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ABSTRACT 

We are concerned with certain families of degree two rational maps of the 

Riemann sphere, each of which is defined as the set of degree two rational maps 
for which a critical point is of some fixed period, modulo conjugation by M6bius 

transformations. In general, we can take these to be maps of the form 

z2+ az 
z ý-+ 

Z2 

where the parameters a and b satisfy an algebraic equation. Thus each family can 
be realised as a (possibly) reducible algebraic variety in p2C. The motivation 
for this work was to understand as much as possible about the topology of these 

varieties, in particular with a view to deciding whether they are irreducible. (The 

importance of these families relates to hyperbolic maps and their position in the 

parameter space RM2 of rational maps of degree two. [Rl/2/3]) 

We show that the singularities of these varieties are contained in the bound- 

ary of the family and of RM2, where the maps degenerate into finite order M6bius 

transformations. Our main result is to prove that the singularities of these vari- 

eties are made up of a number of smooth branches, each of which intersect two (or 

possibly one) hyperbolic components of polynomials in RM2. To do this, we asso- 

ciate a critically finite branched covering of C^ to each branch which is unique up 

to Thurston equivalence. We then use the combinatorial theory of laminations and 

their matings to establish which polynomials are associated to particular branches. 

Again using combinatorial techniques, we produce results which go some way 
toward showing that the varieties are irreducible. We then calculate the genus of 

some examples. 
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INTRODUCTION 

The dynamics of holomorphic maps of the complex plane and the Riemann 

sphere have been subject to a revival of interest in the last fifteen years or so. 
New techniques have been introduced to the subject, for example quasi-conformal 
deformation theory from hyperbolic geometry, which along with the computer 
images of Mandelbrot and others, illustrating the geometric complexity generated 
by these iterated maps, have excited renewed interest in the subject. From the 

classical work of Fatou [F] and Julia [J] it is evident that the behaviour of critical 

points is of central importance to the dynamics of rational maps. Recent work has 

led to a more complete understanding of the dynamical behaviour of certain types 

of maps, and the variation of dynamics over appropriate parameter spaces. The 

work of Douady and Hubbard [DH1/2] has led to a good combinatorial description 

of the dynamical behaviour of polynomial maps, and in particular the quadratic 

case, where a combinatorial description of the Mandelbrot set, which lives in the 

natural parameter space for quadratic polynomial maps, has been established. Re- 

interpreted by Thurston [T] as Laminations, where the Mandelbrot set is described 

as the continuous image of a quotient of the unit disc, this forms an important 

part of the work that follows. Important open questions still remain, e. g., Is the 

Mandelbrot set locally connected? 

In this thesis we are concerned with dynamically defined families of degree 

two rational maps of the Riemann sphere. Such maps have two critical points 
in general. The parameter space for degree two rational maps is essentially of 

complex dimension two, but not so simple to describe as for polynomial maps, so 
it is illuminating to take one-dimensional slices to help understand the variation in 

dynamics. For each n we define a family to be the set of degree two rational maps 
(up to conjugation by M6bius transformations) with a critical point of least period 
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n. We study these sets as algebraic varieties in the complex projective plane, so 
they are Riemann surfaces with singularities. If we take the periodic critical point 
to be 0, and such that 0 1-+ oo ý-4 1, for n>3 we have maps in the family of the 

form 
Z2 +az +b 

Z F-+ a, b 
Z2 

for complex parameters a and b. For example, imposing the condition that n=3 

gives us the following for the orbit of 0: 0 ý-* oo ý-+ 1 ý-+ 1+a+b, giving the 

defining relation 1+a+b=0 so that maps in this family are of the form 

z i-+ 

for b0 

z2- (i + b)z +b 
Z2 

The initial motivation for this work was to understand more about the topol- 

ogy of these families, since they are an important part of I he structure of parameter 

space: we describe maps for which the critical points converge to an attracting 

periodic orbit as hyperbolic, and in parameter space connected components of the 

set of hyperbolic maps, hyperbolic components, usually contain a central critically- 
finite map (i. e., such that the forward orbits of the critical points are finite sets). 
In fact, (see [111]) these components have been classified, and it has been shown 

that they all contain a critically finite map, bar one exceptional component. Since 

the variation in dynamics over a single hyperbolic component is well understood, 

and since they are conjectured dense in the parameter space, an understanding of 

critically finite maps and the way that they fit together are important. It has been 

conjectured that the families described above are irreducible varieties, though this 

has only been known for n<4. An effort to improve on this situation was the 

starting point for what follows. 

The task of revealing the global topology of an irreducible variety, once its 

degree is known, is essentially one of analysing its singularities. Initially some 
direct calculations of local expansions for branches of some of the singularities 
(see Chapter 1) led to the conjecture that the singularities of these curves are 

made up of branches which in themselves are non-singular. This is equivalent to 

saying that the link associated to each singularity is a link of a certain number of 
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trivial knots, one for each branch. The main result of this thesis is to prove this 

conjecture for all the singularities. 

We study our families of rational maps in the larger setting of degree two 

branched coverings, making use of a natural homotopy-type equivalence for criti- 

cally finite branched coverings due to Thurston. Points on the boundary of the sets 

we shall be considering correspond to M6bius transformations, whose k-fold (for 

some natural number k) self-compositions are the identity map. As an example, 

when b=0 for the family we have described above we have the map z ý-+ 
z 

z 
whose three-fold composition is the identity map. However, it turns out that if we 

consider maps in the families as branched coverings, the boundary or limit points 

of them can be considered as particular types of non-rational (i. e., not equivalent 
to a rational map) critically finite branched coverings. Analysis of these non- 

rational maps is in fact essential to the understanding of the rational maps in the 

families. What we do is to associate these critically finite branched coverings to 

branches of the singularities, and we establish that this association is unique up to 

equivalence by carefully analysing the behaviour of the second critical point. We 

have an abstract combinatorial model of the branched coverings constructed from 

quadratic laminations via their matings, and this is used to sort out these models 
into their equivalence classes, and thus show how many models are associated to 

each branch. With some more work this establishes that each branch is smooth. 

The last part of this thesis details a method which we attempt to use to prove 

the irreducibility of the varieties. Although this work is incomplete the calcula- 

tions which are detailed establish the conjecture for the cases n<7. Extending 

this to higher n is not difficult, but not likely to be very informative without a 

proof for all n since the complexity of the calculations increases exponentially with 

n. Many opportunities exist for extending this work, aside from the obvious irre- 

ducibility question: the interplay between the combinatorial description of critical 

point behaviour and the degrees of tangency of branches of singularities remains 

to be fleshed out more thoroughly; this also applies to the way different varieties 
intersect, a point only touched upon here. Given enough information about the 

singularities, and given that the variety is irreducible, the genus of each is com- 
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putable. In this thesis we carry out this calculation for the cases 71 <- 7, but it 

seems that an algorithm for computing the genus in general may be possible. 

This thesis consists of six chapters. The first four form a self-contained unit 

and establish the main result of this thesis concerning the singularities of the 

families: in Chapter 1 we make explicit calculations of Puiseaux series around 

singularities of some of the varieties; in Chapter 2, we establish exactly where the 

singularities can occur (on two specific lines in the projective plane); in Chapter 3 

we state our main theorem on the smoothness of the branches at the singularities, 

and reduce the problem to one in the context of abstract branched coverings, which 
is then solved in Chapter 4. Chapters 5 and 6 are fairly open-ended and suggest 
further avenues of research: in Chapter five we address the problem of whether 
the varieties are irreducible, making some calculations which suggest a general 

approach for the problem; in Chapter six, we make some genus calculations and 
discuss some further possibilities for research. 
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CHAPTER ONE 

THE FAMILIES W,, 

In this chapter we introduce the main objects of interest, which are families 

of degree two rational maps, and investigate some of their properties as algebraic 

varieties and Riemann surfaces. Included are explicit calculations of Puiseaux 

expansions at the singularities of a few of the families, motivating some of the 

conjectures that we will prove (or attempt to prove) in general. 

§1.1 Degree two rational maps. 

A rational map is the quotient of two polynomials, and rational maps are the 

holomorphic maps of the Riemann Sphere, ý=CU loo}, to itself. The degree c 

of a rational map, d(R), where R(z) = P(z)IQ(z) and P(z) and Q(z) have no 
common factors, is given by maxjd(P), d(Q)}, where d(P) is given by the highest 

exponent of monomials in P(z). 

The objects of study in this thesis are degree two (quadratic) rational maps 

of the Riemann Sphere, i. e., maps of the form 

f: C --+ C 

alz 
2+ a2Z + a3 

z 
bjZ2 + b2Z + b3 

where ai, bj EC are such that either a, or b, is non-zero and the numerator and 
denominator have no common factors. Thus, we can identify the space of all such 
maps with an open set of points f(al : a2 : a3 : bI : b2 : b3)} in P5C, subject 

to the above conditions (See [M4]). However, we are interested in the dynamical 
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behaviour of such maps, i. e., the behaviour of points in C^ under iteration by 

the function f, and for dynamical purposes, the natural parameter space is much 

smaller. 

The bijective maps of C are the M8bius Transformations, which have the 
form 

CIZ + C2 

diz + d2 

We will sometimes find it convenient to write the above in the usual matrix form 

( Cl C2 
)Z CIZ + C2 

di d2 d1z + d2 

Composition of maps is then given by multiplication of matrices. 

Now, if f and g are rational maps, we define the equivalence relation conju- 

gation, -, by 

fp=pog, 

for p some M6bius transformation. We say that f and g are conjugate via It. Note 

that this implies that fn0p= IZ 0 gn, where fn denotes the n-fold composition 

of f, so f and g have the same dynamical properties. So, when constructing 

a parameter space for any type of rational map, it is natural to factor out by 

equivalence classes of conjugate maps. 

Central to the study of dynamics of rational maps is the iterative behaviour 

of critical points (See [F] and [J]). 

dR 
z 

(zo) = 0. The point R(zo) is a critical value. Definition. zo is a critical point ifT 

We write (fiCIiC2) for a degree two rational map with critical points ci 

and C2, and its equivalence class under the equivalence (f, Cl) C2) ' 
(r 0f0 

T-I , r(cj), -r(C2)), (where r is a M6bius transformation) is denoted [f, CI, C2]- SO 

we define a parameter space for degree two rational maps (as in [R1]), 

RM2 fVi C1 i C21 Ifa degree two rational mapl. 

Note that the critical points are "marked", so that the two critical points are 

distinguished - this has consequences for the parameter space. The space RM2 is 
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locally homeomorphic to C2, except at one singular point, so it is not a manifold. 

Consider the family of degree two rational maps, 

az 
2+1 

Z2 +FIa, 
b E C), 

in which the critical points of functions are 0 and oo. (To calculate the derivative 

at oo we conjugate by z ý--+ 11z and calculate the derivative at 0). At the point 

where a=b=0 we have the map z ý-+ 1/Z2, where c, =0 maps to C2= oo and 

vice-versa. Consider a fixed map in some neighbourhood of z" 1/z 2 in the above 
family. Then we can conjugate by z i-+ Vxz to get the conjugate map 

Z ý-> TX 
XZ2 +b 

axz 
2 +1 

Z ýý 
X, ýIXZ2+ bVx * 

But, if xVx = 1, then the above map is another map in the family, and so 

different maps are equivalent in a neighbourhood of z ý-+ 11z 2. So this point has 

a punctured neighbourhood which has the homotopy type of la, b1 Ja12 + Jb12 < 

1}/(a, b) , (wa, w2 b), where w is a primitive third root of unity. 

§1.2 Main definition: the families W,,. 

Of natural importance to the study of iterative processes are the periodic 

points: 

If R"(zo) = zo, then zo is said to be periodic of period n. If Rk (ZO ) 5ý ZO for 

1k<n, then zo is periodic of least period n. The set fRj(zo)}, for 1<j :5n, 
is then known as a periodic orbit or cycle. 

Definition. For nEN, define the family 

Wn : -- {[fi Cl 9 C21 1fn (C1) 
--2 Cl 7fk 

(C1) 96 Cl, 1 :5k<n, 
[f, Cl, C21 E RM2}. 

So W,, is the set of degree two rational maps with one (marked) critical point of 
least period n, modulo M6bius conjugation. Note that because the critical points 

are marked this means that the above families do not include all maps in RM2with 
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a period n critical point. In particular, a member of the set Wn is not contained 

in the set 14",,, for m 54 n. 

In the case n=1 one of the critical points is fixed, and we can take this to 

be oo. This gives us the set of quadratic polynomials: 

{Z ý--+ Z2 +CICE Cl. 

For n=2, we note that 

W2 +az 
aECa- aw, Z2 

I I/ 

where w01 and w is a primitive third root of unity. To see this, conjugate 
1+az 

by z i--+ wz, giving the map z+ 
awz 

Z2 Z2 

Now, for n>3, we can assume without loss of generality that cl =0 and that 

under f, 0 ý-+ oo ý-ý 1 (because we can conjugate by a M6bius map which takes cl 
to 0, f (c, ) to oo, and f2(CI) to 1) 

. So we can take f to be of the form: 

fa, b: 
(Z2 + az 

Z2 

where a, bEC, and we shall do so from now on. Note that this family does not 

contain a map in the equivalence class [z t-+ 11z 2], so a map fa, b corresponds 

uniquely to an element of RM2. When b=0 we get fa, b degenerating into the 

M6bius map z ý-4 (z + a)lz. It is clear that this is the only way in which a map of 
the above form can fail to be degree two. 

Now under f=f., b, c, =0 ý-ý oo ý-+ 1 1-+ 1+a+b. (We shall write f for 

fit, bj where no confusion can occur). So (an isomorphic copy of) W3 is given by 

the equation 1+a+b=0, and we have 

W3 J(a, b) E C' 11+ a+ b=O, bi4O} 

=c\ 

(From now on we will abuse notation somewhat, writing W,, for a set isomorphic 

to W,, as strictly defined. i. e., we think of W,, as a set of maps of the form fa, bt 

or equivalently a set of points of the form (a, b). ) 
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Note that for (a, b) = (- 1,0) we have the M6bius map p: z ý-+ (z - 1)1z, 

where Z3 = Id. (We say that It is of order three. ) The two critical points have 

come together and cancelled each other out in some sense. As a (and thus b) tend 

to infinity we can conjugate by z ý-o Vaz to get the limit map z ý-+ 11z, of order 
two. Note that when the other critical point, C2 = (2 + 2a)/a, is fixed this gives 

us three maps conjugate to the quadratic polynomials with a period three critical 

point. 

Moving on, we observe that 

1a 
(1 +a +b)2 +a(l +a+ b) +b 

(1 +a+ b)2 

so that for 0 to be of period 4 the numerator of the above expression must be 

equal to zero. Thus 

W4 2--- {(a, b) G C2 12a 2+b2+ 3ab + 3a + 3b +1=0,1 +a+b: 0 01 b 7ý 0}, 

though the requirement that 1+a+b00 is seen to be redundant (and indeed, 

for all n we can easily see that the condition b00 is sufficient). 

We can think of this as a curve in C', given by an irreducible quadratic 

equation, subject to some points being removed. Again at (a, b) = (-1,0) we have 

the order three M6bius map, and at (a, b) = (-1/2,0) we have z ý-+ (z - 1/2)/z, 

which is of order four. 

However, it is natural to study W4 in the projective plane by homogenising 

its defining equation. We introduce the coordinate c so that points in PIC are 

represented as (a/c : b1c : c) noting that there is a canonical embedding of C' into 

PC taking the point (a, b) to (a :b: 1). The equation for W4 in p2 C becomes 

2a 2+b2+ 3ab + 3ac + 3bc + C2 = 0. Now the M6bius maps are at the projective 

coordinates (-1 : 0: 1), (-1/2: 0: 1) and also at (1 : -1 : 0) and (1 : -2: 0), the 

latter two corresponding to the map z ý-+ 11z. 

Bearing these examples in mind we define a. puncture of W,, to be a limit 

point of W,,, i. e., a point in the set W, -, \ W, where W, -, denotes the closure of Wn 

in the usual topology on P'C. For example, W3 has punctures at (-1 : 0: 1) and 

(-1 :1: 0). It is clear that the punctures of W,, represent M6bius maps. 
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For any n>3, the numerator of f "(0) is clearly a polynomial in the variables 

a and b, the solution of which gives values of a and b for which 0 is of a period 

which divides n. These values will therefore include all maps in W, (identifying 

(a, b) with the map fa, b), as well as all maps in W,,,, where m divides n. The 

denominatorof fn (0) is zero exactly when 0 is of some period dividing n-1. 
For example, the numerator of f6 (0), used to compute W6, contains the factor 

1+a+b, corresponding to W3. 

For convenience we define a natural completion (and compactification) of the 

set TV. in the complex projective plane. 

Definition. Let V,, be W,, together with its limit points or punctures. Vn = Wn. 
So, for example, V3 is isomorphic to the Riemann Sphere. 

Thus, for n>3, Vn is given by a polynomial equation in two variables, a 

and b, so V. is an algebraic curve and can be considered as an algebraic variety in 

P'C. We consider this aspect in detail in §1.3. 

§1.3 The families as varieties. 

Let C[xl,..., xj] be the ring of j-variable polynomials over C. Then an affine 

variety is a subset of Cj, which is the common zero set of a set of k polynomials 
in C[xl,..., xj]. i. e., 

VA = ýX E Cj 1P1(X) =***= Pk(X) = 

Let H be the ring of j+1 variable homogeneous polynomials over C. An 

algebraic variety is a subset of PiC, which is the common zero of a set of k 

homogeneous polynomials in H. Le, 

{x E Pic 1 PI(x) =---= Pk(X) = 

A consequence of the fact that there is a canonical embedding of C2 into p2C 

is the following: 
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Theorem 1.3.1. An affine variety VA in C2 uniquely determines an algebraic 

p2 C2=V variety V in C, and vice-versa such that VnA 

Proof. See [G] 

We are dealing exclusively with varieties (V,, ) in C2 or p2C, defined by just 

one polynomial, i. e., algebraic curves. Such an algebraic variety or curve is irre- 

ducible if its defining polynomial is irreducible over C. One result is of particular 
interest: 

Theorem 1.3.2 

(a) An algebraic curve in PC is always connected. 

(b) An algebraic curve in PC is irreducible if and only if it cannot be diicon- 

nected by removing a finite number of points. 

Proot See [G] 0 

§1.4 Punctures of W,,: some elementary facts. 

Knowing that the varieties V,, are defined by certain dynamically defined 

two-variable polynomials, we establish inductively their degree, obviously of im- 

portance to questions we may wish to ask about a variety. We also establish a 

simple result about the polynomials in a whose roots are the punctures of Wn. 

Let us denote f 
an, b(O) by the quotient p,, (a, b)/qn(alb)l for n>2. Then, 

writing p,, for p. (a, b) and q,, for q. (a, b), we have 

2+ 
ap,, qn +b 92 P11+1 Pn n 

q,, +, 
2 Pn 

We calculate the degree of p,, inductively, claiming: 

Lemma 1.4.1. 

d(Pn) (2n-1 - 1)/3, if n is odd; 
(2n-I - 2)/3, if n is even. 

(*) 
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PrOOf P3 =1+a+b and q3=1, so true for n=3. We will show that for n even 
d(p,, ) = d(q,, ) and that for it odd d(p, a) = d(q. ) + 1. Inductive steP: assume that 
d(pk) = d(qk). Then by (*) d(Pk+1) = 2d(Pk) +1 and d(qk+l) = 2d(Pk)i so that 
d(Pk+l) = d(qk+l) + 1. The other case is similar: assume that d(Pk) = d(qk) + 1- 

Then by (*) d(Pk+l) = 2d(Pk) and d(qk+l) = 2d(Pk)i so that d(Pk+1) = d(qk+l)- 

Checking the validity of the above formula is now a simple induction. 0 

We now establish a formula for the polynomials which give us the points at 

which M6bius maps occur. We have shown that some of these occur on the line 

b=0. Let P,, and Q,, be respectively p,, and q. with b=0 substituted. So 

P3= 1+a. For n>3Q,, = P, ' 
-j. 

Then 

P, +i ((PtzlQn )2 + aPn IQ, &) 1 )2. 
= W2 + aP,, Qn)/(Pn 

Qn+l (PtlIQll)2 n 

So P,, +l = P. (P,, + aP, 2, 
-, 

). 

We claim that there is a formula for P,, as follows: 

Lemma 1.4.2. 

where 

n 
Pn = 

il (Pil) 

j=3 

r 
ar pil 

r 

and [-] denotes the integral part of a number. 

Note that P3= P3. 

Example: Pi = (1 + a)2(1 2 p312 pI p5l. + 2a)(1 + 3a +a4 

Proof. We re-write 
P,, +, = P,, (P,, + aP, 2, 

-, 
) 

= P,, (P,, -, (P,, -, + aP, 
2, 

-2) 
+ ap? 

21-1 ) 

2 Pnpn-l(pn-I + (Zplz-2 + (lp"-I) 

ý pn 
... 

P3(Ptll+l)- 
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But P,, = P,, -, ... P3(P, ', ) and Pli-I = Pit-2 
... 

P3 etc., so that 
pj+j =p +lpf 1ý 

... 
pf2"-4. 

I It n 
Pn 

-13 

We can prove P! = Pj'-, + ap! 2 inductively from (*). Then the formula for I J- 
P! follows b induction. 13 jy 

This shows us that all the punctures in p2 C\ C2 that occur on Wn also occur 

on W,,,,, for m>n, usually with a highcr multiplicity. 

Aside: Since P=P! I+ aPj' the coefficients of P can be read off from the j J- -21 1 

2)-nd diagonal row of Pascal's triangle: we show this for 3 :5j57. 

3 +a 
p4 12 1 +2a 

P, 
,5 

13 1 2 1 +3a +a 

p6, 143 1 +4a+ 3a 2 

PT' 156 1 1+ 5a + 6a 2+a3 

The intersections of V. with the line at infinity are derived from the ho- 

mogenised version of p, h,, For example h3= a+b+c. Then, to find the singu- 

larities at c=0 we normalise so that b=1 to get H, For example H3= a+1. 

We obtain different recurrence relations for these polynomials, valid for n>3 and 

putting H2 = 1: 

22 Forneven H,, +I=Hll-, (aHn+Hn-1)) 

2_ For n odd H,, +, = H,, (H,, + alln 

We do not have the same relations for H,, as for P, the main consequence 

n np2C \ C2 p2C \ C2 for of which is that not all the points of V. occur onv,,, ý n 
m>n. 

We now show that the roots of the polynomials P,, are all real. 

Theorem 1.4.3. The punctures in C' of W,, are finite order M5bius maps, of 

the form z ýý (z - ao)lz, where ao is positive real and the order of the Mjbius 

map is less than or equal to n. 
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Proof We already know that the punctures correspond to M6bius maps of the 

above form, so we just have to show they are of finite order. It is sufficient to show 
that 0 is periodic, since any finite order M8bius map is conjugate to one with the 

matrix 
(a O\ 

bO 1)' 

and so if one point is periodic so are all points in C^ , because if a point is periodic 
then aP = 1, where p is the period. 

V,, is given by the expression f. nb(O) = 0, and by what we have said above this 

is equivalent to the statement that p,, (a, b) = 0. Then p,, (ao, 0) =0 corresponds 

to some M6bius map on Vn. 

Consider the matrix for the Wbius map, normalised to have determinant -1, 

lIVao -\/ao 
1/\/ao 0)) 

with eigenvalues given by the roots of the equation -A 2+ \/., /ao -1=0, which 

are 
(1/ao ± V(llao - 4))/2. 

Now, for the matrix to be of some order k, its eigenvalues must be k-th roots of 

unity, and so must be complex conjugates of each other. Clearly this can only 
happen for ao real and greater than 1/4, because the quantity under the square 

root sign must be purely imaginary. 0 

In summary we have located the positions of the punctures in general, by fairly 

direct and elementary means. Deeper understanding of the singularities of V" and 

aspects of their topology will require more subtle methods. In the remainder of 

this chapter we analyse some particular examples more thoroughly. 

§1.5 Local theory of singularities of V.. 

Definition. Suppose that 

Ix E P"Clfl(x) = ... = fN(X) = o} 
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is an algebraic variety. Then a point xo EV is called asmooth point of V if there 

exists a neighbourhood W of xo and ffj,,... lfj, IC If,,. .. fk I satisfying: 

(a) vnw=fx E Wlfjl(x) = ... = fj, (X) = 0}; 

(b) rank 
( 

c9xj 
) 

at xO is 1. 

If xo is not a smooth point, it is a singularity. 

In the two-dimensional case, with one defining polynomial, this reduces to: A 

point (a, b) EV is smooth if either of the partial derivatives OP10a or OP/Ob is 

non-zero at (a, b). If not, it is singular. 

The structure of a variety in a neighbourhood of a singularity will be of interest 

to us, and the following general theorem is highly relevant: 

Tlieorem 1.5.1. The Implicit Function Theorem. Let fl,..., fk be a set of 

functions which are holomorphic in a neighbourhood of the origin in C", also 

satisfying 

det 
( 

ozj 
12=0 

)I 

<i, j: 5 k 
:A 

Then there exist wi ,---I Wk y (the implicit functions) holomorphic in a neighbour- 
hood of 0 in Cn, such that in this neighbourhood we have 

fi(z) = "" = fk(Z) =0 4=. z==1,... �k. 

In the two-dimensional case, on a variety V, this reduces to: Let a point 
(a, b) EV be given, with either of the partial derivatives OP10a or oVlab non- 

zero at (a, b). (So we are at a smooth point of V. ) Then there exists an implicit 

function w in a neighbourhood of (a, b) such that w is a function of a (or b) and 
(a, w(a)) E V, so that locally we have a parametrisation of the variety. 

However we can also consider whether some branch (or sheet) of variety is 

itself smooth or singular, and thus apply the last result in this case too, obtaining 

a local parametrisation of a sheet if it is non-singular. We explain this further 

later. 
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An irreducible variety in PIC has a finite number of singularities. Let V be 

an irreducible variety with E its set of singularities. Then V\E is a Riemann 

surface by the Implicit Function Theorem, because E is a finite set of isolated 

points. 

We now investigate individual singularities of V,, in detail: 

We change coordinates so that the singularity we wish to study is at (0,0). 
So P,,, is now in the form 

Pn = Ex� a-b'. 

Let 

P(b) U C[[bl/n]] 
nEN 

be the ring of formal Puiseauxgeries in the variable x, that is, the ring of formal 

power series in b1l". In our examples we will calculate a few coefficients of a in 

terms of P(b). 

It is important to note that there is one power series expansion for each 
branch of the singularity, and locally the variety can be expressed (see [Bk]) in the 

following way, for k branches: 

k 

v(a, b) = 11 (a - aj(b)), 
j=l 

where the aj are given by the method detailed below. 

Consider the set of (r, s) such that Xr. 9 :A0, thought of as a set of points 

on the rectilinear grid with coordinate axes r and s. Form the convex hull of 
J(r, s) + (U, V) I Xr, 9 5k 0, u>0, v> 0}. The set of edges of finite length of the 
boundary of this region is called the Newton polygon, A(Pn). Let the equation of 
the line which contains the line segment of A(Pn) through the s axis be r +, uos = 

vo. We make the substitution a= tob"O: Looking at the lowest order terms in 

b, which have order m= vo, which has coefficient a polynomial in to, which we 

solve to give us the first approximation (s) for the solution of p,, = 0, also the first 

term of the Puiseaux series. For a given solution, say t', we substitute back for a, 
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setting a= bl'O(t' + a, ), and factor out by the appropriate power of b (which is 

VO), and repeat the process with al to calculate the next term(s). 

The series thus obtained is in general an infinite series. However, the expo- 

nents have an important property (for more details refer to [Bk]): The denomi- 

nators of the exponents in the series have a lowest common denominator. Thus, 

all terms in the series are expressible as integral powers of WN for some natural 
number N. So for any solution of this form a and b are expressible as functions of 

some parameter t= WN, which we shall call the sheet parameter. 

Puiseaux series tell us something about the topology of a singularity. In 

particular if a certain local solution has a Puiseaux series containing only integral 

powers, then one parameter is a function of the other. Hence the branch in question 
is non-singular. More information about the topology of a singularity, as detailed 

in [Ml] and [Bk], is to compute its associated link, or knot for a single branch. A 

variety near a singularity at the origin will intersect a sufficiently small 3-sphere 

in a link, one knot for each branch. If a branch is non-singular its associated 
knot will be the trivial knot, but in general will be an iterated torus knot. These 

knots can be computed from the Puiseaux expansions: if this series has entirely 

integral powers this gives rise to a loop on the torus which is closed on winding 

once round, and is therefore just a simple loop. However, when considering more 

than one branch, two such loops will in general be linked. Their linking number 
is equal to the intersection number (pairwise) of the branches. 

§1.6 Examples. 

In this section we use the method for calculating local coordinates for any 
branch of a plane curve singularity, as detailed in the last section, and do this 

for all the singularities of Vk for k<7, which lie on the projective lines b=0 

and c=0. Later (§2-7) we will show that these are all the singularities of these 

varieties. For the calculations on V6 and VT the computer algebra package Maple 

was used. We obtain expansions in local coordinates (aj, b) or (aj, c), where 
indexes the branches/sheets, and such that the singularities are at (0,0). 
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Singularities of Vs. 

V5 is given by the quintic equation p, 5 in a and b. Setting b=0 this reduces 
to P5 = (1 + a)2(l + 2a)(1 + 3a + a2) = 0. This has a double root at a= -1 and 

3± V5 
three single roots, at a= -1/2 and a2 These four values correspond 
to the M6bius tranformations 

1/2 Z3+., 
/5 

IZ 1-+ 2 
zz 

which are maps of order 3,4,5 and 5 respectively. 

At the double root there are two branches of the variety, and we have our 
first singularity. As in [Bk] We can calculate local expansions here for a in terms 

of b. Substituting (a - 1) for a, so that the singularity is at the origin we get a 

polynomial expression with lower order terms 

a2_ 3a 3- 4a 2b- 
ab 

2+ b'. 

a3 

a2 

a 

Figure 1.6a 

Thus the Newton polygon shown above has slope -1/2 where it joins the a- 

axis and we inake the substitution a= tob'. Gathering together the lowest order 

terms in b, we get that the coefficient of V is t2 - to. Putting this equal to zero 0 
we get the roots 1 and 0. The root 1 tells us that one approximate solution is 

given by a=V. To follow up the other solution we substitute a=b2 al giving 

the following lowest order terms: V a' -b4a, + V. Factoring out by b4 we get 

18 
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2_ 
a, al + b. This gives a Newton polygon with slope - 1, so we substitute al = tj b, 

and setting the term in b to zero gives tj = 1. So an approximate solution for al 
is al = b, so a= b2a, =b3 is another approximate solution. Thus we have 

=b 
2+ O(b 3) 

and a2= b' + 0(b) 
as the two branches. 

We will show later that each branch is in fact smooth, so that all the terms 

in the above expansions are integral powers of b. This means that the associated 
link to this singularity consists of two un-knots, linked with linking number 2, as 

shown below. 

Figure 1.6b 

To study possible branches near the z ý-+ 11z we must go over to projective 

coordinates. Homogenising the defining equation and setting c=0, we get that 

(a + b)'(2a 2 +2ab+b2) = 0. So there is a triple root at (-1 :1: 0) and two single 

roots at (-+' :1: 0) and (' :1: 0). The local expansions around (-1 :1: 0) 22 

give 
a, = 1/2(3 + ý/5)C 

+ O(C2)j 

a -": 1/2(3 - 
V5)C + O(C2)1 2 

and a3 = C3 + O(C4) 

as the three branches. 

So V5 is a curve with (at least) two singularities. Notice that the branches 

are perhaps smooth - we prove that they are later. We calculate the genus of W5 

in Chapter 6. 
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Singularities of V6. 

We list the local expansions for singularities of V6, given by the degree nine 

equation P61P3 = 

At (-1/2 : 0: 1): a, =-b-b' +O(b 

and a2= -b+ 20 + O(b 4). 

At (-l : 0: 1) : a, =- b/2 + O(b'), 

a2 ýb2+ 2b 3+ 5b4 + 0(b5), 

b+ 20 + GO + O(b), 

and a4= 2b 3+ O(M). 

At (-l : 1: 0): a, =-c+c 
2+ o(CI)t 

a2 =c4+ O(cl), 

a3 = 1/2(3 + V5)C2 + O(C3) 
I 

and a4 " 1/2(3 - , /5)c 2+ O(C3). 

The M6bius maps at a= -1/3 and (-3: L\/5)/2 all correspond to non-singular 
points of V6. 

Apart from the singularity at (-1 :1: 0) there are five other points in 

p2C C2 n V6, all non-singular. They are at the coordinates (-+' :1: 0), 
2 

1: 0) and (ak :1: 0) for 1 :5k :53, where ak are the distinct roots of the 2 

cubic equation 6a 3+ 6a 2+ 4a + 1. 

Singularities of V7. 

We detail the results of calculations made with the aid of a computer: 

At (-1/2: 0: 1) : a, =-b+ O(b'), 

a2 =- b- b2+ O(b 3)t 

a3 _ý _b+ b2 + 6b 3+ 30b 4+ 0(b5), 

and a4= - b+b' +6b 3+ 38b 4+ 0(b'). 
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0 

At (-l :0: 1) : a, =- 1/2(l + i)b + O(b'), 

a2 - 1/2(l - i)b + O(b 2)1 

a3 V+ 1/2(7 + V5)b 3+ O(b 4)9 

a4 b2+ 1/2(7 - V5)b 3+ O(b 4)1 

as b2+ 2b 3 +5b 4+ 145 + 41b 6+ O(b 7)t 

a6 b2+ 2b 3+ 50 + 145 + 42b6 + O(b 7)ý 

a7 =b2+ 2b 3+ 60 + O(b'), 

a8 =-b4+ 0(b5), 

and ag= -b'+O(b 
6). 

/2. At (-l :1: 0) : a, 1/4(7 + V5 + (19 - 7V5)1 V/2)C 
+ O(C2)7 

a2 1/4(7 - V5 + (19 + 7V5)1 /2 V2) C+ O(C2)j 

a3 1/4(7 + -v/5 - (19 - 7V5)l 12V2)C + O(C2)7 

a4 1/4(7 - V5 - (19 + 7V5)1 /2 

, /2) c+ O(C2), 

as c- 9C2 + O(C3)j 

a6 C+ O(C3), 

a7 "C2+ (1 + iV13 )C3 + O(C4)j 

a8 "C2+ (1 - i., /13 )C3 + O(C4)j 

. V5)C3 + o(C4)7 ag =- 1/2(3 +ý 

alo = -1/2(3- V5)C3 + O(c 4)1 

and all =c5+ O(C6). 

There are four more singularities on V7. At both (--' :1: 0) and (-'+' :1: 22 

0) there are three branches, all of which are non-tangent, so that the expansions 
differ at the b term. We do not write these down as the coefficients of the b terms 

are rather large algebraic expressions. 

At the points (-3-., /5 
:0: 1) and 

(-3+., /S 
-0: 1) there are two branches 22 
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which share a common tangent: for example at (-3-2115 : 0: 1) 2 

1 (2299702V5 - 5142290 
b+ O(b 

2 4651245 - 2080100753) 

for both branches - they differ at the V term, but again the coefficients are large. 

§1.7 Plan of action. 

In the light of these examples we state two conjectures. 

(1) The branches of all the singularities of V, for any n, are smooth. 

The following two statements are also equivalent to (1) by §1.5: 

(1a) The link associated to each singularity is made up of un-knots. 

(1b) a is a (single-valued) function of b on each branch in the neighbourhood of 

each singularity or vice-versa. 

The proof of this conjecture constitutes a major part of this thesis, and is 

contained in Chapters 2,3 and 4. 

The following conjecture, though still unproven, was the initial motivation for 

this work: 

(2) The set V,, is an irreducible variety. 

We will show that this is equivalent to the following statement, which holds 

by Theorem 1.3.2 in combination with Theorem 2.7.1: 

(2a) The set W. is connected. 

Theorem 2.7.1 implies that all the singular points of V. lie in V. \ W,,. Thus 

removing any further set of points from W,, cannot affect its connectedness because 

it is made up of smooth components. The above equivalence then follows by 

Theorem 1.3.2. 

We will also show in Chapter 4 that (1) is true if and only if adjacent to each 

singularity, on each branch of the singularity, there are two hyperbolic components 
(see Chapter 2) of polynomials, except those in PC \C2, where there is one. A 

start toward proving (2) is contained in Chapter 5. 
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CHAPTER TWO 

DYNAMICS 

In this chapter we introduce the relevant background material in the area 
of complex dynamics. We then use Laminations and their matings to give com- 
binatorial models for quadratic polynomials and some quadratic rational maps, 

regarded as branched coverings. Using some quasi-conformal deformation theory 

we prove an important theorem about the location of singularities in the varieties 
V., a result which depends largely on the dynamical behaviour of rational maps in 

the variety. This will enable us to then look at these singularities in detail, which 

we do in Chapters 3 and 4. 

The theme of this chapter is thus the dynamical behaviour of maps in the 

families Vn, in contrast to the mainly static description made so far. Indeed, the 

interplay between these two viewpoints is a major concern of this thesis, and of 

complex dynamics in general. 

§2.1 Dynamics of rational maps. 

We will just state the basics here. Most of the material in this section dates 

back to the work of Fatou [F] and Julia [JI. For a full introduction the reader is 

referred to [M2] or [BI]. 

For a rational map, R, we denote its n-fold composition by R". The forward 

orbit of a point z, O+(z), is the set I f'(z) Ii> 0}. The (full) orbit, O(z) = 0+(Z)l 

together with the set If -'(z) Ii> 0} , where f -'(z) is the set of pre-images of z 

under f. 
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The primary feature of the dynamics of the complex plane or Riemann sphere 
is the division of C or C into two complementary fully-invariant sets. (A fully- 

invariant set, I, under a function f has the property that f (I) =I and f -, (r) 

I. ) We need the following: 

Delinition. A set of functions. F, defined on a subset U C: C, is a normal family if 

any sequence in F contains a subsequence which converges uniformly on compact 

subsets of U. 

There is an often more useful way of characterising normal families: A set 

of functions If, } is (uniformly) equicontinuous if, given e>0, there exists 6>0 

such that 1-YI 
- Z21< b implies Ifi(ZI) 

- fi(Z2)1 <e for all iEI. Then a family Jr 
is normal on some open set U if and only if it is equicontinuous on every compact 
subset of U (see [Af]). 

Then, the Fatou set F(R) is the set of points zEC for which there exists a 

neighbourhood U.. such that Jfj I U.. Ij> 11 is a normal family. This is an open 

set, made up of a number of connected components, on which the dynamics are 

relatively tame. (Note that it is possibly the empty set). By Sullivan ([SI) , it is 

known that the components of the Fatou set converge to stable periodic cycles - 
they are eventually periodic. We also refer to a point as eventually periodic if a 

point in its forward orbit is periodic. 

The Julia set, J(f), is the set of points for which the family ffj(U.. )} is not 

normal. i. e., J(R) F(R). Note that J(R) 54 0. This is where the chaotic 
dynamics occur. 

Definition. At a period n point, zo, the multiplier, A(zo) =d R'(zo). TZ 

These fall into four types: 

(1) 0< JAI <1 Attracting 

(2) A=0 Sup er-at tract ing 

(3) JAI >1 Repelling 

(4) JAI =1 Neutral 
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The Julia set can also be characterised as the closure of the set of periodic 

repelling points of R. 

If zo is of period n under R, then it is fixed under R". Thus, the theorems 

which we state for fixed points also hold for periodic points. 

Theorem 2.1.1. For an attracting or repelling fixed point, zo, there is a an holo- 

morphic bijection 0 on a neighbourhood, U(zo), of zo such that on U, O(R(z)) 

AO(z). 

Theorem 2.1.2. For a super- attracting fixed point, zo, there is a an holomorphic 

bijection 0 on a neighbourhood, U(zo), of zo such that on U, O(R(z)) = (O(Z)) 2. 

Definition. The attractive basin, Sl(zo), of a (super-) attracting point zo is 

the (open) set of points which tend to the orbit under iteration. Le Q(zo) = 
Iz I Rn(z) = zo}. The immediate attractive basin is the connected com- 

ponent of the attractive basin containing the fixed point. Note that both these 

sets are contained in F(R). 

The following result (due to Fatou and Julia) is of central importance: 

Theorem 2.1.3. An attracting fixed point attracts a critical point. i. e., The 

attractive basin of a fixed point contains a critical point. 

For proofs of 2.1.3 and 2.1.4 see [M2]. 

A neutral fixed point, with multiplier such that AP =1 for the integer p, 

is called a parabolic point. For such points, there is a result analagous to 2.1.3 

(Leau-Fatou Flower Theorem. ), which we quote in a form specific to degree two 

polynomials, which is all we shall need (we also assume that the fixed point is zero 

and that A=1 for convenience). An attracting petal is an open connected set U, 

with compact closure -U such that 

f(U) C (U U 10}) and n fjou) = {oj. j>O 

Note that 0E J(f). 
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Theorem 2.1.4. Suppose that f(z) =z+ al Z2. Then there exist two attracting 

petals at 0. 

Each of the petals gives rise to an attractive parabolic basin of 0, consisting 

of points which eventually land in the petal and thus converge to 0. Again, these 

are contained in the Fatou set, and importantly a critical point is attracted to 0. 

§2.2 Quadratic polynomials and external rays. 

After an affine change of coordinates you can get any quadratic polynomial 

a1z 2+ a2Z + a3 into the form z ý-+ z2+c, for CEC. Note that any map in 

this form has a critical point at zero, and that the point at infinity is fixed and 

super- attracting. So the complex plane is a parameter space for the quadratic 

polynomials. We can make a crude partition of this into two sets dependent on 

the behaviour of the critical point ar zero. Hence: 

Definition. The Mandelbrot set, M, is the set of quadratic polynomials of the 
form z ýý z' +c for which the critical point at zero does not escape to infinity. 

M is compact and connected. 

Conjecture. The Mandelbrot set is locally connected. 

The following two theorems are classical: 

Theorem 2.2.1 Riemann mapping theorem. Let U be an open, simply- connected 
A subset of C with boundary containing at least two distinct points. There exists a 

conformal bijedion from U to the open unit disc. 

Theorem 2.2.2 Riemann extension. The above map extends continuously to OU 

if and only if OU is locally connected. 

Note that for a polynomial the point at infinity is fixed and super-attracting. 
Then we have: 
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Theorem 2.2.3 Uniformisation. Let P be a quadratic polynomial, PEM. Then 

there exists a unique analytic bijection, 0, from Q(oo) to Iz EC: IzI > 1, such 
that ýoP= (0 (Z)) 2 

and 0(oo) = oo. 

For a quadratic polynomial in M this neighbourhood is the entire attractive 
basin of infinity, of which the boundary is the Julia set. Thus the conjugation 
extends continuously to the boundary of the basin if and only if the Julia set is 

locally connected. (This is true for most quadratic polynomials). 

Definition. External Rays (see [DH1]) are the image under the inverse uniformis- 
ing map, 0-1, of the rays of constant argument in 6\ Iz E CA I IzI :5 1}. External 

rays are labelled by this argument. 

Theorem 2.2.4 An external ray has unique endpoint in the Julia set if and only 
if the Julia set is locally connected. 

Proof. This is a direct consequence of theorems 2.2.2 and 2.2.3.13 

For polynomials with a locally connected Julia set this gives us a combinatorial 
description of the behaviour of points in the Julia set (see [DH2]). An important 

class of polynomials satisfy this condition: 

We say that a rational map is hyperbolic if the critical points converge to 

stable orbits. Hyperbolic rational maps form an open subset of the appropriate 

parameter space, and each connected component of such a set is called a hyperbolic 

component. The following is proved in [M2]: 

Proposition 2.2.5. The Julia set of a hyperbolic quadratic polynomial is locally 

connected. 

Similar results apply to the parameter space: 

Theorem 2.2.6 (IDH1]) C^ \M is conformally equivalent to the unit disc. 

So we can define external rays to the Mandelbrot set as well. However, the 

question of whether every ray extends uniquely to the boundary of M remains 
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open. It is known (at least) that all rays of rational argument have limit points 

which lie on the boundary of the Mandelbrot set. 

Section 2.4 details how this combinatorial description can be taken further. 

§2.3 Branched coverings of C. 

Definition. A Branched covering of the Riemann sphere, g: C is a con- 

tinuous orientation-preserving map, which is locally a homeomorphism, except at 

a number of branch points, where g is locally of the form z ý_+Zk, k EN. The 

degree of g is the topological degree that it maps C^ to itself. i. e, the degree is the 

number of pre-images a typical point has under g. 

Rational maps are branched coverings and the critical points are branch 

points. 

Definition. Let f be a branched covering of C. Then X(f), the post-critical set, 
is defined as the set of forward iterates of the critical (or branch-) points of f- 

Then a critically finite branched covering (of C^) is a branched covering for which 
the post-critical set is a finite number of points. 

We introduce the following homotopy-type equivalence, due to Thurston, 

which is the natural one to take (see [T] and [R2]). 

D _C_ ennition. (A) Let f and g be degree two ci*-tically finite branched coverings of 

1b. Then f and g are said to be equivalent (we write f= g) if there exists an 

orientation-preserving homeomorphism 0: CA -+ CA such that there exists a path 
Ift :tE [0,1]} through critically finite branched coverings from fo =ýofo 0-1 

to f, = g, with X(ft) = X(g) for all tE [0,1]. The operation = is an equivalence 

relation, but we sometimes write this as (f, X(f (g, X(g)), although =ý is 

not an equivalence relation. 

Note: The definition of equivalence implies that O(X(f)) = X(g), since 
X(fo) = X(g). Ruthermore the cardinality of X(f) is the same as the cardi- 

nality of X(g). 
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Sometimes it is more convenient to have this definition in a different equivalent 
form: 

(B): f=g if there exists a path Ift It E [0,1] 1 through critically finite branched 

coverings, from f= fo to g= fl, such that X(ft) varies isotopically. 

Thurston stated a condition for a critically finite branched covering to be 

equivalent to a rational map, proved in [DH3]. An equivalent condition due to 

Levy, Rees, Tan Lei (see [L] and [TL]) is suited to our purposes: 

Definition. Levy cycle Let f be a degree two critically finite branched covering of 
C. Let Ui -ti be a set of disjoint simple non-peripheral loops in C. (A non- 

peripheral loop is one that partitions X(f) into two sets, both of which contain 

at least two points of X(f). ). Then 9 is a Levy cycle if there exist non-peripheral 
loops yi(1 :5i :5 r) such that yi and yi' are isotopic in CA \ X(f ), -yi' is a component 

of f and f 1-yi' is a homeomorphism. 

The following theorem appears in [L] and, improved in [TL]. 

Theorem 2.3.1. An orientation-preserving critically finite degree two branched 

covering of the Riemann Sphere ii equivalent to a rational map of degree two if 

and only if it admits no Levy cycle. 

§2.4 Quadratic Laminations. 

The combinatorial information contained in the External Rays was re- inter- 

preted, in [T] as Laminations. The idea is that a lamination is a topological model 
for the dynamical behaviour of a quadratic polynomial, and the Julia set is home- 

omorphic to the unit circle modulo identifications given by a lamination. Thus the 

theory of laminations applies to quadratic polynomials with connected Julia sets 
(And locally connected by 2-2.4). Components of the Fatou set are modelled by 

certain gaps. We can choose the Euclidean or Poincar6 metric on Iz ECIIzI 

Definition. A Lamination, C, on fz E C^ I IzI < 11 is the closure of a set of 

geodesics, which are called leaves, non-intersecting on the interior of the unit 

disc, with endpoints on the unit circle. Note that the endpoints of a leaf can be 
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coincident,. so that the leaf is just one point on the unit circle. The components of 
the complement of UICC in the open unit disc are called gaps. We refer to a leaf 

by its endpoints, which we measure in units of radians/27r, from 0 to I. 

Definition. Let L be a lamination on the unit disc. Then an invariant quadratic 
lamination satisfies the following: 

(a) If f (=- C, with endpoints a and b then f2 E C, where j2 has endpoints 

2a (modl) and 2b (modl). 

(b) -f E C, where -t is the leaf with endpoints a+ 1/2 (modl) and b 

1/2 (modl). 

(c) There is at least one leaf ý, such that ti = t. 

The mapZ __+ Z2 extends to a map of S' UC to itself, by mapping each leaf 

affinely to the leaf whose endpoints are the images of the original leaf's endpoints 

under z ý-+ z'. The longest leaf or leaves (as measured as the difference in angles 

between its two endpoints) of the lamination is/are called the Major leaffleaves 

and its/their image is the Minor leaf. For periodic minor leaves we will sometimes 

refer to the periodic pre-image of the Minor leaf as the Major leaf. 

This map can be extended further to a map including all the gaps as well, 

and thus the whole of Iz ECI IzI < 11. Then a laminationC has a unique map, 

s, c, such that sr-(O) = 0, and C is invariant under sc. This can be extended to 

the whole sphere so that on Iz : IzI > 1}, sc -= z ý-+ z2. sc is then a degree two 

branched cover of C^. 

We see how a lamination is related to a polynomial map: Given a quadratic 

polynomial P, with connected and locally connected Julia set, we proceed as 

follows: By 2.2.3 (uniformisation) we have a map 0 on Iz E^I IzI < 1}, such C 

that 0-1 extends to S' and maps it continuously onto J(P). So 0-1 defines 

equivalence classes of points in S1 by x-y 4==: ý. jp-1(x) = 0-1(y). If x, y we 

join x and y by leaf (t E L). 

Now C/ - is homeomorphic to C, so sc induces a branched cover 3-, Z : C/ 

C/ -. So ý-, c is conjugate to P if we define sC inside the disc so that the conjugacy 
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holds. Note that by this process it is true that for a hyperbolic polynomial Ph, 

the Lamination map obtained from any other polynomial in the same hyperbolic 

component is the same one as for Ph. 

Since all gaps with polygonal boundaries collapse to points under this identi- 

fication, the components of the Fatou set are given by infinite-sided gaps. 

From now on we will denote a leaf with endpoints p and q by [p, qJ . Fur- 

thermore the Lamination with minor leaf p will be denoted LO. The associated 

lamination map will be denoted by si, but when dealing with periodic minor 

leaves, which are uniquely determined by just one of their endpoints, we will usu- 

ally abbreviate this notation: for the minor leaf lit 2] the associated Lamination 
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map will be denotedSI/3 or S2/3- 

As with External rays, this idea of lamination carries over to parameter space 

as well. The set of all minor leaves of quadratic invariant laminations forms a 

lamination, called the Quadratic Minor Lamination, or QML for short. There 

is a partial ordering on QML, defined thus: Let yj and JZ2 be leaves in QML- 

Then a, < /12 if and only if pi separates P2 from zero. So that, for instance 

[1,1] < [1,1]. (Note that the conjecture that M is locally connected is equivalent 3355 
to the statement that C/ ""QML is homeomorphic to M. ) 

We will be particularly interested in laminations with periodic minor leaves; 

that is, minor leaves for which U2 "= it for some n. The endpoints of a periodic 

minor leaf necessarily are odd-denominator rationals. 

The following observation will be useful later: 

Useful Fact: (see [Tj) Let it, > 112. Then fjp, contains the leaf it 2. e. 

. 
C[2/5,3/51 contains the leaf [1, ']. 33 

We can use this fact to define a minimal minor leaf, which we make much use 

of in future. A minimal minor leaf is a minor leaf /z such there does not exist anY 

fE QML with t< ji. Furthermore, given some periodic minor leaf P', we say that 

the minimal leaf such that p< til is the minimal leaf of it'. We can characterise 

minimal minors in the following useful way: 
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Lemma 2.4.1. p ii a minimal periodic minor leaf if and only if 0+(It) bound's 

a region PC Iz E C^ I IzI :5 1} with polygonal boundary OP and ji is the shorteit 
leaf in O+(, q). 

Proof We can choose a homeomorphism 0: OP --+ OP such that 0(t) f2 for all 
tE OP. We note that for any homeomorphism. (i. e., degree one map) S' --+ S, 

there is a well-defined rotation numbcr, which is defined as lim 
ýn(x) x for any n-+oo n 

lift R --+ R of 0 and any xER. Then the rotation number of 0: OP --+ OP is 

a rational number determined by the relative positions of p and y2 on OP. Thus 

it is independent of the particular choice of 0 and we call it the rotation number 

of It. 

It is a fact that ji is determined uniquely by its rotation number and all ratio- 

nal rotation numbers occur for minor leaves. To see this, consider the component 
A of M which consists of maps z ý--+ Z2 +c having a fixed point whose modu- 
lus is less than 1. Then c9Mo consists of those maps for which the multiplier is of 

modulus 1, and each such number, of the form e2ria, occurs for precisely one poly- 

nomial f (see [DH21). The fixed point is parabolic if and only if a is rational, and 

then J(f) is locally connected (see [M2]). Then the periodic minimal minors are 

precisely the minor leaves of laminations corresponding to f with a fixed parabolic 

point. Moreover, the rotation number of the minor leaf is a, where e27ria is the 

multiplier of the fixed parabolic point. 0 

Example: [. 1,21 is a minimal minor leaf, whose forward orbit bounds the 77 

triangle with sides [I I and 777777 

We now discuss a way to use the presence of an invariant are set to determine 

something about the minor leaf of a lamination map. 

Lemma 2.4.2. Let g be a degree two orientation-preserving branched covering 

of C with a fixed critical point, which we can take to be at oo, and let the other 

critical point be periodic. Suppose also that there is a set IF of disjoint simple 

arcs in Iz E C^ I IzI :5 1} with endpoints in SI such that each arc is non-trivial in 

Jz E61 IzI :5 1} \ X(g) and rc g-1 (r) up to isotopy. It then follows that if there 
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is a homeomorphism from s, uru x(g) to Sl U jjt2J Ijý: 01 U X(Sq) for some q 

periodic minor leaf pv, then liq *ý! lip- 

Proof For simplicity we can assume that up to equivalence (in the sense of §2.3) 

that S' is invariant under g. Now it is not hard to show that g admits no Levy 

cycle and hence that g is equivalent to a quadratic polynomial. Thus 9 is also 

equivalent to a lamination map sp for some odd-denominator rational p. We wish 
to obtain information about sp, Let r' be the set of arcs of sp corresponding to the 

set IF for g. Then IF' C Cp up to isotopy in C\ X(sp). Then the homeomorphism 

from si uru x(g) to s, u 1/, 2, j Ii-: 2! 0} U X(s,, ) means that y. ý! lip -0 

We now introduce another way of determining a lamination map, equivalent 

to a given type of branched covering. Let us assume that we have a degree two 

branched covering f satisfying the same conditions as g above (SO f= Sq for 

some odd-denominator rational q), but instead of having an arc set r, we have the 

following situation: 

Lemma 2.4.3. Suppose there are arcs fli, for 1<j :5n, such that Pj connects 

fi(O) to some point xj E S1, and that there exists an isotopy x such that: X 

preserves S' and X(f); X(pj-, ) is a component of f -1 (#j) for i>1 (thus deter- 

mined by xj-l ) and X(#,, ) is the sub-arc of f -1 (#1) which joins 0 to one of the 

(two) points f-'(xi). Let 0 be an orientation-preserving homeomorphism of S' 

for which O(xj) = 2j-lq and such that any component I of SI \ fxi} has length 

greater than half the circumference of SI if and only if 0(1) has length greater 

than half the circumference of S. Then f sq. 

Proof Let q and q' be the two endpoints of it, (recall that p. is associated uniquely 
to s, ). Note that in general 0 will only exist for at most one of q or q'. Then 

there are two natural ways to choose arcs 8j for the map Sq: we can join si(O) 

to 2j-lq by a straight line arc, or to 2j-lq' by a straight line arc. In this case 0 

is taken to be the identity. Let P, ' == Pj(Sq) and fli = flj(f). Then we extend 

to the rest C so that O(flj) = flý, O(X(f)) = X(sq) U foo), where in particular 
O(oo) = oo; then we can extend 0 to the rest of t, keeping 0 in the same isotopy 
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class relative to X(f). Then it follows that f =, p s,. 0 

2.4.4. Tunings. 

Tuning is a way of modifying a polynomial map on part of its domain to obtain 

another with particular desired properties (see [R21) - we shall use it to create 

maps with higher period critical points, as follows: Let f, and f2 be quadratic 

polynomials, where f2 has a period m critical point, 0. Then there is a disc D 

containing the critical point 0, such that f' (D) is isotopic to D relative to X(fi). 

Take UC DI n f2(DI), so that the sets f2j(DI) are disjoint for 1<i :5m. Then 

the tuning of f, by f2 is defined as: 

fl I- f2 = f2 on CU f2(DI), 
j=j 

(f, F- f2)lf2j(DI) is a homeomorphism for 15 i<m, 

(fl ý- f2)m 
= Af, on D, 

for some suitable scaling function A. Then extend (fl F- f2) continuously into 

D, \ D, so that (fl I- f2) is a polynomial map on 1b. 

If f, has 0 of period m', then it is clear for that (fl ý- f2), 0 is of period mm'. 

For lamination maps, we define tuning in a similar way. For minor leaves 

M,, and 11b, with respective lamination maps s. and Sbi the map s. I- Sb is the 

lamination map for the minor leaf It. ý- lib- 

For example, we write [1,211- [1,21 = 12,11 and si 
I- SI=32. 

333355 'S 3T 

We can also say something about the position of leaves which are tunings in 

QML: all tunings lit of some minimal minor leaf it are such that, if f< pt, then f 

is also a tuning of p (including the empty tuning i= p). 

§2.5 Matings of quadratic polynomials. 

After making the simple observation that the sphere is two discs glued to- 

gether, we could naýively suppose that a union of two quadratic laminations on 

two discs might give us a model for some degree two rational maps. 
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A method of constructing rational maps from polynomial maps was devised 

by Douady and Hubbard (1982). For quadratic polynomials the process is as 
follows. Let K, be the filled-in Julia set of a quadratic polynomial Pc = Z2 + C, 

that is 

z P"' (z) --+ oo, as n -+ oo}, 

where cEM. For IC, connected and locally connected (true if 0 is periodic, 

which we are particularly interested in), K, is a topological (closed) disc with a 

continuous map 0,, from S' to OK, such that 

P, (O, (e 2,, it)) 
= 0, (e 21ri(29) ). 

Let P,, and P,, be two such polynomials. Then the idea is to form a sphere by 

pasting together K,, and K,, identified along their boundaries using Im(O,,, ) 

Now P,, and P,, define a map on the sphere. 

According to Douady and Hubbard the mating of two polynomials in complex 

conjugate limbs of the Mandelbrot set produces a branched covering, which is not 

equivalent to a rational map. Tan Lei's thesis contains a proof that this is sufficient. 

We can give a more formal definition in terms of laminations. Given two 

laminations on the closed unit disc with periodic minor leaves, say L. and 'Cb, we 

can define the mating of s. (z) and sb(z), as 

Sa U Sb(Z) = 
Sa(Z), 

Sb 1(1/Z), 
if zE (z E IZI < 1}; 
if zE (z EC IZI > 1}. 

This is a degree two branched covering of the Riemann Sphere. What we 

are interested in is whether this is equivalent to a rational map. Fortunately the 

criterion 2.3.1 is possible to check in our case, because we can use the lamination 

theory to find or discount the presence of Levy cycles. This is summed up in the 

following theorem of Tan Lei. 

Theorem 2.5.1. Suppo qe that a and b are periodic. Then sa U sb is equivalent to 

a rational map of degree two if and only if there does not exist tE QML such that 

t<a andt<b. 
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This is the lamination analogue of the conjugate-limbs statement. 

Note that it is only a special class of rational maps that can be constructed 

via matings (but bigger than detailed here). Given a degree two rational map 

with two periodic critical points we can recover the associated lamination, and 
the two polynomials from which it was mated. We can find a closed simple loop 

-i C C\X(f) such that -y is isotopic to f -'(-y) relative to X(f), with f If -1-Y degree 

two, and preserving the orientation of -y. Let D, and D2 be the components of 
t\f -'-y. Let C^ t be a homeo., preserving X(f ) pointwise, which maps 7 
to f-17. 

Then let f, =0of in DI, and let fi have a fixed branch point in D2. Then 

fj is a degree two branched covering which is equivalent to a rational map. This 

is a polynomial since we can take the fixed critical point to be at infinity. (The 

same argument applies to f2 on D2. ) 

The material covered in the last two sections will primarily be of use in Chap- 

ters 3 and 5. 

§2.6 Quasi-conformal surgery. 

The following two sections are concerned with establishing the location of 

singularities on V, We start by introducing the necessary background material. 

Recalling that a conformal transformation preserves angles, a quasi-conformal 
homeomorphism is a map on a subset of the complex plane which has the property 

that there is a universal bound on the distortion of angles, almost everywhere in 

the sense of Lebesgue measure (see [Af]). 

We recall that a Riemannian metric a on C= {x + iy I x, yE R} is given by 

a form of the following type on the tangent spaces to C: 

a: a(x, y)dX2 + 2b(x, y)dxdy + c(x, y)d Y21 

where a, b and c are real-valued functions, the corresponding matrix is positive- 
definite, and a is unique up to multiplication by a strictly positive real-valued 
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function v(x, y). This can be written in matrix form as 
a(x, y) b(x, y) (x, y) ý-> 

( 
b(x, y) c(x, y) 

)- 

Then the matrix of a always has strictly positive eigenvalues. 

A complex structure on C is given by a choice of equivalence classes of Rie- 

mannian metrics on C, where al ' a2 <ýý a2 -= val for a scalar function 

> 

The standard structure, denoted ao, corresponds to the identity matrix, where 
1 and b=-O. 

If the functions a, b and c are measurable we have a measurable Riemannian 

metric. Furthermore, we say that a is a bounded measurable structure if there 

exists a real number K>0 such that 

<<K V(x, y), - P(X, Y) - 

where A and it are the eigenvalues of the matrix of a. 

Given a C' differentiable map (D(x, y) = u(x, y) + iv(x, y) of the complex 

plane, and remembering that all the elements are defined almost everywhere, it 

transforms the complex structure in the following way: 
(a b 

cj 
(D)T( 

where 
u 

ax D-1) ov 
Thus holomorphic maps preserve the st, 

49U 
U -Y 
49V 
ay 

) 

andard structure. Conversely, by [Af], if a 

map preserves ao almost everywhere on an open connected subset of C, then it is 

holomorphic there. 

We write ý4a for the transform of a by 4) as just described. Note that we 
have the identity V= 

If 1P is a quasi-conformal mapping of 4ý, then ýP*ao is a bounded measurable 

structure, as described above (see [Af]). 

The following theorem (see [AB]) is essential to the idea of quasi-conformal 

surgery: (cf. theorem 2.2.1) 
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Theorem 2.6.1. Measurable Riemann Mapping Theorem. Given a bounded mea- 

surable structure a on C, there existi a quasi-conformal homeomorphism P such 

that 
Vo, = ao 

and (iD-')*ao =a. 

4) is unique up to composition on the right by conformal transformations of the 

complex plane. 

This theorem is the basis for Douady's proof that the hyperbolic components 
in the Mandelbrot set are topological discs, Sullivan's proof of the non-existence of 

wandering domains for rational maps (see [S]) and also for Milnor's proof (in [M31 

that hyperbolic components for polynomial maps are homeomorphic to n-balls 

for appropriate n. We adapt Douady's technique for our purposes in the next 

section, as well as using Milnor's result. 

The idea of quasi- conformal surgery is to alter the standard structure on 

certain domains of C, on which we have some function defined, and then use 

the quasi-conformal homeomorphisms of 2.6.1 to produce new functions, which 

preserve the altered structure, on these domains with some required properties. 

§2.7 Location of singularities of V,, 

We identify the possible occurrences of the singularities of V, an essential 

first step to allow their further investigation. We adapt the ideas used in Douady's 

proof, which constructs a homeomorphism from a hyperbolic component to a stan- 

dard model, by using a similar argument but showing that the map is continuously 

differentiable, using some of the results of Ahlfors-Bers [AB]. 

Theorem 2.7.1. The singularities of V,, occur only at the puncturei of Wn. 

Proof. 

Recall that the defining equation of the affine variety V,, is given by the 

polynomial p,, (a, b), for which we have established the location of roots on the line 

b=O. 
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Let v=v. n f(a, b) E C2 Ib 
54 0}. The theorem is then equivalent to tllc 

statement that V is a non-singular sub-manifold of the space R= {(a, b) E C' Ib0 

0}, where we are identifying R with the set of maps fa, b which are degree two. 
This is because we know that the punctures of W,, are all on the line b=0, or on 
the line at infinity. By what has been said in §1.5 it suffices to show that for all 
(a, b) EVnR, Dp,, (a, b) 0 0. 

Take (aO, bo) EV and let f fao, bc, - We consider two cases: 

Case 1: fj(O) is not a critical point of f for 0j<m 

Case 2: fi(O) is a critical point of f for some 0<i< ?L 

Proof of case 1 

In some appropriately small neighbourhood, 11, of (ao, bo) define G(a, b, z) = 
fan, 

b(Z) - z. By definition G(aO, bo, 0) =0 and 
a (ao, bo, 0) =0-1 54 0. Now, by the Implicit Function Theorem (1.5-1) there Oz 
is a unique holomorphic function z(a, b) defined on 11 such that z(ao, bo) =0 and 
G(a, b, z (a, b)) = 

Let us denote the multiplier of fn at z(a b) by A(a, b), so we have that a, b I 

A(a, b) = (fanb)l (Z(a, b)) = 
n-1 
r1b (fj 

6 
(z(a, b)) I fa, 

a, 
j=O 

Then A is a holomorphic function of z, and defined in a neighbourhood of 
(ao, bo) in R. Furthermore, because we are in case 1 so that fi(O) is not a critical 

point for 1<<n, on a sufficiently small neighbourhood of (aO, bo), j fa', b 
(z (a, b)) 

is bounded away from a zero of fa, b for 0<j<n. Thus, on this neighbourhood, 

A(a, b) =0 if and only if fa, b 
(z(a, b)) = 0. Hence for (a, b) sufficiently near (ao, bo), 

(a, b) EV if and only if A(a, b) =0 (i. e., 0 is a period n critical point). 

By what we have said above we must show that DA :A0 at the point (ao, bo). 

Following the method of Douady ([D]) we will construct a CI function 0 

(Douady's analogous function is just C') for some 6> 01 

0' j-f 1 1-yl < s} --+ 
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such that A0 0('Y) = -Y, 

and 0(0) = (ao, bo). Then 
d 
-(A o 0)(0) DA o DO(O) ji 

which implies that DA 00 at (ao, bo). (We need the function to be CI so that the 

above expression is well defined. ) 

In order that the maps -y ý--+ a(-y) and -y ý-4 b(-y) are C' in the family f., b it 

suffices to show that 'Y ý-4 f., b is C1 in -j - which we do in some neighbourhood 

Of fao, bol expressing nearby functions on V as g., for 1-yj < b, where go ý fao, bo- 

Then, we will have shown that -y i--+ p,, (a, b) is C1 on some neighbourhood of 0, 

and that Dp,, (ao, bo) :A0. 

Note on Douady result: 

In [D] Douady constructs a niap 

p, ý-+ multiplier of periodic orbit, 

which is holomorphic in c, where p,, is the quadratic polynomial z ý-+ z2+c. This 

extends to the whole hyperbolic component of p, so he shows that the hyperbolic 

components in M are holomorphically equivalent to the open unit disc. We shall 

construct an analogous map, as outlined above, but we are only interested in fa, b 
in a small neighbourhood of f,, ý, b, We shall follow his arguments in roughly the 

same order. 

We consider the following family for 1-yj < 8: 

Let h-f : 1z E61 IzI :5 11 --ý (z E61 IzI :5 1} be given by 

Z(Z + -1) 
1 +77Z 

The derivative of the fixed point, 0, is y, and there is a critical point in 

Iz E C^ I IzI : ý, 1}. The critical point is located at approximately -, y/2, with 

critical value at approximately y2/4. 

Let W be the immediate attractive basin of 0 for f ". Then, by 2.1.2, there is 

a holomorphic conjugacy X: W --. o (z E CA I IzI < 1} such that 

x0fn =hoox on W 
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and X(O) = 0. 

For sufficiently small 6, there is a fixed number ro >0 such that for all 
1-yj <b the set hý' 1z I IzI = ro) is a simple loop which bounds a finite disc I 
containing Iz I IzI :5 ro}. (We can choose ro so that the critical value lies in the 

disc {z I IzI :5 ro}. Then the pre-image is a simply-connected region which maps 

with degree two over this disc. ) 

We now make some definitions exactly as in [D]: let A., denote the (topologi- 

cad) annulus bounded between fzI IzI = ro) and hTI 1z I IzI = ro}. Let D. Y be the I 
(finite) disc bounded by hýl Iz I IzI = ro}. Let Dro = Iz I IzI :5 ro}. 

We illustrate the above: 

Dro 

Figure 2.7a 

Now we alter the confornial structure on 6: 

Let E= X-1 (D,,, ). We define a function f, on C by 2 

fy = Sf o X-' o h., oy on E, 

f-y = on 

4-v 

where Sf is the branch of f -("-I) which inaps W to f(W). Note that f is 

univalent on f(W), since the only critical point on fi(W) for 0: 5 j<n is in W. 

This means that fo coincides with its previous definition (as f.,,, b,, ) where so far 

defined. 

Extend f, into the region X-1 (D,, ) \E to be C2 in (z, -y) and a degree two 
branched covering, again keeping fo as defined before. Both critical points lie 
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outside this region, so this is not a problem. Let r, be such that DrI = Iz I IZI < 

ri I satisfies Dro C: Dy C: Dr, 
- 

We define a functionTy by xo fy 0 Sil 0 X-1 on the 

image of E under ý. On the image of this annulus (x-I (Dy) \ E) under x, which 

is A-f) defineTy(rei') = (1 
- v(t))h., (re'9) + v(t)ho(rei9) for tE [0,1], 0E [0,27r) 

and where r= (1 - t)rl + tro and v: [0,1] --+ [0,1] is monotone, with first and 

second derivatives vanishing at 0 and 1. Then, for t=0 we haveTy = hy(re") on 
Iz I IzI = rl} and for t=1, we have Ty = ho(rde) on Iz IzI = ro}, agreeing with 

the defini tion of f=f, on E when we define f, = Sf oXo Ty oý on X (Dy) \ E. 

Then, it follows that f, is C', because Ty is C'. 

Now we define a modified bounded measurable structure on 6 

Let ay = ao, the standard structure, on x-'(D,,, ) =E and outside 

v (W). Then on f" (E), 0, 'Y = (f n) 
* 0,0 = (fn Uj>O f 

Y)*oo. Pulling back , we define 

o,., on the sets fýj(E) inductively by o,. y Then a., is well defined on 
the whole of C. (In particular, on the boundaries of the sets f -j (E) as j -4 oo, 
there is no problem as we are pulling back ao by a C' (at least) function). 

Note that f, ", has the multipliery, since f,, " = X-1 ohyoX on a neighbourhood 

of X(O) = 0, which means that the multiplier is equal to the derivative of h,, at 0. 

So, on the domain 1^11 < 6, we have constructed a map fy such that (-y, z) i-+ 
fy(z) is holomorphic in z near (fi(O) 10 <j :5 n}: fy preserves the standard 

structure on some neighbourhood of the periodic critical orbit (on fi(E), where 
1 n, in fact), so is holomorphic by §2.6. Furthermore, this unique attractive 

cycle has multiplier equal to y. 

We investigate the dependence of a., on 7 shortly - notes on a.,: 

1. a., is the standard conformal structure near to Jfj(O) 10 :5j< n). 

(f-t)*a7 = my. i. e., the structure aoy is preserved by fy. 

Now the Measurable Riemann Mapping Theorem (as stated as 2.6.1) implies 

the existence of a family 0., of quasi-conformal homeomorphisms of C such that 
(o, 

y). a, y = ao and such that 00 
-= 

Id. 

So Oy o fy o 0ý1 preserves the standard structure almost everywhere in C. 
ly 
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Thus, by §2.6,0., o fy o 0ý1 is a holomorphic map on C4. Since it topologically a It 
degree two mapping, it is a degree two rational map g., with go = fo = f. 

We have therefore constructed the map 0: y --. * g.,, such that the multiplier at 
0 is -y because g., is conjugate to fy. This then satisfies (t) as required. However, 

to prove the theorem we must show that 0 is continuously differentiable in -Y. i. e., 

it remains to show that the map 
ýLf 

exists and is continuous. O-t 

The first step is to show that -y ý-+ a., is differentiable, with derivative contin- 

uous with norm defined below: 

To satisfy the conditions of the Alilfors-Bers theorem (Theorem 10 in [AB]) 

we need to show that for at least one map F such that F(7) is represented by ay, 
F: 11-yj < 61 --+ lcomplex structures) is such that for -to E 11-11 < 6}9 

F(-yo + h) = hF, (7o) + hR(-yo, h), 

where F, (-fo) E L,,., R(, yo, h) E L,,. and R(-yo, h) --ý 0 as h --+ 0 in L,,. norm. 

(Note: Their theorem is stated in terms of a function p(z), where the Rie- 

mannian metric is expressed by ds = v(x, y) jdz + pd7l, where lit(z) < 11 and v is 

as stated in §2.6 - one can check that the above condition holds for it if it holds 

for the function F. ) 

Lemma 2.7.2. F-+ a., satisfies (*) on C. 

Proof 

First, we show that y i-+ a,, satisfies (*) on f; l (E). 

As explained in §2.6, we must consider the transformation of ao, given by the 

identity matrix 12, by the C' function fy as: 

F: -i k-+ (DII)TDf. 1. 

This describes a,, on the set fý-(E). Note that on the set E this gives a matrix 

wLich is a multiple of the identity, and thus is equivalent to the standard structure. 

Since fy is C' in z, the matrix Dfy has entries which are continuous functions 

of z. Thus, for fixed -y these entries taken on values in bounded subsets of C 
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because they are defined on a compact set. They are also bounded functions of 

-y: again the domain is a compact set. Therefore the ratio of the eigenvalues of 

the above matrix is bounded, which is what we need (see §2.6). We will also need 
that onf-2(E), the matrix given by (Df. 21 )T Df2y satisfies (*). This follows in the 

same way as for (Df )T Df. 

We extend this result to the rest of C^: 

. Y)TDf3 on f We have a= (Df3 . 3(E). 

Then on fýj (fý 1 (E)), we have a., defined inductively as (Dfj, + 1 )TDfj, +' for 

We must take care with the domain on which the map y ý-4 a., is defined, 

because the sets X -'(D-f) vary as -y varies. Therefore, we consider the Set f -2 (E) 

which is defined independently of -t: now fý' (E) Cf -2 (E) for all 1-yj <b (Because 

f -(E) is approximate to x-1 (Dy)). Thus, outside of the disc f -2(E) we have 

that f7 = fo = f. Likewise, fý'(E) C fý2 (E) and f= fy on 
C\fý 2 (E). 

So f -If 2 (E) =f 3 (E) and f-If-2 (E) =f If-2(E). Thus for 
f -jf 2 (E) f; j-2 (E) and f -jf -2 (E) = f; jf -2 (E). Thus fj = fl, outsidc 
f -j-2 (E) = f; -jf -2 (E). 

So f2fj = fj+2 outsidef -j-2 2 
7 ly (E) = f; 'j f- (E) 

In matrix form we can write 

vj Uj 

for a scalar vi >0 and orthogonal matrix Uj, which are both dependent on z. 
Then, for j ý! 1, F(-y) is given by 

1 
fj+3)T f -j-3(E) \f -j-2 (D Dfjy+3 (E) 

V2 on 
j 

1 
)T (Df j)T(Df, 3y Df. 3y Df i 

UT 3T jf3 U. f -j-3 \f -j-2 
j (D f, 'y )L 

-f ,on (E) (E). 
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The derivative of F(-y) with respect to -t is of the form 

UT j' Gw Uj 

for wEf -4 (E), and where G is boundedly Cl in -y and w. So (*) holds. 

Everywhere else a,, = ao, so the theorem is true here trivially. 0 

Therefore, by ([AB]) V). y is differentiable in -y, with continuous derivative in a 

suitable Banach space, which we define in the next proof. 

So to finish off the proof of 2.7.1 we need: 

Proposition 2.7.3. The map 0:, y ý-+ gy ii CI in the usual topology. 

Proof Recalling that g., = 0ý1 o fy o 0., we must show that 
a 

g., is well-defined 

and continuous in 

We know that 0., is holomorphic in z in some neighbourhood of 0 because it 

preserves the standard structure there. 

0., is normalised to fix the points 0,1 and oo. We introduce the Banach spare 
BR, p of such functions, defined on the set IIz1 :5 R): 

By [A-B] (-f, z) i-+ Oy(z) vanishes at (-y, 0) and is continuous and continuously 

differentiable in -t in the the Banach space BR, p, with the norm 
IW(Z1) 

- W(Z2)1 
+ w. 'dxdy 1/p (1)9 liwilBR. 

p «, -2 suP1Z1191z212:, EL 1Z1 
-, 2 

11 -2/p 

(1 llzl<R 
11 

1- 

where w, is the generalised derivative, w. -- 1/2 (L - 
'ow) 

Ox lay 
We start by establishing continuity of the derivatives of O., (z). 

aa 
Lemma 2.7.4. Oy(z) ii jointly continuous and (7, z) ý-+ ý70-r(z) ýiz- Y 
is jointly continuous, and the pointwiie -y-derivative of V). y is the same as the 

derivative in BR, 
p- 

Proof We must show that continuity in the above sense implies continuity in the 

usual topology. Given 6>0 small, let U= jjzj : ý, b). Let Hy(z) = 
(9 0-, (z). 
Oz 
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Then for z, such that Izi I< 612, 

dz 
27ri Z- ZI 

by the Cauchy integral formula, because H,, is holomorphic in the annulus 16' 1b< 

b, < 8}. 

--1 
Hy(z) 

dzdb'. ý7ri(Sl 
- 62) 

f6t: 

561-ý'62 

fl-tl=bt 

Z- Z1 

Changing to polar coordinates with the substitution z= re'e, so that dz = 
ire'OdO, we have 

H. Y(Z, ) =1H., 
(re'o + to) ire'odOdr 27ri(bi 62) 

16<r<62 10<0<21r 

rei0 - 
(zi 

Hy(re io + ZO)Cio 
rdrd0. 

,4 rei0 - (zi - zo) 

IH. �(z1) - H� (zi)i = 
IK 11 

F(r, 0)(H. �(X) - H. � (X»rdrd01 
A 

where F(r, 0) is bounded above and below on A and X= re". Thus 

IH.,, (zi)-H. r, (zl)l=lff F(r, O)XA(H'(2(X) - H,,, (X)dxdy 
A 

I. 

By (t) I IH.,, -Hy, I lp is bounded for some p. Now I JFXA I loo is bounded on A, 

so IIFXAlIq is also bounded on A where 11p + 11q = 1. 

By the H61der inequality 

IH. 
y, 

(zi) -Hy, (zl)1: 5 IIHy, -Hf, llpllFXAllq- 

Thus H is continuous in -y in the usual topology. i. e., O., (z) is differentiable 

in z with continuous y- derivative for fixed z. 

We claim that H is also continuous in t: but this follows from (*), which gives 

US 
IH-y, (Z2 ) 

-Hyl 
(ý I) 

I 

(re'o + zo)e il 
Z2 - ZI 

-)rdrd0l. (7'09 - (Z2 - zo)) (reil - (zi - zo)) 
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Continuity follows because the above denominator does not vanish and y the 
H81der inequality. (Uniform in -y) Actually we show that we havc joint-continuity 

in (-y, z). Consider 

AN (Z2) 
- H-tj (Zl) I :-I 

H12 (Z2 )- H-ti (Z2 )+ H-ti (Z2 )- Hyi (ZI )I 

:5 IH-Y2 (22 ) 
-H-ti 

(-"2 )1 +I H-yj (22 ) 
-H-yi 

(, ýl A9 

by the triangle inequality. Joint continuity therefore follows from z and -y equicon- 

tinuity. 

Now, we consider the y-derivative. We know that 0., is differentiable with 

respect to -f in BR, p. Therefore, the following real partial derivatives, given by Ly 

and M-, are continuous. i. e., there exist L and M, for h real, L= L(-y) E BR, p 
satisfying 

Illk-t+h - 07 - Lyhll 

Ihl -+ 0 as llhll --ý 0 

and 
Oy+ ih (Z) - O-y (Z) 

- M. 
-hll 

--+ 0 as h -ý 0. h 

(We want to show that L. - (-y) is continuous in (z, -y). ) 

By (t), 

10-t+h(Z) 
- 0., (z) - hL., (z)l 

0 as Ihi 

locally uniformly in z and similarly for My(z). 

So -j ý-+ O., (z) has derivative (L,, (z), My(z)), and L., and Mr are -y-continuous 

in BR, 
p- 

Now, for wE BR, 
p i 

lw(zi)l < lw(zi)l 
IZ, I 

IIWII' 

where II-II is the norm in BR, 
p (see above). 

So L.., is a pointwise derivative, so that 
10. 

y(z) exists in the usual sense 
(9'Y 

and is in the space BR, p. It is therefore a 1181der function with exponent 1- 2/p 
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and hence continuous in z. Furthermore, it is locally equicontinuous in -y by the 

definition of the BR, p norm. Hence, we have joint continuity because I Ly, (Z2) - 
L,,, (zi) I 

5 ILy, (Z2) 
- Ly, (z1)1 + IL�(z1) 

- L. 
�(z1)1 

:5 k111L1J1 1-2 
_ Z, 11 -2/p + k21iLy, - Lt, 11, 

for constants k, and k2- Cl 

00 
Since 

_ 
(, y, z) :A0 near 0 (since 0 is holomorphic near 0), the Inverse Flunc- 

tion Theorem implies the existence of a C1 inverse function Cy : O., (z) ý--+ z 

on O., (11-yj < 8}) which is C' in z. Then ý is also differentiable in z: let 

IF(-t, z) = (-y, O(y, z)). Then %P is CI in (y, z), with Jacobian 

i 

By the Inverse Function Theorem %P-' exists and is also C' in (-j, z). But T-1 

must be of the form %P-1 (y, (y, ý(-y, z)). Hence 
0ý 

is continuous in (y, z). Oz 

Now, we can evaluate g., near 0. If this is C1 in y, then so is -t ý--+ g-j- 

a 
ýýc Oc 

T, y 
(C-y 0 f-Y 0 O-Y) =-0 (f 00)+ Oz T-1 07 

Lý (of 00 
+Of)+ 09c 

Oz Oz O-t 0-Y O-t 

where all the above terms exist and are well-defined, and with each derivative 

evaluated at the appropriate point. 

Thus, since 
"f 

and 
"f 

are continuous in (, y, z), it suffices to show that 0-1 Oz Oz 

and 
LC 

are continuous to prove the proposition. This we have done. 0 
49Z 0-Y 0-Y 

Proof of case 2. 

In this case some neighbourhood of (aO, bo) in R lies in a single hyperbolic 

component of RM2 because f,,,,, b,, is critically finite. 

In [M3] Milnor extends Douady's theorem ([D]) by showing that the hyper- 

bolic components of polynomials of any degree d are canonically biholomorphic to 

48 



a complex (d - 1) dimensional ball. In particular, for degree three polynomials 

(which have two finite critical points), lie identifies hyperbolic components with 

sets 1(-y, r) I 1, yj < 1,17-1 < 11, where (, y, -r) identifies with the Blaschke product 

h,, o h, for h, defined as for h,, above. His results transfer over to our situation, 

since his arguments (for degree three polynomials) are based on considering finite 

orbits of the two critical points not at infinity - the critical point at infinity does 

not enter into the argument, because he considers hyperbolic components in the 

connectedness locus, the set of functions for which the orbits of the finite critical 

points are bounded. 

Again, we wish to apply a similar argument, as in Case 1, requiring the family 

of quasiconformal homeomorphisms to be C' in the parameters y and r in some 

neighbourhood Of f.,,, b,,, (Since both its critical points are periodic, f. ", bo is at the 

centre of a hyperbolic component. ) 

The construction of fy and f, proceeds analagously to Casel. In neighbour- 

hoods of each of the immediate attractive basins of c, and C2, there are holomor- 

phic conjugacies to the maps h., and h, respectively. Then by [M3] these really 
do describe nearby maps in the hyperbolic component of f. ý, b, The arguments 

used above in Casel. show that the altered functions gy and q, are C' in y and 

-r respectively. 

The intersection of the hyperbolic component with V then identifies with 
0xfrI -r I< 1}, which is a smooth submanifold of C2.0 

We have now established in principle exactly where the singularitics of V" arc 
located, for any n. To prove the statement (1) in §1.7, therefore, we will analyse VY, 

close to the punctures of W,,, since this is where the singularities must be located. 

The next step we take is to investigate the nature of the branches of V" near to 

the punctures of W,,, and hence establish results about the singularities. 
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CHAPTER THREE 

ANALYSIS OF THE PUNCTURES 

On a sheet near a puncture of W. we have local coordinates a and b, where we 
have expressed a as a Puiseaux series in b, so that a is a (possibly multi-valued) 

function of b. However, the situation is simpler than this, as hinted at by the 

examples calculated in Chapter 1. Thus, in the course of this chapter and the 

next we shall prove the main theorem of this thesis, which is: 

Theorem 3.0.1. The following equivalent statements are true for any branch of 

a variety V,, in the vicinity of a puncture: 

(1) One of the Puiseaux series P(b) or P(a) ha3 terms only with integral powerl. 

(2) a is a function of b or vice-versa. 

(3) The knot associated to the branch is the un-knot. 

Note that this theorem applies to punctures at which there is no singularity 

of V,,. Also note that though in our examples we have expansions a= P(b) we 

only prove the slightly weaker statement ((1) above). 

The proof of this Theorem is dependent on viewing degree two rational maps 

as degree two branched coverings of the Riemann Sphere. So far we have been 

considering the maps of the set V. as lying in an algebraic variety, which is the 

compactification of W,, by a set of degenerate degree one maps. As an alternative, 

we can think of the sets K as sets of degree two branched coverings, the limit 

points of which are also degree two branched coverings. It turns out that this 

interpretation of the limiting maps is what is necessary to understand the nature 
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of V. near to the punctures, and hence the local geometry. 

§3.1 Outline of proof of Theorem 3. 

At the puncture the M8bius map f.,,, o (which we assume to be of order k) has 

two fixed points, namely 1/2(1 ± , 
/(l + 4ao)), which form a complex conjugate 

pair if k>2. Their multipliers are given by -4ao/(1 ± /(1 + 4ao ))29 which are 

necessarily k-th roots of unity, meaning that the fixed points are parabolic. NVe 

choose one of these to be A,,,,, o and define A., b to be the multiplier of the fixed 

point Of f., b such that A is a continuous function of a and b in some neighbourhood 

of (ao, 0). (Note that there are three fixed points for fa, b, one of which tends to 

the same limit as both critical points as (a, b) tends to (ao, 0), and which is always 

repelling in a suitable small neighbourhood of (ao, 0). ) In the case k=2 we have 

to consider the limit map z ý-+ 1/. -, for which the fixed points are ±1, which have 

the same multiplier, -1. For definiteness we shall choose, in the case k >- 3, A such 

that the corresponding fixed point at (ao, 0) lies in the upper half plane of C, with 
A* (ao, 0) being the multiplier of the complex- conj ugat e fixed point. In the case 

k=2 we choose A(0,0) = A*(O, O) = -1 in the (a', V) coordinates (see Chapter 

1). It is important to note, as remarked earlier, that the modulus of the multiplier 

of the third fixed point is bounded away from and above 1 in a neighbourhood of 

the puncture, whereas A and A* are roots of unity at the puncture. What we will 
do in the course of this and the next chapter is show that the quantity Aa, b is a 

smooth function of the sheet parameter t (see §1.5), so that at the puncture at 

fao, os where t=0, the derivative dA (0)00. 
dt 

Theorem 3.1.1. The multiplier A is a function of the sheet-parameter t, such 
dA 

thatTt (0) =A 0. 

Proof Proved later in this section. 0 

Then, given the result of 3.1.1, 
L' 

can be written as dt 

dA DA da OA db 
Tt : -- 'ä-a Tt + -äb- -ii * 
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dA da db 
Since T :A0, both and cannot simultaneouslY be zero. Thus we have 

t Tt Tt 
shown that either a or b is a smooth function of t. Hence (see §1.5) we have 

proved Theorem 3. C1 

A 
Proving that W- :ý0 breaks down into two stages. The first is to associate t 

a unique (up to equivalence) critically finite branched covering to a sheet of the 

variety in a neighbourhood of the puncture. This is done in the rest of this chapter. 
To do this we must make an analysis of the behaviour of the critical point C2 Of 

maps near to a puncture of W,, (see section 3.4). By 2.7.1 the set of singularities 

of Vn is contained in the set of punctures of TV,,, so we will have shown that all 
the singularities are made of smooth components. It turns out that the maps 

associated to each branch are not rational maps : after all, at the singularity we 
have a degenerate map. The non-equivalent models reflect the different way in 

which maps on different branches tend to the limit M6bius map. 

Proof of theorem 3.1.1. 

We start with the following observation: 

Lemma 3.1.2. A is a holomorphic function of a and b, and hence of t, in a C2 

neighbourhood of a puncture. 

Proof Consider the map F., b = f., b(z) - z, where we have made a change of 

coordinates so that 0 is the fixed point in question of fo. Then Fo, o(O) =0 and 

F0', 0(0) :A0, because we have already seen that it is a root of unity. By the Implicit 

Function Theorem, there exists a holomorphic function z(a, b) in a neighbourhood 

of (0,0), with F,,, b (z(a, b)) =0 and z(O, 0) = 0. Thus f., b (z(a, b)) = z. Noticing 

that z(a, b) is the fixed point Of fa, bi since z is holomorphic, so is its derivative A. 

0 

Since cl is periodic, by 2.1.2 it follows that at most one of the fixed points is 

attractive, and so A and A* cannot simultaneously be less than 1 in modulus. Let 

us consider the sheet parameter t as it takes on values in a small circle C about 0. 

For some values of tEC IA(t)l < 1, and for others IA*(t)l < 1. 
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Let A(O) = C, where Ck = 1. Then we have the following: 

dA 
Lemma 3.1.3. T(O) 00 if and only if, for a particular value of r which is 

t 
sufficiently near 1, there is exactly one value t near 0 with A(t) = rC. 

Proof Let m be the least positive integer with 
d' 

A(O) 9ý 0. Then writing 

at =1 
dI 

A(O), we have 

ýFm 

T Tt I 
A(t) - A(O) =E alt, 

I>m 

tllt (E 
altl-' 

I>m 
for a holomorphic function 0 with ý(O) :A0. So 0(t) = tý(t) is a local bijection 

with 0(0) = 0. Also A(t) = r( if and only if 0(t) is an m-th root of 1- r(. So 

there are precisely m solutions of the equation A(t) = rC near t=0, for r near 1. 

0 

In order to prove 3.1.1., therefore, we must satisfy the latter condition in 

the statement of 3.1.3. Now the existence of such a line A(t) = r( for 0 :5r< 

1 is equivalent to the existence of a hyperbolic component of a polynomial, of 

which this line is a subset. Then, if there is exactly one hyperbolic component 

corresponding to IA< 11 with the puncture on its boundary, the above condition is 

satisfied. At the same time Lemma 3.1.3 applies equally to the function A*, again 
for which one hyperbolic component of a polynomial will satisfy the condition. By 

the definition of A and A* these components are mutually exclusive. So we have 

shown that Theorem 3.1.1 is equivalent to the following statement: 

Proposition 3.1.4. In any sufficiently small neighbourhood of a Mjbius map of 

order k in V, a sheet of the variety has non-vacuoui intersection with 

Two hyperbolic components of polynomials if k>2. 

(b): One hyperbolic component of a polynomial if k=2. 

V- Fur k>3 we have two polynomial hyperbolic components incident at the 
dA 

puncture (ifT 
t 

(0) :A 0), one of which corresponds to values of JA(t)j < 1, and the 
t 
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other to IA*(t)l < 1. Thus A and A* are smooth functions of t and we have the 

following picture for a branch at the puncture (drawn in the t-plane): 

Figure 3.1a 

For k=2 we also have two polynomial hyperbolic components incident, when 

we are considering (a', V) coordinates. However, consider a hyperbolic component 

in the (a, b) coordinates near the limit where k=2: In transforming the coordi- 

nates to (at, V) we have changed the parameter a by a' =1 I(Va). This has the 

effect of producing two copies of this component, since the operation -'/ is two- 

valued. Thus, in the (a, b) coordinates two hyperbolic components correspond to 

just one hyperbolic component (for JAI < 1) in the (a', V) coordinates. 

To prove 3.1.4, we associate a canonical critically finite degree two branched 

covering to each sheet in the neighbourhood of the puncture. Note that we do 

not finish the proof of 3.1.4 (and thus 3.1.1 and Theorem 3.0.1) until the end of 
Chapter 4 Section 3. 

§3.2 Construction of the branched covering. 

We construct a certain branched covering for any map in the vicinity of a 

puncture. The idea is that this map represents the limiting behaviour of functions 

fa, b on a particular sheet, when they are thought of as branched coverings. As 

rational maps, we have seen that the limiting map (in the family f fa, b 1) is Some 

M, 5bius map, with only one critical point (the two critical points have come to- 

gether in the limit), and that this is the same for any sheet through this puncture. 
In contrast the limiting branched covering has two critical points, and this extra 
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flexibility will enable us to distinguish between different sheets: each sheet will be 

characterised by a canonical branched covering, reflecting the different ways (to 

be explained later) that the orbit Of CI(f., b) converges in the limit. 

We construct the branched covering for maps in the hyperbolic components of 

polynomials first of all, showing that within a component near the puncture, that 

these are equivalent (in the sense described in §2.3). We then extend this to maps 

all the way round the puncture on a given sheet, again showing equivalence. i. e., 

we associate a unique (up to equivalence) branched covering to to all maps on the 

sheet near a puncture, and this branched covering is not equivalent to a rational 

map. So we will construct an invariant of the branch, which will distinguish 

between different branches. 

We now start to set up an explicit definition of the branched covering, in 

which the following definition is central: Let a: [0,1] --+ C^ be a simple path. 

Then define (see [R21) a homeomorphism a,,, to be the identity outside a small 

neighbourhood of the image of a[O, 1], and such that it maps a(O) to a(l). 

Let f be in the set V, near to a puncture where the M6bius map is of order 
k. Then let a(f,,, b) be a path such that a(O) C2 and a(l) -` 

fak, 
b(C2). Thus 

Cr- 10k 
a 

fa, 
b(C2) '-- C2. The exact way that a is to be defined will be made explicit 

during the prcof of Theorem 3.1.1, but we will choose a so that the forward orbit 
Of C2 under fa, b avoids the forward orbit of cl, so that (a;; 10 fa, b)k is a map of C 

Cr 
with one period n critical point and one fixed critical point. We illustrate, with 

the understanding that a is not yet defined precisely: 

ola 

Figure 3.2a 
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Note that as f,,, b -+ fa,,, o, the path a shrinks to a point and thus a,,, --+ Id. 

The following theorem, proved in the rest of this chapter, is the first important 

stage toward proving Theorem 3. 

Theorem 3.2.1. Let (ao, O) be a puncture of W., with corresponding Mjbius 

map of order k. Then for functions fa, b on one sheet of the variety Vn in a 

neighbourhood U of (aO, 0), we can find paths a= a(a, b) such that the map-9 given 
by aa I Ofa, b are critically finite branched coverings of C. Moreover, all these maps 

are equivalent as branched coverings. 

We will construct the path a indirectly, starting with the following: 

Proposition 3.2.2. There is an integer ro > 0, such that for any map fa, b E UP 

the straight line arc joining fak ro f k(ro+l) 
,b 

(C2) and a, b (C2), denoted rr,, (a, b), is such that 

i-ro (ae b) nY=0, where Y= ffa), 
b(C1) 

1i ýý 01 U (fa), 
b(C2) 

10 :5i< k(ro + 1), i :0 
kro}. 

Remark: It then follows that r,. (a, b) is a continuous function of a and b. 

ProoL It is necessary to show the set X(f) (see §2.3 for dcfinition) is bounded 

away from 

So we need to make an analysis of the possible behaviour Of C2 under iteration 

by f., b, especially in relation to 0+(cl). In order to do this, it will be necessary 

to change the coordinate system for the parameters to a more convenient form. 

§3.3 A change of coordinates. 

First of all, let us change coordinates so that 0 and oo are fixed points, and 

so that the multiplier at 0 is A. So we have a map of the form 

\Z - liZ2 
l+Vz , 

Solving for critical points gives us that A- 21tz - pvz 2=0, so imposing the 

condition that 1 is critical means A= -2p - jiv. Furthermore, we note that the 
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map becomes degree one when v= -1, because g(z) becomes 

it ((2 + jj)Z - Z2) z 2) 

1+ vz z 

so we also make the substitution v= -1 + p, so that for small p we are near a 

puncture. Indeed, for the rest of this chapter we will be implicitly assuming that 

p is sufficiently small, and so g= g(p) is near to a puncture in some family, Vj. 

We now have our map in the form 

9, u, p : -, ,,, + 
((l + p)Z _ Z2) 
1+ (p - 1)z 

Note that all the punctures are on the unit circle f jjjj = 1, p= 0}, since the 

map z ý-+ uz must be of finite order and this is true precisely when pk=1. 

We have critical points c, =1 and C2 -+P 
-P 

Solving g(z) =z we find that there is a fixed point zo at 

1+ pp 
00 p +pp+ 1+p =(i+ lip )+E(1(- p 

t, -p+P+ it 1 +11 
00 i+l 

+ 1: 
(1p =1+p+ O(P2). p+ 

j=l 
+ it) j 

Working out the derivative here, 

dgo, p = 11 
(p, + P'Al + /I) + O(P, )) 

dz (lip, Al + 11) + P'Al + /0' + O(P, )) 

lip 2+ O(P3) 
, 

(1 +11)2 

/12 p 4/(l + 11)2 + O(p5) PNO 
Pp 

For p small, therefore, this fixed point is repelling. (However, in the limit, 

this fixed point disappears. ) 

From now on we will assume that the map g,,,, is on a variety V, so that 1 is 

of period n, and near to a puncture where the M6bius map is of order k. Note that 

on a sheet near a puncture it is a (possibly multi-valued) function of p, and that 

57 



it is approximately a k-th root of unity, because we are close to ak order M8bius 

map on V, At the puncture p=0 and it = ito, with lio k and z ý-4 poz is the 

order k M8bius map. 

Note that with the new parameters it and p we do not have a natural repre- 

sentation of the sets V,,. This is because in the (it, p) coordinates we have maps 
in Vn represented more than once. In particular the points of intersection with 
the line at infinity in the (a, b) coordinates are now represented by a single point. 
However, we shall see that the local geometry of branches near the punctures is 

not affected: 

Let us consider g,,,. Conjugating by z ý---+ l1z, we get the map 

Z ý-+ 
1+ (P - l)/z 

(/'/Z)(' +p- VZ) 
Z, 

+ (P - 1)z 
p«1 + p)z - 1) 

(1/M)(1 - P)z - Z' 
Thus, the maps g,, p and gll,,, -, are conjugate. 

- Consequently, maps g,, p in a neighbourhood of a Mi5bius map z 1--+ yoz, are 

equivalent to maps in a neighbourhood of z ý-4 7roz. So there are, in essence, 

two copies of each finite puncture of V,,. When ji is approximately -1, we have, 

equivalences between pairs of maps, both of which lie in a neighbourhood of p 

-1. 

We justify the validity of the coordinate change: 

Proposition 3.3.1. The branches of V,, (in the (a, b) coordinates) near a puncture 

are smooth if and only if the corresponding branches in the (p, p) coordinates are 

smooth. 

Proot It is sufficient to show that there is a local change of coordinates in the 

neighbourhood of a puncture which is a diffeomorphism of the appropriate neigh- 

bourhoods. Consider the case when k>3. The change of coordinates takes 

a neighbourhood of some M8bius map z ý-+ (z - ao)lz to a neighbourhood of 
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z i-* poz. Consider the points Cljf(Cl)qf2(Cl): for f., b this is the set (OoOOjl)q 

and for g,, p we have 11, it, p+}, where p+ = 
'I(1 +P 'I). There is a M6bius 

1+ Piz -/I 
transformation ý, for which ý(l) = 0, ý(It) = oo and ý(jt+) and which there- 

fore induces an equivalence between f., b and gu, p. 
ý+ 

C(Z) (z it) and C-l(z) = it 

Now fa, b =ýog,,,,, o C-1, a rational expression in terms of /t, p and z. So a 

and b are smooth functions of it and p. So if It is a function of p (or vice-versa), 
then a is a function of b (or vice-versa). 

Conversely, consider the M6bius transformation X, such that x (F1 (a, b)) = 0, 

x(F2(a, b)) = oo and X(O) = 1, where F, and F2 are the two fixed points of f., b 

with multipliers A andl Then 

1 gli, p --"2 0 fa, b 0 X- . 

Since F1 (a, b) and F2(a, b) are smooth functions of the variables a and b, the above 

shows that p and p are also. 

The case k=2: as in §1.2 we conjugate by the map z ý--# Vaz, and make a 

change of variables a' = 1/(,, /a), V= 11b, so that we are considering maps 

aIz2+z+ a'3/b' 
Z2 

where the puncture is at (a# , V) = (0,0). (The term a" 1Y vanishes as a -+ 0 by the 

comment in §1.2. ) So for n>3 the change of coordinates is from a neighbourhood 

of z ý-+ 11z to a neighbourhood of z ý--+ -z. Otherwise, this case is the same as for 

k>3.13 

Note: in the rest of this chapter we shall write f= go,,,. 

§3.4 Consequences for the orbits of the critical points. 

In this section we show that, near a puncture, the forward orbit Of r-2(f) 

settles down to a well behaved pattern, eventually moving away from 1 in a definite 

direction under fk- 
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Let us consider the forward orbit of cl = 1: 

/0 + P) - it 
i+p- 1- ""ý P. 

Now, we can approximate f as follows: 

Az) = 
(1 + P) 11 Z(l - Z(l 

1- Z(l - P) 

(l+P)liz 1-Z(1-P+P, +0(P, ») 

1- z(1 - p) 
2, + O(p3) p 

+ /4 
Z(l - P)) 

Note that if z=1+p+ o(p), then the denominator in the above expression is 

p2+ O(p2) and the equation (*) is no longer a valid approximation. So near the 

fixed point zo, we have not constrained the location of future iterates. 

However, the equation (*) is certainly valid wcll away from 1, so ignoring 

higher than first order terms of p, we can estimate the first k iterates of cl = 1: 

1 ý--4 11 ý-+ 14, (1 it, (i 

Indeed, away from 1, and thus away from a neighbourhood of both critical points 
(*) shows us that the map f is approximate to the M6bius map z i--+ lioz. (Note 

that for p small C2 is near to 1- in fact, C2 =1+ 2p + O(p2). ) 

So near a singularity f k(l) is approximately 1, except, of course, when n=k 

and fk (1) =1 by defini ticn. Let us assume for now that under fk11 ý-4 1+T, 

where T= T(ji, p) (standing for translation) is some sinall quantity (equal to zero 

where n=k). 

Example: In the case n=4 and k=2 we have two local solutions for it in 

terms of p, one of which is given by it =-1+ 114p + o(p). To get this solution we 

solve the equation f4(j) 1 in the same way as for a in terms of b. In this case 

I ý-+ -1+ 114p + o(p) 1+ 114p + ()(p)) 
2 (1 + P) + O(P) =1+ 112p + o(p). So 

T= 112p + O(p 2). 

Lemma 3.4.1. T= 0(p). Henec it = Ito + O(p). 
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Proof. 

Let f k(j) =1+ ap' + O(P"), where 0<s<1 and a01. This means that 

p= Ito + (alk)p-' + o(p"). 

Then under f, 

+ apS ý-+ 
p((l + p)(1 + ap") - (1 + aps)2) 

1+ (p - 1)(1 + aps) 

(-p + ap-' - ap"+l + a2 p 28 

ap, '(l -p- pl-81a) 

p+ ap" -1p +p+ 
1p 

I-s + P2 +1p 2-2s + O(P2)) 
aa a2 

= it (1 ap' + o(p")). 

So, using the approximation (*), valid because s :A1, 

fk(l + ap" + o(p")) = tk (1 + aps + O(P, )) =1+ 2ap" + o(p") = f2k(l). 

Similarly, fkj(1) is approximately 1+ jap, contradicting the fact that 1 is 

periodic. Therefore a=0. 

Then 1+T = itk(1+p)k-1, so that lik =1+ O(p) and thus li = po + O(p). 13 

In the light of this, we rewrite 1+T as 1+ Ap + o(p), so that under 
1 ý--+ 1+ Ap + o(p), where A can be zero. Note that A is an invariant of the shect 
in a neighbourhood of the puncture. Recalling that C2 =1+ 2p + o(p) let us study 
the future iterates of a general point 1+ tp, tEC. 

1+ tp it 
+ p)(1 + tp) _ (1 + tp)2) 

1+ (P - 1)(i + tp) 

t+ tp - t2 

t+ tp 
P) 

t+1+ tp _ t2p 
t(1+ tl(l - t)p 

) 

(_t +1+ tp _ t2p)(1 
tt2p2+ 

O(p3)) 
- tp 

+ 
(-) 

t1-t 
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t2 

lp 
+ O(p2) 

Lemma 3.4.2. The k-th iterate of a point 1+ tp, where t ?t1, is given by the 

expression 
t2 

1p+ O(P). fk(l +tp) =1 +Ap+ 

Pz-oof Using the approximation (t) we have that 

P 

lp+o(p2) 
1+ tp ý--+ 11 + T_- 

+ 
t2 P'- + 0(P, ) 

p)1,2 
(1p+ 

o(P2» 
(1- 

z(1 - p» 
by (*) 

t2 
(1 + Al 2+p+ O(P2) 

Repeated application of (*) yields the fact that the k-th iterate of 1+ tp is 

given by 
t2 

('+P), -, /" 1+ -p+o(p2)). 

But since'(1 + p)k-l ilk =1+ Ap + o(p), the above is equal to 

Pp+ 
O(p2) 

t2 
(1 + Ap + o(p)) 1+1+ Ap + -p + o(p). t-1t-1 

0 

Note that the above equation does not hold at t=1, near the repelling fixed 

point. If a point in 0+(1) lands near here (wljjclj is certainly possible) then our 

previous approximations do not hold either. 

Returning to our example, we can compute the third and fourth itcratcs of 

1 using Lemma 3.4.2. In this case A= 1/2. Under f2,1 + 112p + o(p) ý--* 

+ 112p - 112p + o(p) =1+ o(p), in agreement with the fact that f4 (1) = 1. 

Note the multiplier of fk at 0 iS jjk(j + p)k, but T= Ap + o(p) = lik(l 

P)k-I - 1, so the multiplier is T(l + p) = (Ap + 1)(1 + p) =1+ (1 + A)p + o(p). 
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We use this last result to examine the behaviour under iteration of the second 

critical point, C2 ; ý,, 1+ 2p. If we write a point near 1 in the form 1+ tp + o(p), then 

its k-th iterate is given by the last proposition in terms of a number 1+ sp + o(p), 

for some sEC. On some neighbourhood of 1, fk is a return inap, and we can 
z-1 

simplify the analysis by making the affine change of coordinates w(-) =. In 

particular w(l) =0 and W(C2) =2+ o(p). So we can consider the return map in 

a neighbourhood of 1 as being approximated by the map R: w ý-+ A+ W2 
W- 

for which 0 and 2 are the critical points, and 0 is of period n. More precisely, 
f k(Z) = w-1 oRo w(z) + o(p) on a bounded set of z-values in a neighbourhood of 

z=1. 
Im- Fur the map R there is a fixed point at infinity, which we can examine directly 

by conjugating by w ý-+ l1w. We have 

R(l1w) =A+ 
1/W2 

= 
Aw - 

AW2 +1 

J/W-l W- W2 

(R(w))-l W-W 
2 

Aw-AW2 +1 

= (w 
- w2)(1 - Aw + Aw2+ O(w')) =w- (1 + A)w' + O(w3 

The derivative at zero is 1, so infinity is parabolic under R, and attracts a critical 

point (and possibly both-when A= -1). Furthermore we know by 2.1.3 that 

the attractive direction at infinity is the argument of (1 + A)p. Since 0 is pcriodic 
its orbit is bounded away from infinity, so 2 must be attracted out along this 

direction. We check that this direction is well-defined: 

Lemma 3.4.3. A: A -1. 

Proof Let A= -1. Then consider the iteration of 0 under R. 0 ý-4 -1 -3/2. 
It is clear that for real w< -1, -1 + 01(w - 1) < -1, because W2/(W 1) < 0. 

Thus the forward orbit of 0 is contained in the negativc real axis, contradicting 

the periodicity of 0.0 

Corollary 3.4.4. The multiplier of the fixed point of fk at 0, A is such that 

+ cop + o(p), where co :A 
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ProoL Recalling that the multiplier of fk at 0 is A=1+ (I + A)p + o(p), we have 

by Lemma 3.4.3 that A 54 -1, so (1 + A) qk 0. C3 

By Lemma 3.4.3, there is always a well-defined argument along which points 

are attracted to infinity under R. In particular this is true for 2: there exists a 

number ro such that the set of iterates of 2, JRj(2) 11 :5j :5 ro) is bounded away 
from the straight line joining Rro (2) and Rro +1 (2). 

Since w-1(z) is an affine transformation, it maps the straight line between 

R'0(2) and Rro+1(2), say 7-r'01 to the straight line rr,,. Since the first (ro - 1) 

iterates of 2 under R are bounded away from -rr,,, conjugating by w we see that 

(ro - 1) iterates Of C2 under fk are bounded away from X(f ): Since ro is finite 

we can choose p sufficiently small so that the error term (of order p) is as small 

as we please. The number ro clearly depends only on the function R, which in 

turn depends solely on A, an invariant of the sheet. So ro is just dependent on 

the sheet and applies to an open neighbourhood (determined by our choice of p), 

which we denote U, of functions on this sheet. 

Since the points fkro (C2) and fk(ro+l )(C2) are continuously dependent on p, 

so is rro (y, p) and hence rro (a, b). Thus we have proved Proposition 3.2-2.11 

We aim to use the branched covering defined by a--I of, which by Proposition rro 

3.2.2 has certain desirable properties, to construct the path a, and hencc the 

branched covering a. 1of, so that we can prove Theorem 3.2.1. For this to be 

true we need the following: 

Proposition 3.4.5. There is an inverse image of the path r, (p, p) under r iterates 

of fkj which has endpointsC2 and fk(C2), and is isotopic relative to Y' to a simple 

path ffomC2 to fk (C2), where Y' =f fj (cl) Ij ý)' 01 U (f(C2) 10 `5 i :: ý, k). 

We approach this problem by first considering the case when f is in the 

hyperbolic component of a polynornial. The above proposition is proved at the 

end of §3.5. 
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§3.5 Construction of branched covering in a hyperbolic component 

So let us consider f=g,, p, which has an attractive fixed point at zero (so 

that f is in the hyperbolic compoilent of a polynomial). For convenience let 

ZO =f kro (C2). Then or, -' 0fk fixes zo. We know that under f, r is attracted in 

toward 0, but not how. However, it turns out that we can control its behaviour 

quite well. 

By §2.1 there is a holomorphic bijection 0 such that 0 conjugates f in a 

neighbourhood the fixed point to the map z i-+ Az in a disc neighbourhood of 0, 

1z I IzI :5 1}, such that O(C2) ý 1- We can assume that A is real and positive , so 
thatO+ (O(C2)) is attracted along constant argument rays toward the origin. (the 

rays have argument 1, \jr2wi/k. ) Let O(zo) = Co and let r be the path of constant 

argument from Co to \k(O 
. Thus the whole path 7r is attracted toward the origin. 

Some of the inverse images of 7r under the map .- ý--* Az lie on a straight line from 

0 to 1. Let 7ro be the straight-line path froill 1 to \k, so that \kro(7ro) = 7r. 

7ro 

0 

0 

Figure 3.5a 
60 

17 

C2 

The p ath 0-1 (7ro )i oins C2 to fk (C2)- So the path f kro (0-1 (7ro)) has the swnc 

endpoints as r, but are they isotopic? (t) 

Lemma 3.5.1. Let N be such that lfj(C2)1 ý! 112 for j+k 5 N. Letri denote the 

, straight line path joining fj(C2) to fj+k (C2) for i ý: kro. Then, for kro :5 j' <- j, 

a component of fj'-j(Ti) has endpoints at fj'(C2) and fjo+k (C2), and is isotopic 

to rp relative to Yjt ""ý If i(CI) I' ýý" 01 U If I(C2) 11 :5 j' + k). In particular, a 

component of fkro-j(, r, ) is isotopic to 7' relative to Ykro 
- 
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PZ*00f. If Z fj(C2)i for kro <j5N, then 1- jzj >> p (truc for kro by 

definition, and then for kro :5j :5N by induction on j). Hence by (*) 

If(z)l = jAzj(1 - o(l)p + 0(p')) :5 IZI(l - alp), 

.k for some constant a,. Hence IfJ+ (C2)1 :5 lfj(C2)1(1 - alp) for all j ý! 0. So a 

component of f-'(rj) is approximate to the straight line path rj-l and has the 

same endpoints for all kro :5j <- N. The result follows by induction. (I 

Next we show that some path Trk is isotopic to 0-1(, \k(r-ro)7r) for some 

number r. To do this we need to do the following: 

We show that the uniformising map, 0, for the map f in the hyperbolic 

component of a polynomial is close to the identity. 

We write 

+ 

where A= /i(l + p) and g(z) = -p2 z/(1 - z(l - p)) + O(P, ), so f(O) = g(o) =0 

and f'(0) = A. 

By §2.1.1 there is a uniformising map, 0, such that fo0=0o (X. ). Rirther- 

more by [Ml], 

O(Z) = lim on(z) = lim f"(z). 
n-oo n--ooo An 

We use this expression in the following: 

Proposition 3.5.2 There is a constant #>0, such that given e>0 there 

exists b such that on Izi < 1-9, and if IpI :5b, then JO(Z)-zl <e and 101(z)-il 
C. 

Proof. 

Firstly, let us introduce the following: 

Lemma 3.5.3. Given P" > 0, there exists a constant M>0 and b>0, such 
that if IpI <6 and IzI <1- P", then lg(z)l :5 Alp2lZl, where g is as described 

above, and lf(z)l :5 JAII-I(l + Mp2). 
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Proof We have 
-P2Z + 

-q( 
)=i-Z(, 

-p) 

If IpI <6 and IzI <1- P", then the above denominator is bounded below by 

P"(1 - 6), and the result for Ig(z)I follows on taking M= 1/(#"(1 - b)). The 

result for If (z) I follows directly because f (z) = Az (1 + g(z)). (3 

Consider 
! On+1(Z) - lkn(Z) : -- 

f (f'I(Z» f (Z) 

, 
\n+I \f1 

Af n (Z) + \f n (Z)g (f n (Z» f pa (Z) 

, 
\n+I \n 

f 71 (Z)g (f n (Z» 

,\n 

Fixing z and p, consider Ai(z) = 10j+l(z) - Oj(z)l. 

fj(z)g(fi(z)) 

,\jI- 

We must show that there exists a constant fl' such that for IzI <1- 0' and 
1PI < 00 E lAj(z)i < E. j=O 

Now for IzI <1- P", 

19(fj(Z))1: 5 MP21fj(Z)l 

by lemma 3.5.3. So 

jAj(O. )j :5 
p2jAjj MI fj (Z) 12 

!ý IV 
IZI(l + MP2)2j by3.5.3. 

:5 MIZIP2 (IAI(l + Mp2)2)j. 

Recall that (by 3.4.2) there is a constant co, such that A=1+ cop + o(p). So 

there exists a constant al such that JAI(l + Alp2)2 <1- al lpl. 
So lAj(Z)l < Mp2 IZI (1 

- a, lpl)j. 
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Thus 
00 00 
E Aj(Z) :5E MIZ1,02 a, lpl)j 
j=l j=l 

2 
MIZI p lalpl 

:5 Klpllzl, 

where K is a constant independent of z or p. 

Choosing S' < 11K, we get that for IpI < S', 10(ý) - zj < f. 

The derivative, 0', is given by the formula 

101(z) - 11 O(W) - Wdw. 
(W 

- Z)2 2ri 11 1=1-9/2 

Now for IzI <1-P and lwl =1- 0/2 the quantity jw - zj > 0/2, so that 

111w - zl' < 4/fl'. Thus for IpI < 6', 

4c 
(W 

- Z)2 
T2 

By the Estimation Lemma 

10'(z) - 11 <1- P/2. 

Thus 

<I #21KIPIIZI' 

Choosing b< 
P' 

and 6< 61, we get that for lpi < 6, lo(z) - -: 11 <c and 4K 
101(z) - 11 < C. 11 

Choose least r so that If rk (C2 )1 :5 11 -01. Then, 01 (f (,. (,. )) 
isCI close 

to the identity. So 7-rk and O-I(A(r-ro)k 7r) are isotopic, and by the fact that 

z ý-+ Az commutes with f, Trk and frk(V)-1(7ro)) = O-1(A(r-rQ)k") are isotopic in 

C\ ffj(C2) 11 <j< rk}. 

Then r and f kro (0-17ro) are isotopic, by lemma 3.5.1. This answers the 

question (t) asked earlier. 
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Lemma 3.5.4. There are pre-images ofr under f(r, )-, )k with the same endpoints, 

and isotopic to fs'(0-1(7ro)) for s< ro in 6C \ff III (C2) I in : 5, sk) U 0+(cl). 

Proof This follows straightforwardly because rand fro k(0-1(7ro)) arc isotopic in 

C\ if M (C2) I M< (ro + 1)k} U 0+(cl). 0 

This means in particular that a component of f -rok(r) lim endpoints C2 and 

fk (C2). This we define to be the path a for f in the hyperbolic component. 

Because r does not intersect {f"(C2) IM< (ro + 1)k) U 0+(ci) except at its 

endpoints, for any fEU there is a component of f -ro k (, r) with endpoints at c2 

and fk (C2) for all f in U. So we define a to be this component. 

We are now in a position to prove Theorem 3.2.1. 

Take two maps, fo and fl in U, with associated paths ao and al respcctively. 
It is now straightforward to see that the branched coverings a, -. I o fo and a. 11 0 f, 

are equivalent: Take a path Ift ItE [0,1]} in U between fo and fl. Then the 

associated path at varies continuously between ao and a, and a,,, o ft is the 

required isotopy between a, -. ' o fo and ac-wll o fl. Thus Theorem 3.2.1 is proved. 13 

§3.6 Nature of the branched coverings. 

We now decide exactly what these (critically finite) branched coverings are. 

Proposition 3.6.1. The map a. ' of has. a Levy cycle. 

Proof By §3.4 all of the points in 0+(cl) and Jfj(C2) 10 5j :5 (ro + 1)k arc 

approximately located at the k points in I 11jo 11 <j : ý- Q. Since ac, Iof is 

critically finite there exist constants Mj such that each of these points is contained 
in one of the open sets, defined as a ball of radius Afjp about the point 11j. For 0 

p sufficiently small these balls are disjoint. Let Cj be the boundary of the round 
i disc Mj about the point /to containing If kl+j(co) 11 :51.0 +1) for <j :5k. 

Then JUCj 11 <i :5 k} is a Levy cycle for a-1 o f: that is, Cj-j is isotopic in 
CV 

C\ X(a-1 o f) to a component of (a-1 o f)-1 (Cj) with k replacing 1 if 1. Ct a 
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Note also that Cj contains the arc rkl+j for I< ro + 1. ThenUI<j<kCj forms a 

Levy cycle. 0 

Proposition 3.6.2. There is an invariant circle separating 0+(cl) and 0+(C2) 
0 

under a. 1 of. 

ProoL We define a circle which divides 6 into two regions, one containing 0+(cl), 

the otherfj(C2) for j< ro 

Define 7-j to be the pre-image of rkro under fkro-j joining MC2) and fj+k (C2)9 

so that To and a are isotopic in C\ (ffj(cl) 0) Uf fj(C2)10 :5i :5 k)). 

Choose a constant ko so that 0+(cl) n fIzI :51- kolpl) = 0, but also satisfying 

, rj cf IzI :ý1- kop} for j ý: k(ro - 1). Let r be the boundary of the union 

of Jjzj :51- kop} together with appropriate small disc neighbourhoods of the k 

components of UO<j<krc, 7-i. Then r is separates the forward orbit (under a. ' of) 

of c, from that Of C2 and r and (a. 1o f) -1 r are isotopic in CA \ X(a. 1of). 0 

We illustrate a general example arising from 3.6.1 and 3.6.2: 

fv 

/ 
I 

I. 

Figure 3.6a 

of 

Cl 

C2 

We now have more information about the branched covering we have con- 

structed. The extra information obtained by way of the uniforinised coordinates, 
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apart from showing that the branched covering is not equivalent to a rational map, 

also places the orbits of the critical points relative to tile Levy cycle. Each loop 

of the Levy cycle contains one point in 0+(C2) and at least one point in 0+(cl). 

Proposition 3.6.3. The branched covering associated to a sheet in the neigh. 
bourhood of a k-fold Mjbius map on the variety V,, is equivalent to a mating of 

quadratic laminations such that 

(a) On Iz E 1b, I IzI :5 1} L has minor leaf m of period n, with a minimal leaf t 

such that t<m and t is Of period k. 

(b) On C\ Iz EtI IzI < 1} PC has minor leaf (11t). 

ProoL We construct the equivalence directly, using the circle of 3.6.2. and the Levy 

loop of 3.6.1. Let 0(1P) = S' and let 0 take the component of 6\r containing 0 to 

21 IzI > 1}. Write g= Ooo, -'of oO-1. Then the ercsofo(n n{z E6< zEC It 
CI IZI 

1} are cyclically permuted (up to isotopy) by g. There is a unique minimal minor 
^I IzI :5 1} such that 7 is cyclically permuted. by s7 in the leaf f (see §2.4) in fzEC 

same order as o(r) n Iz EtI IzI :5 1} is permuted by g. We can assume that 

maps r close to the orbit of ? under s7 and to the orbit of 1-1 under io st o i-1, 

where i(z) = 11z. Then, since each component of Iz E61 IZI ý: 1) \r contains at 

most one point of the forward orbit Of C2 in X(a. -I of), it is clear that we can take 

g0 st 0 i-I on Iz ECI IzI 1}. So f is a mating of st with some polynomial 

with critical point of period m. 0 

Knowing that we have a unique/canonical equivalence class of rational maps 

associated to a sheet, we need to establish what these equivalence classes are in 

order to know how many hyperbolic components of polynomials arc incident (on 

a sheet) to the puncture. This we do in the following chapter. 
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CHAPTER FOUR 

EQUIVALENCE OF BRANCHED COVERINGS 

From Chapter 3 we have a unique equivalence class of branched coverings 

associated to each sheet of V,, in a neighbourhood of an order k Mabius map. 
In this chapter we organise the branched coverings that can arise this way into 

equivalence classes, so completing the proof of conjecture (1) stated in §1.7 and as 

Theorem 3. In order to prove this we develop the theory of equivalences between 

elements of B(n, k). 

The starting point for what follows is Thurston's theory of laminations (see 

§2.4), together with the non-rationality theorem (2.5.1). Thurston's notion of 

equivalence of branched coverings is then applied to the matings of laminations, 

where the fact that the combinatorics arc relatively easy to handle, makes this 

kind of equivalence possible to work with. 

Let B(n, k) denote the set of matings of laminations such that: 0 is of period 

n, with minor leaf liq in 1z E C^ I IzI :5 1}, with a minimal leaf, jip < it,, of period 
k; oo is of period k, with minor leaf lip in 6\ 1z E C. I IzI 5 1). 

Theorem 4.0.1. Let fE B(n, k). Then [f] = 19 1f=9,9 E B(n, k)) containq 

one element when k=2 and two elements when k>2. 

§4.1 A non-trivial equivalence. 

While investigating possible equivalences between branched coverings in the 

set B(n, k) we shall duplicate some results of Chapter 3 in the context of abstract 
branched coverings. 
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Let q be an odd-denominator rational, qE (0,1), such that it is of period n 

under the doubling map z i--+ 2z(mod 1). Let it, be the unique minor leaf of QAM 

such that el"q is an endpoint of p.. Let jtp be the minimal leaf of QAIL such 

that pp :5p,. Then pp is periodic of period k, where k<n. Thus the mating of 

lamination maps s9UsI -p EB (n, k), and all maps in B(n, k) are inatings of this 

type. 

Theorem 4.1.1. The branched covering s, U sj-p is not equivalent to a rational 

map. 

Example: siUsa is not equivalent to a rational map. j4q = [-!, 4-] and TT 15 15 

77 

I TT 

Figure 4.1 a 

Proof It follows from [T] that an invariant lamination with minor leaf jig contains 

the leaf lip, which is of period k. SO Sq U SI-p has a Levy cycle with a Levy loop 

approximately through lip: pp returns to itself after k iterations, where k<n, 

and by the definition of sp there is the leaf (-jz-p)-1 in fz EC IZI ý: 11 with the 

same endpoints as pp, which, of course, also has period k ((1 - t) is the leaf with 

endpoints'i-l and 72-, where zj and22 are the endpoints of the leaf 1). These two 

leaves form a loop Ll bounding both critical points, and its periodic backward 

images form k loops Li ... Lk, where each loop has a two points in common with 

other loops - these points being in the set f . 27rijp 11 <j :5 k). If we alter L, by 

an arbitrarily small perturbation to L, so that L, is contained in the finite disc 

bounded by L1, then the pre-images of L, which are near to Li form an invariant 
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cycle up to isotopy relative to X(Sq U si-p). L, bounds both critical points, and 

each loop L, bounds at least two points of X(s quSI-P) (Onein (z E C^ 11.1 :5 ill 

one in Iz E C^ I IzI ý: 1}) and the loops are disjoint. Thus UI. Cj5k L'. forms a Levy 
J 

cycle and Sq U SI-p is not equivalent to a rational inap, by 2.5.1.0 

The rest of this chapter deals with branched coverings which are not equivalent 

to rational maps. We now show the existence of a non-trivial equivalence between 

maps in B(n, k). 

Notation: Any mating sa U sb we will deal with has one periodic critical orbit 
in Iz E C^ I IzI < 11 and another in {z E C^ I IzI > 1}. We refer to these two sets as 
X(s. ) and X(sb) respectively. SO X(Sa U Sb) = X(S. ) U X(Sb). 

Theorem 4.1.2. Let liq be defined as in Theorem 4.1.1. Then sqUSI-p t. S91 USpj 

for some q' where ly ý: y(j-p). Equality holds when it, = lip. 

Proof We can draw a circle, C, which is invariant up to isotopy (relative to 

X(-5q U sl-p)-unless stated otherwise, we shall always assume that this is the 

set that the isotopy is relative to) under s. U sl-p, as illustrated for the example 
(refer to Figure 4.1a). This idea first occurs in Wittner's thesis [W]. There arc 

many non-isotopic ways of constructing such a circle, but we will make a standard 

choice, as follows. The periodic forward orbit of the minimal leaf lip forms the 

polygonal boundary of a region P in (z E C^ I Iz-1 :5 1) which is invariant up to 

isotopy. 

Let us assume that p is the endpoint of lip which is clockwise from the other 

as measured from the inside of the unit disc for less than half the unit circle's 

circumference - we call this the clockwise endpoint of lip -and let p' be the 

other endpoint. 

We now construct C: Let G denote the set of components of Iz E CA I IZI ý: 

1} \ UC-I which intersect X(, -; I-p). Let us rotate P by a small amount in an P 
anti-clockwise direction to get a region P. Now perturb each component of G, 

so that a component Go becomes Go, and so that Gon s, lies strictly inside a 

component of S' \ Ivertices of P1. These intervals for the different components 
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are then disjoint. Then connect each vertex of P to the nearby component of 

G', which lies in a clockwise direction from the vertex, by a simple arc, thickened 

into a small tubular neighbourhood. The resulting construction is a connected set 
intersecting S' in a small arc for each vertex of P'. Let C be the boundary of 

this set. Then C is as illustrated in Figure 4-1b. Note that the circle C is clearly 
invariant up to isotopy and separates X(sl-p) from X(s, ). 

Let 0 be an orientation-preserving homeomorphism, of 6, which maps C to 

the unit circle, such that 0 1-+ 0 and oo ý-+ oo. Assuming that ý induces an 
equivalence of branched coverings, let g be the map which (we hope to show) is 

equivalent to Sq U . 51-p via 0. So g(z) =0o (s, U s, -p) o, 0-1 (z). ý(C) = SI must 
be an invariant circle under g. Thus X(s. ) is mapped into the unit disc, and this 

set of image points must be periodic of period n. Similarly X(sl-p) is mapped 

outside of the unit disc to a period k orbit. Now, g is the mating of two quadratic 

polynomial functions, because of the invariant circle O(C). (see §2.5. ), 

wp 
d. 

41 \%% 

ci 
8 df 

Figure 4.1b 

So we have that 9 ýý- 91 LJ 92 for lamination maps gi and 92 which correspond 

to polynomials, where 92 ha. 9 a critical point of period k and g, has a critical point 

of period n. Now, because each loop of the Levy cycle (see 4.1.1) intersects C 

precisely twice (at least after subjection to a sinall isotopy) and because we can 
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assume that each pair (there are k pairs) occurs near to a vertex of P, on either 

side of O(C) = S' there is a collection of k disjoint 
simple ares with endpoints in 

S' and invariant under g up to isotopy. Now gi and g2 have corresponding are sets 
^I jzj < 1}, again with endpoints in S1. The rotation number associated in Iz EC 

the are set of g, must be the same as the rotation number of Ul<j<kg L'011, 
P), 

and the rotation number of g2 is the same as that of Uj< Sj j<k P(lip), 
because any 

homeomorphism preserves the rotation number. It follows by 2.4.1 that gi = jq# 
for pq, > pi-p and 92 = Sp- i. e., L., must contain the minimal leaf isp. 0 

§4.2 The main equivalence theorem. 

Let liq and Pq, be periodic minor leaves of QML such that q and q' are 

endpoints of p, and l1q, respectively. Let lip and lip, be the minimal leaves of 

QML such that lip 5 /Zq and lip# < ly. 

First, note that if the periods of it, and jig, are not the same, then it follows 

immediately from the definition of equivalence that sq U sp 9ý s, f u SPO, siticc the 

cardinalitiesOf X(Sq) andX(Sql) are different (the same is true if the periods of 

lip and lip, are different). So from now on we assume that it, and it., are of the 

same period, n, and that lip and lip, are of the same period, k. 

Theorem 4.2.1. Let the maps s, U si-p and Sql U SI-pl be equivalent as branched 

coverings, with q and q' of period n and p and p' of period k. Then lip = lip#, or 

lip =1- /ip,. If lip = lip, then it, = ly. If lip =1- it., then it., is uniquely 

determined by pg. 

The latter case refers to the equivalence demonstrated in Theorem 4.1.2. The 

proof of theorem 4.2.1 therefore involves ruling out all other possible non-trivial 

equivalences: we will break this down into a few cases. We rule out cquivalenccs 

where lip and p., are of the same period, but not either identical or complex- 

conjugate. 

Theorem 4.2.2. The branched coverings S, UsI -p and s,, UsI -p# are equivaleni 
only if lip = /1' or lip = Iii -pi p 
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One further result we will need (see [R2] ): 

Tlieorem 4.2.3. Let f be a degree two branched covering map of 6 to ifIcIf, with 

a Levy cycle F. Then there exists a compact set P, where P is a component of 
t\(ur) such that P is isotopic (rel X(f)) in C^ \X(f) to a compact set Q, QC 

f-1(P) and such that f: Q --+ P is a homeomorphism. If the isotopy class of P 

is irreducible (true for matings), then this set P is unique and so is the isotopy 

class of homeomorphisms Q ---ý P. 

Note: For a map in B(n, k) we have seen that (4.1.1) there is a Levy cycle made 

up from the periodic orbits of lip and (1 - lip)-'. This region P is a Inultiply- 

connected Riemann surface: Pn {z ECI IzI :5 1} is a topological disc with a 

polygonal boundary, the sides of which are cyclically permuted by f. The polygon 

is isotopic relative to X(f) to the periodic forward orbit of minimal minor leaves. 

Proof of 4.2.2: We have invariant regions P for sq and P for s,,, which by 

4.2.3 are unique up to isotopy. Let f, = s. U si-p and f2 = sq, U sl-p,. We know 

that P and P have boundaries (boundary is a set of circles) which are cyclically 

permuted by fT' and fý-' respectively. Let's consider a putative ý which induces 

an equivalence: 0 must map X(s, ) to X(sq, ). Then 0 must map P to P up to 

isotopy, (since these are both unique fixed regions up to isotopy) mid the boundary 

components of P to those of P in such a way that f, o0=0o f2 always holds on 
OR Let us suppose that such a0 exists. 

Label the loops of the Levy cycle for fi by the numbers 1,2 ... such that 

1 contains both the critical points, the loops are numbered consecutively anti- 

clockwise round SI and similarly 1', 2'... for f2. Then 0(l) = 1'. 

Let C be a set of arcs in P be such that the arcs of the circle between Levy 

loops are CI s C2 --- 
Ck , so that Cj has endpoints in Op, numbered anti-clockwise 

so that C, joins loops 1 and 2 etc. Let C' be defined similarly for f2. So C and 
C' are invariant sets of arcs, cyclically permitted under fý' and fý' respectively 
(up to isotopy). 

Claim: O(C) = C' lip tO is0topy. 
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Proof Suppose not. The loops j are arranged in ascending order anticlockwise 

round the unit circle so that Cj has endpoints in j and j+1. Then, for some i, 

O(Cj) has endpoints in two non-adjacent loops L, and L2. Let A be the open set 

got by taking the open unit disc and removing the Levy loops together with the 

discs they bound, and A' the analagous set in (z E61 IzI ý: 1). 

We can assume that O(Ci) has the minimum number of intersections with 

S1, after moving its endpoints in 0(i) and O(i + 1) isotopically. Consider the 

partition of ý(Ci) into arcs which are contained entirely within A or A'. Then 

f2 JA :A -+ A and f2 1A : A' --+ A' are homeomorphisms. Then there exists some 

arc, a, contained in either A or A', which separates at least one Levy loop, say L, 

from the rest of A or A. We can take this arc to be the one with an endpoint on 

0(i). Its other endpoint is either on a loop not adjacent to 0(i) on S, or on some 

arc of C' not adjacent to ý(i). 

Claim: The set of k forward iterates of a under f2 is not isotopic to a disjoint 

set of arcs. 

Proof. Consider the forward images of a under f2. (see Figure 4.2a) These are 

determined by the loops f2j (O(i)) and f2j (L) up to isotopy. Some forward image 

of a under f2 must be such that it will intersect a. Let us assume that aEA, 

so a partitions A into two sets, AL and Ac, where LE OAI,. (Because f2 JA is a L 
homeomorphism. ) Then for some jI, f2j'(a) has an endpoint at L and the other 

endpoint must be in OA'. So this arc intersects a. 11 L 

L 

AIL AL 

Figure 4.2a 
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So the set Ul<j<k O(Cj) is not an invariant set, permuted by f2. 

Contradiction. [] 

Thus, the image under 0 of C, is either C' or C' I k, because these are the arcs 

with endpoints on 1'. In the former case this implies inductively that ý(Cj) = Cj' 

for 1 
-< 

j<k, and in the latter case that O(Cj) = Ck+, 
-j. Thus the only two 

possibilities are that 0(lip) = pp or 0(lip) =1- lip, and we are done. 0 

§4.3 Equivalence within a limb. 

Recall that in order to prove Theorem 3.0.1 we need to show that there arc 

exactly two (or one) members in each equivalence class of s. U sp (or s. U S113-) 

We have shown that there is a minor leaf Iy such that s. U si-p t! s,,, U. 5p, and 

that any other equivalent mating must be of the form s,, Us I -p or s. U sp by 4.2.1. 

So it suffices to show that if sqU SI-P = Sq, U, 51-PI tl1Cn liq 2-- Isq'. 

So we now consider the case where jip = lip# - 
Recall that q and q' arc both of 

period n. 

Theorem 4.3.1. The branched coverings ib --+ C^, given by sqUsl-,, and s., Usj-p 

are equivalent as branched coverings if and only if pq = ly. 

Firstly, let us make a few observations. We know (useful fact in §2.4) that the 

leaf tip is contained in both L. andCql. Also there is the leaf lip in the lamination 

, Cp, so the leaf (1 - lip)-' is contained in the inating L, U LT! 
p. 

So there is a loop 

made up of lip and (1 - lip)-', which we call 71, such that -n EC UC-'p. It is 9 1- 

clear that -11 E Cq, UC-1 also. In addition, we know that the k loops, which are I-P 
forward images of -ji under Sq U si-p are the same as the k forward iterates of -ti 

under 5q' USI-p (they form the respective Levy cycles-sec 4.1.1). Let Y2 be the 

loop f -k(, yl) n In(-yi), where f -_'ý Sq LJ SI-ps 72 56 ^fl and In(-yi) is the bounded 

component of C\71.72 is well-defined because this k-th pre-image of lip is the 

same for any it, > lip - 
(We define similarly -y21 for f2 = sq UaI 

_p. -Y2' = -Y2. ) So we 

have 72 ý-+ 71 under f' and under f2k. 

Suppose that jig is not a tuning of lip. Let m be the least number such 
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that f (0) is separated from J(oo) by a component of f -In (it. ). Then we define 

G= G(q) as the component of C\ Uj<. +, f -j(-tj) containing f (oo). Note that 

G is contained in the region bounded between -tj and 72- OG is a set of loops, all 

of which are iterated pre-images of -yi. 

If liq is a tuning of lip we define G to be the annulus bounded between yj 

and 72 and we define G' = G(Ilql )in the same way as G(ji. ). Observe that if 

Sq U SI-P = Sq' U Sl-p then G= G'. So from now on we assume that G= G'. NVe 

divide the proof of Theorem 4.3.1 into three cases: 

(1) Both py and p., are in the same component of 6\ 

(2) Both pjr andl1q, are in G. This is the case where both minor leaves are tunings 

of pp. 

and ly are in different components of C^ \ G. 

We illustrate an example: it, = [-L, 1-21, 
lip = [1,2] and 72 ý-4 71 under 31 31 33 

2 (Sll USI) 
3T 3 

11 

71 

Figure 4.3a 

Construction of critical branched covering. 

We shall construct a critical branclied covering (see [R31), an invariant of 

maps in B(n, k), which will help us to distinguish between cases (2) ruid (3) above. 

In case (1) both matings under consideration will have the sanic critical branched 

covering. 

So let us fix our ideas on f=s, u sj-p. We will consider a critical braziched 
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covering, g: C -+ C, defined by f' on G, so that gG -# G is a degree two 

branched covering map: 

First suppose that Sq is a tuning of sp. Then extend g to inap components of 

G homeomorphically. Now suppose that s. is not a tuning of sp. We extend g so 

that it maps the components of 6\G homeomorphically, except for one component 

containing the point 0, which maps with degree two. Note fk(, fl) = y, = g(, rl). 

i. e., yj is fixed set-wise (indeed pointwise) by g. f (0) is a critical value of f and 

hence of fk, so the pre-image of f (0) under fk which is contained in In(-yl) is a 

critical point of fk and hence of g, *. Also in (z EeJ I Izi ýa 1} nG there is the 

critical value f (oo), which is a fixed critical value (and hence fixed critical point) 

of g. We choose g so that g"+'(*) = g"(*) for least m with 9'n(*) in the E; amc 

component of 6\G as 0. 

So g has one fixed critical point f (oo) and the other one * is either pcriodic, in 

the tuning case, or strictly pre-periodic and eventually fixed in the non-tuning case. 

We will show directly that it is equivalent to a particular quadratic polynomial. 

Let G,,. be the gap of L-1 containing f(oo). Then gI DG.,, is semi-conjugatc I-P 

under a suriection 0 to the map Z ý_+ Z2 on S'. We can extend 0 to G,,. so that 
2 

semi-conjugates g to z -ý z on Iz ECI IzI > 1}. 

Note that 0 collapses each arc of c9Gn{z E C^ I IzI 2: 1) to a point on Sl: 

61 IzI > 1} consists of one arc fixed under g. Since the only fixed set n Iz EC 

on S' under z ý--+ z2 is the point of argument 0, O(CI) is this point. All of its 

pre-images must also be sets of points. 

In the case of a tuning, we have s. = sp I- s., and g=s. from the definition 

of sp ý- s. (see 2.4-4). 

Now suppose that s. is not a tuning of sp. Let -y be the componcnt of OG 

which separates 0 from G. Then -, nG,,,, has two components which map under 

0 to ±a, for some a which eventually maps under -" Z2 to the fixed point 1. 

Then we can find a homeomorphism 0 which approximates 0 on OG,,., so mapping 

8G,,. approximately to S, and maps Gý,, approximately to (z E 61 IZI 2: 11. -Y is 

mapped to a loop bounding a small neighbourhood of the diagonal in (. - E C^ I Izz 1 :5 
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1} which joins ±a, and the loops gj(-y), for m>j>O, arc each mapped to a small 

loop around a 2J 
. Thus 0ogo 0' is uniquely determined tip to equivalence by ±a. 

Now, each pair ±a determines a unique quadratic polynomial with a strictly 

pre-periodic eventually fixed critical point. Also for different pairs of endpoints 

of the form Ia we have different corresponding polynomials. And all quadratic 

polynomials with strictly pre-periodic eventually fixed critical points are of this 

form up to equivalence (refer to [DH2] for this kind of theory). 

If SqUSI-p = Sq' USI-p, then the critical branched coverings are also equivalent 
by the preceding construction. In case (3) the critical branched coverings are 
inequivalent, so that Sq U SI-p 9ý Sq' U SI-p- 

We illustrate (4.3b) by the following example: it, 11,1-21 for which the 
31 31 

polynomial associated to g has major leaf [-g, A81. 

� 
/ 

/ 

*- 

. 21 ( 

Figure 4.3b 
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1 

Then l1q, = J-L9, ! -'I - the associated polynomial ill this case has major leaf 31 31 

[. 
ý3 11 81. 

In case (2) the critical branched coverings s. UsI -p and s., UsI 
-p, where 

Sq = sp F- s. and sq, = sp F- Sall are equivalent if and only if Sa = Sal - 
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Example: S22 US I= 
(S 

I 
[- S. 1 

)US 
I 9ý S27 US I= 

(S., SI)USI. 

Of course if the critical branched covers are the same, as they are in case 

then we have more to do. 

Proof of 4.3.1 case (1). 

,Uq and pq, are separated from G by the same component -y = to of OG. 

Remembering that n is the period0f it qunderSqtwe define tj to be the pre-image 

of ii-I underS q such that fi separatesSn-i+1(0) q from G. Firstly note that to 0 t,,. 
(Because the leaf to is strictly pre-periodic). Also to separates t. from G. Hence 

for all j, tj, bounds ti from 0 by an induction on j. 

We introduce a number which will allow us to distinguish maps which are 

tunings from those which are not. Let mb =# 10 <j<nI s)g+ 1 (0) is in the same 

component of C\ fnb as Sq(O)}. Then, for some a ý! 1i Ma = Ma-1 since inh is a 

finite number which is non-increasing as b increases. (Ma =1 for pq which are not 

tunings, Ma 54 1 for non-trivial tunings). Let m= Yna, where a is minimal, and 

write n=mr. Then tan and t(a-1)n are isotopic in 6\ X(sq U si-, ). In fact, tan 

and tan-rj are isotopic in C. \X(s. Us, -p) 
for 0< rj < n, because tan and ta, j 

do not intersect and the components Of C\ tall and 45 \ tan-ri which are disjoint 

from G contain the same elements of X(s. Us, _p). Write Q for the component of 
tan which is disjoint from G. Then (Sq U sl_p)r maps 66 C\ tan to C\ tan-rj 

with degree two and mapping Q with degree two over the component of 6C \ fan-r 

which is disjoint from G. It follows that Sq t-f Sq, ý- sg, where the critical point of 

st has period m and the critical point Of Sq, is of period r. Note that when s, is 

not the tuning of another map, m=1. 

Now let fi be defined for Iy in the same way that ti was defined for l1q. 
Note that to = to. Recall that we have f, =, o 

f2, where fi = Sq U 31-p and f2 = 

sq, Us, -p, and whose respective critical branched coverings are the same, g. Then, 

we have (as in [R2]) that if (fjjX(fj)) =0 (hvX(M)s then (fhfýjX(h)) =Oj 
(h 

v 
f; - . 

'? X(f2))i where Oj =- 0 relative to X(fl) and Oi(fýjXUO) ""ý f; "jX(f2)- 

That is, Oj o fi o Oj-1 is homotopic to f2 through branched coverings which map 

the set f; jX(f2) to itself. We can also assume that g =o g. Since g is equivalent 
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to a polynomial, it follows from Thurston's theorem (see §2.3) that 0 is isotopic 

to the identity relative to X(g). It follows that Oj preserves loops in Uj<j fTi(to) 

up to isotopy relative to fTjX(fl). 

Take j= an and assume without loss of generality that 0= Then 
tan Wan) : -- "an' If s,, is a tuning, then so is Sq, and s. # = Sqi ý- st, where the 

critical point of st, is of period m (remember that n= rm). Now we can identify 

st with a branched covering h which has a single fixed critical point outside Q and 
is equal to fjr in Q. Similarly, we identify se, with a branched covering h'. Then 
h -0 h' and hence st = st,. Now 0 induces an equivalence between sq, U si-p 
andSq, U si-p by altering the definition of 0 on the set Uo<j<r A (Q) - each 
component f1j(Q) of this set contains one point Of X(Sqj U Sl -p)s Which We M11P 

by to the corresponding points Of X(SqI U SI-p)- So, in order to show that 
liq j1q'i it suffices to show that It., = /i,,. Thus we can assume that I.,, 

separates Sq(O)= fj(0) from all the other points in X(fl). (i. e., we have dealt 

with the tunings) 

Since 411 = tan we have that tj = t'i for i :5 an. Then tj = I'j for all i: 

suppose that 4n+i = 'Ibn+i for 0<i<n. Then tbn+i+l is the component of 
-ltbn+i which is bounded from G by ibn-,, +i+l and separating s"-'-I(O) from Sq q 

G. However E'bn+i+l is the analogous component truid must, therefore be equal to 

Ibn+i+l. The result follows for all i by induction. 

Finally, jim ti. is in the boundary of the gap of L. containing s, (O), and 
likewise q'. So q=q 

, *00 

This completes the proof of 4.3.1, and thus Theorem 3, and concludes the main 
body of work in this thesis. We shall start to consider some of the consequences 
of Theorem 3 and how it can be applied in Chapter 6. 
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§4.4 Symbolic dynamics. 

In this section, we sharpen the statement of Theorem 4.1.2, whilc introduchig 

some concepts we will use in later chapters. This section in not part of the main 
thread of this chapter, and is not necessary for the proof of Theorem 3. 

Given a laminationC with a minimal periodic leaf lip, we assign to each leaf 

in Ca number in the set 11,2,. .., n= 0}, such that if a leaf t is such that t> lip 
then it is coded 1, if t> sj-l(pp) then it is coded j; and if t is not greater than q 

any of the leaves in 0+(Pq), with 0. So each period n minor leaf has a sequence of 

n symbols representing it, denoted a(IIq): Let ai for 1 <- i <- n be the i-th symbol, 

so that a= (oi ... O'n). Then ai is the code symbol for 

o, (Izq) is subject to the following rule: 

Lemma 4.4.1. Any number N :A0 in c(p. ) must be followed by the (sub)jcquence 

(N + 2) (k - 1) 0). 

ProoL This is forced by the dynamics Of lIq relative to lip, Let *R(e) be the 

simply connected region bounded between f and SI. Then for 0<j<k-1 

the map Sq r estricted to Ri = 7Z(sj, (pp)) is a homeomorphism onto its image, 

IZj+j = IZ(sI, +(pp))- So i is followed by j+1 (mod k). The region Izo codcd 
by 0 maps with degree two over the unit disc, so there is no restriction of what 

symbol can follow a 0.0 

In particular this means that sequences always start with the symbols 

1,2... (k - 1), 0 and end in a 0. We write a(p) = (12 ... (k - 1) 0 ... 0). The 

action of sq on a(p) is a sub-shift of finite type with matrix 

(1 

where each entry of 1 in row i and column j denotes that the symbol i may be 

followed by the symbol j and each entry of 0 denies that possibility. 
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(Aside: In fact the set of such sequences of length n is isomorphic to the set of 

ordered partitions of n using the numbers 1, -.., k. e. g., (12 3003 0) is written 

as 4+1+2 under this correspondence. ) 

Note that if/. I q is a tuning of a period a leaf by a period b leaf, then or(pr) is 

given by a sequence of length a repeated b times. e. g., for [2-2, ! -'-1 = [1,21 F [112 
63 63 773 311 

a= (10 10 10). 
The coding a(p) is not necessarily unique to a minor leaf it. The following 

two results detail the precise relationship between minor leaves and their codings. 

Lemma 4.4.2. A length n sequence determines a unique minor of a period n Ical 

if and only if it contains only one symbol 1, or is a tuning of lip with [13,131. 

Proof The subsequence (0 1) corresponds to a degree two cover of R(p. ) by part 

of the central region containing 0, denoted IZ, (Note that R, C JZO). Thus there 

are two possible leaves which can map to a given leaf in R(pp). Consequently, by 

pulling back under Sq, there are two possible pre-images; in R, and at least two 

minor leaves with this coded sequence. For any other subsequence (i (i + 1)) or 

(0 j) for i :A1, Ri --+ IZi+i or IZ --+ Rj (where R is the appropriate subset of Izo) 

is a homeomorphism, so a leaf in IZi+l has one pre-image in IZj (and a leaf ill 1zi 

has one pre-image in IZ C Ro). So if (0 1) does not occur in a(lij) (so 1 occurs 

only as the first entry) there is a unique minor leaf corresponding to a. 

11, fl ý- p. is a minor leaf of period 2k, with a= [0 1 ... (k - 1) 01... (k - 33 

1) 0). There is one occurrence of (0 1), so therc are two minor leaves with this 

sequence. However one of them is the leaf lip. 

Let 0,, (n, k) be defined as the function: 0, (n, k) = the number of divisors of 

n, which are multiples of k. For example 0, (8,3) = 1. 

Corollary 4.4.3. A length n sequence with j occurrences of (0 1) represcnts 

2j - 0, (n, k) minor leaves of period n. 

Proot As we have shown, each (0 1) corresponds to a degree two inap from 7Z,, to 

R(ji, ), so each occurrence doubles the number of minor Icaves associated to a. So 
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there are 2j minor leaves of some period corresponding to a with j occurrences of 

(0 1). However, if or is made up of a repeated sequence of "I symbols, one of the 

minor leaves represented by a is of period tn. Clearly this happens for YnIn nnd 

when k1m The number of these is given by ý, (n, k). 0 

Example: a= (10 10 10) corresponds to the three period six ininor leaves 

[92,2-], [181, A-11 and 11-7,3-61, and the period two minor leaf [. 1,2]. 
63 63 63 63 63 63 33 

Definition. Primary polygon. The leaves jsJ, (p, ) 11 < k) form a k-sided 

polygon, Ho. Then III = {Sq '(no)} \ 110 is another k-sided polygon and 11, --+ no 

homeomorphically. Let Hi = Is-j(IIo)j \ Ui<j IIj. Then IIj is a set of 2j-I 

distinct polygons. Given a polygon 7r E IIj (for j> 0) we can encode its forward 

orbit in the same way as for minor leaves. (Indeed each side of a polygon can be 

thought of as a pre-periodic minor leaf). A polygon is primary if a(ir) does not 

contain (0 1). Thus 7r is primary if none of its forward iterates (including 7r itself) 

is contained in IZ,. We can use the ordering of minor leaves to define an ordering 

on polygons (and minor leaves): we say that 7r < it if t< it for some tE 7r and 

7r < 7r' if i< f' for some tE 7r and for any f' E 7r'. 

Let us call a polygon 7r E II(jtq) standard if it is identical to a polygon of 

the lamination Cp. The II,,, polygons in IZ, are not necessarily the standard ones. 

Each can have endpoints, on both arcs of S' n 7z,. We call these and their pre- 

images thin polygons. Note that primary polygons arc always standard and thin 

ones never are. Given a leaf it we can define its maximal standard polygon 7r as 

the polygon for which 7r' < 7r for any standard polygon 7r' < it. Similarly tllc 

minimal standard polygon T- is the polygon for which r' > i- for any standard 

polygon r' > it. 

Lemma 4.4.4. For any minor leaf pq; there is a unique maximal -standard polygon 

7rM such that 7rm < liq. If there exists a unique minimal standard polygon 7rj, j such 

that r,. > l1q, and if 7rxf C rIj, then 7r,,, C IIj,, where j' > j. 

Proof rm clearly exists because there cannot be an infinite increasing sequencc 

of polygons 17rij such that 7ri < pq for all i and such that all the clements of the 
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sequence axe standard: and the primary (and hence standard) polygon 7ro < 7rAf. 

Since 7rM is standard, any polygon 7r > 7rM must be in Ili, for i>j. In particular, 

this is true for 7r,,, .0 

We introduce the idea of a regular minor leaf - one that is closely npprox. 
imated by primary polygons, in the following sense: a leaf is regular if the poly. 

gon 7rM is primary and 7r,,, exists. (in fact 7rm primary implies 7r,,, primary, if 

the latter exists). We illustrate in Figure 4.4a, where 7ro 124"] 
tuid T3,13,13, TS 

jIq = [-'5 
127 127 

1 
is 

, eý 7rm g 

2 
T6 

Figure 4.4a 

Note that for 7r = 7rm, sý1(7r) consists of two thin polygons (Which arc not 

primary-their coding starts vith (0 1)). All the pre-images of these polygons 

must also be thin, and the leaf it, is in the limit of some sub-sequences of these 

thin polygons. 

Lemma 4.4.5. A minor leaf is regular if and only if one of ihe following is true: 

(1) a(p, ) contains the symbol 1 exactly once. 

(2) 14, is not a tuning and or = 0a + 17b, where a. is of tYPe (1) and ab is the 

length k sequence (12 ... 0) repeated a number of times. 
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(3) p, is a tuning of lip by a symmetric leaf. (In other words, symmetric 
12 

about real axis. So it, > Stj , whereliq = it, I- lip. ) 

Proof This is a matter of placing the minor leaves relative to the relevant (non- 

thin) polygons, and we consider only these. For any ininor leaf jig, we have tllt%t 
n-1(7rM) = 7ro. Whether or not ji, is regular depends on whether 7rjtt is primary. Sq 

We characterise the three cases: 

Case(l): For each leaf in the forward orbit of p. we have that si , 
(Pq) > Sjq(7r, &[) 

and they are both in the same region Ri for some i where 05i<k, unless possibly 

. Sj q(irm) = iro. Now let the second to last occurrence of 0 in a(pq) occur at the 

no-th place; then j= no. To see this: the n-th symbol 0 corresponds to s"-I (is, ). 

Take the pre-images of 7ro and 7rl which sandwich sn-2(11, ). Then if a,, -, =k-1, 

the pre-images are 7ro and an element Of 112 
'Sn-2(7rIf) = 7ro. - i. e., q 

Taking further 

pre-images the occurrence of 0 in a signifies that sj, (7rAt) = 7r,. 

Case(2): Let Ora(/Lq) be of length m. Then 7rAf c rIj, where m-k<i< in: 

we use the fact that, for m<i<n, SqI (it 
q 
)is not separated froin7ro by any other 

standard polygons; The forward orbit of ji, intersects Ro for the first time on the 

rn-th iterate, and s"(7rm) = 7ro by the above fact. 

Case(3): Here 7rm = 7ro and 7ryn C Hki SO IIq is primary. 7r... exists exactly 

whenliq is a tuning of lip by a symmetric leaf. 

Each of the above cases describes a regular minor leaf pq, because in each 

case we have shown rM must be primary. Con ersely, assume that 7rjj is primary, 

and that we can ignore tunings - we have already dealt with this cmse. Then the 

only possibilities for liq are cases (1) and (2). 13 

Examples of regular leaves: 

(1) [-!, A-]. a= (12 0 0). 15 15 

(1 200 12 0). 127 127 

(3) 17 12] ý- [. It 21. a= (12 0 12 0). 11630 
1 r3 

IS 
1 *5 77 

Examples of non-regular leaves: 
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(12 0 12 0 0). 127 127 

[221251 [19 21 [. [17 21. or = (10 10 10). 
63 63 7733 

The following Theorem is a refinement of Theorem 4.1.2 in the case of rcgular 

minor leaves. In some sense it is the expected "nice" result because of its obvious 

symmetry. However, we only prove it in one particular case. 

Theorem 4.4.6. Let Pq be a regular periodic minor leaf, with minimal periodic 
leaf lip. Then s. U si-p tý- si-q U sp, 

Tuning case: We deal with the case of type (3) regular ininor leaves. 

If ji, is a tuning of its minimal leaf pp? then a copy of the full lamination ZP is 

contained in Cq. In particular all the pre-periodic polygons in C,, arc the standard 

ones - there are no thin (pre-periodic) polygons in the sets Hi. Howevcr, there 

are period n polygons: Let To be the set of period n polygons and Tj bc the sct 

of their j-th pre-images. Then we have that Oj(Tj) C (z ECI IZI :5 1}. 

The following lemma deals with all the tunings we arc considering. 

Lemma 4.4.7. Let /i. be a periodic minor leaf. Then (sa ý- SO U sl-P = (sa F 

si-P) u sp. 
Proof By 4.1.2 we know that (S- ý- SP) U SI-p =j Sq' U sp for some liql > (1 

- 

However, liql must be a tuning of ul-p, because O(TO) must be of period n, with 

ok(r) c O(To) for rC O(To) and 0 is defined as in 4.1.2. So we have (s. 

sj, ) UsI _P cý, (s., ý- sI -P) Li sp, where p., is of the same period as it, 

But because 0 is orient ation-preserving it. = jj. #: ý(To) milst Ilave tllc same 

orientation as To, with its leaves permuted in the same way under fk- this is 

true exactly when iz,, ital - 
11 

Case (3) of 4.4.6 proved. 11 

It remains to establish what the analogous result for non-regular minor leaves 

is, where the symmetry is more involved than with the regular case. Tlicorcni 

4.4.8 offers this result without proof. 
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Consider the region Ro, which is bounded by two arcs of the unit circle, and 
arcs of 7ro and 7ri - We say that two leaves, 11 andt2 Jn Ro are in opposiie halms 

of IZO if either 

(a) ti has both endpoints on the same arc of S' n IZO I While 4 has both endpoints 
on the other arc of sl n 7z,,. 

(b) Both tj andt2 have endpoints on both arcs of S' n 7zo and are separated 
from each other by 0. 

Definition. Let p, be a non-regular minor leaf, with the first occurrence of (0 1) 

in a(lzq) at the j-th and (i + 1)-th positions. Then pe, the pariner of 1j., is the 

unique minor leaf such that a0y) = a(liq) (there are at least two such leaves) 

and such that Sjq(Pq) and (Sjq- (it 
q- )) are in opposite halves of IZO. 

Theorem 4.4.8. If liq is a non-rcgular minor leaf, then Sq U Sj-jv = SI-ge Us,, 

where jIq- is the partner of liq. 

Example: s 19 U s. 7s, c-- s91Usi, because [-L9-, 20-1* .5 
TY7 T77 7 127 127 =1 -112-7 1 -112-7- 
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CHAPTER FIVE 

IRREDUCIBILITY OF V,, 

We establish the irreducibility of a combinatorial model for the varieties V,, 

for n :57, which is conjectured to be equivalent to irreducibility of V. and thus 

the connectedness of Wn. We shall again be constructing equivalences between 

matings of degree two laminations, but in contrast to chapter 4 we will be dealing 

exclusively with degree two branched coverings which are equivalent to rational 

maps. It is hoped that the results of this chapter can be generaliscd and taken 

further, with the aim of proving the irreducibility of V,, for all n. 

§5.1 Combinatorial model for V,,. 

The following result and corollary suggest a method for proving the connect- 

edness of Wn: 

Proposition 5.1.1. Each connected component of IV,, intersects non-trivially 

with the hyperbolic component of a polynomial in RM2. 

Proof See [R2] 0 

Corollary 5.1.2. W. is connected if the hyperbolic components of all quadratic 

polynomials in RM2 with 0 of period n lie in the same connected component of 
Wn. Then, the irreducibility of Via follows by 

Note that in the above corollary "Polynomial" means a degree two rational 

map of the form z ý-. 
z2+ az +b 

Z2 I With C2= -2b/a fixed. This is equivalent (a. -j a 
branched covering) to a polynomial. 
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Satisfying the condition of 5.1.2 in not something that we are able to tackle 

directly, at least not in general (see Chapter 6 for some examples). Instead, we 

resort again to laminations and their matings. 

Let V' C: QML be the set of period n minor leaves. For it C- V' define D. n is 

to be the component of lz E61 Izi :5 1} \ -0 which contains 0, where v is the 

minimal leaf in QML such that v< Let V,, denote the following combinatorial 

model for V,,: V. U Jp} x D,. 1 where - is defincd by (111sTO " 012sX2) 

E V,, 

if and only if xi E vi and X2 E v2 for minimal minor Icaves v, and v2, both of 

the same period <n and sp, U s,,, ýý- 0 '9112 
U 

'S V2 where O(X(s,,, )) = X(s,,, ) and 
O(X(r o s,,, o -r)) = 

X(r 0 S, 12 o T-) andr(z) = 11z. 

Note that all such matings are rational hy 2.5.1. 

The reason we consider this combinatorial model is the following conjecture, 

the proof toward which substantial progress has been made. 

Conjecture: (Rees) V,, connected implies Wt, connected (and thus V. irre- 

ducible). 

This enables us to tackle the problem of irreducibility with the combinatorial 

methods at our disposal. 

By the above conjecture we have an equivalent statement to 5.1.2: 

V,, is connected if all the polynomial matings s, U so can be connected, where 

, C0 is the empty lamination. Our strategy, therefore, is to investigate possible con- 

nections between such matings, for which our main tool is the following statement, 

which follows directly from the definition of V, 

5.1.3. Let it., and py be periodic minor leaves and suppose tilat s_, U sy is 

equivalent to a rational map. Then if there exist ji. and jib such that s. U sb = 

s. U sy, then the polynomials associated to it. and it,, lie in the same connected 

component, V of V, and the polynomials associated to jib and Ity lie in the same 

connected component, V" of V.. 

From now on, instead of saying that the polynoinial-equivalent maps s. U so 
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and sxUso lie in the same connected component of TV,,, we shall abuse our notntioti 

somewhat and say that 11a and it., are "connected". 

§5.2 Connections for n=k. 

We consider the simplest case: that is, where k=n. We consider equivalences 

of the form s,,, Li sy ý4- Sa U -9b, where each minor leaf is of period ti. 

Let us start with the example n=k=3. We want to show that V3 is 

connected by showing that the polynomials associated to the lamination maps 

with period 3 minor leaves lie in a connected set - We "connect up" the minor 
leaves 11,11, [-ý, ýý] and J2,11. Note that this result occurs in Wittncr's thesis 777777 

[W] 
- 

Theorem 5.2.1. si US3 S-- ss Ust and so Us., =s., us, 
'7 7T7 .7 '7 T '7 

Proot We use a similar construction to that used in Theorem 4.1.2. In (A- E 

jzj : ý, 1} there is a triangle made up of the leaves [1,21, [2,1] and[4,1 ], WhiC 1 7777YTI 

form the boundary of an invariant region T under Sq, and the periodic leaves in 
^I Jzj > 11 share a common endpoint with two of these triangular leaves. jz EC 

(In Iz E C^ I jzj > 11 there is the invariant arc There exists an invariant 33 

circle C under siUs, up to isotopy: C has arcs in 1z' E CA z 1) \T close to 7 '7 

the periodic leaves that make up the triangle, such that these arcs are cyclically 

permuted in the same way as these leaves; these arcs extend into {z E C^ II -I ý! 1) 

so that they enclose the leaves [1,11-1,11, fl-1 and [2, ! ]-l and so that X(sx) 777777 
is contained in In(C). 

Then, let 0 be an orientation preserving homeomorphism C --4 S 1, ý (X(s I )) 

is in Iz E^I IzI ý: 1} and O(X(s3)) is in (z EýI IzI < 1). Rirtherniore O(T) C 
'7 

C 

is contained in Iz E 45 1 IzI 1}. The mating equivalent via 0 to s7i U si must 7 
contain the leaves and (see figure 5.2a). So 3377777 

12 -1 
ý(T) is the region bounded by [7, -jj [2,11-1 and [1, -11-1 up to isotopy (and 17777 

Since both critical points are of period three, this 3333 
forces the 

mating to be s3 Us because the image minor leaf it must be such that it > 

Thus s il UUs 17 - 
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lo 

op 

*, - *- --- .0 
oll 

sa Ust 
77 

Figure 5.2a 

The argument for so,, Us3 n1- s, 3 Us is similar. 0 

We introduce some notation: 

343,3rl 

If a, x D,,. and jib x D., lie in the same connected component of V,,, we 

write it. M Ilb- 

Corollary 5.2.2. V3 is connected. 

[31 41 t4 [51 6]1 
r Proof. By 5.2.1 and 5.1.3 m and 'o 11 2] M [51 61. 

7777 TIT 7T 

11 

Notice that the proof of 5.2.1 relied on the fact the endpoints of periodic leaves 

in {z E61 IzI ý: 1} coincided with endpoints of periodic leaves in (z E 45 1 IzI :5 1). 

This is what enabled the particular circle C to be constructed. We generalise this 

construction to minor leaves of any period n, for which there is an n-sided invariant 

region. 
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Tlieorem 5.2.3. Let exp(2riq) be an endpoint of liq, a minimal (in QAIL) period 

n minor leaf. Then, for all period n minor leaves lip p such that lip has an endpoini 
in the set Isi, (exp(2riq)) 11 < n} U Isl q))) 11 :5j :5 n), 1q 

(exp(21ri(l 

llq X lip- 

Proof Firstly let us establish which leaves are of the type of lip above. Since 11, 
is minimal, its n forward images form an n-gon: two of its vertices tire those of 
the minor leaf-, the other n-2 vertices are at the endpoint of a unique ininor leaf 
in QML. These minor leaves are not minimal: if one was, both endpoints would 
be vertices, i. e. it would be a side of the polygon; however, a side of this polygon 
cannot be a minor leaf because the image of the associated major leaf is ji,. Let 

us call these minor leaves (where they exist) lij(q) for 15 j< it, where pj(q) lins 

an endpoint at the angle jq (modl) on SI. 

We aim to connect up all the minor leaves witil the above endpoints via a 
unique (to each conjugate pair of Polygons) symmetric minor leaf. 

Lemma 5.2.4. The minor leaf with an endpoint at the left-most (angle nearest 
to 1/2) point of js3, (exp(27riq)) Ij : ý, nj is sYmmetric about the real axis. Thij 

means that this minor leaf is identical to the one with an endpoint at the left-most 
i endpoint of Is, 
-, 

(exp(2ri(l -< n}. 

ProoL Let x be the point in question. Let I,, = t. (Iiq) be the leaf joillillg x to 
1-x. Then t,,, is of period n because its endpoints are, and the periodic orbit 

of f,, has no self-intersections because each periodic leaf has coniplex-conjugate 

endpoints (exactly one of which is in {slq - (exp(2riq)) We need to show 
that 4 is the image of the longest of these n leaves: now clearly t, > 

., 
I 

is the shortest period n leaf in the region 1411,21); lience its pre-ininge, is longer 33 

than the pre-image of any of the other leaves in 7Z(113,23]); but one of t1jese leaves 

in 7Z(11,21) is the minor leaf-it must therefore be t,,. 0 33 

Examples: For n=5 we have the polygon [-L 24 
31 1 i-I 13-1138-19 T16, -] and its conjugate 

- in this case f,, = [-L5,16-1. However, we also have the polygon [I, ") 18 20 5 31 31 T-I 3T 9 5T 9 3-19 IT 
and its conjugate, for which t.,, 38 = LRII L31-1 

- see figure 5.2b. 
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JL 

-1. 31 

3T 

Figure 5.2b 

We now construct an invariant circle C= C(s, usI _P) (cf. 4.1.2). There are 

again non-isotopic ways of constructing such a circle, but we will make a standard 

choice, as follows. The forward orbit of the leaf pq forms the Polygonal boundary 
21 IzI :5 1} which is invariant up to isotopy. of a region P in fz EC 

Let G denote the components of Jz E 45 C 11 \ UC-1 which intersect P 
X(sl-., ) and are adjacent to vertices of P. Let us rotate P by a small amount 

in an anticlockwise direction to get a region P'. Now perturb eacli component of 
G, so that a component Go becomes Go, and so that Go n S' lies strictly inside 

a component of S' \ Ivertices of P). These intervals for the different components 

are then disjoint. Then connect each vertex of PI to the nearby component of 
G', which lies in a clockwise direction from the vertex, by a simple arc, thickentil 

into a small tubular neighbourhood. The resulting construction is a connected set 
intersecting S' in a small arc for each vertex of P'. Let C be the boundary of t1lis 

set. C is then clearly invariant up to isotopy relative to 3, U si-p. Note that C 

separates X(Si-p) from X(Sq)- 

Let ý be an orientation-preserving homeomorphism of 6, which maps C to tilc 

unit circle, such that 0 ý-4 0 and oo ý--+ oo. Assuming that ý induces an equivalcticc 

of branched coverings, let g be the map which we will to show is equivalcnt to 

s, U si-p via 0. So 9=00 (s9 U SI-P) 0 0-1- O(C) = S' must be an invariant 

circle. Thus X(sq) is mapped into the unit disc, and this set Of image points must 
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be periodic of period n. Similarly X(si-P) is mapped outside of the unit disc to ft 

period n orbit. Now, 9 is the mating of two polynomial functions, because of the 

invariant circle O(C) (see §2.5). We establish exactly what these tire: 

For the purposes of the following lemma we choose q on SI to be tile ell(II)Oillt 

of pq which maps to the other endpoint under sq, where this happens. 

Lemma 5.2.5. Let x= 2j(l - q) (modi) and y= 2n+l-)(1 - q) (Modl). Then 

Sir U S., = Sy U Sq, where 1<<n, except for the case where 2jq ij an vidpoint 

Of liq- 

proof P is the invariant region bounded by the n-gon 114j(q) 11 !5j< 11) RIld 
P and C are defined in 5.2.4 above, as well as the invariant set of are..; 'Yj for 

I<i<n with endpoints on C. These arcs are subsets of SI close to the forward 

orbit of q. Let U,,. be the component of 6 C\C which contains coo. Then the 

set of arcs Uj<j<,, -yi bound a polygon II in Uo. and each conipolielit of U. \ 11 

contains exactly one point of X(s. ) because p., is a minimal ininor leaf. Let #yj 

also separate roAo T-(oo) from H, where T(Z) = J/Z. X 

Let us write ai for the arc of C which is close to that side of P where ni is close 
to S'7111q. Then -/j has one endpoint in aj, and in general -tj has one endpoint 
in ai+j-i, where an+k = a,,. then 7n+2-j has one endpoint in at. Let fli be nn 

are from S'(0) to 'Yn+l+i-i where fli runs from si (0) to a neighbourhood of aj qq 

without crossing S' or C, and then runs close to ai to the endpoint yj = Y: 

0 wl I Of -Yn+l+i-i of aj. Then by the above construction we have ail isot py X 

preserves SI and X(f), and X(flj-1) is a component of f for i> (tillis 

, of determined by xj-, ) and X(#,, ) is the subarc of f which joins 0 to one 
the (two) points f -1 (xi). 

There is a homeomorphisin 01 of 6 which niaps oo to 0, Sl to it. self witil 

orientation reversed, and maps yk to exp(27ri(2k-lq)). Thus io, maps yk to 

exp(27ri(2"+k-jq)) and in particular yj to exp(27ri(2"+'-jq)). If we write io(. -) -- 
(01 (z)) -1, then ip maps yj to exp(27ri(2n+l -j(j - q))). Then by 2.4.3 we see t1lat 

Sq U Sx = Sy U Sq- 13 
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We are now in a Position to finish the proof of theorem 5.2.3. By 5.2.5, we 

have connections between pairs of minor leaves It. and jib, where a= 2j(1-I)inodl 

and b=2 n+l-j (1 - q)modl. But this connects all of these leaves (sjq(exp(2xi(I - 

q))) 11 :5j< n} together, in particular to the unique minor leaf given by lemma 

5.2.4. By symmetry the set of minor leaves JSj,, (exp(27riq)) 11 <- j< it} is con. 

nected in the same way and to the same leaf given by lemma 5.2.4. Thus pq D4 III 

and px m pq by 5.1.3.11 

,55 Example (see figure 5.2c): Let pp r7-, FIL 15 is 

-- -.. 
- 

____ ". / 

�1 
15 I 

1% 

gi 
I, 

I 
I I 

-% I 
1% 

-- 

15 

/ 
/p 

' 

�I 

Figure 5.2c 

By 5.2.5, when n=4 and 3 we get s, Us. & = s14 Us. &, and sli Usr TI TV 

S4 US14. (Taking p. gives us the same equivalences, but invcrted. ) 
Ts TZ 15 15 

Thus 11,15-1 -115A M 1115111-51 '4 1-1159 IPJ M W1539 jI-51 m UL, -1-1, connecting five of t1le 124 
15 15 

six period four minor leaves. 

However, we do not have sufficient information to prove that V4 is contlectetl 

because the leaf does not have endpoints on an invariant quadrilateral. 

Because of lemma 5.2.4 and 5.2.5 each conjugate pair of Period n minimal 

minor leaves allows us to connect a total of 2n -3 period n minor leaves. Any 

two distinct such conjugate pairs do not give rise to minor leaves common to botil, 
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except for the symmetric leaf given by lemma 5.2.4. Why not? let t I)e, stlell ft 
leaf, which has cndpoints on conjugate n-gons. Then, tC 7Z([13,321), otherwise 't 

would intersect other leaves in QML- Also, it must be symmetric so that it does 

not intersect another leaf in its periodic orbit. Then it must be the sylillnetric leaf 

of 5.2.4. by the proof of that lemma. 

§5.3 Connections for n0k. 

We extend the possibilities for connecting up polynomials by considering Ini. 
nor leaves which are not minimal. There is a strong analogy with Chnptcr 4, 
Section 1. 

Tlieorem 5.3.1. Suppose that s, U s_- t-- sy U sq, as determined by 5.2.5 such that 

pq, M.,, and py are all of some period k<n. Then if jig, > ji, and is of period n, 

sq, U s. = sy, U s,, where py, has the minimal leaf /ty in QAfL and jig, and ly are 

of the same period, n. 

Proof. Let the circle C and the arc set f -yi 11 <i< n} be defined as in 5.2.5. 
Lemma 5.2.5 selects the minimal leaf py given jig and iq (by comparison, in 4.1.2 

there is only one possible choice): C and Ui -yi are again invariant tinder a,, U s, 
and we have ý constructed in the same manner with s, s U Sz , ý, ý. O sy, U Sq for sonic 
Y ', and where O(C) = S' and O(oo) = oo. Then there is an arc set Uj 0(-yi), 
invariant under sy, U Sq which satisfies the conditions of 2.4-2. Thus it., > , IV. (3 

Ideally, we would like to sharpen this result, so that we can specify exactly 
what py, is in general, in an analogous way to §4-4. However, this is in general 

more involved than for the results we obtained in Chapter 4. Instead, we will show 

examples of the conclusion of 5.3.1, which will be enough to show the irreducibility 

of V,, for particular examples. 

Calculation method. 

We number arcs of circles Cj in the same way as wc did in Theorem 4.1.2 
This time, however, the process is complicated by the lack of symmetry iiiherent 
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in Theorem 5.3.1: Theorem 4.1.2, by comparison, deals with conjilgate Jjjnl)S of 
M. 

All the results that follow rely upon the construction of circles Cj , for some 

appropriate j, with labellings analogous to those we dealt with in Chapter 4. 

We do not describe a general algorithm for producing these labellings howeva, ftl- 
though such an algorithm surely exists. Instead we construct the explicit examples 

necessary to deal with all minor leaves of period less than or equal to seven. 

Let IIj (f ) be defined, as in chapter 4, as the set f -j (7ro). Also define Cj and 
9j in a similar fashion. Then Oj satisfies the following important properties: 

1.0j(Ilj) C {Z Eb1 Izi > 1}. 

of (7r) go (7r) for all 7r E Hj+ 

Note on presentation of results. 

We construct equivalences between rational matings. As with non-rational 

.0S. 
USb' then SI-ZUSI-I 0ý:.; matings, there is the following symmetry: if s,, U sy = 

SI-aLJSI -b , where ý(*F) = ý(z). By lemma 5.1.3, we have that it,, m it. and 181 04 it& 
imply that X PI-a and jil-y M pi-b. Therefore, in the following sections, 

we will quote results about connections between leaves, often leaving unwritten 

the connections which follow easily from the above symmetry. 

§5.4 The case k=3. 

Recall that a standard polygon, for it, > [-fl 
, 
27 1, is one inz, nz 71 2] (C. f IT$ 

Y 

4.2. ). We now establish the labelling on standard polygons beyond the leaf 

The labelling is common to all standard polygons in the laminationsEq, stlell t1lat 
111 2 

Pq >77 

Let III IIjG'q) be defined as 17r E Hi 17r > lip), where lip is tile 11jilliInta 

leaf p< lig. We label polygons in II, below, adopting the notation P 
19 X2 9 X21 --f 

[YI 
7 Y2 9 Y31s where the yj are the labels for the xi, so that Oi(xj) = Vi. Note flint 

the order in which the yj are presented is important. 
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Theorem 5.4.1. Let pq > 11,21. For any equivalence of the fortn st U s; 77 

sq, Us:;, the labellings associated to the triangles in II'W for 35 in 5 6, and where 

these polygons are standard, are as follows: 

1_1. 
ý 

11 
, 

L51 
__. ý [291 23 

, 
25] 113 

56 56 56 56 56 56 

[. 23 25 91 
_L 

[ 71 65 67 114 112 112 112 112 112 112 

, _L_, _j3 __. ý [113,107t 1091 
_17 

93] 115 224 224 224 224 224 224 

_L _L7 
99 93 95 3, 

224 224 224 224 224 224 

11 _L_l __ý 
[253 

9 
247 

1 
2491 [±5 _ý7 

1 
6 448 448 448 448 448 448 

79 81 85 239 233 235 
TT -8 7T -48- 2 T4-8- 

IT 
4-8 7 T4-8 I T4- 8 

93 9L 
-Lg- 

275 277 
14-8 7 T4- 874481 

'44 
87 4487 448 

__+ 
[267 26 11071 109 

1 
1131 U1 263 

448 448 448 448 448 448 

[L21, L23, L271 
_+ 

[197 191 
1 

1931 
448 448 448 448 448 448 

Proof Let Co = C, where C is as described in 5.2.4. 

Let us consider liq > [1,21. 77 Then 7ro =[ 
1,2, : 11 

nnd the sitIcs of 7ro are 777 

labelled by 11 and 2 respectively: 757 7 i. e., Oo(exp( !! '-)) = exp(6ri) etc. This is a 77 

direct consequence of 5.2.1. 

Then this forces (by property 2 of 01) that the leaves of 7r, = [-L 
, -L IUI tire 14 14 14 

labelled by 11 -L and ' respectively. i. e., ýj (exp(2-7ri) RI) CtC- 14)14 14 14 
)= CXP(L14 

As we can see from figure 5.4a, there is an element of 91 joining 7ro to 7r, 
, 

the boundaries of which define part of C1. Now, the two triangles of 112 nre 

connected by elements Of 92, which must not intersect the element of 91 - This 
LL 

means that the triangle [2-, 1-1,1-] is labelled (by 02) (-L 
1315) and vice-versa. 28 28 28 28 28 28 

e. g., 02(exp(2-")) = exp(387r'). 
28 28 
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Figure 5.4a 

We continue by observing the relevant connections via elements of 9i. (See 

figure 5.4b, where elements of 9j are represented by the lines across the middle 

third of 5.4b, and the upper and lower thirds are parts of the unit disc in C. ) The 

triangle (in113) [-2-, 11, "] is labelled (22, '3,2-): It is connected to [13 1 
25 1 

56 56 56 56 56 56 28 28 28 

by an element of 93. Note that it must be this triangle connected to [L3,25 
_L] 28 28 28 

because all other triangles in113are separated by g, or the elementOf ! 92illustrated 

(of course, no two elements of 9 can intersect). Each further connection illustrated 

is forced in exactly the same way: 

1-13L, 25 
-L9-1 is connected between 1-1,2,11 and [-L, ", -LI by some gE G4- 

112 112 112 777 14 14 14 
37 

1 _19 9 
43 is connected to [ 93 91-] by some gE G5, which in turn is 224 224 224 11 TO 1 TI 2 

connected to [& by some 9E G4. [ 51 53 'Z- I is connected to 111,1,51 56 56 56 i 2-4 1i 2-4 9 T2 4 56 56 56 

by some gEG. 5. 
[ 65 67 7L] is connected between [1,2,1] and [21,2, -L] by T4-8 I T418-1 T4-8 777 28 28 28 

elements of G6 and G5. [-L9-, 81 is connected between [23 
9 

2-5 
-L 

L 1- 5 
448 448 448 28 28 28 56 56 56 

93 95 9L by some gE 96- 114-8114-81 
TUI is connected to [-2-3,2' 

, 
29 ] by elements of G6 and 112 112 112 

23 25 22 271 is G. 5. 
[107,109, 

. 
131 is connected to -_I by some 9E G6 

- 
1121 

9 
123 

9 
L- 

448 448 448 TO 1T 1-2 9 rl 2 448 448 448 

connected to [ 51 
7 

53 
, 

57 ] by some 9E G6- 
112 112 112 

All the labellings on this set of triangles are then forced by the labellings on 
the triangles they are connected to or between, as quoted lbove. 13 

This is sufficient for the following: 
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I 
7 

Figure 5.4b 
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Corollary 5.4-2. The following connections occur: 

I_Ll 
_Ll M 121 31 

15 15 55 

I_L, 
_j] X [15,161 

31 31 31 31 

I. Lj 
_Ll M 1131 181 

31 31 31 31 

[10,171 M [28,351 
63 63 63 63 

[. 11 
, 

12] M J30,331 
63 63 63 63 

JL3 
, 

141 M [23,241 
63 63 63 63 

115,16 0,1 [26,371 
63 63 63 63 

19 
-20 

57 70 1 
127 127 127 127 

_L_] 
63 64 2 

127 127 127 127 

23 
_Z4 

1 0,1 
61 66 

127 127 127 127 

J-? s 4 10,11 75 76 
.L 127 7 127 127 127 

j_? 6 3 51 52 
.L 127 , 127 127 127 

[_Z7 
-28 

46 49 
127 127 127 127 

9 30 0,1 71 72 
-L 127 127 127 127 

_L_l M 53 74 
-Ll 

2 
127 127 127 127 

[_25 36 54 73 
127 127 127 127 

Note: We have omitted the results which follow easily by symmetry. e. g., 

fl-9, ý_O] D4 I-L, -L]. We shall also do this in many of the results which follow. 
63 63 63 63 

proof. The homeomorphisms Oj: What we do is to establish, for a given period It 

minor leaf, what value of j is sufficiently large to establish the leaf jig, uniquely, 

where Sq U S. 6 =, Oj Sq' U s. i and q is an endpoint of one of the leaves on the left 
7' 7 

above. 

Let q be an odd-denominator rational. Then let A(q) denote the arc of SI 

from exp(27riq) to exp(2riq'), where q' is the next point in the periodic orbit 
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of q following the circle anti-clockwise. Then, we have a set of j, nrcs of tile 

form (21q (modl), 2jq' (modl)). Let an arc (aI02) be called critical if tile nilgle 

measured from a, to a2 anti-clockwise is more than half of the circumference of 

the unit circle. An odd-denominator rational is determined uniquely by the order 

of its forward iterates under z ý-4 2z (modl) on Iz I 
zz E [0,1]/0 , J} together with 

the placing of critical arcs between consecutive iterates. e. g., the unique I)criod 4 

number under z i-+ 2z (modl) for which there is a critical arc between the third 

. 5, and fourth iterates is T1- - critical arc is &'). 
1.5 is is 

Theorem 5.4.1 gives us Oi(x) for x on appropriate polygons in 11 
.. 

These are 

pre-periodic even- denominator rationals - we aim to use these to npproxiinate 

periodic odd-denominator rationals, using the principle that an even-denotninntor 

rational with the same order of n iterates on S' together with tile same critical 

are arrangement determines that unique odd-denominator rational. We nttncil 

the leaf Pq to some pre-periodic leaf in 7r C 11., which maps forward to the fixed 

triangle. We justifY the above principle: let x be the prc-periodic npproximatiol, 

to q periodic, which satisfies the above order and critical gap condition. Thest 

Sr U Sq US by the continuous deformation of x to q in a way wilicil (JOCS lot 

affect the equivalence class: we can define arcs Pj as the straight line arcs wilicil 

join si (0) to 2j-1 q, and apply 2.4.3 to obtain the equivalence. x 

This gives us an equivalence of the form s. U s,, sq, Us wiliell J)y Zi. 1.3 

means that fIq M 1Iq'. This is the approach we take generally. 

We show that siUS3=S2Usi. The leaf I-L, -L ] is 
TTT 17 15 15 approximated by the 

pre-periodic leaf [-L, LJ, which by 5.4.1 is labelled by 21. Thus 03 (exi)(27ri 
56 56 56 

exp(27ri 1-3). Consider the first four iterates of 21 under 2z (modl): 
56 56 

33 ý_4 
A 

ý_4 5 
ý_+ 

5 
56 28 14 

Compare to the periodic orbit of 3 5 

In both cases the order of points in S1 is 1423, where tile digit j refers to tile j. tll 

number in the above iterated sequence. The arc A(R) is (33,5), 56 . 5a y correspoildilig 
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to A(! ) = (1, I). The critical arcs are A(-A-) and A(! ), which correspond to Affl 555 14 73 

and A(! ) respectively. Thus our condition is satisfied and 5 15 15 33 

We pick out some of the results. All the others follow straightforwar(Ily fts 

above. Consider the period 6 tuning [-L', E]: this is approximated b th f 63 63 'y 
c lea 

labelled 1, whose orbit shadows that of 777 63' 

However this does not help us, because of the repetition of points in the period 

six orbit, so we use a more direct method, using the fact that LLO, 171 is a tuning: 63 63 

s to =si F- si. Then (s.; f- 81) U S3 = (S3 F s. 31) U sjr - And sa ý- s, irs '3 17 77 'T It 

Next, we consider the case where the standard polygons (as labelled by theo- 

rem 5.4.1) do not suffice. We need to find the labellings on some thin non-standard 
(see §4.4 for terminology) polygons for the maps where it, is [ 2S 

1 
34 ] or [ 26 

, 
11 1 UT -I-2Y IYT ny 

- these are type (2) minor leaves in the terminology of §4.4 and the only exaniples 

of this type we consider. For these two minor leaves the pre-periodic leaf I-LI, Is] 
36 

is not sufficient to determine p., (the third and sixth iterate are identical). 
7ro 

65 
T 1-2 

67 
112 

15 

m 

J-1- 
112 

71 
112 

7rl 

Figure 5.4c 

9 
T-11 

The thin polygons we have to use are pre-images of [9 11 71 11-21 MI I TTJI and 
[115, -91-1, 

AIL], 
which are labelled -I-, -L'-J and -19, -23 1 

respectively 112 112 112 112 112 112 112 112 112 

see figure 5.4c. Pulling these back three times under s. U s; we can sclect un. 

ambiguouslY the correct labelling relative to the standard polygons already dealt 

with to get: 
[L779 L791 23P (5339 5271 529 1117 896 896 896 896 896 19-61 
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[233 
1 

2359 18-11 
_4 

[161 
1 

LOS, ISO 
896 896 896 896 896 ago 

[ 25 
1 

34 ] We r Then for 'et 
135 

ý.. * 87 0_0 AT 
ý_4 AT 

ý_# 
31 

, _4 
3 

M2 -127 896 4-48 19 M, 3-6 V 

corresponds to the orbit -1-6 ý-+ 
25 1-4 so 0-4 100 O-f 

73 
" 

to 
- 

3A 
127 -IT? -1 V2 'M Y "2 "2 "2 

26 33 ] Also for [ 
-1 -21-f 1 -1 -2 7 We get L67 367 

896 '14 8 
L43 
214 

31 
TU 

311 
I--# ý-4 I- 

; 16 
j TI, WII*ICII 

corresponds to the orbit 127 
1112 77 
127 12Y 

27 
-1,717 

&I 
Tif 

j0A1.4 119 
12"Y "J 

or 'ý- '-+ L' ý--* "' ý-4 -1 F-0 1 t-+ ' t-+ 's which corresponds to the orbit 112 56 28 14 7T 

52 ý_4 104 
ý_+ 81 ý_+ 35 ý_+ 

70 13 F_+ 26 (3 
12 11-7 -1-27 "2 -1-21 "2 "2 

Corollary 5.4.3. V4 is conncctcd. 

Proof By the example after 5.2.5, it is sufficient to show t1int 13423 T-5 10 A 
which follows by 5.4.2.13 

§5.5 The case k=4. 

NVe havc the following chains of connection for Vs by 5.2.5: 
47 '7 2A 29 30 

31 31 31 31 31 31 
1311 

31 
1M 1321-9 23-1 1 t4 131T 

I IT IM 113T 
I 33T I 

[91 LO] t4 [Aq A] t4 [Lqj 2-0] 31 31 31 31 31 31 M UP? 
1 311 

M 1311 13,1 11,1 

[5111,51 If] is still isolated. This leaves its with V3 in nt nimt. thrm cotmecte(I 31 31 

picccs. 

Theorem 5.5.1. Let jig > [-L, -2-1. For the cquivaleticci al Usua Is Is 
and s. U s+1 t-- svo Us. &, Me labcllingq associaied fo Me quadrilaterati in 11' ,, 

for 

6, are as followi: 

89 U STrr 

UT 19 23 31 33 "1 47 49 1 114 : 2409 7401 Not 140 nO 174-09 TIO 114-0 

ITs : [17 49 53 "1 Al 91 77 79 
4801 ; -80178-0 9 : roo 

1-4 "80 ý480 t : r8o t 48-01 

116 : 77 79 A3 91[2 13 L241 227 22-9 
960 0 NO I Rijo 9 Vio NO 960, -gou 1 960 

07 10 9 113 121 261 271 237 239 
9609w(7)0 IN 0 Wo 9,4ro 1 Utio 9 "0 9 Wo 

1 
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U 

17 19 23 12 114 
4 

J2-24-0 
, 

12-4-: 
0- , 

12 
-40 240 9 1401140 t 140 2 

47 49 53 61 [271 237 230 263 IIS : 480 $ 1-80 9 180 $ 7-80 -4-8, j 1 ro-O I Va 01 T-8 0j 

1-77 79 83 91 
--+ 

1 541 527 329 5.13 1 116 
960 1 WO 9 RO 9 V60 

1 
5-6 09 'rb 09 W6 01 9-6 0J 

1107 109 113 1211 
.+ 

(431 437 419 441 
960) r60 ý U-60 ý Pbo Pb (-) 9 Vii-o t -u-tro , -9 #TÖ 

1 

Proof Refer to figures 5.5-a and 5.5b. All the connections nre forced. 13 

Corollary 5.5.2. The following connedions occur (as wcll the qrninctric oncs): 

[. L, 
-4 

104 12S, 261 
31 31 31 31 

I. L1 L] M [47t 481 
63 63 63 63 

171 
. 
1] t4 116t 53] 

63 63 63 _6 Y 

0 innj 
1 

'2 
7 11 

1 
7- TIO721 I MI 

I1 12 979a 
"2 r2y] Irg, T-2y] 

[13 
_14 

[1031 1041 
127 127 1 liry "ll-I 

93 
127 127 M2 TV? 

34 14 171 
3-1 3T r, Tr 

I -.,, I 
a- I t. 4 12-8 ,mI 63 63 63 63 

7AIW1 291 34 
U-3 I Z7 93 T. 1 

9 in 63 64 
127 12f M2 MJ 

-LI 1 
12 ST To 

127 12-7 "lly M2 

13 14 SO 6A 
M M2 Tly Tly 

h is 14 SA 
1727 1,727 1-2 Y 

Proot The results follow as for 5.4.2. - thestundard polygon pre-periodic IrAvC4. 

are sufficient to determine all the above coil, Ipc t ions, so there nre no exceptional 

cases as in 5.4.2.0 

Corollary 5.5.3. Vs is connected. 
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Figure 5.5a 

12 
30 

J- 
15 

A-9 
60 

110 

Fi&xlrc 

.L 13 

5.5b 

. 20 

1 
60 



Proot By 5.5.2,1! -, -L] m[ 
25,2-6 1, connecting all the leaves except for one (per 31 31 31 31 

above example at start of this section). Also by 5.5.2, - 11WI, 7 37f 1-1 3 -n 

§5.6 The case k=5. 

By 5.2.5: 

[1v 2_1 MM[7181mI is 
9 

161 M [31,321 
63 63 63 63 61 Un 'r3 na 

M[4T, ýL8jM[L5, L6jM[S9, LOjt4jM ! 21 
63 63 63 63 63 63 639 63 

Tlieorem 5.6.1. Let liq >[1 -2-1 For the cquivatencci s T, 31 31 quill = sq, usi 

7r, and s. Usia = Sq' USI, the labellings associaied to the Sq US 23 "-1' Sq' Ua 
Ii IT 

pentagons in for 5< in :56, arc respectively as follows: 

Usts 
3T 

33 35 39 47 63 1[ 199 
19 g-92- 1 R9-2 1i 9-2 1 M9 2 

101 109 123 OS 07 
992 9MI NED N92 I M92 

1 
J 

116 95 97 101 109 125 
19 84 -9 8-4 9T -gs 41 Tq- 8-4 , -19-8 4 

163 171 187 IS? 
-1 V9 8-4 8-4 9 TO 8-4 TURS7 

ISO 
1 -9 8-4 

Sq U S23 

33 35 39 47 63 
992 1 79-2 9 V92 I M92 I W-972 

11 249 219 221 223 2019312 
95 9-2 i2i II Mqj I vri J 

1 

116 95 97 101 109 125 ] 
_4 

[ 
19 84 TF98 -4 9 -1 Tri 17-9 Msi I Tq 8-4 

419 433 405 4n7 
TM t Tg--#T 9 TOM 9 10-17, 

US27 
q 3T 

31 33 39 47 al 1 fdo7 4f17 jo 471 4911 115 19929U 
9-2 9U 9-2 9i 9-2 ýi 9-2 9929i 9-2 ti 9-2 9 9-9 2, iii j 

95 9T 101 101) 125 1033 1025 1027 10 nio 1116 
19849TRPTUM 7-984 T984 

IIia 
rg-ST T-557 roll a9 

Proof. This follows in a similar way to 5.4.1.0 

Corollary 5.6.2. The following connections occur: 
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[1.9 4 1879 881 
63 61 is -65 

[. I. 
IL[ 

A-0 
9 

ý01 
63 63 63 63 

1.19 A. ] ['OIn] 
63 63 63 61 

5]M 1111,112 
127 127 127 121 

M2 71-2y, "9210 1 
12011 

[5-. Ll w [601 61 ] 
127112? M2 M2 

1-7 
I-MmIlITARI 127 127 12 T 1727 

79a1 C4 94 lot) 
"I INY 

61 64 
1279127 if "I 

Proot As bcforc. 13 

Tlieorern 5.6.3. Let it, > f-L, 1-01. For the equivalences j, U. -oll t- gq. Us 9, 31 31 IT 

sq Uss, U so, and s, U sp C-- sq, U -s the labellings aqjociafcd to the 
IT 9 3T IT 

pentagons in lln, for 5 :5 in < 6, are as follows: 

J usla 
qW 

289 297 299 315 3101 195 165 173 17 
9% 

MI ml ri, 15-92-? 
FT-27" 5-W29 Fg-29 vg-2j 992 -9-97 Wl 992 

I,,, :[ 
599 60T 609 623 620 1 

-0 
3AI 331 339 34 1 377 1 

19 84 17-9 8-4 1 -19 8 -4 1 1-9-8 T1 'r9-8-i 17-9-st 
" TOP-8i t TO-57, T-911 9 PAR 

sq SR : 

289 297 299 3is 3191 
_O 

fegs 429 soo dni 600) IIS : 19929 
9929 i9-29 g-921 n9 i 1) 2e Uli ti 715 t in) iv 2 

I. A99 607 609 625 629 1 
_4 

(1121 1123 1093 1101 1 in) 
1984, -igs- 7987 T; 87 Ve 79 T9 s4 17-9 841 TUR7 -t 9- ITU-6711TUTIT-11i 

Usis 

299 297 299 315 3191 1 
U-92 U-92 J 

4211 4191441 413 
INT 91 992 9 99j v 992 

176 599 607 609 625 629 
19W 19849 1984 1984 TV 8-8 4 

A 129 1 IMT I-M api 
T-984 T9*84f 1980 198 

Igo 
- 

"9811 

Proof. See figure Ma for illustration of 7ZQ; j, -NJ). 
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9 
289 297 299 %to for so* -tie ovo Ms 11-910 

31 992 992 V9-2 TM TM IT" 'nag T314 992 "131 

Figure 5. Ga 

We leave out the details. Note that the leaf I ", "I is in tile gnp hawecil tile 63 63 

two pentagons illustrated. 13 

Corollary 5.6-4. The following connedionj occur: 

1 19 201 1 st 
0 

521 
61 -63 u is 

1 93 26 
30 

1632- 
9 

1-55 

119 
1 

201 1289 351 
u W3 93 11 

3T 
1 

38 93 
9 

1021 
127 -I2Tl TO "I 

37 38 47 48 1 
M T" 

37 
. 
18 [_14 73 

127 127 127 127 

39 40 103 104 
T" I" TTY ny 

"M 

39 40 33 56 
-1 2y -127 1-27 "2 

Proot As before. 0 

Corollary 5.6.5. Vs is connected. 

Proof We combine the results of 5.2.3,5.4.2,5.5.2,5.6.2 and 5.6.4 in Thbic 5.6.6. 
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Notation: the table shows all the period six minor leav", indiented by the 

numerators of the angles of their endpoints and where the denotninntor Is 63 in till 

cases. A symbol in the table demonstrates dint nil the minor lcnv". which linve 

that symbol as an entry are connected, as shown ill one of the nbove theorC11156 p. gi$ 
the leaves which have Pa as an entry are all connected together by corollary 5.6.2. 

The symbols Tj refer to leaves which are identified using pre-ittinge. 4 of the itinngle 

[1, ', 1]. Similarly Qj refer to leaves for which we use pre-minges of I1744 
T7T TI s I-S, TX o 11 

Pa and Pb to 1124811aI n1l(I Is 19 
LO 

1 
18,10-1 res. pectively, mid 11 to 31 IT 1-19 31 31 31 

the hexagon [1249 16 321 The sinall puctithesised entries (e. g., m At) 631W-31U31i-31Z-3lW-3J' 

are the analogous connections we observe liold by symmetry. Note flint for the 

symmetric leaves in the lower part of the table the connection. -; are those indiented 

as well as to the same letter but parentliesised. e. g., -171 is contirctc4l to 

[-L', MI and [±7-, ±-] by T4 and (r4) respectively. 63 63 63 63 

Table 5.6.6. 

V6 

(1,2) H (11) (61,62) 
(3,4) Pa JP4) 

11 (59t 60) 

(5, G) (PAI) Ql NO Pa (57,58) 
(7,8) Q2 (Q3) ]I 

(10,17) (Q2) TI (ra) Q2 
(11,12) (P&) T2 (ra) Pb 

(13,14) (ra) 
T3 (73) Pa (40.50) 

(15,16) (Q 0 T4 (ro Ql 11 (47,48) 
(19,20) Pb (rb) (43,44) 
(22,25) Pb (38,41) 
(23,24) T3 (39t-10) 
(26,37) Z 

(28,35) Pb Q1 TI 
(29,34) Q2 

(30,33) Pa T2 

(31,32) 1 
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We observe that there is a chain of connections from every Icaf n1jove to 
131,32 1. e. g., IL, 241 is connected to [L-1,14] by T3, which i. -s connectrd to I it), 60 1 

63 63 63 63 63 63 fil fil 
31 321 by 11. C3 by (pa), which in turn is connected to [,, -S, -61", 

§5.7 The case k=G. 

By 5.2.5 we have 

ill 2]M[_. L 4]t,, 4[7l 8] X'y 
-, -' 

Im1 31 1mI", I t-I 127 127 1279127 127 127 M 1127, 
p "1 2" 

95 
16 

IIIL121M[119 1201 .124 #19 114 
_L_l M [L 

TW1 11 -21-f 21 jyj 127 127 127 127 127 12 "2 

Tlieorem5.7.1. Let p, > For the cquivalencess. 63 63 Us,,., =. q,, Us4, where 

x= 31,47,55,59 the labellings amciated to the hczagom in 11., are reipretively 

as follows: 

[65,67,71,79,95,1271 -+ [197,205,221,253,191,193) 

[457,473,505,443,4,13,4491 

[977,1009,047,0.19,033, DGII 

[2017,1955,1957,10GI, 19G9,1985) 

I 

where the above numbers are numerators of fractions with denominator $968. 

Proot Follows as for 5.4.1. We leave out the detuils. 13 

Corollary 5.7.2. The following conncciions occur. - 

L? 1 
127 

41 
12'11 127 

21 ý4 111 

211 T2 
1131 1 14 

127 1727 M, 2 

12 
T7 2 TrIY MI "2 

12 
M1112 

6 
2 i M., I M, I 

Proot As before. 13 
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Table 5.7.4. 

V7 

(1,2) Ea to (125.126) 
(3,4) (a. ) 11 Eft (123.121) 
(5,6) (H) Pal It (121,122) 
(7,8) Pa2 Ed (119,120) 

(9,10) Eb (P*2) Q1 WO pd2 tab) (117,118) 
(11,12) Q2 IQI) (115,116) 
(13,14) (H) Q3 49, S) It (113,114) 
(15,16) (S. ) (P* 0 Q4 WO Pal Ed (111.112) 
(17,18) Eb firb) (109.110) 
(19,20) T, (TO (107.108) 

(21,22) Ec T2 
4XV) (105.106) 

(23,24) (P62) (Q3) T3 
(TS) Q3 P62 (103,101) 

(25,34) Eb (PbO WO T4 Cr4l Q4 Pbl (03,102) 
(26,33) (Pe 11) TS Ila2 (01,101) 

(27,28) (PS 1) MI) TO 47,11) Q1 Ila 1 (09,100) 
(29,30) M MO T7 

(711) Q2 It (07.98) 
(31,32) (a. ) Ta (76) En (05.06) 
(35,36) Eb T9 (TO) (91,02) 
(37,38) Ec Pbl (89,00) 
(39,40) Pb2 (87.88) 

(41,42) Ec (85,86) 
(43,44) (a. ) Ec (83.81) 
(45,50) (a. ) Pb2 EC (71.82) 
(46,49) T6 (78,81) 
(47,48) Pbl (70,80) 
(51,52) Ts/(. r, ) T4/Cr. ) (75.76) 
(55,56) (so Ph M) T, Eb. (71.72) 
(53,74) Ec Ta 
(54,73) Pbl To 
(57,70) Q2 Tl 
(58,69) Q4 

(59,68) Eb Q3 
(60,67) Pal 

(61,66) Pa2 T3 

(62,65) 
(63,64) Ea Q1 T2 
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Corollary 5.7.3. VI is connecicd. 

Proof. We combine the results of 5.2.3,5.4.2,5.5.2,5.0.2,5.6.4 mid 5.7-2. in Wile 

5.7.4. The notation for Table 5.7.4 is as in Table 5.6.6. (The mitior leam-i nre 
understood to have endpoints with denominator 127). 

We observe that there is a chain of connections froill every leaf to 
13 
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CHAPTER SIX 

GLOBAL PROPERTIES OF V. 

In this chapter we pull. together some of our earlier results and try to sum 

up what we know about about Wn and Vn, and point out where nud how mir 

understanding can be taken further. We will be assuming throughout this cImpter 
that every variety Vn is irreducible. We compute the genus of some of these 

varieties, making use of the calculations presented in §1.6. 

§6.1 The genus of a plane curve. 

By the genus of a variety in two variables, i. e., a pinne curve, we mean its 

geometric gentis as a Riemann surface, where we have removed the singular points. 
For the variety V. therefore, this coincides with the geometric genus of It'.. 

The genus of a variety, q(V), which hm no singular points, is givell by tile 

identity g(V) = 1/2(n - 1)(n - 2), where n is tile degree of the variety. So %7trictics 

of degree 1 and 2 have genus 0, and are isomorphic to the Ricinnim sphrre. For 

example, V3 and T, 4 are isomorphic to the Hicinnim sphere. If tile vnriety 111U.; 

singular points then 1/2(n - 1)(n - 2) givc-s un upper bound oil the (grometric) 

genus. 

We will calculate the genus of K (n < 7) by evidunting the effect of the 

singularitics, for which we have it formula. 

First we define iniericction number. ]Recall dint for the singulnritirs we nre 

considering, at each singularity we linve V,, expresse(I (in locnl c(mrditint") ns it 
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product of the form ri (a - ai(b)) where each aj(b) is n power scries in b, so dint 
j 

each term in the product defines one ishect or branch of V,, locnily (sce ClItipters 

1 and 3- in fact we possibly have (b - Oj(n)), though not in our exAnipleg ill 

§1.6). Let two of these terms be given by fl =a- nib nnd f2 =a- nib, which 
determine branclies B, and D2 respectively. Then the intersection number of D, 

with B2, denoted BI * B2 is given by dinic C in, ý) 
, where Cla, bi is the ring of < hJ2 > 

formal power series of n tuld b over C (assumed by default to lie ccntrcd nt 0) tind 
fl, f2 > denotes the ideal generated by fl and f2. 

Proposition G. I. I. Let iwo branches of a variciy inier. qed ai (n, b) = (0,0). 

Then, if there are local power serici exparmions for n in termi of b, narriely 

00 00 E ajlý aild a=E ni-bi, 
j=I jul 

then the intersection number of these two branchei iS giVCn by the IMA j juch M41 

aj 54 aj'. 

Proot Let k be the minimal j such that aj 96 (cj', so dint aj = nj' for nil I<k. 
The intersection number v is given by 

clat b] 
< f, g >, 

00 00 

where f=a-E aj bi and g=a-E nip. 
j=l jnl 

co The ideal < f, g> contains the clellicilts fa+ jjjbj)b' nild (n - 
)MI 

alb- ak-lbk-1). So(< f, g > +bi 10 5i< k) is it bitsis forthe cluoticut 
ideal. 13 

We degeribe how we can use the infornintion from 6.1.1 to ettlettInte tile grillig 

of sonic V.. Now, by [Bkl, if we have a vnricty with known degree., nud we, linve 

definite expressions for the branches of nil the singulnritim of flint vnriety, we itre 

al)lc tO cOnIP,, tc its gellus. For this, we live(I Afilnor numbers. f fV, 
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some variety at the origin, as above. Then the Milnor number of the singulnrity. 

it, is given by 

it = (fillic 
C[at b) 

< q., 4 > 

Note that if Df Jo is non-singular, then the Milnor number is 0. We can r(jutilly 

well define the Milnor number for a single branch of n singultirity - this simply 

means that f=0 is irrcdttciblc - so that for n smooth brntich is = 0.111 what 
follows, we write pj for the Miltior number of the j-th singulftrity of I n, tuid pq 
for the Milnor number of its i-th branch. 

Theorem 6.1.2. Let V be an irreducible variety of degree il, wiih k jitigularihei. 
Then the genus of V is given by 

9(V) = 
(d - 1)(d - 2) 

_ 
1: lij + rj - 

2 
jai 

2 

where lij i-s the Milnor number of the j4h singularity, and rj is the nurnbcr of 
branchei at the j-th singularity. 

Proot See [Bkj 13 

Corollary 6.1.3. The genus of an irreducible variety I,,, is given by 

g(VIS) 
k ri ri 

-EE E(Di-Dol 
j-1 iml lni+l 

where Bi. Bj is the pairviie intersection number of branche. 9 at the i -th jingularity. 

Proot By [Bk] the Milnor number of a isingularity is exprrs-sible in tcrins of the 
Milnor numbers of its constituent brmiches by 

ri ri ri 

E 2(Bi-Lll)) +I 
where the Iiij are the Milnor numbers of the brtuiclics of the i-th singuintity. 

By Theorem 3.0, all the brmiclics at ench singuinrity are stiumth, so tlint 

Iiii =0 for all i aild i where (Idined. The result dicti follows bY substittition il, 10 
the equation in theorern 6.1.2. [1 
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§6.2 Irreducibility for Vs and Va. 

It is already well established that the varieties for n !54 nre itiredilrible. 

We can also show that the varieties 1,15 wid 11a are irredticible by fnirly dirret 

means. To do this we use Bczout's theorem nnd consider the real vnfirtirs which 

arc subsets of V5 and V6. However, the discussion whieli follown ig tiot of 11111ch 

use in general for reasons we sliall explain. 

Theorem 6.2.1. Bezout's theorem Let Al and A2 be irrcducibtc algebraic curms 
in P'C, with degreci ini and 1112 respectively. Then the surn of the ififerjection 

numbers of Al with A2 is cqual 10 tlllt112- 

Recall that V5 and V6 have singtilarities at the pohat (a :b: c) = (-I -. 0: 1). 

Let L be the straight line a=-1, a degree one curve. Consider the sets V's nL nild 

V6nL, which intersect at (-1 :0: 1) = 1). Then (see §1.6) the intersection 1111111hers 

of these two sets at p are 5 and 9 respectively by 0.1.1. But these nre the degrem 

of Vs and V6 respectively, so this intersection point is of the inaxinium juLssible 

multiplicity because L is degree 1. Therefore, there cnn be no other intersection 

points between Vs (or Via) and L and hence nll the components of %, -*3 mid 1""S pnis 

through this point. If we can show that all the sheets pnssing through this point 

lie in the same connected component of Ws (or ffs), we linve shown tlint I's mid 

V6 are irreducible (by 1.3.2). 

Let Re(Vj) be the subset of V. for which b and n(b) nre renl. (So is j 
a real variety in its own right. ) Then, if ench brmich of Vrý in n neighbourilmd of J 
p contains a branch of Rc(Vj), ns opposed to just the point p, it suffiers to show 
that all the branclies of Rc(Vj) nt p nre in the saille Connected Component of I) 

This we do for j=5 and j=G. 

Note on the real pictures. Because we know dint nil the Angularitirs lie oil 
the projective lines b=0 and c=0 we can chunge coorditintes so that Rt(l)) 

contains all the singularitics in the fillite plalle: we call get thrill nil Oil olle two 

dimensional picture and see how the various branches connect 111). 

Figurc 6.2a represents Rc(V5). We can stv flint the two brntiches nt p 

121 



Figure 6.2a: Rcoto n (a = i) - 
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Figure 6.2b: Re(v6) nja = 1}. 
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are part of the same connected component of TVs, which is enough to show that 

V5 is irreducible. However we can see see this directly by following the various 

branches through both singularities. 

Figure 6.2b represents Re(V6). We cannot see directly that all the branclies at 

p lie in the same connected component of W6. However, we have local expansions 
here which tell us how the various arcs here connect up - this does suffice to show 

that all the branches lie in the same connected component of TV6. Again, we can 

see directly that Wr, is connected if we use the expansions to show how the arcs 

at (-1 :1: 0) are connected. 

Note: For j>7, this line argument will not work. For example, V7 has 

two branches at p= (-1 :0: 1), for which the slopes are not real. Hence these 

two branches intersect locally with Re(V7) only at the point p, so any picture (as 

above) would not reveal anything directly useful. 

However it does seem that in general the intersectionvi nL is of maxiinum 

multiplicity (more about this later) so that the connectedness of local branches at 

p would be sufficient to show irreducibility. In particular, if the methods of the 

previous chapter could be used to prove that all minor leaves in the limb of [V', 1T ] 

were connected together with those in the limb of [A, fl, then this may sufficc to 77 
show that all are connected. However, this seems likely to be just as difficult to 

prove as the full problem of Chapter 5. 

§6.3 Examples of genus. 

We have already shown that VI, V3 and V4 are once, twice and four times 

punctured spheres respectively. We assume that V5 and V6 are irreducible. 

Theorem 6.3.1. The genus of Vs is 1. Therefore, it is a one-holed torus with 
two points of self-intersection: one where two sheets meet tangentially; one where 
three sheets meet transversally. 

Proof The degree of the variety V, 5 is 5. Therefore, an upper bound on the genus 
is 6. In the following table we list the singularities of V5, and the contribution they 
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make to the genus (given by 6.1.2): on each row we list the pairwise intersection 

numbers of the sheets, in the order that they are presented in §1.6, followed by 

the total for the particular singularity. 

v5 
(-l :0: 1) 

(-l :1: 0) 111 

By 6.1.2 g(V5) =6-2-3=1. So Ws is a Riemann surface of gerius 1 with 

seven punctures. V5 has two points of self-intersection: one is a simple double- 

point and the other is a simple triple-point, where simple means the branches meet 

transversally (see §1.6). 0 

Theorem 6.3.2. The genus of V6 is 6. 

Proof The degree of the variety V6 is 9. Therefore, an upper bound on the genus 
is 28. The following table is presented as for Vs. 

V6 

(-1: 0: 1) 1111 

(-1/2 :0: 1) 1 

(-1: 1: 0) 1111 

By 6.1.2 g(V6) = 28 - 11 -2-9=6. So TV6 is a Riemann surface of gentis 6 

with eleven punctures. V6 has three points of self- i ntersec t ion. 0 

Example 6.3.3: V7 

In this case we merely obtain an upper bound for the genus. 

In the following table each row has entries corresponding to the total inter- 

section number of some branch aj with branches given by ai for i 

Since the degree of the variety V7 is 21, an tipper bound on the genus of V7 

is given by 190. From the table we have contributions which total 2+2+ 74 + 

14 + 70 +3+3= 168. So we have a value of 190 - 168 = 22 for g(V7). So IV7 
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V7 

3+%/5 0 1) 
2 2 

2 %/5 0 1) 2 
(-1/2 0 1) 222224 

(-l 0 1) 87 16 13 14 84 
1 0) 10 987759 
1 0) 3 

(-'+i :1: 0) 3 

2 

2 

14 

4 74 

6 6 3 70 

3 
3 

is a Riemann surface of genus 22, with fifteen punctures (see §1.6). V7 has seven 

points of self-intersection, provided that it is irreducible. 

§6.4 Some remarks on further possible research. 

It seems clear from the examples that there is some elementary relation be- 

tween the position of leaves in the QML and the slopes of the corresponding 
branches at a singularity, just as there is between the minor leaves and the loca- 

tion of the singularities. The latter (see Chapter 4) can be summed up as: 

Minor leaves have same or complex- conjugate minimal leaf. 

4=* Associated polynomial hyperbolic components have the same singularity 

on their boundary. 

We conjecture the following analogous relation (by next- to-mini mal, leaf we 

mean the least leaf greater than minimal one): 

Minor leaves have saine or complex-conjugate next- to-ininitnal leaf. 

. 4==*. Branches are tangent to each other. 

Indeed, we can extend this conjecture further to: Let it, and jig, share n 
lesser pre-periodic leaves (i. e., there exist n leaves t such that I< jig and t< jig, ). 

Then the corresponding branches are tangent to the n-th, degrec. This holds for 

the examples we have calculated in §1.6. 

It is interesting to note that for most of the singularities that we have studied, 
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the branches of the varieties have real slope. The cases where this fails to happen 

are the ones the ones that contain polynomials for which the minor leaf is non- 

regular. Then the two tangent slopes of the sheets corresponding to pairs of minor 

leaves that are partners (see §4.4 for definition) are complex- conj ugate. e. g., The 

polynomials corresponding to [A-, "I and -L2-1 lie on one branch of V7 at 127 127 127 127 
0: 1), and those corresponding to [ 3' 

t -26-1 and 
[107,1081 on another, the 127 127 T-27 -27- 

tangents of which have slopes LL' by §1.6. 2 

We return to considering the singularities of V,, at (-1 0: 1) (remarked on 
in §6.2): we conjecture that the intersection number of V. with L is the same as 
the degree of its defining polynomial p. (a, b). Thus V,, nL=p for all n. 

The idea for a proof of the above: let Ii be a minor leaf in the limb of [y', 271. q7 

Then its position in the QML determines the pattern of its periodic critical orbit 
(and its symbolic dynamics). We know that the local branch of the variety which 
corresponds to pq (see Chapter3) is expressed as a power series expansion a= -1+ 
a(b), the terms of which determine the degree of tangency and intersection number 
between branches. Now, the critical orbit pattern determines the expansion a 

-1 + a(b), as the following example illustrates: 

Example: [-! -, -L], for which a= (1 200 0). We have seen that the third 31 31 
(b +a (b)) 2+ (a(b) - 1)b +b iterate of 0 is b+ a(b). The next iterate is given by 

(b + a(b))2 
7 

which we denote as 14. In this case this quantity must be near 0. i. e., limbo 14 = 0. 

We substitute a(b) = alb + a2b2 + O(P) and equate coefficients of b from the 

numerator and denominator of 14. Note there are no constant terms. The b term 

in the numerator is cilb; in denominator 0. Thus ai = 0. Tile b2 term in the 
2V22; 22 

numerator is al + a2b = CV2b in the denominator b2+ a, =b. Thus a2 = 1- 

So a=V +O(b 3) 
on the branch corresponding to [-L, -L]. We have more than this 31 31 

however. The above argument shows that any periodic leaf (> [71, V2]) for which 77 

the first four terms of o, are (12 0 0) corresponds to a branch for which the local 

expansion is of the form aV+ O(b 3). Higher order terms can be calculated in 

the same way. 
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