Analyse Database at Various Bandwidths, no 

Added Delay ............................ 110 
4.6 Example Substation ........................ 117 
4.7 Time Taken (seconds) for a Mobile Agent (MA) and Client

Server System (CS) to Perform a Number of Interaction Cycles 
Using a 19.2kbps WAN. Individual run times are shown. . ... 125 

4.8 Time Taken (seconds) for a Mobile Agent (MA) and Client-
Server System (CS) to Perform a Number of Interaction Cycles 
Using a 100Mbps network. Individual run times are shown. . . . 126 

4.9 Experimental Setup for Remote Control Experiment. . . . . . . 128 
4.10 Theoretical Timing (Excluding Marshalling and Operation 

Time) for 1Mbit/s, 25ms WAN, 100Mbit/s, 1ms LAN ...... 130 
4.11 Theoretical Timing (Excluding Marshalling and Operation 

Time) for 100 kbit/s, 25ms WAN, 100Mbit/s, 1ms LAN ..... 130 
4.12 Theoretical Timing (Excluding Marshalling and Operation 

Time) for 100 kbit/s, 50ms WAN, 100Mbit/s, 1ms LAN ..... 131 
4.13 Crossover Point ........................... 135 
4.14 Comparison of Theoretical and Actual Results for Static Agent 

with n = 40 . . . . . . . . . . . . . . . . . . . . . . . . . . ... 136 
4.15 Comparison of Theoretical and Actual Results for Mobile Agent 

with n = 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 137 
4.16 Comparison of Theoretical and Actual Results for Static Agent 

with One-Way Latency = 50ms .................. 139 
4.17 Comparison of Theoretical and Actual Results for Mobile Agent 

with One-Way Latency = 50 ms . . . . . . . . 139 

5.1 National Grid Company Substation Simulator 146 
5.2 Overall Structure of System . . . . . . . . . . 147 
5.3 Information Management Agent System Architecture 148 
5.4 Data Acquisition Agent System Architecture. . . . . 149 
5.5 Ontology of Substation Plant (UML class diagram), Based on 

Substation Simulator Data and Transformer Monitoring System 152 
5.6 Basic Information Systems Ontology (UML class diagram) 153 
5.7 Report Generated by Mobile Agent . . 163 
5.8 User Interface for Document Querying . . . . . . . . . . . 164 

Xl 



5.9 Graphical User Interface for Substation Control 

6.1 Plant Agent and Device Agents ...... . 
6.2 Plant Agent with Direct Access to Devices . 
6.3 Plant Agent Co-Located with Device Agents 
6.4 Device Agents Co-Located with Devices 

B.l Upper Class Hierarchy of Substation Information Management 

166 

177 
178 
180 
180 

System ................................ 211 

XlI 



List of Tables 

2.1 Tasks, Data Types and Agents (DB = Database, DS = Data 
Storage) . . . . . . . . . . . . . . . . . . . . . . . 44 

2.2 Tasks and Interaction Protocols . . . . . . . . . . 45 

4.1 Fixed Parameters for Data Retrieval Experiment 107 
4.2 Time Taken (sees) By Mobile Direct Access Agents (times to 3 sf) 108 
4.3 Time Taken (sees) By Static Direct Access Agents (times to 3 sf) 108 
4.4 Time Taken (sees) By Wrapper-Based Agents .......... 108 
4.5 Linear Approximations to Time Taken .............. 110 
4.6 Time Taken (seconds) for a Mobile Agent (MA) and Client-

Server System (CS) to Perform a Number of Interaction Cycles 
Using Either a 19.2kbps or 100Mbps Network. Times are the 
mean of three runs .......................... 125 

4.7 Fixed Experiment Parameters . . . . . . . . . . . . . . . . . . . 132 
4.8 Time (sees) Taken By Mobile Remote Control Agent (Mean 

Time - Sleep Time) . . . . . . . . . . . . . . . . . . . . . . . . . 133 
4.9 Time (sees) Taken By Static Remote Control Agent (Mean Time 

- Sleep Time) . . . . . . . . . . . . . . 134 
4.10 Cost of Locating Server. . . . . . . . . 134 

6.1 National Grid Company Requirements 

A.1 Mobile Agent, Serial Link. 
A.2 Client/Server, Serial LINK. 

A.3 Mobile Agent, 100Mbps Ethernet. 
A.4 Client/Server, 100Mbps Ethernet. 
A.5 Static Agent ......... . 
A.6 Mobile Agent . . . . . . . . . 
A.7 Wrapper-Based Agent, Mobile 
A.8 Wrapper-Based Agent, Static 
A.9 Direct Access Agent, Mobile, Cached 
A.10 Direct Access Agent, Mobile, Uncached 
A.11 Direct Access Agent, Static, Cached. 

Xlll 

174 

202 
203 
203 
203 
204 
205 
206 
207 
208 
208 
209 



A.12 Direct Access Agent, Static, Uncached . . . . . . . . . . . . .. 209 

XIV 



Definitions and Abbreviations 

ACC: Agent Communications Channel. The component of a FIPA platform 

which provides inter-agent messaging services. 

ACL: Agent Communications Language. A language for use in inter-agent 

communications. The specific ACL used in this project is the Foundation 

for Intelligent Physical Agents Agent Communication Language (FIP A 

ACL). 

ActiveX: A software component model developed by Microsoft and used in 

Windows programming. 

AMS: Agent Management Service. The component of a FIPA platform which 

provides agent management and lifecycle services (e.g. start agent, delete 

agent, move agent). 

API: Application Programming Interface. A set of functions in a library or 

software system that may be called by another program. 

Architecture: In this thesis, the term "architecture" refers to a software ar

chitecture (the structure of the software system and how the components 

of that system interact). 

BDI: Belief - Desire - Intention. An architecture for intelligent agents. 

CIM: Computer Integrated Manufacturing. 

CORBA: Common Object Request Broker Architecture. A distributed ob

ject system developed by the Object Management Group, a standards 

xv 



consortium consisting of approximately 800 companies and organisations. 

CPU: Central Processing Unit. 

CS: Client/Server. 

DAQ: Data Acquisition. 

DB: Database. 

DCOM: Distributed Component Object Model. A distributed object system 

developed by Microsoft. 

DF: Directory Facilitator. In a FIPA platform, the DF allows agents to reg

ister descriptions of the services they provide. Other agents may then 

search the DF to locate agents providing a particular service. 

DLL: Dynamic Link Library. On the Windows operating system, a library 

that can be loaded by a program at runtime. 

DNP: Distributed Network Protocol. A protocol for SCADA communications 

managed by the DNP users group, an industry consortium. 

EMS: Energy Management System. 

FIPA: Foundation for Intelligent Physical Agents. A non-profit consortium 

of approximately 25 members including companies, universities and re

search institutes which aims to produce standards for heterogenous, in

teracting agents and agent-based systems. 

FIPA platform: A FIPA platform is an agent platform which implements 

the FIP A standards. 

GOOSE: Generic Object Oriented Substation Events. 

GOMSFE: Generic Object Model for Substation and Feeder Equipment. 

HMI: Human Machine Interface. 

XVI 



HTML: Hypertext Markup Language. The language in which World Wide 

Web pages are written. 

HTTP: Hypertext Transfer Protocol. The protocol used by the World \Vide 

Web to retrieve web pages. HTTP is used in combination with TCP and 

IP. 

lEe: International Electrotechnical Commission. An international standards 

body for electrical, electronic and related technologies. 

lED: Intelligent Electronic Device. A monitoring or control device having a 

central processor and a number of analogue or digital input or output 

channels. 

IIOP: Internet Inter-ORB Protocol. The communication protocol used by 

CORBA. 

IMU: Information Management Unit. A system developed by the National 

Grid Company for the storage of substation data. 

IP: Internet Protocol. The network layer protocol used for Internet communi

cations, which handles the movement of data packets around the network. 

IP may be used with different transport layer protocols, which provide the 

required services to transfer data between hosts using IP. These include 

UDP and TCP. 

IPMT: Internal Platform Message Transport. The component of a FIPA 

platform which transfers messages between agents on the same platform. 

Java RMI: Java Remote Method Invocation. A distributed object system 

included as part of the Java platform. 

JADE: Java Agent Development Environment. A free, open source FIPA 

platform developed by Telecom It ali a Laboratories and other contribu

tors. Widely used for agent and multi-agent system development. 

XVll 



JDBC: Java Database Connectivity. A set of software libraries used to access 

a database and included in the Java platform. 

Jini: A distributed systems toolkit developed by Sun Microsystems. Jini is 

based on Java and Java RMI and provides service location and service 

discovery facilities. 

JNI: Java Native Interface. A system which allows Java programs to call 

libraries written in other languages such as C. 

Kbit/s: Kilobits per second. 

Kbps: Kilobits per second. 

LAN: Local Area Network. 

LN: Logical Node (in IEC 61850 standard). 

MA: Mobile Agent. 

Mbit/s: Megabits per second. 

Mbps: Megabits per second. 

MTS: Message Transport Service. Transfers messages between FIPA plat

forms. 

Ontology: A data model defining a hierarchy of related concepts for use in 

an information system. 

ORB: Object Request Broker. In a CORBA system, the ORB permits client 

objects to call methods on server objects regardless of where the sesrvers 

are located and in what programming language they are implemented. 

PRS: Procedural Reasoning System. An implementation of the BDI architec

ture. 

XVlll 



PXI: PCI Extensions for Instrumentation. An interface specification, based 

on Compact PCI, developed by National Instruments for PC-based in

strumentation devices. 

PICOM: Piece of Information for Communication (in IEC 61850 standard). 

RTU: Remote Terminal Unit. A data collection device situated at a remote 

site and connected to a host SCADA system. 

SCADA: Supervisory Control and Data Acquisition. A SCADA system con

sists of a central supervisory computer and a number of subordinate units 

~ituated at remote sites to perform monitoring and control functions. 

SCS: Substation Control System. 

SDI: Selective Dissemination of Information. An SDI system sends documents 

to a user as they become available based on a profile of the user's interests. 

SICAP: Substation Information, Control and Protection. A National Grid 

Company strategy for the application of substation equipment and sys

tems to provide improved information management and integrate differ

ent plant functions. 

SL: Semantic Language. A logic-based language developed by the Foundation 

for Intelligent Physical Agents for use in the content of Agent Commu

nications Language messages. 

SQL: Structured Query Language. The standard language used for database 

quenes. 

TCP: Transport Control Protocol. A connection-oriented, reliable, transport 

protocol used for the transmission of data on the Internet and in local 

networks. TCP is used in combination with IP. 

TF jIDF: Term Frequency / Inverse Document Frequency. A method of de

termining the relevance of a document to a query. 

XIX 



Thread: A thread is a single path of execution through a program. If a 

program has multiple threads of execution, these may proceed in par

allel. On a multi-processor machine, multiple threads may be executed 

simultaneously. On a single processor machine, thread execution will be 

interleaved by the operating system. 

UCA: Utility Communications Architecture. A set of standards for substa

tion communications developed by the Electric Power Research Institute 

(EPRI). 

UDP: User Datagram Protocol. A non connection-oriented transport protocol 

which provides a simpler data transfer mechanism than TCP. 

UML: Unified Modelling Language. A set of standard diagrams and notations 

developed by the Object Management Group, the industry consortium 

responsible for COREA, for modelling object-oriented software systems. 

URL: Uniform Resource Locator. A string that identifies a resource (e.g. Web 

page or file) in the World Wide Web. 

WAN: Wide Area Network. 

xx 



Mathematical Definitions 

The term "server" used here refers to a computer holding either data or a 

mobile agent server. The more general term "computer" includes both server 

computers and client computers which may not necessarily have these facilities. 

Ba: Size of a mobile agent a. 

Binteractions: Total amount of data transferred for all interactions between a 

client agent or program and a server agent or program, not including 

mobile agent transfer time. 

B j : Amount of data transferred for the phinteraction between a client agent 

or program and a server agent or program. 

Bmsg: Size of a message msg. 

Brep: Size of reply message rep. 

Bresults: Size of results message. 

Breq : Size of request message req. 

BRPC(L1, L 2 , B req , Brep): Amount of data transferred when a client program 

at location L1performs a remote procedure call to a server program on 

location L2with message sizes Breqfor the request and Brepfor the reply. 

o dereg (a, s): Over head (time) of registering agent aon server s. 

OR(msg, dest): Overhead (time) involved in receiving message msgon destina

tion computer dest. 

XXI 



Oreg(a, s): Overhead (time) of registering agent a on server s. 

Os(msg, src): Overhead (time) of sending message msgfrom source computer 

src. 

Tcs: Total time taken to perform a task using a client-server system. 

TMA : Total time taken to perform a task using a mobile agent. 

Tmsg(m, src, dest): Time to transfer message m from computer src to computer 

dest. 

Tmsg: In general, the time to transfer a message across the network. 

Tproc (s ): Time to perform processing on servers. 

Tret (s): Time to retrieve data for an analysis operation from server s. May be 

abbreviated to Tretif only one server is present. 

T RPC (L1' L2 , Breq , Brep): Time for a client program at location L1 to perform a 

remote procedure call to a server program on location L2with message 

sizes Breqfor the request and Brepfor the reply. 

Ttransfer(a, src, dest): Time to transfer agent afrom computer srcto computer 

dest. 

Ttransfer: In general, the time to transfer an agent across the network. 

5(a, b): Network latency (delay) between computer aand computer b. 

T(a, b): Bandwidth between computer aand computer b. 

XXll 



Chapter 1 

Introduction 

A modern power system contains a large number of monitoring and control 

devices, for example, the National Grid Company (NGC) in the UK operates a 

transmission network of 244 substations at 275kV or 400kV, with a further 82 

substations at 132kV and below [1]. Whereas previously each substation had a 

centralized control system, modern substations are being equipped with many 

distributed Intelligent Electronic Devices (IEDs) performing various tasks [2]. 

Each of these IEDs is capable of sending and receiving data, often via a network, 

resulting in a large quantity of data becoming available. It is claimed that 

utilities are "among the largest users of data" and "the largest users of real

time data" [2]. However, engineers now have more data available than they are 

capable of managing in the time available to them [3]. In order to manage this 

amount of data, and allow the utility engineers and management to make use 

of it in an appropriate manner, various systems and architectures have been 

proposed and developed which aim to integrate the data from different IEDs 

and make it available to users [2]. l\1any of these (for example [4][5][6]) are 

based on client-server methodologies and protocols such as Hypertext Transfer 

Protocol (HTTP). 

In comparison to client-server and object-oriented systems, multi-agent sys

tems have several claimed advantages. Jennings [7] states that "the natural 

way to modularize a complex system is in terms of multiple autonomous com

ponents that can act and interact in flexible ways in order to achieve their 

1 



1.1 Introduction to Industrial and Power System Automation 2 

set objectives", and also that agents provide a "suitable abstraction" for mod

elling systems consisting of many subsystems, components and organizational 

relationships. Ferber [8] describes how agents, as a form of distributed artifi

cial intelligence, are suitable for use in application domains which are them

selves widely distributed. The modern power grid, with substations distributed 

throughout a wide area, falls into this category of systems. 

This thesis describes a substation automation architecture based on the 

multi-agent systems methodology. This chapter begins by presenting the his

torical background of substation automation systems, along with the newer 

network-based approaches and architectures. Agents, multi-agent systems and 

mobile agents are also introduced, and the main contributions of the thesis are 

presented. 

1.1 Introduction to Industrial and Power Sys

tem Automation 

The term industrial automation covers a range of systems used to improve 

the productivity, safety or product quality of an industrial concern [9]. Nor

mally, the main function of any industrial automation system is to control a 

process being performed. 

Industrial automation systems may be applied to a wide variety of indus

tries, which may be approximately grouped into the two categories of process 

industries or continuous process industries, such as electric power systems and 

other utilities, and discrete manufacturing industries, which include industries 

in which individual items, such as motor vehicles or electronic goods, are pro

duced. The type of automation system that is appropriate to a process industry 

may differ from the type of automation system that is appropriate to a discrete 

manufacturing industry [10]. 

There are several models of industrial automation systems in common us

age. One of the more well-known is the Computer Aided Manufacturing (CIMjI 

1 In the 1980's, the term computer integrated manufacturing (elM) was used to describe 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



1.1 Introduction to Industrial and Power System Automation 3 

pyramid model, in which the system is viewed as a series of layers, ranging from 

low-level data acquisition and control functions to high-level functions such as 

plant and process management [9]. This model is shown in Figure 1.1. 

and Process 
Management 

Process Monitoring 

Process Control 

Sensors and Actuators 

Figure 1.1: "CIM pyramid" Model of an Automation System 

A more detailed model of industrial automation systems is the CIM ref

erence model developed by the International Purdue Workshop on Industrial 

Computer Systems [11]. This model describes in a generic fashion the tasks, 

and to some extent the implementation, of an "integrated information man

agement and automation system", with most of the description aimed at the 

manufacturing industries. As with the CIM pyramid model, the outline struc

ture of this model is hierarchical, consisting of a number of levels. The five 

levels included [11] are: 

• Operational management: This level is responsible for overall production 

scheduling, coordination and reliability assurance . 

• Section/Area: the duties of units at the area level include production 

scheduling, maintenance and local cost optimization for a particular area. 

The area level is also responsible for generating production reports and 

analysis of operational data. 

a range of industrial automation systems based on computers. 

INFORMATION l\IANAGEMENT, MONITORING AND CONTROL D.P. Buse 



1.1 Introduction to Industrial and Power System Automation 4 

• Supervisory control: Units at the supervisory control level are responsi

ble for responding to emergency conditions in the plant, optimizing the 

operation of the controllers and maintaining "data queues" for lower-level 

units under their control. 

• Control level: the duties of this level include direct control of plant, hu

man/machine interface and the collection of information for transmission 

to higher levels . 

• Equipment: this level includes individual machines, sensors and actua

tors. 

However, it is stated that "the number of levels used in a factory model is 

arbitrary", and that the six levels serve only to assist the standardization 

process [11]. Within the hierarchical structure, control flows either within a 

level or downwards through the levels, and information / data flows upwards 

[11] . 

It has been suggested [11] that the usual method of implementation of a 

CIM system is to use a "hierarchy of separate computers". In support of this 

statement, the authors of [11] state that hierarchical systems provide the ability 

to implement distributed control of the plant, with each computer controlling a 

local area, and that the hierarchical structure follows the usual human manage

ment structure of a plant. It is conceivable that a multi-agent approach might 

be one way to implement such a hierarchical structure (see the description of 

hierarchical multi-agent systems, Section 1.2.2). 

1.1.1 A utomation Systems in Electricity Transmission 

Electricity transmission networks consist of a number of substations in

terconnected by transmission lines. Each substation contains transformers, 

switchgear (disconnectors and circuit breakers) and other items of plant and 

protective equipment [12]. 

In the transmission industry three types of automation system are used: Su

pervisory Control And Data Acquisition (SCADA) systems, Energy Manage-

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



1.1 Introduction to Industrial and Power System Automation 5 

ment Systems (EMS) and Substation Automation Systems (SAS) [13]. These 

form a hierarchical structure, with the EMS on the top level, the SCADA sys

tem directly subordinate to the EMS, and, at the lowest level, the individual 

SASs of each substation. 

Energy Management Systems 

An energy management system controls the overall operation of the power 

system [14]. The components of an EMS are [15]: 

1. Network analysis, including state estimation, load flow optimization, dis

patching and voltage control. 

2. Generation scheduling and control. 

3. Data storage and retrieval. 

4. SCADA, including data acquisition, alarms and HMI. 

Therefore, a SCADA system forms one component of an energy management 

system. In the conceptual model of an EMS presented in [15], the SCADA 

system connects the plant, or "external equipment" to the data base, with the 

other two functions (network analysis and generation scheduling) operating on 

the stored data. 

SCADA systems 

The SCADA system of a power system, shown in Figure 1.2, is responsi

ble for data acquisition, human-machine interface functions and alarm/event 

processing [15]. In a SCADA system, a centrally located master computer is 

connected via some form of network to a number of Remote Terminal Units 

(RTUs), located in the substations and connected to the local substation au

tomation system or substation control system (SCS). The master periodically 

polls the RTUs to retrieve status information, and can send commands back 

to the RTU s for execution by the substation automation system. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



1.1 Introduction to Industrial and Power System Automation 6 

SCADA Master 

Substation Substation 

Figure 1.2: Supervisory Control and Data Acquisition (SCADA) System 

Substation Automation Systems 

A substation automation system (SAS) is used to monitor and control a 

single substation, and to collect data for transmission to the overall SCADA 

system [16]. The main functions required of an SAS are control and protection. 

Control involves the operation of the plant, either locally or from a remote 

location. Protection, normally performed at the lowest level of the system 

by a number of relays, prevents damage to the system in the event of a fault. 

Various protection functions are provided, such as overcurrent, overvoltage and 

thermal overload. A more modern SAS will also provide a graphical human

machine interface, condition monitoring and historical data logging [5], along 

with remote access for information. 

1.1.2 Network-Based Power System Automation 

Traditional substation automation systems have a number of drawbacks. 

The interoperability of devices is hampered by "an excess of incompatible hard-

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



1.1 Introduction to Industrial and Power System Automation 7 

ware interfaces and protocols" [17], and more access to substation information 

is required in order to make business decisions [2]. In recent years a number of 

new architectures and products have been developed which aim to address one 

or more of these drawbacks. In particular, in the last 10 years there have been 

moves to integrate local area networks (LANs) into industrial systems. This 

has led to the development of several industry-oriented network architectures, 

such as fieldbuses, Modbus and Profibus [18]. Also, a number of systems now 

use standard Ethernet networks [19] [20] and the TCP lIP Internet protocol 

suite. 

The use of Ethernet and TCP lIP in an automation system has an important 

advantage in that it allows control systems to be connected directly to office 

and enterprise networks, which themselves usually use Ethernet and TCP lIP. 

This means that data collected by the control system can be shared with other 

systems such as databases and Enterprise Resource Planning (ERP) systems, 

and can be viewed by users who are not located at the production site. It 

is also possible to make process information accessible over the World Wide 

Web [6], which removes the need for a specific client program to be installed 

on a user's system as data can be viewed with a Web browser. However, even 

when a web browser is used it may still be necessary to download a large 

software component to the user's machine to allow online monitoring data to 

be displayed. 

A recent system installed in an Australian substation, described in [16], 

consists of a number of distributed Remote Terminal Units (RTUs) connected 

by a fibre-optic ring network. The RTUs communicate with "intelligent relays" 

and input-output devices, and there are duplicate HMIs and communication 

links to the SCADA system at the control centre. 

Client-Server and Distributed Object Systems 

Many current networked automation systems employ client-server technol

ogy, similar to that shown in Figure 1.3. A number of devices, either simple 

sensors or actuators or, more commonly, intelligent electronic devices (IEDs), 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



1.1 Introduction to Industrial and Power System Automation 8 

which incorporate an embedded processor, are connected via a network such , 
as Fieldbus or Ethernet , to one or more servers. These servers normally run 

the applications which perform the centralized control functions of the system 

including supervisory control, alarm and event management and data storage. 

A number of clients can then connect to the servers either using client programs 

or a Web browser[19] [4]. 

Q c 9 g 
Clients - ~r 1 1 1- ~ool -----

LAN/ I I I I 
WAN 

I I 
§J §J 

0 0 0 0 

Servers ~ = = 
~ 

~ ~ = = = 

LAN [---1--- ! 
-'-.. 

I 
I I 

Devices 1 .S1~1 I~~ I I~~I I~~I 1S2~1 

Figure 1.3: Client-Server Automation System 

A client-server system employs a "request-reply" method of interaction. 

The client system sends a request to the server, which must then carry out 

a specified action, such as retrieving a Web page for display, and transmit a 

reply to the server. An example of a client-server protocol is HTTP, which is 

used to display information stored on a Web server. 

Distributed object systems, such as CORBA [21] [22], Microsoft D/COM 

and J ava RMI , provide an alternative methodology for distributed program

ming. A distributed object system extends the object-oriented programming 

methodology to cover objects located on multiple computers . Server objects 

may expose a number of methods via some standardized interface description, 

which other objects may invoke by sending a message to the server [23]. Un-

INFORMATION MANAGEMENT , MONITORING AND CO TROL D.P. Bu e 



1.1 Introduction to Industrial and Power System Automation 9 

like agent-based systems, the interface of a distributed object is pre-defined 

(in terms of its methods), and the interactions are normally synchronous (an 

object must wait for a method to complete before it can continue execution). 

Relevant Standards 

To address the problem of interoperability between IEDs produced by dif

ferent manufacturers, a number of standards governing substation communica

tions have been developed, or are under development. The IEC 61850 standard 

[24] specifies a model for intra-substation communications. The standard is 

split into several parts, of which IEC 61850-5 defines the basic structure for 

the system. The system is broken down into a number of functions, which are 

the various tasks that it must perform. Each function is performed by one 

or more Logical Nodes (LNs), which are situated within some physical device. 

However, the standard does not specify how the functions should be allocated 

to devices. An LN is defined "by its data and its methods". IEC 61850-5 also 

defines a number of interfaces between these logical nodes. 

Data exchange in IEC 61850 is based on Pieces of Information for Com

munication, or PICOMs. A PICOM consists of an item of data to be trans

ferred, along with information about its data type, permissible transmission 

time, source logical node and destination logical node or nodes. The standard 

also includes an object model (based on GOMSFE: Generic Object Model for 

Substation and Feeder Equipment) [25], and an event system for use in com

munications between protection devices (GOOSE: Generic Object Oriented 

Substation Events) [26]. 

Earlier substation communications standards include the Distributed N et

work Protocol (DNP) [27] and Utility Communications Architecture (UCA) 

[28]. 

1.1.3 The National Grid Company System 

The substation control systems currently operated by the National Grid 

Company [29] are distributed control systems with a centralized substation 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



1.2 Introduction to Agents, Multi-Agent Systems and Mobile Code 10 

control system (SCS) and a number of bay level remote terminal units (RTUs). 

However, in most of these systems the processing is centralized at the SCS. 

The substations are currently linked via "private wire" circuits to the Grid 

Control Centre. These will eventually be replaced by an optical fibre network, 

providing a TCP lIP based Wide Area Network between substations and other 

locations, as well as a dedicated control network running an IEC protocol. 

Each substation will also have a local area network installed [30], based on 

optical fibre Ethernet and the TCP lIP protocol. 

The National Grid Company has also instigated trials of Internet technology 

and servers within its substations [6]. The system used is based on a server 

called the Information Management Unit (IMU). The IMU contains a Microsoft 

SQL Server database, in which data from IEDs is stored. This data is then 

made available to clients via a Web server situated on the IMU. The company 

found that the use of Internet technology provided "a way to minimize routine, 

repetitive tasks and also to plan pre-emptive maintenance" [6]. 

1.2 Introduction to Agents, Multi-Agent Sys

tems and Mobile Code 

While there is no fixed definition of an agent (or software agent), the con

cept is typically used to refer to software components that have their own 

thread of control (and hence may act autonomously), and are capable of sens

ing and reacting to changes in some environment. Often software agents have 

other properties, such as the ability to communicate with other agents. Re

cently, software agents have become widely used in the modelling of complex, 

distributed, problems [7]. This section discusses in more detail the various 

types of agents that are in use, along with multi-agent systems, which are sys

tems in which agents interact in order to solve some problem or achieve a set of 

goals, and mobile agents, which are agents capable of moving from one server 

to another during their execution. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



1.2 Introduction to Agents, Multi-Agent Systems and Mobile Code 11 

1.2.1 Intelligent / Autonomous Agents 

There are a number of definitions of an intelligent agent. One of the more 

widely used is that put forward by Wooldridge and Jennings [31], which defines 

an agent as a system that "enjoys the following properties: 

• autonomy: agents operate without the direct intervention of humans or 

others, and have some kind of control over their actions and internal 

state. 

• social ability: agents interact with other agents (and possibly humans) 

via some kind of agent-communication language 

• reactivity: agents perceive their environment (which may be the physical 

world, a user via a graphical user interface, a collection of other agents, 

the Internet, or perhaps all of these combined), and respond in a timely 

fashion to changes that occur in it 

• pro-activeness: agents do not simply act in response to their environment, 

they are able to exhibit goal-directed behaviour by taking the initiative" 

In the same paper, Wooldridge and Jennings go on to describe the notion of 

a strong agent, used by researchers in the artificial intelligence field, which is 

an agent that "is either conceptualized or implemented using concepts that 

are more usually applied to humans". An example of a strong agent is one 

based on a mental state described in terms of beliefs, desires, intentions and 

commitments. 

Strong agents can also be known as cognitive agents, in companson to 

simpler reactive agents, which are agents that act only in response to changes 

in the environment [8]. One of the simplest type of reactive agent is an agent 

having a series of IF-THEN rules, mapping from input states to actions. 

Agent Architectures 

There are several different architectures for intelligent agent implementa

tion. A well-known cognitive architecture is the Belief-Desire-Intention 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



1.2 Introduction to Agents, Multi-Agent Systems and Mobile Code 12 

(BDI) architecture [32, 33]' in which the agent's knowledge base is de

scribed by a set of beliefs, (those facts which an agent considers to be true) 

desires (those conditions which the agent wishes to bring about) and intentions 

(actions which the agent has committed to perform). These are explicitly rep

resented in the knowledge base; for example, the Procedural Reasoning System 

(PRS) implementation [33] represents beliefs and goals as ground literals (sen

tences containing no implications, binary operators or variables) in first-order 

logic [34]. As described in [34], a BDI agent is capable of both reactive and 

deliberative behaviour. On each execution cycle of the interpreter, the agent 

retrieves new events from the environment. It then generates a set of options, 

which are plans or procedures that the agent is capable of carrying out, both 

in response to events and in order to achieve its goals. The agent will then 

execute, or partially execute, one or more of the selected options. This process 

is repeated for the agent's lifetime. 

The subsumption architecture [35] is an example of a reactive archi

tecture which does not employ an explicit knowledge representation. A sub

sumption agent consists of a number of concurrently-executing behaviours [36]. 

These are arranged in a number of layers, with lower layers representing sim

pler behaviours, which have a high priority, and higher layers representing 

more abstract behaviours, and having lower priority. Low-level behaviours are 

unaware of the presence of the high-level behaviours. It is therefore possible 

to construct an agent using the subsumption architecture starting with the 

lowest-level behaviour and working upwards, with the agent being functional, 

at least to a certain extent, after each layer is constructed. For example, Brooks 

[35] describes a mobile robot with a number of layers, performing tasks such as 

"avoid objects" (the lowest layer), "wander", etc, up to "plan changes to the 

world" and "reason about behaviour of objects" (the highest layer). 

Machine learning methodologies, such as reinforcement learning [37], ge

netic programming [38], or inductive logic programming [39], may be used to 

enhance the performance of an agent. While it is possible to use learning to 

improve the capabilities of an agent using an architecture such as BDI (for 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



1.2 Introduction to Agents, Multi-Agent Systems and Mobile Code 13 

example, [40] used machine learning methodologies to recognize plans being 

undertaken by other agents in a BDI architecture and [41] uses case-based 

reasoning in a BDI agent for information retrieval), it is also common to incor

porate learning into a much simpler agent architecture. Learning agents have 

been applied in a number of domains, including user interfaces [42], telecom

munications [43], control and robotics [44]. 

Layered architectures such as TouringMachines [45] and INTERRAP 

[46] are cognitive architectures consisting of one or more layers. According to 

Ferguson, the advantage of a layered architecture is that a layered agent, by 

having different levels of behaviour operating concurrently, is capable of react

ing to changing circumstances while planning its future actions and reasoning 

about the behaviour of other agents. Both of the architectures mentioned 

have three layers: TouringMachines has a reactive layer, modelling layer and 

planning layer, while INTERRAP has a behaviour-based layer, local planning 

layer and cooperative planning layer. In TouringMachines, all three layers are 

connected to the agent's sensors and effectors. The three layers operate con

currently and are unaware of each other, while a control mechanism is used to 

filter the inputs and outputs and prevent conflicts. In INTERRAP, the sensors 

and effectors are connected only to the lowest layer (the behaviour-based layer). 

Activation requests are passed upward through the layers, and commitments 

are passed downwards. Unlike the subsumption architecture (which is a form 

of layered architecture), both TouringMachines and INTERRAP are based on 

explicit knowledge representation [45]. 

1.2.2 Multi-Agent Systems 

Ferber [8] defines a multi-agent system as a system consisting of an envi

ronment, a set of objects which exist in that environment and can be acted 

upon by agents and a set of agents, which represent the "active entities" of 

the system. Agents are related to objects by relations, and may act on those 

objects by means of operations. 

Ferber defines two extreme classes of agent, a purely communicating agent, 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



1.2 Introduction to Agents, Multi-Agent Systems and Mobile Code 14 

which is one which has no physical environment, and acts only by communicat

ing with other agents, and a purely situated agent, which has no communication 

with other agents, but is situated in a physical environment and acts through 

that environment. Many multi-agent systems also employ agents that have 

features of both of these types [8]. 

Multi-Agent System Architecture 

Several architectural styles have been used in the development of multi

agent systems. Shehory [47] describes four such organizations: 

• Hierarchical multi-agent systems, in which agents communicate according 

to a hierarchical structure, such as a tree. A system such as the Open 

Agent Architecture [48], which uses brokers, is a hierarchical system, as 

each agent communicates only with a broker or facilitator agent. Shehory 

gives the disadvantage of such a system as the reduction in autonomy of 

the individual agents, as lower levels of the hierarchy depend on and 

may be controlled by higher levels. However, hierarchical architectures 

can greatly reduce the amount of communications required, and also the 

complexity and reasoning capabilities needed in the individual agents . 

• Flat multi-agent systems, in which any agent may contact any of the oth

ers. These provide the greatest agent autonomy, but result in more com

munications between agents. Also, agents in a flat structure must either 

know the locations of their communications partners, or be provided with 

agent location mechanisms such as yellow pages services. Many smaller 

multi-agent systems appear to be developed using a flat organization . 

• A subsumption multi-agent system is a system in which agents are them

selves made up of other agents. In this system, the subsumed agents 

are completely controlled by the containing agents. This is similar to 

the subsumption architecture for an individual agent. According to 8he

hory, the fixed structure of a subsumption multi-agent system provides 

efficiency but restricts the flexibility of the system. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



1.2 Introduction to Agents, Multi-Agent Systems and Mobile Code 15 

• A modular multi-agent system is comprised of a number of modules. 

Each module normally employs a flat structure, while inter-module com

munications is relatively limited. A modular multi-agent system might 

be useful in a situation such as power system automation, in which each 

substation could be categorized as a single module. Most communica

tions within a power system are either within a substation or between a 

substation and the control centre, and so this might be an appropriate 

multi-agent system structure. 

1.2.3 Mobile Agents 

Mobile agent systems are systems which involve the transfer of a currently 

executing program, known as a mobile agent, from one location to another. 

Fuggetta, Vigna and Picco [49] state that "in the mobile agent paradigm a 

whole computational component is moved to a remote site, along with its 

state, the code it needs, and some resources required to perform the task." 

Mobile agents were first discussed in the early 1990s, and applications to a 

wide range of areas have been proposed or implemented. For example, [50] 

describes a distributed calendar application implemented using mobile agents, 

[51] describes a military information retrieval application and [52] describes the 

application of mobile agents to network monitoring. 

There are a number of reasons why mobile agents might be used in any 

particular application: 

• Mobile agents can provide performance improvements by reducing net

work load [53, 51]. 

• Using mobile agents can allow servers to be made more flexible, with 

components being added and removed at runtime [54]. 

• Mobile agents permit disconnected operation, in which a client can 

"launch" a mobile agent into the network, disconnect, and then reconnect 

to retrieve the results of the mobile agent's task [55]. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



1.3 Previous Agent-Based Automation System Architectures 16 

However, because of concerns regarding mobile agent security and a lack of 

motivation to deploy mobile agents, there has so far been limited use of mobile 

agents in real applications [56]. The mobile agent security issue consists of 

two problems: protecting a host and its data from a malicious agent or other 

attacker, and protecting an agent and its data from a malicious host or another 

agent [57]. While the first of these problems may be, at least partly, solved, 

there is still ongoing research into the second [58]. 

1.3 Previous Agent-Based Automation Sys

tem Architectures 

There has been much previous work in the field of application architec

tures for multi-agent systems. For example, the RETSINA [59] architecture 

is a 3-tier architecture consisting of user agents, wrapper agents representing 

information sources and "middle agents" which transfer data between the two. 

Wrapper agents both "agentify" the data sources, allowing them to be queried 

using the agent communication language and convert data from the data mod

els (ontologies) used by the individual data sources into a global ontology used 

for querying. Therefore, the wrappers assist in integrating data from heteroge

neous data sources. RETSINA has been applied to several problems including 

financial portfolio management and visit scheduling. A similar information ar

chitecture, consisting of an ontology agent and database agents, is described 

in [60]. These architectures provide a basis for the development of a multi

agent information management architecture. However, they do not include the 

other functions used in power system automation, such as information man

agement and control. Therefore, it is necessary to significantly extend these 

architectures to include this functionality. 

A number of multi-agent systems have been employed to handle various 

aspects of industrial automation. For example, the ARCHON system [61] was 

used to perform fault identification and service restoration in a power trans

mission network. Seven agents were used, based on both existing and new 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



1.3 Previous Agent-Based Automation System Architectures 17 

expert systems in the control centre. Each agent was responsible for a partic

ular task, for example, blackout area identification or control system interface. 

ARCHON agents consisted of two layers: the ARCHON layer, which was re

sponsible for local control, decision making, agent communications and agent 

modelling, and the AL-IS interface, which handled communications between 

the ARCHON layer and the "intelligent system" being wrapped by the agent 

[62]. The application of ARCHON described was used only in the control cen

tre, and was not a full substation automation system. It lacks much of the 

information management functionality required, for example, the storage and 

analysis of historical data. However, some of the general principles of the AR

CHON system, including the use of wrappers, may be applied to the design of 

such a system. 

There are many applications of agent technology in the manufacturing in

dustries. These are similar in some ways to applications in the process indus

tries and utilities, but often focus on machine control and task allocation. For 

example, the PABADIS project [63] aims to develop a system for agent-based 

manufacturing. The PABADIS system contains agents representing machines 

and products [64]. The machine agents register descriptions of their capabili

ties with a lookup service, which can be used by the mobile product agents to 

locate machines capable of carrying out the tasks involved in manufacturing 

a particular product. The PABADIS architecture demonstrates the use of a 

multi-agent system in an industrial process. However, the architecture of a 

manufacturing system differs from that of a utility. A utility system is a con

tinuous process, whereas a manufacturing system contains discrete parts and 

outputs. Also, the area covered by a distributed utility system is much wider 

than a single factory. In this work it is hoped to make use of the general agent

oriented principles used by PABADIS (use of directories and representation of 

components of the plant as agents) but to design an architecture more suited 

to the power systems and continuous process field. 

Bussmann and Schild [65] used a multi-agent system in the control of a flexi

ble manufacturing system. The system was used to manage the flow of material 

INFORMATION MANAGEMENT, lVloNITORING AND CONTROL D.P. Buse 



1.3 Previous Agent-Based Automation System Architectures 18 

between different machines, and to allocate tasks to machines. It was applied 

to automobile manufacturing. The approach taken by this system was based 

on auctions, in which workpieces auctioned off tasks to machines. It \vas found 

that this system provided both improved throughput and increased robustness 

compared to traditional methods [66]. As with PABADIS, the relevance of 

Bussmann and Schild's work is restricted by the fact that their application is 

in the manufacturing domain. 

Leito and Restivo [67] describe a multi-agent architecture under develop

ment for "agile and cooperative" manufacturing systems. As well as controlling 

the manufacturing system, the architecture supports re-engineering of prod

ucts. The agent architecture consists of Operational, Supervisor, Product, 

Task and Interface agents. This architecture is also intended for use in manu

facturing industries. However, it might be possible to use agents corresponding 

to the operational agent (which Leito and Restivo define as corresponding to 

the "physical resources") and supervisory agent in a utility system. Also, as 

the paper states, "only preliminary results are presented", and further work is 

therefore required. 

Mangina et al [68] describe the use of a multi-agent system and modal logic 

for gas turbine condition monitoring in a power generating station. By rea

soning about what causes a gas turbine to move from one state to another, 

the agents are able to identify the causes of faults. The same group have 

also developed the Condition Monitoring Multi-Agent System (COMMAS) ar

chitecture [69], which uses three layers of agent. Attribute Reasoning Agents 

(ARAs) monitor and interpret sensor data, Cross Sensor Corroboration Agents 

(CSCAs) combine data from different sensors, and Meta Knowledge Reason

ing Agents (MKRAs) provide diagnostics based on the information provided 

by the other agents. Mangina's architecture is relevant to the power systems 

domain. However, it provides only the single task of condition monitoring, and 

does not contain information management and remote control or operation 

functionali ty. 

These applications have been relatively successful, suggesting that the 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



1.4 Problem Statement 19 

multi-agent approach is a promising method for the implementation of in

dustrial automation systems. However, the previous work described does not 

provide a single architecture for providing all the functions required by a power 

system automation system, either because it focuses on a single application or 

because it is intended for use in manufacturing industries. The work described 

in this thesis is intended to provide such an architecture. 

1.4 Problem Statement 

The increasing use of intelligent electronic devices (IEDs) and networks in 

power system substations has led to the availability of a large amount of data 

and information of various types, and standard protocols such as IEC61850 

[24] have improved the interoperability of different devices. However, it re

mains difficult to effectively manage the amount of data produced [70], and to 

convert this data into knowledge to enable engineers to make use of it [3]. A 

framework is required to provide open access to substation information via the 

power company's wide area network and to integrate previously separate func

tions such as protection, control and information management [29]. Another 

drawback with current automation systems is that they are inflexible and can

not easily accommodate new requirements or changes to the substation plant 

and monitoring equipment. It is hoped that a new architecture might be able 

to address this shortcoming. 

The client-server model, used by most current systems, is widely supported 

and therefore provides a simple means to develop a distributed application. 

However, it is more suited to centralized applications, in which one server 

serves a number of clients, or one client controls a number of servers, than true 

distributed applications [71], and is lacking in flexibility. Distributed object 

systems, such as CORBA, provide a more suitable representation, in which 

the system is composed of separate objects. However, in a distributed object 

system objects do not usually have their own thread of control, which means 

that it is not possible for different parts of the system to act simultaneously. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Busf 



1.5 Thesis Ou tline 20 

Also, message passing in a distributed object system is usually synchronous, 

which means that an object that invokes a method on another object must 

wait for that object to respond before it can continue with any other tasks 

that it is involved in. The multi-agent approach provides increased autonomy 

by giving each agent its own thread of control, and provides asynchronous 

message-passing. Multi-agent systems also provide a high-level communica

tions language (Foundation for Intelligent Physical Agents Agent Communica

tion Language or FIPA ACL[72][73]) with a clearly defined semantics, which is 

useful in information management and integration. Therefore, this thesis will 

attempt to apply a multi-agent systems approach. 

In the development of this framework, emphasis should be placed on its 

suitability for a wide range of applications in the industrial automation do

main, in particular to the process industries and utilities, which have a similar 

structure. If possible, it would be desirable to be able to transfer the archi

tecture and the basic implementations of its individual components from one 

situation to another without alteration. 

1.5 Thesis Outline 

This chapter has introduced current industrial and power system automa

tion systems and different techniques used in the construction of such systems, 

as well as multi-agent systems and mobile agents. 

Chapter 2 gives an overall view of the proposed architecture. Firstly, the 

tasks that must be performed by an industrial automation system are consid

ered. These tasks are then mapped into a multi-agent system, in which each 

task is performed by an agent or a number of agents, also taking into account 

the physical structure of the power system. The collaboration between agents 

to perform the various tasks is then discussed. The representation of knowl

edge for agent communication is described and a basic ontology for automation 

systems is defined. Finally, the implementation of the agent platform, upon 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Bus!' 



1.5 Thesis Outline 21 

which the multi-agent system is constructed, is considered. 

Chapter 3 provides a more detailed examination of the static agents that 

make up the architecture. The basic agent architecture used by all agents 

is presented, and the sensors, effectors and knowledge of each agent are then 

considered individually. Implementation issues relating to particular agents, 

for example the plant agents which control and monitor items of substation 

plant, are discussed in detail. 

Chapter 4 examines the use of mobile agents and mobile code. Previous 

research into mobile agent performance is discussed, and used to define a per

formance model for the mobile agent applications described. Experiments in 

remote control and data analysis are presented, including agent algorithms 

and detailed performance results. Other proposed applications such as remote 

monitoring are also considered. 

Chapter 5 describes a substation information management system imple

mented using the proposed architecture. This system is used to provide online 

monitoring, historical data querying and analysis and remote control for a 

substation simulator provided by the National Grid Company. The particular 

agents and ontology used in the implementation of the system are described 

and detailed examples of the system's use are given. 

Chapter 6 provides an evaluation of the whole architecture, using the crite

ria of functionality, modifiability, performance and reliability. The architecture 

is evaluated with reference to other industrial automation systems, criteria for 

substation automation systems and other possible software architectures. Vari

ations on the proposed architecture are also considered with respect to their 

expected performance in data acquisition. 

Chapter 7 presents the conclusions of this thesis and a summary of the 

contributions made. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



1.6 Contributions to Knowledge 22 

Appendices provide detailed results tables for the mobile agent experiments, 

describe some of the details of the implementation of the prototype system. and 

give definitions of the data file formats used. 

1.6 Contributions to Knowledge 

The main contribution of this thesis is to examine the use of multi-agent, 

mobile agent and other computing technologies in the context of power system 

automation. The main aims are to determine the applicability of existing 

computer and information systems techniques to this domain, and to examine 

how different methodologies such as multi-agent systems and mobile agents can 

be combined into an integrated automation system. To this end, the following 

contributions have been made: 

• A multi-agent architecture for power system information management, 

monitoring and control has been developed. By using agents to represent 

components of the automation system, it is possible for the architecture 

to more closely match the distributed nature of the system, and the 

flexibility of the system is increased by allowing components to be added 

and removed at runtime. 

• As part of the development of the information management architecture, 

the representation of various aspects of power system knowledge in a 

form suitable for use in multi-agent system communications has been 

examined, and various examples of this have been provided. 

• A prototype implementation has been produced which demonstrates the 

feasibility of the architecture. The prototype consists of agents which 

perform the data acquisition, information management and remote con

trol functions of an industrial automation system, for a single substation. 

Mobile agents are used for data analysis and report generation. The 

prototype also provides an extensible platform for further research into 

intelligent applications in the power system. 

INFORMATION MANAGEl\IENT, MONITORING AND COI\TROL D.P. Bu,<;e 



1.6 Contributions to Knowledge 23 

• The use of mobile agents for a number of applications in power systems, 

as part of the overall architecture, is discussed and evaluated. Exper

imental results are provided which suggest that for the applications of 

data analysis / report generation and remote control, it is possible for 

mobile agents to provide significantly increased performance compared 

to static agents or client-server systems. This is particularly true when 

the user is connected to the substation by a network of high latency or, 

in the data analysis case, low bandwidth . 

• The functionality, performance and flexibility of the architecture have 

been evaluated, providing insight into the utility of the multi-agent ap

proach to the design of industrial automation systems, and the design 

decisions involved in developing a multi-agent based automation system 

architecture. Particular attention has been paid to the architecture of the 

data acquisition system due to its performance requirements, and vari

ous possible multi-agent configurations for data acquisition have been 

evaluated. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



Chapter 2 

An Agent-Based Architecture 

for Power System Automation 

This chapter describes in detail a proposed multi-agent software architec

ture for power system automation. The overall structure of the system consists 

of WAN (Wide area network) and LAN (local area network) components, as 

shown in Figure 2.1. The LAN component represents those components of the 

architecture that would be installed at a substation, while the WAN component 

represents those components of the architecture found at other locations, such 

as an office or on a client's computer. There are multiple LAN components, 

one for each substation, and there may also be multiple WAN components. 

WAN 
Component 

(Office) 

I 
I 

LAN Component 
(Substation) 

WAN 
Component 

(Control Centre) 

I 
I 

LAN Component 
(Substation) 

Comp any 
N 

I 
WA 

LAN Component 
(Substation) 

Figure 2.1: Outline View of Architecture 

24 



2.1 Tasks Performed 2.5 

2.1 Tasks Performed 

As discussed in the Introduction, a power system automation system must 

perform a variety of tasks, which operate at different timescales, have different 

characteristics and involve the transfer of different types of data. Figure 2.2 

gives a set of common tasks which must be performed by an automation system, 

including the flow of data between the different processes of the system. This is 

based on the models of industrial automation discussed in Chapter 1.1, on the 

requirements for the SICAP substation automation system laid out in [29], and 

on experience with existing data acquisition and SCADA systems. The "system 

boundary" divides those processes which are implemented by the system from 

the external inter actors (databases, users and plant). The processes shown are 

defined as follows: 

User interaction involves taking commands and queries from the user, and 

translating them into an appropriate form for submission to the other compo

nents of the system. As shown in Figure 2.3, the task of interacting with the 

user involves handling queries, requests and online data display. The task of 

online data display is driven by events from the control system, while queries 

and requests originate with the user. 

Intervention provides the ability for a user to send commands which change 

the state of the system, for example, to open or close a circuit breaker or set 

the tap position of a transformer. 

Output data interpretation translates from a desired state, expressed in 

a command, to the appropriate setting (or sequence of settings) of digital and 

analogue outputs required to achieve this state 

Data acquisition takes raw data from sensors and translates it into numer

ical values. This task corresponds to that of the "sensor process" described by 

Somerville [23]. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



2.1 Tasks Performed 

I:l Document 
Authors 

26 

System Boundary ~ 
,....-------------- Requests . -------_________ ~I----.... 

and Queries Replies 

,...----Requests-------l /----Queries 

i • 

Relevant 
Data 

DB queries 

SQL 
Queries Responses 

DB Updates 

Document 
Queries 

Document Info 

New 
Docs 

New 
Documents 

,--------1------ 1 Analogue and Digital .... --11-___ Quantities _______ 1, __ + __ ,1 _______ ,,1 __ _ 

Analogue and Digital 
Outputs 

Plant 
Databases Document .---J 

Repositories 

Figure 2.2: Functional Decomposition of Power System Automation System 

Input data interpretation takes the data gathered by the data acquisition 

process and converts it into a machine-understandable representation of the 

state of the power system. This task corresponds roughly to that of the "process 

data" process described in [23]. 

Automatic control involves closed-loop or open-loop control of the system 

without the participation of a user. 

Data storage takes event and other data from the plant (via the input data 

interpretation process) and stores it as historical data in a databa e. 

INFORMATION MANAGEMENT MONITORING A D CONTROL D.P. Bu 



2.1 Tasks Performed 

Plant 
Stale 

Users 

Requests 
Replies 

User Interaction ...---'1--- Query User ResultsQueries---I~..:p.-

Events 

Queries 

Query Resu lts Commands 

Figure 2.3: User Interaction 

27 

Data queryIng is used to retrieve stored data from a database. It takes 

queries from the information gathering module and transmits them to the 

database as Structured Query Language (SQL) queries, returning the results 

obtained. 

Document retrieval provides an information retrieval facility for docu

ments related to the power system. These include maintenance records for 

substation plant, technical documentation etc. 

Document storage is used to allow users (either document authors or sys

tem administrators) to add new documents to a document repository. 

Information gathering is responsible for taking queries from the user inter

action component, or from other components , and retrieving data or documents 

that are relevant to those queries. 

These tasks are now considered in three groups: data acqui ition / con

trol , information management and user interaction. For the purpo e of thi 

discussion, the output data interpretation, input data interpretation auto-

INFORMATION MANAGEMENT MONITORING AND CO TROL D.P. Bu 



2.2 Multi-Agent System 28 

matic control and intervention tasks are performed by the data acquisition / 

control system and information gathering, data storage and document man

agement by the information management system. As shown in Figure 2.-±. all 

tasks, including information management, user interaction and data acquisi

tion/ control must be performed in a substation. However, wide area network 

locations (control centres/offices) perform only information management and 

user interaction tasks. 

Office / Control Centre 

Central Servers 

User Interaction Information Management 
System 

I I 

I 
Substation 1 Substation 2 Substation n 

I I I 
Data Acquisition and 

I--
Information User Interaction 

Control System Management System • • 
I I 

IEDs and other 
control/monitoring Servers 

hardware 

I 
Substation plant: 

transformers, 
All substation components have same interna 

switchQear, etc. 
structure as Substation 1 

Figure 2.4: Allocation of Systems to Substations and Wide Area Network 

2.2 Multi-Agent System 

This section describes one possible multi-agent system to fulfil the require

ments of the tasks described in the previous section. In designing multi-agent 

systems, a common approach preferred by several authors in the field [7.Jj[75] 

is to use a physical decomposition process, in which each object in the system 

INFORi\IATION MANAGEMENT, l\IONITORING AND COr\TROL D.P. BlIse 



2.2 Multi-Agent System 29 

is represented by an agent. This provides the derived system with a structure 

which is representative of the physical system being modelled and hence is easy 

to understand. Also, a physical decomposition may increase the ability of the 

system to cope with change. For example, if an item of plant is removed from 

a physically decomposed system it may only be necessary to alter the agent 

associated with this item of plant. In a functionally decomposed system, if 

an item of plant is removed, all the functional agents which make use of this 

item of plant will need to be altered. In the design of the multi-agent system 

described here, this principle is applied to derive plant agents which represent 

substation plant, device agents representing monitoring devices and user agents 

representing users. 

However, physical decomposition may not always be the best approach 

to take. For example, in other work the functional approach is still used in 

agents such as brokers and mediators, even when the main multi-agent system 

uses a physical decomposition [75]. In the system described in this thesis, the 

main application of the functional decomposition approach is to mobile agents. 

There are separate mobile agents for monitoring, remote control and infor

mation gathering. This functional decomposition is useful for mobile agents 

because it allows relatively small mobile agents to be developed (the agents 

only have to perform a single specific task), which reduces the amount of data 

that must be transmitted across the network when a mobile agent is moved. 

Another aspect to consider is the level of intelligence and autonomy to be 

exhibited by the agents. Again, a high level of intelligence might be detrimental 

to the mobile agents, as the large amount of code required would increase the 

transmission size of the agent. However, intelligence and autonomy might be 

beneficial to other agents in the system. 

This section discusses the design of the system by considering its two main 

components: data acquisition/control and information management. However, 

these components are not completely separate. Some agents perform more 

than one role and are present in multiple components. For example, the plallt 

agents both control the plant and act as a source of plant information to the 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Bus( 



2.2 Multi-Agent System 30 

information management system. 

2.2.1 Agent Platform 

An agent platform provides a basis for the implementation of a multi-agent 

system, and the means to manage agent execution and message passing. It is 

intended that the architecture should be implemented using an agent platform 

based on the Foundation for Intelligent Physical Agents (FIP A) specifications 

[76]. These specifications, being developed by an industry consortium of around 

25 organisations, are the most prominent attempt to standardise multi-agent 

systems technology and are implemented in a number of publically available 

agent platforms. The specifications define an abstract agent platform, a num

ber of services that must or may be provided by such a platform and a standard 

communications language. It is assumed that agents have access to the FIPA

specified directory facilitator (DF) service for publishing their capabilities and 

locating other agents capable of providing a specific service. The DF uses 

"service descriptions", defined in [76], to allow agents to identify the services 

provided by each other. In the system described here, an agent might need to 

use the directory to find out, for example: 

• Whether an agent is capable of providing the answer to a particular query. 

For example, suppose an agent knows that it can obtain the low voltage 

current of a transformer SGTI by querying channel 0 of device 0 on node 

IEDl. The agent may then use the directory facilitator to obtain the 

identity of any agent that may provide it with the ability to query this 

channel. 

• Whether an agent is capable of performing a particular action. 

Use of the directory facilitator permits agents to be added and removed at 

runtime, as an agent providing a service may be substituted with another 

agent providing the same service. A directory entry for an agent includes 

(among other items) the agent name, service name, service type, ontologies 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



2.2 Multi-Agent System 31 

(data models) used, protocols used and a set of properties, which may be 

defined by the user, describing that service. Similarly to the mechanism used 

in [77] to register agents with brokers, in this system agents register the actual 

queries that they may answer with the directory facilitator. The service type 

"query-service" is used to denote a registration containing such information. 

For example, in the implemented device agent described in Chapter 5, the 

agent registers with the DF the actual information that it can provide using 

the system ontology, for example, in the FIPA Semantic Language (SL) [78] 

language, the following might state that the device agent can provide the value 

of a channel "tpl": 

(any ?a (value tpl ?a)) 

Another agent may then use a unification procedure (e.g. that found in Prolog) 

to match the information provided by information sources with a specified 

queryl. This is only a basic mechanism, and in a complex system additional 

information (e.g. preconditions for a query to be answered) should be provided 

to enable agents to choose between two or more agents providing the same or 

similar services. In the system described here, a similar method is used for 

agents to register actions that they are capable of carrying out. The service type 

used for this is "request-service". All agents providing a service will register 

either a query service or request service. Agents may additionally register more 

specific services, for example, the ontology agent registers a "fipa-oa" service, 

which is a service defined in the FIP A standards for ontology agents [79]. 

Inter-Agent Communications 

The use of the FIP A platform also provides a standard agent communica

tion language, FIPA ACL [72]. FIPA ACL is a high-level agent communication 

language based on speech acts. An ACL message consists of an outer message 

1 In most cases it should be possible to ignore the any, all or iota part of the expression 
and match only o'n the inner expression. However, in order for the expression above to be 
a legal term in FIPA SL, there must be no free variables, and so any, all or iota must be 

included. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Busc 



2.2 Multi-Agent System 32 

structure, providing information such as the sender and receiver of the mes

sage, and a message content, expressed in some language understandable to 

both the sending and receiving agents [SO]. Each message has a performative, 

or communicative act, which determines its type and hence the effect that it 

is intended to have on the receiver. The FIP A ACL specifications define a 

message structure [72], standard communicative acts [SI] and interaction pro

tocols. Wherever possible, the standard interaction protocols are used in this 

architecture. In addition, the language used for all inter-agent communications 

is the FIP A 8L language [7S]. 

2.2.2 Data Acquisition and Control System 

An object model showing the components of a typical data acquisition sys

tem is given in Figure 2.5. The system consists of a number of data acquisition 

nodes, for example, PCs equipped with input or output hardware or standalone 

Intelligent Electronic Devices (IEDs). If connected to a network, which we as

sume is the case for the development of this automation system, the node will 

have one or more network interfaces, represented by the interface class. This 

has various subclasses representing the different types of network available, 

including the IP BasedInterface shown on the diagram that represents an ad

dress on an Internet Protocol network, having a protocol name, host name or 

IP address and port number. 

Each node is equipped with a number of devices, which represent a physical 

or virtual unit of I/O capability, for example, a PCI data acquisition card or 

a (non-modular) lED. It is possible that a node contains only one device - for 

example, a computer may have only one data acquisition card. However, nodes 

with 0 devices are not of interest to the data acquisition system, as no input or 

output facilities are provided. A device may contain a number of channels, each 

of which is capable of the input (InputChannel) , output (OutputChannel) or 

both (InputOutputChannel) of a single analogue or digital value. Each channel 

has a data type, which defines the type of data input or output, for example, 

Boolean or float. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



2.2 Multi-Agent System 33 

Node has ~ Interface 

1 * 

1 ~ 
* 

Plant Device IPBasedlnterface 

-Name 
-IPAddress: String 

-Type +Read(in Channel) -Port: String 

+Write(in Channel, in Value) 
-ProtocolName : String 

• 1 
1 * 

Channel 
-DataType 

+ReadO : double 
associa edWith +Write(in Value) 

~ 
I I 

InputChannel OutputChannel 

+ReadO : double +Write(in Value) . 6 6 
* I 

1Measure ~By ~ InputOutputChannel 1 
Property 

-Name 0 .. 1 
-Value 

Controlled By ~ 

Figure 2.5: Generic Object Model for Data Acquisition System (using UML 
class diagram notation) 

Each input channel measures a particular property of an item of plant via 

sensors and actuators (not shown on the diagram as they are external to the 

data acquisition system) . For example, an analogue input device might use 

a thermocouple sensor to measure the oil input temperature of a transformer. 

It might be possible that a property is measured by more than one channel. 

However, because a channel is capable only of the input or output of a single 

quantity it is not possible for it to measure more than one property. If a 

property is directly controllable (e.g. the status of a circuit breaker), then it is 

controlled by one or more output channels. The simplest method of control is 

that in which writing a value to a channel directly sets the vRlue of the plant 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Huse 



2.2 Multi-Agent System 34 

property, for example, writing a 0 to a digital output to close a relay. Howe\'er, 

it is also possible that properties may be controllable, but are set indirectly 

via actuators. For example, writing a value to the "tap up" channel of a 

transformer would cause the tap position of that transformer to be increased 

by 1, but it is not possible to directly write a tap position value to the "tap 

position" channel. 

Agents 

From the model shown in Figure 2.5, and using the principle from [82] that 

agents should correspond to things within the problem domain rather than 

"abstract functions", it is possible to derive several possible agent communi

ties, depending on the desired granularity of the decomposition. For example, 

considering the data acquisition system, which consists of nodes, channels and 

devices, should each channel be represented by a separate agent, or should 

a single agent represent all channels on a device, or even all channels on a 

node? Van Dyke Parunak [82] states that an agent should be "small in mass" 

(representing a small portion of the entire system), "small in scope" (having 

limited sensors and action capabilities) and "small in time" (able to remove or 

"forget" outdated information in its memory) - in other words, that in general 

agents should be kept small. This would suggest the use of separate agents to 

represent nodes, channels and devices. However, this may not always be simple 

to implement in practice, and would result in a very large number of agents, 

which might prove difficult to manage. Therefore, the proposed architecture 

specifies the use of one agent per device. However, because agents use Direc

tory Facilitator (DF) entries to locate other agents capable of performing an 

action or responding to a query, it should be possible to substitute a channel 

agent for part of the functionality of a device agent without disturbing the 

rest of the system. All DF entries relating to the relevant channel would be 

removed from the description of the device agent, and put into the description 

of the channel agent. Therefore, "client" agents looking for, for example, the 

value of the channel would determine from the DF that the agent now pro-

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



2.2 Multi-Agent System 35 

viding that service was the channel agent rather than the device agent. An 

alternative architecture would be to have a hierarchical structure consisting of 

one device agent and multiple channel agents, with the device agent providing 

the external interface to the system. Other agents would not see the channel 

agents, and would pass requests to the device agent, which could then forward 

them to the appropriate channel agent. 

Considering the plant and properties of plant, it follows from the principle 

of agents representing entities that each item of plant should be represented by 

a single agent. A property of an item of plant is not actually an entity, although 

it is shown on the object model as such to allow the link to be made between 

channels and properties. Each plant agent will be aware of all of the properties 

of its respective item of plant and, where appropriate, able to control them. 

Figure 2.6 shows the derived multi-agent data acquisition and control sys

tem. The device agents are responsible for performing data acquisition and 

output on a single device. Plant agents obtain data from the device agents, 

and are responsible for converting that data into a representation of the cur

rent state of the relevant item of plant. They are also responsible for automatic 

control tasks relating to that item of plant, and for providing information to 

the information management system. Cooperative, distributed control schemes 

may be implemented by communications between the plant agents. For a typ

ical substation, there will be plant agents representing transformers, circuit 

breakers, disconnectors and any other items of plant. 

For most control and information management purposes, only the plant 

agents need be visible to the rest of the system, as users are normally inter

ested in the functioning of the substation, rather than the details of the data 

acquisition system. However, as well as allowing the agents to be as "small" as 

possible, the use of intermediate data acquisition system agents between the 

plant and the plant agents, rather than solely using the plant agents, is nec

essary because there may not be a 1: 1 mapping between plant and devices - a 

device may control or monitor multiple items of plant, and an item of plant may 

be monitored or controlled by a large number of devices. The device agents 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Bus( 



2.2 Multi-Agent System 
36 

Other Agents 

Node 
Node 

Plant Plant 

Figure 2.6: Multi-Agent System for Data Acquisition and Control 

hide the different implementation details of these multiple data acquisition de

vices from the plant agents, making it possible to re-use the same plant agent 

implementation (with configuration changes) for different items of plant of the 

same type, even where the systems monitoring these items of plant are differ

ent. This architecture also simplifies the task of changing a data acquisition 

device or adding a new one. However, it is also conceivable that similar infor

mation hiding could be accomplished by the use of a library of drivers, each 

for a specific device but sharing a common interface, in place of device agents. 

Another advantage of the multi-layered structure is that functions such as the 

configuration of the data acquisition system (carried out by device agents) are 

separated from the control functions (carried out by plant agents). This should 

make the implementation of the individual agents simpler, as they have fewer 

tasks to carry out. 

Based on the principle of "small agents" discussed in [82], it is possible 

to conceive that the agents representing complex plant items such as trans-

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



2.2 Multi-Agent System 37 

formers, which have many components, should themselves be split into several 

"sub-agents". For example, a transformer agent might be responsible only for 

monitoring the windings of the transformer (voltage, current etc) and would 

be associated with a cooling system agent, monitoring the cooling fans and oil 

temperatures, and a tap changer agent, responsible for the operation of the 

tap changer. It is difficult to evaluate whether or not this would be useful in 

practice, and for reasons of time it has not been implemented in the current 

prototype of the architecture. However, it is an issue for further research. 

2.2.3 Information Management System and User Inter

face 

The architecture of the multi-agent information management and user in

teraction system extends previous agent-oriented information system architec

tures such as RETSINA [59], which is described in Section 1.3. This 3-tier 

architecture consists of user agents, wrapper agents representing information 

sources and "middle agents" which transfer data between the two. Wrapper 

agents allow heterogeneous data sources to be queried using the agent commu

nication language (which in this system is FIPA ACL), and convert data from 

the data models (ontologies) used by the individual data sources into a global 

ontology used for querying. 

The architecture for substation information management, shown in Figure 

2.7, contains 3 basic types of database: data logging databases, which are 

used for storing status and event information, "static" databases which hold 

configuration data, and the ontology database, which holds the system ontology 

(data model). Each database has its own database agent, with the ontology 

database having the ontology agent. Additional data is provided by plant 

agents themselves and by substation document repositories. The plant agents 

do not require wrappers, as they are already agents. The other sources of 

information are represented in the system by wrapper agents: the databases 

by database agents and the document repositories by document management 

agents. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. BIL'>( 



2.2 Multi-Agent System 38 

A mobile server is a server which is added to the system for a period of time 

(perhaps to carry out data acquisition for an experiment) and is then removed. 

Data stored on a mobile server may be accessed via the multi-agent system in 

the same way as data stored on any other server, providing that appropriate 

agents are available on the mobile server. The type of agent to be used would 

be determined by whether the mobile server contained a database (in which 

case a database agent would be used) or a data acquisition system (in which 

case device agents and a node agent would be provided). In the second case, the 

mobile server should be integrated into the data acquisition / control system, 

and pass data to a plant agent, rather than into the information management 

system. 

The information transport (middle) layer of the system is composed of bro

kers, task-oriented agents and mobile agents. Task-oriented agents use the 

services and information provided by the service agents (database agents, doc

ument agents and plant agents) to provide a specific service to user agents. For 

example, an alarm and event agent might use monitoring data provided by the 

device agents to generate alarms and events for viewing by users. These agents 

provide a convenient encapsulation of particular forms of data. It is also possi

ble to conceive of a variety of different task-oriented agents to perform various 

functions such as modelling, prediction or decision support. These agents are 

task-oriented rather than physically oriented. The use of task-oriented agents 

permits a variety of services to be implemented by introducing new agents 

rather than by modifying a large portion of the existing system. 

The user interface layer consists of user agents, with each agent representing 

a particular user of the system, and a human-machine interface. The user 

agents perform data transformation between the multi-agent system and the 

human-machine interface, similar to the function played by a wrapper agent 

for a data source. 

INFORMATION MANAGEMENT, J'vl0NITORING AND CONTROL D.P. Bus! 



2.2 Multi-Agent System 

Global 

Substation 

Ontology 
DB 

DB = Database 
Doc. = Document 
MS = Mobile Server 
Onto . = Ontology 

Human Machine 
Interface Server 

Local Human 
Machine Interface 

Mobile 
Server 

World Wide Web 
Server 

Static 
DB 

Document 
Server 

Data from plant 
via data acquisition 
multi-agent system 

To other 
sUbstations 

Mobile 
Agent 
Server 

Figure 2.7: Information Management Multi-Agent System 

39 

Database Agents: Input and Output Agents or Input/Output 

Agent? 

The database agent as described above must perform two tasks: data stor

age and data querying. However, it would also be possible to use separate 

storage and querying agents. The advantages and disadvantages of each con

figuration are now considered. 

One agent The use of one database agent provides the ability to view the 

database, which is a single software system, as a single agent and is therefore 

conceptually attractive. Also, the mapping rules (discussed in Section 3.1) used 

by a database agent to translate data from its database schema into th global 

INFORMATION MANAGEMENT , MONITORING A D Co TROL D.P. Bu 



2.2 Multi-Agent System 40 

ontology would only have to be stored within a single database agent. However, 

a major problem with the single-agent approach would be that the load on the 

agent would be increased as a result of its having to perform (possibly concur

rent) data update and querying operations. It might be possible to mitigate 

this problem by the use of threading (with each agent having separate threads 

to handle update and querying). However, this increases the complexity of the 

agent implementation. 

Two agents The use of two separate agents would allow the functions of data 

update and querying to be split between these agents, reducing the complexity 

of the individual agents, and making it simpler to modify either of the agents 

without affecting the other. However, a mechanism to share mapping rules 

between agents would have to be used, or else these rules would have to be 

duplicated in both agents. The use of two separate agents should also reduce 

the load on the individual agents, and it would also be possible to place the 

agents on separate computers, further improving performance and scalability. 

2.2.4 Combined Multi-Agent Architecture 

By combining the components of the multi-agent system obtained in the 

preceding sections, an integrated architecture, the outline of which is shown 

in Figure 2.8 is obtained2 . In the information management system, all agents 

may communicate with each other. However, the task agents may be situated 

in the substations and in this case would not need to use mobile agents to , 
retrieve data. 

The interface between the data acquisition / control system and the infor

mation management system occurs at two points: the plant agents (for online 

monitoring and operator intervention) and the data logging database (for data 

querying). Mobile servers are not shown on the combined architecture, as it is 

envisaged that they would contain either a database and database agent, or a 

2In order to make the diagram readable, the architecture has been simplified in comparison 

to the diagrams of its individual components. 

INFORMATION MANAGEMENT, NIoNITORING AND CONTROL D.P. Bu.sc 



2.2 Multi-Agent System 

Users 

User Interface 

Database 

it 
User 

Interface 

Documents 
(in fi les) 

lED Control 
System 

Informa tion 
Management 

System 

Plant 

Figure 2.8: Combined Multi-Agent System 

data acquisition system and plant / device agents. 

Agent Collaboration 

4 1 

Figure 2.9 shows how the different types of agent in the system collaborate. 

The multi-agent system implements the generic system shown in the data flow 

diagram (Figure 2.2) and therefore the external interactions of the system 

(those which cross the system boundary) are the same. 

Multiple Substations (Modular Architecture) 

The descriptions of the architecture in this chapter have so far con id red 

a single subst ation , along with its connections to the wide area network. How-

INFORMATION M ANAGEMENT MON ITORI G AND CO NT ROL D.P. Eu 



2.2 Multi-Agent System 
42 

Multi-Agent System Boundary 

Commands 

Information 

Figure 2.9: Agent Collaboration 

ever , a real power transmission system contains a large number of substations. 

It is envisaged that in the architecture described each substation would 

contain a multi-agent system consisting of a data acquisition system and in

formation management system. This would produce a modular architecture 

consisting of individual substation modules and WAN modules. While possi

ble , communications between substations would be limited , as many functions 

do not require direct inter-substation communications. Each substation should 

have its own agent platform and directory services , reducing the amount of data 

transmission across the wide area network. However, it would be necessary to 

allow user agents, and other agents located on the wide area network to have 

access to any / all substations. 

INFORMATION MANAGEMENT , MONITORING AND CO TROL D.P. Eu 



2.3 Agents, Tasks and Interaction Protocols 43 

2.3 Agents, Tasks and Interaction Protocols 

Each task described in Section 2.1 is associated with a particular type 

of data and a particular interaction protocol, taken from the standard FIPA 

interaction protocols. Tables 2.1 and 2.2 summarize these associations. Table 

2.1 considers each task as a transformation from input data to output data, 

and defines the types of data involved and the agents that perform the task. 

Table 2.2 considers the characteristics of the task (whether it is event-driven 

or performed on demand by some user or system) and the protocols involved. 

The following sections describe how the individual tasks are carried out. It 

is assumed that agents have already located each other and therefore searches 

of the DF to locate appropriate agents are not included in the descriptions. 

User Interaction 

User interaction (Figure 2.10) is carried out by the user agent, which takes 

commands and queries from the user (via the HMI) and translates them into 

appropriate ACL messages for transmission to other agents. 

Information to 
display on HMI 

Replies in ACL 
format 

HMI 

User input in 
HMI-specific 

representation 

Queries, Requests 
etc in ACL format 

Figure 2.10: User Interaction 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Bu::;e 



2.3 Agents, Tasks and Interaction Protocols 44 

I Task Input Data Output Data A t gen s 
User Interaction User Agent 
- Queries HMI input ACL queries 

I 
- Requests HMI input ACL queries i 
- Online Display Events or Status HMI display 
Intervention Requests Requests Plant Agent 
Output D.l. Required plant DAQ actions Plant Agent 

status 
Automatic Control Current plant Required plant Plant Agent 

status status 
Input D.l. DAQ Events/ Plant Events / Plant Agent 

Status Status 
Data Acquisition Sensor Events / Status Device Agent 

data (DAQ system) 
Data Storage Data in Data in SQL DB Agent or 

ACL format and statements DS Agent 
global ontology and DB schema 

Data Querying Queries (ACL) Responses (ACL) DB Agent 
Document Queries (ACL) Binary Data Document 
Retrieval Agent 
Document Binary Data Binary Data Document or 
Storage in ACL in files Document 

Storage Agent 

Information ACL queries Information Mobile Agents 
Gathering in ACL 
Analogue / Digital New values DAQ Channel Device Agent 

Output (ACL) Values 

Table 2.1: Tasks, Data Types and Agents (DB 
Storage) 

Database, DS Data 

Intervention (Including Output Data Interpretation) 

Intervention (Figure 2.11) is performed by the user agent and plant agent. 

Upon receiving a command from the user via the graphical interface, the user 

agent searches the DF to locate a plant agent capable of carrying out that 

command. It then forwards the command to the appropriate agent as a FIPA 

ACL request message. The plant agent generates a sequence of read or write 

operations to carry out in order to fulfil the request, and transmits the::;e t() 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



2.3 Agents, Tasks and Interaction Protocols 45 

! Task ! Characteristics I Protocols 
User Interaction 
Queries On demand FIPA Query 

-Requests Request/Reply FIP A Request 
Online Display Event-driven FIP A Subscribe 

Intervention Request/Reply FIP A Request 
Output D.l. On request 

i 

FIP A Request 
Automatic Control Event-driven FIPA Subscribe (input) 

FIPA Request (output) 
Input D.l. Event-driven FIPA Subscribe 
Data Acquisition Event-driven Device-dependent (input ) 

FIPA Subscribe (output) 
Data Storage Event-driven FIP A Subscribe (data gathering) 
Data Querying On-Demand FIPA Query 
Document Retrieval On-Demand FIPA Request, FIPA Query 
Document Storage On-Demand FIP A Request 
Information Gathering On-Demand FIP A Query, (FIP A Request) 
Output (A or D) On-Demand FIP A Request 

Table 2.2: Tasks and Interaction Protocols 

the device agent. 

Data Acquisition 

Data acquisition (Figure 2.12) is performed by the device agents. The de

vice agent must first establish a connection to its lED or other device, and ac

quire the values of its channels either by polling or by an event-driven method. 

Input Data Interpretation 

Input data interpretation (Figure 2.13) is performed by the plant agent, in 

cooperation with the device agents. The device agent must first register the 

channels that it is monitoring in the DF. Plant agents may then search the 

DF to locate device agents monitoring those channels that are connected to 

their items of plant. Once a plant agent has found the relevant device agent or 

agents, it then establishes subscriptions with these agents in order to be notified 

INFORMATION MANAGEI\lENT, MONITORING AND CONTROL D.P. BII"( 



2.3 Agents, Tasks and Interaction Protocols 

1. User agent 
searches DF to 

locate plant agent 

2. User agent 
sends command 

to plant agent 

3. Plant agent sends 
new channel values 

to device agent 

46 

Figure 2.11: Intervention (including output data interpretation) 

Sensor data 
FIPA ACL messages 

FIPA SL representation 

Sensor data 
Device-specific protocol 

Device-specific representation 

lED 

Figure 2.12: Data Acquisition 

whenever the value of a relevant channel changes. After these subscriptions are 

established, the device agent must notify the plant agent whenever the value of 

a subscribed channel changes. This notification will be a FIPA ACL message 

with FIPA SL content, giving the name of the channel and its current yalue. 

The device agent then uses this information to derive the state of its item of 

plant. The mechanism used to do this is described in Section 3.5. 

INFORMATION l\lANAGEMENT, MONITORING AND COT\TROL D.P. Bus( 



2.3 Agents, Tasks and Interaction Protocols 

Setup 

2. Search for device 
agent providing 

required channels 

1. Register available 
channels 

Operation 

Plant State or Events 
FIPA ACL messages 

FIPA SL representation 

Sensor data 
FIPA ACL messages 

FIPA SL representation 

Figure 2.13: Input Data Interpretation 

Automatic Control (Including Output Data Interpretation) 

47 

Control (Figure 2.14) is performed by the plant agent. New channel values 

are passed to the plant agent by the device agent. The plant agent then 

performs input data interpretation on these values to generate the state of the 

item of plant being controlled. The agent then uses this state and the desired 

state to generate a set of outputs to be written to the plant, which are sent to 

the device agent. 

Data Storage 

Data storage (Figure 2.15) is performed either by the database agent or by 

a specialized data storage agent (this topic is discussed in Section 2.2.3). The 

database agent must first establish a subscription with appropriate provider 

agents in order to be notified of new data. As events arrive, it generates SQL 

update statements from these events, and enters the new information into the 

database. 

INFORMATION MANAGEI\IENT, MONITORING AI'\D CONTROL D.P. Buse 



2.3 Agents, Tasks and Interaction Protocols 

Setup 

2. Search for agent 
providing required 

information 

queries 

Values to be 
written 

Settings 

Figure 2.14: Automatic Control 

----~ 

--18 

Operation 

New information 
FIPA ACL messages 

FIPA SL representation 

SOL updates 

Database 

Figure 2.15: Data Storage 

Data Querying 

Querying (Figure 2.16) is performed by the database agent. A client agent 

(usually the user interface agent or a mobile agent) generates a query in FIPA 

ACL / FIPA SL format. The database agent then maps that query into an SQL 

INFORMATION MANAGEMENT, T\IONITORING AND CONTROL D.P. Bu."f 



2.3 Agents, Tasks and Interaction Protocols 49 

query which is sent to the database. The results of the query are converted 

into FIPA ACL / FIPA 8L and returned to the client. Integration of data from 

multiple databases may also be performed at this stage. If a querying agent 

determines (using the directory facilitator) that multiple agents have informa

tion relevant to the query, it may query both of these agents and then merge 

the results retrieved. Because all database agents convert data into the global 

ontology, this should be a relatively simple process in most circumstances. A 

similar procedure may also be used for answering complex queries, for exam

ple, to retrieve all transformers exceeding their load rating. In this case, the 

querying agent might retrieve the list of transformers and load ratings from 

the static database, and then search the data logging database to determine 

the maximum load of each one. 

Document Retrieval 

ACl Query 
Message 

SQl Query 

Database 

Results 

Figure 2.16: Querying 

The document retrieval process (Figure 2.17) consists of two operations. 

First, the client agent must determine which documents are relevant to a par

ticular query. Then it may retrieve some or all of these documents. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. BIl,"'e 



2.3 Agents, Tasks and Interaction Protocols 

Document Storage 

ACL Query 
Message 

List of documents 
(ACL message) 

Document 
statistics, 

Documents 
,-----''-----, 

Document 
Repository 

Figure 2 .17: Document Retrieval 

50 

A document may be added to a document repository either directly or via a 

document agent. To add a document directly, its file is placed in the filesystem 

of the document repository. To add a document via a document agent, it may 

be sent to the agent as the content of an ACL message, using Base 64 encoding 

to convert a binary document into a text-based representation suitable for 

transmission. 

Document 

Base64 encoded 
document in ACL 

message 

Document 
(binary file) 

(binary file) Document 
---I~ 

Repository 

Figure 2.18: Document Storage 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Bu . .;;c 



2.4 Data and Knowledge 
51 

Information Gathering 

The information gathering process performed by mobile agents is described 
in Chapter 4. 

Analogue jDigital Output 

Output to devices is performed by the device agent, which translates be

tween the ACL representation used by other agents and the device-specific 

representation. 

Output values 
FIPA ACL messages 

FIPA SL representation 

Output values 
Device-specific protocol 

Device-specific representation 

lED 

Figure 2.19: Analogue / Digital Output 

2.4 Data and Knowledge 

In order to permit exchange of knowledge between agents, it is important 

to have a standard representation of the knowledge available in a substation. 

The representation chosen in this system is based on first-order logic, and in 

particular on the form used by FIPA 8L [78]. This section first discusses the 

different types of knowledge available in the power system, and then considers 

its machine-understandable representation. 

INFORMATION MANAGEMENT, :l\IONITORING AND CONTROL D.P. Husc 



2.4 Data and Knowledge 52 

2.4.1 Available Data and Knowledge 

In a substation automation system, the data available largely consists of 

status information, "streamed" data, configuration information and other fixed 

data sources such as documentation. 3 

Status and event information consists of both state information which , 
gives the current state of some part of the substation plant, and event infor-

mation, which describes changes in the state of the plant. Often, a data point 

gives the value of some input, which corresponds to a property of an item of 

plant. For example, "the low voltage current of transformer 1 is 137.5 kV". 

Events are usually associated with a time tag. 

When real-time information is stored for processing at a later time it is 

referred to as historical data. Historical data includes, for example, logs of 

events and stored waveforms. 

Streamed data If a data point is monitored in real-time by another process, 

the waveform data will be transferred, a single item at a time, from one process 

to another. This is referred to as "streaming", and may be used in a variety of 

real-time monitoring applications. 

Configuration information Configuration information consists of informa

tion both about the configuration of the substation and about the configuration 

of the automation system itself. For example, topology information regarding 

the connections between different items of plant is included in this category. 

N on machine-understandable data sources make up a further category 

of information. Currently, non machine-understandable data sources include 

documentation and images. This data differs from the real-time and config

uration information in that it is not immediately usable by a computer sy::;

tern in a reasoning process. However, it is possible that various processes, for 

3These categories are partly based on those described by the lEe 61850 standard[2-L p-H] 

INFORMATION MANAGEMENT, l\IONITORING AND CONTROL D.P. Buse 



2.4 Data and Knowledge 53 

example text mining or image recognition, might be able to derive machine

understandable data from non machine-understandable data. 

Derived knowledge As well as the "raw data" discussed above \yhich is , 
considered to be the inputs to the automation system, the system may it

self be capable of deriving additional knowledge. For example, National Grid 

Technical Specification (NGTS) 2.7 states that a substation control system is 

required to "maintain a running total of operations for each of the primary 

plant items" [83]. Another example of derived knowledge is the output of a 

condition monitoring system which uses real-time information (e.g. tempera

ture data) to determine whether or not a transformer is in a good operating 

condition. 

2.4.2 Knowledge Representation 

The representation of each of the types of knowledge described above in 

first-order logic, and hence in the FIPA Semantic Language (SL), is now con

sidered. The notation from Russell and Norvig [84], with mathematical ex

pressions and sets denoted as in [84], and not FIPA SL, is used here. In this 

notation, object and relation names start with capital letters, and variable 

names with small letters. Where frames or identifying expressions are used the 

FIPA SL notation is used instead, as these are not included in the standard 

notation. FIPA SL is more difficult to read and produces longer expressions 

than standard logical notation. However, conversion to the FIP A SL notation 

from the notation used here is relatively simple, as there are only syntactic 

and not semantic differences. The main difference is that FIPA 8L uses an 

infix notation in which the entire expression is enclosed in parentheses. Also, 

variable names start with a question mark, and all other names may start with 

either small or capital letters. For example, "if x is a transformer, then x is an 

item of plant" could be written in first order logic as follows: 

VxTransformer(x) =* Plant(x) 

INFORMATION MANAGEMENT, MONITORING AND CO]\TROL D.P. Buse 



2.4 Data and Knowledge 

and represented in FIPA SL as: 

(forall ?x (implies (transformer ?x) (plant ?x))) 

In the above expression, the Vsymbol (for all) means that the statement applies 

to all possible values of the variable x. The =? symbol (implies) is used to state 

that if the statement on the left (Transformer(x)) is true, then the statement 

on the right (Plant(x)) is also true. FIPA SL also includes modal extensions in 

the form of the operators B (believes), U (uncertain), I(intends) and PG(is a 

goal of). Each of these operators takes two arguments: an agent and a logical 

statement. For example: 

(B agent1 (status x110 open)) 

means that the agent "agent1" believes the statement "(status x110 open)", 

which might mean "the circuit breaker X110 has status open". The use of 

modal logics in reasoning about agents is discussed in [85]. 

Representation of Status information 

If we assume that a single data point of status information gives the value 

of some property of a plant item (or other item of equipment) at a particular 

time, it is possible to represent a data point by a binary relationship, or subject

predicate-object triple. For example, suppose that we have the statement "The 

low voltage current of transformer SGT1 is 12.3 volts". In first-order logic, this 

could be represented by: 

LvCurrent(Sgt1, 12.3) 

Representation of Events 

An event must be able to represent the fact that at a given time, some 

change occurred in the status of the plant, or some action was performed. 

Due to the requirements of the various processes in the power system. the 

time represented in such an event must be explicit, rather than defined using 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Bust' 



2.4 Data and Knowledge 
55 

operators such as "PAST" or "NEXT" as may be done in temporal logic [86]. 

We adopt an event representation based on the event calculus representation 

of time described in [84], Chapter 8. A formal semantics and logic for such a 

representation is established by Shoham in [87]. An event is represented by 

the T (or T RU E) "predicate", with two arguments: the event itself, and a 

timestamp, the format of which is discussed below, giving the time at which 

that event occurred. 

For example, the event "at 12:30 pm on 03/02/2003, circuit breaker Xl was 

opened" might be represented by: 

T( Opened(Xl), 20030203T123059000) 

Events may also involve changes in the value of a quantity, for example, 

suppose the low voltage current of the transformer SGTI was 239.39 volts at 

a given time: 

T(LvCurrent(Sgtl, 239.39), 20030203T123059000) 

Russell [84] states that an argument to the T predicate, such as 

LvCurrent(Sgtl,239.39) in the example above, must not be treated as a 

sentence in predicate calculus (the T predicate, as with other predicates 

in first-order logic, may take only terms as its arguments, and the state

ment LvCurrent(Sgtl,239.39) is a sentence rather than a term). Therefore, 

LvCurrent(Sgtl,239.39) must be treated as a function, generating an event 

as its result. However, Shoham [87] disagrees with this "reification" approach 

(treating a statement as a function) because he believes that its semantics 

are unclear, and proposes that a different semantics based on modal logic be 

used (although both approaches share the same syntax and the T or T RU E 

notation). 

Several alternative syntactic representations of the event calculus may be 

found in the literature, such as the representation used by Kowalski and Sergot 

[88], which denotes each event by an identifier. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Bww 



2.4 Data and Knowledge 56 

Timestamps In the examples above, the timestamp was given using the 

FIPA SL [78] standard time representation. This time format consists of a 

four digit year, two digit month and two digit date, followed by the letter "TO.. 

followed by a two digit hour, two digit minute, two digit second and three digit 

milliseconds value. This is accurate (assuming absolute accuracy of the device 

that produced the timestamp) to within 1 millisecond, which is also the most 

commonly used accuracy for time tagging of substation events within the power 

industry [89]. However, for certain functions such as phase angle measurement 

[90, 89], more accurate time tagging is required. It might also be useful to 

represent the accuracy of a particular timestamp, for example, to state that 

the timestamp of a particular event was accurate to + / - 1ms. For this purpose, 

a timestamp object, represented as a FIPA SL functional term with parameters, 

is proposed. This has two components: the timestamp itself, consisting of year, 

month, day, hour, minute, second, millisecond components, and its accuracy. 

Smaller time components than 1 millisecond will be represented by a floating 

point millisecond value, e.g. 123.45 milliseconds for 123 milliseconds and 450 

microseconds. 

An example of a timestamp frame is shown below: 

(timestamp 

:time (time :year 2002 :month 12 :day 10 

:hours 10 :minutes 5 :seconds 2 

:milliseconds 20.34 

) 

:accuracy (time :milliseconds 10)) 

However, as can be seen from the example, this produces a very large textual 

representation which might reduce performance in transferring data. A possible 

abbreviation would be to use the standard FIPA time representation for the 

time and an integer value (representing milliseconds) for the accuracy, adding 

decimal places to the time representation as follows: 

(timestamp 

INFORMATION MANAGEMENT, T\10NITORING AND CONTROL 
D.P. Bus( 



2.4 Data and Knowledge 

:time 20020204T123456789.500 

:accuracy 0.1) 

57 

The drawback of this is that the adding of decimal places to the timestamp 

does not comply with the FIPA standard. 

Representation of Non Machine-Understandable (Binary) Data 

It is assumed that non machine-understandable data, such as documents 

and images, is stored on disk in a binary format. However, in order to trans

fer and display this information, it is necessary to represent some basic facts 

regarding it. This information is known as metadata (data about data). A 

standard set of terms, the Dublin Core vocabulary [91], are available for use in 

the representation of metadata and are widely used on the Internet, and are 

adopted for the system described here. 

Representation of Derived Knowledge 

Unlike event data, which can be put into a single, fixed format, it is not 

possible to do so in general for derived knowledge, as many different types of 

knowledge may be provided. For example, "transformer sgtl is in good con

dition" can be considered as a binary relationship giving the value (good) of 

a property (condition) of a particular object (transformer sgtl), and might be 

represented by Condition(Sgtl, Good). "The oil input temperature of trans

former Y is between 30 and 40 degrees" is similar, but the value of the property 

is an interval rather than a single value. This might be represented by the state

ment "There is some x such that the input temperature of sgtl is x and x is 

less than 40 and x is more than 30": 

3x InputTemperature(Sgtl, x) 1\ (x < 40) 1\ (x > 30) 

However, problems might exist when reasoning with this representation or 

storing it in a database, as many programming languages do not allow interval 

values for variables. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Bus( 



2.4 Data and Knowledge 58 

Finally, there are predictions made by condition monitoring systems. for 

example "if the ambient temperature does not rise then transformer Y will not 

exceed its operating requirements if the load increases by 50%" (This sce

nario is based on the system described in [92]). The representation of this 

statement is outside what may be represented in standard first-order logic. 

Roughly speaking, it might be interpreted as "Agent 1 (the agent making the 

prediction) believes that if the load on transformer Y is equal to Z and noth

ing else changes from its current situation, then transformer V's condition will 

be good" (this assumes that transformer V's condition is already good). The 

"Agent 1 believes" part of the statement might be represented using a modal 

logic of belief, as supported by FIPA 8L. For example (using B to denote the 

"believes" predicate), it is possible to state "Agent 1 believes that the load on 

transformer SGTI being l does not imply that the condition of 8GTI is bad": 

B(Agentl, -,(Load(Sgtl, l) =} Condition(Sgtl, Bad))) 

This is not sufficient to conclude that if the load on sgtl is l then the condition 

of sgtl will be good. In order to do this, the other conditions affecting sgtl's 

condition must also be stated (e.g. ambient temperature). 

A simpler representation of a prediction might be to represent it as the 

result of a "predict" action taken by some agent. For example, an agent might 

predict that the hotspot temperature of a transformer at time <time> under 

load <load> would be 92.5 degrees centigrade: 

(result 

(action 

(agent-identifier :name prediction-agent) 

(predict-hotspot-temperature 

) ) 

92.5) 

:time <time> 

:load <load> 

INFORMATION MANAGEMENT, rviONITORING AND CONTROL D.P. Buse 



2.4 Data and Knowledge 59 

2.4.3 Ontologies 

In addition to a common knowledge representation, a common ontology 

IS also required for interoperability between agents. The ontology provides 

a defined set of terms to be used for communication, and hence eliminates 

problems caused by the use of different terms for the same physical object or 

quantity, for example, one agent referring to the temperature of a transformer 

as "temperature" and another as "temp". For example, we may define that 

"low voltage current" of a transformer is to be represented by a binary relation 

named lv-current. Once such an ontology is agreed upon, it is possible to 

use the multi-agent system to integrate data from heterogeneous sources, by 

converting the heterogeneous knowledge representations into that of the global 

ontology [93]. 

The ontology used in this system must consist of at least the following sub

ontologies (Figure 2.20), implementations of which in a prototype system are 

described in Chapter 5. 

• The FIP A meta ontology, and in particular, that agents understand the 

slot-oj, template-slat-oj, subclass-oj, instance-oj relations, and where ap

propriate their inverse relations. This allows agents to use the concept 

of inheritance to derive facts about objects from their classes and facts 

about classes from their superclasses. It also allows, for example, the user 

interface agent to determine the available properties of an item of plant 

(using slot-oJ), which permits it to generate a list of properties that may 

be queried or used in a data analysis operation. 

• An ontology describing substation plant, including the different classes 

of plant (circuit breaker, transformer etc) and the properties of those 

classes (for example, the tap position of a transformer). This ontology is 

used for the exchange of data and events regarding the substation. This 

is an example of a domain ontology (as defined in [93]). 

• An ontology describing the components of the data acquisition and au

tomation system. This permits agents to describe components of the data 

INFORMATION MANAGEMENT, l\IONITORING AND COI'\TROL 
D.P. Bu.s( 



2.4 Data and Knowledge 
60 

acquisition system, and perform operations such as system configuration. 

As with the plant ontology, this is a domain ontology. 

• An ontology for information management, including concepts such as in

formation resources, queries, and the relevance of an information resource 

to a query. This is a task ontology (as defined in [93]). 

Figure 2.20: Hierarchy of Ontologies 

Different agents use different subsets of the global ontology. For example: 

• The plant class, which is the superclass of all substation automation 

equipment in the substation plant ontology, is shared by the user interface 

agent and the static database. The user agent queries the static database 

for subclasses of plant (to generate a list of types of substation plant), and 

then generates a list of instances of a chosen subclass using the instance

of relation. However, when programming the user interface agent, it 

is unnecessary to include any more of the substation plant ontology, as 

this may be obtained from the database agents. This lack of implicit 

knowledge of the substation domain embedded in the user interface agent 

could allow it to be used in a variety of different (industrial automation) 

domains, providing that a graphical user interface for the alternative 

domain was available. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.? BU8(' 



2.5 Agent Platform Implementation 61 

2.5 Agent Platform Implementation 

An agent platform is a software system providing a set of standard sen'ices 

(e.g. AMS, DF and ACC) to perform agent lifecycle management, communi

cations and service discovery [76]. All agents are associated with a particular 

agent platform. Many agent platforms also provide a set of libraries in some 

programming language or languages (usually Java) which simplify the task of 

the agent programmer. The FIP A specifications define the services that must 

be provided by an agent platform, and how these services should be accessed 

from outside the platform. However, the internal architecture of the platform is 

dependent on the implementation. There are several agent platforms available 

which conform to the FIPA specifications. 

For the initial prototype stage of the project, a mobile agent platform was 

implemented based on the FIPA [94] specifications. However, for the main pro

totype described in Chapter 5, the JADE [95] platform, which is a Java-based 

agent platform compliant to the FIPA specifications, was chosen, because at 

the time this choice was made it was the most commonly used FIPA platform, 

and was the only freely available FIPA platform with mobile agent support. 

However, the architecture itself is not dependent on any particular platform. 

This section examines some of the implementation choices that would have to 

be made in the development of a system based on this architecture. 

2.5.1 Standard FIPA Platform 

There are a number of standard FIPA platforms available [96], and one of 

these could be used for the development of the system, as was done for the 

prototype described in Chapter 5. 

The main advantage of using such a platform is the reduction in the amount 

of implementation effort required to implement the architecture through the 

use of an off-the-shelf agent platform. Also, the platform would be able to 

inter-operate with other FIPA systems if that was required. 

The major disadvantages of using a FIPA platform are the fact that no 

INFORMATION MANAGEMENT, J\10NITORING AND CONTROL D.P. Bust' 



2.5 Agent Platform Implementation 
62 

FIPA platform provides inter-platform mobile agent support (JADE supports 

intra-platform agent mobility) and this would have to b dd d'f . d ' e a e, 1 reqUIre , 
either by modifying the platform or by implementing a simple mobile agent 

system which would interoperate with this platform through the FIPA lIOP 

interface and be used solely for hosting mobile agents. Also, most current 

FIPA platforms are based on Java and CORBA. This means that their use for 

real-time applications, or for hosting agents on substation devices is restricted , , 
although there are PersonalJava or Java 2 Micro Edition compatible platforms 

available. 

Platform 

FIPA Message 
Transport 

ACC 

Internal Platform 
Message 
Transport 

Figure 2.21: Abstract FIPA Agent Platform (Simplified) 

Figure 2.21 shows the abstract architecture of a FIPA agent platform. The 

standard services (AMS, ACC and DF) provide lifecycle management, commu

nications and messaging facilities and service lookup respectively. All agents, 

including these, communicate via the Internal Platform Message Transport 

(IPMT). For communications with agents on other platforms, the ACC com

municates with a remote platform ACC via the FIPA Message Transport ser

vice. However, when considering implementation issues it is simpler to discuss 

a particular instantiation of this architecture. Figure 2.22 shows the architec

ture of the JADE agent platform, which is FIPA-compliant and is developed 

by Telecom Italia Laboratories and the University of Parma [95]. JADE's (\1'-

INFORMATION MANAGE}'IENT, lvIoNITORING AND CONTROL D.P. Buse 



2.5 Agent Platform Implementation 
63 

chitecture is based on a modular structure in whl'ch 1 tf . 1" , a p a orm IS sp It mto a 
number of containers, which may run on different mach' d . liles, an commumcate 
via Java RMI. Communication between agents on the same t' J con amer uses avo 
method calls. 

Main Container 
ACC 

(3 

Secondary Container 

88 JADE IPMT 
(Java RMI) 

Secondary Container 

88 
Figure 2.22: Java Agent Development Environment Architecture 

2.5.2 Jini Based Platform 

Jini is a system for service management and discovery developed by Sun 

Microsystems and based on Java and Java RMI. It would be possible to imple

ment an agent platform based on Jini. In fact, there are several such platforms 

in existence, for example, the Ronin platform [97], and the platform used lw 

the PABADIS project [63]. Such a Jini-based platform might be implemented 

as follows: 

• A standard Jini service is defined for an agent, which has a single method, 

allowing agents to send messages to that agent. This is based on the lIOP 

interface specified by FIPA 

INFORMATION MANAGEMENT, I\IONITORING AND CONTROL D.P. Bus( 



2.5 Agent Platform Implementation 
64 

• A gateway provides FIP A services and allows the platfor t . t m 0 III eroperate 
with FIPA systems. 

A design for this platform is shown in Figure 2.23. 

FIPA Gateway 

888 

Jini Lookup 
Service 

I 
I Jini registration and 
: lookup using RMI 
I 
I 
I 

: Java RMI or 
socket-based 
peer to peer 

communications 

Figure 2.23: Jini-based Agent Platform 

The main interesting feature of the implementation described here would be 

its highly decentralized nature, in which there are very few essential platform 

services. The only requirement would be the Jini lookup server. Other services 

such as brokers and the FIP A gateway would themselves be agents, rather than 

components of the platform. The Jini architecture provides high reliability 

compared to other agent platforms, as it includes features such as leasing, 

which prevents references from remaining in the lookup service after a service 

has terminated. It is claimed that leasing allows Jini to "self-heal" a distributed 

system [98]. 

The problem with creating a Jini based implementation is that a substantial 

amount of implementation work would be required to make such a platform 

FIPA compatible. It would be necessary to provide "wrappers" for the Jini 

lookup service to allow it to be used as a FIPA Directory Facilitator, and a 

INFORMATION MANAGEl\IENT, MONITORING AI\'D CONTROL D.P. Busc 



2.5 Agent Platform Implementation 65 

service would have to be provided, either by each agent individually or by a 

gateway agent, to permit agents to send and receive FIPA ACL messages. 

2.5.3 UDP Based Platform 

A very simple agent platform, with limited infrastructure, would be one 

based on the use of the User Datagram Protocol (UDP) to send messages 

between agents. Each agent would listen for messages on a UDP port, and 

agents would also be able to listen for broadcast messages on a broadcast port. 

This allows for both peer-to-peer and broadcast messaging. In the context of 

this infrastructure, a "platform" would be a single subnet of the network, in 

which all agents were within the range of each others' broadcast messages. 

The structure of the UDP-based platform is identical to that of the Jini

based platform, apart from that the protocol used both for inter-agent and 

agent to lookup server communications is UDP rather than Java RMI. The 

central lookup server would be used to enable agents outside the platform, who 

were not capable of sending broadcast messages into the network, to locate 

server agents inside the platform. A FIP A gateway would also need to be 

provided, which would also act as a message router and lookup service for 

inter-platform communications. 

Problems might be caused when implementing this platform by the lack 

of ability of certain hubs and switches to transmit broadcast messages. This 

would have to be examined further were this platform to be implemented. 

The main advantage of the UDP-based platform is that the UDP proto

col provides for extremely fast message transmission. Therefore this platform 

might be better suited for the implementation of agents which were required 

to work under timing constraints, such as device agents. Also, because the 

agents do not execute on a platform server, they may be written using any 

programming language. However, this can also be achieved to a lesser extent 

when using a FIPA platform, as agents can interoperate with and regi~ter on 

the platform using the nop interface. 

The drawbacks with this platform, a~ with the Jini platform, mostly concern 

INFORMATION MANAGEMENT, :t\IONITORING AND CONTROL D.P. Bw.:e 



2.6 Summary 66 

the amount of implementation work required. Also, the platform may not be as 

robust as the Jini platform because UDP does not provide reliability features. 

although these could be implemented at platform level. 

2.5.4 Combined FIPA and UDP Based Platform 

A possible solution to the real-time and limited device difficulties of a FIP.:-\. 

platform and the scalability problems and implementation overhead of a UDP

based platform would be to combine the two. This combined platform might 

have a similar conceptual architecture to that of the Lightweight and Exten

sible Agent Platform (LEAP) system [99], which extends the JADE FIPA 

platform by providing a "container" based on the Java 2 Micro Edition, which 

hosts JADE agents and communicates with a host platform using a propri

etary socket-based protocol. However, the platform proposed here is slightly 

different, in that it consists of a FIPA-based platform along with a gateway 

agent, which allows any number of independent agents to join the system. This 

agents are implemented as described for the stand-alone UDP-based platform. 

The function of the gateway is to translate messages from the format used 

by the UDP-based agents to FIPA message objects as defined by the FIPA 

platform, and to pass them to the FIPA platform's Agent Communications 

Channel (ACC) agent for handling. This means that all platform services for 

the UDP-based platform can be provided by the FIPA platform, but the UDP

based agents retain the ability to communicate with each other in a peer-to-peer 

manner, without using the platform, when required. 

2.6 Summary 

This chapter has described a generic multi-agent software architecture for 

power system automation systems. The agent architecture is derived from the 

structure of the power system and data acquisition system. The device agents 

provide a view of the system based on the monitoring and control system, 

which consists of data acquisition devices. Meamvhile, the plant agents prm'ide 

INFORMATION l\IANAGEMENT, l\IONITORING AND COl'\TROL D.P. Bus( 



2.6 Summary 

FIPA 
Platform 

UDP 
Platform 

FIPA Platform 
(e.g. JADE) 

UDP 

GWAgent= 
Gateway Agent 

Figure 2.24: Combined Platform 

67 

a representation based on the substation plant, which is convenient for the 

implementation of distributed control, and also for acquiring information about 

a specific item of plant. The use of one agent for each device or plant item 

provides a highly distributed architecture, and a natural representation of the 

physical system being controlled and monitored. 

The representation of power system knowledge within the multi-agent sys

tem and the methods of communication between agents are also discussed. The 

system uses the logic-based language FIPA SL to encode events, historical data 

and commands. A basic ontology of automation systems and power systems 

is provided for this purpose. Agents communicate using various FIPA stan

dard protocols. The FIPA subscribe protocol is used for regular monitoring, 

the FIPA query protocol for database and document querying, and the FIPA 

request protocol for the transmission of commands. The use of these three 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



2.6 Summary 68 

protocols permits a wide variety of interaction styles and allows many different 

tasks to be implemented. 

Finally, this chapter has investigated the implementation of the agent plat

form. This is an important aspect of the system as it provides the basis for 

all agent execution and communications. Various possible platforms were de

scribed, including standard FIPA platforms and platforms based on Jini and 

UDP. For the purposes of the prototype, the FIPA platform was chosen, as 

it was the most convenient and provided a simple method of implementation. 

However, for a full system, a hybrid UDP and FIPA platform might be more 

suitable, as the use of UDP provides for higher-speed communications, which 

are important in certain industrial applications. 

The overall architecture having been considered in this chapter, the next 

chapter discusses the design and implementation of the individual static agents. 

The tasks that each agent must perform are used to derive the required capabil

ities, sensors and knowledge of the agent. Where appropriate, issues regarding 

agent implementation are also described. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Bust 



Chapter 3 

Static Components of 

Architecture 

This chapter describes the individual software agents that make up the 

architecture described in Chapter 2. All agents are based around the same 

basic architecture, shown in Figures 3.1 and 3.2. This is derived from standard 

descriptions of agents such as those in [36] [8] [84], and also draws on the Belief

Desire-Intention architecture, described in Section 1.2. Each agent consists of 

sensors, which allow the agent to perceive its environment, a knowledge base 

containing the agent's beliefs and goals, and effectors, which allow the agent to 

take actions. A reasoning engine takes inputs from the sensors and knowledge 

base, and determines the actions to carry out. This may be done in different 

ways, for example, in a BDI agent plans stored as part of the agent's knowledge 

are used. It is intended that the architecture used should allow different forms 

of reasoning to be used and does not commit the agent to using any specific 

methodology. However, individual agents may be, for example, BDI agents, 

in which case the reasoning engine of the agent would be a BDI interpreter. 

By creating agents with different reasoning processes, knowledge, sensors and 

effectors, different tasks may be carried out. 

The agent specifications provided in this chapter state the knowledge, capa

bilities sensors effectors and interaction protocols of each agent. The sensors , , 

69 



Static Components of Architecture 

Events 

Sensors 

Knowledge 
Base 

Knowledge 

Agent Kernel 
and Reasoning 

En ine 
Actions to 

take 

Effectors 

Figure 3.1: Agent Architecture 

Gather information 
from sensors 

Use sensor information 
and knowledge to 
generate actions 

Take actions 

Figure 3.2: Agent Control Loop 

70 

provide input to the agent, the capabilities (effectors) allow the agent to per

form actions and the interaction protocols provide the means for the agent 

to engage in standard conversations and therefore to collaborate with other 

agents. 

In addition to this, the agent specifications also detail which components of 

the system ontologies (described in Section 2.4.3) are used in the conversations 

of each agent. It is assumed that all agents use the FIPA Agent Management 

ontology (for registering with and searching the Directory Facilitator to enable 

agents providing a particular service to be located). 

As well as the specifications of the individual agents, this chapter also 

discusses some of the implementation and knowledge representation issues in

volved with certain types of agent. These include the implementation of dis-

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



3.1 Database Agents 71 

tributed database querying in the database agents, the use of BDI mental 

components to represent an agent, and the representation of mapping rules for 

translating sensor data into a plant state representation in the plant agents. 

3.1 Database Agents 

3.1.1 Description 

The database agents provide Foundation for Intelligent Physical Agents 

Agent Communication Language (FIPA ACL )-based access to a database. 

Database agents of this type have previously been used in a wide range of in

formation management applications and architectures, for example [100]. The 

structure of the agent is shown in Figure 3.3. In order to fulfil its task, the 

database agent must be able to insert and retrieve information to and from the 

database and to convert this information to FIPA ACL and into the system's 

glo bal data model (ontology). This conversion is performed by the agent's rea

soning engine using mapping rules stored in the knowledge base of the agent, 

which specify, for example, that a particular property of an item of plant corre

sponds to a given column in a database table. The format of these depends on 

the particular implementation of the agent used. The agent's communications 

sensor and effectors allow it to send and receive information to other agents. 

Unlike most of the other agents in the system, the database agent does not 

implement the fipa-subscribe protocol, which means that it is unable to provide 

subscription-based access to a database, in which subscribing agents would be 

notified of new data as it arrived. While it would be possible for it to do 

so, the only method of implementation available with most available database 

management systems would be to "poll" the database at regular intervals to 

determine if new knowledge had been added. There are two exceptions to this 

statement: 

1. If the database agent is the only entity capable of inserting information 

into the database, it will be able to provide subscription functionality as 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.? Bust' 



3.1 Database Agents 72 

the new data will be passed through the database agent. 

2. If an "active database" [101] is used, it might be possible to add a rule to 

the database requiring it to generate an event on the arrival of particular 

data and pass that event to the database agent by some means (possibly 

specific to the particular database). 

3.1.2 

Replies 

Agent Reasoning Engine 

Logical statements 

Mappings 
( data base-specific) 

Database data 

Data 
(in database) 

Interaction and 
behaviour rules 

Domain specific 
knowledge 

Figure 3.3: Structure of Database Agent 

Agent Specification 

This specification defines the knowledge, capabilities, sensors, interaction 

protocols and ontological knowledge required by the database agent. Using 

this information, it is possible to modify a generic agent to act as a database 

agent . 

• Knowledge 

Transformation rules from database schema to global schema. 

Database configuration (Java Database Connectivity driver, user

name, password). 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Euse 



3.1 Database Agents 
73 

• Capabilities 

- Query database 

- Append data to database1 

• Sensors 

- No explicit sensors (apart from communications). This agent exists 

only in a software environment, and has no connection to the outside 

world except through other agents. 

• Interaction Protocols 

FIPA query (responder) - used by other agents to query the database 

FIPA request (responder) - if data is to be added to database on 

the initiative of another agent rather than via a subscription. 

FIPA subscribe (initiator) - this allows the database agent to estab

lish a subscription with a data providing agent (e.g. a plant agent) 

so that new events are transferred into the database as they occur. 

• Ontology 

- The agent converses using components of the global ontology rele

vant to the knowledge contained in its own database. This will differ 

for different database agents and is implicit in the mapping rules of 

the agent. 

3.1.3 Agent Implementation 

It is possible to implement the reasoning of a database agent in a number 

of different ways. This is particularly relevant to the need to integrate infor

mation from multiple databases. Different implementations allow this to be 

1 In some applications, for example the substation information management application 
described later in this thesis, the database agent is not able to alter the database, but can 
only query it. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Bu,~( 



3.1 Database Agents 74 

performed in different ways. Also, certain implementations may provide ad

ditional functionality which might be useful in a particular application. Here 

three alternative implementations are considered, a simple agent which only 

acts in direct response to queries from other agents, a simple collaborative 

agent which is capable of querying other agents, and a BDI agent. 

Simple Implementation 

In a simple implementation, the agent implements the FIPA query protocol, 

but does not have any autonomy: it will not provide information unless it is 

asked for it. The agent must wait until it receives either a query-if or query-ref 

message. It then uses the content of that message to generate an SQL query 

to the database. 

Simple Collaborative Implementation 

This implementation, based on previous work such as [77] and on the tech

niques used by distributed Prolog implementations, extends the capabilities of 

the database agent by allowing it to communicate with other database agents 

and integrate information. The agent uses the DF to determine queries that 

may be posed to other agents, represented as referential expressions (as defined 

in the FIPA SL specification [78]). For example, an agent might advertise that 

it has knowledge about the status of circuit breaker "h13" using the referential 

expression "(iota ?a (status h13 ?a))". When performing a query, a database 

agent will retrieve information from its own database where possible, and if 

not possible, will forward the query, or the part of the query that it is unable 

to answer, to another agent that is capable of answering it. 

This might employ a distributed backtracking procedure, as has been im

plemented in distributed Prolog systems such as those discussed by [102]. Al

ternatively, it might be better to implement this collaborative capability a.s 

a separate broker agent, a.s is done in the Infomaster and RETSINA systems 

[100, 59]. This would reduce the load on the database agent and reduce the 

need for parallel query processing. 

INFORMATION MANAGEtdENT, MONITORING AND CONTROL D.P. Bu~c 



3.1 Database Agents 75 

BDI Implementation 

In a BDI implementation, we give the agent explicit goals regarding the 

information it is to provide to other agents, as well as allowing it to reason 

about other agents' information needs. This can either be used to extend the 

behaviour of the agent, for example to provide the agent with the ability to 

remember past queries as proposed by [103], or just to provide an alternati\'e 

conceptualization. In the BDI implementation, whenever a query with con

tent p arrives from another agent a a goal is added to achieve "a knows p". 

Thereafter, unless the database agent comes to believe that a already knows 

p (perhaps because the database agent has already informed a of p), or that 

it is impossible that a will come to know p, the database agent will attempt 

to make a know p. This allows for two responses from the database agent: 

either to notify a immediately of the answer (if it is available), or at a subse

quent time, as the information becomes available, to notify a. The agent may 

also decide to perform some action that would lead to it knowing p, perhaps 

querying another agent. 

Possible alternative methods to achieve this "persistent query" behaviour 

are the use of the subscribe interaction protocol (although this results in the 

agent being notified whenever a value changes rather than just the first time 

it becomes available) or the request-when communicative act. However, these 

methods require the querying agent to explicitly specify that it wishes to be 

informed of something at a later time. 

Choice of Implementation In the prototype system, it was decided to use 

the simple collaborative implementation. This permitted agents to query each 

other for information that was not present in their particular database. For ex

ample, the static database agent was able to retrieve the properties of its items 

of plant using the ontology database agent. The BDI implementation was not 

used because of the amount of time required to implement it and because the 

functionality provided was not required. However, it would be considered as a 

possible enhancement for the system in the future. The simple implementation 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Bus( 



3.2 Document Agents 
76 

could also be used, but in this case a broker agent would be required to perform 

the information integration, or alternatively this functionality could be added 

to the user agent. However, this would increase the complexity of the system 

either by adding another agent or by making the user agent more complex. 

3.2 Document Agents 

3.2.1 Description 

The document agent is responsible for the management of documents stored 

in a particular location, such as a directory of a filesystem. The agent has two 

main responsibilities: to ensure that it stores up-to-date statistics regarding 

its document collection, and to carry out queries on behalf of other agents. 

The structure of the document agent is shown in Figure 3.4. This is similar 

to that of the database agent. However, the document agent requires a sensor 

to notify it when new documents are added to the repository, and the ability 

to count the words in a document and generate metadata for use by an infor

mation retrieval algorithm. This algorithm can then be used to determine the 

relevance of a document to a particular query. In the prototype system, the 

information retrieval algorithm used is the standard Term Frequency / Inverse 

Document Frequency ranking algorithm[104]. The reasoning engine used by 

the agent is relatively simple. When queried it passes the query to the docu

ment ranking algorithm, which generates a set of matching documents. These 

are then returned to the querying agent. Agents can also use the document 

agent to retrieve the full text of a document. 

A possible extension of the document agent would be to enable it to forward 

new documents as they arrive to interested parties, based on past queries. This 

would be relatively simple, as the agent already has a sensor notifying it when 

new documents arrive. The required addition would be a list of past queries 

from users. The agent could then run a user's past queries against a new 

document to determine whether or not it is relevant to an)' of them, and if so, 

forward the document to the user. This is similar to the basic methodolog\' 

INFORMATION MANAGEr--dENT, MONITORING .\i'\D CO;\TROL D.P. Elise 



3.2 Document Agents 77 

sys ems as de cnbed lil used by Selective Dissemination of Information (SDI) t .. 

[105]. 

) Ig e conceptua lzed As with the dat abase agent the document agent m' ht b l' 

as a BDI system. The definition and implementat ion would be similar to that 

for the database agent. 

3.2.2 

Replies 

Agent Reasoning Engine 

Word 
counting 

Document 
stat istics 

Da tabase da ta 

Documents in 
fil esystem 

Interaction and 
behaviour rules 

Domain specific 
knowledge 

Figure 3.4: Structure of Document Agent 

Agent Specification 

The knowledge) capabilities and sensors of t he document agent allow it to 

generate document statist ics and retrieve documents relevant to a query. To 

allow other agents to query for relevant documents) the FIPA Query protocol 

is used . T he FIPA Request protocol allows other agents to request th text of 

a document . 

• Knowledge 

Document collection stat istics: T hese stati t ic mu t pr id uffi

cient information for the agent to perform qu ri again t i 10-

INFORMATION M ANAGE lENT Mo ITO RI G 
D 0 TROL D.P. Bu 



3.2 Document Agents 78 

ument collection. For example, the TF /IDF model [10--1] reqUIres 

term frequency and document frequency statistics. 

• Capabilities 

Convert document to plain text: In order for document statistics to 

be generated, the plain text (ASCII/Unicode) of a document must 

be extracted from the provided representation. This ability (or set 

of abilities) allows the agent to do this. 

Generate document statistics: This ability must be able to generate 

the required document statistics for the particular retrieval method

ology used from the plain text of a document. 

Retrieve list of documents relevant to a query 

Retrieve document full text on request 

• Sensors 

Detect addition and removal of documents in a specified location. 

This sensor regularly scans the document repository, and generates 

an event whenever a new document is added or removed. This 

event may then be processed by the agent, which should react by 

generating statistics for the document and updating its document 

collection statistics. 

• Interaction Protocols 

FIPA Query 

FIP A Request 

• Ontology 

The agent converses with other agents using the information man

agement ontology. This ontology contains terms to describe docu

ments and other information sources and the relevancy of an infor-

mation source to a query. 

INFORMATION MANAGEMENT, l\IONITORING AND CONTROL 
D.P. Busf 



3.3 Ontology Agents 79 

3.2.3 Document Agent Issues 

The main problem with the document agent is that methodologies for in

tegrating the results of searches on multiple document collections, particularly 

when statistical methods such as TF-IDF are used by the individual collections, 

are still being researched. For example, [106] discusses different methodologies 

for distributed information retrieval. The authors state that since document , 
ranking heuristics such as TF-IDF make use of collection-dependent statistics, 

the relevance of a document to a query produced by one collection would not 

be the same as that produced for the same document by a different collec

tion. Therefore, the authors conclude that "central coordination is necessary 

for aggregation of the results" , particularly where the collection sizes are small. 

In the architecture described, this issue could be handled by having a cen

tral "document broker" agent, which would hold aggregate statistics from the 

individual collections as in [106]. However, this might compromise the au

tonomy of the individual document agents. Further research into this area is 

required to determine the optimal solution. 

3.3 Ontology Agents 

The ontology agent used in this architecture implements the FIP A Ontology 

Service described in [79]. In addition, it registers a number of predicates with 

the DF as a "query service" as described in Section 2.2. Because the FIPA 

Ontology Service specification specifies the behaviour of this agent, and no 

autonomous behaviour is required, a simple database agent architecture may be 

used for this agent. Therefore, the implementation and structure of this agent 

is the same as that of the database agent described in Section 3.1. However, 

a set of rules specifying the FIP A Meta Ontology are required to permit it 

to accurately answer queries. For example, rather than specify separate rules 

regarding how to extract superclass-oJ and subclass-oj from the database, it is 

possible to define subclass-oj in terms of superclass-oJ: 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



3.4 Device Agents and Node Agents 
80 

SubclassOf(a, b) =} SuperclassOf(b, a) 

This requires that the agent has a reasoning engine capable of processing 

either logical statements or IF/THEN rules. 

3.4 Device Agents and Node Agents 

3.4.1 Description 

A device agent is responsible for the management of a specific data acqui

sition device. The tasks of the device agent include both input/output and 

device configuration. However, data interpretation is the responsibility of the 

plant agents. 

A node agent is responsible for managing a data acquisition "node". This 

corresponds to a single computer or lED, having a CPU and containing or con

trolling a number of data acquisition devices. Each node has a set of interfaces 

which enable it to communicate with other nodes and with the data acquisition 

system. 

A device agent must maintain up-to-data knowledge of the current status of 

its device and the values of each input/output channel, which is achieved using 

the data acquisition sensor. It must also be able to provide this knowledge to 

other agents, in particular the plant agents, both via queries and subscriptions. 

Other agents must also be able to write to the output channels of the device 

using the FIPA-request protocol. 

3.4.2 Agent Specification 

The knowledge of a device agent relates to the device that it manages, and 

its capabilities allow it to interact with that device and with other agents. The 

node agent is provided with information about its node and has the capability 

to perform configuration tasks. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



3.4 Device Agents and Node Agents 
81 

Device Agent 

• Knowledge 

- Type of device (to select data acquisition sensor implementation _ 

however, this might be implicit in the configuration of the agent 

rather than explicit knowledge) 

- Current status of device 

- Current value of each channel of the device 

- Device configuration 

• Capabilities 

- Set the value of any output channel of the device. 

- Change device configuration (e.g. set sampling rate) 

- Start data acquisition 

- Stop data acquisition 

• Sensors 

- Data acquisition sensor to permit data to be acquired from the de

vice. This sensor should use an appropriate communications facility 

to maintain knowledge of the current state of each (input or out

put) channel of the device. Whenever a channel's value changes, an 

appropriate event should be generated. While the communications 

protocol used by the sensor depends on the device, the format of 

the event generated should be device-independent. Therefore, this 

sensor performs a mapping from the device's protocol to a stan

dard event format. In addition, all events must be timestamped. 

If a timestamp is not provided by the data acquisition system, it 

should be added by the device agent, adding the appropriate level 

of accuracy to allow for data acquisition delays. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



3.4 Device Agents and Node Agents 82 

• Interaction Protocols 

- FIP A query - used by other agents to retrieve data from the data 

acquisition system 

- FIPA subscribe - used by other agents to establish a subscription to 

be notified whenever the value of a channel changes. 

- FIPA request - used to write new values to channels of the device. 

• Ontology 

- The agent describes its device using terms taken from the automa

tion system ontology. This contains terms describing automation 

devices and channels. It therefore has no knowledge of the appli

cation domain (e.g. power systems) and does not use this domain 

ontology. 

Node Agent 

• Knowledge 

- Communications interfaces belonging to the node, and their config

uration. 

- A list of devices belonging to that node. 

• Capabilities 

- Change node configuration (exact changes will depend on the indi

vidual node) 

• Sensors 

- The node agent is capable of reading the configuration of its node. 

• Interaction Protocols 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



3.5 Plant Agents 83 

- FIPA query - used by other agents to retrieve the configuration of 

the node 

- FIP A request - used to request configuration changes 

• Ontology 

- As for the device agent, the automation systems ontology is used. 

3.5 Plant Agents 

3.5.1 Description 

A plant agent is responsible for the monitoring and control of a single item 

of plant. In a substation, the main items of plant include circuit breakers, dis

connectors, transformers, busbars, capacitors and reactors. For each of these 

categories, a distinct agent must be created, with appropriate knowledge and 

capabilities to enable it to represent that plant effectively. The following sec

tion discusses the possible design of these agents, which is used in the current 

prototype. However, because an automatic control application has not yet been 

implemented it has not been possible to validate the automatic control func

tion of these agents. Therefore, refinements to the design may prove necessary 

in the light of experience from such an implementation. Another further en

hancement which is not included in the design is collaboration between control 

agents of different items of plant. 

A plant agent must maintain up-to-date knowledge of the state of its item 

of plant. The most efficient way to do this for dynamic properties (e.g. voltage, 

current) is to establish subscriptions with the relevant device agents. In this 

way the state information will only be transmitted when a value changes. Pro

viding that the value of a property changes less often than the polling interval, 

subscription-based monitoring of that property is more efficient than regular 

polling of the device agent using query messages. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



3.5 Plant Agents 84 

3.5.2 Agent Specifications 

Here we provide agent specifications for a generic plant agent. For specific 

plant agents, e.g. transformer agents and circuit breaker agents, the abilities 

and knowledge would be customized to the specific item of plant. For example, 

the abilities of a circuit breaker agent would allow it to open and close the 

circuit breaker. 

• Knowledge 

Mapping from plant properties to channels monitoring these prop

erties (obtained from mapping database on agent startup). 

Static information regarding plant (obtained from static database 

on agent startup). 

_ Dynamic properties of plant, e.g. voltage, current, etc (obtained 

from monitoring agents on regular or event-driven basis). 

_ Possibly knowledge regarding agents controlling other items of plant 

(this is an item for further work as it relates to automatic control 

of the plant). 

• Capabilities 

Specific to the device: 

* Thansformer agent: set tap position and activate / deactivate 

oil cooler. 

* Switchgear agent: open or close item of switchgear. 

• Sensors 

_ The agent has no direct connection to the plant, but obtains infor

mation by communicating with other agents. Therefore, there are 

no explicit sensors. 

• Interaction Protocols 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



3.5 Plant Agents 
85 

- FIPA query (responder) - used to allow other agents to query the 

status of the plant. 

FIPA query (initiator) - used to obtain information from device 

agents. 

FIPA request (responder) - used to allow other agents control the 

plant. 

- FIPA request (initiator) - used to forward control requests to device 

agents. 

- FIPA subscribe (responder) - used by other agents to request up

dates whenever the status of the circuit breaker changes. 

- FIPA subscribe (initiator) - used to obtain regular updates from 

device agents . 

• Ontology 

For information management purposes, the plant agent uses the 

FIPA meta ontology to determine the class to which its item of plant 

belongs, and hence its properties. It can then use this information 

to set up subscriptions with appropriate device agents, using the 

value relationship and channel class from the automation system 

ontology. 

For control purposes, a set of plant control rules must be written 

using the plant ontology. As far as information management is con

cerned the agent is largely capable of self-configuration as the map

ping rules may be read from the mapping database. However, the 

agent must currently be explicitly configured to control a specific de

vice as there is no database for control rules. Further work should 

investigate the possibility of sharing control rules between similar 

plant agents (e.g. transformer agents), in the context of a specific 

application. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



3.5 Plant Agents 
86 

3.5.3 Data Acquisition System / Plant Mappings 

As described in Section 2.2.2, each property of an item of plant may be 

measured or controlled by one or more channels of the data acquisition system. 

However, it is not always the case that there is a one-to-one correspondence be

tween plant properties and data acquisition system channels. Several different 

types of mapping are possible: 

Numerical mappings (input or output) are those in which the value 

of the plant property is determined by a mathematical expression in which 

the only other variable is the value of a single channel of the data acquisition 

system. For example, representing the value plant property by l and the value 

of a corresponding channel by c, a relevant numerical mapping might be: 

l = 128.9c + 2.5 

These mappings may be found in traditional SCADA systems (for example, 

National Instruments' Supervisory Control Toolkit for Lab VIEW permits the 

specification of linear or square root based scaling between raw analogue input 

data and tag values). 

Enumeration mappings (input or output) are those in which a set of val

ues {Cl' c2 ... cn}of some channel map to a corresponding set of values {ll' l2 ... lm} 

of a plant property. The mapping may be either 1: 1 or many: 1. For example, 

the input values {0.0,0.4} of an input channel on a data acquisition system 

may map to the status values {open, closed}of a particular circuit breaker. In 

a many-to-one mapping, for example, all values between 0 and 0.2 might map 

to "open", and all values between 0.2 and 0.4 to "closed". 

Complex actions (output) represent sequences of actions that must be 

undertaken in order to change the value of a property. For example, to alter the 

tap position of a transformer in the substation simulator described in Chapter 

5, it is necessary to write a 1 to the "tap up" or "tap down" channel, and then 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



3.5 Plant Agents 87 

wait for a response on another channel before writing a 0 to "tap up:' or "tap 

down". To alter the tap position by more than 1, it is necessary to repeat 

this procedure the appropriate number of times. Complex actions may be 

represented by a state machine or by a procedure in a computer programming 

language. 

Combinations of the above It may also be possible to perform mappings 

which are a combination of the above types, for example, converting a value 

using a mathematical formula and then mapping it to an element of an enu

meration. 

Representation of Mappings in First-Order Logic 

It is necessary for the agent knowledge base to contain a representation of 

the mappings described above. These could be implicitly specified in the pro

gramming of a device agent or plant agent. However, it is intended that agents 

should be able to exchange knowledge about these mappings, for example, to 

allow a plant agent to retrieve the mappings corresponding to its item of plant 

from a device agent or database agent. Therefore, a representation of each 

type of mapping in first-order logic is required. Here, simple atomic names are 

used for channels and items of plant; the actual representation of these objects 

may be more complex. 

Simple mappings may be represented as a simple formula, for example, the 

following states that if the value of a channel "Lvc" is v, then the low voltage 

current of a transformer "Sgt1" is equal to v multiplied by 128.9, added to 2.5. 

\Iv V alue(Lvc, v) ::::} LvCurrent(S gt1, (v * 128.9) + 2.5) 

assuming that the + and * functions are defined for the particular agent, 

and that the value predicate gives the value of a particular channel. However, 

it is not possible for one agent to query another and retrieve these formulae, 

because a variable is only capable of representing a term, not a well-formed 

formula [78]. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Busc 



3.5 Plant Agents 
88 

Enumeration mappings may be represented as a set of rules, one for each 

value in the enumeration. For example, the following formulae state that if the 

value of a channel "Rl1" is 0.4, then the circuit breaker "X110" is closed. If 

the value of the "Rl1" channel is 0, then the circuit breaker "X110" is open. 

Value(Rll,0.4) =? Status(X110, Closed) 

Value(Rll,O) =? Status(X110, Open) 

Many to one mappings may be represented by more complex mathematical 

expressions, for example, the following expressions state that if the value of 

"Rl1" is more than or equal to 0.2, then "X110" is closed, otherwise, X110 is 

open. 

\/x Value(Rll, x) /\ x >0.2 =} Status(X110, Closed) 

\/x Value(Rl1, x) /\ x < 0.2 =} Status(X110, Open) 

Complex actions may be represented as a sequence of actions (ActionEx

pression in the FIP A SL specification). For example, consider changing the 

tap position of a transformer on the substation simulator as described above. 

This is a four-step process: 

1. Write 1 to the "tap up" channel of the correct data acquisition device. 

2. When the tap change starts, the "tap change in progress" channel's value 

will change to 1. 

3. When the tap change is completed, the "tap change in progress" channel's 

value will revert to O. 

4. The agent should then write a 0 to the "tap up" channel. 

This process can be represented in logic by the following sequence of actions~ 

assuming that the "write" action writes a value to a channel, and the "waif' 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



3.5 Plant Agents 
89 

action waits for a particular channel to have a particular value The "." . ,oper-
ator represents the fact that one action is followed by another, as in FIPA 8L 

and the logics described in [85, 107]. 

Action(Agent1, Write(tu1, 1)); 

Action(Agent1, Wait(tc1, 1)); 

Action(Agent1, Wait(tc1, 0)); 

Action(Agent1, Write(tu1, 0)) 

A BDI agent might wish to use this sequence of actions as a plan body. It 

would then be necessary to express the preconditions, postconditions, etc, of 

this action sequence. Alternatively, we might define a primitive action, such as 

"tap-up" and then state that the complex action sequence "implements" the 

primitive action. For example: 

ImplementedBy(TapUp(Sgt1) , < action sequence» 

where <action sequence> is replaced by the sequence of actions specified 

above. 

To express the preconditions of an action we could use (where <set of 

conditions» can be substituted by any legal first order logical formula: 

< set of conditions >=> Feasible( < action sequence» 

This is legal because both arguments to implies may be well-formed for

mulae, the conditions are represented by the conjunction (and) of several well

formed formulae, and an action sequence in 8L is a well-formed formula. For 

example, suppose we wish to state that it is possible to open a relay if it is not 

already open (The designation Agent1 replaces the frame-based agent identifier 

that is used in FIPA 8L): 

,Status(RelayO, Open) => Feasible(Action(Agent1, Open(RelayO)) 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Bus( 



3.5 Plant Agents 
90 

The following rule is a general rule suitable for all relays, which states that 

for all a and r, if r is a relay and a manages r and the status of r is not "Open:': 

then it is possible for a to carry out the action Open (r). The manages predicate 

states that an agent "manages" or is responsible for a particular item of plant 

- in the system described this will be the plant agent corresponding to that 

item of plant. 

'Va, r Relay(r) 1\ M anages(a, r) 1\ Status(r, Open) 

::::} Possible(Action( a, Open(r))) 

Transmission of Mappings Between Agents 

The mapping representations described above using implies are capable of 

being transmitted between agents (they are legal FIP A 8L content expressions). 

However, it is not possible for an agent to query another to retrieve these 

mappings, because a variable in FIP A 8L may only represent a term and not 

a well-formed formula. There are a number of possible ways to work around 

this limitation, including: 

1. Use quotes to transmit the mapping expression as a string. It would then 

be possible to send a query, for example (all ?a (mapping-rule ?a)), and 

receive an answer such as (= (all ?a (mapping-rule ?a))) (set "(implies 

(value dsl 0) (status xlO open))")). The problem with this is that it is 

not possible to query mapping rules for an object involved (because the 

mapping rule is an opaque string), and so it is necessary for the mapping 

agent to maintain a database relating mapping rules to items of plant. 

For example, a database table might contain three columns: plant name, 

property name and mapping rule, in order that mapping rules could be 

searched. 

2. Use a "mapping" structure to hold mapping information. (e.g. (mapping 

:channel TLVl :scale-factor 3 :increment 2 :type "linear")). However. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



3.6 User Interface Agents 91 

this only works for simple mappings, and it is also difficult to understand 

without prior knowledge of the mapping structure. Finally, the names of 

the mapping type (e.g. "linear") must be predefined, so it is not possible 

to represent arbitrary arithmetic expressions. 

3. Use the "implements" / "implemented-by" relation as described above 

(only applicable to output mappings). 

3.6 User Interface Agents 

3.6.1 Description 

As in other agent systems, the user interface agent in this system provides a 

link between the agent community and users. In this system, the interface with 

the user is via a human machine interface (HMI), different versions of which 

will be available for the substation and for the wide area network. The user 

agent must be able to translate knowledge from the representation used by the 

multi-agent system into that used by the human machine interface. It must 

also be capable of carrying out tasks by using the directory services provided 

by the agent platform to locate appropriate agents to perform these tasks. 

3.6.2 Agent Specification 

• Knowledge 

- The agent should have a representation of the current state of the 

system, obtained at runtime from the other agents. It has no pre

programmed system knowledge. 

- If necessary, a set of mapping rules may be required to convert from 

the global system ontology to a representation used by the human-

machine interface . 

• Capabilities 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



3.7 Summary 
92 

Generate configuration files for mobile data analysis and remote 

control agents, and launch agents. 

Display information on graphical user interface . 

• Sensors 

- Input from graphical user interface. 

• Interaction Protocols 

FIPA subscribe (initiator) 

FIPA request (initiator) 

- FIPA query (initiator) 

• Ontological knowledge 

- FIPA Meta Ontology, plant class from plant ontology. If mapping 

rules are used to convert information for display on the HMI, the 

power systems ontology will be used in these mapping rules. 

3.7 Summary 

This chapter has described the static agents used in the architecture pre

sented in Chapter 2, along with an analysis of some of the design decisions 

involved. The static agents used in the system are database agents, document 

agents, ontology agents, device agents, plant agents, and user interface agents. 

All agents are based around a common agent architecture and consist of sen

sors, effectors (or abilities), and a knowledge base. Agents participate in one 

or more of the FIP A standard protocols as described previously. 

The database agents and document agents are similar in that they both 

provide access to data sources. However, the methods used to query these 

agents differ in that a database is a machine-understandable data source "'hich 

can be translated into first-order logic, while it is not possible to do this with 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.? Buse 



3.7 Summary 93 

a document. This affects the implementation of these agents, as the document 

agent must include an information retrieval algorithm for document ranking, 

while the database agent has the ability to translate between FIPA 8L and 

8QL to query the database. 

The plant agents, device agents and node agents make up the data acqui

sition and control system. The plant agents are capable of controlling and 

monitoring a single item of plant. using the device agents, it is possible for a 

plant agent to do this without any knowledge of the control and monitoring 

hardware that this item of plant is connected to. Meanwhile, a device agent is 

responsible solely for a monitoring or control device, and has no knowledge of 

the plant. This separation of functions improves the modularity and flexibility 

of the system. 

Design decisions involved in agent implementation include the representa

tion of mapping rules used in the plant agents to convert from channel/value 

data to FIPA 8L expressions. It was decided that these rules should be ca

pable of representation in FIPA 8L, in order that they could be stored in a 

database and transmitted to the plant agents when these agents were started, 

allowing dynamic agent configuration. However, it was not possible to query 

rules directly using first-order logic, and so a "mapping" frame was introduced 

in which the plant item to which the rule relates was specified, and the rule was 

provided as a quoted string. This allowed the plant agent to query mappings 

from the mapping database agent while maintaining compliance of the content 

of the query and reply with the FIP A specifications. 

This chapter has considered the static agents present in the architecture. 

The next chapter will look at the use of mobile agents, which make up the 

remainder of the agents used. The chapter will examine whether these agents 

have the potential to improve the performance of some of the information 

management and control tasks that an automation system must perform. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Husc 



Chapter 4 

Applications of Mobile Agents 

The previous chapters have described the design of the architecture, and 

the static agents that are used to perform the various tasks of a power system 

automation system. However, the performance of such a system may be af

fected by the slow network links between the WAN and substations, and from 

one substation to another. For example, many of the current data links to 

National Grid Company substations operate at 64Kbit/s or 128 Kbit/s1 . From 

previous research, such as [51, 108, 53], it can be seen that mobile agents are 

capable of providing a significant performance increase in applications consist

ing of multiple interactions or large data transfer over a low bandwidth or high 

latency network. This chapter therefore evaluates the tasks of data analysis 

and remote control, to determine whether their performance can be improved 

by the use of mobile agents. 

4.1 Mobile Agent Performance 

The model of mobile agent performance used in this chapter is based on 

that of StraBer and Schwehm [53]. When considering the performance of a 

mobile agent application, a number of factors must be taken into account: 

• The amount of time to transfer a mobile agent a from a source host SIC to 

IThis information is based on discussions with NGC engineers and visits to substations. 

94 



4.1 Mobile Agent Performance 95 

a destination host dest. We represent this by Ttransfer(a, src, dest). This 

time will depend on the speed and loading of the source and destination 

computers, the size of the mobile agent, the bandwidth and latency be

tween the source and destination, and the mobile agent platform in use 

(different platforms employ different protocols for mobile agent transfer. 

some of which are more efficient than others). 

• The amount of time to send a message m (in a message-based or client

server interaction) from a source host src to a destination host dest. 

We represent this by Tmsg(m, src, dest). This will depend on the speed 

and loading of the source and destination computers, the message size 

and the bandwidth and latency between the source and destination. It 

will also be affected by characteristics of the protocol, and possibly the 

programming language or other tools, used. 

• The amount of time taken to process a set of data or a request at a given 

server s. This is represented by Tproc (s ). It will depend on the speed 

and loading of the server and the particular processing operation or task 

being undertaken. 

• The amount of time taken by a server program on server s to retrieve a 

requested data set from the database and prepare it for transmission to 

the client agent. This is represented by Tret (s ), and depends only on the 

data set and the characteristics (performance and load) of s. 

Time to transfer a message or agent across the network 

To obtain values for T msg and Ttransfen the model defined by StraBer and 

Schwehm [53] may be used. In their paper, the time to perform a client-server 

interaction between two hosts L1and L2 (involving a request and a reply) is 

defined to be equal to twice the latency 8 between the two hosts, added to the 

total amount of data BRPc transferred divided by the bandwidth T between 

the two hosts, added to an overhead equal to 2f-L multiplied by the amount of 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Bus! 



4.1 Mobile Agent Performance 96 

data transferred. The constant p, is determined by the software and computers 

in use. Therefore: 

where 

TRPC (L1, L2, Breq , Brep) = 28(L1' L2) 

+ (T(L~,L2) + 2p,) BRPC (L 1 , L2 , Breq , Brep) 

if L1 = L2 

otherwise 

(4.1.1) 

In this equation, 7(L1' L2) represents the bandwidth between L1 and L2, 

8(L1' L2) represents the latency between L1 and L2 and p, represents the mar

shalling overhead, which depends only on the size of the object to be sent. 

However, several assumptions made by this equation mean that it may not 

be suitable in all circumstances. The equation does not take account of the 

speed of the host computer, which affects the time to process a request and 

also the marshalling time. It can also be observed from results for Java object 

serialization (which is the form of marshalling used by Java RMI) in [109], that 

the time to marshal an object is not the same as the time to unmarshal that 

object. 

In order to generalize the equation above, two functions are defined: 

Os(msg, src) to denote the sending overhead for message msg of size Bmsg 

from host src, and OR(msg, dest) to denote the receiving overhead for mes

sage msg at host dest. These are functions of the message (size and possibly 

content type) and of the particular host. The transmission time uses the simple 

time = size + latency approximation as can be observed by omitting the 
bandwtdth ' 

marshalling time from Equation 4.1.1. 

Tmsg(m, src, dest) 
B 

msg + 8 (src, dest) 
7( src, dest) 

( 4.1.2) 

+ Os(msg, src) + OR(msg, dest) 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. BIIS( 



4.2 Mobile Agent for Data Analysis 
97 

The use of two over head functions one for sending and one C . . , lor recelvmg 
messages, is proposed by Baldi and Picco [52]. However, they use "overhead" 

to mean the total time taken to send a message, while here the :'overhead" 

represents only the cost of sending or receiving the message and does not 

include transmission time. 

Time to Transfer a Mobile Agent 

The actual time taken to transfer an agent over the network should be 

the same as for a message of the same size2 . However, additional over

heads are incurred by the time taken to register the agent on the destina

tion platform and to restart its execution, etc. If these overheads are denoted 

by Oreg(agent, server) and Odereg(agent, server), the resulting migration time 

equation is: 

Ttransfer (a, src, dest) Oreg(a, src) 

+ Odereg (a, dest) 

+ Os(a, src) 

+ OR(a, dest) 

+ ( B~ ) + 0(8rc, dest) 
T src, est 

( 4.1.3) 

In this equation, Ba represents the size of the agent, including code, data 

and state. As for the message, the main problem with this model is that 

different types of agent content may take differing amounts of time to transfer. 

4.2 Mobile Agent for Data Analysis 

In the architecture described in this thesis, data stored in a substation 

database is accessed using a multi-agent system. This data is made available 

via a database agent, which can be queried using FIPA ACL[72] messages to 

2In practice this may not be the case if, for example, additional messages must be sent 
between the agent platforms to co-ordinate the movement of the agent. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



4.2 Mobile Agent for Data Analysis 98 

retrieve data. However, problems occur when it is necessary to analyse a large 

quantity of data, such as monitoring data covering a long period of time. This 

data can be extremely large, especially when converted into a text-based for

mat, and the connections to substations are often slow (sometimes only dial-up 

links are available). Therefore, mobile agents are to be employed to analyse the 

data in the substation and remove the need to transmit it across the network. 

A subset of the generic architecture described in this thesis, consisting of two 

database agents per substation, an ontology agent, a user agent and the mobile 

agent, is used. This is shown in Figure 4.1. The monitoring database contains 

event data, and the static database contains substation topology information. 

Site 1 

Wide Area Network 

MA 
Server 

• • 

Central servers 

Site 2 Site n 

• • 

Figure 4.1: Subset of Generic Architecture used for Mobile Agent Based Data 

Analysis 

The basic outline of this application, as implemented in the prototype de

scribed in Chapter 5, is as follows: 

INFORMATION MANAGEMENT, MONITORING AND COKTROL 
D.P. Buse 



4.2 Mobile Agent for Data Analysis 99 

1. The mobile agent is launched by the user agent and provided with a 

configuration file, consisting of a series of data sets that must be retrieved, 

a set of analysis functions that the agent must perfom on those data sets. 

and a report template, specifying how the results produced by the analysis 

functions will be displayed in the generated report. Each data set consists 

of an object (e.g. a transformer), a property (e.g. LV current) and a time 

range (start time and end time). The process used by the user agent to 

generate the configuration file is described in Chapter 5. 

2. The mobile agent gathers the specified data sets, and performs the re

quired analysis, generating its report. For the multi-hop case, the imple

mented agent uses a basic planning algorithm to generate its route and 

the order in which its tasks will be performed. 

3. The report is displayed to the user as an HTML page. 

It is possible to create both multi-hop and single-hop data analysis agents. 

However, the single-hop agent is much simpler, as the agent only has to travel 

to a single location and perform a single analysis, and does not have to perform 

planning or route optimization. 

In the multi-hop case, the agent must analyse monitoring data from a num

ber of substations. Because the data links between substations can be slow, 

it is desirable that the agent should transfer as little data as possible. There

fore, unless data from two substations must be used as a combined data set, 

the agent should perform all analysis on a substation's data, and retain only 

the result, before moving on to the next substation. It is desirable that the 

agent would be able to generate an optimal (or near-optimal) route through 

the substations to ensure that the tasks are completed in the shortest amount 

of time. Variations on this problem have been investigated in a number of pa

pers, including an algorithm which attempts to optimize the number of agents 

used as well as the total time taken [110]. Moizumi analysed a similar prob

lem, the "travelling agent problem (TAP)" in which an agent must perform a 

task involving a number of servers [111]. However, in the TAP, the task may 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



4.2 Mobile Agent for Data Analysis 100 

be completed without visiting all servers, whereas in the application described 

here it is necessary for all relevant servers to be visited. Further work should 

investigate whether these algorithms can be applied to the agent described 

here. 

4.2.1 Agent Algorithms and Implementation 

Simple, Single-Hop Analysis Agent 

The single-hop data analysis agent can be implemented using a relatively 

simple algorithm, such as Algorithm 1. The agent travels to the location of 

the server providing the data set, retrieves the data, performs its analysis and 

sends the report to the user. The names of items of plant and properties which 

can be analysed can be obtained by querying the static and ontology databases 

respectively. 

Some of the procedures used in this algorithm are dependent on the agent 

platform or on a particular implementation and are therefore not described 

here in detail. The send procedure delivers a message to a given agent. The 

extract-resul ts procedure extracts a table of results from the reply to a 

query. The location-of procedure returns the agent platform, or container, 

on which a particular agent is located. The kill-self procedure terminates 

the agent's execution, freeing system resources. The generate-report proce

dure takes a set of results and a template, and generates a report. 

Multi-Hop Agent Without Optimization 

The multi-hop agent performs a considerably more complex task than the 

single-hop agent. As well as retrieving and analysing data, it must be able to 

generate a plan (or sequence of actions) that ensures that all of the required 

tasks are completed and attempts to minimize the execution time. For example, 

if an agent must perform two tasks in substation 1 and one in substation 2. it 

is normally desirable (assuming that these are independent tasks) to perform 

either both tasks in substation 1 followed by the single task in substation 2, or 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



4.2 Mobile Agent for Data Analysis 

Algorithm 1 Single Hop Analysis Agent 
Inputs: 

s: server agent 

e: expression defining data set 

template: report template 

F: set of analysis functions 

begin 

end 

move (location-of (s)) 

results := collect-data(e,s) 

report := generate-report 

(results, template, F) 

display-report (report) 

kill-self() 

procedure collect-data(e,s) 

begin 

end 

message := create-query-message(e) 

send(message,s) 

reply := wait-for-reply(message) 

results := extract-results(reply) 

return results 

101 

the task in substation 2 followed by the tasks in substation 1. Compared to 

performing one of the tasks in substation 1, followed by the task in substation 

2 and then the second task in substation 1, the number of "hops" that the 

mobile agent must make across the network is less. This problem has been 

analysed by Xie in [112], who proposed a scheduling algorithm for mobile agent 

planning based on Distributed Acyclic Graph (DAG) scheduling. However, this 

algorithm relies on the use of multiple mobile agents, and therefore is not used 

in the agent described here (a single agent). 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



4.2 Mobile Agent for Data Analysis 102 

In the case of the data analysis agent, there are four types of task which 

it may carry out: retrieval, which involves gathering a single data set from a 

server, analysis, which involves the use of a data set to generate either another 

data set or a result, report generation, which involves the generation of the 

report for the user, and display, which displays the generated report on the 

screen. 

When the multi-hop user agent reads the configuration file, it first generates 

a task list from the data sets and analysis results defined in the configuration 

file. This task list will always contain one report generation task and one 

display task. For each data set a retrieval task is generated, and for each 

analysis an analysis task is generated. Following Xie's DAG representation, for 

each task a set of predecessor tasks (those which must be completed in order for 

the task to be performed) and a set of successor tasks (those which may only 

be started once the task is complete) are defined. In the mobile analysis agent, 

retrieval tasks have no predecessors. An analysis task has as its predecessors all 

those tasks (either retrieval or analysis tasks) providing input to the analysis. 

The report generation task can only be performed once all analysis tasks are 

complete, and the display task can only be performed once the report has been 

generated. 

Once a plan has been generated, the mobile agent will then execute each 

step of the plan in order. The algorithm of the multi-hop mobile agent is 

given as Algorithm 2. Each task is assigned a location by the agent, and 

the location_of procedure retrieves the location of a specified task. In the 

basic agent described here, the location of a retrieval task is always the agent 

container on which the server agent for that retrieval is located (the agent will 

always move). The agent will carry out an analysis or report generation task 

at its current location, and will return home before displaying the report. The 

basic planning algorithm used in the prototype implementation (not shown) 

"clusters" tasks so that as soon as a data retrieval task is complete, all possible 

successor tasks (normally analysis tasks) will be performed. However, it does 

not currently cluster data retrieval tasks by substation - this optimization \\·ill 

INFORMATION MANAGEMENT, MONITORING AND COr\TROL D.P. Bus( 



4.2 Mobile Agent for Data Analysis 

be implemented later. 

Algorithm 2 Multi Hop Analysis Agent 
Inputs: 

f: configuration file 

begin 

end 

config := read_configuration_file(f) 

tasks := generate-task_Iist(config) 

plan := generate_plan(tasks) 

while not complete(plan) do 

wend 

t := first_incomplete_task(plan) 

move(location_of(t)) 

execute(t) 

4.2.2 Data Analysis Agent Performance 

103 

Referring to the generic mobile agent performance model described previ

ously, it is assumed assume that Tmsg is the same for both the mobile agent 

and client-server cases. The time taken for the data to be retrieved is approxi

mated by Tret (S), and the time taken for the data to be analysed by a function 

Tproc(S), where in both cases S represents the server on which the activity 

takes place. Both Tproc and Tret are dependent on the speed and loading of 

the computers on which the retrieval and analysis are performed, and on the 

amount of data to be retrieved. However) in order to simplify this anal~'~is it 

is assumed that both computers are of the same speed and are unloaded, and 

hence Tproc and Tret are the same in both mobile agent and client server cases. 

The messages used in this interaction are represented by req (request for data) 

and rep (reply containing data). 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Bw;( 



4.2 Mobile Agent for Data Analysis 104 

When a mobile agent is used, the time taken to analyse a single database 

is equal to the time taken to send the mobile agent, added to the time taken 

to retrieve and analyse the data, added to the time taken to return the report 

to the user. 

TMA Ttransfer( a, client, server) (~.2.1) 

+ Tret (server) 

+ Tproc ( server) 

+ Tmsg(report, server, client) 

When the client-server system is used, retrieval is performed at the server, 

but processing is performed at the client. Therefore: 

Tcs Tmsg(req, client, server) (4.2.2) 

+ Tret (server) 

+ Tmsg(rep, server, client) 

+ Tproc(client) 

However, if Tproc(server) = Tproc(client) , then the difference between the 

two methods may be expressed as: 

Tmsg(req, client, server) 

+ Tmsg(rep, server, client) 

Ttransfer (a, client, server) 

Tmsg(report, server, client) 

(4.2.3) 

This will be positive if the mobile agent method is faster, and negative if the 

client server method is faster. Assuming that T msg and Ttransfer depend on 

the size of the message/agent and the bandwidth and latency of the net\\'ork 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



4.2 Mobile Agent for Data Analysis 
10.5 

whether the client-server method is faster than the mobile agent method de

pends on the relative sizes of the agent the request and re 1 d ' p y messages an 
the report, and on the various overheads involved in agent transfer. 

4.2.3 Benchmarks 

A benchmark evaluation of the single-hop data analysis agent "'as per

formed. A data analysis agent was created, which retrieved a data table con

sisting of two columns (value and time) from a database and performed the 

following analyses: 

1. Calculate the mean value of one column of data (single iteration through 

data retrieved) 

2. Calculate the maximum value of one column of data (single iteration 

through data retrieved) 

3. Plot a graph (two iterations through data retrieved). 

Using a configuration parameter of the agent, it could be set to operate either 

as a static or mobile agent. This enabled a comparison to be performed. A 

second comparison was also performed between the use of wrapper agents, lo

cated at the server, to retrieve data, and an implementation which was granted 

direct access to the database, and used Java Database Connectivity (JDBC) 

for database access. In the first case, the database agent used the ACL message 

from the mobile agent to query the database, returning the results as an ACL 

message with FIPA Semantic Language (SL) content. In the second, to main

tain the independence of the mobile agent from the data source, the agent sent 

an ACL request to the wrapper agent, which provided it with database connec

tion details and the SQL query that could be used to retrieve the data. (For 

this experiment, the query and connection information were hard-coded into 

the database agent's configuration, as a full translation procedure to generate 

SQL, rather than directly query the database, has not yet been implemented). 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Bus( 



4.2 Mobile Agent for Data Analysis 106 

The client and server computers were connected to separate Ethernet 

switches and a computer running the Dummynet program[113] was used as 

a bridge to control the bandwidth and latency between client and seryer. as 

shown in Figure 4.2. A number of different settings of bandwidth and la

tency were used. The time taken for the agent to complete its analysis and 

display the results to the user was measured. This was repeated six times for 

each bandwidth/latency combination, three times in the mobile agent case and 

three times in the client-server case. While the use of Dummynet means that 

the network delay is deterministic, it is considered that this is appropriate for 

a power company network in which the wide area network consists of private 

wire circuits, which do not suffer from the random delays due to high traffic 

as exhibited by the Internet. 

Database Server 
C 566, 256 MB 

Agent Container 

A.P. Server 

Main 
Container 

10/100 
Ethernet 
Switch 

Bridge 

Pili 333 
FreeBSD 

10/100 
Ethernet 
Switch 

Figure 4.2: Experimental Setup 

Client 
C 566, 256 MB 

Agent Container 

Based on the performance model discussed in Section 4.2.2, it is expected 

that the mobile agent-based data retrieval agent will perform significantly bet

ter than the client-server agent. This performance advantage should increase 

with decreasing bandwidth and with increasing latency. 

Results 

Rather than taking the mean of the three measurements, it was decided to 

use the first measurement for each set of latency /bandwidth values, as this in-

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.? Bust 



4.2 Mobile Agent for Data Analysis 107 

cludes the cost (in the mobile agent case) of transferring the agent's class files, 

which is not included in later measurements as these fil I d es are a rea y trans-

ferred. Table 4.1 shows the fixed parameters for the expe . t (Ob· . nmen Ject SIzes 

were obtained by serializing the object into a byte array and then recording 

the length of the array). 

Parameter Value 

N umber of rows of data retrieved 18,915 
N umber of columns of data retrieved 2 

Object size of wrapper-based 7963 bytes 
mobile agent (outgoing) (Bdata ) 

Object size of wrapper-based 8183 bytes 
mobile agent (return) 

Report size of wrapper-based 4268 bytes 
mobile agent (return) 

Size of reply message from 1053525 bytes 
wrapper (containing data) (Brep) 

Size of request message 2249 bytes 
(wrapper-based case) (Breq) 
Total size of wrapper-based 42950 bytes 

agent class files (Bcodc ) 

Table 4.1: Fixed Parameters for Data Retrieval Experiment 

Tables 4.2, 4.3 and 4.4 give the first run times in seconds for each of the 

six agents, for bandwidth from 100Kbit/s to 100Mbit/s, and one-way latency 

between 0 and 50 milliseconds. All times are to 3 significant figures. Full 

results for these experiments are given in Appendix A. 

Figures 4.3 and 4.4 show the results obtained by varying the one-way la-

tency of the connection from 0 to 50 milliseconds, while leaving the band\vidth 

unchanged at 10Mbit/s. Figure 4.4 shows in more detail the results from the 

four faster scenarios, which are obscured on Figure 4.3 by the long times taken 

by the static agents with direct database access. 

Figure 4.5 shows the effect of bandwidth on the experimental database 

analysis, using all of the different agents and with no added latency. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 



4.2 Mobile Agent for Data Analysis 108 

I-way latency (ms) 
I 0 I 25 I 50 I 

I-way latencv(ms) 
I 0 I 25 I' .50 

T(bit/s) 
100M 109 105 107 
10M 102 104 104 

100M 33.4 35.9 38.1 , 

10M 33.1 36.1 38.2 
1M 103 105 108 1M 34.1 36.2 38.6 'I 

lOOK 110 112 114 lOOK 41.8 44.3 46.0 -1 
No cachIng Cachmg 

Table 4.2: Time Taken (sees) By Mobile Direct Access Agents (times to 3 sf) 

I-way latency(ms) I-way latency(ms) 
I 0 I 25 I 50 I I 0 I 25 I 50 I 

T(bit/s) 
100M 96.7 3802 7590 
10M 103 3820 7610 

100M 37.6 958 1910 
10M 32.6 961 1910 

1M 158 3940 7730 1M 46.0 992 1940 
lOOK 1390 5180 8970 lOOK 354 1300 2250 

No cachmg Cachmg 

Table 4.3: Time Taken (sees) By Static Direct Access Agents (times to 3 sf) 

I-way latency(ms) 
I 0 I 25 I 50 I 

I-way latency(ms) 
I 0 I 25 I 50 I 

100M 113 113 117 
10M 112 113 117 T(bit/s) 

100M 110 116 123 
10M 111 119 122 

1M 115 114 116 1M 118 123 126 

lOOK 119 120 123 lOOK 202 203 208 

Mobile Static 

Table 4.4: Time Taken (sees) By Wrapper-Based Agents 

Analysis 

The experiment described here is relatively limited. However, there is a 

significant body of existing work in the field of mobile agent performance, 

some of which is discussed in Section 4.2.4. Therefore, the intention of the 

experiment described here is to confirm that the advantages found b~' existing 

work are applicable in the context of the power system automation architecture 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



4.2 Mobile Agent for Data Analysis 

80001----,-----,--___ ,----__ ~--_ 

7000 

6000 

5000 

~ 4000 
i= 

3000 

2000 

1000 

o 

-- Wrapped, Mobile 
-A- Wrapped, Static 
-- Direct, Mobile, Cached 
-+- Direct, Mobile, Non-cached 
~ Direct, Static, Cached 
-+-- Direct, Static, Non cached 

10 20 30 40 
One-way latency (ms) 

Figure 4.3: All Agents at lOMbit/s 

13 0 

12 0 

11 0' 

10 0 

9 0 

OJ 8 
E 

0 

i= 
70 

60 

50 

40 

30 o 

-- Wrapped, Mobile 
-A- Wrapped, Static 
-- Direct, Mobile, Cached 
-+- Direct, Mobile, Non-cached 

10 20 30 40 
One-way latency (ms) 

50 

50 

109 

Figure 4.4: Agents at lOMbit/s with Static Direct Access Agents Removed 

developed in this thesis, and to demonstrate that via a specific application used 

in the prototype. The work here does not attempt to develop a complete model 

of mobile agent performance. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Bu,.,e 



4.2 Mobile Agent for Data Analysis 
110 

1400 

-- Wrapped, Mobile 

1200 --A- Wrapped, Static 
-- Direct, Mobile, Cached 
-+- Direct, Mobile, Non-cached 

1000 
-tl-- Direct, Static, Cached 
-+- Direct, Static, Non-cached 

~ 
800 

Q) 

E 
i= 600 

400 

20 

0 
102 

10
3 

104 

Bandwidth {Kbitls} 

Figure 4.5: Time Taken to Analyse Database at Various Bandwidths, no Added 
Delay 

Effect of Latency 

Using a linear approximation to the data shown on Figure 4.3, the equations 

shown in Table 4.5 are obtained for the time, t, in seconds taken by the agent 

to perform data analysis at 10 Mbit/s bandwidth, with respect to the latency, 

l, in seconds of the connection. 

Agent I Equation of line (to 3 sf) I 
Wrapped, mobile t = 110l + 111 
Wrapped, static t = 219l + 112 

Direct, Mobile, Cached t = lOll + 33.3 
Direct, Mobile, Non-cached t = 33.4l + 102 

Direct, Static, Cached t = 37.6 x 103l + 28.8 
Direct, Static, Non-cached t = 150 x 103 l + 90 

Table 4.5: Linear Approximations to Time Taken 

A number of points can be observed from these approximations: 

• Both wrapper-based agents had approximately the same fixed term. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



4.2 Mobile Agent for Data Analysis 111 

• Of the direct access agents, the mobile and static cached agents had 

similar fixed terms, as did the mobile and static non-cached agents. 

• The direct access static agents are affected much more by latency than 

any of the other agents. 

• Neither wrapper-based agent is affected greatly by latency. 

• The gradient of the static, cached line is approximately equal to 18915 

(number of rows) multiplied by 2. This might suggest that for each row, 

a request and reply message were sent, meaning that the time to retrieve 

the data would be approximately equal to the number of rows multiplied 

by the latency, added to the fixed processing cost. At 10Mbit/s, the effect 

of bandwidth limitations would be negligible as the amount of data for 

each row would be very small. However, more experiments are required 

to establish whether or not this is the case. 

• The time taken by the direct access, static, cached agent is between 3 

and 4 times the time taken by the direct, static, uncached agent. It is 

likely that this is because the data was iterated 4 times. Therefore, 4 

times as much data was transferred in the uncached case. However, some 

of the time taken was due to processing rather than data transfer, so the 

ratio is less than 4. 

Referring to Equations 4.2.1 and 4.2.2, the majority of the fixed term appears 

to be made up of the time to retrieve and process the data (Tret + Tproc ), as 

there is only a minimal difference between the fixed term for the mobile and 

static agents. This difference, if not an experimental error, might represent the 

setup and movement overheads of the mobile agent, or the fact that having the 

agent on the same server as the database increases the server load. 

Effect of Bandwidth 
Equations 4.2.1 and 4.2.2 may be applied to the wrapper-based agents only, 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Ell." ( 



4.2 Mobile Agent for Data Analysis 112 

as the direct access agents access the database using a large number of client

server messages, and the model was based on a single request and a single 

reply. The equations predict that the time taken should be inversely propor

tional to the bandwidth and proportional to the amount of data transferred. 

However, while Figure 4.5 does show that the time taken increases as the band

width decreases in all cases, and that this effect is much greater for the static 

agents (due to the greater amount of data transferred), there is insufficient 

data available to confirm or refute the proportionality assumption. 

Discussion 

The results show that the performance of the client-server data analysis 

application is highly dependent on the bandwidth of the network, while that 

of the mobile agent is relatively unaffected. Therefore, by using a mobile agent 

it is possible to greatly improve the benchmark performance in low bandwidth 

cases. These results agree with the predictions made by the model of this 

application in Section 4.2.2. Equation 4.2.3 states that the difference between 

the time taken by a client-server program to perform the task and the time 

taken by a mobile agent is equal to the difference between the amount of 

time taken for the client-server program to send and receive the query and 

reply messages and the amount of time to transfer the agent. Because the 

reply message is much larger than the agent, as the bandwidth increases the 

time taken by the client-server program should increase more quickly than the 

time taken by the mobile agent program. This agrees with the results of the 

benchmark. However, because of the significant overheads (platform overheads 

and data retrieval time) involved in the benchmark, the actual time taken does 

not match that predicted by the equations, which do not include the data 

retrieval time, as discussed previously. 

When using an ACL-based data analysis agent, because only a small num-

ber of messages are sent, performance is not affected as much by high latencies 

as by low bandwidth, at least for realistic latencies (a typical "ping" time when 

using a dial-up modem is around 200 milliseconds, which gives 100 millisec-

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



4.2 Mobile Agent for Data Analysis 
113 

onds one-way latency). As only a small number of messages (two in the optimal 

case) are sent and received, latency should only slightly affects the agent per

formance. The fact that altering the latency produces a greater change in time 

taken than this suggests that a greater number of messages are sent across the 

network when transmitting a mobile agent or an ACL message. 

When using direct database access, the performance of the client-server 

agent was heavily affected by latency. This might indicate that the agent had 

to send a request for each row of data. This lack of optimization of the client

server program may exaggerate the performance advantage of using a mobile 

agent in this application. By retrieving more data in each call, it might be 

possible to improve the performance of the direct access static agent to more 

closely match that of the wrapper-based static agent. However, this would 

mean that it would still be slower than the mobile agent in many cases. 

It would be possible to equal the performance of the mobile agent for data 

analysis in a client-server system by building a server containing all of the 

analysis functions, and calling these functions remotely. However, as discussed 

in [54], this would greatly reduce the flexibility of the system, and make it 

more difficult to add new analysis functions as this would require the server 

program to be modified and restarted. 

If the task is modified, this may alter the results of this benchmark. For 

example, changing the size of data retrieved will affect both the mobile agent 

and client-server systems. However, following the results of Johansen [114], 

mobile agents would be expected to perform better in relation to client-server 

systems as the data size increased, and vice versa. Changing the number of 

iterations required through the retrieved data would particularly affect the 

non-caching agents, as they must retrieve all of the data on each iteration. 

The effect on the caching agents would be limited. 

4.2.4 Related Work 

Johansen [114] demonstrated the performance advantages of mobile agents 

for the analysis of large data sets, using a mobile agent to retrieve \yeather 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



4.2 Mobile Agent for Data Analysis 114 

satellite data. Johansen provides a comparison of the performance of client 

server and mobile code for different data sizes, which shows a number of per

formance improvements from using mobile agents. Johansen's work provided 

some of the motivation for the work described here, as it showed that it \vas 

possible to improve the performance of a data analysis application using mobile 

agents. The work in this thesis extends Johansen's work by applying mobile 

agent data analysis in the context of the specific automation systems architec

ture developed in Chapters 2 and 3, and by providing benchmarks at different 

bandwidths and latencies. 

Tsukui et al [115] used mobile agents to retrieve data from power system 

protection devices. As in our work, they utilised a mobile agent for analysis. 

In their application it was used to analyse fault records from devices. They 

also used mobile agents to gather status information from devices and to alter 

device settings. However, their work does not include a detailed analysis of 

application performance, or describe the agent implementation in detail. 

Gray et al [51] describe two applications of mobile agents, one of which is 

an information retrieval application. They test the scalability of a mobile agent 

system for performing document retrieval and filtering as the number of clients 

increases, and find that client-server solutions perform poorly with large num

bers of clients because the network becomes overloaded. In contrast, mobile 

agent solutions may perform poorly if a server machine becomes overloaded. 

Therefore, they conclude that if the bandwidth is high it is usually preferable 

to use a client-server system, and when the bandwidth is low or the number of 

clients is high it is usually preferable to use a mobile agent system. These con

clusions are similar to the ones obtained from the experiment described here. 

However, the experiment that they performed used multiple mobile agents and 

was for document retrieval, whereas the experiment described here is for a 

single mobile agent performing database analysis. Therefore, the additional 

results provided here are useful to confirm that the conclusions drawn by Gray 

et al are still valid for this application. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. HI/sf 



4.2 Mobile Agent for Data Analysis 115 

4.2.5 Conclusions 

This section has describe the use of mobile agents for performing data 

analysis tasks within the architecture described in this thesis. A performance 

model has been derived to allow the quantitative analysis of this mobile agent 

application. Performance benchmarks have shown that where the bandwidth 

of the wide area network is low or its latency is high, the use of mobile agents 

can provide significant performance improvements compared to a client-server 

or static agent implementation. Results have also demonstrated that it is 

possible to improve the performance of the mobile agent by providing direct, 

rather than wrapper-based, access to a database and by caching the data re

trieved. However, these results may relate only to the specific wrapper-based 

implementation used here. It may be possible to improve the efficiency of the 

wrapper-based agent using an alternative implementation method, although 

it is likely that, because the wrapper-based implementation would still involve 

packaging the retrieved data as ACL and then parsing the ACL data, the direct 

access agent would still have a performance advantage. 

When building the system it was desired to adhere as closely as possible to 

the FIPA standards for multi agent systems. This motivated the choice of the 

JADE platform for system implementation, as at the time it was the only pub

lically available FIPA platform to support mobile agents. However, JADE's 

focus is not on mobile agents, and so it lacks some of the mobile agent related 

features of other systems (e.g. strong mobility, support for multiple versions 

of a Java class in the same container, inter-platform mobility). For the bench

mark, this was irrelevant as intra-platform mobility could be used to simulate 

inter-platform mobility, and the versioning problem was not encountered as 

only one version of the benchmark agent was used at a time. For a full de

ployment of the system it might be necessary to extend the platform or to 

re-examine the available alternatives. 

Further work on this system should involve the full evaluation of multi-hop 

data analysis agents. In addition to this, it is also intended to add document 

retrieval functionality. 

INFORMATION MANAGEMENT, MONITORING AND COf\TROL 
D.P. Buse 



4.3 Mobile Agent for Remote Control of Power Systems 116 

4.3 Mobile Agent for Remote Control of 

Power Systems 

Many substations in an electricity network are unmanned, and must there

fore be controlled remotely. Currently this is normally done from a control 

centre, using dedicated network links to the substation. Here we investigate 

the possibility of using mobile agents as a control mechanism to allow users to 

remotely control the substation plant over a standard IP network. 

For example, suppose that a substation contains a transformer, with a 

circuit breaker and earth breaker connected to the high voltage windings, and 

a circuit breaker and earth breaker connected to the low voltage windings. This 

partial substation layout is shown in Figure 4.6. The substation provides both 

a mobile agent server and a client-server interface which allow commands to be 

sent to substation devices. A user at a remote site intends that the following 

actions should be performed in the substation, as illustrated by the numbers 

on Figure 4.6: 

• Open two circuit breakers to isolate the transformer (1 and 2) 

• Measure the voltage across the transformer to ensure that it has been 

isolated (3) 

• If the transformer is isolated, operate two earth switches (one on either 

side of the transformer) to earth it (4 and 5) 

• When all of these operations are completed, display a message on the 

user's machine. 

This could be achieved in one of two ways. Firstly, it would be possible to 

use the client-server interface to execute all of the commands remotely. Suppose 

that the protocol is simple, and for each command only a single command 

message and a reply or acknowledgment message are required. In this case. 

10 messages across the wide area network would be necessary (hyO for each 

of the two circuit breakers, two for the voltage measurement and two for each 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.? E1Lse 



4.3 Mobile Agent for Remote Control of Power Systems 

1 
Circuit Breaker 

-lXI I 

Earth Breakel 

3 
Transformer 

(ill 
2 

Circuit Breaker 

I [Xli---
l~arth Breaker 

Figure 4.6: Example Substation 

117 

of the two earth switches). Alternatively, a mobile agent could travel to the 

substation and execute the same commands locally over the substation local 

area network. The 10 messages required in the client-server case would then 

be sent and received over the LAN. Only two messages would need to be sent 

across the WAN: the mobile agent and the final message informing the user 

that the sequence of actions was completed. Depending on the characteristics 

of the network involved, this might mean that the operation would complete 

more quickly if the mobile agent was used. 

The major anticipated drawbacks to implementing this application are in 

the areas of security and reliability. Much has been written about the security 

concerns of mobile agents (e.g. [58]). However, these security problems mostly 

apply to open systems, in which it is possible for anyone to send a mobile agent 

to a server, and the servers are operated by different authorities. In a power 

system, which is relatively closed, these problems could, at least to a certain 

extent, be avoided. Also, the advantages of mobile agents for remote control 

might apply equally to less critical applications such as remote configuration 

management, in which, instead of instructing devices to operate substation 

plant, the mobile agent was used to alter device configurations. The perfor

mance model for this application is the same as that for remote control, as 

the agent is still performing a sequence of interactions with a device or deyices, 

except that the interactions result in changes to the device configuration rather 

than changes to the status of the substation plant. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



4.3 Mobile Agent for Remote Control of Power Systems 118 

There is another problem when an agent is allowed to interact directly with 

IEDs. If multiple mobile agents are permitted to be present in the substation 

simultaneously, particularly when they are controlled by different users, it is 

possible that the commands transmitted by these agents might be inconsistent 

with one another. Also, it is not possible simply to "lock" individual items of 

plant being controlled, as commands executed on one part of the substation 

can affect other parts of the substation. For example, suppose a substation 

has two transformers. At the same time, user A sends a command to isolate 

transformer 1, and user B sends a command to isolate transformer 2. The 

result of this is that both transformers are isolated, and the substation then 

provides no output current. 

It is proposed to solve this problem by using the plant agents as an inter

mediate layer between mobile agents and IEDs. When a mobile agent wishes 

to perform an action, it must request that the appropriate plant agent per

form this action. By negotiation with other plant agents, that agent must then 

determine whether or not that action is possible, given any constraints which 

have been placed on the actions of the plant agents by other mobile agents 

or by human controllers. One possibility would be to adopt the Joint Inten

tions methodology, developed by Jennings for the ARCHON industrial control 

multi-agent system[116]. Alternatives might include the use of a single, static, 

"supervisor" agent responsible for co-ordinating the actions of all agents in the 

substation, or the use of a constraint programming [117] [118] method. 

4.3.1 Agent Algorithms and Implementation 

For Experiment 2 (Section 4.3.4), a simple (non-intelligent) mobile agent 

based on Algorithm 3 was implemented. The agent is given the address of a 

server agent (located at the closest agent server to the device), the URL of 

a relay device and a series of actions (either open or close) to be performed. 

When the agent starts, it will move to the location of the server agent and 

carry out the sequence of interactions with the device. The agent is capable of 

interacting with one device only. The preliminary benchmark used a similar 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Blls( 



4.3 Mobile Agent for Remote Control of Power Systems 119 

algorithm, but without the server agent (the address of th d t' t' e es ma IOn agent 

platform was used instead). 

Algorithm 3 Mobile Remote Control Agent 
Inputs: 

s: name of server agent 

A: set of actions to perform 

d: device 

h: home location 

begin 

end 

1 = locate(s) 

move(l) 

for each a in A do 

send-request (a, d) 

wait-reply(a, d) 

next a 

move(h) 

Algorithm 4 shows a multi-hop agent, which acts through other agents, and 

uses the DF to determine which agents are capable of carrying out a particular 

action in its specified action sequence. The algorithm used in this case is as 

follows (in which the location-of procedure should return the substation in 

which either the item of plant affected by an action or a particular server agent 

is located): 
The agent is given an ordered sequence of actions, which are represented 

by FIPA SL action expressions, giving the agent itself as the actor. For each 

of these actions, the agent first determines whether or not it is capable of 

performing the action itself. If it is, it will perform the action by directly 

interacting with the relevant lED. If not, the agent will attempt to perform 

the action using the capabilities of other agents. It first searches the DF, to 

find a list of agents (the variable Servers in Algorithm -1) capable of performing 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Bu:,e 



4.3 Mobile Agent for RerYlote Control of Power Systems 

Algorithm 4 Improved Remote Control Agent 
Inputs: 

A: sequence of actions to perform 

h: home location 

begin 

end 

for each a in A do 

if (capable-of(a)) then 

move(location-of(a)) 

perform(a) 

else 

Servers = find-servers(a) 

for each s in Servers do 

move(location-of(s)) 

request(s, a) 

if(success) then break 

next s 

if not complete(a) then fail 

endif 

next a 

120 

the relevant action. It will then request the action from each of these agents 

in turn, stopping when the action is complete. 

In a realistic implementation, it would also be necessary to provide the 

agent with the ability to handle exceptional cases such as the failure of one of 

its actions (denoted in Algorithm 4 by fail). 

4.3.2 Remote Control Agent Performance 

In order to determine the conditions under which it is appropriate to use a 

mobile agent for substation control, a performance analysis is required. This 

will be carried out for the single-hop agent, which carries out interactions in 

INFORMATION MANAGEMENT, MONITORING Af'D CONTROL 
D.P. BII$C 



4.3 Mobile Agent for Remote Control of Power Systems 121 

a single substation only. The agent is "launched" from a client computer and 

travels to a substation, where it interacts with one or more IEDs, either by 

moving to the IEDs themselves or by sending messages across the substation 

local area network, before transmitting a message to the client indicating its 

success or failure, and any additional information specified, such as the new 

state of the substation. 

It is assumed that the mobile agent interacts with the IEDs over the sub

station LAN. Therefore, it makes only one hop, from the client (denoted as c) 

to the substation's mobile agent server (denoted by s). To simplify the model 

further, it is also assumed that the bandwidth and latency between all points 

on the LAN are fixed and uniform, and that the bandwidth and latency be

tween the client computer and the substation are fixed. Finally, it is assumed 

that each interaction requires only a single request message and a single reply 

message, that only one message is required to transfer the mobile agent, and 

that only one message is required to transfer the results. This is not the case 

in some "real-world" protocols, and in fact would be unreliable as the receipt 

of the mobile agent and results are not acknowledged, but represents the most 

efficient possible scenario. 

Data size The amount of data sent across the network for the /h interaction 

is then: 

Suppose that the mobile agent must perform ni interactions with each of 

a set of d devices Do . .. Dd , where Di represents the ithdevice. Let n then 

represent the total number of interactions. 

The total amount of data transmitted across the network is then: 

Bintcractions 
j=o 

n 

L B req) + B rePj 

j=O 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Bus( 



4.3 Mobile Agent for Remote Control of Power Systems 122 

In a client server case, Binteractions represents the total amount of data sent 

over the network. In the mobile agent case, the total amount of data sent over 

the network is then equal to the size of the mobile agent BMA , which consists 

of the size of the agent's object along with any code that must be transferred , 
added to the size of the interaction messages and to the size (Bresults) of the final 

acknowledgment message sent to the client when all interactions are complete. 

BMA Ba + Binteractions + Bresults 

Bcs Binteractions 

However, the mobile agent and results message are sent over the WAN, 

while the interaction messages are passed across the substation LAN. If we 

only consider the amount of data sent over the WAN, in the mobile agent case 

the data transferred is Ba + Bresults, while in the client-server case the amount 

of data transferred is Binteractions' 

Time taken The amount of time taken to perform all of the interactions de

pends on the data size, along with the bandwidth and latency of the network. 

A simple model which took into account these factors was used in [119]. How

ever, in order to get a realistic time, it is necessary to include the time taken 

for the device to carry out the command or to respond to a request for infor

mation. This will be denoted, for the ph interaction, by the processing time 

tprocj' This time will depend on the nature of the command, along with the 

processing speed of the device or response time of the plant to which it is at

tached. However, it should be the same regardless of whether the client-server 

or mobile agent interaction method is used. 

Using the client-server method, and denoting the total time taken by Tcs: 

n 

Tcs = 'L(Tmsg(reqj, c, Dj ) + Tmsg(rePj, c, D j ) + Tproc) (~.3.1) 
j=O 

Using the mobile agent method, and denoting the total time taken by T~IA: 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



4.3 Mobile Agent for Remote Control of Power Systems 123 

n 

~(Tmsg(reqj, s, Dj ) + Tmsg(rePj, s, Dj ) + Tproc.) 
J=O J 

(--1.3.2) 

+ Ttransfer (ma, c, s) 

+ Tmsg(results, s, c) 

Extension to multi-hop agents 

Under certain circumstances, it might be desirable to perform a series of 

actions in one substation, and then, depending on the success or failure of these 

actions, perform another series of actions in a different substation. However, 

in this application, only a small amount of data would be transferred from one 

substation to the next. Therefore it should be possible to determine whether 

mobility or remote interaction was the preferred method for each sequence of 

actions using the same formula as for a single hop, but substituting values of 

bandwidth and latency of the network between the agent's current location 

and its next location for those in the formula representing the bandwidth and 

latency between the client and the substation. A similar approach is taken by 

[53]. Due to time constraints, a full analysis of multi-hop agent performance is 

not attempted here. 

4.3.3 Experiment 1 

A preliminary experiment was performed to provide an initial evaluation 

of the performance benefits of mobile agents for a remote control scenario. In 

this experiment, three computers were used. These were a client computer 

(733MHz Pentium III), a mobile agent server (333MHz Pentium II) and a 

routing server. Also, a relay unit having an Ethernet connection was used to 

provide a device to be controlled. 

The experiment consisted of a series of interactions between the client com-

puter and the relay. For each interaction cycle, the client connected to the 

relay, read its current status (open or closed) and disconnected. The client 

INFORMATION MANAGEMENT, MONITORING AND COT\TROL 
D.P. BU0( 



4.3 Mobile Agent for Remote Control of Power Systems 12-1 

then reconnected to the relay, operated it, and disconnected. Each cycle there

fore consisted of a read interaction and a write interaction. The protocol used 

for these interactions was a proprietary protocol developed by the manufac

turers of the relay, running on top of UDP lIP. Because the experiment \\"ClS 

intended to simulate interaction with a number of relays, rather than the sin

gle relay actually used, the client or agent disconnected from the relay after 

each interaction and then reconnected. This required the sending of a small 

number of additional messages for each interaction. 

A number of interaction cycles were performed using both mobile agent 

and client server methods. Both methods were identical except that when the 

mobile agent was used it travelled to the mobile agent server before performing 

the interactions. The mobile agent and client server were implemented as Java 

programs, and the Java Native Interface (JNI) was used to access an ActiveX 

protocol library for communications with the relay. 

The experiment was performed for two scenarios. In the first, all of the 

computers were connected to the same 100BaseT LAN. In the second, the 

router, mobile agent host and relay were connected to the LAN, and the client 

was connected to the router by a 19.2 kbps serial link, in order to simulate 

interactions over a wide area network. The one-way latency of the 100BaseT 

LAN, as measured by the Windows 'ping' program, was under 10ms, while 

that of the WAN was measured as 30ms. The 'ping' program works by sending 

a message to a remote computer and measuring the amount of time for a reply 

to arrive. However, the version provided with Windows can measure only to 

the nearest 10 milliseconds. Therefore, while inaccurate, these measurements 

are sufficient to provide a general indication of the relative latencies of the two 

networks. The results of these experiments are shown in Table 4.6, and on 

Figure 4.7, which relates to the slow network, and Figure 4.8, which relates 

to the fast network. Each interaction cycle in this data represents a connect

read-disconnect-connect-write-disconnect interaction. 

The results of these experiments demonstrate that, for this application, 

mobile agents are faster than a client-server approach if the following two 

INFORMATION MANAGEt-.IENT, MONITORING AND CO]\'TROL 
D.P. Bus( 



4.3 Mobile Agent for Remote Control of Power Systems 125 

! No. Cycles ! MA, 19 2kbps ! CS 192kbps I MA 100Mb , , ps CS , 100i\Ibp I 
0 1073.6 0 86.2 0 
1 1828.6 1696.4 714. 8 528.8 
2 2375.4 3553 .2 1309.8 967.6 
3 2962 .2 5149.4 1768.4 1470 
4 3232.6 6948.2 23 11 .4 1900.4 
5 3179.7 8758.8 2834.2 2489.4 
10 718l.6 17240.8 5874.8 4668 .8 

Table 4.6: Time Taken (seconds) for a Mobile Agent (MA) and Client-Server 
System (CS) to Perform a Number of Interaction Cycles Using Either a 
19.2kbps or 100Mbps Network. Times are the mean of three runs. 

10 

9 

8 

7 

6 

5 

4 

3 

2 

o 

..-/ 
- /" 

/ . 
/ -------
~ 
/ 

o 2 3 
Numbo r of read/write cycles 

~ 
.7 

/ • Mobile Agent 

• Client-Server 

~ 
• 

4 5 

Figure 4.7: T ime Taken (seconds) for a Mobile Agent (MA) and Client-Server 
System (CS) to Perform a Number of Interaction Cycles Using a 19.2kbps 
WAN. Individual run times are shown. 

conditions are met : 

• The network layout is such that , by moving, t he mobile agent can reach a 

location that provides a connection of lower latency and higher bandwidth 

to the computer it wishes to communicate wit h . In a power y t 111 , 

this would be true when a mobile agent was being sent to a ub ta ion 

from another location over a dial-up link , as the internal network of h 

substation would have a bandwidth of 10 or 100Mbps and a low lat nc r 

while the dial-up link could have a bandwidth of 64 or 12 kbp and a 

INFORMATION MANAGEMENT , MONITORING AND CO TROL 
D.? ElL ' 



4.3 Mobile Agent for R emote Control of Power Systems 126 

3.5 -

3 t-----------------------~ 

2.5,---------------y<::::::::::....--l 

21-------~~~~~~-i r---~ • Mobile Agent 

1.5 1------'"--:;~=__:;;IfL_-----i • Clien t Server 

0.5 r"'771"=--------------l 

O~--._-_.--_.--~-~ 
o 2 3 4 5 

Number of read/write cycles 

Figure 4.8: Time Taken (seconds) for a Mobile Agent (MA) and Client-Server 
System (CS). t? Perform a Number of Interaction Cycles Using a lOOMbps 
network. IndIVIdual run times are shown. 

higher lat ency . 

• The number of interactions to be performed between t he mobile agent 

and the server is such that the savings in data transferred over a slower 

network outweigh the cost of sending the mobile agent. The exact number 

of interactions will depend on the relative network speeds and the ize 

of the mobile agent and the client-server messages . In this experiment 

both were of small size, and so avoiding network latency became mo t 

important. Therefore the mobile agent was fast er than client-serv r as 

long as more than 1 cycle of interactions was performed. 

This is because to carry out a sequence of interactions remotely usmg the 

client-server system requires at least four messages per interaction (send read 

request , get value, send write request , receive acknowledgement of write). The 

delay incurred is the number of messages multiplied by the network lat ncy. 

To move a mobile agent and send a reply after the mobile agent has interac ed 

with a system incurs a delay equal to twice the latency. Therefore the mobil 

agent will incur less delay due to network latency, and t he difference b w n 

the two methods will increase with the number of interaction . 

I NFORMATION MANAGEMENT , MONITORING AND CO lTROL 
D.P. Ell 



4.3 Mobile Agent for Remote Control of Power Systems 127 

If both networks have the same performance characteristics, then the client

server method should always be faster, unless it is possible for the mobile agent 

to move onto the actual server with which it is to interact. For industrial 

control applications, this is unlikely, as most monitoring and control devices 

are incapable of hosting mobile agents. However, in an information retrie\'al 

application it is quite likely that, for example, a Web server might also be 

capable of acting as a mobile agent server. 

There are a number of sources of inaccuracy in this experiment. Firstl~', 

the results are slightly distorted by the fact that the mobile agent server was 

slower than the client computer. This gave a slight advantage to the client

server method, which is most visible in the case where the 100Mbps network 

is used, although part of the difference between the two methods in this case 

is due to the delay in transferring the mobile agent. In order to quantify the 

performance difference, 10 client-server interactions were performed between 

the mobile agent server and relay, and between the client computer and relay. 

The average time taken for 5 sets of these interactions was 4779ms for the client 

computer, and 6289ms for the mobile agent server. Therefore, the mobile agent 

server took approximately 31% longer on average. Other factors that may 

have distorted the results include just-in-time compilation by the Java Virtual 

Machine. 

4.3.4 Experiment 2 

Because of the limiting factors of the previous benchmark, and the need 

to gather more data, a second experiment was performed. In this experiment, 

an agent was used to remotely control a network-attached relay for a number 

of read/write interactions. Because of the (proprietary) protocol used by the 

relay, each of these interactions resulted in a number of messages being ex

changed between the agent and the relay. As in the data analysis experimellt, 

the bandwidth and latency were varied using a bridge running the Dumm~'llet 

program[113]. The experimental setup is shown in Figure -J.9, 

The experiment was designed only to evaluate the use of mobile code in 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 



4.3 Mobile Agent for Remote Control of Power Systems 128 

this application. Therefore the interactions were performed using a software 

library, rather than via static agents as described earlier in this thesis. 

Some problems were encountered with the Java library that connected to 

the relay. In order to prevent these problems, a call to Thread.sleep(500) ,vas 

added after each operation, causing the agent to sleep for 500 milliseconds. The 

agent also slept for 300 milliseconds after connecting to the relay. To obtain 

the final results, the total sleep time (0.5n + 0.3 seconds) was calculated and 

subtracted from the measured time. This might introduce a small error due to 

the inaccuracy of the Thread.sleep function. However, this should be reduced 

by the number of interactions used. 

Relay 

Server Client 
C 566, 256 MB C 566, 256 MB 

Agent Container Agent Container 

10/100 Bridge 10/100 Analysis 
f----- Ethernet f-- I-- Ethernet f----

Agent 
Switch 

Pili 333 Switch 
FreeBSD 

AP. Server 

Main 
Container 

Figure 4.9: Experimental Setup for Remote Control Experiment 

Theoretical Results 

Using the equations 4.3.1 and 4.3.2, it should be possible to predict the point 

at which the mobile agent method becomes more efficient than the client server 

method. The processing time (Tproc) is unknown. However, the processing 

time is the same for both the mobile agent and client-server methods, and 

so can be omitted from the comparative analysis. Also, the equation will be 

. . . rr _ size + latency. and b\' supposing that 
slmplIfied further by settmg 1. msg- bandwidth ' 

. B d all repl\' messages the same 
all request messages have the same Slze rcq an . , 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Hllo..;( 



4.3 Mobile Agent for Remote Control of Power Systems 129 

size Brep. While this ignores marshalling overheads, accurate measurements of 

these are not available, and in any case, the marshalling overhead should be 

small compared to the actual message / mobile agent transfer time. 

For the client - server method, the equation is simplified to: 

T. - n(Breq + Brep) 
cs - + 2n6wan 

Twan 

For the mobile agent method, the simplified equation is: 

+ 

n(Breq + Brep) + 2 s: 
nUlan 

Tlan 
2BMA -- + 26wan 
Twan 

In these equations, Twanrepresents the bandwidth of the wide area network, 

6wanrepresents the latency of the wide area network, and Tlan and 61an represent 

the bandwidth and latency of the local area network. Because in the experiment 

the mobile agent returns to the client to display its results, the amount of data 

transferred in the mobile agent case is twice the size of the agent, rather than 

the size of the agent added to the size of an acknowledgment message. 

The "crossover point" at which using a mobile agent becomes more efficient 

than a client-server system then depends on the bandwidth T, latency 6, num

ber of interactions n and the size of the mobile agent and of the replies. The 

sizes of the request and reply messages are unknown. As an approximation, 

it is assumed that each message has size 100 bytes. The size of the mobile 

agent is 6353 bytes (object) + 10796 bytes (class files). For these calculations, 

it is assumed that the class files are already present, and the object size only 

is used. 

The three graphs, Figures 4.10, 4.11 and 4.12, show the theoretical time 

taken against the number of interactions, for several different settings of \VA): 

bandwidth and latency. It can be seen from Figures 4.10 and 4.1lthat decreas

ing the bandwidth of the WAN has the following effects: 

• The gradient of the client/server line is increased 

INFORMATION MANAGEMENT, MONITORING AND COI\'TROL D.? Bllsc 



4.3 Mobile Agent for Remote Control of Power Systems 

2 

~ 1.5 
.!!!.. 

" ~ 
.l!! 
CD 
E 
i= 

0.5 

0~0--~2--~4~--~--~--~--~--~--~--~--~ 
6 8 10 12 14 16 18 20 

Number of requesVreply interactions 

130 

Figure 4.10: Theoretical Timing (Excluding Marshalling and Operation Time) 
for 1Mbit/s, 25ms WAN, 100Mbit/s, 1ms LAN 

2 

1.5 

---------------------------

.!!!.. 

" CD 

'" .l!! 
Q) 

E 
i= 0.5 

Number of requesVreply interactions 

Figure 4.11: Theoretical Timing (Excluding Marshalling and Operation Time) 
for 100 kbit/s, 25ms WAN, 100Mbit/s, 1ms LAN 

• The intercept of the mobile agent line is increased 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



4.3 Mobile Agent for Remote Control of Power Systems 

2 

~ 1.5 
~ 
c: 
Q) 

'" S 
Q) 

E 
i= 

0.5 

°0:---~2---74--~---7---=--~---L---L---L---
6 8 10 12 14 16 18 20 

Number of requesVreply interactions 

131 

Figure 4.12: Theoretical Timing (Excluding Marshalling and Operation Time) 
for 100 kbit/s, 50ms WAN, 100Mbit/s, 1ms LAN 

Due to the relative magnitudes of these changes (the client/server messages 

are much smaller than the mobile agent) the overall effect is to significantly 

increase the number of interactions required before the mobile agent is the 

most efficient interaction method. 

It can be observed from Figures 4.11 and 4.12 that increasing the latency 

of the WAN (by 25 milliseconds) has the following effects: 

• The gradient of the client/server line is increased 

• There is little effect on the mobile agent line (actually, the intercept will 

be increased by 50 milliseconds, but this is not noticeable on the graph). 

Therefore, the effect of increased latency is to decrease the number of interac

tions required before the mobile agent is the most efficient interaction method. 

However, the number of interactions will never fall below 1, as two messages 

(equivalent to a single interaction) must always be sent across the \VAI\ when 

the mobile agent is used. Therefore, for a single request/reply interaction, the 

mobile agent will always be less efficient (as long as the combined size of the 

INFORMATION MANAGEMENT, MONITORING AND COKTROL D.P. Bus! 



4.3 Mobile Agent for Remote Control of Power Systems 
132 

request and reply messages is smaller than that of the mobile agent), due to a 
larger size/bandwidth term. 

Problems with the estimated crossover point The estimated "crossover 

point" will be optimistic (in favour of the mobile agent) because the mobile 

agent transfer overheads have been omitted. Also, the JADE platform is not 

as efficient as is theoretically possible, as a number of messages, rather than 

a single message, are sent in order to send or retrieve an agent. Therefore, it 

is expected that in the experiment the overall trends should be the same as 

the theoretical results described, but that the crossover point and time taken 

will occur at a slightly greater number of interactions. The time taken in all 

experiments will also be greater than the theoretical time due to the relay 

operation time and the time taken to connect to the relay. 

Results 

Table 4.7 shows the fixed parameters for the experiment. The latency 

between the mobile agent server and the relay and that between the client and 

relay at 0 latency were measured using a free "ping" implementation3 and are 

the average of 10 pings. The size of the mobile agent is slightly inaccurate 

as the agent had to be modified in order to print out its size. However, this 

should only make a small difference to the object size. The class file sizes are 

those from the actual agent used in the experiments. 

Object Value 

fJ ( s, d) (server-device latency) 1. 13ms 
fJ (c, s) when set fJ (c, s) = 0 (client-server latency) 0.82ms 
fJ (c, d) when set fJ (c, s) = 0 (client-device latency) 1. 68ms 

Size of agent object 6353 bytes 
Total size of agent .class files (3 files) 10796 bytes 

T bl 4 7· Fl'xed Experiment Parameters a e .. 

3www.cfos.de/ping/ping.htm 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Bu.'i! 



4.3 Mobile Agent for Remote Control of Power Systems 
133 

An initial experiment (not described here) varied the number of actions 

between agent and relay from 0 to 5. However, it was found that with this 

number of interactions the client-server method always outperformed the mo

bile agent. Because the results of the first experiment did not show any point at 

which mobile agents became more efficient than the client-server method (the 

client-server method always completed the task more quickly than the mobile 

agent), a second experiment was performed. It was decided for this experiment 

to focus on the parameters of latency and number of interactions. Therefore, 

the bandwidth was fixed at 1Mbit/s, the one-way latency was varied between 

o and 100 milliseconds and the number of interactions was varied between 0 

and 100. The results of this experiment (as the mean time of four runs) are 

summarized in Tables 4.8 and 4.9. Full results are given in Appendix A. The 

sleep time between interactions and after connecting to the device has been 

subtracted from both mobile agent and client server results, as this time was 

the same for both agents and should not be present in a full implementation. 

N umber of interactions 
o I 20 I 40 I 60 I 80 100 

0 2.36 2.79 3.36 3.64 4.07 4.57 

Latency(ms) 
25 3.87 4.22 4.75 5.23 5.63 6.12 
50 5.32 5.71 6.32 6.83 7.31 7.61 
75 6.72 7.21 7.79 8.48 9.05 9.39 
100 8.22 8.92 9.36 10.02 10.64 11.00 

Table 4.8: Time (sees) Taken By Mobile Remote Control Agent (Mean Time -
Sleep Time) 

Because of the implementation of the mobile agent, it was necessary for 

it to locate the server before moving. This was done by giving it the name 

of an agent on the server (representing a device agent) and then having the 

mobile agent ask the AMS for the location of this agent, which could then 

be used to request a move. This interaction used the FIPA request protocoL 

which involves three messages, a request message from the agent to the :\:'15 . 

. f from the ,-\\15 to the followed by an agree message and an III orm message . " 

INFORMATION MANAGEMENT, f,IoNITORING AI'.'D CONTROL D.P. Busr 



4.3 Mobile Agent for Remote Control of Power Systems 134 

N umber of interactions 
o I 20 I 40 I 60 80 100 I 

0 1.63 2.09 2.47 2.92 3.31 3 ~-. I ;) 

Latency(ms) 
25 1.98 3.30 4.78 6.07 7.50 9.00 
50 2.53 4.84 7.31 9.64 12.05 1-1.-17 
75 2.95 6.21 9.57 13.01 16.39 19.79 
100 3.30 7.53 11.88 16.29 20.69 2.5.12 

Table 4.9: Time (sees) Taken By Static Remote Control Agent (Mean Time -
Sleep Time) 

agent. 

In order to quantify the cost of this operation, another series of experiments 

were performed. The mobile agent was modified to print out both the total 

time taken, and the time taken excluding the time to locate the sen'er. The 

time taken to locate the server is then the difference between these two times. 

The mean time to locate the server for four interactions, at different latencies, 

is shown in Table 4.10. 

Table 4.10: Cost of Locating Server 

Analysis 

Figure shows how the crossover point at which the time taken by a mobile 

agent became less than that taken for a static agent varied as the bandwidth 

and latency were altered. The area above the line is that for which a mobile 

agent provided superior performance. 
It can be seen that for small numbers of interactions, or where the latency 

was low, the client-server, or static agent, method was superior. However, 

when the number of interactions and the latency were large, the time taken by 

the mobile agent was less than that for the static agent. 

INFORMATION MANAGEMENT, MONITORING AND CO!\TROL 
D.P. BIIS( 



4.3 Mobile Agent for Remote Control of Power Systems 135 

100 

- MA time = CS time . 
90 

80 

VI 70 
c 
0 

n 60 ~ 

Mobile agent time < client server time 

.sa 
E 50 
'0 ... 
Q) 

40 .0 
E 
:J 
Z 30 

20 Client server time < mobile agent time 

10 

0 
0 20 40 60 80 100 

Latency (ms) 

Figure 4.13: Crossover Point 

Comparison to theoretical model 

Using the model discussed earlier, the experimental results are now com

pared with theory, first for a scenario in which the latency is altered, and then 

for a scenario in which the number of interactions is altered. While it is not 

expected that the theoretical results will match the experimental results com

pletely, due to the simplifications made in the formula and also due to the 

startup cost (starting the agent, loading a library and connecting to the relay) 

incurred in the experiment, it is expected that there should be a strong corre

lation between the two sets of results. In the theoretical results presented here, 

it is assumed that the latency of the LAN is 0 and the latency of the WAN is 

equal to the set latency. Using the actual values should not make a significant 

difference, as the latency of the LAN is actually less than 1 millisecond. giving 

an error for 100 interactions of 100 milliseconds or 0.1 seconds. 

Effect of altering latency By taking the client-server results for n = -±O, 

the graph shown in Figure 4.14 is obtained. This shows that the theoretical and 

experimental results do not agree completely. Firstly. there is a fixed ('( )~t in 

INFORMATION MANAGEMENT, l\IoNITORING AI\'D CONTROL 
D.P. BII.,( 



4.3 Mobile Agent for Remote Control of Power Systems 136 

the experimental results (shown by the point at which ~ - 0) Th' . U - • IS consIsts of 

the time to load the library used to communicate with th I h . . e re ay, t e processmg 

time, or response time, of the relay, and the per-interaction overheads Os and 

OR' The difference in the gradients of the two lines (overhead varying with 

latency) is probably due to the time taken to exchange the messages required 

to establish a connection to the relay. 

Using a linear approximation, the equation of the measured line is t 

948 + 2.5. The equation of the theoretical line is t = 808 + 6.1 x 10-5•4 

12r------.-------.------.-------~----~ 

-e- Measured values 
-+- Theoretical values 

8 

4 

2 

20 40 60 80 100 

Latency (ms) 

Figure 4.14: Comparison of Theoretical and Actual Results for Static Agent 

with n = 40 

Performing the same procedure for the mobile agent, and taking the mobile 

agent size to be 6353 bytes (its size excluding class files) the graph of Figure 

4.15 is obtained. 
This graph shows a significant difference between the predicted and experi-

mental results for the mobile agent method. Even when allowing for processing 

4Because Breq+Brep is insignificant compared to the rest of the equation (the bandwidth 
r(d,c) 

is IMbit/s, which approximately equals 128Kbyte/s, changing the (estimated) values of 

Brepand Breqmakes little difference to the theoretical results. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



4.3 Mobile Agent for Remote Control of Power Systems 

10r.:====~===---~----~--__ ~~ __ ___ 
- Experimental results 

9 - Theoretical results 

8 

7 

6 

Q) 5 
E 
f= 

4 

3 

2 

- Theoretical results 
compensating for 
fixed term 

°O~====~2~O======~4~O======~60=======8~O======~100 
Latency (milliseconds) 

137 

Figure 4.15: Comparison of Theoretical and Actual Results for Mobile Agent 
with n = 40 

time, mobile agent marshalling and registration overheads and the actual la

tency of the local area network by shifting the mobile agent line so that the 

values at 0 = 0 are identical, there is a marked difference in the gradient of the 

two lines. The model predicts that, because there should be only one message 

sent from client to server and one from server to client (to transfer the mobile 

agent), the latency of the wide area network should have little effect on the 

time taken (If the latency is 100 milliseconds, then this should add only 200 

milliseconds to the total time). If the recipient of a mobile agent must send a 

message to acknowledge the mobile agent, the effect of latency should double, 

which would double the gradient of the line. However, this would still not be 

close to the experimental results. In the experiment, there is a difference of 

approximately 6 seconds between the time taken when 0 = 0 and the time 

taken when 0 = 100, when even allowing for a request and a reply betwcell 

the mobile agent sender and recipient the difference in theory would be 400 

milliseconds. 

Part of this difference is undoubtedly due to the need to locate the ~cn'n 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



4.3 Mobile Agent for Remote Control of Power Systems 138 

before the mobile agent moves. As shown by Table 4.10, the time to do this 

ranges from 0.13 seconds at 0 latency to 0.94 seconds at 100 milliseconds one

way latency. However, this is insufficient to account for the whole difference. 

Another possible reason might be the inefficiency of the Java R'\II protocoL 

used by JADE for message and mobile agent transfer. According to [1201, it 

is possible for an interaction using RMI to require as many as six round-trip 

interactions for a single request and reply. There may also be other unknown 

overheads in mobile agent transfer, which result in message exchange. 

Changing the number of interactions Figure 4.16 shows the results for a 

set latency of 50 milliseconds, varying the number of interactions. As for when 

the number of interactions was fixed, there is a large fixed overhead due to the 

time taken to start the agent and connect to the relay. There is also a variable 

overhead which increases with the number of interactions. We hypothesize 

that this is due to the marshalling overheads and to the relay's operation time. 

For the measured results, a linear approximation is t = 0.12n + 2.5. For the 

theoretical results, a linear approximation is t = O.ln. Therefore, for this case, 

the variable overhead is equivalent to 0.02n, or 20 milliseconds/interaction, 

which is a realistic value for Tproc. However, as the value is so small it is also 

possible that it is affected by experimental error. 

For the mobile agent, the graph obtained is shown in Figure 4.17. The 

discrepancy between the fixed term in theory and in practice can be explained 

by the increased cost (compared to the theoretical value) of moving the mobile 

agent and to the cost of establishing a connection to the relay, as observed in 

previous results. The difference in gradient can be attributed to the processing 

time T. and to the fact that the actual latency of the LAN was 1.13 millisec-
proc 

onds and not 0 which would create an additional time cost of approximately , , 
2.2 milliseconds per interaction. A linear approximation to the plot for the 

measured data is t = 0.0245 + 5.3, whereas that for the theoretical data is 

t = 1 x 10-55 + 0.19 .. However, the gradient of the measured data plot is only 

. d 1 f T. - 0 02seconds per interac-slIghtly larger than the suggeste va ue or proc - . 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Bus!' 



4.3 Mobile Agent for Remote Control of P S ower ystems 139 

151r=~~======~----~------~-----
---&- Measured results 
-+- Theoretical results 

10 /~ 

:e 
(]) 

E 
i= 

5 

o,~o------~----~~----~------~----~ 
20 40 60 80 100 

Number of interactions 

Figure 4.16: Comparison of Theoretical and Actual Results for Static Agent 
with One-Way Latency = 50ms 

5 

(]) 4 
E 
i= 

3 

2 

---&- Measured values 
-+- Theoretical values 

20 40 60 80 100 

Number of interactions 

Figure 4.17: Comparison of Theoretical and Actual Results for :".Iobile Agent 

with One-Way Latency = 50 ms 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. BIIS( 



4.3 Mobile Agent for Remote Control of Power Systems 140 

tion obtained from the plot for the static agent. This suggests that the main 

problem with the theoretical model for the mobile agent based method is that. 

as previously discussed, it significantly underestimates the time to move the 

mobile agent. 

Discussion 

One drawback of using a mobile agent for remote control is the fact that the 

actions to be performed must be known to the operator at the time the agent 

is launched. If an agent is only to perform a single action, its performance is no 

better than the client-server case. This means that the agent cannot be used, 

for example, for cases where the operator must select an action to perform 

based on the results of the previous action. However, in circumstances when 

a sequence of actions can be determined prior to launching the agent, such as 

the example given at the start of this section, the mobile agent does provide 

appreciable performance improvements. 

In the experiment described in this thesis, the "crossover point" betwecll 

mobile agent and static agent implementations came at a relatively high num

ber of interactions (around 30-40 interactions for 25ms<latency<100ms). This 

is probably because the time taken by the mobile agent to locate the server, 

move and connect to the relay (shown by the results for n = 0) represents a 

high proportion of the total time taken in all of the interaction sequences. In 

contrast to this, the "startup time" for the static agent was much less, as it had 

only to connect to the relay. In order to make mobile agents more suitable for 

small numbers of interactions, effort should be made to reduce this overhead. 

This problem is similar to one highlighted in other work [54]. 

4.3.5 Summary and Conclusions 

While the results obtained in the two experiments (Sections 4.3.3 and 4.3.4) 

display the same overall trend, with mobile agents having better performance 

at high latencies, the number of interactions required before mobile agents 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Bw,e 



4.3 Mobile Agent for Remote Control of Power Systems 141 

performed better was much lower in the preliminary benchmark than in the 

detailed benchmark. The reasons for this include: 

• In the first benchmark, each interaction consisted of a sequence connect

read-disconnect-connect-write-disconnect. In the second benchmark, the 

agent connected to the relay at the start, and each interaction consisted 

only of a read-write pair. Therefore, the number of messages per inter

action was significantly lower in the first benchmark. With hindsight, a 

more realistic scenario, even when simulating interactions with multiple 

relays, would be for each interaction to be either a connect-read-write

disconnect interaction, which should produce results somewhere between 

those of the two benchmarks, or the read-write interaction used by the 

second benchmark. This is probably the most significant difference be

tween the two benchmarks . 

• The mobile agent system used for the first benchmark was simpler than 

the one used for the second benchmark, and fewer messages had to be 

exchanged in order to move an agent from one server to another . 

• The agent size of the agent in the first benchmark was less than that of 

the agent in the second benchmark. 

Taken together, the two sets of experimental results permit the conclusion 

to be drawn that mobile agents can improve the performance of a sequence 

of remote control operations over a high latency network. However, the exact 

sequence length and latency required before mobile agent performance is better 

than client-server performance depend on the particular implementations of the 

agent, agent platform and control devices. 

When building the system, which has a multi-agent component as well as 

a mobile agent component, it was desired to adhere as closely as possible to 

the FIPA standards. This resulted in the choice of the JADE platform for 

system implementation. However, JADE's focus is not on mobile agents, and 

so it lacks some of the mobile agent related features of other systems (strong 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



4.3 Mobile Agent for Remote Control of Power Systems 142 

mobility, support for multiple versions of the same agent class in the same 

container, inter-platform mobility), and its agents are also more "heavyweight" 

(around 30 kilobytes for a basic serialized agent, excluding class files which, as 

part of the system, were already present). For a full deployment of the system 

it might be necessary to extend the platform or to re-examine the available 

alternatives. 

Another problem encountered in constructing the system was that much 

of the industrial automation software and hardware that was to be integrated 

with the mobile or static agents is Windows-based and communicates only 

via ActiveX or via DLL libraries. Therefore considerable effort had to be 

undertaken, using the Java Native Interface, to allow agents to access these 

applications. Further work in this area would benefit from the development 

of simpler methods of accessing industrial automation devices using Java, or 

from the use of alternative technologies for the implementation of multi-agent 

systems (for example, [121] discusses the porting of a mobile agent system to 

Microsoft .NET). 

Related Work 

Tsukui et al [115] have used mobile agents to retrieve data from power 

system protection devices. As in our work, they utilized a mobile agent for 

analysis. In their application it was used to analyse fault records from devices. 

They also used mobile agents to gather status information from devices and 

to alter device settings. This application is similar to the control application 

described here as the alteration of a setting on a device can be considered, , 
from the point of view of an agent, as a control operation (the agent sets the 

setting and receives a reply to confirm that it has been altered). However, 

their work does not include a detailed analysis of application performance, or 

describe the agent implementation in detail. 

Harrison Chess and Kershenbaum [55] suggested the use of mobile agents , 
for remote control applications, and suggest that agents facilitate "remote real-

time control when the network latency prevents real-time constraints being met 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



4.4 Summary 143 

by remote command sequences". However they do not pro . d C , VI e a perlormance 

model or any experimental results. The results of the experiment described 

here suggest that the statement made by Harrison et al may be correct. 

4.4 Summary 

This chapter has examined the application of mobile agents within the 

architecture of Chapter 2, concentrating on the applications of data analysis 

and remote control. In the data analysis application, a mobile agent was used 

to travel to a database and perform some analysis on the data in that database, 

before returning a report to the user. An extension of this agent was capable of 

analysing multiple data sets, and was implemented in such a manner that new 

analysis functions could be programmed by the user. In the remote control 

task, an agent was used to carry out a sequence of actions in a substation, via 

the control devices. It was demonstrated that in the data analysis task, the 

use of a mobile agent provided superior performance to the use of static agents, 

provided that the amount of data transferred was large or the bandwidth of 

the network was low. In addition to this, it was demonstrated that when using 

a mobile agent, a performance improvement could be achieved by providing 

direct JDBC access to the database rather than by using a wrapper agent to 

perform translation. However, data source independence could still be achieved 

by allowing a wrapper agent to be used to generate the SQL query, which was 

then passed to the mobile agent. This technique is particularly appropriate 

due to the simple nature of the data sets used by the analysis agent (fiat 

tables consisting of two columns), and may not work in more complex data 

retrieval tasks. For control tasks, it was demonstrated that the mobile agent 

had higher performance than a client-server control system when the number of 

interactions to be performed was large and the latency of the network was high. 

However, because control messages are typically small, reducing the bandwidth 

of the network, at least for smaller numbers of interactions, decreased the 

relative performance of the mobile agent as the agent size exceeded the t()tal 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



4.4 Summary 144 

size of the control messages. 

The next chapter presents a prototype implementation of the full architec

ture, including both mobile and static agents, and provides examples of its 

usage. Based on a real-time simulator provided by the National Grid Com

pany, the prototype provides a realistic testbed for the concepts described in 

the thesis so far. 

NG AND CONTROL 
INFORMATION MANAGEMENT, MONITORI 

D.P. Buse 



Chapter 5 

Irnplell1entation of Substation 

Inforll1ation Managelllent 

System Based on Proposed 

Architecture 

5.1 Introduction 

This chapter describes a distributed substation automation system pro

totype developed using the architecture and models described in this thesis. 

To provide a realistic test environment for the system without the difficulty 

involved in an implementation on an operational site, a real-time substation 

simulator provided by the National Grid Company (Figure 5.1) was used. This 

simulator consists of an industrial computer with a large number of analogue 

input and output channels, which are identical to the I/O facilities available 

to substation controllers in a current substation. Because the simulator \\'as 

designed to test substation control equipment, any system which operates cor

rectly with the simulator should be capable of doing so in an actual substation 

environment. 

The tasks of the prototype system are to gather data from the suhstation 

1J5 



5.2 System Archi tecture and Agents 
146 

Figure 5. 1: National Grid Company Substation Simulator 

simulator via a dat a acquisition system, store this data in the National Grid 

Information Management Unit (IMU) database, and provide online display of 

data, historical dat a querying, data analysis and documentat ion managem nt 

services to users via a human-machine interface. 

The prot otype is implemented using the JADE multi-agent systems 

toolkit[95] . The reasoning engines of the agents are implemented using a Prolog 

interpreter l with a J ava interface. FIPA SL expressions (queries and r qu st ) 

may be converted into P rolog expressions in a relatively simpl mann r a both 

are based on first-order logic, and the main difference lies in the yntax (al

though FIPA SL has modal expressions and frames which are not implement d 

by Prolog) . 

5.2 System Architecture and Agents 

The information management system, shown in Figure 5. 2 u e the g n ri 

archit ect ure described elsewhere in this thesis. However the gen ri da a log

ging dat abase has been replaced by t he Information Manag ment nit (H\I ), 

1 AMZI P rolog (http ://www.amzi.com). 

I NFORMATION MANAGEMENT , M ON ITORING AND CO TROL D.P. Bu, 



5.2 System Architecture and Agents 14i 

which performs the same functions but represents the actual system to be 

installed in National Grid Company substations. The IMU is based on a :\Ii

crosoft SQL Server database, and has a Web service interface ,yhich allO\y:-; 

other programs to use the Simple Object Access Protocol (SOAP), a "'orld 

Wide Web Consortium standard, over Hypertext Transfer Protocol (HTTP) 

to insert data into the IMU or to perform queries. The component of the I~IU 

used to acquire data is the Data Recording Service (DRS), and that used to 

query the IMU is known as the Query Service. There is also a second interface 

to the IMU via the Microsoft .NET Remoting protocol. 

Human 
Machine 
Interface 

Information 
Management 

IMU 

S stem 

Acquisition 
System 

Substation 
Simulator 

Figure 5.2: Overall Structure of System 

Figure 5.3 shows the architecture of the information management s:vstelll, 

based around the IMU system. Data is gathered from the substation simulator 

by a data acquisition PC, and stored into the IMU. The IMU is managed b,' 

its own agent, the IMU agent, which is based on the database agent described 

th d· am are as gi,'en on the 
. St' 3 1 The other agents shown on e mgr III ec IOn ., 

d 'b d' Chapters 2 and 3, Ho\\,-
architecture diagram of Figure 2.7 and escn e III ' 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



5.2 System Architecture and Agents 

Ontology 
Database IMU 

DAS 

HMI 

MA Server 
(part of AP) 

Data from 
IEDs 

Static 
Database 

Web 
service 

Directories 
(part of AP) 

Document 
collection 

148 

Figure 5.3: Information Management Agent System Architecture 

ever, the mobile server (MS) agent has been omitted, as no mobile servers are 

available in the prototype implementation. Also, there are currently no task 

agents present in the prototype. 

Because the IMU is only a database, it is not possible to control the system 

via the IMU. Also, it does not provide any means to automatically notify a 

subscriber when data in the database is updated. This means that it is difficult 

to support event-driven updating, for example, the FIPA subscribe protocol, 

using the IMU. Therefore, the agent-based data acquisition and control system 

shown in Figure 5.4, which uses the architecture described in Section 2.2, is 

used for control and event-based data updates. 

The system contains only a single lED, the data acquisition PC s)'stem. 

Although this PC contains several I/O cards, it communicates with the multi

agent system over a TCP /IP connection, and it is simpler to treat the PC as 

a single device. Therefore only one device agent (represented in Figure :),.J 

by "DAQ Agent") is present in the system. There are multiple plant ;lgf'llts 

INFORMATION MANAGEMENT, l\IONITORING AND CONTROL D.P. Eus( 



5.2 System Architecture and Agents 

DRS = Data Recording Service 
DB = Database 
Doc. = Document 
IMU = Information Management Unit 
Onto. = Ontology 

~ 
~ 

IMU 

DRS 

Data from 
simulator 

Figure 5.4: Data Acquisition Agent System Architecture 

1-19 

(in a complete system one for each item of plant, however, in the current 

prototype only three have been implemented), co-located with the device agent 

and acquiring data by communicating with it. These agents are capable of 

passing information to the user interface agent, and of carrying out control 

commands sent to them. 

5.2.1 Information Management System Agents 

The information management system consists of database agents (as de

scribed in Section 3.1), an IMU agent for communication with the HvIU, user 

interface agents and mobile agents. In addition, broker or task-oriented agents 

may be used to provide specific services. Further detail on the implementation 

of these agents is provided by Appendix B, and the format of the configuration 

files used is described in Appendix C. 

Database Agents There are three database agents present in the system. 

The static database agent manages a database containing static configuration 

information regarding the substation plant and the data acquisition s~·stem. 

The mapping agent (part of the data acquisition system) manages the map-

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Bllse 



5.2 System Architecture and Agents 150 

ping rules allowing agents to perform input data interpretation. The ontology 

database agent manages a database containing the system ontologies. The 

behaviour of these agents is as described in Section 3.1. 

The IMU Agent While the National Grid Company nIU is a database. it 

is not accessed via an SQL-based interface, but via a Web service. Therefore, 

an additional agent, the IMU agent, is required for this system. The reasoning 

engine of this agent has been modified to add procedures which allow the 

Prolog interpreter to query the IMU via the Web service interface. However, 

to external agents, this agent will appear the same as it would if it were a 

database wrapper agent, as it still uses the FIPA Query protocol and the global 

ontology. The mapping rules of the IMU agent, written in Prolog, translate 

between the global system ontology and the schema used by the IMU's \Veb 

service interface. 

The Alarm/Event Agent The alarm/event agent is a broker agent that 

takes events and alarms generated by plant agents and forwards them to user 

agents as appropriate. 

It operates by locating agents providing a subscription service and then 

advertising the subscriptions provided by those agents as if it provided them 

itself. When an agent subscribes for a particular event notification, the alarm 

and event agent establishes a subscription with the provider agent and forwards 

any event notifications received. 

The use of a broker agent provides the possibility to add new features, for 

example, to generate alarm conditions by combining information from multiple 

sources. This functionality has not yet been implemented in the prototype and 

is a topic for further work. 

User Interface Agent and HMI The user interface agent is implemented 

in Visual Basic (Microsoft Corporation, Redmond, \VA) and provides a link 

between the HMI interface (implemented in LabVIE\V (National Instruments, 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Bus( 



5.3 System Ontology 151 

Austin, TX)) and the multi-agent system. It also provides its O\yn graphical 

user interface for mobile data analysis agent generation and d t b . a a ase quer~·mg. 

5.3 System Ontology 

As described in Section 2.4.3, the system's ontology consists of several com

ponents: the automation ontology, which provides a (partial) generic ontology 

for data acquisition and control systems, the substation plant ontology, which 

describes the different items of plant found in substations, and the information 

management ontology, which describes documents, other information resource's 

and querying. The instantiations of those ontologies used in the development 

of the prototype are described here. The ontologies are modelled using a Ui\IL 

class diagram notation, with operations representing actions that can be per

formed on an instance of a particular class. 

Automation Ontology The automation ontology describes industrial au

tomation devices and systems. In the prototype system, the ontology used 

is that shown in Figure 2.5, which was used to design the data acquisition 

multi-agent system and is described in Section 2.2. 

Plant Ontology The plant ontology describes substation plant and its prop

erties, along with the operations that may be performed on it. It is not in

tended to represent all of the properties available in a full substation automa

tion system would require a substantially larger ontology, but only to provide 

an example and a simple ontology for the prototype implementation. This 

ontology is based on the properties provided by the substation simulator, and 

is shown in Figure 5.5. Additional properties of the transformer object have 

been taken from the database schema of the transformer monitoring system 

described in [92]. However, in this schema, there are quantities representing 

both actual and predicted quantities, for example OIL_IN_ORG (actual oil 

in) and OIL_IN_OUT (predicted oil in temperature). For the purposes of the 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Busc 



5.3 System Ontology 
152 

ontology, it is considered that the predicted temperature i not actuall a ep

arate property, but that it represents what some agent believes that the \ alu 

of that property will be at a certain time (see Section 2.4.2). The ontolog 

represents only actual properties of the transformer. However thi i not h 

only way to represent the transformer. An alternative would be to repre ent 

the transformer as a collection of components (e.g. tap changer , winding tap 

change miniature circuit breaker), and then represent the propertie of the 

components. 

All properties of the disconnect or and circuit breaker are inherited from the 

parent class, "switchgear)). This is because the difference between these type 

of plant is that it is not possible to open a disconnector while it is live. Thi 

cannot be shown in the object model and should instead be encoded into th 

behaviour of the relevant plant agents . 

conn ec ted-to 

J 
Plant 

~ 
-10 

-Number 

I 
I 1 1 1 I 

VT Capacitor Reactor Bu shar SeriesReaclor Transformer Switchgear 

-voltage -mvar -nwar -rating -Iv-current -status 

-x -Iv-vol ts +open!) 
-/v-mvar +closeO 

I -lap-position t.;> -hOlspot·temperature 

-oll- in-temperature 

I J -oil-Qut-temperature 
-rallng 

SourceBusbar LoadBusbar ral lO-hv-lv 

-Ioad-mvar -no-or· taps 
- input-voltage 

-mcb-stale 
-compensated-voltage -toad-current 

-tert iary-voltage 
-input-current 

-tertiary-connection 

-transformer-type 

+set-ta p-posihOn() 

I 1 
Dis connector ClrcultBreake r 

Figure 5.5: Ontology of Substation Plant (UML cl.as diagram), Ba d on 
Substation Simulator Data and Transformer Monitonng Sy tern 

INFORMATION MANAGEMENT , MONITORING AND CO NTRO L 



5.3 System Ontology 
153 

Information Management Ontology Th . f . 
. . e III ormatIOn management ontol-

ogy, shown In FIgure 5.6, provides the predicates used f d . 
. or ocument retneyal 

and qUer~lng. The properties of the resource-description class are based on 
the DublIn Core metadata standard[91]. 

Relevance 

-Amount 

Query 

* -End14 

----

* -End13 

Resource 

-Content 
-Encoding t-----L 

* * 

ResourceDescription 

-Title 
-Creator 
-Subject 
-Description 
-Publisher 
-Contributor 
-Date 
-Type 
-Format 
-Identifier 
-Source 
-Language 
-Relation 
-Coverage 
-Rights 

Figure 5.6: Basic Information Systems Ontology (UML class diagram) 

This is a very basic ontology, which would not be suitable for all information 

retrieval applications, but fits with the needs of this system. Each docum('nt is 

considered to be a resource, which is described by a resource descriptIOn. Also. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Bus! 



5.4 Examples of Usage 
1.54 

a query has a particular relevance to each resource h' h' . 
, W lC IS represented by a 

real number between 0 and 1. Relevance is d fi d h . ' e ne as a tree-place relatron: 

relevance(Document, Query, Relevance) 

Therefore, it is possible to query an information management agent, such 

as a document agent, using a query such as: 

(all 

(sequence ?doc ?rel) 

(relevance 

?doc 

(query :keywords 

(set "transformer" "maintenance")) 

?rel)) 

The above example means "Find all sets of a document ?doc and relevancy 

?rel such that the relevance of ?doc to the query "transformer maintenance" 

. 9 l" I h . IS . re . n t e example above, the query IS represented as a frame containing 

a set of keywords. In the current implementation, this is abbreviated to just 

the set of keywords, as no other type of query is permitted. 

5.4 Examples of Usage 

This section provides several examples of how the system may be used to 

perform various tasks, including data querying, mobile agent data analysis and 

remote operation. Example FIPA ACL messages are provided to demonstrate 

the use of the FIPA standard protocols. Each ACL message has a sender, 

receiver, content (which is written in the FIPA Semantic Language (SL)) and 

protocol. In these examples, the agent name user(Qpc2214: 1099/ JADE repre

sents the user agent. Certain message parameters (e.g. conversation-id~ ontol

ogy) have been omitted from the messages for brevity. Also, searches of the 

directory facilitator (DF) are not shown. Each time an agent wishes t() carry 
--------------------------- - ----

INFORMATION MANAGEMENT, MONITORII\G AND CONTROL 
D.P. Busc 



5.4 Examples of Usage 155 

out an action or to submit a query, it will first search the DF to find other 

agents capable of processing that request or answering that query, unless an 

appropriate agent is already known and is still available (has not disconnected). 

This means that it is possible to substitute different agents providing the same 

information, and permits agents to be added and removed at runtime. In these 

examples, code appears in typewriter font (e.g. code) and comments in roman 

font. 

5.4.1 Querying the IMU for a Data Set 

In this system, a data set represents a series of events, each specifying the 

value of a property of an item of plant at a certain time. The user agent 

provides the user with the ability to define a data set to be retrieved using the 

name of the property and item of plant, a start time and an end time. In the 

future, additional criteria to define the data set could be added by modifying 

the user agent and graphical user interface. 

Step 1: Select Plant Class 

In order to assist the user in generating a query, the user agent provides a 

series of steps for query generation. The agent first retrieves the names of all 

plant classes (those that are a subclass of plant) from the ontology agent. This 

is done using the following message (assuming that the name of the ontology 

agent is onto(Qpc2214: 1099/ JADE): 

(query-ref 

: sender 

(agent-identifier 

:name user@pc2214:1099/JADE) 

:receiver 

(set 

(agent-identifier 

:name onto@pc2214:1099/JADE)) 

: content 

"((all ?a (subclass-of ?a plant)))" 

A query message 

Sent by user agent 

To ontology agent 

Query to find all plant 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Hu", 



5.4 Examples of Usage 
156 

:protocol fipa-query) FIP A Query protocol 

The ontology agent should then reply, providing the names of these classes. For 

example, suppose that the available classes are transformer, circuit-breaker and 

switchgear: 

(inform Information message 
: sender 

(agent-identifier From ontology agent 

:name onto@pc2214:1099/JADE) 

:receiver 

(set 

(agent-identifier To user agent 

:name user@pc2214:1099/JADE» 

: content 

, , (= (all ?a (subclass-of ?a plant» Query results 

(set transformer circuit-breaker switchgear»" 

: protocol fipa-query) FIPA Query protocol 

The user agent then presents these classes to the user as a list, and the user 

selects a class in which they are interested. The system may then proceed to 

the next step. 

Step 2: Select Individual Item of Plant 

Once the user has selected a class of plant, the user agent will then retrieve 

the instances of that class from the static database agent. For example, suppose 

that the transformer class has been selected: 

(query-ref Query message 

: sender 

(agent-identifier From user agent 

:name user@pc2214:1099/JADE) 

:receiver 

(set 

(agent-identifier To ontology agent 

:name onto@pc2214:1099/JADE» 

INFORMATION MANAGEMENT, l'dONITORING AND CONTROL 
D.P. Bus( 



5.4 Examples of Usage 

: content 
Find all transformers 

((((all ?a (instance-of ?a transformer)))" 

:protocol fipa-query) 
FIP A Query protocol 

1.57 

Now suppose that the available instances of transformer are sgtl, sgt2 and 
sgt3: 

(inform 
Information message 

: sender 

(agent-identifier From ontology agent 
:name onto©pc2214:1099/JADE) 

:receiver 

(set 

(agent-identifier 

:name user©pc2214:1099/JADE)) 

To user agent 

: content Query results 

((((= (all ?a (instance-of ?a transformer)) 

(set sgt1 sgt2 sgt3)))" 

:protocol fipa-query) FIPA Query protocol 

Step 3: Select Property 

The user agent must now determine the properties of the selected object. 

This is a more complex operation than the previous two. The ontology agent 

holds information about the properties of classes, while the static database 

agent holds information about which classes a particular object belongs to. It 

is not sufficient in all cases simply to query the ontology agent for the properties 

of the class selected previously, because if the object is actually an instance of a 

subclass of the selected class, there may be properties of the object that are not 

properties of the selected class. Therefore, this step involves the integration of 

information from the two databases. This can be done either by the user agent 

or by the database agents; which of these alternatives is best is discussed in 

Section 6.2.2. Here we suppose that the integration is done by the database 

agents, and that the user agent only queries the static database agene. 

2This is how this is currently accomplished in the prototype system. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. B1l.~( 



5.4 Examples of Usage 

158 

Supposing that the object selected by the user In the previous step 

was sgtJ, the following query will be sent to the static database agent 

(static@pc2214:1099/JADE) (note that a slot is equivalent to a property, but 

is the term used by the FIP A Ontology service): 

(query-ref 

: sender 

(agent-identifier 

:name user@pc2214:1099/JADE) 
:receiver 

(set 

Query message 

From user agent 

(agent-identifier To static DB agent 

:name static@pc2214:1099/JADE)) 

: content "( (all ?a (slot-of ?a sgtl)))" Find all slots of SGTI 
:protocol fipa-query) 

FIP A Query protocol 

The static database agent must then do two things: retrieve the class of sgtl 

from its own database, and then retrieve the properties of that class from the 

ontology agent. Having determined that sgtl is an instance of transformer, the 

static database agent sends the following message to the ontology agent 3 : 

(query-ref Query message 
: sender 

(agent-identifier From static DB agent 

:name static@pc2214:1099/JADE) 

:receiver 

(set 

(agent-identifier To ontology agent 

:name onto@pc2214:1099/JADE)) 

: content 

"«all ?a (template-slot-of ?a transformer)))" 

:protocol fipa-query) FIPA Query protocol 

The ontology agent will then reply with the properties of the transformer class. 

Suppose that these are lv-current, lv-mvar and lv-volts: 

3In an optimal implementation, this is the message that will be sent. In prac~ice, because 
of the ad hoc implementation of distributed backtracking in the p~ototype whlch does not 
propagate the any or all quantifier from the originating ~uery, a senes of query-ref messages 
will be used, containing any queries rather than all quenes. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



5.4 Examples of Usage 

(inform 

: sender 

(agent-identifier 

:name onto@pc2214:1099/JADE) 
:receiver 

(set 

Information message 

From ontology agent 

(agent-identifier To static DB agent 
static@pc2214:1099/JADE)) : name 

: content 
Query results 

"((= (all ?a (template-slot-of ?a transformer)) 

(set lv-current lv-mvar lv-volts)))" 

:protocol fipa-query)4 FIPA Query protocol 

159 

Finally, the static database agent will forward the slot names to the user agent: 

(inform 

: sender 

(agent-identifier 

:name static@pc2214:1099/JADE) 

:receiver 

(set 

(agent-identifier 

:name user@pc2214:1099/JADE)) 

: content 

"((= (all ?a (slot-of ?a sgtl)) 

Information message 

From static DB agent 

To user agent 

Query results 

(set lv-current lv-mvar lv-volts)))" 

:protocol fipa-query) FIP A Query protocol 

Step 4: Retrieve Data Set 

Once the user has selected the object, property, start time and end time 

of the data set, this information is converted into a FIP A ACL query and 

forwarded to the IMU agent. For example, suppose that the user has selected 

sgtJ as the object, lv-current as the property, 13/3/03 12:00:00 as the start 

time and 15/3/03 12:00:00 as the end time. The user agent will then query the 

IMU agent with the following message: 

4 As for the query message, in the current implementation there will be man\" of the~e 
messages. It is hoped that this issue may be resolved in a later implementation. 

INFORMATION MANAGEMENT, MONITORING AND COI\TROL D.P. Bll'ie 



5.4 Examples of Usage 

(query-ref 

: sender 

(agent-identifier 

:name user@pc2214:1099/JADE) 

:receiver 

(set 

(agent-identifier 

:name onto@pc2214:1099/JADE)) 

Query message 

From user agent 

To ontology agent 

:content "((all (set ?a ?t) 

tween specified times 
Query for current values be-

(and 

(t (lv-current sgtl ?a) ?t) 

(and 

(?t > 13032003T120000000) 

(?t < 15032003T120000000)))))" 

:protocol fipa-query) FIPA Query protocol 

160 

The IMU agent will then (using the Prolog rules of its reasoning engine) convert 

this into a call to the IMU web service to retrieve the relevant data, which will 

be passed back to the user interface agent. The user agent then displays the 

data on the screen as a graph and table. 

Discussion 

The database querying procedure functions correctly in the prototype im

plementation, and is relatively simple to use. The main problem lies in the 

performance of this process when handling large data sets. This is due to both 

the method of retrieving data from the database using backward chaining, 

which means that only one row of data at a time is retrieved, and the use of 

the string-based SL language, which generates large messages in comparison to 

binary encodings and requires computing time to be expended in constructing 

and parsing the messages. It can be seen from the mobile agent data anal

ysis benchmark in Section 4.2.3 that the wrapper-based mobile agent (which 

used the database agent described here) performed approximately 3.~ time:-; 

worse than a mobile agent with direct database access and data caching (prob-

INFORMATION MANAGEMENT, MONITORING AND COI\'TROL D.P. B1/.~( 



5.4 Examples of Usage 
161 

ably close to the optimal solution). However, this does not show how much of 

this performance difference is due to data retrieval and how much to the use of 

string-based messaging. The problem of slow data retrieval might be alleviattd 

by using a different implementation of the server agent, which could retric\'e 

multiple rows at a time. However, all string-based data representations, includ

ing the commonly used XML format, encounter performance problems, and so 

these would be more difficult to solve. For example, [122] describes problems 

caused by the XML format generating large data files and creating overheads in 

terms of parsing and transformation. The only solution to this problem would 

appear to be the use of binary messages, which would remove the advantages 

of using an explicit, standardised and implementation-independent knowledge 

representation. 

5.4.2 Mobile Agent Based Analysis of Data 

The mobile agent based data analysis proceeds in three steps. Firstly, the 

data set or data sets to be analysed must be defined. The configuration file 

for the mobile agent is then generated by the user interface agent, and the 

mobile agent is launched. Finally, the mobile agent carries out the analysis 

and displays the results to the user. 

Step 1: Define Data Sets and Analysis Report 

For a mobile agent based data analysis, the steps used to define a data set 

are the same as those for a database query, apart from that a mobile agent is 

capable of analysing multiple data sets. Therefore, the graphical user interface 

used is the same except for buttons allowing the user to move between data 

sets. Each data set is defined as described in Section 5.4.1, Steps 1-3. 

Once the data sets have been selected, the user must specify the analyses 

to perform. This is done by selecting an analysis function, and then specifying 

the data set on which this function will operate, and the element of the data 

set that will be used (either the plant property or the time). Some anah'~is 

1 . 1 t hich may be from t 11<' ~(Ull(' functions may operate on mu tlp e argumen s, w _ ~ 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Bus! 



5.4 Examples of Usage 162 

or different data sets. Th th fi e user en speci es the report by entering any text 

which should appear with the analysis results. 

Step 2: Launch Mobile Agent 

Once the user has entered all of the details required to perform the analysis 

procedure, the user agent generates a configuration file and launches the mobile 

agent described in Section 4.2. When started, the agent reads the configuration 

file. It then retrieves each data set in turn, carrying out each analysis as soon as 

all of its required data sets have been retrieved. The messages used to retrie\'e 

the data set are the same as those described in Section 5.4.1, Step 4, except 

that the role played by the user agent is played by the mobile agent. Once all 

analyses have been performed, the report is generated. 

Step 3: Display Results 

The results of the analysis are displayed by the mobile agent using the 

system's default Web browser, as shown in Figure 5.7. The large gap between 

the sequence of data points to the left of the graph and the single point to the 

right is due to a discontinuity in the example data being used. 

5.4.3 Searching for Documents 

As only a single document agent is used in the prototype system, there 

is no need to attempt the integration of results from multiple sources, which 

is a difficult problem into which research is still ongoing [106][123][124]. To 

search for documents, the user first inputs a set of keywords into the H1II (the 

text entry box marked by "A" on Figure 5.8)5. These are then transmitted to 

the user agent via the DataSocket connection. The user agent then sends a 

message to the document agent, requesting it to inform the user agent of all 

documents relevant to that query. For example, suppose that the query chosen 

5The HMI interface shown was developed by Jun Qiu Feng, Intelligence and Automa
tion Research Group, Department of Electrical Engineering and Electronics. Cniversit\" of 

Liverpool. The user agent was developed by the author. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Bus(' 



5. 4 Examples of Usage 

Ij Elo ,,<It ~- FAY .... ' IDOls tleio 

l[f_:_~:_~~Ef~'J ~ ~ '~ i a 

Report generated by mobile agent 

Requested at 27/06/03 10: 43 

Oil out temperature of b"ansformer 

~~· jn 

20 

18 

16 
; 

i 
14 Ilmll 

12 

10 

.:J 

-

Figure 5. 7: Report Generated by Mobile Agent 

163 

by t he user was "t ransformer monitoring)) . The fo llowing message might th n 

be sent: 

(request Request message 

: sender 

(agent-identifier From user agent 

:name user@pc22 14: 1099 / JADE ) 

: receiver 

(set 

(agent-identifier To document agent 

:narne doc@pc2214:1099/ JADE)) 

: content "( (all Query for document 

(sequence ?d 7r ) 

(relevance 

?d 

(set "transf ormer" 

, , monitoring ' ,) 

?r ))) , , 

:protocol fipa-que ry) 

relevant to 

transformer monitoring 

FIPA Quer pro ocol 

I NFORMATION MANAGEMENT, MONITORING ND CONTROL 
D.P. Eu . 



5.4 Examples of Usage 164 

1~ Substation Jnformation Management . f ~ • 

o;,ubl hllon Ovt;I'v l~w Tr:uurontl~r C.(lndnlUII Munilol'1114 I ~UbSl~=liO~. C~.'~"'~.I =---:=---="-=-'---:------------= 
Subs.hu." OOCl,lmut.t..n 

DOCt1>lENT USTS 

KEYWORDS: 

A tr"nsforrner monitorln«;j 

I DO'JCMENT NAt1E RElATION 
iSCSBrM i 97% 

B 111M:!";. _ _ e .ifg. 
fIe 'IIC:~"SC5&A< pd f 
t'/!l4@jij.}1M:t;tpi 
fle ://c:/te1r4l/CO<TOilrlll9-tIYouh>u<-<i..J 

1 

I 

c?m~ril'YJ·throuQhput-of·s'Jbstat 9q% 
1 ,,:<,,_<.r( - - -+-A7<1lo - ---... , f~llr .ft -mn""'':'_'(r( 'f 

THE fUTURE IN SU n ST. TI()~ 
TECH~OLOG IE 

Scull £I n-d.c. , P IE.. ThOD Gaurtl L..~ Rub" 
u...b.~. 9-1.l "'_ .. ~UoJ<oI IIll 

,.a,;dl.,a . .. I' I;.M.C"'...... C..u.-"-'Lw. :::os... ... 
.. ~I'A i&...o-ucC\ 

Alt.4,,, ... : r',_-:IK: o.~ .... 'kCIIK .... """' ... t.:4 t-... ... 
17 ..... 'r.I .. 'W<, ~1arQ "lh'UIol1l U.Ij'''~''' R.... ..d •• Ht r--... " . r" .... IIIf.. ", ... to.:-~ IIW 11\ k'o 

.. r' ...... IlAII;:" 1""fdT< "'~"",':""II.J,. c r;iMo.," ,.~~'-..... , .. !fCt..'·('''' ' .. ''!lk ..... ' r~...,.#''o 
' n:.~t_iW :... 'l',d a t/' ... i lhfJ_' ... ..o:da:.:Iu.& .. 
• :r~~ Mel kaI ''1;,-,Ix-r,:t. 1"'- &~~ ..t~"" "1U-"Clo:I .,,~ ol.",LtI "lfl r ' do. IW 1:(. · ~ 'v:.":1 

1II~_ .. nlo:. • iii" r"", ... _ t~"-~ ": "1 , , .. .0 \ .. ( c..'C'~c! "'. n.c.uuu, l<f,Ir J i"' ... . t ... I .. • IQtt' I~ 

1 of8 ~ ~t 8,5 x 111n 0 : )::( l« ~ S 

Figure 5.8: User Interface for Document Querying 

This would be followed by a reply from the document agent glvmg th 

resource descriptions of any relevant documents. The names and relevanci 

of these documents are passed from the user agent to the user interface and 

displayed in the list box marked "B" on Figure 5.8 . 

(inform Information mes age 

: sender 

(agent-identifier From document agent 

:name doc@pc2214:1099 / JADE) 

:receiver 

(set 

(agent-identifier To user agent 

:name user@pc2214 : 1099 / JADE )) 

:content "((= 

(all 

(sequence ?d ?r) 

(relevance 

?d 

Query 

(set "transformer " 

, , monitoring' ,) 

7r) )) 

INFORMATION MANAGEMENT , MONITORING AND CO ITRO L 



5.4 Examples of Usage 

(set 
Query results 

(sequence 

(resource-description 

:title i8C8BrA4) 

0.9705195) 

(sequence 

(resource-description 

:title "887 - Bricker") 

0.95818204)) 

)) " 
:protocol fipa-query) FIP A Query protocol 

165 

The user agent may then request the document agent to transmit the contents 

of a document to it. These will be encoded using the Base64 encoding. The 

protocol used is jipa-request, and the message format is 6: 

(request 

:sender <user agent> 

:receiver (set <document agent» 

Request message 

From user agent 

To document agent 

: content "( (action <document agent> Retrieve documents 

(retrieve <resource description»))" 

:protocol fipa-query) FIP A Query protocol 

The document agent then sends an agree message to the user agent, as specified 

by the fipa-request protocol, and following that encodes the document and 

transmits it to the user agent as an inform message7
: 

(inform 

:sender <document agent> 

:receiver (set <user agent» 

:content "«result 

<action> 

(resource 

Information message 

From document agent 

To user agent 

Set of documents 

6where <user agent> is replaced by the agent identifier of the user agent, <document 
agent> by the agent identifier of the document agent and <resource description> by the 
resource description of the document required 

7 <action> is the action expression contained in the previous message. <document> 
represents the encoded document content. <format> is the format of the file, expressed as 

a MIME type (e.g. "application/pdf"). 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



5.4 Examples of Usage 

:content <document> 

: encoding base64 

: format <format> 

:title <title> 

») " 

166 

5.4.4 Performing an Action Using the Data Acquisition 

Agents 

To set the value of a property of an item of plant , the jipa-request protocol i 

used. The user agent must first send a request message to the appropriate plant 

agent (if the appropriate agent is unknown , it can be located using the DF). 

For example, suppose that the user wishes to open a circuit break r x l O' 

and that the name of the plant agent is x10(Qpc2214: 1099/ JADE. The u r 

first sends a request to the user agent via the graphical user interface hown in 

Figure 5.98 . 

Subst"Uofl O"ervt~w 

1 .'~. 

,-.---,..---:; ;: 'I' 

I ,·' 
[ J'" 

.~.,! ·,I.J 

1\.00 I ~OP I~ 

...... ,--...... '~l.--- 6 

6 

~ __ ~ ______ 4-____ +-_ _ '--____ -+----+---~--~~ 

::r..l~ :''I~) 

---'1-- r-"<·w· - _M_ ~--I-l --- --~---

_ ... ~ _____ R __ R~ ____ ~-____ ~..--

Figure 5.9: Graphical User Interface for Substation Control 

The user agent then sends the following me sage to the plant ag n (th r 

BUser interface implem ented by Jun Qiu Feng. 

INFORMATION ]'vIANAGEMENT, MONITO RING TD CONTROL D.P. Bu. 



5.4 Examples of Usage 
167 

may also be other message parameters used such as conv t' 'd l ersa wn-'/, or rep y-

with if the user agent wishes to track the conversation using these parameters): 

(request 

: sender 

(agent-identifier 

:name user@pc2214:1099/JADE) 

: receiver 

(set 

Request message 

From user agent 

(agent-identifier To breaker agent 

:name x10@pc2214:1099/JADE)) 

: content 

"«action 

(agent-identifier Open breaker 

:name x10@pc2214:1099/JADE) 

(open x10)))" 

:protocol fipa-request) FIP A Request protocol 

The plant agent will then consult its mapping rules to determine the data 

acquisition node, device and channel responsible for the control of xlO, and 

the value to be written to that channel which will result in xlO being 

opened. Supposing that the channel used is DCI, and the device agent is 

device@pc2214:1099/JADE: 

(request 

: sender 

(agent-identifier 

:name x10@pc2214:1099/JADE) 

:receiver 

(set 

Request message 

From breaker agent 

(agent-identifier To device agent 

:name device@pc2214:1099/JADE)) 

: content 

"«action 
(agent-identifier Write value to channel 

:name device@pc2214:1099/JADE) 

(write-value dc1 0)))" 

:protocol fipa-request ) FIPA Request protocol 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



5.4 Examples of Usage 168 

The device agent will then carry out the request, and send an inform message 

to the plant agent to notify it that the action is complete. The plant agent 

will then notify the user agent in the same way. To do this, the jipa-requesf 

protocol is used. The message format is: 

5.4.5 Reading a Plant Property Using the Data Acqui

sition Agents 

To read a property, the jipa-query protocol is used. The user agent first 

locates the appropriate plant agent. Then the user agent sends a query-if or 

query-ref message to that agent (depending on whether the user wishes to 

confirm the value of a property or to find out what the value of that property 

is). For example, suppose that the user wishes to determine the lv-current (Low 

voltage current) of transformer sgtJ, and that the name of the plant agent is 

sgt1@pc2214: 1099/ JADE. The following message would then be used: 

(query-ref Query message 

: sender 

(agent-identifier From user agent 

:name user©pc2214:1099/JADE) 

:receiver 

(set 

(agent-identifier To transformer agent 

:name sgtl©pc2214:1099/JADE)) 

: content C C ((iota ?a (lv-current sgtl ?a)))" Get cur-

rent value 

:protocol fipa-query) FIP A Query protocol 

The plant agent must then use its mapping rules to locate the appropriClt<' 

device agent and channel. Suppose that the channel name is SL1, and t lw 

d · t' d . @ c2214'1099/JADE The plant agent will then send the eVlce agen IS eVlce p. . 

following message: 

(query-ref 
Query message 

: sender 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Busr 



5.5 Implementation Issues 

(agent-identifier 

: name sgt1©pc2214:1099/JADE) 
From transformer agent 

:receiver 

(set 

(agent-identifier 
To device agent 

:name device©pc2214:1099/JADE)) 

:content "«iota?a (value s11 ?a)))" G t 1 f h . e va ue 0 cannel 
:protocol fipa-query) FIPA Q 

uery protocol 

169 

The device agent will then read the value of the SL1 hId c anne, an send a reply 
to the plant agent. Supposing that the value is 12.5: 

(inform 

: sender 

(agent-identifier 

:name device©pc2214:1099/JADE) 

:receiver 

(set 

Information message 

From device agent 

(agent-identifier To transformer agent 

:name sgt1©pc2214:1099/JADE)) 

: content Value of channel 

"«= (iota ?a (value s11 ?a)) 12.5))" 

:protocol fipa-query) FIPA Query protocol 

Finally, the plant agent sends a similar inform message to t he user interface 

agent. 

5.5 Implementation Issues 

Initially it was intended to use the Information Management Unit (Ir..IU) 

to provide the sole interface between the information management system and 

the substation simulator. However, this proved impossible because of t l1(' fact 

that theIMU did not provide "subscription" functionality - that is, it was not 

possible to have the IMU automatically update its agent when new informa

tion arrived. This meant that event updates had to be handled !J\' periodically 

INFORMATION MANAGEMENT, MONITORING Al\'D CONTROL D.P. BII.~( 



5.6 Summary 170 

"polling" the IMU to retrieve new data, which is a relatively inefficient mech

amsm. 

Introducing the data acquisition multi-agent system corrected this prob

lem by providing direct access between the multi-agent system and the data 

acquisition device. However, this might cause problems in an operational de

ployment if, for security or other reasons, it was decided not to allow agents to 

access devices. This would mean that event functionality would either haye to 

be implemented by polling or omitted from the deployed system. 

Agents that require to be updated when new information becomes ayailable 

in the system (for example, the plant agent needs to know what information is 

available from device agents regarding its item of plant) should do so by estab

lishing a subscription with the DF to be informed of agents joining or leaving 

the system. This is not possible with the current system implementation but 

is available in newer versions of the JADE toolkit. 

To allow agents not based on JADE (such as the user agent) to locate the 

agent platform, a basic broadcast discovery mechanism based on UDP is used, 

as none is provided by FIPA. However, as the FIPA work on ad-hoc platforms 

progresses9 , it is possible that such a mechanism will be provided by FIPA 

platforms. 

5.6 Summary 

This chapter has described a prototype system based on the architecture of 

Chapter architecture-chapter. The various agents described in Chapter 3 are 

implemented using the JADE platform, and a reasoning engine and knowledge 

base based on Prolog. Use of the Prolog language provides relatively simple 

conversion to and from FIPA 8L, as both are based on first-order logic. ThE:' 

prototype demonstrates the feasibility of the architecture and shO\\'s how it 

may be implemented. It also reveals some of the problems involved in this 

implementation. For example, integrating the multi-agent system with the 

9 www.fipa.org/activities/ad_hoc.html 

INFORMATION MANAGEMENT, }.IONITORIT\G AT\D CO:'\TROL 
D.P. Ruse 



5.6 Summary 171 

HMI platform written in Lab VIEW was a particularly time-consuming task, 

involving the implementation of a user agent in Visual Basic (in order to access 

ActiveX controls) and linking this agent to the JADE platform using a TCP lIP 

connection. 

The next chapter presents an evaluation of the architecture, using both the

ory and the experience provided by the implementation of this prototype. It 

examines whether the architecture provides the required functionality, and con

siders its ability to be modified easily in response to changes in the substation 

plant or in the data acquisition system. 

M ORING AND CONTROL 
INFORMATION MANAGEMENT, ONIT 

D.P. Buse 



Chapter 6 

Evaluation and Analysis 

This chapter presents a brief evaluation of the architecture described in 

Chapters 2 and 3. Where applicable, experience from the prototype described 

in Chapter 5 is used. The software engineering quality attributes of perfor

mance, modifiability, availability and security [125] are considered with refer

ence to the described architecture. Different authors in the software engineering 

literature use different variations on these quality attributes, for example, Sjeko 

[126] uses a more complex quality model consisting of dependability (including 

safety and security), satisfaction, functionality, flexibility (including modifia

bility) and performance. The criteria used here are drawn from both of these 

sources. 

It is very difficult to evaluate the information management functionality 

of the system. The system's document retrieval function is based on stan

dard algorithms, and therefore the use of information retrieval metrics such 

as precision and recall would test only these algorithms and not the architec

ture itself. It can be shown that the database retrieval function is capable of 

retrieving data from a database. However, the data integration functions are 

largely based on previous work in other domains such as Infomaster [100] and 

RETSINA [59], and evaluating data retrieval performance would largely test 

the implementation, which is not of production quality, and not the architec

ture. The preferred method of evaluation would be to install the s\·~tem in 

a substation and request that the substation engineers compare it \\'ith other 

172 



6.1 Functionality 
173 

systems and existing technology. Howe th t' h ver, e Ime t at would be required tu 

implement the system to a standard suitable for such a test meant that this 

was not possible. Therefore, this chapter presents a largely theoretical evalua

tion based on software engineering principles. This is sufficient to draw certain 

limited conclusions about the flexibility and modifiability of the architecture. 

Further research should involve comparison to other systems and user-oriented 

testing. 

6.1 Functionality 

The functionality provided by a system implemented using the proposed 

architecture should, at least, be capable of matching that provided by a tra

ditional, object-oriented or Web-based HMI/SCADA substation automation 

system. Various criteria taken from the literature are now used to describe 

the desired functionality and compare it to that provided by the prototype 

system. However, it is important to note that the work described in this thesis 

has developed an architecture for the construction of industrial automation 

systems, rather than a specific automation system. The prototype is intended 

only to demonstrate certain functionalities of the architecture, and not to in

clude every feature of a full substation automation system. Therefore, many 

of the features described in these criteria have not been implemented. Where 

this is the case, the way in which a feature might be implemented using the 

multi-agent system is discussed. 

6.1.1 National Grid Company Requirements for Substa

tion Control Systems 

The National Grid Company requires a substation control system to be 

capable of fifteen functions[83]. For each of these functions, Table 6.1 considers 

how they might be implemented using the multi-agent architecture described 

in this thesis. 

Therefore, the current system provides only a subset of the functionality 

INFORMATION MANAGEMENT, MONITORING AND COI\'TROL D.P. Bu.~e 



6.1 Functionality 
174 

Requirement I Implementation using multi-agent system 
Local control Performed using the operator intervention process 

through HMI, user interface agent, plant agents, 

device agents and IEDs. 
Telecontrol Performed using the same process as local 

control. Mobile agents may also be used for 

predetermined sequences of interactions 
Alarm annunciation May be performed by a task agent using data 

supplied by plant agents to generate alarms 
Data archiving Uses data logging database or 

Information Management Unit 
Synchronisation These functions are not implemented in the 

Plant Performance Monitoring prototype. In a full system, they would be 
Delayed Auto Reclose Switching implemented either using task agents (one 
Automatic Tap Change Control agent for each task) or by modifications to 
Automatic Reactive Switching the control rules of the plant agents. 

Fault Recording 

Primary System Monitoring 

Sequential Isolation Switching 

Interlocking 

Database Creation Performed by data storage agents 

and Amendment 

Diagnostic Facilities This function is not currently implemented 

and should be considered in further work 

Table 6.1: National Grid Company Requirements 

provided by a substation control system. However, the focus of this research has 

been on the design of a generic architecture, rather than the implementation 

of a complete system. Therefore, a number of functions are abstracted in the 

architecture as generic "task-specific agents" . 

6.1.2 Haacke "Opportunity Matrix" 

Haacke et al [127] provide a list of "candidate functions" for a substation 

automation system which aim to address the needs of a power operating com

pany, and are not (in their view) currently being met. These are as follows: 

1. Equipment condition monitoring 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



6.1 Functionality 
17.5 

2. Automatic load restoration 

3. Dynamic transformer ratings 

4. Adaptive relay settings for distribution circuits 

5. Power system disturbance and power quality data 

6. Feeder automation support 

7. Expert alarm processing 

8. Access to substation metering data 

9. Access to power company documents and systems 

10. Corporate data repository 

11. Additional SCADA quantities 

12. Adding SCADA to non-SCADA substations 

13. Training simulator 

Of these suggested needs, the multi-agent architecture may contribute to three: 

• Access to documents and systems (9): The use of a multi-agent archi

tecture and IP networks allows access to external systems, via the use 

of wrappers. For example, the document agent provides access to doc

uments. However, it would also be possible to implement this function 

using a client-server or distributed object approach . 

• Data repository (10): The multi-agent system maintains individual data 

repositories in each substation. However, the use of mobile agents pro

vides a capability to integrate data from different databases, hence pro

viding a type of "distributed data repository" . 

• Additional SCADA quantities (11): By adding additional provider ag('I\ts 

to the system, additional quantities may be made Clyailable at runtime. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Bus( 



6.2 Performance 176 

Additionally, equipment condition monitoring (1) and expert alarm proces::;

ing (7) might be implemented using a multi-agent methodology, but are not 

currently part of the system or architecture described in this thesis. 

6.1.3 Summary of Functionality Results 

Overall, the multi-agent system, extended with additional agents, should 

prove capable of providing all of the functionality provided by a traditional 

automation system. However, at least without the addition of artificial intelli

gence, it does not offer any significant additional functionality that cannot be 

implemented by other means, although, as stated by [54] for mobile agents, it 

does provide a consistent framework for the implementation of different func

tions and tasks, such as control and information management. In order to be 

a useful technology, the multi-agent system should also provide advantages in 

other areas, such as performance, modifiability or ease of system development. 

6.2 Performance 

It has been shown in Section 4 that, in certain circumstances, mobile agents 

provide increased performance over client-server alternatives. Therefore the 

use of mobile agents is not discussed here. However, other aspects of the 

architecture's performance are considered. Firstly, we consider the performance 

of the architecture for data acquisition and control tasks. We then consider the 

response time of the system, when performing information management tasks, 

to user queries. 

6.2.1 Data Acquisition Performance 

Because of the two-layered structure of the data acquisition ::;ystem, shown 

in Figure 6.1, when new data arrives it must be first acquired by the device 

agent, and then passed to the relevant control agent. This means that, for 

control applications in which a control agent must respond to eYent::;, it is 

INFORMATION MANAGEMENT, MONITORING AND CO]\TROL 
D.P. Blise 



6.2 Performance 
Iii 

necessary for the data to pass through at It· . 
eas one mtermedlate agent the 

device agent) before reaching the control agent Th' ld b \. . 
. IS cou e a problem If It 

is necessary to achieve very fast control. 

Device 1 Device 2 

Figure 6.1: Plant Agent and Device Agents 

An alternative structure, shown in Figure 6.2, would be for the control 

agents to retrieve information directly from the data acquisition devices, using 

device-specific communications protocols or APls. However, this compromises 

the modularity and information abstraction provided by the separate device 

agents and control agents, as it requires a control agent to have knowledge 

regarding a number of (possibly heterogeneous) data acquisition devices, and a 

number of separate capabilities and protocol drivers for accessing these devices. 

The performance of different configurations of device agent and control 

agent is now analysed in greater detail. 

Message Passing 

Suppose that a plant agent a wishes to send a command cmd to a device 

d over a network of bandwidth T and latency 6, and receive a reply ack when 

the command is complete. The procedure taken is as follows: 

1. Plant agent sends message to device 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



6.2 Performance 

178 

Device 1 Device 2 

Figure 6.2: Plant Agent with Direct Access to Devices 

2. Device carries out action 

3. Device sends acknowledgment to plant agent 

Now SUppose that instead of transmitting the command directly to the device. 

the plant agent communicates first with an intermediate device agent do. In 

this case, the following procedure must be carried out: 

1. Plant agent sends message to device agent 

2. Device agent processes message 

3. Device agent sends message to device 

4. Device carries out action 

5. Device sends acknowledgment to device agent 

6. Device agent processes acknowledgment 

7. Device agent sends acknowledgment to plant agent 

In the first scenario, two messages are sent (a to d, d to a). In the second 

scenario, four messages are sent (a to da, da to d, d to da, da to 0). For each 

message, there is a cost to encode the message in a particular protocol (either 

a device protocol or an ACL) and a cost to interpret the message, along with 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Bll.~( 



6.2 Performance 
179 

the cost of transmitting it across the network H 't . , ' . owever, 1 IS not necessanh' 

the case that all messages must be sent across the network. \Yhether this is 

the case for different configurations of plant agents and de . t - 'II VIce agen S WI now 
be examined. 

Co-location Scenarios 

In order to determine the number of messages transmitted across the net

work, it is necessary to determine whether any of the three objects involved 

(device agent, control agent and device) are co-located. In the general case, if 

we accept that each item of plant may be managed by multiple devices and 

each device may manage multiple items of plant, it is not possible for all three 

to be co-located. Suppose agent a manages item of plant PI, which is man

aged by devices d1 and d2 . If these two devices are not at the same node 

(location(dd =I- location(d2 )), it is impossible for a to be co-located with both, 

Although, conceptually, it would be preferable to locate the device agent 

on the device, it would be possible to co-locate the device agent with the 

control agent, although this would only be the case if either each device agent 

corresponds only to one control agent, or all control agents corresponding to a 

particular device agent may be located with that device agent (Figure 6.3). 

In this case, only the messages between the device agents and their respec-

tive devices are transmitted across the network. 

If, instead, da and d are co-located (Figure 6.4), the messages between the 

plant agent and the device agents are transmitted across the network, whereas 

the messages between the device agents and the devices are transmitted locally. 

The number of messages transmitted across the network for a given interaction 

is the same in both cases. Therefore, any performance difference is due to the 

relative efficiency of the agent-agent and agent-device protocols. Also, it may 

not always be possible to locate an agent on a device. 

INFORMATION MANAGEMENT, MONITORING AND COI\TROL 
D.P. Blls, 



6.2 Performance 
180 

Node 1 

Node 2 Node 3 

Device Device 

Figure 6.3: Plant Agent Co-Located with Device Agents 

Node 1 

Device Device 

Figure 6.4: Device Agents Co-Located with Devices 

Other Factors 

Other factors affecting the performance of the data acquisition s\·~tem in

clude the relative inefficiency of general agent communication languages com

pared to specific protocols designed for data acquisition and control. This 

results in increased message size and in longer parsing times. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Elise 



6.2 Performance 181 

6.2.2 Responding to User Queries 

The time taken to respond to a query from the user varies widely depending 

on the type and complexity of the query, and also on whether it relates only 

to one substation or to multiple substations. It also depends on the mech

anism (mobile agent or static agent) used to answer the query, and \yhether 

information from multiple agents is required to produce an answer. 

There are a number of possible bottlenecks involved in this procedure. The 

database wrapper agents might become overloaded if multiple queries \wre 

submitted simultaneously. Also, the directory facilitator might become over

whelmed by a large number of requests, although it might be possible to a\'oid 

this by introducing multiple federated DFs. 

It has been observed that providing the database agents with the abilih' to 

interact as described in Section 3.1 produces a significant delay in query an

swering, due to the number of interactions between database agents involved 

in a typical backtracking procedure. It would be possible to reduce the load 

on the database agents by removing the ability for them to interact with each 

other, and having another agent (possibly the user agent or a broker) which in

tegrated the information from multiple databases. However, the total number 

of agent interactions would not be reduced, and may in fact increase as the bro

ker agent must interact with multiple database agents. An alternative strategy 

would be a modification of the inter-agent backtracking process, for example, 

to retrieve all the relevant results at once and then backtrack locally through 

the retrieved list. However, this would only reduce, rather than eliminate, the 

extra workload on the database agents. 

6.2.3 Data Display 

The National Grid specification for substation control systems [83] provides 

stringent performance requirements for the display of data in a substation con

trol system, for example that data should be displayed on the VDU screen 

within a mean time of 2 seconds of a digital input changing state, with a stan-

INFORMATION MANAGEMENT, NloNITORING AND CONTROL 
D.P. Busf 



6.3 Modifiability 
182 

dard deviation of 0.5 seconds. While it would not be possible to completely 

ensure that the system meets these requirements with a basic prototype im

plementation, it is necessary for the architecture to be designed in such a \\'ay 

that a more developed implementation would be able to do so. 

The time to display data on the HMI of the system is affected by two things: 

the data acquisition speed, discussed in Section 6.2.1, and the amount of time 

taken for the user agent to retrieve data from the plant agents. The number 

of ACL messages involved in data display (at minimum) would be two: 

l. Message from device agent to plant agent. 

2. Message from plant agent to user agent. 

This assumes that subscriptions are set up between user agent and plant agent 

and between plant agent and device agent. Providing that all agents are located 

in the substation, it will be possible in an otherwise unloaded for these messages 

to be transmitted within the 2 second limit (in fact in a much shorter time

scale). For example, the time taken to transmit a 9905 byte ACL message 

between two containers on the same computer in the experiment documented 

in Section 4.5 was 8.05 milliseconds (although longer time than this would 

be required to create the message and for the client to parse its contents). 

However, the effects of loading on the system have not been tested in the 

prototype, and remain an issue for further work. 

6.3 Modifiability 

One of the important claimed advantages of agent-based systems is their 

flexibility and ease of modification. For example, Ferber [8] states that multi

agent architectures are "especially suitable" for adapting to changes in the 

system in which it executes and to changing requirements. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. B/I'( 



6.3 Modinability 183 

6.3.1 Modifying the Substation 

Replacement of Substation Plant 

If an item of plant is replaced with a new one of the same type, then the 

details of the replacement item must be entered into the static database. If 

any of the monitoring devices related to the item of plant are changed, then 

the procedure described under "adding an lED" must also be carried out. 

Because the plant agent obtains its plant configuration from the substation 

databases, it is not necessary to re-program this agent, but it must be restarted 

in order to force it to re-read the configuration. This could be done remotely 

using the administrative interface of the agent platform. However, it might also 

be possible for the plant agent to provide a command which could be sent in an 

ACL message and would cause it to restart itself and re-read its configuration. 

Addition or Removal of Plant 

If a new item of plant is added of an existing category (already in the 

ontology) then: 

• The details of the item of plant must be added to the static database 

• A plant agent must be created for that item of plant. It is likely that 

only minor changes to the configuration of the control agent would be 

required, as it could be modified from an existing plant agent for a similar 

item of plant. 

• The mapping rules relating to the item of plant must be added to the 

mapping database. 

• The user interface must be modified to display the new item of plant. 

If an item of plant is added which is of a category not already present in 

the substation, then additionally the details of that category of plant lllU:-;t be 

added to the ontology. 

INFORMATION MANAGEMENT, MONITORING Af\O COl\TROL 
D.P. Buse 



6.3 Modifiability 
18--1 

Furthermore, when an item of plant is added 't . 
1 IS necessary to add a number 

of lEDs to monitor that plant. Therefore, for each of these rEDs the procedure 

described in "Adding a new lED" must b . d e carne out. 

Adding a New lED 

When a new lED is added, the following steps must be taken: 

• Program a device agent for that lED, or modify an existing agent. 

• Add the rED configuration to the static database. 

• If the lED monitors a property of an item of plant which is not present in 

the ontology, then the ontology database will need to be updated. It may 

also be necessary to update the user interface to show the new property. 

• Add the mapping rules for the lED to the mapping database. 

• Restart the relevant plant agent to reload its mapping rules. 

6.3.2 Modifying the Data Sources 

Adding a New Database 

To add a new database to the system, a wrapper agent for that database 

must be implemented. At minimum, this involves creating a set of rules to 

provide a mapping from the schema of the database into the global system 

ontologyl. If the database is to act not only as a source of data, but is also to 

store data gathered by other agents in the system, it is also necessary for the 

database agent to establish subscriptions for appropriate data with the agents 

providing that data2
. 

IThis is not true in the case where the database uses an identical schema to another 
database already present in the system, in which case the mapping defined for that database 
can be re-used. 

2It might also be possible to use two database agents - one reading and one writing. This 
might reduce the problems caused by load on either of the agents. 

INFORMATION MANAGEMENT, MONITORII\G AI\D CO:\TROL D.P. Bus, 



6.3 Modiflability 18.S 

Adding a Document Repository 

Providing that the documents in a document repository are of a format 

which can be handled by an existing document agent, the addition of a docu

ment repository to the system should involve only the instantiation of an agent 

to manage that document repository. No programming or compilation should 

be required. 

However, supposing that a future incarnation of the system provides not 

only "search engine" functionality, but also information extraction, it would be 

necessary to develop wrappers for the documents in the document repository 

to allow this extraction to be performed. 

User and mobile agents will be able to locate the document repositor)' 

automatically, without restarting, as the document agent will be registered 

with the directory facilitator3. 

Adding aNew Type of Service 

If a new service is to be made available of a type not already present, then 

the amount of work to be performed might be more substantial. 

• If the service provided only query functionality, and the terms which 

could be queried were already available in the global ontology, then a 

wrapper agent would have to be written for the service. That wrapper 

agent would register with the directory facilitator, providing the list of 

available queries, and other agents would then automatically discover it 

and be able to query the service . 

• If the service provides query functionality but additions to the global 

system ontology are required, the process is more complex. Firstly. the 

global ontology must be updated to include these new terms. All:' agents 

which need to use these terms may also have to be updated, unless the 

3This assumes that agents do not cache DF entries, and either search the DF each time 
they perform a document search, or subscribe to the DF for notificati~n of new r.egistrations 
(this is possible in certain versions of JADE and other platforms, but IS not yet III the FIPA 

specifications) . 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. BII";( 



6.3 Modifiability 186 

agent automatically discovers them from the ontology database, as is the 

case with the user interface agent (for mobile agent generation) and the 

plant agent (for information management only - if the information \\"as to 

be used in control the control algorithms/rules of the plant agent would 

need to be altered as they would not take account of this information) . 

• If the service provides functionality other than simple data querying (for 

example prediction) then any client agents which need to make use of this 

service should be updated, as they will not be aware of the functionalih" 

that this service is capable of providing. The most likely agent to require 

alteration is the user agent. 

6.3.3 Modifying the User Interface 

Adding aNew User 

Adding a new user to the system would not currently require any changes to 

be made. However, in a system in which security was implemented it would be 

necessary to add any required details of the user (e.g. username and password) 

to the authentication service. 

Adding New Capabilities to the User Interface 

To add capabilities to the user interface requires modifications to the user 

interface and possibly the user agent only, unless a new service is required that 

is not currently provided by the multi-agent system. For example, adding the 

ability to control the substation from the user interface in the prototype system 

required the addition of new input buttons, and the modification of the user 

agent (to read commands and transmit them to other agents) and the interface 

between the user agent and user interface. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. BIIS( 



6.4 Security, Reliability and Availability l8i 

6.3.4 Summary 

As described above, the addition of a new item of plant or . . serVIce reqUlres 

relatively few changes in the multi-agent system For example It t' t . ,a era lOns 0 an 

item of plant require only the device agent (and the configuration databases) 

to be modified. This is an advantage compared to a centralized s}"stem, in 

which modifications affect the entire system. However, the major drawback of 

the system described here is that many changes require alterations to the user 

interface or user agent (in order, for example, to display new items of plant on 

the one-line diagram) rather than just the agents directly responsible for an 

item of plant or database. 

6.4 Security, Reliability and Availability 

It is difficult to evaluate the security, reliability and availability of a pro

totype application. Therefore, it is necessary to consider similar results from 

other agent-based applications and architectures. 

As far as security is concerned, the use of a static agent-based approach 

should not introduce additional problems beyond those introduced by a client

server model, providing that all agents in the system are developed and owned 

by a single entity (the power company). There are security and trust issues 

associated with open multi-agent systems, in which agents are developed hv 

different entities; these issues are mentioned in [128]. 

Those security problems posed by the use of mobile agents should be rel-

atively limited in the power systems domain, provided that all mobile agents 

originate within the company itself (the origin of a mobile agent could be ver

ified using digital signatures as described in [58]). If it is not permissible for 

external users to submit mobile agents to the system, the problem of malicious 

mobile agents should be reduced. The problem could be reduced even further 

by preventing users from implementing their own mobile agents, and allowing 

them to use only the pre-implemented mobile analysis agent and mobile re

mote control agent. However, this would require that a large function library 

INFORMATION MANAGEMENT, rd01\ITORI1\G .\1\0 COKTROL 
D.P. Bust 



6.4 Security, Reliability and Availability 188 

was available for the analysis agent, to provide all of the analysis functionality 

required by the different users. This process could be helped by extending 

the capability of the analysis agent to permit analysis functions to operate on 

the results of other analysis functions, rather than only on retrieved data sets. 

This would reduce the number of different functions required. 

Fedoruk and Deters [129] suggest that the "brittleness" of multi-agent sys

tems is a main contributor to their lack of deployment in industry, and that 

this brittleness is caused by the fact that there is no centralized control of 

a multi-agent system, and that therefore it is "difficult to detect and treat 

failures of individual agents". They found that introducing replicated agents 

significantly reduced the failure rate of a multi-agent system, but that this was 

at the price of increased system load. In a system such as a power system, 

in which reliability is important, it would probably be necessary to introduce 

replicated agents, possibly in addition to other techniques such as "watchdog" 

agents or agents which monitor each other's behaviour during task execution 

[130] . 

Failure of an Agent 

One possible cause of failure in the system is the failure of one or more 

individual agents. If one agent establishes a subscription with another for some 

item of information, the subscriber will only receive messages from the provider 

when that item of information changes. Therefore, if the provider agent fails, 

the subscriber will not have any means to detect this, and will probably be 

unaware of any further changes to the item of information in question. 

Another possible cause of failure is that the DF entries of agents remain 

after they have failed. This means that an agent may attempt to contact an 

agent that no longer exists, but which still has a DF entry. This problem is 

solved by the use of leasing (similar to that implemented by Jini) in the latest 

version of the FIPA specifications. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



6.5 Integration Into Existing Substations 189 

6.5 Integration Into Existing Substations 

One measure of the practical usefulness of the architecture described in 

this thesis would be the ability to integrate it into existing substations \\"hich 

already have a substation control system or automation system. 

The complete multi-agent system relies on access to the substation rEDs 

for monitoring and control. This means that for each lED, a protocol driver 

must be available. There would also be problems involving the development of 

task-oriented agents to replace functions of the substation control system. and 

the development of algorithms for control agent cooperation. Finally, there 

might be security concerns involved with the open architecture and the use of 

mobile agents. 

However, it is possible to make more limited use of the multi-agent S~"~tt'lll 

to carry out only the task of monitoring and information management. 

6.6 Possible Applicability to Other Industries 

In the initial requirements for the architecture described in this thesis, it 

was desired that it should be as generic as possible, and able to be applied to a 

number of different industries. As a possible example, we consider the hospital 

ward described in [131]. In the hospital, there are seven wards, each with up to 

six babies. Each baby is connected to a monitoring system which continuously 

monitors a number of numerical parameters such as the electrocardiogram 

(ECG) waveform. The monitoring system also generates derived knowledge, 

such as the heart rate in beats per minute which is derived from the EeG" 

Each measured parameter is archived once per minute by an archival system 

[131, p2]. 
To adapt the architecture to this scenario, it is suggested that the plant 

agent be used to represent the baby, with a new configuration, set of control 

rules and ontology being defined for this purpose. The device agent would be 

used to represent the monitoring and control device. 

The user interface agent should be able to be used \vithout any modifica-

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Elise 



6.7 Discussion 190 

tion, because the only ontological commitment it has to the substation domain 

is the use of the "plant" class, which could be kept as the root of the new 

domain ontology (covering humans). However, the hum an-machine interface 

itself would have to be rewritten. 

For the archival system, a database agent would be used and appropriate 

mapping rules would have to be created. This supposes that the archival 

system uses a standard database. If not, a special "archival agent" would have 

to be created (as for the IMU in Chapter 5), but it would perform similar 

functionality to a database agent. 

One problem with the portability of the architecture in this scenario is 

that the term "plant" does not easily apply to a human, and, in order for the 

system to function correctly using its built-in ontology, it would be necessary 

to define "baby" as a subclass of "plant". However, the difficulties posed by 

this should be mostly cosmetic, and would possibly be hidden from the user 

by the human-machine interface. 

Another, more serious, problem, is that the measurements taken in the 

hospital scenario involve a high degree of uncertainty, which is not present in 

a power substation. 

The conclusions drawn from this exercise have not been tested in prac-

tice. Therefore, during an actual implementation a number of difficulties might 

emerge which would necessitate changes to the architecture or to the individual 

agent implementations. 

6.7 Discussion 

From the evaluation in this chapter, a number of points can be made regard

ing the advantages and disadvantages of multi-agent systems in comparison to 

existing technologies for power system automation. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



6.7 Discussion 191 

6.7.1 Advantages 

Flexibility As demonstrated in Section 6.3, the use of a multi-agent system, 

and in particular the directory facilities provided, enhances the flexibility of 

the system by permitting new devices and items of plant to be added without 

changing the software of the rest of the system. However, this advantage is 

red uced in the power systems domain by the fact that the system does not 

change rapidly (items of plant are rarely added to substations). Also, in the 

current prototype it is necessary to restart several of the agents (plant agents 

and device agents) in order to change their configuration. It would be useful 

to add a feature enabling the agent to read updated configuration rules at 

runtime. 

Autonomy The use of a multi-agent system provides a basis for the intro

duction of distributed control systems in which agents (perhaps representing 

items of plant or other entities) act in an autonomous manner without outside 

intervention. However, in the prototype system described here, agents do not 

exhibit significant autonomous behaviour, as it would be most useful in the 

automatic control task, which has not yet been implemented. 

Inherent Distribution The inherently distributed nature of the power sys

tem means that a multi-agent system, which provides autonomy to its con

stituent components, is well-suited to this application domain. For example, 

the use of agents to represent objects such as transformers and circuit breakers 

is a natural "fit" to the system being controlled. However, a similar structure 

might also be obtained using a distributed object system. 

Integration Using a multi-agent system provides a convenient framework to 

represent different tasks and to integrate different data sources. Rather than 

a number of separate software programs, all tasks are performed through the 

multi-agent system, enabling data to be shared between tasks. The use of 

a standard agent communication language provides a fixed communications 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



6. 7 Discussion 
192 

mechanism which can be used by heterogeneous agents. However) there are 

other methods (such as distributed object systems) which might be able to 

achieve the same goals, although distributed object communications do not 

have the high-level semantic content of agent commun' t' 1 lca IOn anguages. 

6.7.2 Disadvantages 

There are several disadvantages of multi-agent systems when compared tu 

other power system automation systems. 

Management of Large Agent Societies In a substation containing a large 

number of items of plant, there is a correspondingly large number of plant 

agents (the same is true for devices). This creates a difficult t ask of managing 

these agents. 

Difficulty of Integration with Devices Although the device agents pro

vide a convenient interface to other agents in the system, the implementation 

of a device agent is still performed in a similar way to that which would be 

used for a component of a traditional industrial automation system, and it is 

necessary to write a specific device agent for each model of device. Therefore, 

a multi-agent system may not represent a significant improvement in this area. 

Inflexibility of User Interface The major modifiability problems of the 

architecture that have been identified concern the user interface. It is not 

possible to automatically modify the user interface for a substation if the layout 

of the substation changes or new plant or data acquisition devices are added. 

Also, if new software services are added, the user interface and its agent must 

be modified to make use of these services. 

It might be possible to minimize these problems in two ways: developing 

a method of automatically generating the one-line diagram and user interface' 

for a substation from a logical description of that substation, and providing 

a more modular user interface to which new services could be added as thl'~' 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Blls( 



6.8 Summary 
193 

became available. The first of these might b . '1 t h e SImI ar 0 t at developed by Qui 

and Gooi[4], who were able to generate one-line diagrams from a model of a 

substation. However, further work might be necessary to provide a means to 

automatically generate or modify the other elements of the user interface such 

as the menus, dialog boxes etc. 

Possible Performance Problems The use of ACL messages may degrade 

the performance of the multi-agent system due to parsing and message passing 

overheads. 

6.8 Summary 

This chapter has presented an evaluation demonstrating both advantages 

and disadvantages to the use of a multi-agent system for power system automa

tion. The major advantages of the multi-agent architecture derive from the use 

of directories. Because agents locate each other at runtime using a directory 

service based only on their capabilities, it is possible to add and replace com

ponents during the operation of the system. This means that, for example, 

the user interface agent is capable of obtaining data either from a database 

or from a plant agent without modification. Another important facet of the 

multi-agent system is the standard agent communication language, whose de

fined semantics permit the integration of data from multiple sources. It is also 

considered that agent autonomy will prove useful in implementing distributed 

control schemes. However, these are not covered in the prototype. The main 

disadvantages arise from the complexity of the multi-agent implementation, 

which consists of a large number of agents and can prove difficult to adminis

ter. There are also performance problems, both specific to the implementation 

described here and generic problems relating to, for example, agent communi

cation. Also, the use of a distributed system can result in increased network 

traffic and communications overhead compared to a centralized implementa-

tion. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



6.8 Summary 194 

Further work is required to fully complete this evaluation. Firstly, it is nec

essary to install the system in a substation or substations in order to perform 

a user-focused evaluation involving substation engineers. From the evaluation 

performed, it is also unclear how the reliability of a multi-agent system com

pares to that of a traditional system. It would be necessary to examine this 

question more fully once reliabilty mechanisms such as redundancy and fault 

recovery have been developed and incorporated into the prototype. 

The next chapter will conclude the thesis by examining the results that have 

been obtained and suggest opportunities for further work on this architecture 

and on individual applications. 

M ORING AND CONTROL 
INFORMATION MANAGEMENT, ONIT 

D.P. Buse 



Chapter 7 

Summary, Conclusions and 

Future Research 

7.1 Summary 

This thesis has described a distributed architecture, based on Internet Pro

tocol networks, for substation information management and control systems. 

The basis of the architecture is a multi-agent system, consisting of a standard 

agent platform based on the Foundation for Intelligent Physical Agents (FIPA) 

standards and a number of different types of agent to perform various control, 

condition monitoring and information management tasks. The architecture is 

split into Wide Area Network (WAN) components and Local Area Network 

(LAN) components, of which the LAN components are located in substations, 

and the WAN components at any other locations on the power company's 

computer network. 

Although initially targeted at power systems, the architecture described 

in this thesis is sufficiently generic that it should be able to be applied to a 

range of industrial situations. For example, generic types of agent. such as 

plant agents and device agents are described, which may be instantiated into 

application-specific agents such as transformer agents and agents representing 

a specific model of data acquisition device. This generic naturl' signific(tut h· 

195 



7.2 Conclusions 196 

enhances the reusability of the work described. However, there are a number 

of problems and opportunities for further work, which are discussed in Section 

7.3 below. 

In summary, the contribution of this thesis has been to develop a generic 

multi-agent architecture for the implementation of automation systems for dis

tributed industrial systems. The design of the individual agents and the col

laboration between agents has been investigated in detail. The use of mobile 

agents has been evaluated, and it has been demonstrated that for certain ap

plications and network characteristics mobile agents provide a performance 

improvement over client-server systems. Finally, the whole architecture has 

been evaluated. This evaluation suggests that the use of a multi-agent sys

tem for distributed industrial automation should provide increased flexibility 

over traditional systems. It also provides a framework for integrating different 

data sources and managing a variety of tasks. However, there may be a price 

to pay in the form of slightly reduced application performance and increased 

complexity of administration. 

7.2 Conclusions 

The following conclusions may be drawn from the work presented in this 

thesis: 

1. Using the multi-agent systems methodology, it is possible to design a 

software architecture capable of performing all of the tasks required in a 

power system automation system. This is described in Chapters 2 and 3. 

h 
h't t uses generic agents (plant agents, device agents, 2. T e arc 1 ec ure 

database agents), which are applicable to a wide range of distributed 

industrial automation systems. The architecture may also be extended 

b adding agents to perform specific tasks. Therefore, it should be pos-
y . d t' 

sible to transfer the architecture to applications in other m us nes, as 

discussed in Section 6.6. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



7.2 Conclusions 
197 

3. The use of separate device agents, representing the physical data acquisi

tion system and plant agents, representing the substation plant, permits 

either the plant or the data acquisition system to be altered while affect

ing the minimum number of agents. It also increases the modularity of 

the system by reducing the amount of knowledge required by each agent. 

4. Using mobile agents can reduce the amount of time taken to perform 

common data analysis and remote control tasks, as shown in Chapter 

4. For the data analysis task, mobile agents are most useful on low 

bandwidth networks. For the remote control task, mobile agents should 

be used when the latency of the network is high. 

5. The prototype system demonstrates that the architecture described in 

Chapters 2 and 3 is capable of performing remote control, data analysis, 

database querying and display of status and condition information. It 

also demonstrates the feasibility of implementing the architecture. 

6. By using the directory facilities provided by a Foundation for Intelligent 

Physical Agents (FIPA) compliant agent platform, it is possible to permit 

changes to be made to the system at runtime. This permits, for example, 

an item of plant or a device to be replaced while the system is operational, 

while changing only the agent associated with that particular object. 

The above points demonstrate the advantages of the multi-agent techniques 

used in this system, in comparison to traditional systems such as SCADA, for 

the automation of large, distributed industrial systems. The use of a multi

agent system permits the integration of the different tasks of control, infor

mation management and condition monitoring in a single architecture. The 

resulting architecture provides increased flexibility compared to a traditional 

system, although there may be some decrease in performance. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



7.3 Future Research 
198 

7.3 Future Research 

Due to the broad scope of the research described in this thesis. insuffici(~llt 

time has been available to investigate all of the possibilities of an agent-based 

substation automation system. This section describes some of the remaining 

problems and possible improvements to the architecture and the prototype 

system. In some cases, the method by which these improvements might be 

achieved has been considered, but has not been implemented or tested in prac

tice. 

7.3.1 Learning and Intelligence 

The agents described in this thesis are relatively limited, in fact. some au

thors might dispute whether or not certain agents (such as the database agents) 

deserved the "agent" title. However, there is scope within the architecture for 

adding intelligence to various agents to improve their performance or enable 

them to perform a wider variety of tasks. For example, machine learning in 

the user interface agent might enable it to learn about its user's information 

needs, as has been done by, for example [42], or the control agents could be 

provided with learning behaviour to allow them to optimize the control of an 

item of plant. 

7.3.2 Control Agents 

Only limited work has so far been performed on the implementation of t 11(' 

control agents, and the current control agents basically act as servers, providing 

querying and user control functions. However, a full implementation would also 

include automatic control functions. 

Another important issue regarding the control agents is how to implement 

collaborative control between control agents, in particular to allow the control 

agents to prevent mobile agents or agents operated by multiple users from 

performing conflicting actions on the substation plant. It is suggested that 

either all of the control agents might collaborate with each other to achieve 

INFORMATION MANAGEMENT, MONITORING AND COT\TROL 
D.P. BII,"( 



7.3 Future Research 199 

this (possibly with agents having a "neighbourhood" . t' f h consls mg 0 t ose agent,.::; 

of plant that is directly connected to the plant of the t . t') agen m ques IOn 1 or 

that a hierarchical structure might be employed l'n ,h' h th t C , \\ IC e ranSlormer 

agents are responsible for the actions of the agents of switchgear linked to 

their transformers, and transformer agents cooperate with each other. 

Agent collaboration might be performed using a number of methods. in

cluding joint intentions [116], which provide a mechanism for controlling agent 

collaboration using joint goals and jointly agreed plans for achieving these 

goals. An alternative would be the use of distributed constraint programming 

[118], which uses a multi-agent system to solve a problem consisting of a set of 

mathematical constraints distributed over a number of agents. 

7.3.3 Real Time Control and Monitoring 

So far, no real time functions are provided by the prototype implenlf'llta

tion. However, real time considerations are an important factor in the design 

of a power system automation system. Therefore, the architecture should be 

enhanced to take account of these considerations, and an implementation in

cluding real-time behaviour should be created and evaluated. 

The major modifications required for real-time behaviour would be to the 

device agents and plant agents, as real-time constraints are not an issue for 

much of the information management system. However 1 it might also be nec

essary to include the substation user interface agent, due to the real-time con

straints on the display of information on the substation HMI given in [83]. 

A number of challenges associated with the use of artificial intelligence in 

real-time domains are described in [132]. 

7.3.4 Multi-Hop Mobile Agents and Mobile Agent Plan-

. nlng 

The current agents, though capable of performing multi-hop information 

retrieval and multi-hop control, do not attempt to optimize the route taken 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Hus( 



7.3 Future Research 200 

when performing such tasks. Therefore the performance obtained is not opti

mal. Further investigation should implement a planning algorithm to attempt 

to optimize the route of these mobile agents. 

Another optimization that could be used, particularly for the data analysis 

agents, is the use of multiple agents. This should also be investigated in more 

detail. 

7.3.5 Document Retrieval and Integrated Document 

and Data Retrieval Using Mobile Agents 

A further possible application of mobile agents would be to provide doc

ument retrieval functionality. This could be implemented either as an inde

pendent function or in combination with the data retrieval functionality. The 

task of the document agent would be to retrieve a set number of documents 

(e.g. 10) in response to a query issued by a user. The agent would visit the 

various available document repositories, and collect matching documents. The 

following questions should be addressed during the development of this agent: 

1. If the agent returns to the user after collecting nrelevant documents 

(where nis the number specified by the user), it is possible that these 

are not the most relevant n,and that much more relevant documents ex

ist at other servers. However, if the agent continues to other servers, 

it will use more network resources. Therefore, the agent's termination 

criteria must be investigated. 

2. The question of how to integrate results from multiple document reposi

tories applies equally to the mobile agent as to the client-server document 

management agent (as discussed in Section 3.2.3). 

3. If possible, a planning methodology should be developed to allow the 

agent to estimate the best route through the available servers, in order 

to maximize the likelihood of obtaining the most relevant documents 

while minimizing the time taken. 

INFORMATION MANAGEMENT, MOl\ITORING AND CONTROL 
D. P. B1I";( 



7.3 Future Research 201 

7.3.6 Further Evaluation 

The evaluation of the system presented in this thesis is quite basic, and few 

quantitative results are presented, particularly for the static agents. In order 

to fully characterize the architecture described, further experiments would be 

required. 

M AGE
MENT T\IONITORIi\G :-\f'D COi\TROL 

INFORMATION AN , 

D.P. Hus( 



Appendix A 

Data Tables and Experimental 

Results 

This section provides full results tables for the experiments described in 

Chapter 4. 

A.I Mobile Agent Control Experiment 1 

These tables give the total time in milliseconds to perform N connect-read

disconnect-connect-write-disconnect interactions between an agent and relay. 

IN' Run 1 , Run 2 , Run 3 , Run 4 I Run 5 I Mean I 
0 1271 1262 1262 301 1272 1073.6 
1 1812 1863 1762 1773 1933 1828.6 
2 2364 2373 2384 2383 2373 2375.4 
3 2874 2974 2934 2944 3085 2962.2 
4 2474 3354 3485 3455 3395 3232.6 
5 4136 3956 3034 3956 3996 3815.6 
10 8552 7040 6769 6770 6779 7182 

Table A.I: Mobile Agent, Serial Link. 

202 



A.l Mobile Agent Control Experiment 1 203 

\ N \ Run 1 \ Run 2 ! Run 3 \ Run 4 I Run 5 I Mean 
0 0 0 0 0 0 0 
1 1853 1642 1633 1692 1662 1696.4 
2 4096 3375 3495 3485 3315 3553.2 
3 4977 5177 5228 5207 5158 5149.-:1: I 

I 
, 

4 6980 6930 6830 7051 7151 6948.2 
5 9003 8462 8993 8713 8623 8758.8 I 

10 17566 17355 17585 17134 16564 17240.8, , 

Table A.2: Client/Server, Serial LINK. 

\ N \ Run 1 \ Run 2 I Run 3 I Run 4 I Run 5 ! Mean ! 
0 90 91 80 80 90 86.2 

1 681 651 741 861 640 714.8 

2 1232 1522 1231 1322 1242 1309.8 

3 1882 1842 1713 1662 1743 1768,4 

4 2293 2334 2313 2244 2373 2311.-:1: 

5 2884 2734 2854 2895 2804 283-:1:.2 

10 5949 5899 5658 5919 5949 5874.8 

Table A.3: Mobile Agent, 100Mbps Ethernet. 

I N I Run 1 I Run 2 \ Run 3 \ Run 4 \ Run 5 \ Mean \ 

0 0 0 0 0 0 0 

1 530 541 551 481 541 528.8 

2 962 931 1012 961 972 967.6 

3 1532 1422 1442 1392 1562 1470 

4 1853 1852 2033 1852 1912 1900.4 

5 2423 2714 2403 2423 2484 2489.-:1: 

10 4627 4737 4617 4807 4556 -:1:668.8 

Table A.4: Client/Server, 100~Ibps Ethernet. 

INFORMATION MANAGEMENT, MONITORING AND COi\TROL 
D.P. BII,.,,! 



A.2 Mobile Agent Control Experiment 2 
204 

A.2 Mobile Agent Control Experiment 2 

! Lat.! N ! Run 1 I Run 2 I Run 3 I Run -± I 
0 0 1.93 1.93 1.93 1.93 
0 20 12.35 12.42 12.36 12.43 
0 40 22.77 22.76 22.78 22.77 
0 60 33.22 33.21 33.20 33.23 
0 80 43.61 43.62 43.62 43.59 
0 100 54.04 54.05 54.05 54.06 
25 0 2.23 2.23 2.23 2.-±1 
25 20 13.62 13.59 13.56 13.59 
25 40 25.05 25.17 25.04 25.06 
25 60 36.36 36.38 36.37 36.36 
25 80 47.83 47.80 47.78 47.80 
25 100 59.22 59.39 59.22 59.35 
50 0 2.83 2.83 2.83 2.84 
50 20 15.15 15.11 15.16 15.13 
50 40 27.90 27.49 27.52 27.52 
50 60 39.91 39.94 39.96 39.93 
50 80 52.36 52.33 52.35 52.36 
50 100 64.70 64.77 64.77 64.83 
75 0 3.25 3.25 3.25 3.24 

75 20 16.47 16.53 16.49 16.54 

75 40 29.88 29.85 29.89 29.87 

75 60 43.28 43.32 43.33 -±3.32 

75 80 56.66 56.64 56.68 56.77 

75 100 70.11 70.13 70.02 70.10 

100 0 3.58 3.58 3.59 3.64 

100 20 17.82 17.79 17.86 17.56 

100 40 32.20 32.13 32.21 32.16 

100 60 46.65 46.57 46.56 46.57 

100 80 60.97 61.00 60.98 61.01 

100 100 75.52 75.39 75.35 75.40 

Table A.5: Static Agent 

G A]'\D CO]'\TROL INFORMATION l'vlANAGEMENT, l'vloNITORIN 
D.P. BIL~L 



A.3 MA Analysis Experiment 
205 

! Lat.! N ! Run 1 I Run 2 I R 3 1 un Run 41 
0 0 2.78 2.57 2.63 2.65 
0 20 13.24 13.04 13.04 13.04 
0 40 23.61 23.59 23.61 23.84 
0 60 34.03 33.97 33.90 33.89 
0 80 44.46 44.41 44.30 44.29 
0 100 54.91 54.73 54.92 54.92 
25 0 4.23 4.07 4.25 4.11 
25 20 14.69 14.49 14.43 14.46 
25 40 25.06 25.9 25.08 24.98 
25 60 35.64 35.47 35.41 35.60 
25 80 46.04 45.89 45.87 45.92 
25 100 56.52 56.28 56.25 56.63 
50 0 5.66 5.51 5.71 5.61 
50 20 16.11 15.90 15.99 16.02 
50 40 26.50 26.66 26.63 26.74 
50 60 37.21 37.02 37.12 37.16 
50 80 47.72 47.54 47.57 47.64 
50 100 58.06 57.84 57.83 57.89 
75 0 7.14 6.96 6.95 7.04 
75 20 17.53 17.61 17.39 17.41 
75 40 28.12 28.09 28.12 28.01 

75 60 38.82 38.60 38.74 38.97 

75 80 49.37 49.34 49.37 49.31 

75 100 60.24 59.41 59.45 59.64 

100 0 8.56 8.60 8.36 8.55 

100 20 18.78 19.04 19.19 18.86 

100 40 29.61 29.41 29.84 29.79 

100 60 40.52 40.22 40.25 40.29 

100 80 50.93 50.87 51.01 50.94 

100 100 61.41 61.06 61.18 61.56 

Table A.6: Mobile Agent 

A.3 MA Analysis Experiment 

These tables give the time taken to perform the experiment described in 

Section 4.2 for each agent type. In the tables, 11 represents Megabits/second, 

K represents Kilobits/second and bandwidth is abbreviated as B/w. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Bu .... ( 



A.3 MA Analysis Experiment 206 

I B/w lIst run I 2nd I 3rd I I B/w lIst run i 2nd :3rd 
100M 112.64 106.63 106.20 100M 112.53 11:2.CJ:2 I 11l.7-1 
10M 111.97 104.32 107.67 10M 113.20 108.08 111.11~ 

1M 115.21 105.14 108.88 1M 113.71 10·J.87 : 108-1(J 
500K 111.33 107.45 106.60 500K 114.92 106.60 110.77 
lOOK 119.38 112.80 111.53 lOOK 120.49 113.6-1 11:2.:29 
10K 231.88 221.28 224.27 10K 230.19 I 2:31.38 L?3.-El 

Latency = Oms Latency=25ms 

I B/w lIst run I 2nd I 3rd I I B/w lIst run I 2nd I 3rd I 
100M 116.93 109.66 108.87 100M 117.11 115.66 112.68 
10M 117.48 110.13 110.67 10M 118.38 111.93 117.90 

1M 116.11 110.45 110.29 1M 118.37 114.94 110.1-1 

500K 118.41 110.04 109.98 500K 120.98 114.40 115.1-1 

lOOK 122.97 113.98 114.29 lOOK 123.54 116.51 122.90 

10K 238.09 225.96 227.57 10K 234.55 223.12 226.39 

Latency = 50ms Latency=75ms 

I B/w lIst run I 2nd I 3rd I 
100M 119.88 116.89 113.66 

10M 119.30 111.57 113.27 

1M 122.43 117.07 116.77 

500K 120.71 114.72 119.41 

lOOK 128.15 122.27 122.00 

10K 233.21 226.07 222.89 

Latency = lOOms 

Table A.7: Wrapper-Based Agent, Mobile 

The result marked with a * was a re-run after the original result was affected 

by network load. 

D.P. Bu~( M NITORING Al'\D COKTROL 
INFORMATION MANAGEMENT, 0 



A.3 MA Analysis Experiment 
207 

I B/w lIst run I 2nd 3rd I I B/w lIst run I 2nd 3rd , 

100M 109.89 107.23 107.20 
10M 110.78 107.45 107.20 

100M 115.93 I 112.91 i 11:?69 
10M 118.50 11-1.2-1 118.66 

1M 117.81 114.00 113.95 1M 122.94 121.15 12l1.22 
500K 126.67 124.14 123.35 500K 133.21 128.43 1:?9."lG 

I 

lOOK 202.39 202.10 198.17 lOOK 202.97 199.76 200.01 
10K 1141.44 1118.52 1129.47 10K 1132.78 1100.77 1158.6-1 

Latency = Oms Latency=25ms 
B/w lIst run I 2nd I 3rd I I B/w lIst run I 2nd I 3rd 

100M 123.24 120.40 119.96 100M 129.51 126.01 126.6-1 

10M 121.71 118.42 118.16 10M 133.94 127.68 126.59 

1M 126.47 123.72 122.16 1M 131.50 129.00 1:?S.Gi 

500K 135.16 132.34 132.41 50 OK 138.04 135.81 135.05 

lOOK 207.90 204.62 203.88 lOOK 209.34 206.97 206.09 

10K 1138.87 1119.30 1120.29 10K 1137.08 1122.46 1119.27 

Latency = 50ms Latency=75ms 

I B/w lIst run I 2nd I 3rd 

100M 137.83 134.35 133.88 

10M 134.84 132.22 130.90 

1M 139.37 135.55 135.15 

500K 144.28 140.40 138.67 

lOOK 209.34 212.54 211.46 

10K 1112.98 1110.51 1121.70 

Latency = lOOms 

Table A.8: Wrapper-Based Agent, Static 

INFORMATION MANAGEMENT, MONITORIl'\G AND COl'\TROL 
D.P. BII"I 



A.3 MA Analysis Experiment 208 

B/w lIst run I 2nd 3rd B/w lIst run I 2nd 3rd 

100M 33.45 33.90 33.29 100M 35.92 32.76 32.79 
10M 33.11 32.64 36.46 10M 36.07 32.13 32.81 
1M 34.09 35.01 40.31 1M 36.20 33.13 33.40 

lOOK 41.81 38.88 39.55 lOOK 44.26 46.2-! I 47.52 
Latency = Oms Latency=25ms 

B/w lIst run I 2nd 3rd I 
100M 38.11 44.05* 35.18 

10M 38.15 35.20 34.39 

1M 38.55 38.69 35.24 

lOOK 45.97 48.72 45.22 

Latency = 50ms 

Table A.9: Direct Access Agent, Mobile, Cached 

B/w lIst run I 2nd 3rd 

100M 108.64 106.52 98.72 

10M 101.84 105.17 105.91 

1M 102.75 100.13 101.95 

lOOK 110.48 106.73 110.40 

Latency = Oms 

I B/w lIst run I 2nd ! 3rd 

100M 107.15 107.47 111.04 

I B/w lIst run I 2nd 3rd ! 

100M 105.23 101. 6-! 10G.35 

10M 103.87 105.20 10-1.48 

1M 104.87 108.18 102.58 

lOOK 111.62 109.36 113.02 

Latency=25ms 

10M 103.51 109.98 104.00 

1M 107.53 107.30 109.73 

lOOK 114.29 110.87 117.36 

Latency = 50ms 

Table A.10: Direct Access Agent, Mobile, Uncached 

------ - ------

INFORMATION MANAGEt-dENT, l"IONITORING AND COI\TROL 
D.P. BII"( 



A.3 MA Analysis Experiment 
209 

! B/w ! 1st run I 2nd I 3rd 
100M 37.60 32.77 32.18 
10M 32.60 33.38 33.39 
1M 46.03 46.94 46.88 

lOOK 354.04 354.46 354.62 

B/w 1st run I 2nd :3rd 
100M 958.14 959.GS 9·59. I II 

10M 961.01 962.66 962.()S 
1M 992.2-1 993.31 993.68 i 

lOOK 1303.65 1305.58 1304.92 
Latency = Oms 

B/w lIst run I 2nd I 3rd 
Latency=25ms 

100M 1906.72 1908.17 1908.20 
10M 1911.97 1912.17 1911.86 
1M 1941.62 1942.71 1942.81 

lOOK 2253.65 2254.84 2254.35 
Latency = 50ms 

Table A.11: Direct Access Agent, Static. Cached 

I B/w lIst run I 2nd 3rd I I B/w lIst run I 2nd 3rd I 
100M 96.67 97.99 98.05 100M 3802.99 3804.81 3804.90 

10M 103.40 104.42 104.57 10M 3815.83 3817.96 3818.-12 

1M 157.93 159.17 159.35 1M 3939.50 3941.48 39.,11.55 

lOOK 1387.70 1387.75 1388.09 lOOK 5184.07 5185.72 5185.38 

Latency = Oms Latency=25ms 

I B/w lIst run I 2nd I 3rd 

100M 7593.96 7593.89 7595.24 

10M 7608.65 7613.69 7611.18 

1M 7730.43 7733.47 7732.64 

lOOK 8974.44 8978.56 8978.06 

Latency = 50ms 

Table A.12: Direct Access Agent, Static, Uncached 

INFORMATION MANAGEMENT, f\IONITORING AND COI\'TROL 
D.P. Bll~( 



Appendix B 

Implementation Details of 

Prototype System 

This chapter describes in more detail the implementation of the multi-agent 

system for substation information management and control. Three program

ming languages are used in this implementation. The main agent components 

are implemented in Java using the JADE toolkit. Prolog is used to implement 

the reasoning and querying of the server agents, and the user interface agent 

is implemented as a set of ActiveX components using Microsoft Visual Basic. 

B.l Class Hierarchy 

Figure B.l shows the upper class hierarchy of the substation information 

management system, which implements the architecture described in Chapt(>r 

3. Other classes, such as task-specific sensors, effectors and custom reasoning 

engines, inherit from the classes of this hierarchy. 

210 



B.1 Class Hierarchy 

jade.core genericagent 

Agent «Interlace .. 

... GenericAgen t 

V +getReasoningEnginet) 

~ 
+addLislener() 

Event 
+ramoveListensr() -, 

-+ geIName() I l 
+gelTimeslampO 

+geIObjecls() «'Interface» 
«In terlace» I «Interlace» 

Senso r 
ReasonlngEng lne ENector 

+addBel,.(() Fe.ecut8() +slartl) 

java .util Timestamp +stop() 
+remove8euel() 

+setup() 
+8ventOccu((8d() 

+getEvents() 
+quaryO 

+selAgenlO 
+RddEllector() 

+addLis/enerO 
+star1up() 

+removeLlstener() 
"'shutdown() 

Date "performAct,on() 

~ 
Time 

Lt +serPropsrry() 

~ A bstrac lSensor I "n'erlace. 
SensatE "' 8nl Listener 

r ·6VfJntO~CU"8dO 

bolney. agents.generic 

I 
Ge nericJADEAgenl PrologRea sonlng En gi ne 

Note: the methods addListener{) and removeListener{) of the genericagenL Sensor and genericagenLGenericAgent classes are actually 
addSensorEventListener() and removeSensorEventListener() . For readability the names have been abbreviated on th is diagram 

211 

I 
I 

Figure B .l : Upper Class Hierarchy of Subst ation Information Manag m nt 

Syst em 

INFORMATION MANAGEME T :l\/.Io ITORI G ND o TR L D.P. Bu 



B.2 Substation Simulator Agent 
212 

B.2 Substation Simulator Agent 

B.2.1 Agent-Specific Classes Used 

• TCPSimulatorSensor (extends AbstractSensor): used to acquire data 

from the substation simulator via the data acquisition PXI s~'stem. 

• TCPSimulatorWriter (implements Effector): used to write to the sub~ta
tion simulator (via the PXI). 

B.3 Plant Agents 

No agent-specific classes were used in the plant agents. as the.,' are ~olely 
software agents, and do not require sensors or effectors (apart from communi

cations with other agents). A single prolog file 1 provides generic rules common 

to all plant agents (acquiring plant properties from the ontology agent, reading 

mappings from the mapping agent etc). 

B.4 Database Agents 

The database agent used a separate kernel (DatabaseAgentKerneI2) to the 

standard agents. This added a number of methods allowing database queries 

to be executed from Prolog. 

B.5 Document Agents 

The ps2ascii tool (part of GhostScript) is used to generate the plain text 

from PDF and PostScript files. To generate plain text from a Word documellt. 

a program written in Visual Basic invokes Microsoft Word to convert the file. 

Therefore, in order for the document agent to work with \Vord documenh. 

Microsoft Word must be installed on the system. 

Iplant.pro 

INFORMATION IvIANAGEl\1ENT, T\IONITORII\G Al\D CONTROL D.? Bus( 



B.6 User Interface Agent 
213 

B.6 User Interface Agent 

The user interface agent is implemented in Visual Basl'C It . t . commumca es 
with the other agents (resident on the JADE platform) via a TCP-based mes-

sage transport system added to the JADE main container. 

The protocol used by the message transport system and user agent is as 

follows: 

1. Discovery 

(a) Client broadcasts UDP packet with content "SEND-AP

DESCRIPTION" to address 224.0.0.1 and port 7878. Alternatively, 

an address may be specified by the user. 

(b) On receipt of this message the MTS sends an inform message to 

the client. The content of this message is ((result <action> <ap

description> )) where <ap-description> is the agent platform de

scription (as defined in [76]) of the platform on which the MTP is 

situated. The client can use this to extract the TCP address of the 

platform, which will be given as "stcp:/ /<address>:<port>", for 

example "stcp: / /192.168.1.5:7879" . 

2. Message Transport 

(a) Client establishes TCP connection to the MTS. 

(b) To send a message, the client first writes "BEGIN", at the start of a 

line and followed by a line feed or carriage return and line feed. The 

client then writes the message, using the FIP A ACL string encoding. 

To terminate a message, the client writes a line "END". 

(c) To close the socket, the client writes a line "CLOSE". The server 

will then close its connection to the client. 

(d) Messages from the other agents to the client (via the MTS) are 

transmitted on the same socket connection, using the same protocol. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



Appendix C 

Data File Formats 

The prototype system is configured using several data files. The format of 
these files is described here. 

e.l Generic Agent Configuration 

The format of the configuration file for the generic agent is as a FIPA SL 

functional expression with parameters (frame). There are 5 possible parame
ters: 

• reasoning-engine: Specifies information regarding the agent's reasoning 

engine. 

• abilities: Set of ability frames. Specifies the abilities / effectors of the 

agent 

• sensors: Set of sensor frames. Specifies the sensors of the agent 

• include-beliefs: Set of strings (the filenames). Specifies additional filps 

containing the agent's beliefs . 

• interaction-protocols: Set of strings (interaction protocol names). Sp('('

ifies interaction protocols which the agent will participate in. Allowable 

values are fipa-subscribe, subscribe, fipa-request. fipa-query.l 

IThere is a bug in the agent implementation with regards to the fipa-subscribe 

21..1 



C.l Generic Agent Configuration 

215 

The Ability frame 

The ability frame has the classname/functor "abl'll't,," 
~ and the following possible parameters: 

• implemented-by: String. Specifies the Java classname of the abilih"s 
implementing class 

• name: String. Currently ignored. 

The Sensor frame 

possible parameters: 

The sensor frame h th 1 / 
as e c assname functor "sensor" and the following 

• implemented-by: String. Specifies the Java classname of the sensor's 
implementing class 

• name: String. Currently ignored. 

• parameters: Set of parameter frames, each having the parameters name 

and value. The possible parameters depend on the sensor class in use. 

The Reasoning Engine Frame 

The reasoning engine frame has the classname/functor "reasoning-engine" 

and the following possible parameters: 

• name: String. Currently ignored 

• implemented-by: Java classname of the class implementing the rpas()lling 

engIne 

• properties: Set of property frame, each having the parameters name and 

value. The possible parameters depend on the chosen reasoning engine. 

protocol, which was formerly referred to as subscribe during the period of time that 
fipa-subscribe was deprecated by FIPA. To ensure that an agent is capable of handling 
subscriptions, put both subscribe and fipa-subscribe in the interaction protocol :-;d. 

INFORMATION MANAGEMENT, MONITORING AI\D CONTROL D.P. Bu<.;c 



C.1 Generic Agent Configuration 216 

C.l.l Example 

This example is an abbreviated version of that used by the substation sim

ulator agent of the prototype system (some of the filenames haye been short-

ened). 

(agent-definition 

: reasoning-engine 

(reasoning-engine 

: name C C PrologRE) ) 

: implemented-by 

bolney.agents.generic.PrologReasoningEngine 

:properties 

(set 

(property 

:name xplfile 

:value d:/work/prolog/test/test.xpl) 

(property 

:name profiles 

: value 

(set 
d:/java/bolney/config/simulator/simulator.pro 

d:/java/bolney/config/create_action_sd.pro 

d:/java/bolney/config/create_query_sd.pro)))) 

:abilities 

(set 

(ability 

: implemented-by 
bOlney.agents.generic.effector.RegisterWithDF2)) 

: sensors 

(set) 

: include-beliefs 

(set 

1\ I NITORING AND CONTROL 
INFORMATION MANAGEMENT, 1\ 0 

D.P. Bus( 



C.2 Mobile Analysis Agent Configuration 217 

d:/work/java/bolney/config/simulator/simu1ator.s1 

d:/work/java/bolney/agents/monitoring/device_onto1ogy.sl) 

: interaction-protocols 

(set fipa-query subscribe fipa-subscribe fipa-request)) 

C.2 Mobile Analysis Agent Configuration 

The mobile analysis agent uses a somewhat simpler configuration file than 

the generic agent. The format is similar, with an SL frame being used as the 

main configuration object. The main frame has classname analysl:-;-agent. It 

has the following parameters: 

• data-sets: Set of data-set frames. Specifies the data sets to be retrieved. 

• functions: Set of function frames. Specifies the analysis functions used 

by the agent. 

• report: report frame. Specifies how the report is to be generated. 

• mobile: boolean. Specifies whether the agent is to be mobile or static. 

The analysis agent's configuration file may be automatically generated by tl)(' 

user interface agent. 

The Data Set Frame 

The data-set frame defines a data set. Properties: 

• number: Integer. A number used to identify the data set . 

• selection-string: String. A FIPA SL IdentifyingExpression used to spC'c

ify the data to retrieve. 

M NITORING A.f\D CO\"THOL 
INFORMATION MANAGEMENT, 0 ' 

D.P. Bu,,( 



C.2 Mobile Analysis Agent Configuration 218 

The Function Frame 

The function frame defines an analysis function: specifying the name to bt' 

used and the Java class which implements the functl·on. P t' roperIes: 

• name : String 

• implemented-by: String. Name of Java class. 

The Report Frame 

The report frame defines the report in terms of how the anal~'sis functions 

are to be applied, and any additional text to be inserted around the result~, 

C.2.1 Example 

This example is for an agent which retrieves a single data set containing 

current and time, calculates the maximum current and displays it in a report 

entitled "Analysis Report" , 

(analysis-agent 

: data-sets 

(set 

(data-set 

:number 0 

: selection-string 

C C ( (all 

(set ?current ?time) 

(t (lv-current sgtl ?current) ?time)))")) 

: functions 

(set 

(function 

:name max 

: implemented-by 

bOlney.agents.analysis.functions.Max)) 
------

NG Af\D CO:'\TROL 
INFORMATION MANAGEMENT, ~IONITORI ' 

D.P. 3u,( 



C.3 Mobile Remote Control Agent Configuration 

:mobile true 

: report 

(report 

:title "Analysis Report" 

: items 

(set 

(report-item 

:results (max dsO:current dsO:time) 

:text-before "Maximum LV Current =" 

:text-after fe,,)))) 

219 

C.3 Mobile Remote Control Agent Configura

tion 

The remote control agent's configuration consists of a set of actions, and 

a configuration setting to determine whether or not the agent is mobile. Th(' 

main frame of the configuration is the control-agent frame. Parameters: 

• actions: FIP A SL action sequence 

• mobile: boolean. Specifies whether the agent is mobile or static. 

C.3.1 Example 

(control-agent 

: actions 

(action 

(agent-identifier :name ca@pc2214:1099/JADE) 

(open h13)) 

:mobile true) 

INFORMATION MANAGEMENT, MONITORI~G AT'D CONTROL 
D.P. Bu.'( 



References 

[1] The National Grid Company plc. Seven year statement. http://www . 

nationalgrid.com/uk/library/documents/sys_03/default.asp, 

March 2003. 

[2] J. D. McDonald. Substation automation: lED integration and avail

ability of information. IEEE Power and Energy J..lagazine, 1(2):22-3L 

Marchi April 2003. 

[3] V. Lohmann. New strategies for substation control, protection and acc('ss 

to information. In Proceedings of the sixteenth international conferen ('I' 

and exhibition on electricity distribution (CIRED 2001), volume 3, pages 

211-215. lEE Publishing, June 2001. 

[4] B. Qui and H. B. Gooi. Web-based SCADA display systems for access 

via internet. IEEE Transactions on Power Systems, 15(2):681-686, l'vIay 

2000. 

[5] S. Bricker, T. Gonen, and L. Rubin. Substation automation technologies 

and advantages. IEEE Computer Applications in Power, 14(3):31-:37~ 

July 2001. 

[6] J. V. Hughes, J. E. Fitch, and R. W. Silversides. Substation information 

project- field experience with internet technologies. In Proceedings of 

the Seventh International Conference on Developments in Power Slj.'-,'trm 

Protection, pages 122-125, Amsterdam, Netherlands. 2001. 

220 



REFERENCES 
221 

[7] Nicholas R. Jennings An t b d . . 
. agen - ase approach for bmldmg complex 

software systems. Communications of the ACM, 44( 4):3.5-4l. ]r~)ol. 

[8J Jacques Ferber. Multi-Agent Systems.' An Introduction to Distributed 

Artificial Intelligence. Addison-Wesley, Harlow, England, 1999. ISB:; 
0201360489. 

[9] Douglas Maxwell Considine and Glenn P Considine. Standard Handbook 

of Industrial Automation. Chapman and Hall, New York, 1986. ISBA 
0412008319. 

[10J John W. Bernard. CIM in the process industries. Instrument Societ~· of 

America, Research Triangle Park (N.C.), 1989. ISBN 15561716iC). 

[11] Theodore J. Williams. A Reference Model for Computer Integrated !If anu

facturing. Instrument Society of America, Research Triangle Park (N.C.), 

1989. ISBN 1556172257. 

[12] B.M. Weedy and B.J. Cory. Electric Power Systems. Wiley, Chichester, 

1998. ISBN 0471976776. 

[13] Otto Preiss and Alain Wegmann. Towards a composition model prob

lem based on IEC61850. In Proceedings of the 4th ICSE Work

shop on Component-Based Software Engineering, Toronto, Canada, 

May 2001. Available online: http; //www.sei. emu. edu/paee/CBSE4_ 

papers/PreissWegmann-CBSE4-4.pdf. 

[14] Q. Zhao, H. In, X. Wu, and G. Huang. Transforming legacy energy 

management system (EMS) modules into reuseable components: A C'a~t' 

study. In Proceedings of IEEE International Computer Software and 

Applications Conference (COMPSAC 2000), pages 105-110. IEEE Com

puter Society Press, 2000. 

[15] J. W. Evans. Energy management system survey of architectures. IEEE 

Computer Applications in Power, 2(1):11-16, 1989. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



REFERENCES 222 

[16] S. Humphreys. Substation automation systems in review. IEEE Com

puter Applications in Power, 7(2):24-30, April 1998. 

[17] K. Caird. Integrating substation automation. IEEE Spectrum, 3-1(8): 

64-69, August 1997. 

[18] Darold Woodward and David Tao. Comparing throughput of substation 

networks. Technical report, Schweitzer Engineering Laboratories Inc., 

Pullmann, WA, USA, 2000. Available online: http://www.selinc.com/ 

techpprs/6116.pdf. 

[19] Mark Adamiak and William Premerlani. The role of utility commu

nications in a deregulated environment. In Proceedings of the Hawaii 

International Conference on System Sciences, volume 3, Maui, HI, USA, 

January 1999. CDROM. 

[20] T. Skeie, S. Johannessen, and C. Brunner. Ethernet in substation au

tomation. IEEE Control Systems Magazine, 22(3):43-51, June 2002. 

[21] Michi Henning and Steve Vinoski. Advanced CORBA Programming with 

C++. Addison Wesley, Reading, Massachusetts, 1999. ISBN 0201379279. 

[22] Robert Orfali and Dan Harkey. Client/Server Programming with Java 

and Corba. Wiley Computer Publishing, New York, 2nd edition, 1998. 

ISBN 047124578X. 

[23] Ian Somerville. Software Engineering. Addison-Wesley, Harlow, England, 

6th edition, 2001. ISBN 020139815X. 

[24] International Electrotechnical Commission. Communication networks 

and systems in substations. IEC Standard 61850, International Elec-

trotechnical Commission, Geneva, CH, 2002. 

[25] K. Clinard. GOMSFE (generic object models for substation and feeder 

equipment) models of multifunctional microprocessor relays. In Power 

INFORMATION MANAGEMENT MONITORING AND CONTROL , 
D.P. Bl1Sf 



REFERENCES 
223 

Engineering Society Summer Meeting, 1999, volume 1. pages 36-38. 

IEEE, July 1999. 

[26] G. Brunello, R. Smith, and C. B. Campbell. An application of a 

protective relaying scheme over ethernet LAN/WAN IT:' . n ransm'lsswn 

and Distribution Conference and Exposition, volume I, pages 522-526. 

IEEE/PES, 2001. 

[27] DNP Users Group. DNP users group website. http://www . dnp. ~rg. 

[28] IEEE Computer Applications in Power Tutorial. Fundamentals of utili

ties communication architecture. IEEE Computer Applications in Power, 

14(3): 15-21, July 2001. 

[29] John Downes, Jack Goody, Keith Walker, Brian Baker, and Da\'e Cooper. 

A strategy for substation information, control and protection. Technical 

Report TR(E)312, National Grid Company, 1998. 

[30] Brian Baker. Substation information control and protection local area 

network. Draft NGTS 3.24.1, National Grid Company, February 2000. 

[31] Michael Woolridge and Nicholas Jennings. Intelligent agents: Theory 

and practice. The Knowledge Engineering Review, 10(2):115-152, 1995. 

[32] Anand S. Rao and Michael P. Georgeff. BDI agents: From theory to 

practice. In Proceedings of the International Conference on Multi-Agent 

Systems (ICMAS), pages 312-319, San Francisco, USA, June 199,:). 

[33] Francois F. Ingrand, Michael P. Georgeff, and Anand S. Rao. An archi

tecture for real-time reasoning and system control. IEEE Expert, i( 6): 

34-44, December 1992. 

[34] Munindar P. Singh, Anand S. Rao, and Michael P. Georgeff. Formal 

Methods in DAI: Logic-Based Representation and Reasoning. In Gerhard 

Weiss, editor, Multiagent Systems: A Modem A.pproach to Distributer/ 

INFORMATION MANAGEMENT) MONITORING AND CONTROL 
D.P. Hlls( 



REFERENCES 
224 

Artificial Intelligence, chapter 8, pages 331-376. The MIT Press, Cam

bridge, Massachusetts, 1999. ISBN 0262731312. 

[35] R. A. Brooks. A robust layered control system for a mobile robot. IEEE 

Journal of Robotics and Automation, 2(1):14-23, 1986. 

[36] Michael Wooldridge. Intelligent agents. In Gerhard Weiss, editor, Multi

agent Systems: A Modern Approach to Distributed ArtifiCial Intelligence, 

chapter 1, pages 27-77. The MIT Press, Cambridge, Massachusetts, 1999. 

ISBN 0262731312. 

[37] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Rein

forcement learning: A survey. Journal of Artificial Intelligence Research, 

4:237-285, 1996. 

[38] John R. Koza, Forrest H Bennett III, David Andre, and Martin A. Keane. 

Genetic programming: Biologically inspired computation that creatively 

solves non-trivial problems. In Laura Landweber, Erik Winfree, Richard 

Lipton, and Stephen Freeland, editors, Proceedings of Discrete Mathe

matics and Theoretical Computer Science (DIMACS) Workshop on Evo

lution as Computation, pages 15-44, Princeton University, 11-12 1999. 

Springer-Verlag. ISBN 3540667091. 

[39] Stephen Muggleton and Luc De Raedt. Inductive logic programming: 

Theory and methods. Journal of Logic Programming, 19/20:629-679, 

1994. 

[40] C. Heinze, S. Goss, 1. Lloyd, and A. Pearce. Plan recognition in military 

simulation: Incorporating machine learning with intelligent agents. In 

Proceedings of IJCAI-99 Workshop on Team Behaviour and Plan Recog-

nition, pages 53-64, 1999. 

[41] Cindy Olivia, Chee-Fon Chang, Carlos F. Enguix, and Aditya K. Ghose. 

Case-based BDI agents: an effective approach for intelligent search on 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



REFERENCES 

the world wide web. In AAAI Spring Symposium on Intelligent AgfTlt5. 

Stanford University, USA, March 1999. 

[42] Pattie Maes. Agents that reduce work and information overload. In 

Jeffrey M. Bradshaw, editor, Software Agents, chapter 8. :\IIT Pn-)~~. 

Cambridge, Massachusetts, 1997. ISBN 0262622349. 

[43] Justin A. Boyan and Michael L. Littman. Packet routing in dynami

cally changing networks: A reinforcement learning approach. In Jack D. 

Cowan, Gerald Tesauro, and Joshua Alspector, editors, Advances in iYeu

ral Information Processing Systems, pages 671-678, Cambridge, ~las

sachusetts, 1993. MIT Press. ISBN 0262201070. Also available as: 

http://www.cs.duke.edu/-mlittman/papers/routing-nips.ps. 

[44] Peter Stone and Manuela Veloso. Multiagent systems: A survey from a 

machine learning perspective. Autonomous Robotics, 8(3), July 2000. 

[45] I. A. Ferguson. TouringMachines: Autonomous agents with attitudes. 

IEEE Computer, 25(5):51-55, 1992. 

[46] Klaus Fischer, Jorg P. Muller, and Markus Pischel. A pragmatic BDI 

architecture. In Proceedings of ATAL 95, number LNAI 1037 in Lecture 

Notes in Artificial Intelligence, pages 203-218. Springer Verlag, 1995. 

[47] Onn Shehory. Architectural properties of multi-agent systems. Techni

cal Report CMU-RI-TR-98-28, The Robotics Institute, Carnegie Mellon 

University, Pittsburgh, Pennsylvania 15213, December 1998. 

[48] D. Martin, A. Cheyer, and D. Moran. The Open Agent Architecture: a 

framework for building distributed software systems. Applied Artificial 

Intelligence, 13(1/2):91-128, 1999. 

[49] A. Fuggetta, G.P. Picco, and G. Vigna. Understanding code mobility. 

IEEE Transactions on Software Engineering, 24(5):342-361, May 1998. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Bv'ic 



REFERENCES 226 

[50] Roch H. Glitho, Edgar Olougouna, and Samuel Pierre. Mobile agents and 

their use for information retrieval: A brief overview and an elaborate case 

study. IEEE Network, 16(1):34-41, January 2002. 

[51] Robert S. Gray, George Cybenko, David Kotz, Ronald A. Peterson, and 

Daniela Rus. D' Agents: Applications and performance of a mobile-agent 

system. Software- Practice and Experience, 32(6):543-573, May 2002. 

[52] Mario Baldi and Gian Pietro Picco. Evaluating the tradeoffs of mobile 

code design paradigms in network management applications. In Proceed

ings of the 20th international conference on Software engineering, pages 

146-155. IEEE Computer Society, 1998. ISBN 0-8186-8368-6. 

[53] M. StraBer and E Schwehm. A performance model for mobile agent 

systems. In Proceedings of Parallel and Distributed Processing Techniques 

and Applications 1997, volume 2, pages 1132-1140, Las Vegas, Nevada, 

USA, 1997. 

[54] Brian Brewington, Robert Gray, Katsuhiro Moizumi, David Kotz, 

George Cybenko, and Daniela Rus. Mobile agents for distributed in

formation retrieval. In Matthias Klusch, editor, Intelligent Information 

Agents, chapter 15, pages 355-395. Springer-Verlag, 1999. 

[55] Colin G Harrison, David M. Chess, and Aaron Kershenbaum. Mobile 

agents: Are they a good idea? Technical report, IBM T. J. Watson 

Research Center, 1996. 

[56] Dejan Milojicic. Trend wars: Mobile agent applications. IEEE Concur

rency, pages 80-90, July-September 1999. 

[57] Wayne Jansen and Tom Karygiannis. Mobile agent security. Special Pub

lication 800-19, National Institute of Standards and Technology, 1999. 

[58] David Chess. Security issues in mobile code systems. In Mobile Agents 

and Security, number 1419 in Lecture Notes in Computer Science, pages 

159-187 . Springer-Verlag. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



REFERENCES 

[59] Katia Sycara, Keith Decker, Anandeep Pannu, :\Iike \\'illiamson. and 

Dajun Zeng. Distributed intelligent agents. IEEE Expert. 11(6):3Ci -Ii,. 

December 1996. 

[60] Michael N. Huhns and Munindar P. Singh. All agents are not created 

equal. IEEE Internet Computing, 2(3):94-96, May-June 1998. 

[61] J M Corera, I Laresgoiti, and N Jennings. Using Archon, part 2: Elec

tricity transportation management. IEEE Expert, 11(6):71-7(~). December 
1996. 

[62] N. R. Jennings and D. Cockburn. ARCHON: A distributed artificial 

intelligence system for industrial applications. In G. :\1. P. O'Hare and 

N. R. Jennings, editors, Foundations of Distributed Artificial InteUigencc. 

pages 319-344. Wiley, 1996. 

[63] The PABADIS Consortium. Pabadis white paper. http://www . 

pabadis.org/downloads/pabadis_white_paper.pdf, 2002. 

[64] Steffen Deter, Ralf Blume, and Klemm Eckehardt. Generic machine rep

resentation in the PABADIS community. In Proceedings of e-2002 Con

ference, Prague, October 2002. http://www . mathematik. uni -marburg. 

de/~pabadis/publics/e2002.doc. 

[65] S. Bussmann and K. Schild. Self-organizing manufacturing control: An 

industrial application of agent technology. In Proceedings of the Fourth 

International Conference on Multi-Agent Systems, pages 87 - 94, 2000. 

[66] N. R. Jennings and S. Bussmann. Agent-based control systems: \\'hy 

are they suited to engineering complex systems. IEEE Control Systems 

Magazine, 23(3):61-73, June 2003. 

[67] P. Leitao and F. Restivo. An agile and cooperative architecture for dis

tributed manufacturing systems. In Proceedings of the lASTED Interna

tional Conference on Robotics and M anujacturing, pages 188-193, Can

cun, Mexico, May 2001. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Bu.~( 



REFERENCES 
228 

(68) E. E. Mangin a, S. D. J. McArthur, and J. R. McDonald. Reasoning 

with modal logic for power plant condition monitoring. IEEE Power 

Engineering Review, 21(7):58-59, July 2001. 

(69) E.E. Mangina, S.D.J. McArthur, and J.R. McDonald. Commas (con

dition monitoring multi-agent system. Autonomous Agents and Multi

Agent Systems, 4(3):279-282, 2001. 

[70] C. Lucas, M. A. Zia, M. R. A. Shirazi, and A. Alishahi. Development of a 

multi-agent information management system for Iran power industry: A 

case study. In Proceedings of 2001 IEEE Porto Power Tech Conference, 

Porto, Portugal, 2001. 

[71] Gustaf Neumann and Uwe Zdun. High-level design and architecture of 

an HTTP-based infrastructure for web applications. World Wide Web, 

3(1):13-26, 2000. 

[72] Foundation for Intelligent Physical Agents. FIPA ACL Message Structure 

Specification. http://www . fipa. ~rg, August 2000. 

[73] Foundation for Intelligent Physical Agents. FIPA communicative act li

brary specification. http://www . fipa. org/specs/fipa00037/, October 

2000. 

[74] H. Van Dyke Parunak. Industrial and Practical Applications of DAr. 

In Gerhard Weiss, editor, Multiagent Systems: A Modern Approach to 

Distributed Artificial Intelligence, chapter 9, pages 377-421. The MIT 

Press, Cambridge, Massachusetts, 1999. ISBN 0262731312. 

[75] Weiming Shen and Douglas H. Norrie. Agent-based systems for intelli

gent manufacturing: A state-of-the-art survey. Knowledge and Informa

tion Systems, 1(2):129-156, 1999. Also available at: http://imsg . enme. 

ucalgary.ca/publication/abm.htm. 

[76J Foundation for Intelligent Physical Agents. FIPA agent management 

specification. http://www . fipa. org/specs/fipa00023/, August 2000. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL D.P. Buse 



REFERENCES 229 

[77] D. Martin, H. Oohama, D. Moran, and A. Cheyer. Information broker

ing in an agent architecture. In Proceedings of the Second International 

Conference on the Practical Application of Intelligent Agents and Multi

Agent Technology, pages 467-486, Blackpool, UK, 1997. 

[78] Foundation for Intelligent Physical Agents. FIPA SL content language 

specification. http://www . fipa. org/specs/fipa00008/, August 2000. 

[79] Foundation for Intelligent Physical Agents. FIPA Ontology Service Spec

ification. http://www . fipa. org/specs/fipa00086/, August 2001. 

[80] Yannis Labrou, Tim Finin, and Yun Pengo Agent communication lan

guages: The current landscape. IEEE Intelligent Systems, 14(2):45-52, 

1999. 

[81] Foundation for Intelligent Physical Agents. FIPA interaction protocolli

brary specification. http://www . fipa. org/specs/fipa00025/, August 

2001. 

[82] H. Van Dyke Parunak. 'Go to the ant': Engineering principles from 

natural multi-agent systems. Annals of Operations Research, 75:69-101, 

1997. 

[83] The National Grid Company. Specification for substation control sys

tems. NGTS 2.7, The National Grid Company, National Grid House, 

Kirby Corner Road, Coventry CV 4 8JY, April 1998. 

[84] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap

proach. Prentice Hall Series in Artificial Intelligence. Prentice Hall, Upper 

Saddle River, NJ, USA, 1995. ISBN 0131038052. 

[85] W. van der Hoek and M. Wooldridge. Towards a logic of rational agency. 

Logic Journal of the IGPL, 11(2):135-159,2003. 

[86] James F. Allen. Time and time again: the many ways to represent time. 

International Journal of Intelligent Systems, 6:341-355, 1991. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



REFERENCES 230 

[87] Yoav Shoham. Temporal logics in AI: Semantical and ontological con

siderations. Artificial Intelligence, 33(1):89-104, 1987. 

[88] Robert Kowalski and Marek Sergot. A logic-based calculus of events. 

New Generation Computing, 4(1):67-95, 1986. 

[89] J.T. Tengdin. Development of an IEEE standard for integrated substa

tion automation commmunication(p1525): specifications for substation 

applications and key communication performance drivers. In Power Engi

neering Society Summer Meeting, 2000, volume 1, pages 136-137. IEEE, 

2000. 

[90] K.E. Martin, G. Benmouyal, M. G. Adamiak, M. Begovic, R. O. Burnett, 

K. R. Carr, A. Cobb, J. A. Kusters, S. H. Horowitz, G. R. Jensen, G. L. 

Michel, R. J. Murphy, A. G. Phadke, M. S. Sachdev, and J. S. Thorp. 

IEEE standard for synchrophasors for power systems. IEEE Transactions 

on Power Delivery, 13(1):73-77, 1998. 

[91] Dublin Core Metadata Initiative. The Dublin Core Element Set version 

1.1. http://www . dublincore. org/documents/dces/, February 2003. 

[92] J.Q. Feng, P. Sun, W.H. Tang, D.P. Buse, Q.H. Wu, Z. Richardson, and 

J. Fitch. Implementation of a power transformer temperature monitoring 

system. In Proceeding of 2002 International Conference on Power System 

Technology, volume 2002 (3), pages 1980-1983. IEEE, 2002. 

[93] N. Guarino. Formal ontology and information systems. In Proceedings 

of the 1st International Conference on Formal Ontologies in Information 

Systems, pages 3-15, Trento, Italy, June 1998. lOS Press. 

[94] Foundation for Intelligent Physical Agents. FIPA homepage. http:// 

www . f ipa. ~rg. 

[95] 
Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Developing 

multi-agent systems with a FIPA-compliant agent framework. Software: 

Practice and Experience, 31(2):103-128, 2001. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



REFERENCES 
231 

(96] Foundation for Intelligent Physical Agents. Publically available imple

mentations of FIPA specifications. http://www . fipa. org/resources/ 

livesystems.html. 

(97] Harry L. Chen. Developing a dynamic distributed intelligent agent frame

work based on the Jini architecture. MSc thesis, University of Maryland 

Baltimore County, 1999. 

(98] W. Keith Edwards. Core Jini. Prentice Hall PTR, Upper Saddle River, 

NJ 07458, 2001. ISBN 0130894087. 

(99] Federico Bergenti and Agostino Poggi. LEAP: A FIPA platform for 

handheld and mobile devices. In Intelligent agents VIII, LNAI 2333, 

pages 436-445. Springer-Verlag, Berlin Heidelberg, 2002. 

(100] Michael R. Genesereth, Arthur M. Keller, and Oliver M. Duschka. Info

master: an information integration system. In Proceedings of 1997 Asso

ciation for Computing Machinery Special Interest Group on Management 

of Data (ACM SIGMOD) Conference, pages 539-542, May 1997. 

(101] Norman W. Paton and Oscar Daz. Active database systems. ACM 

Computing Surveys (CSUR), 31(1):63-103, 1999. 

[102] Gopal Gupta, Enrico Pontelli, Khayri A.M. Ali, Mats Carlsson, and 

Manuel V. Hermenegildo. Parallel execution of prolog programs: a 

survey. A CM Transactions on Programming Languages and Systems 

(TOPLAS), 23(4):472-602,2001. 

[103] Charles J. Petrie. Agent-based engineering, the web, and intelligence. 

IEEE Expert, 11(6):24-29, December 1996. 

[104] Gerard Salton and Christopher Buckley. Term-weighting approaches in 

automatic text retrieval. Information Processing and Management, 24 

(5):513-523, 1988. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. BUSf 



REFERENCES 232 

[105] Gerald Kowalski. Information Retrieval Systems: Theory and Imple

mentation. Kluwer Academic Publishers, Boston, MA, USA, 1997. ISB\T 

0792399269. 

[106] O. de Kretser, A. Moffat, T. Shimmin, and J. Zobel. Methodologies 

for distributed information retrieval. In Proceedings of the Eighteenth 

International Conference on Distributed Computing Systems, pages 66-

73, Amsterdam, The Netherlands, May 1998. 

[107] Cohen P and Levesque H. Intention is choice with commitment. Artificial 

Intelligence, 42:213-261, 1990. 

[108] Robert S. Gray, David Kotz, Joyce Barton Ronald A. Peterson, 

Daria Chacn, Peter Gerken, Martin Hofmann, Jeffrey Bradshaw, :0.Iag

gie Breedy, Renia Jeffers, and Niranjan Suri. Mobile-agent ypr:-;\lS 

client/server performance: Scalability in an information-retrieval L1Sk. 

In Mobile Agents: 5th International Conference, MA 2001, number 22~O 

in Lecture Notes in Computer Science, pages 229-243, Atlanta, Georgia, 

2001. 

[109] Fabian Breg and Constantine D. Polychronopoulos. Java virtual machine 

support for object serialization. In ISCOPE Conference on ACAI 2001 

Java Grande, pages 173-180. ACM Press, 2001. ISBN 1-58113-359-6. 

[110] Jin-Wook Baek, Jae-Heung Yeo, Gyu-Tae Kim, and Heon Y. Yeom. 

Cost effective mobile agent planning for distributed information retrieval. 

In International Conference on Distributed Computing Systems (ICD CS) , 

pages 65-72, Mesa, Arizona, USA, April 2001. 

[111] Katsuhiro Moizumi and George Cybenko. The traveling agent problem. 

Mathematics of Control, Signals and Systems, 14(3):213-232. 2001. 

[112] Rong Xie, Daniela Rus, and Cliff Stein. Scheduling multi-task agents. In 

Mobile Agents: 5th International Conference, MA 2001. number 22~0 in 

Lecture Notes in Computer Science. Springer-Verlag, 2001. 

INFORMATION MANAGEMENT, :l\IONITORING A]'\O COi\TROL 



REFERENCES 233 

[113] Luigi Rizzo. Dummynet: a simple approach to the evaluation of network 

protocols. ACM SIGCOMM Computer Communication Review, 27(1): 

31-41, 1997. 

[114] Dag Johansen. Mobile agent applicability. In Proceedings of Mobile 

Agents (MA) 1998, number 1477 in Lecture Notes in Computer Science, 

pages 80-98. Springer Verlag, 1998. 

[115] Ryo Tsukui, Phil Beaumont, Tatsuji Tanaka, and Katsuhiko Sekiguchi. 

Power system protection and control using intranet technology. lEE 

Power Engineering Journal, pages 249-255, October 2001. 

[116] N. R. Jennings. Controlling cooperative problem solving in industrial 

multi-agent systems using joint intentions. Artificial Intelligence, 75(2): 

195-240, 1995. 

[117] Kim Marriott and Peter J. Stuckey. Programming with constraints: an 

introduction. MIT Press, Cambridge, Mass., 1998. ISBN 0262133415. 

[118] Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro 

Kuwabara. The distributed constraint satisfaction problem: Formaliza

tion and algorithms. IEEE Transactions on Knowledge and Data Engi-

neering, 10(5):673-685, 1998. 

[119] D. P. Buse, P. Sun, Q. H. Wu, and J. Fitch. Mobile agents for indus

trial information management, monitoring and control. In Proceedings of 

Intelligent Agents, Web Technologies and Internet Commerce (IAWTIC 

2003), Vienna, Austria, 2003. ISBN 1740880692. CDROM. 

[120] Stefano Campadello, Heikki Helin, Oskari Koskimies, and Kimmo 

Raatikainen. Wireless Java RMI. In Proceedings of the 4th Interna

tional Enterprise Distributed Object Computing Conference, pages 114-

123, Makuhari, Japan, September 2000. IEEE Computer Society. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



REFERENCES 234 

[121] Marcio Delamaro and Gian Pietro Picco. Mobile code in .NET: A porting 

experience. In Mobile Agents: 6th International Conference, MA 2002, 

number 2535 in Lecture Notes in Computer Science, 2002. 

[122] Steven J. Vaughan-Nichols. XML raises concerns as it gains prominence. 

IEEE Computer, 36(5):14-16, May 2003. 

[123] Brendon Cahoon and Kathryn S. McKinley. Performance evaluation of 

a distributed architecture for information retrieval. In Proceedings of the 

19th annual international Association for Computing Machinery Special 

Interest Group on Information Retrieval (ACM SIGIR) conference on 

Research and development in information retrieval, pages 110-118. ACM 

Press, 1996. ISBN 0-89791-792-8. 

[124] Norbert Fuhr. A decision-theoretic approach to database selection in 

networked IR. ACM Transactions on Information Systems (TOIS) , 17 

(3):229-249, 1999. 

[125] R. Kazman, M. Klein, and P. Clements. ATAM: Method for architecture 

evaluation. Technical Report CMU /SEI-2000-TR-004, Carnegie Mellon 

University, 2000. 

[126] Stanislaw Szejko. An exercise in evaluating significance of software qual

ity criteria. ACM SIGCSE Bulletin, 31(3):199, 1999. 

[127] Steve Haacke, Sam Border, Dehn Stevens, and Bob Uluski. Plan ahead 

for substation automation. IEEE Computer Applications in Power, 1(2): 

32-41, March/April 2003. 

[128] K. Sycara, M. Paolucci, M. van Velsen, and J. Giampapa. The RETSINA 

MAS infrastructure. Autonomous Agents and Multi-Agent Systems. 

[129] 
Alan Fedoruk and Ralph Deters. Improving fault-tolerance by replicat

ing agents. In Proceedings of the first international joint conference on 

Autonomous agents and multiagent systems, pages 737-744. ACM Press, 

2002. ISBN 1-58113-480-0. 

INFORMATION MANAGEMENT, MONITORING AND CONTROL 
D.P. Buse 



REFERENCES 235 

[130] G.A. Kaminka. Execution Monitoring in Multi-Agent Systems. PhD 

thesis, University of Southern California Computer Science Department, 

2000. 

[131] N. H. Huxley. Intelligent Monitoring of Pre-Term Babies During the 

First Weeks of Life. PhD thesis, The University of Liverpool, 2001. 

[132] David John Musliner, James Hendler, Ashok K. Agrawala, Edmund H. 

Durfee, Jay K. Strosnider, and C. J. Paul. The challenges of real-time 

AI. Technical Report CS-TR-3290, University of Maryland, 1994. 

MONITORING AND CONTROL 
INFORMATION MANAGEMENT, 

D.P. Buse 


	402263_0001
	402263_0002
	402263_0003
	402263_0004
	402263_0005
	402263_0006
	402263_0007
	402263_0008
	402263_0009
	402263_0010
	402263_0011
	402263_0012
	402263_0013
	402263_0014
	402263_0015
	402263_0016
	402263_0017
	402263_0018
	402263_0019
	402263_0020
	402263_0021
	402263_0022
	402263_0023
	402263_0024
	402263_0025
	402263_0026
	402263_0027
	402263_0028
	402263_0029
	402263_0030
	402263_0031
	402263_0032
	402263_0033
	402263_0034
	402263_0035
	402263_0036
	402263_0037
	402263_0038
	402263_0039
	402263_0040
	402263_0041
	402263_0042
	402263_0043
	402263_0044
	402263_0045
	402263_0046
	402263_0047
	402263_0048
	402263_0049
	402263_0050
	402263_0051
	402263_0052
	402263_0053
	402263_0054
	402263_0055
	402263_0056
	402263_0057
	402263_0058
	402263_0059
	402263_0060
	402263_0061
	402263_0062
	402263_0063
	402263_0064
	402263_0065
	402263_0066
	402263_0067
	402263_0068
	402263_0069
	402263_0070
	402263_0071
	402263_0072
	402263_0073
	402263_0074
	402263_0075
	402263_0076
	402263_0077
	402263_0078
	402263_0079
	402263_0080
	402263_0081
	402263_0082
	402263_0083
	402263_0084
	402263_0085
	402263_0086
	402263_0087
	402263_0088
	402263_0089
	402263_0090
	402263_0091
	402263_0092
	402263_0093
	402263_0094
	402263_0095
	402263_0096
	402263_0097
	402263_0098
	402263_0099
	402263_0100
	402263_0101
	402263_0102
	402263_0103
	402263_0104
	402263_0105
	402263_0106
	402263_0107
	402263_0108
	402263_0109
	402263_0110
	402263_0111
	402263_0112
	402263_0113
	402263_0114
	402263_0115
	402263_0116
	402263_0117
	402263_0118
	402263_0119
	402263_0120
	402263_0121
	402263_0122
	402263_0123
	402263_0124
	402263_0125
	402263_0126
	402263_0127
	402263_0128
	402263_0129
	402263_0130
	402263_0131
	402263_0132
	402263_0133
	402263_0134
	402263_0135
	402263_0136
	402263_0137
	402263_0138
	402263_0139
	402263_0140
	402263_0141
	402263_0142
	402263_0143
	402263_0144
	402263_0145
	402263_0146
	402263_0147
	402263_0148
	402263_0149
	402263_0150
	402263_0151
	402263_0152
	402263_0153
	402263_0154
	402263_0155
	402263_0156
	402263_0157
	402263_0158
	402263_0159
	402263_0160
	402263_0161
	402263_0162
	402263_0163
	402263_0164
	402263_0165
	402263_0166
	402263_0167
	402263_0168
	402263_0169
	402263_0170
	402263_0171
	402263_0172
	402263_0173
	402263_0174
	402263_0175
	402263_0176
	402263_0177
	402263_0178
	402263_0179
	402263_0180
	402263_0181
	402263_0182
	402263_0183
	402263_0184
	402263_0185
	402263_0186
	402263_0187
	402263_0188
	402263_0189
	402263_0190
	402263_0191
	402263_0192
	402263_0193
	402263_0194
	402263_0195
	402263_0196
	402263_0197
	402263_0198
	402263_0199
	402263_0200
	402263_0201
	402263_0202
	402263_0203
	402263_0204
	402263_0205
	402263_0206
	402263_0207
	402263_0208
	402263_0209
	402263_0210
	402263_0211
	402263_0212
	402263_0213
	402263_0214
	402263_0215
	402263_0216
	402263_0217
	402263_0218
	402263_0219
	402263_0220
	402263_0221
	402263_0222
	402263_0223
	402263_0224
	402263_0225
	402263_0226
	402263_0227
	402263_0228
	402263_0229
	402263_0230
	402263_0231
	402263_0232
	402263_0233
	402263_0234
	402263_0235
	402263_0236
	402263_0237
	402263_0238
	402263_0239
	402263_0240
	402263_0241
	402263_0242
	402263_0243
	402263_0244
	402263_0245
	402263_0246
	402263_0247
	402263_0248
	402263_0249
	402263_0250
	402263_0251
	402263_0252
	402263_0253
	402263_0254
	402263_0255
	402263_0256
	402263_0257

